
Large-Scale Analysis of Textual and
Multivariate Data Combining Machine

Learning and Visualization

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Johannes Simon Knittel

aus Böblingen

Hauptberichter: Prof. Dr. Thomas Ertl
Mitberichter: Prof. Dr. Shixia Liu

Prof. Dr. Andreas Kerren

Tag der mündlichen Prüfung: 02.05.2022

Institut für Visualisierung und Interaktive Systeme
der Universität Stuttgart

2022

Contents

Acknowledgments xiii

Abstract xv

German Abstract — Zusammenfassung xvii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 4
1.3 Contributions . 5
1.4 Thesis Structure . 7

2 Foundations and Concept 9
2.1 Artificial Intelligence and Machine Learning 10

2.1.1 Particle Swarm Optimization 10
2.1.2 Document Clustering . 12
2.1.3 Dimensionality Reduction 16
2.1.4 Neural Networks . 17

2.2 Visual Analytics . 19
2.3 Visual Analysis of Document Collections 23

2.3.1 Projection-Based Approaches 24
2.3.2 Topic-Based Approaches . 28
2.3.3 Social Media Analysis . 30

2.4 Visual Multivariate Analysis . 33
2.4.1 Multivariate Data Visualizations 35
2.4.2 DR-Based Approaches . 35
2.4.3 Subspace-Based Approaches 37
2.4.4 Iterative Approaches . 37
2.4.5 Model-Building and Partitioning 38
2.4.6 Decision Trees and Neural Networks 39

2.5 Artificial Intelligence for Visual Explainability 41
2.5.1 Regularizing Visual Interpretability 42
2.5.2 AIX vs. Predictive Model Building and XAI 44
2.5.3 Applications of AIX . 44

3 Efficient Visual Document Collection Summarization 47
3.1 Efficient Keyphrase Extraction (ELSKE) 48

3.1.1 Method . 49

iii

Contents

3.1.2 Evaluation . 54
3.2 Interactive Hierarchical Quote Extraction 56

3.2.1 Background . 57
3.2.2 Quote Extraction . 57
3.2.3 System Design . 58
3.2.4 Use Case . 61
3.2.5 Discussion . 65

4 Interactive Exploration of Large Document Collections 67
4.1 Background . 68
4.2 PyramidTags . 69

4.2.1 Objectives . 69
4.2.2 Overview . 71
4.2.3 Hovering Tags . 73
4.2.4 Multiple Tag Selection and Document Retrieval 74

4.3 Preprocessing and Data Analysis . 76
4.3.1 Cleaning and Reprint Detection 77
4.3.2 Tag Relationship Analysis . 77

4.4 Visualization Generation . 78
4.4.1 Layout and Map Locations 79
4.4.2 Tag Splitting and Mapping 81
4.4.3 Particle Swarm Optimization 83
4.4.4 Objective Function Components 83

4.5 Evaluation . 87
4.5.1 Use Case Scenarios . 87
4.5.2 Benchmarks . 92
4.5.3 Results . 93
4.5.4 Qualitative Feedback . 96

4.6 Discussion . 97

5 Dynamic Document Clustering 101
5.1 Efficient Spherical k-Means . 102

5.1.1 Method . 104
5.1.2 Evaluation . 107

5.2 Dynamic Spherical k-Means . 109
5.2.1 Method . 110
5.2.2 Evaluation . 112

6 Real-Time Analysis of Streaming Social Media Data 115
6.1 Background . 116
6.2 Task and Design Requirements . 117

iv

Contents

6.3 Architecture . 118
6.3.1 Pipeline . 119
6.3.2 Preprocessing . 120

6.4 Visualization Techniques . 121
6.4.1 Topical Overview . 122
6.4.2 Frequent Phrases View . 124
6.4.3 Stream of Representative Posts 126

6.5 Use Cases . 128
6.5.1 NBA, BTS, and Oprah . 128
6.5.2 YouTube Outage and Dive Into Politics 131

6.6 Discussion . 132

7 Multivariate Analysis with Visual Neural Decomposition 135
7.1 Background . 136
7.2 Requirements . 137
7.3 Method . 138

7.3.1 Basic Architecture . 139
7.3.2 Hidden Node Filtering . 141
7.3.3 Ranking of Variables . 143
7.3.4 Homogeneous Regularization 144

7.4 Application Design . 146
7.4.1 Variables . 147
7.4.2 Model Training . 148
7.4.3 Node Visualization . 149
7.4.4 Stacked Histograms . 152
7.4.5 Parallel Coordinate Plot . 154
7.4.6 Scatter Plot . 154
7.4.7 Range Filter . 155

7.5 Evaluation . 156
7.5.1 Identification of High-Value Cases 156
7.5.2 Hyper-Parameter Analysis 157
7.5.3 Use Cases on Real-World Data Sets 161
7.5.4 Qualitative Feedback . 168

7.6 Discussion . 169
7.7 Summary . 170

8 Conclusion and Outlook 171
8.1 Contributions and Limitations . 171
8.2 Open Challenges . 174

Bibliography 177

v

List of Figures

Chapter 2

2.1 Feedforward Neural Network . 18
2.2 KDD process . 19
2.3 Visual analytics process . 22
2.4 DocuCompass interface . 24
2.5 SparkClouds visualization . 27
2.6 SentenTree visualization . 28
2.7 ThemeRiver visualization . 29
2.8 STREAMIT visualization . 32
2.9 ScatterBlogs2 user interface . 32
2.10 ccPCA user interface . 36
2.11 Analyzing relationships with a partition-based framework 38
2.12 BaobabView visualization of a decision tree 40
2.13 AIX process . 42

Chapter 3

3.1 ELSKE pipeline . 51
3.2 ELSKE top ten keyphrases example . 53
3.3 Extracted top-level quotes from 15m tweets 59
3.4 Sneak peek visualization . 60
3.5 Fine-grained quote extraction . 60
3.6 VAST Challenge top-level quotes . 62
3.7 VAST Challenge dive-in on piling up groceries 63
3.8 VAST Challenge dive-in on damaged buildings 63
3.9 VAST Challenge dive-in on closed bridges 64
3.10 VAST Challenge dive-in on healthcare issues 64
3.11 VAST Challenge dive-in on broken sewer line 65

Chapter 4

4.1 PyramidTags visualization . 71
4.2 Triangular layout . 72
4.3 PyramidTags tag hovering . 73
4.4 Tag selection and document retrieval 75
4.5 Non-empty location boxes . 80

vi

Figures

4.6 Tag splitting . 81
4.7 PyramidTags visualization of news from August 2020 88
4.8 Two more traditional tag cloud layouts 90
4.9 PyramidTags visualization of news from January 2020 91
4.10 Separating unrelated tags with visual borders 97

Chapter 5

5.1 Efficient Spherical k-Means benchmark results 108
5.2 Dynamic Spherical k-Means algorithm 110

Chapter 6

6.1 Architecture of the real-time social media analysis 119
6.2 User interface of the real-time twitter analysis approach 121
6.3 Topical overview of social media posts 122
6.4 Visualization of the frequent phrases in a selection of topics 125
6.5 Stream of representative social media posts in a topic 127
6.6 Social media analysis NBA use case . 128
6.7 Social media analysis politics use case 130

Chapter 7

7.1 VND architecture . 140
7.2 VND hidden node filtering . 142
7.3 Visual Neural Decomposition of a chip testing measurement data set 146
7.4 VND variables view . 147
7.5 Meta-parameters of the neural network training 149
7.6 Visualization of the resulting VND model 149
7.7 Compact overview of all positive nodes in the VND model 150
7.8 Stacked histograms visualization . 152
7.9 Node-specific parallel coordinate plots 153
7.10 VND range filters . 155
7.11 VND comparison with regular scatter plots 156
7.12 Expected VND output on a synthetic data set 159
7.13 Non-converged VND output on a synthetic data set 160
7.14 VND of a chip testing data set . 162
7.15 VND I of AP VoteCast 2018 responses 164
7.16 VND II of AP VoteCast 2018 responses 165
7.17 PCA projection of the AP VoteCast 2018 data 167
7.18 T-SNE projection of the AP VoteCast 2018 data 167

vii

Figures

7.19 UMAP projection of the AP VoteCast 2018 data 168

viii

List of Tables

Chapter 3

3.1 ELSKE performance comparison . 54
3.2 ELSKE benchmarks . 55

Chapter 4

4.1 PyramidTags benchmark results on two weeks with 100 tags 94
4.2 PyramidTags benchmark results on one month with 200 tags 95

Chapter 5

5.1 Clustering of the 20 Newsgroups data set 103
5.2 Efficient Spherical k-Means benchmark results 108
5.3 Dynamic Spherical k-Means benchmark results 112

Chapter 7

7.1 VND hyperparameter analysis results 158

ix

List of Abbreviations and Acronyms
AI artificial intelligence
AIX artificial intelligence for visually explaining data sets
CPU central processing unit
GPGPU general purpose computating on graphics processing units
GPU graphics processing unit
KDD knowledge discovery in databases
ML machine learning
NMI normalized mutual information
skMeans Spherical k-Means
VA visual analytics
XAI explainable artificial intelligence

xi

Acknowledgments
I am very grateful for the support of several people that helped me a lot in
conducting research and in writing this dissertation. First of all, I would like
to thank my advisor Thomas Ertl very much for giving me the opportunity to
work on exciting projects for my doctoral degree, for continuously supporting
and advising me, as well as for providing me with funding to attend several
conferences around the world. I also want to thank Steffen Koch for his great
help and support throughout the years, for fruitful scientific discussions, and
for collaborating with me on many papers.

It would not have been possible to write this dissertation without the funding
from the Deutsche Forschungsgesellschaft (German Research Foundation) as
part of the projects VAOST, VA4VGI, and CRETA. I am very happy that Shixia
Liu agreed to review my dissertation and I really enjoyed our discussions on
joint paper projects. I want to extend my gratitude to Andreas Kerren for taking
the time to review my dissertation, for his helpful advice, and for traveling all
the way from Sweden to attend my oral defense.

There are always ups and downs when working towards a doctoral degree,
but my wonderful colleagues at VIS and VISUS made sure that it was not
only hard work but also fun work. In particular, I want to thank Franziska
Huth for introducing me to bouldering and my colleagues Cristina Morariu,
Gleb Tkachev, Max Franke, Moritz Knabben, Tanja Blascheck, Andrés Lalama,
Valentin Bruder, Alexander Straub, David Hägele, Moataz Abdelaal, Michael
Becher, Hermann Pflüger, and Kuno Kurzhals for profound but also amusing
discussions, game nights, and joint activities. I could always count on the
support of Margot Roubicek, for which I am grateful.

Many thanks also go to my good friend Dominique Rau who has always
encouraged me and inspired me in many ways. Finally, my deepest thanks go
to my parents, my brother, and my partner for their endless love and for always
having my back.

xiii

Abstract
In a mostly digitized world, we collect, store, process, and make use of massive
amounts of data every day. Data has long become an asset for many stakeholders
since it promises to hold valuable information and may ultimately lead to new
knowledge. However, having access to huge data sets does not necessarily
translate to gaining insights from it. We need methods that facilitate the
analysis of such data sets to achieve this.

The design, scope, and specification of existing analysis methods vary greatly.
For instance, if we can express the analysis goal in a formal and machine-
interpretable way, we may apply statistics, machine learning approaches, or
simple database operations to learn from or gain insights into data sets. In
the case of more complex problem queries or explorative goals, though, it is
often infeasible or insufficient to apply such straightforward methods. Visual
analytics approaches gained traction in recent years to tackle this challenge.
Combining interactive data analytics with human intelligence bears the potential
of revealing insights that both machines and human beings would not achieve
on their own.

With the rise of social media and its profound impact on society, the amount of
published content on a daily basis has vastly increased, prompting an increased
need for scalable solutions to analyze large sets of posts and monitor current
developments in real-time. A similar case can be made for the visual analysis
of data sets in health care, industries, and science due to the rising number of
digital processes and measurements. This thesis aims to enable such large-scale
visual analyses and has a particular focus on text and multivariate data since
they represent a large proportion of relevant big data sets in the field of visual
analytics.

On the one hand, it is particularly intriguing to analyze larger data sets as
they may exhibit interesting but rare or subtle patterns and relationships which
would not be apparent on smaller subsets of the data. Additionally, many data
points help to reduce the uncertainty of findings. On the other hand, it is also
particularly challenging to develop approaches that support interactive analyses
on such big data sets. For multivariate data sets with many dimensions, the set
of potential variable groupings that could exhibit an interesting pattern grows
prohibitively large. This poses a problem for both efficient data analytics and
effective visual mappings. Similar problems arise when analyzing large text
collections. Previous approaches have rarely been developed for and tested
with data set sizes that exceed tens of thousands of documents. Additionally,
few approaches natively support the online analysis of streaming data due to

xv

Abstract

the algorithmic constraints and increased conceptual complexity this would
entail.

To tackle these challenges, this thesis introduces the concept of leveraging
artificial intelligence for visually explaining large data sets efficiently and
effectively. If we train a machine learning model on a data set, we can use
that model for computing predictions on novel data items, but we may also
discover interesting relationships in the training set by visually analyzing the
model itself. Similarly, clustering algorithms help to structure (unlabeled) input
data, but the analysis of the resulting clusters may also reveal characteristics
of the underlying data set. Based on this concept, this work presents several
approaches for analyzing textual and multivariate data.

Visual text analysis belongs to one of the key target domains in the field of visual
analytics as it is generally difficult for machines to analyze and interpret text
due to its unstructured nature. This thesis introduces a technique for analysts
to interactively explore large document collections based on a novel visual
encoding that conveys both temporal and contextual information. It further
proposes a comprehensive system for the real-time analysis of streaming social
media posts that is based on an efficient dynamic clustering algorithm.

Text first hast to be converted into a suitable vector representation. When
analyzing multivariate data set, however, we can utilize the tabular structure
imposed by the already given attributes. Each data item corresponds to an
array of values, which makes subsequent computations and aggregations more
straightforward. However, previous visual analytics approaches either focus on
simpler (e.g., linear) models, or do not scale well with the number of attributes.
Hence, this thesis proposes an efficient neural network-based technique for the
visual analysis of multivariate data sets that is able to recognize more complex
relationships but also scales well to many input dimensions.

Despite continuous advancements in computing power, gaining insights into
large data sets remains one of the greatest challenges today. This work proposes
several techniques to facilitate such large-scale analyses of textual and multi-
variate data, but it also aims to incite and steer new visual analytics approaches
that are both scalable and effective.

xvi

German Abstract
—Zusammenfassung—

In einer weitgehend digitalisierten Welt erheben, speichern, verarbeiten und
nutzen wir täglich riesige Datenmengen. Daten sind für viele Stakeholder längst
zu einer Währung geworden, da man sich davon wertvolle Informationen
verspricht und sie letztendlich zu neuem Wissen führen können. Der bloße
Zugang zu riesigen Datensätze bedeutet jedoch nicht unbedingt, dass man
daraus auch Erkenntnisse gewinnen kann. Dazu brauchen wir Methoden, die
die Analyse solcher Datensätze ermöglichen.

Design, Umfang und Spezifikation bestehender Analysemethoden variieren
stark. Wenn man beispielsweise das Analyseziel mathematisch oder maschi-
nell interpretierbar ausdrücken kann, könnte man Statistiken, Ansätze des
maschinellen Lernens oder einfache Datenbankoperationen anwenden, um aus
Datensätzen zu lernen oder Einblicke in diese zu gewinnen. Bei komplexeren
Problemfragen oder explorativen Zielen ist es jedoch oft nicht möglich oder
nicht ausreichend, solche simpleren Methoden anzuwenden. Visual Analytics-
Ansätze haben in den letzten Jahren an Bedeutung gewonnen, um dieser Her-
ausforderung zu begegnen. Die Kombination von interaktiver Datenanalyse
mit menschlicher Intelligenz birgt das Potenzial, Erkenntnisse zu gewinnen, die
sowohl Maschinen als auch Menschen allein nicht erreichen würden.

Mit dem Aufstieg der sozialen Medien und ihren tiefgreifenden Auswirkungen
auf die Gesellschaft hat die Menge der täglich veröffentlichten Inhalte stark
zugenommen, was zu einem erhöhten Bedarf an skalierbaren Lösungen führt,
um große Mengen von Beiträgen zu analysieren und aktuelle Entwicklungen in
Echtzeit zu überwachen. Ähnliches gilt für die visuelle Analyse von Datensätzen
im Gesundheitswesen, in der Industrie und in der Wissenschaft aufgrund
der steigenden Anzahl digitaler Prozesse und Messungen. Diese Arbeit zielt
darauf ab, solche groß angelegten visuellen Analysen zu ermöglichen, und
legt einen besonderen Fokus auf textuelle und multivariate Daten, da sie einen
signifikanten Anteil solcher ‘Big Data’ Problemstellungen im Bereich Visual
Analytics ausmachen.

Einerseits ist es besonders interessant, größere Datensätze zu analysieren, da
sie bedeutende, aber seltene oder subtile Muster und Beziehungen aufweisen
können, die bei kleineren Teilmengen der Daten nicht sichtbar wären. Darüber
hinaus tragen viele Datenpunkte aber auch dazu bei, die Unsicherheit von
Analyseergebnissen zu reduzieren. Andererseits ist es aber auch besonders
anspruchsvoll, Ansätze zu entwickeln, die interaktive Analysen von solchen

xvii

German Abstract — Zusammenfassung

großen Datenmengen unterstützen. Bei multivariaten Datensätzen mit vie-
len Dimensionen wird die Menge potenzieller Variablengruppierungen, die
ein interessantes Muster aufweisen könnten, enorm groß. Dies stellt sowohl
für eine effiziente Datenanalyse als auch für effektive visuelle Mappings ein
Problem dar. Ähnliche Herausforderungen treten bei der Analyse großer Text-
sammlungen auf. Bisherige Ansätze wurden selten für Datensatzgrößen von
deutlich mehr als Zehntausenden von Dokumenten entwickelt und getestet.
Darüber hinaus unterstützen nur wenige Ansätze nativ die Online-Analyse
von Streaming-Daten aufgrund der algorithmischen Einschränkungen und der
erhöhten konzeptionellen Komplexität, was dies mit sich bringen würde.

Um diese Herausforderungen anzugehen, stellt diese Arbeit das Konzept vor,
Methoden der künstlichen Intelligenz auszunutzen, um große Datenmengen
effizient und effektiv visuell zu erklären. Wenn man ein Machine Learning Mo-
dell an einem Datensatz trainiert, kann man dieses Modell verwenden, um für
weitere Datenpunkte Vorhersagen zu berechnen. Man kann jedoch möglicher-
weise auch interessante Beziehungen im zugrundeliegenden Trainingsdatensatz
entdecken, indem man das trainierte Modell an sich visuell analysiert. Beispiels-
weise können Clustering-Algorithmen helfen, (nicht gelabelte) Eingabedaten
zu strukturieren, aber die Analyse der resultierenden Cluster kann auch Merk-
male des zugrundeliegenden Datensatzes aufdecken. Basierend auf diesem
Konzept werden in dieser Arbeit verschiedene Ansätze zur Analyse textueller
und multivariater Daten vorgestellt.

Die visuelle Textanalyse gehört zu den wichtigsten Anwendungsbereichen von
Visual Analytics, da es für Computer generell schwierig ist, Texte zu analysie-
ren und zu interpretieren aufgrund der unstrukturierten Datenbeschaffenheit.
Diese Dissertation stellt eine Technik für Analysten vor, um große Dokumenten-
sammlungen interaktiv zu erkunden. Sie basiert auf einer neuartigen visuellen
Kodierung, die sowohl zeitliche als auch kontextbezogene Informationen ver-
mittelt. Darüber hinaus wird ein umfassendes System für die Echtzeitanalyse
von kontinuierlich geteilten Social-Media-Posts vorgeschlagen, das auf einem
effizienten dynamischen Clustering-Algorithmus basiert.

Während Text erst in eine vektorbasierte Repräsentation umgewandelt wer-
den muss, kann man bei der Analyse multivariater Datensätze die durch die
bereits vorgegebenen Attribute tabellarische Struktur ausnutzen. Jedes Daten-
element entspricht einem Array von Werten, was nachfolgende Berechnungen
und Aggregationen einfacher macht. Bisherige Ansätze zur visuellen Analyse
konzentrieren sich jedoch entweder auf einfachere (z.B. lineare) Modelle oder
skalieren nicht gut mit der Anzahl der Attribute. Daher schlägt diese Disser-
tation eine effiziente, auf neuronalen Netzen basierende Technik zur visuellen
Analyse von multivariaten Datensätzen vor, die in der Lage ist, komplexere

xviii

German Abstract — Zusammenfassung

Zusammenhänge zu erkennen, aber auch gut mit der Anzahl der Eingabedi-
mensionen skaliert.

Trotz ständiger Fortschritte in der Rechenleistung bleibt es auch heute eine große
Herausforderung, Einblicke in große Datensätze zu erlangen und Erkenntnisse
daraus zu gewinnen. Diese Arbeit schlägt verschiedene Techniken vor, um
solche groß angelegten Analysen von textuellen und multivariaten Daten zu
erleichtern. Sie zielt aber auch darauf ab, die Erforschung neuer Visual Analytics
Ansätze gezielt anzuregen, die sowohl skalierbar als auch mächtig sind.

xix

C
h

a
p

t
e

r

1
Introduction

In a mostly digitized world, we collect, store, process, and make use of massive
amounts of data every day. Data has long become an asset for many stakeholders
since it promises to hold valuable information and may ultimately lead to new
knowledge. However, having access to huge data sets does not necessarily
translate to gaining insights from it. We need methods that facilitate the
analysis of such data sets to achieve this.

Numerous approaches have been developed in the past decades that differ
greatly regarding their target domain, target audience, supported input data,
features, scope of analysis, specificity, requirements, ease of use, and efficiency.
The field of visual analytics (Thomas and Cook [2005]; Keim et al. [2010a])
has gained traction in recent years to tackle a specific set of cases that involve
more complex problem queries or explorative goals. According to Thomas and
Cook [2005], one major goal of visual analytics is to “detect the expected and
discover the unexpected”. It is sometimes challenging or even impossible to
precisely formulate the goal of the analysis beforehand. For instance, given a
set of news reports, we might want to find out which major events and topics
were discussed to which extent, but this is a broad and vaguely defined task
that would be difficult to solve in a generic and automated way. Combining
interactive data analytics with human intelligence, though, bears the potential
of revealing insights that both machines and human beings would not achieve
on their own.

With the rise of social media and its profound impact on society, the amount of

2 Chapter 1 ● Introduction

published content on a daily basis has vastly increased, prompting an increased
need for scalable solutions to analyze large sets of posts and monitor current
developments in real-time. A similar case can be made for the visual analysis
of data sets in health care, industries, and science due to the rising number of
digital processes and measurements. This thesis aims to enable such large-scale
visual analyses and has a particular focus on text and multivariate data since
they represent a large proportion of relevant big data sets in the field of visual
analytics.

In the case of multivariate datasets, the attributes are already given, while
text must first be converted into a suitable vector representation. Visual text
analytics approaches often focus on analyzing the textual content of individ-
ual documents or document collections, whereas approaches for exploring
multivariate datasets typically aim to find and visualize relationships between
attributes and sets of attributes. The transitions are fluid, though. For instance,
text documents often contain additional structured data that we may want to
include in our analysis (e.g., publishing date of an article). Multivariate data
can also contain unstructured content that may be relevant to the task at hand
(e.g., text input in survey responses). Furthermore, analysts may wish to find
and understand relationships in documents after they have been processed, for
example, to examine correlations between extracted entities or understand the
evolution of topics over time.

Analyzing larger data sets is particularly intriguing for several reasons. They
may exhibit interesting complex or low-key patterns and relationships which
cannot be inferred from smaller subsets of the data. For instance, Ferwerda
et al. [2020] estimate that, for OECD countries, money laundering amounts to
about two percent of the gross domestic product (GDP). A compact random
sample of all transactions would therefore likely include close to none of such
dubious transactions (assuming similar distributions of transaction sizes), so the
analysis of this sample would not lead to meaningful insights regarding money
laundering. Another advantage of big data sets is that, even in the case of larger
effect sizes, many data points help to reduce the uncertainty of findings.

1.1 Problem Statement

Comprehensive and timely analyses of big document collections such as news
reports, business reports, and social media posts are of vital interest for many
stakeholders. Several visual text mining and analysis approaches have thus
been proposed to serve the needs of, for instance, business analysts, journalists,
traders, and intelligence officials.

1.1 ● Problem Statement 3

On the one hand, the field of visual analytics seems to be well suited for making
sense of documents and document collections due to the unstructured nature
of the data. On the other hand, though, providing an interactive experience
significantly constrains the complexity and duration of on-the-fly computations.
This partly explains why previous approaches have rarely been developed for
and tested with data set sizes that exceed tens of thousands of documents, even
though analyzing massive amounts of data is one of the core goals of the field
(Thomas and Cook [2005]; Keim et al. [2010a]).

Furthermore, only few approaches natively support real-time analyses of stream-
ing documents. The conceptual complexity increases because we lose the global
view of the entire data set, data has to be processed with fast algorithms that
support incremental updates (Rohrdantz et al. [2011]), and dynamic visual-
izations have to be developed that preserve the mental map of users (Krstajić
and Keim [2013]). There are numerous circumstances that require or would
benefit from real-time analyses, though, for instance, if one needs to monitor an
ongoing event for reporting or targeted interventions, or if storing all received
data for a subsequent offline analysis is impractical.

One advantage of analyzing multivariate data instead of textual data is that
we can utilize the tabular structure imposed by the already given attributes.
Each data item corresponds to an array of values, which makes subsequent
computations and aggregations more straightforward. However, similar issues
can be observed regarding the scalability of existing methods. The vastly
increasing number of digital processes and measurements in many domains has
lead to bigger data sets not only in terms of the number of data items but also
in terms of the complexity of items. With many dimensions, the set of potential
variable groupings that could exhibit an interesting pattern grows prohibitively
large.

This poses a problem in several ways for large-scale interactive visual analyses.
In an interactive setting, non-linear data analytics methods are usually not
efficient enough to be applied to large data set sizes with hundreds of attributes.
Additionally, it is challenging to visualize multivariate data sets effectively
with an increasing number of dimensions. As a result, most visual analytics
approaches either apply simple (e.g., linear) statistical models to filter, rank and
visually aggregate multivariate data sets, or they focus on data sets with less
dimensions.

One can argue a lot about what the terms big or large actually mean; it surely
depends on the context and is partially subjective. In this thesis, big or large refer
to sizes that significantly exceed the average norm of what current approaches in
the respective field are usually tested on. For instance, in the case of visualizing

4 Chapter 1 ● Introduction

multivariate data with parallel coordinates, a data set with more than ten
dimensions can be considered large because these plots rarely contain more than
ten axes due to the limits of human perception. These terms describe relative
sizes and, thus, have to be interpreted according to their historical context. They
may change their meaning over time in terms of absolute numbers since the
average test data set sizes usually also increase over time. For visual document
analyses, collections with well over ten thousand documents are therefore called
large. For visual multivariate analyses, this applies to data sets with well over
ten thousand items or well over ten dimensions.

1.2 Research Questions

Given the outlined research gap in visual text and multivariate analysis, the
main research question that guides all topics of this thesis is:

How can we develop more powerful but also more efficient approaches to scale
the visual analysis of textual and multivariate data?

This is a challenging endeavor that encompasses many different facets. Hence,
this thesis focuses on tackling the following more specific research ques-
tions:

• RQ 1: How can we visually aggregate text collections efficiently while
still providing sufficient context?

• RQ 2: How do we facilitate the interactive exploration of large document
collections, incorporating both temporal aspects and semantic context?

• RQ 3: How can we cluster documents more efficiently regarding the
number of clusters and also support dynamic clustering in a streaming
setting?

• RQ 4: How can we scale the real-time visual analysis of streaming social
media posts without relying on specific meta-data or event detection
algorithms?

• RQ 5: How can we extract and visualize more complex relationships
between a dependent variable and potentially hundreds of independent
variables in a multivariate data set?

1.3 ● Contributions 5

1.3 Contributions

This thesis makes several contributions to scale the visual analysis of textual
and multivariate data. Contribution 6 addresses the main research question of
developing both powerful and efficient approaches to scale the visual analysis of
textual and multivariate data. Contributions 1–5 map to the respective research
question.

• Contribution 1a: Section 3.1 proposes ELSKE, an efficient keyphrase
extraction algorithm, to briefly summarize large document collections
(Knittel et al. [2021b]). It aims to extract not only relevant keywords but
also frequently appearing longer phrases that are easier to interpret. It
avoids computationally expensive prepocessing such as Part-of-Speech
tagging to enable a continuous aggregation of streaming documents at
regular intervals.

• Contribution 1b: An interactive and hierarchical approach has been
developed to extract and visualize frequent textual quotes efficiently
(Knittel et al. [2019a,b]), which is described in Section 3.2. Each quote is a
sequence of phrases which appear in the respective order. These quotes
provide a context-rich but still compact summary of short texts such as
tweets. They also help to quantify the extent of certain statements, given
that they are similarly phrased.

• Contribution 2: In Chapter 4, this work proposes PyramidTags, a context-
aware, word order-aware, and date-aware multi-term tag map for explor-
ing large document collections (Knittel et al. [2021a]). The position of
each tag corresponds to the date range in which it mostly appeared in the
collection, frequently co-occurring tags are placed nearby, and the word
order of the most important tag pairs is preserved, given that they often
appear in a particular lexical order. Analysts can select one or several tags
to retrieve relevant documents and learn more about the topic.

• Contribution 3a: Several techniques to accelerate the Spherical k-Means
algorithm on sparse input data for larger values of k are proposed in
Section 5.1, making fine-grained clusterings of large document collections
feasible, particularly in interactive or real-time settings (Knittel et al.
[2021c]).

• Contribution 3b: This work further proposes in Section 5.2 an efficient
dynamic clustering algorithm based on Spherical k-Means to enable the
clustering of streaming documents at regular intervals (Knittel et al. [2022]).

6 Chapter 1 ● Introduction

The number of clusters does not have to be specified beforehand and the
algorithm aims to minimize the changes between updates such that a
continuous visual representation of the dynamically changing clustering
is feasible.

• Contribution 4: A comprehensive system to visually analyze streaming
social media posts in real-time has been developed (Knittel et al. [2022]),
which Chapter 6 introduces. Two dynamic clustering processes handle
the incoming posts in parallel and independent from each other. The
first, more coarse-grained clustering provides analysts with a continuous
topical overview, from which they can select topics of interest they want to
monitor. Relevant keyphrases in that selection are continuously extracted
and the proposed set visualization helps analysts to infer the coverage and
co-occurrence of these phrases. The aim of the second, more fine-grained
clustering is to provide a diverse yet digestible stream of representative
posts related to such a selection of topics. Analysts can increase the
resolution and specificity by diving into the selection of topics.

• Contribution 5: This thesis introduces Visual Neural Decomposition in
Chapter 7 to extract and explain how variables in a multivariate data set
influence a specific target variable (Knittel et al. [2021d]). The goal is to
understand which variables in which circumstances lead to high target
values, even if the data set contains a large number of variables. Based on
a neural network architecture and a novel regularization term, the method
tries to decompose the problem into a set of cases that are visualized
separately, each representing one explanation that leads to high target
values. The stacked histograms visualization is proposed to visualize
the distribution of the variables within each case in relation to the target
values.

• Contribution 6: This work proposes in Section 2.5 the generalized concept
of exploiting artificial intelligence for visually explaining textual and
multivariate data sets (Knittel et al. [2021d]). The idea is to train or build
a model on the data set and then to visualize the inner workings of this
model in order to learn more about the underlying data set. Thus, it is not
about visualizing the outputs of a model but about visualizing the model
itself. The challenge is to develop powerful and efficient, but also visually
interpretable models to scale the analysis of textual and multivariate data
sets.

1.4 ● Thesis Structure 7

1.4 Thesis Structure

This thesis is structured as follows. Chapter 2 discusses the foundational con-
cepts and related work upon which this thesis builds. It further introduces the
concept of exploiting artificial intelligence for visually explaining textual and
multivariate data sets. Chapter 3 introduces efficient methods for aggregating
large text collections. The first method extracts keyphrases from document
collections efficiently (ELSKE). The second method aims to aggregate collec-
tions with short yet context-rich quotes. PyramidTags, a context-aware, word
order-aware, and date-aware multi-term tag map for exploring large document
collections, is proposed in Chapter 4. Chapter 5 presents several strategies for
accelerating the Spherical k-Means algorithm and further introduces an efficient
dynamic clustering algorithm. Based on this clustering algorithm, a visual
analytics approach for analyzing streaming social media posts in real-time
has been developed that is described and evaluated in Chapter 6. Chapter 7
presents Visual Neural Decomposition for discovering and explaining non-linear
multivariate relationships. Finally, Chapter 8 summarizes and discusses the
contributions of this work and provides an outlook regarding future challenges
in the context of this thesis.

Parts of this thesis have already been published in the following
publications:

J. Knittel, S. Koch, and T. Ertl. Interactive Hierarchical Quote Extraction
for Content Insights. In J. Madeiras Pereira and R. G. Raidou, editors,
Proceedings of the EuroVis 2019 Posters. The Eurographics Association, 2019a

J. Knittel, S. Koch, and T. Ertl. Pattern-Based Semantic and Temporal
Exploration of Social Media Messages. In Proceedings of the 2019 IEEE
Conference on Visual Analytics Science and Technology, VAST 2019, pages
134–135, 2019b

J. Knittel, S. Koch, and T. Ertl. PyramidTags: Context-, Time- And Word
Order-Aware Tag Maps to Explore Large Document Collections. IEEE
Transactions on Visualization and Computer Graphics, 27(12):4455–4468, 2021a

(continues on the next page)

8 Chapter 1 ● Introduction

(Continued)

J. Knittel, A. Lalama, S. Koch, and T. Ertl. Visual Neural Decomposition
to Explain Multivariate Data Sets. IEEE Transactions on Visualization and
Computer Graphics, 27(2):1374–1384, 2021d

J. Knittel, S. Koch, T. Tang, W. Chen, Y. Wu, S. Liu, and T. Ertl. Real-Time
Visual Analysis of High-Volume Social Media Posts. IEEE Transactions on
Visualization and Computer Graphics, 28(1):879–889, 2022

J. Knittel, S. Koch, and T. Ertl. ELSKE: Efficient Large-Scale Keyphrase
Extraction. In Proceedings of the 21st ACM Symposium on Document
Engineering, DocEng 2021, New York, NY, USA, 2021b. Association for
Computing Machinery

J. Knittel, S. Koch, and T. Ertl. Efficient Sparse Spherical K-Means for
Document Clustering. In Proceedings of the 21st ACM Symposium on Docu-
ment Engineering, DocEng 2021, New York, NY, USA, 2021c. Association
for Computing Machinery

C
h

a
p

t
e

r

2
Foundations and Concept

Scaling is a complex issue; it is not just about making things bigger or smaller.
In nature, mammals come in all different sizes, yet the size and volume of cells
typically do not differ much between species – in contrast to the metabolic rate
that changes depending on the body size (Savage et al. [2007]). Scaling the
visual analysis of textual and multivariate data sets is also not simply about
applying the same methods only to larger data sets, even if the computational
capacity increases with the size of the set. What works on a small scale does not
necessarily work on a large scale, and vice versa. For instance, single documents
can be shown in full, whereas larger collections have to be aggregated – but it
is also easier to aggregate the content of many documents than summarizing
the main content of individual documents. Data sets with few dimensions can
be visually mapped to physical dimensions or colors, high-dimensional data
sets have to be reduced first or visualized with a different strategy.

This thesis proposes a new model for scaling the visual analysis of textual
and multivariate data, which is presented in Section 2.5. The idea is to exploit
artificial intelligence for visually explaining data sets by visually inspecting
interpretable models that were trained on or fitted to the data. The first
part of this chapter discusses relevant methods that are fundamental to the
contributions of this thesis. Section 2.1 introduces artificial intelligence and
machine learning, Section 2.2 outlines the visual analytics process, Section 2.3
discusses existing approaches for the visual analysis of document collections,
and Section 2.4 embeds this thesis in the context of visual multivariate analysis
techniques.

10 Chapter 2 ● Foundations and Concept

2.1 Artificial Intelligence and Machine Learning

The idea of creating things that imitate in some ways ’intelligent’ behavior of
animals or humans is at least hundreds of years old (Nilsson [2009]), but there
is still no consensus on how to properly define artificial intelligence (or intelligence
in general). Legg and Hutter [2007] present some of the numerous definitions
that researchers have come up with over the years. The contributions of this
thesis mainly focus on machine learning (ML) which is considered to be a subset
of techniques in the field of artificial intelligence (AI) (Helm et al. [2020]), even
though the terms AI and machine learning are sometimes used interchangeably.
Nilsson [2005] states that

“a machine learns whenever it changes its structure, program, or
data (based on its inputs or in response to external information)
in such a manner that its expected future performance improves.
[...] Machine learning usually refers to the changes in systems that
perform tasks associated with artificial intelligence (AI). Such tasks
involve recognition, diagnosis, planning, robot control, prediction,
etc.”

Thus, machine learning is about algorithms that aim to generate algorithms –
but in an implicit way by harvesting and modeling data. The type of machine
learning algorithm depends on the available training data and can be either
classified as supervised, unsupervised, or semi-supervised (Sammut and Webb
[2010]). Supervised learning means that the data in the training set is annotated
with labels which the machine is supposed to learn (e.g., images with categories
as labels). Unsupervised learning does not use any preexisting domain knowl-
edge (e.g., clustering based on data distances). Sometimes, learning happens
neither fully supervised nor unsupervised, for instance, if only parts of the data
are labeled or the learning takes into account at least some kind of domain
knowledge (e.g., interactive clustering). These edge cases are therefore often
classified as semi-supervised learning.

Machine learning is a broad field and an adequate introduction would go
beyond the scope of this thesis. This section therefore discusses techniques that
are important for the contributions of this thesis.

2.1.1 Particle Swarm Optimization

Kennedy and Eberhart [1995] developed an evolutionary algorithm for op-
timizing continuous non-linear functions, which was later improved by Shi
and Eberhart [2002] with an additional hyper-parameter. Given a function

2.1 ● Artificial Intelligence and Machine Learning 11

f ∶ Rn → R, x ↦ f (x), the optimization objective is to find the point x that
minimizes the function value f (x) (or is a good local minimum in the case of
non-convex functions). The algorithm is partly inspired by the swarm behavior
of flying birds and is therefore called particle swarm optimization (PSO). One of
its advantages is that it is gradient-free as it only needs to evaluate the function
at any point. It has been adopted for a wide range of different application
domains, including machine learning and modeling (Poli et al. [2007]).

The idea of PSO is that a group of particles collectively try to approach the (local)
minimum of the function. Each particle i has a position xt

i that represents its
current solution at step t, and a velocity vt+1

i that determines the direction of
the update for calculating its position in the next iteration t + 1. The velocity
depends on its previous value, the distance of the particle to the best local
solution pi (the position that has lead to the smallest value of f (x) among all
of its previous positions), and the distance of the particle to the best group
solution p (the position that has lead to the smallest value of f (x) among all
particles and their previous positions).

In the beginning, each of the M particles is initialized with a random position
and velocity (within a certain interval, e.g., [−1, 1]). Then, the algorithm loops
through the following steps until the maximum number of iterations N is
reached:

1. Evaluate f (xi) on all positions to determine the current fitness value of
every particle.

2. Check whether any fitness value of a particle i is smaller than the local
solution pi or the global solution p, and replace them accordingly if this
is the case.

3. Calculate the new velocity for each particle:

vt+1
i =W ⋅ vt

i +C1 ⋅ r1 ⋅ (pi − xi) +C2 ⋅ r2 ⋅ (p − xi) (2.1)

where r1, r2 are two random values in the range [0, 1), and W, C1, C2
(constant) hyper-parameters.

4. Calculate the new position for each particle:

xt+1
i = xt

i + vt+1
i (2.2)

Different strategies for selecting the optimal hyper-parameters have been pro-
posed, but W = 0.7298, C1 = C2 = 1.49618, M < 40 is a frequently used com-
bination (Poli et al. [2007]; Wang et al. [2018]) that is also adopted in this
thesis.

12 Chapter 2 ● Foundations and Concept

2.1.2 Document Clustering

Automatically grouping text into clusters helps to structure large document
collections, which is beneficial for a wide variety of tasks such as document
browsing, information retrieval, collection summarization, and classification
(Aggarwal and Zhai [2012]; Allahyari et al. [2017]). The underlying assumption
of most clustering algorithms is that the items within a group should be similar
to each other and dissimilar to every other item (Gentle et al. [1991]). Numerous
algorithms have been developed that can be divided into several categories,
for instance, which type of structure is produced (flat or hierarchical), which
measure for determining group memberships is employed (e.g., distance-based
or probabilistic), and whether they are dynamic (online) to work with streams
(Aggarwal and Zhai [2012]).

Document Representations

In contrast to quantitative data, text input has to be converted into a suitable
vector representation first, which poses several challenges. The vocabulary of a
corpus is often huge, yet individual documents such as news reports typically
only contain up to hundreds of words. In addition, different encodings generally
exhibit different strengths and weaknesses such as human interpretability
and the ability to capture subtle semantics. Bag-of-words representations are
simple to build and easy to interpret, but more advanced neural network-based
document embeddings, for instance, based on doc2vec (Le and Mikolov [2014])
or large Transformer-models (Devlin et al. [2019]; Radford et al. [2020]), may
represent the semantics better.

What all strategies have in common is that the document must first be tokenized
into a sequence of tokens. The exact definition of what constitutes a token
varies depending on the specific use case and domain background (Webster
and Kit [1992]). This work adopts the frequently used strategy of interpreting
single words or numbers as tokens, which are usually delimited by spaces and
punctuation marks in western languages.

Applying stemming or lemmatization algorithms can help to unify different
variants of the same word. Stemming reduces different variants to one common
artificial root term (stem), whereas lemmatization tries to find the actual base
form (lemma) with regard to the context of the sentence (Manning et al. [2008]).
However, this work rarely applies either strategy because they suffer from
several limitations when applied to the large-scale visual analysis of documents.
Stemming is an efficient but also error-prone process. Due to the rule-based
nature of stemming, similar words with a different meaning are often reduced
to the same stem. Another disadvantage is that the artificial roots are difficult

2.1 ● Artificial Intelligence and Machine Learning 13

to understand. Lemmatization is a more advanced but also computationally
expensive preprocessing step since it requires a proper morphological analysis
of each word. Furthermore, reducing each word to its root (artificial or not)
makes subsequent analysis tasks dealing with sequences of tokens (i.e., phrases)
more difficult to handle and interpret.

For representing documents as vectors, this thesis applies the common TF-IDF
weighted bag-of-words approach (Salton and Buckley [1988]), in which each
term is mapped to a vector index, and for each present term in the document
the corresponding vector entry is set to the respective TF-IDF weight. TF-IDF
weights terms x with their frequency in the document fs(x) in relation to the
document frequency of the term in a reference collection fd(x) comprising N
documents to focus on candidates that appear unusually often:

TF-IDF(x) = fs(x) ln
N

fd(x)
(2.3)

A list of stop words that should be ignored is often used to improve the results.
While conceptually simple, it has several benefits that are important for the
efficient visual analysis of large collections. It is straightforward to integrate
new terms which have not been present in the reference corpus, whereas
embeddings are usually trained on and tailored to a specific data set. In
addition, the resulting representations are easy to interpret, which also holds for
certain aggregation steps (e.g., mean of all items in a cluster). Finally, building
such representations is computationally efficient. The inference on powerful
language models with millions of parameters for creating the embeddings needs
considerable processing time.

Instead of using individual words as tokens for representing documents, one
can also use longer sequences of words to increase the specificity of the repre-
sentation, which are usually called n-grams. For instance, extracting not only
frequent words but also frequent bi-grams from news reports would help to
identify a larger set of entities such as frequently mentioned persons (com-
bination of first and last name). However, the handling of longer sequences
requires smart algorithmic strategies since the number of possible n-grams
grows super-exponentially with respect to n.

Document Clustering Algorithms

Aggarwal and Zhai [2012] and Allahyari et al. [2017] discuss numerous text clus-
tering algorithms that have been proposed. For the visual analysis of document
collections, Non-Negative Matrix Factorization (NMF) (Xu et al. [2003]; Lee and

14 Chapter 2 ● Foundations and Concept

Seung [1999]), Latent Dirichlet Allocation (LDA) (Blei et al. [2003]), and k-Means
(Lloyd [1982]) belong to the most frequently used clustering algorithms.

The idea of NMF is to decompose the positive matrix X that contains the TF-IDF-
based document representations as columns into two positive matrices U and
V, where the number of columns of both matrices correspond to the cluster size.
That is, the following objective function should be minimized (constraining U, V
to be positive):

J = 1
2
∥X−UVT∥ (2.4)

Each column of U can then be interpreted as the importance rating of the terms
for the respective cluster, and each row of V as the cluster distribution of the
respective document.

LDA is a probabilistic topic modeling method. The idea is that a fixed number
of latent topics can describe a set of documents, and the goal is to infer these
topics based on the data. Each document is said to be a sparse mixture of the
k topics, and each topic is characterized by a distribution of words such that
the topic distribution of a document can explain the words it contains (and vice
versa). For each topic, a multinomial word distribution of the vocabulary is
sampled from a Dirichlet distribution. LDA then assumes a generative process
of each document. First, the multinomial topic distribution of each document is
sampled from a Dirichlet distribution. Then, for each position in the document,
a corresponding topic is sampled from the topic distribution and then the word
from the corresponding multinomial distribution of the topic. The optimization
process aims to find the parameters of said distributions that best explain the
data.

One advantage of clustering documents with NMF instead of LDA is that the
term frequencies can (and should) be weighted (e.g., with the inverse document
frequency), which facilitates the incorporation of knowledge from external,
larger corpora that are not part of the actual input. NMF is also often used
in interactive topic modeling approaches by extending the set of optimization
constraints based on user input to guide the clustering process (Choo et al.
[2013]; Kim et al. [2017]).

This thesis, however, focuses on Spherical k-Means (Dhillon and Modha [2001])
that is based on k-Means. It belongs to one of the fastest clustering algorithms
and typically leads to competitive clustering results. For instance, it performs
better on a number of benchmark document collections compared to LDA and
NMF (Lelu and Cadot [2021]).

2.1 ● Artificial Intelligence and Machine Learning 15

Spherical k-Means

The original Euclidean k-Means algorithm (Lloyd [1982]) aims to find in an
iterative way a partition S of the data set that minimizes its clustering objective.
That is, every data item xi gets associated with one of the k clusters such that the
sum of the squared differences between data items and their assigned centroids
µj (i.e., mean of all associated items in the cluster) is minimal:

argmin
S

k
∑
j=1
∑

xi∈Sj

∥xi − µj∥
2
2 (2.5)

The algorithm initially assigns every item to a cluster (e.g., with the k-Means++
strategy developed by Arthur and Vassilvitskii [2007]). Afterward, it optimizes
the objective iteratively with a loop that comprises two steps. First, the cluster
centroids µj are recalculated based on the current assignments. Then, the
assignments are updated, that is, for every data item xi we find the cluster j
such that the squared distance ∥xi − µj∥

2
2 is minimized. The loop stops if the

assignments do not change anymore or if a specific criterion is met, for instance,
the maximum difference between subsequent cluster centroids is sufficiently
small.

