
Automatic Methods for Protection of
Cryptographic Hardware against Fault

Attacks

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Maël Gay

aus Moulins, Frankreich

Hauptberichter: Prof. Dr. rer. nat. habil. Ilia Polian

Mitberichter: Prof. Dr. rer. nat. habil. Bernd Becker

Tag der mündlichen Prüfung: 03. Mai 2022.

Institut für Technische Informatik der Universität Stuttgart

2022

Contents

Acknowledgments vii

Abstract ix

Zusammenfassung xi

List of Abbreviations xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Contribution . 4

1.3 Structure of the Thesis . 13

2 Preliminaries on Fault Attacks & Counter-Measures 15

2.1 Background on Side-Channel & Fault Attacks 15

2.1.1 Side-Channel Analysis . 16

2.1.2 Fault Injection Attacks . 21

2.1.3 Fault Injection Techniques & Fault Models 24

2.1.4 Types of Fault Attacks . 26

2.1.4.1 Differential Fault Analysis . 28

2.1.4.2 DFA on the Advanced Encryption Standard 31

2.1.5 Algebraic Fault Attacks . 38

2.1.5.1 Principle of Algebraic Fault Attacks 39

2.1.5.2 State of the Art on Algebraic Fault Attack Frameworks 43

2.2 Background on Error Correcting Codes & Other Counter-Measures 49

iii

2.2.1 Error Detecting & Correcting Codes 50

2.2.1.1 Conventional Codes . 55

2.2.1.2 Security-Oriented Codes . 61

2.2.1.3 Rabii-Keren Code . 66

2.2.2 Other Counter-Measures . 69

2.2.2.1 Physical Counter-Measures . 69

2.2.2.2 Masking . 70

2.2.2.3 Nonce-based Ciphers . 74

3 Security Oriented Code based Architectures for Fault Attack Mitigation 77

3.1 Natural Fault & Malicious Fault Scenarios 78

3.2 Limitations of Error Detecting Code Evaluation in Security Context 80

3.3 Rabii-Keren Code Hardware Architectures 83

3.3.1 Basic Structure of the Rabii-Keren Architectures 83

3.3.1.1 Architecture Overview . 84

3.3.1.2 Single Decoder Architecture . 88

3.3.1.3 Dual Decoder Architecture . 91

3.3.2 Inner/Outer Code Architectures . 94

3.3.3 Error Coefficient and Location Table (ECLT) Decoding 99

3.3.4 CPC based Outer Code . 113

3.4 Experimental Results of the RK Architectures 115

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework 127

4.1 Preliminary: Fault Attack on Small Scale AES 128

4.2 AutoFault Structure . 139

4.3 Detailed Solving Steps . 140

4.3.1 Time-Frame Expansion . 141

4.3.2 CNF Conversion . 146

4.3.3 CNF Processing and Mapping . 148

4.3.4 SAT Solving . 152

4.4 CNF Simulation . 153

4.5 AutoFault in the Design Flow . 155

iv

4.6 Hardware-Oriented AFAs on SPN Ciphers 158

4.6.1 AES (including Small Scale variants) 159

4.6.2 LED . 164

4.6.3 PRESENT . 165

4.6.4 Extension to other Types of Ciphers 166

4.7 Multiple Faults effect in AutoFault . 167

4.8 Future work: Counter-Measure Validation 170

4.9 Comparison to other State-of-the-Art Algebraic Fault Attack Frameworks . 174

5 Conclusion 177

Bibliography 181

A Small Scale AES Differential Fault Equations 193

Publications of the Author 203

v

vi

Acknowledgments

I would first like to thank Prof. Ilia Polian for his expertise and guidance throughout the

years, as well as offering me the opportunity to work on interesting topics. I am also

grateful for his help in settling in, both in Passau and in Stuttgart, as well as in Germany

overall. Furthermore, I want to thank Prof. Bernd Becker from the University of Freiburg

for agreeing to be my second adviser.

I would then like to thank my colleagues at the University of Stuttgart, and firstly Florian

Neugebauer, whom has not only been a great colleague, but more importantly a great

friend, from when he joined our group in Passau. I am grateful to have been able to work

with all my colleagues at the Institut für Technische Informatik, and share good times with

all of them. A kind thank you to Devanshi Upadhyaya and Sebastian Brandhofer, but also

Nourhan Elhamawy, Roshwin Sengupta and Li-Wei Chen, as well as all other members of

the institute.

In addition, I am grateful to Prof. Osnat Keren from the Bar-Ilan University, and Prof.

Martin Kreuzer from the University of Passau for the collaboration we had together, and

in the same way to Jan Burchard and Tobias Paxian from the University of Freiburg.

My thanks to Mirjam Breitling, Lothar Hellmeier and Helmut Häfner for their assistance

on administrative and technical matters.

In a more personal way, I would like to thank two of my dear friends for their support,

especially in recent difficult times. Thank you Elena Heldwein and Adrien Fuchs.

Finally, I would like to thank my parents for their eternal support during my thesis, but

also throughout my entire life. I would not be where I am today without them.

Stuttgart, 03 May 2022

Maël Gay

vii

viii

Abstract

Since several years, the number of electronic devices in use has been strongly rising, es-

pecially in the field of embedded systems. From automotive applications or smartphones,

to smaller area and power restricted embedded systems, such as Internet of Things (IoT)

devices or smart cards, the wide availability of these systems induces a need for data pro-

tection. The implementation of hardware cryptographic primitives on Application Specific

Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) aims to fulfil the

security requirements, while providing faster and lower power encryption than software

based solutions on microprocessors, especially in the case of constrained resources. How-

ever, cryptographic solutions can be attacked, even if the encryption scheme is proven

secure. One possible way to do so is through physical attacks, such as Side-Channel Anal-

ysis (SCA), for example by analysing their power consumption, or fault injection attacks,

which disturb the computation in a way that allows an attacker to recover the secret key.

As such, it is of the utmost relevance to implement cryptographic algorithms in a way

that minimises the risk of physical attacks, as well as implement some counter-measures

to prevent them, for instance Error Correcting Codes (ECC). Moreover, the evaluation

of aforementioned cryptographic hardware and counter-measures is not generally done

automatically, but rather empirically. This results in a need for the automation of both

counter-measures generation and physical hardware checking against attacks.

This thesis will focus on the automation of both aspects. Firstly, Error Detecting Code

(EDC), as well as ECC, counter-measures are presented. Their goal is to stop faults from

disturbing the encryption process. A discussion on the differences between natural (i.e

induced by natural factors such as ageing or cosmic rays) and malicious faults is given in

a subsequent chapter, as well as an analysis of the limitations of the evaluation of ECC.

This is followed by the presentation of new architectures based on a new class of robust

EDC, aimed at preventing multiple faults. They are scalable by construction, and as such

it is possible to automatically choose an appropriate EDC implementation with regards to

the constraint of the protected hardware. The architectures ensure the detection of faults

ix

injected by a strong adversary (who has the ability to inject precise faults on a temporal

and spatial level), as well as the correction of low-multiplicity faults. The structure of

the implementation, an inner-outer code based construction, and more specifically an

efficient decoding method are further detailed, as well as some additional tweaks. Finally,

the implementation is validated against physical fault injection on a SAKURA-G FPGA

platform, and the results further reinforce the need for such architectures.

The second part of the thesis will consider attack scenarios, and more precisely fault at-

tacks. The automatic evaluation of hardware implementations of cryptographic primitives

will be the main focus. In this regard, this thesis considers a particular type of fault attacks,

hardware based Algebraic Fault Attacks (AFA). AFAs are at the border between mathemat-

ical cryptanalysis and physical fault injection attacks. They combine information from

fault disturbed encryptions with some cipher description, in order to build an attack and

recover the secret key. This work considers the hardware implementations of different ci-

phers as the source of algebraic information. In such regards, a framework for automated

creation of AFAs has been developed in collaboration with the chair of computer archi-

tecture of the University of Freiburg. The framework takes the description of the cipher,

in Hardware Description Language (HDL) or gate level, as well as a defined fault model

as inputs, and through a series of steps, builds an attack in order to recovers the secret

key. The detailed steps are presented in this thesis. The automatic generation of attack

scenario for a considered cipher allows for an evaluation of any cipher implementation,

including any potential changes or optimisation made against different attack scenarios.

The framework itself was tested on a variety of different Substitution and Permutation

Network (SPN), and some counter-measures. Physical realisation of fault attacks are also

considered, from an implementation of the SAKURA-G FPGA platform, as well as software

simulations of an idealised fault model. The constructed attacks were successful and the

results are discussed, as well as the implication of multiple fault injections for solving.

Finally, some counter-measures are considered, in order to validate or invalidate their

effectiveness against AFAs.

x

Zusammenfassung

Seit Jahren ist die Zahl der elektronischen Geräte stark angestiegen, insbesondere im Be-

reich der Eingebetteten Systeme, von Automobilanwendungen und Smartphones, bis zu

kleineren Systemen mit eingeschränkter Leistung, wie zum Beispiel Geräten im Internet of

Things (IoT) oder Smartkarten. Die breite Verfügbarkeit dieser Systemen bedeutet, dass

es eine Notwendigkeit für Datenschtutz gibt. Das Ziel der Implementierung kryptographi-

scher Algorithmen auf Application Specific Integrated Circuit (ASIC) oder Field Program-

mable Gate Array (FPGA) ist die Erfüllung der Sicherheitsanforderungen, und zur glei-

chen Zeit eine schnellere und effizientere Verschlüsselung als Softwareimplementierun-

gen bereitzustellen, insbesondere im Fall eingeschränkter Ressourcen. Trotzdem können

kryptografische Implementierungen angegriffen werden, auch wenn die Verschlüsselung

als sicher erwiesen ist. Eine Möglichkeit, dieses Ziel zu erreichen, sind physische Angriffe

wie Side-Channel Analysis (SCA). Ein Angreifer kann beispielsweise den Stromverbrauch

analysieren, oder einen Fehler injezieren, der die Berechnung auf eine Weise stört, die es

dem Angreifer erlaubt, den geheimen Schlüssel zurückzuberechnen. Daher ist es von größ-

ter Bedeutung, den kryptografischen Algorithmus so zu implementieren, dass das Risiko

physischer Angriffe minimiert wird, sowie einige Gegenmaßnahmen, wie zum Beispiel

Error Correcting Codes (ECC), zu implementieren. Außerdem ist die Bewertung krypto-

graphischer Hardware und Gegenmaßnahmen generell nicht automatisiert, sondern wird

empirisch durchgeführt. Daher gibt es eine Notwendigkeit, die Generierung von Gegen-

maßnahmen sowie die Überprüfung der Widerstandsfähigkeit der Hardware gegenüber

Angriffen zu automatisieren.

Diese beiden Aspekte sind die Hauptgegenstände dieser Arbeit. Zuerst werden Error De-

tecting Code (EDC) und ECC vorgestellt, die die Gegenmaßnahmen zu Fehlerangriffen

darstellen. Ihr Ziel ist es, die Störung der Verschlüsselung durch Fehlerinjektion zu ver-

hindern. Im Anschluss folgt eine Diskussion der Unterschiede zwischen natürlichen (d.h.

verursacht durch Alterung oder kosmischer Strahlung) und bösartigen Fehlern, sowie eine

Analyse der Grenzen der Bewertung von ECC. Danach werden neue EDC Architekturen

xi

basierend auf einer neuen Klasse robuster Codes, die Mehrfachfehler korigieren können,

vorgestellt. Ihre Konstruktionen sind skalierbar, was es ermöglicht, automatisch eine die

Hardwareeinschränkungen erfüllende EDC Implementierungen zu wählen. Die Architek-

turen stellen die Erkennung von Fehlern, die von einem starker Angreifer (der präzise

zeitliche und räumliche Fehler einfügen kann) injeziert werden, sowie die Korrektur von

Fehlern geringer Multiplizität, sicher. Die Struktur der Implementierung, basierend auf ei-

nem inner-outer Code Aufbau, insbesondere einer effizienten Dekodierung sowie einiger

zusätzlicher Optimierungen, wird weiter detailliert. Schließlich wird die Implementierung

gegenüber physischen Fehlerinjektionen auf einer SAKURA-G FPGA-Plattform validiert.

Der zweite Teil der Arbeit behandelt Angriffsszenarien, im Speziellen Fehlerangriffe. Der

Schwerpunkt liegt auf der automatischen Bewertung von Hardwareimplementierungen

kryptographischer Algorithmen. Zu diesem Zweck wird eine besondere Art von Fehleran-

griffen, die hardwarebasierten Algebraic Fault Attacks (AFA), berücksichtigt. AFAs befin-

den sich an der Grenze zwischen mathematischer Kryptoanalyse und physischen Fehler-

angriffen. Sie kombinieren Informationen aus fehlerhaften Verschlüsselungen mit einer

Chiffrebeschreibung, um einen Angriff zu erstellen und den geheimen Schlüssel wieder-

herzustellen. Die Quellen algebraischer Informationen in diese Arbeit sind die Hardwa-

reimplementierungen verschiedener Chiffren. Ein Framework für automatische Erstellung

von AFAs wurde in Zusammenarbeit mit dem Lehrstuhl für Rechnerarchitektur der Uni-

versität Freiburg entwickelt. Das Framework erhält die Beschreibung der Chiffre in Hard-

ware Description Language (HDL) oder als Beschreibung auf Gatterebene, sowie ein Feh-

lermodell als Input, und konstruiert daraus den Angriff. Die detaillierten Schritte dazu

werden in dieser Arbeit vorgestellt. Die automatische Generierung eines Angriffsszena-

rios für ein Verschlüsselungverfahren ermöglicht eine Bewertung jeder individuellen Im-

plementierung dieses Verfahrens, inklusive möglicher Änderungen oder Optimierungen,

die gegen verschiedene Angriffsszenarien vorgenommen werden können. Das Framework

wurde mit verschiedenen Substitution and Permutation Network (SPN) Chiffren, sowie

mehreren Gegenmaßnahmen, geprüft. Physische Fehlerangriffe auf Implementierungen

auf der SAKURA-G FPGA-Plattform, sowie Softwaresimulationen von idealen Fehlermo-

dellen werden ebenfalls betrachtet. Die durchgeführten Angriffe waren erfolgreich und

ihre Ergebnisse, sowie die Auswirkungen mehrerer Fehlerinjektionen, werden diskutiert.

Schließlich werden noch einige Gegenmaßnahmen betrachtet, um ihre Wirksamkeit gegen

AFAs zu untersuchen.

xii

List of Figures

1.1 Overall Contributions and Work Goals . 6

2.1 Power Consumption of an AES Encryption 19

2.2 Noisy DPA Trace of an unprotected AES Encryption 21

2.3 Differential fault attack on the AES . 34

2.4 Triple Modular Redundancy Decoder [VN56] 56

2.5 First Order DOM-indep GF (2n) Multiplier 73

2.6 Ascon Cipher (Encryption) . 75

3.1 Error Distribution for Clock-based Fault Injector on LX9 FPGA 81

3.2 Full Scale AES Error Multiplicity for Clock-based Fault Injector on LX9 FPGA 82

3.3 General RK-based Architecture for Detection & Correction 87

3.4 Architecture for S-bit SBoxes (here S = 4 or S = 8) 90

3.5 Dual Decoder Architecture for 8-bit Sboxes 92

3.6 Inner-Outer Code Architecture . 97

3.7 Classification of Fault Events at Code and System-Level 99

3.8 Classical Syndrome Decoding Process for an RK-based Architecture 100

3.9 Low-Complexity ECLT-based decoder . 104

3.10 Fault Injection Setup for RK Architecture Evaluation 117

3.11 Fault Position for Each ECC Protected Cipher 118

3.12 Fault Multiplicities for Each ECC Protected Cipher 119

3.13 Bit Flip Characterisation for Each ECC Protected Cipher 120

3.14 Evolution of the Probability of Class S2 Faults for Different CPCs on PRESENT124

4.1 Modules of the SSAES VHDL Implementation 129

xiii

4.2 Dual fault injection at round 8 in the SR∗(10, 2, 4, e) 133

4.3 Single fault injection at round 8 in the SR∗(10, 4, 2, e) 134

4.4 Dual fault injection at round 9 in the SR∗(10, 4, 2, e) 135

4.5 Overall AutoFault Structure . 139

4.6 Time-Frame Expansion & Attack Construction in AutoFault 142

4.7 AutoFault AFA Module Structure . 149

4.8 AutoFault Usage during the Design Flow & Fault Models 156

xiv

List of Tables

2.1 Fault injection techniques summary . 25

3.1 Detection Rate of BCH and RK Codes for Two Fault Injection Campaigns . . 82

3.2 Single Decoder Architectures . 90

3.3 Dual Decoder Architectures . 91

3.4 Complexity of each Architecture in terms of Operations 93

3.5 Dual Decoder Fault Classification . 95

3.6 ECLT for a [19, 16, 3]16 RK Code Architecture 106

3.7 ECLT for a [23, 16, 5]16 RK Code Architecture 111

3.8 Comparison Between a Robust RK Architecture and a Linear BCH Code . . . 119

3.9 Experimental Results on Fault Detection & correction 121

3.10 Probability of Class S2 Faults with Different outer CPCs 123

3.11 Size Comparison in terms of Configurable Logic Blocks (CLBs) 124

4.1 Comparison of SAT Solver Solving Time - SSAES SR∗(10, 4, 4, 4) 153

4.2 Number of Faults Comparison for the SSAES - 100 Attacks 160

4.3 Runtimes for SSAES r = c with 2 Fault Injections - 10000 Attacks 160

4.4 Runtimes for an SSAES SR∗(10, 2, 4, 4) with 2 Fault Injections - 10000 Attacks161

4.5 Fault Location Comparison for an SSAES SR∗(10, 4, 2, 4) with 2 Fault Injec-

tions . 162

4.6 Effect of Truncation on Runtimes for an AES with 2 Fault Injections 163

4.7 Fault Location Comparison for the LED Cipher with 2 Fault Injections 164

4.8 Number of Faults Comparison for the PRESENT Cipher 165

4.9 Fault Location Comparison for the Midori Cipher with 5 Fault Injections . . 166

xv

4.10 Impact of Multiple Fault Injections on Runtimes - 10000 Attacks 169

4.11 Comparison of AutoFault to other State-of-the-Art AFA Frameworks 175

xvi

List of Abbreviations

AES Advanced Encryption Standard

APN Almost Perfect Non-linear (function)

ASIC Application Specific Integrated Circuit

AFA Algebraic Fault Attack

AMD Algebraic Manipulation Detection (code)

ANF Algebraic Normal Form

BCH Bose–Chaudhuri–Hocquenghem (code)

CLB Combinational Logic Blocks

CMS CryptoMiniSat

CNF Conjunctive Normal Form

CPC Compact Protection Code

CPS Cyberphysical System

CRT Chinese Remainder Theorem

DCM Digital Clock Manager

DFA Differential Fault Analysis

DOM Domain-Oriented Masking

DPA Differential Power Analysis

DRAM Dynamic Random Access Memory

ECC Error Correcting Code

ECLT Error Coefficient and Location Table

EDC Error Detecting Code

EM electromagnetic

FSA Fault-Sensitivity Analysis

xvii

List of Abbreviations

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IFA Ineffective Fault Analysis

IoT Internet of Things

LED Light Encryption Device

LUT Lookup Table

MLBT MapleLCMDistChronoBT

NFC Near Field Communication

PI Prime Input

PO Prime Output

QS Quadratic-Sum

RK Rabii-Keren (code)

RNG Random Number Generator

RSA Rivest–Shamir–Adleman

SAT Boolean Satisfiability

SCA Side-Channel Analysis

SIFA Statistical Ineffective Fault Attacks

SBox Substitution Box

SPN Substitution and Permutation Network

SRAM Static Random Access Memory

SSAES Small Scale AES

TMR Triple Modular Redundancy

xviii

Chapter 1

Introduction

1.1 Motivation

In recent years, the importance of ensuring the security of sensitive data is undeniable,

especially with the transition to the cyberphysical system (CPS) paradigm. A large num-

ber of digital circuits are now used for some applications where security, as well as safety,

is crucial. For instance, smartphones are used for secure payments via a near field com-

munication (NFC) chip or geolocation, while at the same time being connected to diverse

social media and other applications. Another example which is becoming more and more

important every year, is the car industry. Most cars nowadays have a wide array of safety

features which are electronically controlled. From the anti-lock braking system to the

electronic stability control, or even more critical drive-assist functionalities, they all aim

at preventing deadly accidents. They are the potential targets for malicious attacks, even

more so today, when car can be remotely accessed for updates or by social media features.

It should therefore be clear that circuit designers for a large number of applications have

to wisely consider how to guarantee data integrity and prevent any data leakages. How-

ever, guaranteeing privacy and integrity is a challenge in itself, especially for constrained

systems, such as embedded devices or Internet of Things (IoT) applications.

In order to answer the data protection problem, cryptographic primitives are implemented.

While they provide, at least up to a certain degree, data security, they still have to fit

within the device constrains, for instance in terms of area or power [BKL+07, BBI+15]. In

this regard, a balance has to be found between the security level and the system require-

1

1 Introduction

ments. This trade-off can lead to vulnerabilities in the design, and those vulnerabilities can

then be exploited by an attacker, which is especially true if the considered device can be

physically accessed. There are a large variety of physical attacks which can be employed

to recover the secret information being processed. One vector of attack is to use side-

channel information from the device, such as power consumption or electro-magnetic ra-

diations. The most common type of such attacks is passive side-channel analysis [MOP07],

which includes timing attacks [Koc96], or differential power analysis (DPA) [KJJ99]. An-

other way to attack a device is hardware manipulations, such as fault injections attacks

[BBKN12, RP17]. Of particular interest in the context of this thesis are AFAs [ZGZ+16].

Algebraic Fault Attacks (AFAs) are a class of physical attacks at the crossroad between

mathematical analysis and conventional fault attacks. They utilise the algebraic descrip-

tion of the considered cipher, from which some equations are derived and used during

solving, as well as some information from fault injection (i.e. the fault affected values and

the fault model), in an attempt to recover the secret key. AFA frameworks can be divided

in two categories. The frameworks which automatically analyse the fault propagation and

the remaining size of the key space, such as the frameworks from [KRH17, SKMD17], and

fully functional solvers which directly recover the secret key [ZZG+13, ZGZ+13, ZGZ+16].

For instance, the framework proposed in [ZGZ+16] considers some lightweight ciphers,

mainly LBlock [WZ11] and PRESENT [BKL+07], and derives the algebraic equations di-

rectly from the functional description of the aforementioned ciphers. The framework then

processes a given fault model and some fault affected values in combination of the derived

equations, and forwards them to a Boolean Satisfiability (SAT) solver which recovers the

secret key. However, none of the frameworks consider the hardware implementations

themselves, with the exception of the framework presented in this thesis.

On the one hand, since multiple physical attacks exist, there are also counter-measures

to prevent an attacker from recovering any sensitive information. Such counter-measures

range from physical shielding at the chip level (discussed in [BECN+06]), in order to for

instance prevent laser fault injections, to masking schemes [GMK16], aimed at prohibiting

side-channel analysis, or Error Detecting Codes (EDCs) and Error Correcting Code (ECCs)

[BBK+03, KKT04, KT04, WK11], to protect against fault attacks, and which are one of the

focus of this thesis. In that regard, it is important to note that faults can be caused not

2

1.1 Motivation

only by a malicious attacker, but also by natural failures (e.g., cosmic radiation or electro-

magnetic disturbances). The former can be much more difficult to prevent or even detect,

since the attacker can be more precise than any natural causes, and carefully choose the

location of the fault, as well as build a set of equations to retrieve the secret key. As such,

a wide variety of defences have been suggested against both natural faults and fault injec-

tion attacks [BRC60, KKW07, BBKN12, SMG16]. In the case of malicious fault injection

attacks, their goal can be to skip part of the execution, for instance jump over a password

check [vWWM11], or more directly affect some intermediate values in order to change the

output in a way that allows for the creation of specific equations and ultimately the key

recovery, as is the case for Differential Fault Analysis (DFA) [BDL01]. In this thesis, the

focus is however on faults that manifest themselves at the output, especially DFAs or AFAs

(discussed in more details in Chapter 4). As such, fault attacks such as Fault-Sensitivity

Analysis (FSA) [LOS12] or Statistical Ineffective Fault Attacks (SIFA) [DEK+18], while

also relevant and potentially counter-acted by EDCs, are not considered in details in this

work. As will be discussed in Chapter 3, EDCs are one of the counter-measures which

can be deployed against fault attacks. Simple redundancy-based techniques are vulnera-

ble to more advanced attacks (e.g. simultaneous fault injections [SHS16]). Consequently,

special security oriented codes [WK11, KW14, TNK+14] have been developed. Moreover,

conventional linear codes, like parity codes or Hamming codes, offer a limited protection

against an attacker with the ability to inject specific faults. For instance, such an attacker

could inject a fault which is the XOR difference between two codewords, and the results

would therefore still be a codeword and hence go undetected. This shows the need for

more powerful non-linear security-oriented codes. One class of such codes are called ro-

bust codes. They have the property that all non-zero faults are always detected with a

probability greater than zero. This property is especially important to prevent a subset

of fault to always go undetected, which would be catastrophic in the case of a malicious

attacker.

During the design phase of a sensitive cryptographic device, counter-measure implemen-

tations, as well as reductions of the overall potential vulnerabilities of a circuit have to

be considered. However, electronic design automation tools are not security aware, and

while they can optimise the design in terms of area or power consumption in order to meet

3

1 Introduction

the device constraints, they completely overlook potential physical vulnerabilities. The re-

sponsibility of evaluating hardware implementations against threats, such as fault attacks,

therefore falls onto the circuit designers themselves, and is often done in an empirical

manner. This task is therefore very tedious and requires a lot of time, as well as expertise.

In order to improve the design phase of sensitive devices, automated tools need to be

created for their evaluation in a security context. Such tools need to be able to mount a

wide variety of attacks with particular sets of parameters in order to match diverse attack

models, based on the capabilities of an attacker. In a second step, once some vulnera-

bilities have been highlighted, counter-measures also need to be generated automatically,

once again dependent on the considered encryption scheme implementation. The choice

between different counter-measure is also dependent on the device constraints, and also

not leak any information itself. Therefore, having access to a scalable family of effective

counter-measures is a requirement too. While such counter-measures exist theoretically,

few automatic generation methods for hardware realisations exist to cover a large number

of ciphers. In order to solve the lack of automation with respect to security, this thesis aims

at both proposing an automated framework for the evaluation of cryptographic hardware,

as well as multiple scalable security-oriented EDC architectures as counter-measures.

1.2 Research Contribution

The more specific focus of the work presented in this thesis is on fault attacks. Both the

automation of the evaluation of cryptographic hardware implementations, via the auto-

matic creation of AFAs, and the automatic generation of counter-measures, through the

use of diverse security-oriented EDC architectures, is proposed with regards to malicious

fault injections, and is summarised by Figure 1.1. In particular, new architectures aimed

at protecting cryptographic circuits against natural and malicious faults will be presented

in detail in Chapter 3. Each architecture can be applied to different ciphers by changing

the parameters to fit the hardware and design constraints, and more precisely the size of

the states being protected. The choice between one EDC implementations or another can

therefore be done automatically, given proper information on the requirements. In a simi-

lar way, Chapter 4 relates to the work done on the automatic construction of AFAs on cryp-

4

1.2 Research Contribution

tographic primitive implementations. The hardware-oriented AFA framework AutoFault

is presented in this chapter. The framework was created in order to address the multiple

differences which exist between different ciphers and their related fault attacks, and pro-

vide an automatic generation of solvable attacks for different ciphers. Such a framework is

especially useful for the automatic evaluation of hardware implementations of encryption

schemes at multiple stages during the design flow, as, if an attack is successfully mounted,

the design can be changed in order to circumvent the newly discovered attack.

Contributions on Error Detecting Code Architectures

Originally, EDCs were used to detect and handle failures due to natural causes to occur,

as they are efficient to detect disturbances that may happen while the circuit is operating.

In a context of reliability and safety, they are therefore very effective, for example, to

counteract the effect of ageing or failure due to radiations. Consequently, it is only logical

to use such codes in a context of security, to protect sensitive data from an ill-intentioned

third party. The use of EDC and ECC architectures for both detection, and when possible,

correction of natural and malicious faults was therefore proposed [KGKP18], as well as the

dedicated security-oriented non-linear code based architectures for this purpose (Section

3.1).

Evaluation of Security-Oriented Codes

The distinction between natural and malicious faults leads to a discussion on the limita-

tion of the evaluation methods for EDC implementations [GKKP18] (Section 3.2). Mainly,

evaluation via a random set of fault injection does not show well the security properties

of more advanced EDC architectures. Simpler and less costly linear code implementa-

tions, such as Bose–Chaudhuri–Hocquenghem (BCH) codes [BRC60], appear to have es-

sentially the same capabilities as security-oriented codes, when evaluated with randomly

distributed fault injection. However, a strong attacker may inject a particular fault that

goes undetected with conventional EDC implementation, while a security-oriented code

would detect such an error with a non zero probability. Therefore, and while simpler

implementations may seem more attractive to circuit designers, security-oriented archi-

tectures should be preferred in the context of cryptographic circuits, and as such, the

5

1 Introduction

Enhanced AutoFault
with Multiple Fault Support

[GPU+19]

Basic AutoFault
[BGE+17]

Small Scale AES Toolbox
[GBH+16]

Basic
RK

Architectures
[KGKP18]

Security
Oriented

Code
Evaluation
[GKKP18]

Advanced RK Architectures
[GKKP20]

Refined ECLT Decoding
[GKKP19]

Inner-Outer Code
Architectures

[KGKP18]

Attack Automation
&

Evaluation of Implementations
Code-Based Architectures

Against Fault Attacks

Automatic Methods for Protection of
Cryptographic Hardware against Fault Attacks

Figure 1.1: Overall Contributions and Work Goals

6

1.2 Research Contribution

methodologies for the evaluation of EDC implementations should not only consider ran-

dom fault injections, but mathematical analysis of the worst case scenario as well.

Initial Rabii-Keren Architectures

The previously mentioned proposed architectures utilise the Rabii-Keren (RK) codes first

introduced in [RK17]. The RK codes are a new class of robust codes, combining a large

distance, a low masking probability, and a high rate (ratio between data bits and check

bits). Their robustness property is especially important for the architectures, as attackers

have recently become better at injecting faults, and their capabilities may still improve in

the years to come. Moreover, The RK codes had never been implemented in hardware

prior to the work presented in this thesis. The base architecture (Section 3.3.1) has a

focus on low cost ciphers, such as LED [GPPR11], with only states organized in 4-bit

nibbles, but an analogue 8-bit version is also possible, for instance to protect the 8-bit

substitution boxes (SBoxes) of the Advanced Encryption Standard (AES) [NIoSTN01].

For this purpose, RK codes are also ideal, as they are defined over symbols, not bits, and

the size of the symbols can be chosen to match the size of the operations of the considered

cipher (e.g. 8-bit symbols). However, it is costly and more difficult to protect larger states,

hence another architecture aimed at byte-wise operations was needed and developed.

Mainly, the former architecture uses a single predictor and decoder setup, for either 4-bit

or 8-bit values, when, in comparison, the latter makes use of two predictors and decoders

over 4-bit values only. While this approach may seem counter-intuitive to reduce the costs,

and a slightly large area, the simpler decoding process makes up for the use of the dual

decoder implementation, and the memory requirement is lower. This is the first milestone

for the efficient implementation of the RK codes. Moreover, the architectures are not only

capable of detecting errors, but also correcting low-multiplicity ones, which are usually

the type of faults a skilful attacker tries to inject. The ability to correct such errors is an

advantage compared to EDC only implementation, in the case of both natural faults, but

also targeted attacks. The correction allows for the system to continue operating normally,

while, if it was only detected, it needs to be handled differently, for example by stopping

the execution and proceeding to a re-keying. Stopping any executions might however

not be possible or cause more harm than good in critical applications, such as aeronautic

7

1 Introduction

applications. In this regard, the proposed correction architectures are of particular interest

for safety-critical applications, where one cannot simply wait for a reset. Despite the

correction, the fault events should however still be recorded and monitored, for instance

to classify between malicious and natural faults.

Inner-Outer Code Architecture

Similarly, even if the fault was corrected, a miscorrection can still occur, either normally,

or due to a well handcrafted attack. To this end, the original base architectures are im-

proved with a second layer of code, first using a Quadratic-Sum (QS) code [KKW07]

(Section 3.3.2). The new inner-outer code architecture [KGKP18] allows for a further val-

idation check on the correctness of the correction, or the non-detection of the fault. This

is however only a detection step and no further correction is performed. Nonetheless, the

advantages of the extra layer of code in terms of worst case scenario can’t be overlooked,

and which, as previously stated, are particularly important if an attacker manages to build

an attack and inject a fault that would generate another valid code word. In such a case,

and thanks to the proposed architecture, it would however be detected by the outer code.

More specifically, such an inner-outer code based architecture combines the advantages

of a robust inner code, for correction and high detection rate of faults (thanks to a code

with a large distance), with an outer robust code for handling critical miscorrection or

undetected faults.

Error Coefficient and Location Table Decoding

In order to implement the multiple architectures in hardware it is however necessary to

take into consideration the costs of such architectures. For instance, one common way to

decode BCH codes is the Berlekamp-Massey algorithm [Mas69]. This is however costly

in hardware, and can therefore not be considered for all applications, especially in the

case of constrained or low power ciphers. For this reason, a new decoding technique was

developed [KGKP18], and then further refined [GKKP19]. The approach, called Error

Coefficient and Location Table (ECLT), is oriented towards single errors (but could be

adapted for larger errors at a higher cost) and has a lower cost than more conventional

decoding methods (Section 3.3.3). The syndrome generated from the protected value is

8

1.2 Research Contribution

compared with a few pre-computed values, and if a match is found, the location as well as

the value of the error can be derived. The ECLT is pre-generated for single faults only (i.e.

4-bit nibbles or bytes corresponding to a single symbol of the code, in the context of this

thesis), which is often the considered fault model for DFAs. Additionally, and even if larger

faults were considered, the table would be smaller than usual tables. This is especially true

when bytes are considered and for the dual decoder architectures. Moreover, the use of the

ECLT avoids difficult computations, such as the hardware implementation of an inversion

in a Galois field or a large number of multiplications.

Advanced Rabii-Keren Architectures

The QS codes previously used as outer code are robust and already allow for the detection

of a large number of critical faults, however, this might not be sufficient for some applica-

tions and the QS codes are not scalable. To remedy this issue, the QS codes are replaced by

a Compact Protection Code (CPC) [RNK19] based system level fault manager [GKKP20]

(Section 3.3.4). CPCs are also robust, and have a low complexity and implementation

cost. Moreover, they are scalable by construction, and by choosing the appropriate size, it

is possible to drastically improve the detection rate of the CPCs, and thus avoid any well

crafted malicious fault that would have went through the inner RK code undetected or

miscorrected. Mainly, the CPCs have a similar detection rate to QS codes, for a size of 4

redundancy bits, but experimentally have up to 0.0001% misdetection rate for larger sizes.

As such, the use of CPCs further strengthen the proposed architectures described in this

thesis.

The previously mentioned architectures were evaluated in hardware on a SAKURA-G Field

Programmable Gate Array (FPGA) board, and more precisely on the SPARTAN 6 LX75

FPGA, using a clock glitch based fault injector on multiple Substitution and Permutation

Network (SPN) ciphers implementations. The experiments show that the architectures

are well suited for the detection of fault attacks, as well as natural faults, and single fault

injections are fully corrected (Section 3.4). Furthermore, the RK inner code is especially

effective for a distance of at least 5, and the inner-outer code construction can reliably

detect undetected faults or erroneous corrections, which reinforce the usefulness of such

an architecture.

9

1 Introduction

The Hardware-Oriented Algebraic Fault Attack Framework: AutoFault

The first fault injection attack was introduced in [BDL97] on the Rivest–Shamir–Adleman

(RSA) cryptosystem [RSA78]. Since then, a large number of fault attacks have been pro-

posed for multiple widely used ciphers. Such attacks are usually manually built by cryp-

tographers, as each encryption scheme is sensible to different fault locations and positions,

referring respectively to the location in the execution (i.e. in which round or operation for

a given cipher) and the bits affected in the encryption state. For instance, if we consider

the Small Scale AES (SSAES) [CMR05], which is a scalable cipher based on the widely

used AES, same fault location and position affects each variant differently. However, prior

to the work presented in this thesis, there were no attacks or hardware implementations

of the different variants of the SSAES, and no generic tool to create AFAs on the SSAES.

Small Scale AES Toolbox

Therefore, the SSAES was implemented in hardware [GBH+16]. While the basic cryp-

tographic blocks composing the SSAES are similar to the one of the full size AES, they

are parametrisable, which allows for different size of states, number of rounds and the

possible omission of the last mix column operation. This allows for a scalable cipher and

the different implementations can be used in the appropriate context, for instance in low

power devices or, in the context of this thesis, as a useful tool for research purposes (mainly

as a benchmarking tool). One of the key differences, which reduces the complexity and

constraints of the implementation, is the variable number of rows and columns (for a rep-

resentation as a state matrix). This leads to a different fault propagation pattern, and,

as such, conventional fault models, which are valid for the AES, are not valid for every

SSAES variant. In this regard, the fault equation sets for every variant of the SSAES were

proposed (Section 4.1). In order to attack the different variants of the SSAES, the circuit

description was converted to Conjunctive Normal Form (CNF) clauses, using the Tseitin

transformation [Tse68], mainly provided for use in conjunction with SAT solvers, and a

first step towards automated hardware-oriented AFAs.

10

1.2 Research Contribution

Basic AutoFault Framework

As a logical continuation, the first prototype version of the hardware-oriented AFA frame-

work AutoFault was implemented [BGE+17]. AutoFault was developed in collabora-

tion with the chair of computer architecture of the University of Freiburg, which has been

working on Boolean Satisfiability (SAT) for many years. Their expertise in SAT solving for

circuit-based problems brought in many ideas for the development, and efficient opera-

tion, of the framework. However, the contributions to the framework detailed in Chapter

4 of this thesis, unless stipulated otherwise (namely for SAT solving integration, and CNF

conversion), are the work of the author. The framework itself was created in order to auto-

matically construct AFAs for any proposed cipher implementations. The automation of the

construction of AFAs is of particular interest for the analysis of hardware implementation

of cryptographic primitives. For instance, a designer who implements a new cryptosystem

can use AutoFault to quickly assess any potential vulnerabilities to fault injection attacks.

Additionally, if a vulnerability has been found by the framework and a modification was

implemented to counter it (for instance switching to a different variant of the SSAES,

not vulnerable to the same fault model), the adequateness of the changes can be easily

verified. In a similar way, any non-cryptographic optimisation of the design can also be

introduced during the design phase, and as such the design needs to be re-tested against

fault injection attacks, which can just as easily be performed by AutoFault.

Of course, another point of interest are counter-measures and the assessment of their

usefulness against fault attacks. One way AutoFault can be used to verify that the im-

plementation of a counter-measure did have an effect on a potential fault vulnerability is

by restricting the fault location. Let’s for instance imagine that, after a careful evaluation

of a design, the designer decided to add some metal shielding to a specific part of the

circuit to prevent any fault injection at this location. The fault model can be restricted ac-

cordingly in AutoFault and only the remaining non-shielded location can be considered.

If the framework is then incapable of successfully recovering the secret key, contrary to

a previous run without such limitations, then the shielding is indeed useful against fault

injection attacks. Another type of counter-measure, directly related to this thesis’ work,

are EDC. As previously stated, EDCs can be used as a counter-measure to fault attacks,

however, some faults may avoid detection [KW14]. It is possible to restrict AutoFault

11

1 Introduction

to such faults, as well as some handcrafted ones. This is especially useful to assess the

usefulness of an EDC architecture or even if the correct component was protected.

Mainly, the goal of AutoFault is to provide a quick and easy way to verify vulnerabili-

ties without spending an extensive amount of time crafting fault equations derived from

the encryption algorithm. More precisely, the framework does not require any algebraic

description of the encryption scheme itself, but rather takes as input the hardware de-

scription of the implementation, either in Hardware Description Language (HDL) format

or directly as a netlist, and a fault model. A time-frame expansion of the design is then

performed by AutoFault. It alters the initial implementation of the cryptographic circuit

in order to convert the cipher description to CNF clauses, as well as adding the fault rel-

evant parts for the AFAs. For instance, for an SPN cipher, copies of the rounds are linked

together, creating a combinational or fully unrolled implementation of the cipher, and XOR

gates are introduced taking the fault as an input and feeding the output directly into new

copies of the now fault affected rounds. The newly created circuit is then converted to

CNF clauses via the Tseitin transformation (similarly to the case of the SSAES). The CNF

clauses are then transferred to a SAT solver, which attempts to solve the given instance

and recover the secret key.

Enhanced AutoFault Framework with Multiple Faults Support

While the first prototype version of AutoFault was only capable of processing a single

fault injection during the attack construction phase, as well as the solving process, the

framework was extended to support multiple faults [GPU+19], as well as new ciphers,

and various optimisations were added (the overall framework is detailed through out

Sections 4.2 to 4.9). The structure of the framework remains the same, but a new set

of XOR gates and fault affected operations are introduced for each fault during the time-

frame expansion step. Even though this increases the size of the processed data, since the

number of CNF clauses will grow from the addition of more gates, it is important to note

that only the fault affected operations are duplicated, not the full scheme. In addition,

the solving process itself was also extended to be able to handle multiple faults, with the

addition of new variables and the support for more general fault models.

12

1.3 Structure of the Thesis

Additionally, the framework was also extended to process data originating from physical

on chip fault injections. Previously, all the results were simulated directly in AutoFault.

This can be referred to as pre-silicon analysis, as it can be performed before the manufac-

turing of the cryptographic hardware, when only the HDL description of the implementa-

tion is available. With the addition of external inputs to the framework, AutoFault can

assess the design against real life fault injection attacks. For example, the design can be

implemented on an FPGA; then a laser can be used to disturb the encryption [BECN+06];

and then the output of the faulty encryption can be fed to the framework, which will try

to mount the attack according to the given fault model. However, if the given fault model

does not match the actual faults which were injected, it will most likely be impossible for

the framework to successfully attack the considered cipher. This second application case

for AutoFault is denoted as post-silicon analysis.

The initial prototype of AutoFault was only capable of solving small variants of the

SSAES, as well as the LED cipher. However, it already showed the potential of such a

framework for the automation of AFAs on hardware implementations, without any pre-

cryptanalysis. The extended framework could successfully recover the secret key for

PRESENT, as well as a full scale AES 128-bit implementation, thanks to the support of

multiple faults and other optimisations, which also drastically improved the solving times.

Finally, a physical fault injection run was performed on the previously mentioned SAKURA-

G board, before transferring the data (restricted to single nibble successful fault injections)

to AutoFault, which successfully recovered the secret key in most cases.

1.3 Structure of the Thesis

The rest of this thesis will be organised in three main Chapters. Chapter 2 will give some

background information on both attacks and counter-measures. In Section 2.1, a descrip-

tion of power analysis attacks, as well as fault attacks, with a focus on DFA and the case

of SPN cipher will be given. Then the principle of AFAs will be presented, as well as a dis-

cussion on the current state of the art for AFA frameworks. In the following Section 2.2,

EDC and ECC counter-measures will be introduced, firstly with conventional codes, and

then with security oriented codes, as well as the theory on the RK code, which is the base-

13

1 Introduction

line code used for every architecture related to this work. Further counter-measures are

discussed in the same section, as a bridge to counter-measure evaluation with AutoFault.

In Chapter 3, the base idea behind the work on the ECC architectures from this thesis will

be presented. A further discussion on natural faults and malicious faults in cryptographic

circuits will be given in Section 3.1, as well as the limitations of the evaluation of ECC

architectures in Section 3.2. Section 3.3 will follow with details on the different archi-

tectures themselves, such as the inner-outer code architecture or the different benefits of

the ECLT. At the end of this chapter, in Section 3.4, experimental results for the multiple

implementations will be presented. In Chapter 4 of this thesis, an in-depth presentation of

the AutoFault framework will be provided. From the preliminary results on the SSAES

in Section 4.1, which laid the ground floor for the automated generation of AFA, we will

continue on the overall structure of the AutoFault framework in Section 4.2. The fol-

lowing Section 4.3 will detail each solving step related to the framework. Section 4.4

will be on the simulation of fault attacks in AutoFault, and will provide details on soft-

ware based simulation compared to CNF simulation, and why choosing one over the other.

Section 4.5 provides some information on how to employ AutoFault in the design flow.

To showcase the effectiveness of the framework, some results on SPN ciphers, as well as

the effect of multiple fault support will be presented in Section 4.6 and 4.7 respectively.

Moreover, a discussion on counter-measure validation with AutoFault will be given in

Section 4.8, and the last Section 4.9 will compare AutoFault to other state-of-the-art AFA

frameworks. Finally, Chapter 5 will summarise the research contributions of this thesis, as

well as discuss the possible future work based on the presented results.

14

Chapter 2

Preliminaries on Fault Attacks & Counter-Measures

Physical attacks are an ever growing threat to cryptographic primitive implementations.

More precisely, fault injection attacks have been used since several decades to compromise

otherwise thought secure encryption circuits. In order to better understand how to protect

sensitive hardware against such threats, and more specifically in an automated fashion,

the notions on side-channel and faults attacks, as well as respective counter-measures,

will be introduced in this chapter.

2.1 Background on Side-Channel & Fault Attacks

In the following section, we will first give a brief introduction to side-channels attacks,

before going more into details on fault attacks. In the context of this thesis, it is important

to understand the scope of side-channel attacks, both from a general standpoint, and also

regarding hardware counter-measures themselves. The main focus of the thesis being fault

attacks, the rest of this section introduces the general concept of fault attacks, and then

converges towards Algebraic Fault Attacks (AFAs). AFAs are of particular interest, since

the framework later proposed in this thesis (Chapter 4) can be used as an automated tool

for the generation of such attacks, and as such, the evaluation of cryptographic hardware

implementations.

15

2 Preliminaries on Fault Attacks & Counter-Measures

2.1.1 Side-Channel Analysis

Side-Channel Analysis (SCA) relates to a type of physical attacks, which makes use of

extra information that can be derived from practical implementation of cryptographic

primitives. The considered additional information does not relate directly to the theoret-

ical cryptographic algorithm, but is rather based on the analysis, and measurement, of

physical properties of the device on which it is implemented. Hardware characteristics

such as timing related information [Koc96], or the power consumed during the encryp-

tion process [KJJ99], are among the most commonly used for SCA. An attacker can make

use of side-channel measurements and infer information about the secret key by either by

building and solving an equation system, or by statistical analysis. Moreover, SCA can be

divided into two categories, depending on the capabilities of the attacker.

• If an attacker is only capable of observing and measuring physical leakage, then the

attack can be referred to as Passive SCA.

• If, on the other hand, the attacker can, in addition, change the intermediate data,

the attack can be classified as Active SCA.

More specifically, in the case of passive SCA, the device under attack processes the sensitive

data, while, during the computation, the attacker observes the influence of the operations

being processed on a side-channel (e.g. power [BCO04]). The attacker can then interpret

the measured data in order to recover the secret information, but is at no point during

runtime able to perturb the encryption process. This is the exact opposite for active SCA.

In this case, at a specific point during the computation, the attacker is able to affect the

operations being done on the device through a perturbation of a side-channel, such as

making use of the photosensitivity of a cryptographic circuit. This may lead to either

another observable side-channel leakage, or to a faulty output, which can then be analysed

in order to retrieve the secret key. Active attacks, and more precisely fault attacks, are

however discussed in more details in Section 2.1.2.

In order to be able to measure side-channel leakage, some preliminary steps may be re-

quired. For instance, it may be required to partially, or completely, decapsulate a chip in

order to be able to record some side-channel data, or to influence the execution of a cryp-

tographic algorithm. In this regard, both passive and active SCA can be further classified.

16

2.1 Background on Side-Channel & Fault Attacks

• Non-Invasive attacks do not require any modification of the targeted device in order

to be successful.

• Invasive attacks are characterised by their requirement for depackaging or other

damaging methods, so that the correct side-channel can be accessed.

• In some cases, only a partial decapsulation is necessary. In this case, the attack may

be referred to as Semi-Invasive.

Furthermore, by their nature, invasive attacks (such as [SHS16]) are hard to repeat and

require an expert knowledge in order to avoid destroying the chip altogether, while still

removing enough protecting layer to be able to mount a successful attack. On the other

hand, non-invasive attack, for instance EM-based attacks [AARR03], can easily be re-

peated and replicated, as only connecting the device under attack to the measurement

device is necessary. However, the success rate of non-invasive attacks may be lower by

comparison, or require much more measurements to be made. The use of semi-invasive

methods allows to less significantly affect the chip, and are also less expensive than more

destructive techniques. While not necessarily being as efficient as invasive SCA, semi-

invasive attacks are a good middle ground and usually provide better results than non-

invasive ones [QS01, GMO01]. With regards to this thesis’s work, only non-invasive

clock glitch-based active SCA attacks have been implemented, as a validation tool for

EDC counter-measures and the AFA framework AutoFault.

In order to better understand the threat that SCA constitutes to secure hardware imple-

mentations, and thus the necessity of counter-measures, let’s first discuss the general strat-

egy which may be employed by an attacker in the case of a passive SCA. The device under

attack is initially connected to a measurement tool. This can either be through the use of

a physical connection, for instance an oscilloscope can be connected to some pins of the

target, or remotely, such as an EM probe placed nearby the chip. Several measurements

are then performed by the attacker during runtime, in order to record side-channel data

for the considered hardware. The number of measurements is greatly dependent on the

device itself, as well as the implementation choices, but also on the measurement resolu-

tion. Additionally, some counter-measure may be implemented, rendering the attack at

least less efficient, and increasing significantly the number of measurements needed for a

17

2 Preliminaries on Fault Attacks & Counter-Measures

successful attack. Once enough measurements have been performed, the collected data is

confronted to a leakage model, and through key guesses, as well as statistical analysis, the

correct key candidate can be derived. This method, or a derivative, is commonly used for

most SCA, for example power analysis [MOP07].

An example of this process can be a Differential Power Analysis (DPA) on an unprotected

AES implementation. Since the considered cryptographic circuit is unprotected, only a

few thousands of traces are needed in order to recover the secret key without any pre-

processing. As described previously in the general SCA method, the first step is to measure

the power consumption of an hardware implementation of an AES. For this simple exam-

ple, let’s assume that the AES is implemented on an FPGA, connected to an oscilloscope

and itself saving the recorded data on a PC, via the use of a script. While measuring the

overall power consumption of a device can be easily achieved, for a DPA to be successful,

not the entirety of the trace should be considered, but only a relevant portion. In the

case of the AES, the first operation performed is the XOR with the master key, followed

by the substitution layer of the first round. Considering this part of the encryption would

allow for a successful DPA to be mounted, as key guesses can be made on the master key,

and thanks to the non-linearity of the substitution function, the attack can be mounted

successfully (given enough traces). Finding the exact spot in a power trace where the

encryption is performed, and more precisely, the first SBox, is simple in the case of an

unprotected implementation. Figure 2.1 depicts such a case. The AES encryption can

be clearly identified by the repetition of ten similar patterns, which correspond to the

10 rounds of the AES (in red on the figure, the first round being longer due to the first

master key XOR, and the last round shorter, thanks to the omission of the mix column

operation). In addition, and since the rounds can be easily determined, restricting the

analysis of the power trace to only the SBox operation can be done as well, as this is the

first operation of the first round, and we assume no counter-measures (in green on Figure

2.1). It should be noted, that such clear identification is not always possible, dependent

on the implementation itself, and potential counter-measures. Once the correct spot for

the processing of the power trace is chosen, the analysis work can begin. First, a divide

and conquer strategy is applied since a DPA requires some key guessing to be successful.

