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“How can I be remembered?”
he said.

“Be difficult to forget”,
the Oracle said.

“How? Do I create art?
Be famous? Be powerful?”

“Be kind.”

– James Miller

To my mother, Ruth Lotze,
who passed away before seeing
the completion of this thesis.
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Abstract

Being able to describe thermodynamics and dynamics of ordered systems at finite tem-
perature allows capturing the signatures of different phases as well as thermal transitions
between them. Systems of strongly correlated electrons residing in multiple orbitals where
spin-orbit coupling is of significance can exhibit a multitude of exotic phases. Modelling
these systems and capturing their properties for the entire temperature range is a non-trivial
task. In this thesis, the implementation details of several cluster solvers used for the vari-
ational cluster approximation (VCA) at finite temperature are described, since this method
is capable of modelling the systems mentioned before while incorporating local quantum
fluctuations. The most reliable, sufficiently benchmarked and best performing solver among
them is then used to investigate the magnetic and orbital properties of Sr2IrO4 and Ca2RuO4

described by three-band Hubbard models, as well as the Kondo lattice model at half-filling.

Starting at zero temperature, three cluster solvers and four representations of the Green’s
function are presented which are employed within VCA. Each of the representations has its
area of application depending on the solver used.

The Lanczos algorithm constructs iteratively an invariant subspace of the Hamiltonian in
which it has tridiagonal shape. Computing the eigenvalues and eigenvectors allows con-
structing the spectral representation of the Green’s function. Inversion of the tridiagonal
matrix yields the continued fraction representation of the Green’s function. Hence it can be
obtained without having to diagonalise the tridiagonal Hamiltonian in the Lanczos basis. It
can thus be used in combination with a matrix-product state (MPS) solver which is here the
main motivation of considering it.

Using the Band Lanczos algorithm allows resolving degenerate or clustered eigenvalues.
Constructing a joint Krylov subspace of all excited states occuring in the electron/hole part
of the Green’s function makes it possible to separate weights from poles leading to the Q-
matrix representation of the Green’s function. In the context of VCA, this gives the advantage
of performing the contour integration analytically.

Computing the Green’s function as expansion of Chebyshev polynomials requires only the
evaluation of a recursion relation. Since no basis is constructed, orthogonality does not have
to be enforced. Furthermore no diagonalisations have to be performed. It thus provides an
alternative representation of the Green’s function to be employed with a MPS solver which
avoids difficulties occuring for the continued fraction representation.
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Following the case of zero temperature, finite temperature versions of the full diago-
nalisation, exact diagonalisation (Band) Lanczos and Chebyshev solver are presented. For
the latter two types of solvers, traces with exact eigenvectors, with random vectors and a
combination of both are discussed. Several details relevant for reducing the computation
time, the entropy and specific heat as new observables, realising different reference systems
and obtaining expectation values in the grand canonical ensemble are given.

Applying purely exact eigenvectors is straightforward but approximate in case of exact
diagonalisation where only the dominant selection of states is incorporated. Employing only
random vectors leads to the finite temperature Lanczos method (FTLM), where a trace over
the complete basis is approximated via an average of random vectors. Increasing the system
size or employing more random vectors improve this approximation. Expressions and error
estimates used numerically are explicitely given. An improvement at low temperature by
splitting the trace into a part with exact and random trace vectors is described. References
to another FTLM implementation using a split trace and a typicality-based solver employing
random phase vectors are given.

Employing MPSs makes it possible to consider larger systems but also requires more time
to handle them. Among the representations of the Green’s function given, the continued
fraction and Chebyshev representations are argued to be the most promising for being con-
structed using MPS. A proof of principle for a MPS solver is given using the continued frac-
tion representation. Issues arising due to loss of orthogonality are predicted to be overcome
with the Chebyshev representation.

To test the implemented solvers, the one-band Hubbard model is considered. Analytical
results on one-dimensional one and two site clusters serve to verify the implementation em-
ploying full diagonalisation. The basic implementation of FTLM-based solvers is verified by
comparing their results on one-dimensional two and four site clusters with those of full di-
agonalisation. For all practical purposes considered during testing, the FTLM-based solvers
give reliable results only at high temperatures as compared to the interesting temperature
range where the antiferromagnetic (AFM) to paramagnetic (PM) phase transition occurs.
Using traces with exact and random vectors makes it possible to reach lower temperatures.
Comparing the results obtained using these split traces with literature confirm their imple-
mentation. Employing solely exact trace vectors turns out to be the most expedient option.
The agreement between results of an exact diagonalisation solver with those of a Chebyshev
solver, both using exact trace vectors, verify the implementation of the Chebyshev solver.

After the validity of the solvers is sufficiently attested, the full and exact diagonalisation
solvers employing only exact trace vectors are used to investigate the PM to AFM phase
transition in Sr2IrO4 which is accompanied by the opening of an insulating gap. While
this transition results at low temperature in a spin-orbit coupling enabled Mott insulator, a
topic of current interest is the influence of the magnetic order on the gap opening. Namely
whether the gap opens due to electronic correlations with magnetic order as side effect
(Mott-type insulator) or due to the magnetic order itself (Slater-type insulator). Since both
mechanisms are not mutually exclusive, determining the origin of the transition is a delicate
endeavour. Another, more academic question concerns the importance of nonlocal quantum
fluctuations to capture the spectral features of magnetic fluctuations and how a lack of these
fluctuations affects the Néel temperature.
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The compound is modeled as a three-band Hubbard model with five electrons. Con-
cerning the magnetic order at low temperature, its signatures in the spectrum and the re-
sponsible orbital are identified. Within VCA, a local self-energy omitting nonlocal quantum
fluctuations turns out to be sufficient to qualitatively reproduce the spectra of the magneti-
cally ordered systems. Yet such a treatment overestimates the magnetic orders stability and
misses spectral features in the unoccupied states. In order to contribute to the discussion,
whether the Mott- or Slater-type insulating mechanism dominates in Sr2IrO4, VCA does
not allow for a definite conclusion and a cluster-dynamical-impurity approximation (CDIA)
study should be attempted where the metallic phase can be parametrised explicitely. Since
CDIA amounts to VCA where the hybridisation with added bath sites is optimised, the VCA
results presented provide a starting point for the CDIA computations.

In contrast to the previous compound, in Ca2RuO4 the AFM to PM and insulator to metal
transitions are separated by a significant temperature range. However the question ad-
dressed here is, if there occurs an additional phase transition in between from an orbitally
ordered to a disordered phase. Recent experimental evidence discards the option of real
order, but leaves open the possibility of complex phase relations in the (yz, xz)-subspace.
From a more general perspective, this investigation is a follow up of a VCA study at zero
temperature which addressed the question whether Ca2RuO4 or a similar material with dif-
ferent spin-orbit coupling and crystal field splitting is better described as an excitonic or a
spin-one magnet.

The compound is modeled as a three-band Hubbard model with four electrons. Using
VCA, spin-orbit coupling is found to destabilize the magnetic order. However it seemingly
does not affect the Néel temperature which is most likely a finite-size effect. With increas-
ing temperature, the capability of spin-orbit coupling to mix different orbitals becomes less
effective. Combined with signatures of orbital fluctuations and the absence of real orbital
order, this suggests fluctuations in the phase between the orbital components, which is no
longer fixed by spin-orbit coupling as the origin of these orbital fluctuations.

