
Dielectric Effects in Complex Fluids

Von der Fakultät Mathematik und Physik der Universität Stuttgart
und dem Stuttgarter Zentrum für Simulationswissenschaft
(SC SimTech) zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

Johannes Zeman

aus Backnang

Hauptberichter: Prof. Dr. Christian Holm
Mitberichter: Prof. Dr. Johannes Kästner

Drittgutachter: Prof. Dr. Joachim Dzubiella

Tag der mündlichen Prüfung: 2021-12-21

Institut für Computerphysik der Universität Stuttgart

2022





Erklärung über die Eigenständigkeit der
Dissertation

Die vorliegende Dissertation zum Thema Dielectric Effects in Complex
Fluids stellt meine eigenständig erbrachte Leistung dar.

Ich habe ausschließlich die angegebenen Quellen und Hilfsmittel be-
nutzt. Wörtlich oder inhaltlich aus anderen Werken übernommene An-
gaben habe ich als solche kenntlich gemacht.

Die Richtigkeit der hier getätigten Angaben bestätige ich und versiche-
re, nach bestem Wissen die Wahrheit erklärt zu haben.

Stuttgart, 7. Februar 2022

Johannes Zeman





Acknowledgments

This work would not have been possible without the tremendous
support I received from other people. First of all, I want to thank my
supervisor Christian Holm for all the ideas, guidance, and encourage-
ment he provided, and also for the patience he showed for me. Likewise,
I want to thank my former supervisor Axel Arnold, who gave me the
possibility to work in the field of Computational Physics in the first
place. I would also like to express my gratitude to Johannes Kästner
and Joachim Dzubiella for their efforts and time taken to assess this
work.

I thank my family, especially my parents, for their love and encourage-
ment they gave me throughout my life. Without their support, I could
have never gotten this far. Of course, the same applies to all my friends,
who always helped me in my choices with both the necessary criticism
and support. One among them who sticks out in particular with respect
to my scientific journey is Michael Schlaile, who gave me the possibility
to broaden my horizon towards scientific fields beyond Physics.

Since research can only thrive in the right environment, I am very
grateful to all my colleagues at the Institute for Computational Physics.
They helped me tremendously in developing new ideas and made my
time at the institute so very enjoyable. In that respect, I am especially
grateful to Jens Smiatek and Frank Uhlig for their inspiring ideas and
motivating discussions, and to Tillmann Kleiner for his mathematical
expertise. Likewise, I would like to thank Rudolf Hilfer for the many
scientific and political discussions we had.

Last but most importantly, I want to thank Martina Gassenmeier for
her unwavering love, her understanding and patience, and for all the
sacrifices she has made for me during the past years.

5





Contents
1 Zusammenfassung 11

1.1 Die Nichtidealität mehrkomponentiger Lösungen . . . . 15
1.2 Bewertung von Molekulardynamik-Kraftfeldern . . . . . 18
1.3 Einfluss organischer Kosolute auf die lokale Wasserdy-

namik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Polarisierbare Kraftfelder für ionische Flüssigkeiten . . . 25
1.5 Ionische Abschirmeffekte im Vollraum und unter räum-

lichem Einschluss . . . . . . . . . . . . . . . . . . . . . . 28

2 Introduction and Overview 33
2.1 Nonideality of Solutions . . . . . . . . . . . . . . . . . . 37
2.2 Force Field Evaluation . . . . . . . . . . . . . . . . . . . 39
2.3 Influence of Organic Cosolutes on Local Water Dynamics 41
2.4 Polarizable Force Fields for Ionic Liquids . . . . . . . . 45
2.5 Ionic Screening in Bulk and Under Confinement . . . . . 48

Published Work 51

3 Theoretical Framework 53
3.1 Linear Response Theory . . . . . . . . . . . . . . . . . . 53

3.1.1 General derivation . . . . . . . . . . . . . . . . . 54
3.1.2 Linear response in constant-temperature ensembles 61

3.2 Linear Dielectric Response . . . . . . . . . . . . . . . . . 63
3.3 Classical Molecular Dynamics Simulations . . . . . . . . 66

3.3.1 Interaction potentials . . . . . . . . . . . . . . . 66
3.3.2 Integrators . . . . . . . . . . . . . . . . . . . . . 67
3.3.3 Spatiotemporal limitations . . . . . . . . . . . . 68
3.3.4 Periodic boundary conditions . . . . . . . . . . . 69
3.3.5 Statistical ensembles . . . . . . . . . . . . . . . . 71
3.3.6 Thermostats and barostats . . . . . . . . . . . . 72

3.4 Dielectric Response in Molecular Dynamics Simulations 73

7



Contents

Appendix of Chapter 3 79
3.A Proof of the Solution (3.16) to Eq. (3.11) . . . . . . . . 79
3.B Derivatives of Autocorrelation Functions of Stationary

Random Processes . . . . . . . . . . . . . . . . . . . . . 81

4 Computational Framework 83
4.1 Statistical Error Estimation for Molecular Dynamics

Simulation Data . . . . . . . . . . . . . . . . . . . . . . 84
4.1.1 Error estimation of uncorrelated data . . . . . . 86
4.1.2 Error estimation of correlated data . . . . . . . . 88
4.1.3 Important considerations for the evaluation of

integrated auto-covariance estimates . . . . . . . 93
4.1.4 Numerical evaluation of autocorrelation or auto-

covariance estimators . . . . . . . . . . . . . . . 96
4.2 Extracting Dielectric Spectra from Molecular Dynamics

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Simulation and data acquisition . . . . . . . . . . 99
4.2.2 Data analysis . . . . . . . . . . . . . . . . . . . . 100
4.2.3 Proof of principle: The dielectric spectrum of water102
4.2.4 Physically consistent noise reduction . . . . . . . 103
4.2.5 Validation against experimental data . . . . . . . 107

4.3 Estimating Static Relative Dielectric Permittivities and
Conductivities . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.1 The Einstein-Helfand method . . . . . . . . . . . 112
4.3.2 Error estimation of static permittivities . . . . . 116

Appendix of Chapter 4 121
4.A Proof of Equation 4.47 . . . . . . . . . . . . . . . . . . . 121

5 The Effect of Small Organic Cosolutes on Water Structure
and Dynamics 125
5.1 Theoretical Background . . . . . . . . . . . . . . . . . . 129
5.2 Simulation Details . . . . . . . . . . . . . . . . . . . . . 133
5.3 Structural Analysis . . . . . . . . . . . . . . . . . . . . . 136

5.3.1 Radial distribution functions . . . . . . . . . . . 136

8



Contents

5.3.2 Sphericity . . . . . . . . . . . . . . . . . . . . . . 138
5.3.3 Tetrahedrality . . . . . . . . . . . . . . . . . . . 140

5.4 Analysis of Water Dynamics . . . . . . . . . . . . . . . . 143
5.4.1 Translational diffusion . . . . . . . . . . . . . . . 143
5.4.2 Hydrogen bond dynamics . . . . . . . . . . . . . 144
5.4.3 Dielectric relaxation spectra . . . . . . . . . . . . 145

5.5 Summary and Discussion . . . . . . . . . . . . . . . . . 151

Appendix of Chapter 5 155
5.A Volumetric System Properties . . . . . . . . . . . . . . . 155

5.A.1 Mass density . . . . . . . . . . . . . . . . . . . . 155
5.A.2 Partial molar volumes . . . . . . . . . . . . . . . 158

5.B Structural Properties . . . . . . . . . . . . . . . . . . . . 161
5.B.1 Radial distribution functions . . . . . . . . . . . 162
5.B.2 Sphericity . . . . . . . . . . . . . . . . . . . . . . 164
5.B.3 Tetrahedrality . . . . . . . . . . . . . . . . . . . 168

5.C Dynamic Properties . . . . . . . . . . . . . . . . . . . . 174
5.C.1 Translational diffusion coefficients . . . . . . . . 174
5.C.2 Hydrogen bond life times . . . . . . . . . . . . . 175
5.C.3 Dielectric spectra . . . . . . . . . . . . . . . . . . 176

6 Coarse-grained Polarizable Force Fields for Ionic Liquids 181
6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.1.1 Force field parametrization . . . . . . . . . . . . 184
6.1.2 Computational details . . . . . . . . . . . . . . . 190

6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . 194
6.2.1 Mass density . . . . . . . . . . . . . . . . . . . . 194
6.2.2 Radial distribution functions . . . . . . . . . . . 195
6.2.3 Enthalpy of vaporization . . . . . . . . . . . . . . 197
6.2.4 Translational diffusion coefficients . . . . . . . . 201
6.2.5 Rotational diffusion coefficients . . . . . . . . . . 202
6.2.6 Shear viscosity . . . . . . . . . . . . . . . . . . . 204
6.2.7 Electrical conductivity . . . . . . . . . . . . . . . 204

6.3 Conclusion and Outlook . . . . . . . . . . . . . . . . . . 207

9



Contents

7 Ionic Screening in Bulk and under Confinement 209
7.1 Molecular Dynamics Simulations . . . . . . . . . . . . . 214

7.1.1 Simulation details . . . . . . . . . . . . . . . . . 217
7.1.2 Analysis methods . . . . . . . . . . . . . . . . . . 218

7.2 Results and Discussion . . . . . . . . . . . . . . . . . . . 222
7.2.1 Bulk long-range interionic potentials of mean force222
7.2.2 Scaling analysis of asymptotic screening lengths

in concentrated electrolyte solutions . . . . . . . 227
7.2.3 Ionic liquids confined between like-charged surfaces231
7.2.4 Structural decay in confined ionic liquids . . . . 235

7.3 On the Relation of Underscreening to Other Measurements237
7.3.1 Differential capacitance . . . . . . . . . . . . . . 237
7.3.2 Excess chemical potential . . . . . . . . . . . . . 240

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 243

Appendix of Chapter 7 247
7.A Numerical Methods . . . . . . . . . . . . . . . . . . . . . 247

7.A.1 Computation of radial pair distribution functions 247
7.B Additional Results . . . . . . . . . . . . . . . . . . . . . 255

7.B.1 Bulk systems . . . . . . . . . . . . . . . . . . . . 255
7.B.2 Confined ionic liquid systems . . . . . . . . . . . 263
7.B.3 Using reduced-charge ion models in confined

systems . . . . . . . . . . . . . . . . . . . . . . . 269
7.C Relating Underscreening to Other Measurements . . . . 271

7.C.1 Differential capacitance estimates for different
widths of the Stern layer . . . . . . . . . . . . . . 271

7.D GROMACS Simulation Parameters . . . . . . . . . . . . 273
7.D.1 [C4C1Im]+[PF6]−(all-atom model) . . . . . . . . 274
7.D.2 [C4C1Im]+[PF6]−(coarse-grained model) . . . . . 275
7.D.3 Aqueous NaCl solutions . . . . . . . . . . . . . . 276
7.D.4 [C4C1Im]+ [NTf2]− in PC . . . . . . . . . . . . . 277
7.D.5 [C4C1Im]+ [NTf2]− confined between like-

charged graphene walls . . . . . . . . . . . . . . 278

References 279

10



1 Zusammenfassung

Während die ersten theoretischen Modelle zur Beschreibung dielektri-
scher Relaxationsprozesse vor allem auf die Arbeiten von Peter Debye1

im frühen zwanzigsten Jahrhundert zurückgehen, wird der Begriff di-
elektrische Spektroskopie heutzutage in erster Linie als ein Sammelbe-
griff für mehrere experimentelle Messverfahren verstanden, die in der
Lage sind, den frequenz- und materialabhängigen Antwortkoeffizien-
ten εr(ω) in Bezug auf ein von außen angelegtes elektrisches Wech-
selfeld E(ω), welches mit der Kreisfrequenz ω schwingt, bis in den
Terahertzbereich hinein zu messen. Dieser Antwortkoeffizient setzt die
induzierte Polarisation (d.h. die Antwort) des Materials ins Verhältnis
zum angelegten elektrischen Feld E. Unter der Annahme eines schwa-
chen angelegten äußeren Feldes gilt für ein homogenes und isotropes
dielektrisches Medium die Beziehung

P = ε0χeE = ε0(εr − 1)E , (1.1)
wobei die Konstante ε0 die Vakuumpermittivität beschreibt. Der Ant-
wortkoeffizient χe = εr − 1 wird als (dimensionslose) elektrische Sus-
zeptibilität bezeichnet und εr als die relative Permittivität, wobei beide
allgemein komplexwertige Größen sind. Die Permittivität ist hierbei
definiert als

εr(ω) = ε′r(ω)− iε′′r(ω) (1.2)
mit der imaginären Zahl i , welche ihrerseits als i2 = −1 definiert ist.
Der Realteil von ε′r(ω), welcher üblicherweise als Dispersion bezeich-
net wirda, verhält sich proportional zur vom Medium reversibel aufge-
nommenen Feldenergie. Mit steigender Frequenz sind die molekularen

aDer Ausdruck „Dispersion“ bezeichnet auch das allgemeine Phänomen, dass die
dielektrische Permittivität insgesamt frequenzabhängig ist. Hier wird der Begriff
allerdings ausschließlich für die Benennung des Realteils ε′r(ω) verwendet.
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1 Zusammenfassung

Bestandteile des Materials zunehmend weniger in der Lage, in ihrer
Bewegung den Schwingungen des angelegten Feldes zu folgen, was zu
einer Phasenverschiebung zwischen dem externen Feld und der Ant-
wort des Systems führt und somit einen größerwerdenden Imaginär-
teil ε′′r der Permittivität zur Folge hat. Da diese Verzögerung im All-
gemeinen mit materialabhängigen dissipativen Effekten einhergeht, ist
die Amplitude von ε′′r ein Maß für die dielektrische Absorption, welche
dementsprechend das Verhältnis zur innerhalb des Mediums irrever-
sibel aufgenommenen Feldenergie beschreibt. Aufgrund der Tatsache,
dass dem frequenzabhängigen Verhalten sowohl des Real- als auch des
Imaginärteils der dielektrischen Permittivität dieselben physikalischen
Prozesse zugrundeliegen, besteht ein kausaler – und somit analytischer
– Zusammenhang zwischen ε′r und ε′′r ,2 weshalb beide dieser Größen aus
der jeweils anderen mit Hilfe der Kramers-Kronig-Relationen berechnet
werden können.3

Experimentell wird die komplexe Permittivität üblicherweise aus Mes-
sungen der frequenzabhängigen Leitfähigkeit anhand der Beziehung4

εr(ω) = ε∞r +
iσe(ω)
ε0ω

(1.3)

berechnet. Dabei bezeichnet ε∞r die sogenannte „instantane“ Antwort
des physikalischen Systems, welche die Gesamtheit aller Relaxations-
prozesse beinhaltet, die zu schnell sind um durch eine (generell band-
begrenzte) Messung erfasst werden zu können (z. B. elektronische Po-
larisation oder Kernpolarisation).

Im Verlauf des vergangenen Jahrhunderts entwickelte sich die dielek-
trische Spektroskopie zu einem wichtigen wissenschaftlichen und in-
dustriellen Werkzeug, das es ermöglicht, Erkenntnisse über dynami-
sche Prozesse innerhalb unterschiedlichster Materialien zu erhalten. Die
blaue Kurve in Abbildung 1.1, welche die Anzahl der Publikationen
pro Jahr beschreibt (durch die Suchmaschine Google Scholar5 ermit-
telt), die die Schlagworte “dielectric relaxation” oder “dielectric spec-
troscopy” beinhalten, zeigt anschaulich, dass dieser Forschungsbereich
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immer noch stetig wächst. Die Methode der dielektrischen Spektro-
skopie findet heutzutage in vielen wissenschaftlichen und industriellen
Bereichen Anwendung, wie zum Beispiel in der Biotechnologie,6–8 in
der Qualitätssicherung der chemischen9–11 und der Lebensmittelindus-
trie12–14 sowie in der Batterieentwicklung.15
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Abbildung 1.1: Anzahl der Google Scholar-Suchergebnisse5 pro Jahr von 1920 bis
2020, welche die Begriffe “dielectric relaxation” OR “dielectric spectroscopy” (blaue
Linie), “molecular dynamics simulations” (grüne Linie), oder “molecular dynamics
simulations” AND (“dielectric relaxation” OR “dielectric spectroscopy”) (violette Li-
nie) enthalten. Die Anzahl der Publikationen, welche sowohl die Begriffe “dielectric
relaxation / spectroscopy” als auch “molecular dynamics” enthalten, ist relativ gering.

Obwohl ein überaus gutes Verständnis der in der experimentellen di-
elektrischen Spektroskopie eingesetzten Messtechniken besteht, erweist
sich die Interpretation der Messergebnisse und deren Deutung in Be-
zug auf die zugrundeliegenden mikroskopischen Mechanismen oft als
schwierig und kann mitunter uneindeutig sein. Im Gegensatz dazu kann
man erwarten, dass dies ein viel geringeres Problem darstellt, wenn die
Spektren aus Molekulardynamiksimulationen (MD-Simulationen, siehe
Abschnitt 3.3) berechnet werden, da diese Simulationsmethode räum-
liche und zeitliche Auflösungen im Subnanometer- und Femtosekun-
denbereich ermöglicht und somit alle mikroskopischen Prozesse direkt
beobachtbar macht. Obwohl sich MD-Simulationen mittlerweile zu ei-
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1 Zusammenfassung

nem extrem häufig eingesetzten wissenschaftlichen Werkzeug entwickelt
haben (man beachte die grüne Linie in Abbildung 1.1), so scheint die
Vorhersage dielektrischer Materialeigenschaften mit dieser Simulations-
methode (siehe violette Linie in Abbildung 1.1) bisher dennoch eher ein
Nischendasein zu fristen. Ein Grund für diese Tatsache ist sicherlich
der hohe Rechenaufwand, den solche Simulationen mit sich bringen,
zumal die Berechnung dielektrischer Spektren sehr lange Simulations-
zeiten im Bereich von Mikrosekunden erfordern. Nichtsdestotrotz ist es
heutzutage durch die Verfügbarkeit zunehmend leistungsfähigerer Re-
chenbeschleuniger (wie z. B. Grafikprozessoren) möglich, derartig lange
Simulationszeiten innerhalb vertretbarer Rechenzeit zu erreichen.

Im Prinzip könnte man bei der Berechnung dielektrischer Spektren mit
Hilfe rechnergestüzter Simulationen analog zum experimentellen Mess-
prinzip vorgehen, indem man ein externes elektrisches Feld vorgibt.
Dies würde allerdings bedeuten, dass man für jede Frequenz des an-
gelegten Feldes eine unabhängige Simulation durchführen müsste, was
je nach gewünschter Bandbreite und Auflösung des zu berechnenden
Spektrums einen nicht zu vertretenden Rechenaufwand mit sich bräch-
te.

In einem physikalischen System, welches sich im thermischen Gleich-
gewicht befindet, bewegen sich die enthaltenen Teilchen ständig um
ihre Gleichgewichtslage, und zwar auch dann, wenn kein externes elek-
trisches Feld angelegt ist. Zumal die Teilchen in einem dielektrischen
Medium elektrische Ladungen tragen, führt dies zu einem ständigen
Auf- und Wiederabbau von materialinternen elektrischen Feldern. Da
die räumliche Anordung und die Geschwindigkeiten aller Teilchen ei-
nes Systems in einer entsprechenden Simulation zu jedem Zeitpunkt
bekannt sind, kann die Reaktion des Systems auf seine eigenen in-
ternen elektrischen Felder gemessen werden um daraus mit Hilfe eines
fluktuationsbasierten Ansatzes, welcher erstmals von Kubo beschrieben
wurde,16 das entsprechende dielekrische Spektrum zu berechnen. Diese
Methode wird in Kapitel 3 aus Prinzipien der statistischen Mechanik
hergeleitet. Daraus ergibt sich die Möglichkeit, die frequenzabhängige

14



1.1 Die Nichtidealität mehrkomponentiger Lösungen

elektrische Leitfähigkeit σe(ω) aus dem Gesamtstrom j(t) anhand der
Formel

σe(ω) =
1

3V kBT

∞∫
0

〈j(0) j(τ)〉 eiωτ dτ (1.4)

zu berechnen. Dabei bezeichnet V das Volumen des Systems, T seine
Temperatur, kB die Boltzmann-Konstante, der Operator 〈·〉 steht für
das kanonische Mittel und der Strom j(t) wird durch die Ladung q und
Geschwindigkeit v(t) eines jeden Teilchens gemäß

j(t) =
∑
i

qi vi(t) (1.5)

berechnet. Die frequenzabhängige dielektrische Permittivität εr(ω)
wird anschließend über Gleichung (1.3) berechnet.

Ursprünglich sollte der Titel dieser Arbeit lediglich „Vorhersage dielek-
trischer Spektren mit Hilfe von Computersimulationen“ lauten. Schon
während der Entwicklung der für die Berechnung dielektrischer Spek-
tren aus MD-Simulationen benötigten Programme (siehe Kapitel 4)
wurde schnell kar, dass es diese Werkzeuge ermöglichen würden, eine
Vielzahl unterschiedlicher Themenbereiche zu bearbeiten, bei welchen
die Kenntnis dielektrischer Materialeigenschaften vonnöten ist.

Im Folgenden sind diese Themen im Hinblick sowohl auf unsere Bei-
träge zu Gemeinschaftsprojekten mit anderen Forschungsgruppen als
auch unsere eigenen wissenschaftlichen Arbeiten zusammengefasst.

1.1 Die Nichtidealität mehrkomponentiger
Lösungen

Wie bereits erwähnt wurde, bringen MD-Simulationen gegenüber ex-
perimentellen Messungen den Vorteil mit sich, dass die mikroskopi-
schen Zustände und die dynamische Entwicklung des betrachteten

15



1 Zusammenfassung

Systems stets bekannt sind. Insbesondere für die Berechnung dielek-
trischer Spektren bedeutet dies, dass die Beiträge unterschiedlicher
molekularer Spezies getrennt voneinender betrachtet werden können,
was gleichermaßen für deren gegenseitige Beeinflussung gilt. Zumal
sich der Gesamtstrom j(t) diesbezüglich additiv verhält und es sich
bei der Fourier-Laplace-Transformation in Gleichung (1.4) um eine
lineare Transformation handelt, können die Anteile der in einer bi-
nären Mischung enthaltenen Molekülsorten A, B am Gesamtspek-
trum durch getrennte Summation über die entsprechenden Molekü-
le {n ∈ A}, {m ∈ B} berechnet werden:

j(t) = jA(t) + jB(t) =
∑
n∈A

qnvn(t) +
∑
m∈B

qmvm(t) (1.6)

Daraus folgt, dass die Gleichung (1.4) in der Form

σe(ω) =
1

3V kBT
(〈jA(0)jA(t)〉ω + 〈jB(0)jB(t)〉ω + 2〈jA(0)jB(t)〉ω)

=: σA(ω) + σB(ω) + σAB(ω) (1.7)

ausgedrückt werden kann, wobei das Subskript ω als Kurzschreibwei-
se für die Fourier-Laplace-Transformation verwendet wurde. Die For-
mel (1.3) für das dielektrische Spektrum kann gleichermaßen umge-
formt werden:

εr(ω) = ε∞r +
i

ε0ω
(σA(ω) + σB(ω) + σAB(ω))

=: ε∞r + εA(ω) + εB(ω) + εAB(ω) (1.8)

Die direkte Berechnung des spektralen Interaktionsanteils εAB(ω) birgt
die Möglichkeit, Korrelationseffekte in der Dynamik binärer Mischun-
gen zu untersuchen.b Dementsprechend liegt es nicht fern, diese Mög-
lichkeit zu nutzen, um die Eigenschaften von Systemen zu ergründen, in
welchen zu erwarten ist, dass Korrelationseffekte eine nicht zu vernach-
lässigende Rolle spielen, was auf nichtideale Lösungen zutrifft. Mit die-
ser Zielsetzung untersuchten wir in Zusammenarbeit mit dem SimTech-
Projekt 1-2 die Eigenschaften von wässrigen Dimethylsulfoxidlösungen

bDie Gleichungen (1.7) und (1.8) beschränken sich nicht auf binäre Lösungen; sie
sind leicht auf mehrkomponentige Mischungen erweiterbar.
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1.1 Die Nichtidealität mehrkomponentiger Lösungen

(DMSOaq).17 Unsere Ergebnisse legen dar, dass es in der Tat der Kreuz-
term εH2O/DMSO(ω) ist, in welchem sich das nichtideale Verhalten des
Systems manifestiert. Abbildung 1.2 stellt den konzentrationsabhän-
gigen Verlauf der unterschiedlichen Beiträge εH2O(ω), εDMSO(ω) und
εH2O/DMSO(ω) am Gesamtspektrum dar.
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Abbildung 1.2: a: Relative Beiträge ε′α(0)/ε′r(0) der einzelnen Molekülsorten und Kreuz-
korrelationsbeiträge an der gesamten statischen dielektrischen Permittivität ε′r(0) als
Funktion des Stoffmengenanteils von DMSO (xDMSO). b: Maximale Absorptionsam-
plitude max(ε′′α(ω)) der unterschiedlichen Beiträge in Abhängigkeit von xDMSO. Blaue
Linien beschreiben die Beiträge des Wasseranteils, während violette den DMSO-Beitrag
und grüne den Anteil der gegenseitigen Wasser-DMSO-Beeinflussung darstellen. Aus
den Maxima der jeweiligen Interaktionsterme in den beiden Graphen lässt sich folgern,
dass der größte Einfluss der Nichtidealität auf die Dynamik des Systems bei DMSO-
Stoffmengenanteilen im Bereich von 0.3 < xDMSO < 0.4 liegt.

Der konzentrationsabhängige Anteil des Interaktionsterms im stati-
schen Limes ε′H2O/DMSO(0)/ε

′
r(0) (grüne Linie in Abbildung 1.2a) legt

nahe, dass der Einfluss der Nichtidealität im Bereich eines DMSO-
Anteils 0.3 < xDMSO < 0.4 am größten ist. Dieses Verhalten ist auch in
den Absorptionsamplituden max(ε′′α(ω)) (Abbildung 1.2b) erkennbar.
Alle anderen diesbezüglichen Ergebnisse, Berechnungen und deren In-
terpretation werden in der vorliegenden Arbeit nicht weiter diskutiert,
sodass an dieser Stelle auf die entsprechende Referenz 17 verwiesen
sei.
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1 Zusammenfassung

1.2 Bewertung von Molekulardynamik-Kraftfeldern

Zumal es eine stetig größerwerdende Anzahl an in der einschlägigen Li-
teratur vorhandenen experimentell gemessenen dielektrischen Spektren
unterschiedlichster Substanzen gibt, stellt die Berechnung solcher Spek-
tren aus MD-Simulationen nicht nur eine Möglichkeit zur Erforschung
prinzipieller dynamischer Effekte dar, sondern kann umgekehrt auch
zur Validierung der Parametersätze molekularer Modelle (sogenannte
Kraftfelder), welche in MD-Simulationen eingesetzt werden, herangezo-
gen werden. Dementsprechend setzten wir unsere Berechnungsmetho-
den in Zussamenarbeit mit SimTech-Projekt 2-15 dazu ein, verschie-
dene Kraftfelder, welche für die Simulation von Trimethylamin N-oxid
(TMAO) verwendet werden können, hinsichtlich ihrer Genauigkeit in
der Vorhersage dynamischer Messgrößen zu bewerten. Abbildung 1.3
zeigt die Ergebnisse dieser Untersuchung bezüglich dreier Größen, wel-
che die wichtigsten Eigenschaften der entsprechenden dielektrischen
Spektren verdeutlichen.
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Abbildung 1.3: Vergleich konzentrationsabhängiger dielektrischer Eigenschaften wässri-
ger TMAO-Lösungen, welche durch den Einsatz verschiedener TMAO-Modelle berech-
net wurden, mit entsprechenden experimentellen Daten.18 a: Frequenz ω∗ entsprechend
der Lage der Maximalamplitude in der dielektrischen Absorption ε′′r (ω). b: Maximal-
amplitude ε′′r (ω

∗) der dielektrischen Absorption. c: Reduzierte statische Permittivität
ε̄′r(0) := ε′r(0)− ε∞r .
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1.2 Bewertung von Molekulardynamik-Kraftfeldern

Das Kast-2016-Modell unter gleichzeitiger Verwendung des
TIP4P/2005-Wassermodells (orange) reproduziert die experimentl-
len Daten qualitativ erstaunlich gut, jedoch unterschätzt es alle
dielektrischen Eigenschaften quantitativ um einem fast konstanten
aber relativ großen Faktor. Die beste quantitative Übereinstimmung
ergibt sich für dasselbe Modell, wenn es zusammen mit dem SPC/E-
Wassermodell verwendet wird (grün). Leider vergrößert sich hierbei
die quantitative Abweichung von ε′′r(ω

∗) and ε̄′r(0) vom Experiment
bei hohen TMAO-Konzentrationen signifikant. Sowohl das Gromos-
als auch das Shea-Modell versagen weitgehend in der Reproduktion
experimenteller Daten bei hohen TMAO-Konzentrationen, und die
statische Permittivität wird auch bei niedrigen Konzentrationen
qualitativ und quantitativ eher unzureichend abgebildet.

Die anhand des Kast-2016-Modells mit SPC/E-Wasser berechneten di-
elektrischen Spektren sind über den gesamten erfassten Frequenzbe-
reich in Abbildung 1.4 für TMAO-Molalitäten von 0 bis 10 mol/kg dar-
gestellt und zeigen die relative gute Übereinstimmung dieser Modell-
kombination mit den aus Referenz 18 entnommenen experimentellen
Daten.
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Abbildung 1.4: a: Dielektrische Dispersions- (ε′r(ω)) und b: Absorptionsspek-
tren (ε′′r (ω)) wässriger TMAO-Lösungen bei unterschiedlichen Molalitäten b. Die experi-
mentellen Daten18 werden qualitativ recht gut reproduziert, und auch die quantitativen
Abweichungen, welche zum Teil auf das verwendete Wassermodell zurückzuführen sind,
sind mit der Ausnahme von lim

ω→0
ε′r(ω) bei hohen TMAO-Konzentrationen eher klein.
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1 Zusammenfassung

Detailliertere Beschreibungen dieser und weiterer Ergebnisse finden
sich in Referenz 19 und werden in dieser Arbeit nicht eingehender dis-
kutiert.

1.3 Einfluss organischer Kosolute auf die lokale
Wasserdynamik

Desweiteren nutzten wir die Möglichkeit der Zerlegung dielektrischer
Spektren in die spezifischen Anteile unterschiedlicher Molekülarten,
um den Einfluss organischer Kosolute auf die Dynamik von Wasser
zu untersuchen. Organische Kosolute haben einen starken Einfluss auf
die Stabilität, Funktion und Aktivität von Biomolekülen wie Prote-
ine oder Enzyme in wässriger Lösung und sind deshalb von großer
biologischer Relevanz.20 Beispiele für solche Kosolute sind Trimethyl-
amin N-oxid (TMAO) oder (S)-2-Methyl-3,4,5,6-Tetrahydropyrimidin-
4-Carbonsäure (Ectoin), welche es Mikroorganismen erlauben unter ex-
tremen Umweltbedingungen zu überleben.21 Die vorteilhafteste Eigen-
schaft dieser Moleküle ist vornehmlich ihre stabilisierende Wirkung auf
die native Struktur von Proteinen22–24 und den Erhalt der Fluidität
von molekularen Doppelschichtstrukturen.25,26 Aufgrund dieser Eigen-
schaften werden Moleküle wie TMAO oder Ectoin als Stabilisatoren
bezeichnet.

Im Gegensatz dazu führen hohe Konzentrationen von Molekülen wie
Guanidiniumchlorid (GdmCl) oder Harnstoff bei hoher Konzentration
bereits bei moderaten Umgebungsbedingungen zur Denaturierung von
Proteinstrukturen, weshalb diese Moleküle auch Denaturierer genannt
werden. Zusammenfassend lässt sich sagen, dass zwei unterschiedliche
Mechanismen27 in Betracht gezogen werden können, welche die Dena-
turierung erklären: i) direkte Bindung des denaturierenden Stoffs an
das Protein und ii) lösungsmittelinduzierte Effekte. Während die Wir-
kungsweisen von Denaturierern immer noch häufig diskutiert werden,
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1.3 Einfluss organischer Kosolute auf die lokale Wasserdynamik

so ergab sich doch ein wissenschaftlicher Konsens bezüglich der Wir-
kungsweise von Stabilisatoren. Sowohl experimentelle Untersuchungen
als auch Simulationen zeigten, dass Stabilisatoren bevorzugt keine di-
rekte Bindung mit der Proteinoberfläche eingehen.28–39 Somit besteht
zwischen diesen Molekülen keine signifikante direkte Wechselwirkung
und man findet sie oftmals in der zweiten oder dritten Hydratations-
schale von Proteinen.40 Es wird angenommen, dass dieser Ausschlussef-
fekt hauptsächlich durch die stark hygroskopischen Eigenschaften von
Stabilisatoren hervorgerufen wird.36,40 Aufgrund dieser Betrachtungen
wird unterdessen angenommen, dass Stabilisatoren ein sogenanntes
kosmotropisches (Wasserstruktur-bildendes) Verhalten aufweisen, wäh-
rend Denaturierer im Gegensatz dazu chaotropisch (strukturbrechend)
wirken im Sinne einer angenommenen unvorteilhaften Beeinflussung
der Wasserstruktur.40,41 Genauer gesagt wurde hervorgehoben, dass
kosmotrope Substanzen den Zusammenhalt zwischen Wassermolekülen
durch Stabilisierung von Wasserstoffbrückenbindungen stärken, wäh-
rend chaotrope Substanzen diese Bindungen schwächen.

Da wir am Einfluss unterschiedlicher Kosolute auf die Wasserdyna-
mik interessiert sind, richten wir unseren Fokus im Folgenden auf den
Anteil εW(ω) von Wasser-Wasser-Interaktionen an dielektrischen Spek-
tren. Wie anhand der anteiligen Spektren in Abbildung 1.5 zu erkennen
ist, rufen die verschiedenen von uns untersuchten Kosolute konzentra-
tionsabhängig spezifische Änderungen hervor.

Die Stabilisatoren Ectoin und TMAO führen eindeutig zu Rotverschie-
bungen im Absorptionsspektrum von Wasser (siehe Abbildung 1.5b
und 1.5d), welche eine Frequenzverschiebung um ungefähr einen Fak-
tor 2 zwischen reinem Wasser und zwei-molaren Lösungen beinhal-
ten.

Dies weist auf eine ausgeprägte Stärkung der Wasserstruktur durch die
Verlangsamung der Rotationsdynamik hin und unterstützt somit die
Vorstellung einer kosmotropischen Wirkung dieser Kosolute. Harnstoff
scheint auch eine Rotverschiebung des Absorptionsspektrums auszulö-
sen, wenn auch mit deutlich geringerer Ausprägung. Tatsächlich be-
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Abbildung 1.5: Wasseranteil εW (ω) an den dielektrischen Spektren unterschiedlicher
wässriger Lösungen. a, b: Ectoin-Lösung, b, c: TMAO-Lösung, d, e: Harnstoff-Lösung,
f, g: GdmCl-Lösung. Man beachte die Rotverschiebung (siehe schwarze Pfeile) des
Hauptabsorptionsbereichs von Wasser mit steigender Konzentration der Stabilisato-
ren Ectoin oder TMAO. Dieser Effekt ist bei Harnstoff bedeutend schwächer, während
GdmCl überhaupt keine Frequenzverschiebung im Spektrum zur Folge hat.

läuft sich die beobachtete Verschiebung nicht einmal auf die Hälfte des
Effekts von Ectoin oder TMAO. Erstaunlicherweise scheint Guanidini-
umchlorid die Reorientierungsdynamik von Wasser in keiner Weise zu
beeinflussen, weshalb dieses Kosolut wahrscheinlich eher keinen signifi-

22



1.3 Einfluss organischer Kosolute auf die lokale Wasserdynamik

kanten Effekt auf das Wasserstoffbrückennetzwerk des Wassers hat. Die
konzentrationsabhängige lineare Abnahme der Absorptionsamplitude
ist in allen Spektren gleichermaßen beobachtbar und kann nicht mit ei-
ner echten quantitativen Änderung der dielektrischen Permittivität von
Wasser einhergehen. Dies ist in der Tat nicht der Fall: Da die Berech-
nung aller Spektren einen Vorfaktor beinhaltet, der invers proportoinal
zum Volumen des gesamten Systems ist (siehe Gleichung (1.4)), ist die-
ses Verhalten aufgrund des abnehmenden Partialvolumens von Wasser
zu erwarten. Der Umstand, dass sich die Abnahme der Absorptions-
amplitude linear zur Konzentration verhält, spricht desweiteren dafür,
dass die Amplitude unverändert bleiben sollte, wenn sie stattdessen mit
dem korrekten inversen Partialvolumen von Wasser skaliert wird.

Während die hier gezeigten dielektrischen Spektren bereits Schlüsse
auf den Einfluss der unterschiedlichen Kosolute auf die Wasserdyna-
mik zulassen, stellt die Tatsache, dass Wassermoleküle (zumindest in
der Simulation) keine Nettoladung besitzen können, ein gewisses Pro-
blem dar: Eine rein translatorische Bewegung der neutralen Moleküle
kann keine Veränderung in der mittleren Ausrichtung der molekula-
ren Dipolmomente zur Folge haben, was streng genommen bedeutet,
dass dielektrische Spektren ausschließlich Schlüsse auf die Reorientie-
rungsdynamik des Wassers zulassen. Obwohl die translatorische Dif-
fusion von Wassermolekülen auf langen Zeitskalen nicht ohne die Re-
orientierung umgebender Moleküle vonstatten gehen kann, lassen die
Frequenzverschiebungen letzendlich keine gute Abschätzung der Stär-
ke dieses Einflusses zu. Um diese Problematik zu umgehen, berechne-
ten wir konzentrationsabhängige translatorische Diffusionskoeffizienten
von Wasser, welche in Abbildung 1.6a dargestellt sind.

Während die Stabilisatoren Ectoin und TMAO die translatorische Dif-
fusion von Wasser signifikant verlangsamen, ist der Effekt in Lösungen
mit Harnstoff oder GdmCl deutlich weniger ausgeprägt. Dennoch zei-
gen beide Denaturierer ein schwach kosmotropisches Verhalten bezüg-
lich des Diffusionskoeffizienten.
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Abbildung 1.6: a: Translatorische Diffusionskoeffizienten DW von Wasser in unterschied-
lichen Lösungen. b: Wasser-Wasser Wasserstoffbrückenbindungs-Lebensdauern τhb in
unterschiedlichen Lösungen.

Um den Einfluss der unterschiedlichen Kosolute auf die Stabilität des
Wasserstoffbrückenbindungsnetzwerks eingehender zu untersuchen, be-
rechneten wir die Lebensdauer dieser kurzlebigen Bindungen zwischen
Wassermolekülen basierend auf der Theorie von Luzard und Chand-
ler.42,43 Wie aus Abbildung 1.6b hervorgeht, führt die Anwesenheit von
Ectoin oder TMAO zu einer deutlich erhöhten Lebensdauer von Was-
serstoffbrückenbindungen zwischen Wassermolekülen. Harnstoff zeigt
eine ähnliche aber wesentlich schwächere Tendenz, während GdmCl ei-
nen vergleichsweise äußerst geringen Einfluss hat. Wenn man zusätzlich
berücksichtigt, dass GdmCl die Anzahl der Wasserstoffbrückenbindun-
gen pro Wassermolekül erniedrigt, zeigt GdmCl einen deutlich chaotro-
pischen Einfluss auf die Struktur des Wasserstoffbrückenbindungsnetz-
werks zwischen Wassermolekülen.

Desweiteren untersuchten wir die Konzentrationsabhängigkeit weite-
rer struktureller Eigenschaften von Wasser wie z. B. radiale Paarver-
teilungsfunktionen oder die Tetrahedralität der Wasserstruktur. Eine
umfängliche Analyse und Diskussion all unserer diesbezüglichen Ergeb-
nisse sowie deren Validierung gegenüber experimentellen Daten ist in
Kapitel 5 zu finden.
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1.4 Polarisierbare Kraftfelder für ionische
Flüssigkeiten

In klassischen Molekulardynamiksimulationen werden Atome (der
Atomgruppen) üblicherweise als Punktmassen modelliert, welche ei-
ne konstante Ladung tragen. Viele Molekularmodelle nehmen zusätz-
liche Vereinfachungen vor, wie z. B. das Fixieren von Bindungslängen
zwischen Atomen eines Moleküls oder deren Bindungswinkel. Ein ein-
faches Beispiel für ein solches Modell ist SPC/E-Wasser. Somit ist das
permanente molekulare Dipolmoment solcher Modelle konstant, und
die dipolare Anregung (und somit deren Relaxation) ist ausschließ-
lich über Rotationsbewegungen vollständiger Moleküle möglich. Flexi-
ble Molekularmodelle ohne solche Einschränkungen beinhalten weite-
re innere Freiheitsgrade, was Fluktuationen ihres molekularen Dipol-
moments durch Bindungsvibrationen oder dihedrale Schwingungen zu-
lässt. Dennoch tragen die einzelnen Teilchen solcher Modelle konstante
Punktladungen.

Echte Atome verhalten sich jedoch so, dass Dipole oder elektrische Mo-
mente höherer Ordnung durch ein externes elektrisches Feld und die
einhergehende Verschiebung der Elektronen gegenüber den Atomker-
nen induziert werden können. Obwohl eine rigorose Behandlung solcher
Phänomene allgemein quantenmechanische Betrachtungen erfordert, so
können sie bei kleinen Feldstärken doch relativ gut durch einfache klas-
sische Modelle approximiert werden. Einer dieser Ansätze ist der klassi-
sche Drude-Oszillator, wobei die „Elektronenwolke“ eines Atoms durch
eine einfache zusätzliche Punktladung modelliert wird, welche sich in
einem symmetrischen harmonischen Potential um den Atomkern bewe-
gen kann. Aus Sicht von Computersimulationen hat dieses Modell den
großen Vorteil, dass es relativ einfach in bestehende Programme inte-
griert werden kann. Das Prinzip eines Drude-Oszillators ist in Abbil-
dung 1.7 dargestellt. Eine detailliertere Beschreibung kann anderweitig
eingesehen werden.44
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1 Zusammenfassung

Abbildung 1.7: Skizzierung eines Drude-Oszillators, wie er in MD-Simulationen einge-
setzt wird. Ein sogenanntes Drude-Teilchen (rot), welches eine Ladung qd trägt, wird
zu einem Atom mit der Ladung qc (blau) hinzugefügt, sodass die Summe beider La-
dungen die ursprüngliche Gesamtladung q = qc + qd ergibt. Die einzige Wechselwirkung
dieser beiden Teilchen besteht durch ein abstandsabhängiges harmonisches Potential
Vd(rd) =

1
2
kdr

2
d, welches sein Minimum bei rd = 0 hat, d.h. es besteht keine Coulomb-

Wechselwirkung zwischen qc und qd. Die resultierende Polarisierbarkeit dieses Drude-
Paars ist gegeben durch α ∝ q2d

kd
, wobei die Proportionalitätskonstante vom gewählten

Einheitensystem abhängt. Die Polarisierbarkeit muss dabei bekannt sein, sodass entwe-
der qd oder kd so gewählt werden muss, dass 〈r2d〉 � σLJ (σLJ ist der Lennard-Jones-
Durchmesser des Atoms) um dem Fall einer sogenannten „Polarisationskatastrophe“
vorzubeugen.

Ionische Flüssigkeiten (englisch: ionic liquids (ILs)) stellen eine relativ
neue Materialklasse dar, deren Modellierung von der Berücksichtigung
elektronischer Polarisationseffekte profitieren kann. ILs sind Flüssigkei-
ten, welche ausschließlich aus Ionen bestehen und einen Schmelzpunkt
unterhalb von ≈ 400K besitzen. Viele dieser Flüssigkeiten haben ih-
ren Schmelzpunkt deutlich unter 300 K und werden aufgrund ihrer ho-
hen Ladungsträgerdichte und ihres relativ großen elektrochemischen
Fensters als Ersatz für konventionelle Dielektrika z. B. in Superkon-
densatoren eingesetzt. Während viele thermodynamische Größen von
ILs auch mit nicht-polarisierbaren Modellen reproduziert werden kön-
nen, so ist dies für die korrekte Beschreibung ihrer Wechselwirkungen
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Abbildung 1.8: Schema der Vorgehensweise bei der Modellentwicklung. Auf der linken
Seite ist ein atomistisches Modell zu sehen, wobei die entsprechenden Atomgruppen
(Butyl, Imidazolium, Methyl und PF6), welche im vergröberten Modell (ILM1-Modell,
Mitte) als jeweils einzelne Punktteilchen zusammengefasst wurden, durch transparente
Kugeln markiert sind. Dieser Schritt vom atomistischen hin zum vergröberten, nicht-
polarisierbaren Modell war von Roy u. a.45 bereits durchgeführt. Um den zweiten Schritt
vom vergröberten Modell hin zum ebenfalls vergröberten, jedoch explizit polarisierba-
ren Modell (rechts) zu gehen, verwendeten wir Polarisierbarkeiten, welche durch DFT-
basierte ab-initio Rechnungen (durchgeführt von F. Uhlig) ermittelt wurden. Die Größe
der transparenten Kugeln entspricht den Lennard-Jones-Radien der jeweiligen Gruppen
der vergröberten Modelle. Die Abstände zwischen den Drude-Teichen und den „Ker-
nen“ sind deutlich vergrößert dargestellt. Das harmonische Potential zwischen Kernen
und Drude-Teilchen ist jeweils durch eine kleine Spiralfeder dargestellt.

mit geladenen Oberflächen weniger leicht möglich. Jedoch ist bisher
nicht vollständig bekannt, welche Eigenschaften von ILs durch deren
elektronische Polarisierbarkeit besonders beeinflusst werden.

Um zukünftig den Einfluss der expliziten Modellierung elektronischer
Polarisierbarkeit auf die Eigenschaften von ILs untersuchen zu kön-
nen, entwickelten wir ein vergröbertes IL-Kraftfeld in Zusammen-
arbeit mit SimTech-Projekt 2-3. Beim dafür von uns gewählten IL
handelt es sich um 1-Butyl-3-Methylimidazolium Hexafluorophosphat
([C4C1Im]+[PF6]−), zumal dies eine experimentell relativ gut unter-
suchte ionische Flüssigkeit ist. Unsere Parametrisierung stützt sich da-
bei auf das bereits bestehende, nicht-polarisierbare aber bereits vergrö-
berte ILM1-Modell von Roy u. a.,45 zu welchem wir Drude-Oszillatoren
hinzufügten und im Gegenzug die Lennard-Jones-Parameter so anpass-
ten, dass das Modell Massendichte und Diffusionskoeffizienten mög-
lichst gut reproduziert. Abbildung 1.8 zeigt die Geometrie eines ato-
mistischen Modells von [C4C1Im]+[PF6]−, die des vergröberten ILM1-
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1 Zusammenfassung

Modells, sowie unser polarisierbares Modell. Dadurch, dass wir nun
zwei sehr ähnliche Kraftfelder zur Verfügung haben, von denen eines
die elektronische Polarisierbarkeit der Ionen explizit modelliert, erhof-
fen wir uns, direkte Vergleiche im Verhalten dieser Modelle in zukünf-
tigen Arbeiten im Bezug auf den Einfluss der Polarisierbarkeit ziehen
zu können. Die gesamte Entwicklung des Kraftfeldes sowie dessen Vali-
dierung anhand experimenteller Daten ist in Kapitel 6 beschrieben.

1.5 Ionische Abschirmeffekte im Vollraum und
unter räumlichem Einschluss

Innerhalb der letzten Jahre wurde mehrmals experimentell gezeigt, dass
der abstandsabhängige Verlauf der abstoßenden Kraft zwischen zwei
gleichgeladenen, atomar glatten Oberflächen einem exponentiellen Zer-
fall mit ungewöhnlich großer Abklinglänge folgt, wenn sich zwischen
diesen Oberflächen konzentrierte Elektrolyte oder ionische Flüssigkei-
ten befinden.46–51 Dieser Effekt wurde als Underscreening bezeichnet
und es wurde vermutet, dass er auf ein diesen Substanzen inhären-
tes, langreichweitiges Verhalten der elektrostatischen Abschirmung in-
nerhalb der Flüssigkeiten zurückzuführen ist.52 Dennoch konnte der
genaue Ursprung dieses Verhaltens bis heute nicht abschließend be-
stimmt werden, sodass diese Experimente ein wichtiges aber bisher
unerklärtes Phänomen begründen.53 Insbesondere im Hinblick auf die
Entwicklung elektronischer Komponenten wie z. B. Superkondensato-
ren, in denen konzentrierte Elektrolyte und ionische Flüssigkeiten un-
ter starkem räumlichem Einschluss vorliegen, sollte das Verständnis des
Underscreening-Phänomens von besonderer Bedeutung sein.

Es ist bekannt, dass das traditionelle Verständnis einer mit zunehmen-
der Elektrolytkonzentration abnehmenden elektrostatischen Abschirm-
länge nur für den Bereich geringer Konzentrationen gilt. In diesem Be-
reich kann das räumliche Verhalten der Abschirmung elektrostatischer

28



1.5 Ionische Abschirmeffekte im Vollraum und unter räumlichem Einschluss

Wechselwirkungen zwischen Ionen in guter Näherung durch die Debye-
Hückel-Theorie54 oder – im Falle der Abschirmung geladener makro-
skopischer Objekte – durch die Poisson-Boltzmann-Gleichung55,56 be-
schrieben werden. In beiden Fällen ergibt sich die Abklingkonstan-
te des asymptotischen Abschirmverhaltens als die sogenannte Debye-
Länge λD, welche durch

λ2
D =

ε0εrkBT∑
i ρiz

2
i e

2
(1.9)

gegeben ist. Dabei bezeichnet ε0 wiederum die Vakuumpermittivität,
εr die relative Permittivität eines homogenen Hintergrundmediums, kB
die Boltzmann-Konstante, und T die Temperatur. Im Nenner repräsen-
tieren ρi und zi die Anzahldichte und Valenz der Ionensorte i und e ist
die Elementarladung.