For document clustering use cases, Spherical k-Means (Dhillon and Modha
[2001]) was proposed that applies the cosine similarity instead of the Euclidean
distance to improve the clustering results. Every input vector is supposed to
have unit length, and the centroids are calculated as the sum of the associated
items, divided by the length to obtain unit vectors as well. The data items
are then assigned to the cluster with the highest cosine similarity (which
is equivalent to the dot product of the unit-length vectors). Let p, k be the
number of non-zero vector entries of vectors a and b, respectively, then the
complexity of calculating the dot product a⊺b is in O(min(p, k)), given a map-
like data structure of the vectors. Thus, the sparser the input data, the faster
the clustering.

Online Clustering of Text Streams

While several techniques have been developed that incorporate temporal aspects
(Mei and Zhai [2005]; Peng et al. [2018]; Wang and McCallum [2006]; Zhang et al.
[2010]; Stilo and Velardi [2016]; Gao et al. [2011]), only few support the online
clustering of streaming data. Gil-García and Pons-Porrata [2010] proposed a
graph-based dynamic hierarchical clustering algorithm, but it does not scale well
with the number of documents since each incoming item has to be compared
with all existing items. EvoBRT (Liu et al. [2015a]; Wang et al. [2013]) is an

16 Chapter 2 ● Foundations and Concept

evolutionary multi-branch tree clustering algorithm based on Bayesian Rose
Trees (Blundell et al. [2010]) and Bayesian Hierarchical Clustering (Heller and
Ghahramani [2005]), but is also not efficient enough to handle large data sets
in real-time. MStreamOne (Yin et al. [2018]) and EStream (Rakib et al. [2021])
are optimized for the online clustering of short text streams. They immediately
assign each incoming item to a cluster in only one pass to improve the efficiency
on streaming data.

Several online versions of k-Means have been proposed that approximate the
k-Means objective with different strategies: process each element only once
and update the cluster centroids greedily after each element (Zhong [2005];
Chakrabarti et al. [2006]), perform an approximated version of k-Means locally
on batches and use these centroids as input for the global clustering (Ailon et al.
[2009]), or perform clustering only on a cleverly chosen sample (Ackermann
et al. [2010]; Braverman et al. [2011]). These online versions are fast, but they
approximate the original k-Means objective and the number of clusters is fixed.
Furthermore, only the first strategy of updating the centroids greedily leads to
coherent clusters over time.

2.1.3 Dimensionality Reduction

Visualizing highly unstructured and multidimensional data such as text proves
challenging due to the limits of human perception. Hence, many visual analytics
approaches first apply dimensionality reduction (DR) methods to visualize data
sets as two-dimensional plots. PCA (Tipping and Bishop [1999]), MDS (Cox
and Cox [2008]), t-SNE (Van Der Maaten and Hinton [2008]), and UMAP
(McInnes et al. [2018]) belong to the most commonly used DR algorithms in VA
approaches.

Principal component analysis (PCA) is a linear transformation that projects a
d-dimensional data set onto k ≤ d orthonormal axes that are given by the first
k eigenvectors in descending order of the corresponding eigenvalues (Tipping
and Bishop [1999]). Multidimensional scaling (MDS) tries to find a projection
such that the distances according to a specific scaling (e.g., Euclidean metric)
between points in the reduced space are preserved as best as possible (Cox and
Cox [2008]).

Van Der Maaten and Hinton [2008] introduced t-SNE (t-Distributed Stochastic
Neighbor Embedding) to better preserve local neighborhoods. The distances
between points are converted into probabilities that capture the likelihood of
them being neighbors, that is, the closer the points are, the higher the probability
that they are neighbors. The goal of the algorithm is then to find a projection
such that these probabilities are preserved as best as possible. In contrast to

2.1 ● Artificial Intelligence and Machine Learning 17

linear methods, this has the advantage that the distances between distant points
do not matter as much as between close points. Points that are farther away in
the original space have a similarly low probability of being neighbors, even if
the absolute distances differ greatly.

UMAP (McInnes et al. [2018]) builds a weighted graph from the data points
based on the k nearest neighbors of each point, with exponentially decaying
weights based on the distance between points. It tries to find a projection
that minimizes the cross-entropy loss between corresponding edges in the
two graphs representing the low-dimensional and high-dimensional space,
respectively.

2.1.4 Neural Networks

An artificial neuron is a function that takes a weighted sum of its inputs plus
a constant value (the bias) and then transforms this value with a nonlinear
activation function σ such as tanh x (Dreyfus [2005]). A neural network is a
network of said nonlinear neurons, representing a more complex function.
Given a training data set with pairs of input values and their corresponding
output values, the goal in such a supervised setting is to learn the parameters
(weights) of the neural network such that it maps the inputs in the training set
to their corresponding outputs, but also computes correct or reasonable output
values for new inputs which are not part of the training set (generalization).

Several neural network architectures have been developed. Hochreiter and
Schmidhuber [1997] introduced long short-term memory (LSTM) recurrent
neural networks that operate on data sequences by using the output of the last
time step again as additional input for the next time step, which is particularly
relevant for processing text. Multiplicative gate units improve the flow of
information, leading to faster training times and better modeling of longer-
range dependencies compared to previous recurrent architectures.

Vaswani et al. [2017] proposed the Transformer architecture that does not use
recurrence and instead relies solely on attention and positional encoding to
process sequences of tokens with blocks of encoders and decoders, which lead
to new state-of-the-art results for several natural language processing tasks
such as machine translation. The encoders process the input sequence and the
decoders then predict token-by-token an output sequence based on the encoded
input and the already predicted tokens. Several recent large language models
like GPT-2 (Radford et al. [2020]) are based on variations of the Transformer
architecture.

However, this thesis mainly deals with the traditional, feedforward neural
network architecture comprising two or more fully-connected layers. Each layer

18 Chapter 2 ● Foundations and Concept

xN

x2

x1
w1

1

w2
1

wN
1

Inputs Hidden Layer Predicted Outputs

1

b1

b2

bM
yP

y2

y1
v1

1

v2
1

vM
1

1

b1

b2

bP
h

h

h

hM

h2

h1

y

y

y

Figure 2.1 — Architecture of a simple feedforward neural network with one
hidden layer, inputs x, input-to-node weights wi, hidden node biases bh

i, hidden
node outputs hi, node-to-output weights vk

i , output biases bk
y, and predicted

outputs yk.

contains a fixed number of neurons with a specific activation function, and each
neuron in a layer takes the outputs of all neurons in the previous layer as input
(or the actual input data if it is the first layer).

Figure 2.1 depicts a feedforward network architecture with one hidden layer. To
compute the (scalar) output hi of a hidden node i, the dot product of the inputs
x with the trained weights of the node wi plus a constant offset bh

i (the bias) is
fed into a nonlinear, monotonically increasing activation function σ(z):

hi(x) = σ(wi ⋅ x + bh
i) (2.6)

For regression tasks, the final outputs yk(x) are then computed from the outputs
of the hidden nodes in the last layer as weighted sum (plus biases):

yk(x) = ∑
i

hi(x)v
k
i + bk

y (2.7)

However, the last layer is often handled in a special way. For instance, if the
goal is to train a classifier, the last layer is usually normalized with the Softmax
function such that the output values always sum to one.

Neural networks are a powerful yet universal machine learning technique. With
the sigmoid activation function, it has been shown that the feedforward network

2.2 ● Visual Analytics 19

Data Target Data Preprocessed Data Transformed Data Pa�erns Knowledge

Selec�on Preprocessing Transforma�on Data Mining Interpreta�on
/ Evalua�on

Figure 2.2 — The iterative knowledge discovery in databases process according to
Fayyad et al. [1996].

is nonlinear regarding its parameters, which makes it more parsimonious than
a linear or polynomial model (Dreyfus [2005]). This means that the number of
parameters needed to approximate a certain function with a specific accuracy
increases only linearly with the input dimension and not exponentially, as is
the case with linear or polynomial models.

Neural networks can be applied in various settings (Bishop [1994]). They can
learn to classify inputs, to predict certain quantitative values, or to model
a possibly non-trivial function. The concrete training objective is specified
with a loss function, that is, the training should learn weights that minimize
this loss function. For instance, the mean squared error loss can be used for
regression and the cross-entropy loss for classification tasks. The loss function
often contains an additional regularization term to improve the generalization
of the network (e.g., the squared sum of all weights).

The weights and biases are then usually learned with backpropagation (Lin-
nainmaa [1970]; Rumelhart et al. [1986]) and stochastic gradient descent (SGD).
Several optimization routines that implement an adapted version of SGD have
been proposed such as Adam (Kingma and Ba [2014]). Instead of updating the
weights after each training sample, training is usually done in an accumulative
way as groups of mini-batches to improve the efficiency with parallel execution
(Li et al. [2014]).

2.2 Visual Analytics

In 1989, Piatetsky-Shapiro chaired a workshop on Knowledge Discovery in Real
Databases as there was “both a need and an opportunity for extracting knowl-
edge from databases” due to the growing amounts of collected data (Piatetsky-
Shapiro [1990]). Back then, this extraction process mostly refered to the chal-
lenge of applying machine learning techniques with the goal to replace or
even surpass human experts. In other words, machine learning models should
extract and encapsulate knowledge from large databases so that this knowledge
can be repeatedly and automatically applied in the future.

20 Chapter 2 ● Foundations and Concept

Later on, the notion of knowledge discovery in databases (KDD) became more
human-centric. In 1996, Fayyad et al. [1996] described it as a process “of
mapping low-level data into other forms that might be more compact, more
abstract, or more useful”, involving several steps from data selection, data
preprocessing, data transformation, data mining, and then interpretation of
the resulting patterns to gain knowledge. Figure 2.2 outlines the stages and
steps. Hence, the discovery process should ultimately lead to human insights
rather than machine-centric models that are often difficult to understand. In
this framework, the user has a central role as they have to take decisions at
each step, including the possibility of going back to a previous step at any time
to change decisions. The gained knowledge may also influence and feed into
future iterations of this pipeline.

One of the core steps in the model refers to data mining that is about extracting
patterns, which could involve “fitting a model to data; finding structure from
data; or, in general, making any high-level description of a set of data” (Fayyad
et al. [1996]). In 1999, Wong [1999] introduced the concept of visual data mining.
Instead of applying statistics or more advanced algorithms to extract patterns
automatically, the idea was to fuse these purely analytical processes with
visualization:

“[Visual data mining] integrates the human mind’s exploration abil-
ities with the enormous processing power of computers to form a
powerful knowledge discovery environment that capitalizes on the
best of both worlds.”

Gershon et al. [1998] point out the advantages of using information visualization
for recognizing patterns:

“Visualization is the process of transforming data, information, and
knowledge into visual form making use of humans’ natural visual
capabilities. With effective visual interfaces we can interact with
large volumes of data rapidly and effectively to discover hidden
characteristics, patterns, and trends.”

The data mining step in the KDD model may also involve visualization as a
means to communicate the extracted patterns, but visual data mining aims
to take advantage of the visual channel for the actual mining process. That
is, the visualization should actively enable users to find patterns themselves
without relying completely on automated methods. Wong further argues that
such systems should have an intuitive user interface with outputs that are easy
to interpret.

2.2 ● Visual Analytics 21

After the September 11 terrorist attacks in the US, Thomas and Cook [2005]
presented in 2005 an agenda to better prevent such attacks in the future by
analyzing massive amounts of data with visual analytics:

“Visual analytics is the science of analytical reasoning facilitated
by interactive visual interfaces. People use visual analytics tools
and techniques to synthesize information and derive insight from
massive, dynamic, ambiguous, and often conflicting data; detect
the expected and discover the unexpected; provide timely, defensi-
ble, and understandable assessments; and communicate assessment
effectively for action.”

Similar to visual data mining, visual analytics (VA) also aims to combine visual-
ization techniques with data analytics, but there is a strong focus on interactive
interfaces, on analyzing large amounts of data, and on finding unexpected patterns.
The combination of cognitive power with automated analyses promises to tackle
highly complex problems that human beings or machines would not achieve on
their own. However, it also means that at least one person has to interact with
the system and analyze the problem at hand over a possibly longer time span,
which can be expensive and time-consuming. Thus, visual analytics fits best
if the problem is only vaguely defined, if the task is too difficult to solve with
automated methods, if it leads to a better performance (time- or quality-wise),
or if it is vital to have a high trust in the findings (Keim et al. [2010b]).

The field of visual analytics was initially strongly connected with counter-
terrorism, intelligence work, and the monitoring and assessment of ongoing
situations, but its scope quickly broadened. Keim et al. [2010a] later character-
ized the field as follows:

“Visual analytics combines automated analysis techniques with in-
teractive visualisations for an effective understanding, reasoning and
decision making on the basis of very large and complex datasets.”

They characterized it as a process with different stages and transitions as de-
picted in Figure 2.3. To some extent, this process resembles the KDD pipeline, en-
riched with visual data mining, but there are some important differences.

First, the process explicitly models different paths to gain knowledge from
data:

1. The potentially transformed data is visually mapped to an interface that
the analyst can interact with to gain knowledge from the resulting visual

22 Chapter 2 ● Foundations and Concept

Data

Visualiza�on

Models

Knowledge

Mapping

Model
building

Transforma�on

Data Mining

Parameter
refinement

Model
visualiza�on

User interac�on

Feedback loop

Figure 2.3 — The visual analytics process according to Keim et al. [2010a].

representations, which corresponds to the visualization reference model
by Card et al. [1999]

2. Interactive model building is performed with advanced data mining meth-
ods that are applied to the potentially transformed data, and this model
then may encapsulate knowledge. This path resembles the traditional,
machine-centric definition of knowledge discovery in databases as charac-
terized by Piatetsky-Shapiro [1990]

3. While interactive model building is performed with advanced data mining
methods that are applied to the potentially transformed data, this model
then serves as the basis for interactive visualizations from which the
analyst can gain knowledge. These steps closely map to the KDD pipeline
as defined by Fayyad et al. [1996] in combination with visual data mining
(Wong [1999]).

4. An intertwined combination of the aforementioned paths.

Second, the process emphasizes that interactive visualizations help not only to
explore the data but also to steer the underlying data mining model, leading to
more refined automated data analyses.

Finally, it can be noted that the higher level of interactivity also constrains the
space of feasible algorithms. They need to be efficient enough such that analysts
do not need to wait unreasonably long for an update to complete after changing
parameters.

Hence, visual analytics aims to fuse interactive visualization, advanced know-
ledge discovery, and visual data mining into a holistic, human-centric system

2.3 ● Visual Analysis of Document Collections 23

for the analysis of complex and large data sets. While visual analytics can be
applied in many different fields and settings, this thesis focuses on the analysis
of document collections and multivariate data sets. The next two sections
therefore introduce related VA approaches in these two fields.

2.3 Visual Analysis of Document Collections

The analysis of vast document collections is important for many stakeholders
across different domains. News articles are a valuable source for historians
to research events but also opinion changes in certain demographics (Allen
and Sieczkiewicz [2010]). For investigating leaks, journalists need to harvest
many documents in a short amount of time (Yimam et al. [2016]). It is also
of vital interest for many business analysts, journalists, and stock traders to
closely monitor social media and news platforms for important developments
that inform or affect their decisions (Hu et al. [2012]; Oliveira et al. [2017]; Sul
et al. [2017]. Brands monitor their exposure on social media (Hoffman and
Fodor [2010]; Liu and Lopez [2016]) and analysts can infer business intelligence
from news reports (Chung [2014]). In disaster management, first responders
benefit from timely witness reports on social media (Beigi et al. [2016]; Thom
et al. [2015]).

Visual analytics is well suited for the problem of analyzing social media posts
and news reports. The data sets are often huge and the goals typically ill-defined.
Many analysis tasks have an explorative nature, for example, if analysts want
to monitor the most important themes people talk about on social media so
that they can start a deeper investigative analysis whenever an important topic
emerges. Such explorative tasks are difficult to solve with completely automatic
methods as it is difficult to formulate the goal in a machine-readable way. In the
case of the monitoring task example, how could one mathematically describe
the concept of an important topic? It could be content-based, but it could
also be related to an unexpected development in the context of certain events.
Furthermore, it is still difficult for machines to fully understand text as this
would require human-level intelligence.

This section therefore discusses related approaches that deal with the visual
analysis of textual data, and in particular, the analysis of text collections. Kucher
and Kerren [2015] provide a more general overview of text visualization tech-
niques.

24 Chapter 2 ● Foundations and Concept

Figure 2.4 — Many approaches project documents onto two-dimensional maps.
This figure is taken from DocuCompass (Heimerl et al. [2017]), which computes
a t-SNE dimensionality reduction of documents and provides a lens that visual-
izes several features based on the target region.

2.3.1 Projection-Based Approaches

Several approaches project individual documents or textual tags onto two-
dimensional plots (spatialization) such that analysts can explore related items
and discover interesting patterns.

Document Projections

Wise et al. [1995] introduced the concept of transforming documents to a spatial,
two-dimensional representation, enabling a more natural way of perceiving
thematic patterns and relationships among documents. The Galaxies visualiza-
tion projects high-dimensional representations of documents to points in a 2D
scatter plot. Several approaches adopted this visual encoding to visualize text
collections (Lagus et al. [1996]; Weippl [2001]; Paulovich and Minghim [2006];
Paulovich et al. [2008]; Chen et al. [2009]; Alsakran et al. [2011]; Paulovich et al.
[2012]; Gansner et al. [2013]; Heimerl et al. [2017]). Alencar et al. [2012] review
approaches for visualizing text documents or collections in greater detail.

These spatializations can be extended, made interactive, and combined with
existing visualization techniques in several ways. Paulovich et al. [2012] enriched
document projections with localized word clouds. Analysts can draw a polygon
to interactively select documents in the projection, and the polygon will then be
replaced by a word cloud containing the most relevant tags from this selection.
Similarly, DocuCompass (Heimerl et al. [2017]) performs a t-SNE dimensionality
reduction (see Section 2.1.3) and provides a lens that visualizes several features

2.3 ● Visual Analysis of Document Collections 25

based on the documents under the lens, including related tags. Figure 2.4
depicts the approach. TwitterScope (Gansner et al. [2013]) projects tweets
related to a keyword onto a dynamic map with MDS. STREAMIT (Alsakran
et al. [2011]) shows documents as small particles in a force-directed simulation,
changing dynamically as new documents are streamed. In StreamExplorer (Wu
et al. [2018]), tweets belonging to an event are projected with self-organizing
maps (SOMs).

These approaches facilitate an interactive exploration of similar documents,
without requiring explicit search queries and rankings. However, they typically
do not scale well to big data sets. Projecting many individual documents as
dots on a map can lead to visual clutter, and the content typically only becomes
apparent upon interacting with the map.

Tag Clouds

Instead of projecting individual documents, several approaches first extract
relevant keywords from the collection to plot these extracted terms as a compact
content summary onto a tag map or tag cloud. The concept of tag clouds dates
back to 1976, but beginning with the late 1990s it started to become popular on
the web as a way to present frequent search terms or user-generated tags (Viégas
and Wattenberg [2008]). Initially, tag clouds were often regarded as a tool for
designers and there was a strong focus on aesthetics and visual appearance
(Seifert et al. [2008]; Viégas et al. [2009]). Bateman et al. [2008] found out that
font size, font weight and color have a strong influence on which tags users
typically select.

Later on, visualization research investigated the use of tag clouds for analytical
tasks. Schrammel et al. [2009] conducted a task-driven study which showed
that while semantically structured tag cloud layouts worked better than random
layouts, a simple alphabetical list still performed best for finding specific tags.
There was no difference regarding the search time for finding tags related to
a topic or the ability to recall tags. Lohmann et al. [2009] concluded that the
best way to arrange tags depends on the task at hand, which was corroborated
by Felix et al. [2018]. Research from Sinclair and Cardew-Hall [2008] suggests
that tag clouds have strengths for non-specific information discovery, and Wang
et al. [2014] found out that semantically clustered word clouds can improve the
understanding of large document collections. Word clouds typically only use
single words (unigrams), however, descriptive tags to summarize documents
for analytical tasks should include phrases with more than one word (Chuang
et al. [2012a]).

Liu et al. [2015b] proposed a new technique for word cloud navigation which

26 Chapter 2 ● Foundations and Concept

changes the word sizes dynamically while considering the mental map of
users. Dörk et al. [2008] introduced VisGets to explore news items with linked
visualizations. Dynamic search queries can be defined using an alphabetically
sorted word cloud, a geographic map, and a date/time slider. Hovering over a
tag highlights related tags and visual elements. Heimerl et al. [2014] presented
a visual text analytics tool that heavily relied on word clouds with interactive
features for filtering, co-occurrence highlighting and statistical insights.

Several efforts were made to generate more context-aware layouts. In most
approaches, terms occurring in the same sentence are considered to be related.
Adä et al. [2010] and Cui et al. [2010] applied multidimensional scaling to
create context-preserving word clouds. Wu et al. [2011] improved upon this
to generate layouts more reliably. Talin et al. [2010] clustered user-generated
tags semantically based on their target resource. ReCloud (Wang et al. [2014])
applies a force-directed graph layout to produce semantically clustered word
clouds on restaurant reviews. Xu et al. [2016] first constructed a similarity graph
using word embeddings, transformed it then with multidimensional scaling and
finally used force-directed methods to obtain dense layouts. TagSpheres (Jänicke
and Scheuermann [2017]) aims to visualize hierarchical relations by arranging
tags in circular bands, while at the same time placing related tags nearby. Endert
et al. [2013] generated a 2D spatialization of the entire English Wikipedia with
about four million documents. Several thousand important terms, phrases and
snippets are extracted and placed in such a way that semantically similar tags
are placed nearby. Analysts can zoom in until they finally retrieve individual
Wikipedia articles.

TexTonic (Paul et al. [2019]) generates a hierarchical, clustered spatialization
of millions of Wikipedia articles. At first, a general overview with clusters
containing the main tags is presented. Users can subsequently zoom into
clusters to reveal more terms and more fine-grained clusters. A search box
is provided in case users do not find clusters they are interested in at first
glance.

To visually compare document collections based on the time or location, Collins
et al. [2009] proposed Parallel Tag Clouds in which each category (date, location,
etc.) is represented by a column containing a list of extracted relevant terms.
Analysts can hover over tags to highlight and follow its trajectory. The authors
proved its scalability by applying it to 600,000 court documents. Figure 2.5
shows SparkClouds (Lee et al. [2010]) in action, which enriches tag clouds
with line charts under each tag to show its popularity over time. Chi et al.
[2015] applied rigid body dynamics to smoothly morph word clouds over
time. Cui et al. [2010] combined their context-preserving word clouds with a
significance line chart and generated multiple clouds for a selection of time steps

2.3 ● Visual Analysis of Document Collections 27

Figure 2.5 — Tag clouds are a popular way to visually summarize collections.
This example is taken from Lee et al. [2010], which depicts the temporal evolu-
tion of individual tags with small line charts.

that were deemed most significant. Binucci et al. [2016] proposed animated
word clouds to show the temporal evolution of real-time streaming data while
trying to preserve the mental map of the user. ConcentriCloud (Lohmann et al.
[2015]) merges word clouds from different documents and is optimized for the
comparison of a few long documents such as books.

The introduction of context-aware and time-aware layouts have increased the
utility of tag cloud-based approaches for visual analyses. However, research is
still lacking with respect to non-animated layouts that are both more context-
aware and also more time-aware. In addition, previous work often relies on
extracting single keywords that can be difficult to interpret due to the limited
context.

Trees and Patterns

Apart from tag cloud approaches, tree-based techniques were proposed to let
analysts inspect structural patterns in large document collections. The work
of Burch et al. [2013] combines similar tags that share a prefix to generate
word cloud layouts that save space and quickly reveal different variants of
terms. Wattenberg and Viégas [2008] presented an interactive word tree which
renders the structure of sentences as an hierarchical tree, enabling analysts to
explore how sentences continue in different variants. However, it is not meant
to provide users with a general overview of the corpus as it requires a keyword

28 Chapter 2 ● Foundations and Concept

Figure 2.6 — Several approaches try to preserve linguistic structures so that it
is easier to grasp concepts. This figure is taken from Hu et al. [2017] and shows
part of a SentenTree visualization which aggregates tweets about the world cup.

search first to find an interesting starting point. Phrase Net (Van Ham et al.
[2009]) generates node graphs from text to reveal syntactic or lexical relations
based on a pattern query. Figure 2.6 shows part of a SentenTree visualization
(Hu et al. [2017]), which extracts frequent sequential patterns from tweets and
generates a node-link diagram trying to preserve the word order.

Jigsaw (Stasko et al. [2008]) is a tool for investigative journalists and law en-
forcement. It provides multiple coordinated views, but has a strong focus on
detected entities and their connections.

2.3.2 Topic-Based Approaches

Early on, researchers facilitated clustering algorithms to visually structure and
aggregate large text collections by grouping similar documents. However, the
automatically extracted clusters may not correspond exactly to how humans
would have defined the topics, the total number of topics is often small to fit
into the visualization, and larger topics might overshadow smaller topics as
well as outliers. The approaches can be broadly divided into two categories:
some ignore the publishing date of documents, whereas others specifically
incorporate it as part of the interactive visualization.

Non-Timestamped Data

Several approaches adopted LDA (see Section 2.1.2) to extract and visualize
topics: Dredze et al. [2008] enriched emails with summative keywords, Parallel-
Topics (Dou et al. [2011]) uses rows of tag clouds to convey the content of topics,
and Serendip (Alexander et al. [2015]) provides topic-based visual exploration
of documents in a matrix-like visualization. HierarchicalTopics (Dou et al.
[2013]) uses EvoBRT to cluster documents hierarchically. TopicPanorama (Wang
et al. [2016]) lets analysts compare topics between different corpora with an
interactive node-link diagram and is also based on EvoBRT. LDA and EvoBRT
require significant processing time on larger data sets, though. Termite (Chuang

2.3 ● Visual Analysis of Document Collections 29

Figure 2.7 — The ThemeRiver visualization of topics over time (taken from
Havre et al. [2002]) inspired many approaches for visually analyzing time-
stamped documents.

et al. [2012b]) helps analysts to assess topic models in a tabular layout. They
propose a seriation method that favors the natural reading order to quickly
reveal relevant patterns. El-Assady et al. [2016] introduced topic-space views
for visually analyzing conversations.

On the one hand, it can be challenging to interpret automatically derived topics
(Chuang et al. [2012c]) and it is important for the analysis that clusters have
suitable labels (Carpineto et al. [2009]). On the other hand, Alexander and
Gleicher [2016] found out that while the quality of the topics seems to influence
how easy it is for users to make sense of them, the visual representation has
less of an effect.

As an alternative to completely automatic techniques, several works have
investigated the use of interactive topic modeling for the analysis of document
collections (Choo et al. [2013]; Hoque and Carenini [2019]; Park et al. [2018];
Yang et al. [2021]). Analysts are supposed to actively steer the clustering process
for an improved visual representation and understanding, for instance, by
merging or splitting topics.

30 Chapter 2 ● Foundations and Concept

Time-Dependent Documents

The publishing date of a document represents an important metadatum that can
help to identify and shape topics. Some approaches process the complete data
set once to extract topics solely based on the content and integrate the temporal
metadata afterward in the visualization (Havre et al. [2002]; Hassan et al. [2014];
Heimerl et al. [2016]; Dörk et al. [2008]; Krstajić et al. [2011]; Liu et al. [2009];
Wang et al. [2012]). Others either utilize adapted clustering techniques that
incorporate additional metadata such as the date into the clustering process
itself (Cui et al. [2011, 2014]), or process the data set in bins, with each bin
spanning a certain time range (e.g., one day), and then try to connect the
resulting clusters between adjacent time steps afterward (Gad et al. [2015];
Krstajić et al. [2013]). However, all variants rely to a certain extent on a global
view of the data set and do not easily support the online analysis of streaming
data.

Several visual representations have been proposed to convey the temporal
evolution of topics. ThemeRiver (Havre et al. [2002]) inspired many approaches
to visualize the occurrence of topics over time in a streamgraph (Figure 2.7),
resembling a river-like metaphor (Cui et al. [2011, 2014]; Heimerl et al. [2016];
Liu et al. [2009]; Sun et al. [2014]; Wang et al. [2012]). CloudLines (Krstajić et al.
[2011]) visualizes the frequency of entities or events over time in rows. Each
column in StoryTracker (Krstajić et al. [2013]) depicts clusters of news reports
from the respective day, and visual connections between cells of neighboring
columns reveal relationships between them. Similarly, columns composed of
keywords in ThemeDelta (Gad et al. [2015]) represent specific date ranges and
the brushing helps to trace the keywords over time.

2.3.3 Social Media Analysis

Shortly after the rise of new microblogging platforms such as Twitter, new
approaches were developed to analyze social media posts. This section discusses
relevant work that targets either offline analyses on static data sets that were
collected in the past, or online analyses for the real-time analysis of currently
posted items. See Wu et al. [2016] and Chen et al. [2017] for a more thorough
analysis of social media visual analytics.

Offline Social Media Analysis

Vox Civitas (Diakopoulos et al. [2010]) relates social media posts to the respective
video that was commented on and visualizes extracted keywords over time.
I-SI (Wang et al. [2012]) is an architecture that extends ParallelTopics (Dou

2.3 ● Visual Analysis of Document Collections 31

et al. [2011]) for analyzing social media data and latent topics using a high-
performance computing cluster. ThemeCrowds (Archambault et al. [2011])
generates several tiles of multi-level tag clouds for each time span (e.g., days) to
summarize twitter comments. LeadLine (Dou et al. [2012]) visualizes extracted
topics in rows and integrates event detection and named entity recognition for
visually analyzing text data. SentenTree (Hu et al. [2017]) was developed to
summarize social media content while preserving the word order in a node-link
graph (Figure 2.6). StanceVis Prime (Kucher et al. [2020]) classifies the sentiment
and stance of social media posts from a specific topic and visualizes their
temporal evolution. Other approaches (Viégas et al. [2013]; Wu et al. [2014];
Chen et al. [2021]) focus on visualizing network aspects of posts such as the
information flow.

Harvesting shared geolocations of posts is a popular way to visually aggregate
data. TwitInfo (Marcus et al. [2011]) lets analysts retrieve relevant tweets related
to specified keywords and visualizes geolocalized tweets on a map. SensePlace2
(MacEachren et al. [2011]) visualizes tweet volumes with a geo-heatmap for sit-
uational awareness. Steiger et al. [2016] introduced the geographic, hierarchical
self-organizing map to cluster geolocated tweets. TopoText (Zhang et al. [2018])
aggregates and visualizes spatial topics on a map across multiple scales.

Real-Time Social Media Analysis

Processing and visualizing streaming data is challenging in several ways. Data
has to be processed with fast algorithms that support incremental updates
(Rohrdantz et al. [2011]), and dynamic visualizations have to be developed that
preserve the mental map of users (Krstajić and Keim [2013]).

Dörk et al. [2010] introduced one of the first visual analytic systems to follow
tweets of an ongoing event, which includes a ThemeRiver-inspired visualization
conveying the temporal evolution of important topics. Each stemmed word rep-
resents a topic, which limits the expressiveness of the topics, though. Twitcident
(Abel et al. [2012]) automatically fetches relevant tweets for incidents that have
been broadcast and provides a faceted search with enriched metadata, including
named entity recognition. Liu et al. [2016] proposed a tree- and sedimentation-
based visualization of topics in text streams that uses EvoBRT (Liu et al. [2015a])
for clustering. STREAMIT (Alsakran et al. [2011]) and TwitterScope (Gansner
et al. [2013]) project items to a dynamic 2D plot. STREAMIT applies a physical
model to ensure the continual evolvement while new documents are received,
supporting hundreds of documents (Figure 2.8). TwitterScope (Gansner et al.
[2013]) projects tweets related to a keyword onto a map with MDS, either using
cosine- or LDA-based similarity, and aims to maintain the relative position

32 Chapter 2 ● Foundations and Concept

Figure 2.8 — STREAMIT (taken from Alsakran et al. [2011]) continuously
visualizes streamed documents as dots in a dynamic force-directed layout, but
this does not scale well to hundreds of thousands of documents.

Figure 2.9 — Several social media analysis approaches harvest the shared
geolocation of posts to aggregate many items. This figure depicts the user
interface of the ScatterBlogs2 system (taken from Bosch et al. [2013]), which
overlays relevant tags onto a geo-map and also provides means to configure
filters interactively.

2.4 ● Visual Multivariate Analysis 33

of nodes on each update that happens every minute. Representing posts as
dots has the advantage that all changes are visually apparent, but it does not
scale well to hundreds of new posts each second due to the increased visual
clutter.

Whisper (Cao et al. [2012]) visualizes the diffusion of information on Twitter
regarding different topics in real-time, with updates every five minutes. The
sunflower-like visualization in which tweets are represented as dots on a map
integrates the geolocation of tweets. The comprehensive ScatterBlogs system
(Thom et al. [2012]; Chae et al. [2012]; Bosch et al. [2013]) visualizes term
usage anomalies from geolocated tweets and was later extended with an event
detection algorithm, filter methods, and means to create and train classifiers
interactively (Figure 2.9). Their case study (Thom et al. [2015]) shows that
situation awareness domain experts consider the real-time analysis of social
media content to be useful, e.g., for disaster assistance. However, the percentage
of geolocated tweets has steadily decreased in recent years, which renders
approaches that rely on geo-annotations less useful.

StreamExplorer (Wu et al. [2018]) made it possible to visually analyze non-
geolocated social streams with tens of thousands of posts on a budget PC. It
first detects important time periods (events), and tweets belonging to an event
can then be clustered based on GPU-assisted self-organizing maps (SOMs).
Analysts can apply several interactive lenses, for instance, the word cloud lens,
to investigate areas of the map and refine the SOMs interactively.

However, existing approaches for the real-time visual analysis of social media
posts either do not scale well to high-velocity streams or rely on additional
meta-data for filtering. Some approaches exploit the geolocation of posts to
operate on subsets of the data based on geographical regions, whereas others
implement event detection algorithms to extract batches of related posts, which
can lead to delays.

2.4 Visual Multivariate Analysis

When dealing with tabular data sets, a typical research question is whether
variables have any kind of relationship to each other. For instance, one might
have conducted a survey on voting intentions and now the goal is to investigate
whether the age of the participants correlates with the expressed intention to
vote for a certain party. Similar tasks arise when working with text data. The
previous section discussed related approaches to the visual analysis of document
collections, which mainly focus on conveying and exploring the textual content.

34 Chapter 2 ● Foundations and Concept

However, we might also be interested in exploring the relationships between,
for example, tokens, extracted entities, or document attributes.

In statistics, the term correlation often relates to the Pearson correlation coeffi-
cient that measures the linear correlation between two variables (and is often
interpreted together with tests for statistical significance). This thesis, however,
uses the term correlation in a broader, more information theoretical sense to
define any kind of relationship between variables that relates to an interesting
pattern which questions the assumption of independence (even if it is only an
artifact of the sample).

There are many ways to analyze the correlations between two variables (which
could be the same variable but in two data sets), including bivariate statistics
and straightforward visualizations. In the case of the voting example, one could
visualize the relationship by plotting the variables age and voting intention for a
specific party as a scatter plot. The analyst is interested in understanding how
the age of participants may partially explain (or predict) the target outcome
(vote on election day), so age would be categorized as independent variable and
voting intention as dependent variable.

However, the analysis goal could become more complex and the analyst might
now want to understand how age and profession combined correlates with
the voting intention of the participants. Multivariate analysis deals with such
correlations that involve more than one independent variables and one (or more)
dependent variable (Raykov and Marcoulides [2008]). In theory, many methods
can be extended so that they can be applied to more than two variables. In
practice, though, multivariate analysis is much more challenging due to the
curse of dimensionality and the limits of human perception.

The sparsity of data sets usually increases with the number of variables because,
otherwise, the size of the set would increase exponentially. As a result, it
becomes increasingly difficult to estimate the value of any given point in the
multidimensional space. This can pose a serious problem for estimating the
mutual information, for instance (Doquire and Verleysen [2012]).

The increasing complexity of data sets can also lead to ambiguity, analogous
to the multi-solution problem in mathematics. With more variables, there
are also more options for modeling or explaining the same target outcomes
without additional constraints. This is why Amar and Stasko [2004] argue
that correlation methods for determining multivariate relationships should
be combined with user guidance, motivating the development of novel data
visualization techniques for explaining multivariate data sets. This section
therefore discusses related approaches for the visual analysis of multivariate
data.

2.4 ● Visual Multivariate Analysis 35

2.4.1 Multivariate Data Visualizations

Scatter plot matrices (Carr et al. [1987]) and parallel coordinates (Inselberg
[1985]) are widely used to visualize multivariate data sets, but they do not
scale well to many variables (Barlowe et al. [2008]). Parallel coordinates (PCPs)
have the advantage over scatter plot matrices that the required screen space
only grows linearly with the number of variables, but they also suffer from
several shortcomings. The order of the axes has an important influence on
how relationships are perceived and between which variables, larger data sets
easily lead to overplotting, and line-tracing becomes difficult with an increasing
number of variables (Heinrich and Weiskopf [2013]).

There is ongoing research on how to improve parallel coordinates for large
data sets. Artero et al. [2004] proposed frequency- and density-based PCPs by
discretizing the axes into many bins. Johansson et al. [2005] cluster the data set
to only plot a high-resolution texture for each cluster, whereas Janetzko et al.
[2016] cluster the data sets such that they can overlay each axis with density
plots based on the clusters. Novotný and Hauser [2006] apply a focus+context
strategy that plots an aggregated plot based on the binned data and only draws
the high-resolution data on demand. Richer et al. [2018] perform hierarchical
aggregation to make the visual analysis scalable. Curve bundling (Heinrich et al.
[2011]) was developed to help analysts perceive clusters in PCPs. Heinrich and
Weiskopf [2013] provide a more thorough overview of proposed PCP techniques
and open challenges.

2.4.2 DR-Based Approaches

Dimensionality reduction (DR) methods, including MDS (Cox and Cox [2008]),
PCA (Tipping and Bishop [1999]), t-SNE (Van Der Maaten and Hinton [2008]),
and UMAP (McInnes et al. [2018]) help to make multivariate data sets visually
accessible. For instance, the set of independent variables could be reduced
to two dimensions such that a scatter plot can visualize the relationship by
mapping the dependent variable to the color of the dots. Section 2.1.3 introduces
the common DR methods in greater detail. However, one major challenge of
VA approaches that apply dimensionality reduction is that it is usually difficult
to interpret findings from such reduced plots. Most DR methods assume that
similar or nearby items in the original space should also be placed nearby in
the reduced space, but for many methods it is not obvious how a visual pattern
in the reduced space maps back to the original space. Furthermore, appearing
patterns could also be misleading due to the inherent information loss of the
process.

Thus, the crucial question for many analysts is how they can relate findings

36 Chapter 2 ● Foundations and Concept

Figure 2.10 — Dimensionality reduction methods are a popular way to visualize
high-dimensional data sets, but for many use cases it is important to relate
findings back to the original space. This is the user interface of the ccPCA
system (taken from Fujiwara et al. [2020]). For each cluster in the reduced space,
it visualizes which features and feature ranges distinguish the respective cluster
from the others the most.

in the reduced space back to the original space (Sedlmair et al. [2012]). In
the work of da Silva et al. [2015], the background color in the plot conveys
the dominant dimension of each neighborhood, which is derived from an
Euclidean- or variance-based ranking. Chatzimparmpas et al. [2020c] developed
t-viSNE for visually exploring the quality of t-SNE projections and the impact of
hyperparameters, as well as for understanding clusters and related dimensions
of interest. Fujiwara et al. [2020] proposed ccPCA that clusters the result of
the DR method and then visualizes for each cluster which features and feature
ranges distinguish the respective cluster from the others the most. Figure 2.10
shows the user interface of the system. The cluster-specific ranking of the
features and corresponding histograms support the analysis of data sets with
many variables. However, since the clustering is done in the reduced space, the
method may miss more complex relationships.

Another way of solving the mapping problem is to develop and apply more
interpretable DR methods. The approach of Gleicher [2013] projects items
onto user-defined and, thus, interpretable dimensions, for instance, as a linear
combination of the selected variables. Garrison et al. [2021] aim to generate
such interpretable dimensions automatically. They iteratively run several factor
analyses of mixed data on the data set to identify bundles of dimensions that

2.4 ● Visual Multivariate Analysis 37

exhibit similar correlation coefficients, and each bundle is then only represented
by its first or second principal component in the reduced representation. Em-
beddings based on generalized barycentric coordinates such as RadViz Deluxe
(Cheng et al. [2017]) preserve the relation to the original space to some extent,
but they work best if the data items have a dominant dimension.

2.4.3 Subspace-Based Approaches

Subspace extraction is a promising strategy to reduce the number of dimensions
that have to be processed (e.g., for subsequent clustering methods) and visu-
alized (Assent et al. [2007]; Alemzadeh et al. [2017]; Günnemann et al. [2010];
Hund et al. [2016]; Jackle et al. [2018]; Krause et al. [2017]; Müller et al. [2008];
Tatu et al. [2012a,b]; Wang and Mueller [2018]). Tatu et al. [2012a] employ an
algorithm that detects interesting subspaces which are then grouped by similar-
ity. Parallel coordinate and scatter plots display the data set in each subspace.
SubVis (Hund et al. [2016]) uses the OpenSubspace framework (Müller et al.
[2011]) to first extract subspaces and then find clusters within these subspaces.
They apply multidimensional scaling to provide a visual overview of all clusters,
from which analysts can select similar subspace clusters. The aggregation table
visualizes the distributions of all related dimensions of a particular cluster.
SeekAView (Krause et al. [2017]) supports building and refining subspaces in-
teractively, including suggestions for interesting dimensions, for instance, based
on how useful the respective variable is for predicting a target variable.

2.4.4 Iterative Approaches

Explorative and iterative approaches help to scale the analysis of large multi-
variate data sets, but they also help to let analysts derive sparse and justified
models, which is important for clinicians, for instance (Dingen et al. [2019]).
Voyager (Wongsuphasawat et al. [2016, 2017]) supports open-ended and focused
exploration of multivariate data sets with automated recommendations and
interactive chart specifications. DICON (Cao et al. [2011]) visualizes multidimen-
sional clustering results for cluster interpretation and comparison. Scherer et al.
[2011] introduced regressional feature vectors to enable visual sketch-based
queries and to explore interesting scatter plots. Behrisch et al. [2015] propose a
feedback-driven approach that iteratively learns the preferences of the user to
make valuable suggestions for further explorations. Turkay et al. [2012] present
a method to interactively generate representative factors that combine several
data points across dimensions in order to reduce the number of dimensions.
For geospatial data sets, specific methods were developed that facilitate maps
(Goodwin et al. [2016]; Malik et al. [2012]).

38 Chapter 2 ● Foundations and Concept

Figure 2.11 — Binning strategies help to make the visual analysis of large
data sets scalable through aggregation. This figure depicts the approach of
Mühlbacher and Piringer [2013] that allows to iteratively define and validate
regression models in order to analyze multivariate relationships.

Several approaches rank variables and pairs of variables according to statistical
correlation factors (Eichner et al. [2020]; Malik et al. [2012]; Piringer et al. [2008])
or classification metrics such as separability (Tatu et al. [2009]). Barlowe et al.
[2008] visualize partial derivatives of the dependent variable with regard to the
independent variables and analysts can iteratively explore multi-correlations.
SmartStripes (May et al. [2011]) ranks and visualizes correlations based on
partitions of the input features. Analysts can iteratively select multiple partitions
to explore more complex relationships.

Zhang et al. [2015] developed the correlation map to visualize pairwise correla-
tions between variables in a graph. The work of Klemm et al. [2016] visualizes
correlations of up to three variables with regard to a target variable in a 3D
cube.

2.4.5 Model-Building and Partitioning

Model building and partitioning play an important role in several approaches.
INFUSE (Krause et al. [2014]) supports interactive model building by visualizing
the predictiveness of features according to several feature selection algorithms.
An integrated visual analytics approach to build logistic regression models was

2.4 ● Visual Multivariate Analysis 39

introduced by Zhang et al. [2016]. Dingen et al. [2019] developed RegressionEx-
plorer to let analysts build and compare different regression models.

The approach of Mühlbacher and Piringer [2013] allows to iteratively define
and validate regression models. They partition the input features into bins
and visualize the target variable over binned features and pairs of features in
a heatmap, ranked by their usefulness in predicting the target variable (Fig-
ure 2.11). Bernard et al. [2014] developed a system that operates on partitions of
the input space as well, but with the goal to find multivariate relations between
specific bins across attributes. They focus on detecting conditions that are statis-
tically significant. Analysts can select one or several bins to reveal associated
clusters with related bins based on pairwise mutual information.

Such binning (or partitioning) strategies make the visual analysis of large data
sets scalable through aggregation. Another advantage is that even linear models
can express certain non-linear relationships if the atomic unit is a bin (i.e., value
range) and not a global variable anymore.

While uni- or bivariate metrics (e.g., Pearson correlation or mutual information)
to rank features or cluster data items can offer statistically sound results, they
bear the risk that analysts miss more complex correlations. For instance, there
are cases in which only a combination of multiple variables may explain a
specific behavior of the target variable, but looking at the individual variables
or pairs of variables separately would not reveal a pattern.

2.4.6 Decision Trees and Neural Networks

Decision trees are commonly used to visualize different outcomes of the target
variable depending on different splits of the input variables. BaobabView (Van
Den Elzen and Van Wijk [2011]) allows analysts to interactively construct and
refine such decision trees (Figure 2.12), and Liu et al. [2018] extended this
concept for building and improving tree boosting models. Mühlbacher et al.
[2018] focus on building pareto-optimal decision trees as a trade-off between
accuracy, complexity, and interpretability. Neto and Paulovich [2021] convert the
paths of a random decision tree forest into logic rules which are then visualized
in a matrix.

Decision trees are a popular choice because they are usually easy to comprehend
and interpret. However, continuous relations are difficult to model (e.g., the
relationship between the horsepower and the acceleration time of a car) and
slightly more complex patterns and ’splits’ (e.g., two distinct ranges of a variable)
can lead to overly complex trees, which makes it difficult for analysts to trace
single paths.

40 Chapter 2 ● Foundations and Concept

Figure 2.12 — Decision trees have the advantage that they are easier to interpret.
Here, a decision tree is visualized with BaobabView that was trained on a
primary tumor location data set (Figure taken from Van Den Elzen and Van
Wijk [2011]).

