
Software Lab
Institute of Software Engineering

University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart

Master Thesis

Metamorphic Testing of
Version Control Systems

Maximilian Reichel

Course of study: Computer Science

Examiner: Prof. Dr. Michael Pradel

Supervisor: Prof. Dr. Michael Pradel

Dr. Maria Christakis

Started: November 15, 2021

Completed: May 15, 2022

Abstract

Currently, no approach exists to automatically and systematically test the implementation of ver-
sion control systems (VCS). VCS are widely used in the software development industry, where a
lot of people rely on these systems to perform as specified and not to lose any data. However,
problems with the implementations of such systems are found frequently which causes risks and
inconveniences to the users. The oracle problem renders traditional testing impractical.

In this thesis, we present an approach to automatically test the implementation of VCS using
metamorphic testing. Metamorphic testing is an approach to mitigate the oracle problem by split-
ting it up into smaller parts. Instead of knowing the expected behavior of a program for a specific
input, this approach uses the knowledge of how a certain change of the program input will be
reflected in its output. We develop such transformations of inputs of VCS and the corresponding
relations of the outputs. Since this requires initial inputs to work with, we also develop a random
input test generator. We combine these two components into an automated testing tool. As inputs,
we use bash-scripts containing commands to interact with the VCS and the file system. As outputs,
we use the files in the working directory after executing the input scripts. Additionally, we develop
a test minimizer to reduce the number of commands in the inputs when a relation gets violated.
This eases the manual analysis later. Since git is complex and currently the most popular VCS, it
makes a good first target to test our approach.

We find five real-world bugs in the implementation of git and archive a precision of 90.79%.
Additionally, we are able to minimize the test inputs to 1

5 of the original size on average.

iii

Zusammenfassung

Derzeit gibt es keinen Ansatz, um Versionskontrollsysteme (VCS) systematisch und automatisiert
zu testen. VCS sind weitverbreitet in der Softwareentwicklung, wo sich viele Leute darauf ver-
lassen, dass diese Systeme wie beschrieben funktionieren und nicht zu Datenverlust führen. Den-
noch werden immer wieder Fehler in den Implementierungen von VCS entdeckt, was Risiken und
Unannehmlichkeiten für die Nutzer bedeutet. Aufgrund des Orakel-Problems ist konventionelles
Testen dieser Systeme nicht praktikabel.

In dieser Thesis stellen wir einen Ansatz zum Testen der Implementierungen der VCS mithilfe
von metamorphischem Testen vor. Metamorphisches Testen vereinfacht das Orakel-Problem, in-
dem das Problem in kleinere Teilprobleme aufgeteilt wird. Anstatt das erwartete Verhalten des
Programms auf eine bestimmte Eingabe kennen zu müssen, wird bei diesem Ansatz das Wissen
darüber verwendet, wie sich eine bestimmte Änderung der Eingabe auf die Ausgabe des Programms
auswirkt. Wir entwickeln solche Transformationen für die Eingaben von VCS, sowie die erwarteten
Beziehungen der Ausgaben. Da wir initiale Eingaben benötigen, um diese transformieren zu können,
entwickeln wir auch einen Zufallseingaben-Generator. Ebenso entwickeln wir auch ein Verfahren,
welches die Test-Eingaben minimiert, wenn eine Relation verletzt wird, um die manuelle Auswer-
tung hinterher zu vereinfachen. Wir verwenden git, um unseren Ansatz zu testen, da es komplex
und das derzeit meist genutzte VCS ist.

Wir finden fünf Bugs in der Implementierung von git und erreichen eine Präzision von 90,70%.
Zusätzlich haben wir die Test-Eingaben im Durchschnitt auf 1

5 der ursprünglichen Größe reduziert.

v

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Example . 2
1.3 Thesis Structure . 2

2 Background 3
2.1 Metamorphic Testing . 3
2.2 Version Control Systems . 4
2.3 Git . 4

3 Approach 9
3.1 Overview . 9
3.2 Script Generation . 9

3.2.1 Command Model . 10
3.2.2 Script Generator . 14

3.3 Relations . 17
3.3.1 Exit Relation . 19
3.3.2 Source Independent Checkout Relation . 19

3.4 Test Execution . 20
3.5 Transformations . 21

3.5.1 Command Transformations . 21
3.5.2 Command Insertion . 25
3.5.3 Transformation Selection . 28

3.6 Test Minimization . 28

4 Implementation 31
4.1 Architecture . 31
4.2 Script and Command Model . 32
4.3 Transformation . 34

5 Evaluation 35
5.1 Approach Effectiveness . 35

5.1.1 File Move Bug . 35

vii

viii Contents

5.1.2 Commit ID Collision Bug . 37
5.1.3 Checkout No-Op Bug . 38
5.1.4 Stash Push Fail Bug . 40
5.1.5 Pull Fails After Commit --dry-run Bug . 41
5.1.6 Result . 42

5.2 Approach Efficiency . 42
5.3 Approach Precision . 44
5.4 Test Minimization Effectiveness . 44
5.5 Transformation Effectiveness . 45

5.5.1 Result . 46

6 Related Work 49

7 Future Work 51
7.1 Script Parsing . 51

8 Conclusion 55

Bibliography 57

1 Introduction

Developing software without using some kind of version control system (VCS) is risky, therefore
practically every serious software development effort uses a VCS today. Within such projects,
the developer’s code is the most important asset, so it is critical to keep track of it; this can be
accomplished by a VCS. It allows a developer to turn back the time to fix mistakes and review past
changes. Additionally, it helps the team with the challenges of concurrent and distributed software
development.

In the early years of the Linux kernel development, changes were passed around as patches or
archive files [15, p. 12]. At this time, no software existed that could meet all the requirements of the
developers. In 2005, this provoked them to start the development of today’s most popular version
control system: git. Since bugs in such systems could cause serious problems for a lot of people,
it is important that these systems work properly. Git supports more than 140 commands and its
source code consists of more than two-hundred-thousand lines of code. Such complexity increases
the risk of bugs. The fact, that this risk is real is shown by a recent bug in git. In a specific
scenario, the bug could cause files to disappear and changes to get lost1. Another recent bug with
the git mv command for moving files might cause an unintended state and some subsequent git
commands to fail2. This shows the need for testing these systems, which is not trivial in general.
Currently, there is no way to systematically and automatically test the implementation of VCS.
This encouraged us to tackle this issue.

When testing software, we need to know the expected behavior of each test case, which is known
as the oracle problem [1]. For each test case, we need an oracle that tells us whether the observed
behavior is correct or not. Metamorphic testing [4][11] is a technique to address this problem by
splitting it up into smaller parts that are easier to solve. In metamorphic testing, we do not need to
know the correct output for a specific test input. Instead, we use the knowledge of how a change of
the test input is reflected in the test output. We use such relations to derive a so-called follow-up
test case from the original test case and check if the difference in the program output of both
test cases meets the predictions according to the applied relation. We will use this technique in
combination with an automated test case generator for the automatic testing of version control
systems. Due to its popularity and complexity, git is the ideal target for the first implementation
and the evaluation of our approach.

1https://github.com/git/git/pull/1039
2https://github.com/gitgitgadget/git/releases/tag/pr-1187%2Fvdye%2Freset%2Fmerge-inconsistency-

v2

1

https://github.com/git/git/pull/1039
https://github.com/gitgitgadget/git/releases/tag/pr-1187%2Fvdye%2Freset%2Fmerge-inconsistency-v2
https://github.com/gitgitgadget/git/releases/tag/pr-1187%2Fvdye%2Freset%2Fmerge-inconsistency-v2

2 1. Introduction

1.1 Goals

The goal of this project is to design, implement, and evaluate an automated metamorphic testing
tool targeted at version control systems. Additionally, we want to find real-world bugs in version
control systems to prove the effectiveness of the approach. To do so,

• we design metamorphic relations and transformations aimed at version control systems,

• we design an automated input test case generator aimed at version control systems,

• we implement the relations, the transformations, and the generator within an automatic
testing tool to test the implementation of the VCS git,

• we test this tool on the latest version of git, and

• we report the true positive violations to the developers and evaluate the approach.

1.2 Example

In the introduction, we have already mentioned the recent bug related to the git mv command.
We will describe a scenario in which our approach can detect this bug. At first, the random input
generator generates a sequence of commands. These commands interact with git and the file system,
for example by creating some files and moving them by the git mv command as a real user might
do. Second, the approach applies transformations to this command sequence and observes the
behavior during the execution of the original and the transformed sequence. Afterward, it checks
if the observed behavior matches our expectations according to the used relation. In this example,
a sleep 1 command is inserted at a particular point within the sequence. This command pauses
the execution of the sequence for one second. We expect that the working directory contains the
same files after the execution of both sequences. Since this bug is timing-related, it can be affected
by the inserted sleep command. After the executions, the approach observes a difference in a file
in the working directory. This observation contradicts our expected relation between these files,
so we have found a potential bug. The approach minimizes the sequences to only contain these
commands necessary to reproduce the difference of this file.

1.3 Thesis Structure

This thesis is structured as following: Chapter 2 gives an overview of the main topics required
to understand the concepts described in this thesis. Our approach for an automatic metamorphic
testing tool aimed at version control systems is described in Chapter 3. In Chapter 4, we explain
the used technologies as well as interesting details of our implementation of the supposed approach.
Chapter 5 is dealing with the evaluation of our approach and the explanation of bugs found in git.
Afterward, we discuss some previous work that is related to our work in Chapter 6. In Chapter 7,
we discuss current limitations and possible improvements of the approach. Finally, we give a short
conclusion in Chapter 8.

2 Background

This chapter gives an overview of the main topics required to understand the concepts described
in this thesis.

2.1 Metamorphic Testing

The concept of metamorphic testing was introduced with a demo paper by Chen et al. in 1998 [4].
An intuitive approach to test software would be to execute a program and compare the actual
behavior against the desired behavior. But how do we know what the desired behavior should
look like? The test oracle problem deals with the question of how we can decide whether the
observed behavior is correct. It is still a current research topic [18][8][1]. Metamorphic testing is
one technique to address this problem. In metamorphic testing, we do not need to know what the
expected behavior is. For this technique, we will use knowledge about the relation between the
test input and the behavior of the program. For example, we can start with some test input and
observe its behavior. Then we can use our knowledge to transform this input in such a way, so that
we can predict the difference between the behavior of this transformed test input and the original
test input. If we execute the test with the new input and the observed behavior does not match
our prediction, there must be either a fault in the program or our relation is wrong.

Let us assume we want to use this approach to test the calculation of the sinus function sin(x)

for some value for x. We can use the fact that we can add integer multiples of 2π to x without
altering the result of the calculation. So, a possible transformation of some input x would be to
add an integer multiple of 2π to it. And the relation results in the fact, that this transformation
should lead to the same output as with x as an input. So, sin(x) = sin(x + 2 · i · π) must hold
true for all natural numbers i ∈ N. If we observe a case where this relation does not hold true,
the calculation is not correct. This would enable us to find a bug within the sinus calculation even
without knowing a single concrete result of the sinus function for reference.

Formally, metamorphic testing can be defined as follows: Let P a program under test. Let t

be a transformation for the inputs of P . Let A and B := t(A) be two inputs for P where B is
the transformed input A. Let r be a specific relation between the two outputs of P when using A

and B as input. If we have found such an input pair for which the corresponding outputs of P are
related as described by r, we have found a potential bug in P .

3

4 2. Background

2.2 Version Control Systems

Version control systems (VCS) are used to track all changes that were applied to one or more
documents. It enables the user to revert the content of the document to any state that was checked
in at some point in time. This is beneficial for working on large and complex documents. When
a modification introduces errors that cannot be fixed easily, the document can be reverted to
some state before the error was introduced, even if the error was detected a long time after it
was introduced. Distributed VCS can also be used to enable independent collaborative work on
documents in some instances. They are considered as a important component of the software life
cycle in modern software development [6]. VCS enable a lot of people to work concurrently on
different parts of the same project. Additionally, they enable the identification of the author for
each change.

2.3 Git

Git is a popular decentralized VCS. Into 2005, its development started as an open-source project
by Linus Torvalds. Since then, it rapidly becomes one of the most popular VCS [9]. Git enables
distributed work and non-linear workflows. Git itself is a command line tool, but graphical user
interfaces also exist which can be used to interact with git.

Git stores all its information in so-called repositories. Since git is a distributed version control
system, the information in different repositories can be synchronized. The main difference between
distributed version control systems compared to centralized ones is that each user has a local copy
of the whole repository and can therefore work completely independent. In git, a history of changes
is called a branch and one repository can contain multiple branches. Each branch has a name. The
name of the default branch is typically “master” or “main”. The history is made up of commits. A
commit is composed of the changes between itself and its parent commit. These changes are applied
on top of each other to recreate the desired state of the files at the current commit. The history
forms a directed acyclic graph (DAG) where the commits are the nodes and the parent’s relation
between the commits are the edges. Each outgoing edge of a commit is referring to one or more
parents. Each commit is referenced by a unique ID, which is calculated from a hash of the current
timestamp, the commit message, the ID of the parent commit(s), the contents of the change, and
other meta information. A new branch can be created at any point in time. Per default, it is
based on the current commit. A branch is similar to a label that points to the commit that is the
latest commit of this branch. Changes to the new branch will not affect the former branch. For
example in software development, branches are typically used to implement new features. This
allows the developer to track new changes without affecting the master branch with unstable or
untested changes. Additionally, changes in the master branch will not affect the developer. When
the feature is ready to be included in the master branch, these changes can be pulled into the
master branch by a merge operation. During the merge operation, the changes must be combined
in a way that the outcome is the same as when the changes were applied linearly. To do so, git
will analyze the changes on each branch since the last common commit of them. For example,

2. Background 5

if each file is only altered in one of the two branches, the two sets of changes will not interact
with each other and thus can be combined by a union set. If files are altered in both branches,
git offers different merge strategies to combine the changes. Third-party applications can merge
changes while using contextual knowledge of the merged content, for example for source code files
of specific programming languages. If the two branches contain conflicting changes that cannot
be resolved by git, it will ask the user to resolve these conflicts manually. This is called a merge
conflict. The merge itself will create a merge commit in the history of the branch where the changes
were pulled in. In some instances, it is possible to use a fast-forward merge instead of this explicit
merge. Simplified, the fast-forward merge can only be used if the affected branch is not yet pushed
to a remote server, as it will change the history and is therefore causing problems for other users
who may have already added commits to this history. A fast-forward merge can only be used in the
first example where each file is altered within at the most one branch. This enables git to reapply
the changes of the merged-in branch to the target branch as if they were committed to this branch
in the first place. Since the commit IDs depend on the parent commit, this causes the IDs of all
following commits to change. Therefore, this should only be used for local histories.