Mit steigender Elektrolytkonzentration werden die effektiven Teilchen-
wechselwirkungen zunehmend durch Dichte- und Ladungskorrelations-
effekte beeinflusst, welche durch eine solche Molekularfeldtheorie nicht
beschrieben werden können. Dementsprechend gibt es viele Modifizie-
rungen und Erweiterungen der Debye-Hückel- and Poisson-Boltzmann-
Theorie sowie andere Ansätze, welche vorhersagen, dass die Korrelati-
onslängen mit steigender Ionenkonzentration ansteigen,57–69 was somit
gleichermaßen einen Anstieg der effektiven elektrostatischen Abschirm-
länge zur Folge hat. Diesbezüglich von besonderer Relevanz sind Inte-
gralgleichungstheorien57–59,64,65 basierend auf der Betrachtung radialer
Paarverteilungsfunktionen (englisch: radial pair distribution functions
(RDFs)) gXY (r), welche die Wahrscheinlichkeit beschreiben, ein Teil-
chen der Sorte Y im Abstand r von einem Teilchen der Sorte X zu fin-
den, und bezüglich der Eintrittswahrscheinlichkeit dieses Falls in einem
idealen Gas gleicher Dichte normiert sind. Im Rahmen dieser Theorien
zeigen Analysen der Ornstein-Zernike-Gleichung, dass das asymptoti-
sche Abklingverhalten von Ionen-Ionen-Wechselwirkungen bei ausrei-
chend hoher Konzentration durch die Funktion

lim
r→∞

wXY (r) ∝
A

r
cos (k r − φ) exp

(
− r

λS

)
(1.10)
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1 Zusammenfassung

ausgedrückt werden kann. Dabei bezeichnet wXY das Potential mitt-
lerer Kraft (englisch: potential of mean force (PMF)) zwischen den
Teilchenspezies X und Y , A und φ sind eine von der Teilchensorte ab-
hängige Amplitude and Phasenverschiebung, λS ist die asymptotische
Abklinglänge des PMFs und die Wellenzahl k bestimmt die Wellenlänge
der Oszillation. In einem homogenen Medium kann das PMF zwischen
den Teilchensorten X und Y aus der zugehörigen RDF anhand der
Beziehung

wXY (r) = −kBT ln (gXY (r)) (1.11)

berechnet werden. In dieser Arbeit werten wir das Abklingverhalten
solcher PMFs aus, welche mit Hilfe von MD-Simulationen extrem gro-
ßer konzentrierter Elektrolyt- und IL-Systeme berechnet wurden. Dabei
weisen unsere Ergebnisse darauf hin, dass es unwahrscheinlich ist, den
Underscreening-Effekt durch das den untersuchten Substanzen eigene
Abklingverhalten erklären zu können. Als Beispiel dafür ist das PMF
zwischen Kationen und Anionen des reinen ILs [C4C1Im]+[PF6]−in
Abbildung 1.9 dargestellt. Die Daten wurden aus Simulationen voll-
atomistischer Modelle berechnet, welche 108 000 Ionenpaare in einem
kubischen Simulationsvolumen mit einer Kantenlänge von ≈ 34 nm ent-
halten.

Zusätzlich konnten wir die Ergebnisse solcher großskaliger Vollraum-
Simulationen durch weitere Simulationen ionischer Flüssigkeiten im
Einschluss zwischen gleichgeladenen Wänden bestätigen. Anders als
im Vollraum kann die elektrostatische Abschirmlänge dort durch die
Betrachtung der gemittelten Ladungsverteilung in der Flüssigkeit im
Bezug auf den Abstand zu den Wänden ermittelt werden.

Im Bereich hoher Konzentrationen zeigen unsere Simulationen, dass die
Abschirmlängen tatsächlich mit der Konzentration ansteigen, was im
Einklang mit klassischen Flüssigkeitstheorien zu erwarten ist. Unsere
Analysen – und das gilt ebenfalls für Systeme, bei denen die ILs räum-
lich eingeschlossen sind – zeigen jedoch auch, dass in diesen Systemen
keine unerwartet hohen Abschirmlängen auftreten. Wie aus Betrach-
tungen auf Grundlage der statistischen Mechanik zu erwarten ist,66
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Abbildung 1.9: Absolutbetrag des Potentials mittlerer Kraft (PMF) |w+−| (r) zwischen
Kationen und Anionen, welches aus Simulationen von 108 000 Ionenpaaren des reinen
ILs [C4C1Im]+[PF6]−bei T = 300K und p = 1 bar berechnet wurde. Bis zu r≈8.5 nm
folgt w+−(r) dabei einem oszillatorischen Zerfall, dessen Einhüllende (gestrichelte oran-
ge Linie) durch die Funktion f(r) = a/r exp (−r/λS) mit a=0.7 kBT und λS=1.05 nm
beschrieben werden kann. Für r > 8.5 nm geht das PMF in einen Bereich mit fast kon-
stanter Amplitude über, wobei der statistische Fehler (hellblauer Bereich) verhältnis-
mäßig hoch ist. Dasselbe PMF w+−(r) ist in der eingefügten Abbildung mit linearer
y-Achsenskalierung dargestellt.

stimmen die Abschirmlängen ionischer Flüssigkeiten aus Analysen der
Vollraumsysteme sehr gut mit den Ergebnissen unter Einschluss gehal-
tener Systeme überein. Desweiteren zeigen wir, dass einige theoretische
Modelle, die von anderen dazu benutzt wurden, einen Bezug zwischen
der gemessenen Abschirmlängen zu anderen physikalischen Messgrö-
ßen herzustellen, bei hohen Elektrolytkonzentrationen nicht anwendbar
sind.

Unsere Simulationsanalysen bezüglich elektrostatischer Abschirmlän-
gen in konzentrierten Elektrolyten und ionischen Flüssigkeiten werden
in Kapitel 7 vollumfänglich dargelegt.
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2 Introduction and Overview

The first theoretical concepts of dielectric relaxation processes date
back to the early twentieth century and are most prominently known
from the works of Peter Debye.1 Today, the name dielectric spectroscopy
is actually a collective term for several experimetal techniques that
measure the frequency-dependent response coefficient εr(ω) of a
medium to an externally applied electric field E oscillating at an
angular frequency ω up to the THz regime.4 This response coefficient
relates the induced polarization P (the response) of the medium to the
applied field E. For a homogeneous, isotropic dielectric medium and
in the limit of low field strengths, the following relation holds:

P = ε0χeE = ε0(εr − 1)E (2.1)

The constant ε0 denotes the permittivity of free space. The response
coefficient χe = εr−1 is called the (dimensionless) electric susceptibility,
and εr the relative permittivity, which is in general a complex-valued
quantity defined as

εr(ω) = ε′r(ω)− iε′′r(ω) , (2.2)

where i denotes the imaginary number defined as i2 = −1. Its real
part ε′r(ω) is usually referred to as dielectric dispersiona and is propor-
tional to the energy of the perturbing field E reversibly stored in the
medium. With increasing frequency, the constituents of the medium

aNote that the term ‘dispersion’ also refers to the general phenomenon that the
dielectric permittivity depends nontrivially on the frequency ω, which applies
to εr(ω) as a whole. Here, however, it is used exclusively to denote its real
part ε′r(ω).
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2 Introduction and Overview

fail to directly follow the oscillation of the perturbing field due to
both inertial and frictional effects, leading to a phase shift between
the external field and the response in the medium. This gives rise to
a non-zero (negative) imaginary part ε′′r of the complex permittivity.
Since this “lag” is generally related to material-dependent dissipative
effects, the amplitude of ε′′r is a measure for absorption, and therefore
called dielectric loss. In contrast to dielectric dispersion, the dielectric
loss is proportional to the energy irreversibly dissipated in the medium.
Due to the fact that the frequency-dependent behavior of both the real
and imaginary part of εr(ω) is caused by the same physical process-
es, there exists a causal (and thus, analytical) relationship between ε′r
and ε′′r .2 In fact, one can be computed from the other by means of the
Kramers-Kronig relations.3

In an experiment, the complex permittivity is usually extracted from
measurements of the frequency-dependent complex conductivity σe(ω)
according to4

εr(ω) = ε∞r +
iσe(ω)
ε0ω

, (2.3)

where the term ε∞r denotes the so-called “infinite-frequency” or “instan-
taneous” response. This offset incorporates relaxation processes that
are too fast to be captured by a (generally band-limited) measurement,
e.g., electronic or nuclear polarization.

During the past century, dielectric spectroscopy has emerged as an
important tool in science and technology, helping to gain insights on
dynamic processes taking place on different time scales within all kinds
of materials. The blue line in fig. 2.1, which represents the number
of publications per year involving the terms “dielectric relaxation” or
“dielectric spectroscopy” found using Google Scholar,5 shows that this
scientific field is still growing. Dielectric spectroscopy has a broad
range of industrially relevant applications ranging from biosensing6–8

over optimization and quality control in chemical engineering9–11 and
food processing12–14 to battery engineering.15
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Figure 2.1: Number of Google Scholar5 search results per year from 1920 to 2020
for the search terms “dielectric relaxation” OR “dielectric spectroscopy” (blue line),
“molecular dynamics simulations” (green line), and “molecular dynamics simulations”
AND (“dielectric relaxation” OR “dielectric spectroscopy”) (purple line). Quite obvious-
ly, the number of publications mentioning both dielectric relaxation / spectroscopy and
molecular dynamics in conjunction is rather low.

While the different experimental techniques employed to measure
dielectric relaxation spectra are well understood, the interpretation
of the results in terms of identifying the responsible microscopic
mechanisms often proves difficult and is sometimes ambiguous. On
the contrary, in molecular dynamics (MD) simulations, a particle-
based simulation method allowing to investigate molecular processes
with sub-nanometer and femtosecond resolution (see section 3.3 for a
detailed description), this is expected to be much more feasible as the
microscopic details are directly at hand. While MD simulations have
become an extremely popular tool in scientific research (see the green
line in fig. 2.1), the prediction of dynamic dielectric material properties
from MD simulations has so far received rather little attention as the
purple line in fig. 2.1 demonstrates. One of the reasons for this is the
high computational cost involved in such calculations, as the extrac-
tion of dielectric spectra requires very long total simulation times in the
order of microseconds. However, with the advent of powerful hardware
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2 Introduction and Overview

accelerators such as graphics processing units, it is nowadays possible
to reach such time scales within reasonable computation time.

In simulations, the calculation of dielectric permittivities could in
principle be accomplished in the same way as it is done in experiments,
i.e., by applying an oscillating external electric field within the simula-
tions. This, however, would mean that one had to perform separate
simulations for each point in the frequency range of interest, and thus,
depending on the desired range and resolution, the required computa-
tional effort could quickly get out of hand.

In an equilibrium system at finite temperature, particles permanent-
ly move in and out of their equilibrium positions even if there is
no external field applied. Since the particles in a dielectric medium
carry (at least partial) charges, there exist internally created time-
dependent electric fields within the medium. The spatial conforma-
tion and velocities of all particles in the simulated system are known
at every time step of the simulation, so that the system’s response
to its own fluctuating internal fields can be measured and used to
extract the dielectric permittivity spectrum employing a fluctuation-
based approach developed by Kubo.16 This approach will be derived
from fundamental statistical-mechanical principles in chapter 3, with
the result that the frequency-dependent electric conductivity can be
computed from the cumulative current j(t) according to

σe(ω) =
1

3V kBT

∞∫
0

〈j(0) j(τ)〉 eiωτ dτ , (2.4)

where V is the volume of the system, T denotes temperature, kB is the
Boltzmann constant, the operator 〈·〉 is the canonical average, and the
current j(t) is obtained from each particle’s charge q and velocity v(t)
according to

j(t) =
∑
i

qi vi(t) . (2.5)

The frequency-dependent dielectric permittivity εr(ω) can then be
obtained from eq. (2.3).
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2.1 Nonideality of Solutions

Originally, the title of this thesis was intended to simply read “Predict-
ing Dielectric Spectra by Computer Simulations”. However, after
having successfully developed a computational framework facilitating
the extraction of dielectric spectra from MD simulations as described
in detail in chapter 4, it turned out that these computational tools can
be leveraged and extended to support the work on a broad range of
topics requiring the knowledge of dielectric properties of the investi-
gated sytems. In the following, these topics are briefly summarized
in the light of our contributions to collaborations with other research
projects and our own work.

2.1 Nonideality of Solutions

As mentioned above, MD simulations have the advantage over experi-
ments that the microscopic molecular conformations and dynamics are
directly accessible. In particular, for the analysis of dielectric spectra,
this means that contributions from different species can be separat-
ed, as well as the contributions arising from interactions between the
different species. Since the current j(t) is additive and the Fourier-
Laplace transform in eq. (2.4) is linear, the contributions of different
molecular species A, B in a binary system to the overall spectrum can
be calculated by summing over the corresponding molecules {n ∈ A},
{m ∈ B} individually:

j(t) = jA(t) + jB(t) =
∑
n∈A

qnvn(t) +
∑
m∈B

qmvm(t) (2.6)

Thus, it follows that equation (2.4) can be written as

σe(ω) =
1

3V kBT
(〈jA(0)jA(t)〉ω + 〈jB(0)jB(t)〉ω + 2〈jA(0)jB(t)〉ω)

=: σA(ω) + σB(ω) + σAB(ω) , (2.7)

where we have used the subscript ω as a short-hand notation for the
Fourier-Laplace transform. The dielectric permittivity spectrum (2.3)
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2 Introduction and Overview

can be decomposed accordingly:

εr(ω) = ε∞r +
i

ε0ω
(σA(ω) + σB(ω) + σAB(ω))

=: ε∞r + εA(ω) + εB(ω) + εAB(ω) (2.8)

The ability to directly extract the interaction part εAB(ω) of the
spectra provides the possibility to investigate correlation effects in the
dynamics of binary solutions.b Thus, it stands to reason that we use
it to examine properties of systems where correlation effects play a
major role, as it is the case in nonideal solutions. To this aim, in
collaboration with SimTech project 1-2, we investigated the properties
of aqueous dimethyl sulfoxide (DMSO) solutions.17 Our results show
that it is indeed the cross-term εH2O/DMSO(ω) exhibiting the nonide-
al behavior of the solution. Figure 2.2 displays the concentration-
dependent characteristic features of the different contributions εH2O(ω),
εDMSO(ω), and εH2O/DMSO(ω).
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Figure 2.2: a: Relative contributions ε′α(0)/ε
′
r(0) of the individual species and cross

correlation contributions to the resulting total dielectric constant ε′r(0) with respect to
the molar fraction of DMSO (xDMSO). b: Maximum loss peak amplitudes max(ε′′α(ω))
of the different contribution as a function of xDMSO. Blue lines denote the results for
water contributions whereas purple lines represent the results for DMSO, and correlated
water-DMSO contributions are depicted by green lines. The maxima of the interaction
terms in both graphs indicate a maximum influence of the nonideality on dynamics at
molar fractions of DMSO in the range of 0.3 < xDMSO < 0.4.

bEquations (2.7) and (2.8) are of course not limited to binary solutions; extending
them to multi-component systems is straightforward.
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2.2 Force Field Evaluation

The concentration-dependent relative contribution of the interaction
term in the static limit ε′H2O/DMSO(0)/ε

′
r(0) (green line in fig. 2.2a)

indicates that the maximum effect of the nonideality on dynamics lies in
the range of molar DMSO fractions 0.3 < xDMSO < 0.4. This behavior
is also reflected in the loss peak amplitudes max(ε′′α(ω)) depicted in
fig. 2.2b. Further results and an in-depth discussion of the matter can
be found in the corresponding publication (reference 17), which will
not be further discussed in this thesis.

2.2 Force Field Evaluation
Since an ever-growing number of experimentally measured dielectric
relaxation spectra covering a plethora of different chemical substances
are available in the literature, dielectric spectra obtained from comput-
er simulations are not only a valuable tool to answer basic scientific
questions, they can also be used to validate the molecular models (the
so-called force fields) employed in the underlying MD simulations. In
cooperation with SimTech project 2-15, we used dielectric spectroscopy
to assess the performance of different models of trimethylamin N-oxide
(TMAO), since the spectra provide a very comprehensive measure
for the qualitative and quantitative validity of the models’ dynamics.
Figure 2.3 provides a comparison of the performance of three of the
assessed models with respect to their dielectric properties.
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Figure 2.3: Comparison of concentration-dependent dielectric properties of aqueous
TMAO solutions obtained with different TMAO models against experimental data.18

a: loss peak frequency ω∗, i.e., the frequency where the maximum of the absorption
peak ε′′r (ω) is located. b: loss peak amplitude ε′′r (ω

∗), the maximum amplitude of
ε′′r (ω), located at ω = ω∗. c: reduced static permittivity ε̄′r(0) := ε′r(0)− ε∞r .
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2 Introduction and Overview

The Kast 2016 model in conjunction with the TIP4P/2005 water
model (orange) follows the experimental data qualitatively remarkably
well, however, it underestimates all dielectric properties by an almost
constant but rather large factor. The best quantitative agreement is
found for the same TMAO model but in combination with SPC/E water
(green). Unfortunately, the quantitative deviation of ε′′r(ω∗) and ε̄′r(0)
from the experiment becomes large for high TMAO concentrations.
The Gromos and Shea models completely fail to reproduce the experi-
ment at high concentrations, and even for low molalities the static
permittivity is both quantitatively and qualitatively insufficient.

In fig. 2.4, the dielectric spectra of aqueous TMAO solutions are
shown for different concentrations ranging from 0 to 10 mol/kg. These
spectra were obtained using the Kast 2016 model (TMAO-V3) in
combination with SPC/E water and show the good agreement of this
model with experimental data extracted from reference 18.
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Figure 2.4: a: Dielectric dispersion ε′r(ω) and b: Loss spectra ε′′r (ω) of aqueous TMAO
solutions for different TMAO molalities b. The experimental data18 are qualitatively
well reproduced, and also the quantitative deviations, which are partly due to the water
model, are rather small except for lim

ω→0
ε′r(ω) at high TMAO concentrations.

The full force field comparison was published in ref. 19 and will not be
further discussed in this thesis.
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2.3 Influence of Organic Cosolutes on Local Water Dynamics

2.3 Influence of Organic Cosolutes on Local Water
Dynamics

We further exploited the ability to decompose dielectric spectra into
individual contributions for the investigation of the effects of organic
cosolutes on water dynamics. Organic cosolutes have a strong impact
on the stability, function, and activity of biomolecules such as proteins
or enzymes in aqueous solution, and are therefore of great biological
relevance.20 Common examples are trimethylamine N-oxide (TMAO)
or ectoine, which allow microorganisms to survive under extreme
environmental conditions.21 Beneficial properties of these molecules are
the stabilization of native protein structures22–24 and the maintenance
of the fluidity of bilayers.25,26 Due to these properties, molecules such
as TMAO or ectoine are commonly called protectants or stabilizers. In
contrast, guanidinium chloride (GdmCl) or urea at high molar concen-
trations denature protein structures even at moderate environmental
conditions and are therefore referred to as denaturants or destabiliz-
ers. In summary, two distinct reasons were proposed27 to explain the
denaturation mechanism: i) a direct binding between the denaturant
and the protein in contrast to ii) solvent-mediated effects. Whereas the
properties of denaturants are even nowadays often discussed, a consen-
sus was found for the behavior of protein protectants. Experimen-
tal findings as well as computer simulations revealed that protectants
are usually excluded from protein surfaces28–39 in terms of a prefer-
ential exclusion behavior. Thus, they do not directly interact with
protein surfaces and are often located in the second or third hydration
shell.40 It was assumed that the exclusion effect is mainly induced
by the strong hygroscopic properties of protectants.36,40 Due to these
findings, protectants are assumed to be kosmotropic (water structure
making) whereas denaturants are vice versa assigned to be chaotropic
(water structure breaking) in terms of their unfavorable perturbation
of the water structure.40,41 In more detail, it was pointed out that
kosmotropes strengthen the local interaction between water molecules,
i.e., the hydrogen bond network, whereas chaotropes weaken these
bonds.
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2 Introduction and Overview

Since we are interested in the effect of the different cosolutes on water
dynamics, we will focus on the water-water interaction parts εW(ω)
of the spectra in the following. As we can see in the graphs shown
in fig. 2.5, these exhibit distinct cosolute-dependent changes of their
features at different cosolute concentrations.
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Figure 2.5: Contributions εW (ω) of water to the spectra of different aqueous solutions.
a, b: ectoine solution, b, c: TMAO solution, d, e: urea solution, f, g: GdmCl solution.
Note the red-shift of the main water absorption peaks for increasing concentrations
(indicated with black arrows) of the stabilizers ectoine or TMAO. The effect is much
weaker or not present at all for the denaturants urea and GdmCl, respectively.
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2.3 Influence of Organic Cosolutes on Local Water Dynamics

The protectants ectoine and TMAO clearly induce a significant red-
shift of the corresponding water absorption peaks (see fig. 2.5b
and 2.5d), leading to a decrease of the peak frequency by about a factor
of 2 from 0 to 2-molar concentrations. This indicates a pronounced
strengthening of the water structure by slowing down reorientation-
al water dynamics, supporting the suggested kosmotropic behavior of
those cosolutes. Urea also seems to induce a red shift in the water
absorption peak, however to a much lesser extent. In fact, the observed
red shift is not even half as strong as for ectoine or TMAO. Surprising-
ly, guanidinium chloride does not seem to influence water reorientation
dynamics at all, and thus is very unlikely to have a strengthening effect
on the water hydrogen bond network. The linear decrease in amplitude
clearly visible in all spectra cannot be attributed to any real quanti-
tative change in the permittivity of water. In fact, quite the contrary
is likely to be true: Since the computation of all spectra involves a
prefactor inversely proportional to the volume of the entire system (cf.
equation (2.4)), this behavior is expected due to the decreasing partial
volume of water in the system. The circumstance that the decrease is
linear with respect to the cosolute concentration is a further hint that
the spectra would quantitatively remain unaltered when scaled with
the correct inverse partial volume of water in the system instead.

While the dielectric spectra shown above already yield valuable insights
on the influence of the different cosolutes on water dynamics, the fact
that water molecules do not carry a net charge (at least not in the
simulations) poses a problem: Purely translational motion of overall
electrically neutral molecules does not induce changes in the orientation
of their dipole moments, and thus, strictly speaking, dielectric spectra
only provide insights into the reorientational dynamics of water. Even
though this cannot be entirely true since the translational diffusion of
water molecules on long time scales is hardly possible without concur-
rent rotations, the observed frequency shifts in the dielectric absorption
spectra do not provide a good estimate of how strongly translational
motion is affected. To resolve this issue, we calculated concentration-
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Figure 2.6: a: Average translational diffusion coefficients DW of water in different
aqueous solutions. b: Water-water hydrogen bond life times τhb in different aqueous
solutions.

dependent average translational diffusion coefficients of water, which
are plotted in fig. 2.6a.

While the protectants ectoine and TMAO significantly slow down
the translational diffusion of water, the effect is less pronounced in
solutions containing the denaturants urea or GdmCl. Nevertheless, in
terms of translational diffusion, also the denaturants exhibit a slightly
kosmotropic behavior.

Moreover, to better quantify the influence of the different cosolutes
on the water hydrogen bond network, we calculated average water-
water hydrogen bond life times according to the theory of Luzard and
Chandler.42,43 As it is shown in fig. 2.6b, the presence of ectoine leads
to a significant increase of water-water hydrogen bond life times. Urea
solutions show a similar but much weaker tendency, while GdmCl even
leads to a slight decrease of the life times. Taking into account that
GdmCl decreases the average number of hydrogen bonds per water
molecule, GdmCl definitely exhibits chaotropic behavior by dynami-
cally weakening the water-water hydrogen bond structure.

We furthermore investigated the dependence on cosolute concentra-
tion of many other dynamical as well as structural properties of water,
such as rotational diffusion coefficients, radial distribution functions,
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2.4 Polarizable Force Fields for Ionic Liquids

and tetrahedrality order parameters. A comprehensive and conclusive
analysis of all our findings including their validation against experi-
mental data is presented in chapter 5.

2.4 Polarizable Force Fields for Ionic Liquids

In classical molecular dynamics simulations, atoms (or groups of atoms)
are usually modeled as point masses carrying constant charges. Many
molecular models make further simplifications by constraining the bond
lengths between the atoms of a molecule or even by fixing the angles
between bonds to a constant value. A simple example is SPC/E
water, a completely rigid three-site model. Thus, its dipole moment
is permanent and constant, and the only possible dipolar “excitation”
and (thus, relaxation) in this model is by reorientation of the whole
molecule. Flexible molecular models where such constraints are not
applied have additional internal degrees of freedom, and therefore their
permanent dipole moments can fluctuate due to bond vibrations and
angular or dihedral oscillations. Nevertheless, the atoms of such models
still have constant point charges. In real atoms, however, dipole or
higher-order multipole moments can be induced under the influence
of an electric field by displacing their electrons with respect to their
nuclei. Even though a rigorous treatment of the phenomenon generally
involves quantum mechanics, it can be approximated by simple classi-
cal models in the limit of low field strengths. One such approach is the
classical Drude oscillator, where an atom’s electron “cloud” is modeled
by a point charge residing in a (usually radially symmetric) harmon-
ic potential centered at the nucleus. From a simulational point of
view, this model bears the advantage that it can be readily implement-
ed into existing code since it involves only harmonic potentials and
pairwise electrostatic point charge interactions. The principle of a
Drude oscillator is sketched and briefly explained in figure 2.7, more
detailed information on the subject can be found elsewhere.44
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2 Introduction and Overview

Figure 2.7: Sketch of a drude oscillator. A Drude particle (red) carrying a charge qd
is added to an atom (blue) with charge qc so that these charges add up to the atom’s
original charge q = qc + qd. The only interaction between the two particles is through
a distance-dependent harmonic potential Vd(rd) =

1
2
kdr

2
d with its minimum at rd = 0,

i.e. there is no Coulomb interaction between qc and qd. The resulting polarizability of
the Drude pair is then given by α ∝ q2d

kd
, where the proportionality constant depends on

the chosen unit system. The polarizability must be known a priori so that either qd or kd
has to be chosen in a way that 〈r2d〉 � σLJ (with σLJ being the atom’s Lennard-Jones
radius) in order to avoid what is commonly known as a “polarization catastrophe”.

A novel class of substances requiring to incorporate explicit electron-
ic polarizability in the respective molecular models are ionic liquids
(ILs). In recent years, ILs gained an increasing technological relevance
due to their unique properties. ILs are substances with a melting
point below ≈ 400K and consist entirely of ions. Many of them have
their melting point well below 300 K, and due to their high density
of charge carriers and large electrochemical window, they are used
as dielectrics in nanoporous supercapacitors, replacing conventional
electrolytes. While it may be possible to reproduce several thermody-
namic observables of ILs in the bulk with non-polarizable models, this
is much harder to achieve for the correct description of their interac-
tions with charged surfaces. However, it is not known which properties
are particularly influenced by electronic polarization.
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2.4 Polarizable Force Fields for Ionic Liquids

Figure 2.8: Schematic of the model development. On the left, an atomistic ball-and-
stick model is shown with the respective coarse-grained groups (butyl, imidazolium,
methyl, and PF6) indicated by transparent overlays. The coarse-graining step from the
atomistic model to the coarse-grained non-polarizable model has already been done by
Roy et al..45 We then used polarizabilities from ab-initio and DFT-based calculations
performed by Frank Uhlig to proceed with the parametrization of our polarizable coarse-
grained model depicted on the right. The size of the transparent spheres correspond to
the Lennard-Jones radii of the respective groups used in the coarse-grained models. The
distances of the Drude particles from the “cores” are exaggerated for better visibility.
The harmonic potential between cores and Drude particles is illustrated by small springs.

To investigate the effect of explicitly modeled electronic polarizability
on the properties of ILs, we parametrized a coarse-grained polarizable
model ionic liquid force field in cooperation with SimTech project 2-3.
The substance we chose to model is 1-butyl-3-methylimidazolium
hexafluorophosphate ([C4C1Im]+[PF6]−), since it is a rather common
and experimentally relatively well-studied IL. Our parametrization is
based on the pre-existing non-polarizable coarse-grained ILM1 model by
Roy et al.,45 to which we added Drude oscillators and reparametrized
the Lennard-Jones parameters by fitting them against density and
diffusion constants. Figure 2.8 depicts the geometries of an atomistic
[C4C1Im]+[PF6]−model, the coarse-grained ILM1 model, and our re-
parametrized polarizable model. Having two very similar coarse-
grained models at hand whereof one incorporates explicit electronic
polarizability should provide us with the possibility to make direct
comparisons between them in order to assess polarizability effects in
future work. The procedure of the force field development and its
validation against experimental data are described in chapter 6.
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2.5 Ionic Screening in Bulk and Under
Confinement

Recent experiments have shown that the repulsive force between
atomically flat, like-charged surfaces confining room-temperature ionic
liquids or concentrated electrolytes exhibits an anomalously large decay
length.46–51 Termed underscreening, this effect was suggested to be a
property of bulk electrolytes.52 However, its exact origin is still under
debate so that the experimental measurements constitute an important
but not yet understood53 phenomenon. Understanding the origin of
these findings should be especially important for the design of devices
where concentrated electrolytes or ILs are strongly confined between
highly charged surfaces, as, e.g., in modern supercapacitors.

The traditional view that the electrostatic screening length decreases
with increasing electrolyte concentration is well-known to be valid only
at low ion concentrations. In the low-concentration regime, the spatial
decay of ion-ion interactions is usually well-described by approaches
such as the Debye-Hückel theory,54 or, for the electrostatic screening
of immersed charged objects, the Poisson-Boltzmann equation.55,56 In
both cases, the asymptotic decay length of electrostatic interactions
equals the Debye length λD defined as

λ2
D =

ε0εrkBT∑
i ρiz

2
i e

2
. (2.9)

Here, ε0 is the permittivity of free space, εr the relative dielectric
permittivity of a homogeneous background medium, kB the Boltzmann
constant, and T denotes absolute temperature. In the denominator, ρi
and zi represent the number density and valency of ionic species i,
and e is the elementary charge.

With rising electrolyte concentration, interactions are increasing-
ly influenced and eventually dominated by excluded-volume and
charge correlations, which are difficult to describe by such mean-
field approaches. There are many modifications and extensions of
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2.5 Ionic Screening in Bulk and Under Confinement

the Debye-Hückel and Poisson-Boltzmann theory and other approach-
es predicting that correlation lengths increase with concentration,57–69

therefore resulting in an increasing effective screening lengthc.
Especially relevant are integral-equation theories57–59,64,65 based on
descriptions of the radial distribution functions (RDFs) gXY (r), which
describe the probability of finding a particle of species Y at a distance r
from a particle of species X and is normalized with respect to the
corresponding probability in an ideal gas at the same concentration.
Within these frameworks, analyses of the Ornstein-Zernike equation
show that for sufficiently high concentrations, the asymptotic decay of
ion-ion interactions can be expressed as

lim
r→∞

wXY (r) ∝
A

r
cos (k r − φ) exp

(
− r

λS

)
, (2.10)

where wXY denotes the potential of mean force (PMF) between
species X and Y , A and φ are species-dependent amplitudes and phase
shifts, λS is the PMF’s asymptotic decay length, and the wave vector k
determines the wavelength of its oscillation. In spatially homogeneous
systems, the PMF between species X and Y can be obtained from their
RDF according to

wXY (r) = −kBT ln (gXY (r)) . (2.11)

Here, we show by evaluating the decay of PMFs obtained from
extremely large-scale molecular dynamics simulations of concentrated
electrolytes and ILs that the underscreening effect is unlikely to be a
feature of bulk electrolytes. As an example, the PMF between cations
and anions obtained from simulations containing 108 000 ion pairs of
the pure IL [C4C1Im]+[PF6]−in a cubic simulation box with an edge
length of ≈ 34 nm is displayed in fig. 2.9.

We corroborate these findings by expanding our investigations to ionic
liquids under confinement. Unlike in bulk systems, where screening

cNote that we use the term ‘screening length’ also for the decay of oscillatory
modes.
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Figure 2.9: Absolute value of the potential of mean force (PMF) |w+−| (r) between
cations and anions obtained from a simulation of 108 000 ion pairs of the pure
IL [C4C1Im]+[PF6]−at T = 300K and p = 1 bar. w+−(r) follows an oscillato-
ry decay up to r≈8.5 nm, with the decay envelope (dashed, orange line) described
by f(r) = a/r exp (−r/λS) with a=0.7 kBT and λS=1.05 nm. For r > 8.5 nm, the
potential enters a region of almost constant noise level with rather high uncertainty
(light blue area). Inset: The same anion-cation PMF w+−(r) with linear y-axis scaling.

lengths are computed from the decay of interionic potentials of mean
force (PMFs), we extract such data in confined systems from cumula-
tive charge distributions. At high concentrations, our simulations show
increasing screening lengths with increasing electrolyte concentration,
consistent with classical liquid state theories. However, our analyses
demonstrate that—also for confined systems—there is no anomalously
large screening length. As expected from statistical-mechanical consid-
erations,66 the screening lengths determined for ionic liquids under
confinement are in good quantitative agreement with the screening
lengths of the same ionic systems in bulk. In addition, we show that
some theoretical models used in the literature to relate the measured
screening lengths to other observables are inapplicable to highly concen-
trated electrolytes. Our findings regarding ionic screening in concen-
trated electrolytes and ionic liquids are presented and discussed in a
comprehensive manner in chapter 7.
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3 Theoretical Framework

3.1 Linear Response Theory

The basic idea behind the concept of linear response is that the
spatiotemporal evolution of a physical system subject to a weak
external disturbance can be well approximated by a linear superpo-
sition of the system’s natural (i.e., unperturbed) evolution with an
additional term describing the influence of the disturbance. The
fundamental insight of this approach is that the relaxation of the
disturbed system back to equilibrium is governed by the same physics
as the relaxation of its thermal fluctuations about equilibrium, so that a
system’s dynamic response to a weak disturbance is entirely determined
by its dynamics at thermal equilibrium.

With respect to this thesis, the most relevant results of linear response
theory are the form of the response function φAB(τ), and, consequently,
that of the generalized susceptibility χAB(ω) for systems maintained
at a constant temperature T . The response function φAB(τ) describes
a system’s response in terms of the expected change 〈∆B(τ)〉 of an
observable B to a unit pulse of an external force F (t) = δ(t) with
conjugate displacement A at the time τ after the pulse. As will be
shown below, it is given by

φAB(τ) =
1

kBT
〈Ȧ(0)B(τ)〉eq ,

where kB is the Boltzmann constant and the operator 〈·〉eq denotes
the expected value at thermal equilibrium. The generalized suscep-
tibility χAB(ω) describes the frequency-dependent proportionality of
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the response 〈∆B(τ)〉 to the periodic disturbance F (ω, t) = F0 e
−iωt

according to
〈∆B(τ)〉 = χAB(ω)F (ω, t)

and is given by

χAB(ω) =
1

kBT

∞∫
0

φAB(τ) e
iωτ dτ

=
1

kBT

∞∫
0

〈Ȧ(0)B(τ)〉eq eiωτ dτ .

In the following section 3.1.1, we will provide a general derivation
of these findings along the lines of the most relevant publications
of R. Kubo,16,79 including some ideas of V. Balakrishnan’s excellent
lecture80 on the topic. Thereafter, in section 3.1.2, the general results
will be applied to constant-temperature statistical ensembles since
those are the relevant ones for this thesis.

Note: Any reader who is already familiar with the framework of linear
response theory is advised to skip the following sections 3.1.1 and 3.1.2,
and continue with section 3.2, where the theory will be applied to the
specific case of dielectric response.

3.1.1 General derivation

Let us consider an isolated thermodynamic system at equilibrium,
which is fully described by the Hamiltonian H(p, q) with canonical
coordinates q = {qi} and conjugate momenta p = {pi} spanning its
phase space Ω with infinitesimal volume elements dΩ = dqdp. The
system’s microscopic time evolution is uniquely defined by Hamilton’s
equations

ṗ = −∂H
∂q

, q̇ =
∂H
∂p

, (3.1)
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where the dot symbol is a short-hand notation for the derivative with
respect to time

(
ẋ := dx

dt

)
.

According to Liouville’s theorem, the system’s probability density
function ρ(p, q, t) of microscopic states (q,p) in the statistical ensemble
is stationary, i.e.

ρ̇ =
∂ρ

∂t
+
∑
i

(
∂ρ

∂qi
q̇i −

∂ρ

∂pi
ṗi

)
= 0 , (3.2)

so that by inserting eq. (3.1), its time evolution is governed by the
Liouville equation

∂ρ

∂t
= {H, ρ} , (3.3)

where the expression {·, ·} on the right hand side represents the Poisson
bracket

{f, g} :=
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (3.4)

Since the system is at equilibrium, the expected value

〈X〉 =
∫
Ω

X(q,p) ρ(q,p, t) dqdp (3.5)

of any observable X(q,p) must be time invariant so that

d〈X〉
dt

=
∂〈X〉
∂t

=

∫
Ω

X(q,p)
∂ρ(q,p, t)

∂t
dqdp = 0 . (3.6)

According to Liouville’s theorem, the phase space volume is conserved,
so that for the integral to vanish, it follows that ∂ρ

∂t = 0. Thus, the
equilibrium Liouville equation must satisfy

∂ρeq
∂t

= {Heq, ρeq} = 0 , (3.7)

where the subscripts indicate equilibrium conditions.
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Let us now perturb the system by applying a generalized external
force F (t) adiabatically turned on in the infinite past such
that F (−∞) = 0 and Ḟ (−∞) = 0, i.e., the system is in equilibrium
at t = −∞. The perturbation energy is then given by Hext = −AF (t),
where A = A(q,p) is the conjugate displacement associated with F .
Assuming that the force is small, we can express the Hamiltonian H̃
of the perturbed system in a first-order (i.e., linear) approximation as
the superposition of the unperturbed Hamiltonian Heq and the pertur-
bation energy Hext, yielding

H̃(t) = Heq +Hext(t) = Heq −AF (t) . (3.8)

Similarly, the assumption of a small perturbation enables us to write
the probability density function ρ̃(t) affected by the perturbation
by superimposing the unperturbed function ρeq with a small time-
dependent change ∆ρ(t) so that

ρ̃(t) = ρeq +∆ρ(t) . (3.9)

The corresponding equation of motion for the perturbed system’s phase
space probability density function ρ̃(t) then reads

∂

∂t
ρ̃(t) =

{
H̃(t), ρ̃(t)

}
= {Heq, ρeq}︸ ︷︷ ︸

=0

+ {Heq, ∆ρ(t)}

+ {Hext(t), ρeq}+ {Hext(t), ∆ρ(t)}︸ ︷︷ ︸
=0 (to first order)

= {Heq, ∆ρ(t)}+ {Hext(t), ρeq} , (3.10)

where the last term in the second row has been dropped
because both Hext(t) and ∆ρ(t) are small first-order changes so
that {Hext(t), ∆ρ(t)} is of second order and therefore vanishes in a
first-order approximation.

Furthermore, due to ∂
∂tρeq = 0, it follows that ∂

∂t∆ρ(t) = ∂
∂t ρ̃(t). Insert-

ing this identity together with the definition of Hext into eq. (3.10)
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yields
∂

∂t
∆ρ(t) = {Heq, ∆ρ(t)} − F (t) {A, ρeq} . (3.11)

To find a solution to this equation, we employ the equilibrium Liouville
operator

iLeq(·) := {·, Heq} , (3.12)

where i denotes the imaginary number defined as i2 = −1. Using
Hamilton’s equations of motion defined in eq. (3.1), we can express iLeq

as a differential operator

iLeq = q̇
∂

∂q
+ ṗ

∂

∂p
. (3.13)

By applying the operator to an arbitrary state γ = (q,p), we obtain
the equation of motion

iLeq (γ) = γ̇ . (3.14)

With the initial condition γ(0) = (q(0),p(0)), the formal solution of
eq. (3.14) is

γ(t) = eitLeqγ(0) (3.15)

so that the operator eitLeq acts as an equilibrium time evolution
propagator.

Likewise, the solution of the first-order differential equation (3.11) with
the initial condition ∆ρ(−∞) = 0 is

∆ρ(t) = −
t∫

−∞

e−i(t−t′)Leq {A, ρeq}F (t′) dt′ . (3.16)

A proof for this solution can be found in appendix 3.A.

Now that we obtained a description for the evolution of the time-
dependent change in the phase space probability density function, we
can use it to compute the response of the system, i.e., the expected
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change 〈∆B(t)〉 of an observable B = B(q,p) affected by the external
disturbance F (t):

〈∆B(t)〉 =
∫
Ω

B∆ρ(t) dqdp

= −
∫
Ω

B

t∫
−∞

e−i(t−t′)Leq {A, ρeq}F (t′) dt′ dqdp (3.17)

Since the phase space volume is a conserved quantity, we can change
the order of integration, yielding

〈∆B(t)〉 = −
t∫

−∞

F (t′)

∫
Ω

[
e−i(t−t′)Leq {A, ρeq}

]
B dqdpdt′ . (3.18)

Due to the fact that Leq is Hermitian, the propagator e−i(t−t′)Leq is
unitary, so that we can express eq. (3.18) as

〈∆B(t)〉 = −
t∫

−∞

F (t′)

∫
Ω

{A, ρeq} ei(t−t′)LeqB dqdpdt′

=

t∫
−∞

F (t′)

∫
Ω

{ρeq, A} B(t− t′) dqdpdt′ . (3.19)

By expanding the Poisson bracket in the innermost integrand and
applying the derivative product rule, we see that

{ρeq, A} B(t− t′) = ρeq
{
A, B(t− t′)

}
+
{
ρeqB(t− t′), A

}
. (3.20)

The phase space integral of the second addend on the right hand side
vanishes (as can be shown by partial integration), so that eq. (3.19)
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becomes

〈∆B(t)〉 =
t∫

−∞

F (t′)

∫
Ω

ρeq
{
A, B(t− t′)

}
dqdpdt′

=

t∫
−∞

F (t′)
〈{

A, B(t− t′)
}〉

eq
dt′ , (3.21)

where we identified the phase space integral as the expected value of the
Poisson bracket {A, B(t− t′)} at equilibrium. Strikingly, this result
implies that in the linear approximation, the change of any observ-
able due to a weak external disturbance is entirely determined by the
equilibrium dynamics of the system!

Equation (3.21) allows us to define the system’s response
function φAB(τ) as

φAB(τ) :=

∫
Ω

ρeq {A(0), B(τ)} dqdp

= 〈{A(0), B(τ)}〉eq , (3.22)

which corresponds to the change 〈∆B(τ)〉 of the observable B at time τ
after a unit pulse F (t) = δ(t) of an external force that is conjugate to A,
where δ(·) is the discrete Dirac delta function defined as

δ(x) =

{
1 if x = 0 ,

0 otherwise .
(3.23)

Inserting the response function back into eq. (3.21) yields the well-
known Kubo equation

〈∆B(t)〉 =
t∫

−∞

F (t′)φAB(t− t′) dt′ , (3.24)
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which means that the change in the observable B is given by the
superposition of unit delta responses weighted by the external force.
We notice that this response is not only linear, but due to the fact that
the time integral is cut-off at t, it is also causal, and furthermore retard-
ed because φAB is a function of τ = t− t′. Another noteworthy fact is
that φAB(τ) ∈ R because it depends only on physical observables.

If the external force is oscillating at a constant frequency ω so
that F (ω, t) = F0 e

−iωt, the expected response in B is

〈∆B(t)〉 = F0

t∫
−∞

e−iωt′ φAB(t− t′) dt′ , (3.25)

and by substituting t− t′ = τ , we obtain

〈∆B(t)〉 = F0

∞∫
0

φAB(τ) e
−iω(t−τ) dτ

=

∞∫
0

φAB(τ) e
iωτ dτ F0 e

−iωt . (3.26)

This expression allows us to define the generalized complex susceptibil-
ity (also called admittance)

χAB(ω) :=

∞∫
0

φAB(τ) e
iωτ dτ , (3.27)

which is nothing but the Fourier-Laplace transform of the response
function φAB(τ). With this definition, eq. (3.27) attains the simple
form

〈∆B(t)〉 = χAB(ω)F (ω, t) . (3.28)
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We note that due to φAB(τ) ∈ R, it follows that χAB(ω) ∈ C, and as a
consequence of the factor eiωτ in eq. (3.27), we conjecture that

Re [χAB(ω)] = Re [χAB(−ω)] , (3.29)
Im [χAB(ω)] = − Im [χAB(−ω)] , (3.30)

i.e., that the real part of the susceptibility is an even function and its
imaginary part an odd function of ω, provided that ω ∈ R.

3.1.2 Linear response in constant-temperature ensembles

Up to this point, we have not made any assumptions about the exact
nature of the system’s phase space probability density function ρeq,
so that the meaning of the Poisson bracket appearing in the response
function φAB(τ) as per eq. (3.22) was not exactly defined either. To
add more physical meaning to the theory derived above, we will now
proceed by applying it to an equilibrium system represented by a statis-
tical ensemble which is maintained at a constant absolute temperature
(see also section 3.3.5 for an overview of relevant ensembles). The most
prominent example for such an ensemble is the canonical ensemble,
where the system’s equilibrium Hamiltonian Heq(N,V, T ) is uniquely
defined by the state variables N (number of particles), V (volume),
and T (temperature). Note, however, that the following considera-
tions also apply to other constant-temperature ensembles such as the
isothermal-isobaric or the grand canonical ensemble; we only require
the temperature T to be one of the state variables.

From statistical mechanics, we know that the phase space distribution
function at constant temperature is given by the Boltzmann distribu-
tion, so that the corresponding probability density function obeys

ρeq =
1

Z
e−βHeq , (3.31)

where Z is the partition function of the respective ensemble
and β := (kBT )

−1 with the Boltzmann constant kB. Recalling that
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the response function is defined as

φAB(τ) :=

∫
Ω

ρeq {A(0), B(τ)} dqdp

=

∫
Ω

{ρeq, A(0)} B(τ) dqdp , (3.32)

we can now evaluate the Poisson bracket {ρeq, A(0)} by inserting
eq. (3.31):

{ρeq, A(0)} =
1

Z
∑
i

(
∂e−βHeq

∂qi

∂A(0)

∂pi
− ∂e−βHeq

∂pi

∂A(0)

∂qi

)
= − β

Z
e−βHeq

∑
i

(
∂Heq

∂qi

∂A(0)

∂pi
− ∂Heq

∂pi

∂A(0)

∂qi

)
= βρeq {A(0), Heq}
= βρeq iLeq(A(0))

= βρeq Ȧ(0) (3.33)

Plugging this result back into the response function yields

φAB(τ) =β

∫
Ω

ρeq Ȧ(0)B(τ) dqdp

=β 〈Ȧ(0)B(τ)〉eq , (3.34)

so that the complex susceptibility χAB(ω) in a constant temperature
ensemble becomes

χAB(ω) = β

∞∫
0

〈Ȧ(0)B(τ)〉eq eiωτ dτ . (3.35)

If the system is ergodic, the phase space average 〈·〉eq can be replaced
by the corresponding time average so that the term 〈Ȧ(0)B(τ)〉eq is
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identified as the temporal (cross-)correlation

〈Ȧ(0)B(τ)〉 = (Ȧ ? B)(τ) :=

∞∫
−∞

Ȧ(t)B(t+ τ) dt . (3.36)

The most important consequence of ergodicity is therefore that the
knowledge of the temporal evolution of both Ȧ(t) and B(t) in any
particular representation of the statistical ensemble is sufficient to
obtain the susceptibility χAB(ω).

3.2 Linear Dielectric Response

The dielectric response of a statistical ensemble is the expected
change 〈∆P (t)〉 of the system’s polarization P due to an external
electric field Eext(t). Thus, the generalized perturbing force is
the external electric field, and the conjugate displacement is the
system’s dipole moment M , so that the perturbation energy is given
as Hext(t) = −MEext(t). Since the polarization P is nothing but
a dipole density, we have M = V P , where V is the volume of the
system under consideration. The perturbation energy can therefore be
expressed as

Hext(t) = −V PEext(t) . (3.37)

Thus, according to eq. (3.34), the linear dielectric response function is
given as

φ~

~

PP (τ) =
V

kBT
〈Ṗ (0)⊗ P (τ)〉 dτ , (3.38)

where the symbol ⊗ denotes the dyadic product. The subscript
indicating equilibrium conditions has been dropped for brevity, and
we will stick to this notation in the following. Taking the dyadic
product is necessary for dielectrically anisotropic systems, where the
system’s polarization response depends on the direction of the perturb-
ing external electric field. Consequently, the dielectric response
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function φ~

~

PP is generally a second-rank tensor as indicated by the
double arrows. Likewise, the complex dielectric susceptibility is also a
tensorial quantity, reading

χ~

~

PP (ω) =
V

kBT

∞∫
0

〈Ṗ (0)⊗ P (τ)〉 eiωτ dτ , (3.39)

or, alternatively,

χ~

~

PP (ω) =
1

V kBT

∞∫
0

〈Ṁ(0)⊗M(τ)〉 eiωτ dτ . (3.40)

In spatially isotropic systems, the polarization response is independent
of the direction of the perturbing field so that the dielectric suscepti-
bility tensor reduces to its trace average, yielding

χPP (ω) =
1

3V kBT

∞∫
0

〈Ṁ(0)M(τ)〉 eiωτ dτ . (3.41)

Note that for the remainder of this work, it will be generally assumed
that systems are spatially isotropic unless otherwise stated.

A closer look at eq. (3.41) reveals that χPP (ω) has the expected
dimensions of a dipole moment density (i.e., polarization) divided by
an electric field (in SI base units: A2s4kg−1m−3), showing that the
relation

P = χPP E (3.42)
is obviously dimensionally correct. However, the dielectric suscepti-
bility is usually given as the dimensionless electric susceptibility χe

fulfilling the relation
P = ε0 χeE , (3.43)

where ε0 is the permittivity of free space. Thus, it follows immediately
that

χe(ω) =
1

3ε0V kBT

∞∫
0

〈Ṁ(0)M(τ)〉 eiωτ dτ . (3.44)
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Taking the limit ω → 0 and using the property of autocorrelations of
stationary processes 〈Ȧ(0)A(τ)〉 = − d

dτ 〈A(0)A(τ)〉 (see appendix 3.B),
we obtain the static electric susceptibility

χstatic
e := lim

ω→0
χe(ω) =

〈M2〉
3ε0V kBT

. (3.45)

Knowing the expected value of the squared total dipole moment of a
system at equilibrium is therefore sufficient to deduce its static electric
susceptibility.