In the case of the AES, making key guesses on the overall key wouldn’t be helpful, as the

18

2.1 Background on Side-Channel & Fault Attacks

Rounds
Zone
of

Interest

Figure 2.1: Power Consumption of an AES Encryption

key is 128 bits long, which would lead to too much processing. However, we consider

the first substitution layer, which means that we can split our guesses over each single

SBox, and in turns, over each key byte. The divide and conquer strategy is widely used in

side-channel analysis, as it allows for a reduction of processing costs. In the considered

case, a guess is made on a byte, also called key part, which allows for the computation

of the output of the corresponding SBox, since the plaintext is known. Algorithm 2.1

shows the details of the DPA in this case. In short, the initial guess is made on each key

part and the corresponding hypothetical value is computed. The recorded traces are then

sorted accordingly to the value of a chosen distinguisher, in this case the least significant

bit of the SBox output. The DPA trace, which is the difference of both averages, where the

distinguisher is respectively 0 or 1, is then also computed, and finally, for each byte, the

hypothesis which corresponds to the DPA trace with the highest peak value is recovered,

which should be the correct key part, given enough data. The success of the DPA comes

from the fact that, if the key guess is correct, power traces will be correctly sorted in the

two different groups, according to the distinguisher. Since the distinguisher is a bit, and

the power consumption of the device should be different depending if the bit was at 1 or

0, it results in a DPA trace with a high difference in power consumption for the correct key

guess, while the consumption for other guesses will be randomly distributed (since the

19

2 Preliminaries on Fault Attacks & Counter-Measures

hypotheses would be wrong, and thus the sorting too) and, as such, the DPA trace should

be flat. This is of course in an ideal scenario. In reality, DPA traces may be much more

noisy. As an example, Figure 2.2 depicts a DPA trace for a correct key guess, but computed

with only 5000 traces. The low number of traces may for instance be due to a limited

access to the device, and the resulting DPA trace, while still composed of peaks (highest

one circled in red on the figure), is not composed of a single high peak. Nevertheless, The

corresponding attack is successful, even with such a non-ideal trace.

Algorithm 2.1: Simplified DPA algorithm on an unprotected AES

1 for b = 0..15 do // for all key parts
2 for i = 0..255 do // for every possible byte value
3 hypothesis = SBox(plaintext[b]⊕ i);
4 for t in Traces do // for all traces
5 if hypothesis[0] = 0 then // distinguisher: hypothesis LSB
6 grp0 = grp0 + Traces[t];
7 else
8 grp1 = grp1 + Traces[t];
9 end

10 end
11 dpaTraces[i] = average(grp0)− average(grp1);
12 end
13 Key[b] = getMaxDPA_index(dpaTraces);
14 // recovers the index of the DPA trace with the highest peak value
15 end
16 return Key

The success or failure of the attack depends on the quality and number of measurements.

A good way to improve results is to record more power traces. It may however not always

be possible to do so, due to hardware constraints, limited access to the device, or counter-

measures. Moreover, it is still possible to improve the success rate of a DPA via different

methods, but at the cost of processing. For example, applying some pre-processing tech-

niques to the initial power traces, such as filtering or the creation of templates (so called

template attacks [CRR03]) can improve the effectiveness of the analysis. Another way to

get better results can be to choose a different distinguisher, or to consider several distin-

guishers, and take the most recurring value for each key part candidates (for instance,

considering each bit of an SBox output, for the case of the AES). This however at the cost

of computation, as this corresponds to mounting several DPAs.

20

2.1 Background on Side-Channel & Fault Attacks

Highest Peak
Used for Key

Recovery

Figure 2.2: Noisy DPA Trace of an unprotected AES Encryption

Nevertheless, DPAs, and other passive SCAs, are powerful, and can recover the secret

key with only a few thousand traces in the case of an unprotected implementation, for

instance, only around 5000 traces were necessary in the previously discussed AES exam-

ple. The fact that such a simple attack can be mounted, and generalised to other ciphers,

shows the necessity of implementing counter-measures against passive SCAs. While pas-

sive SCAs are not the focus of this thesis, the implementation of a few counter-measures

is discussed in Section 4.8 in the context of automatic circuit evaluation, and therefore

passive SCAs are still relevant with regards to this work. Moreover, active SCAs, and more

especially fault attacks, which are more directly relevant for this thesis, are considered in

the following. They will also show why, in a more general way, some counter-measures

need to be implemented in order to protect sensitive circuits against non-invasive, as well

as invasive, active or passive SCAs.

2.1.2 Fault Injection Attacks

Fault injection attacks are another type of physical attacks, which makes use of a pertur-

bation during the encryption process, the fault, to retrieve the secret key. The fault is

deliberately induced at runtime to modify the behaviour of the device, for instance, by

bypassing some counter-measures put in place, skip an operation or modify a value at a

21

2 Preliminaries on Fault Attacks & Counter-Measures

given location in the encryption. In most cases, a post analysis is required to process the

information derived from the fault injection. The fault themselves can be induced by mul-

tiple means, such as clock or voltage glitches, optical fault injection through the usage of

a laser, or targeted electromagnetic disturbances. As such, the attack is an active attack,

which may also be invasive, as, for instance, it may be necessary to decapsulate the chip

in order to precisely and effectively shoot at a specific location with a laser. Even so, fault

attacks are powerful and should not be overlooked when designing an encryption scheme.

The first fault injection attack was introduced in [BDL97]. The attack targets more specif-

ically the RSA cryptosystem, however, it can be generalised to different other ciphers.

The attack aims at the modular exponentiation computed in the RSA. Let’s first briefly

recall the RSA cryptosystem. n = pq is the modulus chosen for the modular exponentia-

tion, with p and q being two large prime numbers. The public key e is chosen such that

gcd(e, ϕ(n)) = 1, with ϕ(n) = (p − 1)(q − 1) and the private key d is defined by d · e ≡ 1

(mod ϕ(n)). Then we have, for a private message m, (me)d ≡ m (mod n), and as such

the ciphertext c can be computed by c ≡ me (mod n), while the decryption is performed

by computing cd ≡ m (mod n).

However, one of the most common way to implement the RSA cryptosystem, is to take

advantage of the Chinese Remainder Theorem (CRT) in order to compute the exponenti-

ation modulus p and q, instead of n, and thus perform more efficient operations. In fact,

it is possible to find two integers a and b, such that:

cd = a(cd (mod p)) + b(cd (mod q)) (mod n) with



a ≡ 1 (mod p)

a ≡ 0 (mod q)

b ≡ 0 (mod p)

b ≡ 1 (mod q)

(2.1)

While performing the exponentiation in such a way is less costly, since the numbers are

smaller, it leads to a vulnerability if two decryptions are performed on the same message,

but one is faulty. Let’s assume that it is possible for a fault to occur during the computation

of cd (mod p), but not for cd (mod q), then, it is possible to express the decrypted message

m (and respectively, the faulty message m′) as follows (where ϵ denotes the effect of the

22

2.1 Background on Side-Channel & Fault Attacks

fault): 
m = a(cd (mod p)) + b(cd (mod q)) (mod n)

m′ = a(cd (mod p) + ϵ) + b(cd (mod q)) (mod n)

(2.2)

and as such:

m−m′ = a(cd (mod p)) + b(cd (mod q))− a(cd (mod p) + ϵ) + b(cd (mod q)) = a · ϵ (2.3)

Finally, if ϵ is not divisible by p, which is likely if p and q are chosen randomly, then it is

possible to retrieve q.

gcd(m−m′, n) = gcd(aϵ, n) = q (2.4)

Once q is retrieved, it is trivial to derive the secret key d. Moreover, in the case where the

original ciphertext c is known, only a single faulty decryption is needed.

gcd(c− (m′)e, n) = q where m′ is a faulty decrypted plaintext (2.5)

The attack laid the ground foundation for all the further fault attacks to come. It especially

introduced the fact that a faulty intermediate computation, even if the value of the fault

itself is unknown, can lead to a severe vulnerability, dependent on the design choices made

for the implementation of a cryptographic scheme. Moreover, even though the attack

was first targeted toward the RSA cryptosystem, it can be extended to a larger family

of ciphers, as well as different types of RSA implementations, at the cost of more fault

injections. Similarly, fault injection attacks are applicable to both dedicated cryptographic

circuits, and processors running cryptographic software, as long as a fault can be induced.

It is also important to note that, at the time, the attack was purely theoretical, and was only

considering potential errors occurring during the encryption, but not yet proposing a way

to physically inject a fault. However, since then multiple techniques have been proposed

and validated to practically inject faults during runtime. Such fault injection methods

range from simple low cost glitch generation up to the usage of expensive equipments,

such as focused ion beams.

23

2 Preliminaries on Fault Attacks & Counter-Measures

2.1.3 Fault Injection Techniques & Fault Models

Glitches can be introduced by diverse methods, but the most common ones are power

glitches and clock glitches. The former can be achieved by modifying the supplied voltage

of the targeted device at a given point during the encryption process. This may cause

some instructions to be skipped or some values to be incorrectly stored. The equipment

required to cause such glitches is usually widely available and cost effective. However,

the faults induced by power manipulations are usually imprecise. Even so, they are com-

monly used and fault injection with a reasonable precision can be achieved [O’F16]. A

similar way of injecting faults is using an external clock, or modifying the internal clock,

by introducing a clock glitch. Essentially, clock glitches are similar to power glitches in the

sense that they can cause some instructions to be misread or some data to be wrongly ac-

cessed (for example, by accessing the data of round n+1 instead of round n for a specific

operation), but also in terms of cost efficiency and lack of precision. An example of such

clock glitches is the fault injector proposed in [MSI16]. On a SAKURA-G FPGA platform,

two Digital Clock Managers (DCM) are used to create two asynchronous clocks, which are

then XORed, creating a glitched clock, which can be used for fault injection.

Optical fault injection setups are also widely used to induce faults. A light source, usually

a focused laser, is pointed at the decapsulated chip and the photon emitted by the light

source disrupt the correct operation being done on the circuit. For example, targetting

a Static Random Access Memory (SRAM) cell can cause bit-flips, which is the type of

fault that an attacker may need. The main advantage of using this kind of fault injection

method is the high precision of the injected fault. For instance, in [ADM+10] a single

bit-flip fault is induce during an AES encryption, and thus successfully implement the

attacked proposed in [Gir05], which would have been extremely difficult with power or

clock glitches. This type of attack isn’t limited to laser, and multiple optical sources can

be used [ABC+17, PDL18]. Similarly, photons do not only affect SRAM cells, and many

different platform can be targeted [SBHS16], as long as it is possible to target the relevant

part of the circuitry. This however comes at a high cost in equipment, as well as expertise

and time, since it may be a tedious process to find the correct location to target on the

chip.

24

2.1 Background on Side-Channel & Fault Attacks

Other fault injection methods exist, such as electromagnetic-based (EM) injections [MDH+13,

HHM+13], which rely on well timed EM pulses to disturb a specific operation. EM fault

injectors also do not always require decapsulation of the chip, compared to optical ones,

while still allowing for more precise fault injections than glitch-based attacks. Among

other fault injection methods, one may also consider Row Hammer injections [KDK+14].

Row Hammer injections target the Dynamic Random Access Memory (DRAM), and by

repeated accesses to a row, can flip a bit in an adjacent row. This attack was later ex-

tended to FPGA-based systems [KGT18]. Table 2.1, a simplified version of Table 1 avail-

able in [BBKN12], summarise most fault injection methods, as well as their advantages

and drawbacks.

Table 2.1: Fault injection techniques summary

Technique Spatial Temporal Skill Required Cost Implementation’s Destructive
Accuracy Accuracy Knowledge

Required
Underfeeding High None Basic Low No No
Power Glitch Low Moderate Moderate Low Partial No
Clock Glitch Low High Moderate Low Yes No

Light Radiation Low Low Moderate Low No Yes
Light Pulse Moderate Moderate Moderate Moderate Yes Possibly
Laser Beam High High High High Yes Possibly

Focused Ion Beam Complete Complete Very High Very High Yes Yes
EM Pulses Low Moderate Moderate Low No Possibly
Heating Low None Low Low Yes Possibly

It is usually not sufficient for an attacker to create a random disturbance. As pointed

out in the first fault attack on RSA, choosing the correct fault model is important. The

previously described fault model was specific to the CRT exponentiation, but it was also

very lax, as any fault in one exponentiation would be sufficient for the key recovery. In a

more general setting, multiple fault models exists, however two models in particular are

the most commonly considered: single bit-flip faults and random byte (or more generally

nibble) faults.

Single bit-flip faults are one of the strongest fault model. They refer to a powerful attacker,

who is able to specifically target a chosen bit of a particular value during the encryption

process. Such faults are extremely difficult to produce in practice, however they are not

unrealistic [ADM+10]. Due to this difficulty to inject them, they are considered more in

theoretical work. Moreover, for a cipher of key length n, if a single bit-flip fault can be

25

2 Preliminaries on Fault Attacks & Counter-Measures

precisely injected during an operation dependent on the key, then n fault injections are

sufficient to recover the secret key, by just flipping successively each bit of the key and

observing a change in the output.

Random byte faults, or more generally random nibble faults, are the most commonly

considered fault model [SH13, TBM14]. In this case, the attacker can only affect a portion

of a value or an operation, and has no control over the value of the injected fault. The fault

model is really lax and can match a wide variety of physical fault injections. In the case

of block ciphers, the nibble size considered usually matches the size of some operations.

For instance, int he case of the AES, byte faults are usually considered, as the internal

state can be represented byte-wise and the the SBoxes operate on bytes as well. In some

other cases, for example for stream ciphers, neighbouring bits can be affected by a fault

targeting a specific location, resulting in a fault which can also be represented by this fault

model.

In the context of this thesis, only random nibble faults are considered, and the size is de-

pendent on the attacked cryptographic primitive. Similarly, only transient faults which can

be represented as additive errors on the nibble are studied, unless stipulated otherwise.

Another important consideration for the fault model is the possibility to inject multiple

faults simultaneously. For example, it is possible to consider two random byte faults in-

jected simultaneously at two different locations during the encryption process. While this

kind of fault injection was difficult to achieve, the recent advancement in terms of fault in-

jection setup made such injections a practical reality [SHS16], and allowed for new attacks

to be mounted. This is particularly relevant with regards to the SSAES attack presented in

this thesis.

2.1.4 Types of Fault Attacks

The definition of a correct fault model, as well as the availability of divers physical fault

injection setups, allowed to mount different types of fault attacks. The main ones are

differential attacks, which are defined more in details in the following section, and are

based directly on the approach from [BDL97]. Among other categories of fault attacks,

two additional analysis methods are commonly used: statistical fault attacks and AFAs.

The latter are the core of the work on fault attacks presented in this thesis, and as such

26

2.1 Background on Side-Channel & Fault Attacks

are presented in a later section (Section 2.1.5). The former are based on a statistical

biased present during the encryption thanks to the fault injection. While statistical attacks

are not directly related to the work done on attacks in this thesis, it is possible to use ECCs

in order to protect the circuit against statistical attacks, as presented in [BKHL20]. As

such, as well as for completeness, they are briefly described below.

First, Ineffective Fault Analysis (IFA) was introduced in [Cla07] as a way to derive the

secret key of the Data Encryption Standard, without any knowledge on the value of its

input or outputs. However, while the input-outputs values are not needed, it is required

to be able to distinguish between the output of a fault free encryption and a faulty one.

The attack relies on retrieving some information on the values of the key bits. A fault is

injected during an XOR operation dependent on the secret key, and the output is forced

to zero. Moreover, an extension of the attack was discussed, which later lead to more IFA

on other ciphers [BG13, ADY15]. While IFAs are not making use of statistical differences

directly, they were later extended to Statistical Ineffective Fault Attacks (SIFA) [DEK+18].

SIFAs similarly make use of the fact that a fault injection does not change the output of

an encryption, however, the distribution of an intermediate value becomes non-uniform

due to the fault effect. It is then possible to make key guesses on portions of the secret

key, and revert the last operations of the encryption. If the key guess is correct, then the

statistical bias can be observed, in contrast to the cases where the key guesses are wrong.

One of the main advantage of SIFAs compared to IFAs is the required fault model. IFAs

require a rather strong fault model, such as stuck-at-fault at a precise (and possibly hard

to achieve) location, while SIFAs only require that the fault induced results in an unknown

but non-uniform distribution of the intermediate value considered. A second advantage of

IFAs is the possibility to circumvent some widely used counter-measures, such as majority

voting or masking. Moreover, SIFAs were recently successfully applied to nonce-based

ciphers from the CAESAR1 competition, such as GIMLI [GPT20] or one of the winner of

the competition, ASCON [RAD19].

Fault-Sensitivity Analysis (FSA) [LSG+10] is another widely use type of statistical fault

attack. FSAs takes advantage of the correlation between the fault intensity, the strength

1Competition for Authenticated Encryption: Security, Applicability, and Robustness, organised in 2012 by
the United States National Institute of Standards and Technology

27

2 Preliminaries on Fault Attacks & Counter-Measures

of the disruption method used to inject the fault, and the sensitive data being processed.

The attacker incrementally increases the fault intensity (for example by reducing the clock

period), until a noticeable faulty output is produced. Once a faulty output is generated,

the fault intensity for which the fault occurred, denoted critical fault intensity, is stored.

The process is repeated multiple times for different randomly generated inputs, until a suf-

ficient number of critical fault intensities are recorded. This results in a tuple of plaintext,

ciphertext and critical fault intensity. The data can then be used to compute a predicted

critical fault intensity, by making a key guess on a key part, and, for instance, reverting the

last round operation. Finally, the correlation between the predicted, key guess dependent,

intensities and the measured critical ones is computed. If the key guess is correct, then

there should be a high correlation, and thus the key part can be recovered. The attack

uses a divide and conquer method, as it is a more efficient way to make key guesses, sim-

ilarly to a DPA, and is repeated until all the key part are recovered. It should be noted

that, for better results, the incremental increase of the fault intensity should be done in

small steps. A variant of FSA was later developed, called differential fault intensity analy-

sis [GYTS14, GYS15], and has the advantage of not needing the fault intensity prediction

stage of an FSA.

2.1.4.1 Differential Fault Analysis

In [BS97], the authors introduced the concept of Differential Fault Analysis (DFA). While

the attack was practically implemented for the Data Encryption Standard (as well as some

variants of the same family of ciphers), with at most 200 fault injections, the authors

already showed that the attack could be extended to almost any symmetric encryption

scheme available at the time. It showed how effective were, and still are, DFAs at attacking

different type of ciphers.

In a more general way, DFAs rely on well chosen fault injections to propagate the fault

throughout a larger portion of the intermediate states, in order to be able to derive some

secret key-dependent equations, which are computationally feasible to solve. The equa-

tions are difference equations, meaning that a difference between a fault free encryption

and a faulty one is computed. Most ciphers have a confusion layer, dependent on a non-

linear function, as well as a diffusion layer. The difference equations are then derived

28

2.1 Background on Side-Channel & Fault Attacks

thanks to the non-linear function, as else, with a linear function, the secret key infor-

mation would be lost during the computation of the difference, while the diffusion, also

often referred to as permutation, layer allows multiple equations to be derived from a

single fault injection.

The principle of the attack can be generalised as follows for most ciphers. Let’s denote the

secret key as k. Given a non-linear function f in use in the considered encryption scheme

(for instance, an SBox), a well chosen fault ϵ and a difference ∆, if a fault is injected

before the non-linear operation, one can derive a difference equation of the following

form (Equation 2.6).

∆k,ϵ = f(xk)⊕ f(xk ⊕ ϵ) where xk is an intermediate value dependent on k (2.6)

In this generalisation, ∆ is an observable difference, for example the difference between

fault free and faulty ciphertexts, while xk is unknown. The fault value ϵ is either known

or unknown depending on the considered fault model, and can be deterministic or not.

Since ∆ is known, it is possible to reduce the number of possible key dependent values

significantly. Moreover, if the fault location was carefully chosen or multiple faults are

injected, several of such equations can be derived and used in order to have a single

candidate for the secret value.

While Equation 2.6 is a generalisation, the same principle applies to different categories

of ciphers. DFAs are particularly efficient at recovering the secret key of an SPN-based

encryption. Inherently, SPNs have well-defined permutation layers, often matrix-based,

which allow for good propagation of the fault, and thus well-defined and bounded dif-

ference equations. This often allows for a fault injection in a preceding round to have

the same affect as multiple faults in the next rounds, leading to a strong, but controlled,

diffusion. However, the fault propagation itself, even though useful, also creates more

complex equations to solve. For instance, one may have to revert multiple operations in-

stead of a single one at the last round. This results in a trade-off between how early the

fault is injected, leading to good propagation and hence a larger number of equations (or

respectively, smaller number of injected faults), and the complexity of the equations to be

solved. It is for example inadvisable to inject a fault at the beginning of an SPN cipher and

29

2 Preliminaries on Fault Attacks & Counter-Measures

expect to be able to recover the secret key via a DFA. For instance, the earliest successful

DFA on the AES is performed by injected a fault between the MixColumns operation of the

sixth round, and the one of the seventh one [DFL11]. This attack is however not the most

efficient DFA on the AES, which is a direct example of the described trade-off. In general,

for most SPN schemes, the fault is injected three rounds before the end of the encryption.

This is for instance the case for the AES [TMA11], LED [JKP12] or Midori [CZS16]. This

once again comes from the fact that most SPN ciphers follow a similar structure, and if

the fault goes through two permutation layers, it generally propagates through the entire

state. However, not all SPN have a matrix-based permutation layer such as the previous

ones. For instance, the permutation layer of the PRESENT cipher is constituted of a bit-

wise shuffling of the internal state. In the case of a random nibble fault model, this implies

that the fault will propagate unequally through different nibbles, depending on the value

of the fault itself. Nevertheless, DFAs are still possible, and are usually performed at the

29th round out of 32 [XjZ11, BEG13]. It is also important to note that a DFA may not

directly recover the master key, but rather a round key. This is however of no concern, as

the key schedule is known, and can thus be reverted, leading to a recovery of the master

key.

DFAs aren’t limited to SPN ciphers and can also be applied to any other type of ciphers, as

long as it is possible to create relevant difference equations with a chosen fault model. For

instance, stream ciphers can also be targeted by DFAs, such as in [HR08]. In the case of

stream ciphers, the main difficulty comes from the fault injections themselves, which must

be well timed (sometimes in successive clock cycles). More recently, nonce-based ciphers

are of particular interest due to their resilience to DFAs and other differential attacks.

However, despite this, several DFAs still exist on some nonce-based ciphers, such as one on

NORX [JSP20] or one on ACORN [SSMC17], which is one of the winners of the CAESAR

competition (however, the attack is for an earlier version of ACORN). Among other classes

of encryption schemes of particular interest for DFAs, one may consider Feistel networks.

Feistel networks are constituted of several intertwined branches acting as a permutation

layer, as well as some inner operations in each branch. This may lead to a slightly trickier

cryptanalysis in comparison to SPN ciphers, as the key, or more precisely a key part, only

affects a portion of the internal state after each round. It turns out that a DFA may require

30

2.1 Background on Side-Channel & Fault Attacks

more than one fault injection, some times even at different location, to be able to recover

the complete key, and it is as such difficult to generalise DFA, as is the case for SPN-based

encryptions. Nevertheless, it is possible to mount some DFAs on Feistel networks, such as

the DFA on SIMON [TBM14] or on Piccolo [Jeo12].

Finally, the main advantage of DFAs, compared to other type of fault attacks, is the rela-

tively low number of fault injections required. Where statistical fault attacks may require

thousands of injections [LSG+10], a DFA may be able to recover the secret key with only

a single successful injection [TMA11]. However, the required faults may, in comparison,

be more difficult to inject. Nonetheless, and thanks to the improvement of fault injection

methods over the year, this trade-off isn’t an obstacle and DFAs remain one of the most

commonly used type of fault attacks.

In order to better understand the work presented in this thesis, especially with regards to

the SSAES, the case study of the DFA on the AES is presented in the following section.

2.1.4.2 DFA on the Advanced Encryption Standard

The AES is one of the most widely used encryption schemes. As such, there have been

multiple fault attacks targeted at the AES over the years. Several fault attacks, such as

the ones in [TFY07b, TFY07a, KQ08], directly target the key schedule component of the

AES. However, a key schedule might not always be implemented, or it may be harder to

inject a fault during the key schedule operations, that is one of the reasons why there is

a more significant focus on attacking the encryption operation itself in the literature. A

number of such attacks require several distinct fault injections, such as the ones presented

in [Gir05, BS03, DLV03], ranging from 40 to 250 fault injections needed. In [PQ03], only

a single byte fault is used to recover the secret key. However, the attack requires that

the same fault to be injected twice. A more refined single fault DFA was introduced in

[Muk09]. It requires only a single fault injection at the beginning of the eighth round,

which reduces the key space to 232. While the previous DFAs are all able to retrieve the

secret key of an AES encryption, the different constraints, either in terms of number of

faults injected, or the need for the exact injection performed twice, make this last attack

much more realistic. However, the attack can be improved in order to further reduce the

key space, and thus the retrieve the key in a timely manner.

31

2 Preliminaries on Fault Attacks & Counter-Measures

A case of particular interest is the DFA on the AES presented in [TMA11]. It optimises the

attack presented in [Muk09] and further reduces the key space to 28 candidates, which

is trivial to brute force. This attack is also fundamental to understand how efficient DFAs

can be built, as well as hardware-oriented AFAs presented later in this thesis.

First DFA Step

The AES is composed of 4 different operations: SubBytes, ShiftRows, MixColumns and

AddRoundKey. The SubBytes operation is composed of multiple 8-bit SBoxes and consti-

tutes the non-linear operation of the encryption. The ShiftRows and MixColumns opera-

tions are linear and are used as a diffusion layer. The fourth operation, the AddRoundKey is

only an XOR with a round key, derived from the master key. The details on the operations,

which are processed in this specific order, can be found in [NIoSTN01]. However, one

essential information to understand the DFA on the AES, is how to represent the internal

states of the cipher.

The AES internal states, can be expressed in terms of state matrices. More precisely, each

internal state can be divided into 16 bytes in the following fashion.

S =


s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

s4 s8 s12 s16

 (2.7)

Where the si are one byte values and every operation is performed over the Galois field

GF (28), defined by x8 + x4 + x3 + x+ 1. This is especially important for the MixColumns

operation, which is a pre-multiplication of the state matrix by the following matrix:

M =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 (2.8)

and which will come into play for the derivation of the fault equations.

32

2.1 Background on Side-Channel & Fault Attacks

The considered fault model is a random byte fault. That is to say that the fault is induced

into a specific byte, however without any knowledge on the actual fault value. This fault

model is more lax than other fault models aimed at flipping a single bit at a very specific

location and position. In the context of this attack, knowing which bits of a specific byte

are flipped is irrelevant for the solving process. It should only be ensured that the fault is a

non-zero fault (i.e., it has an effect on the targeted byte). The considered fault position is

in the first byte of the state matrix (s1 in Equation 2.7). It should be noted that, while this

is the position considered for the attack, any fault injection for any si in the state matrix

is valid. It would only change the resulting equations.

Figure 2.3 shows how the chosen fault propagates from the beginning of round 8 until the

encryption is done (the state matrices are represented as four by four squares for better

visualisation). The AddRoundKey operations are omitted as the attack is a DFA, and as such

they eliminate themselves if they are considered as the meeting point for the differential

state.

The initial fault value is f and is unknown. The first SubBytes operation changes the

value of the faulty byte, we denote as f̃ the new fault value after the first SBox. The

eighth round ShiftRows operation doesn’t shift the fault affected value in the state matrix,

as the rows are shifted by i − 1 (i being the row index in this case), and the eighth

round MixColumns propagates the fault throughout the first column, since it is a pre-

multiplication of each column by the matrix M of Equation 2.8. Additionally, the fault

is not propagated randomly after the MixColumns operation. Thanks to the coefficient

of the matrix, it is possible to express the bytes in terms of their faulty values (i.e. the

coefficient are the same as the ones from M). After the ninth round SubBytes layer, the

faulty values are modified (hence becoming new unknown Fi), moreover, since there was

previously an AddRoundKey operation, F2 ̸= F3. The next ShiftRows operation allows each

column to be affected by a single Fi, which is then propagated through each column fully

by the last MixColumns operation (again, with specific coefficients). Hence achieving full

propagation after the last, ninth round, MixColumns operation, which is the chosen point

for the differential state. The last operations until the end of the encryption do not further

propagate the fault and only change the values of each byte. It should be noted that, due

33

2 Preliminaries on Fault Attacks & Counter-Measures

8th SB 8th SR 8th MC

9th SB

9th SR

9th MC10th SB10th SR

f f̃ f̃ 2f̃

f̃

f̃

3f̃

F1

F2

F3

F4

F1

F2

F3

F4

2F1

F1

F1

3F1

F4

F4

3F4

2F4

F3

3F3

2F3

F3

3F2

2F2

F2

F2

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A1

A6

A11

A16

A5

A10

A15

A4

A9

A14

A3

A8

A13

A2

A7

A12

Figure 2.3: Differential fault attack on the AES

to the fault propagation pattern, if the fault is injected after the eighth round SubBytes, or

after the ShiftRows operation, it would still be successful.

As such, it is possible to derive an expression for each byte of the differential state, by

reverting the encryption until the last MixColumns operation. Let’s denote by x and x′ the

fault free and faulty ciphertexts respectively, as well as xi and x′i their respective nibbles.

The last round key is k and its parts are denoted ki. The SubBytes operation is represented

by the function S() and its inverse by S−1(). Finally, δi stands for the XOR difference at

the chosen differential point. First the AddRoundKey operation with the last round key is

inverted. It is only an XOR between the last round key bytes ki and the ciphertext bytes

xi (or x′irespectively), which is then shifted in an inverted pattern to the AES ShiftRows

operation, before being processed by an inverse SBox. Both of the expressions for each

bytes of the state matrix are then finally XORed, giving the following expression for a byte

of the differential state.

a.δi = S−1(xj ⊕ kj)⊕ S−1(x′j ⊕ kj) with a the δi coefficient (either 1, 2 or 3) (2.9)

34

2.1 Background on Side-Channel & Fault Attacks

An equation set is derived for each δi (i.e. each column in Figure 2.3), and a total of

four equation sets, independent from each other, is available (such as the one in Equation

2.10). All sets can be found in Appendix A (the SSAES case (r, c) = (4, 4) has the same

equations).

2δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

δ1 = S−1(x14 ⊕ k14)⊕ S−1(x′14 ⊕ k14)

δ1 = S−1(x11 ⊕ k11)⊕ S−1(x′11 ⊕ k11)

3δ1 = S−1(x8 ⊕ k8)⊕ S−1(x′8 ⊕ k8)

(2.10)

For each equation, xi and x′i are known, as they are nibbles of the fault free and faulty

output respectively, but the respective δ and ki are unknown. In order to solve the equa-

tion, a key hypothesis must be made, as well as a guess for the value of δ. Algorithm 2.2

details how the key candidates are derived from the equation sets.

It should be noted that δi ̸= 0, as otherwise it would mean that xi = x′i, meaning that

the fault injection would have been unsuccessful. The algorithm outputs a set of key

candidates. Thanks to the discard mechanism described in Algorithm 2.2, each equation

set generates, on average, 256 32-bit long partial key candidates. The combination of all

the partial key candidates therefore constitutes the remaining key space, which is of size

(28)4 = 232. While they can be brute forced by simply encrypting a known plaintext and

checking if the output ciphertext matches the known correct plaintext, a second attack

step can be performed to further reduce the key space.

Second DFA Step

In order to further reduce the key space, more equations are needed. From Figure 2.3, it

is possible to distinguish another possible meeting point for the DFA. The differential state

after the second to last MixColumns operation has a similar structure has the later one.

However, it depends on the ninth round key, and, as such, it can not directly be expressed

with the last round key values, for which the previous key candidates have been derived.

Nevertheless, it is possible to express the ninth round key in terms of the tenth round key

35

2 Preliminaries on Fault Attacks & Counter-Measures

Algorithm 2.2: DFA algorithm for the AES (first step)

1 for i = 1..4 do // for each equation set
2 for δi = 1..255 do // for all δi possible values
3 for kj1 = 0..255 do // for all kj1 (first equation key part) values
4 if EQ1(kj1) = true then // first equation has a solution
5 for kj2 = 0..255 do
6 if EQ2(kj2) = true then
7 for kj3 = 0..255 do
8 if EQ3(kj3) = true then
9 for kj4 = 0..255 do

10 if EQ4(kj4) = true then
11 Store the partial key candidate

kci = {kj1 , kj2 , kj3 , kj4}
12 else
13 Discard δi and proceed to the next value of δi
14 end
15 end
16 else
17 Discard δi and proceed to the next value of δi
18 end
19 end
20 else
21 Discard δi and proceed to the next value of δi
22 end
23 end
24 else
25 Discard δi and proceed to the next value of δi
26 end
27 end
28 end
29 end
30 Compute all the key candidates kc from all the combination of all the kci
31 return Set of all kc

36

2.1 Background on Side-Channel & Fault Attacks

by inverting the key schedule (see Equation 2.11, with κ10 the last round key constant in

the key schedule).


k91 k95 k99 k913

k92 k96 k910 k914

k93 k97 k911 k915

k94 k98 k912 k916

 =


k101 ⊕ S(k1014 ⊕ k1010)⊕ κ10 k105 ⊕ k101 k109 ⊕ k105 k1013 ⊕ k109

k102 ⊕ S(k1015 ⊕ k1011) k106 ⊕ k102 k1010 ⊕ k106 k1014 ⊕ k1010

k103 ⊕ S(k1016 ⊕ k1012) k107 ⊕ k103 k1011 ⊕ k107 k1015 ⊕ k1011

k104 ⊕ S(k1013 ⊕ k109) k108 ⊕ k104 k1012 ⊕ k108 k1016 ⊕ k1012

 (2.11)

Thanks to this relationship between the last two round keys, it is possible to invert the

encryption one round further and obtain a new set of equations. It should be noted that

inverting the ninth round requires inverting the last MixColumns operations, introducing

new coefficients.

2f̃ =

S−1(14(S−1(x1 ⊕ k1)⊕ (k1 ⊕ S(k14 ⊕ k10)⊕ κ10))⊕

11(S−1(x14 ⊕ k14)⊕ k2 ⊕ S(k15 ⊕ k11))⊕

13(S−1(x11 ⊕ k11)⊕ k3 ⊕ S(k16 ⊕ k12))⊕

9(S−1(x8 ⊕ k8)⊕ k4 ⊕ S(k13 ⊕ k9)))⊕

S−1(14(S−1(x′1 ⊕ k1)⊕ (k1 ⊕ S(k14 ⊕ k10)⊕ κ10))⊕

11(S−1(x′14 ⊕ k14)⊕ k2 ⊕ S(k15 ⊕ k11))⊕

13(S−1(x′11 ⊕ k11)⊕ k3 ⊕ S(k16 ⊕ k12))⊕

9(S−1(x′8 ⊕ k8)⊕ k4 ⊕ S(k13 ⊕ k9)))

(2.12)

f̃ =

S−1(9(S−1(x13 ⊕ k13)⊕ k4 ⊕ k9)⊕ 14(S−1(x10 ⊕ k10)⊕ k10 ⊕ k14)⊕

11(S−1(x7 ⊕ k7)⊕ k15 ⊕ k11)⊕ 13(S−1(x4 ⊕ k4)⊕ k16 ⊕ k12))⊕

S−1(9(S−1(x′13 ⊕ k13)⊕ k4 ⊕ k9)⊕ 14(S−1(x′10 ⊕ k10)⊕ k10 ⊕ k14)⊕

11(S−1(x′7 ⊕ k7)⊕ k15 ⊕ k11)⊕ 13(S−1(x′4 ⊕ k4)⊕ k16 ⊕ k12))

(2.13)

37

2 Preliminaries on Fault Attacks & Counter-Measures

f̃ =

S−1(13(S−1(x9 ⊕ k9)⊕ k9 ⊕ k5)⊕ 9(S−1(x6 ⊕ k6)⊕ k10 ⊕ k6)⊕

14(S−1(x3 ⊕ k3)⊕ k11 ⊕ k7)⊕ 11(S−1(x16 ⊕ k16)⊕ k12 ⊕ k8))⊕

S−1(13(S−1(x′9 ⊕ k9)⊕ k9 ⊕ k5)⊕ 9(S−1(x′6 ⊕ k6)⊕ k10 ⊕ k6)⊕

14(S−1(x′3 ⊕ k3)⊕ k11 ⊕ k7)⊕ 11(S−1(x′16 ⊕ k16)⊕ k12 ⊕ k8))

(2.14)

3f̃ =

S−1(11(S−1(x5 ⊕ k5)⊕ k5 ⊕ k1)⊕ 13(S−1(x2 ⊕ k2)⊕ k6 ⊕ k2)⊕

9(S−1(x15 ⊕ k15)⊕ k7 ⊕ k3)⊕ 14(S−1(x12 ⊕ k12)⊕ k8 ⊕ k4))⊕

S−1(11(S−1(x′5 ⊕ k5)⊕ k5 ⊕ k1)⊕ 13(S−1(x′2 ⊕ k2)⊕ k6 ⊕ k2)⊕

9(S−1(x′15 ⊕ k15)⊕ k7 ⊕ k3)⊕ 14(S−1(x′12 ⊕ k12)⊕ k8 ⊕ k4))

(2.15)

The key candidates derived in the first attack step can then be used as input for the equa-

tions from Equations 2.12 to 2.15. Similarly to the first step, for a given f̃ , each equation

has a solution with probability
1

28
. Meaning that a given key candidate is solution of the

equation set with probability
28

(28)4
=

1

224
, since it is necessary to go through all possible

values for f̃ , and thus the remaining key space has a size of
232

224
= 28. Brute forcing such

a small number of keys is trivial, proving the efficiency of this optimised two-step DFA.

2.1.5 Algebraic Fault Attacks

Induced fault can be used in conjunction with algebraic descriptions of the encryption

scheme under attack, in order to successfully recover sensitive data, which might not

be possible with only fault information. Fault attacks which combine both aspects are

called Algebraic Fault Attacks (AFAs). As the name suggests, AFAs are at the crossroad

between algebraic attacks, which are attacks based solely on the algebraic properties of an

encryption algorithm, and break the cipher at a theoretical level, and more conventional

fault attacks, which only consider fault affected values in order to retrieve the secret key.

They have the advantage of having a high automatisation potential compared to either of

the other two types of attacks they are related to, which make them a prime choice as an

automated tool for the evaluation of cryptographic hardware.

38

2.1 Background on Side-Channel & Fault Attacks

In the context of this thesis, it is therefore important to introduce the core principle behind

AFAs, as well as how are such attacks practically mounted. Moreover, different type of

AFA frameworks exist and they are not all equal in their abilities. In this regards, Section

2.1.5.1 is dedicated to the theory behind this type of attack, while Section 2.1.5.2 offers

an overview of the state-of-the-art AFA frameworks available at the time of writing. The

AutoFault framework presented in this thesis, as well as the concept of hardware-based

AFAs, are mostly excluded here, as this is one of the research contributions of this work

(Chapter 4), and a direct comparison to other frameworks is given in Section 4.9.

2.1.5.1 Principle of Algebraic Fault Attacks

The first AFA was introduced in 2010 by Courtois et al. [CJW10]. The initial goal of AFAs

was to reduce the number of needed fault injections for a successful attack, as well as

simplifying the solving process. The original authors pointed out that both the hardware

fault injections themselves, and the cryptanalysis work necessary for an attack, are be-

coming harder with each new cipher. To this end, reducing the number of required fault

injections would allow for less costly setups and less efforts spent on repeating what is

often a difficult task. At the same time, improving the solving process would increase the

scope of attacks which may be performed. Those are exactly the respective advantages

of algebraic cryptanalysis and fault injection attacks (or SCA in a more general way). On

the one hand, algebraic cryptanalysis, by its nature, is computationally intensive, as the

encryption scheme has to be broken on the theoretical level, but does not require any

specific external data. On the other hand, fault attacks, such as DFAs, require much less

processing power to be successful, but are data dependent, and may need a large number

of fault injections to be able to recover the secret key. It would therefore seem logical to

combine both type of attacks in order to benefit from both of their advantages. This is the

main idea behind AFAs: using the cipher description, as well as some fault injection data,

in order to retrieve the sensitive information contained within the encryption scheme.

In order to mount a successful AFA, there are therefore three major steps.

1. Choose or find a suitable fault model

39

2 Preliminaries on Fault Attacks & Counter-Measures

2. Express the cipher and the chosen fault in a proper algebraic formalism, according

to the selected solver

3. Run the solver and eliminate the incorrect key candidates if necessary

It should be clear that, for any considered cipher, not every possible faults can result in a

successful attack. Similarly to DFAs, or any fault injection attack, the fault location and

position are an important factor for AFAs as well, and even more so if the complexity of the

cipher is high for the chosen solver. The first step of finding a fault model which reduces

significantly enough the key space is therefore of the utmost importance. To achieve this

first step, there are different possibilities. If the encryption scheme is well known by the

attacker, for instance, for evaluation purposes by the cipher designer, it can be known

which location is the most susceptible to be vulnerable. In a similar way, if the encryption

algorithm is part of a larger family, such as SPN schemes, the attacker may have some

insights on possibly successful locations, for example, three rounds before the output in

many SPN cases. However, this is not always the case, and manually finding a correct

fault model for newly developed encryption schemes is not an easy task. To this end, one

may evaluate the size of the key space for a given fault model. This is also a functionality

of several AFA frameworks. In order to evaluate the key space, given a fault model, the

cipher is expressed in the correct format for the chosen solver (similarly to step 2 of an

actual attack, only with fewer equations), and either the number of possible solutions are

counted, or the fault propagation patterns studied, in order to see if the considered fault

model could lead to a sufficient key space reduction. By trying different fault locations

and positions, the attacker can chose the most relevant fault model. This is however

usually only an estimation of the remaining key space, and does not necessarily guarantee

a successful attack if the fault model which has the smaller estimated remaining key space

is chosen.

Once a fault model is chosen, the second step of an AFA is to derive a set of equations

which describe the ciphertext, as well as the fault effects. These equations have to be in

the correct format for the chosen solver. For instance, if the solving technique of the AFA

is SAT solving, the formulas which describe the cipher have to be CNF clauses. SAT solvers

are most widely used in AFA literature, however other type of solvers can be used instead,

40

2.1 Background on Side-Channel & Fault Attacks

such as algebraic solvers like SAGE [SJ05]. In this case, formulas would be in Algebraic

Normal Forms (ANF). Generally, encryption algorithm are given in a behavioural manner.

For example, the substitution layer is often given directly as an SBox look-up table. The

expression of each operation in the required format is thus not always straightforward.

Several techniques can be employed to express every encryption operations, but the most

commonly used representation method is the polynomial form called ANF. 4-bit SBoxes

can for example be expressed with a set of four AND equations [KM10]. Despite the fact

that ANF descriptions are commonly used, and even if it would seem logical to use an

algebraic solver, the memory requirements of such solvers, as well as their often slower

runtime compared to in most cases SAT solvers, do not make them a good candidate

for solving. Instead, converting ANF formulas to CNF clauses, in order to be able to

use a SAT solver is more advisable, and the most common practise in the literature. The

conversion methods, as well as the original ANF derivation, should be carefully performed,

as introducing too many variables, or having too many clauses can lead to an increase in

solving time. It is also possible to derive directly CNF clauses from the cipher description,

and this is especially true in the context of this work, where the CNF clauses are derived

directly from the hardware implementation (more details in Chapter 4). Moreover, the

fault itself, and its effect on the computation also need to be mapped to the correct format.

This is usually a much simpler process, especially in the case where the considered fault is

an additive fault, modelled as an XOR. The fault model should also take into account if the

exact fault position is known (i.e. which bits of the considered intermediate state). The

knowledge of the fault position has to be mapped to the formulas as well. This can either

be done by introducing new variables, which are either 1 or 0 if the fault manifests itself

at the respective position, or by adding a complete fault vector over the full intermediate

state and treating it as an input.

The previous two generic sets of equations, for the cipher description, and the fault model,

can then be used in conjunction with some plaintext-ciphertext pairs to create the final sets

for equations representing the AFA. It should be noted that a complete description of the

cipher may not be required. For example, only representing the last rounds of an SPN may

be sufficient to mount a successful attack. It may also be more efficient to only consider

a partial representation of the encryption scheme, as less equations over less variables

41

2 Preliminaries on Fault Attacks & Counter-Measures

are produced that way, reducing the overall solving complexity. Furthermore, in order to

constrain the key space to only a single key candidate, another set of equations may be

added. If a set of equations based on a known correct plaintext-ciphertext pair is added,

only the correct key will satisfy all the equation sets.

Finally, and the last step of an AFA, the equation sets, or CNF clauses, can be fed to

the solver of choice, which should return at least a single key candidate. In the case

where multiple key candidates are returned, they need to be processed in order to find the

correct key. This processing can easily be done by encrypting a known plaintext with the

key candidate and verifying if the obtained ciphertext matches the corresponding known

correct ciphertext. If both ciphertexts match, then the correct key was found, and no

further processing is needed (if the key candidates are verified iteratively). It may be

more efficient to proceed that way, instead of constraining the key space by adding more

equations, such as is the case in step 2, if a set of equations for a correct encryption is

added. The more equations are added, the longer is the processing time, while a single

encryption for the verification of the key candidate can be done easily and swiftly. For SAT

solver specifically, this may also change the way CNF clauses are processed, depending on

the SAT solver heuristic.

Let’s consider the original example of the AFA on the DES. The first step is to specify a

fault model. At the time, some of the best fault attacks required bit-flip fault injections

at round 16 of the DES. Due to the way the faults propagate in the cipher, this resulted

in thousands of faults being needed for a successful key recovery. The fault model of the

first AFA presented in [CJW10] however considered faults injected at round 13 and 14.

Such faults would propagate in a way which would affect all the SBoxes of the DES, and,

as such only 1 or 2 fault injections would be required, as opposed to thousands, which is

much more realistic from an actual attack point of view. The attack with a single fault at

round 13 is especially interesting, since the considered fault is a single bit-flip, as opposed

to two double bit-flips, for the attack at round 14, but both attacks work in the exact same

manner. With this fault model selected, the authors expressed the DES SBoxes as a system

of cubic equations, which were then converted to CNF. The sets of CNF clauses with the

correct plaintext-ciphertext pairs considered (either a single pair, or two pairs respectively,

for the previously mentioned fault models), were created, achieving the second step of

42

2.1 Background on Side-Channel & Fault Attacks

the AFA. Finally, the clauses were fed to a SAT solver, with the addition of several key bits,

in order to make the processing time shorter. In the case of the attack at round 13, if 24

key bits are known prior to the attack, the attack in [CJW10] was found to require 0,01

hours. The complete attack would therefore take approximately 219 hours. While this first

attack AFA may not seem impressive by the solving time alone, it laid the bases for much

more powerful attacks and automated frameworks, such as the hardware-oriented one

presented in this thesis, which follows the same three major steps.

2.1.5.2 State of the Art on Algebraic Fault Attack Frameworks

Over the last decade, a few AFA frameworks have been proposed, following the the first

attack from Courtois et al. [CJW10]. Those frameworks follow the same principle, even

though they differ in the way they handle the problem of AFAs. In this section we will

review some of the current approaches concerning the automatic construction of AFAs, as

an overview of the state-of-the-art techniques similar to this thesis’s related work. First,

it is important to distinguish two types of frameworks: key space evaluation frameworks,

which only realise the first step of AFAs, and fully automated AFA frameworks, aimed at

completely solving a given AFA instance. In this thesis, frameworks which are capable to

automatically recover the secret key are denoted as AFA solvers. Concerning the former

case, two frameworks have been proposed: the XFC framework [KRH17] and also the one

described in [SKMD17]. Both frameworks can be used to find suitable scenarios for the

realisation of fault attacks, and focus on the evaluation of the remaining key space for a

given fault model. They were specifically designed to this extent, in order to make fault

injection attacks easier. They are not automatic, as they require to manually construct

the attack after finding an appropriate fault model. As for fully fledged AFA solvers, in

addition to the one presented in Chapter 4, three frameworks have been proposed in

the last years [ZZG+13, ZGZ+13, ZGZ+16], all based on the same principle, while the

AutoFault framework is hardware-oriented.

Frameworks for Key Space Evaluation

As discussed in Section 2.1.5.1, the first step in AFA, and more generally fault injection

attacks, is to identify a suitable location and position for a fault injection. It is therefore

43

2 Preliminaries on Fault Attacks & Counter-Measures

extremely beneficial to be able to automatically derive fault injection parameters, which

are likely to result in a successful attack. The XFC framework proposed in [KRH17] offers

a colouring-based approach to fault characterisation for block ciphers.

XFC takes as input the specification of the considered block cipher, as well as the fault

model which should be evaluated. The encryption scheme description consists of the dif-

ferent operations composing the block cipher under attack, namely linear and non-linear

functions. By making the distinction between linear and non-linear functions, accord-

ing to their respective inputs, and forwarding this information to XFC, the framework is

capable of generating a colour-based cipher description, which describes the fault prop-

agation properties of the considered fault model. Different colours are used to trace the

fault effects at different position of the intermediate states, related to how useful the fault

information should be. In more detail, when a fault model is considered, and a fault is

injected accordingly, XFC assigns a new colour to the affected parts of the block cipher.

For each subsequent operations, and depending on their inputs, as well as their linearity,

the framework assigns once again a new colour for their outputs, if there is some fault

propagation. While this stage of the evaluation is a good visual clue for the effectiveness

of a given fault model, it is not sufficient for a proper evaluation. To this end, the next

step takes the coloured output of the first stage and estimates the remaining size of the

key space. In order to give such an estimation, and evaluate the complexity of the related

attack, the framework approaches the problem in a backward fashion, referring to the

previously generated colours of the states and nibbles. Each colour refers to a specific

variable and XFC tries to derive related equations which may lead to the recovery of some

portions of the secret key. The process itself needs some additional inputs from the user,

and is as such only partially automated, but it allows for a good estimation of the attack

complexity. XFC was successfully applied to different block ciphers, including AES. In this

specific case, if the fault is injected in one byte of the beginning of the 8th round, the size

of the remaining key space found by XFC is the same as the one from the conventional

single fault DFA from [TMA11]. This result strengthens the fact that automated tools can

find suitable attack scenarios, which otherwise take a significant amount of time to man-

ually craft, and showcases the correctness of the framework. More precisely, the overall

flow of XFC is exactly what is performed in the case of DFA, only with an automated first

44

2.1 Background on Side-Channel & Fault Attacks

step, which gives an estimation of the attack’s, and also the fault model’s, potential, but

still requires to implement a solver for any reasonable output of XFC.