Visualizing (deep) neural networks has become a popular research focus in
recent years. In most cases, the approaches focus on explaining and debugging
the models, for instance, visualizing which pixel regions are most supportive for
the prediction (Zintgraf et al. [2017]), explaining predictions of convolutional
neural networks with surrogate decision trees (Jia et al. [2020]), or visualizing
activation patterns to understand deep learning models (Kahng et al. [2018]).
Liu et al. [2017] provide an overview of visual analytic approaches for under-
standing, debugging and refining machine learning models, Choo and Liu
[2018] for explainable deep learning, and Sacha et al. [2019] for assisting ma-
chine learning. Some approaches, though, indirectly also reveal structures of
the data. CNNVis (Liu et al. [2017]) visualizes the learned features of neurons
and their interactions to analyze image-based CNNs. While the aim is to refine
and debug such networks, the resulting visualizations also offer a glimpse

2.5 ● Artificial Intelligence for Visual Explainability 41

into the structure of the training data set, including prevalent features of the
images and different clusters (e.g., cats and dogs). Likewise, LSTMVis (Strobelt
et al. [2018]) allows analysts to retrieve similar sentences and paragraphs in
the corpus, even though the approach is about visualizing hidden states of
recurrent neural networks.

2.5 Artificial Intelligence for Visual Explainability

The interplay between model building and interactive visualization is one of
the core characteristics of visual analytics. In most cases, the part in the process
that is characterized as model visualization refers to visualizing or integrating
the outputs of the model in the interfaces (e.g., predictions or classifications).
For instance, we may train a document classifier which then steers the faceted
search interface for browsing the documents based on their predicted categories.
Another more recent example is training a machine learning model in order to
use the prediction error as a proxy metric for interestingness or novelty, which
Tkachev et al. [2021] proposed for spatiotemporal volume data, and Knittel
et al. [2018] for highlighting text regions of interest in documents. This idea of
applying ML techniques for advancing visualization approaches is also called
ML4VIS. Wang et al. [2021] provide a survey on recent approaches.

Inspecting the model itself rather than what it outputs might also lead to
interesting insights, though. If we fit a model to the data or train a classifier, this
model has to capture some charateristics of the underlying data set to perform
its task, it is supposed to learn relevant relationships in the data during training.
Transfer learning (Pan and Yang [2010]) is one exemplary field that exploits this
observation. One first trains a model on a large annotated data set, and then
continues learning for a short amount of time on the actual data set. The target
data set may not have enough labeled data items to train a bigger model from
scratch, but with transfer learning we may still obtain a well-performing model,
given that the data sets are sufficiently related. In addition, it has also been
shown that neurons in deep neural networks may capture more complex and
abstract concepts from the images it was trained on, without explicitly labeling
these concepts during training (Bau et al. [2020])

Hence, the inner structure of the model encapsulates certain relationships of
the data set, which may help to gain deeper insights into the data if we are
able to visualize and understand it. One can conceptualize this observation
and integrate it into the visual analytics pipeline to scale the analysis of large
multivariate and textual data sets. The idea is to exploit Artificial Intelligence for
visually eXplaining relationships and characteristics of the data set (AIX).

42 Chapter 2 ● Foundations and Concept

Data

Visualiza�on

Model

Knowledge

Mapping

Model
building

Transforma�on

Data Mining

Parameter
refinement

Model
inner workings

visualiza�on

User interac�on

Feedback loop

Inner Workings

Interpretability
regulariza�on

Figure 2.13 — The AIX process that exploits artificial intelligence for visually
explaining data sets. Similar to the visual analytics process by Keim et al.
[2010a], there are different paths to gain insights into data, for instance, by
mapping the data to visual encodings. However, the goal of the interactive
model building here is to primarily visualize the inner workings of the resulting
model and not its outputs. Regularization techniques may be required to
improve the interpretability of more complex models.

Figure 2.13 depicts the AIX process that is adapted from the visual analytics
process by Keim et al. [2010a]. We fit a model to the data and then visualize the
inner workings of the resulting model such that analysts can interactively inspect
it with the goal of finding relevant patterns. That is, we perform the training
not for the sake of predicting values but to visually explain the underlying
data set. One major advantage is that this framework can already benefit from
existing techniques to scale the training or fitting process since working with
big data sets is one of the cornerstones of artificial intelligence, especially in the
field of machine learning.

The concept also extends to non-predictive or unsupervised techniques such
as clustering and dimensionality reduction. For instance, understanding why
certain clusters were formed and how they differ to each other can lead to
interesting insights regarding the composure and structure of the data set.

2.5.1 Regularizing Visual Interpretability

Unfortunately, it is often challenging to understand the inner workings of a
model, particularly if it is rather complex and, thus, difficult to visualize. We

2.5 ● Artificial Intelligence for Visual Explainability 43

therefore need techniques that are sufficiently complex, efficient to train or fit
to, and visually interpretable at the same time. A simpler model is often easier to
interpret but may fail to capture relevant non-linear relationships. Likewise, a
powerful and interpretable but inefficient model is less suited for the analysis
of large data sets within a reasonable time frame.

In machine learning, regularization is often used to increase the generalizability
of models. In AIX, though, we need to think about regularizing the model for
visual interpretability. That is, the model should ideally learn the characteristics
of the data set in a way that analysts can interpret it, even if it may impact
the prediction performance negatively. The level of regularization depends
on the complexity of the model. A higher degree of freedom also leads to
an increasing number of ways to encode the same relationships, with varying
degrees of intelligibility. As a result, the AIX process (Figure 2.13) explicitly
models the impact of this regularization due to the importance of having
interpretable models.

For some models such as logistic regressions or support vector machines,
traditional regularization techniques that are meant to improve the performance
of a model on unseen data may also improve the understandability of the model
since they are often a “proxy metric for comprehensibility” according to Gleicher
[2016]. For more complex models such as neural networks, though, it is more
challenging to increase the visual interpretability with weight penalties.

The strive for visually interpretable models is not new. Hastie and Tibshirani
[1986] introduced Generalized Additive Models (GAMs) which are expressed
as a sum of smooth functions, in which each function operates on exactly
one input variable. Hence, even though GAMs can capture non-linearities
of individual variables, the resulting models are still visually interpretable
(Hastie and Tibshirani [1987]). Fayyad et al. [1996] point out that decision
trees as data mining method have the advantage that humans can interpret
them. Heimerl et al. [2012] proposed an approach to train document classifiers
interactively and iteratively, which also incorporates a visualization of the
current state of the trained support vector machine model. Mühlbacher et al.
[2018] developed an approach to find pareto-optimal decision trees regarding
several objectives such as prediction accuracy and interpretability. Lakkaraju
et al. [2016] presented interpretable decision sets, a classification framework
that consists of comprehensible, independent if-then rules. However, most
approaches focus on building good predictive models based on data, less on
building models that explain the data.

44 Chapter 2 ● Foundations and Concept

2.5.2 AIX vs. Predictive Model Building and XAI

While the concept of building interpretable predictive models is closely related
to the concept of using artificial intelligence for explaining data sets (AIX), they
differ regarding their goals and requirements. In data-driven model building,
there is a clear trade-off between accuracy and interpretability (Gleicher [2016]),
even though visually debugging trained models can also help to identify prob-
lems and improve their performance (Liu et al. [2018]). The main objective
is still to derive a model that predicts values accurately and generalizes well
to new inputs, which means that accuracy is usually weighted more than
interpretability.

In some use cases of predictive modeling, it is particularly important that auto-
matic decisions can be trusted (Chatzimparmpas et al. [2020b]), which demands
for interpretable solutions that enable analysts to validate the generalizability
of models and take appropriate actions. In the medical domain, for instance,
analysts need to understand why certain predictions were made “for deter-
mining targeted interventions” (Lundberg et al. [2018]). In recent years, there
has been a stronger research focus on explainable artificial intelligence (XAI)
(Barredo Arrieta et al. [2020]; Choo and Liu [2018]) that aims toward responsible
AI, particularly in light of the increasing impact of automated decisions in life,
from health to creditworthiness. Numerous approaches have been developed
to visually analyze and debug big neural network-based models after training
(Choo and Liu [2018]), for instance. Chatzimparmpas et al. [2020a] review
several surveys about such visualization-based approaches for interpreting
machine learning models.

However, the focus of AIX shifts toward understandable models, that is, the
design of the model should already take interpretability into account. AIX
aims to uncover interesting patterns and relationships in a specific data set and
focuses less on encapsulating generalized concepts for predictions on unseen
data. Developing powerful but also visually interpretable techniques benefits
both fields, AIX and XAI. In the case of AIX, though, a slight loss in accuracy
is acceptable since the model is merely a proxy for structuring and visually
analyzing the data it was trained on or fitted to.

2.5.3 Applications of AIX

AIX describes a visual analytics process in which an interpretable model is
trained on or fitted to a data set such that the visual analysis of said model may
lead to insights about the data. The goal of this process is to incite and steer new
AI-based methods for the large-scale analysis of textual and multivariate data,

2.5 ● Artificial Intelligence for Visual Explainability 45

but it also helps to characterize existing workflows that deal with interpretable
models for explaining data sets.

Multivariable linear regression is frequently used to infer which independent
variables xi exhibit the most (linear) influence on the dependent variable y
by solving y = ∑i aixi + b for the coefficients ai (Schneider et al. [2010]). The
resulting coefficients describe the linear relationships in the fitted data set
and are easy to interpret. Hence, performing linear regression to extract and
interpret the coefficients is a simple example of AIX. Similarly, Figure 2.12 shows
that analysts can inspect decision trees not only to understand the decision-
making process but also to learn more about combinations that correlate with a
specific target outcome.

This thesis proposes several techniques to scale the visual analysis of multi-
variate and textual data sets using artificial intelligence and visualization. In
Chapter 4, the AIX process is applied in the context of dimensionality reduction
to generate context-aware, date-aware, and word order-aware tag maps. The
idea is to first extract tags from a timestamped document collection (e.g., news
reports), investigate their semantic and temporal relationships, and then opti-
mize a loss function that evaluates how well the two-dimensional tag layout
preserves these multivariate relationships. The model parameters then corre-
spond to the tag locations on the map. Several penalties are introduced to
regularize for visual interpretability. For instance, the tags should not over-
lap and they should convey their temporal evolution based on the triangular
layout.

Chapter 5 proposes an efficient yet explainable dynamic clustering algorithm
for documents that facilitates the online analysis of social media posts, which
is presented in Chapter 6. The inner workings of the resulting clustering is
continuously visualized so that analysts can interpret the main topic in each
cluster and understand how the clustering evolves over time.

Chapter 7 introduces Visual Neural Decomposition to explain which combinations
of variable ranges lead to high values of a specific target variable in the set. It
is based on a neural network architecture that is trained to predict the target
variable based on the remaining variables, but, instead of using these predic-
tions, the model is then visually dissected such that analysts can infer relevant
relationships. This chapter further introduces a novel regularization term for
the neural network such that the resulting model is easier to interpret.

C
h

a
p

t
e

r

3
Efficient Visual Document Collection

Summarization

In visual document analysis it is often important for analysts to get an overview
of large document collections. For example, one might want to know which
topics are currently trending in news reports or on social media. One common
collection summary strategy is to extract frequently appearing terms, which is
fast and straightforward. The downside of this is that less informative terms
often rank highly, and single words rarely provide sufficient context for analysts
to understand what exactly is going on. More advanced approaches (e.g., based
on recurrent neural networks) provide longer summaries, but either target
individual texts or are not efficient enough for the visual analysis of large
collections, especially in a streaming environment. Gambhir and Gupta [2017]
survey various techniques for summarizing text and text collections.

The aim of this chapter is to propose novel summarization techniques that
combine the efficiency and simplicity of single term ranking methods with
the expressiveness of longer summaries. The first part presents ELSKE, an
efficient algorithm to extract relevant keywords and longer keyphrases from
both individual documents and document collections. The second part proposes
a technique to extract blocks of phrases that often appear in a certain order,
so-called quotes.

Whereas ELSKE belongs to the well-established category of keyword extraction
algorithms (albeit with a focus on efficiency and collections), the quote extraction

48 Chapter 3 ● Efficient Visual Document Collection Summarization

technique offers more detailed insights into large collections of short texts.
Rather than extracting only contiguous phrases (like ELSKE), it tries to find
frequent text patterns, possibly with omissions in-between. Based on this
technique, a visual analytics system was developed for the hierarchical content
analysis of social media posts.

3.1 Efficient Keyphrase Extraction (ELSKE)

Automatically extracting descriptive words (keywords) or phrases (keyphrases)
from documents is important for a wide range of tasks, including document
summarization and improved information retrieval in databases (Alami Mer-
rouni et al. [2020]). Several graph-based (Mihalcea [2004]; Wan and Xiao [2008];
Bougouin and Boudin [2013]; Škrlj et al. [2019]), statistical-based (El-Beltagy
and Rafea [2009]; Rose et al. [2010]; Campos et al. [2020]), and machine learning-
based methods (Meng et al. [2017]; Xiong et al. [2020]; Wang et al. [2020]; Ye
and Wang [2020]; Santosh et al. [2020]) have been developed to find a limited
set of concise words or phrases that best describe a certain document.

According to Hasan and Ng [2010], a typical keyword extraction pipeline
consists of two steps. First, the algorithm extracts a set of candidates. Then, a
suitable ranking is applied to retrieve the best fits. Part-of-Speech (PoS) tagging
is often used to retrieve candidates that are composed of nouns and adjectives
(Hasan and Ng [2010]; Mihalcea [2004]; Wan and Xiao [2008]), but this excludes
longer sequences. Furthermore, most PoS taggers need a considerable amount of
processing time (Horsmann et al. [2015]). YAKE (Campos et al. [2020]) does not
make use of PoS tagging, but focuses on extracting up to tri-grams per default.
In recent years, machine learning techniques have been proposed that advanced
the state of the art, but powerful models are computationally expensive, need
extensive training data, and may generalize less to novel domains due to the
supervised training.

This thesis focuses on large-scale visual analyses of collections, for instance, to
gain an overview of recent news reports or trending developments on social
media. However, existing methods largely focus on extracting keywords from
individual documents. In addition, they often do not take into account the
particular challenges of analyzing streaming data such as continuously incoming
tweets. Dealing with large amounts of micro-documents such as tweets is
challenging in several ways, particularly regarding information extraction tasks
(Imran et al. [2015]).

Approaches to summarize documents often do not adapt well to very short
texts. Short documents provide little context that can be harvested for min-

3.1 ● Efficient Keyphrase Extraction (ELSKE) 49

ing descriptive keyphrases, and the sheer quantity of newly published items
per second requires a great amount of computational resources or efficient
methods. This is particularly important for applications that need to process
incoming documents immediately, for instance, in scenarios that aim at provid-
ing situational awareness. The variety of spelling and lack of grammar further
complicates the analysis. Dealing with large collections, we may also want to
find frequent longer phrases to better understand the underlying data with
additional context information.

Unfortunately, we can hardly rely on syntactical and structural assumptions
for finding suitable phrase candidates if we choose to avoid Part-of-Speech
tagging for efficiency. But without constraints, every subsequence with length
< m is a potential keyphrase candidate, and the set of distinct sequences grows
prohibitively large for m≫ 2. Another issue is that an extended set of candidates
will also lead to an increase of similarly worded keyphrases. Extracting context-
rich keyphrases from large datasets in a timely manner is therefore particularly
challenging.

Hence, this thesis proposes ELSKE, a new method to efficiently extract de-
scriptive but potentially long phrases that appear unusually often, including
complete sentences. The main idea is to first collect statistics about every uni-
and bigram in the collection, which is then used to find a limited set of potential
keyphrase candidates that may appear unusually often. For the ranking, this
thesis extends the concept of TF-IDF to phrases and adapts it to the analysis of
large document collections.

3.1.1 Method

In the following sections, the term source refers to the document or the collec-
tion of documents from which we want to extract keyphrases. For analyzing
collections, the individual documents are concatenated into one big document.
For instance, a system may continuously retrieve tweets, stores them in a sliding
window, and then applies the algorithm at regular intervals to the source which
is the concatenation of all tweets in the sliding window.

Let V be the vocabulary of terms in the source, then each keyphrase pi is a
sequence (vi

1, . . . , vi
m) with vi

j ∈ V. Ranking candidate keyphrases with TF-IDF
is often used as a baseline to evaluate more advanced ranking approaches,
but it also performs surprisingly well in combination with Part-of-Speech
tagging (Hasan and Ng [2010]; Meng et al. [2017]) and, importantly, has little
requirements and external dependencies. Section 2.1.2 gives an overview of
TF-IDF. The main idea of TF-IDF for ranking keywords is to weight terms vi

50 Chapter 3 ● Efficient Visual Document Collection Summarization

with their frequency in the source fs(v
i) in relation to the document frequency

of the term in a reference collection fd(v
i) comprising N documents:

TF-IDF(vi) = fs(v
i) ln

N
fd(v

i)
(3.1)

One problem with this definition is that it is not immediately clear how this
ranking could be extended to cover both single words and phrases. Hasan and
Ng [2010] sum up the individual scores of each term to achieve this, but this
favors long phrases. The proposed algorithm therefore sets the phrase frequency
in the source in relation with the document frequency of the phrase in a reference
collection. The document frequency is calculated on-the-fly using a document
indexing structure of the reference collection, but it can also be approximated
based on the document frequency of the rarest bigram in the phrase to save
memory.

Unfortunately, with an increasing number of words in the source, the relation
between phrase frequency and inverse document phrase frequency diverges
and the influence of the latter one diminishes. For instance, in a diverse set of
English news reports (e.g., from The Guardian), the maximum term frequency
typically ranges around 500. If one analyzes the concatenation of thousands or
even hundreds of thousands of documents, however, the most frequent term
can easily appear more often than 10 000 times. Hence, this method introduces
a sublinear scaling exponent 1

µ to adapt the phrase frequency depending on the
size of the source:

PF-IDF(pi) = s(pi) = fs(p
i)

1
µ ln

N
fd(p

i)
(3.2)

If the maximum term frequency f max
s exceeds 500, we set µ = log500 f max

s ,
otherwise µ = 1. This means the algorithm scales the maximum term frequency
in the source non-linearly down to the upper limit of 500, while keeping the
scaled frequency of terms that only appear once at 1. In other words, we
adjust the term or phrase frequency such that the typical relation between term
frequency and inverse document frequency remains similar irrespectively of
the size of the source collection.

Figure 3.1 gives an overview of the pipeline. The first four steps in the first
block extract an initial set of candidate keyphrases. Then, three more steps
in the second block filter these candidates to remove redundant and similarly
phrased candidates.

3.1 ● Efficient Keyphrase Extraction (ELSKE) 51

Source 1.1 Uni-/Bigrams 1.2 Phrases 1.3 Fast Discard 1.4 PF-IDF Scoring Ini�al Candidates

2.1 Stopwords 2.2 Redundant Overhangs 2.3 Redundant Parents Final Ranking

Figure 3.1 — The pipeline of ELSKE. An initial set of candidate keyphrases
is extracted in the first block, which are then filtered in the second block to
remove redundant and similarly phrased candidates.

Efficiently Extracting Candidate Phrases

With little assumptions about the resulting keyphrases, the number of theoretic
candidates is huge. Extracting every {1, 2, . . . , m}-gram in the source and
computing the corresponding document frequency is not feasible, especially if
the source comprises millions of sentences. However, we can exploit the fact
that in most use cases the goal is to extract a limited number of k keyphrases,
for instance, the top 1000. With this assumption we can speed up the process of
extracting candidates as described in this section.

(1.1) Extracting Uni- And Bigrams

The algorithm first extracts uni- and bigrams, calculates their respective PF-IDF
score s(pi), sorts the results in descending order, and stores the source and
document frequencies in a map-like structure for fast retrieval. We exclude
items that solely contain stop words.

The score at position k (sk) is a lower limit (the list will only grow). Thus, one
can divide sk by the maximum possible inverse document frequency log N and
raise it to the power of µ to retrieve the minimum frequency threshold f th. It
follows that every pattern in the final top k has to have a frequency of at least
f th. The algorithm only needs to extract phrases that appear at least as often as
this computed threshold. The higher f th, the higher the speedup.

(1.2) Extracting Longer Phrases

We now need to collect phrases that contain more than two words and calculate
their frequencies. The algorithm ignores phrases that only contain stop words
or appear only once (in case the minimum frequency is 1). A naive approach
would need to look at and count every {1, 2, . . . , m}-gram at every position in
the source, leading to a squared time complexity of the two nested loops (the
outer loop refers to the start position and the inner loop to the length m of the
current m-gram). With the lower limit of f th, though, we can stop the inner
loop earlier if the frequency of the current (rightmost) bigram is below the
threshold. The frequency of any bigram in a sequence is an upper limit of the

52 Chapter 3 ● Efficient Visual Document Collection Summarization

frequency of that sequence and any longer sequence. The algorithm can retrieve
the frequency of any bigram in O(1) because we have already counted these
in the first step. At the end of this step, we discard every phrase that does not
meet the frequency threshold of f th.

(1.3) Discarding Redundant Sub-Phrases

For each phrase (vi
1, . . . , vi

m), the algorithm will also return m − 1 sub-phrases
(vi

1), (v
i
1, vi

2), ... as part of the candidate set from the previous steps. We discard
such sub-phrases that have the same frequency in the source, because they only
appear as part of the longer sequence.

(1.4) Calculating The Document Frequency

We need to retrieve the document frequency of each candidate phrase in our
reference collection. To speed up the process, we can first build a bigram-
based index of the collection. Another alternative is to estimate the document
frequency with the document frequency of the rarest bigram in the phrase,
which is an upper limit. Then, we can calculate the PF-IDF score of every phrase
and discard patterns with a lower score than the threshold sk.

Condensing The Set Of Candidates

After applying the first part of the pipeline, the algorithm could already extract
the top k {1, 2, ..., m}-grams in the source according to the PF-IDF weighting
scheme. However, among these candidates we often have several variations of
similar phrases with slightly different frequencies. Hence, the field of candi-
dates should be further condensed to retrieve the most salient and descriptive
keyphrases.

(2.1) Stop Word-Heavy Candidates

We first remove phrase candidates if they only contain one term vi that is not a
stop word and s(vi) < sk. In these cases, only the additional stop word put the
term above the threshold.

(2.2) Redundant Longer Candidates

Second, we remove longer phrases that provide little additional context. For
instance, we discard at a birthday party if birthday party is one of the candidate
phrases. We say a phrase pj is a longer phrase of pi if the sequence pj contains
the sequence pi. For each phrase pi, the algorithm determines whether there is
a longer phrase pj with at most two additional words in front of pi and/or after
pi, the overhang. It only keeps the longer phrase if the individual PF-IDF score
of any overhang is high enough (and does not contain only stop words), that is,
s(vj) ≥ λsk for an overhanging word vj or s((vj, vj+1)) ≥ λsk for an overhanging
bigram. The default value is set to λ = 0.1. A lower lambda increases the

3.1 ● Efficient Keyphrase Extraction (ELSKE) 53

Ranking With Adjusted Phrase Frequency (PF-IDF)
hampshire (22966), nhprimary2020 (6365), roger stone
(14946), victory tonight is the beginning of the end for
donald trump (5065), camden fairview high school
(4441), hampshire primary (4232), stone case (4152),
buttigieg (8483), bernie sanders (20571)

Ranking With Plain Phrase Frequency (TF-IDF):
trump (102388), bernie (44728), hampshire (22966),
bernie sanders (20571), roger stone (14946), primary
(17560), doj (17921), people (39007), prosecutors (14827)

Figure 3.2 — Top ten keyphrases from one million tweets published around
Feb 12, 2020 (phrase frequency in brackets). The right depicts the final ranking
using the adjusted phrase frequency (PF-IDF, µ ≠ 1), and the left using the plain
phrase frequency (TF-IDF, µ = 1)

number of additional phrase variations. If the overhang to the left or right is
more than two words, the algorithm assumes that the longer phrase is unique
enough compared to the shorter phrase.

(2.3) Redundant Shorter Candidates

Third, we discard shorter phrases that are already well represented by longer
phrases. Given a candidate phrase pi, we determine its set Mi of the shortest
and distinct longer phrases among the candidates, that is, any phrase pj ∈ M
must not be a longer phrase of any other pl ∈ M and must be incompatible with
any other pl ∈ M. A phrase pj is incompatible with pl if they share a common
subsequence (pi in this case), but continue differently in either direction. As
an example, ‘happy birthday’ is incompatible with ‘great birthday’, but not with
‘birthday party’. We remove the phrase pi if s(pi) −∑j∈Mi s(pj) < sk. For instance,
we would discard ‘day’ if the candidates ‘memorial day’ and ‘st patricks day’ were
already covering most occurrences of ‘day’.

Use Case

Most approaches try to find already good initial candidates so that they only
need to rank these in the final step. In contrast to this, ELSKE first collects
candidates in a broader way, performs an initial ranking, and then reduces the
set of keyphrases for the final ranking.

The advantage of this strategy is that there are much less restrictions regarding
potential keyphrases. The final list may contain phrases that start and/or end
with stop words, as well as complete sentences. At the same time, the second
part of the pipeline keeps the number of redundant phrases low.

Figure 3.2 depicts an example of the approach applied to one million tweets.
Every tweet was converted to lowercase, emojis were removed, the # was
stripped from hashtags, and the text was then tokenized into individual terms
without punctuation characters. It shows that the top keyphrases contain both

54 Chapter 3 ● Efficient Visual Document Collection Summarization

Table 3.1 — Performance of the candidate selection process (time in seconds)
compared to counting every {1,...,m}-gram (baseline).

1k tweets 100k tweets 1m tweets
Time Speed-Up Time Speed-Up Time Speed-Up

Baseline 0.896 1 49.16 1 642.28 1
Top k=100 0.009 100 0.59 83 9.76 66
Top k=1000 0.110 8 1.33 37 15.79 41

single terms and longer phrases, and that the sublinear scaling (PF-IDF) reduces
the score of frequent terms that reveal little context.

3.1.2 Evaluation

Performance Comparison

The aim of this section is to quantify the speed-up of the phrase candidate
extraction pipeline (step 1.1 to 1.4) compared to the baseline, that is, extracting
and calculating the PF-IDF score of every {1,2,...,m}-gram in the source. To make
the comparison fair, parallelization was disabled and the scripts used the same
methods for both approaches to discard sub-phrases (step 1.3) and calculate the
TF-IDF score (step 1.4), including the bigram-based index structure to quickly
determine the document frequency in the reference collection.

The test script ran different configurations on a collection of lowercase tweets
without punctuation. The results are based on the average duration of three
runs for each configuration. The reference collection to determine the inverse
document frequency comprises two million tweets. Each tweet is made up of
20 words on average.

Table 3.1 shows that the selection process is between one and two orders of
magnitude faster than counting every m-gram. This does not include the run
time of the second part of the pipeline, which approximately needs between
200 and 400ms for the third case of one million tweets and is thus negligible
compared to the selection process. The script tokenizes the input and converts
it to a vector-based representation for both approaches. This is comparable to
the processing time of the k = 100 candidate selection process.

It should be noted that these results reflect the performance on a single core and
the parallelized implementation scales well with additional cores. Furthermore,
it typically takes even longer than this baseline to tag the same amount of data
with a decent PoS tagger. For instance, the popular Stanford PoS tagger would
need approximately between half an hour and five hours to process 20m tokens,
depending on the model (Horsmann et al. [2015]).

3.1 ● Efficient Keyphrase Extraction (ELSKE) 55

Table 3.2 — Benchmarks on present keyphrase prediction with reported values
from a) Meng et al. [2017] b) Chen et al. [2020] and c) Martinc et al. [2021].
The last two RNN-based methods are supervised. Among the unsupervised
methods, ELSKE achieves better or similar results for most of the benchmark
data sets (excluding Inspec).

SemEval Krapivin Inspec NUS
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

ELSKE 22.0 22.5 22.6 19.5 20.7 23.6 26.1 20.6
TF-IDF (PoS)a) 12.8 19.4 12.9 16.0 22.1 31.3 13.6 18.4
TextRanka) 17.6 18.7 18.9 16.2 22.3 28.1 19.5 19.6
SingleRanka) 13.5 17.6 18.9 16.2 21.4 30.6 14.0 17.3
ExpandRanka) 13.9 17.0 8.1 12.6 21.0 30.4 13.2 16.4
TopicRankb) 8.3 9.9 11.7 11.2 n/a n/a 11.5 12.3
YAKEc) 15.1 21.2 21.5 19.6 20.4 22.3 15.9 19.6
CopyRNNa) 29.1 30.4 31.1 26.6 27.8 34.2 33.4 32.6
CorrRNNb) 32.0 32.0 31.8 27.8 n/a n/a 35.8 33.0

Benchmarks

The main aim of ELSKE is to analyze collections of documents rather than single
documents, but in order to compare it with previous work, its performance was
evaluated on the SemEval (Kim et al. [2010]), Krapivin (Krapivin [2008]), Inspec
(Hulth [2003]), and NUS (Nguyen and Kan [2007]) data sets. The procedure
largely follows that of Meng et al. [2017] and Chen et al. [2020].

The test script analyzed titles and abstracts, and measured the F1@k scores of
present keyphrases of the gold standard. The F1 score combines precision and
recall:

F1 = 2 ⋅
precision ⋅ recall
precision+ recall

(3.3)

The F1@k score refers to the F1 score based on the first k results of the final
ranking.

The test script applied stemming when comparing the extracted keyphrases
with the gold standard and for determining which keyphrases in the gold
standard are present, to make the results compatible with reported scores in
related work. The script used the list of English stop words from the NLTK
toolkit1. It should be noted that TF-IDF (PoS) describes the TF-IDF-based
baseline method which uses (computationally expensive) PoS-based rules for
retrieving candidates (Hasan and Ng [2010]).
1 https://gist.github.com/sebleier/554280

56 Chapter 3 ● Efficient Visual Document Collection Summarization

The results in Table 3.2 show that while the supervised recurrent neural network-
based techniques take the lead, ELSKE is competitive among the unsupervised
methods. Inspec comprises very short abstracts, which might explain the
lower-than-average performance on this data set.

In summary, ELSKE can efficiently analyze large collections and imposes little
restrictions on the length and structure of keyphrases, but it also performs
reasonably well if targeted at individual documents. The short run time even
on larger collections is particularly relevant if continuously incoming data has
to be analyzed in a timely manner, for instance, when extracting keyphrases
from streamed documents in a sliding window at regular intervals.

3.2 Interactive Hierarchical Quote Extraction

Extracting popular opinions and statements from social media is of vital interest
for many stakeholders, including journalists investigating developing stories,
and agencies monitoring brand exposure. Social media can also be a useful
source of information for emergency responders when eye-witnesses post
their observations. While trending hashtags or keywords can give analysts an
overview of popular topics, they do not convey more concrete concepts and
statements. Conversely, displaying a selection of frequently shared and liked
documents ignores the vast majority of content.

The previous section introduced ELSKE for summarizing large collections such
as tweets using context-rich keyphrases. While the returned phrases are easier
for analysts to interpret than individual words, it is still difficult to aggregate
and extract frequently shared statements and opinions that are worded similarly
but different enough to be recognized as a contiguous keyphrase.

This section introduces a new concept to visualize aggregated concepts that
is inspired by the way how textual quotes are often shortened to convey the
main idea. For instance, statements like ‘I love the extremely talented Joe Doe’ and
‘I have to tell you that I love the actor Joe Doe so much’ could be aggregated with
the statement ‘I love ... Joe Doe’. Both partial phrases have little meaning in
themselves, only the combination reveals a designated sentiment.

The aim of the proposed approach is to automatically extract such shortened
quotes at varying levels of detail to aggregate a range of different micro-
documents that talk about similar things, but are phrased slightly different. The
concept assumes that similar posts share multiple chunks which are possibly
scattered throughout the sentence. As a result, connecting said chunks should
support analysts to better make sense of the content. The idea is that they can

3.2 ● Interactive Hierarchical Quote Extraction 57

then iteratively dive into patterns to extract more detailed quotes regarding
themes of interest, down to the level of individual posts.

3.2.1 Background

Several concepts have been proposed to visualize unstructured text content
while preserving the linguistic structure in some way. Hu et al. [2017] visually
aggregate social media posts with node-link diagrams that visualize which
words often appear in a certain order. However, the level of aggregation leads to
the effect that the visualization may imply a pattern that does not occur in the
underlying data set, a caveat also shared by Van Ham et al. [2009]. Tree-based
approaches visualizing how sentences continue (Wattenberg and Viégas [2008];
Culy and Lyding [2010]) are optimized for the analysis of certain seed queries
and typically do not scale well for many items and variants, because every
possible pathway is considered. Furthermore, these approaches make it difficult
to quantify the popularity of patterns.

3.2.2 Quote Extraction

Each quote is a sequence of word subsequences. For instance, ‘new york ...
shooting’ represents all texts containing ‘new york’ and ‘shooting’ in that order,
with arbitrary content before, after, and in-between. Extracting such patterns is
not trivial due to the sheer number of theoretically possible variations.

The algorithm was designed to aggregate a collection of sentences or short
texts such as tweets. It is threshold-based, that is, the algorithm will (initially)
find patterns that occur at least as often as some adjustable threshold. If the
analyst double-clicks on an item, more fine-grained quotes matching the clicked
pattern are extracted using a lower threshold, all the way down to individual
documents.

The algorithm first extracts all single subsequences that meet the adjustable
occurrence threshold and do not consist entirely of stop words. The threshold
allows us to implement this extraction efficiently using word and word pair
occurrence statistics of the input data that the algorithm collects at the begin-
ning. This is analogous to the pattern counting step of the ELSKE algorithm
introduced in Section 3.1.1. We drop patterns that are contained in longer
patterns but occur equally often. For instance, ‘how old are’ is removed if it
always occurs as part of the pattern ‘how old are you’.

For each resulting item, we then try to find patterns with an additional subse-
quence (chunk), for instance, ‘new york ... shooting’ if ‘shooting’ was the initial
subsequence. To achieve this, the algorithm first determines for each subse-

58 Chapter 3 ● Efficient Visual Document Collection Summarization

quence the matching input items. It then collects the word and word pair
occurrence statistics separately on each such group. The reason for this is that
we can then again exploit the occurrence threshold for an efficient retrieval of
frequent quotes (now with two subsequences). Redundant shorter quotes are
again dropped.

We iteratively repeat this process with increasing numbers of subsequences,
until no new pattern is found meeting the threshold. The algorithm then
discards similar quotes by removing shorter quotes that occur similarly often as
a matching longer quote.

Analysts can select patterns to retrieve more fine-grained patterns. Then, the
above process is started on the subset of the data that matches the pattern of
interest, but with a lower threshold. The default occurrence threshold is one
percent of the total number of documents for top level results, and five percent
of the number of child items for lower-level results.

3.2.3 System Design

The system analyzes the loaded data set and visualizes the extracted patterns as
depicted in Figure 3.3. Here, the top-level results of 15 million tweets published
on May 23, 2019 are displayed. In this example, the results of a particular
election, ‘jefferson city’, and ‘judith kerr’ are among the most trending topics.
Each row shows to the left the number of tweets matching the respective pattern.
If several distinct posts back the same statement, we can assume that it is more
likely to be relevant. The proportion of unique posts is therefore visualized
with a thinner bar in darker gray to support analysts in determining credibility.
A low proportion indicates that the respective quote is mainly sourced from
many retweets of only one or a few original posts.

Quote Ranking

The algorithm may extract hundreds of patterns that appear more often than
the specified occurrence threshold, but most of them are composed of rather
generic words and short phrases that offer little insights. Hence, the quotes in
the top-level view are ranked according to the number of associated unique
posts and the likelihood of the word constellation. The idea is that unusually
frequent appearances of text snippets with non-generic and less predictable
content hint at an interesting and trending development. A simple language
model estimates the likelihood that the respective word constellation would
appear in a random collection of thousands of tweets. It is based on pairwise
conditional word probabilities that have been derived from a reference corpus
comprising millions of tweets.

3.2 ● Interactive Hierarchical Quote Extraction 59

Figure 3.3 — Main user interface with a ranking of the extracted top-level
quotes from about 15 million tweets published on May 23, 2019. The number of
matching posts is shown to the left of each quote and visualized with bars in
light gray. The thin bar in dark gray indicates the proportion of unique posts.

The ranking value is mapped to the diameter of the circle in dark red right next
to the quote on the left, and the estimated likelihood to the opacity of that circle.
This enables analysts to better understand the reasoning behind the ranking.
For instance, a big circle in dark red hints at a quote that is both unlikely and
frequent, whereas a big circle with a lighter shade indicates that the respective
quote was mainly ranked highly because of the sheer volume of the associated
posts.

Sneak Peek

Each omission is represented with three blue dots in square brackets and users
can click on them to sneak a peek what they are aggregating. A list with the
most frequent terms between the respective blocks will pop up underneath
the quote. The font size of each word corresponds to its relative frequency.

60 Chapter 3 ● Efficient Visual Document Collection Summarization

Figure 3.4 — Sneak peek: users can click on an omission to reveal the most
frequent terms between the blocks.

Figure 3.5 — The analyst has traveled down three layers to extract more fine-
grained patterns matching ‘tornado ... jefferson city ... damage’.

Figure 3.4 depicts an example. Here, the sneak peek reveals that ‘kurz’ refers to
the then Austrian Chancellor Sebastian Kurz, and that the mentioned vote was
a no-confidence vote.

Diving In

Analysts can double-click on any item to retrieve (longer) quotes concerning
only the data that matches the clicked parent pattern. This parent pattern is then
stuck to the top of the list with a distinct color. The related, more fine-grained
quotes underneath are aligned with the parent, and the words matching the
parent pattern are highlighted with the corresponding color. This way, the
path of the analyst is visualized on their way down the tree. The highlighting
conveys which parts of the quote contain new information, and the diversity of
content between the text chunks becomes clear.

In contrast to the top-level result, the quotes in this view are ordered by their
frequency. Analysts should be guided to the most common statements, and
the likelihood that these statements are very generic is low since they are both
longer and less frequent than the parent pattern.

In Figure 3.5, the analyst has first clicked on the pattern ‘jefferson city’, then on
‘jefferson city ... damage’, and finally on ‘tornado ... jefferson city ... damage’. The

3.2 ● Interactive Hierarchical Quote Extraction 61

extracted quotes reveal that a violent tornado has apparently hit Jefferson City
with extensive damage.

Analysts can also search for specific terms that are not part of the top-level list
using the search box located at the top-right of the window. Then, popular
quotes are extracted regarding all posts matching the query.

3.2.4 Use Case

In this use case, the approach was applied to the IEEE VAST 2019 Mini-
Challenge 3 2 to evaluate its utility. The goal of the challenge was to analyze
social media messages from the fictitious city St. Himark using visual analytics
to gain insights into issues related to a major earthquake that hit the city. For
this challenge, the tool was slightly adapted to support the fictitious social
media platform Y*INT of the challenge. Furthermore, additional views were
implemented to visualize temporal and geographic data.

The provided data set contains about 42,000 posts, each with text, user name,
and location. The system parses the location and converts it into the respective
number of the city district. It further ignores ‘re:’ prefixes indicating a ‘retweet’
to more accurately detect the number of unique posts.

Overview

Figure 3.6 shows the initial view after loading the data set. On the Y*INT data
set the ranking leads to some artifacts such as high-ranked misspellings of ‘the’
(‘thgehe’, ‘tehhe’, etc.). The reason for this is that the applied language model
was built from Tweets and these variants rarely occur on real-life Twitter.

The slightly extended version of the system visualizes the number of matching
posts over time with a small bar chart next to each quote. Additionally, there
are two histograms on the bottom of the prototype. The left one (in magenta)
displays the number of posts per hour regarding all items in the current hierar-
chy. The legend underneath reveals the date of important bars, namely the first
one and peaks. To the right, the bar chart in dark-orange visualizes the number
of posts per district. To make this more accessible, the user interface shades
the corresponding districts on the city map from dark-orange (most posts per
district) to white (no posts).

The views are linked, that is, if the analyst double-clicks on a pattern to retrieve
more fine-grained quotes, the charts and map are updated accordingly to reflect
the currently selected subset of the data. An example is given in Figure 3.7

2 https://vast-challenge.github.io/2019/MC3.html

62 Chapter 3 ● Efficient Visual Document Collection Summarization

Figure 3.6 — Top-level quotes extracted from the Y*INT posts of the VAST
Challenge 2019. Each row visualizes the temporal evolution and number
of (unique) posts matching the respective pattern. The city map is shaded
according to the location of the messages in the current view.

which shows the resulting view after the analyst double-clicked on the pattern
mentioning food stocking.

Findings

The timeline and location bar chart in Figure 3.6 already reveal interesting
aspects of the data set: the day-night patterns, some irregularities starting with
the third day, that the most messages per hour were published on April 08
between 2 and 3pm, that hardly any message was sent from Wilson Forest,
and that only very few messages are not associated with a location (the system
associates them with the catch-all location 20).

Looking at the top-level patterns, the analyst can deduce that there seems to
be fatalities, people begin to panic about groceries, and the city is evacuating.
Furthermore, many patterns suddenly appear during the second part of the

3.2 ● Interactive Hierarchical Quote Extraction 63

Figure 3.7 — The analyst has selected the pattern mentioning food stocking.
The number of posts per hour at the bottom (in magenta) reveals that people
begin to stock up groceries on April 8.

Figure 3.8 — There are multiple reports regarding damaged buildings scattered
throughout the city, and people worry about their relatives.

time range, for instance, ‘collapsed’ or ‘repair’. Hence, something important
seems to happen on the third day.

The analyst now wants to find out when the earthquake actually happened.
Diving into the ‘earthquake ... st himark’ pattern reveals warnings about a mild
quake on April 6 that does not seem to be relevant here, and a major one
with expected damage on April 8 at around 8am. Temporal patterns of posts
containing ‘collapsed’ (Figure 3.8) or mentioning food shortages (Figure 3.7)
corroborate the hypothesis.

People complain about missing power and Figure 3.8 shows that there are many
reports about collapsed buildings, especially north-west and around Downtown.
Except for the Himark Bridge, every bridge is closed according to Figure 3.9,
basically cutting off the island from the mainland.

64 Chapter 3 ● Efficient Visual Document Collection Summarization

Figure 3.9 — After the earthquake, most bridges seem to be closed, at least for
several hours.

Figure 3.10 — Hospitals have problems treating patients due to the damage
that the earthquake has caused.

Browsing through the top ranked quotes, the analyst gains further insights
into the situation after the earthquake. Figure 3.10 reveals that hospitals have
troubles fulfilling their job due to piles of brick and ‘running out of critical medical
supplies’. All hospitals seem to be affected according to the locations of the
messages. Damage to the sewer system is reported around 5 hours after the
earthquake (Figure 3.11) and several posts urge people to boil their drinking
water.

3.2 ● Interactive Hierarchical Quote Extraction 65

Figure 3.11 — There are reports about broken sewer lines and that people
should boil their water.

3.2.5 Discussion

Keyword-based approaches to summarize document collections without pre-
serving the word order can densely compress big data sets, but at a cost of
less interpretable results. The proposed interactive approach aims to visually
summarize large collections of text snippets such as Tweets while finding a good
compromise between interpretability, conciseness, and scalability. The idea is to
extract unusually frequent sequences of text blocks, which better preserve the
context compared to keyword- and keyphrase-based summaries.

The advantage of the proposed approach is that the possibly shortened quotes
enable analysts to read the resulting summaries, supporting sense-making tasks.
While it is slightly more verbose than showing just keywords, the system is still
capable of aggregating large collections by omitting chunks of words in-between.
Importantly, only patterns that actually occur in the data set are visualized, and
the popularity of each pattern is exactly quantified. In addition, analysts do
not have to provide a starting pattern, enabling the exploration of unknown
collections.

The hierarchical approach not only reduces the processing time on interactions,
it also helps to scale the interactive analysis to large data sets. Every selection
step drastically reduces the number of relevant items, making the extraction
of more fine-grained quotes with a lower occurrence threshold feasible. The
prototypical implementation can handle millions of sentences. The initial
processing of one million tweets takes about 20 seconds, and diving into one of
the popular top-level results takes about five seconds. Users can also influence
the depth of the hierarchy. Setting a lower threshold shows more detailed
quotes already at the top level, which flattens the hierarchy.

66 Chapter 3 ● Efficient Visual Document Collection Summarization

One shortcoming of the approach is that lower-level results often introduce
visual redundancies. In the case of quotes with many blocks, the alignment can
also lead to very wide visualizations that are harder to grasp. On the one hand,
preserving the word order helps to make sense of the content. On the other
hand, it can also reduce the effectiveness of the aggregation when different
patterns cover similar statements. Finally, analysts need to be aware that the
extracted quotes have been generated automatically and thus are not necessarily
as meaningful, complete, and accurate as human-generated summaries.

C
h

a
p

t
e

r

4
Interactive Exploration of Large

Document Collections

As discussed in Section 2.3, analysts from different fields have to deal with
large document collections with the goal to get a general overview of the
data, but also to find interesting aspects and stories, often with little a-priori
knowledge about the content. Business analysts, for instance, have to constantly
monitor news reports to react to specific developments and make informed
decisions. Journalists investigating an unauthorized document leak usually
need to process large amounts of textual data in a short amount of time, which
is labour-intensive (Yimam et al. [2016]).

It is difficult to analyze large text collections automatically if no or little in-
formation is available on the contained documents. Interactive visualizations
help to provide compact summaries of such data sets and can support analysts
to study promising aspects in detail, that is, they enable analysts to explore
the data set interactively. Tag clouds (or word clouds) are popular choices to
visually summarize large collections, but a collection of the most important
single terms can only provide a basic overview of the content at hand. The
previous chapter introduced ELSKE to extract potentially longer keyphrases
that provide more context-rich summaries of documents (Section 3.1). However,
it remains challenging to visualize these phrases so that analysts can infer
relationships between different phrases and examine the evolution of patterns
over time.

68 Chapter 4 ● Interactive Exploration of Large Document Collections

Hence, this chapter introduces PyramidTags, a novel approach for summarizing
large text collections visually. In contrast to previous work, PyramidTags in
particular aims at creating an improved spatial representation that incorporates
both temporal evolution and semantic relationship of visualized tags within
the summarized document collection, without requiring animations. Single-
and multi-word tags from a time-stamped document collection (e.g., news
reports) are extracted and placed onto a 2D spatialization (a tag map). Related
tags are placed nearby, the position on the map indicates corresponding date
ranges, and the word order is preserved to stimulate longer phrases. Interaction
possibilities enable analysts to further explore concepts, reveal relationships
within the collection and retrieve relevant documents. As a result, it equips
analysts with a visual starting point for interactive exploration to not only get
an overview of the main terms and phrases of the corpus, but also to grasp
important ideas and stories.

The main contribution of PyramidTags is three-fold: First, the initial visualiza-
tion promotes the understanding of large collections through a context-aware,
date-aware and word order-aware layout. Second, interaction mechanisms with
visual cues and suggestions guide analysts to dive deeper into topics of interest
and retrieve relevant documents. Third, the approach is highly scalable and
applicable to several hundreds of thousands of news reports using different
time spans.

