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Abstract

BACKGROUND: Designing empirical software engineering methodologies presupposes the
existence of evidence to base actions on empirical fact. Understanding what factors may influence
experiment results, how to select appropriate samples and study subjects, and how to correctly
apply statistical methods is a prerequisite for developing a methodology based on established
research. This is especially true in a field such as program comprehension, where hundreds of
different contextual factors can alter the validity of the obtained results. Here, researchers often
have intuitions about what might threaten the validity of their studies but do not have the evidence
to support their claims.

OBJECTIVE: This study examines the threats to validity in program comprehension experiments
to collect evidence of their existence, to understand the context and nature in which they occur, and
to ultimately assist researchers in designing controlled experiments with high validity.

METHODS: First, we conduct a systematic review surveying existing program comprehension
experiments and summarizing what threats to validity they report. We then follow up on the
three most commonly cited threats, performing small-scale systematic reviews and evaluating the
collected evidence using an evidence profile to investigate their influence as a threat.

RESULTS: We found that only 31 out of 409 (8 %) individual threat mentions were reported with
supporting evidence. Furthermore, for the three most common threats, programming experience,
program length and comprehension measures, we found that contextual factors such as how
measurements are made, the individual characteristics of the population sample, and what concrete
tasks are employed all change the way a threat impacts the results of a study.

CONCLUSION: Threats to validity are highly context-dependent and as such must be controlled
in different ways. Researchers should use existing evidence to inform their decision-making and
explicitly address both why a threat poses a danger and how they controlled it in the context
of their study. To this end, we need structured guidelines for reporting threats to validity and
public knowledge bases that contain threats, evidence, and mitigation techniques for program
comprehension experiments.
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Chapter 1

Introduction

In human-centered experiments such as those on program comprehension, dozens if not hundreds
of different factors can act as potential confounders for the results of a study [1]. Reporting
potentially confounding factors and other threats to the validity of scientific research has long been
seen as good practice, and the number of program comprehension studies that do so continues to
grow [2]. While this indicates an awareness of researchers of threats to validity in their studies,
program comprehension studies employ starkly differing methodologies, leading to difficulties
when comparing their results [3]. Researchers often have an intuition on what could influence their
experiment results, but lack evidence-based resources to support their claims.

This study conducts an investigation into the threats to validity in program comprehension to
address these ambiguities. To this end, we first analyze the current state of reporting in scientific
literature. Using a systematic review, we summarize which and how researchers discuss threats to
validity in 95 papers reporting on primary experiments of program comprehension. Moreover, we
append an evidence-gathering phase to this review, in which we further examine the three most
commonly cited threats to validity: programming experience, program length, and comprehension
measures. During this process, we conduct separate small-scale systematic reviews to identify
existing evidence on the validity of each threat. We then evaluate each piece of evidence against an
evidence profile and render a final verdict for each case.

Structure
The rest of this report is organized as follows:

Chapter 2: Overview of the background and related works.
Chapter 3: Explanation of the methods used to answer our research questions, including systematic
review, evidence collection, and the evidence profile.
Chapter 4: Results and discussion of our systematic review of threats to validity in program
comprehension experiments.
Chapter 5: Results and discussion of the evidence collected for the three most common threats.
Chapter 6: Discussion of the threats to validity of this study.
Chapter 7: Summary, conclusion and suggestions for future work.
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Chapter 2

Background

This work draws on the extensive body of research in software engineering and related fields. In
this section, we provide a brief overview of the relevant topics and explain the basic concepts that
drive our methodology.

2.1 Program Comprehension

In computer science, the ability to read and understand the source code of computer programs is often
the most basic task one first learns. This process, commonly referred to as program comprehension,
is the act of deriving the functionality of a program by interacting with its code artifacts. Shaft et al.
differentiate between the processes of top-down and bottom-up program comprehension [4]. The
former refers to applying existing domain knowledge to generate understanding from macro-level
code artifacts such as entire programs, components, and documents. The latter refers to the
detailed reading of micro-level artifacts such as code snippets, lines of code, and individual program
constructs. O’Brien et al. [5] further refine this model by decomposing top-down comprehension into
two distinct types of understanding. They distinguish between expectation-based comprehension,
which describes the construction of understanding with pre-existing expectations of a code’s
meaning and inference-based comprehension, in which a programmer infers the meaning of code
from well-known implementations. Programmers use both top-down and bottom-up comprehension
strategies to varying degrees, depending on their familiarity with the codebase and the stage of
development [6].

Considerable research effort has gone into qualitative and quantitative experimentation to better
understand the underlying processes and parameters that govern the human understanding of source
code. A schematic representation of such an experiment is shown in figure 2.1. A common
approach is to ask participants to solve a task that requires them to understand a particular program
in order to complete it successfully. Their performance on this task is then gauged by measures of
comprehension, which represent proxies for understandability. These proxy measures can be viewed
as operationalizations of the difficulty of understanding in this specific comprehension process.
Using these measures, researchers can compare various factors that influence comprehension and
evaluate approaches in terms of their ability to help programmers understand code.

Due to their complexity, controlled comprehension experiments can vary considerably in terms of
the types of comprehension tasks and measures employed [3, 7]. However, there are some tasks
and measures that have gained acceptance in the research community and are generally believed
to capture the code comprehension performance of participants. One example is comprehension
questions, where a participant reads a code snippet and then answers questions about its functionality
or purpose [8–11]. These can range from multiple-choice and explain in plain English (EiPE) tasks
to tracing questions, in which a participant must trace an input through the program and compute its
value at various stages of program execution. Another common task is to recall certain aspects
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2 Background
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Figure 2.1: A schematic depiction showing the artifacts, actions, and actors involved in a compre-
hension experiment.

of the code, such as identifier names or entire lines of code, testing a participant’s memorization
ability. An example of this are cloze tests [12], where participants are asked to fill in areas of the
code that have intentionally been removed [13–15]. In other cases, participants are asked to give
their subjective opinion about the difficulty of a comprehension task in the form of a rating [11,
14–16]. By exploiting the assumption that a programmer must understand a program to modify it,
some experiments involve more complex maintenance activities such as identifying [17, 18] and
fixing bugs [19, 20]. Their efficacy in completing these activities is then used as an indicator of
their levels of understanding of the program.

The performance of participants in comprehension tasks can also be measured in a variety of
different ways. Task accuracy is measured by the correctness of a participant’s response [8, 10,
11, 14]. This can be, for example, the number of correctly answered questions or a subjective
evaluation of the responses by an expert. Different measures of time may also be taken during the
comprehension process. Depending on the specific task, an experimenter might capture the time it
takes a participant to submit their response or how long it takes them to find the correct solution [8,
11, 14, 15].

Moreover, cross-discipline approaches introduce the possibility of gathering physiological measures.
In eye-tracking studies, a visual capturing device is placed in front of a participant as they are
reading code to record their eye movements. Eye-trackers can provide information on which code
areas participants are looking at, where their gaze lingers, and when their pupils are dilated [21–24].
Conversely, functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and
near infra-red spectroscopy (NIRS) technology allows researchers to directly monitor brain activity
during program comprehension [22, 23, 25, 26]. Figure 2.2 shows examples of how physiological
measures can be used to visualize different aspects of the comprehension process.

In addition to the choice of treatment, comprehension task, and understandability measures,
other confounding factors must be considered during experimentation [1]. Previous research has
investigated the influence of personal factors such as experience [29–31] and gender [32], code-related
factors such as identifier names [18, 33, 34], comments [15, 33, 35], programming paradigms [36–
38], and environmental factors such as presentation [39–41] on program comprehension. Since
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2.2 Experiment Validity

(a) fMRI (b) Heat map generated from gaze data

Figure 2.2: (a) An fMRI showing areas of the brain with significant brain deactivation [27]
and (b) a heat map showing code areas with high visual attention during program
comprehension [28].

the process of understanding is vastly complex, many different factors may influence the behavior
and performance of participants in these experiments. To ensure reliable results, researchers must
consider potential threats to validity when designing their experiments.