While colour-based approaches are functional and can lead to good key space estimations

in some cases, they are limited. One example of this would be the fact that XFC would

not consider a fault injection at the beginning of round 7, in the case of the AES, to be a

suitable fault model. This was shown by the authors of a different key space evaluation

framework in [SKMD17] which overcomes this issue. Their tool supports additional fault

models compared to XFC, but also removes the need for extra inputs from the user in

order to produce a good evaluation. As such, the framework fully automates the evalua-

tion of the remaining key space for a given fault model. This is achieved by using some

data mining-like approaches according to the fault propagation, instead of colouring the

intermediate states. The framework takes as input a functionnal description of the cipher

and a fault model, similarly to XFC. However, more fault models are supported compared

to XFC, which makes it more versatile. In order to output a an estimation for the size

of the key space, the framework goes through three stages. First, a distinguisher for the

attack needs to be identified. Once this is the case, a divide and conquer strategy on the

various operations of the cipher is performed in order to identify the key parts involved

in faulty computations. Finally, this information is used to provide an evaluation of the

remaining key space, and thus the feasibility of the attack. The first step of identifying

the distinguisher is performed by computing states entropies related to the chosen fault

model, and comparing them to the maximum state entropy, in the fault-free case. Using

the measure of entropy, instead of a colouring approach, allows for a better evaluation

of the distinguishers. The entropy gives an indication on the fault propagation paths, as

well as the automatically considered distinguisher. In other word, a suitable differential

state is a distinguisher if its entropy is inferior to the maximum entropy of the same state.

This identification stage is especially important as it removes the need for additional user

inputs to find a differential state, given a fault model. This first stage returns several po-

tential candidates for a distinguisher, which are then processed by the divide and conquer

step for identification of the related key bits involved. To do so, the cipher description is

broken down into a graph, and each operation in itself into another sub-graph. The over-

all graph is denoted as cipher dependency graph and is used to evaluate the compatibility

45

2 Preliminaries on Fault Attacks & Counter-Measures

of the considered distinguisher with the fault model. The graph is searched to identify

which key parts are present on the faulty path and in the computation of the distinguisher.

Thanks to this step, the portions of the key which are not involved in the computation

of the differential distinguisher can also be identified, and thus the size of the key space

which needs to be guessed. Lastly, this information is forwarded to the last stage, which

computes the final reduction of the key space, also considering the information which can

be derived from the best differential state. Contrary to XFC, the evaluation not only pro-

vides an evaluation of the size of the remaining key space, but also an estimated number

of faults which may be required to achieve a successful key recovery. The framework was

applied to the AES, as well as PRESENT, and, as opposed to XFC, it was able to find a

suitable attack scenario at the beginning of round 7, with an estimation of the key space’s

size of roughly 232 − 226. Despite the fact that the authors did not provide any informa-

tion on the required number of faults for this attack, it should be noted that this attack

was not found by XFC, which shows more potential for entropy-based methods, rather

than colour-based ones. However, and similarly to XFC, even if a suitable fault model and

distinguisher are found, the attack itself still needs to be manually implemented.

Both previous frameworks constitute a first step towards the automated construction of

fault attacks, but they do not proceed to implement an actual attack and only provide a

complexity estimation for the attack at the found location and position.

Complete AFA Solvers

The complete automation of fault attacks requires not only an evaluation of the key space

for a given fault model, but also methods to automatically solve selected fault injection

attack’s instances. To this end, fully fledged AFA solvers require a description of the cipher

as input, as well as the fault model, usually in a CNF format. This allows for automated

solving of given attacks, since, after some processing, the inputs can be forwarded to a

solver, often a SAT solver, and therefore no manual implementation of an attack is needed.

With the exception of the AutoFault framework (presented in Chapter 4), three AFA

frameworks are available at the time of writing [ZZG+13, ZGZ+13, ZGZ+16]. They all

must be provided with a suitable fault model, as this is the first major step of any AFA.

In the case of these frameworks, the first input is a functional description of the cipher

46

2.1 Background on Side-Channel & Fault Attacks

(unlike AutoFault), which can be achieved through know methods to derive algebraic

expressions of encryption operations, and then convert them to CNF, since all of the con-

sidered frameworks use SAT solver to recover the secret key. The second input is the fault

model. The framework presented in [ZZG+13] assumes a specific random nibble fault

model. The other two tools do not consider specific fault models, and only require them

to be given by the user.

The first complete AFA framework was presented in [ZZG+13]. The authors propose a tool

aimed at attacking the Piccolo cipher [SIH+11], which can however be extended to other

lightweight ciphers. Both the functional description of Piccolo and the fault model are

expressed as ANF formulas. The framework itself is restricted to random nibble faults in

the 23rd round of Picollo, which is the chosen fault model for the attack. This is however a

restriction of this specific framework, to only support random nibble faults. Additionally,

the authors proposed a method to represent the fault injection in ANF format. A new

variable is introduced for each fault injection and is expressed as an XOR in the equations,

while another set of variables represents the presence, or the omission, of a fault at a

chosen position. Once all the equations for both the cipher description and the fault model

are derived, they are converted to CNF and fed to a SAT solver (in this case CryptoMiniSaT

[SNC09]). The SAT solver then proceeds to fine a satisfiable assignment for the secret key

given the known plaintexts and ciphertexts, as well as the fault position, thus recovering

the correct key. While the authors evaluated their framework on both the encryption

and the decryption of the Piccolo cipher, the framework was only capable to recover the

secret key for the decryption process. The key was however recovered with a single fault

injection in around five hours, and two fault injections would decrease the solving time to

two hours. The authors also provide additional benchmarks for a few other ciphers, but it

should be noted that the extension of the framework to new ciphers requires some amount

of work, as the equation creation step is not fully, but only partially automated, and cipher

plus fault model dependent. The partial automation is however a crucial step towards

fully automated AFA solvers, and the newly introduced method for ANF fault modelling

can be generalised for any cipher.

In [ZGZ+13], a new approach to AFA was suggested. The denoted algebraic differential

fault analysis (ADFA) builds upon the previous framework by introducing DFA equations

47

2 Preliminaries on Fault Attacks & Counter-Measures

to the inputs of the solver. The framework focuses on attacking the LED cipher, but can be

extended to any other cipher and does not consider a restrictive fault model. Similarly to

the previous tool [ZZG+13], ANF equations are created for both the fault model and the

cipher description; extra equations for reversed operations, such as an expression for the

inverse SBox, are created as well. This step is especially important for the introduction of

DFA-based equations in the ANF formulas, as differential fault equations require reversing

some operations (as described in Section 2.1.4.1). During the solving process, those DFA

equations are processed in a way which is similar to going backwards for a portion of the

encryption and meeting at a given differential location. This process is similar to what is

done in DFAs, or in the XFC framework [KRH17], for the evaluation of the key space. Once

again, all the equations, including the DFA-based equations, are converted to CNF and fed

to a SAT solver (CryptoMiniSat). The attack on LED, with a solving time constraint, shows

a 97.2% success rate, considering a fault injection at the beginning of round 30 in a single

4-bit nibble. The experimental results therefore shows a good performance improvement

compared to standard DFA attacks, but also showcase the possibility to add additional

cryptanalytic input to conventional AFA to improve the performances in this case as well.

Moreover, the key space reduction was improved, by almost two orders of magnitude,

compared to DFAs, supporting the fact that ADFA automation is an efficient method for

automated attacks of ciphers.

More recently, a framework for the evaluation of AFAs on lightweight ciphers was in-

troduced [ZGZ+16]. This specific framework expands on the framework proposed in

[ZZG+13], making it more versatile and not cipher restricted. To showcase this versa-

tility, the authors successfully applied their framework to various lightweight ciphers and

fault models. Similar to any other AFA, the first step of creating equations for the cipher

description and the fault model is the same, and they are fed to CryptoMiniSat. However,

the fault model is not constrained to any specific one, contrary to the first framework

[ZZG+13]. An interesting feature of this specific framework is the presence of two solving

modes. Similarly to the two previous frameworks, Mode A uses the CNF clauses derived

from the cipher description and the fault model to retrieve the secret key. However, Mode

B doesn’t take any plaintext-ciphertext pairs as input, and instead uses a modified version

of the SAT solver to evaluate the size of the remaining key space, given a fault model, like

48

2.2 Background on Error Correcting Codes & Other Counter-Measures

in [KRH17, SKMD17]. As discussed previously, this can be an important feature to auto-

mate fault attacks, and more specifically AFAs, as first an evaluation step can be performed

to choose an appropriate fault model, further increasing the degree of automation. More-

over, this specific framework is much more versatile than any other previously mentioned

frameworks, due to the large number of possible inputs. Not only the framework supports

unrestricted fault models, but it also can be applied to various ciphers, and also support

additional inputs (similarly to [ZGZ+13]). The authors considered multiple fault injection

scenarios, such as an injection during the key schedule, or in the round counter itself, in

addition to the more conventional fault at the beginning of a round. Similarly, bit-based

and nibble-based fault models were analysed, as well as several different SPN ciphers

(LBlock, DES, PRESENT and Twofish). In each case, the proposed framework managed

to solve the different instances, with faults at different locations and positions, all in an

automated fashion. This supports the versatility of AFA frameworks, especially in the case

of unconstrained inputs.

In the context of this thesis, the focus will be on the hardware-oriented AFA framework

AutoFault for automated evaluation of hardware implementations of cryptographic prim-

itives. Chapter 4 will describe the framework in more details. However, the frameworks

presented in this section already showcase the usefulness of AFA framework for the cre-

ation of automated fault attacks. From key space evaluation to complete solvers, the data

on the different attacks, or at least fault models, can already be used to evaluate ciphers

to a certain degree, even without considering their hardware implementations. More-

over, the versatility of AFA frameworks, such as [ZGZ+16], further strengthens the finding

that the automation of AFA can be used to remove the need for manually crafted fault

equations for a large number of ciphers, which is a time consuming and difficult step for

cryptanalysts.

2.2 Background on Error Correcting Codes & Other Counter-

Measures

Physical attacks introduced in Section 2.1 can be mitigated by using diverse counter-

measures. One of such counter-measures, which is directed more towards fault attacks,

49

2 Preliminaries on Fault Attacks & Counter-Measures

is the use of an Error Detecting Code (EDC), or an Error Correcting Code (ECC), module.

While code-based counter-measure are widely used against a variety of different faults, not

every code is equal and, from a security perspective, more specialised EDC architectures

should be used. In this section, a brief background on conventional code-based counter-

measures will be given, before a discussion on security-oriented codes, and more precisely

the Rabii-Keren (RK) code, as it is the base of the architectures presented in Chapter 3

of this thesis. Additionally, a few subsequent counter-measures against fault attacks, as

well as other side-channel attacks, will be discussed, in order to better understand their

characteristics, and the relevance of the implementations analysed in Section 4.8.

2.2.1 Error Detecting & Correcting Codes

In a general context, EDCs and ECCs are used to ensure that the correct data is transferred

over a communication channel. They were developed to avoid data loss or corruption over

noisy channels. For example, if a binary message is sent over a noisy channel, some bits

which were initially 0s in the original message may be flipped to 1s. To ensure that the

correct message is transmitted, some redundant elements are introduced. The added re-

dundancy, while costing some extra data bits to be transmitted, can be used to either

detect that an error occurred, or, in the case of ECCs, to even correct the error (or errors)

which may have been introduced during transmission. In the case of detection only, the

redundancy bits can be checked in order to verify that the correct message has been re-

ceived, by encoding the data one more time and verifying that the redundancy bits match

the one received (only possible for codes where redundancy bits are easily identifiable),

or by using a decoding algorithm. If the considered code has some correction capabilities,

a decoding algorithm can be used too, in order to compute the potential error which may

have occurred, and correct it. However, ECCs can not correct any arbitrary error. They are

limited by their error correction capability, and can only correct up to a certain number of

errors, highly dependent on the size of the introduced redundancy.

In the context of this thesis, EDCs and ECCs are considered for security applications, and

more especially protection against fault injection attacks. A fault can be considered in the

same way as a disruption on a communication channel, since, at a given instant during

the runtime of an encryption, a value is altered, similarly to how a transmitted message

50

2.2 Background on Error Correcting Codes & Other Counter-Measures

over of noisy channel can be modified. In this regard, and especially for this section as

well as Chapter 3, the notion of faults or errors have the same meaning. Both words are

used to describe the disruption that occurs during runtime, being malicious or not.

Some key notions concerning EDCs and ECCs first need to be introduced. Let’s consider a

code C, which may relate to either an EDCs or an ECCs. C is defined over an alphabet A.

The alphabet consists of all the symbols used to express a word. For instance, binary codes

are expressed in binary, as their name suggests, and therefore their alphabet is A = {0, 1}.
Generally, A is a finite field Fq of size q, often a power of a prime number. A code of this

form is denoted as q-ary code (or binary in the case where q = 2). Therefore, a q-ary code

C : Ak → An, which is equivalent to C : Fqk → Fqn in the context of this thesis, is a subset

of size |C| of the vector space Fqn of dimension n over Fq = GF (q). From this definition,

it can be noted that k is the size of the initial data in terms of symbols of A, while n

is the corresponding size of the encoded data. Consequently, the number of redundancy

symbols r is defined as r = n− k. Any word c ∈ C is called a codeword. Additionally, the

distance d of a code is defined as the minimum Hamming distance, in terms of symbols of

A, between two distinct codewords of the considered code C.

d = min
c1,c2∈C
c1 ̸=c2

{∆(c1, c2)} where ∆ is the Hamming distance function (2.16)

A code C can be identified as an [n, k, d]q in order to quickly identify its parameters.

The distance d of a code C defines the detection capabilities of the code. Since, by

definition, the minimum distance between two codewords is d, any word c′ such that

∆(c, c′) < d, with c a valid codeword, is not part of C, and c′ /∈ C is thus a non-codeword.

This means that any [n, k, d]q code has a detection capability of at least d− 1 symbols over

Fq. Similarly, for ECCs, the error correction capability t can be defined according to d. If

an invalid codeword c′ is received instead of c, then the closest valid codeword in terms of

Hamming distance is a good candidate for c, however this candidate may not be unique.

In order for the candidate to be unique, and therefore the correct c, it should be clear from

the definition of d that ∆(c, c′) < ⌊d−1
2 ⌋ should be satisfied. Consequently, t = ⌊d−1

2 ⌋ for

any code of distance d.

51

2 Preliminaries on Fault Attacks & Counter-Measures

Different types of codes exist, however, in this thesis the focus is on linear codes and

security-oriented codes, which are derived from them. A linear code C over a vector

space Fqn , is a vector sub-space of Fqn . That is to say that every linear combination of

codewords of C is a valid codeword. In the case of a linear code [n, k, d]q, the sub-space

is of dimension k. A basis of the sub-space is a set of linearly independent codewords, of

which the linear combination can generate any other codeword of C (for example, the set

of all ci in Equation 2.17). A basis of a linear code is however not necessarily unique.

C =
k−1∑
i=0

aici : ai ∈ Fq ; ci ∈ C (2.17)

For a given basis, it is possible to create a generator matrix of the linear code. Since

any codeword is a linear combination of the k vectors of the basis, then let’s define G as

follows:

G =


c0

c1
...

ck−1

 with {ci = (ci,0, .., ci,n−1)} a basis of C over Fqn (2.18)

Any vector v ∈ Fqk can therefore be encoded by performing a multiplication by the gener-

ator matrix G.

vG = (v0, .., vk−1)


c0,0 c0,1 · · · c0,n−1

c1,0 c1,1 · · · c1,n−1

...
...

...

ck−1,0 ck−1,1 · · · ck−1,n−1

 = c with c ∈ Fqn a valid codeword

(2.19)

Another useful matrix which can define a linear code C is the parity-check matrix H. The

parity-check matrix is the generator matrix of the dual-code of C, denoted as C⊥. C⊥ is a

vector sub-space of Fqn , for which all vectors are orthogonal to any vector of C. In other

words:

52

2.2 Background on Error Correcting Codes & Other Counter-Measures

Definition 2.1. Let C be a linear code over Fqn . Then C⊥, the dual-code of C, is defined as

follows.

C⊥ = {c⊥ ∈ Fqn | c⊥ · c⊤ = 0 ∀c ∈ C}

The resulting dual-code is of dimension n − k and, if H is a parity-check matrix, then it

satisfies cH⊤ = 0F
qn−k

∀c ∈ C. In particular, the parity-check matrix can be used to verify

if an error occurred thanks to the previous expression. Let’s consider an input vector x,

and its corresponding encoded codeword c ∈ C. If an error ϵ occurred, then c is modified

into c′ and can be modelled as c′ = c + ϵ. Unless c′ is also a codeword (e.g c′ ∈ C), then

c′H⊤ ̸= 0F
qn−k

and therefore ϵ can be detected. More precisely, and for a linear code, we

get the following equation:

c′H⊤ = (c+ ϵ)H⊤ = cH⊤ + ϵH⊤ = 0F
qn−k

+ ϵH⊤ = ϵH⊤ = s (2.20)

In this case, s ∈ Fqn−k is called the syndrome of ϵ. The syndrome can be used by a decoding

algorithm to try to correct the error ϵ. However, if ϵ is unknown, which is the case in most

scenarios, s = ϵH⊤ doesn’t have a unique solution (n unknowns, for n−k equations), and

therefore recovering the correct codeword c is not a trivial task. For this purpose, many

different techniques and algorithms exist, but if the error affected less symbols than the

error correction capability of the code, then ϵ, and thus c, are uniquely computable.

A linear code can be defined by both matrices, and thanks to a generator matrix, the

codewords of a linear code C can be easily computed. Yet, the resulting codeword may

be of an unpractical form for some applications. It is possible to express any codeword

with the information portion and the redundancy portions distinct from each other. This

form is called systematic form. C is a systematic code if every codeword is of the form

c = (x,w(x)) where x ∈ Fqk is the information portion and w ∈ Fqn−k is the redundancy

portion. In this case, the generator matrix G of the linear code in its systematic form is

constituted of the identity matrix Ik ∈ Fqk×k and another matrix A ∈ Fqk×(n−k) .

G = (Ik|A) (2.21)

53

2 Preliminaries on Fault Attacks & Counter-Measures

If this is the case, the corresponding parity-check matrix can be easily derived.

H = (−A⊤|In−k) (2.22)

Therefore, expressing a linear code in its systematic form is preferable and such a form

always exists, since a basis of C, and the corresponding generator matrix, can always be

reduced in that way through Gaussian elimination. Example 2.1 shows an example of

conversion to systematic form.

Example 2.1. Consider the Hamming code [7, 4, 3]2. The generator matrix of the code is:

G =


1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1


← l1

← l2

← l3

← l4

Let’s apply Gaussian elimination to G to express the generator matrix of the code in its sys-

tematic form.

Gsytematic =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


← l3 + l4

← l2 + l4

← l1 + l2 + l3

← l2 + l3 + l4

There are different criteria for the efficiency of a code, such as the detection rate, which

will be discussed more in details in Sections 2.2.1.1 and 2.2.1.2, but one important criteria

is the code rate. Implementation-wise, the number of added redundancy symbols can be

an issue, especially in hardware, where resources are constrained. Therefore, the fewer

redundancy symbols are present, the better it is from an implementation point of view.

The ratio between the number of information and redundancy symbols is the code rate

R = k
n . A higher rate hence indicate a more efficient code, since less redundancy symbols

need to be computed.

Finally, and in order to evaluate EDCs and ECCs architectures, let’s define the error mul-

tiplicity as the number of erroneous symbols in the data. If the error ϵ is defined as an

54

2.2 Background on Error Correcting Codes & Other Counter-Measures

additive error, the error multiplicity is the number of non-zero elements of ϵ. The error

multiplicity is especially important for the evaluation of the code, in terms of detection

and correction capabilities, as will be discussed in Section 3.2.

2.2.1.1 Conventional Codes

Many different EDCs and ECCs are used for different applications, however, in the context

of this work, the considered application is security, and more precisely the use of such

codes as counter-measure against different attacks. In addition to dedicated security-

oriented codes, such as the Rabii-Keren codes (RK) [RK17] or the Algebraic Manipulation

Detection codes [CDF+08], some conventional EDCs are also used for security applica-

tions. Conventional codes can be problematic for certain attacks, but have the advantage

to be simpler to implement and less costly. Thus, it is of particular interest to first under-

stand such codes and discuss their drawbacks in comparison to security-oriented codes.

Moreover, conventional codes are used as basic building blocks for security-oriented codes,

for example the Bose–Chaudhuri–Hocquenghem codes (BCH) [BRC60], and are as such

also of particular interest.

One of the first obvious way to protect a sensitive implementation would be to use some

plain redundancy for the critical part of a cryptographic circuit. In 1956, Von Neumann

introduced an ECCs based on n-modular redundancy [VN56]. The principle is simple, in

order to correct an error which may occur during runtime of a component, this same com-

ponent is duplicated n− 1 times. The output of each of the modules is then given as input

to a majority voting system, and the most recurring value is chosen as the correct output.

In this case, n stands for the total number of redundant modules. Figure 2.4 shows a

3-modular redundant decoder, otherwise known as Triple Modular Redundancy (TMR).

TMR ECC are the most commonly used modular redundancy systems. Form Figure 2.4,

it should be clear that if an error occurs in a single module, but the other two are error-

free, then the output will be the correct one. A TMR implementation can therefore handle

a single erroneous module. More generally, an n-modular redundancy ECC can reliably

correct up to ⌊n−1
2 ⌋ errors, in terms of components (similarly to the error correction ca-

pability of linear codes). Despite this, TMR codes are widely used. This is due to the fact

that, while more redundancy implies more correction capabilities, it also implies a higher

55

2 Preliminaries on Fault Attacks & Counter-Measures

Original

Module

Duplicated

Module 1

Duplicated

Module 2

Majority

Voting

System

Corrected

Output

Figure 2.4: Triple Modular Redundancy Decoder [VN56]

implementation cost, which is often undesired. Moreover, in a security context, TMR have

a major flaw. If an attacker is able to inject simultaneously twice the same fault, then the

output of the TMR module would be the faulty output, and the attack would be successful.

Since such attacks have been proven to be mountable in the recent years [SHS16], TMR

should consequently not be used as a counter-measure against fault attacks.

Another simple way to, this time, detect errors, is to introduce a parity check bit at the

end of the data which needs to be protected. This is denoted as a parity code. Parity codes

compute the Hamming weight of the data modulus 2 and append the resulting bit at to

the sensitive data. For example, let’s consider that an attacker is targeting a 4-bit SBox of

an SSAES [CMR05], which is protected by a parity code. If the input is 2 (0010 in binary),

then the output is 5 (0101), and thus the parity bit, if an even parity is considered, is 0

(two ones in the original data). The output of the SBox should therefore be 01010 (the

parity bit is introduced as the least significant bit). If an attacker is able to induce a single

bit flip, for instance on the most significant bit, then the output becomes 11010, and it

is evident that a fault was injected since the value of the parity check bit should be 1

according to the observed data (three ones in the information portion). However, parity

codes suffer from the same drawback as TMR codes, since simultaneous faults can hide

the occurrence of an error. In the case of parity codes, this goes even further, since faults

which affect an even number of bits are undetectable. If we consider the same example

56

2.2 Background on Error Correcting Codes & Other Counter-Measures

as previously, but with an error which flips the first two bits, then the output would be

10010, which is a valid codeword. In terms of physical fault injections, faults which affect

more than a single bit, and especially neighbouring bits, are the most common. Therefore,

parity codes should also be avoided as potential counter-measure against fault attacks.

A related family of EDCs are the Hamming codes [Ham50]. However, contrary to the

parity codes, the Hamming codes are capable of detecting up to two bit errors, and, more

importantly, correcting single bit errors. They are also high rate codes, making them much

more versatile than parity codes. Hamming codes are linear codes [n, k, 3]2. Hamming

codes can be extended to different size of inputs k, but the distance is always 3 (hence

the detection and correction capabilities). Originally, the Hamming codes were defined

according to the parity check bits position and the related bits they checked, but firstly,

it is needed to determined the number of parity bits necessary for a given input size.

Hamming codes require r = ⌊log2(k)⌋ + 1 redundancy bits to encode an input data of

size k. Once the number of required redundancy bits has been chosen, the redundancy

bits are placed at the positions ri = log2(2
i) + 1 ∀i ∈ N∗ | i ≤ r, while the information

portion of the encoded word constitutes the remaining bits. Finally, each ri is the sum

modulus 2 of the bits such that the ith bits of the binary expression of the position is 1 (of

course, not counting ri itself). For example, if x = (x1, .., xn) is the encoded codeword,

r1 = x3 ⊕ x5 ⊕ x7 ⊕ ..., r2 = x3 ⊕ x6 ⊕ x7 ⊕ ..., and so on. Due to the encoding, x can also

be expressed as x = (x1, .., xn) = (r1, r2, x3, r3, x5, .., xn).

In order to better understand the Hamming code, and later their vulnerability in a security

context, let’s consider the example of the Hamming code [7, 4, 3]2, which is a commonly

described and used instance of Hamming (and also taken as an example in the original

paper [Ham50]). As per definition, this Hamming code requires r = ⌊log2(4)⌋ + 1 =

3 redundancy bits (as a linear code, it should be clear that r = n − k = 7 − 4 =

3). Let m = (m1,m2,m3,m4) be the input vector, and x = (x1, x2, x3, x4, x5, x6, x7) =

(r1, r2,m1, r3,m2,m3,m4) the encoded codeword. From the definition of the code:

r1 = x3 ⊕ x5 ⊕ x7 = m1 ⊕m2 ⊕m4

r2 = x3 ⊕ x6 ⊕ x7 = m1 ⊕m3 ⊕m4

r3 = x5 ⊕ x6 ⊕ x7 = m2 ⊕m3 ⊕m4

(2.23)

57

2 Preliminaries on Fault Attacks & Counter-Measures

Following this, if the binary input is m = 0101, then the encoded codeword is x =

010 0101. Let’s now assume that x4 is flipped by an error, then the codeword becomes

x′ = 010 1101. In order to correct a single bit error, it is sufficient to only recompute

the redundancy bits r′′i . The position of the error is then given as a binary value by

r′i ⊕ r′′i (most significant bits ordered from largest to smallest i). In the previous ex-

ample, r′′1 = x′3 ⊕ x′5 ⊕ x′7 = 0 ⊕ 1 ⊕ 1 = 0, r′′2 = x′3 ⊕ x′6 ⊕ x′7 = 0 ⊕ 0 ⊕ 1 = 1,

r′′3 = x′5 ⊕ x′6 ⊕ x′7 = 1 ⊕ 0 ⊕ 1 = 0 and the position of the single error is therefore at

position:

p = (r′3 ⊕ r′′3 , r
′
2 ⊕ r′′2 , r

′
1 ⊕ r′′1)

= (1⊕ 0, 1⊕ 1, 0⊕ 0)

= (1, 0, 0)

p = 4

and the correct codeword is thus indeed x.

Hamming codes are linear codes and can therefore be defined by a generator matrix and a

parity check matrix, and also in systematic form. Consequently, let’s consider the previous

example of the Hamming code [7, 4, 3]2, reordered in its systematic form. As a reminder,

the systematic matrix is as follows.

G = (I4|A) =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

 (2.24)

If this is the case, the corresponding parity-check matrix can be easily derived.

H = (−A⊤|I3) =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 0 1 1 0 0 1

 (2.25)

58

2.2 Background on Error Correcting Codes & Other Counter-Measures

Still following the previous example, if m = 0101, then x = mG = 0101010 (which

is the same value as previously with only the redundant portion being shifted at the

end). Similarly, let’s consider x′ = 1101010, then it is possible to compute the syndrome

z = x′H⊤ = 110 (and it should be noted that a codeword is declared error-free if z = 0F2r
).

z is equal to the first column of H, which means, thanks to the definition of the matrices

and their respective bases, that the error occurred in the first bit. Flipping back the corre-

sponding bit indeed leads to the correction of x′ into x, and goes to show the convenience

of using matrix representation and computation of a linear code.

Hamming codes are still widely used nowadays, for instance for ECC RAM, but also in a

security context, as a counter-measure to mitigate fault injection-based attacks [SMG16,

BKHL20, POTSC+20]. However, Hamming codes are linear codes, and as such, by defi-

nition, any sum of codewords is itself a codeword. This is a major vulnerability in terms

of security. If an attacker knows that a Hamming code is used as counter-measure against

fault attacks, then, if he is skilful enough, he can engineer a fault which is also a code-

word. This error would therefore always go undetected. Let’s take an example, using the

previous matrices (Equations 2.24 and 2.25) and input 4-bit vector m = 0101. In this

case, it is still true that x = mG = 0101010, but let’s assume that the attacker, instead of

injecting the faulty vector 1000000 (similarly to the decoding example), injects the fault

ϵ = 0001111 = (0001)G (and thus is a valid codeword), as he knows about the ECC

counter-measure. Then, since the Hamming code [7, 4, 3]2 is linear, then Equation 2.26

applies.

z = x′H⊤ = (x⊕ ϵ)H⊤ = mGH⊤ ⊕ ϵH⊤ = ϵH⊤ = (0001)GH⊤ = 0F23
(2.26)

As such, the fault injection would go undetected and this is true for any input m ∈ GF (24).

This scenario is also realistic as often a physical fault injection can flip the neighbouring

bits of the targeted bit. Therefore, in this case, if the attacker wanted to flip the fourth

information bit, then it may have also flipped the next three redundancy bits. Moreover,

such an attack scenario can be applied to 4-bit SBoxes protected by the Hamming code

[7, 4, 3]2 (i.e in the case of an SSAES or the LED cipher).

59

2 Preliminaries on Fault Attacks & Counter-Measures

This can be generalised to any linear code, since, in their case, a sum of two codewords is

also a codeword. Consequently, linear codes should not be used in a security context, or

at least with the knowledge that a skilful attacker may be able to completely circumvent

the corresponding EDC or ECC counter-measure which has been implemented, as their

usually lower implementation cost, compared to security-oriented codes, may be a good

trade-off in the case of extremely hardware constrained devices.

The final family of conventional ECC of interest in this thesis is the Bose-Chaudhuri-

Hocquenghem (BCH) codes [BRC60]. BCH codes are [n, k, d]qm linear codes, with q a

prime number and m an integer (as defined in Section 2.2.1). However, in the context of

this thesis, the focus is on the case where q = 2, and hence only BCH codes over GF (2m)

are of interest, but it should nonetheless be noted, for completeness, that BCH codes, in

a broader scope, can be generalised to other finite fields, or even for q non prime. BCH

codes are of particular interest as building blocks for the Rabii-Keren (RK) codes, which

the ECC architectures presented in Chapter 3 are based on.

Without going into details, as the construction of linear codes is not the focus of this

thesis, and the example of the Hamming codes (which is a particular case of BCH codes

over GF (2)) was already discussed, for a given n = 2m − 1 and a chosen distance d, there

always exists a BCH code over GF (2m) [BRC60]. The code can easily be derived from

the primitive polynomial of the considered Galois field, and the corresponding generator

matrix G, and the respective parity check matrix H, can be computed. Moreover, since

BCH codes are linear codes, those matrices can also be expressed in their systematic form,

and is the form which we will consider through out the remainder of the thesis. Once both

matrices have been generated for the considered case, depending on the length of the data

to be protected and the alphabet, the encoded data can be computed by multiplying the

input data by G. As for the decoding process, and the error correction, the syndrome

can also be easily computed by multiplying the encoded codeword by the H⊤ and then

different methods can be used to correct the codeword, as long as the Hamming weight

of the error, in terms of elements of the alphabet, is lower than t = ⌊d−1
2 ⌋. However,

those techniques are usually costly, and in Section 3.3.3 a new method for efficient error

correction will be presented.

60

2.2 Background on Error Correcting Codes & Other Counter-Measures

One of the main advantage of BCH codes over some other codes, such as the Hamming

codes, is their higher error correction capability. BCH codes can be constructed such

that errors of higher multiplicities can be corrected, even though this of course comes at

the cost of a higher number of redundancy symbols. Since they are linear codes, they

achieve this in a rather simple way, as the code matrices G and H can be easily computed.

However, the linearity of BCH codes lead to the same limitations as previously discussed.

That is to say that the sum of two codewords is another codeword. As such, they are also

not directly usable in a security context, if a strong attacker is considered (i.e. able to inject

faults which are codewords). Even so, an interesting property of BCH codes compared to

Hamming codes, which are sometimes used for cryptographic applications, is the fact that

they are codes over GF (2m). This can be particularly useful for the protection of block

ciphers, as their internal states can usually be expressed as blocks of size 2m (for instance,

to protect a non-linear layer constituted of SBoxes).

Of course, there exist many different other conventional codes with good detection and

correction rates, or in general good performances. However, while those codes are par-

ticularly useful in the context of communication over noisy channels, they often have

drawbacks in terms of security. More precisely, and to summarise, if an attacker knows

which conventional code is being used to protect a sensitive cryptosystem, he may be able

to inject faults such that they are undetected by the chosen EDC or ECC counter-measure.

As a consequence, security-oriented codes are necessary.

2.2.1.2 Security-Oriented Codes

Security-oriented codes are EDC or ECC which are aimed to being used to protect crypto-

graphic implementations. They are designed to avoid the common problems of conven-

tional codes, and circumvent different type of attacks, such as fault attacks, even in the

presence of a strongly capable attacker. In order to do so, they satisfy different proper-

ties. One of such properties is the robustness of a code [KKT04]. First, let’s define the

error masking probability. For an EDC C, the error masking probability of an error ϵ is the

probability that the error will be masked by a codeword c ∈ C. It is denoted as Q(ϵ) and

61

2 Preliminaries on Fault Attacks & Counter-Measures

defined as follows.

Q(ϵ) =
∑
c∈C

Pr(c)δC(c⊕ ϵ) (2.27)

Pr(c) is the probability of the codeword c ∈ C, and δC is the characteristic function of the

considered code C.

δC(x) =


0 if x /∈ C

1 if x ∈ C

In other word, Q(ϵ) is the probability that the error ϵ will be undetected by the EDC. If

an error ϵ is never detected by the EDC, then Q(ϵ) = 1. All the errors which are never

detected form the kernel Kd of the code C. Finally, the error masking probability of the

code itself, Q is the maximal error masking probability for all possible errors ϵ /∈ Kd.

Q = max
ϵ/∈Kd

Q(ϵ) (2.28)

Definition 2.2. A code C is called robust if any non-zero error can be detected with a prob-

ability greater than zero. That is to say that, for any error ϵ ̸= 0, Q(ϵ) < 1. Consequently,

Kd = {0} if C is a robust code.

The robustness property of a code C therefore refers to the resilience of the code to the

worst case scenario of undetected errors. Robust codes do not have any error which is al-

ways undetectable, as such, it is much harder for an attacker to find an error vector which

would lead to a successful fault injection attack. This is especially true comparatively to

linear codes. In fact, it should be clear from the definition of robust codes that linear

codes are not robust. Since any codeword can be expressed as a linear combination of the

other codewords, and more particularly, the sum of two codewords is a codeword, then

the kernel of a linear code is Kd = C. A code can also be partially robust.

Definition 2.3. A code C is partially robust if the size of its kernel is smaller than the code

itself: 1 < |Kd| < |C|. Essentially: ∃ϵ | Q(ϵ) = 1.

Partially robust codes, even if not as resilient to cleverly crafted fault injection attacks

(since there exist at least a fault which is always undetected), are still better than non-

robust codes in a security context, and may be less costly to implement.

62

2.2 Background on Error Correcting Codes & Other Counter-Measures

While robust codes seem to be the perfect candidates as a counter-measure against ma-

licious attacks, very few robust codes exist. Only four robust code families are known at

the time of writing: the Quadratic Systematic codes, also denoted as Quadratic-Sum (QS)

codes [KKW07], the Punctured Cubic codes [ALK12, NK14], the Compact Protection Code

(CPC) [RNK19] and the Rabii-Keren (RK) codes [RK17]. Any other robust code uses one

of the previously mentioned codes as a base. The former three robust codes do not how-

ever have any correction capabilities, and are thus restricted to only detection of faults.

The detection of injected fault by robust codes is of course already a step forward in term

of security application, but error correction capabilities can further improve the protection

offered by code-based counter-measures against such attacks. Some partially robust ECC

are available, such as the Vasil’ev code [Vas65], or the Phelps code [Phe83], but only the

newly introduced RK codes are robust and also offer error correction capabilities. The RK

code were as such chosen for the ECC architectures presented in this thesis (Chapter 3),

and are detailed in their own Section 2.2.1.3.

The previously described codes are all deterministic codes, but security-oriented codes can

also rely on some randomness to avoid worst case scenarios and leaking some sensitive

information [CDF+08, WK11, NBD+15, DPW18]. Such codes are not the focus of this

work, but should be discussed nonetheless, as a comparison to the RK codes, and for

completeness of security-oriented code coverage.

Algebraic Manipulation Detection (AMD) codes were introduce in [CDF+08] and later

their application for cryptographic devices was discussed in [WK11]. They are non de-

terministic EDCs/ECCs since they introduce a random element in the encoding process,

and thus require a true Random Number Generator (RNG) to be implemented alongside

the encoder and decoder. The advantage of the AMD codes over conventional codes, for

security sensitive applications, is their resilience to a stronger attacker model. If an at-

tacker knows all the implementation details, and including the (deterministic) ECC used,

and can not only precisely control the injected fault, but also the input of the encryption

scheme, he can therefore also choose the fault-free output of the device under attack.

Clearly, this is a weakness for conventional codes, as stated in Section 2.2.1.1, but the

authors of [WK11] also discuss how this is a vulnerability for robust codes. They point

out that if an attacker is able to control both the input and the injected fault, and has

63

2 Preliminaries on Fault Attacks & Counter-Measures

a complete knowledge of the cryptographic circuit, as well as the ECC counter-measure,

then he has the capability of finding a fault which will be masked. This does not mean

that the fault constructed by the attacker will always be undetected, but it will be for the

chosen input. Thus, the authors argue that, even for a robust code, it is possible for a skil-

ful attacker to mount a successful fault injection attack even in the presence of a robust

code-based counter-measure. While this is true in theory, in practice, it is not always easy

to find such a fault, even with control over the input, and injecting the constructed fault

with a physical fault injector may also be difficult. This is however not completely impos-

sible, and as such AMD codes have an advantage over robust codes in this even stronger

attacker model. Nonetheless, it should be noted that this only takes into account the code

itself, and not the architecture which may be deployed around the ECC. For instance, the

inner-outer code architecture presented in this thesis (Section 3.3.2) would also tackle

this vulnerability.

AMD codes are therefore relevant security-oriented codes, as they provide a stronger se-

curity than conventional codes, but also robust codes. They achieve this stronger security

claims by introducing some randomness into the information portion of the code. This

way, the computed redundancy is not only dependent on the output of the protected cryp-

tographic module, but also on a random data generated by a true RNG. The definition of

an AMD code is based on the definition of security kernel of a code.

Definition 2.4. Let x ∈ GF (2m) be the randomness generated by a true RNG. Then a

(k,m, r) EDC C, where k is the size of the information portion y ∈ GF (2k), m the size of

the random portion and r the size of the corresponding redundant portion, computed by

the function f(y, x) : GF (2k+m)→ GF (2r). The security kernel KS of C is the set of errors

ϵ = (ϵy, ϵx, ϵf) ∈ GF (2k+m+r), for which y exists such that f(y ⊕ ϵy, x⊕ ϵx)⊕ f(y, x) = ϵf

for all x.

KS = {ϵ | ∃y, f(y ⊕ ϵy, x⊕ ϵx)⊕ f(y, x) = ϵf , ∀x} (2.29)

From this definition, a secure EDC in relation to the previously defined attacker model

should therefore have no non-zero errors in its security kernel. This is the definition of an

AMD code.

64

2.2 Background on Error Correcting Codes & Other Counter-Measures

Definition 2.5. A (k,m, r) EDC C is an AMD code if and only if KS = 0GF (2k+m+r).

It is possible to define an analogue error masking probability for AMD codes and, in

[WK11], an example of AMD code based on the generalized Reed-Muller codes and the

extended Reed-Solomon codes, which are both linear codes used as primary building block

for AMD codes, was given, and applied to protect a Galois field multiplier (which is used

for elliptic curve cryptosystems). The authors claim a low area overhead for the imple-

mentation of such an AMD-based counter-measure. The proposed architecture has a 112%

to 155%, which is indeed low, however, this does not account for the implementation of a

true RNG. The implementation cost related to the introduced randomness of AMD codes

was ignored based on the assumption that true RNG are available in most cryptographic

hardware. This is highly dependent on the considered hardware and encryption scheme.

It is true that some encryption algorithm require some random inputs as well, or that

some other counter-measures also need a random number, but not all cipher are built

this way. Additionally, true RNG are hard to implement, especially for highly constrained

devices [Sch08]. Therefore, the area overhead of an AMD code architecture should also

consider the implementation of a true RNG, and not assume that it is already present in

most cryptographic devices. Nevertheless, AMD codes are still strongly capable security-

oriented EDCs, and offer a higher level of security compared to robust codes in the case of

a stronger attacker model.

One more final property of a particular class of security-oriented code, which is of interest

in comparison to robust codes, is the non-malleability of an EDC or ECC. The notion of

non-malleability was first introduced in [DPW18], at the same time as an example con-

struction of non-malleable code. Without going into details, an ECC is non-malleable if

the output of the decoder is either the correctly corrected codeword or a completely inde-

pendent value (i.e. a random value). This property is of particular interest as a secondary

counter-measure property against passive SCA. Passive side-channel, as discussed in Sec-

tion 2.1.1, infer some sensitive information, such as the secret key, via some side-channels,

with or without access to the data itself. If an EDC detects an error, or if an ECC is inca-

pable of correcting an error, a decision has to be made on how to proceed. It can be chosen

to output all zeros, stop the encryption, or many other kind of system-level actions. How-

ever, such actions may lead to some information leakage (see discussion of FSA in Section

65

2 Preliminaries on Fault Attacks & Counter-Measures

2.1.4). Similarly, if the attacker has access to the data, and the output of the decoder is

statistically correlated to the key, even if the ECC architecture outputs such a value, it may

be possible to statistically recover the secret key. Therefore, if the output of the decoder is

completely independent from the processed data (i.e. random), then this kind of attacks

can be prevented. Hence the relevance of non-malleable codes. However, other architec-

tures may be resilient against passive SCA without being non-malleable. Moreover, due to

the required random nature of the output, non-malleable code, similarly to AMD codes,

require the implementation of a true RNG (the proposed architectures of non-malleable

codes are actually based on AMD codes), and even rely on a random oracle to satisfy the

non-malleability properties (as of the time of writing). Due to these factors, non-malleable

codes are theoretically a strong counter-measure against both passive and active SCA, but

they remain difficult to implement in practice.

For either of the previous codes, the true RNG can be attacked. If the attack is successful,

the cryptographic circuit becomes vulnerable to aforementioned attacks. Therefore, the

true RNG needs to be protected as well, increasing further the implementation costs.

In comparison to both AMD codes and non-malleable codes, deterministic robust codes

do not require the implementation of any true RNG or random oracle. They are thus

applicable even to constrained devices, while providing stronger security properties than

conventional codes. More precisely, their robustness property makes renders mounting

successful attacks much more difficult, since no fault is always undetected. The only

requirement for robust codes, but also any other type of EDC or ECC used as counter-

measure against fault attacks, is that parts of the detection or correction module itself is

tamper-proof. This means that, for example, no fault can be injected on the detection flag,

in the case of EDC, or no fault can change directly the corrected code word for an ECC.

This model is however standard, as else any code-based counter-measure can be easily

circumvented (for instance by simply flipping the detection flag bit). Consequently, they

were chosen for the architectures presented in Chapter 3 and as main ECCs for this work.

2.2.1.3 Rabii-Keren Code

The Rabii-Keren (RK) [RK17] codes are a new class of q-ary security-oriented robust codes.

RK codes are constituted of two main parts: a q-ary linear systematic code, and a specifi-

66

2.2 Background on Error Correcting Codes & Other Counter-Measures

cally chosen function over the corresponding field Fq, which provides the robustness prop-

erty. RK codes take advantage of those two components in order to preserve the generally

good properties of the considered linear code, such as the detection and correction capa-

bilities, or even the simplicity of implementation, while providing a higher security level

for cryptographic applications compared to the stand-alone linear code. The RK codes are

the ECCs chosen for all the architectures presented in this work (Chapter 3), due to their

properties and scalability, thus being a good candidate for the automated generation of

counter-measure architecture for cryptographic circuits. Consequently, they are presented

in detail in this section to provide the necessary background for this work architectures.

In order to prove the robustness properties of the RK codes, a metric for the non-linearity

of a function f : Fq → Fq is necessary. In the remainder of this section, q = 2m, unless

stipulated otherwise. This is a standard choice for cryptographic applications. The non-

linearity of a function f : Fq → Fq can be measured by the value of ∆(f), defined as

follows.

∆(f) = max
a∈F∗

q ,b∈Fq

|{x ∈ Fq | f(x+ a)⊕ f(x) = b}| (2.30)

The lower the value of ∆(f), the higher is the non-linearity of f . Moreover, f is perfectly

non-linear if ∆(f) = 1
q . However, in the case of this work, where the considered field is

binary, there are no perfectly non-linear function over Fq. Since the robustness property of

the RK code is tightly tied to the non-linearity of the chosen function, and binary field are

the primary application of encryption schemes, the function chosen for the construction

of the ECC needs to be as non-linear as possible. Therefore, let’s define Almost Perfect

Non-linear (APN) functions.

Property 2.1. If q = 2m and f : Fq → Fq then, in the general case, we have ∆(f) ≥ 2, and

if ∆(f) = 2 then f is an APN function.

Now that a metric for the non-linearity of a function has been introduced, let us construct

an RK code. The first building block of an RK code is an [n, k, d]q linear code C. C must be

in systematic form. That is to say that its generator matrix is of the form G = (Ik|A). The

second part of the code is a bijective function f , which will make the code robust.

Definition 2.6. If f : Fq → Fq is a bijective function, and G = (Ik|A) is the generator ma-

trix of an [n, k, d]q systematic linear code C. A = {aij}k,r with aij ∈ Fq. The corresponding

67

2 Preliminaries on Fault Attacks & Counter-Measures

Rabii-Keren code is denoted C̃, and a codeword can be denoted as c̃ = (x,w), such that

x = (x1, .., xk) ∈ Fk
q is the information portion of the code and w = (x1, .., xr) ∈ Fr

q is the

corresponding redundant portion. Then C̃ is defined as follows:

C̃ = {c̃ = (x,w), wj =
k∑

i=1

aijf(xi)} where f is an APN function (2.31)

Moreover, since f is bijective, C and C̃ are equivalent codes, and thus the RK code also has

a distance of d, same as the linear code C. It should be noted that, if f wasn’t bijective,

this does not hold. Additionally, the constructed RK code is systematic as well. Therefore,

if a non-zero error ϵ = (ϵx, ϵw) would occur such that a codeword c = (x,w) would be

mapped to c′ = (x′, w′) = (x⊕ ϵx, w ⊕ ϵw), then if ϵx = 0Fk
q
, ϵ = (0, ϵw) is always detected.

Otherwise, if ϵx ̸= 0Fk
q
, it should be clear from the definition of the RK code that an error

is masked if:
k∑

i=1

aij(f(xi ⊕ ϵxi)⊕ f(xi)) = ϵwj ∀j (2.32)

While only a bijective function is required for the construction of an RK code, good robust-

ness properties are only given by APN functions over GF (2m) (or more generally highly

non-linear functions). Consequently, only such functions should be used in a security con-

text. If a function f : Fq → Fq is an APN function, then there are two cases: either q = 2m

with m odd or m is even. If m is odd, it can be shown that, thanks to Equation 2.32,

the error masking probability Q(ϵ) of the RK code is smaller than 2
q , while, if m is even,

Q(ϵ) ≤ 4
q for any APN function and all possible errors ϵ (see [RK17]). Consequently, the

RK code is indeed a robust code according the Definition 2.2, and there is no error that is

always undetected. In the case where m is odd, one of the best function to be used, thanks

to its relatively low implementation cost, is f(x) = x3. If m is even, it is possible to use

the function f(x) = x−1 over GF (2m). The latter function was chosen for the architecture

presented in Chapter 3, due to its simplicity of implementation and low implementation

cost.

Finally, RK-based architectures presented in this work may also use either a QS code

[KKW07] or a CPC [RNK19] as a second layer of code (See Section 3.3). QS codes are

68

2.2 Background on Error Correcting Codes & Other Counter-Measures

optimum robust codes constructed directly from the definition of robust codes. The code

is defined as follows. Let x = (x1, ..., x2n) ∈ GF (2(2n)k) with k and n two integers be the

input data, as well as c be the corresponding codeword after a QS code encoding.

c = (x,w) with w = x1x2 + ...+ x2n−1x2n ∈ GF (2k) (2.33)

CPCs are high-rate low-complexity robust codes constructed from a set of i [ni, ki] system-

atic robust codes Ci = {(x,wi)}, where wi is the respective redundancy introduced by each

code. Let’s define r = maxi ri, where ri = ni − ki, and k =
∑

i ki. The corresponding CPC

code C is then define as follows.

C = {(x,w) : w =
∑
i

wi} (2.34)

C is an [n = k + r, k] robust code. Note that each code Ci can be padded with zeros to

ensure correct data sizes.

2.2.2 Other Counter-Measures

The aim of this section is to present a few additional counter-measures against both pas-

sive side-channel and fault attacks. The considered counter-measures are relevant in the

context of the automated AFA framework AutoFault presented in Chapter 4, as possible

use cases for the framework. A brief discussion on physical counter-measures at the circuit

level is given first, followed by an description of masking and the specific case of Domain-

Oriented Masking (DOM) [GMK16]. Finally, nonce-based cryptosystem are presented in

this section, as they offer a protection against fault injection attacks, even though they are

not typically considered as a counter-measure in the strict sense of the term.

2.2.2.1 Physical Counter-Measures

Counter-measures against SCA, both passive and active, can be implemented at the circuit

level. For instance, in order to prevent a malicious attacker from recovering the secret key

of an encryption scheme through the implementation of a DPA or CPA attack, it is possible

to inject some noise into the power supplied to the hardware implementation of the cipher.