Even though this equation appears to be rather simple, in the following,
however, we will see that applying this equation to molecular simulation
data can be a non-trivial task.
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3.3 Classical Molecular Dynamics Simulations

Note: This section provides a brief overview of classical force field Molecular
Dynamics simulations and is restricted to aspects relevant to this work. It is
mostly based on references 81 and 82, which cover the topic comprehensively.

The Molecular Dynamics (MD) method is a computer simulation
technique aiming to describe the dynamics of physicochemical many-
particle systems at the molecular scale, where each particle is modeled
as a point mass which may additionally carry a charge. Typically, in so-
called all-atom MD simulations, these particles correspond to atoms,
so that their true interactions are governed by the laws of quantum
mechanics. However, the computational effort required to evaluate
many-body interactions within any reasonably-sized molecular system
using quantum-mechanical methods would quickly become prohibitive-
ly large. Therefore, in classical MD simulations, the forces acting
between particles are approximated as classical and conservative, so
that their interactions can be described by distance-dependent effective
potentials. As both the assumption of point masses and charges as
well as the classical interaction potentials are an approximation, the
parameters entering the potential functions depend sensitively on the
employed molecular models. A set of molecular models together with
their parametrized interaction potentials is called a force field, so that
the simulation technique is also referred-to as force field Molecular
Dynamics.

3.3.1 Interaction potentials

The two major categories of interaction potentials are bonded and
nonbonded potentials. Bonded potentials are used to describe interac-
tions among neighboring atoms within a molecule. These cover
potentials for covalent bonds, which are usually described by harmon-
ic potentials between two neighboring particles, as well as angular
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and dihedral potentials involving three and four neighboring particles,
respectively. The two most prevalent types of nonbonded interactions
in molecular systems are van der Waals and Coulomb interactions,
where the former are due to induced dipoles and are most often modeled
by the empirical Lennard-Jones82,83 pair potential.

3.3.2 Integrators

Since the particles and their interactions are assumed to be classical,
the temporal evolution of the system can be obtained by propagat-
ing the particles’ positions and momenta by numerically integrating
Newton’s equations of motion

ṙi = vi , (3.46)

v̇i =
F i(ri)

mi
, (3.47)

where mi, ri, and vi are the mass, position, and velocity of the ith
particle, and the dot denotes the derivative with respect to time. The
force F i(ri) acting on the ith particle is obtained from

F i(ri) = −∇i U(ri; {r1, . . . , rn}) , (3.48)

where the operator ∇i denotes the gradient taken at the position of the
ith particle, and U(ri; {r1, . . . , rn}) is the superposition of all interac-
tion potentials at position ri, which depends on the set of all particle
coordinates {r1, . . . , rn} in a system comprising n particles.

In a many-body system with 3n position and 3n velocity coordi-
nates, the coupled set of ordinary differential equations (3.46) and
(3.47) can only be solved numerically, which entails the discretization
of both space and time into finite steps. The relative spatial resolu-
tion is usually determined—and, thus, limited—only by the numerical
precision offered by the machine executing the simulation code. The
temporal resolution, however, is determined by the time step ∆t, which
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is an input parameter of the simulation, and must be chosen small
enough to ensure numerical stability of the algorithm used to integrate
Newton’s equations of motion, the so-called integrator.

Important requirements for an integrator are that it should be time-
reversible, symplectic, energy-conserving, long-term stable, and—last
but not least—easy to implement. Therefore, the most widely-used
integrators in MD simulations are the Velocity-Verlet algorithm84 and
a mathematically equivalent variant thereof, the so-called leapfrog
integration scheme,85 which is used in this work. In the leapfrog
integration scheme, position and velocity updates are computed in an
alternating fashion (hence the term “leapfrog”) according to

vi

(
t+

∆t

2

)
= vi

(
t− ∆t

2

)
+

∆t

m
F i(ri, t) , (3.49)

ri(t+∆t) = ri(t) + ∆tvi

(
t+

∆t

2

)
, (3.50)

where t denotes time, and ∆t is the time step. Thus, if this integrator
is employed, it will be crucial for certain analyses to keep in mind that
positions and velocities are never known at the exact same time, but
are shifted by ∆t

2 .

3.3.3 Spatiotemporal limitations

In all-atom MD simulations, the time step is typically restricted to
values as small as ∆t ≤ 2 fs, which currently limits the total accessi-
ble simulation time of any reasonably sized system to a few microsec-
onds.

Apart from temporal restrictions, however, MD simulations are also
subject to spatial limitations. While in principle, the simulation
volume—and, therefore, the maximum distance in the system—can
be arbitrarily large, it is the number of particles required to fill that
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volume which sets severe limits to the spatial extent of an MD simula-
tion. The most efficient algorithms used to compute the long-ranged
Coulomb forces acting on each particle usually exhibit an asymtotic
scaling of O(n log2(n)), where n is the number of particles. The most
prominent examples of such algorithms are the smooth particle-mesh
Ewald (SPME)86,87 and the particle-particle/particle-mesh (P3M)88

methods. Even when parallelized on modern supercomputers, this
limits the number of particles a simulation can cover to a few million.
A macroscopic system, however, contains a number of particles in the
order of 1023, i.e., a number that is about 1017 times larger than what
could be covered by an MD simulation.

3.3.4 Periodic boundary conditions

Without any further action, the limited number of particles would
constrain the applicability of MD simulations to nano-confined systems,
whose structural and dynamic properties are strongly influenced by
the nature of the confining boundaries. This restriction is overcome
by employing periodic boundary conditions (PBC), which enable MD
simulations to effectively model the behavior of bulk systems. In a
simulation with PBC, the simulation volume is represented as a box
with toroidal boundaries in all three dimensions, i.e., any particle
leaving the box on one side will enter the box from the opposite
side. This means that by employing PBC, one effectively simulates
an infinitely periodic system consisting of identical boxes (often called
images) replicated in all three dimensions as illustrated in fig. 3.1.

While applying PBC is necessary to simulate bulk behavior, the result-
ing toroidal geometry also implies that the definition of the distance
between any pair of particles is ambiguous. It is therefore common
practice to define distances according to the minimum image conven-
tion, where the distance rij between any two points ri, rj in space is
taken as the smallest distance between any two of their periodic images.
For an orthorhombic simulation box with edge lengths Lx, Ly, Lz, the
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squared minimum image distance is therefore given as

r2ij :=
∑

d∈{x,y,z}

(
(rd mod Ld)

+ h

(
− (rd mod Ld)−

Ld

2

)
Ld

− h

(
(rd mod Ld)−

Ld

2

)
Ld

)2

, (3.51)

where rd denotes the coordinate in direction d ∈ {x, y, z} of the
vector r = rj − ri, mod is the modulo operator, and h(·) denotes the
Heaviside step function defined as

h(x) =

{
1 if x > 0

0 otherwise .
(3.52)

Figure 3.1: Two-dimensional slice of a simulation of water vapor in a cubic simula-
tion box with periodic boundary conditions. Even though the simulation contains only
the atoms in the central image (black square with colored molecules), the system is
equivalent to an infinite system with periodically replicated images (gray squares with
grayed-out molecules) in all directions due to periodic boundary conditions.
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As will be shown below, employing PBC entails severe consequences
for the computation of distance-dependent observables such as dipole
moments. Moreover, as a system with PBC extends infinitely in all
periodic dimensions, this poses practical problems for the evaluation
of log-ranged interactions. For LJ interactions, where the interac-
tion potential decays asymptotically with r−6

ij , it is usually sufficient
to stop the summation of pairwise interactions beyond a suitable
cutoff distance and apply analytic tail corrections assuming a homoge-
neous background beyond the cutoff. However, for the much longer-
ranged Coulomb interactions, where the potential decays with r−1

ij ,
such an approach is not possible and one would basically have to
compute pairwise Coulomb interactions beyond the central image to
infinity. To overcome the problem of infinite direct summations, one
usually employs algorithms based on Ewald summation89 such as the
smooth particle mesh Ewald87 (SPME) or particle-particle-particle-
mesh Ewald90–92 (P3M) methods, where the summation is split into a
short-ranged part using direct summation up to a cutoff distance and a
long-range part leveraging the periodicity of the system by computing
the summations in reciprocal space using Fourier transforms.

3.3.5 Statistical ensembles

In statistical physics, MD simulations are used as a tool to investi-
gate the temporal evolution of microscopic configurations represent-
ing possible microstates of an equivalent thermodynamic system. The
entirety of all such states is called a statistical ensemble. For the
ensemble to represent a macroscopic system at thermodynamic equilib-
rium, it must be in statistical equilibrium, i.e., the expected value 〈A〉
(called the ensemble average) of any macroscopic observable A (a
function of the microstates) must be constant, which entails that the
probability distribution of microstates must be stationary.

Depending on the thermodynamic variables defining the system, there
exist corresponding statistical ensembles:
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Microcanonical ensemble (NV E) Completely isolated system with
constant volume, no exchange of energy or particles with its surround-
ing. The number of particles N , volume V , and total energy E are
conserved.

Canonical ensemble (NV T ) Closed system with constant volume in
contact with a heat bath, no exchange of particles with its surrounding.
The number of particles N , volume V , and temperature T are fixed.
The Helmholtz free energy F is conserved.

Isothermal-isobaric ensemble (NpT ) Closed system in contact with
heat bath, no exchange of particles with surrounding. The number of
particles N is fixed, and the pressure p and temperature T are constant.
The Gibbs free energy G is conserved.

Grand canonical ensemble (µV T ) Open system with constant
volume and chemical potential in contact with a heat bath, particles
are exchanged with surrounding. The chemical potential µ, volume V ,
and temperature T are fixed. The Landau free energy (often called the
grand potential) is conserved.

In this work, the majority of MD simulations were performed in the
isothermal-isobaric ensemble, however, in some cases, the canonical
ensemble was used.

3.3.6 Thermostats and barostats

To ensure that the system is maintained at a constant temperature,
a so-called thermostat is required, i.e., an algorithm coupling the
system to a virtual heat bath. Two of the most widely-used algorithms
are the Andersen93 and the Langevin (also referred-to as stochastic
dynamics)81 thermostat. These thermostats mimick the coupling to
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a heat bath in terms of random forces acting on the particles in the
system and a dissipative force that is proportional to the particles’
velocities. However, while these algorithms reproduce the correct
Maxwell-Boltzmann distribution of particle velocities, and the system’s
static properties are therefore physically correct, the random forces
impose a bias on the system’s dynamics. Thus, such thermostats are
not suitable for simulations which shall correctly reproduce dynamic
properties such as dielectric spectra. In that case, a better choice is the
Nosé-Hoover thermostat,94,95 which employs an extended-Lagrangian
approach with an additional variable used to impose the constraint
of a constant temperature.82 Since the algorithm is deterministic, the
correct dynamics of the system are retained.

If the system is simulated in the NpT ensemble, an additional algorithm
has to be employed to keep the system at a constant pressure, ensuring
that the simulation volume fluctuates according to the system’s stress
tensor in a physically consistent manner. Such algorithms are called
barostats. As of today, the most frequently employed barostat
algorithm is that of Parrinello and Rahman,96 which, in contrast
to other approaches such as Berendsen’s weak-coupling scheme,97

reproduces the correct physical ensemble. Consequently, all simula-
tions conducted for this work employ the Nosé-Hoover thermostat
in conjunction with the Parrinello-Rahman barostat unless otherwise
stated.

3.4 Dielectric Response in Molecular Dynamics
Simulations

Now that the basic theory of linear dielectric response has been layed
out and the basic concepts of MD simulations were introduced, we will
combine this information to derive a method for extracting the dielec-
tric response of a simulated system from equilibrium MD simulations.
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We recall eq. (3.44), which states how the frequency-dependent linear
electric susceptibility χe(ω) in spatially homogeneous and isotropic
systems can be obtained from the equilibrium system’s fluctuating total
dipole moment M(t) via a Fourier-Laplace transform:

χe(ω) =
1

3ε0V kBT

∞∫
0

〈Ṁ(0)M(τ)〉 eiωτ dτ

The total dipole moment of a system comprising n charges {qi} located
at positions ri with respect to a reference position located at r = 0 is
given as

M =

n∑
i=1

qi ri (3.53)

so that, in principle, it might appear straightforward to obtain M(t)
from an MD simulation by simply evaluating eq. (3.53) in every time
step. However, this is not easily possible in simulations employing PBC
for two reasons:98 First, in periodic systems, the choice of origin of the
coordinate system defining the particle positions is arbitrary, leaving
the value of the system’s total dipole moment ill-defined. Second, if
particles cross periodic boundaries, the fact that their positions are
folded back into the simulation box will cause M(t) to suffer from an
artificial jitter whose magnitude depends on the size of the simulation
box.

In systems consisting entirely of overall charge-neutral molecules, these
problems can be overcome by taking the total dipole moment as the
sum of all molecular dipole moments, each computed in the respective
molecule’s reference frame with PBC undone. This is possible because
the total dipole moment of such a system depends only on the rotation-
al orientations of molecular dipole moments and is independent of the
molecules’ positions. However, in simulations involving free charges
or non-neutral molecules, this is no longer possible as in addition to
these rotational contributions, the system’s total dipole moment will
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also have a translational component arising from intermolecular contri-
butions.

To solve this issue, instead of computing χe(ω) directly from the dipole
moment M(t), we will use its temporal derivative Ṁ(t), which we
identify as the system’s total current

j(t) := Ṁ(t) =
d

dt

n∑
i=1

qi ri(t) =
n∑

i=1

qi vi(t) . (3.54)

Since the charges qi are constant, the temporal evolution of j only
depends on the particles’ velocities vi. This has the advantage that,
in contrast to positions, the particles’ velocities are independent of
the choice of origin of the coordinate system and remain continuous
when particles cross periodic boundaries. By inserting j(t) for Ṁ(t)
in eq. (3.44) and integrating by parts, we obtain

χe(ω) =
1

3ε0V kBT

∞∫
0

〈j(0)M(τ)〉 eiωτ dτ

=
1

3ε0V kBT

([(
d

dτ
〈M(0)M(τ)〉

)
i
ω
eiωτ

]∞
0

+
i
ω

∞∫
0

〈j(0) j(τ)〉 eiωτ dτ

)
, (3.55)

where we have used the property of autocorrelations of real-valued
stationary ramdom processes (see appendix 3.B for a brief derivation)
d
dτ 〈A(0)A(τ)〉 = 〈A(0) Ȧ(τ)〉 = −〈Ȧ(0)A(τ)〉.

The term in square brackets vanishes for τ = 0 due to the fact that
the autocorrelation 〈M(0)M(τ)〉 is an even function, implying that its
derivative vanishes at τ = 0. As M(t) is subject to random thermal
noise, its autocorrelation (and therefore, also the derivative thereof)
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must vanish for τ → ∞ so that eq. (3.55) simplifies to

χe(ω) =
1

3ε0V kBT

i
ω

∞∫
0

〈j(0) j(τ)〉 eiωτ dτ . (3.56)

We recall that χe relates the polarization P to the applied electric
field E according to

P (ω) = ε0 χe(ω)E(ω) .

By taking the derivative with respect to time and remembering that
we previously defined the external field as E(ω) = E0e

−iωt, we obtain
the current density J(ω) := Ṗ (ω) as

J(ω) = −iω ε0 χe(ω)E(ω) . (3.57)

Comparing this expression to Ohm’s law J = σeE, we identify the
frequency-dependent complex conductivity σe(ω) as

σe(ω) = −iω ε0 χe(ω) =
1

3V kBT

∞∫
0

〈j(0) j(τ)〉 eiωτ dτ . (3.58)

Solving for χe(ω) yields the fundamental relation

χe(ω) =
iσe(ω)
ε0 ω

. (3.59)

Using the definition of the relative permittivity εr = (1 + χe), we obtain
the complex frequency-dependent relative permittivity, also called the
dielectric spectrum of the system, as

εr(ω) = 1 +
iσe(ω)
ε0 ω

. (3.60)

Comparing this result to the previous definition of εr(ω) from eq. (2.3),
we see that in principle, the infinite-frequency response ε∞r is unity.
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For dielectric spectra obtained from MD simulations, this equality
holds because both the positions and velocities of all particles are
known at every time step, implying that there exists no fast relaxation
process that cannot be captured. However, note that even in bulk
simulations employing PBC, there may be electrostatic boundary
conditions influencing the system’s dynamics in terms of a so-called
reaction field, i.e., a background medium with finite permittivity
surrounding the simulation volume at a far distance that causes ε∞r to
differ from unity.99 Nevertheless, in this work, all simulations employ
metallic boundary conditions at infinity so that according to the tinfoil
theorem,100 ε∞r indeed reduces to unity.

According to eq. (3.58), the imaginary part of σe(ω) vanishes for ω → 0
so that the static conductivity σstatic

e := σe(ω = 0) is a real-valued
quantity. In systems comprising free charges, i.e., ions or charged
molecules, the real part of σe(ω) does not vanish for ω → 0 due
to the translational flow of charges. In that case, eq. (3.60)
implies that the dielectric loss ε′′r(ω) diverges for ω → 0 due to the
factor ω−1. We therefore follow the common experimental practice
to calculate an apparent dielectric permittivity ε̃r(ω) by substituting
σe(ω) → σ̃e(ω)− σstatic

e in eq. (3.60), yielding

ε̃r(ω) = 1 +
i
(
σe(ω)− σstatic

e

)
ε0ω

. (3.61)

This definition will be used throughout the remainder of this work,
however, the tilde notation will be dropped for convenience.
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3.A Proof of the Solution (3.16) to Eq. (3.11)

According to the Leibniz integral rule, the derivative df(t)
dt of a function

f(t) of the form

f(t) =

b(t)∫
a(t)

g(t, t′) dt′ (3.62)

is given as

∂f(t)

∂t
=

∂b(t)

∂t
g(t, b(t)) +

∂a(t)

∂t
g(t, a(t)) +

b(t)∫
a(t)

∂

∂t
g(t, t′) dt′ (3.63)

under the condition

−∞ < a(t), b(t) < ∞ . (3.64)

In section 3.1, eq. (3.16), given by

∆ρ(t) = −
t∫

−∞

e−i(t−t′)Leq {A, ρeq}F (t′) dt′ (3.65)

was proposed as a solution to the differential equation (3.11), reading

∂

∂t
∆ρ(t) = {Heq, ∆ρ(t)} − F (t) {A, ρeq} . (3.66)
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Clearly, eq. (3.65) is an improper integral violating the condition (3.64)
for the lower bound a(t), and it is not obvious whether the integrand
of eq. (3.65) generally fulfills the necessary requirements to expand
the Leibniz rule to a(t)=−∞. Nevertheless, it is assumed that the
integrand is sufficiently well-behaved at the boundaries so that the
Leibnitz rule remains valid in this case. Applying it to eq. (3.65)
yields

d

dt
∆ρ(t) = −F (t) {A, ρeq}+

t∫
−∞

iLeq

(
e−i(t−t′)Leq {A, ρeq}F (t′)

)
dt′ .

(3.67)
Since the equilibrium Liouville operator iLeq(·) = {Heq , · } is indepen-
dent of time, we can move it in front of the integral, yielding

d

dt
∆ρ(t) = −F (t) {A, ρeq} − iLeq

(
−

t∫
−∞

e−i(t−t′)Leq {A, ρeq}F (t′) dt′

︸ ︷︷ ︸
=∆ρ(t)

)

= {Heq ,∆ρ(t)} − F (t) {A, ρeq} , (3.68)

which is again eq. (3.66), showing the validity of the
solution (3.65).(�)
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3.B Derivatives of Autocorrelation Functions of
Stationary Random Processes

The autocorrelation function RAA(τ) of a stationary random
process A(t) is defined as

RAA(τ) := 〈A(0)A(τ)〉 =
∞∫

−∞

A(t)A(t+ τ) dt =

∞∫
−∞

A(t− τ)A(t) dt ,

(3.69)
Taking its derivative with respect to τ , it follows immediately that

ṘAA(τ) = RAȦ(τ) = −RȦA(τ) , (3.70)

or, expressed differently:

d

dτ
〈A(0)A(τ)〉 = 〈A(0) Ȧ(τ)〉 = −〈Ȧ(0)A(τ)〉 . (3.71)

Likewise, it follows for the second derivative that

d2

dτ2
〈A(0)A(τ)〉 = −〈Ȧ(0) Ȧ(τ)〉 . (3.72)
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In the previous chapter, we have derived the theory required to obtain
dielectric spectra from bulk equilibrium MD simulations. The central
outcomes of this derivation were that the spectrum of the frequency-
dependent relative permittivity εr(ω) is related to that of the complex
conductivity σe(ω) according to eq. (3.61), and that the latter can be
obtained via a Fourier-Laplace transform of the autocorrelation of the
total current j(t) according to eq. (3.58). However, what is still missing
is a computationally feasible approach to obtain j(t) from simulations,
correct numerical estimators to compute autocorrelations, an efficient
way to compute Fourier-Laplace transforms, and, last but not least, a
robust method to compute the static conductivity σstatic

e .

Before we start developing such a computational framework, it is of
utmost importance to realize that we are dealing with simulation data,
which are—just like data from experimental measurements—subject to
various types of errors. Therefore, in the following section, we discuss
how statistical errors of observables obtained from MD simulations can
be estimated in a rigorous and numerically correct manner.
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4.1 Statistical Error Estimation for Molecular
Dynamics Simulation Data

Note: The contents of this section have been previously made available online
in similar form.101

In any simulation capturing real-world phenomena, one has to make
assumptions about the nature of the system the simulation shall
represent. This is a general fact applying to any kind of simulation,
and is therefore neither limited to the employed simulation method
nor to the field of research. Consequently, a simulation will never yield
a perfect picture of reality, and is therefore subject to errors, which
can arise from many different sources, e.g., from model assumptions
(choice of parameters, level of detail, governing equations, etc.), bad
choices of initial conditions, spatial boundaries, system size, temporal
resolution and / or total simulation time, or flaws in the analysis and
interpretation of simulation results. These errors can be categorized
into two general types, namely systematic and statistical errors. As
the latter type can be dealt with using generally applicable techniques,
the analysis of statistical errors will be discussed in the following.

In classical equilibrium statistical physics, the fundamental property of
a microscopic system is its partition function Z. Taking the example
of the canonical ensemble, it reads

Z =
1

h3

∫
Ω

e
−E(s)

kBT dΩ , (4.1)

which is an integral of the Boltzmann weights of all microscopic states s
with energy E(s) over the phase space Ω = {s} accessible to the system,
where kB is the Boltzmann constant, T denotes absolute tempera-
ture, dΩ is an infinitesimal phase space volume element, and h is
Planck’s constant. The probability P (s) of finding the system in any
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particular state s is then given by

P (s) =
1

Z
e
−E(s)

kBT . (4.2)

Consequently, the expected value 〈A〉 of any microscopic observ-
able A(s) can be expressed in terms of the Partition function as

〈A〉 = 1

Z

∫
Ω

A(s) e
−E(s)

kBT dΩ . (4.3)

From eq. (4.3) it becomes evident that any thermodynamic observable
〈A〉 is the expected value of a Boltzmann-weighted random variable A
from a statistical physics point of view.
Its expected quadratic deviation σ2(A)a, i.e., the variance of A, is

σ2(A) = 〈(A− 〈A〉)2〉
= 〈A2〉 − 2 〈〈A〉A〉+

〈
〈A〉2

〉
= 〈A2〉 − 〈A〉2 . (4.4)

In classical equilibrium MD simulations, one samples the temporal
evolution of microscopic states s({q}, {p}) of n-particle systems
with generalized positions {q} = (q1, q2, ..., qn) and conjugate
momenta {p} = (p1,p2, ...,pn) governed by a suitable Hamiltoni-
an H({q}, {p}) by integrating Newton’s equations of motion. Apart
from the fact that the number of particles n in the system must be large
enough to faithfully represent the system’s behavior in the thermody-
namic limit (n → ∞), it is clearly impossible to sample the entire
phase space of such a microscopic system within finite simulation time.
Thus, the expected value 〈A〉 of an observable A(s), and, consequently,
also its variance σ2(A), are not directly measurable in MD simulations.
However, by integrating Newton’s equation of motion in a suitable
thermodynamic ensemble, the sampled states in a phase space trajecto-
ry s(t) := s({q(t)}, {p(t)}) obtained from an equlibrium MD simulation

aNot to be mistaken for the conductivity σe in section 3.4!
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are inherently Boltzmann-weighted. One can therefore estimate 〈A〉
from the temporal average of A(t) := A(s(t))

〈A〉 ≈ 1

tsim

tsim∫
0

A(t) dt , (4.5)

provided that the system is ergodic. In a computer simulation, the
simulation time tsim is discretized into Nt time steps δt, and A(t) is
usually sampled at regular intervals of width ∆t ≥ δt so that eq. (4.5)
becomes

〈A〉 ≈ Ā :=
1

N

N∑
i=1

Ai , (4.6)

where N denotes the total number of samples with measured
values Ai = A(i∆t).

4.1.1 Error estimation of uncorrelated data

Since the estimator Ā only approximates 〈A〉, it is important to know
the statistical accuracy of this approximation. The variance of Ā is

σ2
(
Ā
)
=
〈(

Ā− 〈A〉
)2〉

=
1

N2

N∑
i=1

N∑
j=1

〈AiAj〉 −
2

N

N∑
i=1

〈Ai〉〈A〉+ 〈A〉2

=
2

N2

N∑
i=1

N∑
j=i+1

〈AiAj〉+
1

N
〈A2〉 − 〈A〉2 . (4.7)
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If we assume uncorrelated (i.e., statistically independent) samples, then
〈AiAj〉 = 〈Ai〉〈Aj〉 = 〈A〉2 for all i 6= j, so that

σ2
(
Ā
)
=

N (N − 1)

N2
〈A〉2 + 1

N
〈A2〉 − 〈A〉2

=
1

N

(
〈A2〉 − 〈A〉2

)
=

1

N
σ2(A). (4.8)

The standard error ε of the mean Ā is defined as the square root of its
variance (also known as its standard deviation), and is thus given as

ε
(
Ā
)
:= σ

(
Ā
)
=

σ(A)√
N

. (4.9)

Due to the fact that we cannot directly measure σ(A), we employ the
estimator Ā ≈ 〈A〉 to construct an estimator for σ2(A):〈

A2 − Ā2
〉
=
〈
A2
〉
−
〈
Ā2
〉

= 〈A2〉 − 1

N2

N∑
i=1

N∑
j=1

〈AiAj〉

= 〈A2〉 − 1

N
〈A2〉 − 2

N2

N∑
i=1

N∑
j=i+1

〈AiAj〉 (4.10)

Assuming again that the samples Ai, Aj , i 6= j are statistically
independent, we obtain

〈
A2 − Ā2

〉
= 〈A2〉 − 1

N
〈A2〉 − 2

N2

N∑
i=1

N∑
j=i+1

〈A〉2

=
N − 1

N

(
〈A2〉 − 〈A〉2

)
=

N − 1

N
σ2(A) . (4.11)
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Replacing the expected value on the LHS of eq. (4.11) by its estimator
and rearranging for σ2(A) yields the estimator for the variance

σ̂2(A) =
N

N − 1

(
A2 − Ā2

)
, (4.12)

and combining eqs. (4.6), (4.9) and (4.12) yields the estimator for the
standard error of the mean

ε̂
(
Ā
)
=

√
σ̂2(A)

N
=

√√√√√ 1

N (N − 1)

 N∑
i=1

A2
i −

1

N

(
N∑
i=1

Ai

)2
 . (4.13)

4.1.2 Error estimation of correlated data

Due to the fact that the sampled states s(ti), s(tj) obtained from an
MD simulation are correlated for small (j − i) due to the system’s
inertia, the above assumption of uncorrelated samples does not hold
in general. Moreover, the time interval (j − i)∆t required for the
sampled states to become uncorrelated is not known a priori. Hence, we
generally have to assume that 〈AiAj〉 6= 〈A〉2, thereby invalidating the
simplification employed to obtain eq. (4.8) from eq. (4.7), and, likewise,
eq. (4.11) from eq. (4.10). Nevertheless, we can measure the time scale
on which the correlations between successive samples Ai, Aj decay by
analyzing the auto-covariance function RAA(τ) of the time-dependent
(but stationary!) random variable A(t) ∈ R, which is defined as

RAA(τ) = 〈(A(t)− 〈A〉) (A(t+ τ)− 〈A〉)〉
= 〈A(t)A(t+ τ)〉 − 〈A〉2 . (4.14)

Since A is real and stationary, we can substitute t → t− τ so that the
symmetry

RAA(τ) = 〈A(t)A(t+ τ)〉 − 〈A〉2
t→t−τ
= 〈A(t− τ)A(t)〉 − 〈A〉2

= RAA(−τ) (4.15)
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immediately follows, and consequently, the auto-covariance function of
a real variable is an even function.
If A is sampled at regular time intervals ∆t, we can discretize eq. (4.14)
to obtain

RAA
j := RAA(j∆t) = 〈AiAi+j〉 − 〈A〉2 . (4.16)

Note that by definition, the auto-covariance function at j = 0 is
RAA

0 = 〈A2〉 − 〈A〉2 = σ2(A).

We now proceed by recalling eq. (4.7), which describes the variance
σ2(Ā) of the estimator Ā:

σ2
(
Ā
)
=

2

N2

N∑
i=1

N∑
j=i+1

〈AiAj〉+
1

N
〈A2〉 − 〈A〉2

By rewriting the last term as

〈A〉2 = 〈A〉2 − 1

N
〈A〉2 + 1

N
〈A〉2

=
N − 1

N
〈A〉2 + 1

N
〈A〉2

=
2

N2

N∑
i=1

N∑
j=i+1

〈A〉2 + 1

N
〈A〉2 (4.17)

we obtain

σ2
(
Ā
)
=

2

N2

N∑
i=1

N∑
j=i+1

(
〈AiAj〉 − 〈A〉2

)
+

1

N

(
〈A2〉 − 〈A〉2

)
. (4.18)

Shifting the index of the inner sum j → j − i yields

σ2
(
Ā
)
=

2

N2

N∑
i=1

N−i∑
j=1

(
〈AiAi+j〉 − 〈A〉2

)
+

1

N
σ2(A)

=
2

N2

N∑
i=1

N−i∑
j=1

RAA
j +

1

N
RAA

0 . (4.19)
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A closer look at the double sum reveals that in total, each addend RAA
j

occurs exactly N − j times so that we can express eq. (4.19) as

σ2
(
Ā
)
=

2

N2

N−1∑
j=1

(N − j)RAA
j +

1

N
RAA

0 . (4.20)

Moreover, we know that RAA
j = RAA

−j due to the symmetry of the
auto-covariance function. This allows us to further simplify the above
expression, which then reads

σ2
(
Ā
)
=

1

N

N−1∑
j=−N+1

N − |j|
N

RAA
j . (4.21)

Nevertheless, since both the expected value 〈A〉 as well as the variance
σ2(A) are not directly accessible, the same applies to the true auto-
covariance function RAA

j . Hence, we are still missing a way to obtain
an estimate of RAA

j from the measured data, which will be discussed
in the following.

Let us consider a random variable A0 with an expected value 〈A0〉 = 0
so that its auto-covariance function equals its autocorrelation function
and is therefore given by

RA0A0

j =
〈(
A0

i − 〈A0〉
) (

A0
i+j − 〈A0〉

)〉
= 〈A0

iA
0
i+j〉 = 〈A0

iA
0
i+|j|〉 ,

(4.22)
where the last equality holds due to the symmetry RA0A0

j = RA0A0

−j . By
applying the estimator for the mean, we obtain the autocorrelation
estimator

bR̂A0A0

j =
1

N

N∑
i=1

A0
iA

0
i+|j| =


1

N

N−|j|∑
i=1

A0
iA

0
i+|j| for 0 ≤ |j| < N

0 otherwise ,
(4.23)
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where we have implicitly set the values outside the measurement range
to A0

i = 〈A0〉 = 0 for all i > N , which is justified if N is sufficiently
large so that RA0A0

j already vanishes before j = N .

The expected value of this estimator is〈
bR̂A0A0

j

〉
=

1

N

N−|j|∑
i=1

〈A0
iA

0
i+|j|〉

=
1

N

N−|j|∑
i=1

RA0A0

j

=
N − |j|

N
RA0A0

j . (4.24)

We see that this estimator is biased (hence the prescript b) by the factor
N−|j|
N and becomes only asymptotically unbiased for N � j. However,

we can solve eq. (4.24) for RA0A0

j to obtain the unbiased estimator

uR̂A0A0

j =
1

N − |j|

N−|j|∑
i=1

A0
iA

0
i+|j| . (4.25)

If we consider the general case of a random variable A(t) with an
unknown, i.e., potentially non-zero expected value 〈A〉, we cannot
neglect it in the respective auto-covariance function, which is then again
given by eq. (4.14). We can include the expected value in terms of its
estimator Ā ≈ 〈A〉 into the estimators bR̂A0A0

j and uR̂A0A0

j to obtain the
auto-covariance estimators

bR̂AA
j =

1

N

N−|j|∑
i=1

(
Ai − Ā

) (
Ai+|j| − Ā

)
, (4.26)

uR̂AA
j =

1

N − |j|

N−|j|∑
i=1

(
Ai − Ā

) (
Ai+|j| − Ā

)
. (4.27)

By doing so, we add an (additional) small, asymptotically vanishing
bias of O(1/N) to either of the estimators, which can be shown by
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calculating their expected values. This means that if an observable
is known to possess an expected value of zero, it is actually wrong to
subtract the mean from a data series of such an observable for the
estimation of the corresponding auto-covariance function! Generally
speaking, if it is known, it is more accurate to subtract the expected
value instead of the average.

Nevertheless, we use the estimator uR̂AA
j to approximate the true auto-

covariance function RAA
j in eq. (4.21), yielding the estimator for the

variance of the mean

cσ̂2
(
Ā
)
=

1

N

N−1∑
j=−N+1

N − |j|
N

uR̂AA
j

=
1

N

N−1∑
j=−N+1

1

N

N−|j|∑
i=1

(
Ai − Ā

) (
Ai+|j| − Ā

)
=

1

N

N−1∑
j=−N+1

bR̂AA
j , (4.28)

where the prescript c indicates that the estimator is now also valid
for correlated data series. The estimator for the standard error of the
mean follows immediately as

cε̂
(
Ā
)
=

√√√√ 1

N

N−1∑
j=−N+1

bR̂AA
j . (4.29)

We see that to obtain an (almost) unbiased estimate of the standard
error of the mean, we have to compute the integral of a biased estimate
of the auto-covariance function!

However, for reasons we will discuss below, the integrated auto-
covariance estimate can only be reliably evaluated up to |jmax| < N

2 ,
which is still to be determined. Restricting the summation limits in
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eq. (4.29) accordingly yields the correlated error estimate

cε̂
(
Ā
)
=

√√√√ 1

N

jmax∑
j=−jmax

bR̂AA
j . (4.30)

Note that eq. (4.30) remains valid for uncorrelated data series because
then, the auto-covariance function vanishes except for j = 0 so that
eq. (4.30) reduces to eq. (4.13).
Also note that because eq. (4.30) employs an unnormalized estimate
of the auto-covariance function, it remains numerically stable even
if Ai=Ā for all i. The method derived here is therefore more robust
than other related methods for correlated error analysis102 from a
practical point of view.

4.1.3 Important considerations for the evaluation of
integrated auto-covariance estimates

We have seen that the jth value of the auto-covariance estimator
bR̂AA

j is computed from N − |j| sample pairs, so that the tail of the
auto-covariance is expected to become increasingly noisy. Likewise,
we expect the integrated auto-covariance to suffer from fluctuations,
making it hard to precisely estimate its asymptotic value. We define
the running integral of the auto-covariance as

bR̂AA
int,j :=

j∑
m=−j

bR̂AA
m , j = 0, . . . , N − 1 . (4.31)
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We can evaluate the integral bR̂AA
int,j at j=N − 1 analytically:

bR̂AA
int,(N−1) =

N−1∑
m=−N+1

bR̂AA
m

= 2

N−1∑
m=1

bR̂AA
m + bR̂AA

0 (4.32)

=
2

N

N−1∑
m=1

N−m∑
i=1

(Ai − 〈A〉) (Ai+m − 〈A〉) + 1

N

N∑
i=1

(Ai − 〈A〉)2,

(4.33)

where we used the symmetry of the auto-covariance function
bR̂AA

m = bR̂AA
−m in the second step, and thereafter inserted eq. (4.26)

without employing the estimator Ā≈〈A〉.

By explicitly writing out the double sum of the first addend of
eq. (4.33), we see that we can change the order of summation,
yielding

bR̂AA
int,(N−1) =

2

N

N−1∑
i=1

N∑
m=i+1

(Ai − 〈A〉) (Am − 〈A〉) + 1

N

N∑
i=1

(Ai − 〈A〉)2

=
1

N

N∑
i=1

N∑
m=1

(Ai − 〈A〉) (Am − 〈A〉)

=
1

N

N∑
i=1

N∑
m=1

(
AiAm −Ai〈A〉 −Am〈A〉+ 〈A〉2

)
= N

(
Ā2 − 2Ā〈A〉+ 〈A〉2

)
= N

(
Ā− 〈A〉

)2
. (4.34)

It is now obvious that by replacing the unknown expected value 〈A〉
by the mean Ā, we introduce a bias to the auto-covariance estimator
bR̂AA

j which forces its integral to zero at j = N−1, so that by construc-
tion, bR̂AA

int,(N−1) = 0.
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Clearly, we need to know the maximum lag jmax where the auto-
covariance integral bR̂AA

int,j is still reliable. Following the previous analyt-
ical calculation from eq. (4.32), we can express bR̂AA

int,j as

bR̂AA
int,j = 2

j∑
m=1

bR̂AA
m + bR̂AA

0 = 2

N−1∑
m=1

bR̂AA
m + bR̂AA

0︸ ︷︷ ︸
=bR̂AA

int,(N−1)
=0

−2

N−1∑
m=j+1

bR̂AA
m

= − 2

N

N−1∑
m=j+1

N−m∑
i=1

(Ai − 〈A〉) (Ai+m − 〈A〉) . (4.35)

Again, we can change the order of summation, yielding

bR̂AA
int,j = − 2

N

N−j−1∑
i=1

(Ai − 〈A〉)
N∑

m=i+j+1

(Am − 〈A〉) . (4.36)

We see that for j = N
2 − 1, the index of the outer sum covers the

range i ∈ [1, N
2 ], and the inner sum covers m ∈ [N2 + i, N ], so that

for j < N
2 , all available samples enter the estimate bR̂AA

int,j at least once.
Any further increase of j to N

2 +k, k ≥ 0 will result in omitting 2(k+1)

of the available samples, so that the estimate bR̂AA
int,j will become less

accurate by construction. Thus, even if the expected value is known,
there is no benefit in evaluating the auto-covariance estimate bR̂AA

j for
lags j ≥ N

2 .

Unfortunately, this only tells us that the maximum suitable lag must
be jmax < N

2 . Nevertheless, in order to obtain information on the lag-
dependent statistical accuracy of the auto-covariance integral bR̂AA

int,j ,
we can estimate its statistical error!

To this aim, we divide the data series into NB blocks of length k and
compute the auto-covariance estimator bR̂AA

n,j for each of the blocks
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according to

bR̂AA
n,j =

1

k

k−|j|∑
i=1

(
A(n−1)k+i − Ān

) (
A(n−1)k+i+|j| − Ān

)
, n = 1, ..., NB ,

(4.37)
where Ān denotes the average of the nth block. Assuming that the
blocks are large enough for the samples to decorrelate within one
block, the lag-dependent error of the integral can then be estimated
from the uncorrelated error of the set of NB integrated block-auto-
covariances bR̂AA

int,n,j for each j.

We can then set jmax to a value where the error ε̂
(
bR̂AA

int,j

)
is smaller

than a chosen threshold and either simply cut the integral at this point
or (better!) determine its asymptotic value by fitting a suitable function
(usually, but not always, an exponential approach). Note that for such
a fit to be reliable, the error needs to be taken into account in the
fitting procedure.

4.1.4 Numerical evaluation of autocorrelation or
auto-covariance estimators

According to eqs. (4.26) and (4.27), the estimators of auto-covariance
functions reduce to those of autocorrelation functions if the expected
value 〈A〉 (or its estimator Ā) is subtracted from all data points
Ai prior to evaluation. The notation in the following discussion
will therefore not distinguish between the two and assume that the
subtraction has already been carried out, or that the expected value is
known to be 〈A〉 = 0 so that the auto-covariance function equals the
autocorrelation function by construction.

The evaluation of the estimators for all accessible lag times τ = j∆t has
a computational complexity of O

(
N2
)
, which quickly becomes infeasi-

ble for large values of N . We recall that the autocorrelation function
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of a continuous time-dependent variable A(t) ∈ R is defined as

RAA(τ) := 〈A(t)A(t+ τ)〉 =
∞∫

−∞

A(t)A(t+ τ) dt .

According to the convolution theorem, the integral on the RHS can be
expressed as

∞∫
−∞

A(t)A(t+ τ) dt = F−1
{
F {A(τ)}

∗
(ω) · F {A(τ)}(ω)

}
(τ) ,

where the asterisk ∗ denotes the complex conjugate, F {·} denotes the
Fourier transform defined as

F {A(t)}(ω) =
∞∫

−∞

A(t) exp(−iωt) dt =: Ã(ω) ,

and F−1 {·} its inverse

F−1
{
Ã(ω)

}
(t) =

1

2π

∞∫
−∞

Ã(ω) exp(iωt) dω .

Due to the fact that A(t) is measured at discrete time steps ∆t during a
finite simulation time tsim = N ∆t, A(t) is discretized as Aj := A(j∆t),
j = 0, 1, ..., N − 1, and the Fourier transform F {A(t)} (ω) is replaced
by a numerical estimator

F̂k {A} =
N−1∑
j=0

Aj exp

(
−2πi jk

N

)
=: Ãk

with inverse

F̂−1
j

{
Ã
}
=

1

N

N−1∑
k=0

Ãk exp

(
2πi jk

N

)
.

97



4 Computational Framework

However, since these estimators assume that the time series Aj is
periodic in time, we cannot directly employ them to estimate the
autocorrelation functions of nonperiodic time series. To prevent the
estimators from “round-tripping” the data, we extend the data series
(after subtraction of the expected value!) by an equal number of
zeros, so that the Fourier transform estimators of the zero-padded data
(indicated by the prescript z) are given by

zF̂k {A} =

2N−1∑
j=0

Aj exp

(
−2πi jk

2N

)
=: zÃk , Aj = 0 for all j ≥ N

(4.38)
and

zF̂−1
j

{
zÃ
}
=

1

2N

2N−1∑
k=0

zÃk exp

(
2πi jk

2N

)
. (4.39)

The autocorrelation estimators bR̂AA
j and uR̂AA

j can then be obtained
from

bR̂AA
j =

1

N
zF̂−1

|j|

{
zÃ

∗ zÃ
}
, (4.40)

uR̂AA
j =

1

N − |j|
zF̂−1

|j|

{
zÃ

∗ zÃ
}
. (4.41)

If the Fourier transforms are computed using the fast Fourier transform
(FFT) method103 as provided, e.g., by the FFTW package,104 the
computational complexity of the evaluation of autocorrelation or auto-
covariance estimators is reduced from O

(
N2
)

to O(N log2(N)), which
allows their fast evaluation even if N is in the order of billions.
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4.2 Extracting Dielectric Spectra from Molecular
Dynamics Simulations

According to the derivation given in chapter 3, dielectric spectra can be
obtained from equilibrium MD simulations by computing the cumula-
tive current autocorrelation in the system and taking its Fourier-
Laplace transform. In the previous section, we have shown how
autocorrelation functions of discrete time series can be estimated
numerically in an efficient and accurate manner. Here, we will discuss
technical requirements and challenges regarding the simulation itself as
well as the further analysis of the recorded data.

4.2.1 Simulation and data acquisition

To sufficiently resolve the low-frequency modes of the permittivity
spectrum εr(ω), the autocorrelation 〈j(0)j(τ)〉 has to be evaluated
over a large interval. This requires very long simulation runs, typically
in the order of microseconds. On the other hand, to ensure stable
integration of the equations of motion, the maximum time step in
an MD simulation is usually limited to the order of a femtosecond.
Furthermore, the obtained correlations are generally noisy, and while
their statistical quality strongly depends on the total simulation time,
it also depends on the number of particles in the system. Thus, it
is evident that extracting dielectric spectra from MD simulations is
computationally expensive as it requires simulating sufficiently large
systems for about 108 to 109 time steps. Due to these demands, we
used the GROMACS105–111 software package to perform all MD simula-
tions. This choice was motivated not only by the high performance
that GROMACS provides in terms of computational speed but—equally
important—by the fact that its source code is publicly available and,
therefore, can be modified and extended.

Traditionally, analyses of MD simulations are based on trajectory data
that has been written to disk during the simulation. To compute
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the cumulative current j(t) from such a trajectory, it must contain
the velocities of all particles in the system with sufficiently high
temporal resolution. For a simulation with only 5000 particles and the
trajectory stored at every time step in single precision during a total
simulation time of one microsecond, the trajectory would comsume
about 56 TiB of disk space. Considering the fact that one usually
aims to compare the results obtained from different simulations, e.g.,
with varying concentrations of different kinds of molecular species, the
storage space requirements of such post-processing analyses quickly
become prohibitively high. To reduce the computational cost and
keep disk space requirements low, we chose to compute the cumula-
tive currents according to eq. (3.54) already during the run time of
the simulation, i.e., while the charges and velocities of all particles are
available in main memory anyway. The GROMACS source code was
modified accordingly, preserving the full support of hybrid CPU/GPU
parallelization as well as checkpointing while providing a convenient
user interface. This reduced the storage requirements dramatically by
a factor corresponding to the number of particles in the system, while
providing the maximum temporal resolution and without imposing any
significant computational overhead.

4.2.2 Data analysis

The time series of the cumulative currents j(t) obtained as described
above can then be used to compute dielectric relaxation spectra εr(ω)
according to eqs. (3.58) and (3.61) using a separately developed post-
processing tool, where the correlations 〈j(0)j(τ)〉 are computed rapidly
according to eq. (4.41) using FFT algorithms provided by the FFTW
library.104 Nevertheless, the evaluation of eq. (3.58) also involves a
Fourier-Laplace transform, and the time required for a direct evalua-
tion of the transform of an N -point time series would scale with O(N2).
However, if we realize that the Fourier-Laplace transform is identical to
an inverse Fourier transform in τ (neglecting any prefactors) involving
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only positive lag times τ , we can rewrite eq. (3.58) as

σe(ω) =
1

3V kBT

∞∫
0

〈j(0) j(τ)〉 eiωτ dτ

=
1

3V kBT

∞∫
−∞

h(τ) 〈j(0) j(τ)〉 eiωτ dτ , (4.42)

where h(·) denotes the Heaviside step function, which, using the half-
maximum convention,b is defined as

h(x) =


1, x > 0
1
2 , x = 0

0, x < 0 .

(4.43)

In practice, this means that appendingc a signal of equal length contain-
ing only zeros to the signal j(t) and computing the discrete fourier
transform is sufficient to obtain σe(ω). Finally, the complete equation
for the dielectric spectrum now reads

εr(ω) = 1 +
1

3ε0V kBT

i
ω

 ∞∫
−∞

h(τ) 〈j(0) j(τ)〉 eiωτ dτ − σstatic
e

 .

(4.44)

bUsing the half-maximum convention is not strictly necessary for the analytic
derivation but required for the correct numerical evaluation if j(t) is a discrete-
time signal.

cThe zeros have to be appended (not prepended) because in the implemen-
tation of FFT algorithms, the data entering the inverse transform must be
arranged in memory such that the positive-frequency part going from zero to
the Nyquist frequency must appear in front of the negative-frequency part going
from negative Nyquist frequency to zero.
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4.2.3 Proof of principle: The dielectric spectrum of water

Note: Parts of the contents of this and the following section have been
previously published in the supporting information of the article

D. Markthaler, J. Zeman, J. Baz, J. Smiatek and N. Hansen, Validation
of Trimethylamine-N-oxide (TMAO) Force Fields Based on Thermophysical
Properties of Aqueous TMAO Solutions, The Journal of Physical Chemistry
B 121, 10674–10688 (2017).

Only my own contributions are reproduced here.

To show that the theoretical and computational framework can be
successfully applied to actual MD simulation data, we computed the
dielectric spectrum of pure water using the extended simple point
charge112 (SPC/E) water model. The time series of the cumula-
tive current j(t) required to compute εr(ω) according to eq. (4.44)
was obtained from a simulation of 2180 water molecules in the NpT
ensemble at T = 300K and p = 1 bar with a total simulation time
of ≈ 1µs (230 steps with a time step of 1 fs). The resulting spectrum
is shown in fig. 4.1.
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Figure 4.1: Dielectric spectrum of pure SPC/E water at 300 K and 1 bar. a: Dielectric
dispersion ε′r(ω). The data approaches ε′r ≈ 71 for ω → 0, which is somewhat lower than
the experimental value18 of 78.4 but corresponds to the value of ε′r = 70.8 that Reddy
and Berkowitz113 obtained for SPC/E water at 298 K. b: Dielectric loss ε′′r (ω). The
maximum of the dielectric loss peak is centered at ω ≈ 100GHz (ν ≈ 16GHz), which
is in good correspondence with the experimental value of ≈ 20GHz at 298.15 K..18
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4.2 Extracting Dielectric Spectra from Molecular Dynamics Simulations

Even though the data was obtained from a rather long simulation run,
we see that the spectrum we obtained from the evaluation of the raw
data is very noisy. This is a consequence of the general fact that the
error of correlation estimates obtained from finite time series of statisti-
cal processes will always suffer from statistical noise in their tails, as has
been discussed in section 4.1.3. Of course, this is also the case for the
autocorrelation Rjj(τ) := 〈j(0)j(τ)〉 entering the Fourier transform in
eq. (4.44), so that the random noise in the current autocorrelation’s tail
will yield a noisy spectrum by construction. In fact, even though any
further increase in simulation time will increase the statistical accurracy
of Rjj(τ) for small τ , its tail will likewise extend to longer lag times and
will asymptotically suffer from the same statistical noise. To overcome
this problem, in the following section, we will develop a method to
reduce the noise in the spectrum in a physically consistent way.