2.2 Experiment Validity

Rosenthal et al. describe measurement validity as “the degree to which the measures are appropriate
or meaningful in the way they claim to be” [42]. To ensure validity, a comprehensive experimental
strategy must be developed that avoids common pitfalls and explicitly addresses the different facets
of validity. The validity of experiments can be further divided into specific types that require
different strategies to mitigate any factors that could threaten them [43]:

• Ensuring internal validity means explicitly controlling potential confounding factors to
better reason about the causality of the relationship between the independent treatment and
observed effect of the study.

• External validity refers to the degree to which results obtained in the experiment can be
generalized to other populations or settings. To ensure high external validity, an experimenter
must select a sample that adequately represents the population and design an experiment that
accurately reflects the particular action as it occurs outside of the study.

• Construct validity refers to whether the constructs measured in the experiment do in fact
represent the real-world concepts under study. For example, in program comprehension, one
might question whether the time it takes to deliver a response is an accurate indicator of the
concept of understandability.

• Conclusion validity refers to whether the conclusion reached through the methods employed
in the study is correct. To ensure high conclusion validity, researchers must thoroughly design
their methodology to produce the same results under independent replication.
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2 Background

A common practice in scientific literature is to report the limitations of a study in a “threats
to validity” section. Kitchenham et al., in their guidelines for conducting systematic reviews,
recommend the inclusion of a discussion of the validity of the presented evidence [44]. Therein,
researchers explicitly point out the parts of their methodology that could jeopardize the study’s
validity and the factors that have to be considered when assessing its results. These sections help
the reader to better gauge the scope of application of the study by keeping its limitations in mind.

2.3 Evidence-based Software Engineering

Evidence-based practice has a long history in medicine and healthcare, where administering a
treatment without evidence of its efficacy is considered malpractice. Drugs and vaccines go through
a long series of trials to prove their safety and effectiveness before they are ever used in practice. In
software engineering, attempts have been made to establish similar approaches to help researchers
find accurate answers to research questions and to help practitioners make informed decisions in
their everyday work [44]. While primary experiments and case studies form the basis of scientific
evidence, meta-studies are commonly considered the gold standard. In systematic reviews and
meta-analyses, researchers survey existing studies with the goal of summarizing, discussing, and
combining findings to achieve a better understanding of the field as a whole. Such meta-studies are
exceedingly complex and require both meticulous effort and sophisticated strategies [45]. However,
evidence-based practice may also be adapted for use in an industrial context, for example, through
techniques such as rapid reviews [46] and evidence profiles [47].

2.4 Related Works

The study presented in this report represents a systematic review and collection of evidence on
the threats to validity in program comprehension experiments. In this section, we briefly describe
related studies and compare them to our approach.

In their systematic mapping study, Zhou et al. [45] analyze the current state of threats to validity
reported in systematic reviews in the software engineering domain. First, they identify existing
reviews in literature using a systematic search strategy and then extract key information from the
relevant papers. They divide their findings into the threats themselves, their consequences, and
potential mitigation techniques. Their results show that, when counted, biases in data extraction and
study selection as well as inappropriate or incomplete search terms were reported most frequently,
resulting in the misclassification of publications, missing or excluded relevant primary studies, and
overall data inaccuracies. Based on their analysis, they recommend several mitigation strategies
for conducting systematic reviews. These recommendations include establishing a detailed search
protocol in the planning phase of the review, using a strategy that involves well-defined criteria for
the inclusion and exclusion of papers, employing a combination of manual and automatic searches
and snowballing, and using multiple sources to search for literature. They also emphasize the
importance of independent review of both the search protocol and the filtering decisions.

Biffl et al. [48] created a knowledge base of threats to validity in software engineering experiments
to assist researchers in planning their studies. The content of the knowledge base was compiled
from the results of the systematic review conducted by Neto et al. [49] and general threats discussed
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2.4 Related Works

in standard software engineering textbooks. They found that only a small set of threats are reported
by many studies, while a majority the threats are too specific to be generalized independent of the
particular research area. They conclude by stating that there is a need for an overview of threats to
validity as they are reported in the specific areas of software engineering research.

Siegmund et al. [1] surveyed the literature published in several software engineering publications to
obtain information about confounding parameters in program understanding. The main insights
they gained were that each paper reported only a small subset of all confounding factors, most
of which were reported in the sections on experimental design and threats to validity, and that
researchers used different mitigation techniques to address the same factors. They also cataloged
the individual threats reported and counted the frequency of their occurrence. The most frequently
reported participant characteristics were programming experience and familiarity with the tools
and study object. The most cited experimental factors were potential learning effects and the size
and programming language of the study objects. They recommend that other researchers include
the identification of confounding parameters in their experimental design and explicitly report the
relevant parameters and how they controlled them.

In our approach, similar to the studies discussed above, we examine the state of the art of reported
threats to validity in software engineering. We mirror some of the methodological strategies
employed by Zhou, Biffl, and Siegmund et al. in summarizing existing threats, such as using
a systematic search protocol, analyzing the frequency of reported threats, and specifying both
threats and mitigation techniques. Additionally, we incorporate Zhou et al.’s recommendations
for conducting systematic reviews in our research design. Differences arise from the focus area
of the study, where, like Siegmund et al., we investigate studies of program comprehension rather
than systematic reviews or software engineering studies in general. Furthermore, we append our
review process by including a period of evidence collection, where we conduct small-scale reviews
to gather evidence on the most common threats. A detailed explanation of the entire methodology
used can be found in chapter 3.
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Chapter 3

Methods

In this section, we describe the main research objectives and the methodology used to achieve
them. The goal of this study is to provide researchers with clarity on what factors threaten the
validity of program comprehension studies and to identify areas of insufficient evidence, providing
clear starting points for further research. To this end, we formulated the following main research
questions.

RQ1: What threats to validity are reported in studies of program comprehension?
Understanding the current state of reporting on the threats to validity in scientific literature can
provide valuable insight into what researchers consider to be the most pressing issues in their
studies. Based on this knowledge, they may carefully adjust their study design plans to incorporate
mitigation techniques for controlling proven confounding factors.

RQ2: Is there evidence to support the most frequently reported threats to validity in studies
of program comprehension?
While knowing which threats are most frequently reported on might provide some indication as
to what the center of discussion is in program comprehension, it does not necessarily provide
clarity about their empiricism. Therefore, it is necessary to investigate whether the factors that are
intuitively considered to be the most important also have scientific evidence to support them. In
chapter 5 we further refine this question with respect to the three most commonly reported threats.

RQ3: How can systematic evidence collection help researchers design studies with high
validity?
The approach to evidence collection used in this work is relatively novel. While its constituent tools
such as systematic review and evidence profiling have been used in the past, the constellation used
to validate threats to validity in our methodology has yet to be scrutinized. This research question
presents a critical look at how the approach covered in this work has helped to achieve the goal of
understanding validity threats in program comprehension. In addition, it is intended to provide
guidance to other researchers in adopting similar methods in other research areas.

To answer RQ1, we first systematically analyze and summarize the threats to validity reported in
existing studies of program comprehension as described in section 3.1. Based on these results,
we prioritize the most frequently cited threats and conduct further systematic reviews, collecting
evidence to answer RQ2 explained in section 3.2. Finally, we assess said evidence through the
use of an evidence profile, providing a final overview of the state of evidence for the three most
commonly reported threats described in section 3.3.
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3 Methods

3.1 Systematic Review

The first step in our methodology is to summarize the reported validity threats through systematic
review. We follow the guidelines of Kitchenham for conducting systematic reviews in software
engineering [44].

Search Source
When conducting a review, relevant papers must first be collected through a systematic search of
relevant literature databases and subsequent filtering according to explicit inclusion and exclusion
criteria. In the case of this work, the list of relevant primary papers had already been identified
through a previously conducted systematic search. This search identified 95 papers reporting on
empirical studies of bottom-up program comprehension with human participants, published in a
peer-reviewed journal, conference, or workshop before 2020. Moreover, one of the authors of this
systematic search is the supervisor of this master thesis and provided the list of identified papers to
be used for this review.