Motivated by a VCA study at zero temperature and a FTLM study at finite temperature, the
half-filled Kondo lattice model is investigated with finite temperature VCA. Considering the
AFM magnetisation, the AFM and PM specific heat as well as the on-site spin-spin correlator
allows constructing a phase diagram. The characteristic temperatures lead to three phases:
an AFM, a PM of Kondo singlets and a thermal PM. Looking at the density of states and
the spectral function provides information on the fate of the Kondo singlets with increasing
temperature as well as their signatures compared to the thermal PM.
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Inhaltsangabe

Anhand der Beschreibung der Thermodynamik und Dynamik geordneter Systeme bei end-
licher Temperatur können die Signaturen verschiedener Phasen sowie Übergänge zwischen
denselben erfasst werden. Systeme stark korrelierter Elektronen welche sich in mehreren
Orbitalen befinden und bei denen Spin-Bahn Kopplung von Bedeutung ist, können exotische
Phasen aufweisen. Die Modellierung solcher Systeme und Bestimmung ihrer Eigenschaften
über den gesamten Temperaturbereich stellt eine nicht-triviale Aufgabe dar. In dieser Arbeit
wird die Implementation mehrerer Cluster-Solver für die Variationelle Cluster Approxima-
tion (VCA) bei endlichen Temperaturen beschrieben, da diese Methode in der Lage ist die
genannten Systeme zu modellieren und zudem lokale Quantenfluktuationen berücksich-
tigt. Der verlässlichste, hinreichend getestetste und performanteste Solver wird anschlie-
ßend dazu verwendet den Magnetismus und die Orbitalphysik von Sr2IrO4 und Ca2RuO4,
beschrieben durch Drei-Band Hubbard Modelle, sowie das halb-gefüllte Kondo Gittermodell
zu untersuchen.

Beginnend beim absoluten Temperaturnullpunkt werden drei Cluster-Solver und vier Dar-
stellungen der Greenschen Funktion präsentiert, welche in VCA Anwendung finden. Jede
der Darstellungen besitzt Vorteile, je nachdem welcher Solver verwendet wird.

Der Lanczos Algorithmus konstruiert iterativ einen invarianten Unterraum des Hamilton-
operators in welchem dieser die Form einer Tridiagonalmatrix annimmt. Indem die Eigen-
werte und Eigenvektoren bestimmt werden, lässt sich die Spektraldarstellung der Green-
schen Funktion konstruieren. Inversion der Tridiagonalmatrix ergibt die Kettenbruchdar-
stellung der Greenschen Funktion. Diese Darstellung setzt also keine Diagonalisierung des
Hamiltonoperators voraus und kann daher in Kombination mit einem Solver welcher Matrix-
Produkt Zustände (MPSs) nutzt verwendet werden.

Mit dem Band Lanczos Algorithmus können entartete oder geclusterte Eigenwerte auf-
gelöst werden. Indem mit allen angeregten Zuständen welche im Elektronen-/Lochteil der
Greenschen Funktion auftauchen ein gemeinsamer Krylov Unterraum konstruiert wird, kön-
nen die Gewichte von den Polen getrennt werden, was zur Q-Matrixdarstellung der Green-
schen Funktion führt. Sie erlaubt es die auftretende Konturintegration analytisch zu berech-
nen.

Um die Greensche Funktion in Chebyshev-Polynomen zu entwickeln muss nur eine Re-
kursionsformel ausgewertet werden. Da hierbei keine Basis konstruiert wird, muss keine
Orthogonalität zwischen Vektoren zugesichert werden. Außerdem muss der Hamiltonoper-
ator nicht diagonalisiert werden. Die Chebyshev-Darstellung kann daher ebenfalls in Kom-
bination mit einem Solver, welcher MPSs nutzt, verwendet werden.
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Für endliche Temperaturen werden volle Diagonalisierungs-, exakte Diagonalisierungs-
und Chebyshev-Solver vorgestellt. Bei den beiden letzten Arten von Solvern werden Spuren
mit exakten Eigenvektoren, Zufallsvektoren und einer Kombination aus beidem diskutiert.
Diverse Details zur Reduktion der Laufzeit, neuen Observablen, der Realisierung verschie-
dener Referenzsysteme und zur Bestimmung von Erwartungswerten im großkanonischen
Ensemble werden genannt.

Am Naheliegendsten ist die Verwendung exakter Eigenvektoren, welche im Fall exakter
Diagonalisierung aber die Näherung beinhaltet nur eine Auswahl an dominante Zustän-
den zu berücksichtigen. Werden nur Zufallsvektoren verwendet, so handelt es sich um die
Hochtemperatur-Lanczos Methode (FTLM), bei welcher die Spur über eine vollständige
Basis durch einen Mittelwert über Zufallsvektoren angenähert wird. Die Näherung kann
verbessert werden, indem das untersuchte System vergrößert oder mehr Zufallsvektoren
hinzugenommen werden. In der Numerik genutzte Ausdrücke und Fehlerabschätzungen
werden explizit angegeben. Eine Aufteilung der Spur in einen Anteil exakter Eigenvektoren
und Zufallsvektoren, welche die Ergebnisse bei niedrigen Temperaturen verbessert, wird be-
schrieben. Verweise auf eine weitere FTLM Implementation mit aufgeteilter Spur und einen
typicality-basierten Solver, welcher komplexe, zufällige Phasenvektoren verwendet, werden
angegeben.

Die Verwendung von MPSs erlaubt es größere Systeme zu betrachten, was allerdings auch
mehr Rechenzeit in Anspruch nimmt. Es wird argumentiert, dass unter den verschiedenen
Darstellungen der Greenschen Funktion die Kettenbruch- und Chebyshev-Darstellung am
vielversprechendsten sind um sie mit einem Solver welcher MPSs verwendet zu konstru-
ieren. Ein Machbarkeitsbeweis für einen Cluster-Solver welcher MPSs nutzt wird mit der
Kettenbruchdarstellung gegeben. Komplikationen welche aufgrund des Verlusts der Ortho-
gonalität auftreten, sollten mit der Chebyshev-Darstellung überwunden werden können.

Das Ein-Band Hubbard Modell dient als Testmodell für die implementierten Solver. Ana-
lytische Ergebnisse auf eindimensionalen Clustern mit einem und zwei Plätzen dienen dazu
die volle Diagonalisierung als Solver zu verifizieren. Die grundlegende Implementation der
FTLM-basierten Solver wird durch Vergleich mit Ergebnissen welche über volle Diagonali-
sierung für eindimensionale Cluster mit zwei und vier Plätzen erhalten wird, verifiziert. Für
alle untersuchten Fälle ergeben die FTLM-basierten Solver allerdings nur bei hohen Tempe-
raturen abseits des interessanten Temperaturbereichs in welchem der Phasenübergang vom
Antiferromagneten (AFM) zum Paramagneten (PM) liegt zuverlässige Ergebnisse. Indem
sowohl exakte als auch Zufallsvektoren verwendet werden, können tiefere Temperaturen
erreicht werden. Ein Vergleich der Ergebnisse, welche mit aufgeteilter Spur erhalten wer-
den, mit der Literatur bestätigt die Implementation. Allerdings ist die reine Verwendung
von exakten Spurvektoren am zielführendsten. Für den Fall exakter Spurvektoren wird der
Chebyshev-Solver durch Vergleich mit Ergebnissen die mittels exakter Diagonalisierung er-
halten werden bestätigt.