Git Commands

Git will typically be invoked by the git base command on the command line. For example the git
--version command shows the version number of the installed binary. All the different functions
of git are split up into different subcommands. For example git merge to merge different branches
or git log to show the commit history of the current branch. All these subcommands have their
own options and arguments. Some subcommands have subcommands themselves. For example
git notes is split into 9 subcommands, such as git note add to add a note to a commit. At this
point in time, the latest git version 2.36.0 supports 142 subcommands1. Due to the high number
of features and high complexity, this software may suffer from bugs.

Git Trees

When making changes to a history in git, the change has to go through three different stages.
Git calls these stages trees. Think about these trees more as a collection of files than the data
structure. These trees are called HEAD, index and working directory. The HEAD is a pointer to
the latest commit of the current branch, which will be used as the parent of the next commit. The
index contains the proposed next commit. It is also called gits staging area. When a commit is
checked-out, the index is filled with the file contents of this snapshot. Finally, the working directory,
also called the working tree, is the directory on the file system in which git creates the files of the
snapshot of the checked-out commit. This is the directory in which we can access the files and
make changes to them.

Let us assume we want to check out a branch and edit an existing file. In the typical git
workflow, we first use the git checkout command to check out the master branch. This sets
the HEAD to point to the latest commit on the master branch, populates the index with the file

1https://www.git-scm.com/docs/git/2.36.0#_git_commands

https://www.git-scm.com/docs/git/2.36.0#_git_commands

6 2. Background

contents of this snapshot, and git creates the files in the working directory to match the index.
We can then edit the file within the working directory and use the git add command to add the
altered content of this file to the index. This is also called staging the changes. After the staging,
we can use the git commit command to create a new commit containing the files from the index.
After this, the HEAD will be updated to point to this new commit.

Git also provides the option to configure multiple working directories for one repository. Each
working directory has its own index and HEAD.

Remote Synchronization

Git is a decentralized version control system. Therefore, repositories can interact with each other
to share changes and synchronize with each other. For example, there is some repository on the
Internet with source code that we want to use. The typical workflow would be to use git clone
command to make a local copy of the remote repository. This will also check out the default
branch. Let us assume we have made some changes and have created new commits at the master
branch. So, in order to synchronize our local master branch with the master branch of the remote
repository, we can use the git push command.

Suppose, we have the permission to write to the remote repository, the push operation will try
to append our new commits to the top of the remote master branch. If nobody else has added
changes to this remote branch in the meantime, this operation will succeed. If somebody has made
changes in the meantime and the remote branch does not match our local version anymore, it will
fail. In this case, we first have to synchronize our local copy with the remote one. This can be done
by using the git pull command which will first fetch the remote changes and in the following
merge our changes on top or fast-forward if possible. This may also result in a merge conflict,
which must be resolved manually. After finishing the merge operation, we will be finally able to
push our changes to the remote branch.

Git also allows the user to interact with more than one remote repository. Each remote repos-
itory is called upstream in our local repository. Local repositories can also be configured to use
multiple upstreams. This enables us to pull and push changes at will.

Git Configuration

Git offers a lot of configuration options. Looking at all git commands there are about 2000 optional
arguments in total. Some of these options can be permanently set within the git configuration file.
This configuration also contains other git properties, such as upstream targets. When a local git
repository is created, either via git init as an empty repository or via git clone as a clone from
a remote repository, git will create a directory called .git. Git will use this directory to store all its
internal states, such as the configuration file, the index, and the history. Besides this configuration
file within the repository, git also uses a global configuration file. The configuration file is text-
based and uses a hierarchical key-value system. For example, when an empty repository is created
via git init, git will also create and check out a new branch called “master” by default. The
default name of this first branch can be changed via the configuration init.defaultBranch key. The

2. Background 7

command git config --global init.defaultBranch main can be used to set the value of this
key to “main” in the global configuration file.

3 Approach

This chapter describes our approach for an automatic metamorphic testing tool aimed at version
control systems.

3.1 Overview

In metamorphic testing we start with some test input as our source test case. A follow-up test
case is derived by applying transformations to this source test case. These transformations are
chosen in such a way that the specific relations between the outputs of the two test cases hold true.
Section 3.2 describes our approach to tackle the first problem of getting test inputs by generating
test cases from scratch. In Section 3.3, we describe the relations used for this approach and how we
check them. Section 3.5 explains the transformations used with this approach. If a relation does
not hold true for a source and follow-up test case, we have to evaluate the cause of the violation
and figure out if this is a false positive or a true positive warning. Since the test cases can be large
and difficult to understand, we use an automated test minimizer that minimize the test cases which
is described in Section 3.6. These steps are visualized in Figure 3.1.

3.2 Script Generation

To be able to run metamorphic tests, we need to have some test input to work with. In our context,
a test input is a shell script with commands that interact with git and the file system. One approach
to obtain test inputs is to generate them at random. The challenging part is about how much to
guide the generator and how much should be random. A very simple and naive approach would be
to use a pure random text generator that knows nothing about the application context. Of course,
this generator is probably not producing a valid shell command most of the time. Therefore, we
need a generator with some knowledge of the application context to make sure, it generates at least
syntactical valid shell scripts and also increases the probability of generating valid git commands.
For this, we will use a logical model for concrete commands, so that they can be generated from

Test
Generation

Source
Selection Transformation

Test
Execution

Output
Evaluation

Report
Generation

Figure 3.1: Approach Overview.

9

10 3. Approach

command templates. To generate whole scripts, the generator will first insert commands to prepare
the current working directory and then repeatedly insert a new generated concrete command and
check if the script still executes without errors. If an error occurs, the generator will go back to the
last insertion and try again. This section will explain the terminology, the model, and the details
of the generator.

3.2.1 Command Model

To be able to describe our command model we have to distinguish between command templates
and concrete commands. A command template describes general properties of a command,
such as its name, possible arguments, and possible subcommands. These properties are used to
derive instances of concrete commands from the command template. A concrete command
contains valid values for the properties defined by the template. It can be transformed into a string
representation to be used in a shell script. You can assume the command templates as being a
formal grammar that describes how a valid command of this type looks like on the command line.

The generator will use the command templates with some information from the current genera-
tion context to generate concrete commands. A command template t ∈ T is defined as a four-tuple
(Nt, ODt, ADt, St) with the following properties:

Name (Nt ∈ Σ∗) The name of the binary to invoke the command on the command line or to
invoke the subcommand.

Optional argument definitions (ODt ⊂ ÔD) A set containing the definitions of all individual
optional arguments or flags which can be used as a concrete instance of a command generated
by this template. These definitions contain at least all the possible names of the corresponding
options and their type. These definitions are used to generate concrete values for each option
when instantiating a command from the template and the definitions can also contain other
attributes which will be specified later.

Positional argument definitions (ADt) This is a function that provides a list with the type of
each positional argument used to instantiate a concrete command from the template. The
output of this function can be non-deterministic. Positional arguments will be appended to
the command after the optional arguments.

Subcommand templates (St ⊂ T) If the command supports subcommands, a template for each
subcommand is defined in this set. Otherwise, this set is empty.

Each concrete command c generated from a command template t ∈ T is defined by a five-tuple
(Nc, Oc, Ac, Rc, Pc) with the following properties:

Name (Nc ∈ Σ∗) The name of the binary to invoke the command on the command line or the
subcommand as specified by Nt.

Optional arguments (Oc) A set of optional arguments where each option is instantiated accord-
ing to some option definition ODt.

3. Approach 11

git︸︷︷︸
command

name

-C repo1︸ ︷︷ ︸
optional

argument

commit︸ ︷︷ ︸
(sub)command

name

--allow-empty -m "fix"︸ ︷︷ ︸
optional

arguments

foo.txt bar.txt︸ ︷︷ ︸
positional
arguments

>out.txt︸ ︷︷ ︸
output

redirection

Figure 3.2: Example of a concrete command on the command line with its annotated parts.

Positional arguments (Ac) A list of positional arguments which will be passed to the command
during runtime. In contrast to the option’s set, the order of these arguments is important.
The list will be filled with values of the types provided by ADt.

Redirections (Rc) A list of redirections to redirect the output of the command to a file.

Parent (Pc) If this concrete command is a subcommand of another concrete command, Pc will
contain the other command. Otherwise, Pc will be ω.

Figure 3.2 shows an example of a concrete git commit command as it can be invoked on the
command line. The first token is the name of the git command followed by an optional argument
-C which itself takes the file path repo1 as arguments. This argument specifies the path that
git should use as the current working directory for this single invocation pretending to be in the
directory when invoking the command. The next token commit is the name of the subcommand of
git that should be invoked. This subcommand itself has two optional arguments and two positional
arguments. The -m option itself takes also a string as an argument, which is the commit message
for this commit. The --allow-empty option allows us to make a commit that does not contain
any changes. This is also called a flag as it does not take any arguments themselves. It can be
either specified or not. The last part >out.txt is a redirection of the standard output stream of
the command into the file out.txt. This part is interpreted by the shell and is not passed to the
program.

To generate commands with arguments, the generator needs to know their types and meaning.
For example, the git commit -m takes some argument but the git commit --allow-empty option
does not. The git -C option expects the name of a directory. We could try to use some random
string as a value for this option, but there would be a very low success rate actually to hit the
name of an existing directory. To overcome this, we assign a type to each argument that will be
used to choose an appropriate value while taking the current generation context into account. This
approach uses the following types (OT):

File The path of a file that was created by the generator at some point in time during the generation
of the current script

Directory The path of a directory that was created by the generator at some point in time during
the generation of the current script

Commit ID The ID of a commit that was done during the generation of the current script. Since
the commit hash ID changes each execution, we use some logical identifier that is resolved to
the actual commit hash during runtime. This will be explained in detail in Section 3.5.1.3.

12 3. Approach

Random word Some random alphanumeric string with a length of 10 characters.

Selected word This type will be defined with a set of strings from which one instance is chosen
at random. This can be used for options such as git commit --untracked=<mode> where
mode can be all, normal or no.

Branch name A randomly chosen name of a branch from the finite set of possible branch names
used by the generator.

Current working directory The current working directory has the task to enable multi-user sce-
narios. We use multiple working directories with different git repositories which can interact
with each other.

Bool This type is used for optional arguments that do not take any arguments themselves.

During the generation, we retrieve a value for each type from the generation context. Each option
definition od ∈ ÔD of the command templates is defined as a six-tuple (cliod, sepod, otod, condod,
envod, confod) with the following attributes:

Cli names (cliod ⊂ Σ∗, 0 < |cliod| ≤ 3) A set of the names used to specify this specific option.
Typically, an option can be used with its short form e.g. git commit -v or with its long
form e.g git commit --verbose which is semantically equivalent. In addition, some options
provide even a third name.

Cli name seperators (sepod : cliod → Σ) A function that provides the separator character for
each option name x ∈ cliod. The separator character is inserted between the name of an option
and its argument if it has an argument. This is necessary since git uses different notations
per option and even per argument name, for example for git commit --untracked=<mode>
we need to use the equal sign between the name of the option and the mode value, but the
short form of this option needs to be used as git commit -u<mode>. There does not have to
be any character between the name and the mode value. As git still uses the equal sign as
separator most of the time, let sepod : x 7→ ’=’ ∀x ∈ cliod if not stated otherwise.

Type (otod ∈ OT) The value type as explained above.

Preconditions (condod) A set with preconditions that are checked before generating this option.
If one precondition fails, the generation of this option will be skipped. They are used to
specify restrictions about the other options that are allowed to be used simultaneously. For
example, while one has the possibility to use git commit -m "some message" to specify the
commit message directly, it is also possible to use git commit -F messageFile.txt and
provide the path to a text file to read the message from. Is it not allowed to use both of
these options at the same time. Respecting such restrictions helps to guide the generator to
generate valid commands.

Env option name (envod ∈ Σ) Particular options of some git commands can be specified by set-
ting the corresponding environment variable. For example, the path to the working tree can

3. Approach 13

be passed to git as git --work-tree=<path>, but this option can also be specified via an
environment variable with GIT_WORK_TREE=<path> git. If this option can also be specified
via an environment variable, envod will contain the name of the corresponding environment
variable or ε otherwise.

Config key name (confod ∈ Σ) Similar to the environment variables, particular options can be
defined within the git configuration file instead of specifying them directly on each use. For
example the git --work-tree=<path> option can also be written permanently to the config-
uration file by using the command git config core.worktree <path> where core.worktree
is the name of the configuration key for this option. If this option can also be specified via
a configuration file entry, confod contains the name of the corresponding configuration key
or ε otherwise. The envod and confod values will be used to transform commands which is
explained in Section 3.5.

Let an option value o ∈ O of a concrete command be a tuple (do, co, vo) with

do ∈ ÔD: the definition of this option (3.2.1)

co ∈ clido : the used cli option name (3.2.2)

vo ∈ Σ∗: the assigned value or ε if empty (3.2.3)

With all these definitions, we can finally describe the first templates. As an example we define part
of the git and git commit command template. Let tcommit be (commit, ODcommit, adcommit, ω)

with

ODcommit := {odmessage, odallow-empty, odreuse-message, odfile, ...}

odmessage := ({-m, --message}, sepmessage, random word,

{not with odfile option}, ε, ε)

sepmessage(-m) := ’␣’

sepmessage(--message) := ’=’

odfile := (c{-F, --file}, sepfile,file, {not with odmessage option}, ε, ε)

sepfile(-F) := ’␣’

sepfile(--file) := ’=’

odallow-empty := ({--allow-empty}, sepallow-empty,bool, ∅, ε, ε)

sepallow-empty(--allow-empty) := ε

odreuse-message := ({-C, --reuse-message}, sepreuse-message, commit ID, ∅, ε, ε)

sepreuse-message(-C) := ’␣’

sepreuse-message(--reuse-message) := ’=’

adcommit := randomFrom({∅, [file], [file,file]})

14 3. Approach

And let tgit be (git, {odC}, ∅, {tcommit, ...}) with

odC := ({-C}, sepC , current working directory, ∅, ε, ε)

sepC(-C) := ’␣’

According to this template, the message option of the commit command can be either specified with
the short form -m followed by a space and the message or with its long-form --message followed by
an equal sign and the message. Additionally, we specified the condition for the command generator
that the option cannot be added to a commit command if the -F option is already present since
they are incompatible with each other. The command can be specified with zero to two file paths
as arguments. These definitions can be used to model a concrete instance of the command shown
in Figure 3.2. Let ccommit3.2 be (Ntcommit , {oallow-empty, omessage}, acommit, [>out.txt], cgit3.2) with

oallow-empty :=(odallow-empty, --allow-empty, ε)

omessage :=(odmessage, -m, "fix")

acommit :=[foo.txt,bar.txt]

cgit3.2 :=(Ntgit , {oC}, [], [], ω) with

oC :=(odC, -C, repo1)