Review Strategy
The list of primary papers is then analyzed individually, categorizing and summarizing each threat
to validity reported in the full text. We follow a similar summarization strategy to Zhou et al. [45]
who studied common threats to validity of literature reviews in software engineering. In particular,
we adopt a thematic synthesis [50] approach to identify the individual threats to validity and if
given, the mitigation techniques mentioned by the study. Relevant text areas are extracted from
the paper and inductive coding [51] is used to find appropriate codes to describe the passage. In
inductive coding, codes are formulated during the review process as the corresponding concepts
become evident. Throughout the coding process, these codes are refined and reapplied, improving
their quality through iteration. Upon the completion of code assignment, the threat codes are then
categorized and composed into high-level themes. Papers may already contain evidence of the
threat in the form of references to other studies, which are also documented. It is likely that the
studies will have varying degrees of completeness with respect to each of these aspects, as they may
elaborate more or less on each individual threat to validity. The goal of this work is to highlight
where information is lacking and further research is needed.

In summary, the review process consists of the following individual steps:

1. Extraction of relevant text passages on threats to validity, mitigation techniques, and evidence.

2. Inductive coding where a describing code is assigned to each threat.

3. Categorization of threat codes and composition into higher-order themes.

Table 3.1 illustrates this approach by showing extracted information for a single threat.

Threat Code Novices perform worse in comprehension tasks reducing external validity
Mitigation Select a sample including both novices and experts, ...
Evidence Mustermann et al., ...
Category Programming Experience

Theme Personal factors

Table 3.1: Example of the relevant factors extracted during the review process.
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3.2 Evidence Collection

Prioritization
In the previous step, each threat was assigned a describing code and those referring to the same
concept were grouped into categories. These threat categories most closely resemble a traditional
threat to validity or confounding factor, as threat codes that differ slightly in wording or context but
still refer to the same concept are grouped together. However, this loss of nuance from grouping
the individual codes into categories is only necessary during the prioritization of threats. The full
threat codes were still considered when formulating the refined research questions, the search terms,
in the evaluation, and in the final discussion. The most frequently mentioned threat categories are
prioritized and further analyzed in the evidence collection described in section 3.2.

3.2 Evidence Collection

At this point, we have a list of threats, how frequently they were reported, and in some cases, a pool
of starting evidence. In other words: We found that researchers have an intuition about a threat and
its potential consequences for the validity of a study. The next step is to see if the existing body
of research supports their intuitions. Collecting evidence to support or refute a particular theory
is one of the core tenets of evidence-based software engineering (EBSE) [44]. Due to the large
number of different threats, we cannot conduct a systematic review to find evidence for each of
them. Instead, we focus on the most frequently cited threats. Specifically, we use a systematic
approach to find evidence in the form of studies that examine a threat to validity and its role in
program comprehension experiments. The steps described in this section and in section 3.3 are
repeated individually for each of the common threats.

Search Protocol

The search protocol used in this study uses several different sources to search for potentially relevant
papers. We describe each of these sources and list the filtering criteria applied to the literature
found within them. Furthermore, we describe how we used snowballing [52] as a technique to
further extend the search. Backward snowballing in this context means including the reference list
of a paper, while forward snowballing means including papers that cite the paper in question.

(A) Primary Papers
The 95 papers with primary research on program comprehension may already examine the threat
in question as part of their research. Consequently, they are analyzed and evaluated as potential
evidence. Backward snowballing for this set of papers is not required because potential evidence in
their references has already been previously collected (see (B)). Forward snowballing is unlikely
to yield relevant results, as investigating the threat in question was not the main focus of these
papers.

(B) Evidence Reported in the Primary Papers
As part of the review of threats to validity reported in the 95 primary papers, we identified and
documented all evidence cited to support the assertions made about each threat. This pool of
starting evidence is analyzed and filtered in the same manner as the primary papers. This evidence
plays a similar role as the papers in (A) in that they do not necessarily focus on the threat as their
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3 Methods

primary object of research which is why forward snowballing is unlikely to yield relevant results.
However, backward snowballing is performed here as they may refer to similar evidence when
comparing their results with other works.

(C) Evidence Found through the Title Search
To further enrich the dataset with research from sources independent of the primary papers, we also
conduct small-scale searches. This reduces the bias created by limiting our analysis to the primary
papers and allows us to consider literature published between 2020 and 2022. We focus our search
on studies that mention the particular threat to validity in their title. We used the search strings
shown in figure 3.1 in Google Scholar1 to find evidence for the three most common threats. Both
backward and forward snowballing is valuable here, as the studies found in the title search are likely
to have the threat in question as the main subject of their research.

1. Programming Experience
allintitle: (experience OR novice OR expert) (code OR software OR program)

(understandability OR comprehension OR comprehensibility OR readability OR

analyzability OR "cognitive load")

2. Program Length
allintitle: (size OR length OR short OR long OR LOC OR "lines of code") (code OR

software OR program) (understandability OR comprehension OR comprehensibility OR

readability OR analyzability OR "cognitive load")

3. Comprehension Measures
allintitle: (measure OR measures OR measurement) (code OR software OR program)

(understandability OR comprehension OR comprehensibility OR readability OR

analyzability OR "cognitive load")

Figure 3.1: Search strings used in the evidence collection.

(D) Evidence Found through Snowballing
Snowballing is used to put further emphasis on relevant papers by including their reference list as
an additional search source. As described in the previous steps, backward snowballing is used on
(B) and (C) and forward snowballing is used on (C).

All papers contained in (A) to (D) are filtered according to the criteria listed in table 3.2.

3.3 Evidence Profile

After all available evidence of a particular threat has been collected, that evidence must be evaluated.
To this end, we employ the evidence profile proposed by Wohlin [47]. This profile is a model
for evaluating evidence based on criminal law. Each piece of evidence is judged individually and
classified into different types depending on how strong the evidence is. In addition, the profile

1https://scholar.google.com/
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3.3 Evidence Profile

Inclusion criteria
• Reports on a primary experiment or case study measuring program comprehension.
• Analyzes the threat in question as part of their study.

Exclusion criteria
• Full text of the paper is not accessible.
• The paper is not available in English.
• Published outside of peer-reviewed journals or conference proceedings.

Table 3.2: Inclusion and exclusion criteria.

distinguishes between positive and negative evidence, with positive evidence supporting the theory
in question and negative evidence contradicting it. It is important to stress that “bad evidence”,
meaning evidence of low quality, is not synonymous with contradictory evidence. Contradictory
evidence can be of high quality but oppose the notion that a threat has an influence on the results of
an experiment. Thus, a score close to zero indicates the strength of a piece of evidence is low, while
a negative or positive score gives an indication of the outcome of the study. The evidence types are
shown in table 3.3.

Score Type Description

+5/-5 Strong evidence Studies that focused on the threat in question as the main subject of
their investigation or conducted an in-depth analysis of the threat as
part of their overall approach and show significant results. Systematic
reviews that examine the threat in question and provide a conclusion.

+4/-4 Evidence Studies that did not have the threat as their main focus but still included
it in their analysis. These studies may have more uncontrolled
confounding factors which is why they should be considered separate
from stronger evidence.

+3/-3 Circumstantial
evidence

Similar to evidence, studies that are considered circumstantial ev-
idence do not have the threat as the main focus of their study.
Furthermore, they show additional methodological shortcomings
that reduce the reliability of the study and decrease its strength as
evidence in our evaluation.

+2/-2 Third-party
claim

Studies that make claims about the threat in question but only provide
a slim level of empirical backing for said claim. They may defer
to other sources of information or give general impressions about
the influence of the threat in their study, but provide no dedicated
statistical analysis of their own to support their claims.

+1/-1 First- or second-
party claim

Studies that make a claim about the threat in question but do not
provide any empirical backing. This could, for example, be references
to “common knowledge” or speculation.