Nachdem die Funktionsweise aller Solver hinreichend bestätigt ist, werden die Solver
für volle und exakte Diagonalisierung ausschließlich mit exakten Spurvektoren genutzt.
Zunächst wird der Übergang vom PM zum AFM in Sr2IrO4 untersucht, welcher von der
Öffnung einer isolierenden Bandlücke begleitet ist. Dieser Übergang mündet bei niedriger
Temperatur in einem durch Spin-Bahn Kopplung induzierten Mott Isolator. Von aktuellem
Interesse ist allerdings der Einfluss der magnetischen Ordnung auf die Öffnung der Band-
lücke: öffnet sich die Bandlücke aufgrund der elektronischen Korrelationen mit der magne-
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tischen Ordnung als Nebeneffekt (Mott Isolator) oder aufgrund der magnetischen Ordnung
selbst (Slater Isolator)? Da sich beide Mechanismen nicht gegenseitig ausschließen handelt
es sich bei der Bestimmung des Ursprungs vom Übergang um eine delikate Angelegenheit.
Eine weitere, eher akademische Frage betrifft die Bedeutung nicht-lokaler Quantenfluktua-
tionen für Signaturen magnetischer Fluktuationen in der Spektralfunktion sowie für die
Néel Temperatur.

Die Verbindung wird als Drei-Band Hubbard Modell mit fünf Elektronen modelliert. Die
magnetischen Signaturen im Spektrum und die Orbitale welche das magnetische Moment
zur Verfügung stellen, werden identifiziert. Mit VCA genügt eine lokale Selbstenergie, wel-
che nicht-lokale Quantenfluktuationen vernachlässigt, um qualitativ die Spektren magne-
tisch geordneter Systeme zu reproduzieren. Allerdings wird dabei die Stabilität der magne-
tischen Ordnung überschätzt und Signaturen in den unbesetzten Zuständen fehlen. Um zur
Diskussion beizutragen, ob in Sr2IrO4 der Mott- oder Slater-artige Mechanismus dominiert
welcher das System isolierend macht, reicht VCA nicht aus um eine eindeutige Schlussfol-
gerungen zu ziehen und eine Untersuchung mittels der Clustervariante der Dynamischen
Störstellen Approximation (CDIA) sollte angestrebt werden innerhalb welcher die metal-
lische Phase parametrisiert werden kann. Da CDIA eine Variante von VCA ist, bei welcher
die Hybridisierung mit Badplätzen optimiert wird, stellen die präsentierten VCA Ergebnisse
einen sinnvollen Startpunkt für CDIA Rechnungen dar.

Im Gegensatz zur vorherigen Verbindung liegen die Übergänge vom AFM zum PM und
vom Isolator zum Metall in Ca2RuO4 bei signifikant unterschiedlichen Temperaturen. Hier
stellt sich die Frage, ob ein weiterer Übergang von einer orbital-geordneten zu einer unge-
ordneten Phase stattfindet. Aktuelle experimentelle Erkenntnisse verwerfen eine reelle Ord-
nung, lassen aber eine komplexen Phasenbeziehung im (yz, xz)-Unterraum zu. Von einem
allgemeineren Standpunkt aus betrachtet handelt es sich um die Folgeuntersuchung einer
VCA Studie beim absoluten Temperaturnullpunkt. In dieser wurde der Frage nachgegangen,
ob Ca2RuO4 oder eine ähnliche Verbindung mit unterschiedlicher Spin-Bahn Kopplung und
Kristallfeldaufspaltung besser als exzitonischer oder Spin-eins Magnet beschrieben wird.

Die Verbindung wird als Drei-Band Hubbard Modell mit vier Elektronen modelliert. Die
mit VCA erhaltenen Ergebnisse implizieren, dass Spin-Bahn Kopplung die magnetische Ord-
nung destabilisiert. Scheinbar betrifft dies nicht die Néel Temperatur, wobei es sich vermut-
lich um einen finite-size Effekt handelt. Mit zunehmender Temperatur nimmt die Wirkung
von Spin-Bahn Kopplung, unterschiedliche Orbitale zu koppeln, ab. In Kombination mit Si-
gnaturen von Orbitalfluktuationen und der Abwesenheit reeller Orbitalordnung suggeriert
dies Phasenfluktuationen zwischen den verschiedenen Orbitalkomponenten, welche nicht
mehr durch Spin-Bahn Kopplung fixiert sind und als Ursprung der Orbitalfluktuationen an-
gesehen werden können.

Motiviert durch eine VCA Studie beim absoluten Temperaturnullpunkt und einer FTLM
Studie bei endlicher Temperatur wird das Kondo Gittermodell bei halber Füllung mit VCA
bei endlicher Temperatur untersucht. Anhand der AFM Magnetisierung, der AFM und PM
spezifischen Wärmekapazität sowie des lokalen Spin-Spin Korrelators kann ein Phasendia-
gramm konstruiert werden. Die charakteristischen Temperaturen führen zu drei Phasen: ein
AFM, ein PM aus Kondo Singuletts und ein thermischer PM. Die Zustandsdichte und Spek-
tralfunktion erlauben Rückschlüsse auf das Schicksal der Kondo Singuletts mit steigender
Temperatur und ihre Signaturen in Abgrenzung zum thermischen PM.
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1Introduction1

1.1. Motivation1 1

At zero temperature, the ground state determines the static properties of a system and only
excitations give information on other energy levels, provided these can be reached within the
excitation process. In real experiments, zero temperature is never reached and depending
on the system investigated, further states matter. Upon increasing the temperature, more
states become significant and can thus change the character of the system.

Strongly correlated electron systems with several active orbitals are specified by their spin,
orbital and charge degrees of freedom. Different energy scales freezing these degrees of
freedom in place and stabilising various types of order determine the temperatures, where
the degrees of freedom are activated and orders are destroyed. At low temperature, an
antiferromagnetic groundstate may dominate, whose magnetic moment is provided by only
one orbital and whose charge is fixed. Raising the temperature may introduce non-magnetic
states of similar orbital structure which transforms the system into a paramagnet but keeps
some degree of orbital polarisation. At even higher temperatures, other orbitals can become
significant and allow for charge fluctuations. Once the temperature bridges a previously
insulating gap, metallic behaviour can emerge.

In summary, temperature provides an experimentally well accessible turning knob which
allows dialing through the various energy scales present in a system. As a measure of energy
fluctuations, the specific heat permits detection of phase transitions as divergencies and can
provide hints at the presence of spin, orbital or charge excitations. Deducing the entropy
from the measured specific heat at low temperature can give information on the degree of
freedom, since it amounts to the degeneracy of the states at zero temperature. Since real
materials have in addition the lattice as degree of freedom, features visible in theoretical
models of strongly correlated electron systems may be hidden in real measurements.

In this thesis, the implementation details of several cluster solvers used for the variational
cluster approximation (VCA) at finite temperature are described. The most reliable, suffi-
ciently benchmarked and best performing solver among them is then used to investigate the
magnetic and orbital properties of Sr2IrO4 and Ca2RuO4 described by three-band Hubbard
models, as well as the Kondo model at half-filling.

A simple numerical experiment is performed for each system investigated: The magnet-
ically ordered system at low temperature is heated up, until the magnetisation vanishes at
the transition temperature. Besides the transition temperature where the order parameter
vanishes, observing this evolution permits detecting features of the magnetic order in the
specific heat, the density of states or the spectral function. Combined with sweeping an
interaction parameter, the competition of thermal and nonlocal quantum fluctuations de-
termine the location of phase boundaries. An example for this occurs in the Kondo lattice
model, where the transition temperature from a paramagnet of local Kondo singlets to the
thermal paramagnet changes depending on the singlet stability. Or in case of Ca2RuO4,
where the capability of spin-orbit coupling to mix different orbitals visible in the spectral
function depletes with increasing temperature.