3.2.2 Script Generator

The script generator component is used to create concrete commands from the command templates
and assemble multiple concrete commands to form a script. As mentioned before, the generator
uses the so-called generation context to store a part of its internal state during the generation of
scripts. The generation context contains the following information:
Created files The relative paths of the files that are generated by a file creation operation within

this context at some point in time.
Current working dir The name of the current working directory. The algorithm switches be-

tween different working directories and updates this property accordingly.
Number of instantiations per template The generator tracks how many times each command

was generated to prioritize less often used commands.
Number of created commits The generator assigns a logical ID to each commit command. This

ID will be used for the relations later.
The generation of a script begins with creating an empty command list and initializing the gener-
ation context. The initialization operation inserts handcrafted commands into the command list
to prepare the initial working directory with a git repository that contains an initial commit. Al-
gorithm 1 shows this algorithm in pseudo code. The algorithm gets a seed for the random number
generator and the desired number of commands as input. It uses a stack to save checkpoints of
different states of the command list, generation context, and error counter during the script genera-
tion. After the initialization step, the algorithm creates a checkpoint of the initial state on the stack
and enter the generation loop on line number 6. This loop is executed until the desired number of

3. Approach 15

Algorithm 1 Generate random script.
1: INPUT random seed r, number of commands n
2: stack ← [] . Stack with tuple of command list and generation context
3: ctx ← new generation context
4: cmds ← ctx.initialize(r)
5: stack.push((ctx, cmds, 0))
6: while countCmds(cmds) < n) do . Generation loop
7: ctx, cmds, errCount ← stack.peek()
8: ctx, newCmds ← generateCommands(ctx)
9: cmds ← cmds ‖ newCmds

10: if canExecuteWithoutErrors(cmds) then
11: ctx, cmds ← ctx.maySwitchWorkingDir(ctx, cmds)
12: stack.push((ctx, cmds, 0)) . Create checkpoint
13: else
14: stack.last.errCount ← errCount +1
15: if stack.last.errCount > threshold then
16: stack.pop() . Backtrack
17: end if
18: end if
19: end while
20: cmds ← collectRuntimeStates(cmds)
21: return scriptOf(cmds)
22: OUTPUT script

Ncmds commands is reached. We use a value of Ncmds = 40 per default. At first, the current check-
point is loaded from the stack, then new commands are generated and added to the command list.
The generation of the commands will be described later. On line number 10, a script is generated
based on the command list, and the generator will try to execute this script. If the execution of all
commands within this script is successful, we consider the whole execution as being successful. In
this case, some probability is used to optionally switch the current working directory, then create
a new checkpoint with the current state of the command list and the generation context on line
number 12, and start another round of the generation loop. If the execution was not successful,
the algorithm will record this error, and check if we reached the maximum number of errors for
the current checkpoint. In this case, the algorithm removes the current checkpoint from the stack
on line number 16 to prevent the algorithm from getting stuck. Afterward, it continues with the
generation loop. When the desired number of commands is present, the generation loop is exited.
In that case, the generator will execute an extended version of the script to collect runtime informa-
tion before the execution of each command on line number 20 and return the script subsequently.
The runtime information is used within the precondition checks within the transformation steps
later.

Within the maySwitchWorkingDir function call on line number 11, the algorithm checks if we
have already created the maximum number of working directories and create a new one if this is
not the case. During this action, it chooses one of the other working directories at random to be
configured as the default origin for push and pull operations of this working directory, and pulls the

16 3. Approach

history from them. Independent of the creation, the algorithm commits all staged changes present
in the current working directory, saves the name of the currently checked-out branch, and checks
out a new branch with a random name. It has to check out another branch because git refuses to
push into a branch currently checked out at the remote repository. This would cause the HEAD
of the remote working directory to become detached. On the switched-to working directory, the
algorithm checks out the branch that was checked out before switching to the random branch.

Within the generateCommands function the generator chooses and instantiates one or more
command templates. To increase the possibility to generate command sequences that would occur
in normal use, we use special handling for the git add and the git mv commands. Additionally,
the generator can insert echo commands to create, append or override files and can create symbolic
links. After a file or symbolic link is touched, there is some chance that the generator also inserts
a git add command to add the update of this file to the index. The git mv command is used to
move or rename files and therefore takes the path of the file and the destination. If the destination
path already exists and the command is used without the --force flag, it fails. Therefore, the
generator uses a fifty percent chance to choose a likely unused path as the destination. For path
handling, the generator uses a fixed list with possible paths and taints them as used after the first
use. Since we use multiple working directories and the file could also be deleted at some point,
it is not guaranteed that a used file actually exists in the current working directory at this point
in time. The generation context contains information about how many times each command or
case was chosen. When choosing a case, the generator uses the inverse of this occurrence count as
weight.

Algorithm 2 function genCmdFromTemplate: Generate command from template.
1: INPUT generation context ctx, command template t
2: O ←generateOptionValues(ODt, ctx)
3: A← []
4: for all ad ∈ ADt() do
5: A← A ‖ ctx.getValueForType(ad)
6: end for
7: P ← ω
8: if ∃t′ ∈ T : t ∈ St′ then . Check for parent
9: t′ ← randomFrom({t′ ∈ T |t ∈ St′})

10: P ← genCmdFromTemplate(ctx, t′)
11: end if
12: R← []
13: N ← Nt

14: return (N,O,A,R, P)
15: OUTPUT command

The generator uses Algorithm 2 to derive concrete commands from a command template. The
algorithm takes the current generation context and a command template as input. At first, it
instantiates a set of valid option assignments on line number 2. We will have a look into the
generation of these option values later. Then the algorithm gets a list of types from the argument
types function of the command template on line number 4 and retrieves a value for each type

3. Approach 17

from the generation context to be used as positional arguments of the concrete command on line
number 5. Afterward, the algorithm checks if the provided template is used as a subcommand
within another template and instantiates the parent command recursively.

To generate a set of options for a command, the script generator uses the algorithm shown in
Algorithm 3. It generates an option assignment for up to max(b |OD|

2 c+1, |OD|) optional arguments.
The exact number is chosen at random to ensure variation. Also, the order in which the options are
assigned will vary since the elements in the set do not have a fixed order. Since the preconditions
are checked before an option is assigned, it is essential that the order is not fixed. If the order
would be fixed and the preconditions of two options would not allow them to be generated with
each other, such as the odmessage and odfile options of the tcommit command template, each time
they are chosen both, only the one further in the list would be assigned. This would cause some
bias on the probabilities.

Algorithm 3 Generate random optional arguments from option definitions and generation context.
1: INPUT option definitions OD ⊂ ÔD, generation context ctx
2: options← ∅
3: n← choose random from 0, . . . ,max(b |OD|

2 c+ 1, |OD|)
4: OD′ ← choose n elements from OD
5: for all od ∈ OD′ do
6: if all condod satisfied then . Check preconditions
7: c← choose random from cliod . Choose cli name
8: val← ctx.getValueForType(otod) . Retrieve value for type
9: option← (od, c, val)

10: options← options ∪ {option}
11: end if
12: end for
13: return options
14: OUTPUT options with ∀o ∈ options : do ∈ OD

Table 3.1 shows a list of the git command templates used in the approach along with the number
of optional arguments that can be generated per command and information about them.

3.3 Relations

The relations are one of the core parts of metamorphic testing. When we execute the source and
follow-up test case, we check how both outputs relate to each other. Also, we have to define
what an output is in regard to a specific relation. Our approach uses two types of relations which
both assume that their respective outputs will be the same for both test cases. We call them exit
relation and source independent checkout relation. This implies that each test case itself must be
deterministic with respect to the outputs relevant to us.

18 3. Approach

Table 3.1: List of all git commands implemented in the generator.

Command name Options Generatable
options Cli names Config keys Environment

variables
git 16 8 18 1 9
git add 14 11 22 1 0
git branch 0 0 0 0 0
git checkout 19 17 24 1 0
git clean 5 4 8 0 0
git clone 0 0 0 0 0
git commit 19 13 36 4 0
git config 0 0 0 0 0
git diff 0 0 0 0 0
git fetch 18 17 26 1 0
git init 0 0 0 0 0
git log 0 0 0 0 0
git merge 0 0 0 0 0
git mv 4 2 7 0 0
git notes 0 0 0 0 0
git notes add 6 5 11 0 0
git notes prune 2 1 4 1 0
git notes show 0 0 0 0 0
git pull 28 25 36 3 0
git push 18 15 24 2 0
git remote 0 0 0 0 0
git reset 9 2 11 1 0
git restore 16 16 21 2 0
git rev-parse 1 1 1 0 0
git rm 7 6 10 0 0
git stash 0 0 0 0 0
git stash apply 2 2 3 0 0
git stash pop 2 2 3 0 0
git stash push 7 6 14 0 0
git status 0 0 0 0 0
git switch 0 0 0 0 0
git tag 8 5 16 1 0
git update-index 1 1 1 0 0
Total 202 159 296 18 9

3. Approach 19

A B
checkout

(a) Checkout of A after adding B.

A B C
checkout

(b) Checkout of A after adding C.

Figure 3.3: The checkout of A must lead to the same output in both cases.

3.3.1 Exit Relation

This relation looks at the files left behind in the working directory after the execution of the
test case. When collecting the output, it recursively traverses the working directory and collects
information about the found files and directories, but ignores .git directories. Git uses the .git
directory in the working directory to store the internal state of the repository. Since this state
also includes dynamic information, such as timestamps, the contents of these files vary on each
execution. Therefore, from our point of view, we consider the contents of these files as being
non-deterministic and ignore them during the collection of our output. During the collection, the
approach differentiates between regular files, directories, symbolic links, and other files. Other
files can be for example named pipes or sockets. For all types, the approach collects their path
relative to our working directory and their type. For regular files, it also collects their contents.
For symbolic links, it collects their corresponding targets. Symbolic links are similar to aliases for
files or directories within the file system. If the target path is an absolute path within our working
directory, the approach converts it into a path relative to our working directory. Since it ignores
.git directories, a directory that only contains such a directory is treated as an empty directory.
The contents of directories are collected implicitly through their contained files.

When comparing the outputs of two test executions, the approach considers the exit relation
fulfilled, if their outputs contain the same entries.

3.3.2 Source Independent Checkout Relation

The source independent checkout relation is used to check an invariant within a single test case
execution. It uses the same approach to collect the contents of a working directory as in the output
of the exit relation, but instead of collecting a single output after the execution of a test case, it
collects multiple sets of outputs during the execution of the test case. This relation checks the
invariant, that the commits within a history do not change their contents, even when new commits
are added on top of the history. Figure 3.3 shows an example of this relation. The checkout of
commit A must lead to the same output of the working directory regardless of whether commit
C was added. The approach collects these outputs during the script execution each time when a
new commit is added to the history. When this happens, it checks out all former commits of the
history into a temporary directory and collects the contents of this directory as in the exit relation.
After the execution of the test case, it checks if the output for a specific commit was equal at each
point in time. If this is not the case for at least one output, the approach considers this relation as
violated.

Formally we describe this relation as follows: Let s ∈ S be a commit and let prev : S →
P(S) be the set of commits that happened at a point in time before the commit itself. Let

20 3. Approach

op : S × S, (s, k) 7→ o be the state of s checked-out right after recording commit k. Considering
the situation of Figure 3.3, we would have S := {A,B,C} with prev(A) := ∅, prev(B) := {A} and
prev(C) := {A,B}. The relation holds true if ∀s ∈ S : ∀a ∈ S \prev(s) : b ∈ S \prev(s) : op(s, a) =
op(s, b).

3.4 Test Execution

/
git/
static/

test-lib.sh
...

<test execution ID>/
test-lib.sh
script.sh
state.script/

gitDir0/
gitDir1/

...
...

Figure 3.4: Structure of the directories
for test execution.

After retrieving a test script as described, the script is
used as a source test case for the test execution. A trans-
formation is applied to the source test script to retrieve a
follow-up test script. These two scripts are executed, and
the outputs are analyzed afterward. If the two outputs
relate to each other as expected, the execution is consid-
ered successful. Otherwise, a violation report is gener-
ated. For the successful executions, we use the approach
of iterative metamorphic testing [19] proposed by Peng
Wu where the follow-up test script of the current execu-
tion is reused as the source test script for the subsequent
test execution, in a chain-style fashion. After Niter iter-
ative repetitions, the last Niter applied transformations
are reverted to start with the original source test script
again. When Ntotal transformations have been applied to
a test script in total, the approach discards the script and
generates a new one from scratch to get more diversity.
Our default values are Niter = 15 and Ntotal = 250.

It is important that the execution of each test does not affect the execution of other tests.
For this, each test is executed within its own test directory and the git testing harness is used to
configure git to not touch any configuration files outside of this working directory. Figure 3.4 shows
the structure of the file system for the test execution. The git directory contains the built version
that is used for the tests. This allows us to test arbitrary git versions without modifying the locally
installed git version. The static directory contains the file and directories of the testing harness.
We create a test directory with a unique name per execution which is used as test directory. The
test script is exported to this directory and symbolic links to all files and directories of the static
directory are created. Also, the script.state working directory for the test is created within this
directory. In normal use, the test harness deletes the working directory after executing a test.
Since we have to analyze the working directory before it can be removed, we use a slightly modified
version of the test harness that leads to an intact working directory afterward.

3. Approach 21

Transformation

Command Insertion

No-Op Insertion Idempotent Command duplication

Command Transformation

Canceling out command sequence

–dry-run command

Other Non-Altering command

Command Option

Command Pathspec Argument Split

Commit in other branch

Figure 3.5: Transformation hierarchy.

3.5 Transformations

The transformations are applied to a source test case to derive a follow-up test case. The trans-
formations of this approach are grouped into different variants. Figure 3.5 shows the hierarchy
of our transformations. At first, there are two general types of transformations: The Command
Insertion and the Command Transformation. The difference is that Command Transformations
alter existing commands or their effect, while Command Insertion transformations do not alter
existing commands at all. The Command Insertion transformations are further grouped into the
No-Op Insertion transformations and the duplication of idempotent commands. This section will
describe all these transformations.

3.5.1 Command Transformations

The command transformations replace an existing command by one or more other commands. The
various types are described in this section.