4.2.4 Physically consistent noise reduction

An often-used method for noise reduction is to fit the tail of the
autocorrelation with a suitable analytic function f(τ) starting from
an appropriate lag time τtail. Then, in the analysis, the raw data is
used for lag times τ < τtail, and the analytic fit for τ ≥ τtail. However,
when integral quantities are computed, it is a common misconception
to apply a least-squares fit directly to the autocorrelation data. When
employing the least-squares norm as a convergence criterion for the
fit, the problem that arises is that this norm does not preserve the
integral of the data. An additional problem specific to the calcula-
tion of spectra is the abrupt switch at τtail from the raw data to the
fit funtion, which may lead to a small but sudden jump in the data.
Such jumps can introduce artifacts in the Fourier transforms known as
spectral leakage.
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We overcome both problems in a mathematically and physically consis-
tent way by determining the fit parameters from the integral of the
autocorrelation data and by smoothly tapering the raw data to the fit
function. The procedure is as follows:

1. Integrate the raw autocorrelation data Rjj(τ) to obtain
Rint

jj (τ) :=
∫
Rjj(τ) dτ .

2. Fit an appropriate integrated analytic function
F (τ)=

∫
f(τ) dτ + c to Rint

jj (τ) starting from τtail.

3. From the obtained fit parameters of F (τ), analytically determine
the parameters of the fit function f(τ) that is supposed to fit the
original Rjj(τ).

4. On the interval [τtail, τtail +∆τtaper], let the autocorrelation data
gradually approach the fit function f(τ) by means of an appropri-
ate taper function w(τ) to obtain the noise-reduced autocorrela-
tion data R̃jj(τ). A linear taper is usually sufficient.

5. Compute the integral R̃int
jj (τ) =

∫
R̃jj(τ) dτ and compare to

Rint
jj (τ). If the integral is not preserved, increase τtail or choose a

more appropriate fit function f(τ) and repeat from step 2.

As an example, we demonstrate the difference between our integral-
preserving noise-reduction procedure (“integral-fitted”) and the often-
used direct approach (“directly fitted”) for the same system of pure
SPC/E water as used above in section 4.2.3. The raw current autocor-
relation data Rjj(τ) of this system is displayed in panel a of fig. 4.2
(blue line). To highlight the importance of this procedure, fig. 4.2
also depicts R̃jj(τ) (panel a, dashed black line) and R̃int

jj (τ) (panel b,
dashed black line), where R̃jj(τ) was obtained by fitting f(τ) directly
to Rjj(τ). In panel a, the data obtained by the two different procedures
seem to perfectly coincide. However, the dashed black line in the inset
of panel b clearly shows that the direct fit procedure fails to reproduce
the integral of the original raw data.
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Figure 4.2: Noise reduction example. The data was obtained from an NpT simulation
of 2180 SPC/E water molecules at 300 K and 1 bar with a simulation time of ≈ 1µs
(230 steps, time step 1 fs). a: Current autocorrelation data Rjj(τ) = 〈j(0)j(τ)〉 (blue
line). The orange line depicts the data obtained from the noise-reduction procedure
(“integral-fitted”) described above with an exponential fit function and a linear taper.
For comparison, a direct fit to the data of the same functional form is shown as a
dashed black line (“directly fitted”). Even in the magnified view of the autocorrelation
tail provided in the inset, both fits seem to coincide since their difference is much smaller
than the line width. b: Corresponding integrals of the raw autocorrelation data and fits
from panel a (same color code). From the magnified view of the integrals’ tails shown
in the inset it becomes evident that the direct fit to the autocorrelation data does not
preserve its integral (dashed black line).

The data displayed in fig. 4.2 were obtained according to the procedure
as described above. In detail, the following steps were performed:

1. The integral Rint
jj (τ) shown in panel b (blue line) was evaluated

numerically by means of the trapezoidal rule.

2. We then performed a least-squares fit of the function
F (τ) = aF exp (bF τ) + cF to Rint

jj (τ) for τ ≥ τtail with τtail = 2ps.

3. The obtained parameters aF and bF were used to determine
the parameters of the function f(τ) = af exp (bf τ)

!
= d

dτ F (τ)
as af = aF bF , and bf = bF .

4. On the interval [τtail, τtail +∆τtaper] with ∆τtaper = 10ps, we
let the autocorrelation data approach f(τ) using a linear taper
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w(τ) = 1− (τ − τtail)/∆τtaper so that

R̃jj(τ) =
Rjj(τ), τ < τtail
f(τ) + w(τ) (Rjj(τ)− f(τ)) , τtail ≤ τ ≤ τtail +∆τtaper
f(τ), τ > τtail +∆τtaper .

The resulting data for R̃jj(τ) are depicted in fig. 4.2, panel a
(orange line).

5. Once again using the trapezoidal rule, we computed the integral
R̃int

jj (τ) =
∫
R̃jj(τ) dτ displayed in fig. 4.2, panel b (orange line).

The zoom-in on the tail shown in the inset confirms that R̃int
jj (τ)

indeed follows Rint
jj (τ).

To show the impact of the noise-reduction technique on dielectric
spectra, fig. 4.3 depicts the dielectric spectra obtained from to the
data displayed in fig. 4.2 above (same color code).
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Figure 4.3: Dielectric spectrum of pure SPC/E water at 300 K and 1 bar. a: Dielectric
dispersion ε′r(ω). b: Dielectric loss ε′′r (ω). The integral-fitting technique results in a
smooth spectrum (orange lines) perfectly following the spectrum computed from raw
data (blue lines). The spectrum obtained from the direct fit approach (dashed black
lines) clearly underestimates both the low-frequency part of ε′r(ω) and the loss peak
amlitude of ε′′r (ω).
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The spectrum was computed from the current autocorrelation data
according to eq. (4.44). Due to the fact that the system contains
only net-neutral molecules, the static conductivity σstatic

e is zero by
construction and therefore must not be considered when evaluating
eq. (4.44). While the integral-fitting technique results in a smooth
spectrum perfectly following the noisy spectrum obtained from the raw
data, the direct fit approach yields a spectrum clearly underestimating
the low-frequency part of the dispersion ε′r(ω) and the amplitude of the
main loss peak in ε′′r(ω).

4.2.5 Validation against experimental data
Now that we are able to obtain high-quality dielectric spectra from MD
simulations, we will put the computational framework to a further test
and compare the spectra predicted by MD simulations to experimental
data. To this aim, we performed simulations of pure water systems
using the same parameters as above but employing different atomistic
water models, namely the SPC/E,112 TIP3P,114 TIP4P/2005,115 and
OPC116 models. All of these models are completely rigid and non-
polarizabled , implying that they cannot match experimental spectra in
the THz regime by construction. We therefore compare to experimental
data in the GHz regime which were taken from Hunger et al.117

The results for the SPC/E and TIP4P/2005 models are in perfect
agreement with the spectra computed by Sega and Schröder,118

confirming that our implementation is correct. From fig. 4.4a it
becomes evident that all tested water models reproduce the experi-
mentally measured dielectric dispersion ε′r(ω) (thick black line) qualita-
tively quite well. The SPC/E model slightly underestimates the static
permittivity εr(ω → 0), but the qualitative agreement of the curve is
excellent. While the TIP3P model strongly overestimates the static
permittivity, the TIP4P/2005 model underestimates it by roughly the
same amount. The only model reproducing the static permittivity

dIn MD simulations, a ‘polarizable’ model refers to one that explicitly models
electronic polarizability. While this means that individual atoms cannot be
polarized, the entire system still has a polarization response.
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correctly is the OPC model. However, the shape of the curve is qualita-
tively worse than those of the other models. The low-frequency absorp-
tion peak of the dielectric loss spectrum ε′′r(ω) shown in figure 4.4b
is also qualitatively well-reproduced by all models. While the TIP3P
model matches the location of the peak on the frequency axis almost
perfectly, it strongly overestimates its amplitude. As for the disper-
sion spectrum, the TIP4P/2005 model strongly underestimates the
amplitude of the loss peak, again by roughly the same amount as it
is overestimated by the TIP3P model. The OPC model fits the the
peak amplitude quite well, but the peak position on the frequency axis
is significantly red-shifted. Overall, the best trade-off between qualita-
tive and quantitative agreement can be attributed to the SPC/E model
(green line). Because of this and due to the fact that there exists a
plethora of compatible models of other molecules, we chose SPC/E as
the preferred water model for simulating scenarios requiring an accurate
description of dielectric properties.
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Figure 4.4: Dielectric dispersion (a) and loss spectra (b) of different atomistic water
models (thin colored lines) compared to experimental data117 (thick black lines). The
qualitative shape is reproduced fairly well by all models, while the OPC model shows the
best quantitative agreement at low frequency. The best trade-off between qualitative
and quantitative agreement can be attributed to the SPC/E model. All spectra were
obtained from simulations of 2180 water molecules in the NpT ensemble at T = 300K
and p = 1 bar with a time step of 1 fs and a simulation time of about 1µs (230 steps).
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4.3 Estimating Static Relative Dielectric
Permittivities and Conductivities

Note: The contents of this and the following section have been previously
made available online in similar form in the supplementary material of

J. Zeman, S. Kondrat and C. Holm, Ionic Screening in Bulk and under
Confinement, The Journal of Chemical Physics (accepted)

So far we have seen how we can employ equilibrium MD simulations
to predict the frequency-dependent spectrum of the complex relative
dielectric permittivity εr(ω) from that of the complex conductivi-
ty σe(ω). However, we also saw that according to eq. (4.44), obtaining
the apparent relative permittivity requires the knowledge of the static
conductivity σstatic

e := lim
ω→0

σe(ω). Taking the limit ω → 0 of equation
eq. (3.58) yields

σstatic
e =

1

3V kBT

∞∫
0

〈j(0) j(τ)〉 dτ , (4.45)

so that the static conductivity can be estimated by evaluating the
integral of the current autocorrelation 〈j(0) j(τ)〉 in the limit of
large τ .

As we will see later in chapter 7 in the context of electrostatic screen-
ing, another quantity of interest is the static relative permittivity
εstaticr := lim

ω→0
εr(ω), which is most often simply denoted as εr. Inserting

eq. (3.45) into the definition εr = 1 + χe yields

εr = 1 +
〈M2〉

3ε0V kBT
, (4.46)

which is the same expression for εr as derived by Neumann120 for MD
simulations with electrostatic tin foil boundary conditions at infinity.
However, as we have shown in section 3.4, the total dipole moment M
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is ill-defined in systems with free ionic charges employing PBC and
therefore cannot be measured directly. Instead, 〈M2〉 can be obtained
from the itinerant total current j according to

〈M2〉 = − lim
t→∞

t∫
0

τ〈j(0)j(τ)〉 dτ . (4.47)

A proof of this equation is given in appendix 4.A.

In practice, the tail of the current autocorrelation function 〈j(0)j(τ)〉
suffers from statistical noise, which is amplified by the factor τ in
the integral of eq. (4.47). Thus, determining 〈M2〉 directly from
eq. (4.47) is infeasible. This issue is clearly visible in fig. 4.5,
which shows the autocorrelation 〈j(0)j(τ)〉 (panel a), its running
integral

∫ τ
0 〈j(0)j(τ

′)〉 dτ ′ (panel b), and the negative integral of the
lag time-weighted autocorrelation −

∫ τ
0 τ ′〈j(0)j(τ ′)〉 dτ ′ (panel c) of

the current j(t) obtained from simulations of a 50 mol% solution of
[C4C1Im]+ [NTf2]− in propylene carbonate.

The system was simulated at a temperature of T = 300K and a
pressure of p = 1 bar and contained an IL mole fraction of xIL=0.5
(concentration cIL = 2.75mol/l) comprising 500 ion pairs and 500
solvent molecules. The current j(t) was computed according to
eq. (3.54) and recorded at every time step (δt = 2 fs) during the simula-
tion time of tsim ≈ 1074 ns (229 time steps) per run from three indepen-
dent simulation runs. For each run, the autocorrelation functions
〈jd(0)jd(τ)〉 were computed for each spatial dimension d ∈ {x, y, z}
according to eq. (4.41), summed up over d to obtain 〈j(0)j(τ)〉, and
finally averaged over all runs.
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Figure 4.5: Panel a: Current autocorrelation 〈j(0)j(τ)〉. Inset: Magnification of the
tail region (10 ≤ τ ≤ 105 ps). The autocorrelation seems to have converged to zero
at τ ≈ 30 ps, and the remaining tail appears to be random noise. Panel b: Running
integral

∫ τ

0
〈j(0)j(τ ′)〉 dτ ′ of the current autocorrelation. Inset: Magnification of the

tail region (10 ≤ τ ≤ 105 ps), from which it becomes evident that the seemingly random
noise in the autocorrelation’s tail actually still contains information up to τ≈3 · 103 ps,
where the integral has converged to a value of about 0.027 e2 nm2 ps−1. Panel c:
Negative running integral

∫ τ

0
τ ′〈j(0)j(τ ′)〉 dτ ′ of the lag time-weighted current autocor-

relation (RHS of eq. (4.47)). Due to the multiplication with the lag time, the noise in
the current autocorrelation’s tail is amplified, which makes it practically impossible to
obtain a meaningful estimate of the integral’s asymptotic value 〈M2〉.
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4.3.1 The Einstein-Helfand method

An alternative approach is to estimate 〈M2〉 from the itinerant dipole
moment’s mean square displacement 〈(∆M)2(t)〉 = 〈[M(t)−M(0)]2〉,
which will be discussed in the following.

Since M(t) is continuously differentiable, we can express its value at
time t as

M(t) = M(t0) +

t∫
t0

(
d

dτ
M(τ)

)
dτ .

By inserting the definition of the total current

j(t) =
d

dt
M(t) (4.48)

and setting t0 = 0, we obtain
t∫

0

j(τ) dτ = M(t)−M(0) . (4.49)

Accordingly, we can express 〈(∆M)2(t)〉 as

〈(∆M)2(t)〉 =

〈 t∫
0

j(t′) dt′

2〉

=

t∫
0

 t∫
0

〈j(t′)j(t′′)〉 dt′′
 dt′ , (4.50)

where we identify 〈j(t′)j(t′′)〉 as the autocorrelation function of the
itinerant current j centered at t′. Since 〈j(t′)j(t′′)〉 is symmetric
around t′, we can rewrite eq. (4.50) as

〈(∆M)2(t)〉 = 2

t∫
0

 t′∫
0

〈j(t′)j(t′′)〉dt′′
 dt′ . (4.51)

112



4.3 Estimating Static Relative Dielectric Permittivities and Conductivities

Furthermore, at equilibrium, the autocorrelation function is invariant
under translations in time, so that translating by −t′ and substituting
t′′ − t′ → τ yields

〈(∆M)2(t)〉 = 2

t∫
0

 t′∫
0

〈j(0)j(τ)〉dτ

 dt′ . (4.52)

We can now change the order of integration by expressing the ranges
of integration as

(0≤τ≤ t′)︸ ︷︷ ︸
inner

∧ (0≤ t′≤ t)︸ ︷︷ ︸
outer

⇔ (0≤τ≤ t′≤ t) ⇔ (τ≤ t′≤ t)︸ ︷︷ ︸
inner

∧ (0≤τ≤ t)︸ ︷︷ ︸
outer

(4.53)
to obtain

〈(∆M)2(t)〉 = 2

t∫
0

 t∫
τ

〈j(0)j(τ)〉dt′
 dτ

= 2

t∫
0

〈j(0)j(τ)〉

 t∫
τ

dt′

 dτ

= 2

t∫
0

〈j(0)j(τ)〉(t− τ) dτ

= 2t

t∫
0

〈j(0)j(τ)〉 dτ − 2

t∫
0

τ〈j(0)j(τ)〉dτ . (4.54)

In the limit t → ∞ (or at least for t � τc far beyond the autocorrelation
time τc), both integrals converge to a constant so that

lim
t→∞

(
〈(∆M)2(t)〉

)
= 2t lim

t→∞

 t∫
0

〈j(0)j(τ)〉 dτ

− 2 lim
t→∞

 t∫
0

τ〈j(0)j(τ)〉dτ


=: c1 t+ c2 (4.55)
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approaches a linear time dependence for large t with slope c1 and
offset c2. A comparison with eqs. (4.45) and (4.47) immediately shows
that c2 = 2〈M2〉 and c1 = 6V kBT σstatic

e . Thus, by fitting a linear
function f(t) = c1 t + c2 to 〈(∆M)2(t)〉 for large t, we can obtain the
static relative permittivity of the system according to

εr = 1 +
c2

6V kBTε0
(4.56)

and the static conductivity as

σstatic
e =

c1
6V kBT

. (4.57)

This method is also known as the Einstein-Helfand method in the
literature.121

It is important to note that the onset of the linear regime, and,
therefore, the start of the fitting range, is generally difficult to
determine from 〈(∆M)2(t)〉. Instead, it should be chosen as the
time where the integrated current autocorrelation

∫ t
0 〈j(0)j(τ)〉 dτ has

converged to a constant because this is much easier to identify.

Figure 4.6 shows the itinerant dipole moment’s mean square displace-
ment 〈(∆M)2(t)〉 computed according to eq. (4.54) from the autocor-
relation data displayed in fig. 4.5a. The curve looks intriguing-
ly linear, so that the least-squares fit (dashed orange line) to the
linear function f(t) = c1 t+ c2 (eq. (4.55)) in the range 3 · 103 ≤
t ≤ 105 matches the data almost perfectly. The fit parameters and
corresponding error estimates c1 = 0.05378679± 5.9 · 10−8 e2nm2ps−1

and c2 = 45.4505± 3.4 · 10−3 e2nm2 confirm this. If we now compute
the system’s static relative permittivity according to eq. (4.56), we
obtain

εr = 1+
(45.4505± 0.0034) e2nm2

6 · (301.7629± 0.0026)nm3 · ε0 · kB · 300K
= 18.5707±0.0013 .

(4.58)
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Figure 4.6: Mean square displacement 〈(∆M)2(t)〉 of the system’s itinerant dipole
moment M (solid blue line) computed according to eq. (4.54) from the autocorrelation
data displayed in fig. 4.5a. The dashed orange line represents a least-squares fit of
the linear function f(t) = c1 t+ c2 (eq. (4.55)) in the range 3 · 103 ≤ t ≤ 105, which
appears to fit the data extremely well. As discussed in the text, this seemingly perfect
fit is misleading, and the actual error is much larger than what one would infer from
the covariance matrix of the least squares fit. Inset: Magnification of the mean square
displacement’s short time behavior (blue line). According to eqs. (4.47) and (4.55), the
y-axis offset c2 can be used to estimate 〈M2〉 = 1

2
c2.

While the value itself seems reasonable, the error estimate is suspicious-
ly small. In fact, this is for two reasons: (i) the time series used to
compute 〈(∆M)2(t)〉 are strongly correlated, which means that the
data entering the fit is heavily oversampled, and (ii) the statistical
error of 〈(∆M)2(t)〉 is not taken into account. As we will see in the
following, even though 〈(∆M)2(t)〉 appears to be perfectly linear in
the long time limit, its statistical error is in fact quite substantial.
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4.3.2 Error estimation of static permittivities

As mentioned earlier, the analysis of the itinerant dipole moment’s
mean square displacement 〈(∆M)2(t)〉 in the previous section was
based on current autocorrelation data obtained from three indepen-
dent simulation runs, so that one can perform separate analyses for
each system to obtain a better error estimate for the static relative
permittivity εr. However, this would only yield three independent
results, and therefore a rather poor statistical error estimate. In order
to improve error estimation, we can make use of the fact that the
recorded current j(t) is a vector with three independent components,
so that its autocorrelation is the sum of the individual components’
autocorrelations

〈j(0)j(τ)〉 =
∑

d∈{x,y,z}

〈jd(0)jd(τ)〉 . (4.59)

Since the system under consideration is isotropic, the spatial
components 〈jd(0)jd(τ)〉 must be identical. However, this assump-
tion does not strictly hold for the statistical estimates we are comput-
ing from a finite number of samples during a finite simulation time.
Thus, together with the fact that jx, jy, jz are statistically indepen-
dent, we can obtain three independent estimates of 〈(∆M)2(t)〉 from
each simulation run according to

〈(∆M)2(t)〉 = 3 〈(∆Md)
2(t)〉

= 6t

t∫
0

〈jd(0)jd(τ)〉 dτ − 6

t∫
0

τ〈jd(0)jd(τ)〉dτ . (4.60)

Thus, we have nine independent estimates of 〈(∆M)2(t)〉 available for
error analysis.

These estimates are displayed in fig. 4.7 and make it quite obvious that
the seemingly perfect linear behavior of 〈(∆M)2(t)〉 is the average of
many components, which are actually distributed all over the place for
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Figure 4.7: Estimates of the mean square displacement 〈(∆M)2(t)〉 of the system’s
itinerant dipole moment M obtained from separate analyses of the three spatial
components of each of three independent simulation runs. Inset: Magnification of
the first 10 000 ps.

large t. However, we also see that for 3 000 ≤ t ≤ 8 000 ps, all traces
follow approximately the same linear trend, which can also be seen in
the magnification of this region (inset in fig. 4.7). Since the components
are statistically independent, we can use them to estimate the standard
error ε

(
〈(∆M)2(t)〉

)
according to eq. (4.13) for each sampled time t.

Figure 4.8 displays 〈(∆M)2(t)〉 (blue line) together with its correspond-
ing statistical one-sigma error margin 〈(∆M)2(t)〉 ± ε

(
〈(∆M)2(t)〉

)
(light blue area). Since for large t, the statistical error is indeed very
large and the individual components do not follow a general linear trend
anymore, one should refrain from using this data for fitting.
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Figure 4.8: Mean square displacement 〈(∆M)2(t)〉 (blue line) of the system’s itinerant
dipole moment M with corresponding one-sigma error margin (light blue area). Inset:
Magnification of the first 5 000 ps.

The start of the fit range must be chosen according to the time
where the integrated current autocorrelation converges to a constant
(here: t≈3 000 ps), and its end according to the time where the individ-
ual components 3〈(∆Md)

2(t)〉 begin to deviate from the general linear
trend (here: t≈8 000 ps). The resulting fit is shown as a dashed orange
line in fig. 4.8.

At this point, it is important to note that we still have the problem of
oversampled data. Thus, the statistical error still cannot be inferred
from the fit covariance matrix even if ε

(
〈(∆M)2(t)〉

)
is taken into

account in the fitting procedure. Instead, since all components show
the same linear trend in the fit range, the error ε

(
〈(∆M)2(t)〉

)
can be

entirely attributed to shifts in the amplitude, and thus, the true error
of the fit parameter c2 can be well approximated by the average value
of ε
(
〈(∆M)2(t)〉

)
in the fit range.
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The resulting fit parameter c2 = 36.6141±6.1947 e2 nm2 now allows us
to compute the relative permittivity with a reasonable error estimate,
yielding

εr = 1 +
(36.6141± 6.1947)e2nm2

6 · (301.7629± 0.0026)nm3 · ε0 · kB · 300K
= 15.15± 2.39 .

(4.61)
Compared to the “naive” result εr = 18.5707 ± 0.0013 we obtained in
eq. (4.58), we see that taking the statistical error of 〈(∆M)2(t)〉 into
account does not only dramatically increase the statistical error of the
permittivity estimate εr, it also affects its value quite substantially.
Ultimately, we see that the quality of permittivity data obtained via
the Einstein-Helfand method is rather questionable if no proper error
estimation is performed.
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Appendix of Chapter 4

4.A Proof of Equation 4.47

We recall the definition of the autocorrelation function of a stationary
process A(t) ∈ R

RAA(τ) := 〈A(t)A(t+ τ)〉 , (4.62)

where the symmetry

RAA(τ) = 〈A(t)A(t+ τ)〉 t→t−τ
= 〈A(t− τ)A(t)〉 = RAA(−τ) (4.63)

holds. Provided that A(t) is differentiable in t, by applying the chain
rule, we see that its derivative ṘAA(τ) :=

d
dτRAA(τ) is

ṘAA(τ) = 〈A(t)Ȧ(t+ τ)〉 = RAȦ(τ) (4.64)

and

ṘAA(τ) = −〈Ȧ(t−τ)A(t)〉 t→t+τ
= −〈Ȧ(t)A(t+τ)〉 = −RȦA(τ) . (4.65)

For the second derivative R̈AA(τ) :=
d2

dt2
RAA(τ), it follows analogously

that
R̈AA(τ) = −RȦȦ(τ) . (4.66)

Likewise, the indefinite integral of RȦȦ(τ) is∫
RȦȦ(τ) dτ = 〈Ȧ(t)

∫
Ȧ(t+ τ) dτ〉 = 〈Ȧ(t) (A(t+ τ) + C)〉

= RȦA(τ) + C〈Ȧ(t)〉 = −RAȦ(τ) + C〈Ȧ(t)〉 (4.67)

with the constant of integration C.
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Both the total dipole moment M(t) and the total current j(t) in a
finite volume of a system in nonsolid state at thermodynamic equilibri-
um are real-valued, continuously differentiable, and weakly stationary
random variables with zero mean. Weak stationarity means that their
distributions and, thus, their expected values are time-invariant, so
that their autocorrelation functions can be expressed as

RMM (τ) = 〈M(t)M(t+ τ)〉 = 〈M(0)M(τ)〉 , (4.68)
Rjj(τ) = 〈j(t)j(t+ τ)〉 = 〈j(0)j(τ)〉 . (4.69)

Integrating the RHS of eq. (4.47) by parts yields

− lim
t→∞

t∫
0

τ〈j(0)j(τ)〉dτ =− lim
t→∞

 [
τ

∫
〈j(0)j(τ)〉 dτ

]t
0

−
t∫

0

(∫
〈j(0)j(τ)〉dτ

)
dτ

 .
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4.A Proof of Equation 4.47

By exploiting the properties of the integrals of autocorrelation functions
according to eq. (4.67), we obtain

− lim
t→∞

t∫
0

τ〈J(0)J(τ)〉 dτ = lim
t→∞

τ〈M(0)J(τ)〉+ τC 〈J(τ)〉︸ ︷︷ ︸
=0

t

0

−
t∫

0

〈M(0)J(τ)〉+ C 〈J(τ)〉︸ ︷︷ ︸
=0

 dτ


= lim

t→∞

0〈M(0)J(0)〉︸ ︷︷ ︸
=0

+t〈M(0)J(t)〉

−
t∫

0

〈M(0)J(τ)〉dτ


= lim

t→∞
(t〈M(0)J(t)〉)︸ ︷︷ ︸

=0

− lim
t→∞

〈
M(0)

t∫
0

J(τ) dτ

〉
. (4.70)

The first term of the RHS of eq. (4.70) vanishes because asymptotically,
〈M(0)j(t)〉 decays exponentially with t.

Inserting eq. (4.49) into eq. (4.70) yields

− lim
t→∞

t∫
0

τ〈j(0)j(τ)〉 dτ = − lim
t→∞

〈M(0) [M(t)−M(0)]〉 .

= − lim
t→∞

〈M(0)M(t)〉︸ ︷︷ ︸
=0

+ lim
t→∞

〈M(0)M(0)〉

= 〈M2〉 , (4.71)

proving the validity of eq. (4.47)�
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5 The Effect of Small Organic
Cosolutes on Water Structure
and Dynamics

Note: The contents of this chapter have been previously published in similar
form. Reprinted with permission from

J. Zeman, C. Holm and J. Smiatek, The Effect of Small Organic Cosolutes
on Water Structure and Dynamics, Journal of Chemical & Engineering Data
65, 1197–1210 (2020).

Copyright 2020 American Chemical Society.

Leveraging the computational framework developed in chapter 4, we
investigate the effect of small organic cosolutes on local water structure
and dynamics by means of Molecular Dynamics (MD) simulations. In
order to find features distinct to protein stabilizers as compared to
denaturants, we investigate aqueous solutions of the osmolytes ectoine
and trimethylamine N-oxide (TMAO) as well as of the denaturants
urea and guanidinium chloride (GdmCl). For each cosolute, we assess
its effects on the surrounding water by analyzing several structural
and dynamic properties of the local hydrogen bond network, putting
an emphasis on collective changes in the water’s dielectric relaxation
spectra.

While the concentration-dependent changes in water structure induced
by the different cosolutes provide no clear trend, we find that the
stabilizing osmolytes severely slow down the collective modes of reorien-
tational water dynamics, whereas the effects on dynamics caused by
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denaturants are comparatively small. Our results indicate that the
discussion of possible kosmo- or chaotropic cosolute effects only in terms
of water structure makers vs. structure breakers provides an ambigu-
ous or incomplete picture if effects on water dynamics are not taken
into account.

Organic cosolutes have a strong impact on the stability, function,
and activity of biomolecules such as proteins or enzymes in aqueous
solution, and are therefore of great biological relevance.20 Common
examples are trimethylamine N-oxide (TMAO) or ectoine, which
are low-weight molecules and allow microorganisms to survive under
extreme environmental conditions.21 Beneficial properties of these
molecules are the stabilization of native protein structures under high
temperatures, high salinity and high pressures22–24,122 and the mainte-
nance of the fluidity of bilayers,25,26 which is particularly important
for cell signaling processes. Due to these properties, molecules such as
TMAO or ectoine are commonly called protectants or stabilizers. In
contrast, guanidinium chloride (GdmCl) or urea at high molar concen-
trations denature protein structures even at moderate environmental
conditions and are therefore referred to as denaturants or destabiliz-
ers. Interestingly, experimental studies revealed that both denatu-
rants and protectants can be simultaneously found at higher molar
concentrations in the microbiological cell interior.21 Thus, the combined
influence of protectants and denaturants balances the individual contri-
butions of each species and verifies a fast reaction to environmental
changes.21,123–129

Due to the pronounced effects on protein and DNA unfolding, the
denaturing properties of urea and GdmCl were discussed in a series
of publications.20,27,130–138 In summary, two distinct reasons were
proposed to explain the denaturation mechanism:27 (i) a direct binding
between the denaturant and the protein in contrast to (ii) solvent-
mediated effects. Whereas the properties of denaturants remain a
much-debated issue, a consensus was reached for the behavior of
protein protectants. Experimental findings as well as computer simula-
tions revealed that protectants are usually excluded from protein
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surfaces28–39 in terms of a preferential exclusion behavior. Thus,
they do not directly interact with protein surfaces and are often
located in the second or third hydration shell.40 It was assumed
that the exclusion effect is mainly induced by the strong hygroscop-
ic properties of protectants.36,40 Due to these findings, protectants
are assumed to be kosmotropic (water structure making) whereas
denaturants are vice versa assigned to be chaotropic (water structure
breaking) in terms of their unfavorable perturbation of the water
structure.40,41,129 More precisely, it was pointed out that kosmotropes
strengthen the local interaction between water molecules, e.g., the
hydrogen bond network, whereas chaotropes weaken these bonds.
Specifically for ions, the Hofmeister series40,139 ranks the individual
species in terms of their kosmotropicity. Due to the good agreement
between kosmotropic strength and the protein salting in / salting out
tendency of the individual ions, for which the Hofmeister series was
originally formulated,27,139 it was assumed that the distinction between
denaturant and protectant behavior is accomplished or even induced
by increasing kosmotropicity of the individual species.40 In contrast
to its previous success,40 recent publications question this simple
concept. For instance, recent findings demonstrated that denaturants
may reveal slightly kosmotropic properties134,140,141 and that there are
concentration-dependent binding effects for denaturants under certain
conditions.134,142,143 Moreover, it has been found that well-known
stabilizers can also induce denaturation.70,138,144,145 Further theoretical
attempts indicated that thermodynamic concepts in terms of cosolute
chemical activities are crucial for understanding protein stabilization
or destabilization effects.34,137,146–149 Henceforth, the chemical proper-
ties of solutes and osmolytes have to be studied in more detail for a
deeper understanding of the resulting accumulation behavior141,150–154

in order to clearly distinguish between direct cosolute / protein and
indirect, water-mediated effects.

Motivated by the discussion of kosmotropicity, the water effects of
some cosolutes were experimentally studied in more detail.18,37,155–157

In fact, it is well known that the properties of the local hydration
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shell significantly differ from bulk solution behavior.158 Specifically
for TMAO and ectoine, an increased strength of hydrogen bonds
between water molecules was reported.37,155,157,159,160 However, it was
also demonstrated that urea as a typical denaturant reveals non-
chaotropic properties.129 In fact, the hydrogen bond structure and also
the local arrangement of water molecules remains almost unchanged
in the presence of urea.155,161 Therefore, it can be concluded that the
concept of chaotropicity is questionable for non-ionic cosolutes.

Here, we chose to investigate the effect of urea, ectoine, TMAO and
GdmCl since all of them have in common that they are important
and well-studied cosolutes in biophysical applications, yet each of
them exhibits distinct features. Figure 5.1 shows ball-and-stick models
of all investigated cosolutes together with their corresponding Lewis
formulae. In order to study how these cosolutes influence the surround-
ing water, we carried out extensive MD simulations and analyzed
various structural and dynamic properties of water at different cosolute
concentrations. In our investigations, we deliberately focused on
systems with low cosolute concentrations for two reasons: First of
all, since one of the employed cosolute models was matched against
Kirkwood-Buff integrals at low concentrations, this model is not
guaranteed to yield reliable results at high concentrations. Second,
but more importantly, cosolute-specific effects on bulk-like water can
only be observed at low cosolute concentrations. For example, in a
2 molar aqueous ectoine solution, almost all water molecules reside
in the first three hydration layers around ectoine molecules so that
there is almost no bulk water left. Both ectoine and TMAO are
known to have a stabilizing effect on the native (i.e., folded) state
of proteins and are strongly water binding. However, while ectoine is
found to appear almost exclusively in its zwitterionic form in aqueous
solution,25,35 there exists no such conformation of TMAO. On the other
hand, urea and GdmCl have the tendency to denature proteins at
moderate cosolute concentrations. Yet, urea only exists as a neutral
species while GdmCl in aqueous solution dissociates completely into
guanidinium (Gdm+) and chloride (Cl–) ions.
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Figure 5.1: Ball-and-stick models and Lewis formulae of the investigated cosolutes.
a: zwitterionic form of ectoine, b: trimethylamine N-oxide (TMAO) c: urea, and d:
guanidinium chloride (GdmCl) ion pair. Carbon atoms are shown in cyan (in the case of
ectoine, also the united-atom CH, CH2, and CH3 sites), nitrogen atoms in blue, oxygen
atoms in red, hydrogen atoms in white, and the chloride ion in green.

While we investigate the influence of these cosolutes on both solvent
structure and dynamics, the focus of the latter lies on dielectric
relaxation spectroscopy.4,162 For experimentally measured dielectric
spectra, assigning relaxation modes to the underlying molecular
mechanisms can be challenging and sometimes ambiguous. In that
respect, computer simulations have the advantage that the microscopic
molecular conformations and dynamics are directly at hand. In partic-
ular, for the analysis of dielectric spectra, this means that solvent
and cosolute contributions can be conveniently separated, as well as
cosolute-solvent interactions.

5.1 Theoretical Background

According to several experimental and theoretical studies,163–168 liquid
water exhibits a close-to-tetrahedral structural ordering in its hydrogen
bond network. In order to assess changes in the structure of water
caused by the added cosolutes, we analyzed MD trajectories in terms
of the tetrahedral order parameters Sg and Sk originally developed by
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

Chau and Hardwick169 and rescaled by Errington and Debenedetti.170

The order parameter Sg is a measure of orientational tetrahedrality
of the spatial arrangement of four neighboring particles around one
central reference particle and is defined170 as

Sg = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cos (φjk) +

1

3

)2

. (5.1)

Here, φjk is defined as the angle between the vectors pointing from the
central particle to its j-th and k-th neighbors. As explained in ref. 170,
the order parameter is Sg = 0 for a random arrangement correspond-
ing to an ideal gas, and Sg = 1 for a perfect tetrahedron formed by
the four nearest neighbors with the reference particle at its center
of geometry. This order parameter, however, only depends on the
orientational arrangement of neighboring particles and is completely
insensitive to their distance. Therefore, we also evaluated the sphericity
parameter Sk, which measures the normalized variance of the distances
between neighboring particles to the central one. It is defined as

Sk = 1− 1

12r̄2

4∑
k=1

(rk − r̄)2 , (5.2)

where rk is the distance between the central particle and its k-th
neighbor, and r̄ denotes the arithmetic mean of all rk. In a perfect
tetragonal arrangement, all neighboring particles lie on a sphere with
radius r̄ = rk ∀ k so that the second term in eq. (5.2) vanishes and
Sk approaches unity. In contrast, Sk approaches zero with decreasing
sphericity.

It has been shown previously that for the structural analysis of aqueous
solutions, including non-water neighbors is crucial for the correct
interpretation of structural parameters.171 The tetragonal structure
of water is governed by its tendency to form hydrogen bonds, and
all cosolute species considered in this work comprise N-H groups or
oxygen atoms with electron lone pairs being able to act as hydrogen
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bond donors or acceptors. Thus, we considered all oxygen and nitrogen
atoms present in the system as possible nearest neighbors of water
in our analyses of Sg and Sk, while only water oxygen atoms were
considered as central particles. For the analyses of GdmCl, we also
included the Cl– anions as nearest neighbor candidates to avoid an
artificial distortion of Sg and Sk in the hydration layers of these atoms.
This allows us to to include the first hydration shell around cosolute
molecules in the analysis, which would be impossible if only water
oxygen atoms were considered in the calculations. We also conducted
measurements of Sg and Sk with the first two hydration layers around
the cosolutes excluded from the set of central particles. The resulting
order parameters are then denoted as S

\2
g and S

\2
k , respectively.

In order to assess changes in translational solvent dynamics, we
calculated water self-diffusion coefficients D from a linear regression
of the mean-square displacement

〈
∆r2com(t)

〉
of molecular centers of

mass rcom according the well-known Einstein equation172

lim
t→∞

〈
∆r2com(t)

〉
= 6Dt+ const . (5.3)

Moreover, to estimate the cosolutes’ influence on the stability of the
water hydrogen bond network, hydrogen bond analyses were carried out
as described in van der Spoel et al.173 with forward life times calculated
according to the approach of Luzar and Chandler.42,43 As a condition
for a hydrogen bond to be present, a maximum separation of interacting
donor and acceptor atoms of 0.35 nm coinciding with an interaction
angle smaller than 30◦ was chosen. In all analyses, hydrogen bonds
involving the same donor and acceptor atoms but different hydrogen
atoms were treated as the same hydrogen bond.

For the investigation of the solvent’s rotational dynamics, we computed
dielectric relaxation spectra. While dielectric relaxation spectroscopy
is a well-known experimental technique,4 the extraction of dielectric
spectra from computer simulations is less established, mostly due to
the time scale required to gather sufficient statistics. However, with the
advent of powerful hardware accelerators such as graphics processing
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

units, it is nowadays possible to reach simulation time scales in the
order of microseconds within reasonable computation time.

Here, we use the “Green-Kubo” approach based on linear response
theory as described in chapters 3 and 4. In an experimental measure-
ment of εr(ω), the contribution of individual dielectric relaxation
modes to the overall spectrum is usually determined by a multi-
Debye117,174,175 or related176–178 fitting procedure. The attribution
of these modes to the different molecular species present in the
investigated solution is then accomplished by comparing the spectra
from measurements of different cosolute concentrations.37,117,175,179 In
computer simulations, however, all the required information about
molecular motion is directly accessible: Since j(t) is additive and
the Fourier-Laplace transform is linear, the contributions of different
molecular species A, B in a binary system to the overall spectrum can
be calculated by summing over the corresponding molecules {m ∈ A},
{m ∈ B} individually:180

j(t) = jA(t) + jB(t) =
∑
m∈A

∑
α

qm,αvm,α(t) +
∑
m∈B

∑
β

qm,βvm,β(t)

(5.4)

Thus, it follows for the complex conductivity σe(ω) that

σe(ω) =
1

3V kBT

[ ∞∫
0

〈jA(0)j(τ)〉 eiωτ dτ +

∞∫
0

〈jB(0)j(τ)〉 eiωτ dτ

]

=
1

3V kBT

[ ∞∫
0

〈jA(0)jA(τ)〉 eiωτ dτ +

∞∫
0

〈jB(0)jB(τ)〉 eiωτ dτ

+ 2

∞∫
0

〈jA(0)jB(τ)〉 eiωτ dτ

]
=: σA

e (ω) + σB
e (ω) + σAB

e (ω) . (5.5)
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The permittivity spectrum εr(ω) can be decomposed accordingly:

εr(ω) = 1 +
i

ε0ω

[ (
σA
e (ω)− σA

e (0)
)
+
(
σB
e (ω)− σB

e (0)
)

+
(
σAB
e (ω)− σAB

e (0)
) ]

=: 1 + εA(ω) + εB(ω) + εAB(ω) . (5.6)

Further details on the employed data processing procedures are found
in chapter 4. Since we are interested in the influence of the different
cosolutes on water dynamics, our analysis will focus on the water self-
contribution εW(ω), and, in particular, on how the water dielectric
absorption ε′′W(ω) changes with cosolute concentration.

5.2 Simulation Details

MD simulations were performed for all cosolutes with concentrations
ranging from 0 to ≈ 2.0 mol/l. For the simulation of ectoine, we
employed the united atom model introduced by Smiatek et al.,25 while
for TMAO, the TMAO-V3 force field developed by Hölzl et al.181 was
used. For urea, we chose the Kirkwood-Buff-derived model by Weeras-
inghe and Smith,182 and the force field parameters for GdmCl were
taken from Wernersson et al.183 The extended simple point charge112

(SPC/E) water model was used as the solvent in all simulations. Note
that even though the employed TMAO model was originally developed
for use with the TIP4P/2005 water model, we have previously shown19

that it can be used safely with SPC/E water. The fact that all cosolute
models are compatible with the same water model is of particular
importance since the different cosolutes’ effects on water structure and
dynamics would otherwise lack a common basis, making concentration-
dependent trends much harder to compare. Furthermore, our choice of
the employed cosolute models was based on the requirement that these
models had either been parametrized and refined for or tested against
as many relevant thermophysical properties as possible, since generic
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

models without further refinement can sometimes yield results which
are inconsistent with experimental data or may even fail to faithfully
represent concentration-dependent trends.19

The simulations were performed with a customized variant of the
GROMACS 2016.3 software package106,108–111 capable of computing the
cumulative currents jX(t) defined in eq. (5.4) during runtime in every
time step for individual molecular species. This enabled us to obtain
full-resolution time series of these currents without having to store
trajectories of the entire systems at every time step. All systems were
simulated in the NpT ensemble at T = 300K and p = 1 bar using
a Nosé-Hoover82,94,95 thermostat together with a Parrinello-Rahman96

barostat. Coupling constants were τT = 1 ps and τp = 2 ps, respective-
ly. All systems were equilibrated for at least 10 ns before carrying out
any measurements. Van-der-Waals interactions were computed within
a cut-off of 9 Å with the potential shifted to zero at the cut-off, and long-
range dispersion corrections were applied for both energy and pressure.
Electrostatic interactions were calculated by means of the Particle Mesh
Ewald method86 with the same short-range cut-off. Bond lengths of
the cosolutes were constraineda using the LINCS184 algorithm, whereas
the molecular geometry of water was kept rigid with the SETTLE185

algorithm. The integration time step was δt = 1 fs for all simulations,
and simulation boxes were cubes with periodic boundary conditions
in all three dimensions. All simulated systems contained 50 cosolute
molecules and a concentration-dependent number of water molecules
ranging from approximately 1000 to more than 5000 with correspond-
ing initial box edge lengths between 3.5 and 5.5 nm. The exact
compositions of the different investigated systems are summarized in
Table 5.1. The measurement runs were performed using four indepen-
dently generated replicas per cosolute species and concentration. For
the calculation of dielectric spectra, the cumulative currents jX(t) were
recorded for all molecular species X in every time step during simula-
tions with run times of ≈268ns (228 time steps) per replica and written

aFor ectoine and urea all bond lengths were constrained, for TMAO and GdmCl
only bonds involving hydrogen atoms.
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System c [mol/l] Ncs Nwater L [nm]
pure water 0.00 0 2180 4.03
ectoine 0.53 50 5016 5.41

1.07 50 2330 4.27
1.72 50 1343 3.64
2.23 50 979 3.34

TMAO 0.52 50 5144 5.43
1.04 50 2454 4.30
1.68 50 1456 3.67
2.15 50 1092 3.38

urea 0.52 50 5243 5.44
1.03 50 2568 4.32
1.64 50 1562 3.70
2.09 50 1199 3.41

GdmCl 0.52 50 5130 5.42
1.05 50 2460 4.29
1.68 50 1464 3.67
2.20 50 1071 3.35

Table 5.1: System compositions. The listed values are molar concentration c, number
of cosolute molecules Ncs (in case of GdmCl: number of ion pairs), number of water
molecules Nwater, and average simulation box edge length L. Values of the average
simulation box volumes and mass densities with corresponding error estimates can be
found in appendix 5.A.

to disk for a posteriori analysis. Simultaneously, particle positions were
stored every picosecond for the analysis of translational diffusion coeffi-
cients, hydrogen bond life times, as well as sphericity and tetrahedrality
order parameters.

The calculation of diffusion coefficients and hydrogen bond life times
was performed with standard GROMACS analysis tools, whereas all
other analyses were carried out with self-written tools partially based
on the MDAnalysis186,187 framework.

135



5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.3 Structural Analysis

The water hydration layer around proteins is known to have a higher
density compared to bulk water.188,189 The similarity or dissimilarity of
the water structure induced by cosolutes with the water structure in the
hydration layer of proteins is believed to have a stabilizing or destabiliz-
ing effect, respectively.157 Thus, kosmotropic cosolutes should enhance
the density and stabilize the surrounding water structure, while a
chaotropic behavior should lead to the opposite. In reference 157, this
was investigated mainly with respect to the neighboring water oxygen-
oxygen distance. However, since the structure of water cannot be fully
determined by this observable, in the following, we assess the influence
of cosolutes on several structural properties of water.

5.3.1 Radial distribution functions

The radial distribution functions (RDFs) gXY (r) between species X
and Y with respect to their distance r do not only provide informa-
tion on the relative distribution of atoms in the system, they are also
connected to the potential of mean force Upmf

XY (r) = −kBT ln(gXY (r)),
where kB is the Boltzmann constant and T denotes absolute tempera-
ture. Thus, higher peaks in the RDF indicate an enhanced interaction
between species X and Y . Figure 5.2 displays the oxygen-oxygen RDF
gOO(r) of pure water compared to the same RDFs in the presence of
cosolutes at a concentration of ≈2mol/l.b

The first RDF peak is clearly enhanced by the presence of any of
the cosolutes, indicating a stronger oxygen-oxygen interaction between
neighboring water molecules. Furthermore, the magnified view of the
first peak in inset a also reveals a very slight shift of the peak positions
to smaller distances compared to that of pure water. For ectoine, both
effects are most pronounced, followed by TMAO, urea, and finally

bThe RDFs of all investigated cosolute concentrations are given in appendix 5.B.1.
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Figure 5.2: Water oxygen-oxygen RDFs of pure water (black, dashed) and aqueous
solutions of different cosolutes (ectoine: purple; TMAO: green; urea: orange, GdmCl:
red). Inset a: Magnification of the first peak. Inset b: Magnification of the first minimum
and second peak.

GdmCl. Thus, judging from the first RDF peak only, one might
conjecture that all cosolutes have a tendency to enhance the water
structure and thus act as kosmotropes. On the contrary, when examin-
ing the magnification of the first minimum and second peak of gOO(r)
displayed in inset b, the situation changes. While urea shows virtually
no change compared to pure water, both stabilizers ectoine and TMAO
enhance the second peak. However, while TMAO enhances the first
minimum, ectoine induces a less pronounced structure here accompa-
nied by a slight shift of the second peak towards smaller distances. The
denaturant GdmCl reduces the amplitude of both features, effective-
ly “washing out” the water structure beyond the first peak. From
that perspective, TMAO appears to be the strongest “structure maker”
followed by ectoine, while urea seems to have no effect on the water
structure at all beyond the first peak. GdmCl, however, leads to a less
pronounced structure and could therefore be considered a chaotrope.
Since the analysis of the RDFs alone fails to provide an unambiguous
picture of the cosolutes’ kosmo- or chaotropic influence on the water
structure, we proceed by investigating further structural properties of
water.
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5.3.2 Sphericity
The comparatively narrow first peak of the water oxygen-oxygen RDFs
already points to another property of the water structure, which is
its sphericity. In bulk water, the neighboring oxygen atoms around a
central one lie almost on a spherical shell around the central oxygen
atom. If the presence of cosolutes changes this arrangement, this should
be reflected in the distribution of the water oxygen sphericity parame-
ters Sk as defined in eq. (5.2). Figure 5.3 depicts the probability
densities p(Sk) of sphericity parameters Sk for the different investigated
cosolutes at concentrations of ≈2mol/l in panel a, and the differences
∆p(Sk) of the distributions with respect to bulk water in panel b.c
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Figure 5.3: a: Cosolute-dependent probability densities p(Sk) of sphericity parameters
Sk at cosolute concentrations of ≈2mol/l compared to that of bulk water. b: Difference
∆p(Sk) of the solute-dependent probability densities with respect to that of pure water.