1



1. Introduction1

Allowing for temporal fluctuations, the transition from an insulating to a metallic phase
could be considered. This way, the question whether Sr2IrO4 is more of a correlation- or
magnetism-driven insulator could be addressed.

Besides merely describing systems at finite temperature via VCA, using finite temperature
also extends the capabilities of the method itself. Since the VCA is a cluster meanfield
type of method, it is more or less restricted to make statements about orders specifically
investigated. In this context, the specific heat allows detection of prominent fluctuations
without having to enforce an order. The presence of the respective degrees of freedom in
the model is sufficient. This way, a peak in the specific heat can indicate orbital fluctuations,
while an orbital order as possible origin does not have to be formulated, as is found for
Ca2RuO4.

In summary, investigating systems at finite temperatures with VCA provides benefits for
both, the scope of the description as well as the capabilities of the method. While the
method provides access to thermodynamic and dynamic observables of the systems at finite
temperature, finite temperature provides the method with a way to quantify precursors of
order.

1.2. Structure1 2

This thesis contains five main chapters besides the introduction.

In chapter 2, the mathematical prerequisites for the VCA are presented. After recapit-
ulating the basics of second quantisation and quantum statistics, the properties of Green’s
functions in many-body physics are discussed. Subsequently, the main steps in diagrammatic
perturbation theory to obtain the Green’s function and the grand potential are sketched.
Introducing afterwards the self-energy and the connection between grand potential and
Green’s function refines this sketch. Thereby also the fundamental relation of self-energy
functional theory is obtained, which can be seen from another perspective as the definition
of the Luttinger-Ward functional. However to be of use, this functional is condensed to its
basic properties and generalised afterwards.

Next, the fundamentals of the method employed are discussed. After the self-energy
functional theory is presented as framework to construct cluster-approximations, the de-
termination of quantities required in the VCA as one branch of approximations is shown.
This comprises the relations of cluster perturbation theory (CPT) on the analytical side. Us-
ing the insights from all previous chapters, the algorithm followed in the VCA is given.

Following this overview, the background of the implemented cluster solvers is described.
First, zero temperature solvers are considered since they provide the basis for their finite
temperature counterparts. These comprise full diagonalisation, Lanczos and Band-Lanczos
exact diagonalisation as well as a solver employing the recursion relations of Chebyshev
polynomials. Their output can be used to construct one of four representations of the Green’s
function, the spectral, continued fraction, Q-matrix and Chebyshev representation.

At finite temperature, the full diagonalisation solver uses the trace of eigenvectors, while
in case of exact diagonalisation and for the Chebyshev solver the trace can be approximated
by random vectors. In the latter case, a combination of exact and random trace vectors
can be used to improve the results at low temperature. Hence different combinations of
the Lanczos and Band-Lanczos solver as well as the Chebyshev solver using either exact or
random trace vectors or a combination of both are presented.

2



1. Introduction1

Some technical details on how to improve the performance by using a high-frequency
expansion, the computation of the entropy within VCA, the reference system of the cluster-
dynamical-impurity approximation and the realisation of different fillings are described.

As a first application, a cluster solver employing matrix-product states is used in chapter 3
to construct the continued fraction representation for one-dimensional Hubbard clusters of
different size at zero temperature. This merely serves as a proof of principle.

Afterwards in chapter 4, the different finite temperature cluster solvers are tested and
compared using the one-band Hubbard model.

Then, the thermodynamic and dynamic properties of Sr2IrO4 and Ca2RuO4 are deter-
mined by applying finite temperature VCA to three-band Hubbard models in chapter 5.
Finally, the half-filled Kondo lattice model is considered in chapter 6.

3



2Fundamentals2
The method employed in this thesis is based on an expression for the static grand potential in terms
of the dynamic Matsubara function. In order to motivate its shape, some basics are reviewed and the
derivation is sketched. The presentation follows the one given in the authors master thesis [Lot17].
Afterwards, several solvers implemented and used at zero and finite temperature are presented. Some
technical details to improve performance, the entropy as newly accessible observable and the inclusion
of bath sites are discussed. Further details on post-processing and interpreting the data are contained in
appendix A.

2.1. Mathematical prerequisites2 1

2.1.1. Second quantisation2 1 1
Within second quantisation, the permutation properties of physical many-body wavefunctions are trans-
ferred to construction operators with corresponding (anti-)commutation relations. The advantage of the
formalism over wavefunction based approaches is the clarity and simplicity of expressions. The presen-
tation follows [Nol14].

Consider an N -particle system described by a Hamiltonian H. Then the Hilbert spaceHN of
the system is given by the direct product of all single-particle Hilbert spaces

�

H (i)
1

	

i=1...N
,

HN =
N
⊗

i=1

H (i)
1 . (2.1)

Each single-particle Hilbert space is spanned by an orthonormal basis of states {|ϕα〉} with
α being a multi-index comprising the quantum numbers characterising the basis state. For
simplicity it is assumed that the basis is denumerable. The case of continuous α can be
inferred from [Nol14]. Therefore, the basis states are:

orthogonal: 〈ϕα|ϕβ〉= δαβ ,
complete:

∑

α

|ϕα〉 〈ϕα|= 1H1
.

Representations often used for the single-particle states are the real- and reciprocal-space
representations. N -particle states are denoted by

�

�

�ϕ(1)α1
ϕ(2)
α2

. . .ϕ(N)
αN

¶

=
�

�

�ϕ(1)α1

¶

�

�

�ϕ(2)α2

¶

. . .
�

�

�ϕ(N)αN

¶

=
N
⊗

i=1

�

�

�ϕ(i)αi

¶

. (2.2)

As mentioned in the outline, the physical many-body states have certain permutation prop-
erties and form only a subset of all available states in HN . For systems in a physical state,
measurable quantities 〈A〉 may not differ if two identical particles i, j switch their single-
particle states |ϕαi

〉, |ϕα j
〉, meaning

¬

. . .ϕ(i)
αi

. . .ϕ( j)
α j

. . .
�

�

�A
�

�

�. . .ϕ(i)
αi

. . .ϕ( j)
α j

. . .
¶

!
=
¬

. . .ϕ( j)
αi

. . .ϕ(i)
α j

. . .
�

�

�A
�

�

�. . .ϕ( j)
αi

. . .ϕ(i)
α j

. . .
¶

. (2.3)
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2. Fundamentals2

This demand is formalised by introducing a permutation operator P, which consists of p
transpositions {Ti}i=1...p and acts as

P
�

�

�ϕ(1)α1
ϕ(2)
α2

. . .ϕ(N)
αN

¶

=
�

�

�ϕ(i1)α1
ϕ(i2)
α2

. . .ϕ(iN )
αN

¶

(2.4)

onto a many-body state, where {i1, i2, . . . , iN} is a permutation of {1,2, . . . , N}. One finds
that P

is Hermitian in the subspace of physical many-body states: P† = P,
commutes in the subspace of physical many-body states with physical observables:
[A,P]− = 0,
has the physical many-body states as eigenstates with eigenvalues λ= (±1)p.