4.1 Background

Tag clouds polarize to a cetain extent whether they are appropriate for analytical
tasks (Halvey and Keane [2007]; Rivadeneira et al. [2007]; Viégas and Wattenberg
[2008]). Hu et al. [2017] argue that traditional tag clouds often only convey
basic concepts. They stress that analysts require longer, connected phrases to
grasp more complete ideas. Sinclair and Cardew-Hall [2008] found out that tag
clouds are considered useful for browsing and information discovery, but less
for seeking specific information.

Several methods have been introduced in recent years to improve the analytical
capabilities of tag-based approaches, such as adding interaction (Heimerl et al.
[2014]), clustering tags semantically (Wu et al. [2011]), or animating the temporal
evolution (Chi et al. [2015]). To quickly reveal clusters of terms in a matrix
visualization, Chuang et al. [2012b] introduced a seriation technique that also
preserves the natural reading order. It has further been shown that context-
aware tag cloud layouts can improve the understanding of the underlying
documents (Hearst et al. [2020]; Wang et al. [2014]). Section 2.3.1 provides a
more thorough discussion of related tag cloud approaches.

4.2 ● PyramidTags 69

In all these cases, though, the approaches mainly focus on bringing forward
a specific advancement such as context-aware layouts or visualizing syntacti-
cal structures or conveying temporal information. Additionally, even though
many approaches have dealt with context-awareness in the past, Hearst et al.
[2020] claim that there is still a lack of automated tools that reliably produce
semantically grouped word clouds. The placement strategy of PyramidTags is
inspired by the Triangular Model to express time ranges without animations or
interactive sliders. The Triangular Model was originally introduced by Van de
Weghe et al. [2007] to visualize interval-based data, based on work from Kulpa
[1997].

Other approaches for summarizing collections utilize topic modeling to visu-
alize pre-computed clusters of contiguous themes, including an approach for
visually analyzing social media posts in real-time that is presented in Chap-
ter 6. It is more straightforward to visually express the temporal evolution and
relationships of a limited number of topics, but it may limit the creative and
unbiased exploration through the introduction of pre-defined boundaries.

4.2 PyramidTags

PyramidTags presents analysts a date-aware, context-aware and word order-
aware overview of large time-stamped document collections to support interac-
tive exploration, topic selection and document retrieval. This chapter mainly
focuses on applying the approach to several hundreds of thousands of news
articles, but the concept also generalizes to other text documents.

4.2.1 Objectives

PyramidTags applies ELSKE (Section 3.1) to extract important single- and multi-
word tags from documents within a specified date range, for example a week
or a month, and lays out these tags considering several objectives:

Context-Awareness (O1): Related tags as indicated by the underlying data
should be placed nearby

Word Order-Awareness (O2): If the underlying data implies a certain word
order then the placement of the affected tags should adhere to that order

Date-Awareness (O3): The placement should reveal at which date range the
respective tags mainly appear in the underlying data

Each objective aims to improve the layout such that analysts gain a more
thorough overview of the data set they want to explore. Placing related tags

70 Chapter 4 ● Interactive Exploration of Large Document Collections

nearby (O1) helps analysts to better understand the content (Hearst et al. [2020];
Wang et al. [2014]). If tags regularly appear close to each other then they are
considered as being related (Section 4.4.4).

Furthermore, the approach should preserve the word order of the most impor-
tant pairs in the map (O2) to visualize more descriptive and complex concepts
of the data with longer phrases (Chuang et al. [2012a,b]; Hu et al. [2017]),
particularly if analysts hover over tags.

Finally, the triangular layout (O3) offers two major benefits for analysts. On
the one hand, it instantly provides more details of the document collection
by revealing in which date range tags are mainly mentioned. This typically
corresponds to when events happened (in case of news reports, social media,
diaries, or written protocols, for instance). On the other hand, one can argue
that the triangular layout stimulates clusters of topics, because surrounding tags
exhibit a similar date range in which they are mainly mentioned in the document
collection. For instance, two tags which both only appear at one specific day are
less likely to be related if the dates are far apart. The quantitative evaluation in
Section 4.5 corroborates this: even if one completely ignores the context- (O1)
and word order-awareness (O2) objectives, the triangular layout still results in
a more context-aware placement of tags compared to a conventional, random
layout.

Hence, PyramidTags enables not only an instant visual overview of prominent
words and phrases in a big corpus similar to multi-word tag clouds, it also
conveys semantic relationships between tags (O1, O2), linguistic structures (O2),
and temporal patterns (O3), revealing internal structures of the data set in a
novel, comprehensive way. It is a closely coupled process of data analytics, visu-
alization and interaction, extracting statistical and temporal relationships in the
data first, which are then visually presented in an interactive environment.

Optimizing for several objectives that often conflict with each other is a chal-
lenging task. The optimal position of tags according to their temporal pattern
(O3) may lead to violations of O1 and O2, for instance. Thus, one needs to
establish a viable compromise between all three objectives, which is achieved
here by optimizing an objective function.

The objective function incorporates the different criteria to evaluate the resulting
layout. Optimizing this function can be viewed as a more constrained form of
dimensionality reduction that does not just try to preserve the distance between
data points. Rather, it specifies more explicitly how certain relationships (e.g.,
the temporal evolution) should be preserved. In context of the AIX process
(Section 2.5), we fit a model (the objective function with the tag positions as
parameters) to the data (tag relationships in the data set) and then visualize

4.2 ● PyramidTags 71

Figure 4.1 — PyramidTags visualization generated from about 70,000 news
articles published in late January 2020.

the resulting model (tag positions). Additional regularization terms increase
the visual interpretability of the resulting model (e.g., tags should not overlap).
Section 4.4 describes these steps in more detail.

PyramidTags serves as a starting point to interactively explore large docu-
ment collections. It provides analysts with several interaction mechanisms
to reveal relationships in detail, select topics of interest, and retrieve relevant
documents.

4.2.2 Overview

Figure 4.1 shows an example with 80 distinct tags that is based on about 70,000
news articles published in late January 2020. There is a timeline at the bottom
of the visualization. Analysts can toggle whether spaces are replaced with
underscores to better discern multi-word tags from accidental alignments

The vertical position of a tag indicates its temporal extent (duration), and the
horizontal position the mid-point of the time range in which this tag mainly
appears in the data. Tags placed at the bottom, right above the timeline, mainly
occur on the specific day that is shown underneath. The higher a tag is placed,
the longer its corresponding time range, that is, tags at the top are consistently

72 Chapter 4 ● Interactive Exploration of Large Document Collections

Figu
re

4.2
—

P
yram

id
Tags

ap
p

lies
the

triangu
lar

layou
t

to
convey

the
tem

p
oral

evolu
tion

of
tags.

In
each

of
the

four
figures

(based
on

Figure
4.1),the

analyst
hovers

over
a

different
tag

of
interest.

T
he

trapezoid
beneath

each
tag

ind
icates

the
prevalent

d
ate

range
of

this
tag

in
the

d
ata

set,w
hile

the
rem

aining
tags

are
shad

ed
accord

ing
to

their
sem

antic
connection

w
ith

the
tag

selection.T
he

bar
chart

at
the

bottom
above

the
tim

eline
visualizes

the
num

ber
of

docum
ents

containing
the

selected
tags

per
day.

4.2 ● PyramidTags 73

Figure 4.3 — User is hovering over the tag ‘democratic’. The other tags are
shaded according to their relatedness. Little dots appearing under some tags
reveal the word order that was determined in regard to the hovered tag.

mentioned throughout the entire processed data set. In contrast to simple
time-to-space mappings, this placement strategy also visualizes data associated
with intervals of time (time spans). It should be noted that the layout does not
necessarily imply a topic hierarchy.

Figure 4.2 illustrates the placement strategy to convey the temporal evolution.
In this example, the analyst hovers over different tags of interest. The trapezoid
beneath each tag indicates the prevalent date range of this tag in the data set,
while the remaining tags are shaded according to their semantic connection
with the tag selection. For instance, it becomes clear that reports about the
football league appear just as often throughout the two weeks (‘league’ is placed
at the very top), whereas the news about Caroline Flack’s death peak in the first
few days (‘caroline flack’ is placed in the center and to the left).

4.2.3 Hovering Tags

When analysts hover over a tag, the remaining tags are shaded depending on
how related they are to that tag, from black (very related) to nearly-white (data
does not suggest relation). Figure 4.3 shows an example of this behavior. While
related tags should be placed nearby, not every tag i that is placed next to
tag j is actually related to it, and in some cases there could even be a strong
connection of j to a different tag h that is placed much further away. Hovering
over terms enables analysts to debunk false friends and sense how strong the
connection really is. For instance, ‘snow’ appears right next to ‘democratic’ in
Figure 4.1, but the nearly invisible shading in Figure 4.3 reveals that these terms

74 Chapter 4 ● Interactive Exploration of Large Document Collections

do not frequently occur close to each other in the data set.

In addition, a little dot under each term appears if the data implies an ordering
regarding the currently hovered tag. The interface uses circles to encode both
the direction and the manifestation of the word order in the data set. The
horizontal position of the dot depends on the percentage of occurrences in
the collection with the indicated order. If the dot is placed to the left, that tag
mainly appeared before the tag which is currently hovered. Analogously, if
it is on the right, then the tag mainly appeared after the tag of interest in the
document collection. The size of the dot indicates how sure the system is that
there is a suggested word order, that is, how often the respective pair occurs in
that order. These hints tell users whether the order of the tags as it is shown on
screen is relevant and consistent with the statistics from the underlying data.
For instance, the term ‘candidates’ probably appears often after ‘democratic’ and
not the other way round if both are closely mentioned (Figure 4.3).

Each tag is associated to a specific time range during which it was strongly
mentioned in the corpus. When hovered, this range is illustrated with a
trapezoid that spans from the tag to the start and end date on the bottom at the
timeline. Furthermore, a more detailed view regarding the temporal evolution
of the hovered tag is presented with a bar chart popping up right above the
timeline. Each bar sitting on its date is mapped to the corresponding number
of documents the tag of interest appeared in on that date.

Figure 4.3 shows the updated visualization when hovering over the term ‘demo-
cratic’. The shading of the surrounding terms indicate several strongly related
tags such as ‘primary’, ‘voters’, and ‘candidates’. The associated time range reveals
that ‘democratic’ was particularly often in the news in the second part of the
time window. The dots under some tags reveal the assumed word order. For
instance, one could read ‘democratic ... primary’, or ‘democratic ... candidates’. This
suggests that there were many reports about the democratic primary election
and debates in late January 2020.

Not every related tag i is necessarily placed close to the tag of interest j,
especially if there is another tag k that has a strong connection to i. For instance,
hovering over ‘democratic’ (Figure 4.3) also highlights the terms ‘biden’ and ‘south
carolina’ (Figure 4.1 bottom-right), but these terms are placed around March
1st when it was announced that Joe Biden had won the democratic primary
election in South Carolina.

4.2.4 Multiple Tag Selection and Document Retrieval

Analysts can select and deselect several tags by clicking on them. Then, the
selected tags with their corresponding triangles remain highlighted. The opacity

4.2 ● PyramidTags 75

A

C
B

Fi
gu

re
4.

4
—

Th
e

an
al

ys
th

as
se

le
ct

ed
th

re
e

ta
gs

th
at

ar
e

hi
gh

lig
ht

ed
(A

).
Th

e
bl

ue
ba

r
ch

ar
ta

bo
ve

th
e

tim
el

in
e

de
pi

ct
s

th
e

nu
m

be
r

of
d

oc
u

m
en

ts
co

nt
ai

ni
ng

al
l

se
le

ct
ed

te
rm

s.
T

he
sy

st
em

ra
nk

s
re

le
va

nt
ar

ti
cl

es
(B

),
w

hi
ch

ca
n

al
so

be
re

tr
ie

ve
d

in
fu

ll
(C

).

76 Chapter 4 ● Interactive Exploration of Large Document Collections

of the other tags is updated to reflect the lowest relatedness to any of the
selected tags, which is an upper bound of the actual relatedness to the selection
(computing the relatedness of all possible combinations in advance is not
feasible). Analogously, the bar chart on the bottom is updated with the number
of documents containing all selected terms for each day. Hence, analysts are
supported in picking a topic they would like to explore more deeply. Suitable
selections are suggested by highlighting relevant tags according to the document
collection. In many cases, analysts have to select only few tags to greatly
narrow down the search results even in big data sets comprised of millions of
documents.

If analysts select one or several tags, a separate window opens presenting a
ranked list of the most relevant news articles as specified by the selection. The
list contains the date, title and source of the documents as well as the number
of reprints (i.e., how many different news outlets published the same story)
and the relevancy as determined by the system. Only documents that contain
all the selected tags are shown in the list. The number of occurrences but also
the distances between the tags in the document influence the relevance score.
Documents are considered to be more relevant if the selected tags occur closer
to each other rather than being scattered throughout the document, because
this indicates that they are semantically connected in the document. The total
number of documents matching the selection is shown at the bottom of the
window.

Figure 4.4 shows an example. In the depicted case, the analyst has decided
to learn more about the democratic primary debates in the data collection
by clicking on ‘warren’, ‘bloomberg’, and ‘debate’ (A). As expected, reports and
opinion articles appear as to which of the candidates performed best (B), and
several related tags (e.g., ‘nevada’) are shaded in dark gray. Full articles can be
retrieved by double clicking on the respective list item. The document explorer
shows the requested article in a new tab, revealing the full text and the link to
the source page among other meta data (C).

4.3 Preprocessing and Data Analysis

PyramidTags is built on a pipeline with three main steps. First, the data at hand
is algorithmically analyzed and relationships are extracted. Then, based on the
collected statistics the actual visualization is created as explained in Section
4.4. Finally, the proposed visual analytics approach displays the generated
visualization and provides several interaction possibilities as described in the
previous section.

4.3 ● Preprocessing and Data Analysis 77

Technically, the method works with any collection of timestamped documents.
However, it aims to visualize content relating to events that span different
time ranges, which is typical for social media posts or news articles. Here,
PyramidTags was applied to hundreds of thousands of online news articles
collected from news websites. This data is particularly challenging due to the
size but also due to the fact that it contains noisy, real-world articles crawled
from the web.

4.3.1 Cleaning and Reprint Detection

Web-crawled articles often contain additional content that is not part of the
actual article, for instance, links to related news articles or advertisements. The
crawler strips paragraphs from the document if several other articles from this
news outlet also contain the same paragraph, assuming that only text that is
specific to this document is considered as useful content. If a cleaned article
largely contains the same content as a previously processed article, but it is
from a different source, then it is considered to be a reprint. If it is from the
same source we discard it as duplicate. Reprints are still considered as being
part of the corpus for subsequent data analytics and the visualization, because
the decision of news sites which agency reports they distribute is an indication
for the importance of the content. The reprint detection is mainly used to
save computing resources and to improve the usability of the news retrieval
scenario.

4.3.2 Tag Relationship Analysis

The goal of the system is to visualize large text corpora while preserving
important relationships and structures within documents. To achieve this,
the system extracts relevant tags with ELSKE (Section 3.1) and analyzes their
relationship to each other. Tags that often appear together in documents should
also be closer to each other in the visualization, tags that often appear in a
certain order should also be ordered that way in the resulting visualization.
Furthermore, the temporal evolution should be visible, for example, if several
tags mainly occur in a specific time range.

After extracting the tags, the system needs to process the input data set again
to analyze the relationship between tags. For each document, we first search
for the tags that were extracted in the previous step and note their position
in the text. For each search result, we increment the count for the specific tag
and date which we need later on. Then, we look at each pair (tp

i , tq
j) in that

document where p and q denote the respective positions in the text of tag ti

78 Chapter 4 ● Interactive Exploration of Large Document Collections

and tj, and ti has a lower lexicographic rank than tj to avoid counting the same
pair twice.

We disregard this match if there is another match (tp
i , ts

j) with ∣s − p∣ < ∣q − p∣ or
(ts

i , tq
j) with ∣q − s∣ < ∣q − p∣. This means, if we replace one tag of this pair with

the same tag but at a different location, this must not lead to a closer pairing.
For example, the pair ‘[John] Doe was seen outside. [Doe] wore a black jacket’ is
ignored, since there is a closer pairing with one of the tags involved: ‘[John]
[Doe] was seen outside...’.

If all these conditions are fulfilled, we calculate the distance weight dw. We
define the distance weight as the inverse distance between the two matches plus
one:

dw(tp
i , tq

j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1+q−p−numWords(ti) if q > p

1
1+p−q−numWords(tj) otherwise

The distance weight dw is added to the order-aware tag distance weight wij if
q > p and to wji if p > q. We also add the distance weight to the distance weight
count for the specific pairing and date. The order-aware tag distance weight
wxy is then the sum of the inverse distances of valid tag pair matches (tx, ty)
where tx appeared before ty.

After processing all documents, wij +wji indicates how often the tags ti and tj
appeared nearby in the data. That is, the higher the sum, the more related the
terms are to one another. If one summand is high compared to the other one,
we can assume that the underlying documents suggest a specific word order,
for instance, ‘john doe’ is more likely than ‘doe john’.

4.4 Visualization Generation

A good PyramidTags visualization should fulfill several training objectives.
The location on the map should correspond with the associated time range
(location), tags should not overlap (collision, repelling), related tags should be
placed close to each other (proximity), and the natural reading order should
be respected (wordOrder). Unfortunately, these objectives often contradict each
other. For instance, if all tags are placed at the same position, we would achieve
the best result concerning the context-awareness, that is, related tags are indeed
close together. However, this drastically violates the collision objective that tags
should not overlap each other. Hence, we need a viable trade-off between these
objectives.

The following objective function fθ represents all training objectives with pa-
rameters θ (the two-dimensional location of each tag on the map) as input:

4.4 ● Visualization Generation 79

fθ =λ1location+ λ2collision+ λ3proximity
+ λ4repelling+ λ5wordOrder

(4.1)

The goal is to minimize this function to retrieve a good set of parameters so that
the resulting visualization adheres to all three main objectives. The individual
objectives are weighted with the meta-parameters λx, allowing to balance the
importance between them. For instance, if we set λ3 = λ4 = λ5 = 0 and only
have one location box spanning the entire image, then the optimization routine
would lead to traditional dense (multi-word) tag clouds. The following sections
describe in detail how the individual components of the objective function are
composed of.

4.4.1 Layout and Map Locations

We set the font size of each tag so that its area is approximately proportional to
the respective importance weight assigned by the ELSKE algorithm, which is
denoted with weightedCount(tx) in the following sections.

The aim of the approach is to visually encode the evolution of certain tags and
their relationship over time. Based on the triangular layout, each tag is mapped
to a specific location box that indicates when and for how long this tag mainly
appeared in the underlying data set. On the bottom of the visualization, a
timeline shows the dates within the processed time range of nd days. There are
nd location boxes on the first row right above the timeline, representing each
day. If a tag is mapped to one of these boxes on the first row, it mainly occurs
on that day. The second row (counted from the bottom) is comprised of nd − 1
location boxes that represent durations of two days. This can be continued until
the top row is reached with one location box in which the tags associated with
it span the whole nd days. The resulting structure resembles a pyramid-like
shape in 2D, hence the name PyramidTags. An example of this structure is
shown in Figure 4.5, in which each non-empty location box (i.e., at least one tag
is mapped to the box) is drawn as a rectangle.

The rows do not necessarily have equal heights, this is determined based on
the space requirements of the most occupied box of that row. The width of the
boxes increases with each row from bottom to top, because there are fewer boxes
the tags are distributed to. However, the width does not grow linearly with the
number of days the boxes represent. As a result, the box in the top row does
not occupy the entire horizontal space that is available to preserve the pyramid
metaphor. The analyst should still be able to guess the probable time range of
each tag, even with the static visualization, by spanning a right-angled triangle

80 Chapter 4 ● Interactive Exploration of Large Document Collections

Figure 4.5 — Non-empty location boxes of the PyramidTags visualization from
Figure 4.1. Top: location boxes with the tags hidden. Bottom: location boxes
blended in with the resulting map. The objective function pushes each tag to
its assigned location box indicating the prevalent date range. These boxes have
dynamic widths and heights to optimize space usage while trying to preserve
the triangle shape. Here, colors have been assigned randomly to location boxes
to make them discernible.

4.4 ● Visualization Generation 81

Figure 4.6 — Analysts hovers over the tag ‘south carolina’ to the right. Another
‘south carolina’ tag is highlighted on the left. The bar chart above the timeline
reveals that there are two distinct peaks in the data set, therefore, the tag was
split such that each peak can be assigned to a tag.

from the mid-point of the tag to the timeline at the bottom. The dynamic sizing
is clearly visible in Figure 4.5. Each rectangle in the same row also has the same
height, however, the height differs among rows.

Figure 4.5 shows that rows and columns can overlap each other, particularly
with increasing number of total days. This is necessary to fit regular tags within
the bottom row for large nd. The flexible, dynamic approach for determining
the height and width of location boxes optimizes the use of white space and
preserves the pyramid-like structure at the same time.

4.4.2 Tag Splitting and Mapping

The system has to determine when and for how long tags mainly appear in the
document collection to assign tags to location boxes. However, there can be
multiple distinct time spans. For instance, some tag can be mainly mentioned
in the beginning of the month as well as in the end of the month, but rarely
in-between. Furthermore, two tags can be strongly connected on a particular
day, but one of it is mentioned similarly often throughout the week as well.
These are cases in which the same tags would need to be placed at distinct
locations to reflect the semantics adequately. For this purpose, the concept of
tag splitting is introduced.

Figure 4.6 shows an example of tag splitting in the resulting visualization.
Here, the term ‘south carolina’ often appears around February 26th, but also on
the following weekend when it was announced that Joe Biden had won the

82 Chapter 4 ● Interactive Exploration of Large Document Collections

democratic primary in South Carolina. Splitting the tag allows to assign each
tag to one of the respective peaks. This avoids a centered, more misleading
placement between those two peaks.

To determine in which time ranges each tag is strongly mentioned, we first
count the number of occurrences per day for each tag in the relationship analysis
phase. Then, we extract possible time spans by finding contiguous regions in
the corresponding occurrences histogram where each count is over a threshold
of 70% of the maximum value or is similarly high as a neighboring day that is
above the threshold. The resulting one or more time spans are added to the
candidate set of spans for this tag. Each time span is defined by a start day and
duration which can be mapped to the corresponding location box.

We also want to collect time spans in which one tag often occurs nearby another
tag. That is, even if the occurrence counts of the particular term would not
exhibit a pattern of separate peaks, this could still be the case if combined with
another tag. For instance, ‘world cup’ may appear consistently throughout the
week, but ‘england’ and ‘world cup’ may often appear closely together at one
particular day. In this case, we would add this day to the candidate set of time
spans for the tag ‘world cup’. To realize this, we compute for each tag i the sum
of the order-aware distance weights per day where this tag is involved, that
is

∑
j

wd
ij +wd

ji

where d stands for the respective day. Here, wij is the weight in cases where
tag i appeared before tag j, and wji where tag i appeared after tag j. We extract
again contiguous regions in the resulting histogram that indicate time spans in
which this tag strongly correlates with at least one other tag, and add them to
the candidate set of spans for this tag.

This can result in many similar time ranges, for instance, two week-long spans
that are just shifted by one day. We need to find a suitable compromise between
having many duplicate tags that would lead to visual clutter and too few tags
that would lead to misleading layouts. For each span candidate, the respective
accumulated count of the underlying histogram (i.e., how many occurrences in
the data this time span covers) indicates the significance of the span for its tag.
We only select those candidates that are similarly significant as the strongest
candidate and sufficiently distinct to the remaining time ranges.

If there is only one time span left, the tag is assigned to the corresponding
location box. Otherwise, we split the tag so that each time span can be assigned
to one split tag. The document counts of the resulting split tags (for the tag size)

4.4 ● Visualization Generation 83

are distributed according to the relative significance of the corresponding time
range (i.e., how many occurrences it covers). The related order-aware distance
weights wxy stay the same.

4.4.3 Particle Swarm Optimization

The system applies Particle Swarm Optimization (PSO) (Chopard and Tomassini
[2018]; Shi and Eberhart [2002]) to find a reasonable local minimum of the
objective function (4.1). PSO does not use the gradient and the objective
function can therefore also include non-differentiable features. Section 2.1.1
provides a more thorough introduction to PSO.

Let A be the total area of all tags combined. To set the working image plane
dimensions (pw, ph), we define that the area of the image plane should be 4A
and enforce an aspect ratio of 16:9. The exact size is not important, but the
smaller the area, the more dense the resulting layout, with less room for the
context- and word order-objectives.

The parameters of the objective function are the positions (px
i , py

i) on the image
plane for each tag i. Thus, the parameter dimension is 2N if one wants to place
N tags on the plane. The goal is to apply PSO to find parameters that yield
a reasonable minimum of the objective function. Technically, the parameters
are the positions encoded as fractions relative to the plane width and height,
respectively. Before calculating the value of the function, however, we define
rectangles that represent the tags and compute their position on the plane.

4.4.4 Objective Function Components

Location Force

Let (cx
i , cy

i) be the center of the rectangle representing tag i, (lx
i , ly

i) the center
of the associated location box and (αx, αy) the horizontal and vertical distance
of the tag’s center to the box boundary if the tag is currently placed outside
the box (otherwise 0). The following term pushes tags to be placed inside their
associated location box:

dl
i =
√
(∣lx

i − cx
i ∣ + αx(1+ αx))

2 + (∣ly
i − cy

i ∣ + αy(1+ αy))
2

location = 1√
A

N
∑

i
dl

i

84 Chapter 4 ● Interactive Exploration of Large Document Collections

If the tag is placed inside the boundary of its location box, the regular distance
between the center of the tag and the center of the location box is penalized,
pushing tags slightly towards the center of the box. If it is outside, however, we
strongly increase the weight of the penalty with an additional squared term
based on the distance to the boundary of the box.

The square root of the total area of all tags combined (
√

A) is used for nor-
malization. If tag splitting is disabled and every tag is assigned to the same
‘location box’ spanning the entire image plane, then this method generates
classic tag cloud layouts in which tags are densely placed in the center of the
image.

Collision avoidance

Let I, J be the area of tag i and j, respectively. We compare the rectangles
representing tags with each other and compute the intersecting area ∣I ∩ J∣.
The total intersecting area makes up the collision avoidance component, again
normalized by

√
A:

collision = 1√
A

N
∑

i

N
∑

j=i+1
∣I ∩ J∣

Proximity

Tags that are related to each other should also be close to each other, that is, the
distance between any two tags i and j should be minimized, weighted by their
relatedness rij. Section 4.3.2 explains how the order-aware distance weights wij
are calculated using the inverse distance between pairs of tags in the source
data. These weights influence the relatedness score:

rij =
1
Z
(wij +wji)max(ai, aj)Φij

ax = log IDF(tx) Z = 1
N

N
∑

i
max

j
(wij +wji)

We normalize the order-aware distance weights with Z to retrieve relative values
between 0 and 1. Phrases that generally appear often in documents are more
likely to occur nearby just by chance. Hence, we further apply a correction
factor ax which is the logarithm of the inverse document frequency of the most
frequent term. This restricts the influence of high-frequency tags, but also
prevents a strong emphasis of low-frequency outliers, which is similar to the
idea of TF-IDF, where the influence of terms occurring in many documents is

4.4 ● Visualization Generation 85

diminished. As a result, the relatedness between two tags is high if they appear
unusually often close to each other in the documents.

The previously described tag splitting may result in multiple occurrences of the
same two tags (content-wise) at different time ranges. The connection between
each pair as expressed by the relatedness should also depend on the overlap
of the time spans they have been associated to. For instance, if ‘australian open’
and ‘andy murray’ are assigned to a location box on the left and there are two
additional tags ‘australian open’ and ‘djokovic’ which are assigned to the right,
then the first ‘australian open’ should mainly be related to ‘andy murray’ and not
to ‘djokovic’ on the right. Therefore, we weight the order-aware distance-weights
of a pairing (calculated on the whole time range) with Φij that represents the
share of the global relatedness for this particular pair based on the overlap of
their associated time spans.

Let lc
i be the column and lr

i the row of location box assigned to tag i. The
proximity component of the objective function penalizes large distances between
tags that have a high relatedness:

d̂o
ij =

do
ij√
A

ϕij =
1

1+ (∣lc
i − lc

j ∣ + ∣l
r
i − lr

j ∣) 5
nd

proximity =
N
∑

i

N
∑

j=i+1
d̂o

ij(1+ d̂o
ij)rijϕ

2
ij

Rather than calculating the distance between the center coordinates of the
rectangles, we instead use the outer distance do that is defined as the closest
distance between two points on the border of each rectangle. This ensures that
we do not penalize horizontal stacking, that is, tags placed next to each other
horizontally have the same outer distance of zero like tags that are stacked on
top of each other.

If two tags are assigned to different location boxes that are far away, it is nearly
impossible to place them nearby. The proximity force is reduced in these cases
by multiplying with the square of ϕij which is the inverse difference between
row and column indexes of the respective location boxes. The term 5/nd is
just for normalization to retrieve values independent from the total number of
days.

Repelling Force

On the one hand, we would like to have a compact visualization. On the
other hand, we would also like to slightly separate tags if the underlying data

86 Chapter 4 ● Interactive Exploration of Large Document Collections

suggests that these tags are not related to each other. Whereas the previous
proximity component rewards close distances of related tags, the following
repelling force encourages tags to be placed slightly apart. In combination
with the proximity term, this should lead to better visual clusters of related
concepts. Let dij be the distance between the center points of the tags ti and tj.
The repelling component is then defined as:

repelling =
N
∑

i

N
∑

j=i+1

1

1+ (dij)
1.5√

A

The intuition behind the exponent 1.5 > 1 is to let this force quickly diminish
with increasing distance.

Word Order

In some cases, the data implies a certain ordering of tags, for instance, if ‘tree’
and ‘christmas’ appear next to each other, ‘tree’ comes after ‘christmas’. The
layout should preserve these word order characteristics in the visualization as
best as possible to improve the readability and support sensemaking tasks. As
previously explained, if the order-aware distance weight wxy is much greater
than wyx, then tag x often appears before tag y when they occur nearby in the
documents.

We define the word order oij which ranges from zero (tag i is right to tag j) to
one (tag i is left to tag j), and the strength of the ordering γij to express how
certain the system is that the data implies an ordering between tag i and j:

oij =
wij

wij +wji

γij = (0.5−min(oij, 1− oij))(
10
z
⋅ ∣wij −wji∣)

0.3

The first part of γ is zero if there is no implied word order, that is, tag i
appears equally often before and after tag j. It reaches its maximum at 0.5 if all
occurrences are in the same order. The second part expresses how strong the
evidence is and uses the absolute difference between the order-aware distance
weights.

The intuition behind having an exponent < 1 is that these differences do not
follow a uniform distribution. A linear relationship would underestimate the
evidence except for the pair with the highest difference. The normalization

4.5 ● Evaluation 87

constant z is the maximum number of tag pair occurrences and, therefore, an
upper bound for w.

In combination, γ is high when tag i and j often appear in close proximity
with one specific order for the most part. The normalization constant 10 and
the exponent 0.3 were empirically determined such that the resulting forces
are reasonable across different data sets, but they can be changed to shift the
emphasis. For instance, a higher exponent increases the required evidence from
the data, resulting in less tag pairs that are considered to have a significant
word order.

The function penalizes the horizontal distance if the tag is on the wrong side
according to the word order, weighted by the strength of the ordering:

xij =
⎧⎪⎪⎨⎪⎪⎩

max (−width(ti), px
i − px

j) if oij >= 0.5

max (−width(tj), px
j − px

i) otherwise

wordOrder = 1√
A

N
∑

i

N
∑

j=i+1
xijγijrijϕij

The lowest and best value for xij is reached if the tag that should appear first
is completely placed before the other tag. The worst value is only limited by
the image plane boundaries. We cap values at the optimal value −widthi/j,
because we do not want to encourage tags to be pushed too far away again.
Similar to the proximity component, we take the relatedness and the location
box distances of the tags (if applicable) into account as well.

4.5 Evaluation

The first part of this section presents a use case scenario and shows a comparison
between the PyramidTags layout and more traditional word cloud layouts to
illustrate the usefulness of the approach. Then, the results of a quantitative
evaluation on a benchmark data set are discussed. The section finally reports
on qualitative feedback that was gathered from two domain experts.

4.5.1 Use Case Scenarios

Figure 4.7 presents the resulting visualization of about 150,000 English news
articles mainly from the US and the UK during the whole month of August
2020. From this static visualization (i.e., before any interaction is performed)
the analyst can already form several hypotheses. For instance, the tags at the

88 Chapter 4 ● Interactive Exploration of Large Document Collections

A
B

C

D

E

F

G

Figure
4.7

—
Pyram

idTags
ofabout150,000

new
s

articles
published

in
A

ugust2020
w

ith
200

distincttags.The
cutouts

A
–G

show
how

the
visualization

adapts
w

hen
the

user
hovers

over
the

respective
term

s.

4.5 ● Evaluation 89

very top indicate that news regarding Donald Trump (‘president ... trump’) and
baseball (‘innings’, ‘afl’) dominated the entire month. This also applies to articles
about the Royals (‘meghan ... markle, queen, harry’), with a slightly stronger
emphasis towards later days in August.

The bigger tags that are closer to the timeline at the bottom suggest that
something has happened in Beirut in the first week of the month, that Kamala
Harris was often on the news during the second week, and that the Democratic
as well as the Republican National Convention was often the subject of reporting
in the third and fourth week, respectively.

Moving the mouse over tags helps to further confirm or reject hypotheses that
one might have gained by looking at the tags. For instance, the terms ‘shooting’,
‘protests’, and ‘blake’ on the right of the visualization seem to be related. After
selecting the tag ‘shooting’ (D), it becomes clear that this is indeed the case.
The retrieved articles report about ongoing protests and unrest regarding the
shooting of Jacob Blake. However, hovering over ‘biden’ (B) reveals that the term
‘scheme’ right above it does not seem to be related.

Summarizing 150,000 articles with just 200 tags may seem to be challenging
at first, but the number of possible distinct combinations is huge, even even
with just two or three tags. For instance, there are many (> 3,000) posts that
contain ‘vaccine’ or ‘russian’, but after selecting both tags (G), the bar chart and
the search results show that there are only 311 articles (mainly published on
August 11th and 12th) that contain both terms, talking about the announcement
of the Russian government that they had developed and approved a Covid-19
vaccine. In the presented use case, the first 100 search results after selecting up
to two tags cover about three quarters of all articles.

The objective function is composed of different components that can also be
activated individually to generate more traditional tag cloud layouts. Figure 4.8
shows two examples based on about 160,000 articles published in January 2020.
The first version at the top shows a classical tag cloud, which was generated
using only the collision avoidance component and one global location box
spanning the entire image plane. It shows that many news articles talked about
Brexit, the Iran, or the NFL, but the visual encoding offers only a limited and
shallow insight into the data set. The second version at the bottom is more
context-aware and word order-aware, which helps to make better sense of the
content. For instance, several tags related to the Royal familiy are clustered
together, and the tags around ‘iraq’ and ‘iran’ indicate that something has
happened in the Middle East.

Figure 4.9 depicts the same data set but with the full PyramidTags layout.
Compared to the previous versions, the example shows that the triangular

90 Chapter 4 ● Interactive Exploration of Large Document Collections

Simple

Context- and Word Order-Aware
(PROX + WO)

Figure 4.8 — Two traditional tag cloud layouts (one global location box) with
200 distinct tags based on about 160,000 articles published in January 2020,
generated using only a subset of objectives. Top: simple tag cloud with only the
collision and location force components enabled. Bottom: context- and word
order-aware tag map.

4.5 ● Evaluation 91

Fi
gu

re
4.

9
—

Fu
ll

Py
ra

m
id

Ta
gs

la
yo

ut
w

ith
20

0
di

st
in

ct
ta

gs
ba

se
d

on
ab

ou
t1

60
,0

00
ar

tic
le

s
pu

bl
is

he
d

in
Ja

nu
ar

y
20

20
.

92 Chapter 4 ● Interactive Exploration of Large Document Collections

layout helps to understand the development of certain topics over time, for
instance, that many articles talked about Wuhan and Sars in the second half
of the month, and that Kobe Bryant’s helicopter crash happened at the end of
January.

4.5.2 Benchmarks

It is difficult to evaluate tag cloud layouts and similar approaches dealing with
text spatializations since task-driven studies often fail to cover non-specific
information seeking needs. Such needs are difficult to enfore and stage artifi-
cially. To tackle these challenges, the approach was evaluated quantitatively
by utilizing meta-data from collected news articles. This benchmark data set
comprises about 60,000 articles, annotated with a list of associated topics, from
January to December 2019 from the British newspaper The Guardian. Typically,
this list contains both broad categories such as US News and also more specific
ones, for instance, Immigration Policy. These annotations are used to test the
context-awareness of the approach.

Two configurations were evaluated: a time span of two weeks with 100 tags and
one month with 200 tags. The test script trained several different visualization
types by successively activating components of the objective function (Equa-
tion 4.1), that is, setting the respective λx ≠ 0. Simple is the regular multi-word
tag cloud (only collision component activated, one location box). PROX or
WO means that the proximity or wordOrder component is enabled, respectively.
Pyramid indicates types with the triangular layout, different location boxes and
tag splitting. Hence, the last row represents the full PyramidTags variant with
all λx ≠ 0.

The test computed the following evaluation criteria for the generated out-
put:

Density: Average number of tags in the neighborhood of any tag. The neigh-
borhood of a tag consists of all tags that are located within an outer distance
(shortest distance between the bounding boxes) of the height of the respective
tag. Choosing a slightly higher threshold increases the number of tags in the
neighborhood, but the relations of the benchmark values between different
variants stay largely the same.

Context-Overlap (Context): Benchmark for assessing how thematically related
neighboring tags are. For each tag, the script fetches all articles that contain the
tag. Each article has a list of categories provided by the newspaper, which is
used to build a topic vector with the occurrence count of each topic, representing
the thematic landscape of the respective tag. Context is the average cosine
similarity between the topic vectors of the center and a neighboring tag. A

4.5 ● Evaluation 93

higher value indicates that nearby tags are more likely to be related thematically.
To make these values more interpretable, the script further calculates the proba-
bility that a neighboring topic vector has a cosine similarity ≥ 0.7 (Context7), that
is, how likely it is that a neighboring tag is thematically very related (assuming
the respective threshold).

Word-Order (WOx): For each tag set, the script creates a ranking of pairs
according to the evidence that they appear in a certain order as explained
in Section 4.4.4. To evaluate how well different layout strategies perform
in preserving the word order, it calculates the fractions of the top 5 (WO5),
10 (WO10) and 50 (W50) pairs appearing in the correct order.

Date-Awareness (DateCos): For each tag, the script builds a date vector com-
prised of the number of articles per day. DateCos denotes the average cosine
similarity between date vectors of a tag and one of its neighbors. A higher value
indicates that neighboring tags have a higher similarity regarding the temporal
evolution of related articles.

4.5.3 Results

Similar to the training of neural networks, the output may differ due to the
random initializations. Thus, this section reports the average values of three runs
to mitigate the effect of outliers. Table 4.1 shows the results of the benchmarks
for the configuration of 100 tags and a time span of two week, and Table 4.2 for
the configuration of 200 tags and one month.

All visualization types with activated proximity component show a notable
improvement in the Context-Overlap score. The triangular layout resulted in
an increase of the cosine similarity between date vectors of neighboring tags
compared to the simple layout. Interestingly, the benchmarks show that it is also
more context-aware even without enabling the proximity component, indicating
that tags that mainly appear during similar time ranges are also more likely to
be related.

The word order of the most important pairs is mostly preserved in all variants
that use the wordOrder component. Conversely, the word order probabilities of
the remaining variants are on par with the expected random odds. However, it
can be seen that there is a trade-off between context-awareness and word-order
preservation.

As expected, the Pyramid layouts have a lower density compared to the other
variants. Nevertheless, the PyramidTags approach stands out for its unique
ability to express temporal relationships while at the same time preserving the
word order at least as good as the PROX+WO variant.

94 Chapter 4 ● Interactive Exploration of Large Document Collections

Table
4.1

—
B

enchm
ark

results
for

d
ifferent

layouts
w

ith
100

tags
and

tw
o

w
eeks

(higher
is

better).W
O

,PR
O

X
and

Pyram
id

denote
w

hether
the

respective
wordOrder,proximity

and
location

com
ponents

of
the

objective
function

are
activated.T

he
last

row
represents

the
fullPyram

idTags
layout.

D
ensity

C
ontext

C
ontext7

W
O

5
W

O
10

W
O

50
D

ateC
os

Sim
ple

7.7
0.33

0.17
0.52

0.52
0.50

0.76
W

O
7.1

0.35
0.19

0.99
0.99

0.94
0.76

PR
O

X
7.9

0.50
0.37

0.52
0.51

0.52
0.78

PR
O

X
+

W
O

7.8
0.49

0.36
0.73

0.71
0.64

0.78
Pyram

id
4.1

0.40
0.26

0.55
0.55

0.52
0.80

Pyram
id

+
W

O
4.1

0.40
0.26

0.84
0.84

0.69
0.80

Pyram
id

+
PR

O
X

4.9
0.45

0.31
0.53

0.56
0.52

0.82
Pyram

id
+

PR
O

X
+

W
O

4.9
0.45

0.31
0.77

0.76
0.60

0.82
Pyram

id
+

PR
O

X
+

W
O

+
R

EP
4.6

0.45
0.31

0.78
0.74

0.60
0.82

4.5 ● Evaluation 95

Ta
bl

e
4.

2
—

Be
nc

hm
ar

k
re

su
lt

s
fo

r
di

ff
er

en
t

la
yo

ut
s

w
it

h
20

0
ta

gs
an

d
on

e
m

on
th

(h
ig

he
r

is
be

tt
er

).
W

O
,P

R
O

X
an

d
Py

ra
m

id
de

no
te

w
he

th
er

th
e

re
sp

ec
tiv

e
wo

rd
Or

de
r,

pr
ox

im
it

y
an

d
lo

ca
ti

on
co

m
po

ne
nt

s
of

th
e

ob
je

ct
iv

e
fu

nc
tio

n
ar

e
ac

ti
va

te
d.

Th
e

la
st

ro
w

re
pr

es
en

ts
th

e
fu

ll
Py

ra
m

id
Ta

gs
la

yo
ut

.

D
en

si
ty

C
on

te
xt

C
on

te
xt

7
W

O
5

W
O

10
W

O
50

D
at

eC
os

Si
m

pl
e

7.
8

0.
38

0.
17

0.
56

0.
55

0.
54

0.
77

W
O

7.
4

0.
40

0.
20

0.
99

0.
99

0.
97

0.
78

PR
O

X
8.

1
0.

55
0.

40
0.

51
0.

51
0.

51
0.

79
PR

O
X

+
W

O
8.

1
0.

54
0.

38
0.

70
0.

67
0.

66
0.

79
Py

ra
m

id
4.

7
0.

43
0.

25
0.

53
0.

52
0.

55
0.

80
Py

ra
m

id
+

W
O

4.
6

0.
43

0.
24

0.
88

0.
82

0.
76

0.
79

Py
ra

m
id

+
PR

O
X

5.
3

0.
47

0.
29

0.
54

0.
54

0.
54

0.
82

Py
ra

m
id

+
PR

O
X

+
W

O
5.

3
0.

47
0.

29
0.

84
0.

79
0.

70
0.

82
Py

ra
m

id
+

PR
O

X
+

W
O

+
R

EP
4.

9
0.

47
0.

30
0.

84
0.

77
0.

69
0.

82

96 Chapter 4 ● Interactive Exploration of Large Document Collections

These benchmarks reveal that the proposed approach is clearly more context-,
word order- and date-aware than traditional tag clouds. Furthermore, they
show that the proposed placement strategy to visualize the temporal evolution
of tags structures the data in a meaningful way.

In addition, the visual comparison in Figure 4.8 reveals that the PROX+WO
approach offers semantically clustered tag clouds while also better preserving
the word order compared to a random layout, but with the same high density
and no increase in screen space, making it well-suited for data sets without
timestamps or in which the temporal evolution only plays a marginal role in
analyzing the data.

4.5.4 Qualitative Feedback

In addition, PyramidTags was presented individually to two visualization
experts working in a company that deals with social media monitoring. First,
they had to inspect the visualization of one month without any introduction
and tell the instructor what they thought the data set was about, how they
think the layout is supposed to work, and which insights they gained. After
explaining the system and which kind of interactions it supports, the instructor
then asked them to further explore the data set and try to find out more about
specific themes they are interested in.

Both experts stated that the triangular layout is intuitive, however, one expert
initially thought that the pyramid represented a hierarchical representation
of topics before the explanation of the system. They found it helpful that
many tags were placed in their reading direction and that the dots indicate
the assumed word order. Both quickly noticed several clusters of tags and
hypothesized about related stories and their temporal evolution. They rated the
interface as responsive, with no lag while interacting with it.

One expert was wondering why there were duplicate tags, but found it useful
after reason behind it was revealed. They noted that, in some cases, nearby tags
wrongly appeared to belong together, and suggested some sort of coloring or a
visual border to separate unrelated tags, if possible at all.

One expert was slightly irritated that clicking tags was an additive operation, in
contrast to other applications that usually require the user to press a modifier
key. While different colors for different tags were regarded necessary for
distinction, one interviewee proposed to always start with the same color for the
first selected tag and change the hue for every subsequently selected tag.

One expert would have found it useful to highlight tags based on a selected
date range at the bottom. Furthermore, they stated that also offering a negative

4.6 ● Discussion 97

Figure 4.10 — Tags that are close to each other are not necessarily related. Right:
hovering over ‘kobe bryant’ reveals that it does not relate to the nearby term
‘epstein’. Left: thin red lines visually separate tags that are placed next to each
other but are not related.

selection, that is, selecting tags that are not relevant, would improve the utility.
Both proposed to implement a filtering mechanism that would allow analysts
to explicitly search for keywords, resulting in an updated visualization solely
based on the filtered documents.

They thought that the presented search results were relevant to the selection
they performed and liked the fact that documents open in a new tab instead a
new window. One suggestion was to highlight occurrences of selected tags in
the retrieved document. Both regarded the overall system as helpful to explore
large time-stamped collections. One expert was particularly impressed that the
approach made it easy to find specific topics with just two or three clicks, even
though, at first glance, the visualization had not looked like it would really
represent that many documents.

4.6 Discussion

The visual metaphor of a tag map has the advantage that the spatial positioning
of the summarizing tags can convey semantic relationships while avoiding
predefined topics. The proposed spatialization technique enables analysts to
not only track individual tags over time, but also to quickly see at which date

98 Chapter 4 ● Interactive Exploration of Large Document Collections

range a group of possibly related tags is most present in the collection. This also
means that it aims at summarizing time-stamped documents whose associated
date is relevant to the analysis process, which is often the case with news and
social media corpora, for instance.