3.5.1.1 Command Option Transformation

As explained in Section 3.2.1, there are git commands which allow us to specify one logical option
over multiple different channels. For example, the git --work-tree command-line option can be also
specified via the GIT_WORK_TREE environment variable as well as by setting the core.worktree key
in the git configuration file. Additionally, a configuration value can also be specified directly at the
command invocation via the git -c option. Since all of these variants are semantically equivalent,
we are able to switch between the different representations without changing the behavior of the
commands and therefore are not violating any relation by doing so. In Section 3.2 we have already
included the conf and env properties in our option definition. If a concrete command contains an
option that has any of these properties set within its definition, we are able to switch the way this op-
tion is used with this command. Therefore, let M̂ := {mcli0 ,mcli1 ,mcli2 ,menv,mconffile ,mconfoverride}

22 3. Approach

the possible output modes in general and let M : ÔD → M̂ be the set of possible output modes
for an option definition od of a command c with

mclii ∈M(od), 0 ≤ i < |odcli|

menv ∈M(od)↔ odenv 6= ε

mconffile ∈M(od)↔ odconf 6= ε

mconfoverride ∈M(od)↔ (odconf 6= ε ∧ cgit ∈ parentsOf(c))

were each mclii , 0 ≤ i < |odcli| corresponds to exactly one element in odcli. Also let opm : O → M̂

be the output mode that should currently being used for an option of a concrete command, with
opm(o) := mcli0 for each option o ∈ O per default.

Cli output mode For the current active output modes mcli0 , mcli1 or mcli2 , the option is used with
the corresponding cli option name as cli option. For example git commit -F foo.txt for
mcli0 and git commit --file=foo.txt for mcli1 , or git --work-tree=somePath status.

Env output mode If opm(o) = menv is active, the final command string is prepended with the
definition of the corresponding environment variable. For example GIT_WORK_TREE=somePath
git status.

Config file output mode If opm(o) = mconffile is active, the command is enclosed between helper
commands before and after the command. Commands to back up the current local git con-
figuration file and add the corresponding key-value-pair to the configuration file are inserted
before the command, and commands to restore the former configuration file are inserted after
the command. This could result in the following commands:
backup_git_config
git config --local core.worktree somePath
git status
restore_git_config

Config override output mode If opm(o) = mconfoverride is active, the configuration option is
added via the git -c option to the git command. This option is intended to temporarily
override some configuration values of the configuration file. For example git -c core.work
tree=somePath status.

Therefore, pt : O → P(M̂), o 7→ M(ood) \ opm(o) is the set of the output modes to which we can
switch at some point in time for the option of a concrete command.

3.5.1.2 Command Pathspec Argument Split

Some git commands take a file path as a positional argument to do some actions regarding this
file. To a lot of these commands, we can also pass multiple file paths to do this action to all of
these files. For example the git add command can be used to add files to the index, the git rm
command can be used to remove files from the index and working tree in some instances, and the

3. Approach 23

A B

master

(a) Linear commit history.

A B

master other

(b) Commit in other branch.

A

B

merge other

other

master

(c) Branched with traditional merge.

Legend: Commit parent
relation Commit Branch

reference
Points-to
relation

Figure 3.6: Commit histories.

git restore command can be used to restore files in the working tree with their contents at some
point in the history. If a script contains a concrete command with such a “for each” semantic and
multiple file path arguments are used, the approach divides the list of file path arguments into
multiple parts and replaces the original command by multiple commands with one of these parts,
each. For example the command git add file1 file2 can be replaced by the two commands
git add file1 and git add file2.

One special case is the handling of so-called magic signatures. They are path specifications with
a special syntax interpreted by git. For example the command git add *.txt ':!.old.txt' is
used to add all files ending with .txt to the index except those ending with .old.txt. In this case,
we are not allowed to split them into two commands, because these two path specifications influence
each other. To overcome this problem, the approach takes only non-magic file paths into account
when dividing the file path list and keeps the magic file paths on all of the inserted commands.
For example the command git add a/*.txt b/*.txt ':!.old.txt' can be split into git add
a/*.txt ':!.old.txt' and git add b/*.txt ':!.old.txt'.

3.5.1.3 Commit in Other Branch Transformation

Committing some changes inside a branch and merging them back to the parent branch should
lead to the same state as if the changes would be committed directly within the parent branch.
Figure 3.6a shows a simple history with two commits on the master branch. If we create and
checkout another branch before committing the changes of B, we would end up with a history as
shown in Figure 3.6b. If the branch is merged back to the master branch as shown in Figure 3.6c,
the merge commit should contain the same changes as if B would be committed within the master
directly. The merging can be done with a traditional merge which produces a merge commit or it
can be done using a fast-forward merge which would apply the changes of the other branch one
after another to the master without creating a merge commit as if they were committed to the
master in the first place.

When specific conditions are met, the approach can switch to another branch before a commit
command in our test script and merge back to the former branch afterward, either traditional or
fast-forward. To be able to apply this transformation there must not be a merge in progress since
the checkout of another branch would mess up this merge operation. Also, the HEAD must point
to a branch, otherwise there is no branch to be switched back later. Another important aspect is

24 3. Approach

to pay attention to the untracked files and tracked files with pending changes after the commit.
Since we need to check out the former branch first to merge in the new branch afterward, git may
refuse the checkout due to conflicts caused by pending changes of files that are tracked by the latest
commit of the former branch. To restore the state of the files of this commit, git needs to override
these files. But since the files contain changes which are not committed, the current state of the
files cannot be restored by git later. Therefore, git refuses the checkout in this case by default
to avoid the loss of data. An example of such a scenario is shown in Table 3.2. The table shows
the execution of the original test script and its execution after applying the transformation. Lines
number 8, 10, and 11 are not part of the original test script. It also shows the content and status of
the two files a and b as well as the current branch after the execution of each line. On lines number
1 to 5 we initialize the repository, create the file a with the content “foo”, add it to the index, and
commit the change. Then on line number 6 the file a is renamed to b. Afterward, a new file with
the name a and the content “bar” is created. Since the former file a was renamed and the new file
has not been added yet, git does not track this file at the current state. Then the staged change
is committed, the new file a is added to the index and this change is committed as well. All the
commits took place on the master branch. In the transformed script we switch to another branch
after creating the new file a. The fact that the old file a was renamed is committed to this branch.
In the aftermath, we want to check out the master branch again, to merge the commit, in the other
branch, back. During this checkout, git restores the contents of the files in the working directory
as they were at the commit on line number 5. Since this state contains a file a with the content
“foo” the checkout overrides the content of the new file a. As this file is untracked and the content
is therefore not part of the git repository, there is no chance for git to revert to the current state
later. The changes would be lost. Therefore, the checkout command refuses to proceed and aborts
the checkout operation. The rest of the script now continues within the wrong branch which easily
results in the wrong output state and therefore violates a relation.

The condition in which the transformation can by applied is formally described as follows: Let
FA and FB be the paths of the tracked files of commits A and B. Let DA(f) be the content of a
file f ∈ FA at commit A with DF (f) := ♦ for f /∈ FA and DB(f) analogue for commit B. Let FW

be the paths of the files present in the working directory after commit B and DW (f) their contents
analogue to DA. A conflict will occur if

∃f ∈ (FA ∪ FB) : DB(f) 6= DW (f) (3.5.1)

After the generation of each input test case, the approach executes the script once again to
collect information about the state before the execution of each command. This runtime state
does contain the following information:

Staged and unstaged changes of tracked files The approach uses the git status --porce
lain -uall command to collect information on whether there are currently staged and un-
staged changes of tracked files. The command outputs this information in a parsable format.

Merge active The approach uses the git merge command to check if there is currently an ongoing
merge operation. It fails if there is already an ongoing merge.

3. Approach 25

Table 3.2: Example scenario in which the checkout in other branch transformation cannot be
applied.

Original script Transformed script
Contents

of file
Current
branch

Contents
of file

Current
branch

Command a b a b
1 git init master master
2 git commit -m init --allow-empty master master
3 echo foo > a foo master foo master
4 git add a foo master foo master
5 git commit -m "added A" foo master foo master
6 git mv a b foo master foo master
7 echo bar > a bar foo master bar foo master
8 git checkout -b other bar foo other
9 git commit -m "renamed a to b" bar foo master bar foo other
10 git checkout master bar foo other E
11 git merge --no-ff other bar foo other
12 git add a bar foo master bar foo other
13 git commit -m "new a" bar foo master bar foo other

Legend: untracked modified unchanged

First commit present The approach uses the git log command to check whether it exists at
least one commit in the current branch. The command fails if there is no commit present.

HEAD on branch The approach uses the git symbolic-ref HEAD command to check if the
current HEAD points to a branch or if the HEAD is detached. The command fails if the
HEAD is detached.

The use of runtime information is inspired by the approach of interactive metamorphic testing
by Tolksdorf et al. [17]. In their approach, they used runtime information to determine the next
transformation and the expected output relation on the fly while executing the tested program
to overcome the dynamic nature of this program. Our approach differs in executing each original
source test case once to gather the required runtime information to be able to statically determine
the next transformations and relations of the output during the whole life of this input test case.
This is because we need to interact with git to collect this runtime information which would force
us to assume, that the commands used for collecting the state will not influence the behavior of
the execution due to their nature or bugs. Also, since the collection of the runtime state adds a
computational overhead, it could reduce the effectiveness of finding timing-related bugs.

3.5.2 Command Insertion

Git provides some commands that can be executed at some point during the script, which are not
to influence the output. As a transformation, we can add such commands or command sequences
to the script without violating the relations. For this, the approach either duplicates idempotent

26 3. Approach

commands, so that the second invocation of the command does not influence the output, or it
generates and inserts such commands or command sequences from scratch.

Idempotent Command Duplication If the script contains commands as git add <some file>
and git checkout <some branch>, the approach can duplicate them without changing the result-
ing state. If a file is already added to the index with no unstaged changes, the second git add
command leads to the same result as before. This also holds true for the git checkout command
because when checking out the same branch twice, the second command does not alter the result.
To avoid duplicating the same command over and over again, we limit this transformation to once
per concrete command. If a command is duplicated, the command itself and the duplicate will not
be duplicated again within the current script.

3.5.2.1 No-Op Insertion

It is the goal of no-op insertions to generate and insert a command or command sequence at some
point in the script, so that the insertion does not alter the output of the script.

To accomplish this, the approach either inserts commands which intentionally do not alter the
state in general: for example, commands to just gather some information about the repository.
Alternatively, it uses sequences of commands where each command itself may change the state,
but within the sequence these changes will cancel out each other, so that the same state is left
behind as before when specific conditions are met. For example, the git reset --soft <some
commit> command is used to move the current HEAD to some other commit in the tree, followed
by a git reset --soft <former HEAD ID> command with the ID of the HEAD before to revert
to the state of the beginning.

--dry-run Commands Some git commands take a --dry-run option which is typically used to
get the console output and result of a command, without actually changing anything. For example,
git add --dry-run foo.txt is used to check if foo.txt can be added to the index without actually
adding it. The approach generates such commands with the --dry-run flag and adds it at any
point to the script. If the --dry-run flag of some command does not work as expected we would
likely observe some violation.

Other Non-Altering Commands Git also provides many commands to show information
about the repository, such as git status to show the status of the files in the working direc-
tory and git log to show the commit history. The approach adds sleep 1 commands to the
script which will wait for one second before continuing the execution, to probably find timing-
related bugs. This does obviously not change the state since git is designed to be used by people
whose timing is inconsistent in invoking the commands. Also, the invocation of git init within
an existing non-corrupted repository should not alter the state.

Canceling out Command Sequences As mentioned, pairs of the git reset commands can
be used to move the HEAD to another commit and back to the former commit afterward. The

3. Approach 27

A

master

HEAD

(a) Initial his-
tory.

A B

master

HEAD

(b) Committed B.

A B

master

HEAD

(c) Moved HEAD to
commit A, B is detached.

A

C

B

master

HEAD

(d) Committed C.

Commit parent
relation Commit Branch

reference
Points-to
relation

HEAD
HEAD
reference

Figure 3.7: Git reset example scenario.

HEAD is a pointer to the latest commit in the history of the current branch on which the next
commit is based. Figure 3.7 shows an example of this. Starting with a history only containing the
single commit A as shown in Figure 3.7a where the HEAD currently points to this commit. When
new changes are committed at this state, these changes are based on commit A and the HEAD
points to B afterward as shown in Figure 3.7b If we use the git reset --soft command to move
the HEAD to A as shown in Figure 3.7c, commit B gets detached. This means the commit is not
part of the history of any branch. If we commit new changes at this state, these changes are based
on commit A and the HEAD points to commit C afterward. Commit B is not part of any branch.

The --soft mode causes the command to leave the index and the working tree files untouched
and only moves the HEAD. Therefore, a no-op with the --soft mode can be used by the approach
at each point if there is no merge in progress. During a merge, the command refuses to work. We
can also use the --mixed mode for a no-op if we take care. This mode is also the default mode if the
mode is not specified explicitly. At this mode git keeps the state of the files in the working directory
but may change the index. If changes to some files are staged these changes can possibly get lost
during the reset, and we are not able to revert them at the second reset command. Therefore, this
no-op can only be inserted by the approach when there are currently no staged or unstaged changes
in the index and no merge in progress.

The git stash command enables the user to commit changes to a temporary place to check
them out later. Technically the stash is just a branch within git that can be accessed by convenience
methods. In case a user had made some experimental changes that are not ready to commit yet
and the user has just noticed an error in the last commit, the user has to put these experimental
changes aside in order fix the former commit. In this scenario, the user can use the git stash
push command to push the current changes to the stash to get a clean working tree, fix the error,
commit the changes and use the git stash pop command afterward to restore the stashed changes
to the working tree to continue the work. Since git stash push and git stash pop cancel out
each other under specific circumstances, the approach uses them as a no-op command sequence.
To apply this transformation, there must be some staged or unstaged changes, and there must
be no merge in progress. If staged changes are present, the git stash pop command in the

28 3. Approach

transformation is used with the --index option to restore the state of the index and cause these
changes to be staged again.

3.5.3 Transformation Selection

To choose one specific transformation, the approach first evaluates how many transformations for
each type can be applied to the current test script. Then it multiplies the number of available
transformations per type with a type-specific constant factor and uses this number as weight per
type. Afterward, a type is chosen and one of the available transformations of this type will be
randomly selected and applied by the approach.