69

2 Preliminaries on Fault Attacks & Counter-Measures

This noise renders the analysis of power traces much harder, and thus the success rate of

passive SCA attacks which measure the power consumption of the device lower. This

counter-measure is implemented outside of the hardware implementation of the crypto-

graphic primitive, at the circuit level, and is denoted as Noise-Injector counter-measure

[DMN+17, DMN+18]. More relevant circuit level physical counter-measures in the con-

text of this thesis are shielding [LM06, Tar10] and sensor-based protections [RE04]. Both

protection methods can be respectively categorised as attack prevention and attack detec-

tion physical counter-measures. In the latter case, sensors are placed on the circuit, at

locations which are deemed as critical from a security point of view (for example, at a lo-

cation where a fault injection is known to lead to a successful attack). If the sensor detects

any tampering, then the system has to decide what course of action to take. One may

stop the encryption, proceed to some re-keying or even have some kind of self-destruct

mechanism. Many different kind of sensors can be used to achieve this, such as temper-

ature or voltage sensors, or in the case of protection against laser-based fault injections,

photo-sensors. As for shielding methods, they can be divided into two different types:

passive and active shielding. Passive shielding consists into placing a metal shield over

the sensitive parts of a circuit, as to prevent any EM or optical tampering. However, due

to heat dissipation constraints, it is not possible to cover a complete circuit with a shield,

which is a limitation to this approach. Furthermore, an attacker may be able to remove

the metal protection layer, or circumvent it by other means, such as indirect laser beam

at a different angle. Active shields, on the other hand, are usually constituted of a mesh

structure, which raises a flag if it detects any tampering by being interrupted. In both

cases, as well as in the case of sensor-based counter-measures, the effect can be modelled

as an impossibility to inject a fault at a given location, which, in turn, can be considered in

the fault model of an attack or, in the context of this work, in the AutoFault framework.

2.2.2.2 Masking

At an algorithmic level, one technique which may be used to circumvent SCA is masking.

The idea of masking was discussed and introduced by various papers, such as [CJRR99]

and [AG01], roughly at a similar time. The basic principle is to prevent the correlation of

sensitive values to any side-channel, such as their relation to the power consumption of

70

2.2 Background on Error Correcting Codes & Other Counter-Measures

the device, by introducing a random element and splitting the sensitive values, as well as

computations, into separate instances. In more details, let K = Ki be the secret key of

an encryption scheme and its respective key parts. If no counter-measure against SCA is

implemented, then it may, for instance, be possible to mount a DPA (similarly to Section

2.1.1). If this is the case, the key parts ki can be correlated to the power consumption

of the device and recovered. However, if the values of each ki is randomised at each

encryption, then only the randomised value of the key part can be recovered, which is of

no use for the attacker. Of course, this is a simplified model, but this is the main idea

behind masking.

Secret-sharing approaches are one simple way to implement masking. Let r be a random

number, then it is possible to compute K⊕r = x, in this case r and x are the denoted as the

shares of K, and the value of the key can be easily reconstructed by computing r⊕x = K.

During the encryption, only r or x should be computed at a given clock cycle. Otherwise,

it may be possible to correlate the value of K directly, despite the sharing. Moreover,

this can be generalised to more shares, then each operation should only be computed

with a single share and no multiple shares should be processed in the same clock cycle,

to avoid any leakage. This means that every operation (cryptographic functions), which

is performed during the encryption, needs to process masked values such that correct,

unmasked, values can be recomputed at the end of the encryption. However, it should be

clear that every linear function used in a cipher can easily be masked and unmasked by the

scheme mentioned above, as, if f is linear, f(x⊕ r) = f(x)⊕ f(r). The most difficult part

of the implementation of a masking scheme is the handling of non-linear functions, such

as SBoxes, as they cannot be mapped so simply. A naive method would be to implement

an SBox for each possible random value, and choose the SBox based on the generated

random value. This is costly or even impossible to achieve for highly constrained devices,

therefore, better methods exist and should be employed. Such methods are also often

masking scheme dependent, as the way the mask are applied, and consequently how the

values are unmasked, depends on the specific construction [MPL+11, DCBR+15, GMK16].

Many different masking schemes exist, however, let’s consider the Domain-Oriented Mask-

ing (DOM) scheme [GMK16], since it was presented as one of the most efficient masking

scheme in a recent evaluation of multiple masking techniques [MMSS19], and is also a

71

2 Preliminaries on Fault Attacks & Counter-Measures

case study for the automated validation of counter-measures through the use of AutoFault

(Section 4.8). DOM implementations, as the name suggest, are based on so called share

domains. If a variable x is for instance divided into two shares, they can be denoted as

Ax and Bx such that x = Ax ⊕ Bx (in this case, Ax is for instance the generated random

number, and Bx can be trivially derived). Additionally, another random number is used

to create two shares for another variable y, it can also be expressed as y = Ay ⊕ By. In

this example, A and B are the shared domains, for both variables x and y, and this can

be generalised to any number of shares. More specifically, a DOM implementation with

d+1 shares achieves dth-order of security (i.e. secure against attack which can correlate d

intermediate values to a single side-channel measurement [CJRR99, BGN+14]). Without

going too much into details, as this is not the primary focus of this work, DOM scheme

introduce a re-sharing step if a computation is done between two different domains (cross-

domain operation). While this is trivial for linear operations, the main difficulty for DOM

implementations is to mask non-linear operations (similarly to any masking scheme). To

this end, the authors proposed two main components, a DOM-indep, and a DOM-dep mul-

tiplier. The DOM-indep multipliers require independently shared inputs, but can be im-

plemented at a lower cost, and does not need as much new random variables, as opposed

to the DOM-dep multipliers. Figure 2.5 shows the example of a DOM-indep multiplier. As

previously mentioned, DOM implementations make use of a re-sharing step to avoid leak-

ing sensitive data when a cross-domain operation is performed. In this case, the multiplier

computes q = x · y = (Ax⊕Bx) · (Ay⊕By) = AxAy⊕AxBy⊕BxAy⊕BxBy = Aq⊕Bq. It

is clear that AxAy and BxBy are inner domain multiplication, and thus non-critical, while

AxBy and BxAy are cross-domain operations which may leak some sensitive information.

Therefore, a new share Z0 is introduced and XORed with the previous values, in order to

prevent any leakage. Since the same new share is used for the computation of Aq and Bq,

and in both cases it is only an XOR, it is clear that q = Aq ⊕ Bq, even after the re-sharing

operation. The DOM-dep multiplier is based on the same principle and the authors also

provide an example of protected AES SBox with a DOM implementations.

DOM implementations have many advantages compared to other masking schemes, while

having a comparatively low overhead. They also offer a scalable protection against dth-

order attacks, as they can be generalised to any number of shares. This masking scheme is

72

2.2 Background on Error Correcting Codes & Other Counter-Measures

× × × ×

Ax Ay Z0 By Bx

FF FF

Aq Bq

Domain A Domain B

Calculation

Resharing

Integration

Figure 2.5: First Order DOM-indep GF (2n) Multiplier

73

2 Preliminaries on Fault Attacks & Counter-Measures

therefore of particular interest in the context of this thesis. Furthermore, masking schemes

are only aimed at protecting a hardware implementation of a cryptographic primitive

against passive SCA, but not active ones, such as fault injections attacks. They may how-

ever lead to further weaknesses against such attacks, and the specific case the interaction

between a DOMAES (DOM protected AES implementation) and the framework proposed

in this thesis will be discussed in Section 4.8.

2.2.2.3 Nonce-based Ciphers

A nonce is a "number used once". For cryptographic applications, this means that a number

is generated and used during the encryption process. This number can be either randomly

or sequentially generated. However, in the former case, a failure of the RNG may lead to

the same nonce being re-generated, while a sequential generation (for example using a

counter [Rog04]) ensures that the numbers are not repeated between each encryption. A

nonce can relate to stream ciphers or nonce-based symmetric block ciphers. In the context

of this work, stream ciphers were not studied so far, and the reference to nonce-based

ciphers relates to symmetric block ciphers which use a new nonce for each encryption.

The goal is to provide a stronger security level, at the expense of an RNG. Nonce-based

encryption schemes have a few additional properties compared to more conventional sym-

metric block ciphers, but one characteristic of particular interest is the impossibility for an

attacker to generate pairs of fault-free and faulty ciphertexts dependent on the same in-

puts (since the nonce changes at each encryption). This circumvents differential attacks,

and, for instance, the DFA on the AES presented in Section 2.1.4.2 would be impossible

to mount if a nonce was introduced during the encryption process. However, this advan-

tageous property against differential attacks is only valid if the nonce is used properly,

that is to say not reused or misused. If the nonce would be reused a differential attack

would be possible again, since several pairs of fault-free and faulty ciphertexts could be

generated. Despite this fact, state-of-the-art attack models often consider that the nonce is

misused, or can be forced to be reused. Some models even consider the nonce as known.

As such, these attack scenarios are perfectly valid, or can at least be a starting point for

more complex attack with an unknown nonce model.

74

2.2 Background on Error Correcting Codes & Other Counter-Measures

Recently, the Competition for Authenticated Encryption: Security, Applicability, and Ro-

bustness (CAESAR) took place in order to proposed new secure authenticated ciphers

(encryption schemes which ensure the authenticity of the data). After a few years of

competition and several attacks successfully mounted on most of the competitors, two

nonce-based encryption schemes were chosen as the winner of the CAESAR competition,

for the lightweight applications category: ACORN [Wu16] and Ascon [DEMS16]. While

both ciphers have been carefully designed and have withstood different attacks, in this

work the focus will be on Ascon and its interactions with the AFA framework AutoFault.

Even if purely differential attacks are circumvented in the case of Ascon, since it is a nonce-

based cipher, it is not clear how an AFA would stand against such a cipher, considering

known and unknown nonce fault models, as well as nonce reuse. This will be discussed in

Section 4.8.

As a brief description of Ascon (for Section reference in Section 4.8), it is constituted of

four different phases. The first phase is the initialisation, where an initialisation vector

IV , the nonce N and the secret key K are processed to create the initial intermediate

state. The second main process is the introduction of the associated data A (additional

data mainly used to avoid attacks which would reuse the encrypted message), divided in

parts Ai, to the internal state, if such data is present. Then comes the processing of the

plaintext P (by the processing of its respective parts Pi), and creation of the corresponding

ciphertext C (and the related parts Ci). In this phase, however, the key is not used directly,

but the ciphertext is still dependent on it at this step. The intermediate state is computed

by XORing the intermediate state of the previous phases with the plaintext. Thus, there

is a dependence to the key in this stage too. The last phase, the finalisation, is similar to

Pa Pb Pb Pb Pb PaIV ||K||N

0∗||K

A1 As

0∗||1

P1

C1

Pt−1

Ct−1
Pt

Ct

K||0∗ K

T

Initialisation Associated Data Plaintext Finalisation

Figure 2.6: Ascon Cipher (Encryption)

75

2 Preliminaries on Fault Attacks & Counter-Measures

SPN ciphers, in the sense that SBoxes and permutations are used to compute the output,

constituted of the modified cyphertext and a tag T . Figure 2.6 shows the overall flow of

the Ascon cipher, for an encryption. The last finalisation phase is of particular interest for

AFAs, as the key is processed and a non-linear operation is performed (the substitution

layer, constituted of 5-bit SBoxes, is included the defined permutation operation), which

is once again similar to other, more conventional, SPN ciphers, even though the values are

also nonce-dependent.

76

Chapter 3

Security Oriented Code based Architectures for
Fault Attack Mitigation

In order to protect against the plethora of different fault injection attacks (Section 2.1),

cryptographic circuit designers need to implement efficient counter-measures. Code-based

counter-measures are one way to protect a circuit against fault attacks. They comprise of

Error Detecting Codes (EDCs) and Error Correcting Codes (ECCs). While both conven-

tional code-based counter-measures and security-oriented ones were discussed in Section

2.2.1, this chapter focuses on the investigation of the Rabii-Keren (RK) code at a hardware

level, to mitigate the impact and success rate of fault injection attacks. More precisely, dis-

cussions on the use case of this kind of ECCs (Section 3.1), as well as the limitations of the

conventional evaluation methods for EDCs in a security context (Section 3.2) are given,

before a detailed presentation of the implementation of the RK codes. The implementation

itself is based on the RK codes presented in Section 2.2.1.3, but at a practical level and

with error correction capabilities, which was not the case in the original paper [RK17].

The proposed implementations can be easily scaled to any cipher, thanks to the construc-

tion methods. As such, the architectures presented in this chapter can be automatically

chosen given a cipher and a desired detection rate. Throughout Section 3.3 are presented

the multiple main aspects of the architectures, from the basic implementation, to several

improvements over the base idea. Finally, Section 3.4 presents experimental results for

the architectures against physical fault injections for multiple SPN ciphers.

77

3 Security Oriented Code based Architectures for Fault Attack Mitigation

3.1 Natural Fault & Malicious Fault Scenarios

Code-based counter-measures are implemented according to assumptions on the nature

of the faults they are aimed at handling, but also on the requirements of the design and

the hardware. In this thesis, we consider that faults can be categorised as either natural

faults, or malicious faults, and, depending on the category, as well as the desired pro-

tection, detection or correction may be needed. Recent breakthroughs in coding theory,

such as RK codes [RK17] and CPC [RNK19], laid the theoretical background for physical

implementations of scalable code-based counter-measures for the architectures proposed

in this thesis, which are dependent on the aforementioned assumptions and prerequisites.

Natural faults are caused by factors such as ageing or cosmic rays radiations, and can be

assumed to only affect a small number of bits. In other words, the Hamming weight of

the induced fault is low, and as such, an ECC with low correction capability is sufficient

to deal with naturally induced faults. This is especially true in the case of q-ary ECC

implementations, as a single error is in fact a symbol of q bits. For instance, if a natural

fault affects an SBox of a cipher, it will affect at most the number of bits of this specific

SBox (for instance, 8 bits in the case of the AES). If an ECC is implemented over an

alphabet of the same size (q = 28 in the case of the AES), then only a single error correction

capability is required. Moreover, in this case, the correction of the erroneous values is

enough to counteract natural faults entirely, since the data under attack and only reliability

is required.

By contrast, maliciously injected faults can have a wide-variety of effects and affect either

a larger array of bits, or be extremely precise and limited to as little as a single bit-flip.

This usually comes down to the attacker fault injection set-up. A low cost fault injector,

such as a clock-glitch based injector, will not be able to target a very specific bit in the

circuit, but rather a specific location, and in hope of usable faults, while, in comparison,

costlier equipment, will allow the attacker to stick with a constraint fault model. In terms

of EDC or ECC counter-measure, this means that the chosen code should be able to detect

arbitrary errors with high probability. Correcting the injected fault can also be achieved

by some ECC architectures, however, not for arbitrary faults. In addition, EDC architec-

tures can leak sensitive information on their own, if the designer is not careful [RBIK12],

78

3.1 Natural Fault & Malicious Fault Scenarios

but this specific case isn’t considered in the remainder of this chapter. Another important

aspect in the case of malicious fault, is the possibility for a dual fault injection [SHS16].

An attacker with access to a dual-beam laser set-up can inject a fault in both the ED-

C/ECC component, as well as in the encryption, which may cripple the error detection, or

correction, capability.

In this regard, EDCs can be divided into two categories, reliability oriented codes and

security oriented codes. The former are aimed at correcting natural faults, while the latter

are used to guarantee detection against maliciously injected faults. Reliability oriented

are evaluated in terms of error correction capabilities. For an ECC of minimum distance d,

the error correction capability is defined as t =
⌊
d− 1

2

⌋
(see Section 2.2.1). On the other

hand, since security oriented codes are aimed toward the detection of arbitrary faults,

and not their correction, they are evaluated in term of their error masking probability Q,

which is the probability that an error is not detected by the EDC architecture (Equations

2.27 and 2.28). For a security oriented code, the lower the value of Q, the better, as no

error should go undetected with a high probability. As such, robust codes (Definition 2.2)

are a good choice for security application, as their error masking probability is inferior to

1 by definition.

While the detection of maliciously injected faults is relevant, a lot of security oriented code

implementations do not attempt, or have the capability, to correct the faulty data, even

though it can, for instance, circumvent some statistical attacks, such as SIFA [DEK+18]. In

this regard, the architectures proposed in this chapter provide both detection of any arbi-

trary fault, as well as correction of low multiplicity ones. This allows for an application in

the context of security, as well as reliability, and is a further counter-measure to different

kind of attacks compared to only detection based EDC implementations, while also being

robust. As of the knowledge of the author, they are the first security oriented EDC archi-

tectures to provide simultaneously detection and correction capabilities of faults, being

natural or malicious.

79

3 Security Oriented Code based Architectures for Fault Attack Mitigation

3.2 Limitations of Error Detecting Code Evaluation in Security

Context

How to evaluate EDCs is generally important before finalising a design, and this is espe-

cially true in a security context. A commonly used method to measure the effectiveness of

an EDC implementation is to empirically check the detection rate of the implemented code.

A large number of randomly generated faults are injected into the protected hardware, or

simulated in software. The encoding of the data, or a detection flag, is then checked to

verify if the EDC did detect the fault or not. For such an evaluation, it is important that the

randomly generated faults are approximately uniformly distributed. However, and while

it may be a valid consideration for reliability oriented codes, assuming that maliciously in-

jected faults are uniformly distributed is not realistic. Depending on the the fault injection

setup, an attacker may be unable to accurately inject faults, which may result in a wide

variety of injected faults. This is usually the case for low cost fault injectors. If the attacker

is able to inject very precise and specific faults, the modelling of faults as random for the

evaluation of EDC architectures in the context of security is invalid. For a non-robust code,

the fault may be chosen to be a known fault with masking probability Q(e) = 1, and as

such always undetected.

A low cost, clock glitch-based, fault injector on the SAKURA-G platform (basic version of

the injector detailed in Section 3.4) for instance shows that the fault is distributed close

to uniformly in the case of an injection on the SSAES, while it is not the case for the full

scale AES (Figure 3.1, bytes 3, 4 and 11 have a much higher probability to be faulty).

Similarly, in the case of the fault multiplicity for the same full scale AES implementation,

Figure 3.2 reveals that not only single byte or low multiplicity faults are injected, but

also a significant number of sixteen byte faults. Moreover, a more refined fault injector

was implemented on the LX75 FPGA of the same platform, which exhibited once again a

different distribution pattern for the same implementation of the cipher. This differences

between different injectors and considered ciphers, while expected from a security point

of view, are often not considered in a coding theory context. If, however, the implemented

EDC counter-measure has a weaker detection rate for smaller or larger multiplicity faults,

then this might be overlooked if only random faults are considered.

80

3.2 Limitations of Error Detecting Code Evaluation in Security Context

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100
200
300
400
500
600
700
800
900

1000

Small Scale AES Full Scale AES

Nibble/Byte Position

N
um

be
r

of
 E

rr
or

s

Figure 3.1: Error Distribution for Clock-based Fault Injector on LX9 FPGA

Additionally, only looking at the average detection rate for EDC architectures might also

hide the benefits of using a stronger code. For instance, a circuit designer may consider

using a BCH code over an RK architecture to protect an AES implementation, since the

BCH codes avoid the use of additional functions and are thus slightly less costly to im-

plement. In order to validate his choice, the designer implements both codes and uses a

low-cost fault injector to inject a large number of faults, while recording the detection flag

of the said EDC. The results of such a comparison can be seen in Table 3.1, which would

probably direct the designer to select the BCH code architecture.

However, the RK code is robust, while the BCH code is not, which results in some faults

always being undetected by the BCH code. A mathematical analysis would show that

25616 faults are never detected by the BCH code, while they are detected with a non-zero

probability by the RK code. This is especially important in a security context, where the

goal is to prevent any fault injection. If a fault always goes undetected, then an attacker

could make use of this, and given a sufficiently powerful fault injector, may be able to

specifically target such faults, circumventing the EDC counter-measure. Therefore, if no

mathematical analysis of the chosen code counter-measure is done beforehand, and only

the detection rate based on randomly chosen faults is performed, critical properties of EDC

81

3 Security Oriented Code based Architectures for Fault Attack Mitigation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5000

10000

15000

20000

25000

30000

35000

Error Multiplicity

N
um

be
r

of
 E

rr
or

s

Figure 3.2: Full Scale AES Error Multiplicity for Clock-based Fault Injector on LX9 FPGA

implementations may be missed and just as critical vulnerabilities may be left in the final

design.

Table 3.1: Detection Rate of BCH and RK Codes for Two Fault Injection Campaigns

Experiment # Injections
Detected faults Detection rate
BCH RK BCH RK

1 1000000 999824 999821 99.98% 99.98%
2 10000000 9997515 9997558 99.98% 99.98%

To summarise on the evaluation of security oriented EDCs, the capability of the attacker

should be considered during the design phase, in order to choose the appropriate EDC,

since a wide variety of faults can be injected, and they are dependent on the injection

setup, as well as the implementation of the cipher itself. Additionally, both a mathemat-

ical analysis of the worst case scenarios, as well as an evaluation of the detection rate

are required to assess the effectiveness of the counter-measure, and avoid undetectable

faults. In this thesis, the proposed architectures based on the RK code, for which the

mathematical analysis is available in [RK17, RNK19], are evaluated in the next sections.

82

3.3 Rabii-Keren Code Hardware Architectures

3.3 Rabii-Keren Code Hardware Architectures

Prior to this work, the RK codes were only proposed theoretically and no encoding or de-

coding algorithm were given. Similarly, no error correction capability had been discussed

and the implementation of this robust code had not been evaluated for a practical use

case, in a security context. The architectures in this Chapter are the first proposed imple-

mentations of the RK codes, as a scalable counter-measure against fault injection attacks.

An architecture can be automatically generated for a considered cipher.

In this section, the basic architectures for the RK code implementations are presented first.

An improvement over the basic architectures is proposed next with the introduction of a

second layer of code to handle undetected errors or possible miscorrections. However,

even with this improvement, implementing the RK codes in hardware may be difficult

and costly. In order to reduce the implementation costs, without decreasing the security

level of the counter-measure, an efficient decoding method, the Error Coefficient and

Location Table (ECLT), is introduced in Section 3.3.3. Finally, with the goal to provide an

even better detection rate for the architectures, while remaining scalable to any cipher or

constraints, a modification of the second layer code by a Compact Protection Code (CPC)

is proposed in Section 3.3.4.

3.3.1 Basic Structure of the Rabii-Keren Architectures

The base architecture proposed in this work are based on the RK code constructions de-

scribed in Section 2.2.1.3. The first choice to be made for an RK code, is to choose a linear

code to be the main building block upon which the implementation can be built. The

linear code also needs to be in its systematic form, such that a generator matrix G can be

expressed in the form G = (Ik|A). Even though it is possible to choose any [n, k, d]q sys-

tematic linear code as the primary building block of an RK code (since all linear codes can

be expressed in such a way, see Section 2.2.1), for the architectures presented here, the

choice was made to use a shortened BCH code (a sub-family of the BCH code presented

in Section 2.2.1.1). The shortened BCH codes were chosen as they are easily scalable

for any size of data over binary Galois fields, making them good candidates for security

sensitive applications. Moreover, they have an excellent detection rate and are capable

83

3 Security Oriented Code based Architectures for Fault Attack Mitigation

of correcting errors of multiple sizes, dependent on the code parameters. By setting the

code’s parameters, it is possible to satisfy stricter requirements in terms of detection rate

and correction capabilities, even if this has a hardware cost in terms of area and power.

For example, if a designer of a cryptographic circuit requires a correction capability t = 1,

then since t = ⌊d−1
2 ⌋, he should at least choose an [n, k, 3]q (distance d = 3) shortened

BCH code, and if he requires t = 2, then at least an [n, k, 5]q one. Since the construction

of the BCH codes is well defined and known, a designer can select the corresponding gen-

erator matrix, according to the security requirements, and the size of the data, such that

it fits the cipher being protected. Consequently, thanks to the use of the shortened BCH

codes, the construction of the corresponding RK code architecture can be automated for

any cryptographic primitive.

3.3.1.1 Architecture Overview

Since the chosen linear code for the architecture is a shortened BCH code, it is possible to

construct the generator matrix of the code, in its systematic form, by different methods.

Algorithm 3.1 shows how to construct A, the non-identity part of the generator matrix

G = (Ik|A), from the parity check matrix of the code. This method is well known and is

general for any [n, k, d]q (shortened) BCH code [BRC60]. Once A is generated, and thus

G, it is necessary to proceed to the second step of the RK code, the choice of an APN

function. The APN function (Property 2.1), as discussed in 2.2.1.3, is the second main

component of an RK code, which makes the code robust. Therefore, it is of the utmost

importance to choose a function which is as non-linear as possible, while being simple to

compute and implement.

In this work, the fields considered for the multiple ciphers are either GF (24) or GF (28),

based on the size of the SBoxes in use. The original paper on the RK codes [RK17] states

that, in the case of a Galois field GF (2m), if m is even, then one possible function to be

used is the inversion function f(x) = x−1. This function is not only simple to realise, as

it can be implemented as a Lookup Table (LUT) for small fields, but also low cost for a

large number of ciphers, since the inversion of the considered Galois field might already

be implemented for the considered encryption scheme. For example, in the case of the

AES, the SBoxes can be implemented by computing the inverse of the input data, pre-

84

3.3 Rabii-Keren Code Hardware Architectures

Algorithm 3.1: Construction of A (shortened BCH code)

1 Choose the size of the alphabet, q.
2 Choose the dimension of the code, k.
3 Choose the distance of the code, d.
4 Determine the root field using the rule: qm − 1 > k + (d− 1)m with an m chosen

minimal.
5 Choose b the power of the first root in the sequence of d− 1 consecutive roots of the

generator polynomial. Usually b = 1 is chosen for a simple code, however if b = 0, a
smaller number of redundancy symbols are required.

6 Once d, b, q,m are determined, find r the degree of the generator polynomial.
7 Shorten the code by defining ñ = k + r given the r.
8 Represent the shortened check matrix

Horig,d=


1 αb · · · αb(k−1) αbk · · ·αb(ñ−1)

1 α(b+1) · · · α(b+1)(k−1) α(b+1)k · · ·α(b+1)(ñ−1)

...
...

...
...

1 α(b+d−2) · · · α(b+d−2)(k−1) α(b+d−2)k · · ·α(b+d−2)(ñ−1)

=(Hl|Hr)

9 Compute the check matrix Hd = (Ad | I), where Ad = H−1
r Hl. In this case, Hr is an

invertible matrix since shortened BCH codes are cyclic.

multiplying it by a given matrix and adding a constant. This means that, in such a case,

the inversion module is already implemented, making the inversion function over GF (2m)

a perfect choice as the APN function for the RK code. It should however be noted that,

in the case where m is odd, the function f(x) = x3 can be used, thus not breaking the

generality and the possibility to automatically generate an RK code counter-measure in

the case where a different field is considered (for instance, 5-bit SBoxes, as in the Ascon

cipher [DEMS16]). Similarly, if the considered cipher is not directly divided into states of

smaller sizes via SBoxes or any other functions, the internal state can simply be divided

arbitrarily in a size that divides the size of the internal state itself. For example, let us

consider an encryption scheme which would have a 320 bits internal state, without any

clear sub-divisions. It is of course possible to work over the field GF (24) or GF (28),

similarly to what is presented in this thesis, but it is also possible to generate an RK code

over GF (25). In this case, the information portion of the data would be constituted of

64 symbols of 5 bits each. The choice should however be carefully considered in order to

match possible real world attacks.

85

3 Security Oriented Code based Architectures for Fault Attack Mitigation

Once both the APN function and the generator matrix G are computed, the encoding

of a word can simply be done by first applying the APN function to the data and then

multiplying by the sub-matrix A of G. This results in the computation of the redundant

portion of the data.

The base architecture [KGKP18] is described in Figure 3.3. The original component (e.g.

the encryption module) in this figure is the component which needs to be protected. This

is a design choice. A particular component may be critical and after a careful inspection of

the implementation in the early stages of the design phase, it may have been found that

a fault injection is particularly successful on this component. Another example would just

be a known critical location for fault injection at the algorithmic level for the cipher. For

instance, the SBoxes are a known injection location in the case of the AES (see 2.1.4.2),

and thus it would be beneficial to protect them with an ECC counter-measure. However,

if we still consider the AES, an attack may also be successful if a fault is injected after

the substitution layer (but before the MixColumns operation), and consequently, it may be

necessary to protect more than just the SBoxes. If the choice is made to protect a larger

portion of the circuit, the corresponding predictor component would be larger as well.

This is because the predictor replicates the computation of the original component, but is

implemented in a different way to avoid easy dual fault injections resulting in the same

fault in both components. For example, in the smaller case of protecting an AES sub-

stitution layer, the original component may use Canright’s compact SBoxes [Can05] and

the predictor LUT-based SBoxes. If a complete AES round is protected, the whole round

module of the predictor needs to be implemented differently than the one of the original

component. This would lead to an increase in area and power consumption of the imple-

mentation compared to only protecting the substitution layer. In general, it may only be

possible to protect a smaller portion of the circuit for constrained devices. Nevertheless,

the predictor directly computes the redundancy associated with the duplicated compu-

tation, which is then taken as input to the decoder (non-linear checker and decoder on

Figure 3.3), at the same time as the output of the original component. Both can be faulty,

simultaneously or not (denoted by ϵx and ϵw). The decoder first computes the redundancy

associated with the original component output w′ = (x′)−1 · A. Once both w and w′ have

86

3.3 Rabii-Keren Code Hardware Architectures

Original Component System-Level
Fault-Manager

Predictor

Non-Linear
Checker & Decoder

w′ = (x′)−1 × A
s = w ⊕ w′

x′ = x + εx

w = wPred + εw

Fault
Flag

Corrected
Codeword

System-Level
Information

Alarm
Architecture

Output

Figure 3.3: General RK-based Architecture for Detection & Correction

been computed, the syndrome s associated with the input data can be derived.

s = w ⊕ w′ (3.1)

If s = 0 then no fault occurred, or at least no fault was detected, as a fault may have

been masked. However, the architecture implements a robust code (Definition 2.2), and

therefore this probability is always inferior to 1 (and even significantly lower than 1 in

the case of the RK code). If the syndrome is non-zero, a fault occurred, meaning that

the codeword needs to be processed further. Additionally, a fault flag is raised and for-

warded to the system-level fault manager. At this stage, the proposed architecture already

achieves error detection, but it is possible to take advantage of the shortened BCH code

correction capabilities to, if possible, correct the invalid codeword. In order to do so, the

syndrome can be fed to a decoding algorithm implemented in the decoder. Many decod-

ing techniques can be used, and are available in the case of the BCH codes. Any method

can be used here, however most of them are costly to implement in hardware, and to

circumvent this issue a decoding method aimed at security applications is presented in

Section 3.3.3. With consideration to the chosen decoding method, and consequently the

correction capabilities of the architecture, the injected fault (or a natural fault) may be

correctable. If that is the case, the corrected codeword is forwarded to the system-level

fault manager which, depending on the system-level parameters, can then output the cor-

rected codeword to the next component. In the case where the fault is uncorrectable, the

87

3 Security Oriented Code based Architectures for Fault Attack Mitigation

fault manager itself can decide of the correct course of actions. For example, an all zero

codeword can be chosen as output of the architecture, but this may lead to some infor-

mation leakage. If this is a concern, it would also be possible to implement an RNG and

output a random value instead, this would however increase the implementation costs.

Moreover, the system-level manager can also decide of the course of action to follow if a

fault was detected, no matter if it is correctable or not. If a fault is detected repeatedly, it

may be wiser to stop the encryption module completely or proceed to some re-keying of

the cryptographic hardware. This is however not always possible as some system cannot

simply be stopped, for instance some airplane sub-systems, and in this case, it may be

better to let the encryption continue, while still recording the fault events in a log. This

must however be decided at a system-level and is not part of the architecture itself.

It should also be noted that the decoder is assumed to be tamper-proof, and therefore the

fault flag, as well as the corrected output are assumed to be fault free. Otherwise, an

attacker could directly attack the output of the decoder, or at least flip the detection flag.

This is a common consideration for any EDC or ECC counter-measure, but it needs to be

considered during the design of the cryptographic circuit.

3.3.1.2 Single Decoder Architecture

As proven in the original RK code paper [RK17], in addition to the robustness property,

the code capabilities of the RK code are inherited from the original linear code used. In

this case, the detection rate of the base architecture presented in Figure 3.3, and any of

the architectures proposed in this thesis, is therefore the same as the one of the shortened

BCH code chosen (from the code parameters). This also goes for the correction capability,

and this architecture takes advantage of this fact. For a designer, this means that, if a

higher detection rate is needed, a shortened BCH code with a higher distance can be cho-

sen. Similarly, a larger distance also increases the correction capabilities of the RK code,

and reduces the miscorrection rate. Alternatively, a decoding method which focuses on

smaller fault multiplicities (such as the one in Section 3.3.3) can be implemented to save

on implementation costs. The architectures presented in this work can be automatically

chosen to meet any of those criteria, thanks to the possibility of choosing the distance of

the shortened BCH code, and thus the RK code, but also thanks to the variety of decoding

88

3.3 Rabii-Keren Code Hardware Architectures

methods which can be deployed. Moreover, the architecture itself can be implemented

without any added latency, given a chosen decoding algorithm which can also be com-

puted at runtime.

This general architecture can protect diverse encryption schemes. For example, block

ciphers often have an internal state which can be divided according to the SBoxes which

are used. The substitution layer of block ciphers is often constituted of 4-bit SBoxes, such

as for some variants of the SSAES or the LED cipher [GPPR11], or take a byte as input (i.e.

the AES). While other SBoxes do exist, or other sub-divisions are possible, the example

architectures proposed in this work are aimed at those two most common sizes. It is,

however, possible to generalise the architectures to any sizes (based on the SBoxes, other

operations, or any other consideration).

In this regard, Figure 3.4 details a generic architecture for the protection of S-bit SBoxes,

which was more specifically implemented for 4-bit and 8-bit ones, as well as in the case

of 64-bit (and respectively 128-bit) ciphers (LED, PRESENT, SSAES and full scale AES).

The input data of the ECC architecture is therefore of the size of the internal state of the

ciphers, that is to say also either 64 or 128 bits. The data is then split into 4-bit nib-

bles or bytes before entering the original substitution layer. The division is dependent

on the cipher and the respective size of the SBoxes, but, in contrast, the complete input

data is forwarded to the predictor. In this case, the output of the original component is

thus constituted of 16 S-bit blocks, which is taken as the information portion for the non-

linear checker and decoder. Similarly, the redundancy for the predictor is based on a 16

S-bit symbol words, and fed to the checker. For this architecture, all the computations

are therefore performed in GF (2S), meaning that both the detection and correction ca-

pabilities affect S-bit symbols (i.e. if t = 1, then a single S-bit symbol can be corrected,

corresponding to a single SBox in this case). Finally, the checker computes the syndrome,

as well as the potential corrected codeword, and outputs the relevant flags.

This architecture can be generalised for any layer of S-bit operations, but in this case

the translation of the substitution layer to a codeword is straightforward, making this

architecture an ideal and simple ECC counter-measure for such encryption schemes. The

distance d can be chosen to be any value, at the cost of more computations. In this work,

the focus being on 4-bit and 8-bit SBoxes, let us introduce the following notation for each

89

3 Security Oriented Code based Architectures for Fault Attack Mitigation

Original Component

Predictor

Over GF (24) (or GF (28))
k = 16

d = 3 (or 5)

Non-Linear
Checker & Decoder

Over GF (24) (or GF (28))
k = 16

d = 3 (or 5)

Nibble 1
(Byte 1)

Nibble 2
(Byte 2)

Nibble 15
(Byte 15)

Nibble 16
(Byte 16)

64
(128)

4 (8)

4 (8)

4 (8)

4 (8)

Figure 3.4: Architecture for S-bit SBoxes (here S = 4 or S = 8)

architecture. Si1di2mi3 refers to an architecture for i1-bit SBoxes, a distance i2 for the

code, over a Galois field GF (2i3). Furthermore, the distance considered for the RK code

in the remainder of this chapter is either d = 3 or d = 5, as the detection rate is already

extremely good for d = 5 (see experimental results in Section 3.4). Figure 3.4 illustrates

the architectures S4d3m4, S4d5m4 and S8d3m8.

Table 3.2: Single Decoder Architectures

Architecture
Galois field Symbols Bits Distance Masking Probability
GF (2q) nq kq rq n r d Q

S4d3m4 GF (16) 19 16 3 76 12 3 ≤ 1/8

S4d5m4 GF (16) 23 16 7 92 28 5 ≤ 1/8

S8d3m8 GF (256) 18 16 2 144 16 3 ≤ 1/128

A summary of each architecture from Figure 3.4 is given in Table 3.2. More precisely, the

different sizes, in terms of symbols and bits, as well as the error masking probabilities for a

given distance are detailed. One important fact to note from this table is that the increase

in distance d does not change, the error masking probability of the code (which is inferior

to 1, since the code is robust). However, a larger distance increases the implementation

90

3.3 Rabii-Keren Code Hardware Architectures

costs (more redundant symbols and operations). Consequently, if the hardware constraints

can be met, a larger distance should be chosen to improve the detection rate of the code,

as well as the correction capability.

3.3.1.3 Dual Decoder Architecture

An architecture like S8d3m8 can be employed to protect a 128-bit cipher, such as the

AES. However, operations over GF (28) can be expensive to implement. A solution to

this issue is the implementation of an RK-based ECC architecture over GF (24) instead

of GF (28). This way, the computations remain in a smaller field, and are thus easier,

and it is still possible to correct nibbles-faults with a clever implementation. Figure 3.5

shows the correct way to implement an RK-based ECC over GF (24), which can still correct

faults potentially injected in a complete byte of the internal state. Each output byte of

the original component is split into two 4-bit nibbles. Each even and odd 4-bit nibble,

where an even nibble corresponds to the four least significant bits of a byte, and an odd

nibble to its four most significant bits, is then fed respectively to a distinct non-linear

checker. A similar split is performed inside the predictor (or predictors, dependent on

the implementation choices) and then forwarded to the corresponding checker as well.

In turn, this architecture has two different decoders, instead of a single one, but can

still detect faults which affect a same byte. This would not be the case if, for instance,

the output of the original SBox layer was split into two 64-bit large chunks, each fed

to a dedicated decoder (in that case, only 4-bit faults over each byte could be detected

and corrected). Moreover, this architecture, either S8d3m4 or S8d5m4 in the case of the

experimental results of this work, has a slightly better detection rate than a single decoder

architecture, independently of the distance d (see Section 3.4).

Table 3.3: Dual Decoder Architectures

Architecture
Galois field Symbols Bits Distance Masking Probability
GF (2q) nq kq rq n r d Q

S8d3m4 GF (16) 38 32 6 152 24 3 ≤ 1/8

S8d5m4 GF (16) 46 32 14 184 56 5 ≤ 1/8

Table 3.3 summarises the different sizes and parameters of the dual decoder architectures

in the case of a 128-bit internal state, for both d = 3 and d = 5. Table 3.4 on the other hand

91

3 Security Oriented Code based Architectures for Fault Attack Mitigation

Original Component

Second Predictor

Over GF (24)
k = 16
d = 3

Second Non-Linear
Checker & Decoder

Over GF (24)
k = 16
d = 3

Byte 1

Byte 2

Byte 15

Byte 16

First Predictor

Over GF (24)
k = 16
d = 3

First Non-Linear
Checker & Decoder

Over GF (24)
k = 16
d = 3

128

64

64

4

4

4

4

4

4

4

4

Figure 3.5: Dual Decoder Architecture for 8-bit Sboxes

92

3.3 Rabii-Keren Code Hardware Architectures

shows the complexity of each architecture in terms of number of operations over GF (24).

While the table clearly showcases that a higher distance implies a higher number of oper-

ations (which is expected), and thus an increase in implementation cost, the comparison

between S8d3m8 and S8d3m4 is of particular interest, as both architecture are aimed at

correcting single byte errors, thanks to the choice of distance d = 3, and are potential

candidates for the same application for a designer. The dual decoder setup S8d3m4 has

double the number of divisions, but also requires far less multiplications and additions to

be performed (in bold in the table), compared to S8d3m8. Therefore, it is advisable to im-

plement an RK-based architecture with dual decoders over GF (24) to protect ciphers with

operations performed on byte oriented internal states (unless GF (28) operations mod-

ules are already implemented and available during the computation of the syndrome). A

further discussion on implementation costs, especially in terms of Combinational Logic

Blocks (CLBs) of an FPGA, is available in Section 3.4.

Table 3.4: Complexity of each Architecture in terms of Operations

Architecture Galois field Bits Number of Operations in GF (24)
GF (2q) n r d #DIV #MUL #ADD

S4d3m4 GF (16) 76 12 3 16 48 45
S4d5m4 GF (16) 92 28 5 16 112 105
S8d3m8 GF (256) 144 16 3 16 240 188
S8d3m4 GF (16) 152 24 3 32 96 90
S8d5m4 GF (16) 184 56 5 32 224 217

The general RK-based architecture from Figure 3.3, as well as the two example architec-

tures, either single decoder-based or dual decoders, showcase how to build a robust ECC

architecture for application over diverse ciphers. Each architecture can be generalised to

any cipher and benefits from the good properties of the shortened BCH code, as well as

the robustness property of the corresponding RK, which is of the utmost importance for

cryptographic applications. The construction of these architectures can therefore easily

be automated to fit the need of any hardware implementation of an encryption scheme,

offering a simple way to implement ECC counter-measure with a higher security level,

thanks to the robustness property of the code.

93

3 Security Oriented Code based Architectures for Fault Attack Mitigation

3.3.2 Inner/Outer Code Architectures

The basic RK-based architecture, while perfectly functional, is subject to miscorrection,

similarly to other ECC. This is of course dependent on the implemented correction method,

but it can be a problem in the few cases where a fault is identified as correctable, even

though it is not (i.e. it exceeds the correction capability of the code). In such a case, a

faulty value is passed to the next component, which can result in system-level issues, but

also potential security threats, as the output of the ECC architecture is then faulty in a

way which may still be leverage-able by a malicious attacker. Handling faults which may

result in a miscorrection can be done at a system-level, since the fault was detected faulty

in the first place. In this case, the system-level fault manager could, for instance, proceed

to some re-keying of the encryption scheme. This is however still a limitation of the ba-

sic architecture. Moreover, a highly capable attacker who fully knows the hardware ECC

counter-measure employed, in this case, the RK-based architecture chosen, can potentially

create such a miscorrected or undetected fault for a given input. This case, for which the

author of [CDF+08] first raised a concern (and described in Section 2.2.1.2), assumes a

total control over the input and the capacity to inject very specific fault (i.e. mathemati-

cally constructed undetected faults). The physical realisation of an attack of this kind is

therefore challenging. Nonetheless, a solution to this issue is needed.

A method to avoid miscorrections as much as possible, under strong attacker models,

where the attacker is able to control both the input and the fault at the same time, con-

sists in implementing a second layer of code, which checks if the correction was indeed

successful or potentially incorrect. This improvement is also possible to implement in

the case of the basic RK-based architecture [KGKP18], but first it is important to clearly

identify the different cases which arise during the decoding process of an RK-based ECC

architecture. Fault events for ECCs can be divided into four classes, denoted C1 to C4 in

the remainder of this thesis.

• Class C1: Undetected Faults by the RK code: Faults for which the computed syn-

drome was zero, and thus were undetected by the architecture. Fault events of class

C1 occur when an erroneous codeword is mapped into a valid codeword by the fault.

94

3.3 Rabii-Keren Code Hardware Architectures

• Class C2: Single Faults: In this work, the focus was on the correction of single

faults (i.e. faults affecting a single nibble). Therefore, this class only concerns single

faults in the context of this thesis (decoding method described in 3.3.3). However,

this classification can be extended to any fault which is smaller than the correc-

tion capability of the code, and thus always successfully corrected. Fault events of

class C2 correspond to the case where a fault transforms a codeword into an invalid

codeword, which is still at distance inferior or equal to t =

⌊
d− 1

2

⌋
, the correction

capability of the code (t = 1 in this work).

• Class C3: Recognized as Suspicious: Faults which affect more than t symbols, and

for which the correction algorithm was not able to provide a corrected output.

• Class C4: Miscorrection: If an erroneous codeword, of multiplicity superior or

equal to t, is mapped into an invalid codeword at a distance inferior or equal to t of

a valid codeword, then the correction algorithm will miscorrect the codeword into

an incorrect, but valid, codeword (i.e. the codeword is different from the original

codeword). Any fault of this type belongs to class C4.

This fault classification can also be applied to dual decoder architectures, such as the ones

from Table 3.3. In this case, the classification of a fault event for the overall architecture is

dependent on the impact of the fault on each decoder, and the corresponding classification

for each decoder. Table 3.5 shows how the fault event can be classified for the overall

architecture.

Table 3.5: Dual Decoder Fault Classification

First decoder fault classification
C1 C2 C3 C4

Se
co

n
d

de
co

de
r

fa
u

lt
cl

as
si

fi
ca

ti
on

C1 C1 C4 C3 C4

C2 C4 C2 C3 C4

C3 C3 C3 C3 C3

C4 C4 C4 C3 C4

95

3 Security Oriented Code based Architectures for Fault Attack Mitigation

Faults which belong in class C1 and C4 are critical, as they are not properly dealt with by

the RK-based architectures alone, and correspond to the case discussed at the beginning

of this section, where an attacker may be able to leverage those faults. One possible way

to decrease the probability that a fault belongs in either class C1 or C4 is to implement

an RK code with a higher distance d, while limiting the correction capability t, such that

t ≤
⌊
d− 1

2

⌋
. However, while this solution reduces the number of critical faults for a

specific input, it also implies a higher implementation costs, and worsen the code rate.

Therefore, this is not an ideal solution for constrained devices, and another method to

deal with faults of class C1 and C4 is needed for such applications. A detection mecha-

nism for faults belonging in those two classes would result in a better handling high-risks

faults. To this end, it is only logical to implement a second layer of code, able to detect

potential miscorrections, as well as undetected errors. Two-layers construction are known,

for example the Single Error Correction Double Error Detection (SECDED) Hamming code

[Ham50], which uses a single additional parity bit to improve on the basic Hamming code.

In the remainder of this section, an inner-outer code RK-based architecture construction

is proposed to handle critical faults.

Figure 3.6 shows an RK-based implementation with an added Quadratic-Sum (QS) code

as outer code. The QS code takes the original component data as input and computes

a single additional redundant symbol, in the considered field and per decoder, which is

appended to the input data of the RK code. The RK code then proceeds as in the basic

architecture case. The output of the RK code is then processed by the QS decoder, which

recomputes the redundancy of the QS code and compares it to the symbol computed by

the QS predictor. If both symbols are equal, then the RK correction is assumed to be

successful, else a miscorrection occurred.

The QS code is also a robust code, and consequently, no non-zero fault go undetected

with probability 1, and the probability that a fault goes undetected is dependent on the

input data. In this specific use case, this means that no undetected fault for the RK code

layer, or no miscorrected code word go through the second, outer, layer of code with high

probability, and independently of the input. While theoretically, it would be possible for

an attacker with complete knowledge of the ECC architecture to compute a fault which

goes through both layers of code, either undetected or miscorrected, which would still be

96

3.3 Rabii-Keren Code Hardware Architectures

Original
Component

QS Predictor

RK Predictor

RK Non-Linear
Checker & Decoder

QS Non-Linear
Checker & Decoder

Alarm

Architecture
Output

RK Flag

RK Output

Protected Sub-System System-Level
Fault Manager

System-Level Information

Tamper Detectors

Anomaly Monitors

Consistency Checks

Figure 3.6: Inner-Outer Code Architecture

a threat for the sensitive data processed by the architecture, the number of such faults is

low. Moreover, an attacker is usually unaware of precisely which (key-dependent) internal

state is affected by the fault, and faults which affect the architecture in this way may be

hard to inject. In the case where several fault injections are necessary, this becomes a

daunting task for an attacker. In practice, such an architecture circumvents even more

cases where the attacker knows the full code and can choose the input to create a fault

that is undetected, or miscorrected, by the RK code, rendering even fault injection attacks

with a strong attacker model ineffective.

The inner-outer code architecture achieves a protection mechanism against both fault

events of classes C1 and C4. Figure 3.7 described an extension of the classification of fault

events to include the outer code system-level fault manager. Two new classes of faults are

introduced, S1 and S2, corresponding respectively to a successful detection of fault events

of the two former classes, and unsuccessful detection. In more details, classes S1 and S2

are as follows.

• Class S1: Faults Detected by the Outer code: undetected or miscorrected faults by

the RK inner code layer, which are successfully identified as erroneous by the outer

code.

97

3 Security Oriented Code based Architectures for Fault Attack Mitigation

• Class S2: Faults Undetected by the Outer code: Faults undetected or miscorrected

by the RK inner code, and further undetected by the outer code. This is the worst

case scenario, where both codes did not manage to handle the fault properly.

At a system-level, it is clear that fault events of classes C2 and C3 do not require any

further handling, and that fault events of class S2 are the only potential threats to the

system, and may be used by an attacker.

The choice of the QS code as outer code for this architecture was therefore made with

regard to its robustness property, but also its low implementation cost. Let us denote

the redundancy symbol of the QS code by rQS . For an input data x = (x1, .., xk) ∈
GF (2m)k, and k even (which is the case for the architectures presented in this work),

rQS is computed as defined in Equation 2.33.

rQS =

k
2∑

i=1

x2i−1x2i (3.2)

The hardware cost for such a computation is low, especially if multipliers over GF (2m)

are already available (which is the case for many block ciphers). There is however an

other additional cost to the implementation of an inner-outer code architecture. After

the encoding of the QS code, the input data for the RK code becomes (x1, .., xk, rQS).

The additional symbol means that a slightly larger RK encoder and decoder have to be

implemented as well. This increase in data size is however low, since it is only a single

symbol, especially for larger encryption schemes (for instance, an architecture for the

AES). It would be possible to skip the RK encoding for this specific symbol, and only

compare the predictor output in the QS decoder, thus avoiding the extra symbol for the

RK code. The drawback of doing so, would be that any potential tampering with the

QS predictor would then go undetected, and consequently nullify the improvement of the

inner-outer code architecture in the presence of a strongly capable attacker. The hardware

costs of the inner-outer code architecture are discussed in details in Section 3.4.

Since the computation of the additional redundancy symbol introduced by the QS code can

be done over any Galois field, an inner-outer code architecture can still be implemented

for any cipher. It should be noted that, in the case where k, the number of symbols

of the input data, is odd, other cheap to implement robust codes can be used, such as

98

3.3 Rabii-Keren Code Hardware Architectures

Class C1

Undetected

by the RK Code

Class C2

Single Errors Corrected

by the RK Code

Class C4

Erroneous Correction

by the RK Code

Class C3

Recognised as Suspicious

by the RK Code

Class S1
Recognised as Erroneous
by the QS Outer Code

Class S2
Unrecognised as Erroneous
by the QS Outer Code

No System Level
Handling Necessary

Figure 3.7: Classification of Fault Events at Code and System-Level

Compact Protection Codes (CPC) presented in Section 3.3.4, which can be constructed

to suit any sizes. Therefore, and in the continuation of the basic RK-based architecture,

the inner-outer code architecture can be implemented in an automated fashion for any

cryptographic application, given the correct parameters. Even in the case of extremely

constrained devices, where every gate counts, this improvement can simply be omitted.

Of course, this is at the expense of security, but it can be a necessary trade-off for this use

case.

Finally, compared to AMD codes [CDF+08], the inner-outer code architecture is theoret-

ically vulnerable to a highly capable attacker able to precisely inject a fault and control

the inputs. However, in a practical scenario with physical fault injections, the inner-outer

code architecture protects the cryptographic circuit against even strong attacker models.