Table 3.3: Types of evidence according to the evidence profile. Higher values mean stronger
evidence. Negative values contradict the threat, positive values support it.
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3 Methods

Note that due to the flexible nature of the evidence profile, the descriptions do not match the ones
provided by Wohlin word-for-word. Wohlin emphasizes that the evidence profile should be adapted
to the context in which it is used. For example, aspects such as vested interest and the aging of
evidence do not play a major role when collecting evidence on confounding parameters unless the
threat pertains to a specific technology or approach that may influence experiment results. On the
other hand, the methodological rigor captured in the quality of evidence as well as the relevance of
the evidence is of utmost importance and is therefore emphasized in the evidence types.

Placement of a study in a particular level is based on its adherence to the given type description
as well as on the previously mentioned quality aspects. Therefore, a study may be placed in a
lower category if it has significant shortcomings regarding any of the quality aspects. Because
the evaluation of evidence is a largely subjective process, it is conducted independently by two
different researchers to reduce bias. Once both researchers have scored a piece of evidence, a
final score is selected by comparing the scores of both researchers. In case of divergent results,
they discuss their disagreements and agree on a singular score. The score of each study and the
motivation behind its placement are transparently documented and can be used to paint an overall
picture of the evidence landscape for each threat. Using these techniques, we provide a conclusive
recommendation to researchers. In some cases, there might be insufficient, contradictory, or no
evidence. Here, suggestions for further research are made based on the information gathered.
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Chapter 4

Systematic Review: Validity Threats in Program

Comprehension Experiments

In this section, we present the results of the systematic review of threats to validity in program
comprehension experiments. First, we present the results and then discuss them with our own
interpretations.

RQ1: What threats to validity are reported in studies of program comprehension?
Every controlled experiment has some unique elements in its research design that distinguish it
from other studies or replications. However, some of these factors could affect the validity of
the study results. Explicitly addressing and documenting such threats helps experimenters design
experiments that produce reliable results and helps other researchers interpret and compare results.
To understand the current state of the art regarding threats to validity in program comprehension
experiments, we analyzed the full text of 95 papers reporting on them and summarized the reported
threats using coding techniques.

4.1 Results
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Figure 4.1: Number of primary papers published per year.
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4 Systematic Review: Validity Threats in Program Comprehension Experiments

We first present how threats to validity were reported in general. Among the 95 papers, 81 (85 %)
mentioned at least one threat to validity, with 45 (47 %) reporting them in a dedicated section and
33 (35 %) differentiating between different types of validity, such as internal or external validity.
We also identified trends with regards to the publications over time. Figure 4.1 shows how many
of the analyzed studies were published each year. In addition, studies that included a section on
threats to validity are highlighted in blue, and those that did not are highlighted in red. The largest
concentration of studies is found in 2012 to 2019, with a total of 63 of the 95 studies (66 %), while
only covering 7 years (18 %) of the entire 40-year span.

Theme and Category Count

Theme: Code Snippets 112
Length 26
Complexity 16
Code Selection 13
Programming Language 9
Synthetic Samples 9
Familiarity 6

Theme: Participant Factors 101
Programming Experience 44
Number of Participants 16
Programming Skills 10

Theme: Experimentation 89
Learning Effect 18
Lab Experiment 11
Fatigue 9
Code Presentation 7
Cheating 6

Theme: Measurement 67
Comprehension Measures 22
Eye-Tracking 20
Instrumentation 9

Theme: Comprehension Tasks 21
Type of Comprehension Task 7
Task Difficulty 6

Theme: Data Analysis 14
Statistics 10

Theme: Other 5
Total 409

Table 4.1: Number of threat mentions per
category and theme.

Threat Code Count

Missing diversity in length of code snip-
pets leads to limited generalizability

23

Missing diversity in participant’s pro-
gramming experience leads to limited
generalizability

22

Learning effect when performing com-
prehension tasks

16

Diversity in participant’s programming
experience confound treatment effects

13

Missing diversity in complexity of code
snippets leads to limited generalizabil-
ity

11

Fatigue when performing comprehen-
sion tasks

9

Inadequate application of statistical
methods

9

Researchers may introduce bias when
selecting code snippets

8

Inadequate measures of comprehension 8

Low number of participants 8

Table 4.2: Most common threat codes.
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4.2 Discussion

Next, we present the result of the analysis of the content of the reported threats themselves. In
total, we found 409 individual threat mentions that were assigned 215 unique threat codes. When
multiple threat mentions referred to exactly the same concept, they were assigned the same threat
code. Out of the 409 threat mentions, only 31 (8 %) were reported with supporting evidence, while
198 (48 %), or nearly half, included an explanation of a possible mitigation technique. Moreover,
these 31 references to supporting evidence were found in 20 out of 95 studies (21 %).

The most common threat codes with over 10 mentions can be found in table 4.2. These threat
codes were the smallest coding unit we used and summarize the text passage where the threat
occurs. Some of the threats referred to the same concept, but differed in nuance and therefore
received different codes. After grouping similar threat codes into threat categories, we were left
with 81 unique threats. Table 4.1 highlights the threat categories with more than five reported
threat mentions and shows the themes to which they were assigned. Themes are presented with
the total number of threat mentions in all categories, not exclusively those highlighted in the table.
The three most common threat categories were programming experience, program length, and
comprehension measures. Overall, most threats were related to the characteristics of the code
snippets, the individual factors of the participants, or general threats in experimentation.

4.2 Discussion

There is a clear bias in our data towards more recent studies, as there was an increase not only in
the total number of papers analyzed per year but also in the absolute number of threats reported
per paper. However, this bias is difficult to avoid, as the number of software engineering studies in
general increases with each passing year. We were able to replicate to some extent the findings of
Shroter et al. [2] who showed that more recent studies of program comprehension more frequently
report threats to validity. In our case, before 1997, there was not a single study that included a
section on threats to validity, and by the year 2012, most studies had such a section. However, it
should be noted that the maximum number of studies published per year was less than 3 until 2012,
which may skew the data somewhat.

As part of our prioritization, we counted how often each threat to validity occurred. Similarly,
Siegmund et al. [1] examined the frequency with which various confounding factors were reported
in experiments on program comprehension. For most factors, our results coincide, with the most
common factors being programming experience, learning effects, the size and language of the study
object, familiarity with the study object, and general experimental factors. There are also differences
in some other areas. Threats such as the number of participants, comprehension measures, and
problems related to eye-tracking, which were reported particularly often in our study, are absent in
the Siegmund et al. study. Some of the factors from our study can be mapped to related factors in
their study, such as instrumentation to technical problems in eye-tracking, study-object coverage to
the number of participants, and mono-operation and mono-method bias to comprehension measures,
but all of these factors generally occurred less frequently. This may be due to different coding
techniques, as we group some threats under a different umbrella term or split some terms into
different parts.

The most pressing discovery we made was that only 8 % of the total threat mentions were supported
with any kind of evidence. This indicates that there is a common practice of using speculation
when describing threats to validity, with researchers having intuitions or knowledge about what
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4 Systematic Review: Validity Threats in Program Comprehension Experiments

might threaten the validity of their studies but not citing literature to corroborate their claims. The
question that immediately follows is whether this practice is due to a lack of existing evidence
for these threats, or whether such evidence exists but remains unused. We attempt to answer this
question by conducting an evidence search for the three most common threats in section 3.2.

RQ1: Main Findings

• Most program comprehension studies report threats to validity

• Few support validity threats with corresponding evidence

• Most recent studies have a dedicated threats to validity section

• The three most commonly reported threats were programming experience, program
length, and comprehension measures
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Chapter 5

Evidence Collection: The Three Most Common

Threats to Validity

Based on the results of our systematic review, we selected the three most frequently reported threats
and collected evidence on their validity. These threats are programming experience, found in
section 5.1, program length in section 5.2, and comprehension measures in section 5.3. The full
evidence lists including justifications for the placement of studies in the different evidence categories
can be found in appendix A.

5.1 Threat 1: Programming Experience

When designing experiments, one should select a sample that represents the population of interest.
Furthermore, each participant will inevitably have some individual factors that could potentially
influence the results of the experiment. To adequately control these confounding factors, we must first
understand if and how their influence occurs. In this analysis, we examine the effect a participant’s
programming experience has on their code understanding in comprehension experiments.