3.6 Test Minimization

The minimization of test scripts is helpful to reduce the manual effort to analyze violation reports.
For each report, we need to isolate the cause of the violation to be able to decide if the violation is
caused by a real bug in git or if it is a false positive. A programmatic test minimization component
saves a lot of time when narrowing down such a cause. For example, if we assume that no file is
altered by the transformation but this does not hold true for a single file, we limit our attention to
this file only. During the minimization, we do not need to keep other commands in the test scripts
if their presence does not affect this file. So, the general idea of the minimizer is to remove as many
commands as possible while not affecting the contents of the files which caused the violation, the
files we are interested in. In the ideal case, the minimizer produces a slice of the original program,
that is a minimal example to trigger the bug which caused the violation. With respect to the
exit relation, we assume that the transformed script has the same semantics as the source script.
Following this assumption, each command which was not altered by the transformation has to have
the same semantic in both scripts. Therefore, during the minimization, the approach only removes
commands which are common on both scripts and it removes them either in both scripts or none.
With respect to our exit relation this is formalized as follows: Let Fi be the file paths in output i

and let Di(x) be the content of file x in output i. Given a source test case ts with the output os

and a follow-up test case tf with output of where os 6= of violates the exit relation, for every pair
of minimized source and follow-up test cases ts′ and tf ′ , the following conditions must hold true:
Files removed in of compared to os must still be removed in of ′ and added and modified files in of

compared to os must be equal in of and of ′ . Analogue this must hold true for os compared to of .
This leads to the following equations:

∀a ∈ Fos \ Fof : a /∈ Ftf ′ (3.6.1)

∀a ∈ Fof , Dos(a) 6= Dof (a) : a ∈ Fof ′ ∧Dof (a) = Dof ′ (a) (3.6.2)

∀a ∈ Fof \ Fos : a /∈ Fts′ (3.6.3)

∀a ∈ Fos , Dof (a) 6= Dos(a) : a ∈ Fos′ ∧Dos(a) = Dos′ (a) (3.6.4)

For the minimization itself, the approach first uses the Myer algorithm [13] to find the unaltered
parts of the source and follow-up test case and then uses a divide and conquer approach to remove

3. Approach 29

these commands. Our approach is based on the general idea of delta debugging introduced by
Zeller and Hildebrandt [20]. Thereby our approach recursively first tries to remove a whole block of
commands from the scripts and split these blocks into halves until either the block can be removed
without affecting the differing files or if one block is empty after the split. This technique does not
work if the outcome of a script is not deterministic. Therefore, the approach runs the untouched
source and follow-up test case Nmin_exec times each, and checks that the behavior is the same
for each run. We use a value of Nmin_exec = 100, determined by our testing. We have to balance
between the performance impact and the remaining probability of not detecting a non-deterministic
test case. The remaining probability would never be zero anyway. Additionally, the approach uses a
second minimization stage to minimize the optional arguments of the remaining commands, analog
to the command minimization. This minimization of the optional arguments massively reduces the
time to manually analyze the test cases and find similarities between different violations.

If we assume that a fixed number of executions reveals all the different outcomes of a test case
and the number of different outcomes is finite, we can derive a new version of this algorithm that
can be used to minimize non-deterministic test cases. In this non-deterministic version, we only
have one test script that is able to produce two outputs. In contrast, the deterministic version of
this algorithm executes each pair of test scripts only once to check if the outputs are as expected. In
the non-deterministic version, we execute the script multiple times until we observe all the possible
outputs or until we reach the limit of Nexec executions, assuming the unobserved outputs will never
be produced by this script. After the minimizing, we are left with a minimized script that produces
the same outputs in regard to the differing files as the original script before.

4 Implementation

In this chapter, we describe the used technologies, libraries, and the architecture of the applica-
tion. The approach is implemented in Java for the most part, since Java is available for various
platforms and offers various libraries which are beneficial for rapid prototyping. We also use bash
for implementing helper functions for the test execution. We use a docker1 container to compile git
from its source code, to minimize the dependence on pre-installed software and therefore increase
the portability. The application is also designed to run inside a docker container to protect the host
computer from the effects of misbehaving test scripts. We use Prometheus2 to collect statistical
data during the execution and a Grafana3 to visualize this data.

4.1 Architecture

The application is designed in two parts: The worker and the controller component. The worker
connects to the controller via Java RMI and it generates, transforms, and executes the test cases.
Multiple instances of the worker application can be connected to one instance of the controller
at the same time, which enables scalability. When a worker obverses the violation of a relation,
it minimizes the corresponding source and follow-up test scripts and reports this information to
the controller. To help us later to understand what happened during the test execution, it also
provides other information, such as the console output, the contents of the working directory,
and the difference between the outputs for both test cases. The controller exports all available
information into a directory on the file system to be reviewed by us later. The controller is also
able to retrieve test cases from the worker and delegate them to other workers when a worker exits.
Each worker executes a user-configurable number of concurrent test cases. The concrete number
must be used according to the available resources on the computer. If the number is set too high,
it is likely that timeouts occur during test executions. The timeout time can also be configured
by the user. When the current number of concurrent test cases already makes use of all available
resources, the further increase of the concurrent test cases will result in lower performance. This is
because the number of test case executions per time cannot increase, but since each worker thread
generates its own input test case, the ratio between the used resources for generating input test
cases and the actual execution of the test cases will decrease.

1https://www.docker.com
2https://prometheus.io
3https://grafana.com

31

https://www.docker.com
https://prometheus.io
https://grafana.com

32 4. Implementation

The architecture is logically split into two parts: a generic framework for modeling and the con-
crete models. The framework enables the modeling of commands, transformations, and relations.
Additionally, it is able to generate and execute these tests, derive follow-up test cases, and report
violations. The other part consists of the concrete models of the git commands, the transforma-
tions, and relations. This separation increases the likelihood that the application can be adapted
to future versions of git and to support additional commands.

4.2 Script and Command Model

The modeling of commands and their possible arguments is a crucial part of the application.
We need these models to generate concrete commands during the script generation as well as at
transforming the commands. Due to the high number of optional arguments of the commands in
total, it is desirable to minimize the effort of specifying each option. Therefore, we implement
custom Java runtime annotations that allow us to define the optional arguments in a descriptive
manner.

All implemented commands, git commands as well as other bash or helper commands, imple-
ment a common interface called Command. This interface provides methods to be used to export
the command as string into a bash script, as well as methods to enable the command transfor-
mations. The transformation methods are implemented by the AbstractCliCommand class, that is
the base class for all implemented git commands and it also takes care of assembling the command
into its string representation to be used in the bash scripts. To do so, it handles the command
option transformation in a generic and transparent manner and it provides hooks which can be
implemented by the inheriting classes to implement command-specific transformations, such as the
commit in other branch transformation of the git commit command or the command pathspec
argument split transformations. Since the command pathspec argument split transformation is used
by multiple commands, the splitting functionality itself is implemented by an abstract class which
inherits the AbstractCliCommand class and is inherited for example by the implementing class for
the git add, git mv, git rm and the git restore command.

To specify the options as in our option template in Section 3.2.1, we use various annotations
which are used to configure values within the Option class. Listing 4.1 shows an example of how
the definitions of the options from the example in Section 3.2.1 looks similar to the GitCommit-
Command class of our implementation. Each option definition consists at least of a field of the
type Option with the type parameter of either Boolean, Boolean[], String or String[] and the Op-
tionMarker annotation above this field. This annotation contains at least a formatter that is used
to create a string representation of the option value(s) and the definition of the cli names as defined
by cliOD of the option definition. The separating character is ’=’ by default, but it is changed when
a special character is used as the last character in the name definition. The environment variable
name and configuration key name can be specified as well. The StringArgumentType annotation
specifies the type of the argument, which tells the generator what kind of value can be used for this
argument. The InterlockedOptionsGroups annotation specifies which options are not allowed to be
generated at the same time. At the most one option per group is set by the generator. Additionally,

4. Implementation 33

Listing 4.1: Part of the option definitions of the git base and git commit command used to
define the same options as in the definition of tgit and tcommit in the example in Section 3.2.1.

1 // Class: GitCommitCommand
2 @InterlockedOptionsGroups(groups = {1})
3 @StringArgumentType(argumentValueType = ArgumentValueType.FILE)
4 @OptionMarker(cliNames = {"-F ", "--file"}, fmt = StringFormatter.class)
5 private Option<String> file;
6

7 @InterlockedOptionsGroups(groups = {1})
8 @StringArgumentType(argumentValueType = ArgumentValueType.SOME_STRING)
9 @OptionMarker(cliNames = {"-m ", "--message"}, fmt = StringArrayFormatter.class)

10 private Option<String[]> message;
11

12 @OptionMarker(cliNames = {"--allow-empty"}, fmt = PositiveBooleanFormatter.class)
13 private Option<Boolean> allowEmpty;
14

15 @StringArgumentType(argumentValueType = ArgumentValueType.COMMIT_ID)
16 @OptionMarker(cliNames = {"-C ", "--reuse-message"}, fmt = StringFormatter.class)
17 private Option<String> reuseMessage;

1 // Class: GitBaseCliCommand
2 @OptionMarker(cliNames = "--work-tree", envName = "GIT_WORK_TREE", configKey =

"core.worktree", fmt = StringOptionFormatter.class)↪→

3 private Option<String> workTree;

the generator supports an annotation called OptionsGenerationSubsetGroups which takes a set of
groups, as the InterlockedOptionsGroups annotation does, but functions the opposite way round.
The generator will first randomly choose one group and then set arguments of this group only.

The TestScript class contains a list of commands and a set of helper functions. These helper
functions can be optionally provided by the commands, and they consist of a string with bash code.
This string is inserted at the start of the script, before the first command string. They are typically
used to define helper functions in bash and to prepare the test directory. For example, the git
commit command defines such helper functions to collect the commit ID after each commit, which is
used to map the real commit IDs to our own logical commit IDs. To collect the ID, the command
appends itself with a line similar to recordCommit "1" "-C gitDir0"; checkoutRecordedCom
mits "1". This stores the ID of the last commit in the repository in gitDir0 at the logical ID
1. Afterward, the real commit ID can be read again by calling printCommitId "1" in the script.
For example the approach can checkout this commit with git checkout $(printCommitId "1").
The second part of the line after the semicolon is used to gather the information for the source
independent checkout relation.

When the approach generates a command, it provides an instance of the GenerationContext
interface to the constructor. This context provides arguments during the option generation and
other information, such as the current working directory. During the generation, each command
passes a lambda function to the constructor of the AbstractCliCommand class, that contains the

34 4. Implementation

constructor of its parent command. Per default, the approach uses the constructor of the Git-
BaseCliCommand as the lambda function, since most of the commands of our implementation are
subcommands of git.

Additionally, the implementation is able to parse commands from strings into the command
objects, while also setting the Option fields according to the provided optional arguments. This
is implemented for another variant of our approach, described in Section 7.1. We use the picocli4

library to parse the commands and configure this library with the information of the OptionMarker
annotations.

4.3 Transformation

As explained before, the command transformations are implemented by the commands themselves.
Therefore, the Command interface features a method to retrieve the number of possible transfor-
mations, which can be applied to this concrete command, and a method to trigger one of these
transformations by random and return a list containing the new commands. In the follow-up test
script, the current command is replaced by these new commands. The transformation does not
alter the internal state of the former command. The immutability of commands allows us to share
the command objects of an input test case across all derived follow-up test cases. This has the
advantage, that the approach does not need to duplicate all commands of the test case when the
follow-up case is derived, which saves time and main memory.

To derive a follow-up test case, the approach evaluates which types of transformation can
be applied and how many per type. The transformations are implemented in a tree-like fashion
somehow similar to the tree in Figure 3.5. At each node in the tree, the approach counts the number
of transformations that can be applied by each child recursively. The transformation count of a
node is calculated by the sum of the transformation counts of its children. Since the approach needs
to choose a single transformation of all available transformations at the end, it uses these counts
as weighting at each branching point, to apply each transformation with the same possibility. This
design enables us to easily implement further transformations.

4https://picocli.info

https://picocli.info

5 Evaluation

To evaluate the approach we will answer the following research questions within this chapter:
RQ1 How effective is the approach at finding bugs in git?
RQ2 How efficient is the approach at finding bugs in git?
RQ3 How precise is the approach?
RQ4 How effective is the test minimization?
RQ5 How effective are the individual transformations?

Before answering the questions we will describe the setup used for the evaluation in detail. All
tests are executed on a server with two Intel Xeon E5-2650v4 CPUs @2.2GHz with 12 cores each,
two threads per core, and 256GB main memory installed. The server runs Ubuntu 18.04.6 LTS
with docker version 20.10.14 and Java 1.8.0_312

5.1 Approach Effectiveness

During the development, the program has been running on the server for approximately three
months. The worker application is started within a docker container and the controller application
runs natively on the server. The worker is configured to use 50 worker threads for the concurrent
execution of the test cases and the test case generator is configured to use 40 successful command
insertions per test case. The number of 50 worker threads is chosen because the server provides 48
CPU threads in total. Since the test cases will generate a lot of disk read and write operations, all
test cases are executed on a RAM disk to avoid bottlenecks in the file system access.

To measure the effectiveness for RQ1 we count the number of found bugs over the course of
this project. Within this time frame, we were able to find five bugs in git. Typically, we used the
minimized test cases from the minimizer to analyze them until we understand the relationships of
the commands and manually write a simpler script, to trigger the bug or the violation. These bugs
will be explained in the following.

5.1.1 File Move Bug

The git mv <from> <to> command is used to rename or move tracked files and directories in the
working directory and updates them in the index as well. To do so, the implementation updates the
information of the existing files to correspond to the new location and moves the files or directories
on the file system. On the file system, the timestamp of the last modification of each file or directory
is stored within an attribute, called ctime. When a new file or any modifications to a file are added

35

36 5. Evaluation

Listing 5.1: Script to showcase the git move bug.
1 #!/bin/bash
2 git init # create git repository
3 touch bar # create empty file bar
4 git add bar # add the file to the index
5 git commit -am "add bar" # commit
6 sleep 1 # wait 1 second to ensure other ctime
7 git mv bar foo # rename bar to foo
8 git update-index --refresh # reset fails without this command
9 git reset --merge HEAD # reset to last commit

Table 5.1: Values of the ctime attribute in the file system and the index during the execution of
the script in Listing 5.1.

ctime
Without line 8 With line 8

After line File File system Index File system Index
3 bar 1 - 1 -

4 - 6 bar 1 1 1 1
7 foo 2 1 2 1 E
8 foo 2 2

to the index, the value of the ctime attribute of this file is also stored in the index. If a file is being
moved on the file system, its ctime attribute is updated to the current time. As a result of the
bug, the ctime attributes in the index are not updated during the moving of the files by the git
mv command. If a file is added to the index and moved with git mv within the same tick of the
ctime value, than the index contains the correct ctime value regardless of this bug.

To avoid merge conflicts, the git reset --merge command first checks if there are unstaged
changes present for files that are different between the working directory and the HEAD. During
this check git reset compares the ctime of the files in the working directory against the ctime
stored in the index. If they do not match, the command assumes unstaged changes for this file and
therefore refuses to proceed. Therefore, a git reset --merge fails, if it is executed after a git
mv command that caused an incorrect index.

Listing 5.1 shows a simple script to reproduce the bug. Table 5.1 shows the ctimes values of
the index and file system during the execution of this script accordingly. The sleep 1 command
after the commit command on line number 5 ensures that the ctime value of the moved file on the
file system will be different than before. The time precision of this attribute is platform-dependent.
The git update-index --refresh command refreshes various attributes of changed files in the
index. Since the file was not modified after the renaming, the command updates the ctime value
in the index to match the ctime value on the file system. This causes the git reset --merge
HEAD command to succeed. If git update-index --refresh is removed from this script, the git
reset --merge HEAD command fails.