Additionally, no true RNG are required, avoiding any risk of RNG failure and making this

architecture a compelling choice for protection against fault injection attacks.

3.3.3 Error Coefficient and Location Table (ECLT) Decoding

The error correction process for the RK-based architecture is the same as for the linear

code it is composed of, with the addition of an APN function at the end (here an inversion

in GF (2m)). This means that, for the shortened BCH code, different correction algorithms

99

3 Security Oriented Code based Architectures for Fault Attack Mitigation

can be applied. Decoding techniques such as the Berlekamp-Massey algorithm [Ber84]

can be implemented, but they are very costly in hardware and better suited for software

decoding. Another decoding method is based on the syndrome and is a better choice for

hardware implementation of RK-based architectures.

Figure 3.8 shows the classical way to perform decoding based on the syndrome. w and ϵw

refer respectively to the redundancy given by the predictor and a potential fault injection

effect on this redundancy. Similarly, x and ϵx are respectively the output of the protected

component and a potential related fault, as defined in Figure 3.3. The matrix Ad is com-

puted as described in Algorithm 3.1, and is used instead of the complete Hd to reduce the

complexity of the implementation. This simplification of the implementation is possible,

since the other half of Hd is the identity matrix and, for this stage of this decoding method,

only the redundant portions are of interest to compute the syndrome. For simplicity sake,

the outer code presented in Section 3.3.2 is omitted here. The difference in the case of

an inner-outer code architecture would be that the input of the inversion function, here

x + ϵx, would be expanded to (x, r) + ϵ(x,r), with r the redundancy added by the outer

code. The rest of the RK decoding process would then be the same.

The decoding process goes through different stages in order to correct the fault which may

have occurred. First, to provide the robustness property of the RK code, the output of the

original component is inverted (more generally, the APN function chosen for the RK code

is applied to the input), before being multiplied by Ad in order compute the redundancy

w′ associated with the input x+ ϵx (shortened BCH encoding). w and w′ are then XORed

into the syndrome s. Equation 3.3 gives the expression of the syndrome, as a vector.

f Ad
Fault Array
Comparator

f−1

w = wPred + εw

x′ = x + εx
w′

s

ε̂x

ŝ
Correction

Flag

x̂

Figure 3.8: Classical Syndrome Decoding Process for an RK-based Architecture

100

3.3 Rabii-Keren Code Hardware Architectures

s = w ⊕ w′

= (Ad · f(x)⊤ ⊕ ϵw)⊕ (Ad · f(x+ ϵx)
⊤)

s = Ad · (f(x)⊤ ⊕ f(x+ ϵx)
⊤)⊕ ϵw

(3.3)

If s = 0, then no fault were detected (i.e. ϵx = 0 and ϵw = 0), and the data can be

forwarded to the next component. If this is not the case, then a fault occurred and the

decoder attempts to correct it. Within the error correction capability t of the RK code, each

possible fault of multiplicity inferior or equal to t can be associated to a unique syndrome.

Therefore, in order to correct the invalid codeword, s is compared with an array of faults

ϵ̂ = (ϵ̂x, ϵ̂w), and if a match is found, then the codeword is corrected as follows.

x̂ = f−1(f(x⊕ ϵx)⊕ ϵ̂x) (3.4)

Note that, in this case, the potentially faulty redundancy w ⊕ ϵw can also be corrected by

XORing it with ϵ̂w. Moreover, in the context of this work, since f(x) = x−1, then f−1(x) =

f(x) = x−1. If the fault multiplicity was inferior or equal to the correction capability of the

RK code, then x̂ is successfully corrected (x̂ = x). Otherwise, a miscorrection occurred.

The classical syndrome decoding method allows for correction of faults of multiplicity up

to t, the correction capability of the code, but they require the computation of the fault

array for matching with the syndrome. On the one hand, this computation can be done at

runtime, saving memory space at the price of area and potentially latency, depending on

the implementation. On the other hand, the array can be pre-computed, but then needs to

be stored on the device. Since the array can be very large, this solution would have a high

memory cost. Both methods are therefore costly, and a more efficient decoding technique

for hardware constrained scenarios is needed.

The main drawback of syndrome decoding in term of hardware implementation is the

size of the table which needs to be computed for syndrome matching. In order to reduce

the cost of such a table, a smaller Error Coefficient and Location Table (ECLT) can be

used, with only small modification to the decoding algorithm [GKKP19]. Algorithm 3.2

describes a new decoding algorithm which only requires the smaller ECLT, instead of a

101

3 Security Oriented Code based Architectures for Fault Attack Mitigation

complete table for containing every possible fault and its matching syndrome. This new

decoding method is aimed at single faults (i.e. faults of multiplicity 1). In a security

context, fault injection attacks generally target a single symbol of an intermediate state.

This is because, as explained in Section 2.1, precise fault injections lead to less overlapping

in the fault propagation, and thus the possibility to generate better equations for solving.

Consequently, the correction of single faults is of the utmost importance, and focusing

on such low multiplicity faults reduces the size of the decoding table, as less entries are

needed (even without the implementation of an ECLT). In the remainder of this chapter,

ECLT-based decoding is thus only implemented for single fault corrections. Faults of larger

multiplicity can however still be detected, since the syndrome is intact, meaning that the

ECLT decoding does not impair the detection capability of the architectures.

Algorithm 3.2: Error Coefficient and Location Table (ECLT) Single Fault Decoding

1 Compute s = Ad · (f(x)⊤ ⊕ f(x+ ϵx)
⊤)⊕ ϵw

2 Normalize the first (m+ 1) symbols of the syndrome ŝ = (s1sj ,
s2
sj
, ..., sm+1

sj
).

3 Find normalized syndrome in ECLT and determine fi and i.
4 If found, correct the fault at position i: x̂i = f(f(xi ⊕ ϵxi)⊕ sjfi).
5 Update the syndrome s̃ = s⊕ sjfihi.
6 If the syndrome is equal to zero, there was a single fault. Else, more faults occurred.

ECLT-based RK Architecture - Case Distance d = 3

In order to better understand the improvement brought by the ECLT, the case where d = 3

is considered first. The initial step in the proposed ECLT-based decoding (Algorithm 3.2),

which is the same as the previous method, is to compute the syndrome s. Once s is

computed, the first non-zero symbol of s, denoted sj , is extracted and the syndrome is

normalised into ŝ = (s1sj ,
s2
sj
, ..., sm+1

sj
) (here, m is from line 4 of Algorithm 3.1). In the case

where d = 3, the initial steps therefore consist of normalising the complete syndrome,

since the syndrome is constituted of m + 1 = 3 symbols. The decoding algorithm then

reads through the ECLT to find the corresponding normalised syndrome, and if there is

a match, fetches the corresponding fault position i and coefficient for fault correction fi.

The coefficient is multiplied by sj and XORed with the symbol of the faulty data at position

i in order to correct the fault. Finally, the syndrome is updated to verify that the fault has

102

3.3 Rabii-Keren Code Hardware Architectures

been corrected. If s ̸= 0GF (2m), more faults occurred and the correction was invalid. The

ECLT-based decoding algorithm is therefore only slightly different from the more standard

decoding method of Figure 3.8, as it only introduces very few more operations (namely

an inversion and a few multiplications, see Figure 3.9 for comparison) and a new table.

Horig,3 =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 11 5 9 3 1 5 0 13 7 3 3 8 11 6 11 4 6 15
0 7 11 2 2 1 3 4 3 9 4 10 7 2 12 4 7 0 1


Matrix 3.1: Original non-systematic BCH check matrix Horig,3

Let us now detail why such a decoding method is valid, especially why ϵi = sjfi, and

how to construct the ECLT. Recall the parity check matrix in its systematic form, H3 =

(A3 | I) (used instead of Horig,3 in Matrix 3.1). By definition of the BCH codes, we have

s = hiϵi, where i is the position of the fault ϵi, and hi the corresponding column of H3.

It should be noted that this reasoning can be extended to larger distances and faults of

higher multiplicities, even though the focus in this work is only on single faults. Let us

now consider the first non-zero coefficient of hi, gi. Since gi ̸= 0GF (2m), it is possible to

normalise hi into ĥi =
hi
gi

, and thus we also have the following.

hi = ĥigi (3.5)

The syndrome s can now be expressed in terms of ĥi and gi.

s = hiϵi ⇔ s = ĥigiϵi (3.6)

The normalised syndrome ŝ = (s1sj ,
s2
sj
, s3sj) =

s
sj

gives us s = ŝsj . Moreover, by definition

ŝ = ĥi, therefore we get the following equation.

s = ĥigiϵi ⇔ ŝsj = ĥigiϵi

⇔ sj = giϵi

s = ĥigiϵi ⇔ ϵi =
sj
gi

(3.7)

103

3 Security Oriented Code based Architectures for Fault Attack Mitigation

f Ad

Normalisation

ECLT
Syndrome
Update

f−1

w = wPred + εw

x′ = x + εx
w′

s

sj

ŝ

i Correction
Flag

fi

εi

x̂

Figure 3.9: Low-Complexity ECLT-based decoder

104

3.3 Rabii-Keren Code Hardware Architectures

The inverse of gi in GF (2m) can be denoted as fi.

ϵi = sj · g−1
i = sj · fi (3.8)

The fault can therefore indeed be expressed in terms of the first non-zero value of the

syndrome s, its position i, and a coefficient fi. Consequently, an ECLT can be generated by

computing fi, and storing the position i, for every possible ŝ = ĥi. Moreover, during the

decoding process, extracting sj and matching ŝ is simple, and only consists of a limited

overhead in terms of operations, while using a much smaller table compared to more

classical syndrome decoding techniques. The ECLT is in fact a table of size n · ((m+1)+2)

(m from Algorithm 3.1). Each row contains a normalised syndrome ŝ (m+1 symbols), the

position i and the coefficient fi. For instance, a table for the standard decoding method of

Figure 3.8, in the case of an SSAES SR∗(10, 4, 4, 4) (see Section 4.1), and a [19, 16, 3]16 RK

code, would be constituted of n · (q − 1) entries. Each entry would be the concatenation

of a syndrome, a position and the value of the fault to be corrected. In terms of bits, this

would amount in 19·15·(12+5+4) = 19·15·21 = 5985 bits. In comparison, an ECLT-based

decoder (Figure 3.9) would only have a n · (9 + 5 + 4) = 19 · 18 = 342 bit table, or more

than 17 times smaller. Note that the number of bits for the normalised syndrome ŝ is only

9, since, thanks to the normalisation, the first symbol is always at most 1.

In the case of larger ciphers, the reduction is even more significant. For example, for a

full scale AES, and thus with 8-bit SBoxes, the conventional table would have n · (q− 1) =

19 ·255 = 4845 entries of 37 bits, against only 19 entries of 30 bits for the ECLT (more than

300 times smaller), further reinforcing the benefits of such an approach for decoding.

Example 3.1. In this example, an ECLT-based decoder for a [19, 16, 3]16 RK architecture is

considered. For simplicity sake, a single fault is injected at the output of the component to

be protected, for instance the substitution layer, and the output of the predictor is considered

untouched. On the one hand, the faulty output is as follows.

x′ = x⊕ ϵx = (9, B, 9, 3, B,3, 2, 2, C, 7, 1, D, 1, 9, 3, 5)

105

3 Security Oriented Code based Architectures for Fault Attack Mitigation

Table 3.6: ECLT for a [19, 16, 3]16 RK Code Architecture

ŝ i fi
1 A C 0 7
1 9 1 1 9
1 D 6 2 A
1 C 4 3 9
1 F 5 4 B
1 E 5 5 A
1 E 1 6 E
1 D 0 7 C
0 1 D 8 C
1 A 3 9 8
1 6 D 10 A
1 5 8 11 C
1 1 D 12 D
1 5 3 13 7
1 6 5 14 2
1 E 7 15 8
1 0 0 16 1
0 1 0 17 1
0 0 1 18 1

On the other hand, the predictor computes the correct value.

x = (9, B, 9, 3, B,E, 2, 2, C, 7, 1, D, 1, 9, 3, 5)

The corresponding redundancy is w = (3, 9, 5). The fault itself only affects the sixth symbol

of the data (highlighted in bold).

The following for the decoding of x′ steps refer to the steps of Algorithm 3.2.

1. First, the syndrome s is calculated. To do so, x′ is first inverted and then multiplied by

A3, in order to get the corresponding redundancy w′. In this case, w′ = (0, 8, A), and

thus s can be computed as follows.

s = w ⊕ w′ = (3, 9, 5)⊕ (0, 8, A) = (3, 1, F)

106

3.3 Rabii-Keren Code Hardware Architectures

2. Since for this example d = 3, then (m+ 1) = r = 3 and thus the complete syndrome is

normalised. The first non-zero value of s is sj = 3.

ŝ =
s

sj
= (

3

3
,
1

3

F

3
) = (1, E, 5)

3. Table 3.6 is the ECLT for a [19, 16, 3]16 RK code. A match for ŝ is found in the table,

and the corresponding position and coefficient are i = 5 (which correspond to the sixth

symbol of the original vector, and indeed the fault position) and fi = A.

4. The effect of the fault after the inversion, denoted ϵ (note that ϵ ̸= ϵx), can now be

computed. ϵi = sj · fi = 3 ·A = D and thus:

ϵ = (0, 0, 0, 0, 0, D, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

With this value of ϵ, the data can be corrected after a final inversion (in the following

equation ϵ is truncated, since the corrected symbol is part of the information portion).

x̂ = f(f(x⊕ ϵx)⊕ ϵ)

= f((2, 5, 2, E, 5,E, 9, 9, A, 6, 1, 4, 1, 2, E,B)

⊕ (0, 0, 0, 0, 0, D, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

= f((2, 5, 2, E, 5,3, 9, 9, A, 6, 1, 4, 1, 2, E,B))

= (9, B, 9, 3, B,E, 2, 2, C, 7, 1, D, 1, 9, 3, 5)

x̂ = x

5. Finally, the syndrome is updated.

s̃ = s⊕ sjfihi = (3, 1, F)⊕D · (12, 4, 9) = (0, 0, 0)

6. Since the syndrome is zero, a single fault occurred and was successfully corrected.

107

3 Security Oriented Code based Architectures for Fault Attack Mitigation

ECLT-based RK Architecture - Case Distance d > 3

In the case where d = 3, it is clear how to proceed for the correction of single faults, since

the correction capability of the code is by definition t = 1 and the complete syndrome is

used for decoding. However, while a small distance d = 3 is sufficient for the correction

of single faults, choosing an RK code with a distance d > 3 has some advantages in

combination to the ECLT decoding method. Namely, if the distance is larger than 3, then

decoding with an ECLT allows to reduce even further the size of the table, especially for

single faults, and the number of miscorrections is reduced (i.e. miscorrections are avoided

up to d− 2 symbols, thanks to the syndrome update function).

In order to evaluate the benefits of an ECLT-based decoding, the correctness of decoding

first needs to be generalised for any distance d > 3. In this regard, the following theorem

shows how the ECLT for single fault correction can be generalised to any RK architecture.

Theorem 3.1. The first (m+1) symbols of the syndrome s, uniquely define the location of a

single fault and its value.

Proof. Consider two faults ϵ1 and ϵ2 of multiplicity 1, such that ϵ1 ̸= ϵ2. Let us denote by

s1 and s2 the respective syndromes associated to ϵ1 and ϵ2.

s1 = Hd · ϵ⊤1 and s2 = Hd · ϵ⊤2

Since the code is a linear code of distance d > 3, s1 ̸= s2.

Let us define s1[0:m]
and s2[0:m]

the partial syndromes constituted of the first (m+1) symbols

of their respective complete syndromes, and assume that s1[0:m]
= s2[0:m]

(i.e. the partial

syndromes do not uniquely define the fault). Then, it is possible to write the following

equation.

Hd · (ϵ1 ⊕ ϵ2)
⊤ = (0m+1,∆s)

⊤ ⇔ (Ad|Id) · (ϵ1 ⊕ ϵ2)
⊤ = (0m+1,∆s)

⊤ (3.9)

∆s ∈ Fr−(m+1)
q (with r the number of redundant bits of the code) relates to the difference

of the remaining symbols of the syndromes. Moreover, by definition Ad = H−1
r Hl and

108

3.3 Rabii-Keren Code Hardware Architectures

Horig,d = (Hl|Hr) (Algorithm 3.1). Therefore:

Hr · (Ad|Id) · (ϵ1 ⊕ ϵ2)
⊤ = Hr · (0m+1,∆s)

⊤

⇔

Horig,d · (ϵ1 ⊕ ϵ2)
⊤ = Hr · (0m+1,∆s)

⊤

⇔

Horig,d · (ϵ1 ⊕ ϵ2)
⊤ ⊕Hr · (0m+1,∆s)

⊤ = 0Fr
q

(3.10)

Therefore, at least some columns of Horig,d are linearly dependent, which is impossible

since Horig,d is the parity check matrix of a linear code of distance d. Consequently, for

any faults ϵ1 and ϵ2 of multiplicity 1, s1[0:m]
̸= s2[0:m]

, and thus the first (m+ 1) symbols of

the syndrome of the RK code uniquely define a single fault.

Moreover, this property can also be seen through the expression of the Horig,d and Ad

matrices. By definition of the BCH code, the top left (m + 1) · n sub-matrix of any parity

check matrix Horig,d is in fact Horig,3 (see Matrix 3.2 for an example of a [23, 16, 5]16 RK

code), and even though Ad ̸= A3, the first (m + 1) rows of any Ad have the property

that any two or less columns are linearly independent (as can be seen in Matrix 3.3, also

proving Theorem 3.1 for the case of a [23, 16, 5]16 RK code).

Horig,5 =



1 1

1 11 5 9 3 1 5 0 13 7 3 3 8 11 6 11 4 6 15 13 3 10 6
0 7 11 2 2 1 3 4 3 9 4 10 7 2 12 4 7 0 1 15 12 12 6

1 5 3 5 13 3 8 6 4 15 3 6 0 1 10 15 15 7 8 9 8 5 9
0 11 2 3 3 4 7 12 7 1 12 6 11 3 9 12 11 0 4 14 9 9 15

1 9 5 7 8 11 15 10 0 10 15 11 8 7 5 9 1 1 9 5 7 8 11
0 2 3 9 7 4 1 12 11 11 12 1 4 7 9 3 2 0 2 3 9 7 4



Matrix 3.2: Original non-systematic BCH check matrix Horig,5 (in red Horig,3)

In the general case of an RK architecture, it is therefore sufficient for single fault correction

to only consider the first (m + 1) symbols of the computed syndromes. Nonetheless, the

detection of faults of larger multiplicity is still handled by the complete syndrome of size

r. This implies that the better detection rate (see Section 3.4) can be maintained for

distances d > 3, while the ECLT decoding can be applied for single fault corrections,

109

3 Security Oriented Code based Architectures for Fault Attack Mitigation

A⊤
5 =



1 12 0 15 0 14 13 6 15 12 3 9 15 10 0 15
11 12 12 3 15 8 8 2 5 2 2 15 10 13 10 3
5 2 12 10 3 12 4 5 4 12 13 9 9 14 13 12
10 4 2 0 10 5 7 13 9 5 1 8 5 1 14 1
7 8 4 9 0 6 0 6 6 11 12 11 3 6 1 5
15 15 8 14 9 5 1 4 12 14 9 2 1 15 6 11
12 0 15 0 14 13 6 15 12 3 9 15 10 0 15 14



Matrix 3.3: Matrix A5 derived from Horig,5

which are usually the faults which are injected by a malicious attacker, thus reducing the

hardware implementation costs. Additionally, the ECLT can be extended to faults of larger

multiplicities at the cost of the table’s size. In this case, the first (m + 1) symbols are

not sufficient to uniquely define a fault of higher multiplicity, but, for instance, the first 7

symbols would be sufficient to correct any fault of multiplicity inferior or equal to 2, for

an RK architecture of distance d ≥ 5 and m = 2. In this work, this case has however not

been implemented, since the faults the architectures were aimed at were single faults.

In conventional syndrome decoding, for an [n, k, d]q RK code, a table of (q− 1)n entries of

r log2 q︸ ︷︷ ︸
syndrome

+ log2(n)︸ ︷︷ ︸
error−location

+ log2 q︸ ︷︷ ︸
error−value

bits would be needed. In the general case for an ECLT-based decoder, and for the same

code, only a table of k + (m+ 1) entries of

(m) log2 q + 1︸ ︷︷ ︸
syndrome

+ log2(n)︸ ︷︷ ︸
error−location

+ log2 q︸ ︷︷ ︸
error−value

bits is sufficient to correct single faults. For instance, in the case of a [23, 16, 5]16 RK

architecture, the conventional method would require 15 · 23 · (7 · 4+ 5+4) = 12765 bits to

be stored, against only 19 ·(9+5+4) = 342 bits for the ECLT. Consequently, an ECLT-based

decoder reduces significantly the hardware cost of an RK architecture, for any chosen

distance for the considered code, allowing the implementation of this counter-measure on

more constrained devices.

110

3.3 Rabii-Keren Code Hardware Architectures

Table 3.7: ECLT for a [23, 16, 5]16 RK Code Architecture

ŝ i fi
1 B 5 0 1
1 1 7 1 A
0 1 1 2 A
1 B F 3 8
0 1 B 4 8
1 B 7 5 3
1 6 3 6 4
1 E 8 7 7
1 E 6 8 8
1 7 1 9 A
1 F A 10 E
1 D 1 11 2
1 F 4 12 8
1 3 4 13 C
0 1 3 14 C
1 B A 15 8
1 0 0 16 1
0 1 0 17 1
0 0 1 18 1

Example 3.2. Similarly to Example 3.1, let us consider the following inputs, for a [23, 16, 5]16

ECLT-based RK architecture and correct a single fault (shortened example).

x = (5, 5, 0,2, D,C, 1, 2, A,C,B,D,E,D,C, 4)

w = (A,F, 2, B, 4, 6, 8)

x′ = (5, 5, 0,6, D,C, 1, 2, A,C,B,D,E,D,C, 4)

1. Computation of the syndrome s: w′ = (F,E, 4, B, 3, D, 8) and thus:

s = w ⊕ w′ = (A,F, 2, B, 4, 6, 8)⊕ (F,E, 4, B, 3, D, 8) = (5, 1, 6, 0, 7, B, 0)

2. Normalisation (first (m+ 1) symbols of s): sj = 5 (first non-zero symbol of s).

ŝ =
s

sj
= (

5

5
,
1

5

6

5
) = (1, B, F)

111

3 Security Oriented Code based Architectures for Fault Attack Mitigation

3. ECLT matching: From the table, the fault’s position is i = 3 and the coefficient is

fi = 8.

4. Correction of the fault: Computation of the fault effect:

ϵi = sj · fi = 5 · 8 = E

ϵ = (0, 0, 0, E, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

The data can then be corrected:

x̂ = f(f(x′)⊕ ϵ)

= f((B,B, 0,7, 4, A, 1, 9, C,A, 5, 4, 3, 4, A,D, 8, 3, D, 5, E, 4, F)

⊕ (0, 0, 0, E, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

= f((B,B, 0,9, 4, A, 1, 9, C,A, 5, 4, 3, 4, A,D, 8, 3, D, 5, E, 4, F))

= (5, 5, 0,2, D,C, 1, 2, A,C,B,D,E,D,C, 4)

x̂ = x

The ECLT-based decoding method can be employed in conjunction with the inner-outer

code architecture from Section 3.3.2. Moreover, an ECLT-based architecture is scalable,

since it can be applied for any distance d. That is to say, with regards to the device con-

straints and the security level required for a given implementation, a designer can choose

to use an RK code with a higher distance, which would provide a better detection rate, but

also lower the number of potential miscorrections, at only a slightly higher hardware cost

(the size of the ECLT remaining the same). Or, if the device is highly constrained, an ECLT-

based architecture with a distance d = 3 can be implemented. The generation of one or

the other can be automated, and only the ECLT itself needs to be precomputed prior to the

implementation. Overall, this new decoding method, aimed in this work at the correction

of single faults, is therefore optimised for constrained hardware implementations.

112

3.3 Rabii-Keren Code Hardware Architectures

3.3.4 CPC based Outer Code

The detection rate of the previous RK architectures is greater if a larger distance is chosen

for the implementation (see 3.4). However, choosing a base code with a larger distance

also implies a higher implementation cost, as more operations are performed and slightly

larger values need to be stored. The inner-outer code architectures from Section 3.3.2

can detect masked faults, as well as miscorrections, but the original second layer of code,

even though efficient in this regard, was not scalable, since it used a fixed QS code. For

constrained devices which would still require a higher detection rate, there is therefore

a need for a scalable inner-outer code architecture. In this section, the original QS outer

code is replaced by a Compact Protection Code (CPC), which are also robust codes, in

order to offer a scalable inner-outer code architecture [GKKP20], with better detection

rate than the original QS-based one. The overall inner-outer code architecture remains

the same as Figure 3.6.

While CPC [RNK19] can be implemented in many different ways (see Equation 2.34),

in this work, for simplicity of computation, as well as a lower hardware cost, Punctured

Cubic (PC) codes [ALK12] are used as ground codes for the CPC. Let us denote by rCPCi

the redundancy introduced by the outer CPC, where the index i refers to the number

of symbols composing the redundancy in GF (2m). In order to compute rCPCi , the non

punctured value of the code needs to first be calculated. For an input data x = (x1, .., xk) ∈
GF (2m)k, the value of the non-punctured code, denoted vnpc, is computed as follows.

vnpc =

k
4∑

i=1

(x4i−3, x4i−2, x4i−1, x4i)
3 (3.11)

The cubic function is computed in GF ((2m)4) (i.e. over 4 symbols), and hence the

result is also a value vnpc ∈ GF ((2m)4), which can also be expressed in GF (2m)4 as

vnpc = (v1, v2, v3, v4) | vi ∈ GF (2m) ∀i ∈ N. rCPCi is then derived by puncturing

vnpc into i symbols of GF (2m). That is to say, rCPCi = (v1..i) ∈ GF (2m)i (for instance

rCPC2 = (v1, v2)). For all the ciphers considered in this work, k is always divisible by 4,

and therefore such a CPC can be computed. In the case were k would not be divisible 4,

the construction from Equation 3.11 can be generalised to any number of symbols (i.e.

113

3 Security Oriented Code based Architectures for Fault Attack Mitigation

any i). Moreover, it is also possible to puncture the code in a number of bits which is

not a multiple of m. This case is however not considered in this chapter, as a redundancy

in terms of symbols was implemented for all the architectures from Section 3.4, both for

consistency and easiness of computing the RK code. It should also be noted that, by defi-

nition, a CPC exists for any word length, and as such they can always be implemented as

outer code, no matter the size of the input data.

Consequently, a CPC-based inner-outer code RK architecture can have up to i redundancy

symbols, as opposed to only a single symbol for the QS-based inner-outer code. This

results in a higher detection rate for faults which are masked for the RK code, or miscor-

rected, if more symbols are considered. In the case where only a single CPC symbol is

introduced (i.e. rCPC1), the detection rate is similar to the QS-based architecture (Table

3.9). Experiments on the overall capability of a CPC-based inner-outer code architecture

is available in Section 3.4.

The scalability of the CPC-based architecture allows more flexibility for a designer in terms

of implementation. Dependent on the encryption scheme which is considered, and more

especially the size of the internal states or operations to be protected, a designer may

make the choice to chose to implement an RK code architecture with distance d = 3 in

order to to be within the hardware constraints of the device. In this case, the detection

rate would be lower than with a code of higher distance, however, by using a CPC-based

outer code with more than one symbol, instead of a QS one, the system-level manager can

detect a higher number of critical faults of class C1 and C4 (Figure 3.7), and thus only a

very low number of faults of class S2 remain, approaching the detection rate of a code of

higher distance. Nevertheless, introducing more CPC redundancy bits has a hardware cost

too, and thus, it is advisable to implement an RK architecture with a higher distance to

begin with, rather than introducing a large CPC as outer code. The outer CPC should be

used as a more granular approach, when the security level offered by an RK architecture

of lower distance is insufficient, but a higher distance is too costly to implement, In this

case, using a CPC-based architecture can allow to improve the security level further than

a QS outer code would, while remaining less costly to implement than a higher distance

RK code. However, a QS outer remains cheaper to implement and should thus be used in

the case where a single additional symbol is wanted.

114

3.4 Experimental Results of the RK Architectures

3.4 Experimental Results of the RK Architectures

As stated in Section 3.2, security oriented codes need to be evaluated experimentally, but

also at a theoretical level, in order to assess the worst case scenario that can occur. In

the case of the different architectures presented in Section 3.3, since they are based on a

specific RK code implementation, the mathematical discussion on the efficacy of the code

against a strong attacker model (i.e. an attacker able to inject very precise and specific

faults) has already been provided in the original RK code paper [RK17]. Moreover, in

Section 3.3.2, the theoretical handling of miscorrections and masked faults (which could

both be used by a skilled attacker) for the RK code, by an outer code, has been discussed

as well. In this section, detection and correction rates of the implemented architectures

against a physical fault injector are detailed, as well as hardware costs. In addition, a

comparison to linear codes is provided.

The evaluation of the architecture was performed against a low cost clock-based fault

injector. The fault injection was performed on a SAKURA-G Field Programmable Gate

Array (FPGA) board. The board consist of two Xilinx Spartan-6 FPGAs. The smaller LX9

FPGA handled the communication between the host computer and the board, while the

larger LX75 FPGA performed the encryption and the fault injection. The fault injection

was realised by using a Digital CLock Manager (DCM) module present on the Spartan-

6 FPGA family. The DCM was connected to the on-board clock, and used to generate a

slightly faster clock, by adjusting the coefficients of the DCM. Finally, a clock multiplexer

(BUFGMUX) was used to switch between the nominal clock and the newly generated

clock at the desired fault location. The fault injection method being clock manipulation,

and since the resolution at which the clock can be modified is dependent on the DCM

coefficient used, it results in an imprecise fault injection setup. In more details, during

the encryption process, when the switch between both clocks occurs (it only lasts for a

single cycle) on the one hand, the next clock edge can arise rapidly. This results in a large

number of circuit paths failing, and thus a high multiplicity fault. On the other hand, the

difference between both the nominal and the generated clock edge can be minimal, and

the operation can end only slightly before when it would have usually ended. In this case,

only one long (critical) path will fail, resulting in a low multiplicity fault (e.g. a single

115

3 Security Oriented Code based Architectures for Fault Attack Mitigation

fault). Even if the injector is not extremely precise, the cost of implementing such a fault

injector is low compared to other fault injection methods (see Section 2.1.2 and Table

2.1). Moreover, faults ranging from random single nibble to high multiplicity ones can be

injected by the injector, hence encompassing both the faults which can be injected by a

highly capable attacker (i.e. single faults) and any other possible faults, which is a perfect

test case for the RK architectures.

The fault injection setup itself is described in Figure 3.10. The host computer sends a plain-

text data to the FPGA, using an asynchronous First In First Out interface programmed on

the LX9 FPGA. The FPGA then sends the complete data to the LX75 FPGA which proceed

to the faulty encryption, and the data is sent back to the host computer for processing. The

data comprise of the plaintext, the ciphertext (faulty in this case), as well as auxiliary data

such as the fault free round input of the fault affected round and the faulty round output.

An attacker would not have access to the latter, and this data is only generated in order

to gather statistics on the architectures. The hardware costs (without the communication

or statistic overhead) presented later in this section are based on an implementation on

the same FPGA platform, and their proper functionality was also validated. In any case,

the data is then processed by the software RK architecture, and both a fault flag, corre-

sponding to the detection of the fault, as well as a corrected output are given as output

of the testing setup. It should be noted that, during the fault injection phase, fault in-

jection which were not successful are discarded by the host computer, and a new fault

injection is performed. This way, only successfully faulted values are considered by the RK

architecture, eliminating any unwanted processing.

Figure 3.10 also shows that, for the considered setup, a fault is injected during a complete

round. This is due to both the imprecise nature of the injector, and also the implemen-

tation of the ciphers under test. In order to gather experimental results for the architec-

tures, four SPN encryption schemes were considered. Three low cost 64-bit ciphers: LED

[GPPR11], PRESENT [BKL+07] and the SSAES [CMR05], as well as the 128-bit full scale

AES [NIoSTN01]. Each of the ciphers is constituted of multiple rounds, and one round is

processed in a single clock cycle. Therefore, a clock-based fault injector can inject a fault

at any stage during the round. This means that, even if only a single critical path failed,

resulting in a low multiplicity fault, but the fault occurs before a diffusion component,

116

3.4 Experimental Results of the RK Architectures

H
os

t
C

om
pu

te
r

Sp
ar

ta
n

6
FP

G
A

Pl
ai

nt
ex

t
G

en
er

at
io

n
En

cr
yp

ti
on

St
ar

t

R
ou

nd
i
−

1

R
ou

nd
i

En
cr

yp
ti

on
En

d
D

at
a

C
ol

le
ct

io
n

D
at

a
Tr

an
sf

er En
cr

yp
ti

on

Fa
ul

t
In

je
ct

io
n

Fa
ul

ty
En

cr
yp

ti
on

D
at

a
Tr

an
sf

er

R
ou

nd
i
−

1
O

ut
pu

t

Fa
ul

t
In

je
ct

io
n

R
ou

nd
i

In
pu

t

Sb
ox

es

Sh
if

t
R

ow
s

M
ix

C
ol

um
ns

A
dd

R
ou

nd
Ke

y

R
ou

nd
i

O
ut

pu
t

v
=

(v
1
,v

2
,.
..
,v

k
)

x
′ =

(x
′ 1
,x
′ 2
,.
..
,x
′ k
)

Er
ro

r
D

et
ec

ti
on

So
ft

w
ar

e

Sy
nd

ro
m

e
s

D
at

a
to

So
ft

w
ar

e
v
=

(v
1
,v

2
,.
..
,v

k
)

x
′ =

(x
′ 1
,x
′ 2
,.
..
,x
′ k
)

En
co

di
ng

C
om

pa
ri

so
n

Fa
ul

ty
Pr

ed
ic

to
r

In
ve

rs
io

n

M
ul

ti
pl

ic
at

io
n

by
M

at
ri

x
A

Pr
ed

ic
te

d
R

ou
nd

In
ve

rs
io

n

M
ul

ti
pl

ic
at

io
n

by
M

at
ri

x
A

Sy
nd

ro
m

e
s
=

w
′ ⊕

wv
=

(v
1
,v

2
,.
..
,v

k
)

x
′ =

(x
′ 1
,x
′ 2
,.
..
,x
′ k
)

1 x
′
=

(
1 x
′ 1
,.
..
,

1 x
′ k
)

w
′ =

(w
′ 1
,.
..
,w
′ r
)

x
=

(x
1
,.
..
,x

k
)

1 x
=

(
1 x
1
,.
..
,

1 x
k
)

w
=

(w
1
,.
..
,w

r
)

D
ec

od
in

g D
ec

od
er

(F
ig

ur
e

3.
9)

Fa
ul

t
Fl

ag
&

C
or

re
ct

ed
O

ut
pu

t

Fi
gu

re
3.

10
:

Fa
ul

t
In

je
ct

io
n

Se
tu

p
fo

r
R

K
A

rc
hi

te
ct

ur
e

Ev
al

ua
ti

on

117

3 Security Oriented Code based Architectures for Fault Attack Mitigation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200000

400000

600000

800000

1000000

1200000

SSAES AES LED64 PRESENT

Nibble/Byte Position

N
um

be
r

of
 E

rr
or

s

Figure 3.11: Fault Position for Each ECC Protected Cipher

then the multiplicity may increase at the output of the round. Consequently, the choice of

protecting a complete round of the encryption schemes was made. This is similar to the

choice a designer would make to protect its implementation, as he would need to con-

sider the cipher, and its vulnerabilities to fault injection attacks, as well as the potential

capabilities of an attacker.

For each cipher, one million successful fault injections were performed. Figure 3.11 shows

the probability of a specific nibble (or respectively byte for the AES) to be faulty. From the

figure, it is evident that some nibbles are more vulnerable than others. For instance, the

eighth and fourteenth nibble of PRESENT are almost never faulty, while most nibbles of

the AES have a high probability to be faulty. This is to be expected, as each implementation

is different, and thus different critical paths are failing, leading to a wild variety of fault

effects. Similarly, as expected by the nature of the fault injection method, the multiplicity

of the injected fault is high, and most of the time exceeds the correction capabilities of the

architectures (Figure 3.12). This is also dependent on the hardware implementation, and

as such notable differences can be observed. For instance, for PRESENT, no fault of low, or

high, multiplicities were injected. Overall, both figures showcase that, in the case of a low

cost fault injector, faults can be considered arbitrary, and all faults need to be detected.

118

3.4 Experimental Results of the RK Architectures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

10

100

1000

10000

100000

1000000

SSAES - Error Multiplicity

Multiplicity

N
um

be
r

of
 E

rr
or

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

10

100

1000

10000

100000

1000000

AES - Error Multiplicity

Multiplicity

N
um

be
r

of
 E

rr
or

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

100

1000

10000

100000

1000000

LED64 - Error Multiplicity

Multiplicity

N
um

be
r

of
 E

rr
or

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

10

100

1000

10000

100000

1000000

PRESENT - Error Multiplicity

Multiplicity
N

um
be

r
of

 E
rr

or
s

Figure 3.12: Fault Multiplicities for Each ECC Protected Cipher

In addition, Figure 3.13 confirms that faults can be modelled as additive errors, which is

the fault model considered in this work and throughout this chapter. In other words, the

fault model assumes that the probability of a bit to flip from 0 to 1 is the same as the

probability to flip from 1 to 0, which is the case for the presented experiments.

Table 3.8: Comparison Between a Robust RK Architecture and a Linear BCH Code

Circuit Distance d
Bits Undetected faults

k r BCH RK

SSAES
3 68 12 176 179
5 68 28 0 0

AES
3 136 16 234 239
5 136 56 0 0

LED
3 68 12 239 234
5 68 28 0 0

PRESENT
3 68 12 231 229
5 68 28 0 0

The injection of one million faults was first used to verify practically (since no RK code

hardware implementation were designed prior to this work) that the detection rate of

the RK architecture would not worsen by the introduction of the APN function. To this

119

3 Security Oriented Code based Architectures for Fault Attack Mitigation

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0
8

16
24
32
40
48
56
64

SSAES - Bit Flip Probabilities

Bit Flip from 0 to 1 Bit Flip from 1 to 0

Error Probability

Fr
eq

ue
nc

y

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

16
32
48
64
80
96

112
128

AES - Bit Flip Probabilities

Bit Flip from 0 to 1 Bit Flip from 1 to 0

Error Probability

Fr
eq

ue
nc

y

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0
8

16
24
32
40
48
56
64

LED64 - Bit Flip Probabilities

Bit Flip from 0 to 1 Bit Flip from 1 to 0

Error Probability

Fr
eq

ue
nc

y

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0
8

16
24
32
40
48
56
64

PRESENT - Bit Flip Probabilities

Bit Flip from 0 to 1 Bit Flip from 1 to 0

Error Probability

Fr
eq

ue
nc

y
Figure 3.13: Bit Flip Characterisation for Each ECC Protected Cipher

end, both a linear, non-robust, BCH code implementation, and the robust RK architecture

presented in Section 3.3.1 were compared. The results are presented in Table 3.8, and

it can be seen that both codes have only a very low number of undetected faults for a

distance d = 3, while no faults remained undetected for larger distances. It is consequently

clear that from a detection rate perspective, both codes are equivalent, but the RK code

has the advantage to be robust, and thus are better suited for security applications, since

no fault always goes undetected.

Table 3.9 shows the results for a complete RK-based architecture. That is to say, an inner-

outer code architecture with an ECLT decoder. The chosen code for the outer layer is either

a CPC with a single redundancy symbol, or a QS code. In the case of the AES, both a single

decoder over GF (28) (i.e. q = 8 for this case only), and dual decoder architectures over

GF (24) were implemented. The number of symbols (and respectively bits) correspond to

the input of the RK inner code. Since a single symbol outer CPC is used (or respectively

a QS code, which also adds a single symbol), this means that the input of the RK code is

constituted of one additional symbol (or two in the case of the dual decoder architectures).

For the non-linear checker, which correspond to the RK inner layer, the number of faults

in each class are presented in terms of percentages over one million fault injections. The

120

3.4 Experimental Results of the RK Architectures

Ta
bl

e
3.

9:
Ex

pe
ri

m
en

ta
lR

es
ul

ts
on

Fa
ul

t
D

et
ec

ti
on

&
co

rr
ec

ti
on

A
rc

hi
te

ct
u

re
Sy

m
bo

ls
B

it
s

Fa
u

lt
Ev

en
ts

C
ir

cu
it

d
#

D
ec

k
q

r q
k

r
N

on
-l

in
ea

r
C

he
ck

er
C

PC
Sy

st
em

-l
ev

el
Fa

u
lt

M
an

ag
er

Q
S

C
od

e
Sy

st
em

-l
ev

el
Fa

u
lt

M
an

ag
er

C
la

ss
C

1
C

la
ss

C
2

C
la

ss
C

3
C

la
ss

C
4

C
la

ss
S1

C
la

ss
S2

C
la

ss
S1

C
la

ss
S2

U
nd

et
ec

te
d

Si
ng

le
Fa

ul
ts

R
ec

og
ni

ze
d

as
Er

ro
ne

ou
s

R
ec

og
ni

ze
d

as
U

nr
ec

og
ni

se
d

R
ec

og
ni

ze
d

as
U

nr
ec

og
ni

se
d

(b
y

(c
or

re
ct

ed
by

Su
sp

ic
io

us
C

or
re

ct
io

ns
Er

ro
ne

ou
s

(b
y

as
Er

ro
ne

ou
s

(b
y

Er
ro

ne
ou

s
(b

y
as

Er
ro

ne
ou

s
(b

y
R

K
co

de
)

R
K

co
de

)
(b

y
R

K
co

de
)

(b
y

R
K

co
de

)
C

PC
O

ut
er

C
od

e)
C

PC
O

ut
er

C
od

e)
Q

S
O

ut
er

C
od

e)
Q

S
O

ut
er

C
od

e)

SS
A

ES
3

1
17

3
68

12
0.

01
79

5.
93

37
87

.4
10

1
6.

63
83

62
46

3
(9

3.
8%

)
40

99
(6

.2
%

)
62

49
9

(9
3.

9%
)

40
63

(6
.1

%
)

5
1

17
7

68
28

0
5.

93
37

94
.0

66
2

0.
00

01
1

(1
00

%
)

0
(0

%
)

1
(1

00
%

)
0

(0
%

)

A
ES

3
1

17
2

13
6

16
0.

02
39

0.
00

33
86

.7
27

2
13

.2
45

6
12

43
47

(9
3.

7%
)

83
48

(6
.3

%
)

12
42

86
(9

3.
7%

)
84

09
(6

.3
%

)
3

2
34

6
13

6
24

0.
00

67
0.

00
33

88
.1

00
6

11
.8

89
4

11
75

40
(9

8.
8%

)
14

21
(1

.2
%

)
11

74
75

(9
8.

8%
)

14
86

(1
.2

%
)

5
2

34
14

13
6

56
0

0.
00

33
99

.9
95

6
0.

00
11

11
(1

00
%

)
0

(0
%

)
11

(1
00

%
)

0
(0

%
)

LE
D

3
1

17
3

68
12

0.
02

34
0.

00
15

92
.6

68
2

7.
30

69
68

92
3

(9
4.

0%
)

43
80

(6
.0

%
)

68
73

4
(9

3.
8%

)
45

69
(6

.2
%

)
5

1
17

7
68

28
0

0.
00

15
99

.9
98

5
0

0
0

0
0

PR
ES

EN
T

3
1

17
3

68
12

0.
02

29
0

92
.7

01
8

7.
27

53
68

42
7

(9
3.

8%
)

45
55

(6
.2

%
)

68
37

6
(9

3.
7%

)
46

06
(6

.3
%

)
5

1
17

7
68

28
0

0
10

0
0

0
0

0
0

121

3 Security Oriented Code based Architectures for Fault Attack Mitigation

data for the system-level manager (i.e. the outer code) is given in terms of raw number,

and also of percentages over the critical cases of the inner layer, the sum of faults of classes

C1 and C4 (see Figure 3.7).

First, if only faults of class C1 are considered (corresponding column of Table 3.9), it

can be seen that only a very low number of faults are undetected by the RK code, less

than 0.1%. This equates to saying that the detection rate of the RK code alone is over

99.9%. If the architectures were implemented for detection only, for example for extremely

constrained devices, where implementing a decoder is impossible area-wise, this is an

excellent detection rate. However, in such a case, the correction capabilities of the code

are omitted, and thus the architecture is not used at its full potential. It is nevertheless a

possible consideration for a designer.

Column C2 of Table 3.9 corresponds to all the single errors which occurred and were suc-

cessfully corrected by RK code. Such faults are always successfully corrected, as they fall

within the correction capability of the ECLT-based architecture (i.e. single faults). Col-

umn C3 refers to the faults which were uncorrectable for the RK code, and were also

successfully recognised as uncorrectable. That is to say, faults for which the correspond-

ing normalised syndrome did not have any match in the ECLT. Finally for the non-linear

checker, Column C4 shows the number of miscorrections which were carried by the in-

ner code. Overall, all single faults were successfully corrected, eliminating the threat of

precise single nibble (or byte) fault attacks (for example, the ones presented in Section

4.1), while only a small portion of faults were miscorrected, especially in the case of ar-

chitecture based on codes of distance d = 5. In this latter case, not only no faults were

undectected by the RK code, but almost no miscorrection occurred (at most 11 in the case

of the AES). This supports the fact that employing a larger distance, even with an ECLT

limited to single faults, is beneficial for the architecture, and should thus be preferred, if

the hardware constraints can be met.

Columns S1 and S2 of both system-level fault managers, in Table 3.9, refer to the detection

rate of the outer code. It can be seen that most faults of class C1 and C4 are detected by

either outer code constituted of a single symbol (only 6% remain undetected for d = 3).

While this can be improved by increasing the number of symbols of the CPC (see Table

3.10), the results for a single additional symbol are already good, and overall, for the

122

3.4 Experimental Results of the RK Architectures

considered architectures, at most 0.8% of faults remain critical, in the case of architecture

S8d3m8 (single decoder) for the AES. Moreover, the table shows that both the single sym-

bol CPC and the QS code have the same performances. Therefore, in the case where no

extra security is required for the outer code (as discussed in Section 3.3.4), the QS code

should be preferred, as it is less costly to implement.

With regard to architectures S8d3m8 and S8d3m4 implemented for the AES, Table 3.9

shows that the dual decoder architecture is superior to the single decoder over a larger

field. For this reason, only the dual decoder architecture was extended to distance d = 5.

Only two redundancy symbols are necessary for distance d = 3 over GF (28), therefore the

single decoder has slightly less redundancy bits, but this is solely due to the BCH codes

used, and the number of redundancy bits for d = 5 would be the same.

Table 3.10: Probability of Class S2 Faults with Different outer CPCs

Circuit d #Dec kq rq k r rCPC1 = 4 rCPC2 = 8 rCPC3 = 12 rCPC4 = 16

SSAES
3 1 17 3 68 12 0.4099% 0.0246% 0.0017% 0.0001%
5 1 17 7 68 28 0% 0% 0% 0%

AES
3 1 17 2 136 16 0.8348% 0.0539% 0.0035% 0.0002%
3 2 34 6 136 24 0.1421% 0.0085% 0.0004% 0.0001%
5 2 34 14 136 56 0% 0% 0% 0%

LED
3 1 17 3 68 12 0.4380% 0.0288% 0.0024% 0.0001%
5 1 17 7 68 28 0% 0% 0% 0%

PRESENT
3 1 17 3 68 12 0.4555% 0.0290% 0.0021% 0.0001%
5 1 17 7 68 28 0% 0% 0% 0%

Table 3.10 show the evolution of the misdetection rate for an increasing size of outer

CPCs. Four different CPCs were implemented, each adding an additional redundancy

symbol for miscorrection verification, compared to the previous one. The redundancy in

terms of bits is denoted by rCPCi for each CPC, where i corresponds to the number of

equivalent symbols. Moreover, Figure 3.14 shows that the misdetection rate decreases

exponentially with the number of redundancy bits used. Overall, a single symbol leads to

at most 0.8% of faults which remain undetected, while adding more symbols results to at

most two masked faults per million (both for the AES and architecture S8d3m8). However,

the table also shows that a distance d = 5 results in no misdetection. This reinforces the

fact that a larger distance should be prioritised, when the hardware constraints allow it.

Nevertheless, the use of CPC can further bring down the misdetection rate in the cases

where this is not possible, and in a scalable way.

123

3 Security Oriented Code based Architectures for Fault Attack Mitigation

Figure 3.14: Evolution of the Probability of Class S2 Faults for Different CPCs on PRESENT

Table 3.11: Size Comparison in terms of Configurable Logic Blocks (CLBs)

Cipher Unprotected Round RK (d = 3) BCH (d = 3) RK (d = 5) BCH (d = 5) TMR
SSAES 37 202 169 328 267 108

AES (1 decoder) 173 388 392 – – 421
AES (2 decoders) 173 465 419 572 462 421

LED 39 221 213 257 248 133
PRESENT 23 165 148 240 243 57

The different architectures have excellent detection and correction properties, and the use

of ECLT-based decoders allow for an efficient hardware implementation. This is shown in

Table 3.11, which compares the previous RK-based architectures with diverse alternatives

in terms of Configurable Logic Blocks (CLBs). The number of CLBs needed for each im-

plementation is derived from the synthesised design implemented on the Spartan-6 LX75

FPGA used in the setup described in Figure 3.10. First, it is clear from the table that the

hardware cost of an ECC counter-measure is high, especially for lightweight block ciphers,

such as PRESENT. A single round of PRESENT protected by an RK architecture with dis-

tance d = 3 is more than seven times larger than the same unprotected round. However,

this is also the case if a non-robust BCH code architectures is implemented (in both cases,

the decoder was implemented using an ECLT, for fairness of comparison). The table actu-

ally shows that the robustness property comes at a very low extra cost in area. The highest

124

3.4 Experimental Results of the RK Architectures

increase in cost between a non-robust BCH ECC and an RK architecture is of 24%, for the

AES with two decoder and a distance d = 5. In the case of the single decoder AES with

distance d = 3, the RK architecture is even slightly smaller than the BCH one. Even though

this is due to synthesis optimisation from Xilinx ISE Design Suite, the overall increase in

cost is negligible compared to the advantages, in term of security (Section 2.2.1.2), of

using a robust code.