The relatedness between tags is induced by their distance patterns in the under-
lying data, resulting in a more fine-grained concept of relationship compared
to a range of previous approaches that define semantic similarity based on
whether tags appear in the same sentence.

The interaction techniques support analysts to select appropriate tags of interest
and retrieve related documents. If many tags are selected at the same time,
the (optional) trapezoids visualizing the respective time ranges become less
useful due to overlap. However, it rarely happens that this many tags have to
be selected, because every new item drastically reduces the search space.

A disadvantage of the approach is the increase of whitespace compared to dense
tag cloud layouts. This increase can limit the usability and utility in certain cases,
for instance on mobile devices. However, whitespace does not necessarily mean
wasted space, because the lack of content can also express information such as
less activity in certain date ranges, or less semantic coherence. Furthermore,
the space on the upper left and right can be used to place the search results
window and document viewer.

Tags that are placed close to each other do not necessarily relate to each other.
Additionally, in some cases viewers might ‘read’ a certain phrase which makes
sense grammatically, but is actually not backed by the document collection.
These are common disadvantages if complex non-linear relationships are pro-
jected onto flat visualizations. Here, users can interactively debunk such false
friends, for example by hovering over tags to reveal relationships in detail. One
of the experts raised the idea to draw borders between unrelated tags, which
would help to avoid misleading hypotheses. An exemplary implementation is
shown in Figure 4.10. Here, the thin red lines make immediately clear that the
term ‘epstein’ has nothing to do with ‘kobe bryant’, even though both tags are
placed close to each other. However, this does not solve the issue completely as
these borders also increase the visual separation to potentially related tags that
are placed further away.

In contrast to many related approaches, the method was applied to large, real-
world data sets in order to prove its scalability. On a modern 6-core CPU with a
parallel implementation, it takes about 15 seconds to process 10,000 documents
extracting 100 tags, analyzing their relationship and generating an index for
document retrieval. Processing 500,000 documents extracting 250 tags lasts
10-20 minutes. Generating the final visualization additionally takes several

4.6 ● Discussion 99

minutes. Once the visualization is generated, users can interact with it and
retrieve documents instantly.

Aiming for several objectives at the same time is challenging. Nevertheless, the
quantitative evaluation showed that the approach reliably produces semantically
clustered layouts which also convey temporal patterns and preserve the word
order for the most important pairs. In combination with rich interactions,
the system enables analysts to explore and gain insights into large document
collections.

C
h

a
p

t
e

r

5
Dynamic Document Clustering

As outlined in Section 2.1.2, clustering algorithms facilitate the analysis of
large data sets, particularly if they comprise unstructured data such as textual
documents. The automatic structuring of data sets into groups of similar items
helps analysts with managing and organizing large collections. In addition
to the resulting grouping, the clusters themselves may also reveal interesting
characteristics of the underlying data set. In the context of the AIX framework
that was presented in Section 2.5, this refers to visualizing and understanding
the model itself and not only its outputs, the groups of documents. The
defining characteristics of each cluster can make relationships in the data set
visible because they essentially represent aggregations of similar items. For
instance, a given clustering of documents might reveal which terms relate
to a particular topic and are often used in a set of similar documents, even
though the actual terms may rarely co-occur in the same document. Not every
clustering algorithm allows these inspections, though. For instance, if we
populate groups by subsequently finding the nearest neighbors of all elements,
we get a clustering, but no characterizing definition of each group without
further processing.

Dhillon and Modha [2001] proposed Spherical k-Means for the clustering of
documents that have high-dimensional (≫ 1000) but very sparse vector represen-
tations. It is based on k-Means (Lloyd [1982]) and replaces the Euclidean with
the cosine distance to improve the performance on documents. Section 2.1.2
gives a more detailed overview of the algorithm. Spherical k-Means performs
competitively on textual data sets (Lelu and Cadot [2021]), is computationally

102 Chapter 5 ● Dynamic Document Clustering

efficient if k is sufficiently small, and, most importantly, allows for a visual
inspection of the resulting centroids that define the clusters, given a word-based
vector representation of the documents. It is therefore a suitable choice for
making structures and relationships in large collections visually apparent.

Table 5.1 shows an example how clustering helps to organize and structure the
content of text collections. It is based on the 20 Newsgroups data set1 containing
about 20,000 posts across 20 different newsgroups. The left column shows
the most important terms for each newsgroup, and the right column for each
extracted cluster after the Spherical k-Means algorithm was applied to all posts
(the clusters have been rearranged for an easier comparison). Many extracted
clusters have striking similarities to one of the theme-specific newsgroups.

However, k-Means generally does not scale well with the number of clusters,
making fine-grained analyses of large document collections infeasible, particu-
larly in interactive settings. Furthermore, the algorithm does not support the
dynamic clustering of streaming data. The discussion in Section 2.1.2 shows that
there is generally a lack of algorithms that enable an efficient dynamic clustering
for the visual analysis of streaming documents. Hence, this chapter proposes
an efficient and interpretable dynamic clustering algorithm that is based on an
accelerated version of Spherical k-Means. The first part presents and evaluates
the two strategies for accelerating the Spherical k-Means algorithm, and the
second part details the proposed changes for making it dynamic.

5.1 Efficient Spherical k-Means

On each iteration of (Spherical) k-Means, one has to find the closest cluster
centroid for every data item, which results in O(kN) comparisons where one
has to compute the distance between two vectors. The linear dependency of k
on the time complexity can lead to prohibitively large running times on larger
data sets with k≫ 10.

Several approaches have been developed to increase the computational efficiency
of k-Means, but they cannot be applied to Spherical k-Means on sparse document
representations. Elkan [2003] applied the triangle inequality to reduce the
number of distance calculations that have to be performed, but the triangle
inequality does not hold for the cosine distance function. Data structures for
efficient nearest neighbor searches that are based on, for instance, k-d trees
(Bentley [1975]), coordinate-pruning (Teflioudi and Gemulla [2016]), or product
quantization codes (Johnson et al. [2021]), generally assume moderately-sized,
dense input vectors, or are based on the triangle inequality. Numerous efficient
1 http://qwone.com/ jason/20Newsgroups/

5.1 ● Efficient Spherical k-Means 103

Table 5.1 — Clustering helps to visually structure unlabeled text collections.
Left: Most important terms for each newsgroup in the 20 Newsgroups data set.
Right: Most important terms for each cluster after applying Spherical k-Means
to all posts of the 20 Newsgroups data set. The clusters have been rearranged
based on their similarity to a newsgroup.

Newsgroup Cluster

1: god, morality, atheists, objective, atheism 1: objective, morality, moral, abortion, o’dwyer

2: graphics, image, 3d, images, files 2: 00, graphics, $, 3d, xv

3: windows, dos, file, microsoft, files 3: windows, dos, mouse, drivers, file

4: drive, ide, scsi, card, controller 4: drive, card, scsi, mac, ide

5: mac, apple, monitor, centris, drive 5: apple, kent, duo, sandvik@newton, alink

6: window, motif, server, xterm, x11r5 6: window, program, file, image, files

7: sale, 00, offer, shipping, forsale 7: sale, offer, condition, shipping, cd

8: car, cars, engine, oil, ford 8: car, cars, engine, oil, radar

9: bike, dod, ride, bmw, riding 9: simms, georgia, simm, v6, uga

10: baseball, game, team, games, players 10: baseball, game, games, players, year

11: game, hockey, team, nhl, espn 11: game, hockey, team, nhl, espn

12: clipper, key, encryption, chip, keys 12: clipper, key, encryption, chip, bike

13: circuit, copy, battery, radio, power 13: power, battery, circuit, test, voltage

14: msg, doctor, medical, disease, photography 14: msg, medical, doctor, disease, drugs

15: space, nasa, moon, shuttle, orbit 15: space, nasa, moon, shuttle, orbit

16: god, jesus, church, christ, christians 16: god, jesus, bible, church, christian

17: gun, fbi, guns, batf, atf 17: gun, guns, people, government, rights

18: israel, israeli, turkish, jews, armenian 18: israel, israeli, jews, turkish, armenian

19: cramer, people, gay, government, clayton 19: fbi, koresh, batf, fire, waco

20: god, jesus, objective, morality, christian 20: theory, evolution, science, creationism, uiuc

104 Chapter 5 ● Dynamic Document Clustering

online versions of k-Means have been proposed, but these approaches only
approximate the k-Means objective.

In this section, an accelerated version of Spherical k-Means is presented that can
efficiently cluster large document collections even if k≫ 10. The vast majority
of the running time is spent on calculating the cosine similarity between an
input vector and a cluster centroid. Both proposed strategies aim to reduce the
average number of these computations that have to be performed. The first
strategy exploits the observation that the number of changing cluster centroids
typically decreases after several iterations. The second strategy employs an
indexing structure that leverages the sparsity of the input vectors for an efficient
(yet non-approximated) retrieval of cluster centroids that maximize the cosine
similarity.

5.1.1 Method

This section details the two complementing strategies to accelerate the Spherical
k-Means algorithm on sparse document representations.

Non-Changing Clusters (NCC)

Over the course of the iterations, the number of affected data items typically
decreases, that means, fewer and fewer data items change their cluster associa-
tion during the assignment step. As a result, there is an increasing number of
cluster centroids that stay the same in later iterations. We can take advantage
of this to skip some of the comparisons if the element belongs to one of these
clusters.

After recalculating the cluster centroids, we determine the set of centroids Cu
that have not changed compared to the previous iteration (within a certain
tolerance ϵ to accommodate for rounding errors). During the assignment step,
we then check whether the current data item xi was previously associated with
a cluster in Cu. If this is the case, we only need to calculate the similarity of xi
to centroids cj /∈ Cu that have actually changed and compare whether we get a
higher similarity than with our previous association ai. We already know from
the past iteration that ai relates to the most similar centroid among Cu since
these clusters have not changed in the current iteration.

Dot Product Indexing Structure (INDEX)

In the assignment step, we search for the centroid that minimizes the cosine
distance to the current item and, thus, maximizes the dot product with the
current item since we operate on unit-length vectors. For sparse input vectors,

5.1 ● Efficient Spherical k-Means 105

it could very well be the case that the non-zero entries of a centroid do not
overlap with the non-zero entries of the current item, leading to a dot product
of 0. To ignore such centroids, we could build an inverse index at the beginning
of this step that maps an index to all centroids that have a non-zero value at
that position. Given an item, we can then enumerate through all of its non-zero
values to retrieve the union of the centroids that share at least one non-zero
entry. The dot product with any remaining centroid is zero. This can lead to
a measurable speed-up if both the average number of non-zero input vector
entries is sufficiently small and the centroids are distinct enough. However,
even in sparse settings one cannot generally assume that this is the case.

To improve this indexing structure we can exploit the fact that the input and
centroid vectors have length one, and that the dot product with the (possibly
updated) centroid based on the previous assignment will most likely be greater
than zero.

Lemma 5.1.1. Given two unit-length vectors c = [c1, ..., cn]
⊺, x = [x1, ..., xn]

⊺ ∈ Rn

and let S = {a1, ..., am}, ai ∈N be the set of indexes that correspond to a non-zero value
in x. That is, xi ≠ 0 if and only if i ∈ S. If c ⋅ x ≥ λ then it holds that ∑m

i=1 c2
ai
≥ λ2.

Proof. Let c ⋅ x ≥ λ, ĉ = [ca1
, ..., cam

]⊺, x̂ = [xa1
, ..., xam

]⊺. It follows that c ⋅ x = ĉ ⋅ x̂,
because x̂ comprises all non-zero entries of x. We can rewrite the dot product as
follows: ĉ ⋅ x̂ = ∥ĉ∥∥x̂∥ cos θ̂ where θ̂ is the angle between both vectors. It follows
that ∥ĉ∥ cos θ̂ ≥ λ, because ∥x̂∥ = 1. It holds that cos θ̂ ≤ 1. Thus, it follows that√
∑m

i=1 c2
ai
= ∥ĉ∥ ≥ λ.

Applied to an input vector x and a centroid c, it means that the cosine similarity
can only be λ or higher if the sum of the squared centroid values of the over-
lapping non-zero entries equates to at least λ2. Based on this, we can build an
indexing structure for a given minimum dot product of λ.

Given a sparse centroid ci that we want to add to the structure, we first sort the
index-value pairs of the present entries in ci in descending order of their value.
For each pair, we then perform the following steps:

1. We add the index with the centroid ID i to the general index map G.
This corresponds to the basic indexing structure that was outlined at the
beginning of this section. That is, for a given index, one can then retrieve a
list of centroids that have a non-zero value at the corresponding position.

2. If the value is greater than or equal to λ, we immediately add the index
with a minimum overlap count of 1 and the ID to the index map P. If a

106 Chapter 5 ● Dynamic Document Clustering

query vector has a non-zero value at that position, it could already be
enough to lead to a dot product ≥ λ, hence the overlap count of 1.

3. If the value is lower than λ, a query vector cannot reach the required
minimum dot product if it only shares a non-zero entry with ci at that
position. We iterate through the next pairs and sum up the squared
values (including the current pair), until we reach our threshold of λ2.
The number of affected pairs is then our minimum overlap count, which
follows from Lemma 5.1.1. We do not need to take the previous (higher)
values into account. We can assume that these pairs do not overlap with
the query vector since the previously added entries to P would have
already covered such a case. If we cannot reach the threshold, we stop
the process for this centroid. Otherwise, we add the index with the
determined count and the ID to the index map P and proceed to the next
pair2.

Given an input vector xi as query and the minimum dot product of λ, we deter-
mine the list of centroids for which we need to compute the cosine similarity as
follows:

1. For each non-zero entry of xi, we retrieve the list of overlapping centroids
using the general index map G and increment our local count map C
for each of the IDs in the list. Given a centroid, we can then use C to
determine the number of overlapping non-zero entries with xi.

2. We iterate again through the entries of xi. For each entry, we retrieve
the list of centroid candidates and the corresponding minimum overlap
counts using P. We add those candidates to our resulting set that meet
the minimum overlap count, which we can determine using C.

This indexing structure helps to accelerate the Spherical k-Means algorithm.
During the assignment step, we first build the index from the current centroids.
Given an input vector, we calculate the dot product with the centroid that
corresponds to the assignment in the preceding iteration, which serves as a
baseline. If the calculated similarity is at least as high as our threshold λ, we can
query our structure to retrieve a (possibly) shorter list of centroids for which
2 A naive implementation of this step would result in a worst-case time complexity of O(m2)

for adding a centroid with m non-zero entries. We can perform this step in linear time,
though. After reaching the threshold, we save the end position. Before we proceed to the
next pair, we first subtract the squared value of the current pair from the sum. For the next
pair, we can then continue the summation from the previous end position until we reach our
threshold. Thus, we add and subtract each squared value at most once.

5.1 ● Efficient Spherical k-Means 107

we need to compute the dot product. We can guarantee that all other centroids
would result in a dot product < λ.

The higher λ, the smaller the expected number of items in our centroid list, but
also the smaller the percentage of input items that meet the required baseline dot
product. To improve this trade-off, we build several such indexing structures
with different values of λ. Upon retrieval, we select the structure with the
highest threshold which is still below the respective baseline value. The general
index map G has to be built only once since it does not depend on the threshold.
It is possible to combine this strategy with the first one. In this case, we would
just further filter the returned list of centroids according to the rules outlined in
the previous section.

5.1.2 Evaluation

The approach was applied to one million tweets and 200,000 ArXiv paper
abstracts, with k ranging between 50 and 5,000, to evaluate the impact of the
strategies on the running time of the clustering.

Test Setup

One million English tweets and 200,000 paper abstracts (including the title)
were sampled, excluding documents that only contain stop words to avoid zero
vectors. The tweets originated from a bigger collection that was fetched using
the Twitter API, and the papers were retrieved from ArXiv3. The setup script
tokenizes the documents and converts them into a sparse TF-IDF-weighted
Bag-of-Words representation, that is, for each present term in a document, it
sets the value of the corresponding dimension to the term frequency multiplied
with the logarithm of the inverse document frequency of the term. The script
ignores very frequent words (stop words) and divides each vector by its length
to obtain unit-length vectors. The vocabulary was not truncated, leading to
325,556-dimensional paper abstract and 783,304-dimensional tweet vectors, each
containing on average 58 and 10 non-zero entries, respectively.

The evaluation compares two modes with the baseline algorithm outlined in
Section 2.1.2 using three different values of k: 50, 500, and 5,000. The first
mode only utilizes the non-changing clusters strategy (NCC), and the second
one represents the full approach with both strategies enabled (NCC+INDEX).
For the full approach, the set of minimum dot products was chosen to be
{0.1, 0.25, 0.4, 0.6}. For all modes, the clustering loop terminates if the assign-
ments do not change anymore or the centroids largely stay the same (maximum

3 https://www.kaggle.com/Cornell-University/arxiv

108 Chapter 5 ● Dynamic Document Clustering

Table 5.2 — The median running times of the two strategies (in minutes) on 1m
tweets and 200k paper abstracts depending on different cluster sizes (lower is
better). NCC refers to the non-changing cluster strategy and INDEX to the dot
product indexing structure. NCC+INDEX represents the full approach.

Tweets (1m) Abstracts (200k)
k = 50 500 5000 k = 50 500 5000

Baseline 0.5 11.1 44.3 0.3 13.3 31.7
NCC 0.4 6.1 18.1 0.3 7.3 13.9
NCC+INDEX 0.7 2.1 2.0 0.6 5.6 5.5

Figure 5.1 — The median running time of the two strategies, plotted on loga-
rithmic scales. The bars indicate the interquartile range. The dots are connected
with a dotted line to support the visual tracking of a specific configuration.

squared Euclidean distance between any two subsequent centroids is < 0.0001).
The script ran each configuration five times on a 32-core CPU and the reported
results are based on the median running time.

Results

Table 5.2 lists the results that are also plotted in Figure 5.1 on a logarithmic
scale. The error bars denote the interquartile ranges. The non-changing clusters
strategy leads to shorter running times across all configurations in both data sets.
For larger values of k, the indexing structure further accelerates the clustering.
The results show a more than 20-fold reduction of the time it takes to cluster one
million tweets into five thousand clusters, and a more than fivefold reduction

5.2 ● Dynamic Spherical k-Means 109

in the case of the less sparse abstracts. In contrast to the baseline scenario,
clustering the documents into 5,000 instead of 500 clusters did not take more
time with this approach on the two data sets. For k = 50, the indexing structure
cannot offset the additional overhead it introduces, resulting in slightly longer
running times.

Discussion

In the case of sparse input vectors, both strategies can significantly accelerate
the Spherical k-Means algorithm, making a fine-grained cluster-based analysis
of large document collections with k ≫ 10 much more feasible. With a fixed
number of input documents, the efficiency of the indexing structure typically
increases with higher cluster sizes because the probability that a frequent word
is an important component of many centroids decreases. This explains why the
running time does not seem to increase above k = 500.

Building the index on every iteration takes time, which does not pay off for
smaller cluster sizes. It is therefore advisable to enable the INDEX strategy
dynamically whenever the number of clusters that have changed compared to
the previous iteration exceeds a certain threshold (e.g., 100).

It may seem odd that the duration it takes to process 500 clusters in the
baseline scenario is more than two times longer than one would expect from
the running time of processing 50 clusters. One reason for this behavior is
the available cache size. If the number of clusters is sufficiently small, the
centroids may fit completely into the cache of the processor, reducing expensive
memory fetches. For larger values of k and, thus, increased memory usage,
the percentage of cache misses increases, which reduces the computational
efficiency significantly.

5.2 Dynamic Spherical k-Means

Dynamic entails two important properties for the cluster-based visual analysis of
streaming data. First, the algorithm should support incremental updates. The
amount of visual changes on each update should be reduced and the retrieved
clusters should be coherent over time. Second, the algorithm should choose a
suitable number of clusters within the provided constraints (e.g., the maximum
number of clusters). In addition, the algorithm needs to be fast enough as it
will be invoked at regular intervals.

The high-level idea of the dynamic version of Spherical k-Means is as follows.
We take the centroids of the previous run into account when we set the initial
centroids so that we get more coherent clusters over time. We then run the

110 Chapter 5 ● Dynamic Document Clustering

Given:
Input : rows of ∈ in sliding window ,

: number of runs, −1: Previous centroids

1. : GetClusterSizes(, −1)
2. for each ∈ :

a. for each ∈ :
i. : , or optionally : Sample(,)
ii. ′ , : InitializeCentroids(, , −1)
iii. , : KMeansCosine(, , ′ ,)
iv. , : DaviesBouldinIndex(, ,)

3. : BestResult(,)
4. Match(−1,)

Figure 5.2 — Main steps of the Dynamic Spherical k-Means algorithm.

optimization with different values of k and choose the best result according to an
internal evaluation criterion: the distance of each element to its corresponding
centroid should be small, and the centroids should be sufficiently distinct from
each other.

5.2.1 Method

Figure 5.2 outlines the main steps of the algorithm. The input I comprises the
document vectors of all items in the sliding window. Compared to the previous
run, some items may not be part of the set anymore, some will be new, and
some may remain unchanged. Let kmin and kmax be the desired minimum and
maximum number of clusters, respectively. We now have to determine which
values of k we would like to test and run the clustering with (GetClusterSizes).
If it is the very first run, we set K = {kmin, kmin + 1, kmin + 3, ..., kmax}. Otherwise,
K = {kp, kp + 1, kp + 3, kp + 6, ..., kmax} where kp is the number of clusters from the
previous run. We increment the step size after every step to achieve a sublinear
scaling regarding kmax.

The way we initialize the centroids c1, ..., ck also depends on the previous run
(InitializeCentroids). On the first run, we apply the k-means++ initialization
strategy that was adapted for the cosine distance by Endo and Miyamoto [2015]:
we pick one element randomly as the first centroid c1, and for each remaining
ci we draw an element probabilistically based on its cosine distance to the

5.2 ● Dynamic Spherical k-Means 111

nearest neighbor in the set of already chosen centroids c1, ..., ci−1. If all distances
are zero, the current set of centroids already cover all data items, so we stop
the loop early and decrease k accordingly. Hence, the initialization will never
return a clustering with duplicate clusters, even if this means that k < kmin. On
an incremental run, we first apply the old clustering to the new inputs and
determine the set of p non-empty clusters. We then set c1, ..., cp as the first
p initial centroids and determine the remaining centroids cp+1, ..., ck with the
initialization strategy outlined above.

Given these initial centroids, we perform the optimization loop until conver-
gence (KMeansCosine). This is analogous to the main body of the Spherical
k-Means algorithm (i.e., without the initialization step). For each k ∈ K, we run
the optimization process R-times to mitigate the impact of a bad initialization
(the default value of R is 2).

We calculate the Davies-Bouldin-Index (DBI) (Davies and Bouldin [1979]) for
each clustering result (different cluster size or run) and return the clustering
with the lowest score (BestResult). The DBI is an internal criterion for measuring
the quality of a clustering.

We now need to connect the clustering result from the previous run with the
current one, that is, we need to determine which clusters stayed more or less
the same, which ones are new, and which ones have been removed (because
there were too many changes or redistributions to other clusters). We match a
previous cluster cl−1

i to a current cluster cl
j if the majority of items associated

with cl−1
i that are still in I are now associated with cl

j and there is no larger
group of previous items from a different cluster for which this also holds.
The remaining clusters in the current run are then classified as new, and the
non-matched clusters from the previous run as removed.

The optimization loop usually converges fast, but the optional sampling strategy
further increases the efficiency so that the algorithm is able to cluster millions
of documents within seconds. One advantage of the k-Means algorithm and its
variants is that we can apply any clustering to new, unseen data. Thus, we can
perform the clustering on a smaller subset and extrapolate the results to the
complete data set. Given a sample ratio λ, we pick λ∣I∣ rows randomly as input
for the actual clustering run (Sample). However, we always use the complete
data set when calculating the DBI.

112 Chapter 5 ● Dynamic Document Clustering

Table 5.3 — Evaluation of the dynamic clustering approach on the 20 Newsgroups
data set that was processed as a batched stream. Each batch contains about
2k documents. The resulting normalized mutual information (NMI) refers to
the final batch (higher is better, interquartile range in brackets). The clustering
coherence score captures the average similarity of centroids between subsequent
runs. The proposed approach (in bold) leads to better and more coherent
clustering results compared to processing the bins on their own.

NMI Coherence Duration

Baseline (distinct bins) 0.50 [0.41 - 0.50] 0.37 [0.37 - 0.38] 0.13s

10 clusters max.
Dyn. sKMeans, 75% o. 0.62 [0.61 - 0.63] 0.62 [0.60 - 0.62] 0.11s
Dyn. sKMeans, 50% o. 0.63 [0.61 - 0.63] 0.61 [0.61 - 0.62] 0.14s

20 clusters max.
Dyn. sKMeans, 75% o. 0.57 [0.57 - 0.58] 0.53 [0.50 - 0.53] 0.18s
Dyn. sKMeans, 50% o. 0.59 [0.59 - 0.59] 0.54 [0.53 - 0.54] 0.22s

5.2.2 Evaluation

The well-known 20 Newsgroups data set4 serves as a benchmark data set to
evaluate the proposed Dynamic Spherical k-Means algorithm. The data set
contains nearly 20,000 posts spread across 20 different newsgroups, and the
corresponding newsgroup of each post serves as a class label to judge the
quality of the resulting clustering. It is generally difficult to obtain ground truth
labels since the grouping may also depend on individual preferences and the
task at hand. Nevertheles, the advantage of this data set is that its labels are
crowd-sourced; the authors have chosen the respective newsgroup in which
they wanted to post their message.

Test Setup

The posts were ordered by their publishing date to simulate a streaming en-
vironment. Each document (that is, the Subject line and the actual body) was
converted into a TF-IDF-weighted bag-of-words (BoW) vector representation,
ignoring stop words. The inverse document frequency is calculated based on
the complete data set. Each vector was normalized to have unit length. Apart
from stop words, the vocabulary was not truncated. Three posts were excluded
because they only contain stop words, so the final input for the clustering
comprises 19,994 non-zero vectors in total.
4 http://qwone.com/ jason/20Newsgroups/

5.2 ● Dynamic Spherical k-Means 113

The data set was processed in batches of approximately 2,000 posts (10% of the
data set size) with two different strategies: the dynamic clustering approach
and a baseline for comparison. The test script calculated the normalized mutual
information (NMI) on the final batch with the corresponding labels. The
NMI is an information-theoretic-based external criterion to judge how well a
clustering matches the class labels. It ranges between 0 (no correlation) and
1 (perfect correlation). One advantage of this score is that it also works if the
number of classes or clusters differs between the two sets. For evaluating the
coherence between two clusterings and their corresponding centroid sets C1
and C2, the script calculated the average cosine similarity of the centroids in C1
with their corresponding closest match in C2 and vice versa. Each strategy and
configuration was run five times to reduce the impact of outliers. The setup of
each strategy was as follows:

Baseline (distinct bins): The data set was split into 10 distinct batches and the
Spherical k-Means algorithm was run on each batch separately, with k set to the
number of ground-truth classes in this batch. The reported Coherence score is
the average coherence between all pairs of subsequent batches.

Proposed approach (Dyn. sKMeans): The proposed Dynamic Spherical k-
Means algorithm was applied to the data set with a sliding window size equal
to the batch size of the baseline scenario. As the window slides forward, new
posts are added and old ones removed. The script tested two strides, one that
leads to an overlap of 75% between subsequent windows and one that leads to
50% overlap. In contrast to the baseline scenario, the number of ground-truth
classes was not fed to the algorithm. Rather, two configurations were evaluated
with a maximum of 10 and 20 possible clusters, respectively. Here, the Coherence
score is the average coherence between all pairs of subsequent distinct batches to
allow a fair comparison with the baseline scores. For instance, with a stride of
one-fourth of the window size (75% overlap), the script calculates the coherence
between batches 1 and 5, 5 and 9, and so on.

Results

Table 5.3 lists the results. The proposed approach leads to better and more
coherent clustering results in all configurations compared to the baseline, and
the overall duration of each step does not increase much, despite additional
optimization runs for the dynamic version. Hence, taking the previously
calculated centroids into account in the initialization step of the algorithm has
several benefits. It leads to more coherent clustering results between subsequent
updates, it leads to faster convergence within a single optimization run, and it
also leads to better clustering results on the 20 Newsgroups data set. The higher

114 Chapter 5 ● Dynamic Document Clustering

NMI scores may seem surprising at first, but one reason for this finding is that
the initialization strategy accumulates to some extent knowledge of previous
batches, which improves the generalizability on new data.

C
h

a
p

t
e

r

6
Real-Time Analysis of Streaming

Social Media Data

With the growing influence of social media platforms such as Twitter on society,
the number of content creators, as well as the amount and topical diversity of
published content on these platforms, has vastly increased. People post about
their daily experiences and opinions, businesses about their new products, and
researchers about their latest findings. The introduction of document visual
analytics approaches in Section 2.3 shows that, apart from everyday content,
social media platforms are also a valuable source for breaking developments
and news, disaster management, and trading strategies. Thus, several visual
analytics approaches have been developed to facilitate the needs of various
domain experts, including journalists, traders, and first responders.

The sheer volume and speed of published posts pose a significant challenge
that has yet to be fully addressed. Many previously published approaches
only support offline analyses, offer limited analytical capabilities, or cannot
handle high-volume streams. Only a few exist that support an online visual
analysis of high-volume streaming data from social media. However, they either
rely on additional meta-data (e.g., voluntarily shared geolocation) or extensive
preprocessing (e.g., event detection). This chapter proposes a novel approach
that aims to enable a visual analysis of social media streams in real-time that
scales to millions of posts, without constraints on additional meta-data or
extensive preprocessing.

116 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

The approach builds upon the efficient and explainable dynamic clustering
algorithm that was introduced in Section 5.2 and the keyphrase extraction
method ELSKE proposed in Section 3.1. The clustering algorithm groups
incoming posts continuously while minimizing the amount of changes that each
update would incur. The system runs two clustering processes with different
levels of granularity in parallel. At the coarse level, the user interface visualizes
the thematic landscape of the received posts with metaphors that are easy to
comprehend and highlight what has changed after each update. Analysts can
select one or more topics to retrieve more information. For such selected topics,
the system continuously extracts and visualizes frequent important phrases
and their relationship to each other. In addition, the fine-grained clustering
process provides a digestible but diverse stream of recent posts related to this
selection. Analysts can dive deeper into topics either by specifying a search
query or selecting relevant clusters to start a new session that filters the stream
accordingly.

The main goal is to enable adaptive visual analyses irrespectively of the volume
and velocity of the stream. If analysts reside on the higher levels, they get
a broad but still manageable overview of the data, and they can gradually
increase the resolution to reveal more details, while still preserving their mental
map.

6.1 Background

Section 2.3.3 discusses existing approaches for the visual analysis of social
media posts. In the past, two main strategies have emerged to scale the analysis
of streaming data.

The first strategy leverages the geolocation of published posts to structure and
filter the stream. One advantage of this strategy is that posts can be processed
separately for each geographic region, for instance. However, the percentage of
geolocated posts has steadily declined in recent years.

The second strategy relies on an event detection algorithm to focus on specific
sets of posts. On the one hand, this strategy has the advantage that the handling
of dynamic changes is simplified as the analysis can then be carried out on
rather static batches. On the other hand, there can also be considerable delays,
which limits the usefulness of the approach for monitoring developments in
real time.

StreamExplorer (Wu et al. [2018]) was one of the first published systems that
made the visual analysis of non-geolocated social streams with tens of thousands
of posts feasible on a budget PC. In contrast to the system that is proposed

6.2 ● Task and Design Requirements 117

in this chapter, StreamExplorer first tries to recognize time periods of interest
(events), and tweets belonging to such an event can then be clustered based on
GPU-assisted self-organizing maps (SOMs). The weight vectors of the maps
are initialized with the corresponding result from the previous run to create
stable maps across updates. Analysts can apply several interactive lenses, for
instance, the word cloud lens, to investigate areas of the map and refine the
SOMs interactively. For building the tweet vector, each word is mapped to an
index with a hash function to avoid a global dictionary, and the resulting vector
is then projected to a lower-dimensional embedding with Random Sampling
for efficiency.

The pipeline that is introduced in Section 6.3 exploits the sparsity of high-
dimensional Bag-of-Words vectors and thus avoids information loss caused by
reducing the dimensionality of the representations. In addition, the visualization
of frequent phrases offers aggregations that are richer in context, the stream of
representative posts ensures a comprehensive selection of relevant tweets, and
analysts can increase the resolution of certain topics.

6.2 Task and Design Requirements

For many analysts and journalists, it is important to know what is currently
happening on social media, what themes people currently talk about. This need
to stay informed about major new developments is also referred to as situational
awareness. Apart from this more explorative task, the interest in monitoring
specific themes often increases if a major story is breaking. In such situations, it
can become challenging to quickly gain an overview of what has been posted
and to extract new information, despite focusing on a single theme.

Hence, the proposed approach aims to tackle two main goals: it should support
both the situational awareness on social media and the specific just-in-time
monitoring of currently developing themes. More specifically, the system should
enable the following analytical tasks:

(T1) Overview: Analysts should gain a continuous overview of major themes
people currently talk about on social media.

(T2) Details: If analysts have found an interesting theme, they should be able
to learn more about it.

(T3) Monitoring: It should be possible to monitor specific themes constantly
such that analysts can keep track of new developments.

118 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

(T4) Dive-in: The system should include possibilities to put certain topics at
the center of the analysis and to increase the resolution of the analysis.

This approach approximates themes with automatically derived clusters based
on the textual content of each post, which has three important benefits. First,
the resulting clusters from topic modeling or clustering algorithms structure the
content reasonably well to provide an overview and help with navigating the
thematic landscape, even if they may not perfectly match the themes the analyst
had in mind. Second, structuring the data with content-based clustering im-
poses little restrictions with regard to the data that we can process (e.g., posts do
not need to be geolocated). Third, we avoid introducing additional uncertainties
or delays caused by additional preprocessing such as event detection.

An important aspect of the approach is that it should support the real-time
analysis of streaming data. As a result, it needs to deal with additional chal-
lenges compared to the analysis of static data sets. The following requirements
summarize these challenges:

(R1) Efficiency: The system must rely on efficient methods that support inter-
active analyses on streaming data.

(R2) Flexibility: The applied methods need to quickly adapt to incoming data
because we can make only little a priori assumptions about the data that
we are going to process. For instance, new important terms (e.g., hashtags)
may appear that we would need to consider.

(R3) Consistency: The internal state should not change too much on updates
to preserve the analyst’s mental map and avoid confusion.

(R4) Sparsity: The extent and frequency of visual changes should be minimized
to reduce the cognitive load.

(R5) Transparency: We need to communicate not only the state but also its
changes, so that users can follow and comprehend what is going on.

6.3 Architecture

Based on the requirements set out in Section 6.2, a visual analytics approach
was developed to provide an overview of the currently posted content (T1), and
to enable a detailed analysis of specific themes in a hierarchical manner (T2, T3,
T4). The system was programmed in C# and runs under .NET 5.

6.3 ● Architecture 119

Document

Document
Vector

Sliding
Window

Coarse Cluster 1 Coarse Cluster 2

Fine
Cluster 1

Rep. Doc. 1Preprocessing

Dyn. Clustering
Fine

Cluster 2
Rep. Doc. 2

Fine
Cluster 3

Rep. Doc. 3

Dyn. Clustering

Selection

Coarse Cluster 1

Topical Overview

Phrase
Extraction

Rep. Doc. 1

Rep. Doc. 3

Keyphrase 1

Keyphrase 2

Keyphrase 3

Representative Items Frequent Phrases

Filters

Figure 6.1 — Architecture of the approach. The system continuously collects
social media posts and stores them in a sliding window. It runs two individual
dynamic clustering processes in parallel. For each fine cluster, it finds the
representative item and matches it to its closest coarse cluster (topic). Analysts
can select one or more coarse topics. Frequent phrases in this selection will be
extracted at regular intervals, and the associated representative items provide a
diverse but manageable stream of relevant items. The cluster selection can act
as a filter for a new session.

6.3.1 Pipeline

Figure 6.1 depicts the architecture of the approach. The system continuously
receives published posts and stores them and their derived vector embeddings
in a sliding window with configurable size. Each post is composed of a
textual body, an optional language flag, and its publishing date. Section 6.3.2
details the preprocessing steps. The system applies Dynamic Spherical k-Means
(Section 5.2) to all items in this window at regular intervals of about one
minute.

The system establishes two parallel and independent clustering processes with
different levels of granularity (i.e., different thresholds for the maximum number
of clusters). By default, the first, coarse-grained clustering does not extract more
than 10 clusters to provide analysts with an interactive topical overview (T1).
The second more fine-grained process extracts up to 100 clusters per default
and facilitates a diverse stream of representative posts. The upper limit for the
number of main clusters was set to ten so that the interface does not exceed
the usual capacity of the analyst’s short term memory, but both thresholds are
adjustable.

Throughout this chapter, the coarse-grained clusters are also called topics and
the more fine-grained ones subtopics. It should be noted, however, that topics
and subtopics do not form a classical hierarchy since both clustering processes
are independent from each other. For each subtopic, the system finds its
representative item, that is, the post closest to the respective centroid. Each post,
therefore, has two cluster associations, one fine- and one coarse-grained, so each
extracted representative item is also associated with exactly one topic.

120 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

Analysts can select one or more topics to retrieve additional details (T2). This
includes a stream of representative posts that are associated with the selection,
and extracted relevant keyphrases with ELSKE which was introduced in Sec-
tion 3.1. Such a selection of topics can be added as a new filter, which will
create a new session layer that operates on the filtered stream. Hence, with the
layered approach analysts can interactively increase the resolution and adapt
the specificity of their analysis (T4).

On every update, the frequent phrases will be updated and new representative
posts may be added. If a new subtopic appears or the representative item of
a subtopic changes and is sufficiently different, the post will be added to the
stream of representative items (T3). The number of new items per update is
limited because it correlates with the total number of subtopics. These items
offer a diverse view of what is currently being posted since they originated from
different clusters.

Compared to hierarchical clustering, the parallel clustering strategy ensures that
both clusterings have reached their (local) minimum during the optimization;
uncertainties do not accumulate across layers. Furthermore, it is more straight-
forward to visualize and comprehend the dynamic changes of two individual,
flat clusterings compared to a more complex dynamic hierarchy.

6.3.2 Preprocessing

For each incoming tweet in the desired language, the preprocessing component
creates a sparse Bag-of-Words vector representation (BoW) as input for the
clustering and for determining similar tweets. It first removes URLs in the
text, strips the # from hashtags, and removes the initial retweet markup if
present (‘RT @Username:’). Username mentions are preserved because they
often constitute helpful context. Then, the system tokenizes the cleaned content
(in lowercase) and assigns each token its corresponding vocabulary index,
ignoring stop words and punctuation characters. We may need to add novel
tokens to the vocabulary during this step. For the final sparse vector, we set
the value of the present token indices to their corresponding TF-IDF weight,
and divide the vector by its length to retrieve unit vectors. We dismiss tweets
that only contain stop words to avoid zero vectors. For calculating the inverse
document frequency, we use a random sample of tweets collected over several
months.

One major advantage of the clustering algorithm on a set of BoW vectors is
that the resulting cluster centroids can be interpreted as a weighted term list.
Hence, we can easily extract the terms with the highest weight to visualize the
characteristics of each cluster. The BoW approach for representing documents

6.4 ● Visualization Techniques 121

D

C E

E‘

A

B

F

G

Figure 6.2 — Overview of the proposed system applied to a real-time stream of
tweets. A: Topical overview of the 270k posts that are in the sliding window at
the moment. B: Topics of interest (ToI) selected by the user. C: Visualization of
frequent phrases in the ToI. D: Stream of representative posts in the ToI. E: List
of similar posts to the selected representative post E’. F: History slider to peek
at previous clustering versions. G: Dive into topics based on the search query
or the selected topics.

is also very efficient. For comparison, the preprocessing pipeline can process
more than 30,000 posts per second on a single core.

6.4 Visualization Techniques

As outlined in Section 6.3, the system continuously receives hundreds of so-
cial media posts each second and processes them with the parallel dynamic
clustering strategy. The focus in this chapter is on tweets, but conceptually
the approach would also work with textual posts from other social media
platforms.

Figure 6.2 shows the user interface of the system. On the left side, the Topical
Overview (A) visualizes the extracted topics, which will be described in Sec-
tion 6.4.1. Analysts can select one or several topics of interest for additional
details (B). This will activate the Frequent Phrases View (C) that contains a visual
summary of the most important keyphrases in the selection, and the Representa-

122 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

topic description

temporal evolution
no. posts

new term red: removed
magenta: moving
green: new

target cluster

source
cluster

Figure 6.3 — Overview of the topics after a new batch has been processed.
The most defining terms of a topic serve as a description and the size of the
cluster is mapped to the width of the bar below the description. A small line
chart is embedded which shows the temporal evolution of the respective topic.
Here, the cluster marked with the dark gray bar to the very left is currently
being updated. The proportions of the stacked bars in red, magenta, and dark
green represent the posts in the cluster that were removed, moved elsewhere,
and newly added, respectively. Curved lines at the left side indicate to which
clusters posts were moved.

tive Items View (D) with a stream of diverse and relevant tweets. Sections 6.4.2
and 6.4.3 discuss both views, respectively.

6.4.1 Topical Overview

The resulting topics from the coarse-grained dynamic clustering process provide
analysts with an interactive overview of the various themes people currently
post about. Similar to the concept of small multiples, the user interface plots com-
pact summaries of the topics in a list view for an easy comparison. Figure 6.3
shows an example.

The size of each cluster is mapped to the width of its bar. We overlay the
number of posts and a small line chart onto the bar. The line chart visualizes
the temporal evolution of the cluster in the current sliding window, that is, the
number of published posts in the cluster over time.

One advantage of the BoW model is that the cluster centroids are interpretable.
If we sort the key-value pairs of a centroid vector in descending order of the

6.4 ● Visualization Techniques 123

value, we retrieve a list of the most defining terms of the respective cluster. We
take up to five of these terms to generate a descriptive but short summary of
the topic’s main content, which is shown right above each bar.

Each topic has its own distinct color so that we can visually indicate changes to
the clustering and easily map representative posts to their corresponding topic.
We ensure that all cluster colors have roughly the same perceived brightness,
for several reasons. This strategy mitigates perceived differences of the clusters
due to dominant hues. In addition, it makes sure that the overlays in dark
gray are clearly visible. Finally, we have a set of special colors that the system
uses across all clusters to indicate the type of change after an update (e.g., dark
green for new posts). These colors are darker to set them apart from the cluster
colors.

On each update, the system determines what has changed compared to the
previous clustering, for instance, which posts have moved from one to another
cluster. However, revealing all changes at once might lead to a sensory overload.
Thus, the changes are visualized cluster-by-cluster from top to bottom. A short
thick line in dark gray to the left of the bar marks the current source cluster
of the update. For instance, in Figure 6.3, the topic with ‘death’ as the most
defining term is currently being updated.

If a new term appears in the topic description, it is highlighted in dark green
for some seconds. We further replace the bar of the current source clusters
with a stacked bar to indicate the proportion of posts in the cluster that were
removed from the sliding window in red, posts that have been moved to other
target topics in magenta, new posts in dark green, and the remaining posts in
the original color of the cluster. For each target topic, we append a bar that
represents the proportion of posts which have been moved from the source to
the respective cluster. This bar has the same color as the source cluster, but with
a dark green line at the top.

We also visualize the flow to the prevailing target topics with curves on the
left side of the list so that analysts can quickly spot if clusters split or merge.
Both the thickness and the gray level of a curve are proportional to the square
root of the number of moved posts the curve should represent. In theory, there
can be as many curves as there are topics (minus one), so we have to limit
the maximum thickness. As a result, depending on the visual encoding we
would either have very thin or very light curves at times, so we use both visual
variables to encode a wider range of values.

The duration of each visual update varies depending on the complexity. The
more affected target clusters and the more appearing terms, the longer we wait
before we proceed to the next cluster. The more visual changes, the longer

124 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

users might need to grasp them. Analysts can adjust the average speed to their
needs with a toggle button at the top of the window, similar to changing the
playback speed of a video. The changes are rolled out step by step but without
animated transitions. This strategy leverages visual preattentive processing so
that users can immediately notice outliers and compare changes across steps
more accurately.

After each update, we save the state of the topical overview in the history. Users
can choose with a slider at the bottom left of the window whether they want to
peek at a previous version of the topical overview (Figure 6.2 F). For instance,
this is handy when they cannot monitor changes continuously.

Analysts can enter a search query above the list of topics (Figure 6.2 G). Then, a
new clustering session starts in which only the posts that match the query are
processed. Similarly, analysts can select one or several topics as a filter. Both
types of filters can be chained to increase the resolution down to a handful of
posts. However, only the clustering processes from the current layer are actively
running. For instance, if an analyst dove into a topic, we create a filter based
on the current set of centroids at the parent layer and we use that filter for the
new session, but the clustering processes of the parent level will then pause and
only continue their work if the analyst goes back to the parent session.

6.4.2 Frequent Phrases View

The short lists of terms already hint at what each topic is about, but they only
offer little context. When analysts select one or several topics of interest, the
goal of the approach is to visualize more precisely which issues and themes to
what extent people are tweeting about in this topic selection. To achieve this,
we continuously extract the most relevant keyphrases from all tweets belonging
to the selection and visualize their distribution across the posts as well as their
temporal evolution.

Figure 6.4 depicts an example of the top ten phrases in a topic related to the
super bowl event, sorted by the frequency in descending order. The number
of tweets containing the respective phrase is shown at the very right of each
row. The font size of the phrase correlates with the returned importance score
from the keyphrase extraction algorithm. If the phrase has just appeared after
an update, it will be highlighted in dark green for some seconds to catch the
attention of the analyst.

The stacked bar, composed of five bins from dark gray to blue, represents
the proportion of tweets containing the phrase compared to all tweets in the
selection. Each bin corresponds to one fifth of the sliding window time range
and depicts the proportion of tweets that were originally published within

6.4 ● Visualization Techniques 125

relative phrase frequency barcode: affected posts

blue bins:
recently published posts

selected phrasesproportion of posts containing:
@buccaneers, sblv gobucs, super bowl Iv champions

Figure 6.4 — Visualization of the most important frequent phrases in a selection
of topics. The bar composed of dark gray and blue-ish bins represents the
number of posts containing the respective phrase. The blue bins depict the
proportion of new posts to indicate trends. Each post is mapped to a horizontal
position in the barcode-like visualizations below each phrase. Dark ticks indicate
the posts containing the respective phrase so that users can see which set of
phrases often co-occur. Analysts can select phrases to highlight the overlap in
orange.

that time frame (i.e., the effective date of any retweet is the publishing date of
the original tweet). For instance, in a sliding window of 20 minutes, the blue
bin at the right represents how many tweets have just been published within
the last four minutes, and the dark gray bin to the left how many are older
than 16 minutes. In the example, the bars of the two phrases at the bottom
are largely gray whereas the bar corresponding to ‘@tombrady’ is largely blue.
This means that people are actively tweeting new posts containing ‘@tombrady’
at the moment but seldomly ones with ‘super bowl lv champions’ (except for
retweets).