For all our transformations the exit relation must hold true. Therefore, this must also hold
true if we apply no transformation at all. Each script generated by the generator is known to be

5. Evaluation 37

Listing 5.2: Script to showcase the effect of the commit ID collision. Line 8 needs to be removed
to trigger the bug.

1 #!/bin/bash
2 git init # create git repository
3 git commit --allow-empty -m init # initial commit
4 git checkout -b otherBranch # switch to new branch
5 git commit --allow-empty -m first # commit in new branch
6 git notes add -m foo # add note "foo" to last commit
7 git checkout master # switch back to master
8 sleep 1 # sleep one second to ensure new timestamp for

next commit, line not present in source test↪→

9 git commit --allow-empty -m first # commit in master
10 git notes add -f -m bar # add note "bar" to last commit (may override)
11 git checkout otherBranch # switch to other branch again
12 git notes show > myNote.txt # write note message of last commit to a file

deterministic per design and the output is reproducible. If the violation of any relation is detected,
the program will execute the source and follow-up test script Nmin_exec times in a row and check if
the output is stable, as explained in Section 3.6. Since this bug could be triggered by the timing of
the commands, our approach has reported some scripts as being non-deterministic. Thus, we were
able to reduce the number of commands of the script while keeping the non-deterministic behavior
and filed a bug report1. After this, the bug has been confirmed and patched2 in git version 2.36.0.

5.1.2 Commit ID Collision Bug

The git notes add command is used to add a textual note to some commit in the history. To add
the note, the commit is referenced by its unique ID. The ID is a hash based on the contents of the
commit, the ID of the parent, the message, the current timestamp, and other meta information.
So, if two commits share the same parent, contents, message, and the other meta information and
additionally they are made close to each other regarding clock time, it is possible that they will
have the same ID. In fact, in this case they are the same commit since git itself uses the commit
ID as a unique key to access them. So, it depends on the timing whether the later commit actually
adds a second commit to the repository or if they are the same. Since we can attach at the most one
note to each commit, we are only able to attach a note to both commits each if they have different
IDs. If the second commit gets the same ID, we are unable to add the second note to it. Listing 5.2
shows a script in which the problem occurs. In the first four lines, we create a new repository
within the current directory, make an empty initial commit, create a new branch and switch to
this new branch. Within lines number 5 to 7, we create an empty commit within the new branch,
add a note with the message “foo” to this commit and then switch back to the master branch. On
line number 8, we pause the execution for one second. This line is only part of the follow-up test
case. On line number 9, we make a new commit within the master branch with the same commit

1https://lore.kernel.org/git/84FF8F9A-3A9A-4F2A-8D8E-5D50F2F06203@icloud.com/T/#u
2https://github.com/gitgitgadget/git/releases/tag/pr-1187%2Fvdye%2Freset%2Fmerge-inconsistency-

v2

https://lore.kernel.org/git/84FF8F9A-3A9A-4F2A-8D8E-5D50F2F06203@icloud.com/T/#u
https://github.com/gitgitgadget/git/releases/tag/pr-1187%2Fvdye%2Freset%2Fmerge-inconsistency-v2
https://github.com/gitgitgadget/git/releases/tag/pr-1187%2Fvdye%2Freset%2Fmerge-inconsistency-v2

38 5. Evaluation

A init B first

master otherBranch

bar

(a) Without sleep command: commit ID
collision.

A init

C first

B first

master

otherBranch

foo

bar

(b) With sleep command: no commit ID
collision.

Commit parent
relation Commit Branch

reference
Points-to
relation

message
Note with
message

Figure 5.1: Histories after the execution of the script of Listing 5.2 with and without the sleep
command on line 8 present.

message as on line number 4. In general, we expect that these commits have their own unique ID,
which is the case when the sleep command on line number 8 is present. Otherwise, this commit
gets the same ID as the commit on line number 4. On line number 10 and 11, we want to add a
note with the message “bar” to this new commit and switch back to otherBranch. On line number
12, we read the message of the note of the last commit of this branch and write it to a file. When
the commit IDs happened to be equal, the second note overrides the first one and the content of
the file is “bar”. With the sleep command present, the commit IDs will be different, therefore the
message of the first note will still be intact after adding the second note and the content of the file
would be “foo”. The resulting histories after executing the test case with and without the sleep 1
command present is visualized in Figure 5.1.

We have reported this bug3 but still have not received a response 50 days later when publishing
this master thesis, so the error is not officially confirmed.

5.1.3 Checkout No-Op Bug

The git documentation states that the git checkout command without any arguments is “[...] a
glorified no-op with rather expensive side-effects to show only the tracking information, if exists,
for the current branch”4. This inspired us to use the insertion of plain git checkout commands
within the no-op insertion transformation. Using our approach we discovered that the promise of
the documentation does not hold true. We have found scenarios in which the insertion actually
caused the violation of the exit relation.

Imagine we are currently on the master branch on a clean state, and we are able to merge another
branch into the master with the command git merge --no-ff otherBranch without getting a
conflict. The --no-ff option forces git to use traditional merging with a merge commit even if a
fast-forward merge is possible. In this case, we can add the --no-commit option to the command
to tell git, to prepare but not actually commit the merge commit. This option is intended for the
user to be able to verify the result of the merge before committing it. When the user decides that

3https://lore.kernel.org/git/1BD801F4-B2BA-4D6C-A450-5EEB14E8A58A@icloud.com/T/#u
4https://www.git-scm.com/docs/git-checkout/2.36.0#Documentation/git-checkout.txt-emgitcheckoute

mltbranchgt

https://lore.kernel.org/git/1BD801F4-B2BA-4D6C-A450-5EEB14E8A58A@icloud.com/T/#u
https://www.git-scm.com/docs/git-checkout/2.36.0#Documentation/git-checkout.txt-emgitcheckoutemltbranchgt
https://www.git-scm.com/docs/git-checkout/2.36.0#Documentation/git-checkout.txt-emgitcheckoutemltbranchgt

5. Evaluation 39

Listing 5.3: Minimized test case to trigger the checkout no-op bug.
1 #!/bin/bash
2 git init repo1 # initialize 1st repository
3 cd repo1 # switch into 1st repository
4 git commit --allow-empty -m first # first commit in 1st repository
5 git clone . ../repo2 # clone 1st repository
6 touch a # create file a in 1st repsitory
7 git add a # add 'a' to index of 1st repository
8 git commit --allow-empty -m second # second commit in 1st repository
9 cd ../repo2 # switch into 2nd repository

10 git pull --no-ff --no-commit # pull in changes from 1st repository into 2nd
repository↪→

11 git checkout # should be a no-op
12 git commit --no-edit # commit merge in 2nd repository
13 git reset --hard # remove untracked files of 2nd repository

the merge has worked as expected, the user can use the command git commit, which is just a
shorthand for git merge --continue, to actually commit the merge. If we invoke git checkout
in between git merge --no-commit --no-ff otherBranch and git commit, the git checkout
command causes the merge to be aborted and the following git commit to fail, since there are
no changes to be committed. As already explained, the git pull command is internally a fetch
and a merge operation, therefore we observe the same problem when invoking git pull with the
--no-commit --no-ff options in a similar scenario. Our approach has inserted a git checkout
command in the context of the no-op insertion transformation right after a git pull command
with the --no-commit --no-ff options which has caused the violation of the exit relation. The
failed merge operation causes missing changes in the history and when the branch is checked out
at a later point, these changes are missing in the working directory which causes the violation of
the exit relation in the end.

Listing 5.3 shows a minimal example to trigger the bug. In the lines number 2 to 4, we create
an empty repository, enter it, and make a first commit. Then we create a second repository which
is a clone from the first one, in the next line. On lines number 6 to 8, we create and add a new
file to the index of the first repository and commit this change afterward. Then we switch to the
second repository and pull this change from the first repository into this repository while using
the --no-commit --no-ff options for the pull operation. Line number 11 contains the checkout
command as documented. This line is not present in the source test case. On line number 12 we
commit the merged changes to the history. This operation fails when the git checkout command
of line number 11 is present. The last line cleans the working directory by removing the untracked
files. During the pull operation, the new changes were checked out into the working directory.
The git reset command cleans the working directory and index to match the HEAD. When the
merge operation fails, this clean operation will remove file a from the working directory of the
second repository.

40 5. Evaluation

Listing 5.4: Test case to trigger the stash push fail bug.
1 #!/bin/bash
2 git init # initialize repository
3 git commit -m init --allow-empty # initial commit
4 touch a # create empty file 'a'
5 git add a # add 'a' to the index
6 git stash push # stash the creation of 'a'
7 touch b c # create empty files 'b' and 'c'
8 git add b # add 'b' to the index
9 git add --intent-to-add c # add the presence of 'c' to the index

10 git stash push # push changes to stash
11 git stash pop --index # pop changes back and restore index
12 git commit --all -m second # commit changes to all tracked files
13 git clean -f # remove untracked files

We have reported this bug5 but still have not received a response 41 days later when publishing
this master thesis, so the error is not officially confirmed.

5.1.4 Stash Push Fail Bug

As described in Section 3.5.2.1, the stash in git is intended to be used to remove changes from the
index and working directory, in order to get a clean index and working directory but also with the
ability to reapply these changes to the working directory and index at a later point in time. The
git add command supports the --intent-to-add (-N in the short version) flag which can be used
to make git aware of a file that has not yet been tracked so fare, without adding the file to the
staging area. After adding a file using this option, git status reports an unstaged change of the
type new file for this file. The git diff command shows the difference between the staged files
and the working directory. When a new file is created which is not yet added to the staging area,
it is untracked and therefore not included in this output. If the user desires the file to be included
in that output, the git add --intent-to-add command is intended to accomplish this.

The problem was discovered by our approach after inserting a sequence of a git stash push
and a git stash pop command within the context of the no-op insertion transformation. The git
stash push command failed because a file was added via the git add --intent-to-add earlier in
the test case, which has caused the following git stash pop command to try to pop other changes
from the stash than intended. The difference of the files in the working directory has caused the
exit relation to get violated.

Listing 5.4 shows a test case which triggers this bug. On lines number 2 to 5, we create
the repository, make an initial commit, create a new empty file a and add this file to the index.
Afterward, we stash the changes of the staging area. This operation removes file a from the index
and working directory, and creates a stash entry. On lines number 7 to 9, we create two empty files b
and c, add file b to the index and use the git add --intent-to-add command to add the creation
of the file c to the unstaged changes. The commands on lines number 10 and 11 were inserted by

5https://lore.kernel.org/git/D0A0CC41-C41E-4856-B969-2A6DD3C14079@icloud.com/T/#u

https://lore.kernel.org/git/D0A0CC41-C41E-4856-B969-2A6DD3C14079@icloud.com/T/#u

5. Evaluation 41

Listing 5.5: Minimal example to showcase the pull fails after commit --dry-run bug.
1 #!/bin/bash
2 git init repo1 # initialize 1st repository
3 cd repo1 # switch to 1st repository
4 touch a # create empty file a in 1st repository
5 git add a # add file a to the index in 1st repository
6 git commit -m one --allow-empty # first commit in 1st repository
7 git init ../repo2 # initialize 2nd repository
8 cd ../repo2 # switch to 2nd repository
9 git commit -m two --dry-run # dry-run commit in 2nd repository

10 git pull --rebase "../repo1" # try to pull from 1st repository

the no-op insertion transformation and were not present in the source test case. These commands
are supposed to push the changes to the stash and pop them back afterward. Due to the git
add command on line number 9, the git stash push command will fail. If the command would
succeed, the working directory and index are in a clean state afterward. The remaining changes in
the index, caused by the failed stash push, causes the git stash pop --index command on line
number 11 not to work as expected. The stash pop operation requires the index to not contain any
unstaged changes of tracked files. This failed pop operation causes the staged changes of the files
to get lost, which causes the files b and c to not get tracked anymore. The git commit command
on line number 12 commits the changes of all tracked files and the git clean command on line
number 13 removes all untracked files. Since the files b and c are not tracked anymore, they are
removed by this command in the follow-up test case, which leads to an empty working directory.
In the source test case without lines number 10 and 11, these files are still tracked and therefore
not removed by the clean operation.

We have reported this bug6 but still have not received a response 41 days later when publishing
this master thesis, so the error is not officially confirmed.

5.1.5 Pull Fails After Commit --dry-run Bug

We have found this bug by using another technique to generate the input test cases, which is
described in Section 7.1. A git commit command with the --dry-run option is supposed to show
the information about the files, that are supposed to be included in the next commit, without
creating a commit. The approach has detected a violation of the exit relation after inserting a git
commit --dry-run command in the context of the no-op insertion transformation.

Listing 5.5 shows a minimal test case to trigger the bug and cause the violation of the exit
relation. On lines number 2 to 6, we create the first repository, create an empty file and add it
to the index, and create a commit. On lines number 7 and 8, we create the second repository
and switch to it. Line number 9 with the git commit --dry-run command is only present in
the follow-up test case. On line number 10, we pull the changes from the first repository into the
second one. In the source test case, this operation succeeds and file a is created within the second

6https://lore.kernel.org/git/111D7753-AE53-4906-A7AF-F39EA7455CA3@icloud.com/T/#u

https://lore.kernel.org/git/111D7753-AE53-4906-A7AF-F39EA7455CA3@icloud.com/T/#u

42 5. Evaluation

repository. In the follow-up test case, after the insertion of the git commit --dry-run command,
this operation fails. Therefore, file a is not created and the exit relation violated.

This bug is reported7 and a patch is proposed by a git contributor.

5.1.6 Result

The fact that the approach was able to discover five real-world bugs in the latest version of git
proves that it is effective in finding bugs in git. Since the commit ID collision bug only occurs in
special edge cases, it may not have a lot of impact on real-world use-case scenarios of git. The
pull fails after commit --dry-run bug also has a relatively small impact on real-world use-case
scenarios. However, the other three bugs are likely to be triggered in real-world use-case scenarios.
Especially the file move bug has a high impact since it is likely to be triggered at any usage of the
git mv command without showing any symptoms.

5.2 Approach Efficiency

To evaluate RQ2, we measure various data during a 48-hour execution period of the implementation
of our approach on the server. The setup consists of four docker containers. One for the controller
application, one for the worker application, one for Prometheus to collect the statistics, and one for
Grafana to observe and visualize the measurements. As before, the worker is configured to use 50
worker threads for the concurrent execution of the test cases, the test case generator is configured to
use 40 successful command insertions per test case, and a RAM disk is used. We stop the program
after 48 hours and evaluate the data. The metrics are collected all 15 seconds by Prometheus from
the worker. The worker implements a Prometheus endpoint to provide these metrics.

We measure the following metrics:
Transformation time We measure the time it takes to derive each follow-up test case from the

source test case by applying a transformation. This also includes the time it takes to evaluate
which transformations can be applied to this source test case. This is implemented as a sum
of all measured time intervals and a counter that holds the number of summed intervals.