Table 3.11 also compares the architectures to equivalently implemented TMR architec-

tures. However, TMR are not only non-robust, but also extremely vulnerable to simulta-

neous fault injections. Nevertheless, it can be seen that, for larger circuits (e.g. an AES

implementation), TMR architectures are of a comparable size to the proposed RK architec-

tures with a lower distance. This reinforces the fact that the architectures presented in this

chapter are not only efficient at detecting and correcting faults, but also implementable in

practice, thanks to the ECLT. Moreover, the architecture are based on q-ary codes, which

also allow for more practically implementable ECC counter-measure, in comparison to

commonly used binary codes. For instance, in the case of the two decoder architecture

with distance d = 5, used for the AES, 56 redundancy bits are required. In comparison, a

binary BCH-code decoder would require 112 bits in order to achieve the same detection

and correction capability. Even though operations over Fq are costlier than binary oper-

ations, the sheer number of additional bits also has a cost. In addition, the ECLT-based

decoding method cannot be implemented for binary codes, and as such a more complex

decoding algorithm, such as the Berlekamp-Massey algorithm, has to be used. This is not

only costlier, but it cannot be implemented in a single cycle, thus increasing the latency of

the design, compared to the proposed RK architectures.

To conclude this chapter, the experimental results encourage the use of the RK architec-

tures developed in this work. All architectures are efficient at both detecting faults, and

correcting critical single fault injections, while being practically implementable thanks to

the use of the ECLT. Moreover, the architectures can be scaled to any cipher, and any

required level of security. The generation of the architectures can easily be automated,

since they are based on well known BCH codes, and only the ECLT and the generator

matrix need to be pre-computed prior to the implementation. Therefore, they are a strong

choice for ECC-based counter-measure against fault injection attacks, especially compared

125

3 Security Oriented Code based Architectures for Fault Attack Mitigation

to other security oriented codes, such as the AMD codes [CDF+08], which require the ad-

ditional implementation of a random number generator.

126

Chapter 4

AutoFault: Hardware-Oriented Algebraic Fault
Attack Framework

The focus of this Chapter is on the automation of fault attacks on cryptographic hardware,

and more especially AFAs. For this purpose, the AutoFault framework was created. How-

ever, in order to automate attacks on different ciphers, it is important to first understand

the subtle differences which exist between different cryptographic primitives and their

implementations, and how they impact the generation of fault attacks. In this regard,

the first consideration will be on the Small Scale AES (SSAES). The fault attacks on the

SSAES presented in Section 4.1 can be seen as multiple special cases which do not occur

for the baseline AES, while remaining closely related. Such fine disparities for a single

cipher family showcase the need for an automated method for fault attack generation,

as well as giving many points of reflection, which needs to be considered in AutoFault.

While this is the first consideration step for the framework, the following sections focus

on multiple aspects of the AutoFault framework itself. Details are firstly given on the

overall structure of the framework, followed by explanations on the solving steps and the

CNF-based simulation of attacks. In Section 4.5, use cases for the usage of AutoFault

are discussed. Experimental results and a comparison to other state-of-the-art AFA frame-

work are presented in the last Sections, to further validate and reinforce the need for the

hardware-oriented AFA framework AutoFault.

127

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

4.1 Preliminary: Fault Attack on Small Scale AES

The SSAES [CMR05] was designed as a research tool in order to analyse AES equation

system. To this end it shares the same components as the AES, but in a scaled down and

fully parametrised manner. That is to say, the same operation are performed in the same

order: SubBytes, ShiftRows, MixColumns and AddRoundKey.

The SSAES is defined as either SR(n, r, c, e) or SR∗(n, r, c, e). The latter variant is the

same as the former in terms of state size and possible number of rounds, but, similarly to

the AES, the MixColumns operation is omitted in the last round. The different parameters,

(n, r, c, e), are defined as follows:

• n denotes the number of rounds, which can range from 1 to 10

• r and c respectively refer to the number of rows and columns composing the state

matrix

• e is the word size of the SSAES, either 4 or 8. It corresponds to the Galois field in

which the computation is done, respectively GF (24) and GF (28), as well as the size

of the SBoxes used, either 4 or 8-bit SBoxes

For example, the full scale AES is equivalent to the SSAES SR∗(10, 4, 4, 8), the only slight

difference being the definition of the key schedule.

The scalable nature of the SSAES makes it a perfect first candidate for new hardware-

oriented solving methods. However, while the algorithm for the SSAES was introduced

prior to this work, no hardware implementation had been provided. Therefore, a VHDL

implementation was introduced [GBH+16] as a first step towards hardware-oriented AFAs.

Since the SSAES operations are dependent on the parameters r, c and e, a specific imple-

mentation for each variant was designed. Each implementation differs on the following

operations:

• The SBoxes are different depending on the word size e, and are implemented as

simple look-up tables.

• The key schedule is computed with regards to the number of rows and columns of

the state matrix. Mainly, the XOR operations are performed column-wise. Addition-

ally, an SBox is used and the key schedule is therefore dependent on e as well.

128

4.1 Preliminary: Fault Attack on Small Scale AES

• The MixColumns operation consists of a pre-multiplication of a column by a fixed

matrix (e.g. Equation 4.1 in the case where c = 2), and as such relates to the num-

ber of rows r, as well as the word size e for the Galois field multiplications. As such,

multiple variants share the same MixColumns module (same (r, e), but different c).

The matrix is only composed of ones, twos and threes, no dedicated Galois field mul-

tiplier is implemented, but rather the operations are directly done in the MixColumns

module.

M =

 3 2

2 3

 (4.1)

• The rounds are themselves dependent on every parameters, and therefore every

variants disposes of its own round module. The ShiftRows operations is directly

done here, as it is only a nibble-wise shift. Similarly, the AddRoundKey operations is

only an XOR and is performed directly in the round module as well.

Each of the previous operations is implemented as a distinct VHDL module, as can be seen

in Figure 4.1. While they are all related to the encryption process, the overall implementa-

tion also includes a decryption module, and therefore the corresponding inverse modules

are provided as well. Finally, the presence of a MixColumns operation in the last round

(SR(n, r, c, e) or SR∗(n, r, c, e)) is simply taken as a further input parameter in each of the

previous implementations and therefore a single SSAES implementation is given for both

variants.

It is important to note that the proposed implementation does not consider any counter-

measures to any kind of physical attacks (being side-channel or fault injections). The

SSAES Top Module

Encryption DecryptionKey Schedule Key Schedule

Round Inverse Round

SBox MixColumns Inv. SBox Inv. MixColumns

Figure 4.1: Modules of the SSAES VHDL Implementation

129

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

implementation is directed towards an academic usage, either in a research context or

for education purposes, and as such is not protected. For a similar purpose, a gate-level

implementation based on the 45nm NanGate cell library [Sil] is provided as an easy way

to implement the SSAES on any hardware.

Before considering AFAs, more conventional fault injections attack on the SSAES are to

be considered, especially to gain some insights on the solving process. The fault attack

introduced in [TMA11] (and detailed in Section 2.1.4.2) can be generalised to the whole

family of SSAES. However, the fault propagation, and thus the fault equations, is depen-

dent on the parameters of each SSAES. For instance, a smaller number of rows r than

columns c reduces the propagation rate.

Fault Injection Attack on SSAES

The proposed attack is a DFA with the following variables (similarly to Section 2.1.4.2). In

the subsequent equations, x stands for the output of the fault free encryption, the correct

ciphertext, and x′ for the faulty one. The respective nibbles (either 4-bit nibbles or bytes,

depending on the value of e) are denoted as xi and x′i. Similarly, the key parts of the last

round key k are denoted ki. S() represent the SBox of the considered SSAES variant, and

S−1() the inverse of that SBox. δi will be the XOR difference of two words at the chosen

meeting point for the DFA.

The parametric nature of the SSAES implies a variable number of rounds, as well as a

variety of different state matrices. The attack can be achieved for any SSAES variant with

n ≥ 3 rounds, as enough fault propagation is needed to recover the secret key. The state

matrix size depends on the values of (r, c, e). However, the word size only affects the solv-

ing part, and not the equation derivation. As such, all equations are valid for any value of

e. The number of rows and columns does affect the fault propagation patterns, and there-

fore in the next sections, all possibilities for the tuple (r, c) are considered. Additionally, a

visualisation of the fault propagation is given for the cases (r, c) = (2, 4) and (r, c) = (4, 2)

only, as they are the most relevant examples of a different fault propagation pattern, and

thus the solution needs to still be able to recover the secret key. Similarly, the presence or

the omission of the last MixColumns operation has an effect on the fault equations. The

focus of this work is on the SR∗(n, r, c, e) variant of the SSAES (without a MixColumn

130

4.1 Preliminary: Fault Attack on Small Scale AES

operation in the last round), but a discussion on the SR(n, r, c, e) variant, as well as the

fault equations, are provided.

Case without last MixColumns

Let’s first consider the SSAES variants SR∗(n, r, c, e), which omits the last MixColumns

operations, similarly to the AES. The chosen meeting point for the DFA is right after the

last MixColumns operation (second to last round). All the equations can be found in

Appendix A, but few are given here as well to better showcase the differences.

1. Case (r, c) = (1, 1):

In this case, the state matrix is only composed of a single element, rather than

multiple rows or columns. Therefore, there is of course no fault propagation, and

the processed data is only a single word. As such, the last round can simply be

inverted in order to get the following equation, from a single fault injection in round

9 (either before or after the SBox):

δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1) (4.2)

2. Case (r, c) = (1, 2) and (r, c) = (1, 4):

Similarly to the previous case, there is only a single row in the state matrix, and

even though there are multiple elements, no ShiftRows or MixColumns operations

are performed. Despite this, and in order to recover the complete key, a single fault

injection is not sufficient, since there is no fault propagation, and therefore a fault

injection would be needed for each nibble. This would result in two (or respectively

four) similar equations as in equation 4.2, with different indices. Due to the small

nature of those variants, it would however be possible to brute force the remainder

of the secret key, rather than performing more fault injections.

3. Case (r, c) = (2, 1):

The state matrix is a single column composed of two elements. Therefore, if the fault

is injected at the beginning of round 9, in the first element, there will be enough fault

propagation to cover the full state matrix, without any overlap.

131

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

4. Case (r, c) = (2, 2):

r = c, meaning that the state matrix is square. Consequently, thanks to the ShiftRows

and MixColumns operations, a single fault injection at the beginning of round 8, in

the first element, will propagate through both rows and columns of the state matrix.

This is a reduced case of the AES fault attack.

5. Case (r, c) = (2, 4):

In this case, r < c. If a fault is injected in the first element of the state matrix, at the

beginning of round 8, then it will only propagate through half of the state matrix

by the end of the encryption (see Figure 4.2, grey fault only). While it would be

possible to brute force the second half of the key, a second fault injection in the fifth

element of the state matrix (either simultaneously or two distinct fault injections)

would result in a full propagation, and is as such a possibility to recover the complete

secret key (Figure 4.2, orange fault). A set of equations for the first fault injection is

as follows:

3δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

2δ1 = S−1(x8 ⊕ k8)⊕ S−1(x′8 ⊕ k8)

2δ2 = S−1(x7 ⊕ k7)⊕ S−1(x′7 ⊕ k7)

3δ2 = S−1(x6 ⊕ k6)⊕ S−1(x′6 ⊕ k6)
(4.3)

6. Case (r, c) = (4, 1):

Similarly to the case (r, c) = (2, 1), a single fault injection at the beginning of round

9 is sufficient to recover the full key.

7. Case (r, c) = (4, 2):

Since r > c, if a fault is injected at the beginning of round 8, it will propagate

through the complete state matrix. However, the fault-affected values will overlap

each other due to the ShiftRows operation, which will lead to more complex equa-

tions (Figure 4.3). To avoid over-propagation, a fault can be injected one round

later, at the beginning of round 9. In this case, the fault will only propagate through

half the state matrix (similarly to the case (r, c) = (2, 4)), and a second fault should

be injected in the fifth element of the state matrix to achieve full propagation (Figure

132

4.1 Preliminary: Fault Attack on Small Scale AES

8th SB 8th SR 8th MC

9th SB

9th SR

9th MC10th SB10th SR

f f̃ f̃ 3f̃

2f̃

F1

F2

F1

F2

3F1

2F1

2F2

3F2

A1

A2

A3

A4

A1

A4

A3

A2

f ′ f̃ ′ f̃ ′ 3f̃ ′

2f̃ ′

F ′1

F ′2

F ′2

F ′12F ′2

3F ′2

3F ′1

2F ′1

A5

A6

A7

A8A6

A5

A8

A7

Figure 4.2: Dual fault injection at round 8 in the SR∗(10, 2, 4, e)

4.4). Below is a set of equations corresponding to the first fault injection.

2δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

δ1 = S−1(x6 ⊕ k6)⊕ S−1(x′6 ⊕ k6)

δ1 = S−1(x3 ⊕ k3)⊕ S−1(x′3 ⊕ k3)

3δ1 = S−1(x8 ⊕ k8)⊕ S−1(x′8 ⊕ k8)

(4.4)

8. Case (r, c) = (4, 4):

This case is simply the same case as the DFA on the AES

Thanks to the new locations for the faults, or the additional faults. The solving process for

each SR∗(n, r, c, e) variant is the same as the AES (Section 2.1.4.2). The same discarding

process for the δi values can be applied, hence reducing significantly the complexity of

the attack. The main difference, in the case of the SSAES, comes from the number of

equations. While there may be less equations available, leading to a smaller reduction

of the key space, the key space itself is also smaller for every variant which differs from

SR∗(10, 4, 4, 8), thus every attack is still mountable.

133

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

8th SB 8th SR 8th MC

9th SB

9th SR

9th MC10th SB10th SR

f f̃ f̃ 2f̃

f̃

f̃

3f̃

F1

F2

F3

F4

F1

F2

F3

F4

2F1 ⊕ F3

F1 ⊕ 3F3

F1 ⊕ 2F3

3F1 ⊕ F3

F4 ⊕ 3F2

F4 ⊕ 2F2

3F4 ⊕ F2

2F4 ⊕ F2

A1

A2

A3

A4

A5

A6

A7

A8

A1

A6

A3

A8

A5

A2

A7

A4

More Complex Equations

Figure 4.3: Single fault injection at round 8 in the SR∗(10, 4, 2, e)

134

4.1 Preliminary: Fault Attack on Small Scale AES

8th SB 8th SR 8th MC

9th SB

9th SR

9th MC10th SB10th SR

f

f̃

f̃2f̃

f̃

f̃

3f̃

F1

F2

F3

F4

F1

F3

F2

F4

f ′

f̃ ′

f̃ ′2f̃ ′

f̃ ′

f̃ ′

3f̃ ′

F ′1

F ′2

F ′3

F ′4

F ′1

F ′2

F ′3

F ′4

Figure 4.4: Dual fault injection at round 9 in the SR∗(10, 4, 2, e)

135

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

Similarly to the case of the AES, it is also possible to proceed with a second reduction step

for the attack. However, the key schedule of the SSAES is slightly different from the AES,

even in the full scale case. The equations for the reverse key schedule can be found in

Appendix A as well, and can be applied similarly to Section 2.1.4.2.

Case with last MixColumns

For the SSAES variants SR(n, r, c, e), the MixColumns operation is not omitted in the last

round. The presence of the last round MixColumns operation propagates the fault more

than needed, if the fault injection locations are the same as in the previous section. One

intuition would be to use this, and inject the fault a round later in order to achieve full

propagation throughout the state matrix. However, the meeting point is then shifted to

right after the last MixColumns in the last round. No information can be gained from this

meeting point since it depends directly on xi, x′i and ki. More precisely, a possible equation

would be:

2δ1 = (x1 ⊕ k1)⊕ (x′1 ⊕ k1) = x1 ⊕ x′1 (4.5)

It is clear that the δi are independent from the value of ki, and therefore this would

not lead to any key recovery. Consequently, and despite this fact, the faults should still

be injected at the previously discussed locations, even if this results in more complex

equations, and the meeting point is situated after the second to last MixColumns operation.

The derived equations are dependent on a full column, and thus several key parts ki,

instead of only a single one for the SR∗(n, r, c, e) variants. Equation 4.6 showcases a single

equation from one of the four equation sets of an SR(10, 4, 4, 8) variant (see Appendix A

for the other equations).

2δ1 = ⊕
S−1(14(x1 ⊕ k1)⊕ 11(x2 ⊕ k2)⊕ 13(x3 ⊕ k3)⊕ 9(x4 ⊕ k4))

S−1(14(x′1 ⊕ k1)⊕ 11(x′2 ⊕ k2)⊕ 13(x′3 ⊕ k3)⊕ 9(x′4 ⊕ k4))
(4.6)

While the equations are more complex to solve, several equations, from different equation

sets, also depends on the same key part tuple (see Appendix A). This can be used to

136

4.1 Preliminary: Fault Attack on Small Scale AES

further reduce the number of key candidates. In this case, only the candidates from the

first set need to be tested with the second set, and so on until the last set (if more sets are

available).

Further key space reduction

In a similar fashion to the second attack step for the AES, it is possible to further reduce

the key space by expressing the key of the second to last round in terms of the last round

key, via a reverse key schedule. This step is only required if the remaining key space is too

large, and, as such, the equations for the cases where r = 1 are omitted from Appendix

A. Furthermore, and since this step is the same as in the AES attack, only with a different

reverse key schedule, it won’t be discussed further here.

A first case towards automatic hardware AFA solving

For a conventional DFA, the previous equations need to be derived for every SSAES case,

and in a more general way, for every different encryption scheme. The generation of the

equations requires a cryptanalyst to carefully work on them for an extended amount of

time. While this is true for DFAs, it is also true for AFAs, as conventional AFAs make use

of handcrafted fault equations. However, AFAs also use the cipher description as an input.

As such, and to avoid deriving the description related equations for every SSAES case, the

hardware implementation can be used to directly generate the related equations in the

form of Conjunctive Normal Form (CNF) clauses. To do so, the Tseitin transform is applied

to a synthesised gate-level unrolled implementation of every SSAES, resulting in a set of

clauses for every SSAES variant. However, even though such clauses can theoretically be

solved by a Boolean Satisfiability (SAT) solver, it is not sufficient for a key recovery. Given

a plaintext and a ciphertext, it is usually computationally impossible to derive the secret

key solely from the equations derived from the hardware implementation, and that is to

be expected for any cryptographic element. Therefore a fault component of the attack

is needed. To this end, is possible to introduce a new XOR gate in the circuit, which

takes the fault as an input, as well as the corresponding intermediate value to the chosen

fault location, and duplicate the fault-affected parts of the circuit, in order to get more

CNF clauses for a specific SSAES variant. The newly derived clauses are related to the

137

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

fault, and as such constitute the fault equation part of the AFA. The whole process can be

automated for any SSAES variant, as well as any encryption scheme in general, and is the

foundation of the AutoFault framework.

In the case of the SSAES, and as seen previously, each variant has a different fault propa-

gation pattern. While this is especially important for manually crafted fault equations, it

also translates to equations derived automatically from the hardware implementation. It

is similarly possible to distinguish between three cases: a perfect (or close to perfect) fault

propagation, an under-propagation and an over-propagation.

The former case corresponds to any of the optimisation cases presented in the previous

section for the DFA on the SSAES. In terms of CNF clauses, it translates into having enough

conflicting clauses derived from the duplication of the fault affected rounds. Conflict

clauses are clauses which imply an opposite assignment for the same variable in order

to be satisfied. For example, if the following set of clauses (a ∨ b ∨ c) ∧ (a ∨ b ∨ c′) is

considered, and assuming that the solver assigned a = 0 and b = 0 previously, then c

needs to be equal to 1 to satisfy the first clause, but 0 to satisfy the second one, leading

to a conflict. In this case, the solver would backtrack and try a different assignment for a

or b. For AFAs, if enough clauses are conflicting with each other, it is possible for the SAT

solver to rapidly eliminate key candidates and recover the correct secret key. However,

choosing a fault location or position that leads to over-propagation doesn’t speed-up the

process either. Similarly to the case of DFAs, the solving process becomes harder if more

CNF clauses which don’t directly conflict with each others are introduced. This can for

example be the case if a single fault is injected at round 8 for SR∗(10, 4, 2, e). For this

same case, injecting a single fault one round later would lead to an under-propagation

of the fault. In this case, it should be clear that not enough CNF clauses are conflicting,

and thus only one half of the key space can be reduced and such under-propagation is not

desired in the case of hardware AFAs either.

The process of finding a good fault propagation, or in other words, a good fault model,

can be done automatically thanks to the automatic generation of CNF formulas. For in-

stance, in the case of SR∗(10, 4, 2, e), a first step would be to try to inject the fault at the

conventional location (round 8), but also in the neighbouring rounds (7 and 9).If two ran-

dom nibble faults are injected at round 9, one can observe low solving times. However, all

138

4.2 AutoFault Structure

dual faults injected at round 9 are not equal. If the faults overlap, there will be very little

gain compared to a single fault at round 9. By observing the specific faults leading to the

lowest runtimes, one can choose an appropriate fault model (which would be similar to

the previous DFA case). The results are detailed in Section 4.6, as part of the AutoFault

framework, and generalised for different ciphers.

4.2 AutoFault Structure

The idea behind the AutoFault framework [BGE+17] is not only to be able to mount AFAs

automatically on diverse variants of the SSAES, but also for any cryptographic primitive.

One of the goals is to have a framework which can be used during each design phase

of a cipher hardware implementation, in order to assess potential vulnerabilities to fault

attacks. In this regard, Figure 4.5 shows the overall structure of AutoFault.

AutoFault has two main inputs, the circuit model and the fault description. The former

consist of the cipher description in a Hardware Description Language (HDL) format. The

cryptographic circuit is time-frame expanded and adapted in order to mount the attack

(see Section 4.3.1), before being converted to CNF and processed by the main software

component of the framework. While only behavioural HDL descriptions of ciphers, in both

Verilog and VHDL, have been used in this work, it is also possible to give a gate-level netlist

(for instance obtained as output of a synthesis tool) as input to AutoFault. The second

primary input of AutoFault , the fault description, encompass both the fault model and

the fault parameters. The fault model refers to the type of injected fault simulated by

the framework, such as bit flips or random byte/nibble faults. The fault parameters con-

AutoFault

Circuit Model
Fault

Description

Optional Information:

Additionnal Fault Equations Countermeasures

SAT
Interface SAT Solver Secret Key

Figure 4.5: Overall AutoFault Structure

139

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

tain to the fault location and position, respectively the operation before which the fault

is injected, and the affected bits of the internal state, as well as the number of injected

faults. The fault-related information is mapped to CNF as well before solving. In addition

to the two previous inputs, the framework can be used in conjunction with some optional

information. One example would be the implementation of counter-measures to mitigate

vulnerabilities. In this case, the user can give the hardware description of the implemented

counter-measure, which can then be converted to CNF, similarly to the cipher, or restric-

tions on the fault description can be given as well, for example to simulate shielding (as

discussed in Section 2.2.2.1), and the impossibility to inject faults at specific locations.

Furthermore, manually crafted fault equations, if they are available, can also be given in

order to improve the attack effectiveness.

Once all inputs are defined, the framework processes the data and outputs CNF clauses to

a SAT interface. The SAT interface was developed by the chair of computer architecture

of the University of Freiburg, and is used as an interface to several SAT solvers used by

AutoFault. If the SAT solver finds a satisfiable assignment for the given data, it means that

a key candidate was found. The key candidate is then fed back to the framework itself, and

a fault free encryption is performed. If the ciphertext matches a known correct ciphertext,

then the correct key was found, and the frameworks outputs it. On the contrary, if both

ciphertexts differ, the key is incorrect. In this case, the framework forwards corresponding

CNF clauses to the SAT solver (more details in Section 4.3.3), and the solving process

continues until the correct key was found. It should be noted that, in this work, only SAT

solvers were used, but other solvers, such as algebraic solvers, can be used to perform

the AFA. Other solvers may however require adaptations and conversions of the data (e.g.

from CNF to ANF for algebraic solvers).

4.3 Detailed Solving Steps

In this section, details on the different stages AutoFault goes through are given in pro-

cessing order, from the time-frame expansion of the design, to a brief discussion on SAT

solving.

140

4.3 Detailed Solving Steps

4.3.1 Time-Frame Expansion

The first step in mounting an AFA through AutoFault is to process the given circuit model.

Throughout the remainder of this thesis, this stage will be denoted as the time-frame

expansion. It is composed of two main parts, the time-frame expansion itself, and the

attack construction. Both respectively modify the circuit under attack, so that it can be

expressed in the correct format for the SAT solver used in the later stages, as well as

modelling the fault attack component into the circuit itself.

A combinational circuit with n inputs and m outputs can be expressed as a Boolean func-

tion f : Bn → Bm, and any Boolean function can be rewritten in CNF. Consequently, any

combinational circuit can be expressed in terms of CNF clauses, which can then be fed to

a SAT solver. However, the direct conversion of the circuit to CNF clauses is inefficient. A

solution to this problem is to use the Tseitin transform [Tse68]. Every gate constituting

the circuit is expressed in CNF, and a new variable is introduced for every gate output.

This allows for shorter CNF clauses, at the expense of more variables. Moreover, for com-

binational circuits, each input which is not an output of a previous gate is a Primary Input

(PI), and respectively, every output not connected to another gate is a Primary Output

(PO).

After the Tseitin transform is applied, the set of CNF clauses can be fed to a SAT solver

and used to solve justification problems. A justification problem consists of finding an

assignment for the circuit’s inputs and outputs, which is consistent with given logic val-

ues at specific locations. More precisely, in the context of this work, specifying some PI

and/or PO variables to known values allows to solve for the remaining unspecified ones.

Specifically for AFAs, the faulty ciphertexts and the fault free ciphertext POs can be set to

known values, as well as the plaintext PI in some instances, while the key variables remain

unknown. The SAT solver will then look for a satisfiable assignment for the key variables,

in accordance to the given PIs and POs,and thus recover the secret, unknown, key. CNF

variables can be easily set to a specific value as each variable represent a single bit. For

instance, if one wants to set x0, the first bit of the fault free ciphertext, to 0, the clause

{¬x0} can be added to the set of CNF clauses.

However, while any circuit can be expressed in this way, only the CNF conversion of combi-

national circuit would result in a set of CNF clauses which represent the full functionality

141

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

S
B

S
R

M
C

P
laintext

P
C
ip
h
ertext
C

R
ou
n
d
K
ey

K
i

R
ou
n
d
i
=
1
..10

P
S
B

S
R

M
C

K
1

S
B

S
R

M
C

K
9

S
B

S
R

⊕
R
K

K
10

C

R
ou
n
d
1

R
ou
n
d
9

R
ou
n
d
10

...
S
R

M
C

S
B

S
R

⊕
R
K

F
au
lt-free

C
ip
h
ertext

C

K
9

K
10

F
1

S
R

M
C

S
B

S
R

⊕
R
K

F
au
lty

C
ip
h
ertext

C
′1

F
2

S
R

M
C

S
B

S
R

⊕
R
K

F
au
lty

C
ip
h
ertext

C
′2

R
ou
n
d
9

R
ou
n
d
10

1
2

T
im

e-F
ram

e
E
xp
an
sion

M
u
ltip

le
A
ttack

C
on
stru

ction

⊕
R
K

⊕
M
K

M
aster

K
ey

K

F
au
lt
F
1

F
au
lt
F
2

⊕
M
K

⊕
R
K

K

⊕
R
K

F
1

F
2

S
B

S
B

S
B

⊕
R
K

⊕
R
K

⊕
R
K

Figure
4.6:

Tim
e-Fram

e
Expansion

&
A

ttack
C

onstruction
in

AutoFault

142

4.3 Detailed Solving Steps

of the circuit. Sequential circuits are composed of combinational modules and clocked

memory. Consequently, if a combinational module is reused during runtime, a direct ap-

plication of the Tseitin transform to the circuit would result in only a single set of CNF

clauses for this module, and thus not represent the functionality of the circuit. For ex-

ample, the SSAES SR∗(n, r, c, e) implementation from Figure 4.1 consist of a single round

module, which is clocked and used n times. If only a single set of CNF clauses for this mod-

ule is available, and if all the PIs and POs corresponding to a full encryption are given,

the instance will be UNSAT, since the equivalent of only a single round is performed. As a

remedy to this problem, the circuit can be unrolled. An unrolled circuit is constituted of as

many repetitions of the combinational modules as needed, glued together. In the previous

example of the SSAES (and corresponding to Figure 4.6), this means having n copies of

the round module (respectively ten on the figure), and a conversion of this new circuit to

CNF clauses would correctly represent an encryption. This unrolling is called time-frame

expansion.

Thanks to the time-frame expansion, any circuit, combinational or sequential, can be rep-

resented in CNF format. Even so, if the CNF clauses corresponding to the circuit are fed

directly to a SAT solver, recovering the secret key will not be possible. Encryption schemes

are designed to be computationally difficult to solve, else there would be no point in us-

ing them for secure communications. Therefore, it is practically impossible to recover the

secret key from the circuit description alone, and as required for any AFA, the addition of

some fault information is required for a successful attack. This fault information can be

modelled directly into the circuit. Several fault models exist, such as stuck-at faults, bit flip

or random nibbles. In this work, only bit flips and random nibbles are considered, which

can be represented as an XOR. Consequently, the fault can be simulated by adding an XOR

gate at the specific location in the circuit where a fault would be physically injected, and

the new fault input is considered as a PI during the Tseitin transform. AutoFault can be

extended easily to different fault models, for example by using either an AND gate or an

OR gate instead of the XOR gate for stuck-at 0, and respectively 1, faults. Nevertheless,

in the case of AutoFault, and as depicted in Figure 4.6, the XOR gate introduced is of the

same width as the intermediate value it is XORed to. During solving, in order to simulate

a fault of unknown value, but known position, all the bits (and thus corresponding CNF

143

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

variables) of the fault PI (e.g. F1 and F2 from 4.6) are set to 0, except the ones correspond-

ing to the actual fault position. For instance, if the fault model is a random 4-bit nibble

fault, and the fault is injected in the first 4 bits, then the first 4 variables corresponding to

those bits remain unset, while all the following variables are set to 0.

After the introduction of the new XOR gate, the remainder of the circuit is duplicated and

the overall new branch of the circuit is connected to the fault free circuit. This method

allows for a reduction of the number of CNF clauses created, and thus a faster solving

time, as opposed to fully duplicating the circuit with the new XOR gate. Moreover, this

process can be repeated for as many fault as needed, in order to simulate multiple fault

injections. In the example of figure 4.6, only the last two rounds are duplicated for each

fault, instead of the full 10 rounds. In this step, called attack construction, the newly

created implementation also has new POs, one for each fault, which correspond to faulty

ciphertexts (C1 and C2 on the figure). As explained previously, during the solving step,

those new POs, as well as the fault free PO are set to known or simulated values. Since the

same key is used in each branch of the new circuit, this results in conflict clauses during

solving, which restrict the key space, and thus the number of key candidates to be tested.

Additionally, the circuit can also be truncated to only consider the fault affected branches,

and a partial fault free branch, which start at the same location as the faulty branches

(for example, the three branches of Figure 4.6 without anything preceding). This way, the

number of CNF clauses is further reduced, which can improve the solving times. However,

this comes at the cost of not being able to use a known plaintext as PI of the circuit, since

the truncated circuit’s PI is now an intermediate value and is unknown. Consequently, less

values on other lines are implied by the PIs, and less conflict clauses are created. Therefore

the key space may be larger, which may also lead to an increase in solving times, as more

key candidates need to be tested. Even though, in this work, truncating the circuit always

led to an improvement in term of solving time (see Section 4.6), it is a trade-off between

the overall number of CNF clauses and the key space restriction (overall number of key

candidates). Both methods are valid, and truncating the circuit should be considered

depending on the considered cipher.

In order to perform the overall time-frame expansion stage (including the attack construc-

tion), a series of Python scripts are used, corresponding to each cipher. A script takes as

144

4.3 Detailed Solving Steps

input the starting round (in case the circuit is to be truncated), the last round, the fault

injection round and location, the number of faults, as well as the encryption parameters

in the case where a family of ciphers is considered (e.g. the SSAES). It should be noted

that the fault injection round is not only specified by an actual round, but also by a specific

operation within the round. For example, for an AES implementation, one may want to

inject a fault after the eighth ShiftRows operation. In this case, the script could be modi-

fied such "round" (X;Y) corresponds to round X and operation Y (e.g. (8; 2) for a fault

before the eighth ShiftRows operation). Each of the previous parameters allow to create

a new top module in HDL, which is unrolled and has the additional fault branches at the

desired location. In addition, the scripts create a Synopsys Design Compiler configuration

files, which is used to synthesise the model’s gate-level netlist, and copy the required sub-

modules (from the original implementation) to the same folder as the new top module.

The scripts then calls Synopsys Design Compiler with the newly created top module and

the configuration file, in order to synthesise the circuit. The output of this synthesis tool

is a new gate-level Verilog netlist, of the time-frame expanded original circuit, with the

addition of the fault information. This new circuit is not a circuit which would be man-

ufactured, but rather a model used for the analysis of the original circuit vulnerability to

fault injection attacks. It can then be converted to CNF through the Tseitin transform.

During the creation of the new circuit, the names of the inputs and outputs are also

changed for ease of recognition during the later stages of the attack. For instance, the

plaintext input is renamed as "intermediate", as it may correspond to either the plaintext,

in the case of a full circuit, or to an intermediate state, in the case of a truncated circuit.

This renaming is important to ensure that the process remains automated and that no

further user input is needed to identify each PIs and POs.

Finally, in addition to the new circuit to be attacked, another circuit is generated. This

circuit, denoted as simulation circuit, is used during the preparation of the attack, in

order to simulate a fault free encryption, as well as the several faulty encryption needed.

More details on the CNF simulation are available in Section 4.4, but the principle is to

have a circuit composed of all the rounds, and a single fault location, in order to be able

to generate values for the attack, by giving chosen inputs to this circuit.

145

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

4.3.2 CNF Conversion

Once the time-frame expansion of the original cryptographic implementation has been

performed, it is ready for the CNF conversion stage. In this stage, the newly generated

hardware description undergoes the Tseitin transform. This operation is performed by

PHAETON [SBP16], a tool developed by the chair of computer architecture of the Univer-

sity of Freiburg. The tool can apply the Tseitin transform directly to the circuit given a

correct format of the netlist. The format is ensured during synthesis by the configuration

file generated for Synopsys Design Compiler.

While the Tseitin transform is automatically performed by PHAETON, in order to be able

to process the CNF clauses for an AFA, a header containing the information on the PIs

and POs of the circuit is necessary. To this end, PHAETON was modified to add this func-

tionality. A new application module was added to PHAETON. The new module first loads

the circuit and all the sub-modules necessary for the CNF conversion already present in

the tool. Then, the following naming scheme (from Section 4.3.1) is used to correctly

identify each pin of all the PIs and POs automatically identified by the framework. The

plaintext, or intermediate input in the case of truncated circuits, is denominated by "in-

termediate_Y" (where Y corresponds to the bit/pin of the PIs or POs), the key by "key_Y",

the faults by "faultX_Y" (where X is the fault’s number), the ciphertext by "cipher_Y", and

the faulty ciphertexts by "cipher_faultyX_Y". Additionally, potential masks used for mask-

ing counter-measures (see Section 2.2.2.2) are denominated by "maskX_Y" and a generic

"helperX_Y" name can be used for any other pin (at the discretion of the user). This al-

lows to first assign a single letter to each PIs and POs, for easier identification in the later

stages of AutoFault, while also allowing to automatically get the sizes (in terms of bits)

and number of variables (e.g. number of faulty ciphertexts). Once the mapping is done,

the module checks to which cipher the circuit corresponds, in order to generate an appro-

priate file name, as AutoFault later automatically gets the solving settings from the file

names. If the cipher is not recognised as a supported cipher, the module selects a generic

file name, which can still be used by AutoFault. The Tseitin transform is then finally ap-

plied and the CNF file, containing all the CNF clauses, is generated. Lastly, the header is

generated from the previous mapping and appended to the CNF file.

146

4.3 Detailed Solving Steps

c variable correspondence:
c l−>keyPinLits−>key_; Verilog input;
c f−>faultPinLits−>faultX_; Verilog input;
c p−>intermediatePinLits−>intermediate_; Verilog input;
c x−>cipherPinLits−>cipher_; Verilog output;
c y−>cipherFaultyPinLits−>cipher_faulty; Verilog output;
c m−>maskPinLits−>mask_; Verilog input;
c a−>helperPinLits−>helper_; Verilog input;
c 49 := l_0, 48 := l_1, ... , 34 := l_15, -972 := k_0, ... , 982 := k_15, -1301 := x_0, ... ,

-1292 := x_15, 65 := p_0, ... , 50 := p_15, -1297 := y_0_0, ... , -1285 := y_0_15,
-1295 := y_1_0, ... , -1283 := y_1_15, 33 := f_0_0, ... , 18 := f_0_15, 17 := f_1_0,
... , 2 := f_1_15,

p cnf 1309 4436
c −−− START CLAUSE DB
1 0
−66 50 2 0
...

Listing 4.1: Shortened CNF Header of an SSAES

Listing 4.1 is a shortened example of a CNF header created for an SR∗(10, 2, 2,) SSAES.

The line starting with a "c" of the CNF file are comments ignored by the SAT solver, and

correspond to the header. First all the PIs and POs of the cryptographic circuit, which

follow the overall naming scheme of AutoFault, are listed with their corresponding letter,

in order to be humanly readable. For instance, the letter "f " relates to the injected faults,

and should be followed by the fault number. In this example, two faults are injected,

therefore "f_0_0" corresponds to the bit 0 of the first injected fault, while "f_1_0" refers

to the same bit of the second injected fault. Then, the variable correspondence to the

the CNF variables is listed: a number refers to a CNF variable and is associated with the

corresponding letter. For instance, in Listing 4.1, variable "33" is in fact the bit 0 of the

first fault. After the header, the number of CNF clauses, as well as the number of variables

is also given, and finally all the CNF clauses are listed until the end of the file.

Moreover, additional variables can be mapped for the evaluation of counter-measures

or more intricate ciphers, which require different inputs. For instance, mask’s pins are

mapped to the letter "m", and dedicated helper pins (mapped to "a") can be used for any

other generic inputs or outputs which may be needed. Helper pins are however at the

discretion of the framework’s user, and need to be properly handled later on.

147

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

A header such as the one of Listing 4.1 is necessary for the next stage of the attack, where

specific CNF variables are set to some given values, and fed to a SAT solver, in order to

mount an AFA.

4.3.3 CNF Processing and Mapping

After the CNF conversion, the attack can be mounted. This is handled by the main module

of AutoFault, which is denoted as the AFA module in this chapter. The AFA module,

written in C++, handles the CNF inputs as well as the diverse settings of the attack,

and returns the secret key after a successful attack. It is composed of multiple C++

sub-modules, each of them dedicated to a specific task. Figure 4.7 lists all the major

sub-modules, as well as the folder architecture which constitute the AFA module.

During the attack stage, when the AFA module is called, it can either be called by specifying

every attack parameters manually or by specifying a setting file. Consequently, the first

sub-module called is the settings sub-module. It parses the specified setting file (present in

the correspondingly name folder), and sets all of the attack parameters, as well as the any

parameters which can be derived from the setting file or the CNF inputs, to the correct

values. Such parameters include the size of every variable, the number of each variable

(in the case where several are available, e.g. the faults), every cipher specific value (e.g.

number of rounds, fault injection round...) or the size of the fault. They are automatically

derived from the CNF file, by following AutoFault’s naming scheme or parsing the file’s

name itself. Other settings related to file paths or solver parameters are also given in the

setting file. The user can for example set the number of attacks to be performed, the SAT

solver to be used, or the simulation mode in this file. Listing 4.2 shows an example of

setting file.

The CNFPreProcessor is called throughout the attack phase in order to handle the CNF

files, with their header. Several functions parse the circuit’s files, starting with the header.

The different letters associated with the PIs and POs are mapped to the corresponding

AutoFault variables. This is done according to the previously defined settings. Once the

header has been processed, the circuit’s CNF clauses are loaded by the SAT logic via the

solver-proxy sub-module. In the case where the simulation is performed via CNF clauses

148

4.3 Detailed Solving Steps

AFA Module
...

cipher

AES.cpp

ICipher.cpp

...

faultFiles

helper

settings

settings.ini

solver-proxy

CNFPreProcessor.cpp

EncryptionInfo.h

FaultAttack.cpp

Faults.cpp

Main.cpp

Settings.cpp

Simulator.cpp

...

Figure 4.7: AutoFault AFA Module Structure

149

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

solver = cryptominisat ; Chosen SAT solver
noOfThreads = 8 ; Number of threads

cipher = "ssAES" ; Cipher to attack. If the file name contains it: not necessary
repetitions = 1 ; How often the circuit should be attacked
timeout = 86400 ; Timeout for one attack, in seconds
randomSeed = 1579630018 ; Initial seed for the random number generator
cnfSimulator = true ; CNF simulation or software simulation

; Path to the circuit file
circuitFile = "../../faultAttackCircuitsAsCNF/SSAES/circuit_ssAES_2-2-4_round_8

-10_faultAt_8_skipMc_1_fault_injections_2_formula.cnf"

; Path to the simulator file
simulatorCircuitFile = "../../faultAttackCircuitsAsCNF/SSAES/circuit_ssAES_2-2-4

_round_8-10_faultAt_8_skipMc_1_fault_injections_2_formula_sim.cnf"

; Random mode or manual fault injections
randomMode = true
;The fault file, if randomMode set to false
;faultFile = "../faultFiles/faultFile_ssAES_2-2-4_round_8-10

_faultAt_8_skipMc_1_fault_injections_2"

Listing 4.2: Example of Setting File

(i.e. not through software implementations of the diverse ciphers), the CNFPreProcessor is

called twice, once for each CNF file (corresponding to each circuit).

The Simulator sub-modules is used for the generation of the values needed for the at-

tack. The main purpose of the Simulator is therefore to call the correction function with

regards to the parameters. dependent on the simulation mode, it either calls a software

implementation for the considered cipher, or a SAT solver in the case where a CNF simu-

lation circuit is provided (more details in Section 4.4). In the case where the simulation

is done fully in software, the Simulator calls the ICipher sub-module present in the cipher

folder. This sub-module is used to correctly map the required functions to the correct ci-

pher. For instance, if an AES encryption is required to generate a fault free ciphertext, the

ICipher sub-module refers to the encryption function available in the AES corresponding

sub-module. The Simulator is prepared right after the initialisation of the CNFPreProcessor.

Once both the CNFPreProcessor and the Simulator sub-modules have been initialised, the

Faults sub-module is called in order to generate the necessary attack values. AutoFault

can be used in two modes, either random, or manual. If AutoFault is in random mode,

150

4.3 Detailed Solving Steps

then all the inputs necessary for the attack are randomly generated in the Faults sub-

module, before being forwarded to the Simulator in order to derive the corresponding

outputs. For instance, to mount an AFA, a fault free and several faulty ciphertexts are

required. Once the input values (i.e. plaintext, key and faults) are randomly generated,

the Simulator performs both fault free and faulty encryptions to generate the outputs.

However, during the solving phase, the key is of course "forgotten" (i.e. not forwarded to

the solver), in order to simulate an AFA. If the selected mode of AutoFault is the manual

mode, the Faults sub-module parses a file available in the faultFiles folder, and specified

in the settings. In this case, only the required values are present in the fault file (i.e.

ciphertexts and fault position), and not the secret key. This mode is aimed at performing

AFA from physically injected faults, instead of simulation. In either case, all the values are

stored in a new data structure defined in the EncryptionInfo header. This data structure

contains all the encryption’s data (e.g. plaintext, ciphertext, faults...), both as vectors of

integer and characters for usage with other functions of AutoFault.

With a fully filled EncryptionInfo data structure, the attack can be performed. The Fault-

Attack sub-module is consequently called, and sets all the necessary CNF variables to the

correct values. For example, all the CNF variables of the fault free ciphertext are set to

the corresponding values of each bit of the ciphertext member of the EncryptionInfo data

structure, the key is left unknown and the plaintext can be set if desired. In the case where

the fault model is a random nibble fault, the fault itself is not specified, but only the fault

position, as an attacker would not be able to know which fault was injected, but would

be able to control the fault position. To ensure this, and since the fault variable is as wide

as the intermediate data it is XORed to (see Figure 4.6), a single nibble is selected ran-

domly. With the position of the nibble known, the FaultAttack sub-module sets all the CNF

variables corresponding to the bits unaffected by the fault to 0, and only the remaining

variables stay unspecified. Every CNF variable is set to 0 or 1 by making a call to the SAT

solver (through the solver-proxy), and adding a new unite clause to the set of CNF clauses.

Once every necessary variable is set, a call to the SAT solver is performed, in order to solve

for the secret key (i.e. find a satisfiable assignment for the given inputs and outputs).

Once a satisfiable assignment is found, this means a key candidate is available. The Fault-

Attack sub-module reads the SAT flag returned by the SAT solver, as well as the CNF vari-

151

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

ables corresponding to the key candidate. The Simulator is then called in order to perform

an encryption with a known plaintext and the key candidate. If the resulting ciphertext is

the same as a known correct ciphertext, then the key candidate is the correct secret key,

and AutoFault returns it. If the two ciphertexts are different, then an incorrect key was

found. In this case, a new CNF clause corresponding to the key is set to 0, and, without

resetting the solver, a new call to the solver is made (incremental solving). The process is

repeated until the correct key is found. In the event where the SAT solver would exhaust

every key candidate, and return an UNSAT flag, either the design or the fault model is

incorrect.

The overall AFA module repeats the previous steps for each attack, and returns either the

secret key, an UNSAT flag or a timeout, if the solving took longer than the user specified

timeout. Moreover, sub-modules available in the helper folder are used to record some

statistics on the attack, for instance the solving time, and a log file is created with the

information concerning the AFAs.

4.3.4 SAT Solving

A SAT solver is used to perform the AFA. However, in AutoFault, multiple SAT solvers are

supported. This is thanks to the solver-proxy sub-module, which serves as a compatibility

layer for the divers SAT solver supported by AutoFault. The solver-proxy sub-module

was developed by the chair of computer architecture of the University of Freiburg, who

are experts in SAT instances for circuit oriented problems. It is therefore not part of this

thesis’s work. Nonetheless, the solver-proxy is an important part of AutoFault and is

briefly mentioned in this section for completeness.

Thanks to the solver-proxy sub-module, different SAT solver can be used in conjunction

with AutoFault. Currently, the following SAT solvers are supported: antom [SLB10,

SR16], CaDiCaL [Bie17], Glucose [AS18], MapleLCMDistChronoBT (MLBT) [RN18] and

CryptoMiniSat (CMS) [SNC09]. When a call to the SAT solver is made in the AFA module,

it is mapped to the correct functions depending on the selected solver. For instance, the

addition of unit clauses for the each known variable is different for every SAT solver, but

the solver-proxy allows for an easy and automated way to switch between solvers.

152

4.4 CNF Simulation

During SAT solving, the multiple ciphertexts being set to specific values will create several

conflict clauses, which will reduce the number of possible assignment for the remain-

ing unknown variables. The variable of interest in the context of AFAs is the secret key,

however, a satisfiable assignment still needs to be found for other variables as well. Nev-

ertheless, in order to recover the secret key, having an efficient SAT solver is essential.

To this end, solver-proxy was used to compare different SAT solver and the results for an

SSAES SR∗(10, 4, 4, 4) are available in Table 4.1. From this table, it can be seen that CMS

was overall the most efficient SAT solver for AFA problems, especially in multi-core mode.

Results are similar for different ciphers, and thus CMS was chosen as the primary SAT

solver.

Table 4.1: Comparison of SAT Solver Solving Time - SSAES SR∗(10, 4, 4, 4)

Time in s antom CaDiCaL Glucose MLBT CMS - Single Core CMS - 4 cores
Average 790.6 42.9 38.0 216.9 39.7 18.3
Median 553.6 33.9 33.8 207.2 32.3 16.3
Minimum 101.5 24.2 8.3 163.3 13.2 11.8
Maximum 2019.0 81.1 73.3 280.2 80.7 35.6

4.4 CNF Simulation

The simulation of values is an important step in AutoFault, as well as for the automation

of AFAs. In the first implementation of AutoFault [BGE+17], the simulation was handled

fully by the AFA module, and a software implementation of each cipher was therefore nec-

essary. Each software implementation allowed for encryptions, with and without faults, to

be performed, or for key scheduling. This way, the necessary fault free and faulty cipher-

texts could be generated in order to mount an AFA (unless AutoFault was used in manual

mode, with values resulting from physical fault injections). While having a software im-

plementation of each cipher allows for fast generation of values, it requires manual work

to add a new cipher to the framework, as a new implementation is needed. Similarly, if

a counter-measure is added to the hardware implementation, it may be required to up-

date the software implementation linked to the newly protected encryption scheme, or

even completely re-implement it. Since one of the goals of AutoFault is to automate the

153

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

evaluation of hardware implementation of cryptographic primitives, this step needed to

be automatised further.

During SAT solving of an AFA instance, the CNF clauses corresponding to the ciphertexts

are set, as well as the one of the fault position, which allows for the SAT solver to find

a satisfiable assignment for every unset value. The same principle can be used for the

generation of values for the attack, and is denoted as CNF simulation. If a ciphertext is

needed, then the CNF clauses corresponding to the hardware implementation of the circuit

can be used, and by setting every PI to given values, only a single ciphertext satisfies the

set of CNF clauses, and is returned by the SAT solver. However, since AutoFault supports

the truncation of the fault affected circuit, the circuit generated during the time-frame

expansion cannot always be used for this purpose, as in this case, the plaintext input is not

present, but rather an intermediate state. Moreover, if the circuit to be attacked contains

multiple faults, the number of CNF clauses is increased significantly by the duplication

of the fault affected operations, which increases the solving time. Therefore, during the

time-frame expansion, a second circuit, containing every operations (i.e. not truncated),

and a single fault is generated automatically. This circuit can then be used in conjunction

with the SAT solver to generate, first a fault free ciphertext given the plaintext and key as

input, and then every faulty ciphertexts necessary, by varying the value of the single fault,

and resetting the SAT solver after every encryption. Additionally, the same circuit is used

during the key candidate checking phase, by setting the plaintext and the key candidate

CNF variables to the specified values in order to generate a new ciphertext and compare

it with a known correct one.

Using this approach for the simulation of values for an AFA, as opposed to a software

implementation of each cipher, means that only a simulation circuit is necessary for this

step, and essentially any cipher can be easily added to AutoFault. The generation of the

simulation circuit leverages AutoFault’s functionality to produce a complete circuit with

a single fault injection, meaning that the Python scripts from the time-frame expansion

can handle this process without any modification, and only with a second call. Moreover,

in the event where a counter-measure has been added to the considered circuit, the time-

frame expansion needs to be redone in any case, and thus employing the CNF simulation

is not only simpler than re-implementing the protected cipher in software, but also only a

154

4.5 AutoFault in the Design Flow

single additional call to the time-frame expansion script, making the evaluation of counter-

measures simpler.

It should however be noted that, for encryption schemes with a key scheduler, the reverse

key schedule operation, needed in the case of truncation, is still processed in software for

simulation. This is due to the fact that, while possible to do in CNF as well, this would

require more modification to the time-frame expansion scripts, and AutoFault itself, for

the processing of one additional input. Since a reverse key schedule is usually simple

to implement in software, and often independent of the counter-measures which may be

added, this choice was made for AutoFault.

Furthermore, attacks on multiple ciphers, and for several repetitions, were conducted with

AutoFault in CNF simulation mode. The runtimes were comparable to the runtimes of

AutoFault without the CNF simulator. Therefore, since no noticeable differences were

observed, the CNF simulation can be used at no extra cost, or at least no noticeable cost,

despite several calls to the SAT solver, reinforcing its usefulness.