Right underneath each phrase, there is a small barcode-like strip composed
of 100 bins that visualizes the distribution of the corresponding phrase. This
strip should enable analysts to quickly estimate which phrases appear in the
same tweets. Let n be the total number of posts from which the phrases were
extracted. Then, we assign each post a unique integer in the range [1, n] and
rescale these to real numbers in the range [0, 100). The first bin then corresponds

126 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

to all posts with a value in [0, 1), the second bin to all in [1, 2), and so on. The
shade of each bin from white to black represents the proportion of posts in
that bin containing the respective phrase. For instance, most of the tweets in
Figure 6.4 contain ‘super bowl’ or ‘superbowl’, but rarely both because there are
only a few darker areas at the same horizontal position. In other words, the
intersection of the first two strips would be mostly white.

We greedily optimize the mapping to increase the length and number of con-
tiguous blocks in black. Starting with the most frequent phrase, we assign
consecutive numbers to all unassigned tweets containing a certain phrase. Let
us assume we have three phrases p1, p2, p3 (in descending order of the fre-
quency) and 100 tweets in total. 40 tweets (A) would contain the first phrase, 20
(B) p2 but not p1, and 10 (C) p3 but neither p2 nor p1. Then, we would assign
the 40 tweets (A) unique numbers from 0 to 39, tweets in B from 40 to 59, tweets
in C from 60 to 69, and the remaining 30 tweets would be assigned to slots 70 to
99. Hence, tweets containing p2 would never be assigned a number higher than
59, but they could get a number lower than 40 if they also contain p1.

Analysts can click on phrases to select them. The tweets containing all selected
phrases will be highlighted in orange, and this filter then also applies to the
stream of representative posts that is described next.

6.4.3 Stream of Representative Posts

The main purpose of the fine-grained clustering process is to extract represen-
tative posts for each subtopic and map them to their corresponding topic, as
discussed in Section 6.3. Inspired by the concept of learning by example, these
posts should convey the variety of points that are currently being discussed in a
topic of interest. As individual posts, they are richer in context, but they should
also cover different aspects because they originated from different subtopics.
It should be noted that the number of new representative posts per update is
bound by the total number of subtopics by design. Hence, semantically zoom-
ing into topics does not increase or decrease the average number of posts in the
stream, it only leads to a better coverage of the more specified topics.

Figure 6.5 shows an exemplary stream of posts related to a selected topic. The
term list at the top of the post describes the associated subtopic. For instance, the
first tweet in the example that congratulates the basketball player for winning
the skills challenge belongs to the subtopic that has ‘sabonis’, ‘domantas’, and
‘skills’ as the most defining terms. The color of each tweet relates to the topic it
belongs to, in case analysts select more than one topic. At the bottom, a small
bar chart depicts the proportion of tweets in the selection that are similar to the
representative post. The similarity is calculated based on the cosine similarity

6.4 ● Visualization Techniques 127

coverage histogram

publishing date

related posts

subtopic of item

new posts available

Figure 6.5 — Stream of representative posts related to a selection of topics. The
color of the associated topic is mapped to the background of each tweet. The
list of terms at the top of each item describes the subtopic of that item. Analysts
can click on the bar chart that shows the proportion of similar posts to retrieve
a list of such similar posts in a new column. The coverage histogram at the
top-right corner composed of five stacked bars indicates how well the items
in the list cover all posts within the topic selection (red: proportion of similar
tweets, blue: dissimilar tweets).

between the document vectors. A click on the bar will open a separate column
with a list of related tweets, sorted by their similarity to the reference item.

If new posts have been extracted after an update, a blue button to insert these
posts appears as a notification to the user. At the top-right of the view, next
to the header, stacked bars from red to blue visualize how well the extracted
representations cover all posts in the selected topics (coverage histogram). For
each post in the topic selection, the system calculates the cosine similarity to
the representative post of the subtopic they are in. The width of a bar then
corresponds to the number of posts that have a cosine similarity in a certain
range. Red represents posts with a high similarity, whereas the blue bar the
ones with a low similarity, which are thus hardly covered by the stream of
representative items. If the stacked bars are mainly blue-ish, this indicates
that the topic selection relates to a very diverse set of themes which are not
adequately represented by the subtopics. Analysts should then consider to
increase the resolution of the analysis with a new filtered session layer. The

128 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

Figure 6.6 — The overview of the topics on the left side shows that people are
currently tweeting about the Grammys, the NBA All Stars Event, Covid, and
the AEW Revolution Wrestling Event, among other more diverse topics. The
notable uptick in the small line chart of the selected topic indicates that this
cluster of posts about the basketball player Steph Curry has just gone viral. On
the right side, the background gradients of the frequent phrases in this topic
are mostly blue-ish, which also indicates that many users publish new tweets
containing these phrases.

stacked bars in Figure 6.5 are largely red, though, so here, the posts seem to
cover most of the current content in this topic.

6.5 Use Cases

6.5.1 NBA, BTS, and Oprah

This use case is about tweets that were streamed on Sunday evening (US ET),
March 7th, 2021, at a rate of about 250 new posts per second. The size of
the sliding window is 20 minutes, corresponding to roughly 250,000-300,000
tweets.

The analyst first scans all topics and notices that people currently seem to tweet
about the Grammys, the NBA All Stars Event, Covid, the AEW Revolution

6.5 ● Use Cases 129

Wrestling Event, and other more general topics. One bigger topic that includes
the hashtag ‘btsgrammyperformers’ catches the interest of the analyst who clicks
on it to find out more. From the visualized distribution of the frequent phrases
they conclude that this is a homogeneous cluster in which people mostly tweet
about the fact that the boygroup BTS was announced to perform at the Grammys
the week after, including celebrations of Min Yoon-gi who is a member of BTS
(‘what yoongi wants, yoongi gets’).

The analyst notices that the line chart of the ‘steph, nbaallstar, curry’ cluster
indicates a strong upward trend (Figure 6.6). After switching to that topic, the
list of representative items reveals that thousands of the received tweets cheer
on the basketball player Steph Curry. After a while, the blue badge appears,
notifying the analyst that new posts are available. They click on it to insert
the recently extracted tweets into the list. Most of the new tweets congratulate
him (‘Steph Curry greatest shooter ever!’), again with thousands of similar tweets,
indicating that the basketball player is performing very well in the currently
running game.

Later, a new cluster appears about Meghan Markle at Oprah (‘harryandmeghanono-
prah’). Initially, people talk about whether and where to watch the interview.
Shortly afterward, the line chart of the topic goes strongly up (Figure 6.2). From
the visualization of the frequent phrases (C), the analyst concludes that the
social media community has just started to increasingly post about Meghan
giving an interview to Oprah because the phrases have largely blue-ish back-
grounds. One representative post (E’) talks about an utterance in the interview
that it was apparently Kate who made Meghan cry. The analyst clicks on the
bar in the lower-left to retrieve related tweets (Figure 6.2, right column). From
the tweets, it becomes clear that most users make fun of the fact that Meghan
goes after Kate, even though some seem to be very upset (‘It’s Kate I’m sure’).
Later on, some tweets have a more serious tone after Meghan talks about racism
(‘How dark would Archie’s skin be?!!’).

This use case shows that the proposed system not only makes analysts aware
of major topics that are discussed on social media, but it also enables the
specific monitoring of ongoing events, even if the frequency of posts suddenly
increases. It also shows that the clustering-based approach helps to differentiate
between several major events happening at the same time. In addition, the topic
descriptions clearly indicate that considering novel terms in the pipeline (e.g.,
‘btsgrammyperformers’) is beneficial for the clustering of tweets.

130 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

A

B

C

D
E F

G

Figure 6.7 — Top: top-level view with one selected topic (A) and the corre-
sponding frequent phrases (B) and representative posts (C). Bottom: sub-level
view using filtered session (D) based on top-level topic (A), with selected topic
(E) and its frequent phrases (F) and representative posts (G).

6.5 ● Use Cases 131

6.5.2 YouTube Outage and Dive Into Politics

This use case deals with streamed tweets from November 11th, 2020. The top
part of Figure 6.7 depicts the top-level view. The topic description of one of
the first topics that catches the interest of the analyst contains only two major
terms: ‘youtubedown’ and ‘youtube’. The analyst hypothesizes that YouTube
is experiencing some kind of outage and selects the topic to investigate their
hypothesis. The visualization of the frequent phrases confirms that nearly all
of the more than 30,000 posts in this topic indeed contain ‘youtubedown’. A
large proportion of the phrase background is composed of blue-ish bars, which
indicates an ongoing issue since many people are actively posting new tweets
and not just retweets. The analyst notices that there is another similar topic
about ‘youtube’ and adds it to the current selection. The combined stream still
contains only a handful of posts, but the large red bar in the coverage histogram
next to the header indicates that these posts cover most of the published tweets
well. Thus, they conclude that most posts are slight variations of the utterance
that YouTube is down.

The analyst now briefly scans some of the remaining topics. Apart from the
outage, people celebrate BTS for winning an award, tweet about NBA players
Harden and Westbrook because Russell Westbrook apparently wants to leave
the Rockets, wish everyone a happy veteran’s day, and pray for the safety of
people affected by the Typhoon Ulysses that struck the Philippines.

Then, the analyst looks at the topic about Biden, Trump, and the presidential
election (Figure 6.7 A). However, the coverage histogram (C) reveals that the
topic is relatively diverse because the stream does not adequately represent
a significant proportion of posts. They click on the Dive-In button which is
situated at the upper-left of the window to start a new filtered session. The
Topical Overview now relates to topics derived from clusters of the parent topic,
as shown in the bottom part of Figure 6.7. The analyst first focuses on the
‘@ronaldklain’ topic (E) and learns that Joe Biden has picked Ronald Klain as
Chief of Staff. There are many congratulations (G), but also critical remarks
about his alleged handling of the swine flu.

It should be noted that the visual patterns between the frequent phrase vi-
sualization of the top-level topic (B) and the sub-level topic (F) clearly differ.
Whereas the step-like pattern in (B) reveals that the different keywords seldomly
appear together, the pattern in (F) shows significant overlaps of keyphrases and,
thus, points toward a more homogeneous topic. Furthermore, the proportion of
the two red-like bars in the coverage histogram (G) is much larger compared to
(C).

The analyst now skims through the other topics in which people talk about the

132 Chapter 6 ● Real-Time Analysis of Streaming Social Media Data

ballots (‘many faked ballots in detroit’, ‘Where ARE those ballots?’), alleged voter
fraud, the recount by hand in Georgia that the secretary of state seems to have
just announced, but also Democrats celebrating the win.

This use case demonstrates that the visualization of frequent phrases and the
coverage histogram enable analysts to assess the composition of topics and the
diversity of relevant posts. It also highlights the utility of the layered approach
for semantically zooming into topics of interest.

6.6 Discussion

Based on the AIX process (Section 2.5), the proposed approach applies the
visually explainable dynamic clustering algorithm (introduced in Section 5.2)
to scale the real-time analysis of streaming social media posts. The clustering
visually structures the data efficiently without the need of additional metadata
or any kind of pre-filtering, facilitating the continuous monitoring of develop-
ments with minimal delays. The system was successfully tested with a sliding
window size of more than two million posts, which confirms that it can handle
a large number of posts even on a budget PC. The transparency of the clustering
algorithm allows analysts to comprehend what each topic is mainly about and
how the they evolve over time.

The approach offers further advantages compared to previous work. For a
selection of topics, analysts can retrieve a real-time stream of representative
posts irrespectively of the actual frequency of published posts. Thus, the system
scales not only in terms of the number of posts it can process but also regarding
the visual mappings. With the visualization of the frequent phrases, analysts
can assess in greater detail what the topic is about, how homogeneous it is, and
whether it is currently going viral. Furthermore, the approach is agnostic as to
which social media platform is analyzed because it only processes the textual
content of the posts and their publishing date. The system was also tested on
tweets with different languages, including Spanish and German, to verify that
it generalizes to non-English languages.

The system also has limitations. The pipeline is purely content-based and
enables top-down analyses, so analysts may miss smaller developments with
just a handful of associated posts and retweets. The system could be extended
with an anomaly detection algorithm in the future so that users can be notified of
smaller developments that exhibit an unusual posting trend. However, given the
huge number of posts that are published every minute, additional constraints
are probably necessary to limit the frequency of detected anomalies.

6.6 ● Discussion 133

Another limitation is that the dynamic clustering algorithm currently ignores
media content for efficiency reasons. People increasingly post images or videos
with only a short description, which reduces the effectiveness of the cluster-
ing.

One important aspect regarding the suitability of the approach is the homo-
geneity of the posts. In the case of major events, a large proportion of published
posts belong to these events (e.g., significant football matches or elections). The
everyday content is much more diverse, though. Hence, it may be difficult to
group such posts in a meaningful way on a coarse level. Analysts would then
either need to increase the maximum number of topics or dive into one of the
less focused topics to find interesting themes.

Users might also want to include tweets from different languages regarding one
specific ongoing event. The system could be extended such that it determines
the inverse document frequency from different reference corpora, based on the
language of each tweet. However, posts in different languages would most
likely be assigned to the same cluster only if they shared some defining words
(e.g., same hashtags).

In summary, this chapter proposed an interactive system for the visual analysis
of streaming social media posts. The use cases indicate that the system not
only supports analysts in getting an overview of what is currently happening
on social media platforms but also in monitoring specific topics at different
resolutions. Compared to previous work, the approach enables a fast and
comprehensive analysis of larger data sets in real-time and, thus, contributes to
making the visual analysis of streaming documents more scalable.

C
h

a
p

t
e

r

7
Multivariate Analysis with Visual

Neural Decomposition

The previous chapters introduced new techniques for providing interactive
overviews of large document collections and means to analyze more specific
topics of interest for both static and dynamic data. However, analysts may also
want to understand how words and phrases, recognized entities (e.g., person
mentions), and associated attributes (e.g., publishing date of an article) correlate
with one another. We can generalize this problem to visual multivariate analysis
of multidimensional datasets. Apart from text data, many interesting real-
world data sets for which we want to analyze relationships between variables
have more than three dimensions, for instance, socio-demographic data to
analyze consumer or voting behavior, meteorological measurements to predict
the weather, or integrated circuit (IC) testing measurements to analyze the
performance of chips. Unfortunately, analyzing multivariate data sets is a
challenging task, especially if the number of variables grows well above three.
One common goal analysts often face is to explore whether and how exactly
the different variables influence a specific variable of the data set, the so-called
target variable. This problem corresponds to performing a multivariate analysis
with one dependent and many independent variables.

Section 2.4 introduced the general concept and diverse challenges of a multivari-
ate analysis. It is particularly cumbersome to visually analyze large data sets
with many attributes due to the curse of dimensionality and the limits of human
perception. We need powerful methods that can recognize multidimensional

136 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

relationships, but they also need to be efficient enough for enabling interac-
tive analyses. In addition, we need to think about user interfaces and visual
mappings that scale to many variables and large data sets. Existing approaches
have several shortcomings. They either do not scale to large data sets with
many variables, apply simpler (e.g., linear) methods for extracting relationships,
require an iterative workflow, or focus on up to trivariate relationships.

This chapter proposes an efficient method for visually explaining multivariate
data sets that is based on the AIX framework introduced in Section 2.5. It scales
to hundreds of variables and is able to recognize nonlinear, multidimensional
relationships. The goal of the approach is to extract and visualize cases that
lead to high values of a specified target variable. The main idea is to decompose
the problem into individual problem cases using an interpretable neural net-
work architecture, so that each case can be visualized and analyzed separately.
The output of the model guides analysts to thoroughly explore interesting
combinations of variables that correlate with the target.

Crucially, the behavior of the target variable should be explained with the
original features, the remaining (or independent) variables of the data set,
because they often have a semantic meaning for analysts (Sedlmair et al. [2014]).
Thus, we need a visually interpretable, scaleable technique that can recognize
non-linear correlations between input variables and a specified target variable
of the data set. To achieve this, we first train a neural network using a novel
architecture to predict the target variable based on the input of the other
variables. The neural network decomposes the approximated function of the
target variable into components, the neural nodes in the hidden layer. Then,
the behavior of these individual neurons is visualized to explain separately for
each case in which conditions the target variable adopts high values. Several
interaction possibilities let analysts explore the found relationships in deep. As
mentioned in Section 2.5, the approach exploits machine learning techniques
not for the sake of making predictions, but rather to learn something about the
source, the data set on which the model was trained.

7.1 Background

Visual Neural Decomposition (VND) explains the behavior of a dependent
variable (the target variable) with the remaining independent variables of the
set, assuming that these variables have a semantic meaning for analysts (e.g.,
age). This is in some ways similar to input-output models in the context of visual
parameter space analysis (Sedlmair et al. [2014]), but the approach does not aim
to develop a systematic understanding of the complete input space.

7.2 ● Requirements 137

Godfrey and Gashler [2017] introduced Neural Decomposition as a new neural
network technique to decompose time-series data into sums of periodic and
nonperiodic components. Similarly, the target variable is decomposed into
sigmoidal components based on the input variables, but the proposed approach
in this chapter differs regarding its goal and underlying technique. VND uses
traditional neural networks with a novel regularization technique. The main
idea is to visualize the learned decomposition to understand which conditions
lead to high values of the target variable.

Several approaches have been proposed in the literature that use different
strategies to scale the analysis. Section 2.4 provides an overview of related
work. Some techniques initially reduce the dimensionality of the data set to ease
the handling. However, this also means that subsequent processing steps only
work with the reduced data which often contain less information compared
to the high-dimensional input. Iterative and explorative approaches typically
assume that interesting relationships are already apparent in a small subset of
the affected variables, but Section 7.5.1 shows that this is not generally true.
Another strategy is to apply bivariate statistics or simpler models for deriving
correlations, which may miss nonlinear or multidimensional correlations.

More similar to the proposed approach are visual techniques that use decision
trees to model the data. For instance, Neto and Paulovich [2021] convey the
paths of a random decision tree forest in a matrix-like visualization. Smaller
trees are easy to comprehend, but continuous relations are difficult to model
and more complex patterns easily lead to deep trees or larger ensembles, which
makes it difficult for analysts to gain a thorough understanding of the data
set.

VND performs the analysis on the original, high-dimensional data set and is
able to recognize more complex relationships that iterative approaches would
miss. The fitting process scales to larger data sets since the training objective is
optimized using batched stochastic gradient descent. Based on the model, each
decomposed case can be analyzed separately in an interactive visualization that
is specifically tailored to the respective case, for instance, with an individual
importance ranking of the affected variables.

7.2 Requirements

Experts from a wide range of domains have to deal with the challenges of
analyzing multivariate data sets. A case study with a domain expert and
research fellow of one of the world’s largest provider of automatic integrated
circuit (IC) test equipment was conducted to learn more about the requirements

138 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

of the approach when applied to real-world data in a typical engineering
domain.

In post-silicon validation, produced IC chips are tested under varying conditions
to detect design bugs and to reveal sensitivities of a target variable with respect
to other variables as hints for design improvements (Mitra et al. [2010]). The
automated testing of the chips often produces large high-dimensional data
sets with up to hundreds of variables that capture parameters, environmental
factors, and resulting error measurements. Engineers analyze the data sets to
find out which parameter range combinations may lead to undesired behaviors
of the chip (out-of-spec behavior), and to determine parameters for optimal
performance (tuning), for instance, to maximize battery life of the chip.

While the total number of variables is high, the actual number of relevant
variables for a specific case is often less than half a dozen, according to the
expert. However, each data set typically exhibits several cases involving different
variables, for instance, several bugs relating to different environmental factors.
Some of these patterns may only appear in a small fraction of the data set.

The expert also stated that most of their problems at hand can be formulated
such that the goal is to find conditions under which a certain variable (e.g., error
rate) has high values. As of now, the analysts and engineers make heavy use of
scatter plot matrices to investigate possible correlations between several subsets
of variables and the selected target variable, which is time-consuming.

7.3 Method

Given a multivariate data set, analysts should be able to investigate in which
cases (regarding the independent variables) a specified target variable y adopts
values in a specified range. The goal of the proposed method is to visualize such
cases separately to provide digestible visual explanations, while still supporting
more complex relationships between y and the remaining variables of the data
set.

As stated in Section 2.5, multivariable linear regression is often used to in-
fer which independent variables xi seem to have the most influence on the
dependent variable y. While the resulting coefficients are easy to interpret,
linear regression cannot capture more complex correlations involving nonlinear
relationships or combinations of variables (e.g., y is only high if two input
variables are both high). Neural networks, on the other hand, can approximate
highly complex functions, but are also more difficult to interpret.

The motivation to use neural networks for extracting interesting relationships in
the data set stems from the fact that, in simplified terms, a single-output neural

7.3 ● Method 139

network essentially combines several localized quasi-regressions as represented
by the hidden nodes. It is therefore likely that some of these nodes capture
specific cases that lead to values of y in the desired range, and we can convey
this information when we access and visualize the behavior of such a node.
While the behavior of each node in the context of the network is more powerful
than a linear regression, it is still less complex than understanding the whole
network at once.

The main idea of the approach is to first train a neural network predicting the
target based on the other variables in the data set (input variables). Afterward,
the hidden nodes’ activations are used to visually explain how certain parts and
variables of the data set correlate with the target. To make this work, a novel
regularization technique is introduced (Section 7.3.4) that encourages the neural
network to model the relationships in a way that is easier to interpret. In other
words, the approach leverages the training process to perform multiple non-
linear regressions, and analysts can then further explore these in the provided
interactive visual interface.

The resulting accuracy of the network is less relevant since we are mainly
interested in how the model captures the underlying dynamics. However, a
consistently low accuracy indicates that there is either a very subtle or no
relationship between inputs and output, because neural networks can approxi-
mate complex, nonlinear functions (a particular training run may not converge,
nevertheless).

This chapter focuses on explaining high target values for simplicity, but this
does not limit the range of the approach. If analysts are interested in low- or
mid-value cases, y could be transformed accordingly to fit the definition (e.g.,
ŷ = −y for low-value cases).

7.3.1 Basic Architecture

Figure 7.1 depicts the architecture of the model that is based on a fully-
connected, feed-forward neural network with one hidden layer and one output
node. To compute the (scalar) output hi of a hidden node i in an artificial neural
network, the dot product of the inputs x with the trained weights of the node
wi plus a constant offset bi (the bias) is fed into a nonlinear, monotonically
increasing activation function σ(z):

hi(x) = σ(wi ⋅ x + bi) (7.1)

The approach uses the sigmoid function σ(z) = 1
1+e−z as activation function

which returns values between zero and one. If the function output is close to

140 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

xN

x2

x1

hM

h2

h1

yp

v1

v2

vM

w1
1

w2
1

wN
1

Inputs

Hidden Layer

Predicted Output1

b1

b2

bM

Figure 7.1 — Architecture of the model, with inputs x, input-to-node weights
wi, biases bi, hidden node outputs hi, node-to-output weights vi, and prediction
yp of the target.

zero, we say that the respective hidden node is inactive, otherwise, it is active (to
a certain degree).

Similar to linear regressions, inputs with positive associated weights (or coeffi-
cients) have a positive monotonic relationship with the output of the hidden
node (i.e., higher values lead to equal or higher outputs), inputs with negative
weights have a negative relationship, and inputs with weights close to zero do
not significantly impact the output.

However, artificial neural networks are more powerful than linear regressions,
because they use nonlinear activation functions. In simple terms, the activation
function enables thresholds, that is, the node’s output may only start to grow
significantly above zero if the weighted sum reaches a certain value, and it
nearly stops to grow once it is close to one.

Apart from this non-linearity, the relation of the hidden node output to its
inputs as defined by the weights is still monotonic and smooth, which this
approach exploits. Understanding the behavior of individual hidden nodes is
therefore easier than understanding the model as a whole. The final output
yp(x) is assembled from the outputs of the hidden nodes as weighted sum:

yp(x) = ∑
i

hi(x)vi (7.2)

In the following, all hidden nodes with a positive associated weight v in the
final layer are called positive nodes (they drive the final prediction up), and nodes

7.3 ● Method 141

with a negative v in the final layer are called negative nodes. In contrast to a
typical feed-forward architecture, the model architecture does not use the bias
in the final layer. This makes sure that at least one positive node has to be
active for high target values. Every variable (inputs and output) is scaled so
that they are in the range [0, 1]. The lack of bias and the normalization of the
output ensures that the resulting prediction of the neural network is (only) high
if at least one positive node is sufficiently active and negative nodes are mainly
inactive. Hence, positive nodes may offer hints which variables and conditions
correlate with high target values.

7.3.2 Hidden Node Filtering

Each positive node acts as a filter. The approach assumes that, during training,
some hidden nodes capture specific cases that lead to a high target value
(high-target cases). The architecture requires that at least one positive node has
to output a positive value above zero whenever the target value is high, so
filtering the data according to which hidden node is active can offer insights
into the cases we are interested in. This decomposition enables analysts to study
the relationships between input variables and target separately for distinct
conditions. In particular, the input weights of a node indicate how important
each input is for the computation of this node, and analysts can focus on the
most promising variables even if the total number of inputs is rather high.
Figure 7.2 visualizes this concept.

While at least one positive node has to output a positive value for a high target
value, this is a necessary and not sufficient condition. That is, it does not hold
that an active (i.e., its output hi(x) is high) positive node necessarily leads to
a high target value prediction. For the analysis goal, it is therefore often not
enough to filter the data items solely based on whether a particular hidden
node is active.

Let us look at an example to illustrate this. Say, for instance, the target variable
peaks if the (single) input is in the middle at 0.5, but it is low if the input
is near zero or one. Thus, the visualization of this case should convey that
input values around 0.5 lead to high target values. However, one hidden node
alone cannot model this case, because, due to the monotonic nature of the
activation function, the output of the node cannot go down again after the
input has reached 0.5. The neural network could use a second negative node to
approximate this function. That is, the positive node models the ramp-up to
0.5 and the negative node the ramp-down to zero again. We can say that the
second, negative node inhibits the output of the positive node if the input is
above 0.5. Therefore, we have to take into account the effects of such inhibitors

142 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

xN

x2

x1

hM

h2

h1

yp

v1

v2

vM

w1
1

w2
1

wN
1

Inputs

Hidden Layer

Predicted Output1

b1
> 0

Figure 7.2 — The prediction yp can only be high if at least one hidden node k
with vk > 0 is active (i.e., hk ≫ 0) because the hidden node outputs are never
negative and the prediction is a weighted sum from these outputs. The analysis
of such positive nodes can help to explain high-value cases. For instance, let us
assume that v1 > 0 and that the weighted output v1 ⋅ h1 is significantly higher
than any other weighed output for a specific set of data items S. Then, the
corresponding input weights w1

j of said first hidden node can help to explain
the characteristics of the items in S since the weighted input sum ∑j w1

j ⋅ xj has
to be ≫ 0. We can derive, for instance, particularly relevant variables j for S
based on the magnitude of the corresponding weights ∣w1

j ∣.

while a particular hidden node is active. To achieve this, we visualize the data
distributions of the inputs and the target output for such data items where the
respective hidden node of interest is contributing and not just active. This is
a smaller subset that only covers cases in which the node is active and also
contributing to a higher target value prediction. In the example, this would
mean that the node only contributes for input values around 0.5, which is the
desired output for the visualization.

Regarding a data item, we say a node is contributing if this node is active, and
the weighted output of the node is high compared to all other weighted outputs
of positive nodes, and the prediction is high. In other words, we want to detect
salient stimulations of hidden nodes by the input data that travel through to the
final output value. More formally, let V be the set of hidden nodes, then the
contribution ci(x) of hidden node i regarding data item x is:

ci(x) = 1
Z

hi(x)
min(yp(x), hi(x)vi)

∑j hj(x)vj
, ∀j ∈ V ∶ vj > 0 (7.3)

7.3 ● Method 143

We take the final prediction if it is lower than the weighted output of the node
to ensure that the node is not suppressed by other (negative) nodes. Z is a
scaling factor to retrieve a contribution of 1 for data items that stimulate the
particular node the most. The advantage of filtering by contributions instead
of just activations is that the resulting ’clusters’ can model highly nonlinear
relationships. For instance, one cluster could model the case that our target
variable correlates linearly with a if variables b and c are both within a specific
range.

7.3.3 Ranking of Variables

The filtering based on the nodes (representing a soft clustering of the data
set) helps analysts to focus on specific parts of the data set, but without a
suitable ranking of the variables, it may still be tedious to gain insights into
such clusters, particularly if the total number of variables is high. The approach
ranks these variables according to their impact on the contribution of a particular
hidden node. As explained in Section 7.3.1, the output of a hidden node is
monotonically related to the weighted sum of all inputs. On the one hand, this
means that the magnitude of the weight is an indicator of the impact of the
corresponding variable, which can be easily extracted from the trained model.
On the other hand, we also have to take the distribution of the variable into
account. A high positive weight is less important if the average value of the
variable is close to zero, for instance.

For an input k of node i with a positive correlation regarding node’s output
(i.e., wi

k > 0), we calculate the average value of the input k whenever the node
i is contributing and multiply it with the weight wi

k. This determines which
variable, on average, has a high share of the weighted sum while the node is
contributing, making it a driving force for high activations

For an input l of node i with a negative correlation (i.e., wi
l < 0), we determine

the average value of the input l whenever the node i is not contributing and
multiply it with the absolute value of the weight ∣wi

l ∣. The resulting value tells
us which variable has the highest impact on inhibiting the output whenever the
node is not contributing, and is therefore enabling high activations if the values
are low.

More formally, let X be the input rows of the data set. The rank ri
k of the

variable k regarding hidden node i is defined as follows (using the contribution
defined in Equation 7.3):

144 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

ri
k =
∣wi

k∣
S ∑

x∈X
xk ĉi

k(x), S = ∑
x∈X

ĉi
k(x)

ĉi
k(x) =

⎧⎪⎪⎨⎪⎪⎩

ci(x), if wi
k > 0

1− ci(x), otherwise

(7.4)

7.3.4 Homogeneous Regularization

The aim of the approach is to leverage machine learning for decomposing the
structure of the target variable into separate components depending on the
input variables to explain in which cases the target variable is high. Sometimes,
the resulting nodes still combine several cases that should be represented
separately, so that analysts can more easily interpret the relations visually. To
encourage this disentanglement, a regularization technique for an increased
visual interpretability is introduced that encourages positive hidden nodes to
be mainly active in high-value predictions, and negative nodes (inhibitors) to
be mainly active in low-value predictions. That is, the behavior of individual
nodes with respect to their activation pattern should be more homogeneous.

This chapter defines a hidden node i as being positive/negative if the associated
weight vi to calculate the final prediction is positive/negative. Let τ be the
(user-defined) threshold that defines the border between low- and high-value
cases of the target variable. For each data item x and hidden node i in the batch,
we define:

ai(x, vi) =
⎧⎪⎪⎨⎪⎪⎩

1, if y(x) ≥ τ ∧ vi < 0 ∨ y(x) < τ ∧ vi > 0
0, otherwise

(7.5)

In other words, ai(x, vi) is 1 if the current node i is a positive node and the
current target value is below the threshold, or it is 1 if the current node is an
inhibitor and the current target value is above the threshold.

Let V be the set of hidden nodes. The loss function L for a single data item
(x, y) with the weights W and biases B is then defined as

L(x, y, W, B) =1
2
((∑

i∈V
hi(x)vi)− y(x))

2

+ 1
2

β∑
i∈V

ai(x, vi)hi(x)
2 (7.6)

The first part of the loss function is just the typical squared loss to let the network
learn accurate predictions. The second part is the homogeneous regularization

7.3 ● Method 145

term that penalizes high node activations of positive nodes for data items that
ultimately result in low final outputs, and high node activations of negative
nodes for data items that result in high final outputs. The hyper-parameter β

defines the strength of the regularization.

As stated in Section 2.5, the goal of any regularization is to train a model
that is better according to some criteria (e.g., generalizability to unseen data)
by limiting the solution space. In this case, the neural network should be
encouraged to model the task in a ‘simpler’ way such that the visualized
behavior of individual nodes is easier to comprehend.

For illustrative purposes, let us assume we have two input variables A and B,
and the target variable Y is high if (and only if) one of the two input variables is
high and the other low. A neural network could model the target function as
follows: one hidden node is active if the sum A + B is sufficiently high, and the
other hidden node with a negative weight is active if the sum A + B is higher
than the maximum possible value of either input. In this case, the first node
captures both high-value scenarios (A is high and B is low, as well as B is low
and A is high). However, the first node is also active in a low-value case, namely
if A and B are both high. The final prediction is only low in this case because the
second node with the negative weight inhibits the output of the first node if A
and B are both high. While such a network makes perfectly fine predictions, it is
more difficult to interpret visually, because one node captures both high-value
scenarios. The proposed regularization, though, avoids this constellation. The
network is encouraged to model the relationship in a different way with a
greater specialization of each node. One hidden node would only be active if
A is high and B low, and the other if B is high and A low, because this leads
to a lower loss of the regularization term (while still predicting equally well).
The visual representation of the resulting model can then easily explain the two
conditions separately.

Section 7.5.2 reports on the results of a hyper-parameter analysis on a synthetic
data set with different values for β and several network sizes. They show
that the homogeneous regularization (β ≥ 0.1) helps to extract all high-values
cases, particularly the more subtle ones. A higher number of hidden nodes
also increased the likelihood of detecting relevant patterns. However, the
results also show that the approach is generally not very sensitive regarding
the hyper-parameters.

The network is trained with mini-batch gradient descent and RMSprop to
iteratively derive the weights and biases (see Section 2.1.4). After training, we
compute for all data items the respective contribution of each hidden node and
rank the variables for each node. We use the contributions of a particular node

146 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Figure 7.3 — Visual Neural Decomposition of a chip testing measurement data
set with the goal to identify cases in which the target variable (here: jitter)
exhibits high values. Each node visualizes parts of the data set depending on
its activation.

to filter the data items for the histogram and parallel coordinate plots that are
described in detail in Section 7.4.

7.4 Application Design

The proposed system extracts and visually explains multivariable correlations
in a data set regarding a specified target variable. After performing the neural
decomposition as described in the previous section, it visualizes the distri-
butions of the input variables in relation to the target variable separately for
each positive hidden node in the model, based on the calculated contributions
(Section 7.3.2). This helps analysts to understand which variables and ranges
correlate with high target values, as each cluster may represent a different group
of conditions.

It should be noted that target variable always refers to the actual variable and
values in the data set, not to the predictions of the model. The predictions are
only used to derive the soft clustering (Section 7.3.2).

The system provides an integrated workflow that enables analysts to load data
sets, configure variables, set parameters, train the model, visualize the results,
and interact with the views, all within one application. A typical workflow
starts with selecting the target variable of the loaded data set. The analyst

7.4 ● Application Design 147

Figure 7.4 — All available variables of the automobiles data set with previews
of the data, scale, and histogram.

can then train a neural network that tries to predict the target value based on
the other variables. After training, the user interface visualizes the resulting
clustering with stacked histograms for each hidden node. They offer a compact
visual representation of the conditions that lead to high target values. The
histograms show the distribution of the variables for a subset of data items
that stimulate the particular node. Analysts can then explore and verify the
found correlations in a targeted manner with interactive, node-specific parallel
coordinate plots and by using simple range filters.

7.4.1 Variables

After loading the data set, the detected variables are listed in the respective
tab as shown in Figure 7.4. Here, the 1983 Data Exposition data set (Ramos
and Donoho [1983]) has been loaded that contains a list of (rather ancient)
automobiles with several properties and technical specifications, for instance,
the horsepower of the car and its driving range in miles per gallon. Analysts
can choose which variables should be part of the subsequent analysis process
with the toggles on the very left of each row. To select the target variable,
they can click on the (T) button next to the name of the respective variable. In

148 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Figure 7.4, Horsepower was selected as target variable, that is, the analyst wants
to explore how the other variables relate to the horsepower of the car. One
insight could be that a fast acceleration time correlates with a powerful engine,
for instance.

Upon loading, the application automatically analyzes the given data set to
determine the type of each variable (categorical or numerical) and whether a
logarithmic scale should be applied. Each category is encoded as a number
between zero and one. While this embedding allows to represent hundreds of
categories with just one variable, in machine learning it is often beneficial to
split categorical variables into distinct binary variables that represent whether
the specific category is on, that is, whether it is the current value of the original
variable. This is also necessary if users want to designate a specific category
as target. Analysts can click on the yellow fork button left to the histogram (in
Figure 7.4) to generate said distinct variables for each category.

Numeric inputs are scaled to the range from zero to one, after having trans-
formed them to the logarithm if needed. Missing values are replaced with the
respective regular minimum (0 after scaling) to avoid distortions.

The middle of each row displays the type of the variable alongside statistical
properties such as the number of categories or mean and standard deviation.
Next to it, analysts can override the automatic decision whether a logarithmic
scale should be applied or not.

To the right, a histogram provides insights into the distribution of the variable.
A darker shade indicates a higher number of values around that region. For the
selected target variable, a slider underneath the histogram appears which allows
analysts to define a custom threshold. The percentage in brackets indicates how
many data rows fit this threshold and count as high-value cases. The goal of the
approach is to visually explain in which conditions the target variable is higher
than said threshold. The middle value between maximum and minimum of the
respective variable is the default, but in Figure 7.4, the analyst has changed it to
the median.

7.4.2 Model Training

In the third tab (Neural Analysis), analysts can start the training of the model.
Figure 7.5 shows how analysts can modify the model size, duration, and the
strength of the regularization with sliders located at the top. Bigger models
may better capture small-sized effects in the data, but take longer to train and
can lead to some redundant nodes showing mostly the same information. The
resulting error on the training set is depicted at the top-right corner after each
run. Underneath the sliders, the interface shows again the histogram of the

7.4 ● Application Design 149

Figure 7.5 — Meta-parameters of the neural network training, e.g., complexity
of the model in terms of the number of hidden nodes, or duration in terms of
the number of iterations.

Figure 7.6 — Visualization of the resulting model. Each card represents one
hidden node and visualizes the data set filtered by the contribution of the
respective node. A compact overview of the nodes is shown on the left.

selected target variable, which is helpful for comparison with the subsequent
node visualizations.

7.4.3 Node Visualization

The system enables analysts to investigate under which conditions a specific
target variable adopts values above a certain threshold (high-value cases). Data
items with a target value above the threshold are called high-value items. The
approach assumes that some of the positive hidden nodes in the model spe-
cialize in particular high-value cases that can then be explained visually. The
distinction between high- and low-value items and cases should improve the
utility of the visualization, and it also influences the homogeneous regulariza-
tion (Section 7.3.4). For instance, the interface generally maps high-value items

150 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Figure 7.7 — Compact overview of all positive nodes: a) node-specific histogram
of target, b) node-specific coverage of high-value cases

to red colors, and low-value items to blue ones. However, the neural network
learns to predict the actual target value irrespectively of the threshold.

Figure 7.6 shows the resulting visualizations of the positive nodes after training.
For each node (and thus, cluster), a card shows the distribution of the data
subset the respective node contributes to. The card-based layout maps well to
the neural decomposition, in that each node represents one distinct cluster of
high-value cases that analysts can explore separately, with aggregated statistics
for each case. At the same time, it also enables the comparison between nodes
by presenting the cards in a list, with the possibility to rank nodes by their
relevancy for the problem at hand.

Each card presents stacked histograms (Section 7.4.4) of the input variables,
ordered by the importance of the respective variable for the cluster as described
in Section 7.3.3. They offer a visual summary for which input ranges the
node is contributing in relation to the target values. Variables with a very low
importance score are not shown to improve the clarity of the visualization (5%
of the first, most important variable per default). The actual coefficient (weight)
and average (normalized) value of each input is displayed in squared brackets
below the name of the variable. The gray header displays the weight, average
activation (A), and average contribution (C) of the node. The red and blue bars
to the right indicate how many of the high- and low-value items the node covers.
For instance, if the red bar is at 100%, this means that the node is contributing to
all data items with a target value above the threshold. Analogously, the blue bar
represents the proportion of the low-value cases where the node is contributing.
In the ideal case, the blue bars should be rather small. If red and blue bars are
both strong, the respective cluster covers low- and high-value cases to a similar
extent, and thus does not help analysts in understanding which input values
correlate with high-value items.

Figure 7.6 reveals that Displacement has the most impact on Node 1 with a
weight of 3.026, followed by Acceleration. The signs of the weights indicate a

7.4 ● Application Design 151

positive correlation for the variable Weight (bigger cars in the data set seem
to have more horsepower) and a negative correlation with Acceleration (faster
acceleration times seem to coincide with more horsepower). It should be noted
that these node-specific correlations do not necessarily mean that there is an
overall statistical correlation with the target variable.

Target Histogram and Node Coverage

In the middle of the gray header, a small histogram depicts the distribution of
the target value whenever the node is contributing (target histogram). Users can
switch to display the black node coverage instead of the target histogram using
the blue toggle button on the bottom left of the window (Figure 7.6). While
the target histogram visualizes on which regions of the target variable the node
specializes, the node coverage instead shows for which high-value data items
the node is contributing. This helps to understand which nodes complement
one another and which cover similar data items.

For instance, Figure 7.7 a) shows that Node 4 only contributes to high-value
items (target histogram only shows red densities), whereas Nodes 1 and 2 also
slightly contribute to a few low-value items. The target histograms of Node
1 and 2 are similar, so the nodes cover items with a similar distribution of
the target variable, but the node coverage (Figure 7.7 b)) reveals that Node 2
contributes most to different data items than Node 1 as the black regions do
not overlap much.

To compute the node coverage, we take each high-value item, sort them by
which node contributes most on the respective item, assign each a running
number, and then build a histogram of all the respective running numbers where
the particular node is contributing, that is, each data item is represented by a
vertical line colored from white to black depending on the contribution.

On the left side of the window (Figure 7.6), the node summary provides analysts
an overview of all nodes with compact versions of the histograms and case
coverages that are displayed in the respective headers. Depending on the setting,
either the target histogram (Figure 7.7 a)) or node coverage (Figure 7.7 b)) is
shown.

Node Ranking

The total number of nodes can be high. To help users focus on promising ones,
the interface shows those nodes on top which explain high-value cases. Hence,
these nodes should contribute mostly whenever the target value is high. The
total number of affected high-value items should also be taken into account to

152 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

vertical histogram
of one input variable

target value above thresholdtarget value below threshold

a) b) c)

input high

input low

Figure 7.8 — Histogram of one particular input variable of a node: a) plain, b)
two stacked bars per input bin for high- (red) and low-value (blue) cases, c) ten
stacked bars per bin to visualize distribution of the target variable based on the
input variable.

rank bigger cases higher. This ranking is computed by multiplying the number
of affected high-value items of the node with the logarithm of the total number
of low-value items divided by the number of affected low-value items. Taking
the logarithm of the fraction ensures that nodes covering many high-value items
but relatively few low-value cases are boosted.

7.4.4 Stacked Histograms

The interface should visualize for which kind of input ranges the particular
hidden node is mostly contributing. To achieve this, we generate node-specific
histograms of the input variables. Given an input variable, we divide its range
into equally distributed bins and count how many items in the data set fall
within each bin, weighted by the contribution of the node. This results in a
histogram of the variable that only incorporates data items where the node is
contributing. This means that if the node is not stimulated by a particular data
item then this item is not part of the histogram. Figure 7.8 a) shows how the
resulting vertical histogram could look like.

This histogram shows the distribution of the input variable whenever the node
is contributing, but it would further help if this could be combined with the
distribution of the target value. That is, given a specific range of the input
variable, it would help to visualize the proportion of high-value items versus
low-value items whenever the node is contributing. Hence, we count high- and
low-value data items separately for each bin and display the resulting histogram
as a stacked bar chart.

In other words, the system builds two separate histograms, one for those data
items in the cluster with a high target value (red bars), and one for those with

7.4 ● Application Design 153

Figure 7.9 — Node-specific PCPs with different filter settings. The columns are
ordered by the importance of the inputs for the node. Top: Plot using only data
items where this node is contributing. Middle: Plot includes remaining data
items, but diminished. Bottom: Plot of all data items.

a low target value (blue bars). For instance, Figure 7.8 b) shows that for every
data item where the particular node is contributing and where the Displacement
value falls into the top bin, the target value is always above the threshold (the
bar is completely red). Conversely, low Displacement values are associated with
target values below the threshold, because the lower bars are nearly completely
blue.

Instead of just distinguishing two cases (above vs. below the threshold), the
interface enables users to increase the granularity to multiple bins. This leads to
histograms in a histogram. For each bin of the input variable (rows), it visualizes
the distribution of the target variable (stacked bars within the row).

Analysts can choose the granularity of the histograms with two sliders at
the bottom of the window (Figure 7.6). Figure 7.8 c) shows the resulting
visualization with ten input bins and ten target bins using colors from blue
to red. Within the respective cluster, Displacement has a near-linear, positive
correlation with the target value (horsepower), because, starting from the
bottom, the bars change from blue-ish over gray to red-ish.

154 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

7.4.5 Parallel Coordinate Plot

The interface employs node-specific parallel coordinate plots (PCPs) to let
analysts explore parts of the data set at a time and investigate relationships
between the variables. While the stacked histograms help to summarize which
variables and ranges correlate with the target, the PCPs allow for a detailed
analysis how exactly the input variables relate to each other for the given case
represented by the node. For instance, Node 1 in Figure 7.6 indicates that
cars in the data set with high displacement and fast acceleration time have
high horsepower. The PCP shows that high displacement generally relates to
low acceleration times, but, in addition to the stacked histograms, it reveals
that some cars with very high displacement only have average acceleration
times.

One shortcoming of such plots is that it is often not obvious how the axes should
be arranged, even though the order of the columns has a major influence on
which patterns and correlations analysts can detect. To tackle this challenge, the
interface uses the same order for the axes as for the stacked histograms. That is,
the columns are arranged according to their importance for the respective case
represented by the node.

Initially, only paths are drawn from data items where the node is contributing
(filtered data), but this can be changed with two sliders above the plot, which are
called node filters. The filtering mitigates occlusion issues that make it difficult
to trace lines and recognize relationships for larger data sets. The first slider
(filled circle) determines the general opacity of the filtered data, and the second
(outline of a circle) the opacity of the remaining data. If both sliders are at zero,
everything is transparent and nothing is shown. If both are at maximum, the
complete data set is displayed (but with the node-specific axis order).

Figure 7.9 shows three different filter settings of one node. In all three cases,
the first slider is at maximum, but the second slider changes from zero to
intermediate to full. This means that the remaining data is slowly faded in,
which helps to relate the specific conditions to the entire data set. In this
example, the node focuses on heavy American (lowest position of Origin) cars
in the early 1970s (lowest position of Model Year) that exhibit high horsepower
(all lines are red). However, if we only looked at the plot of the entire data set
this pattern would be hard to detect visually.