Test case execution time and number of executed test cases We measure the time it takes
to prepare the working directory, export the test case script, execute the test case script, and
collect the output according to our relations. This is implemented as a sum of all measured
time intervals and a counter that holds the number of summed intervals.

End-to-end test run execution time After the execution of each test case script, we need to
check the relations and either derive a new follow-up test case or even generate a new test
case from scratch when the former one has reached the maximum number of executions. This
metric measures the time of such a full test run cycle. This is implemented as a sum of all
measured time intervals and a counter that holds the number of summed intervals.

Input test case generation time and number of generated test cases We measure the time
it takes to generate a new test case from scratch as well as the number of generated test cases.

7https://lore.kernel.org/git/B0458F2D-C6B9-41AE-8F2F-39C1D2AEE6BD@icloud.com/

https://lore.kernel.org/git/B0458F2D-C6B9-41AE-8F2F-39C1D2AEE6BD@icloud.com/

5. Evaluation 43

Table 5.2: Measured metric values.

Metric Sum [s] Count Average (sum
count) [s]

Transformations 1,047.355 2,077,819 0.000504
Test case executions 7,324,738 2,094,586 3.497
End-to-end test run execution time 8,617,006 2,086,176 4.131
Input test case generations 1,233,757 8,450 146.007
Script executions during test generations 1,229,618 894,575 1.375
Successful script executions during test generations - 218,923 -

This is implemented as a sum of all measured time intervals and a counter that holds the
number of summed intervals.

Number of script executions during test case generation We count the number of script
executions during the generation of new test cases. The generator appends new commands
to the test case and tries to execute it. We also measure the time for these executions. This
is implemented as a sum of all measured time intervals and a counter that holds the number
of summed intervals.

Number of successful script executions during test case generation We count the num-
ber of scripts that possibly can be executed successfully, after the addition of newly generated
commands to a test case during its generation. This number also represents the number of
successful command insertions.

Table 5.2 shows the measurement results of the experiment. Within the observed time, the
approach executed 2,094,586 test cases. This leads to an average of 2,094,586

172,800s ≈ 12.121 executions
per second and an average execution time of 3.497 seconds. One end-to-end test run execution
takes 4.131 seconds on average by 2,086,176

172,800s ≈ 12.073 executions per second. The application of a
transformation takes 0.504 milliseconds on average. A number of 8,450 input test cases have been
generated, which take about 146 seconds per test case on average. This leads to an average of
1,233,757s
2,086,176 ≈ 0.591 seconds per generated script per end-to-end test run execution. During the input

test case generation 218,923 of 894,575 script executions were successful. This is a success rate of
24.5% and a duration of 1,229,618s

218,923 ≈ 5.617 seconds on average per command insertion.

When a new test case is generated and being used as source test case for the first time, we execute
both the source and follow-up test case within this first end-to-end test run. In the subsequent
end-to-end test runs, we use the former follow-up test case as source case. Since this test case had
been executed before, we just need to execute the new follow-up test case. This is reflected in the
difference between the number of end-to-end test run executions compared to the number of test
case executions of 2,094,586 − 2,086,176 = 8,410 which almost matches the number of generated
test inputs. The iterative application of n transformations onto a source test case results in a chain
of n + 1 test cases in total. This is reflected in the difference between the number of end-to-end
test run executions and the number of applied transformations of 2,086,176 − 2,077,819 = 8,357
which is also about the same as the number of generated test inputs.

44 5. Evaluation

false postives
9.21%

file move bug
84.21%

stash push fail bug
6.58%

Figure 5.2: Distribution of the various causes of the warnings generated by the approach during
the 48-hour period.

5.3 Approach Precision

To address RQ3, we analyze all warnings produced by the approach within a 48-hour execution
period on the server. The setup consists of two docker containers: one for the controller application
and one for the worker application. As before, the worker is configured to use 50 worker threads for
the concurrent execution of the test cases, the test case generator is configured to use 40 successful
command insertions per test case, and a RAM disk is used. After the 48-hour period, we have
manually traced the cause of each generated warning.

We observe 76 warnings. The cause of 64 warnings is the file move bug, which is 84.21%. The
stash push fail bug is the cause of 5 warnings, which is 6.58%, and the remaining 7 warnings are
false positives, which is 9.21%. Figure 5.2 shows the distribution as a pie diagram.

As seen, the approach results in a precision of 90.79%. A high precision is important for the
real-world use of the approach since the manual analysis of warnings is a time-consuming task. So,
we want to waste as little time as possible by analyzing false positive warnings.

5.4 Test Minimization Effectiveness

To answer RQ4, we compare the number of commands in the original follow-up test script of
455 violation reports against the number of commands in the corresponding minimized follow-up
test script. These violations have been collected during the development of the approach within
approximately 2 months, using the setup as described in section 5.1. We measure the number of
logical commands described by our model, excluding the special commands inserted as convince
to provide us orientation during manual evaluation of the reports. These commands just output
numbers to the console between each other command, which enables us to relate lines of the console
outputs to lines in the test script. The minimization of the optional arguments of the commands
themselves is not taken into account for this evaluation.

5. Evaluation 45

6
13
20

30
40

51
60

70
80

92
100

0
Original Scripts Minimized Scripts

n=455

74
65

10
18N

um
be

r
of

C
om

m
an

ds

(a) Number of commands in the original and minimized test scripts.

0

7.8
10

14.5
19.7

25.8
30

40

46.7
50

Minimized vs Original

R
ed

uc
tio

n
R

at
io

in
Pe

rc
en

t

(b) Reduction ration of the number of
commands in the original test scripts
compared to the minimized ones.

Figure 5.3: Evaluation of the test minimizer. Comparison between original and minimized test
scripts with box plots. Whiskers indicate the minimum and maximum. The two boxes in between
indicate the first and third quantile.

Figure 5.3a shows the distribution of the counted commands. Each colored +-sign represents
a single data point. The vertically centered line in each box represents the median value. The top
line of each box represents the median of the upper half of the values and the bottom line of each
box represents the median of the lower half of the values. The whiskers indicate the minimum and
maximum value.

The original test scripts consist of 52 to 92 commands with a mean value of 70 commands.
In comparison, the minimized test scripts consist of 6 to 30 commands with a mean value of
13 commands. Even in a worst-case scenario, a minimized script contains less than 50% of the
commands of the original script. In a best-case scenario, we archive a reduction of up to 7.8% in
the number of the commands of the original test script. On average, we archive a reduction of 1

5 .
The archived reduction of each script pair is plotted in Figure 5.3b. The reduction is calculated by
dividing the number of commands in a minimized test script by the number of commands in the
corresponding original test script.

5.5 Transformation Effectiveness

To address RQ5, we analyze one violation report for each bug described in Section 5.1. We analyze
which transformations can be found in the minimized test case and are therefore relevant to trigger
the bug. To do so, we manually compare the commands of the minimized test case against the
corresponding input test case. Additionally, we look at the number of transformations applied to

46 5. Evaluation

the input test case until the bug was triggered. These numbers are collected by the program and
are part of the violation reports.

File Move Bug For the file move bug we cannot answer this question because of the non-
deterministic nature of this bug. It is possible that the bug is already present in a generated
input test case and but its symptoms are triggered after multiple executions only now for the first
time. So, the last applied transformation before the symptoms are observed may not be involved
in triggering the bug and therefore cannot be made responsible. Additionally, it is possible that
the symptoms are observed even before the generation of the input test case is finished. In this
case, there is even no transformation to blame.

Commit ID Collision Bug This bug was triggered after applying the checkout in other branch
command transformation. A git commit command was transformed to be made in another branch,
which is merged back via a traditional merge into the former branch. This was the 13th trans-
formation in the iterative transformation chain and the 133rd transformation for this input test
case in total. So, it is the 8th chain that starts with this input test case. The minimized test
case contains this single transformation only, so the other 12 transformations are not relevant for
triggering the bug.

Checkout No-Op Bug The checkout no-op bug has been triggered after the insertion of a git
checkout command in the context of the no-op command insertion transformation. This was
the 8th transformation in the iterative transformation chain and the 218th transformation of this
input test case in total. This inserted checkout command is the only transformation present in the
minimized test case, so the 7 other transformations are not relevant for triggering this bug.

Stash Push Fail Bug This bug was triggered after inserting a git stash push -a command
followed by a git stash pop --index command in the context of the no-op command insertion
transformation. These commands are inserted in the 4th transformation in the iterative command
chain and the 169th transformation of the input test case in total. As before, this transformation
is the only transformation present in the minimized test case.

5.5.1 Result

As seen, one of these bugs is triggered by the checkout insertion of the no-op insertion transforma-
tion, one is triggered by the stash-push stash-pop insertion of the no-op insertion transformation,
and one is triggered by the checkout in other branch command transformation. The first is a simple
no-op insertion without any preconditions and the latter two are more complex, as they can only be
applied in particular circumstances, and they consist of multiple operations. So, there is a tendency
that more complex transformations are more effective than less complex ones. There is no evidence
for the other transformations to be effective in the current configuration. We are surprised that
the various output modes of the command option transformation have not caused any violation,

5. Evaluation 47

since gits change log regularly mentions the fix of problems of ignored configuration keys in special
instances.

6 Related Work

Peng Wu proposed the approach of iterative metamorphic testing and compared it against tradi-
tional metamorphic testing and special case testing. Iterative metamorphic testing applies multiple
transformations to a single test case. To be precise a source test is used to generate a follow-up test
and after testing, this follow-up test will be reused as the source test again for the next iteration,
for n times in total. This approach leads to a high test case generation efficiency with a higher
fault detection capability than traditional metamorphic testing. [19] We have used this technique
in our approach with a n-value of 15.

Chen et al. introduced a technique to increase the fault detection rate with fewer test cases
called Equivalence-Class Coverage for Every Metamorphic Relation (ECCEM). For their method,
they first divide the input domain of the tested program into different equivalence classes based on
their properties. Then they analyze the relation between the class of the source and follow-up test
case and the applied metamorphic relation, to decide if the relation can be abandoned for some
source test case classes. This will reduce the number of generated test cases while increasing the
fault detection rate. [3] We were not able to use this approach because of the huge size of our input
domain. It is not feasible to manually partition our input domain into equivalence classes.

Zeller and Hildebrandt proposed two delta debugging algorithms to automatically minimize
failing test cases and isolate the failure cause. The approach works on chunks of text. A given
failing test case is reduced until the removal of any further character causes the fault to disappear.
The result is an isolated failure. In case a pair of failing and non-failing tests are given, the algorithm
can isolate the failure-inducing difference between these two. [20] The algorithm is greedy and can
therefore output a local minimum rather than the global minimum. Our test case minimization
algorithm is based on this approach.

Regehr et al. proposed an approach to use the concept of delta debugging to minimize C-
programs that trigger bugs in the compiler. The original delta debugging approach can lead to
wrong results on C-programs, caused for example by the creation of uninitialized variables which
lead to unpredictable results. To solve this, they extend the original approach by adding a second
criterion to determine if the generated slice is a valid C-program, according to their definition.
This must hold true for each result candidate. [14] In our test case minimization algorithm, we
remove parts within the logical model and then regenerate the script from this representation.
This enforces the validity of each test case.

Segura et al. have released a survey on metamorphic testing in which they collect and analyze
the techniques of 119 related papers and give a forecast about future trends. They have shown

49

50 6. Related Work

the development and expansion of metamorphic testing techniques since the introduction by Chen
et al. in 1998. [16]

Murphy et al. have designed and have implemented a framework for the automated metamorphic
testing of machine learning programs, called amsterdam. The framework supports six types of
transformations and various relations, which can be configured by the user. [12] The high-level
idea is similar to our approach. Unfortunately, this framework cannot be used for VCS, since its
transformations are applied to machine learning models and its relations use the corresponding
output data.

Botella and Gotlieb have introduced the approach of automated metamorphic testing to test
programs written in a subset of the C-language. First, they transform the program into an equiva-
lent constraint logic program (clp). Second, they convert a fault-based model of the relation into a
goal to be solved by the rules of the clp. To find violations, they use a solver to solve this constraint
system. [2] This approach cannot be applied to our problem of testing VCS, since it is limited to
programs written in a subset of C. Our approach aims at VCS in general. Even if git had been
written in this subset of C, it is likely that the resulting constraint system would contain too many
variables to be solved in a feasible amount of time.

Dong et al. proposed an algorithm that uses a criterion based on the path-coverage to decide
on the next follow-up test case. They have shown an increased effectiveness by using this approach
compared to classical n-iterative metamorphic testing. [7] Since they use symbolic execution for the
evaluation of the paths, it is not trivial to apply this approach onto a large and complex program
as git, which uses hash functions, network communication, and file system access.

Zolkipli et al. have analyzed different kinds of VCS in general and have summarized the ideas
which have been established in these systems. [21] Additional, Koc and Tansel have published
a survey describing the inner working of typical operations within such systems with a formal
representation. [10] These papers are related to our testing of VCS, since these papers thoroughly
describe VCS, which is required for testing.

7 Future Work

In this section, we will address various limitations of the approach and discuss possibilities for
improvement.

One limitation of the approach is caused by the limited amount of available runtime information
during the follow-up test case derivation. Since commit IDs differ in each execution of a test case,
we are not able to collect them with our runtime information collection approach. To overcome
this during the initial generation of the test cases, we use our own logical commit IDs, which are
substituted by the actual commit IDs during the execution. Since we are unaware of which commits
are present in the current repository, it is possible that we use the reference of a commit ID at a
point in time even when this commit is not reachable. This is feasible during the input test case
generation since we check if the generated command can be executed successfully. But we cannot
use this strategy to decide if a commit reference is valid when we derive a follow-up test case since
we are unable to differentiate if the command fails as a result of an invalid commit reference or as
a result of a bug.

A possible way to increase the efficiency of the approach is the use of metrics to measure the
quality of the applied transformations and the generated input test cases. An obvious candidate
is the measurement of code coverage. During the transformation and generation, we can generate
multiple candidates and choose one to maximize the coverage of poor covered parts of git.

Another improvement is the implementation of additional relations. Possible relations are the
comparison of the exit code of each command in the source and follow-up test case, the comparison
of the number of commits in the histories in both test cases, or the comparison of the console
outputs of specific commands in both test cases.

In addition, the approach can be improved by implementing more transformations. A trans-
formation could export a part of the history as a patch, reset the history to the start of the patch
and import the patch again. It is also possible to create a second working directory via gits work-
ing directory feature, to make changes within this working directory, revert them and remove the
working directory again.

In this master thesis, we tested our approach only with git, however, the approach focuses on
the testing of VCS in general and should therefore be adapted to other VCS, for example, mercury.