4.5 AutoFault in the Design Flow

AutoFault can automatically generate AFAs given a hardware implementation of a cipher.

Since AutoFault can handle multiple type of inputs and fault models, it can be used at

diverse stages of the cryptographic hardware’s design phase. This is especially useful

for automated evaluation of such critical implementations. This section discusses how

AutoFault can be used for this purpose, and Figure 4.8 summarises the overall use cases

of the framework, which can be divided in two categories: pre-silicon and post-silicon

analysis.

Pre-silicon analysis refers to the use of AutoFault the manufacturing of the cryptographic

circuit. Consequently, no physical hardware is available, and no physical fault injections

can be realised. In turn, this means that the fault injection needs to be simulated. How-

ever, the circuit designer should not blindly simulate any fault. While the designer can

use AutoFault to check different fault locations deemed critical, a fault model needs to

be chosen. The fault model should match the fault injection equipment available to an

attacker, and his general fault injection capabilities. The assumptions for the fault model

155

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

Simulated Faults
(RT-Level)

Simulated Faults
(Detailed)

Physical
Fault Injection

High-Level
Specification Circuit Model Physical

Realisation

Framework

Synthesis

Refinement
Optimisation

Fabrication
Mapping

Pre-Silicon Analysis Post-Silicon Analysis

Figure 4.8: AutoFault Usage during the Design Flow & Fault Models

are both temporal and spatial (i.e. fault location and position). For example, an attacker

who has access to a highly accurate, both spatially and temporally, fault injector could

aim at injecting single bit flip faults. Even though his aim is to inject such faults, the re-

ality of physical fault injection could mean that, sometimes, the neighbouring bits may be

flipped as well. In this case, the fault model should be created accordingly, for instance

by considering random nibble faults instead of only bit flips, or if the probability of flip-

ping the neighbouring bits is known, then it can be mapped into the fault model as well.

Nevertheless, and even if the designer should consider several fault models, matching the

fault model in pre-silicon analysis is much simpler than in post-silicon analysis, where the

physical fault injector has to be considered.

Once the fault model for simulation has been defined, the framework can be applied either

in the early stage of the design phase, or before manufacturing. In the early stages, only

the high-level specification is available. This corresponds to the register-transfer level,

where only states are available, as well as the overall flow of operations between each state

(e.g rounds, key schedule...). In this case, the time-frame expansion scripts (as explained

in Section 4.3.1) are used before synthesising the design to mount the attack. If the

design has already been synthesised, then a gate-level implementation is available. This

means that, instead of the overall operation flow, each gate implementing each operation

is available. In this case, logic gates can be a target for the fault injection, and, with the

complete netlist, it is possible to represent such an attack directly. However, this is not the

156

4.5 AutoFault in the Design Flow

case at the register transfer level, and the fault needs to be approximated, for instance by

the addition of an XOR operation with an intermediate state. The difference between both

cases is thus the available information about the fault model, and how it is mapped in the

circuit implementation, before the conversion to CNF, and the AFA itself.

The opposite use case for AutoFault is the post-silicon synthesis. The framework can be

used after manufacturing of a chip, which allows for further evaluations of the design with

physical fault injection hardware. While a fault injection setup lets the designer evaluate

its design against a real world scenario, the fault model specified in AutoFault should

match the injected faults. Depending on the equipment available, this is not necessarily a

simple task, but if both the fault model, and the physical effect of the faults are different,

then the SAT instance will most likely be UNSAT during solving, or at least the attack will

be inconsistent (i.e. produce incorrect key candidates). This is due to the fact that, if the

fault location and position are not correctly specified, but the faulty ciphertexts resulting

of the fault injection are manually forwarded to AutoFault, then the SAT solver will try to

find a satisfiable assignment given the corresponding fault parameters, which is unlikely

if the fault was actually injected at another location, or affected more bits (an example of

this is discussed in Section 4.6). Practical attacks often have a large key space, meaning

that the processing time can be rather long. If the fault model is incorrect, and the attack

inconsistent, a large amount of time can be wasted on trying to solve the attack with the

framework. One possibility to avoid this, is to use a more lax fault model (e.g. allow

for more bit flips). Similarly to the pre-silicon analysis, a laxer fault model increases the

number of key candidates. Consequently, the solving process will also take more time,

and if the model is too lax, for example in the case of an unknown fault position, not

enough restrictions will be placed on the key space, leading in the worst case scenario to

an attack equivalent to a brute force attack. The user should be aware of this, and find the

correct balance between a lax fault model, with too many key candidates, and strict one,

not matching the physical fault injector behaviour.

No matter if AutoFault is used in pre- or post-silicon analysis, it can automatically mount

an AFA, given a meaningful fault model, and by doing so a designer can identify design

flaws and vulnerabilities. If such a vulnerability is discovered, the design can be modified

to resolve the issue. For instance, a designer can decide to add a counter-measure at

157

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

a specific location in the circuit. One example of physical modification could be to add

some shielding over a critical area of the circuit in order to prevent fault injections at this

location. Another possibility could be to add an ECC counter-measure (such as the one

presented in Chapter 3). In both cases, it is simple to use AutoFault again and evaluate

the newly modified design before proceeding to the next design phase. Furthermore, at

any stage, the design can be optimised (e.g. pipelined), and re-evaluated in the same way.

This process can be repeated until no vulnerabilities are found, and for different fault

models, in order to cover more possible fault injections.

4.6 Hardware-Oriented AFAs on SPN Ciphers

In this section, results on the application of the AutoFault framework on different ciphers

are presented. The framework was applied to Substitution and Permutation Network

(SPN) ciphers, as they are widely used, which holds in particular for the AES. The con-

sidered ciphers have known vulnerabilities against conventional fault injection attacks.

However, and as motivated in Section 4.1, even a slight modification of the encryption

scheme, such as a different variant of the SSAES, changes the fault propagation pattern,

which may lead to either under- or over-propagation and an unsuccessful fault attack.

Therefore, SPN ciphers were chosen as a baseline to be met, in the case of known suc-

cessful fault models, and an evaluation of the capacity of the framework to automatically

mount different attacks, either less optimised, or on different variants of the ciphers.

The experiments were conducted on a commercial grade AMD Ryzen 9 3950X processor

with 16 cores and 128GB of RAM. Moreover, the CryptoMiniSat (CMS) [SNC09] solver

was used, as it was found comparatively more efficient than other SAT solvers for AFA in-

stances (see Section 4.3.4). The tables presented in this section showcase the runtimes of

the AFA module of AutoFault (i.e. of the attack), as well as the number of key candidates

considered until the secret key was found, denoted as #KC. While the number of key can-

didates until the attack is successful does not exactly indicate the size of the key space, it

gives an indication about the attack and the fault model considered. Furthermore, all fault

injected for SPN cipher are random nibble (or respectively byte) faults, of the respective

size of the cipher’s intermediate state’s operations (usually the SBoxes).

158

4.6 Hardware-Oriented AFAs on SPN Ciphers

4.6.1 AES (including Small Scale variants)

The AES is one of the most widely used cipher, and optimised DFA attacks, such as the one

presented in Section 2.1.4.2 with a single fault injection at the beginning of the eighth

round, are known. In this section, an AFA with the same fault model as the previous

attack was considered for validation of AutoFault functionalities, as well as other fault

locations. Moreover, SSAES variants were attacked as well, to showcase the scalability of

the framework, and are a direct automation of the DFA presented in Section 4.1. Addi-

tionally, it should be noted that, in comparison to the DFA attacks, the framework does not

necessarily proceed to do the second step of the attack using the key schedule equations.

It is possible in AutoFault to omit the key schedule module, and instead have either a

new input for each round key, or hard code the round keys directly into the circuit. For

the following experiment, this is however not the case, and the key schedule was present.

It is nevertheless an option in the framework, which can be used by designer to emulate a

design were the keys have been precomputed.

First, it is important to find a suitable fault model for the attacks. To this end, and thanks to

the scalability of the SSAES, smaller square (equal number of rows and columns) variant

of the AES, can be attacked with the framework, before generalising to larger variants,

or variants with unequal number of rows and columns. Based on the initial findings

for the DFA on the SSAES SR∗(10, 2, 2, 4) and SR∗(10, 4, 4, 4), a fault injection at the

beginning of the eighth round should lead to the most efficient attack. Table 4.2 shows

experimental results for both variants of the SSAES, with the previous fault model and a

complete circuit, over one hundred mounted attacks. For each cipher, both a single fault

injection and two fault injections were considered. It can be seen that, in both cases,

the injection of a second fault led to faster solving times. This is expected, as a second

fault injection constraints the key space further, which can be observed in the table as

well, by the extremely low number of key candidates. With two fault injections, almost

always only a single key candidate remains, while the number of candidates for single fault

attacks is much more important. The difference in term of runtime for the smallest variant

is marginal, but this is due to the size of the cipher itself. The SSAES SR∗(10, 2, 2, 4) is

a 16-bit cipher, and therefore only very few key candidates remain with a single fault

injection. This leads to barely slower solving times, and even a better one in the case

159

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

of the minimum, which is due to sheer luck during the attack, as the first key candidate

was the correct one (also why the minimum number of key candidates is 1). However,

the improvement for the SR∗(10, 4, 4, 4) is very noticeable, with an improvement of more

than two orders of magnitude. Since larger variants of the SSAES mean longer processing

time, and two fault injections remains low, two faults are injected for the following attacks

on the SSAES.

Table 4.2: Number of Faults Comparison for the SSAES - 100 Attacks

SSAES SSAES SSAES SSAES
SR∗(10, 2, 2, 4) SR∗(10, 2, 2, 4) SR∗(10, 4, 4, 4) SR∗(10, 4, 4, 4)

#Faults 1 2 1 2
Time in s #KC Time in s #KC Time in s #KC Time in s #KC

Average 2.69 15 2.51 1 2714.12 1516 12.49 1
Median 1.98 12 1.84 1 558.53 393 10.27 1
Minimum 0.05 1 0.10 1 15.49 8 2.45 1
Maximum 10.81 97 9.09 2 50349.50 26541 39.81 1

Table 4.3 shows results for the same two SSAES variants with two fault injections, but

using a truncated circuit to improve the solving times. Moreover, ten thousand attacks

were ran to have a larger sample size, and thus less corner cases on average. In comparison

to the previous table, runtimes are smaller, already showcasing the improvement of only

considering the relevant part of the circuit (refer to Section 4.3.1). In this case, only

rounds 8 to 10 are considered. Table 4.6 showcases this further more for the full scale

AES. Overall, for small and square variant of the SSAES, solving times are in the order of

seconds, even for the 64-bit SSAES SR∗(10, 4, 4, 4).

Table 4.3: Runtimes for SSAES r = c with 2 Fault Injections - 10000 Attacks

SSAES SR∗(10, 2, 2, 4) SSAES SR∗(10, 4, 4, 4)
Time in s #KC Time in s #KC

Average 1.36 1 3.29 1
Median 0.83 1 2.84 1
Minimum 0.02 1 1.69 1
Maximum 11.61 4 14.53 2

Following the experiments on the square variants of the SSAES, and to confirm the re-

sults on the DFA attacks of the SSAES from Section 4.1, let us consider both the SSAES

SR∗(10, 2, 4, 4) and SR∗(10, 4, 2, 4). Two faults were injected at the beginning of round

160

4.6 Hardware-Oriented AFAs on SPN Ciphers

8 for both ciphers, and an additional attack at the beginning of round 9 for the SSAES

SR∗(10, 4, 2, 4) was performed as well, since it was the most optimised fault attack in the

case of the DFA. Concerning the attack of the former cipher, the solving times range from

less than a second to around three hundred seconds, as shown in Table 4.4, and simi-

larly, the number of key candidates range from a single one, to more than 18000, over

ten thousand attacks. If one recalls Section 4.1, these attacks correspond to the optimised

DFA, since two faults were injected. However, the fault positions were chosen randomly

in AutoFault, and therefore, a complete fault propagation (see Figure 4.2) was often not

achieved. Since the fault propagation is not always optimal, the key space is not restricted

well enough, which explains the large number of key candidates and long runtimes. In

the worst case, two faults were injected in the same nibble, leading to a key space of

approximately size 216, of which around a fourth of the key candidates were tested. The

opposite case is also true. The attack with only a single key candidate and a runtime of

less than a second is in fact an attack following the fault model defined for the DFA, which

led to those results. In addition, manual fault injections were performed following the

same optimised fault model, and the runtimes and number of key candidates were similar.

This is an expected result, but, from a designer’s perspective, studying in more details the

patterns in the fault injections which led to the lowest runtimes would showcase the vul-

nerability of the cipher to especially dual faults of this type, without the need to perform

a manual cryptanalysis of the cipher.

Table 4.4: Runtimes for an SSAES SR∗(10, 2, 4, 4) with 2 Fault Injections - 10000 Attacks

SSAES SR∗(10, 2, 4, 4)
Time in s #KC

Average 18.93 791
Median 8.31 317
Minimum 0.18 1
Maximum 300.04 18050

In the case of the SSAES SR∗(10, 4, 2, 4), the optimal fault model defined in Section 4.1

was two faults at the beginning of the ninth round, while fault injections at round 8 lead

to over-propagation of the fault, and thus more complex equations. The experiments from

Table 4.5 show that, on one hand and despite the increase in complexity, fault attacks at

round 8 are still successful. Moreover, due to the high propagation of the fault, the key

161

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

space is constrained to the point were only a single key candidate remains. On the other

hand, the more optimised attack at the next round has on average much worse results

(and thus only a thousand attacks were ran, due to the increase in solving time). This is

due to the random nature of the faults injected by the framework, instead of specifically

chosen, and is similar to the previous case of the SSAES SR∗(10, 2, 4, 4). However, if

the fault model matches the two fault positions presented in Figure 4.4 (or equivalent

positions), the solving time reduces dramatically, as well as the number of key candidates

(which can be observed in the table, and was validated with manually selected faults).

Once again, the attack on the SSAES SR∗(10, 4, 2, 4) shows how AutoFault can be used

to automatically find the most suitable fault locations and positions, especially in the case

of multiple fault injections. Additionally, in the case of over-propagation of the fault,

even if the runtimes are slower than more well targeted attacks, some attacks remain

mountable and successful. As such, the framework highlights that, even if state-of-the-art

attacks exist, other fault locations should not be discarded as potential risk, and counter-

measures may be necessary at different locations.

Table 4.5: Fault Location Comparison for an SSAES SR∗(10, 4, 2, 4) with 2 Fault Injections

SSAES SR∗(10, 4, 2, 4) SSAES SR∗(10, 4, 2, 4)

#Attacks 10000 1000
Fault Location Round 8 Round 9

Time in s #KC Time in s #KC
Average 8.31 1 149.75 6844
Median 4.82 1 85.59 3974
Minimum 1.05 1 0.20 1
Maximum 82.40 1 300.06 20320

The preceding experiments only considered smaller versions of the SSAES, and what can

be considered as lightweight ciphers. In reality, larger cryptographic circuits are used as

well, such as the full scale AES. Table 4.6 presents AutoFault data for attacks on the AES

and the SSAES SR∗(10, 4, 4, 8). Both ciphers only differ in their respective key schedule.

Several attacks on both ciphers were conducted, and the runtimes were similar. Therefore,

the marginal difference in key scheduling does not induce any additional difficulty for

the framework, and both ciphers are equivalent (as claimed in [CMR05]). Since both

ciphers are interchangeable, Table 4.6 compares the effect of the truncation of the circuit

162

4.6 Hardware-Oriented AFAs on SPN Ciphers

between a complete AES implementation, and a truncated SR∗(10, 4, 4, 8) (round 8 to

10), both with two faults injected before the eighth round. It is clear that the number of

key candidates remains the same, and low, however the solving times are greatly reduced

by the truncation of the circuit. Even though attacks are automated via AutoFault, a

much lower runtime is essential for iterative evaluation of a cryptographic circuit, and

consequently, results show the advantages of the truncation functionality.

Table 4.6: Effect of Truncation on Runtimes for an AES with 2 Fault Injections

AES SSAES SR∗(10, 4, 4, 8)

#Attacks 100 1000
Truncated Circuit No Yes

Time in s #KC Time in s #KC
Average 2738.19 1 421.85 1
Median 1586.45 1 348.59 1
Minimum 388.38 1 113.29 1
Maximum 25598.40 1 3509.28 1

Finally, the previous attacks on the SSAES were all performed directly from the circuit

description in HDL, corresponding to a pre-silicon analysis, but AutoFault can also be

used for post-silicon analysis. To this end, the fault injection setup from Figure 3.10 was

used to inject faults onto an SSAES SR∗(10, 4, 4, 4) implemented on a SAKURA-G board.

Due to the imprecise nature of the fault injector, only roughly 5.9% of the successful fault

injections resulted in single nibble (i.e. 4 bits) faults at the beginning of the eighth round.

The single faults were then selected, and given as input to the framework, with the cor-

responding faulty ciphertexts. AutoFault was able to recover the secret key for most

successful single fault injections, in similar times to Table 4.2, and Table 4.3. However, a

few fault injections resulted in faulty outputs which led to an UNSAT instance for the SAT

solver. This is due to the imprecise behaviour of the fault injector, and after careful inspec-

tion of the injected fault, it was discovered that the fault injector affected the ninth round

in addition to the eighth round, resulting in a fault model different from the fault model

chosen in AutoFault. This last SSAES experiment validates the use of the framework for

post-silicon analysis, and shows the importance of having a matching fault model between

AutoFault and the physically injected faults.

163

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

4.6.2 LED

The LED cipher [GPPR11] is a lightweight block cipher commonly used in constrained de-

vices. As such, it is of particular interest for the AutoFault framework. A well known loca-

tion for a successful fault injection attack is at the beginning of the 30th round. AutoFault

was used to evaluate an hardware implementation of LED against fault injections at rounds

29, 30 or 31. The latter were not successful, but this is to be expected, as in this case the

fault does not propagate enough to sufficiently constrain the key space. Similarly to the

case of the AES, the injection of two faults, as well as the truncation of the circuit to only

consider the remaining rounds from the fault injection round, significantly improved the

runtimes. Table 4.7 shows the runtimes and numbers of key candidates for AFAs at rounds

29 and 30 (only ten attacks were ran for the former, due to the long runtimes).

Table 4.7: Fault Location Comparison for the LED Cipher with 2 Fault Injections

LED64 LED64
#Attacks 10 10000
Fault Location Round 29 Round 30

Time in s #KC Time in s #KC
Average 213737.00 1 3.96 1
Median 92797.55 1 3.91 1
Minimum 12845.11 1 2.62 1
Maximum 684122.00 1 9.39 83

From Table 4.7, it can be seen that, as expected, the attack of round 30 runs flawlessly

for AutoFault, with low solving times. One can note that the maximum number of key

candidates is higher than for the SSAES SR∗(10, 4, 4, 4), due to the different fault prop-

agation pattern in LED. Despite this, the runtimes of both ciphers are similar for a fault

injected at the beginning of the third to last round (respectively 30 and 8). The attack at

round 29 however is significantly slower. Similarly to the SSAES, this is due to an over-

propagation of the fault, which increases the complexity of solving, and further constrains

the key space. The runtimes range from slightly less than four hours, to more than eight

days. For a cipher of the size of LED (i.e. 64 bits), this is a rather long runtime. However, a

designer who would want to evaluate his LED implementation against fault attacks could

run attacks on both locations in parallel for a few days. He would then find that round 30

needs to be protected, but round 29 should not be discarded, even if the complexity of the

164

4.6 Hardware-Oriented AFAs on SPN Ciphers

attack is higher. This once again showcases the capacity of AutoFault to automatically

find attacks, which may have been discarded otherwise.

4.6.3 PRESENT

PRESENT [BKL+07] is another widely used and studied lightweight cipher. It differs from

the AES and LED by not having ShiftRows and MixColumns operations for its diffusion

layer, but rather a remapping of each bits constituting the internal state after the SBoxes.

Another difference is the key size. While the internal state is 64-bit wide, the master

key is 80-bit long, and 64-bit round keys are derived from it. This makes a fault attack

slightly harder, as a faulty value may not depend on the complete master key. Therefore,

conventional DFA require at least two fault injections at round 29 to recover the secret

key.

Table 4.8: Number of Faults Comparison for the PRESENT Cipher

PRESENT PRESENT
#Faults 5 10
#Attacks 20 10000

Time in s #KC Time in s #KC
Average 11184.08 117514 75.84 963
Median 1020.88 11022 1.64 14
Minimum 5.98 59 0.36 1
Maximum 78027 929926 56041.90 605168

Fault injections at round 29 with varying number of faults were considered with the frame-

work. The results for five and ten faults are available in Table 4.8. Once again the circuit

was truncated from round 29 to 32 in order to reduce the number of CNF clauses to

process and improve the solving times. It can be seen that, for five fault injections, the

runtimes widely vary and for this reason only twenty attacks were ran, and successful. A

timeout of one day (i.e. 86400 seconds) was set in AutoFault, and a few more attacks

ran into the timeout limit (roughly one third of the attacks), and results are only shown

for successful attacks. To a smaller extent, the same high variance is true for the attacks

with ten injected faults, and especially the maximum runtimes, and the numbers of key

candidates, are high. This is due to the fault propagation pattern inside PRESENT, which

can often overlap because of the bitwise remapping, but also due to the larger master key

165

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

size, as well as the random fault positions considered by AutoFault. This leads, in some

cases, to a key space which is only slightly constrained, and that is why, compared to more

conventional attacks, the framework needs more fault injections on average to mount a

successful attack. If the fault model was restricted further, and faults were injected at

specific positions, such that the fault propagation is maximal, with as little overlap as pos-

sible, then fewer faults would be required and the runtimes would be lower. This is for

example the case in both minimum entries of Table 4.8, and thanks to the framework’s

logs, such cases can be once again automatically found by AutoFault.

4.6.4 Extension to other Types of Ciphers

The results for attacks on SPN ciphers show the versatility of the AutoFault framework for

attack hardware implementation of cryptographic primitives, but also how it can be used

to automatically find the most suitable location and position of faults, in order to mount

efficient attacks. Moreover, the automated process can be leveraged by a designer to verify

that, even if he is aware of a critical location and/or position to protect with counter-

measures, thanks to an already well known attack, no other locations are vulnerable.

One last example fo this, and another extension of the framework, is the attack on the

Midori cipher [BBI+15] presented in Table 4.9, showing that fault injection attacks at

the beginning of the seventeenth round leads to a successful attack, but fault injections a

round later also lead to successful attacks in most cases (out of 1000 attacks, 10 lead to

timeouts, due to the large size of the remaining key space for some fault positions).

Table 4.9: Fault Location Comparison for the Midori Cipher with 5 Fault Injections

Midori128 Midori128
#Attacks 1000 990
Fault Location Round 17 Round 18

Time in s #KC Time in s #KC
Average 539.49 1 114.13 1554
Median 42.50 1 2.49 2
Minimum 2.55 1 0.98 1
Maximum 121880.00 1 20593.30 277608

AutoFault is however not limited to SPN ciphers. SPN ciphers were studied in more

detail due to their usage in a wide variety of applications, but other types of ciphers can

166

4.7 Multiple Faults effect in AutoFault

be attacked as well. In general, AutoFault can process any cipher, as long as it is given

in the proper format and with a suitable fault model. Other cipher types, such as Feistel

networks or elliptic curve cryptosystems can be processed as well. In the case of Feistel

networks (such as SIMON [BTCS+15]), a designer would have to modify the time-frame

expansion script to add faults in two different rounds. This is due to the nature of Feistel

networks, which process the data partitioned into two blocks (the right and left blocks)

of half the size of the data. In each round, each block is either processed or directly

forwarded to the next round, becoming the next right (or left respectively) block. This

means that the secret key only affects one block at a time, and a fault does not propagate

to the second block, leading to only half of the secret key being constrained. This can be

circumvented by injected a second fault in the second block, or at a previous round, for

better fault propagation, and can be realised by the time-frame expansion script.

Another example of extension of the framework could be elliptic curve cryptosystems.

These ciphers are asymmetric block ciphers, meaning that the secret key is only used dur-

ing the decryption process. Therefore, a designer should consider the decryption process

and not the encryption, otherwise the attack in itself would be similar. However, elliptic

curve cryptosystems have a large number of operations and are usually implemented se-

quentially for this reason. While a time-frame expansion can be realised, the time-frame

expanded circuit may become extremely large and thus difficult to process for the SAT

solver, due to the large number of CNF clauses, and the user should be aware of this.

4.7 Multiple Faults effect in AutoFault

Support for multiple fault injections was added to the AutoFault Framework in [GPU+19].

While multiple fault injections allowed new attacks to be mounted, the question emerged

about how many fault injections should be performed. For more conventional fault at-

tacks, such as DFA, more fault injections are often better runtime-wise, as each additional

fault restricts the key space further. There are diminishing returns which come with more

fault injections, but for fault injection attacks such as DFA, more faults injections generally

either decrease the solving times, or do not impact them.

167

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

In the context of hardware-oriented AFAs, however, injecting more faults does not only add

more inputs, but also a complete branch of the circuit is duplicated from the fault location

and onwards (Section 4.3.1). In turn, this leads to more CNF clauses being generated and

processed by the SAT solver. More faults still restrict the key space further, but in the case

of an already constrained key space, an additional fault may not reduce significantly the

remaining number of key candidates, while adding more CNF clauses to be processed, and

consequently increasing the runtime necessary for a successful attack. This can be seen in

Table 4.10, which presents results on attacks performed on the SSAES SR∗(4, 4, 4, 4) and

the LED cipher, both truncated for optimisation purposes and over 10000 attacks.

In the case of the SSAES, the fault was injected at the beginning of the eighth round, as

it was determined to be the most efficient fault location. Similarly, for the LED cipher, the

fault was injected at the beginning of the thirtieth round, and for both ciphers, the trun-

cation was performed at the same respective locations. Table 4.10 shows the significant

improvement from injecting two faults instead of a single one. For the AES, the average

solving time reduces by a factor 60, while the attack on LED is more than two hundred

times faster. Similarly, the number of key candidates is almost always reduced to a single

one, or at the least a low number of candidates for the maximum cases (such as 83 for

the LED cipher). Even though the results are to be expected, it shows the importance

of supporting multiple fault injections for the evaluation of hardware implementation of

cryptographic schemes, as it drastically reduces the solving times, and thus allows for

faster identification of critical fault locations. Moreover, for the full scale AES, a single

fault injection does not restrict the key space enough to allow a attack to be mounted

in a reasonable time with the framework. Over several experiments with a single fault

injection on the AES, only a single instance was successful in approximately sixteen days

of runtime, while attacks with two faults take on average around 400 seconds (as can

be seen in Table 4.6). This fact strengthens further the need for multiple fault injections

support for AutoFault, and AFA frameworks in general, especially for the evaluation of

larger encryption schemes.

However, one can also see in the table that increasing the number of fault injection further

than two, for those specific ciphers, leads to an increase in solving times. This is due to

the fact that the number of remaining key candidates is already extremely low for two

168

4.7 Multiple Faults effect in AutoFault

Ta
bl

e
4.

10
:

Im
pa

ct
of

M
ul

ti
pl

e
Fa

ul
t

In
je

ct
io

ns
on

R
un

ti
m

es
-1

00
00

A
tt

ac
ks

C
ip

he
r

#
Fa

ul
ts

A
ve

ra
ge

M
ed

ia
n

M
in

im
um

M
ax

im
um

#
C

N
F

C
la

us
es

Ti
m

e
in

s
#

KC
Ti

m
e

in
s

#
KC

Ti
m

e
in

s
#

KC
Ti

m
e

in
s

#
KC

SS
A

ES
S
R

∗ (
4,
4
,4
,4
)

1
20

5.
82

20
09

33
.2

1
49

2
1.

23
3

42
78

6.
31

13
69

46
13

30
6

2
3.

29
1

2.
84

1
1.

69
1

14
.5

3
2

19
55

0
3

3.
75

1
3.

10
1

1.
75

1
17

.1
0

1
25

78
3

5
5.

51
1

4.
43

1
2.

23
1

33
.7

6
1

39
61

0
10

8.
72

1
8.

10
1

3.
07

1
28

.2
5

1
71

85
1

LE
D

64

1
55

2.
23

87
68

16
5.

42
28

61
2.

94
4

62
94

0.
70

63
62

38
15

50
2

2
3.

96
1

3.
91

1
2.

62
1

9.
39

83
23

37
1

3
4.

31
1

4.
26

1
2.

96
1

8.
99

6
31

24
0

5
5.

47
1

5.
34

1
3.

59
1

12
.9

4
1

46
20

3
10

8.
08

1
7.

70
1

4.
88

1
16

.0
9

1
84

93
3

169

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

fault injections, meaning that adding further faults would only avoid the evaluation of

less than a hundred of key candidates, and since the evaluation is performed quickly, this

does not significantly reduce the overall runtimes. However, since more CNF clauses are

added to the SAT instance for more fault injections, as can be seen in the table as well

(from ∼15.5k clauses to almost 85k for the LED), the instance is harder for the SAT solver.

Consequently, adding more faults beyond the point where the key space is reduced to

only a few key candidates is not only ineffective attack-wise, but also detrimental solving

time-wise.

Overall, more fault injections implies both a restriction of the key space and an increase

in the number of CNF clauses. Therefore, the user should cautiously select the number of

fault injections to be performed. A generic method for the automatic evaluation of cipher’s

hardware implementation could be to first automatically mount attacks with a varying

number of fault injections, and then compare the numbers of key candidates considered

by AutoFault. The number of faults to be considered should then be the lowest number for

which there were few key candidates. The design can then be evaluated with this number

of fault injections, but also with a slightly lower number of fault and for an extended

period of time, to verify if the attack is still mountable in those cases. In any case, the

design is vulnerable at this specific, but depending on the hardware constraints, and the

desired security level, if too many fault injections are required, the attack can be deemed

unpractical. Finally, from an attacker point of view, the lowest realistic number of fault

injections which lead to a small key space should always be considered to reduce the

overhead of CNF clauses.

4.8 Future work: Counter-Measure Validation

The AutoFault framework can be used to evaluate the effectiveness of counter-measures

against fault attacks, or if counter-measures against other types of attacks (e.g. masking

against side-channel analysis) have a negative effect on AFAs mounted against the cipher.

This section discusses the possible applications of AutoFault for automated evaluation of

counter-measure, as well as a few preliminary results.

170

4.8 Future work: Counter-Measure Validation

The first counter-measures of interest for evaluation with the AutoFault framework are

Error Detecting Codes (EDCs) and Error Correcting Codes (ECCs) (Section 2.2.1). Code

based counter-measure, such as the one presented in Chapter 3 are aimed directly at

preventing successful fault injection attacks. Consequently, their capabilities in that regard

needs to be evaluated, and the automated capacity of AutoFault to mount attacks on

cryptographic circuit can be leveraged for that purpose. Thanks to the versatility of the

time-frame expansion step of the framework, circuits previously found vulnerable and

which have been improved to include a code-based counter-measure can easily be tested

further. In most cases, for HDL implementation, only the new ECC module needs to be

included, as well as the new component protected by the code. The remainder of the steps

are the same for an evaluation against random fault models. The RK code architecture

presented in Section 3.3 was added to the Midori cipher and tested against random nibble

faults injected at round seventeen. This resulted in timeouts of AutoFault, even when the

timeout was set to a full day. The framework was able to try several hundreds of thousands

of key candidates before timeout, however, since the RK architecture is always able to

correct such faults, the ciphertexts after the fault injections were not faulty anymore, and

the key space was not restricted, rendering the attack computationally infeasible.

This result suggests that most fault injection attacks are therefore indeed mitigated by the

addition of an RK code architecture. They are fully eliminated for nibble faults, but faults

of larger multiplicities can be detected, even if they can not be corrected. However, as

discussed in Section 3.2, evaluating ECC against randomly generated faults is not suffi-

cient, and worst case scenarios need to be considered as well. The AutoFault framework

can also be used for this purpose by adding new CNF clauses to restrict the fault model to

only masked faults. If the framework can automatically find such a fault in a reasonable

amount of time, and subsequently mount a successful, then the cryptographic circuit is

still vulnerable to fault attacks and the ECC counter-measure is not sufficient. Let us de-

note by C = {Ci} and C ′ = {C ′
i} the sets of CNF variables corresponding to the fault free

and faulty ciphertext respectively, where i refers to the related bit. Similarly, E = {Ei}
and E′ = {E′

i} are the sets of CNF variables relating to the output of intermediate ECC

module (respectively fault free and faulty). Let us define ci, such that ci = Ci when the

bit of the fault free ciphertext is 1, and ci = ¬Ci when it is 0, and we define c′i respectively

171

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

for the faulty ciphertext. Adding the set of CNF clauses from Equation 4.7 to the already

available time-frame expanded circuit and fault description’s sets of clauses during solv-

ing will allow for the evaluation of the ECC module in the worst case scenario of masked

faults.

(ci) ∧ (c′i) ∧ ((¬Ei ∨ E′
i) ∧ (Ei ∨ ¬E′

i)) (4.7)

In more details, by proceeding this way, AutoFault can find secret key assignments which

are consistent with the simulated (or observed) ciphertexts, and fault assignments which

are equal between both the fault free and faulty branch of the time-frame expanded circuit

(i.e. masked faults). As of time of writing, this feature has not been added to AutoFault

and is planned as future work.

Another use case for which AutoFault can be used, is the evaluation of nonce-based

cryptosystem against fault attacks. In principle, such ciphers are resilient to fault injection

attacks which require several fault injections with same input values (see Section 2.2.2.3).

In the context of this thesis, the authenticated cipher ASCON [DEMS16] was considered.

Attack were mounted on the last rounds of ASCON, first by truncating the cipher to only

those specific rounds, as an optimisation step. Furthermore, as an initial step in attacking

the encryption scheme, the nonce was considered known. Even so, and at the time of

writing, no attack were successful on ASCON with known nonce, and only a reduced

version of the cipher was successfully attacked.

Nevertheless, the framework can be used to evaluate nonce-based cipher such as ASCON

by considering the nonce either fully known, partially known or unknown. In the former

case, an attack on the nonce-based cipher would be equivalent to an attack on ciphers

without any nonce. If the nonce is partially known or completely unknown, the SAT

solver will have to (at least partially in the former case) find a satisfiable assignment for

the nonce as well, which makes the attack more complex. If AutoFault still manages to

mount a successful attack given such a nonce model, then the hardware implementation

of the nonce-based cipher needs to be refined, or other counter-measures added. Another

common consideration for fault attacks on nonce-based ciphers is the misuse of the nonce.

For instance, an attacker may be able to encrypt multiple plaintexts with the same nonce

reused for each encryption. This case can also be automatically investigated in AutoFault

172

4.8 Future work: Counter-Measure Validation

by modifying slightly the time frame-expansion script to forward the nonce to each fault

branch, instead of using a new nonce per branch. The remainder of the attack would be

the same.

One last example of automated counter-measure evaluation with the AutoFault frame-

work, is a masking scheme implemented as a counter-measure to side-channel attacks.

While masking is not aimed at circumventing fault injection attacks, the implementation

of a masking scheme may have a negative effect on the resilience of the cipher to this type

of attacks. Usually, for masked implementations, the overall structure of the encryption

remains the same, and only the operations are modified to account for the XOR with the

randomness needed for masking (Section 2.2.2.2). Therefore, either no modification are

required in AutoFault for the protected cipher to be evaluated, or only slight changes in

the time-frame expansion will be required.

A Domain-Oriented Masking (DOM) [GMK16] AES implementation, with three shares,

was considered for evaluation with AutoFault. However, at the time of writing, no com-

plete automatic attack against this implementation have been realised. Nevertheless, the

circuit was simulated with AutoFault and a few faulty ciphertexts were manually saved

for evaluation with an unprotected AES circuit. In more detail, a fault was injected in one

of the shares at the beginning of the eighth round, and the corresponding ciphertext were

recorded, before being given as input to AutoFault, on an (unprotected) AES circuit.

Such an attack was successful, which is unsurprising due to the nature of masking and

how intermediate values are recombined to generate the final ciphertext (all shares are

XORed together, and hence the fault propagates the same way as for an unmasked AES).

This is a promising preliminary result on the attack of masked circuits with the AutoFault

framework, as in theory the attack should be successful on the DOMAES circuit as well,

given the similar fault propagation patterns. However, the larger size of the circuit (due

to the sharing) increases the number of CNF clauses, making the instance harder for the

SAT solver, and a complete attack of the DOMAES implementation should thus still be

performed, which is planned as future work.

In order to automatically evaluate protected ciphers as discussed above, without the need

for introducing new variables for each case, a set of generic helper variables was added

to AutoFault (a full list of the currently used variables is given in Section 4.3.2). These

173

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

helper variables can be used for different purposes, depending on the designer needs and

the evaluation parameters. For instance, the helper pins can be mapped to the random-

ness needed for the resharing step of a DOM scheme. The random masks can then be

considered either known or unknown, or even forwarded to multiple fault branches in

the time-frame expansion, to simulate a broken RNG. Similarly, the helper variables can

be used for the nonce of an authenticated cipher, or the intermediate ECC module output

(for the restriction to masked faults). While the generic helper pins should be set accord-

ing to the cipher and chosen carefully by the user, they allow to automatically evaluate not

only counter-measure, but even other modifications to the cryptographic hardware with

ease.

4.9 Comparison to other State-of-the-Art Algebraic Fault At-

tack Frameworks

The advantages of using the AutoFault framework have been described throughout this

chapter and more precisely the capacity of the framework to automate the evaluation of

sensitive cryptographic hardware implementations against fault attacks. However, other

AFA frameworks exist, and it is important to compare AutoFault to other state-of-the-

art AFA frameworks in order to see the benefits of using AutoFault. The frameworks

discussed in Section 2.1.5.2 are, to the best of the author’s knowledge, and at the time of

writing, the most recent AFA frameworks available. Table 4.11 gives an overall comparison

between all the frameworks and their capabilities.

First and foremost, it should be noted that the XFC framework, as well as the one from

[SKMD17], are not fully fledged AFA solvers in the sense that they can not automatically

recover for the secret key, but they rather study the fault propagation patterns throughout

an encryption, leading to the potential construction of attacks (as discussed in Section

2.1.5.2). Therefore, both first frameworks in the table, while allowing new attacks to

be mounted, can not be directly compared with the remainder of the frameworks, which

automatically mount attacks, given the correct inputs. Nonetheless, both frameworks can

be used for the generation of AFA on several ciphers, and should as such not be discarded.

174

4.9 Comparison to other State-of-the-Art Algebraic Fault Attack Frameworks

Table 4.11: Comparison of AutoFault to other State-of-the-Art AFA Frameworks

AFA
Framework

AFA
Solver

Cipher
Description

Multiple Evaluation
Supported

Ciphers
Faults of

Support Counter-
Reported Measures

XFC
No Functional No No

AES, CLEFIA,
[KRH17] SMS4

Saha et al.
No Functional No No

AES,
[SKMD17] PRESENT
Zhao et al.

Yes Functional No No LED
[ZGZ+13]

Zhang et al.
[ZZG+13]
[ZGZ+16]

Yes Functional Yes No

Piccolo, AES,
DES, MIBS-64,
LED, PRESENT,

Twofish

AutoFault Yes Hardware-
Oriented Yes Yes

SSAES & AES,
LED, PRESENT,
Midori, ASCON,

SIMON,
DOMAES (partial)

The third column of Table 4.11 shows the type of input supported by each framework. All

frameworks, with the exception of AutoFault, take functional description of the ciphers

as input. While functional descriptions allow for faster solving compared to the hardware-

based description taken by AutoFault, they need to be manually generated for each in-

dividual cipher. Consequently, and even though conversion methods exist (for example

from ANF to CNF), the user is still required to manually check and derive the input of the

frameworks, making the automatic evaluation of different encryption schemes more diffi-

cult compared to using the AutoFault framework. It should also be noted that AutoFault

can take functional descriptions of the ciphers, or any other additional equations, as input.

The focus on hardware-based descriptions is a choice for the framework, as it allows for

more flexibility on the input, as well as for the evaluation of sensitive implementations.

Concerning the latter, the hardware-oriented nature of AutoFault allows for a utilisation

of the framework at different stages of the design phase, which is impossible with only

functional description of an encryption scheme, and thus only AutoFault can be used in

an automated fashion for the evaluation of cryptographic hardware.

175

4 AutoFault: Hardware-Oriented Algebraic Fault Attack Framework

Another point of comparison for AFA frameworks is the support for multiple fault injec-

tions. As Section 4.7 showed, multiple fault injections are not only a major benefit in

terms of solving times, but also a necessary functionality to enable attacks on more com-

plex ciphers. In this regard, only AutoFault and the framework proposed by Zhang et al.

[ZGZ+16] support this feature, which also manifests itself in a larger number of supported

ciphers for both frameworks.

The last point of comparison between AutoFault and other frameworks is the possibility

to evaluate counter-measures via the framework itself. Once again, due to the nature

of the input of other AFA frameworks, the automated evaluation of counter-measures is

difficult at best. One would need to add the functional description of the counter-measure

to the cipher description, and while this is possible, any change in the counter-measure, or

any additional counter-measure against other type of attacks, would mean regenerating,

at least partially, the functional description. From a designer’s perspective, this means a

substantial effort needs to be invested to achieve this. AutoFault can however be used for

this purpose with minimal, if any, modification of the framework (as discussed in Section

4.8), and is as such the only AFA framework capable of automatically evaluating counter-

measures.

Overall, the main advantage of the AutoFault framework compared to other state-of-the-

art AFA frameworks is the increased level of automation for the evaluation of ciphers, and

more especially their hardware implementations. The framework is capable of attacking

encryption schemes at multiple stages of the design phase, as opposed to only perform

attacks at the theoretical level.

176

Chapter 5

Conclusion

Fault attacks are an ever growing threat for cryptographic circuits, with new attacks vec-

tors discovered regularly for every cipher implementation. The work presented in this

thesis proposes two different methods to automatically protect sensitive hardware imple-

mentations against fault injection attacks.

On one hand, code-based counter-measures were presented to circumvent the effect of

fault injections. In a cryptographic context, protecting the hardware against precise fault

injections which may go through counter-measures undetected is especially important,

as a strongly capable attacker can take advantage of such vulnerabilities. In this regard,

the proposed RK architectures are based on robust codes, which are more efficient in the

worst case scenario of masked faults compared to linear codes. The architectures retain

the detection and correction capabilities of the linear code they are based of, ensuring

the detection of natural faults, and the correction of precise, low multiplicity, maliciously

injected faults. They were constructed efficiently thanks to the ECLT decoding, as well

as the overall architecture of the counter-measure. More precisely, the ECLT based de-

coding allows for a compact hardware implementation, significantly reducing hardware

costs compared to other widely used decoding techniques. Moreover, by design, they are

scalable to any cipher, as a different alphabet can be chosen and larger ciphers can be

protected by smaller ECC modules, for more efficient operations. The inner-outer code

architectures allow for a higher protection against miscorrection, while being scalable as

well. This is especially true in the case where a CPC is used as the outer code. The CPC

provides a greater granular control over the trade-off between the security level, and the

177

Conclusion

hardware cost of the counter-measure. Given an encryption scheme and a desired secu-

rity level (for example in term of distance), an architecture can be automatically chosen,

and then implemented. In addition, the experimental results on the proposed architecture

showcased its overall effectiveness against fault injections, as well as its relatively low

hardware cost in comparison to other ECC, which do not account for the critical case of

masked faults.

On the other hand, a tool for the evaluation of hardware implementation of ciphers was

presented, in the form of the AutoFault framework. The main idea behind the automa-

tion of fault attacks originates from the fact that fault equations are different for any

cipher, and even for any slight difference in a cipher family, while being work intensive

to produce. The case of the SSAES, for which DFA equations were given, perfectly il-

lustrates the need for automation, and was the first step toward hardware-oriented AFAs.

AutoFault is the resulting framework of this work on automated fault injection attacks. It

is capable of automatically mounting AFAs at different stages of the design phase, which al-

lows for the detection of the potential vulnerabilities of the encryption scheme even when

the design has been optimised, or if counter-measures have been added. More precisely,

the time-frame expansion can be performed for any cipher, and the support for multiple

fault injections enables more complex attacks to be mounted. Adding only a second fault

injection to the AFA against a full scale AES lead to a successful key recovery, and drasti-

cally reduced the solving times of attacks against other ciphers. The limitation of adding

more faults, as well as the trade-off between the number of faults and the number of CNF

clauses, was likewise described. Moreover, the introduction of CNF-based simulation fur-

ther automates the evaluation process. The framework was capable to mount attacks for a

wide variety of commonly used SPN ciphers, and can be easily extended to any other type

of cryptographic scheme. Compared to other AFA frameworks, successful attacks may be

slower in some cases, due to the hardware nature of the framework inputs, but remain

reasonably low. AutoFault also features more functionalities compared to other frame-

works, such as the evaluation of counter-measures, and is the only hardware-oriented AFA

framework, which can be used during the design phases of a cryptographic circuit.

178

Future Work

Both of the previous methods can be used to automatically protect cryptographic hardware

against fault injection attacks. However, further work is still needed on both ECC counter-

measures and the AutoFault framework.

In the case of the RK architectures, while they can protect cryptographic hardware against

fault injection attacks, the introduction of new components processing sensitive data,

mainly the secret key, can induce other sources of leakage. The resilience of the RK

architecture against passive side-channel attacks (e.g. DPA) needs to be considered as

well, which was not the case so far in this work. Such attacks remain a threat even in

the presence of other counter-measures, if proper care to design the cryptographic circuit

is not taken. For instance, the cryptographic components of the circuit may be designed

to be resilient against side-channel analysis, but the predictors used by the ECC architec-

ture may leak sensitive information nonetheless, as they are implemented differently. One

possibility to deal with potential leakage is the careful combination of ECC with masking,

such as the IPM-RED architecture proposed in [KP21]. The IPM-RED architecture is not

built on RK codes. However, it should be possible to use an RK architecture described in

this thesis in conjunction with inner product masking. This would increase the security

level provided by the RK architecture, but the implementation costs need to be considered

and the implementation itself needs to be tested against leakage on physical hardware.

Concerning the AutoFault framework, while the evaluation of counter-measures has been

discussed in this thesis (Section 4.8). It is still in its early stage and practical evaluations

of encryption scheme’s hardware implementations remain to be done, for example fully

supporting the DOMAES. Furthermore, the framework can be extended to support a wider

variety of fault models and attacks in general, to improve the capacity of the framework

to automatically evaluate cryptographic hardware. For example, non SPN ciphers may

require slightly different fault models for an attack to be successful in AutoFault. Feis-

tel networks are one such example, where the two faults need to be injected at different

rounds in order to mount a successful attack, which has not been tested in AutoFault yet.

Finally, the framework could also be extended to support other type of hardware, such as

neural networks. Recently, the vulnerability of neural networks to fault injection attacks

has been considered, and a new attack aiming at reverse engineering them was proposed

179

Conclusion

[BJH+20]. The construction of attacks on neural networks shares high similarities with

attacks on cryptographic hardware, and as such AutoFault could be used for this pur-

pose as well. The unrolling and mapping scripts within AutoFault need to be adapted

to achieve this, and other considerations may be needed to speed up the solving (e.g. on

the sparsity of the weights), as the neural networks are usually larger than cryptographic

circuits when time-frame expended.

180

Bibliography

[AARR03] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The

em side-channel(s). In Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors,

Cryptographic Hardware and Embedded Systems - CHES 2002, pages 29–45, Berlin,

Heidelberg, 2003. Springer Berlin Heidelberg. ISBN: 978-3-540-36400-9.

[ABC+17] Stéphanie Anceau, Pierre Bleuet, Jessy Clédière, Laurent Maingault, Jean-luc

Rainard, and Rémi Tucoulou. Nanofocused x-ray beam to reprogram secure circuits.

In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and Em-

bedded Systems – CHES 2017, pages 175–188, Cham, 2017. Springer International

Publishing.

[ADM+10] Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache, Anne-

Lise Ribotta, and Assia Tria. How to flip a bit? In 16th Int. On-Line

Testing Symposium (IOLTS), pages 235–239, Piscataway, NJ, USA, 2010. IEEE.

doi:10.1109/IOLTS.2010.5560194.

[ADY15] R. Altawy, O. Duman, and A. Youssef. Fault analysis of kuznyechik. IACR Cryptol.

ePrint Arch., 2015:347, 2015.

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of des and aes,

secure against some attacks. In Çetin K. Koç, David Naccache, and Christof Paar,

editors, Cryptographic Hardware and Embedded Systems — CHES 2001, pages 309–

318, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[ALK12] N. Admaty, S. Litsyn, and O. Keren. Puncturing, expurgating and expanding the q-

ary BCH based robust codes. In IEEE Conv. of Elec. & Electronics Engineers in Israel,

pages 1–5, 2012. doi:10.1109/EEEI.2012.6376995.

[AS18] Gilles Audemard and Laurent Simon. On the glucose sat solver. International Journal

on Artificial Intelligence Tools, 27(01):1840001, 2018.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hi-

watari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low

energy. In ASIACRYPT (2), volume 9453 of Lecture Notes in Computer Science, pages

411–436. Springer, 2015.

181

http://dx.doi.org/10.1109/IOLTS.2010.5560194
http://dx.doi.org/10.1109/EEEI.2012.6376995

5 Conclusion

[BBK+03] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error analy-

sis and detection procedures for a hardware implementation of the advanced

encryption standard. IEEE Transactions on Computers, 52(4):492–505, 2003.

doi:10.1109/TC.2003.1190590.

[BBKN12] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault injection attacks on

cryptographic devices: Theory, practice and countermeasures. Proc. IEEE, pages

3056–3076, 2012.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with

a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic

Hardware and Embedded Systems - CHES 2004, pages 16–29, Berlin, Heidelberg,

2004. Springer Berlin Heidelberg. ISBN: 978-3-540-28632-5.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of check-

ing cryptographic protocols for faults. In Walter Fumy, editor, Advances in Cryptology

— EUROCRYPT ’97, pages 37–51, Berlin, Heidelberg, 1997. Springer Berlin Heidel-

berg.

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of elimi-

nating errors in cryptographic computations. J. Cryptology, 14(2):101–119, 2001.

[BECN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s

apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

[BEG13] Nasour Bagheri, Reza Ebrahimpour, and Navid Ghaedi. New differential fault anal-

ysis on present. EURASIP Journal on Advances in Signal Processing, 2013(1):1–10,

2013.

[Ber84] E. R. Berlekamp. Algebraic coding theory. Aegean Park Press, Laguna Hills, CA, USA,

1984.

[BG13] Alberto Battistello and Christophe Giraud. Fault analysis of infective AES computa-

tions. In FDTC, pages 101–107. IEEE Computer Society, 2013.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Ri-

jmen. Higher-order threshold implementations. In International Conference on

the Theory and Application of Cryptology and Information Security, pages 326–343.

Springer, 2014.

[Bie17] Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat entering the sat

competition 2018. Proceedings of SAT Competition, pages 14–15, 2017.