7.4.6 Scatter Plot

Analysts can turn on a node-specific scatter plot after selecting two variables
by clicking on their mame. Similar to the parallel coordinate plots, two sliders

7.4 ● Application Design 155

Figure 7.10 — The analyst has selected several bars (green mark on the left) to
build a simple range filter. The resulting histogram and statistics are shown
below, which in this case indicate that heavier cars in the set built around the
1970s also exhibit above-average horsepower.

allow users to choose whether all data rows should be shown, only those
where the node is contributing, or all rows except the ones where the node is
contributing. While such scatter plots can only reveal the behavior of two input
variables with regard to the target variable, they are still helpful to immediately
verify whether two of the most important variables already exhibit a strong
relationship with high target values.

7.4.7 Range Filter

Using the stacked histograms, analysts can build range filters to test hypotheses
on interesting subsets of data items. These filters reduce the set of data items to
the ones having values in the specified ranges.

The stacked histograms in Figure 7.10 indicate that the respective node spe-
cializes in ancient, heavy, fast, American cars with many cylinders and high
horsepower. To validate whether most of the heavy cars around 1970 in the set
have high horsepower, analysts can select the bottom bar of the first variable
and the first few bars from the top of the Weight variable by clicking on them.
Little green rectangles appear to the left of each selected bar, the name of the
variable is marked in green, and a summary of the selected ranges (also in
green) appears at the bottom of the histogram. The resulting histogram and
statistics of the filter appear below in the box with the green border. Here, the
range filter selects 27 cars and all exhibit horsepower above the threshold. The
small red bar in the middle of the green box (above the blue bar) shows that
the filter covers roughly 10% of all high-value cases. Hence, cars in the data
set from around 1970 which are heavier than average also have above-average
horsepower.

Range filters always use the complete data set and do not depend on any node

156 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Figure 7.11 — Comparison between scatter plots (top) and the proposed ap-
proach (bottom) to visualize a four-dimensional artificial data set containing
three different high-value patterns (different variable order due to importance
ranking). The target variable is mapped to a color scale from blue to red.

activation. The node-specific visualizations, however, guide analysts to define
such range filters.

7.5 Evaluation

This section first shows that the proposed approach can detect and visualize
correlations that involve more than two variables. Afterward, the method is
applied to real-world data sets to show its utility. Finally, the section reports
on qualitative feedback on the suitability of the approach from a domain
expert.

7.5.1 Identification of High-Value Cases

The approach was applied to a synthetic data set to test its capability of identi-
fying correlations between more than two variables. The data set contains three
input variables a, b, c and 27,000 data rows that correlate with high values of a
target variable under the following circumstances:

y(a, b, c) =min(∣a − b∣, ∣b − c∣, ∣c − a∣) (7.7)

The target value reaches its maximum of 0.5 only if one variable is 0, one is 0.5,
and the third is 1. The test script uniformly sampled the input space a, b, c ∈ [0, 1]
and generated 27, 000 rows. The target function y(a, b, c) was designed such
that the resulting data set poses several challenges. First, only about 12% of the
items have target values above the threshold of 0.25, and only 0.8% above 0.4.

7.5 ● Evaluation 157

That is, the machine learning model has few high-value samples to learn from.
Second, the target highly depends on the combination of all three variables,
that is, if one plots individual variables or pair of variables against the target
value, one can hardly recognize any correlation. Third, there are three different
patterns that exhibit high target values, which would be occluded in a parallel
coordinates plot. Hence, this data set is a benchmark for testing the method
under challenging conditions.

Figure 7.11 shows the resulting stacked histograms of three hidden nodes of the
trained model, and scatter plots of every combination of a, b, c for comparison.
The target variable is mapped to a color scale from blue over gray to red in all
plots. From the scatter plots at the top, the analyst can conclude that the target
is zero if any two variables have equal values, but it is not possible to recognize
the three clusters of the ground-truth. Conversely, the stacked histograms at the
bottom reveal the three different patterns that lead to high values of y, namely
the three permutations of a, b, c where one variable is near 0, one is near 1, and
the third is around the middle. For instance, the first plot on the bottom-left
indicates high target values (gray- and red-like bars) if b is low, c high, and a
around 0.5.

7.5.2 Hyper-Parameter Analysis

The proposed neural network-based model depends mainly on two hyper-
parameters: the number of nodes (model complexity) and β that defines the
strength of the homogeneous regularization. In typical usage scenarios (with
up to a hundred input variables and up to tens of thousands of items), it
should be fine to use a model with up to 20 hidden nodes and a value of β

that ranges between 0 and 2. In general, if analysts want to extract (or expect)
more complex relationships between the variables, they should choose a higher
number of nodes (e.g., 10). A more complex model, however, takes longer
to train and may lead to an increase of redundant nodes that show similar
patterns. The homogeneous regularization (β > 0) encourages the model to
better distribute groups of conditions across several nodes. If β is set very high
then the model will not learn to predict the actual target value and analysts will
not find interesting insights.

This section reports on the results of a synthetic benchmark that investigates
how the hyper-parameters influence the model’s capability to detect high-value
cases, and how consistent the results are across several runs. The benchmark
data set contains 2,000 items with ten input variables (a to j) that were randomly
sampled in the range [0, 1]. It contains three high-value cases that lead to high
values of the target variable y:

158 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Table 7.1 — Results of the hyperparameter analysis on a synthetic data set. Sev-
eral configurations were tested with varying number of hidden nodes (#Nodes)
and strength of the homogeneous regularization (β). For each of the ten runs
per configuration, the table depicts whether the approach successfully extracted
the high-value cases 1, 2 or 3.

Case 1 Case 2 Case 3
correctly correctly correctly
identified identified identified
(yes / no) (yes / no) (yes / no)

#Nodes = 2
β = 0 3 / 7 3 / 7 0 / 10

β = 0.1 10 / 0 10 / 0 0 / 10
β = 0.5 10 / 0 10 / 0 0 / 10

β = 2 10 / 0 10 / 0 0 / 10

#Nodes = 4
β = 0 10 / 0 10 / 0 0 / 10

β = 0.1 10 / 0 10 / 0 3 / 7
β = 0.5 10 / 0 10 / 0 8 / 2

β = 2 10 / 0 10 / 0 10 / 0

#Nodes = 6
β = 0 10 / 0 10 / 0 3 / 7

β = 0.1 10 / 0 10 / 0 6 / 4
β = 0.5 10 / 0 10 / 0 9 / 1

β = 2 10 / 0 10 / 0 10 / 0

#Nodes = 10
β = 0 10 / 0 10 / 0 0 / 10

β = 0.1 10 / 0 10 / 0 9 / 1
β = 0.5 10 / 0 10 / 0 10 / 0

β = 2 10 / 0 10 / 0 10 / 0

7.5 ● Evaluation 159

Figure 7.12 — Expected output of the approach with the synthetic data set. All
three cases are present and interpretable. Here, Node 2 (top) represents case 3,
Node 3 (middle) case 2, and Node 0 (bottom) case 1. Per default, variables that
influence the node’s output by less than 5% (compared to the most important
variable in the cluster) are not shown.

160 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Figure 7.13 — Output of the approach with the synthetic data set when the
model fails to capture the relationships in an interpretable way. While the
variables a and b are correctly identified as important, the clustering and
histograms are difficult to interpret.

1. a is high and b is low,

2. b is high and a is low,

3. if (and only if) c is above 0.9 then d correlates linearly with y

Hence, six variables do not correlate with y and represent noise in the data set.
More formally, the ground truth is defined as:

y =max (∣a − b∣, λd) , λ = 1 if c > 0.9, otherwise 0 (7.8)

The first two cases basically represent a continuous relaxation of a XOR b. The
’exclusive or’-problem is harder as it may seem because a linear model or a
single perceptron are not able to model this (Minsky and Papert [1969]). The
first two cases often overshadow the third, so the third case is challenging to
extract. For each hyper-parameter configuration, the method was run ten times
and it was determined in how many runs the results included cases 1, 2, or 3.

7.5 ● Evaluation 161

The mini-batch size was set to 256 and the number of iterations to 10,000. The
largest model with ten nodes took about one second to train.

Table 7.1 lists the results of the analysis. In general, the regularization was
necessary to extract the third case in a stable manner. With a sufficiently complex
model, the approach was always able to extract the first two cases. However, the
smallest model with just two nodes often failed to reveal meaningful insights
without additional regularization.

Figure 7.12 depicts the expected output where all three high-value cases that
are present in the data set are correctly extracted. For instance, Node 2 at
the top shows the linear relationship of d with the target given that c is very
high. Figure 7.13 depicts how the result can look like if the method failed to
visualize any of the high-value cases. Here, it is difficult to derive a meaningful
interpretation from the stacked histograms, even though variables a and b have
correctly been identified as important. Such a result would count as no for all
three cases in Table 7.1.

This analysis shows that the proposed homogeneous regularization technique is
indeed helpful to retrieve models that can be interpreted visually. Furthermore,
it indicates that analysts do not need to find a specific, narrowly defined set of
hyper-parameters to extract high-value cases, because in this analysis a range
of different hyper-parameter values led to equally meaningful results.

7.5.3 Use Cases on Real-World Data Sets

VND supports the visual analysis of high-value cases in large multivariate data
sets across a wide spectrum of use cases where the number of variables can be
high. Subsequently, this section presents two real-world use cases from different
domains: IC chip testing and population surveys.

Chip Testing Measurements

Detecting and understanding complex input patterns that lead to errors in
chip testing is a difficult endeavor. The approach was applied to a data set
with measurements of a clock chip from a research project partner, a vendor
of automatic test equipment. The goal is to explore which conditions lead to
high jitter as indicated by the target variable JTotal. Hence, the target variable is
continuous, and the higher the value, the worse. The set consists of 2049 data
items and 43 variables including the target variable, and about 18% of the items
exhibit jitter above the desired threshold.

Figure 7.14 presents the resulting top three nodes after training. These nodes
mostly cover different parts of the data set according to the node coverage

162 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Figure 7.14 — Decomposition of a chip testing data set. Higher target values
(gray to red) correspond to faulty behavior of the clock device (jitter).

7.5 ● Evaluation 163

histograms (in black). The output histograms (Figure 7.3 shows the compact
version on the very left) reveal that Node 6 and 5 mostly contribute to lower
output values (jitter) around the threshold, whereas Node 4 specializes on few
very high-value cases. The Node 6-specific parallel coordinate plot is visible in
Figure 7.3 and depicts all data items where Node 6 is contributing. This plot
and the applied range filter in Figure 7.14 (A) show that a specific combination
of the two most important variables for that first node almost always leads to
target values above the threshold and can explain about half of all high-value
cases. For Node 4, the first variable is already enough to define 11 items with
high jitter (B). However, Node 5 shows a less conclusive picture (C). The applied
range filter and the red bar in the header indicate that the pattern represented
by the node exhibits above-average jitter, but the node also contributes to several
low-value cases. This could mean that these conditions lead to unstable behavior
which is sometimes in- and sometimes out-of-spec.

AP VoteCast 2018

The independent social research organization NORC at the University of
Chicago conducted a survey of 138,929 registered voters in 2018 for The Asso-
ciated Press and Fox News (Tompson and Benz [2019]). Each participant was
asked a subset of the questions to reduce the duration of each session. In this
use case, the analysis goal is to learn more about the voting behavior in the
US presidential election in 2016. The analysis was done on all responses in
which the participants were asked who they voted for in 2016. The target was
either whether the participant answered Donald Trump (1 yes, 0 no), or Hillary
Clinton (1 yes, 0 no). The resulting data set consists of 38,515 items and 182
variables.

The initial runs on this data set revealed voting patterns along party lines.
Among those that are sure they voted in the presidential election and said they
think the Republicans mostly try to do what is best for the country and the
Democrats mostly try to do what is best for their party, 91% voted for Trump,
representing more than three-quarters of all Trump voters in the survey. For
Hillary Clinton, the results were similar (with opposite party attributions).

However, the survey is composed of several parts and not all participants were
asked the same set of questions to reduce the overall time per session. In
a second analysis step, a subset marked as nationally representative with 4,913
registered voters was used. 1625 respondents (33.1%) said they voted for Donald
Trump, and 2129 (43.3%) for Hillary Clinton.

The system trains a model that predicts the target value, so that it can visualize
which and how input variables and ranges (features) correlate with the target,

164 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Figure 7.15 — Decomposition targeting Donald Trump voters. The data set is the
AP VoteCast 2018 representative national survey comprising 4,913 respondents
with 67 variables. The target variable is whether participants said they voted
for Donald Trump in 2016 (1 yes, 0 no). Here, the analyst has selected several
bars (in green) to define range filters.

but this also means that redundant features might not be used. The initial
run on the subset showed that the participant’s attitudes toward the parties
are already a strong predictor for the voting behavior. Thus, more subtle (but
redundant) correlation patterns might be missing when using all variables as
input. To gain insights into voting behaviors based on demographics and policy
attitudes, all variables relating to specific parties or persons were disabled (e.g.,
whether the respondent likes politician X). This reduced the number of variables
to 67.

Figure 7.15 presents the result of VND for analyzing the (self-described) motives
of Donald Trump voters, and Figure 7.16 for Hillary Clinton voters. The number
of hidden nodes was set to 14 for each analysis. In contrast to the previously
introduced cars and chip measurement data sets, the target variable is binary
in this case. This means that each data item corresponding to a voter of the
target candidate (Trump in Figure 7.15 and Clinton in Figure 7.16) counts as

7.5 ● Evaluation 165

Figure 7.16 — Decomposition targeting Hillary Clinton voters. The data set is
the AP VoteCast 2018 representative national survey comprising 4,913 respon-
dents with 67 variables. The target variable is whether participants said they
voted for Hillary Clinton in 2016 (1 yes, 0 no). Here, the analyst has selected
several bars (in green) to define range filters.

a high-value case (red bars in the stacked histograms and red lines the PCP).
Conversely, if the participants did not vote for the target candidate (or did
not vote at all), the respective items counts as low-value case (blue bars and
lines).

The respective top nodes in both Figures show that attitudes towards the border
wall and the Affordable Care Act (Obamacare) are strong predictors for the
voting behavior of the participants. Among those that are sure they voted in the
presidential election (QPVVOTE), favor the border wall (IMMWALL), think that
the Affordable Care Act should be at least partially repealed (HEALTHLAW),
are not gay or bisexual (LGB), and do not think that the Trump campaign
coordinated with Russia during the election (RUSSIA), 91.3% said they voted
for Trump, which represents 72.1% of all Trump voters in the survey. The
parallel coordinate plot of Node 8 depicts the most salient attitudes of ‘typical’
Trump voters in the data set, for instance, positive attitudes toward the border
wall and negative toward the Care Act. In the figure, the remaining data items

166 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

were slightly faded in using the second node filter slider to better relate this to
all respondents.

On the contrary, participants that oppose the border wall, think that the Care
Act should be at least kept as it is, and are sure they voted in the election,
86% voted for Clinton as the range filter of Node 2 reveals. Furthermore,
89% of the respondents who think that the Trump campaign coordinated with
Russia during the election (RUSSIA), are very concerned about climate change
(CLIMATE), are sure they voted, think that the country’s economic system does
not favor the middle class enough (ECONFAIRMIDDLE), and think that the
debate over Brett Kavanaugh’s confirmation to the supreme court was very
important (SUPREMECOURT) voted for Clinton, which represents about 39%
of all Clinton voters in the data set.

Node 1 of the results investigating the motives of Donald Trump voters is
interesting because it represents a small cluster that only partially overlaps with
Node 8. Guided by the output of the node, the range filter was defined as
follows (marked in green in Figure 7.15):

• TRADENATIONALE: ’Help’
[whether the trade policies of Trump’s administration would help the national
economy]

• QPVVOTE: ’I’m sure I voted’
[whether the respondent voted in the 2016 presidential election]

• RACEREL: ’Blacks have more advantages than whites’ OR ’neither has
much advantage over the other’

• CLIMATE: ’Somewhat concerned’ OR ’very concerned’

• SEX: ’Women’

307 respondents match this filter, of which 258 (84%) said they voted for Trump,
which is significantly higher than the 29.7% of Trump voters in the rest of
the data set (Fisher’s exact test, p ≪ 0.001), This is a very interesting finding
because when looking at some of the variables individually, one can observe
totally different trends: 29.8% of the female respondents, and 20.4% of those at
least somewhat concerned regarding climate change said they voted for Trump,
which is in both cases less than the data set-wide average.

The final evaluation task with this data set was to investigate whether analysts
would have found this insight with related approaches that first reduce the
number of dimensions, e.g., using t-SNE. On the one hand, the use of DR

7.5 ● Evaluation 167

Figure 7.17 — PCA projection of the AP VoteCast 2018 representative national
survey data set. The cluster of items matching the range filter (orange dots)
does not appear as a well-separated visual cluster in the projection.

Figure 7.18 — t-SNE projection of the AP VoteCast 2018 representative national
survey data set. The cluster of items matching the range filter (orange dots)
does not appear as a well-separated visual cluster in the projection.

methods offers several advantages. Analysts can easily recognize visual clusters
in the projection, and with fewer dimensions, subsequent processing steps are
faster, which motivates the use of more complex algorithms that would not
work for big, high-dimensional data sets. VND, on the other hand, clusters the
data set in the high-dimensional space and incorporates the target value into
the clustering process.

PCA, t-SNE, and UMAP (see Section 2.1.3) were applied to the data set of
the 4,913 voters, with the same set of input variables and the same way of
normalization. Figures 7.17,7.18,7.19 show the results. Dots corresponding
to items that match the previously defined range filter are colored in orange.

168 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

Figure 7.19 — UMAP projection of the AP VoteCast 2018 representative national
survey data set. The cluster of items matching the range filter (orange dots)
does not appear as a well-separated visual cluster in the projection.

PCA expectedly delivers the ‘worst’ result, in that the orange dots are scattered
throughout the projection space. At first glance, the results from t-SNE and
UMAP seem to have smaller regions with orange dots, but a detailed look
reveals that between the orange dots there are a lot of gray ones. This behavior
is consistent across several runs.

Hence, with the projections, it would be difficult for analysts to detect and
explore a cluster comparable to the one that was found with VND. This shows
that the proposed method can lead to interesting, significant insights that
would be difficult to retrieve from methods relying on dimensionality reduction
methods. However, this does not necessarily mean that the use of VND always
leads to more insights than related DR methods, it just shows that it can detect
more complex conditions compared to typical linear and nonlinear projection
techniques.

Furthermore, the results show that a particular combination of several variables
can exhibit much stronger (and even opposite) correlations with the target
variable compared to individual variables or pairs, while at the same time still
covering a large proportion of interesting high-value cases.

7.5.4 Qualitative Feedback

An earlier version of the system was presented to a domain expert and research
fellow of the world’s largest provider of automatic test equipment for prelimi-
nary feedback. In the session, the presenter introduced the system and showed
the results of the data set the company provided (Section 7.5.3). The expert was
impressed that the approach was capable to detect high-value conditions and

7.6 ● Discussion 169

that it supports the exploration of highly interesting combinations of variables.
He was confident that this would greatly support the engineers in finding
problematic conditions. However, he noted that there is a learning curve as it
takes some time to understand the stacked histogram visualizations.

The expert made several suggestions on how to improve the utility of the
approach. It should be possible to filter the data set by value ranges of certain
variables (not just by nodes), the target threshold should be customizable, and
it should be easily possible to remove or ignore data items based on already
derived correlations to focus on the remaining, less-understood parts of the data
set. Based on the feedback, the range filters were implemented and the target
threshold was made adjustable. In addition, the node coverage histograms were
developed.

7.6 Discussion

Visual Neural Decomposition can extract high-value conditions in multivariate
data sets that contain many variables and it guides analysts to explore nonlinear
multivariable relationships. The presented use cases show that the approach can
also reveal significant relationships that are difficult to find with related meth-
ods, for instance, approaches applying dimensionality reduction techniques or
linear models. With this novel approach, analysts do not need to iteratively
select one or two variables at a time to start the process. Instead, clusters of
similar behaviors are visualized separately based on the original dimensions
that often have a semantic meaning in multivariate data sets. Additionally,
the automatic analysis does not only cluster the results, but it also provides
a ranking of the most important variables of each cluster. This helps users to
grasp the meaning of each cluster. The provided interaction possibilities such
as the range filter or node-specific parallel coordinate plots enable analysts to
validate their hypotheses and build trust in what they see.

The proposed technique also has certain limitations. While it scales to hundreds
of variables, it was not designed for the analysis of very high-dimensional data
sets, for instance, images with millions of pixels. However, in this case, it is
often not helpful to explain certain conditions based on single pixel values.
A shortcoming is that analysts have to define hyper-parameters, for instance,
the number of nodes, and each run can lead to a slightly different output.
Nevertheless, the performed analysis (Section 7.5.2) shows that the method is
not very sensitive to the specified parameters. Generally, more nodes and longer
training are better, but also computationally more expensive. In the presented
use cases, the training only took seconds, though.

170 Chapter 7 ● Multivariate Analysis with Visual Neural Decomposition

The regularization constrains the solution space, but there can still be several
equally valid definitions of clusters, particularly if the variables are not inde-
pendent of each other. The goal of VND is to visually explain high-value cases,
hence, if one input is already enough to perfectly predict the target then VND
probably will not extract additional (somewhat redundant) cases.

Finally, it is important to realize that the approach visualizes interesting condi-
tions that appear in the data. If analysts want to generalize such findings, for
instance, whether an observed voting behavior applies to the general population,
they still need to perform statistical tests for significance.

7.7 Summary

Approaches for the visual analysis of multivariate data sets with well over ten
dimensions have to tackle multiple challenges. The human visual perception is
limited to three dimensions and it is computationally demanding to determine
multidimensional correlations on large data sets. This chapter therefore pro-
posed a novel method to scale this analysis by visually explaining multivariate
data sets using neural networks. The idea is to decompose the data set into com-
ponents as represented by the hidden nodes and provide node-specific views of
the data set. The training process supports large data sets and the card-based
visual interface helps analysts better digest various different relationships in the
data set, even if the total number of variables is high. An integrated approach
was developed to configure the data, train the model, visualize the results, and
let analysts validate hypotheses with interaction mechanisms.

C
h

a
p

t
e

r

8
Conclusion and Outlook

The main aim of this work was to investigate and develop scalable approaches
for the visual analysis of textual and multivariate data sets. As noted in the
beginning of this thesis, scaling is a complex concept. Not only does it entail
making an approach executable on larger data sets (either by increasing the
computational capacity or the algorithmic efficiency), but it also entails dealing
with the additional challenges of aggregating lots of data in a meaningful
way and enabling analysts to interactively explore more complex patterns and
relationships. Only then can the analysis of large or high-dimensional data sets
unfold its full potential. In general, this is a very complex, multi-layered, and
demanding issue that cannot easily be solved comprehensively. Hence, this
thesis contributes in different ways to making large-scale analyses feasible for
certain analytical goals and use cases.

8.1 Contributions and Limitations

Chapter 3 introduced two new methods for visually aggregating large text
collections while still providing sufficient context so that analysts can make
sense of the content. The first method, ELSKE, efficiently extracts keywords
and (potentially longer) keyphrases to provide brief visual summaries of indi-
vidual documents but also large collections. The second one extracts shortened
sequences of phrases (quotes) in a hierarchical manner to provide more context-
rich yet compact summaries of short texts such as tweets. The resulting quotes

172 Chapter 8 ● Conclusion and Outlook

are typically more verbose compared to keyphrases so that analysts can better
quantify the extent of more concrete statements, given that they are similarly
phrased. Both methods exploit the size of the data set to extract reasonably
meaningful phrases and sequences without having to rely on expensive gram-
matical analyses. In addition, a key design goal was that they are efficient
enough to continuously analyze streaming data in real-time. However, the
frequency- and heuristics-based approach may sometimes lead to incomplete
or misleading aggregations, which is a common challenge with content summa-
rization approaches.

PyramidTags is a context-aware, word order-aware, and date-aware tag map
that was presented in Chapter 4 for exploring large time-stamped document
collections such as news reports. First, relevant tags are extracted with ELSKE
and their co-occurrence behavior is analyzed. Then, the tags are placed onto a
map using a triangular layout such that analysts can understand the temporal
evolution of tags and visual clusters. Additionally, co-occurring tags should be
placed nearby and a dominant word order should be respected. In contrast to
previous work, this visual encoding enables analysts to explore themes and how
they evolve over time in large collections without resorting to animations or
pre-computed topics. In combination with the provided interaction possibilities,
the approach is able to visually aggregate a large proportion of hundreds of
thousands of documents with just a few hundred tags. The approach works
best when the underlying documents have different occurrence patterns (e.g.,
reports of events that happened on a particular day), which is often the case
for news articles and social media posts. If the temporal development across
the data items is similar or random, most tags will only be placed in a few
regions, rendering the triangular layout useless. Another limitation is that the
reduction to a two-dimensional representation can also lead to false friends,
that is, neighboring tags that do not relate to each other. Thus, analysts have to
hover over the tags to confirm or reject their hypotheses.

Clustering divides documents into groups, which helps to provide analysts a
thematic overview of the content. For the interactive analysis of large collections
or streaming posts, however, we need an efficient and explainable clustering
algorithm that also supports incremental updates. Chapter 5 introduces several
strategies to accelerate the Spherical k-Means algorithm on sparse document
representations. It further proposes the Dynamic Spherical k-Means algorithm
that supports incremental updates and dynamically chooses an appropriate
number of clusters.

The proposed explainable dynamic clustering algorithm powers a visual an-
alytics approach for the real-time monitoring of social media posts, which is
introduced in Chapter 6. In combination with the ELSKE algorithm, it equips

8.1 ● Contributions and Limitations 173

analysts with interactive visualizations that enable them to gain a continuous
overview of currently published tweets, monitor specific topics of interest at
varying levels of detail with digestible aggregations, and dive deeper into topics
by increasing the resolution and specificity of the analysis. Compared to earlier
work, the approach does not rely on additional meta-data such as the geoloca-
tion of posts and avoids computationally expensive and delay-inducing event
detection mechanisms. However, one of the main limitations of the approach is
that it mainly operates on the textual content of the posts. The clustering pro-
cess currently does not consider media content (images or videos) for efficiency
reasons.

It is difficult to extract and visualize multivariate relationships in data sets due
to the curse of dimensionality and the limited human perception. Chapter 7 in-
troduces Visual Neural Decomposition to tackle this problem. Using a modified
neural network architecture, it aims to disentangle the problem of how the inde-
pendent variables influence a chosen target variable into separate clusters that
can then be visualized independently of one another. The stacked histograms
visualization, range filters, and filtered parallel coordinates as well as scatter
plots further help analysts to recognize and understand the combinations that
lead to high values of the target value. One of the main advantages of the
approach is that it can extract more complex relationships, but it also scales to
larger data sets and many dimensions. However, with some very demanding
data sets, the resulting analysis can occasionally lead to visualizations that are
more difficult to interpret immediately.

The contributions of this work can be generalized into the concept of exploiting
artificial intelligence for visually explaining data sets. Section 2.5 formalizes
this concept with the AIX process. We train a model on or fit a function to
the input data not for the sake of predicting values, but rather to understand
relationships of the underlying data by visualizing the inner workings of the
model or function. That is, we are not primarily interested in the outputs of the
model, but in how the model captured what it has learned. This can be applied
to supervised as well as unsupervised methods. For instance, the Visual Neural
Decomposition approach is an example of a supervised training procedure
to extract and visualize multivariate relationships, whereas PyramidTags and
the dynamic clustering process are based on unsupervised machine learning
techniques. The AIX process is intended to be a model for characterizing
existing techniques as well as for inciting and steering novel visual analytics
approaches that scale to large data sets.

174 Chapter 8 ● Conclusion and Outlook

8.2 Open Challenges

Research is like the Sigmoid function, you can always progress but you will
never reach the ceiling. This thesis made several contributions to enable large-
scale analyses of textual and multivariate data sets combining machine learning
and visualization, but there are still open challenges for future work.

In recent years, there has been tremendous progress in deep learning-based
techniques for natural language and image processing. With these techniques,
visual analytics approaches may provide more concise and more accurate
summaries of documents, for instance, but the immense computational cost of
invoking these models on non-high-performance computing hardware has yet
to be addressed. In addition, deep learning-based models typically focus on
sequences with up to thousands of tokens, which makes them less suited for
visually aggregating entire collections. One promising strategy for reducing
the computational burden is to research sparser architectures that can achieve
similar performance but with fewer parameters.

Another challenge is that documents are becoming more and more media-
rich. For instance, a significant proportion of tweets only contain one or a few
words alongside an image or video, which makes it increasingly difficult to
process and analyze vast amounts of posts interactively. A similar problem
arises when posts reference and link external content. Thus, it is becoming
increasingly important to develop visual analytics systems that do not solely
rely on pre-processed data sources, but are also equipped with analysis methods
that continuously enrich the collected data in real-time.

In the case of analyzing tabular data, it is still difficult to visualize truly multi-
variate relationships without allowing ambiguous interpretations, particularly if
these relationships are composed of irregular or non-smooth patterns. Further-
more, if there are several intertwined effects that cause a correlation in the data,
it becomes increasingly challenging to disentangle these effects into separate
cases for an easier visual interpretation. More research is needed whether
and how regularization techniques can reduce ambiguity and help to extract
overlapping effects.

Visual Neural Decomposition aims to explain multivariate data sets with one
dependent variable. While separate analysis steps can be performed on several
such dependent variables, analysts may also want to examine relationships that
involve not only multiple independent variables but also multiple dependent
variables. One could extend the neural network architecture to predict several
target variables, but it remains challenging how to adapt the visualizations such
that they can express non-linear N-to-M relationships.

8.2 ● Open Challenges 175

The analysis of large and complex data sets promises important new findings
that can have a real and lasting impact on future generations. Despite continu-
ous advances in pure computing power, however, developing both efficient and
powerful methods for the visual analysis of textual and multivariate data sets is
still a challenging endeavor that has many obstacles to overcome. This thesis
tackled some of these challenges in order to make large-scale analyses feasible
in many use cases.

Bibliography
F. Abel, C. Hauff, G. J. Houben, K. Tao, and R. Stronkman. Twitcident: Fighting

fire with information from Social Web streams. In Proceedings of the 21st
Annual Conference on World Wide Web Companion, WWW 2012, pages 305–308,
2012. 31

M. R. Ackermann, C. Lammersen, M. Märtens, C. Raupach, C. Sohler, and
K. Swierkot. StreamKM++: A clustering algorithm for data streams. In
Proceedings of the 12th Workshop on Algorithm Engineering and Experiments,
ALENEX 2010, pages 173–187, 2010. 16

I. Adä, K. Thiel, and M. R. Berthold. Distance aware tag clouds. In Proceedings
of the IEEE International Conference on Systems, Man and Cybernetics, pages
2316–2322, 2010. 26

C. C. Aggarwal and C. X. Zhai. A survey of text clustering algorithms. In
Mining Text Data, pages 77–128. Springer, Boston, MA, 2012. 12, 13

N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approximation. In
Proceedings of the Advances in Neural Information Processing Systems 22, 2009. 16

Z. Alami Merrouni, B. Frikh, and B. Ouhbi. Automatic keyphrase extraction:
a survey and trends. Journal of Intelligent Information Systems, 54(2):391–424,
2020. 48

S. Alemzadeh, T. Hielscher, U. Niemann, L. Cibulski, T. Ittermann, H. Völzke,
M. Spiliopoulou, and B. Preim. Subpopulation Discovery and Validation in
Epidemiological Data. In M. Sedlmair and C. Tominski, editors, Proceedings
of the EuroVis Workshop on Visual Analytics, EuroVA 2017. The Eurographics
Association, 2017. 37

A. B. Alencar, M. C. F. de Oliveira, and F. V. Paulovich. Seeing beyond reading:
a survey on visual text analytics. WIREs Data Mining and Knowledge Discovery,
2(6):476–492, 2012. 24

E. Alexander and M. Gleicher. Assessing topic representations for GIST-forming.
In Proceedings of the Workshop on Advanced Visual Interfaces AVI, pages 100–107,
2016. 29

E. Alexander, J. Kohlmann, R. Valenza, M. Witmore, and M. Gleicher. Serendip:
Topic model-driven visual exploration of text corpora. In Proceedings of the
2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014,
pages 173–182, 2015. 28

178 Bibliography

M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez, and
K. Kochut. A Brief Survey of Text Mining: Classification, Clustering and
Extraction Techniques, 2017. [Online]. Available: http://arxiv.org/abs/1707.

02919. 12, 13

R. B. Allen and R. Sieczkiewicz. How historians use historical newspapers. In
Proceedings of the ASIST Annual Meeting, volume 47, pages 1–4. John Wiley
and Sons, nov 2010. 23

J. Alsakran, Y. Chen, Y. Zhao, J. Yang, and D. Luo. STREAMIT: Dynamic
visualization and interactive exploration of text streams. In Proceedings of the
2011 IEEE Pacific Visualization Symposium, PacificVis 2011, pages 131–138, 2011.
24, 25, 31, 32

R. Amar and J. Stasko. A knowledge task-based framework for design and
evaluation of information visualizations. In Proceedings of the 2004 IEEE
Symposium on Information Visualization, InfoVis 2004, pages 143–149, 2004. 34

D. Archambault, D. Greene, P. Cunningham, and N. Hurley. ThemeCrowds:
Multiresolution summaries of twitter usage. In Proceedings of the International
Conference on Information and Knowledge Management, pages 77–84, 2011. 31

A. O. Artero, M. C. Ferreira De Oliveira, and H. Levkowitz. Uncovering clusters
in crowded parallel coordinates visualizations. In Proceedings of the 2004 IEEE
Symposium on Information Visualization, InfoVis 2004, pages 81–88, 2004. 35

D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding.
Technical Report 2006-13, Stanford InfoLab, 2007. 15

I. Assent, R. Krieger, E. Müller, and T. Seidl. Visa. ACM SIGKDD Explorations
Newsletter, 9(2):5–12, 2007. 37

S. Barlowe, T. Zhang, Y. Liu, J. Yang, and D. Jacobs. Multivariate visual
explanation for high dimensional datasets. In Proceedings of the 2008 IEEE
Symposium on Visual Analytics Science and Technology, VAST 2008, pages 147–
154, 2008. 35, 38

A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Bar-
bado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and
F. Herrera. Explainable Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI. Information
Fusion, 58:82–115, 2020. 44

http://arxiv.org/abs/1707.02919
http://arxiv.org/abs/1707.02919

Bibliography 179

S. Bateman, C. Gutwin, and M. Nacenta. Seeing things in the clouds: the effect
of visual features on tag cloud selections. In Proceedings of the nineteenth ACM
conference on Hypertext and hypermedia, pages 193–202, 2008. 25

D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba. Under-
standing the role of individual units in a deep neural network. Proceedings of
the National Academy of Sciences, 117(48):30071–30078, 2020. 41

M. Behrisch, F. Korkmaz, L. Shao, and T. Schreck. Feedback-driven interactive
exploration of large multidimensional data supported by visual classifier. In
Proceedings of the 2014 IEEE Conference on Visual Analytics Science and Technology,
VAST 2014, pages 43–52, 2015. 37

G. Beigi, X. Hu, R. Maciejewski, and H. Liu. An overview of sentiment analysis
in social media and its applications in disaster relief. In W. Pedrycz and S.-M.
Chen, editors, Sentiment Analysis and Ontology Engineering: An Environment of
Computational Intelligence, volume 639, pages 313–340. Springer, Cham, 2016.
23

J. L. Bentley. Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM, 18(9):509–517, 1975. 102

J. Bernard, M. Steiger, S. Widmer, H. Lücke-Tieke, T. May, and J. Kohlhammer.
Visual-interactive exploration of interesting multivariate relations in mixed
research data sets. Computer Graphics Forum, 33(3):291–300, 2014. 39

C. Binucci, W. Didimo, and E. Spataro. Fully dynamic semantic word clouds. In
Proceedings of the 7th International Conference on Information, Intelligence, Systems
and Applications, IISA 2016, pages 1–6, 2016. 27

C. M. Bishop. Neural networks and their applications. Review of scientific
instruments, 65(6):1803–1832, 1994. 19

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003. 14

C. Blundell, Y. W. Teh, and K. A. Heller. Bayesian rose trees. In Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence, UAI 2010, pages 65–72,
2010. 16

H. Bosch, D. Thom, F. Heimerl, E. Puttmann, S. Koch, R. Kruger, M. Worner, and
T. Ertl. ScatterBlogs2: Real-time monitoring of microblog messages through
user-guided filtering. IEEE Transactions on Visualization and Computer Graphics,
19(12):2022–2031, 2013. 32, 33

180 Bibliography

A. Bougouin and F. Boudin. TopicRank : Graph-Based Topic Ranking for
Keyphrase Extraction. In Proc. IJCNLP 2013, number October, pages 543–551,
2013. 48

V. Braverman, A. Meyerson, R. Ostrovsky, A. Roytman, M. Shindler, and
B. Tagiku. Streaming k-means on well-clusterable data. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms, 2011. 16

M. Burch, S. Lohmann, D. Pompe, and D. Weiskopf. Prefix tag clouds. In
Proceedings of the International Conference on Information Visualisation, pages
45–50, 2013. 27

R. Campos, V. Mangaravite, A. Pasquali, A. Jorge, C. Nunes, and A. Jatowt.
YAKE! Keyword extraction from single documents using multiple local fea-
tures. Information Sciences, 509:257–289, 2020. 48

N. Cao, D. Gotz, J. Sun, and H. Qu. DICON: Interactive visual analysis of
multidimensional clusters. IEEE Transactions on Visualization and Computer
Graphics, 17(12):2581–2590, 2011. 37

N. Cao, Y. R. Lin, X. Sun, D. Lazer, S. Liu, and H. Qu. Whisper: Tracing the
spatiotemporal process of information diffusion in real time. IEEE Transactions
on Visualization and Computer Graphics, 18(12):2649–2658, 2012. 33

S. K. Card, J. D. Mackinlay, and B. Shneiderman. Information visualization:
using vision to think. In Readings in information visualization: using vision to
think. Morgan Kaufmann, 1999. 22

C. Carpineto, S. Osiski, G. Romano, and D. Weiss. A survey of web clustering
engines. ACM Computing Surveys, 41(3), 2009. 29

D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scatterplot
Matrix Techniques for Large N. Journal of the American Statistical Association,
82(398):424, 1987. 35

J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and T. Ertl.
Spatiotemporal social media analytics for abnormal event detection and
examination using seasonal-trend decomposition. In Proceedings of the 2012
IEEE Conference on Visual Analytics Science and Technology, VAST 2012, pages
143–152, 2012. 33

D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, volume 2006, pages 554–560, 2006. 16

Bibliography 181

A. Chatzimparmpas, R. M. Martins, I. Jusufi, and A. Kerren. A survey of
surveys on the use of visualization for interpreting machine learning models.
Information Visualization, 19(3):207–233, 2020a. 44

A. Chatzimparmpas, R. M. Martins, I. Jusufi, K. Kucher, F. Rossi, and A. Kerren.
The State of the Art in Enhancing Trust in Machine Learning Models with
the Use of Visualizations. Computer Graphics Forum, 39(3):713–756, 2020b. 44

A. Chatzimparmpas, R. M. Martins, and A. Kerren. T-viSNE: Interactive Assess-
ment and Interpretation of t-SNE Projections. IEEE Transactions on Visualization
and Computer Graphics, 26(8):2696–2714, 2020c. 36

J. Chen, X. Zhang, Y. Wu, Z. Yan, and Z. Li. Keyphrase generation with
correlation constraints. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2018, pages 4057–4066, 2020.
55

S. Chen, L. Lin, and X. Yuan. Social Media Visual Analytics. Computer Graphics
Forum, 36(3):563–587, 2017. 30

S. Chen, N. Andrienko, G. Andrienko, J. Li, and X. Yuan. Co-Bridges: Pair-
wise Visual Connection and Comparison for Multi-item Data Streams. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1612–1622, 2021. 31

Y. Chen, L. Wang, M. Dong, and J. Hua. Exemplar-based Visualization of Large
Document Corpus. IEEE Transactions on Visualization and Computer Graphics,
15(6):1161–1168, 2009. 24

S. Cheng, W. Xu, and K. Mueller. RadViz Deluxe: An Attribute-Aware Display
for Multivariate Data. Processes, 5(4):75, 2017. 37

M. T. Chi, S. S. Lin, S. Y. Chen, C. H. Lin, and T. Y. Lee. Morphable Word Clouds
for Time-Varying Text Data Visualization. IEEE Transactions on Visualization
and Computer Graphics, 21(12):1415–1426, 2015. 26, 68

J. Choo and S. Liu. Visual Analytics for Explainable Deep Learning. IEEE
Computer Graphics and Applications, 38(4):84–92, 2018. 40, 44

J. Choo, C. Lee, C. K. Reddy, and H. Park. UTOPIAN: User-driven topic model-
ing based on interactive nonnegative matrix factorization. IEEE Transactions
on Visualization and Computer Graphics, 19(12):1992–2001, 2013. 14, 29

B. Chopard and M. Tomassini. Particle swarm optimization. Natural Computing
Series, 4:97–102, 2018. 83

182 Bibliography

J. Chuang, C. D. Manning, and J. Heer. “Without the clutter of unimportant
words”. ACM Transactions on Computer-Human Interaction, 19(3):1–29, 2012a.
25, 70

J. Chuang, C. D. Manning, and J. Heer. Termite: Visualization techniques for
assessing textual topic models. In Proceedings of the Workshop on Advanced
Visual Interfaces AVI, pages 74–77, 2012b. 28, 68, 70

J. Chuang, D. Ramage, C. D. Manning, and J. Heer. Interpretation and trust:
Designing model-driven visualizations for text analysis. In Proceedings of the
Conference on Human Factors in Computing Systems, pages 443–452, 2012c. 29

W. Chung. BizPro: Extracting and categorizing business intelligence factors
from textual news articles. International Journal of Information Management, 34
(2):272–284, 2014. 23

C. Collins, F. B. Viégas, and M. Wattenberg. Parallel tag clouds to explore and
analyze faceted text corpora. In Proceedings of the 2009 IEEE Symposium on
Visual Analytics Science and Technology, VAST 2009, pages 91–98, 2009. 26

M. A. A. Cox and T. F. Cox. Multidimensional Scaling, pages 315–347. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008. 16, 35

W. Cui, Y. Wu, S. Liu, F. Wei, M. Zhou, and H. Qu. Context-preserving, dynamic
word cloud visualization. IEEE Computer Graphics and Applications, 30(6):
42–53, 2010. 26

W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong. TextFlow:
Towards Better Understanding of Evolving Topics in Text. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2412–2421, 2011. 30

W. Cui, S. Liu, Z. Wu, and H. Wei. How hierarchical topics evolve in large
text corpora. IEEE Transactions on Visualization and Computer Graphics, 20(12):
2281–2290, 2014. 30

C. Culy and V. Lyding. Double tree: An advanced KWIC visualization for expert
users. In Proceedings of the International Conference on Information Visualisation,
pages 98–103, 2010. 57

R. R. O. da Silva, P. E. Rauber, R. M. Martins, R. Minghim, and A. C. Telea.
Attribute-based Visual Explanation of Multidimensional Projections. In
E. Bertini and J. C. Roberts, editors, Proceedings of the EuroVis Workshop on
Visual Analytics, EuroVA 2015. The Eurographics Association, 2015. 36

Bibliography 183

D. L. Davies and D. W. Bouldin. A Cluster Separation Measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227, 1979. 111

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL HLT 2019, volume 1, pages
4171–4186, 2019. 12

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text
data using clustering. Machine Learning, 42(1-2):143–175, 2001. 14, 15, 101

N. Diakopoulos, M. Naaman, and F. Kivran-Swaine. Diamonds in the rough:
Social media visual analytics for journalistic inquiry. In Proceedings of the 2010
IEEE Symposium on Visual Analytics Science and Technology, VAST 2010, pages
115–122, 2010. 30

D. Dingen, M. Van’t Veer, P. Houthuizen, E. H. Mestrom, E. H. Korsten, A. R.
Bouwman, and J. Van Wijk. RegressionExplorer: Interactive Exploration of
Logistic Regression Models with Subgroup Analysis. IEEE Transactions on
Visualization and Computer Graphics, 25(1):246–255, 2019. 37, 39

G. Doquire and M. Verleysen. A comparison of multivariate mutual information
estimators for feature selection. In Proceedings of the 1st International Conference
on Pattern Recognition Applications and Methods, ICPRAM 2012, volume 1, pages
176–185, 2012. 34

M. Dörk, S. Carpendale, C. Collins, and C. Williamson. VisGets: Coordinated
visualizations for web-based information exploration and discovery. IEEE
Transactions on Visualization and Computer Graphics, 14(6):1205–1212, 2008. 26,
30

M. Dörk, D. Gruen, C. Williamson, and S. Carpendale. A Visual backchannel
for large-scale events. IEEE Transactions on Visualization and Computer Graphics,
16(6):1129–1138, 2010. 31

W. Dou, X. Wang, R. Chang, and W. Ribarsky. ParallelTopics: A probabilistic
approach to exploring document collections. In Proceedings of the 2011 IEEE
Symposium on Visual Analytics Science and Technology, VAST 2011, pages 231–
240, 2011. 28, 30

W. Dou, X. Wang, D. Skau, W. Ribarsky, and M. X. Zhou. LeadLine: Interactive
visual analysis of text data through event identification and exploration. In
Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology
(VAST), pages 93–102, 2012. 31

184 Bibliography

W. Dou, L. Yu, X. Wang, Z. Ma, and W. Ribarsky. HierarchicalTopics: Visually
exploring large text collections using topic hierarchies. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2002–2011, 2013. 28

M. Dredze, H. M. Wallach, D. Puller, and F. Pereira. Generating summary
keywords for emails using topics. In Proceedings of the 2008 International
Conference on Intelligent User Interfaces, IUI 2008, 2008. 28

G. Dreyfus. Neural networks: Methodology and applications. Springer Science &
Business Media, 2005. 17, 19

C. Eichner, H. Schumann, and C. Tominski. Making Parameter Dependencies of
Time-Series Segmentation Visually Understandable. Computer Graphics Forum,
39(1), 2020. 38

M. El-Assady, V. Gold, C. Acevedo, C. Collins, and D. Keim. ConToVi: Multi-
Party Conversation Exploration using Topic-Space Views. Computer Graphics
Forum, 35(3):431–440, 2016. 29

S. R. El-Beltagy and A. Rafea. KP-Miner: A keyphrase extraction system for
English and Arabic documents. Information Systems, 34(1):132–144, 2009. 48

C. Elkan. Using the Triangle Inequality to Accelerate k-Means. In Proceedings,
Twentieth International Conference on Machine Learning, volume 1, pages 147–153,
2003. 102

A. Endert, R. Burtner, N. Cramer, R. Perko, S. Hampton, and K. Cook. Typo-
graph: Multiscale spatial exploration of text documents. In Proceedings of the
2013 IEEE International Conference on Big Data, Big Data 2013, pages 17–24,
2013. 26