By means of the spin-statistics theorem, physical many-body states which are odd/even
under the exchange of two identical particles describe systems of half-integer/integer spin
particles and are called fermions/bosons. Identifying fermions/bosons by the signature ε =
∓1, the N -particle Hilbert-space of physical many-body states is denoted as H (ε)

N . The full
Hilbert-spaces of arbitrary particle number are the direct product of all N -particle Hilbert-
spaces,

H (ε) =
∞
⊗

N=0

H (ε)
N ⊂H =

∞
⊗

N=0

HN . (2.5)

In order to construct the physical many-body states explicitely, an anti-symmetrisation/a
symmetrisation operator Sε = cε

∑

P ε
pP is defined, where the constant cε is a normalisation

factor. It converts many-body states into physical many-body states

Sε
�

�

�ϕ(1)α1
ϕ(2)
α2

. . .ϕ(N)
αN

¶

=
�

�ϕα1
ϕα2

. . .ϕαN

�(ε)
. (2.6)

Since the (anti-)symmetrisation operator constructs physical many-body states from arbi-
trary (physical or unphysical) many-body states, the order of the single-particle states within
the arbitrary many-body state is unimportant. The normalisation factor merely compensates
for overcounting of single-particle states and therefore depends only on the occupation of
these states. Hence what matters is the occupation number nαi

of each single-particle state
|ϕαi
〉. Therefore a more economical notation

�

�N ; nα1
nα2

. . . nαN

�(ε)
=
�

�ϕα1
ϕα2

. . .ϕαN

�(ε)
= Sε

�
�

�

�ϕ(1)α1

¶

�

�

�ϕ(2)α1

¶

. . .
︸ ︷︷ ︸

nα1

�

�

�ϕ(p)αi

¶

�

�

�ϕ(p+1)
αi

¶

. . .
︸ ︷︷ ︸

nαi

�

(2.7)
with N =

∑

i nαi
as the total number of particles is used. Demanding normalised states, the

constant is
cε =

1
p

N !
·

1
q
∏

i(nαi
!)

, (2.8)

where nαi
∈ {0,1} for fermions and nαi

∈ N0 for bosons. For the physical many-body states
again a basis exists, whose states are:

orthogonal:
(ε)


N ; nα1
nα2

. . . nαN

�

�N ′; n′
α1

n′
α2

. . . n′
αN

�(ε)
= δNN ′

∏

i
δnαi

n′αi
,

complete:
∑

nα1

∑

nα2

. . .
�

�N ; nα1
nα2

. . .
�(ε) (ε)


N ; nα1
nα2

. . .
�

�= 1H (ε) .
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2. Fundamentals2

Coming to the aforementioned operators, the creation operator c†
αi

adding a particle in
state |ϕαi

〉 is defined by its action onto a physical many-body state

c†
αi

�

�N ; nα1
nα2

. . . nαi
. . .
�(ε)
= c†

αi

�

�ϕα1
ϕα2

. . .ϕαN

�(ε)
(2.9)

≡
Æ

nαi
+ 1

�

�ϕαi
ϕα1
ϕα2

. . .ϕαN

�(ε)

= εNαi
Æ

nαi
+ 1

�

�N + 1; nα1
nα2

. . . (nαi
+ 1) . . .

�(ε)
,

with Nαi
=
∑i−1

j=1 nα j
. Its adjoint operator denoted as annihilation operator cαi

removing a
particle in state |ϕαi

〉 is defined as

cαi

�

�N ; nα1
nα2

. . . nαi
. . .
�(ε)
≡ εNαi

p

nαi

�

�N − 1; nα1
nα2

. . . (nαi
− 1) . . .

�(ε)
. (2.10)

In the following, creation and annihilation operator are jointly denoted as construction op-
erators. Combining the action of both operators onto an arbitrary physical many-body state
gives the (anti-) commutation relations

�

cα, c†
β

�

−ε
= δαβ , (2.11)

�

cα, cβ
�

−ε
= 0, (2.12)

�

c†
α
, c†
β

�

−ε
= 0. (2.13)

Employing the basis of physical many-body states allows rewriting physical observables A
consisting of a one- and two-body part as

A=
N
∑

i=1

A(i)1 +
1
2

i 6= j
∑

i, j

A(i, j)2 (2.14)

=
∑

α,β

〈ϕα|A1

�

�ϕβ
�

c†
α
cβ +

1
2

∑

α,β ,
γ,δ

¬

ϕ(1)
α
ϕ
(2)
β

�

�

�A2

�

�

�ϕ
(1)
δ
ϕ(2)
γ

¶

c†
α
c†
β
cγcδ.

A generic, fermionic Hamiltonian with one- and two-body interactions takes the shape

H =
∑

α,β

tαβ c†
α
cβ +

1
2

∑

α,β ,
γ,δ

v(αβδγ)c†
α
c†
β
cγcδ, (2.15)

where tαβ incorporates the kinetic and potential energy of an electron in an external poten-
tial as well as v(αβδγ) contains the Coulomb-interaction

tαβ =
¬

ϕα

�

�

�

�

p2

2m + V (r )
�

�

�

�ϕβ

¶

,

v(αβδγ) = e2

4πε0

D

ϕ(1)
α
ϕ
(2)
β

�

�

�

1

|r (1)−r (2)|

�

�

�ϕ
(1)
δ
ϕ(2)
γ

E

.

Besides construction operators, the occupation number operator

nα = c†
α
cα (2.16)

as well as the particle number operator

N =
∑

α

nα (2.17)

frequently arise when employing second quantisation. Advantages of treating states and
observables on the same footing are clearer and easily reducible expressions whose meaning
can be inferred from the context of the calculations.
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2. Fundamentals2

2.1.2. Quantum statistics2 1 2
Quantum statistics covers the quantum mechanical description of many-particle systems with focus on
their thermodynamic properties. The presentation follows [Sch06].

Since operators in second quantisation act on states by increasing/reducing the particle
number, here only the grand canonical ensemble specified by the chemical potential µ,
volume V and temperature T as independent state-variables is discussed. The density op-
erator as quantum version of the classical probability density is

% = exp [−β(H −µN)]/Ξ≡ exp [−βH]/Ξ, (2.18)

where β = 1/kBT is proportional to the inverse temperature and H = H − µN . In analogy
to the classical partition function, the quantum version is given by the trace

Ξ= tr(exp [−βH]) (2.19)

leading to the grand potential

Ω= −
1
β

ln(Ξ). (2.20)

Dependent state-variables emerge from the first law of thermodynamics (including the pres-
ence of an external magnetic field B)

dΩ= −S d T − p d V − 〈N〉dµ−M d B, (2.21)

giving:

entropy: S = −
�

∂Ω
∂ T

�

µ,V,B
,

pressure: p = −
�

∂Ω
∂ V

�

µ,T,B
,

particle number: 〈N〉= −
�

∂Ω
∂ µ

�

V,T,B
,

magnetic moment: M = −
�

∂Ω
∂ B

�

µ,V,T
.

Expectation values of observables O can be obtained from the density operator % via

〈O〉= tr(%O), (2.22)

which yields for instance the internal energy U = 〈H〉 or the free energy F = Ω + µ 〈N〉.
Response properties may be found from their thermodynamic expressions:

specific heat: CV = T
�

∂ S
∂ T

�

V
,

isothermal compressibility: κT =
V
〈N〉2

�

∂ 〈N〉
∂ µ

�

T,V
,

magnetic susceptibility: χ = µ0
V

�

∂M
∂ B

�

µ,V,T
.
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2. Fundamentals2

2.1.3. Green’s functions2 1 3
Green’s functions are known from mathematics as solutions to inhomogeneous differential equations with
linear differential operator, delta-function as inhomogeneity and homogeneous boundary conditions.
These defining properties imply the occurence of Green’s functions in the linear response regime. The
Green’s function spectral (Lehmann) representation is connected to the spectral function, which contains
information on the elementary excitations in the system described by the differential operator. The
presentation follows [OPV16; Nol14; BF16].