RQ2.1: Does the programming experience of developers affect their ability to comprehend
code?
Programming experience refers to the time spent learning, writing, and working with program code.
Usually, this is characterized by the number of years a programmer has been writing code or working
professionally in the software industry. Furthermore, a person with little programming experience
is considered a novice and someone with a lot of experience is considered an expert. We collect
evidence in the form of studies that measured the programming experience of participants and used
statistical tests to determine whether it had a significant influence on program comprehension.

Results

Table 5.1 shows how many papers were found in each step of the evidence collection and how many
were excluded because they did not meet the inclusion criteria. Overall, most evidence was found in
the primary papers, followed by snowballing. We excluded 11 of 12 (92 %) documents cited in the
primary papers as they did not meet the filtering criteria. The reasons for exclusion varied and are
described in more detail in the discussion.

After filtering, 60 papers remained and were evaluated as potential pieces of evidence using the
evidence profile. In this evaluation, 11 additional papers were discarded as they did not meet
the criteria to be considered evidence. The final evidence profile is shown in figure 5.1. The
result largely favors programming experience as a confounder for program comprehension. In
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5 Evidence Collection: The Three Most Common Threats to Validity

Source Analyzed Excluded Final

(A) Primary Papers 95 -52 43
(B) Evidence Reported in Primary Papers 13 -12 1
(C) Evidence Found through Title Search 54 -52 2
(D) Evidence Found through Snowballing 276 -262 14

Evidence Profile 60 -11 49
Total 438 -389 49

Table 5.1: Overview of the evidence analyzed and filtered in each step of first evidence collection.

total, 37 (76 %) pieces of evidence were rated as supporting evidence and 12 (24 %) were rated as
contradicting evidence. Furthermore, there were 11 pieces of strong supporting evidence and no
strong contradicting evidence.
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Figure 5.1: Evidence Profile 1: Does the programming experience of developers affect their ability
to comprehend code?

Discussion

Looking at the filtering process, we find some unexpected discoveries. First, the studies used in the
primary papers to support claims about threats to validity were, with one exception, almost entirely
dismissed as evidence. They mostly were excluded because they either did not relate to program
comprehension and tended to focus on experts versus novices in software engineering research in
general, or were related to comprehension, but not to programming experience. In some cases, the
evidence was solely claim a on validity without conducting experiments and in others it was not
relevant at all.
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5.1 Threat 1: Programming Experience

Second, snowballing proved to be quite valuable. Even though only three papers were used for
snowballing, the number of relevant pieces of evidence that were found was 14. However, to find
those 14 pieces of evidence, 274 additional studies had to be evaluated. This illustrates that while
snowballing is valuable, it can quickly snowball into an exponentially increasing number of papers
to be filtered.

Overall, the result of the evidence profile confirms that, in many cases, programming experience does
indeed influence the comprehension performance of programmers. In multiple cases, experienced
programmers showed different comprehension behavior when compared to novices [53, 54] and
this difference could be measured in their performance [55–57]. In contrast, we also found multiple
pieces of credible evidence contradicting those assertions. Seven individual studies that showed
no methodological shortcomings reached the opposite conclusion with respect to our research
question. The question that now arises is why it seems that programming experience has an impact
on source code understanding in some cases and not in others. We attempt to find the answer to
this question in the context and experimental parameters of each of these studies. For one of these
factors, Siegmund et al. [58] found that depending on how programming experience is measured
and operationalized, its predictive power varies. This hypothesis is further supported by the fact that
some of the contradicting evidence still found correlations with very specific types of experience
measures such as self-estimated Java knowledge [27] or correlations for only specific comprehension
measures such as the number of eye fixations [59]. In other cases, the range of programming
experience was quite limited, for example only including students as participants [27, 60]. It is
possible that different results would have been obtained if the range of experience had been more
diverse. In most cases, however, the experience analysis was only a small subset of their overall
results and thus the sample selection was not intended to maximize differences in experience.

This information leads us to the general conclusion that programming experience plays a role in
the comprehension of programmers. However, the extent and nature of this influence depends on
various contextual factors. These include factors such as the sample selection, experiment design,
and how experience is measured in the first place. Researchers should explicitly analyze and state
the context factors in their comprehension experiment and control for them appropriately.

RQ2.1: Main Findings

• Many studies investigate the effect of programming experience

• The majority of studies show a positive outcome, but some contradict the hypothesis

• Researchers should assess the experience of participants and use it as a controlling factor

• Depending on the study context, novices and experts might display different comprehension
behavior
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5 Evidence Collection: The Three Most Common Threats to Validity

5.2 Threat 2: Program Length

Regardless of the specific focus of a study, examining program comprehension means, at its core,
examining program artifacts. Participants read source code that has certain characteristics that
affect their perception of the code. Researchers must be aware of which characteristics need to be
controlled to ensure reliable experimental results. In this analysis, we examine how the length of a
program affects program comprehension.

RQ2.2: Do treatment effects observed in short code snippets also appear in longer snippets
or larger code bases?
Program length or size refers to the number of syntactic statements in a program, usually measured
in lines of code (LOC). We gather evidence in the form of studies that measure the length of a
program and examine its impact on program comprehension.

Results

Table 5.2 shows how many papers were found in each step of the evidence collection and how many
were excluded because they did not meet the inclusion criteria. The only evidence was found in
the primary papers. All evidence cited in the primary papers was excluded as it did not meet the
filtering criteria. Moreover, as no relevant papers were found in (B) and (C), no snowballing was
performed.

Source Analyzed Excluded Final

(A) Primary Papers 95 -78 17
(B) Evidence Reported in Primary Papers 3 -3 0
(C) Evidence Found through Title Search 29 -29 0
(D) Evidence Found through Snowballing 0 0 0

Evidence Profile 17 -4 13
Total 127 -114 13

Table 5.2: Overview of the evidence analyzed and filtered in each step of second evidence collection.

After filtering, 17 papers remained and were evaluated as potential pieces of evidence using
the evidence profile. In this evaluation, 4 more papers were discarded as they did not meet the
criteria to be considered evidence. The final evidence profile is shown in figure 5.2. We found
conflicting results with regards to the influence of program length on program comprehension. In
total, 6 (46 %) pieces of evidence were rated as supporting evidence and 7 (54 %) were rated as
contradicting evidence. Furthermore, there were 2 pieces of strong supporting evidence and no
strong contradicting evidence.
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5.2 Threat 2: Program Length
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Figure 5.2: Evidence Profile 2: Do treatment effects observed in short code snippets also appear in
longer snippets or larger code bases?

Discussion

During the evidence filtering, it stood out that no evidence was found in both the evidence citations
of the primary papers and the title search. For the primary paper evidence, this is consistent with
the pattern uncovered in the first evidence collection, where these studies did not adequately address
the threat in question. What was unexpected, however, were the results of the title search. Here, not
a single study met the criteria for inclusion. There are a few possible explanations for this. On the
one hand, it could simply be a shortcoming of our search strategy, meaning that there is relevant
evidence but we did not search for it correctly. While this is always a possibility, we followed
the same search strategy, down to the same search string pattern as in the first and third evidence
collection, both of which found relevant evidence in their respective title searches. However, another
likely explanation is that there is only a small amount of strong evidence, which is why we did not
find any in the title search. By its very nature, the title search finds mainly studies that focus on
the threat in question, since it is mentioned in the title. Consequently, if there is close to no strong
evidence in existence, then the title search will come up empty. This is somewhat supported by the
fact that even in the 95 primary papers, only 2 presented strong evidence of this threat.

Looking at the results of the evidence profile, we find a more contentious result than in the first
evidence collection. There was more than three times more evidence in the first evidence collection
and there is no clear indication to the validity of the threat one way or the other. While there is one
more piece of contradicting evidence, on the other hand, there are two strong pieces of evidence
supporting the threat. Ribeiro et al. [61] also discuss similarly conflicting evidence they found on
program length in their study. Even after conducting a follow-up study to resolve these conflicts,
they were unable to reach a clear conclusion about the influence of program size on program
comprehension. They found that all participants preferred snippets with more lines of code for
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5 Evidence Collection: The Three Most Common Threats to Validity

comprehensibility, but only novices found them to be more readable. Experts instead preferred
short code snippets in terms of readability. They also mention that differences in the procedures and
tools used to measure lines of code may affect the comparability of results from different studies.