Y. Endo and S. Miyamoto. Spherical k-means++ clustering. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 9321, pages 103–114, 2015. 110

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge
discovery in databases. AI Magazine, 17(3):37–53, 1996. 19, 20, 22, 43

C. Felix, S. Franconeri, and E. Bertini. Taking Word Clouds Apart: An Empirical
Investigation of the Design Space for Keyword Summaries. IEEE Transactions
on Visualization and Computer Graphics, 24(1):657–666, 2018. 25

J. Ferwerda, A. van Saase, B. Unger, and M. Getzner. Estimating money
laundering flows with a gravity model-based simulation. Scientific Reports, 10
(1):18552, 2020. 2

Bibliography 185

T. Fujiwara, O. H. Kwon, and K. L. Ma. Supporting Analysis of Dimension-
ality Reduction Results with Contrastive Learning. IEEE Transactions on
Visualization and Computer Graphics, 26(1):45–55, 2020. 36

S. Gad, W. Javed, S. Ghani, N. Elmqvist, T. Ewing, K. N. Hampton, and N. Ra-
makrishnan. ThemeDelta: Dynamic segmentations over temporal topic mod-
els. IEEE Transactions on Visualization and Computer Graphics, 21(5):672–685,
2015. 30

M. Gambhir and V. Gupta. Recent automatic text summarization techniques: a
survey. Artificial Intelligence Review, 47(1):1–66, 2017. 47

E. R. Gansner, Y. Hu, and S. North. Interactive visualization of streaming text
data with dynamic maps. Journal of Graph Algorithms and Applications, 17(4):
515–540, 2013. 24, 25, 31

Z. J. Gao, Y. Song, S. Liu, H. Wang, H. Wei, Y. Chen, and W. Cui. Tracking
and connecting topics via incremental hierarchical Dirichlet processes. In
Proceedings of the 2011 IEEE International Conference on Data Mining, ICDM
2011, pages 1056–1061, 2011. 15

L. Garrison, J. Müller, S. Schreiber, S. Oeltze-Jafra, H. Hauser, and S. Bruckner.
DimLift: Interactive Hierarchical Data Exploration Through Dimensional
Bundling. IEEE Transactions on Visualization and Computer Graphics, 27(6):
2908–2922, 2021. 36

J. E. Gentle, L. Kaufman, and P. J. Rousseuw. Finding Groups in Data: An
Introduction to Cluster Analysis., volume 47. John Wiley and Sons, 1991. 12

N. Gershon, S. G. Eick, and S. Card. Information Visualization. Interactions, 5
(2):9–15, 1998. 20

R. Gil-García and A. Pons-Porrata. Dynamic hierarchical algorithms for docu-
ment clustering. Pattern Recognition Letters, 31(6):469–477, 2010. 15

M. Gleicher. Explainers: Expert explorations with crafted projections. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2042–2051, 2013. 36

M. Gleicher. A Framework for Considering Comprehensibility in Modeling. Big
data, 4(2):75–88, jun 2016. 43, 44

L. B. Godfrey and M. S. Gashler. Neural decomposition of time-series data.
In Proceedings of the 2017 IEEE International Conference on Systems, Man, and
Cybernetics, SMC 2017, volume 2017-Janua, pages 2796–2801, 2017. 136

186 Bibliography

S. Goodwin, J. Dykes, A. Slingsby, and C. Turkay. Visualizing Multiple Variables
Across Scale and Geography. IEEE Transactions on Visualization and Computer
Graphics, 22(1):599–608, 2016. 37

S. Günnemann, H. Kremer, I. Färber, and T. Seidl. MCExplorer: Interactive
exploration of multiple (subspace) clustering solutions. In Proceedings of
the 2010 IEEE International Conference on Data Mining, ICDM 2010, pages
1387–1390, 2010. 37

M. J. Halvey and M. T. Keane. An assessment of tag presentation techniques.
In Proceedings of the 16th International Conference on World Wide Web, pages
1313–1314, 2007. 68

K. S. Hasan and V. Ng. Conundrums in unsupervised keyphrase extraction:
Making sense of the state-of-the-art. In Proceedings of the 23rd International
Conference on Computational Linguistics, Coling 2010, volume 2, pages 365–373,
2010. 48, 49, 50, 55

S. Hassan, J. Sänger, and G. Pernul. SoDA: Dynamic visual analytics of big
social data. In Proceedings of the 2014 International Conference on Big Data and
Smart Computing, BIGCOMP 2014, pages 183–188, 2014. 30

T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1
(3):297–310, 1986. 43

T. Hastie and R. Tibshirani. Generalized Additive Models: Some Applications.
Journal of the American Statistical Association, 82(398):371, 1987. 43

S. Havre, E. Hetzler, P. Whitney, and L. Nowell. ThemeRiver: Visualizing the-
matic changes in large document collections. IEEE Transactions on Visualization
and Computer Graphics, 8(1):9–20, 2002. 29, 30

M. A. Hearst, E. Pedersen, L. Patil, E. Lee, P. Laskowski, and S. Franconeri. An
Evaluation of Semantically Grouped Word Cloud Designs. IEEE Transactions
on Visualization and Computer Graphics, 26(9):2748–2761, 2020. 68, 69, 70

F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual Classifier Training for Text
Document Retrieval. IEEE Transactions on Visualization and Computer Graphics,
18(12):2839–2848, 2012. 43

F. Heimerl, S. Lohmann, S. Lange, and T. Ertl. Word cloud explorer: Text ana-
lytics based on word clouds. In Proceedings of the Annual Hawaii International
Conference on System Sciences, pages 1833–1842, 2014. 26, 68

Bibliography 187

F. Heimerl, Q. Han, S. Koch, and T. Ertl. CiteRivers: Visual Analytics of
Citation Patterns. IEEE Transactions on Visualization and Computer Graphics, 22
(1):190–199, 2016. 30

F. Heimerl, M. John, Q. Han, S. Koch, and T. Ertl. DocuCompass: Effective
exploration of document landscapes. In Proceedings of the 2016 IEEE Conference
on Visual Analytics Science and Technology, VAST 2016, pages 11–20, 2017. 24

J. Heinrich and D. Weiskopf. State of the Art of Parallel Coordinates. In
Proceedings of the Eurographics Conference on Visualization, EuroVis 2013, pages
95–116, 2013. 35

J. Heinrich, Y. Luo, A. E. Kirkpatrick, H. Zhang, and D. Weiskopf. Evaluation of
a bundling technique for parallel coordinates. arXiv preprint arXiv:1109.6073,
2011. 35

K. A. Heller and Z. Ghahramani. Bayesian hierarchical clustering. In Proceedings
of the 22nd International Conference on Machine Learning, ICML 2005, pages
297–304, 2005. 16

J. M. Helm, A. M. Swiergosz, H. S. Haeberle, J. M. Karnuta, J. L. Schaffer, V. E.
Krebs, A. I. Spitzer, and P. N. Ramkumar. Machine Learning and Artificial
Intelligence: Definitions, Applications, and Future Directions. Current reviews
in musculoskeletal medicine, 13(1):69–76, feb 2020. 10

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computa-
tion, 9(8):1735–1780, 1997. 17

D. L. Hoffman and M. Fodor. Can you measure the ROI of your social media
marketing? MIT Sloan management review, 52(1):41, 2010. 23

E. Hoque and G. Carenini. Interactive topic hierarchy revision for exploring
a collection of online conversations. Information Visualization, 18(3):318–338,
2019. 29

T. Horsmann, N. Erbs, and T. Zesch. Fast or Accurate ? – A Comparative
Evaluation of PoS Tagging Models. Proceedings of the International Conference
of the German Society for Computational Linguistics and Language Technology
(GSCL-2015), 2015. 48, 54

M. Hu, S. Liu, F. Wei, Y. Wu, J. Stasko, and K. L. Ma. Breaking news on Twitter.
In Proceedings of the Conference on Human Factors in Computing Systems, pages
2751–2754, 2012. 23

188 Bibliography

M. Hu, K. Wongsuphasawat, and J. Stasko. Visualizing Social Media Content
with SentenTree. IEEE Transactions on Visualization and Computer Graphics, 23
(1):621–630, 2017. 28, 31, 57, 68, 70

A. Hulth. Improved automatic keyword extraction given more linguistic knowl-
edge. In Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2003, pages 216–223, 2003. 55

M. Hund, D. Böhm, W. Sturm, M. Sedlmair, T. Schreck, T. Ullrich, D. A. Keim,
L. Majnaric, and A. Holzinger. Visual analytics for concept exploration in
subspaces of patient groups: Making sense of complex datasets with the
Doctor-in-the-loop. Brain Informatics, 3(4):233–247, 2016. 37

M. Imran, C. Castillo, F. Diaz, and S. Vieweg. Processing social media messages
in Mass Emergency: A survey. ACM Computing Surveys, 47(4):67:1—-67:38,
2015. 48

A. Inselberg. The plane with parallel coordinates. The Visual Computer, 1(4):
69–91, 1985. 35

D. Jackle, M. Hund, M. Behrisch, D. A. Keim, and T. Schreck. Pattern Trails:
Visual Analysis of Pattern Transitions in Subspaces. In Proceedings of the 2017
IEEE Conference on Visual Analytics Science and Technology, VAST 2017, pages
1–12, 2018. 37

H. Janetzko, M. Stein, D. Sacha, and T. Schreck. Enhancing parallel coordinates:
Statistical visualizations for analyzing soccer data. Electronic Imaging, 1:1–8,
2016. 35

S. Jänicke and G. Scheuermann. On the visualization of hierarchical relations
and tree structures with tagspheres. In Proceedings of the Communications in
Computer and Information Science, volume 693, pages 199–219, 2017. 26

S. Jia, P. Lin, Z. Li, J. Zhang, and S. Liu. Visualizing surrogate decision trees of
convolutional neural networks. Journal of Visualization, 23(1):141–156, 2020. 40

J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing structure within clus-
tered parallel coordinates displays. In Proceedings of the 2005 IEEE Symposium
on Information Visualization, InfoVis 2005, pages 125–132, 2005. 35

J. Johnson, M. Douze, and H. Jegou. Billion-Scale Similarity Search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, 2021. 102

M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. ActiVis: Visual Explo-
ration of Industry-Scale Deep Neural Network Models. IEEE Transactions on
Visualization and Computer Graphics, 24(1):88–97, 2018. 40

Bibliography 189

D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann. Mastering the information
age : solving problems with visual analytics. Goslar : Eurographics Association,
2010a. 1, 3, 21, 22, 42

D. a. Keim, F. Mansmann, J. Thomas, and D. Keim. Visual Analytics : How
Much Visualization and How Much Analytics ? ACM SIGKDD Explorations
Newsletter, 11(2):5–8, 2010b. 21

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
the International Conference on Neural Networks, ICNN 1995, volume 4, pages
1942–1948 vol.4, 1995. 10

M. Kim, K. Kang, D. Park, J. Choo, and N. Elmqvist. TopicLens: Efficient
Multi-Level Visual Topic Exploration of Large-Scale Document Collections.
IEEE Transactions on Visualization and Computer Graphics, 23(1):151–160, 2017.
14

S. N. Kim, O. Medelyan, M. Y. Kan, and T. Baldwin. SemEval-2010 Task 5:
Automatic keyphrase extraction from scientific articles. In Proceedings of the
5th International Workshop on Semantic Evaluation, ACL 2010 - SemEval 2010,
2010. 55

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 19

P. Klemm, K. Lawonn, S. Glaßer, U. Niemann, K. Hegenscheid, H. Völzke, and
B. Preim. 3D Regression Heat Map Analysis of Population Study Data. IEEE
Transactions on Visualization and Computer Graphics, 22(1):81–90, 2016. 38

J. Knittel, S. Koch, and T. Ertl. Highlighting Text Regions of Interest with
Character-Based LSTM Recurrent Networks. In Proceedings of the 2018 Posters-
ession at the IEEE Conference on Visualization, 2018. 41

J. Knittel, S. Koch, and T. Ertl. Interactive Hierarchical Quote Extraction for
Content Insights. In J. Madeiras Pereira and R. G. Raidou, editors, Proceedings
of the EuroVis 2019 Posters. The Eurographics Association, 2019a. 5

J. Knittel, S. Koch, and T. Ertl. Pattern-Based Semantic and Temporal Exploration
of Social Media Messages. In Proceedings of the 2019 IEEE Conference on Visual
Analytics Science and Technology, VAST 2019, pages 134–135, 2019b. 5

J. Knittel, S. Koch, and T. Ertl. PyramidTags: Context-, Time- And Word Order-
Aware Tag Maps to Explore Large Document Collections. IEEE Transactions
on Visualization and Computer Graphics, 27(12):4455–4468, 2021a. 5

190 Bibliography

J. Knittel, S. Koch, and T. Ertl. ELSKE: Efficient Large-Scale Keyphrase Extraction.
In Proceedings of the 21st ACM Symposium on Document Engineering, DocEng
2021, New York, NY, USA, 2021b. Association for Computing Machinery. 5

J. Knittel, S. Koch, and T. Ertl. Efficient Sparse Spherical K-Means for Document
Clustering. In Proceedings of the 21st ACM Symposium on Document Engineer-
ing, DocEng 2021, New York, NY, USA, 2021c. Association for Computing
Machinery. 5

J. Knittel, A. Lalama, S. Koch, and T. Ertl. Visual Neural Decomposition to
Explain Multivariate Data Sets. IEEE Transactions on Visualization and Computer
Graphics, 27(2):1374–1384, 2021d. 6

J. Knittel, S. Koch, T. Tang, W. Chen, Y. Wu, S. Liu, and T. Ertl. Real-Time
Visual Analysis of High-Volume Social Media Posts. IEEE Transactions on
Visualization and Computer Graphics, 28(1):879–889, 2022. 5, 6

M. Krapivin. Large Dataset for Keyphrase Extraction. Technical Report, (May
2008), 2008. 55

J. Krause, A. Perer, and E. Bertini. INFUSE: Interactive feature selection for pre-
dictive modeling of high dimensional data. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1614–1623, 2014. 38

J. Krause, A. Dasgupta, J. D. Fekete, and E. Bertini. SeekAView: An intelli-
gent dimensionality reduction strategy for navigating high-dimensional data
spaces. In Proceedings of the 2016 IEEE Symposium on Large Data Analysis and
Visualization, LDAV 2016, pages 11–19, 2017. 37

M. Krstajić and D. A. Keim. Visualization of streaming data: Observing change
and context in information visualization techniques. In Proceedings of the 2013
IEEE International Conference on Big Data, Big Data 2013, pages 41–47, 2013. 3,
31

M. Krstajić, E. Bertini, and D. A. Keim. Cloudlines: Compact display of
event episodes in multiple time-series. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2432–2439, 2011. 30

M. Krstajić, M. Najm-Araghi, F. Mansmann, and D. A. Keim. Story tracker:
Incremental visual text analytics of news story development. Information
Visualization, 12(3-4):308–323, 2013. 30

K. Kucher and A. Kerren. Text visualization techniques: Taxonomy, visual
survey, and community insights. In Proceedings of the 2015 IEEE Pacific Visual-
ization Symposium, PacificVis 2015, pages 117–121, 2015. 23

Bibliography 191

K. Kucher, R. M. Martins, C. Paradis, and A. Kerren. StanceVis Prime: visual
analysis of sentiment and stance in social media texts. Journal of Visualization,
23(6):1015–1034, 2020. 31

Z. Kulpa. Diagrammatic Representation of Interval Space in Proving Theorems
about Interval Relations. Reliable Computing, 3(3):209–217, 1997. 69

K. Lagus, T. Honkela, S. Kaski, and T. Kohonen. Self-Organizing Maps of
Document Collections: A New Approach to Interactive Exploration. In
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, KDD’96, pages 238–243. AAAI Press, 1996. 24

H. Lakkaraju, S. H. Bach, and J. Leskovec. Interpretable Decision Sets: A Joint
Framework for Description and Prediction. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pages 1675–1684, New York, NY, USA, 2016. Association for Computing
Machinery. 43

Q. Le and T. Mikolov. Distributed representations of sentences and documents.
In Proceedings of the 31st International Conference on Machine Learning, ICML
2014, volume 4, pages 2931–2939, 2014. 12

B. Lee, N. H. Riche, A. K. Karlson, and S. Carpendale. SparkClouds: Visualizing
trends in tag clouds. IEEE Transactions on Visualization and Computer Graphics,
16(6):1182–1189, 2010. 26, 27

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, 1999. 13

S. Legg and M. Hutter. A Collection of Definitions of Intelligence. Frontiers in
Artificial Intelligence and applications, 157:17, 2007. 10

A. Lelu and M. Cadot. Evaluation of Text Clustering Methods and Their
Dataspace Embeddings: An Exploration. In Studies in Classification, Data
Analysis, and Knowledge Organization, volume 5, pages 131–139, 2021. 14, 101

M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient Mini-Batch Training for
Stochastic Optimization. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 661–670,
New York, NY, USA, 2014. Association for Computing Machinery. 19

S. Linnainmaa. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis
(in Finnish), Univ. Helsinki, pages 6–7, 1970. 19

192 Bibliography

M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards Better Analysis of
Deep Convolutional Neural Networks. IEEE Transactions on Visualization and
Computer Graphics, 23(1):91–100, 2017. 40

S. Liu, M. X. Zhou, S. Pan, W. Qian, W. Cai, and X. Lian. Interactive, topic-based
visual text summarization and analysis. In Proceedings of the International
Conference on Information and Knowledge Management, pages 543–552, 2009. 30

S. Liu, X. Wang, Y. Song, and B. Guo. Evolutionary bayesian rose trees. IEEE
Transactions on Knowledge and Data Engineering, 27(6):1533–1546, 2015a. 15, 31

S. Liu, J. Yin, X. Wang, W. Cui, K. Cao, and J. Pei. Online visual analytics of
text streams. IEEE Transactions on Visualization and Computer Graphics, 22(11):
2451–2466, 2016. 31

S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu. Visual Diagnosis of Tree
Boosting Methods. IEEE Transactions on Visualization and Computer Graphics,
24(1):163–173, 2018. 39, 44

X. Liu, H. W. Shen, and Y. Hu. Supporting multifaceted viewing of word clouds
with focus+context display. Information Visualization, 14(2):168–180, 2015b. 25

Y. Liu and R. A. Lopez. The impact of social media conversations on consumer
brand choices. Marketing Letters, 27(1):1–13, 2016. 23

S. P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982. 14, 15, 101

S. Lohmann, J. Ziegler, and L. Tetzlaff. Comparison of tag cloud layouts: Task-
related performance and visual exploration. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 5726 LNCS, pages 392–404, 2009. 25

S. Lohmann, F. Heimerl, F. Bopp, M. Burch, and T. Ertl. Concentri cloud:
Word cloud visualization for multiple text documents. In Proceedings of the
International Conference on Information Visualisation, volume 2015-September,
pages 114–120, 2015. 27

S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams,
D. E. Liston, D. K.-W. Low, S.-F. Newman, J. Kim, and S.-I. Lee. Explain-
able machine-learning predictions for the prevention of hypoxaemia during
surgery. Nature Biomedical Engineering, 2(10):749–760, 2018. 44

A. M. MacEachren, A. Jaiswal, A. C. Robinson, S. Pezanowski, A. Savelyev,
P. Mitra, X. Zhang, and J. Blanford. SensePlace2: GeoTwitter analytics support

Bibliography 193

for situational awareness. In Proceedings of the 2011 IEEE Symposium on Visual
Analytics Science and Technology, VAST 2011, pages 181–190, 2011. 31

A. Malik, R. Maciejewski, N. Elmqvist, Y. Jang, D. S. Ebert, and W. Huang. A
correlative analysis process in a visual analytics environment. In Proceedings
of the 2012 IEEE Conference on Visual Analytics Science and Technology, VAST
2012, pages 33–42, 2012. 37, 38

C. D. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval.
Cambridge University Press, 2008. 12

A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and R. C. Miller.
TwitInfo: Aggregating and visualizing microblogs for event exploration. In
Proceedings of the Conference on Human Factors in Computing Systems, pages
227–236, 2011. 31

M. Martinc, B. Škrlj, and S. Pollak. TNT-KID: Transformer-based neural tagger
for keyword identification, 2021. 55

T. May, A. Bannach, J. Davey, T. Ruppert, and J. Kohlhammer. Guiding feature
subset selection with an interactive visualization. In Proceedings of the 2011
IEEE Symposium on Visual Analytics Science and Technology, VAST 2011, pages
111–120, 2011. 38

L. McInnes, J. Healy, N. Saul, and L. Großberger. UMAP: Uniform Manifold
Approximation and Projection. Journal of Open Source Software, 3(29):861, 2018.
16, 17, 35

Q. Mei and C. X. Zhai. Discovering evolutionary theme patterns from text -
An exploration of Temporal Text Mining. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 198–207,
2005. 15

R. Meng, S. Zhao, S. Han, D. He, P. Brusilovsky, and Y. Chi. Deep keyphrase
generation. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, volume 1, pages 582–592, 2017. 48, 49, 55

R. Mihalcea. Graph-based ranking algorithms for sentence extraction, applied
to text summarization. Proceedings of the ACL 2004 on Interactive Poster and
Demonstration Sessions, pages 20–es, 2004. 48

M. Minsky and S. Papert. Perceptron: an introduction to computational geometry.
The MIT Press, 1969. 160

194 Bibliography

S. Mitra, S. A. Seshia, and N. Nicolici. Post-silicon validation opportunities,
challenges and recent advances. In Proceedings of the Design Automation
Conference, pages 12–17, 2010. 138

T. Mühlbacher and H. Piringer. A partition-based framework for building and
validating regression models. IEEE Transactions on Visualization and Computer
Graphics, 19(12):1962–1971, 2013. 38, 39

T. Mühlbacher, L. Linhardt, T. Möller, and H. Piringer. TreePOD: Sensitivity-
Aware Selection of Pareto-Optimal Decision Trees. IEEE Transactions on
Visualization and Computer Graphics, 24(1):174–183, 2018. 39, 43

E. Müller, I. Assent, R. Krieger, T. Jansen, and T. Seidl. Morpheus: Interactive
exploration of subspace clustering. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 1089–1092,
2008. 37

E. Müller, I. Assent, S. Günnemann, P. Gerwert, M. Hannen, T. Jansen, and
T. Seidl. A framework for evaluation and exploration of clustering algorithms
in subspaces of high dimensional databases. In Proceedings of the Lecture Notes
in Informatics, LNI, volume 180, pages 347–366, 2011. 37

M. P. Neto and F. V. Paulovich. Explainable matrix - Visualization for global
and local interpretability of random forest classification ensembles. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1427–1437, 2021. 39,
137

T. D. Nguyen and M.-Y. Kan. Keyphrase Extraction in Scientific Publications.
In D. H.-L. Goh, T. H. Cao, I. T. Sølvberg, and E. Rasmussen, editors, Asian
Digital Libraries. Looking Back 10 Years and Forging New Frontiers, pages 317–326,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. 55

N. J. Nilsson. Introduction to Machine Learning - an early draft of a proposed textbook.
2005. 10

N. J. Nilsson. The quest for artificial intelligence. Cambridge University Press,
2009. 10

M. Novotný and H. Hauser. Outlier-preserving focus+context visualization in
parallel coordinates. IEEE Transactions on Visualization and Computer Graphics,
12(5):893–900, 2006. 35

N. Oliveira, P. Cortez, and N. Areal. The impact of microblogging data for stock
market prediction: Using Twitter to predict returns, volatility, trading volume

Bibliography 195

and survey sentiment indices. Expert Systems with Applications, 73:125–144,
2017. 23

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010. 41

D. Park, S. Kim, J. Lee, J. Choo, N. Diakopoulos, and N. Elmqvist. ConceptVector:
Text Visual Analytics via Interactive Lexicon Building Using Word Embedding.
IEEE Transactions on Visualization and Computer Graphics, 24(1):361–370, 2018.
29

C. L. Paul, J. Chang, A. Endert, N. Cramer, D. Gillen, S. Hampton, R. Burtner,
R. Perko, and K. A. Cook. TexTonic: Interactive visualization for exploration
and discovery of very large text collections. Information Visualization, 18(3):
339–356, 2019. 26

F. V. Paulovich and R. Minghim. Text Map Explorer: A tool to create and explore
document maps. In Proceedings of the International Conference on Information
Visualisation, pages 245–251, 2006. 24

F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least square
projection: A fast high-precision multidimensional projection technique and
its application to document mapping. IEEE Transactions on Visualization and
Computer Graphics, 14(3):564–575, 2008. 24

F. V. Paulovich, F. M. Toledo, G. P. Telles, R. Minghim, and L. G. Nonato.
Semantic wordification of document collections. Computer Graphics Forum, 31
(3 PART 3):1145–1153, 2012. 24

M. Peng, J. Zhu, H. Wang, X. Li, Y. Zhang, X. Zhang, and G. Tian. Mining
event-oriented topics in microblog stream with unsupervised multi-view
hierarchical embedding. ACM Transactions on Knowledge Discovery from Data,
12(3), 2018. 15

G. Piatetsky-Shapiro. Knowledge Discovery in Real Databases: A Report on the
IJCAI-89 Workshop. AI Magazine, 11(4):68, 1990. 19, 22

H. Piringer, W. Berger, and H. Hauser. Quantifying and comparing features
in high-dimensional datasets. In Proceedings of the International Conference on
Information Visualisation, pages 240–245, 2008. 38

R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm
Intelligence, 1(1):33–57, 2007. 11

196 Bibliography

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. [GPT-2]
Language Models are Unsupervised Multitask Learners. OpenAI Blog, 1(May):
1–7, 2020. 12, 17

M. R. H. Rakib, N. Zeh, and E. Milios. Efficient Clustering of Short Text Streams
Using Online-Offline Clustering. In Proceedings of the 21st ACM Symposium on
Document Engineering, DocEng 2021, New York, NY, USA, 2021. Association
for Computing Machinery. 16

E. Ramos and D. Donoho. ASA Data Exposition dataset, 1983. [Online].
Available: http://stat-computing.org/dataexpo/1983.html. 147

T. Raykov and G. A. Marcoulides. An Introduction to applied multivariate analysis.
Routledge, 2008. 34

G. Richer, J. Sansen, F. Lalanne, D. Auber, and R. Bourqui. Enabling hierarchi-
cal exploration for large-scale multidimensional data with abstract parallel
coordinates. In Proceedings of the CEUR Workshop, volume 2083, pages 76–83,
2018. 35

A. W. Rivadeneira, D. M. Gruen, M. J. Muller, and D. R. Millen. Getting our
head in the clouds: Toward evaluation studies of tagclouds. In Proceedings of
the Conference on Human Factors in Computing Systems, pages 995–998, 2007. 68

C. Rohrdantz, D. Oelke, M. Krstajić, and F. Fischer. Real-Time Visualization of
Streaming Text Data : Tasks and Challenges. In Proceedings of the VIS-Week
2011 Workshops, 2011. 3, 31

S. Rose, D. Engel, N. Cramer, and W. Cowley. Automatic Keyword Extraction
from Individual Documents. In Text Mining: Applications and Theory, pages
1–20. John Wiley and Sons, 2010. 48

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986. 19

D. Sacha, M. Kraus, D. A. Keim, and M. Chen. VIS4ML: An Ontology for Visual
Analytics Assisted Machine Learning. IEEE Transactions on Visualization and
Computer Graphics, 25(1):385–395, 2019. 40

G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988. 13

C. Sammut and G. I. Webb. Encyclopedia of Machine Learning. Springer Science
& Business Media, 2010. 10

http://stat-computing.org/dataexpo/1983.html

Bibliography 197

T. Y. S. S. Santosh, D. K. Sanyal, P. K. Bhowmick, and P. P. Das. DAKE: Document-
level attention for keyphrase extraction. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 12036 LNCS, pages 392–401, 2020. 48

V. M. Savage, A. P. Allen, J. H. Brown, J. F. Gillooly, A. B. Herman, W. H.
Woodruff, and G. B. West. Scaling of number, size, and metabolic rate of cells
with body size in mammals. Proceedings of the National Academy of Sciences,
104(11):4718–4723, 2007. 9

M. Scherer, J. Bernard, and T. Schreck. Retrieval and exploratory search in mul-
tivariate research data repositories using regressional features. In Proceedings
of the ACM/IEEE Joint Conference on Digital Libraries, pages 363–372, 2011. 37

A. Schneider, G. Hommel, and M. Blettner. Lineare Regressionsanalyse.
Deutsches Arzteblatt, 107(44):776–782, 2010. 45

J. Schrammel, M. Leitner, and M. Tscheligi. Semantically structured tag clouds:
An empirical evaluation of clustered presentation approaches. In Proceedings
of the Conference on Human Factors in Computing Systems, pages 2037–2040,
2009. 25

M. Sedlmair, M. Brehmer, S. Ingram, and T. Munzner. Dimensionality reduction
in the wild: gaps and guidance. Dept. Comput. Sci., Univ. British Columbia,
Vancouver, BC, Canada, Tech. Rep. TR-2012-03, 2012. 36

M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Moller. Visual parameter
space analysis: A conceptual framework. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2161–2170, 2014. 136

C. Seifert, B. Kump, W. Kienreich, G. Granitzer, and M. Granitzer. On the beauty
and usability of tag clouds. In Proceedings of the International Conference on
Information Visualisation, pages 17–25, 2008. 25

Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Proceedings
of the 1998 IEEE International Conference on Evolutionary Computation, pages
69–73, 2002. 10, 83

J. Sinclair and M. Cardew-Hall. The folksonomy tag cloud: When is it useful?
Journal of Information Science, 34(1):15–29, 2008. 25, 68

B. Škrlj, A. Repar, and S. Pollak. RaKUn: Rank-based Keyword Extraction via
Unsupervised Learning and Meta Vertex Aggregation. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 11816 LNAI, pages 311–323, 2019. 48

198 Bibliography

J. Stasko, C. Görg, and Z. Liu. Jigsaw: Supporting investigative analysis through
interactive visualization. Information Visualization, 7(2):118–132, 2008. 28

E. Steiger, B. Resch, and A. Zipf. Exploration of spatiotemporal and semantic
clusters of Twitter data using unsupervised neural networks. International
Journal of Geographical Information Science, 30(9):1694–1716, 2016. 31

G. Stilo and P. Velardi. Efficient temporal mining of micro-blog texts and its
application to event discovery. Data Mining and Knowledge Discovery, 30(2):
372–402, 2016. 15

H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. LSTMVis: A Tool for
Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks.
IEEE Transactions on Visualization and Computer Graphics, 24(1):667–676, 2018.
41

H. K. Sul, A. R. Dennis, and L. I. Yuan. Trading on Twitter: Using Social Media
Sentiment to Predict Stock Returns. Decision Sciences, 48(3):454–488, 2017. 23

G. Sun, Y. Wu, S. Liu, T. Q. Peng, J. J. Zhu, and R. Liang. EvoRiver: Visual
analysis of topic coopetition on social media. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1753–1762, 2014. 30

A. A. Talin, F. Léonard, A. M. Katzenmeyer, B. S. Swartzentruber, S. T. Picraux,
M. E. Toimil-Molares, J. G. Cederberg, X. Wang, S. D. Hersee, and A. Rishi-
naramangalum. Transport characterization in nanowires using an electrical
nanoprobe. Semiconductor Science and Technology, 25(2), 2010. 26

A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind, H. Theisel, M. Mag-
nork, and D. Keim. Combining automated analysis and visualization tech-
niques for effective exploration of high-dimensional data. In Proceedings of
the 2009 IEEE Symposium on Visual Analytics Science and Technology, VAST 2009,
pages 59–66, 2009. 38

A. Tatu, F. Maaß, I. Färber, E. Bertini, T. Schreck, T. Seidl, and D. Keim. Subspace
search and visualization to make sense of alternative clusterings in high-
dimensional data. In Proceedings of the 2012 IEEE Conference on Visual Analytics
Science and Technology, VAST 2012, pages 63–72, 2012a. 37

A. Tatu, L. Zhang, E. Bertini, T. Schreck, D. Keim, S. Bremm, and T. Von
Landesberger. ClustNails: Visual analysis of subspace clusters. Tsinghua
Science and Technology, 17(4):419–428, 2012b. 37

C. Teflioudi and R. Gemulla. Exact and approximate maximum inner product
search with LEMP. ACM Transactions on Database Systems, 42(1), 2016. 102

Bibliography 199

D. Thom, H. Bosch, S. Koch, M. Worner, and T. Ertl. Spatiotemporal anomaly
detection through visual analysis of geolocated Twitter messages. In Proceed-
ings of the 2012 IEEE Pacific Visualization Symposium, PacificVis 2012, pages
41–48, 2012. 33

D. Thom, R. Kruger, T. Ertl, U. Bechstedt, A. Platz, J. Zisgen, and B. Volland.
Can twitter really save your life? A case study of visual social media analytics
for situation awareness. In Proceedings of the 2015 IEEE Pacific Visualization
Symposium, PacificVis 2015, pages 183–190, 2015. 23, 33

J. J. Thomas and K. A. Cook. Illuminating the path: The research and development
agenda for visual analytics. 2005. 1, 3, 21

M. E. Tipping and C. M. Bishop. Mixtures of Probabilistic Principal Component
Analyzers. Neural Computation, 11(2):443–482, 1999. 16, 35

G. Tkachev, S. Frey, and T. Ertl. Local Prediction Models for Spatiotemporal
Volume Visualization. IEEE Transactions on Visualization and Computer Graphics,
27(7):3091–3108, 2021. 41

T. Tompson and J. Benz. AP VoteCast 2018, 2019. [Online]. Available: http:

//doi.org/10.3886/E109687V2. 163

C. Turkay, A. Lundervold, A. J. Lundervold, and H. Hauser. Representative
factor generation for the interactive visual analysis of high-dimensional data.
IEEE Transactions on Visualization and Computer Graphics, 18(12):2621–2630,
2012. 37

N. Van de Weghe, R. Docter, P. De Maeyer, B. Bechtold, and K. Ryckbosch. The
triangular model as an instrument for visualising and analysing residuality.
Journal of Archaeological Science, 34(4):649–655, 2007. 69

S. Van Den Elzen and J. J. Van Wijk. BaobabView: Interactive construction and
analysis of decision trees. In Proceedings of the 2011 IEEE Symposium on Visual
Analytics Science and Technology, VAST 2011, pages 151–160, 2011. 39, 40

L. Van Der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(11):2579–2605, 2008. 16, 35

F. Van Ham, M. Wattenberg, and F. B. Viégas. Mapping text with phrase nets.
In IEEE Transactions on Visualization and Computer Graphics, volume 15, pages
1169–1176, 2009. 28, 57

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in Neural Information

http://doi.org/10.3886/E109687V2
http://doi.org/10.3886/E109687V2

200 Bibliography

Processing Systems, volume 2017-December of NIPS’17, pages 5999–6009, Red
Hook, NY, USA, 2017. Curran Associates Inc. 17

F. Viégas, M. Wattenberg, J. Hebert, G. Borggaard, A. Cichowlas, J. Feinberg,
J. Orwant, and C. R. Wren. Google+ Ripples: A native visualization of
information flow. In Proceedings of the 22nd International Conference on World
Wide Web, WWW 2013, pages 1389–1398, 2013. 31

F. B. Viégas and M. Wattenberg. TIMELINES: Tag clouds and the case for
vernacular visualization. Interactions, 15(4):49, 2008. 25, 68

F. B. Viégas, M. Wattenberg, and J. Feinberg. Participatory visualization with
wordle. In IEEE Transactions on Visualization and Computer Graphics, volume 15,
pages 1137–1144, 2009. 25

X. Wan and J. Xiao. Single document keyphrase extraction using neighborhood
knowledge. In Proceedings of the National Conference on Artificial Intelligence,
volume 2, pages 855–860, 2008. 48

B. Wang and K. Mueller. The Subspace Voyager: Exploring High-Dimensional
Data along a Continuum of Salient 3D Subspaces. IEEE Transactions on
Visualization and Computer Graphics, 24(2):1204–1222, 2018. 37

D. Wang, D. Tan, and L. Liu. Particle swarm optimization algorithm: an
overview. Soft Computing, 22(2):387–408, 2018. 11

J. Wang, J. Zhao, S. Guo, C. North, and N. Ramakrishnan. ReCloud: Semantics-
based word cloud visualization of user reviews. In Proceedings of the Graphics
Interface, pages 151–158, 2014. 25, 26, 68, 70

Q. Wang, Z. Chen, Y. Wang, and H. Qu. A Survey on ML4VIS: Applying
MachineLearning Advances to Data Visualization. IEEE Transactions on Visu-
alization and Computer Graphics, page 1, 2021. 41

X. Wang and A. McCallum. Topics over Time: A non-markov continuous-time
model of topical trends. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, volume 2006, pages 424–
433, 2006. 15

X. Wang, W. Dou, Z. Ma, J. Villalobos, Y. Chen, T. Kraft, and W. Ribarsky. I-SI:
Scalable architecture for analyzing latent topical-level information from social
media data. Computer Graphics Forum, 31(3 PART 4):1275–1284, 2012. 30

X. Wang, S. Liu, Y. Song, and B. Guo. Mining evolutionary multi-branch trees
from text streams. In Proceedings of the ACM SIGKDD International Conference

Bibliography 201

on Knowledge Discovery and Data Mining, volume Part F128815, pages 722–730,
2013. 15

X. Wang, S. Liu, J. Liu, J. Chen, J. Zhu, and B. Guo. TopicPanorama: A Full
Picture of Relevant Topics. IEEE Transactions on Visualization and Computer
Graphics, 22(12):2508–2521, 2016. 28

Y. Wang, J. Li, H. P. Chan, I. King, M. R. Lyu, and S. Shi. Topic-aware neural
keyphrase generation for social media language. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, ACL 2019, pages
2516–2526, 2020. 48

M. Wattenberg and F. B. Viégas. The word tree, an interactive visual concordance.
In IEEE Transactions on Visualization and Computer Graphics, volume 14, pages
1221–1228, 2008. 27, 57

J. J. Webster and C. Kit. Tokenization as the Initial Phase in NLP. In Proceedings
of the 14th Conference on Computational Linguistics - Volume 4, COLING ’92,
pages 1106–1110, USA, 1992. Association for Computational Linguistics. 12

E. Weippl. Visualizing content based relations in texts. In Proceedings Second
Australasian User Interface Conference. AUIC 2001, pages 34–41, 2001. 24

J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur, and
V. Crow. Visualizing the non-visual: spatial analysis and interaction with
information from text documents. In Proceedings of the Information Visualization
Conference, pages 51–58, 1995. 24

P. C. Wong. Visual Data Mining. IEEE Computer Graphics and Applications, 19(5):
20–21, 1999. 20, 22

K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer.
Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recom-
mendations. IEEE Transactions on Visualization and Computer Graphics, 22(1):
649–658, 2016. 37

K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. MacKin-
lay, B. Howe, and J. Heer. Voyager 2: Augmenting visual analysis with
partial view specifications. In Proceedings of the Conference on Human Factors in
Computing Systems, pages 2648–2659, 2017. 37

Y. Wu, T. Provan, F. Wei, S. Liu, and K. L. Ma. Semantic-preservingword clouds
by seam carving. Computer Graphics Forum, 30(3):741–750, 2011. 26, 68

202 Bibliography

Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu. OpinionFlow: Visual analysis of
opinion diffusion on social media. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1763–1772, 2014. 31

Y. Wu, N. Cao, D. Gotz, Y. P. Tan, and D. A. Keim. A Survey on Visual Analytics
of Social Media Data. IEEE Transactions on Multimedia, 18(11):2135–2148, 2016.
30

Y. Wu, Z. Chen, G. Sun, X. Xie, N. Cao, S. Liu, and W. Cui. StreamExplorer:
A Multi-Stage System for Visually Exploring Events in Social Streams. IEEE
Transactions on Visualization and Computer Graphics, 24(10):2758–2772, 2018. 25,
33, 116

L. Xiong, C. Hu, C. Xiong, D. Campos, and A. Overwijk. Open domain
web keyphrase extraction beyond language modeling. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and 9th
International Joint Conference on Natural Language Processing, EMNLP-IJCNLP
2019, pages 5175–5184, 2020. 48

J. Xu, Y. Tao, and H. Lin. Semantic word cloud generation based on word
embeddings. In Proceedings of the 2016 IEEE Pacific Visualization Symposium,
PacificVis 2016, pages 239–243, 2016. 26

W. Xu, X. Liu, and Y. Gong. Document Clustering Based On Non-negative
Matrix Factorization. In Proceedings of the SIGIR Forum (ACM Special Interest
Group on Information Retrieval), number SPEC. ISS., pages 267–273, 2003. 13

W. Yang, X. Wang, J. Lu, W. Dou, and S. Liu. Interactive Steering of Hierarchical
Clustering. IEEE Transactions on Visualization and Computer Graphics, 27(10):
3953–3967, 2021. 29

H. Ye and L. Wang. Semi-supervised learning for neural keyphrase generation.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2018, pages 4142–4153, 2020. 48

S. M. Yimam, H. Ulrich, T. von Landesberger, M. Rosenbach, M. Reg-
neri, A. Panchenko, F. Lehmann, U. Fahrer, C. Biemann, and K. Ballweg.
new/s/leak – Information Extraction and Visualization for Investigative Data
Journalists. In Proceedings of ACL 2016 System Demonstrations, pages 163–168,
2016. 23, 67

J. Yin, D. Chao, Z. Liu, W. Zhang, X. Yu, and J. Wang. Model-Based Clustering
of Short Text Streams. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery And Data Mining, KDD ’18, pages 2634–2642,
New York, NY, USA, 2018. Association for Computing Machinery. 16

Bibliography 203

C. Zhang, J. Yang, F. B. Zhan, X. Gong, J. D. Brender, P. H. Langlois, S. Bar-
lowe, and Y. Zhao. A visual analytics approach to high-dimensional logistic
regression modeling and its application to an environmental health study.
In Proceedings of the 2016 IEEE Pacific Visualization Symposium, PacificVis 2016,
pages 136–143, 2016. 39

J. Zhang, Y. Song, C. Zhang, and S. Liu. Evolutionary hierarchical Dirichlet
processes for multiple correlated time-varying corpora. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1079–1088, 2010. 15

J. Zhang, C. Surakitbanharn, N. Elmqvist, R. Maciejewski, Z. Qian, and D. S.
Ebert. TopoText: Context-preserving Text data exploration across multiple
spatial scales. In Proceedings of the Conference on Human Factors in Computing
Systems, pages 1–13, 2018. 31

Z. Zhang, K. T. McDonnell, E. Zadok, and K. Mueller. Visual correlation analysis
of numerical and categorical data on the correlation map. IEEE Transactions
on Visualization and Computer Graphics, 21(2):289–303, 2015. 38

S. Zhong. Efficient streaming text clustering. Neural Networks, 18(5):790–798,
2005. 16

L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. Visualizing deep neural
network decisions: Prediction difference analysis. In Proceedings of the 5th
International Conference on Learning Representations, ICLR 2017, 2017. 40

	Contents
	List of Figures
	List of Tables
	List of Abbrev. and Acronyms
	Acknowledgments
	Abstract
	German Abstract — Zusammenfassung
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Contributions
	1.4 Thesis Structure

	2 Foundations and Concept
	2.1 Artificial Intelligence and Machine Learning
	2.1.1 Particle Swarm Optimization
	2.1.2 Document Clustering
	2.1.3 Dimensionality Reduction
	2.1.4 Neural Networks

	2.2 Visual Analytics
	2.3 Visual Analysis of Document Collections
	2.3.1 Projection-Based Approaches
	2.3.2 Topic-Based Approaches
	2.3.3 Social Media Analysis

	2.4 Visual Multivariate Analysis
	2.4.1 Multivariate Data Visualizations
	2.4.2 DR-Based Approaches
	2.4.3 Subspace-Based Approaches
	2.4.4 Iterative Approaches
	2.4.5 Model-Building and Partitioning
	2.4.6 Decision Trees and Neural Networks

	2.5 Artificial Intelligence for Visual Explainability
	2.5.1 Regularizing Visual Interpretability
	2.5.2 AIX vs. Predictive Model Building and XAI
	2.5.3 Applications of AIX

	3 Efficient Visual Document Collection Summarization
	3.1 Efficient Keyphrase Extraction (ELSKE)
	3.1.1 Method
	3.1.2 Evaluation

	3.2 Interactive Hierarchical Quote Extraction
	3.2.1 Background
	3.2.2 Quote Extraction
	3.2.3 System Design
	3.2.4 Use Case
	3.2.5 Discussion

	4 Interactive Exploration of Large Document Collections
	4.1 Background
	4.2 PyramidTags
	4.2.1 Objectives
	4.2.2 Overview
	4.2.3 Hovering Tags
	4.2.4 Multiple Tag Selection and Document Retrieval

	4.3 Preprocessing and Data Analysis
	4.3.1 Cleaning and Reprint Detection
	4.3.2 Tag Relationship Analysis

	4.4 Visualization Generation
	4.4.1 Layout and Map Locations
	4.4.2 Tag Splitting and Mapping
	4.4.3 Particle Swarm Optimization
	4.4.4 Objective Function Components

	4.5 Evaluation
	4.5.1 Use Case Scenarios
	4.5.2 Benchmarks
	4.5.3 Results
	4.5.4 Qualitative Feedback

	4.6 Discussion

	5 Dynamic Document Clustering
	5.1 Efficient Spherical k-Means
	5.1.1 Method
	5.1.2 Evaluation

	5.2 Dynamic Spherical k-Means
	5.2.1 Method
	5.2.2 Evaluation

	6 Real-Time Analysis of Streaming Social Media Data
	6.1 Background
	6.2 Task and Design Requirements
	6.3 Architecture
	6.3.1 Pipeline
	6.3.2 Preprocessing

	6.4 Visualization Techniques
	6.4.1 Topical Overview
	6.4.2 Frequent Phrases View
	6.4.3 Stream of Representative Posts

	6.5 Use Cases
	6.5.1 NBA, BTS, and Oprah
	6.5.2 YouTube Outage and Dive Into Politics

	6.6 Discussion

	7 Multivariate Analysis with Visual Neural Decomposition
	7.1 Background
	7.2 Requirements
	7.3 Method
	7.3.1 Basic Architecture
	7.3.2 Hidden Node Filtering
	7.3.3 Ranking of Variables
	7.3.4 Homogeneous Regularization

	7.4 Application Design
	7.4.1 Variables
	7.4.2 Model Training
	7.4.3 Node Visualization
	7.4.4 Stacked Histograms
	7.4.5 Parallel Coordinate Plot
	7.4.6 Scatter Plot
	7.4.7 Range Filter

	7.5 Evaluation
	7.5.1 Identification of High-Value Cases
	7.5.2 Hyper-Parameter Analysis
	7.5.3 Use Cases on Real-World Data Sets
	7.5.4 Qualitative Feedback

	7.6 Discussion
	7.7 Summary

	8 Conclusion and Outlook
	8.1 Contributions and Limitations
	8.2 Open Challenges

	Bibliography
	List of Todos