7.1 Script Parsing

The git project itself uses automated tests within its CI/CD pipeline to ensure that new changes
do not introduce bugs. When a bug is reported and fixed, the fix will often contain new test cases

51

52 7. Future Work

Listing 7.1: Example of a simple test script.

1 #!/bin/sh
2 test_description='demo test'
3 . ./test-lib.sh
4

5 test_expect_success 'setup' '
6 git init && :>a &&
7 git add a &&
8 git commit -m a'
9

10 test_expect_success 'rm test' '
11 # test one code
12 git rm a &&
13 ! test_path_is_file a'
14

15 test_expect_success 'echo test' "
16 # test two code
17 echo \$ > b &&
18 test_path_is_file b"
19

20 test_done

Setup code

Code of the
first test case

Code of
the second
test case

to ensure that this bug cannot be silently reintroduced by a future change. The tests are written
as shell scripts and use a self-written testing harness. At this point in time, the test scripts consist
of about twenty-five thousand test cases split across about one-thousand files1 with about two
hundred thousand lines of code. As the tests contain scenarios targeting edge cases as well as the
basic functionality, it will be logical to use the test cases as input test cases for our program. This
section describes our approach to making use of these test cases and the encountered problems.

To extract the test cases, we need to parse these shell scripts. Due to the complexity of the
shell syntax, it is not trivial to parse and interpret shell scripts statically. The testing harness will
create a working directory for each test initialized with a git repository, providing many helper
functions, and will for example set the path of the global git configuration file to a file within the
test directory, so that the interactions with git do not alter any files outside of the testing directory.
The two functions test_expect_success and test_expect_failure are the most relevant helper
functions for us since they are used to execute test cases. They both take two string arguments,
one with the name of the test case and the other with the commands for this test case. They also
take a third optional argument with preconditions to run this test case, for example, on specific
platforms only. The commands in this string are typically chained by the &&-operator, so that the
whole chain will fail when the first command fails. Since we need to represent the single commands
with our command model to be able to transform them later, we need to split up these chains and
parse every single command on its own. Besides the testing harness, the git project also contains

1https://github.com/git/git/tree/v2.35.3/t

https://github.com/git/git/tree/v2.35.3/t

7. Future Work 53

other smaller helper scripts that provide helper functions for specific operations and are loaded
by some of the tests. Additionally, some of the tests will define their own helper functions or will
contain code to prepare the test cases. If we want to extract some test cases on their own out of a
script, we need to keep these imports or the setup code with the extracted test case. Summarized,
to represent the scripts with our logical model, we need to apply the following processing steps to
the scripts. We show this with an example.

1. Parse each test script and determine the test cases and their setup code as shown in Listing 7.1.
All the test cases with special words in their names, such as setup, as well as the code above
the test case, that is not part of another test case, will be tainted as setup-code.

2. Extract the string contents, parse the content as a script, and split up the chains into single
command strings. In our example, the last command of the first script contains an exclama-
tion mark which will negate the result of the command. Since we split up the chains, the result
of a command does not matter anymore, so we can discard the exclamation mark. During the
extraction, the contents must be unescaped according to the used quotes. The echo command
of the second test case contains an escaped dollar sign which has to be unescaped during the

extraction.

test_expect_success 'rm test' '
test one code
git rm a &&
! test_path_is_file a'

test_expect_success 'echo test' "
test two code
echo \$ > b &&
test_path_is_file b"

test one code
git rm a
test_path_is_file a

test two code
echo $ > b
test_path_is_file b

3. Parse each command string as script to split up the command into the parts, as the shell
is doing. These parts are for example redirects, environment variables and list of command
arguments.
test one code
git rm a
test_path_is_file a

test two code
echo $ > b
test_path_is_file b

cmd: [”git”, ”rm”, ”a”]

cmd: [”test_path_is_file”, ”a”]

cmd: [”echo”, ”$”] redirects: [”>b”]

cmd: [”test_path_is_file”, ”b”]

54 7. Future Work

4. Parse the list of command arguments to find the corresponding command template and fill
the values of the template according to the command arguments.
cmd: [”git”, ”rm”, ”a”]

cmd: [”test_path_is_file”, ”a”]

cmd: [”echo”, ”$”] redirects: [”>b”]

cmd: [”test_path_is_file”, ”b”]

(N := echo, A := [$], R := [>b])

(N := test_path_is_file, A := [b])

(N := rm, A := [a], P := (N := git))

(N := test_path_is_file, A := [a])

Unfortunately, we have encountered various limitations using this approach. At first, we have
had problems extracting the test cases. Static bash parsing itself is not a trivial problem, as seen
by the approach of Davis et al. to convert bash scripts to python [5]. We have found a single library
for Java capable of parsing bash. Also, it does not support all the syntax used in the test scripts.
We have solved this by applying manual and automatic pre-processing steps to these scripts. The
next problem is the detection of the test cases and the related code for each test case. These scripts
are not indented for automatic extraction of the test cases. Each script is a little different from
the other ones. In some test scripts, the test cases consist of one setup block and each test case
will revert the state to this initial state at the beginning. Other test cases depend on the state
produced by the test case before. Another problem is the use of self-defined functions within the
scripts. Some scripts define functions to invoke the test cases. These test cases are not found by our
approach, since we search for the invocation of the test_expect_success or test_expect_fail
ure function. Additionally, these self-defined functions of the test scripts are also often used within
the test cases themselves. When we parse them, we do not know the semantic of the function
and we cannot transform the command within the function as well. A possible solution can be to
rewrite scripts by substituting all function calls with the code of the function itself. Due to the
complexity of bash, this is not trivial to accomplish and beyond the scope of this thesis.

The next problem is the semantic of the test cases themselves. Since git is so complex, it is
difficult to implement the relations and transformations in such a way, that they function as desired
in every possible case. When using scripts generated by our random input test generator, we have
control of how the commands interact with git and which assumptions can be made about the
state of the repositories during the test executions. It enables us to start the development with a
small subset of commands and implement more commands while taking care of our assumptions.
Additionally, many test cases are not deterministic regarding the output that we are using for the
relations. As soon as a command pipes its output to a file in the working directory and the output
contains either a commit ID or the current timestamp, the content of this file is likely to change
for each execution.

While using this approach to gather input test cases, we have found a single bug in git as
described in Section 5.1.5. Nevertheless, this approach features poor effectiveness and it requires
future work to address the open issues.

8 Conclusion

In this thesis, we design and evaluate an approach to use metamorphic testing within an automated
testing tool targeted at version control systems. We implement our approach to test the popular
version control system git. The approach consists of two parts: a random test input generator and
a set of metamorphic relations and transformations.

We define a logical model to describe command templates and use them to instantiate concrete
commands for the test input generator. We also use this model to transform these commands.

Using our approach, we found five bugs in the current version of git. This shows that it is
possible to use our approach, and metamorphic testing in general, to automatically test VCS.

The main challenge of applying the approach to a real-world application, such as git, is to
develop stable transformations and relations. This is a difficult and time-consuming task since the
documentation of git is in general not precise about the specific conditions in which an operation
is expected to succeed and which behavior is valid, especially for rare edge cases. More precise
documentation or specification enables more efficient development of metamorphic relations and
transformations and will therefore allow exploiting more complex scenarios.

55

Bibliography

[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software
testing: A survey. IEEE Transactions on Software Engineering, 41(05):507–525, may 2015.
ISSN 1939-3520. doi: 10.1109/TSE.2014.2372785. URL https://doi.org/10.1109/TSE.20
14.2372785.

[2] B. Botella and A. Gotlieb. Automated metamorphic testing. In 2013 IEEE 37th Annual
Computer Software and Applications Conference, page 34, Los Alamitos, CA, USA, nov 2003.
IEEE Computer Society. doi: 10.1109/CMPSAC.2003.1245319. URL https://doi.ieeeco
mputersociety.org/10.1109/CMPSAC.2003.1245319.

[3] L. Chen, L. Cai, J. Liu, Z. Liu, S. Wei, and P. Liu. An optimized method for generating cases
of metamorphic testing. In 2012 6th International Conference on New Trends in Information
Science, Service Science and Data Mining (ISSDM2012), pages 439–443, 2012.

[4] T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic testing: A new approach for generating
next test cases. CoRR, abs/2002.12543, 1998. doi: 10.48550/arXiv.2002.12543. URL
https://doi.org/10.48550/arXiv.2002.12543.

[5] I. J. Davis, M. Wexler, C. Zhang, R. C. Holt, and T. Weber. Bash2py: A bash to python
translator. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 508–511, 2015. doi: 10.1109/SANER.2015.7081866. URL
https://doi.org/10.1109/SANER.2015.7081866.

[6] N. Deepa, B. Prabadevi, L. Krithika, and B. Deepa. An analysis on version control systems. In
2020 International Conference on Emerging Trends in Information Technology and Engineering
(ic-ETITE), pages 1–9, 02 2020. doi: 10.1109/ic-ETITE47903.2020.39. URL https:
//doi.org/10.1109/ic-ETITE47903.2020.39.

[7] G. Dong, C. Nie, B. Xu, and L. Wang. An effective iterative metamorphic testing algorithm
based on program path analysis. In Seventh International Conference on Quality Software
(QSIC 2007), pages 292 – 297, 11 2007. ISBN 978-0-7695-3035-2. doi: 10.1109/QSIC.2007.43
85510. URL https://doi.org/10.1109/QSIC.2007.4385510.

[8] G. Jahangirova. Oracle problem in software testing. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2017, page 444–447, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450350761. doi:
10.1145/3092703.3098235. URL https://doi.org/10.1145/3092703.3098235.

57

https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.ieeecomputersociety.org/10.1109/CMPSAC.2003.1245319
https://doi.ieeecomputersociety.org/10.1109/CMPSAC.2003.1245319
https://doi.org/10.48550/arXiv.2002.12543
https://doi.org/10.1109/SANER.2015.7081866
https://doi.org/10.1109/ic-ETITE47903.2020.39
https://doi.org/10.1109/ic-ETITE47903.2020.39
https://doi.org/10.1109/QSIC.2007.4385510
https://doi.org/10.1145/3092703.3098235

58 Bibliography

[9] S. Just, K. Herzig, J. Czerwonka, and B. Murphy. Switching to git: The good, the bad, and
the ugly. In 2016 IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE), pages 400–411, 2016. doi: 10.1109/ISSRE.2016.38. URL https://doi.org/10.110
9/ISSRE.2016.38.

[10] A. Koc and A. U. Tansel. A survey of version control systems. ICEME 2011, 2011.

[11] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen. How effectively does metamorphic testing
alleviate the oracle problem? IEEE Transactions on Software Engineering, 40(1):4–22, 2014.
doi: 10.1109/TSE.2013.46. URL https://doi.org/10.1109/TSE.2013.46.

[12] C. Murphy, K. Shen, and G. Kaiser. Automatic system testing of programs without test
oracles. In Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis, ISSTA ’09, page 189–200, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605583389. doi: 10.1145/1572272.1572295. URL https://doi.org/10
.1145/1572272.1572295.

[13] E. W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(1):251–266,
1986.

[14] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case reduction for c
compiler bugs. ACM SIGPLAN Notices, 47, 06 2012. doi: 10.1145/2254064.2254104. URL
https://doi.org/10.1145/2254064.2254104.

[15] B. S. Scott Chacon. Pro Git. Apress, 2014. ISBN 1484200772. URL https://github.com/p
rogit/progit2/releases/download/2.1.339/progit.pdf.

[16] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés. A survey on metamorphic testing.
IEEE Transactions on Software Engineering, 42(9):805–824, 2016. doi: 10.1109/TSE.2016.2
532875. URL https://doi.org/10.1109/TSE.2016.2532875.

[17] S. Tolksdorf, D. Lehmann, and M. Pradel. Interactive Metamorphic Testing of Debuggers,
page 273–283. Association for Computing Machinery, New York, NY, USA, 2019. ISBN
9781450362245. URL https://doi.org/10.1145/3293882.3330567.

[18] E. J. Weyuker. On Testing Non-Testable Programs. The Computer Journal, 25(4):465–470,
11 1982. ISSN 0010-4620. doi: 10.1093/comjnl/25.4.465. URL https://doi.org/10.1093/
comjnl/25.4.465.

[19] P. Wu. Iterative metamorphic testing. In 29th Annual International Computer Software and
Applications Conference (COMPSAC’05), volume 1, pages 19–24, 2005. doi: 10.1109/COMP
SAC.2005.93. URL https://doi.org/10.1109/COMPSAC.2005.93.

[20] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE Trans.
Softw. Eng., 28(2):183–200, feb 2002. ISSN 0098-5589. doi: 10.1109/32.988498. URL
https://doi.org/10.1109/32.988498.

https://doi.org/10.1109/ISSRE.2016.38
https://doi.org/10.1109/ISSRE.2016.38
https://doi.org/10.1109/TSE.2013.46
https://doi.org/10.1145/1572272.1572295
https://doi.org/10.1145/1572272.1572295
https://doi.org/10.1145/2254064.2254104
https://github.com/progit/progit2/releases/download/2.1.339/progit.pdf
https://github.com/progit/progit2/releases/download/2.1.339/progit.pdf
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1145/3293882.3330567
https://doi.org/10.1093/comjnl/25.4.465
https://doi.org/10.1093/comjnl/25.4.465
https://doi.org/10.1109/COMPSAC.2005.93
https://doi.org/10.1109/32.988498

Bibliography 59

[21] N. N. Zolkipli, A. Ngah, and A. Deraman. Version control system: A review. Procedia
Computer Science, 135:408–415, 01 2018. doi: 10.1016/j.procs.2018.08.191. URL https:
//doi.org/10.1016/j.procs.2018.08.191.

https://doi.org/10.1016/j.procs.2018.08.191
https://doi.org/10.1016/j.procs.2018.08.191

Selbsständigkeitserklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die
angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken übernommenen
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus waren bisher
Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilweise noch
vollständig veröffentlicht. Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren
überein.

Datum Unterschrift

61

	Introduction
	Goals
	Example
	Thesis Structure

	Background
	Metamorphic Testing
	Version Control Systems
	Git

	Approach
	Overview
	Script Generation
	Command Model
	Script Generator

	Relations
	Exit Relation
	Source Independent Checkout Relation

	Test Execution
	Transformations
	Command Transformations
	Command Insertion
	Transformation Selection

	Test Minimization

	Implementation
	Architecture
	Script and Command Model
	Transformation

	Evaluation
	Approach Effectiveness
	File Move Bug
	Commit ID Collision Bug
	Checkout No-Op Bug
	Stash Push Fail Bug
	Pull Fails After Commit –dry-run Bug
	Result

	Approach Efficiency
	Approach Precision
	Test Minimization Effectiveness
	Transformation Effectiveness
	Result

	Related Work
	Future Work
	Script Parsing

	Conclusion
	Bibliography