Overall, our main finding is that there is a need for more research investigating program length
as a confounding factor. Even though it is the second most cited threat to validity in program
comprehension experiments, there are very few studies examining its influence. For the little
evidence that we did find, we come to the same conclusion as in the first evidence search. There
is some evidence that program length has an influence on program comprehension and should be
considered a threat to validity. However, this influence is context-dependent, meaning that it is
subject to factors that vary for each individual study and must therefore be controlled differently in
accordance with those factors.

RQ2.2: Main Findings

• Few studies explicitly investigate program length as a confounding factor

• Existing evidence on program length as a confounding factor for program comprehension
is conflicting

• The impact of program length as a threat to validity is context-dependent
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5.3 Threat 3: Comprehension Measures

5.3 Threat 3: Comprehension Measures

Comprehension experiments often involve participants completing some sort of task that requires
them to understand a code artifact. However, there are a variety of different methods that researchers
use to measure the performance of participants on these tasks. These comprehension measures
serve as proxies for the concept of comprehension. In this analysis, we examine the validity of
common comprehension measures by investigating whether they are associated with distinct aspects
of comprehension.

RQ2.3: Are commonly used comprehension measures not correlated and associated with
distinct aspects of program comprehension?
The level of comprehension of a code artifact exhibited by a participant is often measured by the
time it takes them to complete a task, the accuracy or correctness of that completion, and their
subjective rating of the difficulty of the task. Furthermore, physiological measures may be taken to
study the effect the task completion has on the body of a participant. We gather evidence in the
form of comparative studies that analyze correlations between these commonly used comprehension
measures.

Results

Table 5.3 shows how many papers were found in each step of the evidence collection and how
many were excluded because they did not meet the inclusion criteria. Overall, most evidence was
found in the primary papers, with slightly less evidence found in both the title search and through
snowballing. All evidence cited in the primary papers was excluded as it did not meet the filtering
criteria.

Source Analyzed Excluded Final

(A) Primary Papers 95 -88 7
(B) Evidence Reported in Primary Papers 3 -3 0
(C) Evidence Found through Title Search 53 -51 2
(D) Evidence Found through Snowballing 134 -131 3

Evidence Profile 12 -5 7
Total 285 -278 7

Table 5.3: Overview of the evidence analyzed and filtered in each step of third evidence collection.

After filtering, 12 papers remained and were evaluated as potential pieces of evidence using the
evidence profile. In this evaluation, 5 more papers were discarded as they did not meet the criteria to
be considered evidence. The final evidence profile is shown in figure 5.3. Most evidence supported
that the commonly used measures measure distinct aspects of program understanding and are not
correlated. But overall, only a small amount of evidence was found. In total, 5 (71 %) pieces of
evidence were rated as supporting evidence and 2 (29 %) were rated as contradicting evidence.
Furthermore, there were 3 pieces of strong supporting evidence and no strong contradicting
evidence.
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5 Evidence Collection: The Three Most Common Threats to Validity
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Figure 5.3: Evidence Profile 3: Are commonly used comprehension measures not correlated and
associated with distinct aspects of program comprehension?

Discussion

As with the first two searches, we found no evidence in the citations of the primary papers. We
also again observed the same pattern of the evidence reported in the primary papers not adequately
supporting the claims made about the threats to validity.

The results of the evidence profile mostly support the notion that the commonly reported measures
are not correlated. However, to gain a better understanding of each variable, they are first examined
separately. Looking at each piece of evidence individually, we find some differences in their
methodology and which measures they compared. Both pieces of contradicting evidence found
correlations between the time and accuracy of comprehension tasks and both were published
before the year 1990. In one case, the code understanding of non-programmers was explored
using comprehension questions, and in another, the results of cloze tests were compared with those
of multiple-choice questions [13, 62]. One of the supporting pieces of evidence also reported a
small but insignificant correlation between time and accuracy [63]. However, three supporting
pieces of evidence found no correlations between the time and accuracy of comprehension task
performances, suggesting that they measure different effects, aspects or dimensions of comprehension
task difficulty [32, 64, 65]. Furthermore, the two studies that compared physiological measures
with other measures found no correlation with subjective ratings [63] and time and accuracy of
comprehension tasks [24, 63]. The significance of this finding becomes even clearer when one
considers that of the 95 primary papers, more than one third (37) used only a single measure to
assess participants’ comprehension performance. Depending on the study context, this may cause
them to miss aspects of code understanding that would have been uncovered if they had analyzed
more than one measure. This result also awards some merit to the 47 primary studies that measured
multiple variables but decided to analyze each variable separately.
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5.3 Threat 3: Comprehension Measures

If different proxy measures are associated with different aspects of program comprehension, this
poses further difficulties for meta-studies of comprehension experiments. For example, two studies
might obtain different results because they measured comprehension performance in different ways
and not due to other intrinsic factors. For now, blindly mix- and matching studies with different
types of measures should be avoided until we better understand why they appear to measure distinct
concepts.

Similar to the first two collections of evidence, we find that the impact of the threat to validity
depends on which measures are used and that even when the same measures are used, other
contextual factors can alter the impact of the threat on experimental outcomes. Again, this reinforces
our suggestion that researchers must control threats to validity within the context of their study,
adapting procedures, measures, and artifacts to the individual characteristics of the study.

RQ2.3: Main Findings

• Most commonly used comprehension measures are not correlated

• Researchers might miss distinct aspects of comprehension if they only employ a single
comprehension measure
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5 Evidence Collection: The Three Most Common Threats to Validity

5.4 Discussion

In this section, we compare and contextualize the results of all three evidence collections.

RQ2: Is there evidence to support the most frequently reported threats to validity in studies
of program comprehension?
In all three evidence searches, we found both supporting and contradicting evidence, seemingly
leading to a divergent result. There was no easy or obvious yes or no answer that gave us a clear
indication of whether or not a threat posed a danger to study results. Therefore, in all three cases,
we investigated whether any common patterns are able to explain this divergence. We found that
depending on how a confounding factor was measured, what the sample population was, and how
the experiment was designed in general all can change the way a threat impacts the result of a study.
All in all, the main finding of the evidence collections can be summarized as: The influence of a
threat to validity differs for each individual study and must as such be interpreted in accordance
with the contextual factors surrounding it.

While this conclusion might sound obvious at first, we often find generic statements about a potential
threat in primary studies. For example, a study might solely mention that they used used students in
their experiment without further elaboration. Describing an issue this way, however, does not clarify
why that choice is a threat within the context of their study. This issue is problematic regardless
of whether references are used to back up assertions, as generic threats are used in place of more
nuanced discussions that take the study-specific context factors into account. Moreover, evidence
can be used as an additional layer to further support these explanations.

Beside our main finding we also made some other minor observations. First, we found that there
was less evidence for less common threats to validity. This is in line with what would be expected
intuitively, if less researchers deem that a threat poses a danger to a study’s validity then corollary,
less will investigate whether that assumption is true or false. Meta-studies such as this one can
highlight which threats are less frequently examined and give directions for further experimentation.
Additionally, we observed that throughout the entire evidence collection process, not a single study
was classified as a -5, which would represent strong contradicting evidence. While we don’t have
a conclusive reasoning behind this, it is in line with the general tendency of researchers to not
publish negative results. Obtaining negative results can be disheartening, but publishing them is
nonetheless extremely important and provides value to the scientific community [66–68].

RQ2: Main Findings

• The impact of a threat to validity is highly context-dependent

• Researchers should discuss why a threat occurs in the context of their study

• Evidence can help researchers understand in which context a threat could be an issue
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5.5 Designing for Validity Using Evidence-Based Methods

5.5 Designing for Validity Using Evidence-Based Methods

In this section, we briefly discuss the usage of evidence when designing controlled experiments.