Consider an inhomogeneous differential equation for a function f (x),

D f (x) = g(x), (2.23)

where D is a linear differential operator, g(x) the inhomogeneity and homogeneous bound-
ary conditions f (x = L) = 0 or f ′(x = L) = 0 are imposed. Then a solution to this differ-
ential equation is

f (x) =

∫

d x ′ G
�

x , x ′
�

g
�

x ′
�

, (2.24)

with the Green’s function G (x , x ′) satisfying the inhomogeneous differential equation

D G
�

x , x ′
�

= δ
�

x − x ′
�

, (2.25)

where δ (x − x ′) is the delta-function. Interpreting g(x) as ‘input’ and f (x) as ‘output’,
G (x , x ′) takes the role of the response function in linear response theory. Focussing on
time-dependent quantum mechanical problems, the inhomogeneous differential equation
follows from reordering the Schrödinger equation into

�

i
∂

∂ t
−H0(r )

�

Ψ0(r , t) = 0, (2.26)
�

i
∂

∂ t
−H(r )

�

Ψ(r , t) = 0, (2.27)

where the Hamiltonian is split into a free and a perturbative part H(r ) = H0(r ) + H1(r ).
Here and in the following, ħh = 1 is chosen. Introducing the free and full Green’s functions
G0, G satisfying the respective inhomogeneous differential equations

�

i
∂

∂ t
−H0(r )

�

G0(r , t) = δ
�

r − r ′
�

δ
�

t − t ′
�

, (2.28)
�

i
∂

∂ t
−H(r )

�

G(r , t) = δ
�

r − r ′
�

δ
�

t − t ′
�

(2.29)

makes it possible to give several recursive solutions for the wavefunction

Ψ(r , t) = Ψ0(r , t) +

∫

d r ′
∫

d t ′ G0

�

r , r ′; t, t ′
�

H1

�

r ′
�

Ψ
�

r ′, t ′
�

, (2.30)

Ψ(r , t) = Ψ0(r , t) +

∫

d r ′
∫

d t ′ G
�

r , r ′; t, t ′
�

H1

�

r ′
�

Ψ0

�

r ′, t ′
�

. (2.31)
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2. Fundamentals2

Considering the integrals in equations (2.30)–(2.31) as the action of an operator onto Ψ,
Ψ0, one can simplify the notation to

Ψ = Ψ0 + G0H1Ψ, (2.32)

Ψ = Ψ0 + GH1Ψ0. (2.33)

Solving equation (2.32) by iteratively inserting the wavefunction Ψ on the right-hand side,
one finds by comparison with equation (2.33) a Dyson equation for the Green’s functions

G = G0 + G0H1G. (2.34)

The solution of the partial differential equation (2.29), yields

G
�

r , r ′; t, t ′
�

= − iΘ
�

t − t ′
� 


r
�

�exp
�

− i H
�

t − t ′
���

�r ′
�

, (2.35)

which makes it possible to identify the Green’s function as a propagator

Ψ(r , t) =

∫

d r ′
∫

d t ′ G
�

r , r ′; t, t ′
�

Ψ
�

r ′, t ′
�

. (2.36)

In the many-body case, various more or less useful versions of the Green’s function exist.
The retarded, advanced and causal Green’s functions Gret

AB , Gav
AB, Gc

AB are

Gret
AB

�

t, t ′
�

≡ ⟪A�t�; B
�

t ′
�⟫ret

= − iΘ
�

t − t ′
� 
�

A
�

t
�

, B
�

t ′
��

−ε

�

, (2.37)

Gav
AB

�

t, t ′
�

≡ ⟪A�t�; B
�

t ′
�⟫av

= + iΘ
�

t ′ − t
� 
�

A
�

t
�

, B
�

t ′
��

−ε

�

, (2.38)

Gc
AB

�

t, t ′
�

≡ ⟪A�t�; B
�

t ′
�⟫c
= − i




Tε
�

A
�

t
�

B
�

t ′
���

, (2.39)

where the operators are given in their Heisenberg representation

A(t) = exp (iHt)Aexp (− iHt) (2.40)

and [·, ·]−ε as well as Tε(. . . ) are the:

(anti-)commutator: [A(t) , B (t ′)]−ε = A(t)B (t ′)− εB (t ′)A(t),
Wick time-ordering operator:

Tε [A(t)B (t ′)] = Θ (t − t ′)A(t)B (t ′) + εΘ (t ′ − t)B (t ′)A(t).

All these Green’s functions satisfy the same equation of motion

i
∂

∂ t
⟪A�t�; B

�

t ′
�⟫α = δ �t − t ′

� 
�

A
�

t
�

, B
�

t ′
��

−ε

�

+ ⟪[A,H]−
�

t
�

; B
�

t ′
�⟫α , (2.41)

but differ in their boundary conditions:

⟪A(t); B(t ′)⟫ret = 0 for t < t ′

⟪A(t); B(t ′)⟫av = 0 for t > t ′

⟪A(t); B(t ′)⟫c =

¨

− i 〈A(t − t ′)B (0)〉 , for t > t ′

− iε 〈B (0)A(t − t ′)〉 , for t < t ′.

9



2. Fundamentals2

The equation of motion’s shape gives its solutions the name ’Green’s functions‘. One way
to determine the Green’s functions is to solve the hierarchy of differential equations intro-
duced by the higher Green’s function ⟪[A,H]−(t); B(t ′)⟫α on the right-hand side of equation
(2.41). As the boundary condition for the causal Green’s function is rather complicated, its
use in such a procedure is questionable. Its existence is justified, since the free single-particle
causal Green’s function at zero temperature ⟪ cα (t) ; c†

β
(t ′) ⟫c happens to be the propagator

in zero temperature diagrammatic perturbation theory.

For diagrammatic perturbation theory at finite temperature, the Matsubara function

GM
AB

�

τ,τ′
�

≡ ⟪A�τ� ; B
�

τ′
�⟫M
= −




Tτ
�

A
�

τ
�

B
�

τ′
���

(2.42)

takes the role of the causal Green’s function. Therein, the operators are written in the
modified Heisenberg representation

A(τ) = exp (Hτ)Aexp (−Hτ) , (2.43)

with the ‘imaginary time’ τ following from a Wick rotation as t τ= − i t and Tτ as the:

time-ordering operator:
Tτ [A(τ)B (τ′)] = Θ (τ−τ′)A(τ)B (τ′) + εpΘ (τ′ −τ)B (τ′)A(τ),

where p denotes the number of transpositions required to reorder the construction operators
in the second term such that they match the order of the first term. Concerning the modified
Heisenberg representation, it is important to mention that the actions of propagating an
operator in time and taking the adjoint of this operator do not commute

�

exp
�

Hτ
�

Aexp
�

−Hτ
��†
= A(τ)† 6= A†(τ) =

�

exp
�

Hτ
�

A† exp
�

−Hτ
��

. (2.44)

In analogy to the regular Heisenberg representation, there exists an equation of motion for
operators,

−
∂

∂ τ
A(τ) = [A(τ),H]− (2.45)

called Bloch equation. Among the Matsubara functions for arbitrary operators A(τ), B (τ′),
the single-particle Matsubara function with A(τ) = cα(τ) and B (τ′) = c†

β
(τ′),

GM
αβ

�

τ,τ′
�

≡ −
¬

Tτ
�

cα
�

τ
�

c†
β

�

τ′
�

�¶

for τ ∈ R,−β < τ < β =
1

kBT
, (2.46)

is of major importance, since its non-interacting form turns out to be the propagator in
diagrammatic perturbation theory at finite temperature. It is:

in general discontinuous at τ= 0: GM
αβ
(0+)− GM

αβ
(0−) = −δαβ ,

homogeneous for a Hamiltonian which is not explicitely time-dependent: GM
αβ
(τ,τ′) =

GM
αβ
(τ−τ′),

periodic with period 2β: GM
αβ
(τ+nβ) = εGM

αβ
(τ+(n−1)β) for n ∈ Z, β > τ+nβ > 0.