From panel a, it becomes evident that the peak at Sk = 0.9995 is
lowered by the presence of any cosolute. While urea appears to have
very little impact on sphericity, the influence of the osmolytes ectoine
and TMAO is stronger, yet not as strong as that of GdmCl. Panel b,
however, reveals that the impact is also qualitatively quite different

cDistributions for all investigated cosolute concentrations can be found in
appendix 5.B.2.
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for the different cosolutes. In contrast to GdmCl, which leads to an
increase of p(Sk) between Sk = 0.997 and Sk = 0.999 and a decrease
above, both ectoine and TMAO do not lead to such a drastic decrease
of the distribution in the upper range but shift the probability density
to much lower values. This means that even though the disturbance of
sphericity seems to be higher for GdmCl, there exists a larger fraction
of water molecules with a more strongly distorted hydration shell in
the presence of the stabilizing agents ectoine and TMAO.

Since for the computation of the Sk parameter distributions depict-
ed in fig. 5.3, all water oxygen atoms were taken into account, i.e.,
also the ones in close vicinity to the cosolutes, we conducted a second
measurement where we excluded the first two hydration layers around
the cosolutes from the analysis. The resulting probability densities
p(S

\2
k ) are shown in fig. 5.4 along with the differences ∆p(S

\2
k ) with

respect to the bulk water sphericity distribution.

0

200

400

600
a

p
(S

\2 k
)

pure water
2.23 mol/l ectoine
2.15 mol/l TMAO
2.09 mol/l urea
2.20 mol/l GdmCl

0.99 0.992 0.994 0.996 0.998 1

−100

−50

0
b

S
\2
k

∆
p
(S

\2 k
)

Figure 5.4: a: Cosolute-dependent probability densities p(S
\2
k ) of sphericity parame-

ters S
\2
k at cosolute concentrations of ≈2mol/l compared to that of bulk water with

the first and second hydration shells around the cosolutes excluded from the analysis.
b: Difference ∆p(S

\2
k ) of the probability densities with respect to that of pure water.
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Panel b in fig. 5.4 clearly reveals a significant change compared to
panel b in fig. 5.3: While the influence of the stabilizing osmolytes
ectoine and TMAO remained almost as strong as with the first two
hydration layers included, the effect of GdmCl is much weaker. In
fact, urea even slightly enhances the sphericity of the water structure
beyond its second hydration shell. The overall disturbance of the water
structure’s sphericity is longer-ranged for ectoine and TMAO compared
to that caused by GdmCl or urea.

5.3.3 Tetrahedrality

So far we have only considered the water structure in terms of oxygen-
oxygen distances. However, RDFs and sphericity parameters provide
no information about the water molecules’ angular arrangement with
respect to each other. As explained in section 5.1, the order parame-
ter Sg provides a measure for the tetrahedrality of the relative angular
arrangement of neighboring hydrogen bond donors or acceptors around
the water oxygen atoms. Panel a in fig. 5.5 shows the probabili-
ty densities p(Sg) of tetrahedrality parameters Sg in the presence of
cosolutes at concentrations of ≈2mol/l.

The bulk water distribution p(Sg) perfectly reproduces the findings of
ref. 170 for SPC/E water at T = 300K with a pre-peak at Sg ≈0.5
and a main peak at Sg ≈0.75. All cosolutes shift the lower edge of
the distribution towards smaller values and decrease the amplitude of
the main peak, and the pre-peak is enhanced for all cosolutes except
for TMAO. As it has been the case in the previous structural analyses,
urea again shows the weakest influence, while GdmCl has the strongest
impact on tetrahedral order. The differences ∆p(Sg) of the distribu-
tions with respect to that of bulk water as depicted in panel b of fig. 5.5,
however, reveal further subtle differences between the effects of differ-
ent cosolutes. While the effect of ectoine appears qualitatively quite
similar to that of GdmCl and the inflection points of ∆p(Sg) almost
coincide for these cosolutes, the inflection points of TMAO and urea
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Figure 5.5: a: Cosolute-dependent probability densities p(Sg) of tetrahedrality parame-
ters Sg at cosolute concentrations of ≈2mol/l compared to that of bulk water. b:
Difference ∆p(Sg) of the probability densities with respect to that of pure water.

are shifted to lower and higher values of Sg, respectively. TMAO even
exhibits a second zero-crossing in ∆p(Sg) and causes a slight increase
of p(Sg) for Sg > 0.85.
However, if we exclude the first two hydration layers around the
cosolutes from the analysis, the impact of the different cosolutes
on water tetrahedrality becomes qualitatively more uniform. The
corresponding results for p(S

\2
g ) and ∆p(S

\2
g ) are shown in panels a

and b of fig. 5.6, respectively. Beyond the first two solute hydration
layers, all solutes lead to an increased pre-peak of p(S

\2
g ) accompa-

nied by a decreasing main peak with the most pronounced reduction
at S

\2
g ≈0.8. Likewise, the behavior of ∆p(S

\2
g ) is qualitatively similar

for all solutes. Also the inflection points of ∆p(S
\2
g ) are now closer

than before for all solutions, even though that of TMAO solutions is
still located at slightly lower values of S\2

g . Nevertheless, the rising pre-
peak and falling main peak amplitudes qualitatively correspond to the
effect induced by increasing the temperature of bulk water.170 In fact,
the probability density p(S

\2
g ) of a 2 mol/l urea solution at T = 300K
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Figure 5.6: a: Cosolute-dependent probability densities p(S\2
g ) of tetrahedrality parame-

ters S
\2
g at cosolute concentrations of ≈2mol/l compared to that of bulk water with

the first and second hydration shells around the cosolutes excluded from the analysis.
b: Difference ∆p(S

\2
g ) of the probability densities with respect to that of pure water.

almost perfectly coincides with p(Sg) of pure water at 305K, and
a 2 mol/l GdmCl solution at T = 300K has roughly the same effect
on p(Sg) as increasing the bulk water temperature to T = 325K.d
Thus, the induced changes in water tetrahedrality appear to indicate
a moderately chaotropic influence of all cosolutes beyond their second
hydration shells. However, since it is known that both ectoine and
TMAO are able to stabilize the native conformation of proteins without
direct interactions, they should have an overall kosmotropic effect.
Clearly, the different and partially contradictory implications drawn
from different aspects of our structural analyses yield a highly ambigu-
ous picture of the cosolutes’ kosmo- or chaotropic influence on water.
Due to the fact that the structural properties of water alone do not even
provide satisfactory explanations for the kosmotropic influence of the
protecting osmolytes, in the following, we will proceed by examining
the influence of the different cosolutes on water dynamics.

dA direct comparison of cosolute vs. temperature influence on p(Sg) is given in
appendix 5.B.3.
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5.4 Analysis of Water Dynamics

In addition to their tendency to exhibit an enhanced water density
in their close proximity, proteins also influence the dynamics of their
hydration water.190–193 While the magnitude of the latter effect may
depend on the hydrophilic or hydrophobic properties of the correspond-
ing residues in the primary structure,193 the translational and rotation-
al relaxation of water is generally slowed down in the protein hydration
layer.

5.4.1 Translational diffusion

It has been shown previously that for the structural relaxation of
proteins in aqueous solution, both rotational as well as translational
relaxations of their hydration water are important.191,192 We therefore
start by assessing the concentration-dependent effect of the different
cosolutes on translational water dynamics. Figure 5.7 depicts the
translational diffusion coefficients DW of water computed according to
eq. (5.3) for cosolute concentrations up to about 2 mol/l. All cosolutes
exhibit a general trend to slow down translational water diffusion,
as DW decreases almost linearly with concentration for all cosolutes.
While urea has the smallest influence on the long-term translational
dynamics of water and decreases the pure water diffusion coefficient
by about 19 % at 2 mol/l, GdmCl has a slightly stronger effect with a
reduction by 32 % at roughly the same concentration. Both stabilizers
TMAO and ectoine lead to a much stronger attenuation of transla-
tional diffusion dynamics, as the water diffusion coefficient is decreased
by 47 % in a two-molar TMAO solution, and ectoine even decreases DW

by 61 % from 2.83 · 10−5 cm2s−1 at 0 mol/l down to 1.10 · 10−5 cm2s−1

at ≈2mol/l. Thus, in terms of translational water dynamics, all investi-
gated cosolutes are likely to stabilize the surrounding water structure by
reducing diffusive structural reordering. However, the effect due to the
protein protectants is much more pronounced compared to that of the

143



5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

0 0.5 1 1.5 2
0

1

2

3

c [mol/l]

D
W

[1
0
−
5
cm

2
/
s]

ectoine(aq)
TMAO(aq)

urea(aq)

GdmCl(aq)

Figure 5.7: Concentration-dependent average translational diffusion coefficients DW of
water molecules in aqueous solutions of ectoine (purple), TMAO (green), urea (orange),
and GdmCl (red). Lines serve as guides to the eye. Statistical errors generally do not
exceed ±8 · 10−8 cm2s−1 and are therefore not visible in the graph. The presented data
are provided in tabular form in appendix 5.C.1.

denaturants. In addition, also concentration-dependent and cosolute-
specific viscosity effects cannot be ignored.

5.4.2 Hydrogen bond dynamics

To corroborate the implication of a dynamical structural strengthening
drawn from the reduced water diffusivity, we analyzed the life times τhb
of water-water hydrogen bonds. The values of τhb are shown in fig. 5.8
as a function of cosolute concentration. Indeed, the fact that hydrogen
bond life times generally increase with cosolute concentration strongly
supports the notion of a structural strengthening in terms of dynamics.
Again, the same order of cosolute effects is preserved, with urea showing
the least pronounced effect followed by GdmCl, whereas TMAO and
ectoine increase the life times of water-water hydrogen bonds to a much
greater extent. The only aspect of the qualitative behavior of τhb that
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Figure 5.8: Concentration-dependent intermittent water-water hydrogen bond forward
life times τhb in aqueous solutions of ectoine (purple), TMAO (green), urea (orange),
and GdmCl (red). Lines serve as guides to the eye. Statistical errors generally do not
exceed ±3 · 10−3 ps and are therefore not visible in the graph. The presented data are
provided in tabular form in appendix 5.C.2.

differs from the behavior of diffusion coefficients is the non-linearity at
very low cosolute concentrations. Here, we hypothesize that at very
low concentrations, the structural disturbance caused by the cosolutes
weakens the water hydrogen bond network but cannot be fully compen-
sated by their attenuating effect on solvent dynamics.

5.4.3 Dielectric relaxation spectra

Since the long-term translational motion of water molecules does
not provide any conclusive insights on their rotational reorienta-
tion dynamics, we computed frequency-dependent dielectric relaxation
spectra of all investigated solutions according to eq. (4.44). Dielec-
tric relaxation spectra provide a comprehensive picture of the collec-
tive reorientation dynamics in fluids. Furthermore, the aforemen-
tioned possibility to dissect the spectra into individual contributions
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

without having to resort to fitting techniques makes them partic-
ularly appealing from the point of MD simulations. Figure 5.9
shows a comparison of the computed concentration-dependent absorp-
tion spectra ε′′r(ν) = ε′′r(ω/(2π)) with experimental data18,37,175,179 for
aqueous solutions of all investigated cosolutes. Independent of cosolute
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Figure 5.9: Dielectric absorption spectra ε′′r (ν) of aqueous ectoine, TMAO, urea, and
GdmCl solutions (left to right) for different solute concentrations. Solid lines: Simulation
data. Dashed lines: Multi-Debye fits to experimental data. Experimental data are taken
from refs. 18, 37, 175, 179.

concentration, all computed spectra have in common that the high-
frequency edges of the main absorption peaks are redshifted with
respect to experimental data, and the peak amplitudes are slight-
ly lower. For the cosolutes TMAO, urea, and GdmCl, this also
applies to the low-frequency edge. Since this is already the case
for pure SPC/E water, these systematic deviations can be attribut-
ed to the employed water model. In ectoine solutions, the amplitude
of the low-frequency peak emerging with increasing cosolute concen-
tration is clearly underestimated by the simulations, and the peak
position is blueshifted with respect to experimental data. Neverthe-
less, the computed absorption spectra of all cosolutes reproduce the
qualitative behavior of the experimental data very well, including their
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5.4 Analysis of Water Dynamics

concentration-dependent trends. A comparison of the full spectra
including the dispersion ε′r(ν) can be found in appendix 5.C.3.

Now that we have verified the validity of the spectra, we proceed
by dissecting them according to eq. (5.6) into contributions due to
water ε′′W(ν), cosolutes ε′′C(ν), and their interaction term ε′′CW(ν).
Figure 5.10 shows the dissection of the absorption spectra of differ-
ent aqueous solutions for cosolute concentrations of ≈2mol/l. For
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Figure 5.10: Dissection of dielectric absorption spectra ε′′r (ν) of aqueous ectoine,
TMAO, urea, and GdmCl solutions (left to right) at a concentration of c≈2mol/l.
Entire spectra are marked as red lines, the contributions of water ε′′W are in blue, cosolute
contributions ε′′C in green, and orange lines represent the cosolute/water interaction
terms ε′′CW. Additionally, for the ectoine solution, the sum ε′′C+CW(ν) = ε′′C(ν)+ε′′CW(ν)
is shown as a dashed purple line.

the aqueous ectoine solution, the spectrum is composed of distinc-
tively separate absorption peaks with maxima of the cosolute contri-
bution ε′′C(ν) and cosolute/water interaction term ε′′CW(ν) residing
at ν≈940MHz and the water contribution peak ε′′W(ν) centered
at ν≈7GHz, whereas this separation is less pronounced in the
deconvolution of the TMAO spectrum, for which the maxima
of ε′′C(ν) and ε′′CW(ν) are located between 3 and 4 GHz and ε′′W(ν)
at ν≈7.5GHz. In the dielectric absorption spectrum of the urea
solution, the contributions ε′′C(ν) and ε′′CW(ν) are located even closer
to ε′′W(ν). It also becomes evident that the amplitudes of the cosolute
and cosolute/water terms decrease from ectoine over TMAO to urea
solutions, while the water contribution amplitude increases. However,
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

this effect can be attributed to the molecular size of the cosolutes,
since ectoine occupies a much larger volume fraction compared to
TMAO at the same molar concentration, and the partial molar volume
occupied by urea molecules is even smaller. In turn, the partial molar
volume occupied by water is largest for urea, followed by TMAO and
ectoine. This explanation is also supported by the values of Nwater in
table 5.1 for the individual cosolutes as well as by eq. (5.6). The water
contribution to the complex dielectric permittivity therefore scales with
the volume fraction occupied by water so that a larger water volume
fraction corresponds to larger magnitudes (see appendix 5.A.2.1).

The GdmCl solution, however, does not follow the general trends
observed for the other solutions. There, the ε′′C(ν) and ε′′CW(ν)
contributions reside at approximately the same peak frequencies as in
TMAO solutions, yet with amplitudes even smaller than those of the
corresponding contributions in the urea solution. The cosolute/water
contribution is even negative for ν > 30GHz and completely cancels out
the cosolute contribution. As for the ectoine solution, the amplitude
of the water contribution is also relatively low, which again can be
explained by the relatively small partial molar volume occupied by
water.

While comparing our computationally obtained spectral decompo-
sitions to the deconvolutions performed on experimental dielectric
relaxation data of aqueous ectoine solutions,37 we noticed that the
contribution ascribed to the solute very closely coincides with the
sum ε′′C+CW (ν) := ε′′C(ν) + ε′′CW (ν) of our data, which is shown in
the respective panel of fig. 5.10. In that respect, our data corrobo-
rates the mechanistic picture for ectoine brought up by Eiberweiser
et al.37 of very tightly bound hydration water undergoing a dielec-
tric relaxation together with the corresponding solute molecules. The
qualitative coincidence of the cosolute/water contributions ε′′CW(ν)
with the relaxation modes ascribed to “slow” water in case of TMAO
and urea solutions18,175 further support this notion, and thus, we
can attribute the remaining ε′′W(ν) contribution to what is commonly
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5.4 Analysis of Water Dynamics

referred to as bulk or “bulk-like” water. Moreover, our dissection of the
aqueous GdmCl solution spectrum explains why there exists no such
decomposition of experimental data. Due to the fact that, indepen-
dent of concentration, all contributions add up to an absorption peak
which can be perfectly fitted by a single Debye relaxation, the usually
followed experimental approach of fitting spectral data with multiple
superimposed relaxations fails here. Thus, to our knowledge, we show
here for the first time that the dielectric relaxation of aqueous GdmCl
solutions is strongly dominated by bulk-like water contributions, while
solute contributions only lead to a small spectral broadening at the
low-frequency edge of the main relaxation peak.

The presented spectral decomposition into different molecular contri-
butions finally enables us to explicitly analyze the concentration-
dependent effect of cosolutes on the collective dielectric relaxation
dynamics of bulk-like water. To this aim, fig. 5.11 depicts the
water contributions ε′′W(ν) in the presence of cosolutes at concentra-
tions ranging from 0 to approximately 2 mol/l. In aqueous ectoine
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Figure 5.11: Concentration-dependent water contributions ε′′W(ν) of the dielectric
absorption of aqueous ectoine, TMAO, urea, and GdmCl (left to right) solutions for
different cosolute concentrations. Arrows indicate increasing cosolute concentration.

solutions, increasing the cosolute concentration leads to a pronounced
redshift of the water contribution with its peak position decreasing
from about 15GHz in pure water by a factor of 2.15 down to approx-
imately 7.0GHz at 2.23 mol/l. Comparable to the effect of ectoine,
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

the presence of TMAO induces a retardation of reorientational water
dynamics with the peak frequency of ε′′W(ν) shifted down to ≈7.4GHz
at 2.15 mol/l TMAO. Relative to the stabilizing osmolytes, the impact
of urea on dielectric water relaxation is comparatively small since the
addition of 2.09 mol/l urea to water redshifts the water absorption
peak by as little as 2 GHz (15 %) to 13 GHz. Remarkably, GdmCl
appears to have virtually no effect on the peak frequency position
of collective reorientational water dynamics. These results indicate
a pronounced dynamical strengthening of the water structure by the
stabilizing osmolytes ectoine and TMAO in terms of water reorienta-
tion dynamics, while the denaturants urea and GdmCl show only little
or no effect. Together with the results obtained from the analysis of
translational diffusion coefficients and hydrogen bond life times, these
results provide a clearly ordered picture of how the different investigat-
ed cosolutes affect water dynamics.

Now that we have observed the attenuating effect on water reorien-
tation dynamics in the GHz regime caused by the presence of the
protecting osmolytes, there remains one important question to be
answered: Due to the fact that all systems were simulated at the same
constant temperature of 300 K, their average kinetic energy per degree
of freedom should remain unchanged. Since the collective water reorien-
tation dynamics are slowed down in some of the systems, this energy
must have been transferred to other kinetic modes.

Up to this point, we have analyzed the dielectric relaxation spectra
in the same frequency range as commonly accessible by experimental
dielectric relaxation measurements, which usually does not exceed the
upper GHz regime. However, our MD simulations have a temporal
resolution of one femtosecond, so that dielectric relaxation data is
readily available also in the THz regime. Consequently, fig. 5.12 depicts
the water dielectric absorption peaks ε′′W(ν) in the high-frequency
regime ranging from 0.8 to 30 THz. Opposed to what we observed in
the low-frequency regime in fig. 5.11, the different investigated cosolutes
now exhibit a blueshift with relative extents corresponding to the order
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Figure 5.12: Concentration-dependent water contributions ε′′W(ν) of the dielectric
absorption of aqueous ectoine, TMAO, urea, and GdmCl (left to right) solutions for
different cosolute concentrations in the THz regime. Arrows indicate increasing cosolute
concentration.

of redshifts in the GHz regime. Again, the effect is very weak for
urea, and GdmCl induces no frequency shift at all. Evidently, the
protecting osmolytes ectoine and TMAO induce a transfer of kinetic
energy from the low- to the high-frequency modes of water reorienta-
tion dynamics.

5.5 Summary and Discussion

We have performed extensive MD simulations of aqueous binary
solutions comprising different small organic cosolutes at concentra-
tions ranging from 0 to ≈2mol/l in order to assess their influence
on the local water structure and on water dynamics. With ectoine and
trimethylamine N-oxide, we chose two important yet intrinsically differ-
ent protein stabilizers, whereas with urea and guanidinium chloride, we
studied two substances commonly known for their denaturing effects
on proteins. In order to obtain indicators for the different cosolutes’
kosmo- or chaotropic nature, we carried out multiple analyses regard-
ing the concentration-dependent structural arrangement of water, with
investigated properties ranging from radial distribution functions to
order parameters allowing to quantify the sphericity and tetrahedral
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

arrangement of neighboring water molecules. Furthermore, we explored
how these cosolutes impact the dynamics of water and the stability of
its hydrogen bond network. To this aim, we calculated translation-
al water diffusion coefficients and hydrogen bond life times. Further-
more, a modification of the employed simulation software allowed us to
conveniently extract dielectric relaxation spectra over a broad frequen-
cy range from the upper MHz to the THz regime, which also served to
validate the dynamics of the employed force fields via comparison with
experimental data. The computational decomposition of the spectra
into contributions originating from different molecular species allowed
us to analyze the water relaxation kinetics separated from the contri-
butions due to cosolutes and the respective interaction cross-terms.

The main goal of our research was to identify possible ways of how
the presence of different cosolutes at low to moderate concentra-
tions could potentially lead to the indirect protection or, likewise,
destabilization of native protein conformations by altering the proper-
ties of their hydration water. The existence of such indirect, water-
mediated effects has been shown experimentally for the protect-
ing osmolyte TMAO,155,194 and, by means of computer simula-
tions, also for ectoine.35,195 It has recently been argued that the
stabilization or destabilization of proteins by cosolutes depends on
the structural compatibility (or incompatibility, respectively) of the
cosolutes’ hydration shells with that of the protein,157 with the
argument mostly based on neighboring water oxygen-oxygen distances.
In that respect, our results based on the analysis of water-water radial
distribution functions in the presence of cosolutes indicate a stabilizing
tendency for all cosolutes if only the first peak is considered. Since
even the denaturants urea and GdmCl can have a stabilizing effect
on specific proteins at low to moderate concentrations,134 our results
agree with this picture, provided that the cosolutes are preferentially
excluded from the protein surface. The longer-ranged RDF features,
however, are less pronounced in the presence of GdmCl, indicating
a slightly weakened water structure. If the structural compatibil-
ity of hydration shells plays an important role in protein/cosolute
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interactions, one might argue that this should not only depend on
density but also on other structural parameters such as sphericity
or the degree of tetrahedrality. While both sphericity and tetrahe-
drality are strongly affected in the close vicinity of the investigated
cosolutes, the effects differ qualitatively and quantitatively between
the cosolutes so that a clear trend distinguishing kosmotropic from
chaotropic behavior is difficult to establish. At distances more than
two hydration shells away from the cosolutes, the situation changes in
a way that all osmolytes induce a pronounced and qualitatively similar
disturbance of the water structure. In that sense, urea appears to
destabilize the water structure to the least extent, whereas GdmCl
causes the strongest disturbance. Nevertheless, this finding does not
facilitate distinguishing between water structure-making and -breaking
osmolytes, as it stands in contrast to the implications drawn from
the RDF analysis. In fact, it has also been argued that a solute’s
impact on water structure is uncorrelated to its stabilizing or denatur-
ing effect on proteins,196 contradicting the findings of ref. 157. Yet, this
discrepancy can be mitigated if we consider the preferential exclusion
of a cosolute from the protein surface as a prerequisite for water-
mediated, stabilizing interactions. This proposition is further support-
ed by the fact that direct interaction of common stabilizers such as
TMAO or ectoine with proteins or other macromolecules can have
a destabilizing effect.70,145,197 Preferential exclusion, however, rather
depends on the cosolute’s relative binding affinity, i.e., the relative
strength of cosolute/solvent with respect to cosolute/protein interac-
tions. Comparable conclusions were drawn recently also for ions,
interfaces, and polyelectrolytes in ternary mixtures.148,198–202

Even though a specific cosolute’s binding affinity depends on the type
of protein it can potentially bind to, compared to weakly water-binding
species, molecules which are strongly water binding such as ectoine or
TMAO in turn should have a higher probability to be excluded from the
protein surface. Despite the fact that both these molecules significantly
perturb the water structure, our data regarding water diffusion coeffi-
cients and hydrogen bond life times indicate a pronounced stabilization
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

of the surrounding water structure, especially in terms of translational
dynamics. The observed slow-down of water dynamics around proteins
in aqueous ectoine solutions was found to have a significant impact
on protein stability,195 which additionally highlights the importance of
solvent dynamics.

Since the structural relaxation of proteins requires not only transla-
tional diffusion but also rotational reorientation of water molecules,
we investigated the effect of different cosolutes on the dielectric
relaxation of water. Our computational approach thereby allowed us to
isolate the water contributions complementing experimental approach-
es,18,37,175,203 as well as in solutions for which the deconvolution of
experimentally obtained spectra is not possible. We found that even
though the denaturants urea and GdmCl lead to a significant retarda-
tion of translational water diffusion, their effect on dielectric water
relaxation was negligible compared to the slow-down observed for
ectoine and TMAO. Nevertheless, the attenuation of translational
water dynamics by the denaturants may very well affect the structural
relaxation of proteins and, thus, potentially play a role in the observed
stabilizing effect of these cosolutes at low concentrations,134 where
the usually observed tendency towards preferential binding of these
cosolutes might be weakened by entropic effects.

Even though our analysis is limited to a small number of cosolutes,
our results suggest that the influence of cosolutes on the slow modes of
water dynamics are likely to play an important role in indirect protein
stabilization mechanisms, provided that cosolutes do not favorably
interact with proteins. The fact that other protein stabilizers such
as betaine or glycine, which have not been included in this work, show
a similar behavior204,205 provides additional support for this notion.
Thus, in future research, the investigation of kosmo- or chaotropic
effects should not exclusively focus on structural properties but also
on dynamics.

154



Appendix of Chapter 5

5.A Volumetric System Properties

5.A.1 Mass density

The following table lists the cosolute concentration (c: molarity,
m: molality), number of water (NW) and cosolute (NCS) molecules (for
GdmCl: the number of ion pairs), the average simulation box volume
(V ) and mass densities (ρ) of all investigated systems.

Cosolute c [mol/l] m [mol/kg] NW NCS V [nm3] ρ [kg/m3]
pure water 0.00 0.00 2180 0 65.4042 ±0.0003 997.1437 ±0.0048
ectoine 0.53 0.55 5016 50 158.2655 ±0.0010 1022.7118 ±0.0064

1.07 1.19 2330 50 77.7394 ±0.0004 1048.4703 ±0.0057
1.72 2.07 1343 50 48.1538 ±0.0006 1079.4766 ±0.0125
2.23 2.83 979 50 37.2456 ±0.0004 1103.2618 ±0.0127

TMAO 0.52 0.54 5144 50 160.1640 ±0.0010 999.7406 ±0.0065
1.04 1.13 2454 50 79.4941 ±0.0003 1001.9648 ±0.0042
1.68 1.91 1456 50 49.5548 ±0.0003 1004.8417 ±0.0062
2.15 2.54 1092 50 38.6215 ±0.0004 1007.3547 ±0.0100

urea 0.52 0.53 5243 50 160.9663 ±0.0009 1005.3917 ±0.0055
1.03 1.08 2568 50 80.7193 ±0.0004 1013.5214 ±0.0046
1.64 1.78 1562 50 50.5433 ±0.0003 1023.2003 ±0.0055
2.09 2.31 1199 50 39.6519 ±0.0003 1030.3855 ±0.0087

GdmCl 0.52 0.54 5130 50 159.1113 ±0.0007 1014.3789 ±0.0047
1.05 1.13 2460 50 79.1790 ±0.0005 1029.6354 ±0.0057
1.68 1.90 1464 50 49.4354 ±0.0003 1046.4519 ±0.0070
2.20 2.59 1071 50 37.7274 ±0.0004 1059.5104 ±0.0092

Table 5.A.1: System compositions with parameters NW (number of water molecules),
NCS (number of cosolute molecules / ion pairs), and observables c (molarity), m (molali-
ty), V (simulation box volume), and ρ (mass density).
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5.A.1.1 Comparison with experimental data
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Figure 5.A.1: Comparison of mass density ρ vs. molality m with experimental data for
aqueous ectoine solutions. The experimental data points shown for T = 300K are linear
interpolations of data for temperatures T = 298.24K and T = 318.17K taken from
Held et al..206 The maximum relative deviation of simulation data from experimental
values is 1.2% at m = 2.83mol/kg.
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Figure 5.A.2: Comparison of mass density ρ vs. molality m with experimental data for
aqueous TMAO solutions. The experimental data points shown for T = 300K are linear
interpolations of data for temperatures T = 298.15K and T = 308.15K taken from
Makarov et al..207 The maximum relative deviation of simulation data from experimental
values is 0.4% at m = 2.54mol/kg.
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Aqueous urea solutions
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Figure 5.A.3: Comparison of mass density ρ vs. molarity c with experimental data
for aqueous urea solutions. The experimental data shown for T = 300K are a linear
interpolation of fits to data for temperatures T = 298.15K and T = 303.15K taken from
Gucker et al..208 The maximum relative deviation of simulation data from experimental
values is 0.1% at c = 1.64mol/l.
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Figure 5.A.4: Comparison of mass density ρ vs. molality m with experimental data for
aqueous GdmCl solutions. The experimental data shown for T = 300K correspond to
a phenomenological fit function provided by Kawahara and Tanford209 with the zero-
concentration density for T = 300K set to 996.5563 kg/m3 according to Tanaka et
al..210 The maximum relative deviation of simulation data from experimental values is
0.8% at m = 2.59mol/kg.
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5.A.2 Partial molar volumes

The partial molar volume V m
i of the i-th component in a k-component

mixture is defined as the change in the mixture’s total volume V caused
by adding 1 mol of that component:

V m
i =

(
∂V

∂ni

)
p,T,nj 6=i

(5.7)

Here, ni denotes the number of moles of the i-th component in the
mixture, and the subscripts p, T, nj 6=i on the right hand side mean that
pressure, temperature, and the mole numbers of all other components
are kept constant while taking the derivative. Apart from temperature
and pressure, its value generally depends on the molecular species and
concentration of each component. For any given combination of these
variables, the total volume V of the mixture obeys the equation

V =

k∑
i=1

niV
m
i . (5.8)

If we assume that the amount ∆ni added to the mixture is small, we
can express eq. (5.7) as a linear approximation

V m
i ≈ NA

(
∆V

∆Ni

)
p,T,Nj 6=i

(5.9)

where we have changed the notation from mole numbers ni

to the number of molecules Ni by introducing Avogadro’s
number NA = 6.0221409 · 1023mol−1.

The volume fraction Φi occupied by the i-th component in the mixture
can then be obtained from eqs. (5.7) to (5.9) as

Φi = ni
V m
i

V
≈ Ni

V

(
∆V

∆Ni

)
p,T,Nj 6=i

. (5.10)
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In order to compute the concentration-dependent partial molar
volumes V m

W of water and the volume fraction ΦW it occupies, we
performed an additional set of simulation runs following the same
protocol as described in section 3 of the main chapter, but this time
with a reduced number of water molecules N ′

W ≈ 0.98NW. Consequent-
ly, the resulting average simulation box volumes V ′ are slightly smaller
than the volumes V of the original simulations. This allows us to
estimate the partial molar volumes of water and the volume fraction
it occupies by setting ∆V = V − V ′ and ∆NW = NW −N ′

W. Inserting
these definitions into eqs. (5.9) and (5.10) finally yields

V m
W ≈ NA

V − V ′

NW −N ′
W

(5.11)

and, likewise,

ΦW ≈ NW

NW −N ′
W

(
1− V ′

V

)
. (5.12)

The values of V m
W and ΦW obtained by this procedure are listed

in table 5.A.2.
Cosolute c′ [mol/l] N′

W V ′ [nm3] V m
W [cm3/mol] ΦW [vol.%]

pure water 0.00 2180 65.4042 ±0.0003 18.0676 ±0.0002 100.00 ±0.00
ectoine 0.53 4916 155.2684 ±0.0007 18.0489 ±0.0208 94.99 ±0.05

1.09 2283 76.3310 ±0.0006 18.0456 ±0.0257 89.81 ±0.06
1.75 1316 47.3441 ±0.0003 18.0597 ±0.0394 83.64 ±0.09
2.27 959 36.6459 ±0.0004 18.0564 ±0.0500 78.81 ±0.11

TMAO 0.53 5041 157.0746 ±0.0005 18.0632 ±0.0185 96.33 ±0.05
1.06 2405 78.0248 ±0.0004 18.0584 ±0.0182 92.57 ±0.05
1.71 1427 48.6808 ±0.0004 18.1494 ±0.0278 88.55 ±0.07
2.19 1070 37.9609 ±0.0004 18.0833 ±0.0408 84.90 ±0.09

urea 0.53 5138 157.8168 ±0.0008 18.0637 ±0.0192 97.70 ±0.05
1.05 2517 79.1897 ±0.0006 18.0624 ±0.0230 95.42 ±0.06
1.67 1531 49.6110 ±0.0005 18.1115 ±0.0292 92.94 ±0.07
2.13 1175 38.9305 ±0.0004 18.1015 ±0.0345 90.89 ±0.09

GdmCl 0.53 5027 156.0258 ±0.0012 18.0406 ±0.0228 96.59 ±0.06
1.07 2411 77.7139 ±0.0007 18.0071 ±0.0275 92.90 ±0.07
1.71 1435 48.5719 ±0.0006 17.9300 ±0.0397 88.17 ±0.10
2.24 1050 37.1038 ±0.0003 17.8848 ±0.0438 84.31 ±0.10

Table 5.A.2: Compositions of systems with a reduced number of water molecules N ′
W.

As in all previous simulations, the number of cosolute molecules (or ion pairs) was
kept fixed at NCS = 50. The remaining columns list the observables c′ (molarity),
V ′ (simulation box volume), V m

W (partial molar volume of water), and ΦW (volume
fraction occupied by water).
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.A.2.1 Scaling of dielectric absorption peaks with volume fraction

In the discussion of dielectric spectral decompositions into parts
originating from the different molecular species (section 4.2.3 of the
main chapter), we stated that the absorption peak amplitudes max(ε′′W)
of the water contributions approximately scale with the volume
fraction ΦW occupied by water. This behavior is illustrated in fig. 5.A.5
below.

75 80 85 90 95 100 10520

25

30

35

ΦW [vol.%]

m
a
x
(ε

′′ W
)

ectoine
TMAO
urea
GdmCl

Figure 5.A.5: Scaling of the dielectric water absorption peak max(ε′′W) with the volume
fraction ΦW occupied by water. Clearly, larger values of ΦW correspond to higher peak
amplitudes max(ε′′W).
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5.B Structural Properties

5.B Structural Properties

So far, we have shown structural properties only for pure water and
cosolute concentrations of c ≈ 2 mol/l. Here, we provide data for all
investigated concentrations.

For each cosolute species at each concentration, trajectories were
collected from simulations of four independently generated and equili-
brated replicas of the respective systems. The trajectories were written
to disk every picosecond during runs covering simulation times of
≈ 268ns, resulting in a total of ≈ 1, 072, 000 trajectory frames per
cosolute and concentration.

The resolution of the distance histograms used for the computation
of water oxygen-oxygen RDFs gOO(r) was δr = 0.002nm, whereas the
distributions of sphericity (Sk) and tetrahedrality (Sg) parameters
were computed with resolutions of δSk = 10−5 and δSg = 5 · 10−4.
All presented curves correspond to the raw histograms without any
smoothing, which also applies to the corresponding figures in the main
chapter.
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.B.1 Radial distribution functions
5.B.1.1 Aqueous ectoine solutions
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Figure 5.B.1: Concentration-dependent RDFs gOO(r) between water oxygen atoms in
aqueous ectoine solutions. Inset a: Magnification of the first peak. Inset b: Magnification
of the first minimum and second peak.

5.B.1.2 Aqueous TMAO solutions
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Figure 5.B.2: Concentration-dependent RDFs gOO(r) between water oxygen atoms in
aqueous TMAO solutions. Inset a: Magnification of the first peak. Inset b: Magnification
of the first minimum and second peak.
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5.B Structural Properties

5.B.1.3 Aqueous urea solutions
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Figure 5.B.3: Concentration-dependent RDFs gOO(r) between water oxygen atoms in
aqueous urea solutions. Inset a: Magnification of the first peak. Inset b: Magnification
of the first minimum and second peak.

5.B.1.4 Aqueous GdmCl solutions
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Figure 5.B.4: Concentration-dependent RDFs gOO(r) between water oxygen atoms in
aqueous GdmCl solutions. Inset a: Magnification of the first peak. Inset b: Magnification
of the first minimum and second peak.
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.B.2 Sphericity
5.B.2.1 Aqueous ectoine solutions
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Figure 5.B.5: Concentration-dependent sphericity parameter distributions p(Sk) for
water in aqueous ectoine solutions. Panel a: Probability density p(Sk) at different
cosolute concentrations. Panel b: Difference ∆p(Sk) of the concentration-dependent
probability densities with respect to that of pure water.
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Figure 5.B.6: Concentration-dependent sphericity parameter distributions p(S
\2
k ) for

water in aqueous ectoine solutions with the first and second hydration shells around
the solute molecules excluded from the analysis. Panel a: Probability density p(S

\2
k ) at

different cosolute concentrations. Panel b: Difference ∆p(S
\2
k ) of the concentration-

dependent probability densities with respect to that of pure water.
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5.B Structural Properties

5.B.2.2 Aqueous TMAO solutions
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Figure 5.B.7: Concentration-dependent sphericity parameter distributions p(Sk) for
water in aqueous TMAO solutions. Panel a: Probability density p(Sk) at different
cosolute concentrations. Panel b: Difference ∆p(Sk) of the concentration-dependent
probability densities with respect to that of pure water.
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Figure 5.B.8: Concentration-dependent sphericity parameter distributions p(S
\2
k ) for

water in aqueous TMAO solutions with the first and second hydration shells around
the solute molecules excluded from the analysis. Panel a: Probability density p(S

\2
k ) at

different cosolute concentrations. Panel b: Difference ∆p(S
\2
k ) of the concentration-

dependent probability densities with respect to that of pure water.
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.B.2.3 Aqueous urea solutions
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Figure 5.B.9: Concentration-dependent sphericity parameter distributions p(Sk) for
water in aqueous urea solutions. Panel a: Probability density p(Sk) at different cosolute
concentrations. Panel b: Difference ∆p(Sk) of the concentration-dependent probability
densities with respect to that of pure water.
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Figure 5.B.10: Concentration-dependent sphericity parameter distributions p(S
\2
k ) for

water in aqueous urea solutions with the first and second hydration shells around the
solute molecules excluded from the analysis. Panel a: Probability density p(S

\2
k ) at

different cosolute concentrations. Panel b: Difference ∆p(S
\2
k ) of the concentration-

dependent probability densities with respect to that of pure water.
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5.B Structural Properties

5.B.2.4 Aqueous GdmCl solutions
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Figure 5.B.11: Concentration-dependent sphericity parameter distributions p(Sk) for
water in aqueous GdmCl solutions. Panel a: Probability density p(Sk) at different
cosolute concentrations. Panel b: Difference ∆p(Sk) of the concentration-dependent
probability densities with respect to that of pure water.

0.996 0.998 1
0

200

400

600

a

S
\2
k

p
(S

\2 k
)

c = 0.00 mol/l
c = 0.52 mol/l
c = 1.05 mol/l
c = 1.68 mol/l
c = 2.20 mol/l

0.996 0.998 1

−100

−50

0

b

S
\2
k

∆
p
(S

\2 k
)

Figure 5.B.12: Concentration-dependent sphericity parameter distributions p(S
\2
k ) for

water in aqueous GdmCl solutions with the first and second hydration shells around the
solute molecules excluded from the analysis. Panel a: Probability density p(S

\2
k ) at

different cosolute concentrations. Panel b: Difference ∆p(S
\2
k ) of the concentration-

dependent probability densities with respect to that of pure water.
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.B.2.5 Temperature-dependent sphericity of pure SPC/E water
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Figure 5.B.13: Temperature-dependent sphericity parameter distributions p(Sk) for
pure SPC/E water with temperature ranging from T = 275K to T = 350K in steps
of ∆T = 5K. Arrows indicate increasing temperature.

5.B.3 Tetrahedrality
5.B.3.1 Temperature-dependent orientational tetrahedrality of

pure SPC/E water
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Figure 5.B.14: Temperature-dependent orientational tetrahedrality order parameter
distributions p(Sg) for pure SPC/E water with temperature ranging from T = 275K
to T = 350K in steps of ∆T = 5K. Arrows indicate increasing temperature.
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5.B.3.2 Aqueous ectoine Solutions
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Figure 5.B.15: Concentration-dependent orientational tetrahedrality order parame-
ter distributions p(Sg) for water in aqueous ectoine solutions. Panel a: Probability
density p(Sg) at different cosolute concentrations. Panel b: Difference ∆p(Sg) of the
concentration-dependent probability densities with respect to that of pure water.
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Figure 5.B.16: Concentration-dependent orientational tetrahedrality order parameter
distributions p(S

\2
g ) for water in aqueous ectoine solutions with the first and second

hydration shells around the solute molecules excluded from the analysis. Panel a:
Probability density p(S

\2
g ) at different cosolute concentrations. Panel b: Difference

∆p(S
\2
g ) of the concentration-dependent probability densities with respect to that of

pure water.
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.B.3.3 Aqueous TMAO solutions
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Figure 5.B.17: Concentration-dependent orientational tetrahedrality order parame-
ter distributions p(Sg) for water in aqueous TMAO solutions. Panel a: Probability
density p(Sg) at different cosolute concentrations. Panel b: Difference ∆p(Sg) of the
concentration-dependent probability densities with respect to that of pure water.
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Figure 5.B.18: Concentration-dependent orientational tetrahedrality order parameter
distributions p(S

\2
g ) for water in aqueous TMAO solutions with the first and second

hydration shells around the solute molecules excluded from the analysis. Panel a:
Probability density p(S

\2
g ) at different cosolute concentrations. Panel b: Difference

∆p(S
\2
g ) of the concentration-dependent probability densities with respect to that of

pure water.
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5.B.3.4 Aqueous urea solutions
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Figure 5.B.19: Concentration-dependent orientational tetrahedrality order parame-
ter distributions p(Sg) for water in aqueous urea solutions. Panel a: Probability
density p(Sg) at different cosolute concentrations. Panel b: Difference ∆p(Sg) of the
concentration-dependent probability densities with respect to that of pure water.
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Figure 5.B.20: Concentration-dependent orientational tetrahedrality order parameter
distributions p(S

\2
g ) for water in aqueous urea solutions with the first and second

hydration shells around the solute molecules excluded from the analysis. Panel a:
Probability density p(S

\2
g ) at different cosolute concentrations. Panel b: Difference

∆p(S
\2
g ) of the concentration-dependent probability densities with respect to that of

pure water.
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.B.3.5 Aqueous GdmCl solutions
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Figure 5.B.21: Concentration-dependent orientational tetrahedrality order parame-
ter distributions p(Sg) for water in aqueous GdmCl solutions. Panel a: Probability
density p(Sg) at different cosolute concentrations. Panel b: Difference ∆p(Sg) of the
concentration-dependent probability densities with respect to that of pure water.

0 0.5 1
0

2

4

6

8

10
a

S
\2
g

p
(S

\2 g
)

c = 0.00 mol/l
c = 0.52 mol/l
c = 1.05 mol/l
c = 1.68 mol/l
c = 2.20 mol/l

0 0.5 1

−1

−0.5

0

0.5

1
b

S
\2
g

∆
p
(S

\2 g
)

Figure 5.B.22: Concentration-dependent orientational tetrahedrality order parameter
distributions p(S

\2
g ) for water in aqueous GdmCl solutions with the first and second

hydration shells around the solute molecules excluded from the analysis. Panel a:
Probability density p(S

\2
g ) at different cosolute concentrations. Panel b: Difference

∆p(S
\2
g ) of the concentration-dependent probability densities with respect to that of

pure water.

172



5.B Structural Properties

5.B.3.6 Comparison of water tetrahedrality Sg in a 2 mol/l urea
solution at T = 300K with that of pure water at
T = 305K
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Figure 5.B.23: Comparison of the orientational tetrahedrality order parameter distri-
bution p(S

\2
g ) for water in a 2-molar aqueous urea solution at T = 300K compared to

that of pure water at T = 305K.

5.B.3.7 Comparison of water tetrahedrality Sg in a 2 mol/l GdmCl
solution at T = 300K with that of pure water at
T = 325K
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Figure 5.B.24: Comparison of the orientational tetrahedrality order parameter distribu-
tion p(S

\2
g ) for water in a 2-molar aqueous GdmCl solution at T = 300K compared to

that of pure water at T = 325K.
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.C Dynamic Properties

5.C.1 Translational diffusion coefficients

Here, we provide a table listing the values and error estimates of
water self-diffusion coefficients DW in the presence of the investigat-
ed cosolutes at different concentrations. The values correspond to the
plot presented in fig. 5.7. Additionally, we also list the concentration-
dependent self-diffusion coefficients DCS of the different cosolutes.

Cosolute c [mol/l] DW [10−5 cm2/s] DCS [10−5 cm2/s]
pure water 0.00 2.8264 ±0.0076 –
ectoine 0.53 2.3206 ±0.0020 0.6456 ±0.0024

1.07 1.8815 ±0.0021 0.4716 ±0.0019
1.72 1.4160 ±0.0023 0.3127 ±0.0012
2.23 1.1024 ±0.0039 0.2213 ±0.0021

TMAO 0.52 2.4310 ±0.0020 0.9352 ±0.0032
1.04 2.0936 ±0.0018 0.7877 ±0.0026
1.68 1.7313 ±0.0033 0.6389 ±0.0032
2.15 1.4841 ±0.0037 0.5376 ±0.0018

urea 0.52 2.6590 ±0.0009 1.6341 ±0.0064
1.03 2.5223 ±0.0022 1.5237 ±0.0038
1.64 2.3781 ±0.0030 1.4284 ±0.0023
2.09 2.2810 ±0.0053 1.3571 ±0.0031

GdmCl Gdm+ Cl−
0.52 2.5673 ±0.0063 1.2372 ±0.0093 1.4444 ±0.0142
1.05 2.3431 ±0.0056 1.0716 ±0.0069 1.2888 ±0.0050
1.68 2.1046 ±0.0060 0.9134 ±0.0064 1.1246 ±0.0079
2.20 1.9245 ±0.0044 0.8066 ±0.0055 1.0150 ±0.0061

Table 5.C.1: Water (DW) and cosolute (DCS) self-diffusion coefficients at different
cosolute concentrations c.
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5.C Dynamic Properties

5.C.2 Hydrogen bond life times

The table below lists the values and error estimates of water-water
hydrogen bond life times τhb in the presence of the investigated
cosolutes at different concentrations. The values correspond to the
plot presented in fig. 5.8.

Cosolute c [mol/l] τhb [ps]
pure water 0.00 2.4640 ±0.0023
ectoine 0.53 2.3805 ±0.0020

1.07 3.0538 ±0.0017
1.72 4.6155 ±0.0018
2.23 6.6895 ±0.0018

TMAO 0.52 2.3573 ±0.0015
1.04 2.9438 ±0.0014
1.68 4.3088 ±0.0009
2.15 5.7543 ±0.0015

urea 0.52 2.1803 ±0.0006
1.03 2.5623 ±0.0008
1.64 3.7448 ±0.0013
2.09 4.0678 ±0.0006

GdmCl 0.52 2.2233 ±0.0009
1.05 2.5718 ±0.0005
1.68 3.3690 ±0.0009
2.20 4.1809 ±0.0011

Table 5.C.2: Water-water hydrogen bond life times τhb at different cosolute concentra-
tions c.
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.C.3 Dielectric spectra

The main chapter includes only the absorption part ε′′r of the computed
dielectric spectra, and their spectral decomposition only for cosolute
concentrations of c ≈ 2 mol/l. Here, we provide the full dielectric
spectra of all systems for all cosolute concentrations, as well as the
corresponding spectral decompositions into the contributions of water
(εW), cosolutes (εC), and the water/cosolute interaction term (εCW).

While in experimentally obtained spectra, the high-frequency limit ε∞r
of the permittivity (cf. eq. (2.3)) is a concentration-dependent offset,
it is always ε∞r = 1 for all computationally obtained dielectric spectra
due to electrostatic tinfoil boundary conditions.120 In order to eliminate
this systematic error in the computed spectra and to facilitate the
comparison with experimental data, we define the reduced dielectric
permittivity ε̄r(ω) as

ε̄r(ω) := εr(ω)− ε∞r , (5.13)

which equals the electric susceptibility χe(ω) if (but only if) ε∞r = 1.
Since ε∞r ∈ R, it contributes to dielectric dispersion ε′r(ω) only. Thus,
the dielectric absorption ε′′r(ω) ≡ ε̄′′r(ω) is not affected by this offset.