RQ3: How can systematic evidence collection help researchers design studies with high
validity?
Evidence-based methods can be valuable both in practice and research. The biggest barriers
standing between researchers and the implementation of these methods is the large effort involved
in conducting systematic reviews to find evidence and difficulties in interpreting their results. When
designing experiments, it is unrealistic to conduct a systematic review to collect evidence for each
of the dozens of potential threats. Rather, researchers may look to existing research summarizing
evidence and then contextualize it by comparing them with the characteristics of their own study.
This way, evidence is used both during the design stages of an experiment and when interpreting
and discussing its results.

On the other hand, one may inquire about the nature and role of the threats to validity section in
scientific literature itself. While we investigated and reported on different descriptive aspects about
the threats reported in existing works, no effort was made towards uncovering why researchers chose
to include specific threats and how they reported them. Furthermore, this research does not give
any guidance with regards to how a paper author ought to write a threats to validity section. While
the general inclination presented by this work is towards backing up reported threats with evidence
wherever possible, this is not necessarily a sentiment shared by the general scientific community.
A threats to validity section may also be a place where researchers should be able to speculate
without concrete evidence and then point out these shortcomings as directions for future research.
By conducting interviews with prominent authors of scientific papers, a follow-up work may gain
clarity on how the research community sees the threats to validity section and may establish firmer
guidelines for reporting validity threats.

41





Chapter 6

Threats to Validity

In this section, we present potential threats to the validity of the results obtained in this study.

Internal Validity As with every systematic search, the selected search terms, sources, and inclusion
criteria will influence the coverage of relevant papers. To mitigate this bias, we used multiple
different sources and different techniques to acquire papers, such as both searching literature
databases and snowballing.

One issue with using an evidence profile, where the rating of evidence is done through qualitative
evaluation of humans is the possibility of introducing bias. To mitigate this threat, two researchers
independently rated the evidence and then compared their results to reach an agreement. In the
systematic review, this bias nevertheless remains, as the coding and categorization process was only
done by one person.

External Validity One issue threatening external validity lies within the source of papers for the
systematic review of threats to validity. As the list of papers was a result of a previous search,
its search parameters were not adjusted to the goals of this work. More specifically, the search
was focused on a subset of program comprehension, namely controlled experiments on bottom-up
comprehension. This means that the list of the most common threats may not reflect the prioritization
of program comprehension experiments in general. In the evidence collection, this shortcoming is
mitigated as we added additional search sources.

Another limitation with regards to the second part of the study is that we were only able to analyze
three out of dozens of different threats to validity. It is possible that repeating the same methods for
the remaining threats will uncover new idiosyncrasies of program comprehension. As such, the
results obtained in this work should be generalized to other threats with care.

Construct Validity The concepts analyzed in this work are rather vague, as the concrete research
questions we analyzed in the evidence collection were derived after multiple levels of abstraction.
What constitutes a threat to validity and whether our descriptions accurately describe them is
subject to discussion. The accuracy in this case is influenced by the accuracy of the codes used to
summarize them and the individual decisions made when distinguishing them as different concepts.
These individual differences can be observed when comparing the list of threats to the results of
past reviews [1]. However, there is no easy way to tell if either result is more valid.
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Chapter 7

Conclusion

In this work, we presented an investigation into the threats to validity in program comprehension
experiments. First, we analyzed the state of the art by systematically reviewing validity threats in 95
primary papers. We found that while most studies reported threats to validity, few supported them
with corresponding evidence. Furthermore, only in one case did the supporting evidence meet the
inclusion criteria of our evidence search. Next, we identified the most commonly reported threats
to validity and searched for evidence supporting or contradicting them. Our evidence collection
yielded mostly supporting and some contradictory evidence. Looking closer into the collected
evidence and after comparing our results with other meta-studies we come to the conclusion that
threats to validity are highly context-dependent. Even the threats that are intuitively expected to
affect program comprehension, such as programming experience, depend on how they are measured,
the sample population, comprehension tasks, and other context factors. Therefore, we need to take
all the individual characteristics of a study into account when assessing potential threats to validity
and design methodologies that use evidence as a basis for implementing appropriate mitigation
techniques.

Future work may expand on the methodology proposed in this study by investigating additional
threats to validity and informing researchers with evidence-based methods. While we have examined
three common threats, there are many more that still require validation. Even when looking at
just three of the most common threats, we found a trend that less evidence existed for less popular
threats uncovering which might indicate even bigger gaps in evidence for those threats that have yet
to be analyzed. Moreover, the approach presented in this work may be applied to other domains to
investigate how threats to validity affect other types of experiments in software engineering.

Our findings suggest that researchers should both explicitly report how a validity threat affects their
studies within its context and address how they controlled for the threat. This goal can be supported
by establishing structured guidelines for reporting threats to validity and informing researchers on
how they can incorporate evidence into their validity assessments. Furthermore, we need more
knowledge documentation on what threats exist, the evidence supporting them, the context in which
they occur, and which mitigation techniques can be used to address them. Previous works laid the
groundwork in this endeavor by documenting threats in software engineering studies in a knowledge
base and providing guidelines for controlling confounding factors in program comprehension
experiments, respectively [1, 48]. These works can be further extended by incorporating evidence
and documenting threats to validity in a common database.

All in all, we find that threats to validity can be extremely complex. Assessing which contextual
factors to consider, how to measure them, and in what ways they should be mitigated can be difficult
to navigate. By relying on evidence-based methods, researchers can make these assessments with a
foundation in scientific precedent. After all, a threat is credible only if there is substantial evidence
of a reasonable danger to the subject in question.
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Appendix A

Evidence Lists

The following sections contain the full lists of evidence for each of the three most common threats
and the corresponding scores according to the evidence profile. Higher values mean stronger
evidence. Negative values contradict the threat, positive values support it.
Please note that the strength of evidence is judged with respect to a study’s value in the context of
this work and should not be seen as a judgment of its value to the general scientific community as a
whole. Reporting scores for each individual study is done for the sake of transparency and should
not be used to attack individual authors.

A.1 Programming Experience

Does the programming experience of developers affect their ability to comprehend code?

Ref Score Reasoning

[59] -4 They found no differences in code description performance between novices and
experts. But they found some differences in eye fixations.

[27] -4 They did not find significant correlations between programming experience and
brain activation. However, they mention explain that this difference could be due
to the homogeneous participant group.

[11] -4 They found only a very small correlation between programming experience and
understandability. They also did not report p-values so it is unclear whether this
correlation was significant.

[8] -4 They found that comprehension behavior was similar across different experience
groups. However, they only had a small sample size and only conducted a
descriptive statistical group comparison.

[32] -4 They found no significant effect of experience on program comprehension.
However, they themselves pose that they did not design their experiment to
specifically investigate experience.

[34] -4 They found that work experience does not impact the ability to correctly describe
code. However, it did impact confidence.

[69] -4 They found that in all three experiments, programming experience did not
correlate with performance. Examining experience was not the main focus and
they only used reproduction of a program to measure comprehension.

[70] -3 They found that experience had a marginal effect on code comprehension.
Furthermore, they did not find a significant interaction of experience with the
treatment.
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A Evidence Lists

Ref Score Reasoning

[57] -3 They only briefly mention that when separating developers by experience, they
found that results are very similar. They do not report any details on the statistical
approach used to compare these groups.

[61] -3 They found no differences between novices and experts but did not do statistical
test to confirm their assertions.

[60] -3 They briefly mention that experience did not interact significantly with the
treatment but do not report the statistical methods employed. They also only used
students.

[71] -3 They found that experience did not have a significant effect on the performance
of participants when splitting and expanding identifiers. However, they pose that
splitting or expanding tasks do not require the understanding of source code.

[72] 3 They found that experts performed better on all tests. They only tested the
memory in recall tasks and focused more on problem solving skills than code
understanding.

[73] 3 They found that more experienced participants has significantly higher accuracy.
However, they only measured experience with regard to the specific programming
domain (security) and they found that the effect only occurred when no additional
aid was present.