The last property allows expanding the Matsubara function as a Fourier series

GM
αβ
(τ) =

1
β

∞
∑

n=−∞

exp (− i Enτ)G
M
αβ
(En), (2.47)

GM
αβ
(En) =

∫

[0,β]

dτGM
αβ
(τ)exp (i Enτ) , (2.48)

10



2. Fundamentals2

where the Matsubara energies En are divided into:

fermionic Matsubara energies: En = (2n+ 1)πβ ,
bosonic Matsubara energies: En = 2nπβ ,

since other terms drop out due to the signature ε.

A useful expression for the Green’s function is its energy representation in the basis of
eigenstates of the Hamiltonian called ‘spectral (Lehmann) representation’. For the retarded
and advanced Green’s function, as well as for the Matsubara function this coincides with
the Hilbert transform of the spectral function. The spectral function is connected to the
elementary excitations of the system described by the Hamiltonian. This connection can be
motivated by considering several probing methods, such as:

Photoemission spectroscopy: Z = cα,
Inverse Photoemission spectroscopy: Z = c†

α
,

Auger electron spectroscopy: Z = cαcβ ,
Appearance-potential spectroscopy: Z = c†

α
c†
β
,

where Z is the transition operator describing the action of the process onto the system. In
photoemission spectroscopy, the system looses one electron which is excited by an incident
photon, whereas for inverse photoemission spectroscopy, an electron is added to the sys-
tem giving rise to a photon. Auger electron spectroscopy and its complement, appearance-
potential spectroscopy, add or remove two electrons. In order to determine the intensity
spectrum measured within an experiment, it is considered as histogram of the probability
for the process described by Z to happen:

probability for a state |εm〉 to be occupied: exp(−βεm)/Ξ
probability for the process |εm〉

Z |εn〉 to occur: | 〈εn|Z |εm〉 |2

restriction on the transferred energy: E
!
= εn − εm

intensity: IZ(E) = Ξ−1
∑

m,n exp(−βεm)| 〈εn|Z |εm〉 |2δ[E − (εn − εm)]

This expression of the intensity implies

IZ(E) = exp(βE)IZ†(−E) (2.49)

for the connection between a spectroscopic method and its complement. A quantity con-
taining information on both spectra is the spectral function

S±Z Z†(E)≡ IZ†(E)± IZ(−E), (2.50)

whose connection to the Green’s functions is revealed as its Fourier transform amounts to

S±Z Z†(t) =
1

2π


�

Z(t), Z†(0)
�

±

�

. (2.51)

Performing a Wick rotation links the spectral function to the Matsubara function. In practice,
the connection in energy-space is more useful. It emerges by considering the trace in the
expectation value to run over the eigenstates of the Hamiltonian and via Fourier transfor-
mation from time to energy. Considering only fermions by employing the notation SAB = S+AB
and

S+AB = Ξ
−1
∑

m,n

exp(−βεm) 〈εm|A|εn〉 〈εn|B|εm〉δ[E − (εn − εm)]

+Ξ−1
∑

m,n

exp(−βεm) 〈εm|B|εn〉 〈εn|A|εm〉δ[−E − (εn − εm)], (2.52)

11



2. Fundamentals2

the retarded and advanced Green’s function are

Gret,av
AB (E) =

∫

R
d E′

SAB (E′)
E − E′ ± i 0+

, (2.53)

which allows determining the spectral function via

SAB(E) = ∓
1
π

Im[Gret,av
AB (E)] if SAB(E) ∈ R, (2.54)

using the Dirac identity
1

x ± i 0+
= P

1
x
∓ iπδ(x), (2.55)

where P denotes the principal value. This identity is nothing but the representation of
the delta-function by a Cauchy-Lorentz distribution of vanishing width. The requirement
of a real spectral function is fulfilled for the single-particle Green’s functions with A = cα,
B = c†

β
. For the relation including the Matsubara function, the argument of the retarded and

advanced Green’s function lifted to the upper or lower complex plane has to be replaced by
i En giving

GM
AB(En) =

∫

R
d E′

SAB (E′)
i En − E′

. (2.56)

Retarded and advanced Green’s function are therefore extensions of the Matsubara function
to the real axis. A more frequently used expression summarising retarded and advanced
Green’s as well as Matsubara function is

GAB(z) =
∑

m,n

exp(−βεm)
Ξ

�〈εm |A |εn〉 〈εn |B |εm〉
z − (εn − εm)

�

+
∑

m,n

exp(−βεm)
Ξ

�〈εm |B |εn〉 〈εn |A |εm〉
z + (εn − εm)

�

(2.57)
with z as placeholder for E ± i 0+ and i En.

Additionally, correlation functions and expectation values can be expressed in terms of
suitable spectral functions. For fermions, the spectral theorem states this connection as




B
�

t ′
�

A
�

t
��

=

∫

R
d E

SAB(E)
exp(βE) + 1

exp
�

− i E
�

t − t ′
��

, (2.58)

which occurs when the trace in the expectation value is chosen to run over the eigenstates
of the Hamiltonian. Recognising the Fermi distribution

f (E) =
1

exp(βE) + 1
(2.59)

allows defining the spin-resolved quasiparticle density of states (DOS) through the single-
particle spectral function via

〈nσ〉=
∑

α

f (E)Sαα(E) (2.60)

as
ρσ =

∑

α

Sαα(E). (2.61)

To obtain expectation values via the single-particle Matsubara function introduced in equa-
tion (2.46), it can be evaluated as

GM
αβ

�

0,0+
�

= 〈c†
β
cα〉=

1
β

∞
∑

n=−∞

exp
�

i En0+
�

GM
αβ
(En) (2.62)

by using the Fourier series from equation (2.47).
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2. Fundamentals2

2.1.4. Diagrammatic perturbation theory2 1 4
Diagrammatic perturbation theory provides an approach to describe interacting many-body systems. The
interaction part is considered as perturbation of the free system. Bearing this decomposition in mind, the
equation of motion of the corresponding time-evolution operator can be solved iteratively. Exploiting the
perturbative character of the interaction, the time-evolution operator is expanded in powers of the inter-
action. Simplifying the expressions using Wick’s theorem paves the way for representing mathematical
expressions with diagrams. These diagrams serve as mnemonic giving an overview of how to simplify
expressions. The presentation follows [Pot98; Nol14].