Note that the dielectric spectra are plotted with respect to the linear
frequency ν = ω/(2π) in the following figures.
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5.C Dynamic Properties

5.C.3.1 Aqueous ectoine solutions
Comparison with experimental data

100 101 102
0

50

100

150
a

ν [GHz]

ε̄′
(ν

)

sim, c = 0.53 mol/l
sim, c = 1.07 mol/l
sim, c = 1.72 mol/l
sim, c = 2.23 mol/l
exp, c = 0.47 mol/l
exp, c = 0.90 mol/l
exp, c = 1.62 mol/l

100 101 102
0

10

20

30

40
b

ν [GHz]

ε′
′ (
ν
)

Figure 5.C.1: Dielectric spectra of aqueous ectoine solutions for different solute concen-
trations. Solid lines: simulation data. Dots: Experimental data. Thin dotted lines:
Multi-Debye fits to experimental data. Panel a: reduced dielectric dispersion ε̄′r(ν).
Panel b: dielectric absorption ε′′r (ν). Experimental data from reference 37.
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Figure 5.C.2: Spectral decompositions of dielectric spectra (solid lines) of aqueous
ectoine solutions into the contributions of water εW(ν) (dashed lines), cosolutes εC(ν)
(dotted lines), and the cosolute–water interaction terms εCW(ν) (dash-dotted lines).
Panel a: Different contributions to dielectric dispersion ε̄′r(ν). Panel b: Different contri-
butions to dielectric absorption ε′′r (ν).
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.C.3.2 Aqueous TMAO solutions
Comparison with experimental data
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Figure 5.C.3: Dielectric spectra of aqueous TMAO solutions for different solute concen-
trations. Solid lines: simulation data. Dotted lines: Multi-Debye fits to experimental
data. Panel a: reduced dielectric dispersion ε̄′r(ν). Panel b: dielectric absorption ε′′r (ν).
Experimental data from reference 18.
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Figure 5.C.4: Spectral decompositions of dielectric spectra (solid lines) of aqueous
TMAO solutions into the contributions of water εW(ν) (dashed lines), cosolutes εC(ν)
(dotted lines), and the cosolute–water interaction terms εCW(ν) (dash-dotted lines).
Panel a: Different contributions to dielectric dispersion ε̄′r(ν). Panel b: Different contri-
butions to dielectric absorption ε′′r (ν).
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5.C Dynamic Properties

5.C.3.3 Aqueous urea solutions
Comparison with experimental data
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Figure 5.C.5: Dielectric spectra of aqueous urea solutions for different solute concen-
trations. Solid lines: simulation data. Dotted lines: Multi-Debye fits to experimental
data. Panel a: reduced dielectric dispersion ε̄′r(ν). Panel b: dielectric absorption ε′′r (ν).
Experimental data from reference 175.
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Figure 5.C.6: Spectral decompositions of dielectric spectra (solid lines) of aqueous urea
solutions into the contributions of water εW(ν) (dashed lines), cosolutes εC(ν) (dotted
lines), and the cosolute–water interaction terms εCW(ν) (dash-dotted lines). Panel
a: Different contributions to dielectric dispersion ε̄′r(ν). Panel b: Different contributions
to dielectric absorption ε′′r (ν).
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5 The Effect of Small Organic Cosolutes on Water Structure and Dynamics

5.C.3.4 Aqueous GdmCl solutions
Comparison with experimental data
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Figure 5.C.7: Dielectric spectra of aqueous GdmCl solutions for different solute concen-
trations. Solid lines: simulation data. Dotted lines: Multi-Debye fits to experimental
data. Panel a: reduced dielectric dispersion ε̄′r(ν). Panel b: dielectric absorption ε′′r (ν).
Experimental data from reference 179.
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Figure 5.C.8: Spectral decompositions of dielectric spectra (solid lines) of aqueous
GdmCl solutions into the contributions of water εW(ν) (dashed lines), cosolutes εC(ν)
(dotted lines), and the cosolute–water interaction terms εCW(ν) (dash-dotted lines).
Panel a: Different contributions to dielectric dispersion ε̄′r(ν). Panel b: Different contri-
butions to dielectric absorption ε′′r (ν).
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6 Coarse-grained Polarizable Force
Fields for Ionic Liquids

Note: The contents of this chapter have been previously published in similar
form:

J. Zeman, F. Uhlig, J. Smiatek and C. Holm, A coarse-grained polarizable
force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophos-
phate, Journal of Physics: Condensed Matter 29, 504004 (2017).

This is the Accepted Manuscript version of an article accepted for publica-
tion in Journal of Physics: Condensed Matter. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The Version of Record is available online at
doi.org/10.1088/1361-648X/aa99c4.

Note: The determination of electronic polarizabilities including all DFT
calculations was performed by F. Uhlig. Using these polarizabilities, the
entire force field parametrization and evaluation was performed by J. Zeman.

Even though room temperature ionic liquids (ILs) are known since the
early twentieth century,211 it took almost another century until their
technological potential was recognized. During the past two decades,
ILs gained a rapidly increasing attention in science and technolo-
gy. Applications range from lubrication, catalysis, organic synthe-
sis, or nanostructure assembly to energy storage, such as electro-
chemical devices or supercapacitors.212–214 Subsequently, in order to
investigate ILs in computer simulations, great efforts have been carried
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6 Coarse-grained Polarizable Force Fields for Ionic Liquids

out to develop adequate computational models. For classical molecu-
lar dynamics (MD) simulations, there exists a variety of atomically
resolved non-polarizable215–226 as well as polarizable227–230 force fields
(see refs. 231, 232 for a perspective on the topic). It has been shown
that in simulations of ILs, accounting for electronic polarizability,
i.e., the displacement of electronic charges against the correspond-
ing nuclei, plays a significant role for the correct reproduction of
dynamic properties such as translational or rotational diffusion, viscos-
ity, electrical conductivity, or dielectric properties.227,233,234 However,
the simulation of atomically resolved and explicitly polarizable models
is computationally very demanding, and thus, accessible length and
time scales are limited. A viable method to overcome those limits is
to account for electronic polarization by means of charge rescaling.
In this approach, the enhanced dielectric screening due to electron-
ic polarization is effectively included into the force field in terms of
reduced partial charges.216,231,235,236 According to ref. 235, the charge
rescaling factor for a particular substance is, at least approximately,
proportional to the inverse square root of the electronic permittivi-
ty εel, namely that part of the overall dielectric permittivity which
is due to inducible dipoles. Schmidt et al.236 have shown that this
charge rescaling comes out naturally from a best fit of partial all-
atom charges in order to account for the electronic potential map
that has been computed by ab-initio quantum mechanical calculations.
In general, this will result in partial charges that are not uniformly
scaled down, but according to the polarizability of the local environ-
ment, and hence go beyond the mean-field approach. Consequent-
ly, attempts have been made for constructing improved force fields
exploiting that knowledge.216,217,237,238 The magnitude of this polariza-
tion, however, generally depends on the composition of the investigat-
ed substance, which calls the general transferability of charge-reduced
models into question. Even though the different scaling factors of pure
ILs are often quite close, the polarization of pure ILs is not necessarily
comparable to the polarization of ILs in mixtures with other, possibly
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neutral components. The explicit treatment of electronic polarizability
is therefore likely to be indispensable in transferable force fields.239

In 2010, Roy et al.45 showed at the example of 1-butyl-3-
methylimidazolium hexafluorophosphate ([BMIm][PF6]) that many
thermodynamic key features of ILs can be reproduced by idealized
coarse-grained representations, where groups of atoms or even whole
molecules are merged into single interaction sites with effective pair
potentials. In order to improve the dynamic properties of their model,
Roy and Maroncelli employed reduced charges in the revised version of
their force field.240 Since then, their model became a quite popular
alternative to atomistic force field approaches in situations where
either the chemical details of specific ILs were of minor importance,
the dependence on such details was investigated, or the required
system sizes were prohibitively large for the use of atomically resolved
models.233,241–249

Here, we aim to combine the advantage that comes with a coarse-
grained representation in terms of computational feasibility with the
explicit treatment of electronic polarizability by means of Drude
oscillators. We present a coarse-grained polarizable force field for
[BMIm][PF6] developed on the basis of the model by Roy et al. in
its first version.45 When referring to the different models, we will use
the notation introduced in ref. 240 and will therefore denote the first45

and second240 versions of the model by Roy et al. as ILM1 and ILM2 in
the following. For our polarizable model, we adopt this notation and
will refer to our force field as the ILMpol model. We assess its applica-
bility for bulk IL simulations by examining important thermodynamic
properties and compare the results obtained from simulations of both
the reduced-charge ILM2 model and our polarizable ILMpol force field
to experimental data.
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6 Coarse-grained Polarizable Force Fields for Ionic Liquids

6.1 Methods

6.1.1 Force field parametrization

In general, the parametrization of an MD force field is a very challeng-
ing task. One has to find the correct molecular structure and map
charge and mass distributions onto suitable interaction sites in a
physically meaningful way, and parameters for effective intra- and
intermolecular potentials have to be determined. There exists a pletho-
ra of different ways to estimate such parameters from ab initio calcula-
tions or from empirical fits to experimental data.231,250,251 Here, we are
able to take a much simpler route, since the mapping of the charge and
mass distributions onto the coarse-grained interacion sites as well as the
parametrization of the intermolecular Lennard-Jones (LJ) interactions
is already available from the non-polarizable ILM1 model. Further-
more, since the model is completely rigid, there exist no intramolecular
potentials for bond lengths, angles, or dihedrals which would have to
be readjusted. The molecular structures of the BMIm+ cation and
PF−

6 anion are depicted in fig. 6.1a along with atomistic ball-and-stick
models (fig. 6.1b) and the corresponding coarse-grained representation
(fig. 6.1c).

Figure 6.1: a: Chemical structure of the PF−
6 anion (top) and BMIm+ cation (bottom).

b: Corresponding all-atom representations. c: Coarse-grained representations. The PF−
6

anion is represented by a single interaction site (PF6), whereas the BMIm+ cation is
partitioned into three interaction sites corresponding to the butyl side chain (BUT), the
imidazole ring (IMI), and the methyl group (MET).
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6.1 Methods

As a first step, we have to determine the molecular electronic polariz-
abilities and their distribution onto the individual interaction sites of
our model.a To this end, we performed quantum-chemical density
functional theory (DFT) calculations of single, atomically resolved
BMIm+ and PF−

6 ions in vacuum, since liquid phase calculations
would already implicitly include many-body effects. For the calcula-
tion of polarizabilities, we employed variational density function-
al perturbation theory.252,253 The obtained molecular polarizabili-
ties α~

~

mol are tensorial quantities. According to ref. 254, the isotropic
molecular polarizability αmol = 1

3 Tr(α~

~

mol) scales with the molecu-
lar volume V el

mol of the respective electron “cloud”. By determining
the partial volumes V el

i of the individual interaction sites according
to Laidig and Bader’s atoms-in-molecules analysis,255 we exploit this
volumetric correlation to determine isotropic per-site polarizabilities αi

as
αi = αmol

V el
i

V el
mol

. (6.1)

Since V el
mol =

∑
i V

el
i , the isotropic molecular polarizability is preserved.

This method is also described in more detail in the framework of a
general coarse-grained model development strategy.72 The resulting
values of partial volumes and isotropic per-site polarizabilities are listed
in table 6.1.

Interaction site Polarizability α (Å3)
BUT 7.3422
IMI 5.8585

MET 2.0439
PF6 5.1825

Table 6.1: Electronic per-site polarizabilities α obtained from gas-phase DFT calcula-
tions.

Now that we obtained the required per-site polarizabilities, we have to
decide how to incorporate them in our model. Even though electronic

aNote that all DFT calculations (and the extraction of polarizabilities thereof)
were performed by Frank Uhlig.
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polarizability can generally lead to the induction of electric multipoles,
its treatment in polarizable MD simulations is usually restricted to
inducible dipoles. The most widely used methods to include polarizabil-
ity in MD simulations are fluctuating charges, inducible point dipoles,
or Drude oscillators (see ref. 256 for a detailed review of the topic).
The fluctuating charge model, where partial charges are redistributed
within molecules in response to the local electric field, is not applicable
here. The redistribution of charges in planar molecules only allows for
in-plane polarization, which is incorrect for the coarse-grained three-
site representation of the BMIm+ cation. Even more importantly, for
species represented only by a single point charge such as monoatomic
ions or, in this case, the coarse-grained PF−

6 anion, inducing a dipole
moment with this approach is simply impossible. In the inducible point
dipoles method, interaction sites possess point dipoles in addition to
their point charges. During the simulation, the strength and orienta-
tion of these dipoles has to be determined self-consistently accord-
ing to their respective polarizabilities in response to the local electric
field. However, this requires an electrostatics solver capable of comput-
ing charge-dipole and dipole-dipole interactions. For this work, we
therefore opted for the third method. Instead of point dipoles, this
method adds Drude oscillators to the interaction sites. A Drude oscilla-
tor, also referred to as “charges on a spring”, consists of two particles
carrying point charges +qd and −qd and interacting via a harmonic
potential

Vd (rd) =
1

2
kdr

2
d , (6.2)

where rd denotes the relative displacement of the particles. The force
constant kd is related to the respective isotropic per-site polarizability α
by

kd =
q2d
α

. (6.3)

In principle, kd should be chosen as high as numerical limits allow,
since this minimizes the average displacement rd and lets the Drude
oscillator approach the limit of a point dipole. However, if the position
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of Drude particles is propagated by Newton’s equations of motion, this
imposes strict limits on the simulation time step, and therefore on the
entire time scale accessible to the simulation. This means that for any
given polarizability α, one has to choose a suitable value for kd (or
for qd, depending on the implementation). Here, we choose a value
of kd = 4184 kJ/mol/Å2 since this value has been proven to yield both
accurate results and reliable numerical stability in other polarizable
force fields before.257–259 In an actual implementation, instead of adding
two Drude particles to each interaction site, the charge of one of the
particles is added to the partial charge of the interaction site, and
the remaining Drude particle is attached to the site via the harmonic
potential Vd according to eq. (6.2). We assign the negative charge −qd
to the Drude particle, so that the resulting charge qc of an interaction
site with partial charge q is given as qc = q + qd. The subscript c
stands for “core”, and we will use this term to distinguish between bare
interaction sites (i.e., cores) and their corresponding Drude particles
in the remainder of the manuscript.

Figure 6.2: Illustration of the ILMpol model development. We use the geometry of the
ILM1 model (left) and couple Drude particles to the interaction sites (right). Drude
particles are depicted as small yellow beads connected to the bare interaction sites
(“cores”, small blue and red beads) by springs. The displacement of Drude particles from
the corresponding cores is strongly exaggerated for illustration purposes. Intramolecular
bonds in the cation are depicted as blue lines between cores. For technical reasons, we
added a third bond between the BUT and MET interaction sites (see section 6.1.2 for
a detailed explanation).
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The general form of the potential energy Upot of the force field is given
as

Upot = Ubond + ULJ + Uelec + Uself . (6.4)

The first term on the right hand side represents intramolecular contri-
butions from bonds, angles, and dihedrals. Since our model is
completely rigid, it effectively does not require any bonded terms, and
thus, Ubond ≡ 0. The second term describes the contribution of short-
range van-der-Waals interactions approximated by the common “12–6”
LJ potential of the form

ULJ =
∑
i

∑
j>i

4εLJij

( σLJ
ij

|rj − ri|

)12

−

(
σLJ
ij

|rj − ri|

)6
 (6.5)

where the double sum runs over all unique pairs of core interaction
sites (i, j), i < j in the system with corresponding positions (ri, rj).
Note, however, that in the ILMpol model intramolecular LJ interactions
are excluded from eq. (6.5), and the same applies to the original ILM1
and ILM2 models. The parameters εLJij and σLJ

ij correspond to the
depth of the potential well and the equilibrium distance, respectively.
The third term in eq. (6.4) incorporates all electrostatic interactions
between charges of different (!) interaction sites, accounting for core-
core, core-Drude, and Drude-Drude interactions. It is given as

Uelec =
1

4πε0

∑
i

∑
j>i

(
qc,iqc,j

|rc,j − rc,i|
+

qc,iqd,j
|rd,j − rc,i|

+
qd,iqc,j

|rc,j − rd,i|
+

qd,iqd,j
|rd,j − rd,i|

)
, (6.6)

where ε0 is the permittivity of free space, and the double sum again
runs over all unique pairs (i, j), i < j of interaction sites. Charges and
positions are denoted as q and r, respectively, and the subscripts c
and d are used to discriminate between corresponding core and
Drude particles. Unfortunately, incorporating electronic polarizabili-
ty bears the possibility of a so-called polarization catastrophe.260 This
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phenomenon occurs also for Drude oscillators when they are spatially
too close, causing their interaction energy to diverge.261 Polarization
catastrophes are therefore most likely to occur between neighboring
sites within the same molecule. They can be avoided by introducing an
artificial damping term to the electrostatic interactions between Drude
oscillators262 which is usually referred to as Thole screening.260 The
electrostatic interaction energy between the core and Drude particles
of two sites i and j with corresponding polarizabilities αi and αj then
reads

UThole =
q{c,d},i q{c,d},j

4πε0
∣∣r{c,d},j − r{c,d},i

∣∣
[
1 +

(
r̃ij
2

)
exp (−r̃ij)

]
(6.7)

with r̃ij = a

∣∣r{c,d},j − r{c,d},i
∣∣

(αiαj)
1
6

, (6.8)

where the notation {c, d} indicates that all inter-site combinations of
core-core, core-Drude, and Drude-Drude interactions are affected. The
constant a is an empirical parameter we set to a = 2.0, as this value
has been used successfully before.230 Consequently, for intramolecu-
lar interactions, the last term of eq. (6.6) is replaced by this damped
interaction. Finally, the last addend in eq. (6.4) accounts for the
interaction of cores with their corresponding Drude particles within
the same interaction site according to eq. (6.2):

Uself =
∑
i

1

2
kd |rd,i − rc,i|2 (6.9)

Unfortunately, simply adding Drude particles to a non-polarizable
model does not directly yield a correct polarizable force field, so we
had to re-parametrize the intermolecular potentials. Using reduced
charges in an explicitly polarizable model is hard to justify, since this
would mean to account for electronic polarizability twice. Further-
more, due to the issues with charge-reduced models discussed in the
introduction, we deliberatly refrain from such practice. Therefore,
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as already mentioned above, we develop the ILMpol force field based
on the ILM1 model, where no charge reduction had been performed.
We successively match our force field to experimental data in terms
of density and translational diffusion coefficient by adjusting the LJ
interaction parameters. Since the additional dipolar interaction of the
Drude oscillators does not fully counteract the strong Coulomb forces
excerted by the full partial charges, the depth of the LJ potentials εLJ

has to be rescaled accordingly. However, the required scaling factors
depend on the particular polarizability αi of the individual interac-
tion sites. To account for this, we employ the polarizability-dependent
scaling method proposed in ref. 263, where the LJ parameter εLJi of
each interacion site is adjusted according to

εLJi,scaled = εLJi
λαmax +∆αi

αmax + λ∆αi
, (6.10)

where αmax is the largest per-site polarizability (here: αmax = αBUT),
and ∆αi = αmax − αi. The parameter λ can then be used to fit the
model against experimental data. For the particle diameters σLJ

i such
a technique is not justified, since they account for the strength and
extent of the Pauli repulsion, which has no direct relation to electronic
polarizability. Thus, the σLJ parameters are adjusted by a uniform
factor.

6.1.2 Computational details

All gas-phase DFT calculations were performed with the CP2K264

software, using aug-TZV2P basis sets265 and an auxiliary plane-wave
basis set with a kinetic energy cut-off of 400Ry together with the
revPBE functional.266 The atomically resolved molecular structures
entering the DFT calculations were generated from the widely used
CL&P force field,223 which we validated against ab initio molecular
dynamics calculations before, where the decoupling of electrostatic
interactions between periodic inmages was performed using density-
derived atomic point charges.267
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For the MD simulations, we used a modified version of the software
package GROMACS 2016.3.105–111 For the simulations reported in,45,240

Roy et al. used the software package DL_POLY_2,268 and rigid body
equations of motion were employed to retain the geometry of the
BMIm+ cation. The way constraints on the melocular geometry are
handled in GROMACS is somewhat different, though, since it does
not provide methods for the integration of rigid body equations of
motion. Instead, it employs constraint solvers to account for fixed
bond lengths and angles. We employ the LINCS algorithm184,269 with
an additional bond between the BUT and MET interaction sites to
constrain the BUT-IMI-MET angle as illustrated in fig. 6.2. In every
time step of a simulation, GROMACS first integrates the equations of
motion of the unconstrained system, and corrects molecular geometries
afterwards by applying the constraint solver. For the simulation of a
coarse-grained model, where the integration time step can be chosen
comparatively large, this has important consequences: Due to the large
time step, the relative positions of a molecule’s interaction sites may
deviate significantly from its true geometry after an unconstrained step,
and the corrections performed by the constraint solver are therefore
relatively large. The constraint solver, however, only has information
concerning the molecular geometry, but not about the actual physics
of the system. Thus, the resulting relative arrangement of molecules
can slightly deviate from the true configuration one would obtain by
integrating rigid body equations of motion. In our simulations, such
deviations manifested themselves as a small but noticable jitter in the
short-time regime of molecular center of mass mean-square displace-
ments (MSDs). We successfully resolved this issue by adding strong
harmonic interactions to all bonds of the BMIm+ cation, having the
effect that the molecular geometry is preserved with high accuracy
during an unconstrained simulation step and the corrections applied
by the linear constraint solver become negligible. Due to the above
reasons, the bonded parameters of our polarizable ILMpol force field
listed in table 6.3 are also applied to the ILM2 model in our simula-
tions. Note that these bonded interactions do not contribute to the
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potential energy of the system, so that the term Ubond in eq. (6.4)
remains zero.

All simulations were conducted in the NpT ensemble (unless otherwise
stated) at p = 1 bar under 3d-periodic boundary conditions with
temperature and pressure controlled by a Nosé-Hoover thermo-
stat82,94,95 and Parrinello-Rahman barostat96,270 with relaxation
times τT = 2.0ps and τp = 5.0ps, respectively. The compress-
ibility parameter of the barostat was left at its default value
of 4.5 · 10−5 bar−1. Equations of motion were integrated accord-
ing to a leapfrog scheme85 with a time step of δt = 5 fs, with the
system’s center-of-mass motion subtracted every 40 time steps. Short-
range van-der-Waals interactions were computed with a real-space
cut-off of rvdW = 1.6nm and the potential shifted to zero at the
cut-off. Effective pairwise LJ parameters were determined accord-
ing to Lorentz-Berthelot combination rules. Long-range correc-
tions were applied for energy and pressure, and neighbor lists
were updated at least every 20 time steps according to a Verlet
scheme271 with a buffer tolerance of 0.005 kJ/mol/ps. Short- and
long-range electrostatic interactions were computed using the smooth
Particle-Mesh Ewald (PME) method86 with a short-range cutoff
of rCoulomb = rvdW = 1.6nm, an interpolation order of 4, and a relative
convergence tolerance of 10−5. In simulations of the ILMpol model,
the position of the (massless) Drude particles were determined self-
consistently employing a steepest-descent force minimization procedure
with an initial step size of 0.01nm, a residual force tolerance
of Fmax = 0.1 kJ/mol/nm and a maximum number of 20 iterations.
Note that throughout all simulations, the self-consistent minimization
always converged after less than 20 iterations. In these simulations,
the intramolecular electrostatic interactions between Drude particles
are screened according to eq. (6.7) with a Thole parameter a = 2.
Bond lengths were constrained to their equilibrium lengths by means
of a sixth-order linear constraint solver (LINCS)184,269 with a single
iteration per time step. Energies were computed in every time step
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Site m σLJ εLJ qc qd α

BUT 57.12 5.17 0.824 4.9369 −4.70 7.3422
IMI 67.07 4.50 1.152 4.7608 −4.20 5.8585

MET 15.04 3.50 0.162 2.6823 −2.48 2.0439

PF6 144.96 5.20 2.120 2.9500 −3.95 5.1825

Table 6.2: Non-bonded force field parameters of the ILMpol model. The values in each
row correspond to the respective interaction site in the first column. The listed values
(units) are: Mass m (u), LJ parameters σLJ (Å) and εLJ (kJ/mol), charges qc (e)
and qd (e) of core and corresponding Drude interaction sites, respectively, and isotropic
polarizability α (Å3). Effective pairwise LJ parameters are determined according to
Lorentz-Berthelot combination rules as σLJ

ij = 1
2

(
σLJ
i + σLJ

j

)
and εLJ

ij =
√

εLJ
i εLJ

j . All
values given for qd correspond to a coupling constant in the core-Drude potential (6.2)
of kd = 4184 kJ/mol/Å2. Intramolecular Thole screening (6.7) is performed with the
screening parameter a = 2.0.

and written to disk every picosecond along with trajectories of particle
positions unless otherwise stated.

During the parametrization process, systems comprising 343 ion pairs
(as used previously45) were simulated at a temperature of 350K
for 50ns following an equilibration run of 10ns. First, the εLJ parame-
ters were successively adjusted to match the experimental translational
diffusion coefficients according to eq. (6.10), for which a scaling parame-
ter of λ = 0.3 yielded the best results. Thereafter, all σLJ parameters
were uniformly scaled to match the experimental density. Since for the
latter, a scaling factor of 0.9963 was sufficient, the impact on diffusion
coefficients was negligible and no further adjustment of εLJ parameters
was necessary. The final parameters of the ILMpol force field are listed
in tables 6.2 and 6.3.

For the assessment of the ILMpol force field and its comparison to
the ILM2 model, simulations of systems containing 500 ion pairs were
conducted at different temperatures ranging from 300K to 450K for
both models. Equilibration times range from 50ns (450K) to 250ns
(300K) followed by 500ns production runs (up to 2µs for the ILM2
model).
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Sites r0 kb

BUT–IMI 3.821 297 16 10 000
MET–IMI 2.707 601 89 10 000
BUT–MET 5.569 155 41 10 000

Table 6.3: Bonded force field parameters of the ILMpol and ILM2 models. The
first column lists the interaction sites involved in the respective bond. The
listed values (units) are: Equilibrium bond lengths r0 (Å) and corresponding force
constants kb (kJ/mol/Å2). Interactions are computed according to a harmonic potential
of the form Ubond(r) =

1
2
kb(r − r0)

2. Note that all bonded interactions exist for techni-
cal reasons only and do not contribute to potential energy, since bonds are constrained
to their equilibrium positions.

6.2 Results and Discussion

In the following, we assess the performance of our newly developed
ILMpol force field with respect to its capability to reproduce several
thermodynamic quantities, covering both static and dynamic observ-
ables. Since the parametrization of the force field was performed
exclusively at a temperature of 350K, the following analyses are
carried out at a broader temperature range in order to assess the
general applicability of the model. The observables we analyzed cover
mass density, radial distribution functions, translational and rotation-
al diffusion coefficients, enthalpy of vaporization, shear viscosity, and
electrical conductivity. We compare our results to the charge-reduced,
i.e., implicitly polarized, ILM2 model by Roy and Maroncelli240 and,
whenever available, to experimental data, or alternatively, to results
from simulations of the all-atom force field (RTIL-FF) by Sambasivarao
and Acevedo.215

6.2.1 Mass density

Temperature-dependent mass densities obtained from simulations of
the ILMpol (red dots) and ILM2 (blue triangles) models are depicted
in fig. 6.3 together with fits to experimental data (dashed and dotted
lines).272,273
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Figure 6.3: Temperature-dependent mass density ρ [kg/m3] of [BMIm][PF6] for the
ILM2 (blue triangles) and ILMpol (red dots) models. Statistical uncertainties are below
symbol size. Black dashed and dotted lines are linear fits to experimental data with
parameters from Tokuda et al.272 and Machida et al.,273 respectively.

While both models reproduce experimental densities very well, the
ILMpol model predicts a slightly stronger temperature dependence
than the ILM2 model. Even though for all investigated temperatures
the difference is smaller than the discrepancy between experimental
measurements, we will see that this small difference bears consequences
for the performance of the ILMpol model at low temperatures. Since
the mass density provides only very limited insight on the validity of
the force field, its correct prediction should rather be considered as a
fundamental prerequisite.

6.2.2 Radial distribution functions

In order to investigate the possible impact of explicit polarizability on
the internal structure of the IL, we computed center-of-mass radial
distribution functions (RDFs) gAC, gCC and gAA between and among
anions (A) and cations (C). Figure 6.4 shows RDFs obtained from
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simulations of the ILMpol and ILM2 models (blue and red lines, respec-
tively) at T = 350K. To get an estimate of how close the internal
structures of the coarse-grained models resemble those in an atomistic
simulation, we also calculated RDFs from simulations using the full-
charge all-atom RTIL-FF (dashed black lines). When comparing the
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Figure 6.4: Radial center-of-mass distribution functions (RDFs) between anions and
cations (A-C, top panel) and among cations (C-C, second panel) as well as among
anions (A-A, bottom panel) at T = 350K. Blue lines represent RDFs obtained from
simulations of the ILMpol model, whereas red lines are results from the ILM2 force field.
RDFs obtained from all-atom simulations using the full-charge RTIL-FF215 are shown
for comparison and are indicated by black dashed lines.

different gAC(r) RDFs (top panel), the first and most obvious observa-
tion is that compared to the all-atom RDF, the amplitudes of the first
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peaks are much higher in case of the coarse-grained models. This
is a typical coarse-graining effect originating from the concentration
of charges onto fewer interaction sites combined with the rigidity of
the models, which is also responsible for the small sidelobes which are
smeared-out in the atomistic RDF. The larger amplitude of the ILMpol
model’s first peak in gAC(r) compared to the ILM2 model is likely
due to its full charges, since the inducible dipole interactions cannot
fully screen the electrostatic forces at short distance. Radial distribu-
tion functions are related to the distance-dependent potential of mean
force wXY (r) between pairs of the considered species (X,Y ) accord-
ing to gXY (r) = exp(−wXY /(kBT )). The higher first peak in gAC(r)
therefore indicates that ion pairs exhibit a stronger direct interaction
in the ILMpol force field compared to the ILM2 model. However, the
difference in depth of the respective potentials of mean force amounts
to as little as ≈0.1 kBT , which is rather small. The whole anion-cation
RDF of the ILMpol model is slightly shifted to lower distances, but
the location of its departure from zero coincides with the the one of
the RTIL-FF, and also the relative distances between subsequent peaks
seem to be sufficiently well reproduced. The C-C and A-A RDFs show
a similar shift as well as a slightly higher first peak in gAA(r). Overall,
since we are dealing with a coarse-grained model, we consider the differ-
ences in the RDFs between the models as acceptable.

6.2.3 Enthalpy of vaporization

As discussed in the description of the force field parametrization, the
incorporation of explicit electronic polarizability into a pre-existing
force field required a quite significant scaling of the interaction parame-
ters. In order to investigate possible differences in energetics in the
bulk and the gas phase between the implicitly polarized ILM2 and
the explicitly polarizable ILMpol models, we computed temperature-
dependent enthalpies of vaporization from corresponding gas- and
liquid-phase simulations according to ref. 274. The enthalpy of
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vaporization ∆Hvap(T ) at a given temperature T is defined as the differ-
ence of the enthalpies Hgas(T ) in the gas and H liq(T ) in the the liquid
phase. It corresponds to the energy required to transform a certain
quantity of a liquid substance into a gas. In the gas phase, aprotic ILs
are known to predominantly exist as ion pairs.275 Here, we therefore
compute the enthalpies of vaporization per ion pair. The enthalpies
in the gas or liquid phase are defined as the sum of the corresponding
system’s total internal energy 〈Etot〉 and the work p〈V 〉 that has to be
done against the ambient pressure p. By virtue of the equipartition
theorem, the average kinetic energies 〈Ekin〉 per ion pair are the same
in the liquid and the gas phase at the same temperature T , so that the
enthalpy of vaporization per ion pair can be written as

∆Hvap = 〈Egas
pot〉 − 〈Eliq

pot〉+ p
(
〈V gas〉 − 〈V liq〉

)
(6.11)

with the average potential energies per ion pair 〈Egas
pot〉 and 〈Eliq

pot〉 in
the gas and liquid phase, respectively. Assuming 〈V gas〉 � 〈V liq〉 and
using the ideal gas approximation pV gas = kBT , one obtains

∆Hvap (T ) = kBT + 〈Egas
pot〉(T )− 〈Eliq

pot〉(T ) , (6.12)

where kB is the Boltzmann constant and T the temperature of the
simulated system. For the gas phase calculations, a single ion pair
was placed in a cubic box with an edge length much larger than the
short-range interaction cut-off. Simulations were carried out in the
NV T ensemble, where temperature was controlled by a velocity rescal-
ing thermostat including a stochastic term.276 The change of thermo-
stat is motivated by the fact that the Nosé-Hoover thermostat may
fail to reproduce the correct thermodynamic ensemble in systems with
few degrees of freedom.277,278 The system’s translational center-of-mass
motion was subtracted in every time step to obtain a correct canonical
phase space sampling. Long-range dispersion corrections for energy and
pressure were switched off and only short-range electrostatic interac-
tions were taken into account. Since we want to compare the models
“as is”, energy corrections due to different polarization in the gas and
liquid phase112 have not been included for the ILM2 model.
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Note that for all investigated temperatures, there exists a discrepancy
of approximately 2 kBT between our values of ∆Hvap obtained for the
ILM2 model and those reported in.240 The deviations are due to a
slightly inaccurate thermalization of the gas-phase ion pair caused by
the Nosé-Hoover thermostat without center-of-mass motion removalb
in the simulations of.240

The results obtained from simulations of the ILM2 and ILMpol model
at temperatures ranging from 300K to 450K are depicted in fig. 6.5
along with experimental data and results from the all-atom RTIL-FF.
Apparently, the ILM2 model seems to reproduce experimental data
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Figure 6.5: Enthalpy of vaporization for the ILMpol model (red dots). Data obtained
from simulations of the ILM2 model are shown for comparison (blue triangles). Experi-
mental data from Zaitsau et al.279 and values calculated by Paulechka et al.280 are
indicated by a black square and diamond symbols, respectively. Since experimental
data are rather sparse, results from all-atom simulations employing the RTIL-FF (green
circles) are shown in addition. Uncertainties in the simulation results are in the order
of the symbol size and therefore not shown. The dotted lines are linear fits to the
corresponding results.

quite well, while the results of the ILMpol model lie about 7 kJ/mol (5%)
below. The dependences on temperature of the coarse-grained models

binformation from private correspondence with Mark Maroncelli and Durba Roy
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Model ELJ EC EP Epot

ILM2

Egas 1 −176 −175

Eliq −55 −250 −305
∆E 56 74 130

∆E/∆Epot 43% 57% 100%

ILMpol

Egas 25 −395 42 −328

Eliq −11 −453 13 −451
∆E 36 58 29 123

∆E/∆Epot 29% 48% 23% 100%

Table 6.4: Different contributions to the potential energies per ion pair of the ILM2 and
ILMpol models in the liquid (Eliq

pot) and in the gas phase (Egas
pot) at T = 350K. Listed

contributions are Lennard-Jones (ELJ), Coulomb (EC), and polarization (EP) energies.
Energies are given in kJ/mol and rounded to the nearest integer.

are almost identical, whereas the all-atom RTIL-FF yields much larger
values and exhibits a slightly more negative slope. However, the
comparison to the experiment has to be taken with a grain of salt since
the values indicated by black diamonds were obtained from a combina-
tion of experimental data and theoretical estimates (see280 for details)
and error bars are rather large. Nevertheless, we use the opportunity to
investigate the origin of the observed differences in ∆Hvap between the
ILM2 and ILMpol models by examining the contributions of different
energy components, which are listed in table 6.4 for T = 350K. In the
case of the ILM2 model, due to its rescaled charges, the contribution
of the Coulomb energy ∆EC to the difference ∆Epot = Egas

pot − Eliq
pot

is comparatively large (57%), whereas for the ILMpol model, ∆EC

accounts for 48% only. Also the contribution of the Lennard-Jones
interaction energy ∆ELJ to ∆Epot is comparatively small for the ILMpol
model (29% vs 43%). The large remaining part is therefore due to the
high polarization energy in the gas state, which accounts for 23% of
the change in configurational energy. This observation is typical for
ILs in general, since their polarization in the gas phase is known to be
larger72 than in the condensed state.237,238,281 Naturally, the implicitly
polarized ILM2 model cannot reproduce this behavior by design.
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6.2.4 Translational diffusion coefficients

To study the dynamics of our model, we calculated temperature-
dependent translational diffusion coefficients D of the BMIm+ cation
and PF−

6 anion according to the Einstein relation

lim
t→∞

〈
∆r 2

com(t)
〉
= 6Dt+ const (6.13)

from linear regressions of the molecular center-of-mass mean square
displacements 〈

∆r 2
com(t)

〉
=
〈
[rcom(t)− rcom(0)]

2
〉

(6.14)

with time-dependent center-of-mass positions rcom(t) and the
average 〈·〉 taken over all time origins and molecules of the consid-
ered species in the system. Figure 6.6 shows a comparison of the
results obtained from simulations of the ILMpol and ILM2 models to
experimental data.272 Both models reproduce the experimental trend
for temperatures above 350K very well. The order between cation and
anion diffusion coefficients (as measured experimentally) is flipped in
the case of the ILMpol model at temperatures T ≥ 400K. Neverthe-
less, the values lie within the experimental error estimate. At lower
temperatures, the diffusion coefficients obtained from the ILM2 model
lie slightly below the experiment, but still within the error. Unfortu-
nately, the ILMpol model exhibited potentially glass-like behavior for
temperatures of 325K and 300K since they showed a slow but constant
negative drift in potential energy. The corresponding data are therefore
omitted since the model can be considered as strictly valid only for
temperatures T ≥ 350K. Glassy behavior has also been observed
for other IL models at temperatures around 300K before,285,286 and
coarse-grained models are generally likely to overestimate freezing
points due to their reduced degrees of freedom. Coarse-grained simula-
tions of pure ILs are often performed at elevated temperatures of
about 400K,243,244,247,249,286–288 so that this deficiency of the ILMpol
model should not be of practical relevance. Moreover, our intention is
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Figure 6.6: Temperature-dependent translational self-diffusion coeffi-
cients D [10−5 cm2/s] for BMIm+ (blue symbols) and PF−

6 (orange symbols).
Results obtained from simulations of the ILMpol model are depicted as circles, and
corresponding results of the ILM2 model are shown as triangles. Statistical errors
of the simulation data are within symbol size. Solid lines in corresponding colors
are fits of the Vogel-Fulcher-Tamman (VFT) equation282–284 for diffusion, which is
of the form D = D0 exp[−b/(T − T0)], to experimental data. Transparent areas in
corresponding colors indicate the uncertainties of the fits. Fit parameters and error
estimates are taken from.272

to use the model to study polarization effects in solutions in the future,
where the low-temperature behavior of the pure IL might be of minor
importance.

6.2.5 Rotational diffusion coefficients

We further compare the dynamics of the two models in terms of
rotational diffusion coefficients of the BMIm+ cation about its principal
axes of inertia. The axes correnspond to the definition in,45,240 where
the index x denotes the out-of-plane axis, z represents the axis with the
lowest moment of inertia, and the index y is the remaining axis perpen-
dicular to the others. Rotational diffusion coefficients Di, i ∈ {x, y, z}
were computed from integrals of the corresponding angular velocity
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autocorrelation functions according to

Di = lim
t→∞

t∫
0

〈ωi(0)ωi(τ)〉 dτ , (6.15)

where the angular velocities ωi were determined from projections of
the cation’s total angular velocity ω onto the respective axes of inertia.
Autocorrelations of the angular velocities about the principal axes
of all cations in the system were computed with a temporal resolu-
tion of 5 fs (1 simulation time step) over a period of more than 40ns
(223 time steps) and averaged before evaluating the integral according
to eq. (6.15). The resulting diffusion coefficients are shown in fig. 6.7.
Since the diffusion coeffients Dx and Dy almost conicide regardless of
temperature, the latter is ommited for clarity. While the rotation-
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Figure 6.7: Temperature-dependent rotational diffusion coefficients about the principal
axes of inertia of the BMIm+ cation obtained from simulations of the ILM2 (red and
black triangles) and ILMpol model (blue and orange dots). Diffusion coefficients of
rotations about the y-axis coincide with those about the x-axis and are omitted for
clarity.

al dynamics of both models about the “slow axes” x and y perfectly
coincide for both the ILM2 and ILMpol model, the fast rotation about
the z-axis is slightly slowed down in case of the ILMpol model. This
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indicates a subtle stabilization of rotational dynamics both due to the
stronger Coulomb interactions and the additional dipolar interactions.
Surprisingly, the glassy behavior observed at low temperatures had no
influence on rotational dynamics.

6.2.6 Shear viscosity

In contrast to all other observables, viscosities were calculated from
simulations in the NV T ensemble with box volumes V set to the
average volumes of corresponding NpT simulations. The shear viscos-
ity η was then determined from autocorrelations of the fluctating
pressure tensor’s off-diagonal elements Pαβ

81 according to

η(T ) =
V

kBT
lim
t→∞

t∫
0

〈Pαβ(0)Pαβ(τ)〉 dτ (6.16)

and is depicted in fig. 6.8 for both the ILMpol and ILM2 model. The
results from both force fields very much conicide for temperatures down
to 350K and follow the experimental trend quite well. Again, as it was
the case for translational diffusion coefficients, data for lower temper-
atures are not shown.

6.2.7 Electrical conductivity

Bearing in mind the potential use of ILs as a replacement for (or as
additives to) conventional electrolytes in energy storage applications,
the correct prediction of their electrical conductivity from simulations
is important. In dilute electrolyte solutions where ion pairing may
be of minor importance, it is often possible to estimate the electrical
conductivities from the translational diffusion coefficients of cations
and anions. In pure ILs, however, the motions of different ionic species
are highly correlated. We therefore calculated electrical conductivities
by means of the so-called “Einstein-Helfand” method,98,289 where such
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Figure 6.8: Shear viscosity for the ILMpol model (red dots). Data obtained from
simulations of the ILM2 model are shown for comparison (blue triangles). The solid
black line is a fit of the form η = η0 exp[−b/(T − T0)] to experimental data. The
transparent gray area indicates the uncertainty of the fit. Fit parameters and error
estimates are taken from.272

correlation effects are taken into account. This method exploits the
relation of the electrical conductivity σ to the MSD of the itinerant
dipole moment’s translational component M trans in the long-time limit,
which is given as

lim
t→∞

〈
∆M trans(t)

2
〉
= 2

〈
M2

trans

〉
+ 6V kBT σ t . (6.17)

The electrical conductivity is then determined from a linear least-
squares regression to the long-term linear regime of

〈
∆M trans(t)

2
〉
.

In simulations with periodic boundary conditions, however, a direct
measurement of M trans is not possible.98,180 Instead, we directly
compute its MSD from autocorrelations of the fluctuating cumulative
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translational current J trans as

〈
∆M tot(t)

2
〉
=2t

t∫
0

〈J trans(0)J trans(τ)〉 dτ

− 2

t∫
0

τ 〈J trans(0)J trans(τ)〉 dτ . (6.18)

Cumulative currents were computed during runtime according
to J trans =

∑
i qivcom,i, where the index i runs over all molecules in

the system, and qi and vcom,i represent the corresponding molecular net
charge and center-of-mass velocity, respectively. For the calculations of
the correlation functions, the reduced charges of the ILM2 model were
scaled up to unity. In the case of the ILMpol model, conductivities
were calculated only for four different temperatures due to the long
required simulation times of more than 1µs. The obtained values are
shown in fig. 6.9 together with a fit to experimental data.272 While both
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Figure 6.9: Electrical conductivities for the ILMpol (red dots) and ILM2 model (blue
triangles). The black line is a fit to experimental data of Tokuda et al..272 The gray
area indicates the uncertainty of the fit.

models reproduce the experimental trend, they slightly overestimate
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experimental values. Except for the measurement of the ILMpol model
at 325K, the discrepancy is very small for all investigated tempera-
tures.

6.3 Conclusion and Outlook

Starting from a coarse-grained force field that contained the effects
of polarization only implicitly through charge scaling, we developed an
explictly dipole-polarizable model for the ionic liquid [BMIm][PF6] and
assessed its capabilities to predict typical static and dynamic quanti-
ties investigated in molecular simulations. Our results demonstrate its
applicability in simulations of pure ionic liquids in a typically relevant
temperature range. With respect to implicitly polarized models, we
expect our force field to be an improvement in terms of transferability,
and expect a superior performance in situations where the incorpora-
tion of explicit electronic polarizability might be crucial. We think here
about cases where the ionic liquid experiences interfaces of different
dielectric nature, like a metal electrode or a vapor interface. Moreover,
ILs in mixtures and with highly charged inclusions might benefit from
the explicit treatment of polarization. Furthermore, another benefit of
the coarse-grained nature of our model is that we are able to distinguish
the effects of polarization from other effects, by being able to turn the
explicit dipole-polarization on or off. The low computational complex-
ity of our model will enable us to make larger parameter studies in this
respect which will be the topic of future investigations.
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7 Ionic Screening in Bulk and
under Confinement

Note: Parts of the contents of this chapter have been previously published
in similar form as

J. Zeman, S. Kondrat and C. Holm, Bulk ionic screening lengths from
extremely large-scale molecular dynamics simulations, Chemical Communi-
cations 56, 15635–15638 (2020)

under a Creative Commons CC-BY-NC license, and further parts have been
reproduced from

J. Zeman, S. Kondrat and C. Holm, Ionic screening in bulk and under confine-
ment, The Journal of Chemical Physics 155, 204501 (2021).

with the permission of AIP Publishing.

During the past decades, room-temperature ionic liquids (ILs) have
gained an increasingly important role in science and technology, with
applications ranging from organic synthesis, catalysis, and analytical
chemistry to energy storage devices such as electrochemical batter-
ies or supercapacitors.212–214,290 Due to the vast number of cationic
and anionic species, solvents, or additives available for combination,
the physicochemical properties of pure ILs and IL-based solutions are
highly tunable.152,214,291–293 The prediction and targeted adjustment
of these properties require a fundamental understanding of the intra-
and intermolecular mechanisms governing the internal structure and
dynamics of the investigated substances.

Recent experiments have shown that the repulsive force between
atomically flat, like-charged surfaces confining room-temperature ionic
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liquids or concentrated electrolytes exhibits an anomalously large decay
length.46–51 Termed underscreening, this effect was suggested to be a
property of bulk electrolytes.52 However, its exact origin is still under
debate so that the experimental measurements constitute an important
but not yet understood53 phenomenon. Understanding the origin of
these findings should be especially important for the design of devices
where concentrated electrolytes or ILs are strongly confined between
highly charged surfaces, as, e.g., in modern supercapacitors.

In the reported surface force balance (SFB) measurements, the
electrolyte or IL was confined between two atomically flat, charged
surfaces in a cross-cylinder arrangement (see, e.g., ref. 50). The decay
length of electrostatic interactions between the surfaces, and thus,
across the electrolyte, was obtained from the decay of the distance-
dependent force acting between the charged surfaces. Regardless of
ionic species and concentrations, the reported force-distance curves
exhibited a short-ranged oscillatory decay up to distances of a few
nanometers, followed by a long-ranged monotonic exponential decay.
In the high-concentration regime, the long-range decay lengths were
generally found to increase with electrolyte concentration.46–51 Since
the asymptotic decay of both charge and density correlations around
objects immersed in an electrolyte solution is independent of the size of
the objects,59,68 ion-ion interactions within a bulk electrolyte solution
should, therefore, exhibit the same asymptotic decay length.

Notwithstanding, in this work, we show by means of large-scale molecu-
lar dynamics simulations that the underscreening effect is unlikely
to be a feature of bulk electrolytes. Our results yield two screening
lengths satisfying distinct scaling relations. However, with an accura-
cy of 10−5 kBT in interionic potentials of mean force, we find no signs
of underscreening, suggesting that other than bulk effects might be at
play in the experiments. Furthermore, we corroborate these findings
by expanding our investigations to ionic liquids under confinement.
Unlike in bulk systems, where screening lengths are computed from
the decay of interionic potentials of mean force (PMFs), we extract
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such data in confined systems from cumulative charge distributions.
At high concentrations, our simulations show increasing screening
lengths with increasing electrolyte concentration, consistent with classi-
cal liquid state theories. However, our analyses demonstrate that—also
for confined systems—there is no anomalously large screening length.
In addition, we show that theoretical models used in the literature to
relate the measured screening lengths to other observables are inappli-
cable to highly concentrated electrolytes.

The traditional view that the electrostatic screening length decreases
with increasing electrolyte concentration is well-known to be valid only
at low ion concentrations. In the low-concentration regime, the spatial
decay of ion-ion interactions is usually well-described by approaches
such as the Debye-Hückel theory,54 or, for the electrostatic screening
of immersed charged objects, the Poisson-Boltzmann equation.55,56 In
both cases, the asymptotic decay length of electrostatic interactions
equals the Debye length λD defined as

λ2
D =

ε0εrkBT∑
i ρiz

2
i e

2
. (7.1)

Here, ε0 is the permittivity of free space, εr the relative dielectric
permittivity of a homogeneous background medium, kB the Boltzmann
constant, and T denotes absolute temperature. In the denominator, ρi
and zi represent the number density and valency of ionic species i, and e
is the elementary charge. In the limit of infinite dilution, the dielec-
tric permittivity of the background medium equals that of the entire
system since it is not altered by the presence of a vanishing amount of
free charges.

With rising electrolyte concentration, interactions are increasing-
ly influenced and eventually dominated by excluded-volume and
charge correlations, which are difficult to describe by such mean-
field approaches. There are many modifications and extensions of
the Debye-Hückel and Poisson-Boltzmann theory and other approach-
es predicting that correlation lengths increase with concentration,57–69
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7 Ionic Screening in Bulk and under Confinement

therefore resulting in an increasing effective screening lengtha.
Especially relevant are integral-equation theories57–59,64,65 based on
descriptions of the radial distribution functions (RDFs) gXY (r), which
describe the probability of finding a particle of species Y at a distance r
from a particle of species X and is normalized with respect to the
corresponding probability in an ideal gas at the same concentration.
Within these frameworks, analyses of the Ornstein-Zernike equation
show that for sufficiently high concentrations, the asymptotic decay of
ion-ion interactions can be expressed as

lim
r→∞

wXY (r) ∝
A

r
cos (k r − φ) exp

(
− r

λS

)
, (7.2)

where wXY denotes the potential of mean force (PMF) between
species X and Y , A and φ are species-dependent amplitudes and phase
shifts, λS is the PMF’s asymptotic decay length, and the wave vector k
determines the wavelength of its oscillation. In spatially homogeneous
systems, the PMF between species X and Y can be obtained from their
RDF according to

wXY (r) = −kBT ln (gXY (r)) . (7.3)

In many theoretical works, eq. (7.2) is applied directly to the correla-
tion functions hXY (r) := gXY (r) − 1 under the reasonable assump-
tion that wXY (r) � 1 for r → ∞, since then, ln(gXY (r)) ≈ hXY (r).
However, we will not apply this linearization in our work and, instead,
obtain the decay lengths directly from the PMFs. In the limit of
high ionic concentrations, λS increases with concentration and general-
ly exceeds the Debye length λD.57 Thus, in principle, the experimen-
tally measured concentration-dependent increase in screening length is
expected. However, what is surprising about the experimental observa-
tions is that, in contrast to eq. (7.2), the asymptotic decay of surface
forces was monotonic and the corresponding decay lengths exceed-
ed theoretical predictions for bulk electrolytes by about an order of

aNote that we use the term ‘screening length’ also for the decay of oscillatory
modes.
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magnitude. Anomalously large decay lengths have also been indirect-
ly deduced from fluorescence-based concentration measurements in
electrolyte solutions confined between silica surfaces294 and observed
in an atomic force microscopy (AFM) experiment295 (however, there is
also an AFM study where large screening lengths were not observed47).
Regardless of the considered electrolyte, these anomalously large
screening lengths (λS) followed a cubic scaling with respect to the
Debye length λD of the form λS/λD ∝ (d/λD)

3, where d is the effective
ion diameter (we note, however, that some SFB experiments296,297

demonstrated inconsistencies with such a cubic scaling). Lee et al.52,298

interpreted this cubic scaling in terms of charge fluctuations due to
defects in a nearly crystalline ionic system, as opposite to dilute
electrolytes. However, as noted by Adar et al.,299 this picture is applica-
ble only for electrolyte concentrations above 6M. In more recent work,
Ciach and Patsahan300 developed a self-consistent field theory and
obtained a cubic scaling in the regime of high ion densities. Unlike
in the experiments, however, this theoretical cubic scaling appeared in
a damped-oscillatory rather than in a monotonic decay of the charge-
charge correlation function. Moreover, as estimated by the authors,
their calculations are applicable for ion densities d3ρ ≥ 0.75, which
translates into molar concentrations above 23mol/l for aqueous sodium
chloride (for an average ion diameter d = 0.3 nm) and above 5mol/l
for typical ionic liquids (taking d = 0.5 nm). However, SFB experi-
ments show that cubic scaling starts even around 1mol/l, while the
solubility limit of NaCl is about 5.3 mol/l and pure room-temperature
ionic liquids typically have similar concentrations.301 The possible
existence of ionic interactions exhibiting long-ranged monotonic decays
has been shown by Kjellander66,68 based on dressed ion theory.302,303

However, we are not aware of applications of this approach to experi-
mental or simulation data of real ionic systems showing cubic scaling
or anomalously large screening lengths.