[74] 3 They found differences between novices in experts. However, they only had a
small sample size and only used recall tasks to measure comprehension.

[18] 3 They found that experts were less influenced by shorter identifier names than
average developers. However, they only mention this in passing and do not
provide details on any direct statistical tests used to prove this assertion.

[54] 3 While they found that experience with tests improves the comprehension of test
code, they did not find any effect w.r.t. reading time. They conclude that the type
of experience influences different activities related to comprehension.

[75] 3 They found differences between the reading behavior of novices and experts.
However, they did not compare the comprehension performance and only had a
small sample size.

[65] 3 Java experience increased correctness significantly. However, they only investi-
gated the recall of identifier names, not complete comprehension.

[76] 3 They found that programming experience influences the comprehension of
auditory cues. They focus only on specifically auditory clues and they only used
students.

[53] 4 They found that experts and novices form distinct representations of programs
and perform differently in comprehension tasks. While it was the main focus of
the study, in several cases they found no significant differences.

[77] 4 They found differences in program recall for expert and non-expert programmers.
While it was the main focus of the study, the comprehension task only consisted
of recalling the correct program order.

[78] 4 They found that when reusing parts of a program to implement a new problem
and documenting an existing program, developer expertise was a significant
factor. While the study has the correct main focus, the comprehension task is
quite unusual.
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A.1 Programming Experience

Ref Score Reasoning

[79] 4 They found differences between novices and experts in most areas, but not all.
[10] 4 While it was not the main focus of their study, they found that subjects with more

experience make fewer errors when comprehending code.
[15] 4 They found significant differences between novices and experts. However, they

only analyzed subjective understandability through ratings.
[80] 4 Clear differences were found between experts and novices when comparing

the brain activation during comprehension measured with an EEG. However,
their performance w.r.t. correctness and accuracy of their responses showed no
significant differences.

[35] 4 In some tasks, experts achieved significantly more correct answers than novices.
They conclude that experts and novices behave differently when dealing with
comments.

[81] 4 They found that only experienced programmers comprehended source code with
longer identifier names more efficiently. Experience was only investigated as a
moderator for the treatment effect.

[82] 4 They found a differences in the interaction of experience with the treatment. While
the study focused specifically on experts and novices, the type of experiment was
exceptionally different to common program comprehension tasks.

[83] 4 While it was not the primary focus of the study, they found that participants with
more Java knowledge performed better in comprehension tasks.

[84] 4 They found that both python and general programming experience improved
correctness and time of comprehension. However, it was not the main focus of
the study and in some cases the observed improvement was not as clear.

[21] 4 They found that novices take longer and are less accurate in finding defects. This
was not the main focus and they did not measure the level of comprehension
directly.

[85] 4 They did not measure program comprehension performance, but how participants
read code. They found that novices and experts looked at different areas.

[86] 4 They found statistically significant interactions between correctness and class
level for different EEG measures. However this was just a minor part of the
overall study.

[87] 4 They found that experts were better at determining program function. The main
focus was on investigating beacons in programs, not investigating the influence
of experience.

[39] 4 They found that programming experience had a statistically significant effect on
comprehension quiz scores. This was not one of the main hypotheses investigated,
however.

[88] 4 They showed significant differences between novices and experts. However, the
experiment only employed recall tasks.

[29] 5 The threat was the main focus of the study. They found statistically significant
effects of experience.

[55] 5 The threat was the main focus of the study. They found significant differences
between novices and experts in reaction times and accuracy.
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Ref Score Reasoning

[89] 5 The threat was the main focus of the study. The study found that experts
had more sophisticated mental representation of abstract characteristics when
comprehending code compared to novices.

[30] 5 The threat was the main focus of the study. They found a significant effect of
experience on the comprehension level.

[90] 5 Experience was one of the main independent variables analyzed. Overall, experts
performed better than novices.

[64] 5 Experience was one of the main five propositions investigated. They found that
experts outperformed novices in all three dependent variables.

[56] 5 The main focus was comparing novices with experts in terms of their eye
movements. They found that experience significantly interacted with the treatment.

[91] 5 Experience was one of the main variables analyzed. They found statistically
significant influences of experience on both time and correctness.

[92] 5 The threat was the main focus of the study. In both experiments, they found that
experts performed significantly better than novices.

[93] 5 The threat was the main focus of the study. They observed differences between
novices and experts.

[14] 5 The threat was the main focus of the study. In multiple experiments, they showed
that there is a difference in the perception of beacons between novices and experts.
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A.2 Program Length

Do treatment effects observed in short code snippets also appear in longer snippets or larger code
bases?

Ref Score Reasoning

[28] -4 They attempted to confirm that the length of code does not matter and rather
that the context is the deciding factor. Some results show that regular (long)
and non-regular (short) snippets have different comprehensibility, but for median
results they show no difference. Overall, they conclude that the subjects do not
achieve lower scores due to high values of LOC.

[94] -4 Conducted two studies, one with shorter and one with longer snippets to see
whether an observed effect still occurs. While they found the effect occurred in
both studies, they don’t explicitly address the aspect of different lengths again in
their second study.

[11] -4 They calculated the correlations of many different code metrics with understand-
ability. While program length was not the main focus of the study, they found no
correlations with any of the metrics they analyzed.

[9] -3 They found that none of the code metrics correlated significantly with the difficulty
of EiPE questions. They only analyzed the number of statements rather than LOC
and did not disclose the employed statistical methods.

[32] -3 Snippets with longer conditionals took more time and had higher error rates than
those with shorter ones. However, they find that the overall snippet length was
not a significant factor in their experiment. This was only briefly discussed in the
threats to validity section and did not include a detailed statistical analysis.

[27] -3 They found no relationship between lines of code and concentration. However,
they mention that the code snippets were designed to be of similar length, so it’s
unlikely they would be able to identify an effect, even if it was present.

[95] -3 Number of statements showed no effect but line and identifier length did. Further-
more, they only focused on test code.

[96] 3 While they compared LOC and the opinions of programmers regarding compre-
hensibility, they did not make a final conclusion as to its validity as a measure.
They found that there were correlations with perceptions of complexity, but such
a perception might not be useful at all.

[61] 3 While there are some conflicting results whether longer snippets are easier or
harder to understand, they always found differences between long and short
snippets. They also pose that other characteristics could have influenced the
results more than code size.

[97] 4 They compared reading behavior for short and long programs and found that
trends occur in longer snippets that do not occur in smaller programs. However
this was not the main focus of the study.

[98] 4 They found that the observed effect occurred in smaller programs but not in larger
ones. However this was not the main focus of the study.
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Ref Score Reasoning

[85] 5 The threat was the main focus of the study. They found evidence that experts’
reading behavior differs between short and long snippets.

[16] 5 The threat was the main focus of the study. They showed differences in time and
accuracy for longer and shorter programs.
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A.3 Comprehension Measures

Ref Score Reasoning

[62] -4 The main focus was on comparing declarative vs. procedural programming
notations. They found correlations between time and accuracy measures.

[13] -4 The main focus of the study was to compare cloze with multiple choice questions.
They found that for cloze tests where participants were required to understand the
snippet, time and accuracy significantly correlated.

[65] 3 They mainly compare the length of identifiers with recall performance. As part
of their analysis they compare time and correctness (accuracy) and found no
statistically significant effect.

[64] 4 They evaluated the dependent measures before conducting their main analysis.
Time and the error measure were not correlated.

[63] 5 They compare the correlations of cognitive load with accuracy, reaction time and
self-reported levels of confidence and difficulty (ratings). They only found small
correlations and conclude that overall, neither self-reported data nor brainwave
activity alone is a reliable indicator of programmers’ level of comprehension for
all types of code snippets.

[32] 5 They measured the correlation between time and accuracy. They find no strong
correlation between the two, indicating that they may reflect different effects.
They also found other patterns that support that conjecture.

[24] 5 They found that between self-reported task difficulty (ratings), average normalized
oxy measured in fMRI (cognitive load), and fixation duration (visual effort) do
not correlate and appear to be measuring different aspects of task difficulty.
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