[BJH+20] Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin, and Yang Liu. Sniff: reverse

engineering of neural networks with fault attacks. arXiv preprint arXiv:2002.11021,

2020.

182

http://dx.doi.org/10.1109/TC.2003.1190590

[BKHL20] J. Breier, M. Khairallah, X. Hou, and Y. Liu. A countermeasure against statistical

ineffective fault analysis. IEEE Transactions on Circuits and Systems II: Express Briefs,

67(12):3322–3326, 2020. doi:10.1109/TCSII.2020.2989184.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,

Y. Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block cipher. In CHES,

volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

[BRC60] R.C. Bose and D.K. Ray-Chaudhuri. On a class of error correcting binary group codes.

Information and Control, 3(1):68–79, 1960. doi:https://doi.org/10.1016/S0019-

9958(60)90287-4.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.

In Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 513–525,

Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[BS03] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the advanced

encryption standard (aes). In Rebecca N. Wright, editor, Financial Cryptography,

pages 162–181, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[BTCS+15] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason Smith,

and Louis Wingers. The simon and speck lightweight block ciphers. In 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2015.

[Can05] David Canright. A very compact s-box for AES. In CHES, pages 441–455, 2005.

doi:10.1007/11545262_32.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detec-

tion of algebraic manipulation with applications to robust secret sharing and fuzzy

extractors. In Nigel Smart, editor, Advances in Cryptology – EUROCRYPT 2008, pages

471–488, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound

approaches to counteract power-analysis attacks. In Michael Wiener, editor, Advances

in Cryptology — CRYPTO’ 99, pages 398–412, Berlin, Heidelberg, 1999. Springer

Berlin Heidelberg.

[CJW10] N. T. Courtois, K. Jackson, and D. Ware. Fault-algebraic attacks on inner rounds of

DES. In European Smart Card Security Conf., 2010.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault analy-

sis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and

Embedded Systems - CHES 2007, pages 181–194, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg.

183

http://dx.doi.org/10.1109/TCSII.2020.2989184
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(60)90287-4
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(60)90287-4
http://dx.doi.org/10.1007/11545262_32

5 Conclusion

[CMR05] C. Cid, S. Murphy, and M. J. B. Robshaw. Small Scale Variants of the AES, pages

145–162. Springer Berlin Heidelberg, 2005. ISBN: 978-3-540-31669-5.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.

Kaliski, çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and Embed-

ded Systems - CHES 2002, pages 13–28, Berlin, Heidelberg, 2003. Springer Berlin

Heidelberg. ISBN: 978-3-540-36400-9.

[CZS16] Wei Cheng, Yongbin Zhou, and Laurent Sauvage. Differential fault analysis on mi-

dori. In Kwok-Yan Lam, Chi-Hung Chi, and Sihan Qing, editors, Information and

Communications Security, pages 307–317, Cham, 2016. Springer International Pub-

lishing.

[DCBR+15] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla

Nikova. Higher-order threshold implementation of the aes s-box. In Interna-

tional conference on smart card research and advanced applications, pages 259–272.

Springer, 2015.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Florian

Mendel, and Robert Primas. Sifa: Exploiting ineffective fault inductions on sym-

metric cryptography. IACR Transactions on Cryptographic Hardware and Embedded

Systems, 2018(3):547–572, Aug. 2018. doi:10.13154/tches.v2018.i3.547-572.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon

v1.2. Submission to the CAESAR Competition, 2016.

[DFL11] Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux. Meet-in-the-middle

and impossible differential fault analysis on aes. In Bart Preneel and Tsuyoshi Takagi,

editors, Cryptographic Hardware and Embedded Systems – CHES 2011, pages 274–

291, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[DLV03] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault analysis on

a.e.s. In Jianying Zhou, Moti Yung, and Yongfei Han, editors, Applied Cryptogra-

phy and Network Security, pages 293–306, Berlin, Heidelberg, 2003. Springer Berlin

Heidelberg.

[DMN+17] Debayan Das, Shovan Maity, Saad Bin Nasir, Santosh Ghosh, Arijit Raychowd-

hury, and Shreyas Sen. High efficiency power side-channel attack immunity us-

ing noise injection in attenuated signature domain. In 2017 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), pages 62–67, 2017.

doi:10.1109/HST.2017.7951799.

[DMN+18] Debayan Das, Shovan Maity, Saad Bin Nasir, Santosh Ghosh, Arijit Raychowdhury,

and Shreyas Sen. Asni: Attenuated signature noise injection for low-overhead power

184

http://dx.doi.org/10.13154/tches.v2018.i3.547-572
http://dx.doi.org/10.1109/HST.2017.7951799

side-channel attack immunity. IEEE Transactions on Circuits and Systems I: Regular

Papers, 65(10):3300–3311, 2018. doi:10.1109/TCSI.2018.2819499.

[DPW18] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.

Journal of the ACM,, 65(4), April 2018.

[Gir05] Christophe Giraud. Dfa on aes. In Hans Dobbertin, Vincent Rijmen, and Aleksandra

Sowa, editors, Advanced Encryption Standard – AES, pages 27–41, Berlin, Heidel-

berg, 2005. Springer Berlin Heidelberg.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking:

Compact masked hardware implementations with arbitrary protection order. In The-

ory of Implementation Security, TIS ’16, page 3, New York, NY, USA, 2016. Associa-

tion for Computing Machinery. ISBN: 9781450345750.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:

Concrete results. In Çetin K. Koç, David Naccache, and Christof Paar, editors, Cryp-

tographic Hardware and Embedded Systems — CHES 2001, pages 251–261, Berlin,

Heidelberg, 2001. Springer Berlin Heidelberg. ISBN: 978-3-540-44709-2.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The led block ci-

pher. In CHES, pages 326–341. Springer Berlin Heidelberg, 2011. ISBN: 978-3-642-

23950-2.

[GPT20] M. Gruber, M. Probst, and M. Tempelmeier. Statistical ineffective fault analysis of

gimli. In 2020 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST), pages 252–261, 2020. doi:10.1109/HOST45689.2020.9300260.

[GYS15] Nahid Farhady Ghalaty, Bilgiday Yuce, and Patrick Schaumont. Differential fault in-

tensity analysis on present and led block ciphers. In Stefan Mangard and Axel Y.

Poschmann, editors, Constructive Side-Channel Analysis and Secure Design, pages

174–188, Cham, 2015. Springer International Publishing.

[GYTS14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa M. I. Taha, and Patrick Schaumont.

Differential fault intensity analysis. In FDTC, pages 49–58. IEEE Computer Society,

2014.

[Ham50] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical

Journal, 29(2):147–160, 1950.

[HHM+13] Y. Hayashi, N. Homma, T. Mizuki, T. Aoki, and H. Sone. Transient iemi threats

for cryptographic devices. IEEE Transactions on Electromagnetic Compatibility,

55(1):140–148, 2013. doi:10.1109/TEMC.2012.2206393.

185

http://dx.doi.org/10.1109/TCSI.2018.2819499
http://dx.doi.org/10.1109/HOST45689.2020.9300260
http://dx.doi.org/10.1109/TEMC.2012.2206393

5 Conclusion

[HR08] Michal Hojsík and Bohuslav Rudolf. Differential fault analysis of trivium. In Kaisa

Nyberg, editor, Fast Software Encryption, pages 158–172, Berlin, Heidelberg, 2008.

Springer Berlin Heidelberg.

[Jeo12] Ki-Tae Jeong. Differential fault analysis on block cipher piccolo-80. The Journal of

Advanced Navigation Technology, 16(3):510–517, 2012.

[JKP12] Philipp Jovanovic, Martin Kreuzer, and Ilia Polian. A fault attack on the LED block

cipher. In COSADE, volume 7275 of Lecture Notes in Comp. Sc., pages 120–134.

Springer, 2012.

[JSP20] Amit Jana, Dhiman Saha, and Goutam Paul. Differential fault analysis of norx. In

Workshop on Attacks and Solutions in Hardware Security - ASHES 2020, ASHES’20,

page 67–79, New York, NY, USA, 2020. Association for Computing Machinery.

ISBN: 9781450380904.

[KDK+14] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu.

Flipping bits in memory without accessing them: An experimental study of dram

disturbance errors. In 2014 ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), pages 361–372, 2014. doi:10.1109/ISCA.2014.6853210.

[KGT18] Jonas Krautter, Dennis R. E. Gnad, and Mehdi B. Tahoori. Fpgahammer: Remote

voltage fault attacks on shared fpgas, suitable for dfa on aes. IACR Transactions on

Cryptographic Hardware and Embedded Systems, 2018(3):44–68, Aug. 2018.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In

CRYPTO, pages 388–397. Springer, 1999.

[KKT04] M. Karpovsky, K. J. Kulikowski, and A. Taubin. Robust protection against fault-

injection attacks on smart cards implementing the advanced encryption standard.

In International Conference on Dependable Systems and Networks, 2004, pages 93–

101, 2004. doi:10.1109/DSN.2004.1311880.

[KKW07] M. Karpovsky, K. Kulikowski, and Z. Wang. Robust error detection in communication

and computational channels. In Int’l Workshop Spectral Methods & Multirate Signal

Proc., 2007.

[KM10] Lars R. Knudsen and Charlotte V. Miolane. Counting equations in algebraic attacks

on block ciphers. International Journal of Information Security, 9(2):127–135, Apr

2010.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and

other systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96, pages

104–113, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

186

http://dx.doi.org/10.1109/ISCA.2014.6853210
http://dx.doi.org/10.1109/DSN.2004.1311880

[KP21] Osnat Keren and Ilia Polian. Ipm-red: combining higher-order masking with robust

error detection. Journal of Cryptographic Engineering, 11(2):147–160, 2021.

[KQ08] Chong Hee Kim and Jean-Jacques Quisquater. New differential fault analysis on

aes key schedule: Two faults are enough. In Gilles Grimaud and François-Xavier

Standaert, editors, Smart Card Research and Advanced Applications, pages 48–60,

Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[KRH17] P. Khanna, C. Rebeiro, and A. Hazra. Xfc: A framework for exploitable fault charac-

terization in block ciphers. In 2017 IEEE Design Auto. Conf. (DAC), pages 1–6, June

2017. doi:10.1145/3061639.3062340.

[KT04] M. Karpovsky and A. Taubin. New class of nonlinear systematic error detect-

ing codes. IEEE Transactions on Information Theory, 50(8):1818–1819, 2004.

doi:10.1109/TIT.2004.831844.

[KW14] Mark G. Karpovsky and Zhen Wang. Design of strongly secure communication

and computation channels by nonlinear error detecting codes. IEEE Trans. Comp.,

63(11):2716–2728, 2014.

[LM06] H Li and S Moore. Security evaluation at design time against optical fault injection

attacks. IEE Proc.-Info. Sec., 153(1):3–11, 2006.

[LOS12] Y. Li, K. Ohta, and K. Sakiyama. New fault-based side-channel attack using fault

sensitivity. IEEE Trans. Information Forensics and Security, 7(1):88–97, 2012.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Takahashi,

and Kazuo Ohta. Fault sensitivity analysis. In Stefan Mangard and François-Xavier

Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010,

pages 320–334, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[Mas69] J. Massey. Shift-register synthesis and bch decoding. IEEE Transactions on Informa-

tion Theory, 15(1):122–127, 1969. doi:10.1109/TIT.1969.1054260.

[MDH+13] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. Electromag-

netic fault injection: Towards a fault model on a 32-bit microcontroller. In 2013

Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 77–88, 2013.

doi:10.1109/FDTC.2013.9.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.

Glitch-resistant masking revisited: or why proofs in the robust probing model

are needed. IACR Transactions on Cryptographic Hardware and Embedded Systems,

2019(2):256–292, Feb. 2019. doi:10.13154/tches.v2019.i2.256-292.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks - re-

vealing the secrets of smart cards. Springer, 2007. ISBN: 978-0-387-30857-9.

187

http://dx.doi.org/10.1145/3061639.3062340
http://dx.doi.org/10.1109/TIT.2004.831844
http://dx.doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1109/FDTC.2013.9
http://dx.doi.org/10.13154/tches.v2019.i2.256-292

5 Conclusion

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Push-

ing the limits: A very compact and a threshold implementation of aes. In Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

pages 69–88. Springer, 2011.

[MSI16] M. Matsubayashi, A. Satoh, and J. Ishii. Clock glitch generator on sakura-g for fault

injection attack against a cryptographic circuit. In 2016 IEEE 5th Global Conference

on Consumer Electronics, pages 1–4, 2016. doi:10.1109/GCCE.2016.7800490.

[Muk09] Debdeep Mukhopadhyay. An improved fault based attack of the advanced encryption

standard. In Bart Preneel, editor, Progress in Cryptology – AFRICACRYPT 2009, pages

421–434, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[NBD+15] X. T. Ngo, S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm. Linear complemen-

tary dual code improvement to strengthen encoded circuit against hardware Trojan

horses. In IEEE Int’l Symp. on Hardware Oriented Security and Trust, pages 82–87,

2015.

[NIoSTN01] National Institute of Standards and Technology (NIST). Advanced Encryption Stan-

dard. NIST FIPS PUB 197, 2001.

[NK14] Yaara Neumeier and Osnat Keren. Robust generalized punctured cubic codes. IEEE

Transactions on Information Theory, 60(5):2813–2822, 2014.

[O’F16] Colin O’Flynn. Fault injection using crowbars on embedded systems. IACR Cryptol.

ePrint Arch., 2016:810, 2016.

[PDL18] Dmytro Petryk, Zoya Dyka, and Peter Langendoerfer. Optical fault injections: a setup

comparison. RESCUE - Interdependent Challenges of Reliability, Security and Quality

in Nanoelectronic Systems Design, 06 2018.

[Phe83] KT Phelps. A combinatorial construction of perfect codes. SIAM Journal on Algebraic

Discrete Methods, 4(3):398–403, 1983.

[POTSC+20] FE Potestad-Ordóńez, Erica Tena-Sánchez, R Chaves, Manuel Valencia-Barrero, An-

tonio José Acosta-Jiménez, and Carlos Jesús Jiménez-Fernández. Hamming-code

based fault detection design methodology for block ciphers. In 2020 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2020.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique

against spn structures, with application to the aes and khazad. In Colin D. Wal-

ter, Çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded

Systems - CHES 2003, pages 77–88, Berlin, Heidelberg, 2003. Springer Berlin Hei-

delberg.

188

http://dx.doi.org/10.1109/GCCE.2016.7800490

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Mea-

sures and counter-measures for smart cards. In Isabelle Attali and Thomas Jensen,

editors, Smart Card Programming and Security, pages 200–210, Berlin, Heidelberg,

2001. Springer Berlin Heidelberg. ISBN: 978-3-540-45418-2.

[RAD19] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. A statistical fault analysis

methodology for the ascon authenticated cipher. In 2019 IEEE International Sympo-

sium on Hardware Oriented Security and Trust (HOST), pages 41–50. IEEE, 2019.

[RBIK12] Francesco Regazzoni, Luca Breveglieri, Paolo Ienne, and Israel Koren. Interaction

between fault attack countermeasures and the resistance against power analysis at-

tacks. In Fault Analysis in Cryptography, pages 257–272. Springer, 2012.

[RE04] Wolfgang Rankl and Wolfgang Effing. Smart card handbook. John Wiley & Sons,

2004.

[RK17] Hila Rabii and Osnat Keren. A new construction of minimum distance robust codes.

In Ángela I. Barbero, Vitaly Skachek, and Øyvind Ytrehus, editors, Coding Theory and

Applications - 5th International Castle Meeting, ICMCTA 2017, Vihula, Estonia, August

28-31, 2017, Proceedings, volume 10495 of Lecture Notes in Computer Science, pages

272–282. Springer, 2017. doi:10.1007/978-3-319-66278-7_23.

[RN18] Vadim Ryvchin and Alexander Nadel. Maple_lcm_dist_chronobt: Featuring chrono-

logical backtracking. SAT Comp., page 29, 2018.

[RNK19] H. Rabii, Y. Neumeier, and O. Keren. High rate robust codes with low implementa-

tion complexity. IEEE Transactions on Dependable and Secure Computing, 16(3):511–

520, 2019. doi:10.1109/TDSC.2018.2816638.

[Rog04] Phillip Rogaway. Nonce-based symmetric encryption. In International workshop on

fast software encryption, pages 348–358. Springer, 2004.

[RP17] Francesco Regazzoni and Ilia Polian. Counteracting malicious faults in cryptographic

circuits. In European Test Symp. IEEE, 2017.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–

126, 1978.

[SBHS16] Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl. Precise laser fault

injections into 90 nm and 45 nm sram-cells. In Naofumi Homma and Marcel Med-

wed, editors, Smart Card Research and Advanced Applications, pages 193–205, Cham,

2016. Springer International Publishing.

189

http://dx.doi.org/10.1007/978-3-319-66278-7_23
http://dx.doi.org/10.1109/TDSC.2018.2816638

5 Conclusion

[SBP16] Matthias Sauer, Bernd Becker, and Ilia Polian. Phaeton: A sat-based framework for

timing-aware path sensitization. IEEE Transactions on Computers, 65(6):1869–1881,

2016. doi:10.1109/TC.2015.2458869.

[Sch08] Werner Schindler. Evaluation criteria for physical random number generators. In

Cryptographic Engineering, pages 25–54. Springer, 2008.

[SH13] Ling Song and Lei Hu. Differential fault attack on the prince block cipher. In Gildas

Avoine and Orhun Kara, editors, Lightweight Cryptography for Security and Privacy,

pages 43–54, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[SHS16] B. Selmke, J. Heyszl, and G. Sigl. Attack on a DFA protected AES by simultaneous

laser fault injections. In FDTC, pages 36–46. IEEE Computer Society, 2016.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita,

and Taizo Shirai. Piccolo: an ultra-lightweight blockcipher. In International workshop

on cryptographic hardware and embedded systems, pages 342–357. Springer, 2011.

[Sil] Silicon Integration Initiative. Si2: Nangate freepdk45 generic open cell library, v1.3.

http://www.si2.org/openeda.si2.org/projects/nangatelib.

[SJ05] William Stein and David Joyner. SAGE: System for algebra and geometry experi-

mentation. ACM SIGSAM Bulletin, 39(2):61–64, 2005.

[SKMD17] Sayandeep Saha, Ujjawal Kumar, Debdeep Mukhopadhyay, and Pallab Dasgupta.

Differential fault analysis automation. IACR Cryptology ePrint Archive, 2017:673,

2017.

[SLB10] Tobias Schubert, Matthew Lewis, and Bernd Becker. Antom—solver description. SAT

Race, 2010.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - towards combined hard-

ware countermeasures against side-channel and fault-injection attacks. In CRYPTO,

pages 302–332, 2016. doi:10.1007/978-3-662-53008-5_11.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryp-

tographic problems. In Theory and Applications of Sat. Testing, 12th International

Conference, SAT 2009, Swansea, UK, June 2009. Proceedings, pages 244–257, 2009.

doi:10.1007/978-3-642-02777-2_24.

[SR16] Tobias Schubert and Sven Reimer. antom. In https: // projects. informatik.

uni-freiburg. de/ projects/ antom , 2016.

[SSMC17] Akhilesh Siddhanti, Santanu Sarkar, S. Maitra, and A. Chattopadhyay. Differential

fault attack on grain v1, acorn v3 and lizard. IACR Cryptol. ePrint Arch., 2017:678,

2017.

190

http://dx.doi.org/10.1109/TC.2015.2458869
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://dx.doi.org/10.1007/978-3-662-53008-5_11
http://dx.doi.org/10.1007/978-3-642-02777-2_24
https://projects.informatik.uni-freiburg.de/projects/antom
https://projects.informatik.uni-freiburg.de/projects/antom

[Tar10] Christopher Tarnovsky. Hacking the smartcard chip. Blackhat DC, 2010.

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Differential fault

analysis on the families of simon and speck ciphers. In 2014 Workshop on Fault

Diagnosis and Tolerance in Cryptography, pages 40–48. IEEE, 2014.

[TFY07a] J. Takahashi, T. Fukunaga, and K. Yamakoshi. Dfa mechanism on the aes key sched-

ule. In Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007),

pages 62–74, 2007. doi:10.1109/FDTC.2007.13.

[TFY07b] Junko Takahashi, Toshinori Fukunaga, and Kimihiro Yamakoshi. DFA mecha-

nism on the AES key schedule. In Luca Breveglieri, Shay Gueron, Israel Ko-

ren, David Naccache, and ean-Pierre Seifert, editors, Fourth International Work-

shop on Fault Diagnosis and Tolerance in Cryptography, 2007, FDTC 2007: Vi-

enna, Austria, 10 September 2007, pages 62–74. IEEE Computer Society, 2007.

doi:10.1109/FDTC.2007.4318986.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential Fault Analysis

of the Advanced Encryption Standard Using a Single Fault, pages 224–233. Springer

Berlin Heidelberg, 2011. ISBN: 978-3-642-21040-2.

[TNK+14] V. Tomashevich, Y. Neumeier, R. Kumar, O. Keren, and I. Polian. Protecting crypto-

graphic hardware against malicious attacks by nonlinear robust codes. In DFT, pages

40–45, 2014.

[Tse68] G. Tseitin. On the complexity of derivation in propositional calculus. Studies in

Constructive Mathematics and Mathematical Logic, 1968.

[Vas65] J.L. Vasil’ev. On nongroup close-packed codes, Probl. Kibern., 8 (1962), 337–339.

English translation in Probleme der Kybernetik, 8:92–95, 1965.

[VN56] John Von Neumann. Probabilistic logics and the synthesis of reliable organisms

from unreliable components. In Automata Studies.(AM-34), Volume 34, pages 43–

98. Princeton university press, 1956.

[vWWM11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico Menarini. Practi-

cal optical fault injection on secure microcontrollers. In FDTC, pages 91–99. IEEE

Computer Society, 2011.

[WK11] Z. Wang and M. Karpovsky. Algebraic manipulation detection codes and

their applications for design of secure cryptographic devices. In 2011

IEEE 17th International On-Line Testing Symposium, pages 234–239, 2011.

doi:10.1109/IOLTS.2011.5994535.

[Wu16] Hongjun Wu. Acorn v3. Submission to the CAESAR Competition, 2016.

191

http://dx.doi.org/10.1109/FDTC.2007.13
http://dx.doi.org/10.1109/FDTC.2007.4318986
http://dx.doi.org/10.1109/IOLTS.2011.5994535

5 Conclusion

[WZ11] Wenling Wu and Lei Zhang. Lblock: A lightweight block cipher. In ACNS, Lecture

Notes in Comp. Sc., pages 327–344. Springer, 2011.

[XjZ11] Shi-ze Guo Xin-jie Zhao, Tao Wang. Fault-propagation pattern based dfa on spn

structure block ciphers using bitwise permutation, with application to present and

printcipher. Cryptology ePrint Archive, Report 2011/086, 2011. https://eprint.

iacr.org/2011/086.

[ZGZ+13] Xinjie Zhao, Shize Guo, Fan Zhang, Zhijie Shi, Chujiao Ma, and Tao Wang. Improving

and evaluating differential fault analysis on LED with algebraic techniques. In FDTC,

pages 41–51. IEEE Computer Society, 2013.

[ZGZ+16] Fan Zhang, Shize Guo, Xinjie Zhao, Tao Wang, Jian Yang, François-Xavier Standaert,

and Dawu Gu. A framework for the analysis and evaluation of algebraic fault attacks

on lightweight block ciphers. IEEE Trans. Info. Forensics and Sec., pages 1039–1054,

2016.

[ZZG+13] Fan Zhang, Xinjie Zhao, Shize Guo, Tao Wang, and Zhijie Shi. Improved algebraic

fault analysis: A case study on piccolo and applications to other lightweight block

ciphers. In COSADE, Lecture Notes in Comp. Sc., pages 62–79. Springer, 2013.

192

https://eprint.iacr.org/2011/086
https://eprint.iacr.org/2011/086

Appendix A

Small Scale AES Differential Fault Equations

Without last MixColumns

1. Case (r, c) = (1, 1):

δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1) (A.1)

2. Case (r, c) = (1, 2):

δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

δ2 = S−1(x2 ⊕ k2)⊕ S−1(x′2 ⊕ k2)
(A.2)

3. Case (r, c) = (1, 4):

δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

δ2 = S−1(x2 ⊕ k2)⊕ S−1(x′2 ⊕ k2)

δ3 = S−1(x3 ⊕ k3)⊕ S−1(x′3 ⊕ k3)

δ4 = S−1(x4 ⊕ k4)⊕ S−1(x′4 ⊕ k4)

(A.3)

193

A Small Scale AES Differential Fault Equations

4. Case (r, c) = (2, 1):

3δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

2δ1 = S−1(x2 ⊕ k2)⊕ S−1(x′2 ⊕ k2)
(A.4)

5. Case (r, c) = (2, 2):

3δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

2δ1 = S−1(x4 ⊕ k4)⊕ S−1(x′4 ⊕ k4)

2δ2 = S−1(x3 ⊕ k3)⊕ S−1(x′3 ⊕ k3)

3δ2 = S−1(x2 ⊕ k2)⊕ S−1(x′2 ⊕ k2)
(A.5)

6. Case (r, c) = (2, 4):

First fault injection in the first element of the state matrix.

3δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

2δ1 = S−1(x8 ⊕ k8)⊕ S−1(x′8 ⊕ k8)

2δ2 = S−1(x7 ⊕ k7)⊕ S−1(x′7 ⊕ k7)

3δ2 = S−1(x6 ⊕ k6)⊕ S−1(x′6 ⊕ k6)
(A.6)

Second fault injection in the fifth element of the state matrix.

3δ3 = S−1(x5 ⊕ k5)⊕ S−1(x′5 ⊕ k5)

2δ3 = S−1(x4 ⊕ k4)⊕ S−1(x′4 ⊕ k4)

2δ4 = S−1(x3 ⊕ k3)⊕ S−1(x′3 ⊕ k3)

3δ4 = S−1(x2 ⊕ k2)⊕ S−1(x′2 ⊕ k2)
(A.7)

7. Case (r, c) = (4, 1):

2δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

δ1 = S−1(x2 ⊕ k2)⊕ S−1(x′2 ⊕ k2)

δ1 = S−1(x3 ⊕ k3)⊕ S−1(x′3 ⊕ k3)

3δ1 = S−1(x4 ⊕ k4)⊕ S−1(x′4 ⊕ k4)

(A.8)

194

8. Case (r, c) = (4, 2):

First fault injection in the first element of the state matrix.

2δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

δ1 = S−1(x6 ⊕ k6)⊕ S−1(x′6 ⊕ k6)

δ1 = S−1(x3 ⊕ k3)⊕ S−1(x′3 ⊕ k3)

3δ1 = S−1(x8 ⊕ k8)⊕ S−1(x′8 ⊕ k8)

(A.9)

Second fault injection in the fifth element of the state matrix.

2δ2 = S−1(x5 ⊕ k5)⊕ S−1(x′5 ⊕ k5)

δ2 = S−1(x2 ⊕ k2)⊕ S−1(x′2 ⊕ k2)

δ2 = S−1(x7 ⊕ k7)⊕ S−1(x′7 ⊕ k7)

3δ2 = S−1(x4 ⊕ k4)⊕ S−1(x′4 ⊕ k4)

(A.10)

9. Case (r, c) = (4, 4):

2δ1 = S−1(x1 ⊕ k1)⊕ S−1(x′1 ⊕ k1)

δ1 = S−1(x14 ⊕ k14)⊕ S−1(x′14 ⊕ k14)

δ1 = S−1(x11 ⊕ k11)⊕ S−1(x′11 ⊕ k11)

3δ1 = S−1(x8 ⊕ k8)⊕ S−1(x′8 ⊕ k8)

δ3 = S−1(x9 ⊕ k9)⊕ S−1(x′9 ⊕ k9)

3δ3 = S−1(x6 ⊕ k6)⊕ S−1(x′6 ⊕ k6)

2δ3 = S−1(x3 ⊕ k3)⊕ S−1(x′3 ⊕ k3)

δ3 = S−1(x16 ⊕ k16)⊕ S−1(x′16 ⊕ k16)

δ2 = S−1(x5 ⊕ k5)⊕ S−1(x′5 ⊕ k5)

δ2 = S−1(x2 ⊕ k2)⊕ S−1(x′2 ⊕ k2)

3δ2 = S−1(x15 ⊕ k15)⊕ S−1(x′15 ⊕ k15)

2δ2 = S−1(x12 ⊕ k12)⊕ S−1(x′12 ⊕ k12)

3δ4 = S−1(x13 ⊕ k13)⊕ S−1(x′13 ⊕ k13)

2δ4 = S−1(x10 ⊕ k10)⊕ S−1(x′10 ⊕ k10)

δ4 = S−1(x7 ⊕ k7)⊕ S−1(x′7 ⊕ k7)

δ4 = S−1(x4 ⊕ k4)⊕ S−1(x′4 ⊕ k4)

(A.11)

195

A Small Scale AES Differential Fault Equations

With last MixColumns

1. Case (r, c) = (1, 1), (r, c) = (1, 2) and (r, c) = (1, 4):

Same equations as previously (no MixColumns operation)

2. Case (r, c) = (2, 1):

3δ1 = S−1(3(x1 ⊕ k1)⊕ 2(x2 ⊕ k2))⊕ S−1(3(x′1 ⊕ k1)⊕ 2(x′2 ⊕ k2))

2δ1 = S−1(2(x1 ⊕ k1)⊕ 3(x2 ⊕ k2))⊕ S−1(2(x′1 ⊕ k1)⊕ 3(x′2 ⊕ k2))
(A.12)

3. Case (r, c) = (2, 2):

3δ1 = S−1(3(x1 ⊕ k1)⊕ 2(x2 ⊕ k2))⊕ S−1(3(x′1 ⊕ k1)⊕ 2(x′2 ⊕ k2))

2δ1 = S−1(2(x3 ⊕ k3)⊕ 3(x4 ⊕ k4))⊕ S−1(2(x′3 ⊕ k3)⊕ 3(x′4 ⊕ k4))

2δ2 = S−1(3(x3 ⊕ k3)⊕ 2(x4 ⊕ k4))⊕ S−1(3(x′3 ⊕ k3)⊕ 2(x′4 ⊕ k4))

3δ2 = S−1(2(x1 ⊕ k1)⊕ 3(x2 ⊕ k2))⊕ S−1(2(x′1 ⊕ k1)⊕ 3(x′2 ⊕ k2))

(A.13)

4. Case (r, c) = (2, 4):

First fault injection in the first element of the state matrix.

3δ1 = S−1(3(x1 ⊕ k1)⊕ 2(x2 ⊕ k2))⊕ S−1(3(x′1 ⊕ k1)⊕ 2(x′2 ⊕ k2))

2δ1 = S−1(2(x7 ⊕ k7)⊕ 3(x8 ⊕ k8))⊕ S−1(2(x′7 ⊕ k7)⊕ 3(x′8 ⊕ k8))

2δ2 = S−1(3(x7 ⊕ k7)⊕ 2(x8 ⊕ k8))⊕ S−1(3(x′7 ⊕ k7)⊕ 2(x′8 ⊕ k8))

3δ2 = S−1(2(x5 ⊕ k5)⊕ 3(x6 ⊕ k6))⊕ S−1(2(x′5 ⊕ k5)⊕ 3(x′6 ⊕ k6))

(A.14)

196

Second fault injection in the fifth element of the state matrix.

3δ3 = S−1(3(x5 ⊕ k5)⊕ 2(x6 ⊕ k6))⊕ S−1(3(x′5 ⊕ k5)⊕ 2(x′6 ⊕ k6))

2δ3 = S−1(2(x3 ⊕ k3)⊕ 3(x4 ⊕ k4))⊕ S−1(2(x′3 ⊕ k3)⊕ 3(x′4 ⊕ k4))

2δ4 = S−1(3(x3 ⊕ k3)⊕ 2(x4 ⊕ k4))⊕ S−1(3(x′3 ⊕ k3)⊕ 2(x′4 ⊕ k4))

3δ4 = S−1(2(x1 ⊕ k1)⊕ 3(x2 ⊕ k2))⊕ S−1(2(x′1 ⊕ k1)⊕ 3(x′2 ⊕ k2))

(A.15)

5. Case (r, c) = (4, 1):

2δ1 = ⊕
S−1(14(x1 ⊕ k1)⊕ 11(x2 ⊕ k2)⊕ 13(x3 ⊕ k3)⊕ 9(x4 ⊕ k4))

S−1(14(x′1 ⊕ k1)⊕ 11(x′2 ⊕ k2)⊕ 13(x′3 ⊕ k3)⊕ 9(x′4 ⊕ k4))

δ1 = ⊕
S−1(9(x1 ⊕ k1)⊕ 14(x2 ⊕ k2)⊕ 11(x3 ⊕ k3)⊕ 13(x4 ⊕ k4))

S−1(9(x′1 ⊕ k1)⊕ 14(x′2 ⊕ k2)⊕ 11(x′3 ⊕ k3)⊕ 13(x′4 ⊕ k4))

δ1 = ⊕
S−1(13(x1 ⊕ k1)⊕ 9(x2 ⊕ k2)⊕ 14(x3 ⊕ k3)⊕ 11(x4 ⊕ k4))

S−1(13(x′1 ⊕ k1)⊕ 9(x′2 ⊕ k2)⊕ 14(x′3 ⊕ k3)⊕ 11(x′4 ⊕ k4))

3δ1 = ⊕
S−1(11(x1 ⊕ k1)⊕ 13(x2 ⊕ k2)⊕ 9(x3 ⊕ k3)⊕ 14(x4 ⊕ k4))

S−1(11(x′1 ⊕ k1)⊕ 13(x′2 ⊕ k2)⊕ 9(x′3 ⊕ k3)⊕ 14(x′4 ⊕ k4))

(A.16)

6. Case (r, c) = (4, 2):

First fault injection in the first element of the state matrix.

2δ1 = ⊕
S−1(14(x1 ⊕ k1)⊕ 11(x2 ⊕ k2)⊕ 13(x3 ⊕ k3)⊕ 9(x4 ⊕ k4))

S−1(14(x′1 ⊕ k1)⊕ 11(x′2 ⊕ k2)⊕ 13(x′3 ⊕ k3)⊕ 9(x′4 ⊕ k4))

δ1 = ⊕
S−1(9(x5 ⊕ k5)⊕ 14(x6 ⊕ k6)⊕ 11(x7 ⊕ k7)⊕ 13(x8 ⊕ k8))

S−1(9(x′5 ⊕ k5)⊕ 14(x′6 ⊕ k6)⊕ 11(x′7 ⊕ k7)⊕ 13(x′8 ⊕ k8))

δ1 = ⊕
S−1(13(x1 ⊕ k1)⊕ 9(x2 ⊕ k2)⊕ 14(x3 ⊕ k3)⊕ 11(x4 ⊕ k4))

S−1(13(x′1 ⊕ k1)⊕ 9(x′2 ⊕ k2)⊕ 14(x′3 ⊕ k3)⊕ 11(x′4 ⊕ k4))

3δ1 = ⊕
S−1(11(x5 ⊕ k5)⊕ 13(x6 ⊕ k6)⊕ 9(x7 ⊕ k7)⊕ 14(x8 ⊕ k8))

S−1(11(x′5 ⊕ k5)⊕ 13(x′6 ⊕ k6)⊕ 9(x′7 ⊕ k7)⊕ 14(x′8 ⊕ k8))

(A.17)

197

A Small Scale AES Differential Fault Equations

Second fault injection in the fifth element of the state matrix.

2δ2 = ⊕
S−1(14(x5 ⊕ k5)⊕ 11(x6 ⊕ k6)⊕ 13(x7 ⊕ k7)⊕ 9(x8 ⊕ k8))

S−1(14(x′5 ⊕ k5)⊕ 11(x′6 ⊕ k6)⊕ 13(x′7 ⊕ k7)⊕ 9(x′8 ⊕ k8))

δ2 = ⊕
S−1(9(x1 ⊕ k1)⊕ 14(x2 ⊕ k2)⊕ 11(x3 ⊕ k3)⊕ 13(x4 ⊕ k4))

S−1(9(x′1 ⊕ k1)⊕ 14(x′2 ⊕ k2)⊕ 11(x′3 ⊕ k3)⊕ 13(x′4 ⊕ k4))

δ2 = ⊕
S−1(13(x5 ⊕ k5)⊕ 9(x6 ⊕ k6)⊕ 14(x7 ⊕ k7)⊕ 11(x8 ⊕ k8))

S−1(13(x′5 ⊕ k5)⊕ 9(x′6 ⊕ k6)⊕ 14(x′7 ⊕ k7)⊕ 11(x′8 ⊕ k8))

3δ2 = ⊕
S−1(11(x1 ⊕ k1)⊕ 13(x2 ⊕ k2)⊕ 9(x3 ⊕ k3)⊕ 14(x4 ⊕ k4))

S−1(11(x′1 ⊕ k1)⊕ 13(x′2 ⊕ k2)⊕ 9(x′3 ⊕ k3)⊕ 14(x′4 ⊕ k4))

(A.18)

7. Case (r, c) = (4, 4):

2δ1 = ⊕
S−1(14(x1 ⊕ k1)⊕ 11(x2 ⊕ k2)⊕ 13(x3 ⊕ k3)⊕ 9(x4 ⊕ k4))

S−1(14(x′1 ⊕ k1)⊕ 11(x′2 ⊕ k2)⊕ 13(x′3 ⊕ k3)⊕ 9(x′4 ⊕ k4))

δ1 = ⊕
S−1(9(x13 ⊕ k13)⊕ 14(x14 ⊕ k14)⊕ 11(x15 ⊕ k15)⊕ 13(x16 ⊕ k16))

S−1(9(x′13 ⊕ k13)⊕ 14(x′14 ⊕ k14)⊕ 11(x′15 ⊕ k15)⊕ 13(x′16 ⊕ k16))

δ1 = ⊕
S−1(13(x9 ⊕ k9)⊕ 9(x10 ⊕ k10)⊕ 14(x11 ⊕ k11)⊕ 11(x12 ⊕ k12))

S−1(13(x′9 ⊕ k9)⊕ 9(x′10 ⊕ k10)⊕ 14(x′11 ⊕ k11)⊕ 11(x′12 ⊕ k12))

3δ1 = ⊕
S−1(11(x5 ⊕ k5)⊕ 13(x6 ⊕ k6)⊕ 9(x7 ⊕ k7)⊕ 14(x8 ⊕ k8))

S−1(11(x′5 ⊕ k5)⊕ 13(x′6 ⊕ k6)⊕ 9(x′7 ⊕ k7)⊕ 14(x′8 ⊕ k8))

198

δ2 = ⊕
S−1(14(x5 ⊕ k5)⊕ 11(x6 ⊕ k6)⊕ 13(x7 ⊕ k7)⊕ 9(x8 ⊕ k8))

S−1(14(x′5 ⊕ k5)⊕ 11(x′6 ⊕ k6)⊕ 13(x′7 ⊕ k7)⊕ 9(x′8 ⊕ k8))

δ2 = ⊕
S−1(9(x1 ⊕ k1)⊕ 14(x2 ⊕ k2)⊕ 11(x3 ⊕ k3)⊕ 13(x4 ⊕ k4))

S−1(9(x′1 ⊕ k1)⊕ 14(x′2 ⊕ k2)⊕ 11(x′3 ⊕ k3)⊕ 13(x′4 ⊕ k4))

3δ2 = ⊕
S−1(13(x13 ⊕ k13)⊕ 9(x14 ⊕ k14)⊕ 14(x15 ⊕ k15)⊕ 11(x16 ⊕ k16))

S−1(13(x′13 ⊕ k13)⊕ 9(x′14 ⊕ k14)⊕ 14(x′15 ⊕ k15)⊕ 11(x′16 ⊕ k16))

2δ2 = ⊕
S−1(11(x9 ⊕ k9)⊕ 13(x10 ⊕ k10)⊕ 9(x11 ⊕ k11)⊕ 14(x12 ⊕ k12))

S−1(11(x′9 ⊕ k9)⊕ 13(x′10 ⊕ k10)⊕ 9(x′11 ⊕ k11)⊕ 14(x′12 ⊕ k12))

δ3 = ⊕
S−1(14(x9 ⊕ k9)⊕ 11(x10 ⊕ k10)⊕ 13(x11 ⊕ k11)⊕ 9(x12 ⊕ k12))

S−1(14(x′9 ⊕ k9)⊕ 11(x′10 ⊕ k10)⊕ 13(x′11 ⊕ k11)⊕ 9(x′12 ⊕ k12))

3δ3 = ⊕
S−1(9(x5 ⊕ k5)⊕ 14(x6 ⊕ k6)⊕ 11(x7 ⊕ k7)⊕ 13(x8 ⊕ k8))

S−1(9(x′5 ⊕ k5)⊕ 14(x′6 ⊕ k6)⊕ 11(x′7 ⊕ k7)⊕ 13(x′8 ⊕ k8))

2δ3 = ⊕
S−1(13(x1 ⊕ k1)⊕ 9(x2 ⊕ k2)⊕ 14(x3 ⊕ k3)⊕ 11(x4 ⊕ k4))

S−1(13(x′1 ⊕ k1)⊕ 9(x′2 ⊕ k2)⊕ 14(x′3 ⊕ k3)⊕ 11(x′4 ⊕ k4))

δ3 = ⊕
S−1(11(x13 ⊕ k13)⊕ 13(x14 ⊕ k14)⊕ 9(x15 ⊕ k15)⊕ 14(x16 ⊕ k16))

S−1(11(x′13 ⊕ k13)⊕ 13(x′14 ⊕ k14)⊕ 9(x′15 ⊕ k15)⊕ 14(x′16 ⊕ k16))

3δ4 = ⊕
S−1(14(x13 ⊕ k13)⊕ 11(x14 ⊕ k14)⊕ 13(x15 ⊕ k15)⊕ 9(x16 ⊕ k16))

S−1(14(x′13 ⊕ k13)⊕ 11(x′14 ⊕ k14)⊕ 13(x′15 ⊕ k15)⊕ 9(x′16 ⊕ k16))

2δ4 = ⊕
S−1(9(x9 ⊕ k9)⊕ 14(x10 ⊕ k10)⊕ 11(x11 ⊕ k11)⊕ 13(x12 ⊕ k12))

S−1(9(x9 ⊕ k9)⊕ 14(x10 ⊕ k10)⊕ 11(x11 ⊕ k11)⊕ 13(x12 ⊕ k12))

δ4 = ⊕
S−1(13(x5 ⊕ k5)⊕ 9(x6 ⊕ k6)⊕ 14(x7 ⊕ k7)⊕ 11(x8 ⊕ k8))

S−1(13(x′5 ⊕ k5)⊕ 9(x′6 ⊕ k6)⊕ 14(x′7 ⊕ k7)⊕ 11(x′8 ⊕ k8))

δ4 = ⊕
S−1(11(x1 ⊕ k1)⊕ 13(x2 ⊕ k2)⊕ 9(x3 ⊕ k3)⊕ 14(x4 ⊕ k4))

S−1(11(x′1 ⊕ k1)⊕ 13(x′2 ⊕ k2)⊕ 9(x′3 ⊕ k3)⊕ 14(x′4 ⊕ k4))

(A.19)

199

A Small Scale AES Differential Fault Equations

Key schedule equations

Only the cases where r > 1 are considered.

1. Case (r, c) = (2, 1):

k−1
1 = S−1(k2)

k−1
2 = S−1(k1 ⊕ κi)

(A.20)

2. Case (r, c) = (2, 2):

k−1
1 = S(k4 ⊕ k2)⊕ k1 ⊕ κi

k−1
2 = S(k3 ⊕ k1)⊕ k2

k−1
3 = k3 ⊕ k1

k−1
4 = k4 ⊕ k2

(A.21)

3. Case (r, c) = (2, 4):

k−1
1 = S(k8 ⊕ k6)⊕ k1 ⊕ κi

k−1
2 = S(k7 ⊕ k5)⊕ k2

k−1
3 = k3 ⊕ k1

k−1
4 = k4 ⊕ k2

k−1
5 = k5 ⊕ k3

k−1
6 = k6 ⊕ k4

k−1
7 = k7 ⊕ k5

k−1
8 = k8 ⊕ k6

(A.22)

4. Case (r, c) = (4, 1):

k−1
1 = S−1(k4)

k−1
2 = S−1(k3)

k−1
3 = S−1(k2)

k−1
4 = S−1(k1 ⊕ κi)

(A.23)

200

5. Case (r, c) = (4, 2):

k−1
1 = S(k8 ⊕ k4)⊕ k1 ⊕ κi

k−1
2 = S(k7 ⊕ k3)⊕ k2

k−1
3 = S(k6 ⊕ k2)⊕ k3

k−1
4 = S(k5 ⊕ k1)⊕ k4

k−1
5 = k5 ⊕ k1

k−1
6 = k6 ⊕ k2

k−1
7 = k7 ⊕ k3

k−1
8 = k8 ⊕ k4

(A.24)

6. Case (r, c) = (4, 4):

k−1
1 = S(k16 ⊕ k12)⊕ k1 ⊕ κi

k−1
2 = S(k15 ⊕ k11)⊕ k2

k−1
3 = S(k14 ⊕ k10)⊕ k3

k−1
4 = S(k13 ⊕ k9)⊕ k4

k−1
5 = k5 ⊕ k1

k−1
6 = k6 ⊕ k2

k−1
7 = k7 ⊕ k3

k−1
8 = k8 ⊕ k4

k−1
9 = k9 ⊕ k5

k−1
10 = k10 ⊕ k6

k−1
11 = k11 ⊕ k7

k−1
12 = k12 ⊕ k8

k−1
13 = k13 ⊕ k9

k−1
14 = k14 ⊕ k10

k−1
15 = k15 ⊕ k11

k−1
16 = k16 ⊕ k12

(A.25)

201

202

Publications of the Author

In the following, all former publications of the author are listed.

Book Chapters

[PGP+19] Ilia Polian, Mael Gay, Tobias Paxian, Matthias Sauer, and Bernd Becker. Au-

tomatic construction of fault attacks on cryptographic hardware implementa-

tions. In Automated Methods in Cryptographic Fault Analysis, pages 151–170.

Springer, 2019.

Journal Publications

[GKKP20] Mael Gay, Batya Karp, Osnat Keren, and Ilia Polian. Error control scheme

for malicious and natural faults in cryptographic modules. Journal of Crypto-

graphic Engineering, 10, June 2020.

[GKKP19] M. Gay, B. Karp, O. Keren, and I. Polian. Toward error-correcting architectures

for cryptographic circuits based on rabii–keren codes. IEEE Embedded Systems

Letters, 11(4):115–118, 2019.

Conference Proceedings

[KGKP18] Batya Karp, Mael Gay, Osnat Keren, and Ilia Polian. Security-oriented code-

based architectures for mitigating fault attacks. In Conference on Design of Cir-

cuits and Integrated Systems, DCIS 2018, Lyon, France, November 14-16, 2018,

pages 1–6, 2018.

203

[EGP20] N. Elhamawy, M. Gay, and I. Polian. An open-source area-optimized eceg

cryptosystem in hardware. In 2020 IEEE Computer Society Annual Symposium

on VLSI (ISVLSI), pages 120–125, 2020.

Workshop Contributions

[GPU+19] Mael Gay, Tobias Paxian, Devanshi Upadhyaya, Bernd Becker, and Ilia Polian.

Hardware-oriented algebraic fault attack framework with multiple fault injec-

tion support. In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptogra-

phy (FDTC), pages 25–32, August 2019.

[BGE+17] J. Burchard, M. Gay, A. M. Ekossono, J. Horáček, B. Becker, T. Schubert,

M. Kreuzer, and I. Polian. Autofault: Towards automatic construction of al-

gebraic fault attacks. In FDTC, pages 65–72, Sep. 2017.

[GBH+16] M. Gay, J. Burchard, J. Horacek, A.-S. Messeng Ekossono, T. Schubert,

B. Becker, I. Polian, and M. Kreuzer. Small scale AES toolbox: Algebraic and

propositional formulas, circuit-implementations and fault equations. In Trust-

worthy Manufacturing and Utilization of Secure Devices, 2016.

[GKKP18] M. Gay, B. Karp, O. Keren, and I. Polian. On security metrics for evaluating

fault-injection countermeasures. In Trustworthy Manufacturing and Utilization

of Secure Devices, 2018.

[KGKP18] Batya Karp, Mael Gay, Osnat Keren, and Ilia Polian. Detection and correction of

malicious and natural faults in cryptographic modules. In PROOFS, volume 7,

pages 68–82. EasyChair, 2018.

Other Publications

[PG18] Ilia Polian and Mael Gay. Hardware-oriented security in a computer science cur-

riculum. In 12th European Workshop on Microelectronics Education, EWME 2018,

Braunschweig, Germany, September 24-26, 2018, pages 59–62, 2018.

204

Declaration

All the work contained within this thesis,

except where otherwise acknowledged, was

solely the effort of the author.

At no stage was any collaboration entered into

with any other party.

Maël Gay

	Contents
	Acknowledgments
	Abstract
	Zusammenfassung
	List of Abbreviations
	Introduction
	Motivation
	Research Contribution
	Structure of the Thesis

	Preliminaries on Fault Attacks & Counter-Measures
	Background on Side-Channel & Fault Attacks
	Side-Channel Analysis
	Fault Injection Attacks
	Fault Injection Techniques & Fault Models
	Types of Fault Attacks
	Differential Fault Analysis
	DFA on the Advanced Encryption Standard

	Algebraic Fault Attacks
	Principle of Algebraic Fault Attacks
	State of the Art on Algebraic Fault Attack Frameworks

	Background on Error Correcting Codes & Other Counter-Measures
	Error Detecting & Correcting Codes
	Conventional Codes
	Security-Oriented Codes
	Rabii-Keren Code

	Other Counter-Measures
	Physical Counter-Measures
	Masking
	Nonce-based Ciphers

	Security Oriented Code based Architectures for Fault Attack Mitigation
	Natural Fault & Malicious Fault Scenarios
	Limitations of Error Detecting Code Evaluation in Security Context
	Rabii-Keren Code Hardware Architectures
	Basic Structure of the Rabii-Keren Architectures
	Architecture Overview
	Single Decoder Architecture
	Dual Decoder Architecture

	Inner/Outer Code Architectures
	Error Coefficient and Location Table (ECLT) Decoding
	CPC based Outer Code

	Experimental Results of the RK Architectures

	AutoFault: Hardware-Oriented Algebraic Fault Attack Framework
	Preliminary: Fault Attack on Small Scale AES
	AutoFault Structure
	Detailed Solving Steps
	Time-Frame Expansion
	CNF Conversion
	CNF Processing and Mapping
	SAT Solving

	CNF Simulation
	AutoFault in the Design Flow
	Hardware-Oriented AFAs on SPN Ciphers
	AES (including Small Scale variants)
	LED
	PRESENT
	Extension to other Types of Ciphers

	Multiple Faults effect in AutoFault
	Future work: Counter-Measure Validation
	Comparison to other State-of-the-Art Algebraic Fault Attack Frameworks

	Conclusion
	Bibliography
	Small Scale AES Differential Fault Equations
	Publications of the Author