In the following, we aim to gain new physical insights into the
long-range behavior of ion interactions in bulk and under confine-
ment using large-scale MD simulations. We consider various systems,
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7 Ionic Screening in Bulk and under Confinement

including neat ILs, mixtures of ILs and polar solvents, and concen-
trated aqueous electrolyte solutions in a broad concentration range
and analyze ionic screening lengths and their scaling behavior in
details. In addition, we critically review attempts that have been
made to connect the measured screening lengths with other experi-
mental observables, seemingly suggesting that underscreening is a bulk
property of electrolytes.52,298

7.1 Molecular Dynamics Simulations
According to both experimental measurements51 and theoretical
predictions,57 the enhancement of the asymptotic electrostatic screen-
ing length is expected to be most pronounced in pure ILs. Therefore,
as a first step, we performed MD Simulations of pure 1-butyl-3-methyl-
imidazolium hexafluorophosphate ([C4C1Im]+[PF6]−). Our choice was
motivated by the fact that there exist well-tested MD force fields
for both all-atom and coarse-grained models of this IL. Comparing
computational models with different levels of detail will allow us to
assess the influence of such molecular details on the resulting asymptot-
ic electrostatic screening length. As a second step, in order to investi-
gate the long-range screening behavior of conventional electrolyte
solutions, we performed simulations of aqueous sodium chloride (NaCl)
solutions at different concentrations ranging from 1.16 to 5.19 mol/l.

In ref. 51, Smith et al. also reported SFB measurements of
the IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide
([C4C1Pyrr]+ [NTf2]−) in propylene carbonate (PC) solutions at differ-
ent concentrations. To obtain simulation results which are compara-
ble to the experiment, we conducted simulations of systems compris-
ing solutions of 1-butyl-3-methylimidazolium bis(trifluoromethane)-
sulfonimide ([C4C1Im]+ [NTf2]−) in a racemic PC mixture (equal
amounts of (R)- and (S)-propylene carbonate) with IL mole fractions x
covering the range from x = 0.05 to x = 1 (pure [C4C1Im]+ [NTf2]−).
Due to the fact that the chemical structures and, therefore, the sizes of
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7.1 Molecular Dynamics Simulations

[C4C1Im]+ and [C4C1Pyrr]+ are very similar, we likewise expect a very
similar behavior of these species in terms of electrostatic screening.

The compositions of all investigated systems are summarized in
tables 7.1 and 7.2, and ball-and-stick models together with the
corresponding Lewis formulas of all involved molecular species (except
for NaCl and water) are depicted in fig. 7.1.

Figure 7.1: Ball-and-stick models (top row, visualized with VMD304) and correspond-
ing Lewis formulas (bottom row) of the investigated substances. a: 1-butyl-3-methyl-
imidazolium ([C4C1Im]+) cation (all-atom (left) and coarse-grained (right)). b: Hexaflu-
orophosphate ([PF6]−) anion (all-atom (left) coarse-grained (right)). c: Bis(trifluoro-
methylsulfonyl)imide ([NTf2]−) anion. d: (R)-propylene carbonate (left) and (S)-
propylene carbonate (right).
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7 Ionic Screening in Bulk and under Confinement

c (mol/l) NIP NS L̄ (nm) tsim (ns) teq (ns)
pure [C4C1Im]+[PF6]− (all-atom)

4.63 108 000 0 33.84 600 300
pure [C4C1Im]+[PF6]− (coarse-grained)

4.78 358 296 0 49.92 700 300
NaCl in water (all-atom)

4.43 216 000 2 458 296 43.25 200 50
1.16 3750 176 577 17.53 537 50
2.43 3750 81 814 13.68 5369 50
4.86 3750 38 411 10.86 5369 50
5.19 3750 35 625 10.63 5369 50

[C4C1Im]+ [NTf2]− in PC (all-atom)
0.00 0 1000 5.19 1074 100
0.53 200 3800 8.54 2147 200
0.97 500 4500 9.51 2147 200
1.63 500 2000 7.99 3221 200
2.10 500 1167 7.34 4295 200
2.47 500 750 6.96 4295 200
2.75 500 500 6.71 4295 200
2.98 500 333 6.53 4295 200
3.17 500 214 6.40 4295 200
3.33 500 125 6.30 4295 200
3.46 500 56 6.21 4295 200
3.58 500 0 6.15 4295 200

Table 7.1: Bulk systems. Listed values: molar ion pair concentration c (mol/l),
number of ion pairs NIP, number of solvent molecules NS, average simulation box
edge length L̄ (nm), total simulation time tsim (ns) after equilibration, and equilibration
time teq (ns). Further details and error estimates can be found in appendix 7.B.1.1.

N+ N− Lz (nm) tsim (ns) teq (ns)
2352 2000 8.246 1000 300
2852 2500 9.902 1000 300
3852 3500 13.200 1000 300
4352 4000 14.837 4×1000 300

Table 7.2: Confined systems. Listed values: number of [C4C1Im]+ cations N+, number
of [NTf2]− anions N−, simulation box edge length in the z-direction Lz (nm), total
simulation time tsim (ns) after equilibration, and equilibration time teq (ns). For all
systems, the simulation box edge lengths in the x- and y-direction are Lx = 11.806 nm
and Ly = 11.928 nm.
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7.1 Molecular Dynamics Simulations

7.1.1 Simulation details

Simulations were performed with a customized version of the
GROMACS105–111 2016.3 simulation package (2019.4 for the confined
system) capable of computing and storing cumulative currents
(cf. eq. (7.6)) at every integration step. All bulk systems were simulated
in the NpT ensemble in cubic boxes with periodic boundary conditions
(PBC) in all three dimensions, where temperature and pressure were
maintained at T =300K and p = 1 bar, respectively. Electrostatic
interactions were computed using the smooth particle mesh Ewald
method87 (SPME) with a system-dependent short-range cutoff and a
relative accuracy of 10−5. The confined systems were simulated in
orthorhombic boxes with PBC in the x- and y-directions only, and
the ensemble was changed to NV T after equilibration. Due to the
2d-periodicity of these systems, the SPME method was also used for
Lennard-Jones (LJ) interactions,305 and Ewald summation corrections
were applied according to Yeh and Berkowitz.306

For simulations of ILs, we employed the 0.8∗OPLS-2009IL all-atom
force field of Doherty et al.,307 and the ILM2 force field of Roy and
Maroncelli240 for the coarse-grained description of [C4C1Im]+[PF6]−.
These models use ionic charges that are uniformly scaled by a factor
of 0.8 and 0.78, respectively, to implicitly account for electronic
polarization effects and partial charge transfer that lead to effective-
ly reduced Coulomb interactions in IL systems.231,235,308 The simplest
theoretical explanation for charge scaling can be found in the non-
polarizable MDEC (Molecular Dynamics in Electronic Continuum)
model of Leontyev and Stuchebrukhov.309 They use a uniform electron-
ic screening of partial atomic charges to account for the effects of
electronic polarization within a mean-field approach. Approaches
beyond mean-field theory that derive partial charges from ab initio
data arrive at very similar rescaled overall ionic charges, albeit with a
different distribution of partial charges.71,72,236–238,310
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7 Ionic Screening in Bulk and under Confinement

For the description of aqueous NaCl, we used the KBFF ion parame-
ters of Weerasinghe and Smith311 in conjunction with the SPC/E
water model.112 Since in aqueous NaCl systems, the ion polarizabil-
ities and their concentrations are much smaller than for molecular ILs,
the respective ion models use full charges of ±1 e. In simulations of
[C4C1Im]+ [NTf2]− in PC solution, the solvent was described accord-
ing to parameters provided by Takeuchi et al..312 For the carbon atoms
forming the graphene walls of the confined systems, we employed the
same LJ parameters as for those in the imidazolium ring of [C4C1Im]+.
The parameter sets of all simulations are listed in appendix 7.D.

7.1.2 Analysis methods

7.1.2.1 Potential of mean force

The evaluation of the PMF wXY (r) between ionic species X
and Y using eq. (7.3) requires the knowledge of the corresponding
RDF gXY (r). In homogeneous systems, the latter is formally defined
as

gXY (r) =
〈ρXY (r)〉
〈ρY 〉

, (7.4)

where 〈ρXY (r)〉 denotes the expected density of particles of species Y
residing on shells of radius r centered at any particle of species X,
and 〈ρY 〉 is the expected density of particles of species Y averaged over
the entire system, i.e., their bulk density. Since the computation of
RDFs with analysis tools included in the GROMACS package would
have taken several years for the large-scale IL systems considered, we
developed an optimized analysis tool based on the MDAnalysis186,187

and MPI for Python313–315 packages allowing the evaluation of RDFs
on hundreds of CPU cores in parallel. Further details regarding the
numerical evaluation of eq. (7.4) and error estimation are given in
appendix 7.A.1.
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7.1 Molecular Dynamics Simulations

7.1.2.2 Dielectric permittivity

According to eq. (7.1), the calculation of the Debye screening length λD

requires the knowledge of the static relative dielectric permittivity εr of
the background medium. Since in MD simulations with both ions and
solvent modeled explicitly, there is no effective dielectric background
medium, we used the static relative dielectric permittivity of the
simulated substances. Note that this is questionable within the Debye-
Hückel picture, where in the extreme case of a pure IL, one could argue
that the background medium should actually be vacuum. However, to
make our calculations comparable to the analyses of experimental data,
we use the relative permittivity of the entire system as in ref. 298. In
equilibrium MD simulations, εr can be obtained from the expected
value of the square of the system’s itinerant dipole moment M accord-
ing to99

εr = 1 +
〈M2〉

3V kBTε0
(7.5)

under the conditions that the system has PBC in all three dimensions
and electrostatic interactions are computed with tinfoil boundary
conditions at infinity. If a system consists entirely of charge-neutral
molecules, its itinerant dipole moment M at any given time t equals the
sum of the molecular dipole moments µ so that M(t) =

∑
mµm(t), and

the time average of M2(t) serves as an estimator for 〈M2〉. However, in
systems with PBC comprising free ionic charges, M(t) has additional
intermolecular contributions. The problem which arises is not only that
these contributions are discontinuous in time when ions move across
periodic boundaries; in fact, M(t) is ill-defined in such systems because
its value depends on the choice of the origin of the spatial coordinate
system.98 Nevertheless, its temporal derivative, the itinerant current
j(t) = d

dtM(t), does not suffer from any of these problems.98 It can be
computed according to

j(t) =
∑
i

qivi(t) , (7.6)
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7 Ionic Screening in Bulk and under Confinement

where the index i runs over all atoms with (partial) charges qi and
velocities vi(t). Provided that the system is at thermal equilibrium
at all times t, the time-dependent current j(t) can then be used to
obtain the expected squared itinerant dipole moment from eq. (4.47)
(see appendix 4.A for a proof)

〈M2〉 = − lim
t→∞

t∫
0

τ〈j(0)j(τ)〉 dτ ,

where 〈j(0)j(t)〉 is the unnormalized autocorrelation function of j(t).
In practice, the direct numerical evaluation of eq. (4.47) is problemat-
ic due to the fact that the statistical noise in the tail of the current
autocorrelation function is amplified by the factor τ in the integral.
A more feasible approach is the so-called Einstein-Helfand method,121

where one performs a linear regression of the itinerant dipole moment’s
mean square displacement 〈(∆M)2(t)〉 in the limit of large t, and the
right hand side of eq. (4.47) is obtained from the fit value at t = 0.
The static relative permittivity is then obtained according to eq. (7.5),
and, subsequently, the Debye length can be calculated from eq. (7.1).
A detailed description of this approach is given in section 4.3.1.

At this point, it is important to mention again that the IL
models used in this work employ rescaled charges to implicitly
account for the effects of electronic polarizability and partial charge
transfer.71,72,231,235–238,308,310 However, this leads to an underestima-
tion of the current j(t), and, likewise, the dielectric permittivity. Thus,
to obtain correct estimates of the permittivity, the ionic charge scaling
has to be undone when evaluating eq. (7.6).

7.1.2.3 Analysis of confined systems

In systems where the investigated substance is confined between
charged surfaces, the electrostatic screening of the wall charges cannot
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be inferred from interionic PMFs as such systems are neither homoge-
neous nor isotropic. Instead, the electrostatic screening of the surface
charge can be extracted from the decay of the electric field E⊥(z) in
the z-direction, i.e., normal to the confining surfaces. To this aim, we
analyzed the system’s volume charge density profile ρ⊥q (z), which is
given by

ρ⊥q (z) =
〈∑

i

qiδ (z − zi)
〉
, (7.7)

where δ (·) is the Dirac delta function, the operator 〈·〉 denotes the
canonical average, and the index i runs over all atoms in the system
with charge qi and position zi, respectively. For the numerical evalua-
tion of eq. (7.7), the system is discretized in the z-direction into n
slabs of width lz = Lz/n, where Lz is the length of the simulation box
in the z-direction. The volume charge density profile is then calculated
according to

ρ⊥q (z) =
〈 1

Lx Ly lz

∑
i

2|z−zi|<lz

qi

〉
, (7.8)

and the perpendicular component E⊥(z) of the microscopic electric
field is obtained from

E⊥(z) =
1

ε0

z∫
0

ρ⊥q (z
′) dz′ . (7.9)

To assess the influence of confinement on the molecules’ dipolar orienta-
tion, we computed the normal component µ⊥

rot,j of the rotational dipole
moment of molecule j according to

µ⊥
rot,j =

∑
α

qα,j (zα,j − zcom,j) , (7.10)

where zcom,j represents the z-position of the molecular center of mass
and the index α runs over all atoms of molecule j. This allowed us to
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compute the system’s rotational dipole moment density m⊥
rot(z) accord-

ing to

m⊥
rot(z) =

〈 1

Lx Ly lz

∑
j

2|z−zcom,j |<lz

µ⊥
rot,j

〉
, (7.11)

where the index j runs over all molecules in the system.

7.2 Results and Discussion

7.2.1 Bulk long-range interionic potentials of mean force

In SFB measurements, the distance-dependent force mediated by
electrolytes confined between two mica-coated, like-charged surfaces
has been found to follow a relatively fast oscillatory decay for surface
separations up to a few nanometers before entering a long-ranged
monotonic decay. It has been argued that the observed long-range
decay must be a feature of bulk ionic fluids, therefore describing the
general asymptotic decay of electrostatic interactions within concen-
trated electrolytes and ILs. Within these substances, one would
therefore expect to observe the same asymptotic decay in effective
ion-ion interactions, and, consequently, in the corresponding interion-
ic PMFs. The latter argument has already been brought forward by
Kjellander66 in a well-founded manner.

For pure ILs, the experimentally observed transition from oscillato-
ry to monotonic decay typically occurs at surface separations between
4 and 7 nm.49,51,53 Thus, in order to see such an effect in bulk MD
simulations, the systems under consideration must be large enough to
allow the evaluation of interionic PMFs going well beyond that range.
In other words, analyzing only the short-range parts of ionic interac-
tions before the crossover region is clearly insufficient, and simulation
boxes with edge lengths of at least 20 nm are required to properly
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resolve the range of interest. Moreover, due to their high viscosi-
ty, ILs exhibit long structural relaxation times, necessitating simula-
tion times of several hundred nanoseconds.316 Nevertheless, even if
these spatiotemporal requirements are fulfilled, the obtained PMFs
are rather meaningless without proper estimates of their statistical
accuracy. Therefore, for every data point in the computed PMFs, we
performed statistical error analyses taking temporal correlations into
account (see appendix 7.A.1.3 for details).

7.2.1.1 Neat ionic liquids

The first system we discuss comprises 108 000 ion pairs of pure
[C4C1Im]+[PF6]−(all-atom model with 3 456 000 atoms in total), with
the positions of all atoms recorded for a posteriori analysis every 2 ps
during a total simulation time of 700 ns. Figure 7.2a displays the
absolute values of the PMFs |w−−|(r) (anion-anion), |w+−|(r) (cation-
anion), and |w++|(r) (cation-cation) between the respective molecular
centers of mass in units of kBT together with their one-sigma statis-
tical error margins (light-colored areas) for interionic distances up to
16.5 nm. The ordinate of the main graph is logarithmically scaled to
facilitate the detection of any long-ranged but possibly low-amplitude
monotonic decay, whereas the inset shows the PMF’s short-range part
in linear scale.

For the investigation of electrostatic effects, distances below the van
der Waals cut-off of 1.3 nm should be excluded from the analysis due
to the relatively strong influence of the LJ potential in this region. At
larger distances up to r ≈ 8.5nm, all PMFs are well-described by an
exponentially damped, oscillatory decay (7.2). The envelope of this
decay is indicated by a dashed black line, which has a decay length of
λS = 1.05nm. For distances greater than 8.5 nm, the PMFs become
very noisy with an amplitude of about 3·10−5 kBT , which is in the order
of the statistical uncertainty. One could argue that due to the compar-
atively high statistical uncertainty in the tails, monotonic decays in
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this region might be hidden in the noise. However, experiments with
similar ILs51 suggest an onset of the monotonic decay already before
that region, and such an onset is clearly not present in our data.

The long-ranged monotonic decay of electrostatic interactions observed
in SFB measurements was found to be a universal feature of concen-
trated electrolytes and ILs and therefore ought to be independent of
the chemical details of the involved ionic species. Thus, we extend-
ed our analysis to an even larger system with a box edge length of
almost 50 nm comprising 358 296 ion pairs of the same IL, but this time
modeled by a coarse-grained representation involving only four interac-
tion sites per ion pair (cf. fig. 7.1a,b). The corresponding cation-anion
PMFs are displayed in fig. 7.2b for interionic distances up to 24.5 nm.
All PMFs of the coarse-grained representation show the same qualita-
tive behavior as the all atom model. As expected for coarse-grained
models, the corresponding decay length of λS = 1.43nm is comparable
to but slightly larger than that of the all-atom model. Due to the larger
number of ions in the system, the resulting increased statistical accura-
cy allows to resolve the oscillatory decay at interionic distances up to
13 nm. For larger distances, the PMFs again enter a region of almost
constant amplitude (as low as 5 · 10−6 kBT ), which is about the same
magnitude as the corresponding statistical one-sigma uncertainties.
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Figure 7.2: Absolute value of the anion-anion (|w−−| (r), red), cation-anion (|w+−| (r),
yellow), and cation-cation (|w++| (r), blue) potentials of mean force in neat
[C4C1Im]+[PF6]−. a: All-atom model. All PMFs follow an oscillatory decay up to a
distance of about 8.5 nm. In this region, the envelope of the decay (dashed, black line)
is very well described by a function of the form f(r) = a

r
exp

(
− r

λS

)
with an amplitude

of a ≈ 0.7 kBT and a decay length of λS = 1.05 nm. For distances larger than 8.5 nm,
the potentials enter a region of almost constant amplitude, which is of the same order
as the corresponding uncertainties (light-colored areas). b: Coarse-grained model. All
PMFs show a qualitatively very similar behavior as for the all-atom model. The envelope
of the decay exhibits a longer decay length of λS = 1.43 nm, which can be attributed to
the coarse-grained nature of the molecular model. As for the all-atom model, all PMFs
eventually enter a region (r > 13 nm) of almost constant amplitude with rather high
uncertainty. Insets: The same PMFs as in the main graphs with linear y-axis scaling.
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7 Ionic Screening in Bulk and under Confinement

7.2.1.2 Concentrated electrolyte solutions

The system that we have investigated is a 4.43 molar aqueous NaCl
solution comprising 216 000 ion pairs and 2 458 296 water molecules
(7 806 888 atoms in total) in a cubic simulation box with an edge length
of 43.25 nm. The corresponding anion-anion, cation-anion, and cation-
cation PMFs obtained from a 200 ns simulation run are displayed in
fig. 7.3.
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Figure 7.3: Absolute value of the anion-anion (|w−−| (r), red), cation-anion (|w+−| (r),
yellow), and cation-cation (|w++| (r), blue) potentials of mean force in a 4.43 mol/l
aqueous NaCl solution. Up to a distance of about 2.2 nm, all PMFs exhibit an oscilla-
tory decay which, in contrast to the case of neat [C4C1Im]+[PF6]−, appears to be
a superposition of several oscillations with different parameters. Nevertheless, the
envelope of the decays (dashed, black line) can be approximated by a function of
the form f(r) = a

r
exp

(
− r

λS

)
with an amplitude of a = 4.0 kBT and a decay length

of λS = 0.2 nm. For distances larger than 2.2 nm, the potentials lie in the order of the
uncertainty levels of about 10−5 kBT . Their further decay is not a feature of the system
but simply due to the statistical error, which decreases with increasing distance. This
is evident from the noisy orange line, which depicts the PMF |wig|(r) of an ideal gas
comprising an identical number of particles in the same volume, and exhibits the very
same decay. Inset: The same PMFs with linear y-axis scaling. The envelope fit is again
depicted by dashed black lines.
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7.2 Results and Discussion

In contrast to the pure IL, a single oscillatory decay is not a satisfacto-
ry description of the short-range part of any of the interionic PMFs
in aqueous NaCl but rather a superposition of several such decays
with different amplitudes, wavelengths, phase shifts, and decay lengths.
Nevertheless, up to a distance of about 2.2 nm, their envelope can be
approximated by that of a single oscillatory decay as has been done
before for the pure IL. The corresponding fit (dashed black line in
fig. 7.3) has an amplitude of 4 kBT and a decay length of λS = 0.2nm.
For distances exceeding 2.2 nm, the PMFs become very noisy, and no
distinct oscillations are discernible. In this region, the PMFs’ envelopes
appears to follow a very long-ranged decay. However, this decay is
entirely due to statistical noise, which decreases with distance. In fact,
the noise in the PMF of an ideal gas comprising an identical number
of particles in the same volume (shown in orange in fig. 7.3) exhibits
the very same decay. Thus, the observed long-range decay of the noise
amplitude is merely a statistical artifact and must not be interpreted as
a feature of the system. Instead, we have to conclude that also in MD
simulations of concentrated aqueous NaCl solutions, there is no long-
ranged monotonic decay of interionic interactions detectable within an
accuracy of ≈10−5 kBT .

7.2.2 Scaling analysis of asymptotic screening lengths in
concentrated electrolyte solutions

In order to investigate how the asymptotic decay length λS scales with
ion concentration, we analyzed the PMFs w+−(r), w++(r), and w−−(r)
obtained from all-atom MD simulations of [C4C1Im]+ [NTf2]− in
propylene carbonate (PC) over the entire concentration range covering
IL mole fractions x from x = 0 to x = 1. Since the previously analyzed
interionic PMFs of large-scale simulations did not show any addition-
al long-range effects different from those at intermediate ion separa-
tions, we chose to simulate smaller systems in favor of covering a
larger number of different ion concentrations. Except for the two
lowest concentrations, all systems comprised 500 ion pairs and a
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7 Ionic Screening in Bulk and under Confinement

suitably adjusted number of PC molecules. For each system composi-
tion, up to four independent simulation runs were performed with
runtimes covering more than 1µs per run. As before, interionic PMFs
were computed according to eqs. (7.3) and (7.4). To estimate the
concentration-dependent effective screening length λS in these systems,
we fitted the PMFs with a superposition of n oscillatory, exponentially
damped functions

f(r) =

n∑
i=1

Ai

r
cos(ωi r − φi) exp

(
− r

λi

)
. (7.12)

We found that setting n=2 was sufficient to obtain an excellent match
with the interionic PMFs in the fit range 1.2 ≤ r ≤ 3.0nm. Fitting the
data to eq. (7.12) with n = 3 terms resulted in extremely unstable
results under slight variation of initial fit parameters, while setting
n = 1 lead to unsatisfactory fits with comparatively large residuals.

For each system, we determined the static dielectric permittivities
εr and the corresponding Debye screening lengths λD. The permit-
tivities of the IL mixtures compare well with experimental measure-
ments for pure PC (εr = 59.3 (simulation) vs. εr = 64.97 (experiment,
see ref. 317)) and pure [C4C1Im]+ [NTf2]− (εr = 9.1 (simulation) vs.
εr = 11.52 (experiment, see ref. 318)). The complete sets of permittiv-
ities are given in appendix 7.B.1.2.

The knowledge of both the concentration-dependent asymptotic screen-
ing lengths λS and the corresponding Debye lengths λD allowed us
to conduct a scaling analysis similar to that by Lee et al..298 Accord-
ingly, fig. 7.4 shows the ratio of the screening length vs. the Debye
length λS/λD as a function of the inverse Debye length scaled with
the average ion diameter d/λD. Following ref. 298, the average ion
diameter d of the IL was determined from the number concentration
of ion pairs in the pure IL as d = 1

2 (
V/NIP)

1
3 ≈ 0.39nm. The resulting

asymptotic linear and quadratic scaling at high concentrations

λn

λD
∝
(

d

λD

)n

(7.13)
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Figure 7.4: Scaling of the concentration-dependent screening lengths of
[C4C1Im]+ [NTf2]− in propylene carbonate as determined by fits of eq. (7.12)
to the concentration-dependent cation-anion (w+−(r)), anion-anion (w−−(r)), and
cation-cation (w++(r)) PMFs. The abscissa displays the average ion diameter d divided
by the concentration-dependent Debye length λD, whereas the determined screening
lengths λi divided by λD are plotted along the ordinate. For the cation-anion (panel a)
and anion-anion (panel b) PMFs, we see two decay lengths (each corresponding to
a distinct wavelength 2π/ωi) which both exhibit a power law dependence in the plot.
For the cation-cation data (panel c), such a dependence can only be established for
one of the decay length ratios. In all cases, the asymptotic decay length ratio for high
concentrations λ2/λD is clearly proportional to (d/λD)

2.

is clearly visible from the blue and orange dashed lines in fig. 7.4.
While the linear scaling of λ1/λD is only present for the cation-anion and
anion-anion PMFs, the quadratic scaling at high IL concentrations is
retained also in the cation-cation PMFs, as we reported earlier.77 Such
a quadratic scaling has also been obtained by Adar et al.,299 who used
an elegant theory based on the modification of the electrostatic kernel
accounting for ion size effects, and more recently by Krucker-Velasquez
and Swan319 in simulations of primitive model electrolytes. However,
this quadratic scaling stands in contrast to the cubic scaling λS/λD ∝
(d/λD)

3 obtained from experimental SFB measurements.298 Moreover,
the magnitudes of the effective screening lengths according to SFB
measurements exceed our values by up to a factor of ten. A comparison
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7 Ionic Screening in Bulk and under Confinement

of the asymptotic screening lengths we obtained from bulk simulations
with experimental data is shown in table 7.3.

System c (mol/l) λsim
S (nm) λSFB

S (nm)
[C4C1Im]+[PF6]− 4.63* 1.05 —
[C4C1Im]+[PF6]−(coarse-grained) 4.78* 1.43 —

NaCl in water

1.16 0.25 0.52a
2.43 0.20 1.37a
4.86 0.32 2.99a
5.19 0.33 3.21a

[C4C1Im]+ [NTf2]− in PC

0.53 0.67 —
0.97 0.65 1.33b
1.63 0.50 4.12b
2.10 0.47 6.12b
2.47 0.58 7.68b
2.75 0.61

8.83c
2.98 0.69
3.17 0.75
3.33 0.85
3.46 0.95
3.58* 1.07

* Pure ionic liquid (without solvent).
a Data for NaCl in aqueous solution from ref. 51, linearly interpolated in the

range c ∈ [1.0, 5.0]mol/l.
b Data for [C4C1Pyrr]+ [NTf2]− in PC solution from ref. 51, linearly interpo-

lated in the range c ∈ [0.9, 2.5]mol/l.
c Data for [C4C1Pyrr]+ [NTf2]− in PC solution from ref. 51, average of data

in the range c ∈ [2.6, 3.4]mol/l.

Table 7.3: Comparison of screening lengths in the investigated bulk systems with
corresponding values from SFB experiments involving the same or comparable
substances. For each concentration, λsim

S represents the maximum of the three screen-
ing lengths obtained from the decays of the PMFs w+−, w−−, and w++. Listed values:
molar ion pair concentration c (mol/l), screening length from simulations λsim

S (nm), and
screening length from SFB measurements λSFB

S (nm).
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7.2 Results and Discussion

7.2.3 Ionic liquids confined between like-charged surfaces

To investigate the influence of confinement on the screening behavior,
we conducted additional simulations with PBC in the x- and
y-directions only, where the IL is confined between planar, like-charged
walls in the z-direction as illustrated in fig. 7.5.

Depending on the distance between the surfaces, the systems contained
between 2000 and 4000 [C4C1Im]+ [NTf2]− ion pairs (cf. table 7.2) and
an additional number of 352 [C4C1Im]+ counterions compensating the
negative wall charge. Note that if we used a force field with full charges,
the required number of counterions would be smaller (about 282). Since
counterions predominantly accumulate close to the surfaces, in both
cases, the solid-liquid interaction should not influence the decay lengths
and wavelengths of asymptotic decay modes at large distances66 (see

x

y

z

Figure 7.5: Example visualization of a confined IL system. The ionic liquid
[C4C1Im]+ [NTf2]− (cations: blue; anions: red) is confined in the z-direction between
planar, negatively charged graphene walls (gray).

231



7 Ionic Screening in Bulk and under Confinement

appendix 7.B.3 for a more detailed discussion). In every system, each
wall consists of 5376 carbon atoms forming a hexagonal graphene layer
with lattice constant a = 0.246 nm. Each carbon atom carried a charge
of −0.02619 e, resulting in a surface charge density of σq = −1 e nm−2.
For the largest system, we generated four independent replicas. All
systems were equilibrated for 300 ns. Each system was simulated for
1µs in production runs, with atom positions stored every 2 ps for a
posteriori analysis.

To investigate the electrostatic screening in these systems, we computed
the perpendicular component E⊥(z) of the microscopic electric field in
the z-direction according to eq. (7.9). Since all systems were symmetric
in the z-direction with respect to their center at z = Lz/2, the charge
density profiles ρ⊥q (z) were taken as the average of ρ⊥q (z) and ρ⊥q (Lz−z)
prior to evaluating eq. (7.9) to maximize the statistical quality of the
data. The absolute values of the resulting electric fields |E⊥|(z) are
shown in fig. 7.6.
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Figure 7.6: Absolute value of the electric field’s perpendicular component |E⊥|(z)
(log-scale) in [C4C1Im]+ [NTf2]− confined between like-charged graphene walls. For
z ≥ 2 nm, the envelope of |E⊥|(z) can be described by a function of the form f(z) =
a exp (−z/λS) with an amplitude of a ≈ 2.6V and a decay length of λS = 1.05 nm as
indicated by the dashed black line. The dotted gray vertical line marks the average wall
position.
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7.2 Results and Discussion

After a sharp increase due to the wall charge located at z ≈ 0.355 nm,
the electric field remains constant in a thin “empty” slab up
to z ≈ 0.6 nm which exists due to LJ repulsion. Thereafter, because
of the high surface charge density of the walls, the IL forms alternat-
ing cation-anion layers, resulting in an oscillatory behavior of |E⊥|(z).
Up to z ≈ 1.5 nm, |E⊥|(z) oscillates with a wavelength that is smaller
than the size of the ions. This behavior results from the highly ordered
structure of the IL in the vicinity of the walls, where both the rotational
and translational motion of the ions is strongly restricted so that their
molecular arrangement is almost static. In this arrangement, there
exist preferred orientations of the ions with respect to the wall such that
certain groups of atoms are predominantly found at specific distances
from the wall. Thus, the short oscillation period of the electric field
close to the walls is due to intramolecular contributions. A detailed
analysis of the contributions of different atom types to the oscilla-
tions of the electric field is given in appendix 7.B.2.2. With increasing
distance from the walls, ionic motion becomes less restricted, so that at
distances larger than z ≈ 2 nm, the electric field’s oscillations smooth
out with an almost uniform period of 0.76 nm, which corresponds to
approximately two ion diameters and is in good agreement with the
thickness ∆ = 0.79 nm of squeezed-out cation-anion layers measured
in SFB experiments using the same IL.296 The envelope of the electric
field then decreases exponentially with a decay constant of λ = 1.05 nm
(dashed black line in fig. 7.6), which is in good agreement with the decay
length of interionic forces λS = 1.07 nm obtained from bulk simula-
tions. The fact that the different lines displayed in fig. 7.6 represent-
ing |E⊥|(z) in systems with different inter-wall distances all decay in
the same manner suggests that the electrostatic screening behavior is
independent of system size.

The electric field, however, reflects only the cumulative average distri-
bution of charges in the system, which might mask other important
details. To obtain information about the orientation of ions as a
function of their distance from the walls, we computed the average
value of the molecular rotational dipole moment’s perpendicular
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Figure 7.7: Absolute value of the perpendicular component |m⊥
rot|(z) of the rotational

dipole moment density (log-scale) in [C4C1Im]+ [NTf2]− confined between like-charged
graphene walls. The envelope of |m⊥

rot|(z) is depicted by the dashed black line, which
again has a decay length of λS = 1.05 nm (same as for |E⊥|(z)). The average wall
position is indicated by the dotted gray vertical line.

component |m⊥
rot|(z) according to eq. (7.11), which is depicted in fig. 7.7

for different system sizes. As the molecular dipole moment is a cumula-
tive quantity per molecule, its average cannot contain intramolecu-
lar features by construction. In that respect, it is interesting to see
that even though up to z ≈ 1 nm, the system consists almost entire-
ly of cations (see appendix 7.B.2.1), the first cation layer actually
consists of two cation layers with opposite dipolar orientation. At
distances exceeding z = 1nm, the amplitude of the rotational dipole
moment’s perpendicular component decays in the very same manner
as the electric field with a decay constant of λ = 1.05 nm. Again, as it
was the case for the electric field, the decay of |m⊥

rot|(z) is the same for
all studied system sizes.
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7.2 Results and Discussion

7.2.4 Structural decay in confined ionic liquids

Now that we have analyzed the decay of electrostatic observables in the
system, we will have a closer look on the relaxation of the local ionic
structure. To this aim, for the largest confined system, we divided the
system into n slabs of width lz, each centered at a position zi = z0+i·lz,
where z0 is the minimal reference position. We then computed local,
short-ranged RDFs g

(i)
+−(r; zi) between cations from slab i and all

anions. Even though the system is anisotropic and its extent is bounded
in the z-direction, these RDFs are spherical to facilitate their compar-
ison with the cation-anion RDF in the bulk. Of course, this requires
the reference positions zi to be located further away from any of the
walls than the maximum distance rcut considered in the RDF computa-
tion. We took n = 98 slabs of width lz =

Lz−2 z0
n ≈ 0.1 nm, chose the

minimum reference position z0 = 2.5 nm (maximum zn = Lz − z0), and
evaluated each RDF up to a distance of rcut = 2nm. Furthermore,
when computing such RDFs, it is important to account for the fluctu-
ating number of cations within each reference slab. Likewise, to obtain
comparable results despite the fluctuating number of anions found
within a distance r < rcut, all RDFs have been normalized with respect
to the bulk anion density of ≈ 2.154 nm−3. Due to the symmetry of
the system, we averaged the results of each pair (zi, zn−i), yielding a
total of n

2 = 49 independent RDFs, which are displayed in the top
panel of fig. 7.8, where the color of the lines change smoothly from the
smallest zi = z0 (red) to the largest zi = z48 (blue). Due to the layered
structure of the IL close to the walls, one might expect the shape of
those RDFs g

(i)
+−(r; zi) with small zi to be significantly different from

those with the reference position close to the center of the system, and
that the RDF’s inherent spherical averaging may lead to a broadening
of the peaks of the ones close to the walls. However, it turns out that
the shapes and locations of especially the first maxima and minima of
the RDFs are all very similar, and their shapes only differ slightly in
the region beyond the second maximum. The RDF with the reference
group located in the center of the system (the “bluest” line) matches
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Figure 7.8: a: z-position-dependent cation-anion RDFs g
(i)
+−(r; zi) of

[C4C1Im]+ [NTf2]− confined between like-charged graphene walls. The lines are RDFs
between those cations that have their centers of mass zcom within 2 |zi − zcom| ≤ lz
(zi = z0 + i ·∆z with z0 = 2.5 nm, lz ≈ 0.1 nm) and all anions in the system. The
color of the lines changes smoothly with the reference position ranging from zi = z0
(close to the walls, red) to zi = z48 = Lz

2
(center of the system, blue). b: Amplitude

of the first maximum max
(
g
(i)
+−(r; zi)

)
of each of the the RDFs depicted in

panel a as a function of the reference distance zi (blue dots). c: Amplitude of the
first minimum min

(
g
(i)
+−(r; zi)

)
of the same RDFs as a function of the reference

distance zi. The black lines in panels b and c are fits of a oscillatory exponential decays
with decay length 1 nm. This shows that the local structure around cations relaxes with
increasing distance from the walls towards the bulk structure in a manner that is very
similar to the oscillatory decay of the electrostatic screening.
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exactly with the cation-anion RDF computed in the bulk system. In
the short-range part up to r ≈ 1.2 nm, the only significant deviation can
be observed in the amplitudes max(g

(i)
+−(r; zi)) and min(g

(i)
+−(r; zi)) of

the first local minima and maxima at rmax ≈ 0.52 nm and rmin ≈
0.91 nm, respectively. Because the dependence of these amplitudes
on the reference positions is not easily visible in fig. 7.8a, we plot
max(g

(i)
+−(r; zi)) and min(g

(i)
+−(r; zi)) versus zi separately in fig. 7.8b,c

(blue dots). The black lines in these plots are fits of oscillatory exponen-
tial decays f(z) = A cos (ωzi − ϕ) exp

(
− zi

λ

)
+ c to the data, which

yield a decay length λ = 1nm in both cases. We carried out similar
analyses for anion-cation, anion-anion, and cation-cation RDFs, which
give a very similar picture with decay lengths between 0.9 and 1.1 nm
(see appendix 7.B.2.3). This indicates that with increasing distance
from the walls, the (spherically averaged) local arrangement of ions
decays to the bulk structure in a very similar manner as the previously
analyzed electrostatic properties.

7.3 On the Relation of Underscreening to Other
Measurements

As the long-range monotonic decay of surface interaction forces mediat-
ed by concentrated electrolytes and ILs observed in SFB experi-
ments was suggested to reflect the electrostatic screening behavior
of these substances, several attempts have been made to relate the
measured screening lengths to other observables.52,298 Here, we discuss
the applicability of some of the theoretical models employed to establish
such connections.

7.3.1 Differential capacitance

In ref. 52, Lee et al. suggested that the long-range decay of electro-
static interactions is consistent with concentration-dependent measure-
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7 Ionic Screening in Bulk and under Confinement

ments of differential double-layer capacitance. The authors of ref. 52
used an approach similar to the Gouy-Chapman-Stern (GCS) model
and divided the electrical double-layer into a Stern and a diffuse layer,
so that the total differential capacitance Cd could be modeled as two
capacitors in series with capacitance CStern and Cdiffuse, respectively.
Unlike CStern, however, Cdiffuse is not constant and depends on the
electrostatic potential at the Helmholtz plane separating the diffuse
and Stern layers. Assuming low applied potential differences and
constant Cdiffuse, approximated by the capacitance at the potential of
zero charge, Lee et al. estimated Cdiffuse = ε0εr/λS. Note that this
expression is the same as the zero-voltage Gouy-Chapman capacitance
with λD replaced by λS. Within these assumptions, Lee et al. obtained
for the total capacitance

Cd =
(
C−1
Stern + C−1

diffuse

)−1
=

ε0εr
a+ λS

. (7.14)

The concentration dependence of capacitance to compare with experi-
ments comes from that of λS and εr.

To compute Cd in our work, we followed the usual practice (see, e.g.,
ref. 320) and took the width of the Stern layer a = d/2, where d
(≈ 0.4 nm for [C2C1Im]+ [NTf2]−) is the bare ion diameter. Note
that in ref. 52 a different value for a was used, which shifts the
curves analyzed in the following but does not change the conclusions
of this analysis (see appendix 7.C for details). Figure 7.9a compares
direct measurements of Cd for [C2C1Im]+ [NTf2]− solutions in PC321

(black squares) with values obtained according to eq. (7.14) for similar
ILs. For the screening lengths λS and the relative permittivities εr
required to evaluate eq. (7.14), we used the data either from SFB
experiments with [C4C1Pyrr]+ [NTf2]− in PC51 (orange dots, same as
in ref. 52) or from our simulations of [C4C1Im]+ [NTf2]− in PC (blue
dots). Additionally, the green line in fig. 7.9a depicts the concentration-
dependent behavior of Cd according to the GCS model, i.e., with the
screening length λS in eq. (7.14) replaced by the Debye length λD.
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Figure 7.9: Panel a: Comparison of the concentration-dependent differential capaci-
tance Cd at the point of zero charge obtained from direct measurements321 (black
squares) and according to the GCS model as defined by eq. (7.14) (orange dots: SFB
measurements,51 blue circles: simulation). The solid green line shows Cd when λS is
replaced by λD in eq. (7.14).
aDifferential capacitance for [C2C1Im]+ [NTf2]− from Bozym et al..321

bλS and εr data for [C4C1Pyrr]+ [NTf2]− from Smith et al..51

cλS and εr data from simulations of [C4C1Im]+ [NTf2]− (this work).
dλD computed according to eq. (7.1) using interpolated εr data from simulations of
[C4C1Im]+ [NTf2]− (this work).
Panel b: Screening length λS computed according to the inverted GCS model (eq. (7.15))
with Cd from direct measurements321 and εr interpolated from simulations. In both
panels, dashed lines serve as a guide to the eye.

Using eq. (7.14) with data obtained from simulations appears to yield
the best agreement with direct measurements at high concentrations,
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whereas the SFB-based data fails to reproduce the direct measurements
for high concentrations both qualitatively and quantitatively. Interest-
ingly, if λS is replaced by the Debye length λD in eq. (7.14) (i.e., the
GCS model), both the nonmonotonic behavior of Cd and its linear tail
are still reproduced quite well (green line). Even in this case, despite
the quantitative deviation, the qualitative agreement between the GCS
model and direct measurements is better than that of eq. (7.14) with λS

obtained from SFB experiments. This raises the question whether this
approach is capable of establishing any meaningful relation between the
screening length and the differential capacitance at high ion concentra-
tions. Furthermore, by solving eq. (7.14) for λS, one gets

λS =
ε0εr
Cd

− a . (7.15)

By evaluating eq. (7.15) for the directly measured values of Cd, we
obtained the corresponding ‘prediction’ for λS, which is depicted in
fig. 7.9b. The observed monotonic decrease of λS with increasing
concentration demonstrates that eq. (7.14) is unable to reproduce the
expected nonmononic behavior of λS, which, in turn, leads to the
conclusion that this model cannot be used to connect the measured Cd

values with λS at high concentrations.

7.3.2 Excess chemical potential

Another interesting approach to relating bulk electrolyte properties to
λS was presented in ref. 298, where the screening length of aqueous
NaCl solutions obtained from SFB measurements was used to predict
the excess chemical potential µex of the solution according to

µex = −1

2

lB kBT

λS + d
= − z2e2

8πε0εr (λS + d)
, (7.16)
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where lB denotes the Bjerrum length (see ref. 52 for a derivation). Note
that this expression is identical to what one would obtain from Debye-
Hückel theory but with the effective screening length λS replacing the
Debye length λD.52 In fig. 7.10a, the resulting prediction of µex for λS

obtained from SFB experiments51 is compared with µex obtained from
chemical activity coefficients322 γ according to µex = kBT ln(γ).

While the quantitative agreement of both data series in fig. 7.10a is
indeed remarkable, the qualitative behavior at intermediate to high
concentrations appears to be different. To investigate this discrepancy,
we invert the model to calculate λS from µex as

λS = − z2e2

8πε0εrµex
− d , (7.17)

which allows us to conduct a scaling analysis in terms of the behavior
of λS/λD with respect to d/λD (similar to that in section 7.2.2) for both
data series. The resulting scalings are shown in fig. 7.10b. As expected,
the screening length λS from SFB measurements exhibits the cubic
scaling λS/λD ∝ (d/λD)

3 (orange line) found for the decay of surface
forces in many SFB measurements of concentrated electrolytes.51–53,298

In contrast, the scaling of the screening length computed according to
eq. (7.17) (black dots) can be well described by a phenomenological
function of the form f(d/λD) = a0 + a1(a2 − d/λD)α (solid black line),
which shows a qualitatively entirely different behavior. Since α < 0,
it diverges for d/λD → a2, which corresponds to a diverging screening
length λS for µex → 0 in eq. (7.17) as the concentration approaches the
solubility threshold. However, such a behavior seems unphysical, as
it would imply that free ions in a saturated solution were unable to
respond to an external electric field.

Thus, as the model fails at high concentrations, it is questionable
whether the mere quantitative agreement of the data in fig. 7.10a in
this regime allows drawing any meaningful conclusions.

241



7 Ionic Screening in Bulk and under Confinement

a

c [mol/l]

µ
e
x

[k
B
T

]

b

d/λD

λ
S
/
λ
D

0 1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

10−1 100

100

101

102

µex (experiment)a

µex from λS (SFB experiments)b

λS/λD from µex
a

fit f (d/λD) = −0.6 + 13.2 (3.26 − d/λD)−1.82

λS/λD (SFB experiments)b

fit ∝ (d/λD)3

λS/λD (simulations)c

fit ∝ (d/λD)2

Figure 7.10: Panel a: Excess chemical potential µex of aqueous NaCl solutions comput-
ed from activity coefficients322 γ according to µex = kBT ln(γ) (black dots) and comput-
ed via eq. (7.17) with λS taken from SFB measurements51 (orange dots). Dashed lines
serve as guides to the eye.
Panel b: Comparison of the scaling λS/λD versus d/λD for λS obtained from µex

of aqueous NaCl solutions according to eq. (7.17) (black dots), for λS obtained
from corresponding SFB experiments (orange dots), and for λS from bulk simula-
tions (blue dots). The solid black line represents a phenomenological fit of the form
f(x) = a0 + a1(a2 − x)α with x := d/λD.
aActivity coefficients γ from ref. 322 to obtain µex = kBT ln(γ).
bScreening lengths λS and permittivities εr (to compute λD) from ref. 51.
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7.4 Conclusion

We have conducted large-scale MD simulations of concentrated
electrolytes and pure ionic liquids in bulk and under confinement and
calculated the PMFs between different ionic species with unprecedent-
ed precision. The large system sizes and long simulation times allowed
us to analyze the PMFs in a range of interionic distances corresponding
to the range of surface separations in SFB experiments. In contrast to
experimental measurements, we found no evidence for the existence of
a long-ranged, monotonic decay of effective interionic interactions. We
obtained the characteristic decay lengths λS of all analyzed PMFs about
an order of magnitude smaller than those inferred from the experi-
ments.

We investigated the concentration-dependent scaling of the effective
screening lengths λS with respect to the Debye length λD by analyzing
interionic PMFs in electrolyte solutions for different ion concentrations.
We found that there are at least two different decay lengths in the
PMFs, with the asymptotic scaling λS/λD ∝ (d/λD)

2 prevailing at high
ion concentrations. We recall that this scaling has also been found
theoretically by Adar et al.299 and similar to our earlier results77 in
simulations by Krucker-Velasquez and Swan.319 However, it contrasts
with the experimentally observed scaling λS/λD ∝ (d/λD)

3 of the decay
of forces between charged surfaces across concentrated electrolytes.

Our results for IL systems confined between like-charged surfaces did
not show any anomalously long electrostatic decay lengths either,
confirming our findings from bulk simulations. The determined values
of the screening lengths are in close agreement with the values obtained
for the same systems in bulk, confirming the statistical-mechanical
finding that solid-liquid interactions do not affect asymptotic decay
lengths.66 Our values compare well with the results of other studies
based on smaller all-atom MD simulations323 as well as with theoretical
approaches and simulations of primitive model electrolytes.299,324,325
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We showed that relating screening lengths in highly concentrated
electrolytes to other observables may be of limited value if the employed
models fail at high ion concentrations and may therefore yield unphys-
ical predictions in this regime. This highlights the importance of the
ongoing efforts in the research on highly concentrated electrolytes and
ILs. The physics of such systems remain an intricate subject, and
there exist many possible approaches aiming to capture the existence
of long-ranged monotonic decays (see, e.g., ref. 53 for an overview).
Nevertheless, our simulation results indicate that the experimentally
observed long-ranged monotonic decay of surface forces might not be
a property of bulk electrolytes or ILs.

As of now, the origin of these forces is not understood. However, from a
computational perspective, we see several possible directions for future
research. To strengthen the link between simulation studies and analyt-
ical descriptions of concentrated electrolytes, the work of Kjellander on
dressed ion theory66,68,69,302,303,326 appears as a prime candidate not
only because of its comprehensiveness, but also due to its direct applica-
bility to MD simulation data. As it directly relates an electrolyte’s
short-range screening behavior to its corresponding asymptotic decay
modes, it would be particularly interesting to follow the route Kjellan-
der outlined in ref. 68 (demonstrated for spherical ions in ref. 327)
to extract such modes from our high-precision data. Furthermore,
with respect to SFB experiments, simulations with static system sizes
might be unable to capture dynamic processes that could be important
to reproduce and explain the experimental observations. Lhermerout
and Perkin328 and also Han and Espinosa-Marzal296 have used classi-
cal hydrodynamic models to disentangle electrostatic and viscous forces
acting during the squeeze-out of ion layers of ILs confined between the
mica-coated surfaces of a surface force apparatus. However, the electro-
static screening lengths required to fit the models to the experimental
data were still in the same range that had been previously reported
without taking fluid viscosity into account. Providing a simulation-
al backing for these approaches in terms of a dynamic microscopic
picture will be challenging, as both the spatial and temporal scales

244



7.4 Conclusion

of the experimental procedure are not easily accessible by simula-
tions with molecular resolution. Concerning MD simulations, possible
steps towards a more realistic picture with a closer correspondence to
the experimental setup might include simulations of confined systems
where the lateral pressure component in the center of the system is held
constant, simulations at constant chemical potential, or even combina-
tions thereof with dynamically changing confinement.
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Appendix of Chapter 7

7.A Numerical Methods

7.A.1 Computation of radial pair distribution functions

In homogeneous systems with a fixed number of particles, the radial
pair distribution function (RDF) between two molecular species X
and Y is formally defined as

gXY (r) =
〈ρXY (r)〉
〈ρY 〉

, (7.18)

where 〈ρXY (r)〉 denotes the expected number density of particles of
species Y residing on shells of radius r centered at any particle of
species X, and 〈ρY 〉 is the expected number density of particles of
species Y in the entire system, i.e., their bulk number density.

The numerical evaluation of gXY (r) requires the discretization of space
into intervals of width ∆r, so that we define the discretized distance

rn =

(
n+

1

2

)
∆r , n ∈ N0 . (7.19)

In a system with orthorhombic volume V = Lx Ly Lz and period-
ic boundary conditions in all three dimensions which comprises NX

particles of species X and NY particles of species Y 6= X, the RDF is
then estimated according to

gXY (rn) ≈ ĝXY (rn) :=
ρ̂XY (rn)

ρ̂Y
(7.20)
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with the estimator ρ̂Y for the expected bulk number density of particles
of species Y

ρ̂Y =
NY

V̄
, (7.21)

where we defined the average system volume

V̄ :=
1

N

N∑
i=1

Vi . (7.22)

Here, we have averaged over N time steps so that Vi denotes the volume
of the system at time step i, allowing for systems with fluctuating
simulation box volumes.

The estimator for the expected number density of particles of species Y
residing on shells of radius r centered at any particle of species X is
defined as

ρ̂XY (rn) =
1

N NX

N∑
i=1

HXY
n,i

V shell
n,i

, (7.23)

where V shell
n,i is the shell volume (see below) and the distance

histogram HXY
n,i is given as

HXY
n,i := HXY

i (rn) =

NX∑
j=1

NY∑
k=1

δ

(⌊
‖rk,i − rj,i‖pbc

∆r

⌋
− n

)
. (7.24)

Again, we averaged over configurations of N time steps so that rj,i
and rk,i are the positions of the particles j and k at time step i. The
function δ (·) is the discrete Dirac delta function, which is defined as

δ(x) =

{
1 if x = 0

0 otherwise ,
(7.25)

and the floor operator b·c yields the closest integer smaller than or
equal to its argument. The operator ‖·‖pbc is the Euclidean L2-norm
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(i.e., distance) with periodic boundary conditions applied according to
the minimum image convention

‖r‖2pbc =
∑

d∈{x,y,z}

(
(rd mod Ld) + h

(
− (rd mod Ld)−

Ld

2

)
Ld

− h

(
(rd mod Ld)−

Ld

2

)
Ld

)2

, (7.26)

where h(·) denotes the Heaviside step function defined as

h(x) =

{
1 if x > 0

0 otherwise .
(7.27)

The shell volumes V shell
n,i := V shell

i (rn) could in principle be calculated
from the volume difference of two spheres with radii

Router
n = rn +

∆r

2
= (n+ 1)∆r ,

Rinner
n = rn − ∆r

2
= n∆r .

Although seemingly trivial, this requires particular attention. Accord-
ing to the minimum image convention defined in eq. (7.26), the
maximum possible distance in a 3d-periodic orthorhombic box with
edge lengths Lx,i , Ly,i , Lz,i at time step i is

rmax
i := ‖rmax

i ‖pbc =
1

2

√
L2
x,i + L2

y,i + L2
z,i . (7.28)

However, the radius of the largest sphere that is completely enclosed
by the box at all time steps i is

Rmax
enc =

1

2
min
i

(Lx,i, Ly,i, Lz,i) . (7.29)
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Thus, if and only if we limit the evaluation of ĝXY (rn) to distances rn ≤
Rmax

enc − ∆r
2 , the shell volumes are time-invariant and can be obtained

from

V shell
n,i ≡ V shell

n =
4π

3

(
((n+ 1)∆r)3 − (n∆r)3

)
, n ≤ Rmax

enc

∆r
+ 1 .

(7.30)

Finally, the complete equation for the numerical RDF estimator
reads

ĝXY (rn) =

(
1

N NY

N∑
i=1

Vi

)
1

N NX V shell
n

×
N∑
i=1

NX∑
j=1

NY∑
k=1

δ

(⌊
‖rk,i − rj,i‖pbc

∆r

⌋
− n

)
. (7.31)

If the RDF is to be evaluated among particles of the same species X,
we want to exclude pair distances of particles paired with themselves,
which is achieved by removing the pairs (j, k) with j=k from
the histogram summation. The corresponding RDF estimator then
becomes

ĝXX(rn) =

(
1

N NX

N∑
i=1

Vi

)
2

N NX V shell
n

N∑
i=1

NX∑
j=1

NX∑
k=j+1

δ

(⌊
‖rk,i − rj,i‖pbc

∆r

⌋
− n

)
, (7.32)

where we additionally exploited the symmetry of the Euclidean distance
by shifting the initial index of the innermost sum and multiplying
by 2.
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7.A.1.1 Distance-dependent statistical accuracy of radial pair
distribution functions

Let us consider an ideal gas in a 3d-periodic orthorhombic volume with
constant edge lengths Lx, Ly, Lz comprising a fixed number of particles
NX at thermal equilibrium. Then, by definition of an ideal gas, the
expected number density in any part of the system equals the bulk
density so that the expected value of gXX(r) is 〈gXX(r)〉 = 1 for all
possible distances r. However, if we measure the estimator ĝXX(rn)
of this system for a given number of time steps N , this measure-
ment will be subject to a statistical error ε(ĝXX(rn)). Because of
the constant volume and fixed number of particles, the measured bulk
number density ρ̂X will be time-invariant and equal to its expected
value 〈ρX〉 = NX

V . Thus, the statistical error can only be due to the
estimator ρ̂XX(rn). If we assume that the time ∆t between measure-
ments is large enough for the system to decorrelate, the different
measurements of ρ̂XX(rn) at subsequent time steps will be uncorre-
lated. Thus, according to eq. (4.13), the statistical error ε(ρ̂XX(rn))
will be proportional to 1√

N
for all rn. Nevertheless, the expected value

of this error will also depend on the square root of the expected number
of particle distances 〈Ndist(rn)〉 contributing to the histogram HXX

n .
According to eq. (7.32),

〈Ndist(rn)〉 =
1

2
NX(NX − 1)

V shell
n

V
. (7.33)

Since both NX and V are constant, we conjecture that

〈ε(ĝXX(rn))〉 ∝ 1√
V shell
n

. (7.34)

7.A.1.2 Error estimation of radial pair distribution functions

Whenever gXY (r) is estimated in systems with constant simulation box
volumes Vi = V̄ = V , then 〈ρY 〉=ρY = NY

V at all time steps. It follows
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that

〈gXY (r)〉 =
〈ρXY (r)〉
〈ρY 〉

=
V

NY
〈gXY (r)〉 =

〈
ρXY (r)

ρY

〉
if V =const.

(7.35)
For the estimator ĝXY (rn), it follows analogously that it can be
expressed as the time average

ĝXY (rn) =
1

N

N∑
i=1

ĝXY,i(rn) if V =const , (7.36)

where ĝXY,i(rn) denotes ĝXY (rn) evaluated at a single time step i.
In other words, ĝXY (rn) is the mean of the time series ĝXY (rn)(t).
Thus, we can apply the formulas for the standard error of the mean
derived in section 4.1 to estimate the error ε (ĝXY (rn)) separately for
each distance rn. Since we cannot safely assume that subsequently
measured values ĝXY,i(rn), ĝXY,i+j(rn) are uncorrelated, we have to
compute the error estimate according to eq. (4.30) so that

ε̂ (ĝXY (rn)) =

√√√√ 1

N

jmax∑
j=−jmax

bR̂ĝĝ
j (rn) (7.37)

with the biased auto-covariance estimator bR̂ĝĝ
j (rn) constructed accord-

ing to eq. (4.26), which then reads

bR̂ĝĝ
j (rn) =

1

N

N−|j|∑
i=1

(
ĝXY,i(rn)−

1

N

N∑
k=1

ĝXY,k(rn)

)

×

(
ĝXY,i+j(rn)−

1

N

N∑
k=1

ĝXY,k(rn)

)
. (7.38)

Of course, bR̂ĝĝ
j (rn) can be equivalently evaluated according to eq. (4.40)

for reasons of computational efficiency.

For systems with fluctuating box volumes, eq. (7.35) does not strict-
ly hold because generally, Vi 6= V̄ . Nevertheless, we can follow the
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same procedure as described above because 〈gXY (r)〉≈
〈
ρXY (r)

ρY

〉
is a

sufficiently good approximation for large NX , NY , and N by virtue of
the law of large numbers.

It is important to note, however, that there is absolutely no justifi-
cation for using this approximation for any other purpose except for
estimating ε̂ (ĝXY (rn)). In particular, under no circumstances should
it be used for evaluating ĝXY (rn) because neither could this improve
computational efficiency nor numerical accuracy. After all, if anything,
it would yield biased results!

7.A.1.3 Error estimation of potentials of mean force

The PMF wXY (r) between species X and Y is computed from the
natural logarithm of the corresponding RDF gXY (r) according to

wXY (r) = −kBT ln(gXY (r)) . (7.39)

For large r, gXY (r) ≈ 1, so that we can approximate the
logarithm by its first-order Taylor expansion around 1, which
is ln(x)|1 = x− 1 +O((x− 1)2). This linearization allows us to
approximate wXY (r) as

wXY (r) ≈ kBT

(
〈ρXY (r)〉
〈ρY 〉

− 1

)
for large r , (7.40)

so that by using again the approximation 〈gXY (r)〉≈
〈
ρXY (r)

ρY

〉
, we can

obtain the statistical error of the estimator ŵXY (r) in the same manner
as we have done for ĝXY (r), reading

ε̂ (ŵXY (rn)) =

√√√√ 1

N

N∑
j=−N

bR̂ŵŵ
j (rn) (7.41)
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with

bR̂ŵŵ
j (rn) =

1

N

N−|j|∑
i=1

(
ŵXY,i(rn)−

1

N

N∑
k=1

ŵXY,k(rn)

)

×

(
ŵXY,i+j(rn)−

1

N

N∑
k=1

ŵXY,k(rn)

)
. (7.42)

Since the linearization is only valid for large r where gXY (r) ≈ 1, this
error estimate is not exact for r → 0. Nevertheless, since the statistical
error analysis is only relevant for the PMF’s asymptotic behavior at
large separations, this approach is sufficient for our purposes.
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7.B Additional Results

7.B.1 Bulk systems

7.B.1.1 Volumetric system properties

pure [C4C1Im]+[PF6]−(all-atom)

c (mol/l) V̄ (nm3) %̄ (kg/m3) %exp (kg/m3) ∆% (%)
4.62987(4) 38,735.0(3) 1,315.735(10) 1,360.47 -3.29

pure [C4C1Im]+[PF6]−(coarse-grained)

c (mol/l) V̄ (nm3) %̄ (kg/m3) %exp (kg/m3) ∆% (%)
4.78280(2) 124,396.7(5) 1,359.223(6) 1,360.47 -0.09

[C4C1Im]+ [NTf2]− in PC (all-atom)

c (mol/l) V̄ (nm3) %̄ (kg/m3) %exp (kg/m3) ∆% (%)
0.00000(0) 139.46(5) 1,215.5(4) 1,197.30 1.52
0.53340(1) 622.628(5) 1,258.31(1) 1,229.92 2.31
0.96600(1) 859.490(1) 1,292.67(1) 1,262.49 2.39
1.62504(1) 510.922(1) 1,345.08(1) 1,307.08 2.91
2.10316(1) 394.772(3) 1,383.12(1) 1,339.01 3.29
2.46649(2) 336.619(3) 1,412.06(1) 1,363.58 3.56
2.75140(2) 301.763(3) 1,434.72(1) 1,382.19 3.80
2.98136(3) 278.487(3) 1,452.98(2) 1,396.75 4.03
3.17022(4) 261.896(3) 1,467.99(2) 1,408.63 4.21
3.32780(4) 249.495(3) 1,480.49(2) 1,418.32 4.38
3.46103(7) 239.891(5) 1,491.00(3) 1,426.15 4.55
3.57732(5) 232.092(3) 1,500.20(2) 1,432.52 4.72

NaCl in SPC/E water (all-atom)

c (mol/l) V̄ (nm3) %̄ (kg/m3) %exp (kg/m3) ∆% (%)
1.155534(2) 5,388.87(1) 1,047.766(2) 1,042.34 0.52
2.432431(8) 2,559.999(8) 1,098.209(4) 1,090.56 0.70
4.433304(9) 80,905.0(2) 1,168.069(2) 1,162.79 0.45
4.86353(2) 1,280.349(5) 1,181.711(5) 1,178.07 0.31
5.19117(3) 1,199.541(7) 1,191.838(7) 1,189.70 0.18

Table 7.B.1: Volumetric system properties. The listed values are molar ion
pair concentration c (mol/l), average simulation box volume V̄ (nm3), average
mass density %̄ (kg/m3), experimental mass density %exp (kg/m3), and relative
deviation ∆% =

%̄−%exp
%exp

(%). The experimental value of %exp for [C4C1Im]+[PF6]−at
300 K is a linear extrapolation of temperature-dependent mass density measurements
taken from Machida et al.,273 whereas the values of %exp for [C4C1Im]+ [NTf2]− in PC
are linear interpolations of temperature- and concentration-dependent measurements
obtained from Vraneš et al.329 For aqueous NaCl, the values of %exp are linear inter- and
extrapolations of temperature- and concentration-dependent data from ref. 301.
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7.B.1.2 Static relative dielectric permittivities

[C4C1Im]+ [NTf2]− in PC
x c (mol/l) εr λD (nm) λS (nm)
0.00 0.00 59.3(6) — —
0.05 0.53 46(3) 0.32(1) 0.67(3)
0.10 0.97 39(5) 0.22(1) 0.65(4)
0.20 1.63 28(3) 0.144(8) 0.496(8)
0.30 2.10 23(3) 0.114(8) 0.465(6)
0.40 2.47 20(3) 0.099(7) 0.584(9)
0.50 2.75 15(2) 0.081(6) 0.607(4)
0.60 2.98 13(2) 0.073(4) 0.686(4)
0.70 3.17 12(1) 0.068(3) 0.753(6)
0.80 3.33 10.0(8) 0.060(2) 0.846(8)
0.90 3.46 10.5(7) 0.060(2) 0.95(1)
1.00 3.58 9.1(5) 0.055(1) 1.07(1)

aqueous NaCl
x c (mol/l) εr λD (nm) λS (nm)
0.02 1.16 53(2) 0.233(3) 0.25(1)
0.04 2.43 47(4) 0.151(6) 0.197(8)
0.09 4.86 35(3) 0.093(4) 0.32(2)
0.10 5.19 33(3) 0.087(4) 0.33(1)

Table 7.B.2: Static relative permittivities εr, Debye lengths λD, and effective screening
lengths λS for solutions of [C4C1Im]+ [NTf2]− in PC (top) and NaCl in water (bottom)
at different concentrations. The numbers in parentheses represent the uncertainty of
the last digit.
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ε r

[C4C1Im]+ [NTf2]− in PC

Figure 7.B.1: Static relative dielectric permittivities εr of [C4C1Im]+ [NTf2]− in PC as
a function of molar concentration c according to table 7.B.2.
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7.B.1.3 PMF behavior over time

As stated in the main chapter, when analyzing simulations of concen-
trated ionic liquid systems, it is crucial that enough simulation time
has been allowed for such systems to reach thermal equilibrium. The
following plots show how the PMFs of the largest investigated systems
(pure [C4C1Im]+[PF6]−, AA and CG models) change over time.
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Figure 7.B.2: Absolute value of the potential of mean force |w+−| (r) between anions
and cations in neat [C4C1Im]+[PF6]−(AA model) for 250 analyzed frames (corresponding
to a time span ∆t = 0.5 ns) taken at different time steps t during the simulation. The
first PMF at t=−200 ns (dashed gray line) was computed from trajectory data during
system equilibration. Even though its short-range behavior is similar to the remaining
PMF curves, this PMF exhibits comparatively large-amplitude, regular oscillations in
its tail, showing that the system is not properly equilibrated at this point in time.
The remaining PMFs were computed for the same number of frames but at times
t ∈ {0, 200, 400, 599.5} ns after equilibration. After equilibration, all PMFs show the
same qualitative behavior with rather noisy tails of similar amplitude, demonstrating
that the system has reached an equilibrium state.
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Figure 7.B.3: Absolute value of the potential of mean force |w+−| (r) between anions
and cations in neat [C4C1Im]+[PF6]−(CG model) for 100 analyzed frames (corresponding
to a time span ∆t = 0.5 ns) taken at different time steps t during the simulation. The
first PMF at t=−100 ns (dashed gray line) was computed from trajectory data during
system equilibration. It is clearly visible that there are small structural artifacts in
the PMF tail at r ≈ 24 nm and for r > 29 nm, showing that the system is not yet
equilibrated at this point in time. The remaining PMFs were computed for the same
number of frames but at times t ∈ {0, 300, 500, 699.5} ns after equilibration. Obviously,
the structural artifacts have vanished after equilibration, and all PMFs show the same
qualitative behavior, demonstrating that the system is indeed equilibrated.

The PMFs shown in figs. 7.B.2 and 7.B.3 demonstrate that the systems
are properly equilibrated, however, they do not yield implications about
the relaxation of the cumulative PMF behavior over time. Therefore,
figs. 7.B.4 and 7.B.5 show the PMFs’ relaxation behavior depending on
the number of analyzed frames after equilibration.

For both molecular models, the extent of the damped oscillatory
region increases with simulation time but the qualitative PMF behavior
remains unchanged and without any indication for a long-ranged,
monotonic decay.
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Figure 7.B.4: Absolute value of the potential of mean force |w+−| (r) between anions
and cations in neat [C4C1Im]+[PF6]−(AA model) for different numbers of analyzed
frames (i.e., time spans). Regardless of the number of analyzed frames, the PMFs
exhibit an exponentially damped oscillatory behavior, followed by rather noisy oscillations
of almost constant amplitude. As the number of analyzed frames increases, the extent
of the exponentially damped region increases to larger distances and the amplitude of
the oscillatory tail decreases. However, there is no sign of any long-range monotonic
decay.
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Figure 7.B.5: Absolute value of the potential of mean force |w+−| (r) between anions
and cations in neat [C4C1Im]+[PF6]−(CG model) for different numbers of analyzed
frames (i.e., time spans). As for the all-atom model, the PMFs exhibit an exponentially
damped oscillatory behavior, followed by rather noisy oscillations of almost constant
amplitude. Likewise, as the number of analyzed frames increases, the extent of the
exponentially damped region increases to larger distances and the amplitude of the
oscillatory tail decreases. Again, there is no sign of any long-range monotonic decay.
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7.B.1.4 Screening length scaling analysis of [C4C1Im]+ [NTf2]− in
propylene carbonate
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Figure 7.B.6: Panel a: Cation-anion radial distribution functions g+−(r) of
[C4C1Im]+ [NTf2]− in propylene carbonate for different IL mole fractions x ranging
from x = 0.05 (blue) to x = 1.0 (red). Panel b: Corresponding cation-anion potentials
of mean force w+−(r) of the same systems (same color code). Arrows indicate increasing
IL mole fraction.
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Figure 7.B.7: Panel a: Anion-anion radial distribution functions g−−(r) of
[C4C1Im]+ [NTf2]− in propylene carbonate for different IL mole fractions x ranging
from x = 0.05 (blue) to x = 1.0 (red). Panel b: Corresponding anion-anion potentials
of mean force w−−(r) of the same systems (same color code). Arrows indicate increasing
IL mole fraction.

Listed below in tables 7.B.3 to 7.B.5 are the parameters resulting
from fits of a superposition of k = 2 oscillatory, exponentially damped
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Figure 7.B.8: Panel a: Cation-cation radial distribution functions g++(r) of
[C4C1Im]+ [NTf2]− in propylene carbonate for different IL mole fractions x ranging
from x = 0.05 (blue) to x = 1.0 (red). Panel b: Corresponding cation-cation potentials
of mean force w++(r) of the same systems (same color code). Arrows indicate increasing
IL mole fraction.

functions of the form

f(r) =

k∑
n=1

An

r
cos (ωn r − φn) exp

(
− r

λn

)
(7.43)

to the PMFs in solutions of [C4C1Im]+ [NTf2]− in propylene carbonate
at different IL mole fractions x.

x
cIL

(mol/l)

A1

(kBT )

λ1

(nm)

2π/ω1

(nm)
φ1

A2

(kBT )

λ2

(nm)

2π/ω2

(nm)
φ2 R2

0.05 0.53 1.11(4) 0.444(5) 0.477(1) 5.83(5) -15(2) 0.222(3) ∞ — 0.9955
0.10 0.97 1.13(7) 0.404(6) 0.458(1) 0.38(7) 9534(5496) 0.158(7) 116(1) 2(44) 0.9948
0.20 1.63 0.39(2) 0.496(8) 0.465(3) 5.87(5) 2.8(2) 0.309(5) 0.799(3) 6.04(6) 0.9980
0.30 2.10 0.79(8) 0.41(1) 0.468(6) 5.6(1) 1.6(1) 0.395(7) 0.729(3) 1.37(7) 0.9966
0.40 2.47 1.16(9) 0.373(7) 0.465(5) 5.6(1) 1.42(5) 0.462(4) 0.731(1) 1.56(3) 0.9990
0.50 2.75 1.5(1) 0.348(6) 0.461(5) 5.84(9) 1.14(2) 0.555(3) 0.7383(8) 1.50(2) 0.9996
0.60 2.98 1.7(1) 0.339(6) 0.464(5) 5.73(9) 1.02(1) 0.636(3) 0.7409(6) 1.45(1) 0.9997
0.70 3.17 1.5(1) 0.351(6) 0.467(5) 5.55(9) 0.99(1) 0.700(3) 0.7446(5) 1.35(1) 0.9998
0.80 3.33 1.6(2) 0.343(8) 0.468(7) 5.5(1) 0.90(1) 0.786(4) 0.7457(5) 1.32(1) 0.9998
0.90 3.46 1.6(2) 0.34(1) 0.468(8) 5.53(1) 0.83(1) 0.871(5) 0.7471(5) 1.28(1) 0.9997
1.00 3.58 2.0(3) 0.33(1) 0.48(1) 5.1(2) 0.81(1) 0.941(7) 0.7457(5) 1.28(1) 0.9997

Table 7.B.3: Fit parameters of eq. (7.43) to cation-anion PMFs w+−(r) in solutions
of [C4C1Im]+ [NTf2]− in propylene carbonate for different mole fractions x in the
fit range 1.2 ≤ r ≤ 3.0 nm. The values (units) are IL mole fraction x, concentra-
tion c (mol/l), amplitudes An (kBT ), wavelengths 2π/ωn (nm), phase shifts φn, and the
coefficient of determination R2. The numbers in parentheses represent the uncertainty
of the last digit.
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x
cIL

(mol/l)

A1

(kBT )

λ1

(nm)

2π/ω1

(nm)
φ1

A2

(kBT )

λ2

(nm)

2π/ω2

(nm)
φ2 R2

0.05 0.53 3.8(1) 0.421(4) 0.4843(7) 4.09(3) 4.3(4) 0.308(7) ∞ — 0.9976
0.10 0.97 0.9(1) 0.56(1) 0.463(2) 5.4(1) 88(10) 0.201(4) 0.489(4) 3.7(1) 0.9995
0.20 1.63 3.8(2) 0.389(5) 0.475(3) 4.61(7) 1.9(2) 0.36(1) 0.714(5) 4.8(1) 0.9991
0.30 2.10 3.5(2) 0.382(4) 0.469(3) 4.94(5) 1.75(5) 0.465(6) 0.720(2) 4.82(4) 0.9996
0.40 2.47 3.5(1) 0.373(4) 0.466(2) 5.16(5) 1.69(5) 0.522(4) 0.723(1) 4.79(2) 0.9998
0.50 2.75 3.8(2) 0.358(4) 0.466(3) 5.24(5) 1.40(3) 0.607(4) 0.7282(7) 4.70(2) 0.9998
0.60 2.98 4.0(2) 0.349(4) 0.464(3) 5.37(5) 1.23(2) 0.686(4) 0.7310(7) 4.63(1) 0.9998
0.70 3.17 5.0(4) 0.329(5) 0.464(4) 5.46(8) 1.13(2) 0.753(6) 0.7342(7) 4.54(2) 0.9997
0.80 3.33 6.3(6) 0.312(6) 0.468(6) 5.4(1) 0.98(2) 0.846(8) 0.7371(8) 4.46(1) 0.9996
0.90 3.46 7.5(9) 0.303(7) 0.476(7) 5.1(1) 0.85(2) 0.95(1) 0.7394(8) 4.40(2) 0.9995
1.00 3.58 8(1) 0.296(8) 0.479(8) 5.0(1) 0.76(2) 1.07(1) 0.7388(9) 4.38(2) 0.9994

Table 7.B.4: Fit parameters of eq. (7.43) to anion-anion PMFs w−−(r) in solutions
of [C4C1Im]+ [NTf2]− in propylene carbonate for different mole fractions x in the
fit range 1.2 ≤ r ≤ 3.0 nm. The values (units) are IL mole fraction x, concentra-
tion c (mol/l), amplitudes An (kBT ), wavelengths 2π/ωn (nm), phase shifts φn, and the
coefficient of determination R2. The numbers in parentheses represent the uncertainty
of the last digit.

x
cIL

(mol/l)

A1

(kBT )

λ1

(nm)

2π/ω1

(nm)
φ1

A2

(kBT )

λ2

(nm)

2π/ω2

(nm)
φ2 R2

0.05 0.53 0.09(1) 0.67(3) 0.47(1) 0.7(1) 2.8(2) 0.302(4) ∞ — 0.9853
0.10 0.97 0.07(1) 0.65(4) 0.46(2) 1.0(1) 0.21(6) 0.43(3) 1.11(2) 6.0(2) 0.8456
0.20 1.63 0.24(3) 0.46(1) 0.48(1) 5.5(1) 0.18(3) 0.44(2) 0.96(2) 0.3(2) 0.9868
0.30 2.10 56(25) 0.19(1) 0.53(2) 4.3(3) 0.3(1) 0.45(3) 0.86(1) 1.6(2) 0.9905
0.40 2.47 12(2) 0.226(6) 0.50(1) 5.0(2) 0.26(2) 0.58(1) 0.740(3) 4.77(7) 0.9990
0.50 2.75 92(34) 0.169(7) 0.45(2) 0.9(4) 0.50(2) 0.597(6) 0.734(2) 4.95(4) 0.9991
0.60 2.98 12(2) 0.227(6) 0.48(1) 5.3(3) 0.56(1) 0.668(3) 0.730(1) 5.12(3) 0.9997
0.70 3.17 24(4) 0.206(4) 0.47(1) 5.8(2) 0.584(7) 0.744(3) 0.7394(5) 4.89(1) 0.9999
0.80 3.33 40(7) 0.193(4) 0.46(1) 0.1(3) 0.606(6) 0.815(3) 0.7411(4) 4.82(1) 0.9999
0.90 3.46 84(16) 0.176(4) 0.43(2) 1.3(3) 0.604(5) 0.895(3) 0.7444(4) 4.72(1) 0.9999
1.00 3.58 104(22) 0.174(4) 0.43(2) 1.6(3) 0.594(4) 0.983(3) 0.7432(4) 4.71(1) 0.9999

Table 7.B.5: Fit parameters of eq. (7.43) to cation-cation PMFs w++(r) in solutions
of [C4C1Im]+ [NTf2]− in propylene carbonate for different mole fractions x in the
fit range 1.2 ≤ r ≤ 3.0 nm. The values (units) are IL mole fraction x, concentra-
tion c (mol/l), amplitudes An (kBT ), wavelengths 2π/ωn (nm), phase shifts φn, and the
coefficient of determination R2. The numbers in parentheses represent the uncertainty
of the last digit.

Fitting the data to eq. (7.43) with k = 3 terms resulted in extremely
unstable results under slight variation of initial fit parameters, while
setting k = 1 lead to large fitting errors.
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7.B Additional Results

7.B.2 Confined ionic liquid systems

7.B.2.1 Number density profiles

To investigate the layered structure of the IL in the z-direction of
the different confined systems, we computed the center-of-mass-based
number densities of ions according to

ρ±n (z) =
〈∑

i

δ (z − zcomi )
〉
, (7.44)

where δ (·) is the Dirac delta function, the operator 〈·〉 denotes the
canonical average, and the index i runs over all molecules in the system
with center-of-mass position zcomi , respectively. For the numerical
evaluation of eq. (7.44), the system is discretized in the z-direction
into n slabs of width lz = Lz/n, where Lz is the length of the simulation
box in the z-direction. The number density profile is then calculated
according to

ρ±n (z) =
〈 1

Lx Ly lz

∑
i

2|z−zcom
i

|<lz

1
〉
, (7.45)

The top row of fig. 7.B.9 shows snapshots of the x-z-plane of all
confined systems (from left to right: Lz = 8.2 nm, Lz = 9.9 nm,
Lz = 13.2 nm, Lz = 14.8 nm). The corresponding center-of-mass-
based number densities of [C4C1Im]+ cations (ρ+n (z), blue) and [NTf2]−
anions (ρ−n (z), red) are displayed in the bottom row.

The ion number densities shown in fig. 7.B.9 make it clear that on either
side of the systems, the first layer close to each of the negatively charged
walls consists entirely of cations, all systems exhibit a very similar
structure with alternating cation and anion layers, and this structural
feature decays exponentially towards the center of the systems. A closer
look at the number density profiles of the first three systems reveals
that while all profiles decay in the same manner, the first cation layers
close to the walls do not always have the exact same amplitude. This
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Figure 7.B.9: Top row: Snapshots of the x-z-plane of all confined
systems with different simulation box sizes (from left to right:
Lz = 8.2 nm, Lz = 9.9 nm, Lz = 13.2 nm, Lz = 14.8 nm). Bottom row: Cation
(ρ+n (z), blue), anion (ρ−n (z), red), and bulk (black, dashed) number density ρn(z) of
[C4C1Im]+ [NTf2]− confined between like-charged graphene walls. In the vicinity of the
walls (up to z ≈ 1 nm, and likewise, down to z ≈ Lz − 1 nm), the total number density
is almost entirely due to cations.

is a consequence of the fact that the total dipole moment of such slab
systems fluctuates slowly around zero, and the average ion distributions
have not fully converged to perfect symmetry within the simulation
times of these systems (tsim = 1µs). The largest system (rightmost
column in fig. 7.B.9), which is used for our analyses in the main chapter,
does not suffer from this inaccuracy due to its much longer simulation
time of tsim = 4µs. This highlights the very slow dynamics in confined
IL systems.
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7.B.2.2 Charge density profiles
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Figure 7.B.10: Cation (ρ+q (z), blue), anion (ρ−q (z), red), and total (black) charge
density ρq(z) of [C4C1Im]+ [NTf2]− confined between like-charged graphene walls. In
the vicinity of the walls (up to z = 0.81 nm, and likewise, down to z = Lz−0.81 nm), the
total charge density is entirely due to cations. Nevertheless, the charge density oscillates
around zero in this region, which is due to the negative partial charges of carbon atoms
in the cations’ butyl and methyl side chains. Due to the typically preferred orientations
of cations close the surface, these atoms have a high probability to be located at a
specific distance from the surface, yielding a net-negative charge density in this region.
Thereafter, between z = 0.81 nm and z = 1.2 nm, the anion contribution dominates.
For larger distances, both cations and anions have relatively similar contributions (in
magnitude) to the total charge density. Towards the center of the system, all charge
densities converge to their corresponding bulk values.
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Figure 7.B.11: Different contributions to the cation charge density (ρ+q (z) (thick blue
line) of [C4C1Im]+ [NTf2]− confined between like-charged graphene walls. Close to the
surface, the [C4C1Im]+ ions are highly ordered so that their molecular structure affects
the cumulative cation charge density. As a consequence, the first positive peak in
ρ+q (z) at z ≈ 0.63 nm is entirely due to the contribution of hydrogen atoms ρ

+(H)
q (z)

(purple line), and the negative peaks at z ≈ 0.69 nm and z ≈ 0.83 nm is caused by the
contribution of carbon atoms ρ

+(C)
q (z) (green line).
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Figure 7.B.12: Different contributions to the anion charge density (ρ−q (z) (red) of
[C4C1Im]+ [NTf2]− confined between like-charged graphene walls. The first negative
peak in ρ−q (z) at z ≈ 1.0 nm is mostly due to the contribution of oxygen atoms ρ−(O)

q (z)
(brown line), and the positive peak at z ≈ 1.1 nm is caused by the contributions of
carbon (ρ−(C)

q (z), green line) and of sulfur atoms (ρ−(S)
q (z), pink line). Thereafter,

even though especially the oxygen and sulfur contributions still oscillate, the different
contributions mostly cancel out so that the total anion charge density converges rather
quickly to its bulk value.
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7.B.2.3 Position-dependent RDFs

Computing RDFs g
(i)
XY (r; zi) between a spatially selective group of

species X consisting only of molecules whose center of mass lies within
a slab extending in the xy-plane and centered at z = zi with width lz,
and a second group of molecular species Y without such constraints,
requires slight modifications of eqs. (7.31) and (7.32). If the molecular
species in X are different from those in Y , i.e., the groups are disjoint,
eq. (7.31) has to read

ĝ
(i)
XY (rn, zi) =

1

N ρ̄bulkY V shell
n

N∑
m=1

1

NX,i,m

×
NX,i,m∑
j=1

NY∑
k=1

δ

(⌊
‖rk,m − rj,m‖pbc

∆r

⌋
− n

)
, (7.46)

where ρ̄bulkY is the average bulk number density of molecules of
species Y , and the second sum runs over all NX,i,m molecules of
species X whose center of mass positions’ z-coordinates zcomm fulfill
the condition 2|zi − zcomm | ≤ lz at time step m.

If X = Y , the groups overlap (the first group is a subset of the second)
so that one has to exclude distances of molecules with themselves. Since
the RDF bin width ∆r is usually chosen much smaller than the smallest
intermolecular distance, this can be accomplished by simply setting
ĝ
(i)
XY (rn, zi) = 0 if n = 0.

Shown below in fig. 7.B.13 are the results of z-position-dependent RDFs
g
(i)
−+(r; zi) (anion-cation), g

(i)
++(r; zi) (cation-cation), and g

(i)
−−(r; zi)

(anion-anion) computed in this manner, as were the cation-anion RDFs
displayed in section 7.2.4. The amplitudes of the first maxima and
minima (middles and bottom row in fig. 7.B.13) decay with zi in a
similar manner as the ones shown in the main chapter.
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Figure 7.B.13: Top row: z-distance-dependent RDFs g
(i)
−+(r; zi) (anion-cation, left

column), g(i)−−(r; zi) (anion-anion, middle column), and g
(i)
++(r; zi) (cation-cation, right

column) of [C4C1Im]+ [NTf2]− confined between like-charged graphene walls. The
corresponding amplitudes of the first maxima and minima are plotted against the
reference distance zi in the middle and bottom row, respectively. The black lines are fits
to an oscillatory exponential decay with a decay length varying between 0.9 and 1.1 nm,
consistent with the behavior shown for cation-anion RDFs in the main chapter.
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7.B.3 Using reduced-charge ion models in confined systems

In our simulations of confined ILs, we employed the same reduced-
charge model as in our bulk simulations. While reduced charges are
used to account for electronic polarization effects in ion-ion interac-
tions (see simulation details in the main article), the same reduced
charges do not yield a precise description of solid-liquid interactions.
This becomes apparent from the fact that 352 counterions with reduced
charge are required to compensate the charge of both walls, whereas
a model with full charges would only require about 282 counterions.
While the overall charge balance remains correct in our simulations,
the volume the additionally required 70 counterions consume would
not appear in simulations employing models with full charges. The
corresponding change in the total IL volume of about 0.8 % (estimated
from 8352 vs. 8282 ions of equal molecular volume) is rather negligi-
ble. Nevertheless, as counterions accumulate in higher amounts close
to the surfaces, this will likely entail changes in the charge distribu-
tion close to the surfaces. While this influence may be non-negligible,
according to Kjellander,66 the specific interactions of ions with the
surface only influence the phase and amplitude of the electric field’s
long-range decay modes towards the bulk but not their characteristic
decay- and wavelengths. We therefore argue that if such decay modes
existed in our systems, it should still be possible to observe them at
large distances.

We want to stress here that using IL models with full charges will
not improve the situation unless electronic polarizability is explicitly
taken into account. In fact, non-polarizable models with full charges
are known to overestimate interionic Coulomb interactions in ILs and
therefore cannot faithfully reproduce interactions with charged surfaces
either. Furthermore, as IL models with full charges severely underesti-
mate the mobility of ions, we would expect the confined systems to be
practically frozen on time scales accessible to MD simulations if such
models were employed.
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7 Ionic Screening in Bulk and under Confinement

The formally best approach to describe both ion-surface and bulk ion-
ion interactions of ILs more accurately in MD simulations would be to
use polarizable force fields, i.e., molecular models with full ionic charges
that take electronic polarizability explicitly into account (e.g., by means
of inducible point dipoles or Drude oscillators). However, the addition-
al complexity introduced by such models increases the computational
cost for simulations of the required length and time scales prohibitively
and would have increased the cumulative runtimes of our simulations
from months to years. To date, to the best of our knowledge, the
approach we chose here yields the most accurate microscopic descrip-
tion of sufficiently large confined IL systems that is at the same time
computationally feasible.

270



7.C Relating Underscreening to Other Measurements

7.C Relating Underscreening to Other
Measurements

7.C.1 Differential capacitance estimates for different widths
of the Stern layer

In the main chapter, we showed the differential capacitance Cd estimat-
ed from from the screening length λS according to the GCS model

Cd =
(
C−1
Stern + C−1

diffuse

)−1
=

ε0εr
a+ λS

, (7.47)

where we set a = d/2 ≈ 0.2nm. The resulting plot showed a behavior
of Cd estimated for screening lengths from SFB measurements (orange
dots with dashed line in fig. 7.9 of the main chapter) that is qualita-
tively similar to the original plot by Lee et al. shown in figure 8 of
reference 52 but differs in amplitude. In fig. 7.C.1 below, we show plots
of the very same calculations but with the width of the Stern layer set
to a = 2 d ≈ 0.8nm. The results are all qualitatievly similar to those
presented in the main chapter, but the orange line in panel a represent-
ing Cd obtained from SFB measurements now reproduces figure 8 of
reference 52 exactly. Thus, we conjecture that Lee et al. used a = 2 d in
their calculations. Note that for this value of a, the differential capacity
estimate obtained from simulation data (blue line) has a better quanti-
tative and qualitative overall agreement with the direct measurements
than all other estimates, and the monotonic behavior of λS obtained
from direct differential capacitance measurements using the inverted
GCS model is retained (panel b of fig. 7.C.1).
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Figure 7.C.1: Panel a: Comparison of the concentration-dependent differential capaci-
tance Cd at the point of zero charge obtained from direct measurements321 (black
squares) and according to the GCS model as defined by eq. (7.47) (orange dots: SFB
measurements,51 blue circles: simulation). The solid green line shows Cd when λS is
replaced by λD in eq. (7.47). Here, we used a = 2 d ≈ 0.8 nm for the evaluation of
eq. (7.47) instead of a = d/2 in the main chapter.
aDifferential capacitance for [C2C1Im]+ [NTf2]− from Bozym et al..321

bλS and εr data for [C4C1Pyrr]+ [NTf2]− from Smith et al..51

cλS and εr data from simulations of [C4C1Im]+ [NTf2]− (this work).
dλD was computed using interpolated εr data from simulations of [C4C1Im]+ [NTf2]−
(this work).
Panel b: Screening length λS computed according to the inverted GCS model (eq. (7.47)
solved for λS) with Cd from direct measurements,321 εr interpolated from simulations,
and a = 2 d ≈ 0.8 nm.
In both panels, dashed lines serve as a guide to the eye.
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7.D GROMACS Simulation Parameters

All bulk systems were simulated in the NpT ensemble in cubic boxes
with periodic boundary conditions in all three dimensions, where
temperature and pressure were maintained at T =300K and p = 1 bar
using a Nosé-Hoover thermostat and Parrinello-Rahman barostat.
Short-range van der Waals interactions were computed up to a system-
dependent cut-off, and their long-range part was either computed
using the smooth particle mesh Ewald (SPME) method with a relative
accuracy of 10−3, or taken into account via analytic dispersion correc-
tions for energy and pressure. Long-range Coulomb interactions were
computed using the SPME method with a short-range cut-off of at
least 1.3nm, a relative accuracy of 10−5 (unless otherwise stated), and
tin foil boundary conditions at infinity. The time step of the employed
leapfrog integrator was 2 fs for the all-atom models and 5 fs for the
coarse-grained IL model.

In the following, we list the GROMACS molecular dynamics parameters
used in production runs for all investigated systems.
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7 Ionic Screening in Bulk and under Confinement

7.D.1 [C4C1Im]+[PF6]−(all-atom model)

parameter value unit (note)
integrator md (leapfrog integrator)
dt 0.002 ps
nsteps 300000000 steps
comm-mode linear
nstcomm 50 steps
nstcalcenergy 50 steps
nstxout-compressed 1000 steps
compressed-x-precision 10000 (means 10−4 nm)
cutoff-scheme verlet
nstlist 40 steps
ns-type grid
pbc xyz
coulombtype pme
coulomb-modifier potential-shift-verlet
rcoulomb 1.3 nm
vdwtype pme
vdw-modifier potential-shift-verlet
rvdw 1.3 nm
tcoupl nose-hoover
nsttcouple 5 steps
nh-chain-length 1
tau-t 2.0 ps
ref-t 300.0 K
pcoupl parrinello-rahman
pcoupltype isotropic
nstpcouple 5 steps
tau-p 3.0 ps
compressibility 4.5e-5 bar−1

ref-p 1.0 bar

constraints h-bonds (fixed length of bonds
involving H atoms)

constraint-algorithm lincs

Table 7.D.1: GROMACS molecular dynamics simulation parameters used for the simula-
tion of [C4C1Im]+[PF6]−(all-atom model). Only parameters which differ from the default
(or have no default) are listed.
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7.D.2 [C4C1Im]+[PF6]−(coarse-grained model)

parameter value unit (note)
integrator md (leapfrog integrator)
dt 0.005 ps
nsteps 140000000 steps
comm-mode linear
nstcomm 200 steps
nstcalcenergy 200 steps
nstxout-compressed 1000 steps
compressed-x-precision 1000 (means 10−3 nm)
cutoff-scheme verlet
nstlist 40 steps
ns-type grid
pbc xyz
coulombtype pme
coulomb-modifier potential-shift-verlet
rcoulomb 1.6 nm
vdwtype cut-off
vdw-modifier potential-shift-verlet
dispcorr enerpres
rvdw 1.6 nm
tcoupl nose-hoover
nh-chain-length 1
tau-t 5.0 ps
ref-t 300.0 K
pcoupl parrinello-rahman
pcoupltype isotropic
tau-p 10.0 ps
compressibility 4.5e-5 bar−1

ref-p 1.0 bar
constraints all-bonds (rigid molecular geometry)
constraint-algorithm lincs

Table 7.D.2: GROMACS molecular dynamics simulation parameters used for the simula-
tion of [C4C1Im]+[PF6]−(coarse-grained model). Only parameters which differ from the
default (or have no default) are listed.
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7.D.3 Aqueous NaCl solutions

parameter value unit (note)
integrator md (leapfrog integrator)
dt 0.002 ps
nsteps 100000000 steps
comm-mode linear
nstcomm 50 steps
nstcalcenergy 50 steps
nstxout-compressed 1000 steps
compressed-x-precision 10000 (means 10−4 nm)
cutoff-scheme verlet
nstlist 40 steps
ns-type grid
pbc xyz
coulombtype p3m-ad
coulomb-modifier potential-shift-verlet
rcoulomb 1.2 nm
vdwtype cut-off
vdw-modifier potential-shift-verlet
dispcorr enerpres
rvdw 1.2 nm
ewald-rtol 1.0e-6
tcoupl nose-hoover
nsttcouple 5 steps
nh-chain-length 1
tau-t 2.0 ps
ref-t 300.0 K
pcoupl parrinello-rahman
pcoupltype isotropic
nstpcouple 5 steps
tau-p 3.0 ps
compressibility 4.5e-5 bar−1

ref-p 1.0 bar
constraints all-bonds (rigid water geometry)
constraint-algorithm lincs

Table 7.D.3: GROMACS molecular dynamics simulation parameters used for the simula-
tion of aqueous NaCl solutions. Only parameters which differ from the default (or have
no default) are listed.
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7.D.4 [C4C1Im]+ [NTf2]− in PC

parameter value unit (note)
integrator md (leapfrog integrator)
dt 0.002 ps
nsteps 1073741824 steps (= 230)
comm-mode linear
nstcomm 1 steps
nstcalcenergy 50 steps
nstxout-compressed 1000 steps
compressed-x-precision 10000 (means 10−4 nm)
cutoff-scheme verlet
nstlist 40 steps
ns-type grid
pbc xyz
coulombtype pme
coulomb-modifier potential-shift-verlet
rcoulomb 1.3 nm
vdwtype cut-off
vdw-modifier potential-shift-verlet
dispcorr enerpres
rvdw 1.3 nm
tcoupl nose-hoover
nsttcouple 5 steps
nh-chain-length 1
tau-t 2.0 ps
ref-t 300.0 K
pcoupl parrinello-rahman
pcoupltype isotropic
nstpcouple 5 steps
tau-p 3.0 ps
compressibility 4.5e-5 bar−1

ref-p 1.0 bar

constraints h-bonds (fixed length of bonds
involving H atoms)

constraint-algorithm lincs

Table 7.D.4: GROMACS molecular dynamics simulation parameters used for the simula-
tion of [C4C1Im]+ [NTf2]− in propylene carbonate. Only parameters which differ from
the default (or have no default) are listed.
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7.D.5 [C4C1Im]+ [NTf2]− confined between like-charged
graphene walls

parameter value unit (note)
integrator md (leapfrog integrator)
dt 0.002 ps
nsteps 500000000 steps
comm-mode linear
nstcomm 50 steps
nstcalcenergy 50 steps
nstxout-compressed 1000 steps
compressed-x-precision 10000 (means 10−4 nm)
cutoff-scheme verlet
nstlist 40 steps
ns-type grid
pbc xy
coulombtype pme
coulomb-modifier potential-shift-verlet
rcoulomb 1.3 nm
vdwtype pme
vdw-modifier potential-shift-verlet
dispcorr no
rvdw 1.3 nm
ewald-geometry 3dc
tcoupl v-rescale
nsttcouple -1 steps
tau-t 2.0 ps
ref-t 300.0 K
pcoupl no (for equilibration: parrinello-rahman)
pcoupltype semiisotropic
nstpcouple -1 steps
tau-p 3.0 ps
compressibility 0.0 4.5e-5 bar−1

ref-p 1.0 1.0 bar
constraints h-bonds (fix length of bonds involving H atoms)
constraint-algorithm lincs
nwall 2
wall-type harmonic (not available in a standard GROMACS installation)
wall-r-linpot -1
wall-atomtype WALL WALL (non-interacting dummy wall atom type)
wall-density 1.0 1.0 (arbitrary, has no effect on harmonic wall coupling)
wall-ewald-zfac 3

Table 7.D.5: GROMACS molecular dynamics simulation parameters used for the simula-
tion of [C4C1Im]+ [NTf2]− confined between like-charged graphene walls. Only parame-
ters which differ from the default (or have no default) are listed. The wall type ”harmon-
ic” is a custom extension to GROMACS, which is used to couple each graphene wall to its
corresponding simulation box face with a harmonic potential. This was necessary during
NpT equilibration because the current implementation of reference coordinate scaling
does not work in conjunction with semiisotropic pressure coupling. During production
runs (NV T ensemble, no pressure coupling), using this wall type has exactly the same
effect as applying harmonic position restraints (force constant 10 000 kJ mol−1) to the
wall carbon atoms in the z-direction. To constrain the atomic positions in the x- and
y-directions, normal position restraints with the same force constant are used. Note that
for correct pressure estimates, the forces due to position restraints of the wall atoms
and also the forces between atoms within each wall have to be excluded from the virial
computation. Otherwise, intra-wall forces would invalidate the pressure computation.
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