Just along the line, where the generic Hamiltonian in equation (2.15) is split into one- and
two-body parts, the free system H0 is given by the one-body terms, whereas the two-body
terms form the interaction part V

H0 =
∑

α,β

tαβ c†
α
cβ , (2.63)

V =
1
2

∑

α,β ,
γ,δ

v(αβδγ)c†
α
c†
β
cγcδ. (2.64)

Besides the modified Heisenberg representation introduced in section 2.1.3, there exists a
modified interaction representation AI(τ) = exp(H0τ)Aexp(−H0τ), where H0 is the Hamil-
tonian of the free system including the chemical potential term. This new representation
is a manifestation of the Hamiltonians’ decomposition and becomes necessary, since the
interaction makes the Bloch equation (2.45) difficult to solve. Expressing an operator given
in the Heisenberg representation by the operator in the interaction representation as

A(τ) = S(0,τ)AI(τ)S(τ, 0), (2.65)

defines the S-matrix

S
�

τ,τ′
�

= exp[H0τ]exp
�

−H
�

τ−τ′
��

exp
�

H0τ
′
�

. (2.66)

In order to determine the S-matrix, the left-hand side of its Bloch equation is evaluated
giving a first-order differential equation

−
∂

∂ τ
S
�

τ,τ′
�

= VI

�

τ
�

S
�

τ,τ′
�

. (2.67)

Integrating this equation of motion with the boundary condition S(τ,τ) = 1 yields a recur-
sive equation for the S-matrix, which is solved by iteratively inserting the S-matrix on the
right-hand side thus leading to the von-Neumann series

S
�

τ,τ′
�

= 1+
∞
∑

n=1

(−1)n
∫

[τ′,τ]

dτ1

∫

[τ′,τ1]

dτ2· · ·
∫

[τ′,τn−1]

dτn VI(τ1)VI(τ2) . . . VI(τn). (2.68)
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Since the operators in the integrand of equation (2.68) are ordered in time, the time-
ordering operator Tτ is added as identity which acts on all time-dependent perturbations
keeping them time-ordered. With Tτ in front, the perturbations {VI(τi)}i=1,...,n can thus be
considered commutative which makes it possible to fix the order of the operators while re-
naming the integration-variables. One can show by induction, that the volume of an n-cube
can be expressed by the sum over all permutations of times of the successive integrations
along each time axis with the first running from τ′ to τ and the rest having as upper bound-
ary the respectively previous integration variable

∫

[τ′,τ]

dτ1

∫

[τ′,τ]

dτ2· · ·
∫

[τ′,τ]

dτn (·) =
∑

π∈Sn

∫

[τ′,τ]

dτπ(1)

∫

[τ′,τπ(1)]

dτπ(2)· · ·
∫

[τ′,τπ(n−1)]

dτπ(n) (·), (2.69)

where (·) represents the time-ordered integrand and π(i) is the index of the previously i-th
time obtained by permuting the indices {1, 2, . . . , n}. Combined with the series expansion
of the exponential function, this relation implies that the S-matrix can formally be written
as a time-ordered exponential

S
�

τ,τ′
�

= Tτ exp

�

−
∫

[τ′,τ]

dτ′′ VI(τ
′′)

�

. (2.70)

From now on, all operators are given in the interaction representation and the index ‘I’ is
omitted. Various quantities can be rewritten in terms of the S-matrix, such as the:

partition function: Ξ= Ξ0 〈S(β , 0)〉(0),
single-particle Matsubara function: Gαβ = −

Ξ0
Ξ

¬

Tτ
�

S(β , 0)cα(τ)c
†
β
(0)
�¶(0)

,

grand potential: Ω−Ω0 = −
1
β ln

�

Ξ
Ξ0

�

,

where Ξ0 is the partition function and 〈·〉(0) the expectation value of the free system H0.

The formal expression of the S-matrix may appear elegant, but the exponential denotes in
practice merely the series expansion. By expanding the series, the preliminary task becomes
clear: calculating free expectation values of strings of time-ordered construction operators
in their interaction representation. This is achieved by Wick’s theorem, which reduces the
full expectation value to combinations of free single-particle Matsubara functions, where
the expectation value in equation (2.46) is replaced by the free expectation value. Just
as reminder, the free single-particle Matsubara function G(0)

αβ
is obtained from its definition

(2.46) by evaluating the free expectation values with the free Hamiltonian represented in
the basis of Bloch states having a diagonal contribution from the one-body term. A proof
of the theorem can be performed by via the equation of motion [SL13], by considering a
generating functional [Col15] or by induction [Nol14]. In summary, applying Wick’s the-
orem allows expressing the partition function, the full single-particle Matsubara function
or the grand potential in terms of the known free single-particle Matsubara function. The
remaining task is to evaluate these contributions.
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2. Fundamentals2

Although Wick’s theorem demonstrates how interacting quantities can be determined, the
actual calculations are lengthy, merely because the corresponding mathematical expressions
are long. In order to reduce work and the number of contributions, the occuring terms can
be represented by diagrams. A short summary of their main elements and the simplifications
follows:

Main elements of the diagrams are particle lines and vertices shown in figure 2.1.
Particle lines are denoted by a solid line with an arrow. As it represents the free
single-particle Matsubara function G(0)

αβ
(τan,τcr), the arrow points from the annihi-

lation operator time τan to the creation operator time τcr. Vertices incorporate the
two-body interaction and are given by a dashed vertical line, where due to the type of
interaction, two particle lines must enter and two must leave. The number of vertices
n denotes the order of the diagram. At equal construction operator times, the creation
operator times are considered to be slightly larger than the annihilation operator times
τcr = τan + 0+.

ττan τcr

α β

−
¬

Tτ
�

cα(τan)c
†
β
(τcr)

�¶(0)
= G(0)

αβ
(τan,τcr)

particle line

τk

δ α

γ β

v(αβδγ)c†
α
(τk)c

†
β
(τk)cγ(τk)cδ(τk)

vertex

2.1 – Main elements of the diagrams.

Loop rule: Each loop (see figure 2.2a) occuring in the diagrams contributes a factor
ε.
Connected diagrams: Consider as ‘main branch’ (see figure 2.2b) the connection of
both external lines via particle lines. Within the numerator of the full single-particle
Matsubara function all diagram parts disconnected from the main branch sum up to
〈S(β , 0)〉(0).
Topologically equivalent diagrams: Diagrams of n-th order, where ‘upper’ and ‘lower’
part of one vertex are interchanged belong to a class of 2n diagrams giving the same
contribution. In addition, n-th order diagrams which differ by a permutation of ver-
tices belong to a class of n! diagrams giving the same contribution. This is visualised
in figure 2.2c.

loop

(a) Loop.

‘main branch’

connected
part

disconnected
part

(b) Connections.

2n

diagrams

n! diagrams

(c) Permutations.

2.2 – Illustration of ‘loops’ in diagrams, connected and disconnected diagram parts as well as the
‘main branch’ of a diagram. Furthermore the permutations of ‘upper’ and ‘lower’ part of
vertices as well as of whole vertices are shown.
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Linked-cluster theorem: All diagrams contributing to the partition function can be
obtained by combining all pairwise different, connected diagrams called linked clusters
in all possible ways to construct connected or disconnected diagrams of pairwise dif-
ferent structure. Two diagrams are of different structure, if they differ in the order of
the vertices in their connected parts as illustrated in figure 2.3. Since diagrams con-
sisting of k equivalent linked clusters would give additional contributions besides their
product due to overcounting, they have to be weightened by a factor 1/k!. Reordering
these terms gives

〈S(β , 0)〉(0) = exp
�

〈S(β , 0)〉(0)con − 1
�

, (2.71)

where con means that only connected diagrams are summed.

(a) structure 1
(b) structure 2

2.3 – Illustration of similar diagrams with different structure. The structures are distinguished by
the order of the vertices in connected parts of the diagram.

Summarising these insights yields rules to construct the diagrams contributing to the par-
tition function, the single-particle Matsubara function or the grand potential including a
specific order of the interaction. Moreover, the mathematical expressions corresponding to
the various diagrams can be written down directly. To compute these contributions, fur-
ther strategies such as the Feynman parametrisation [PS95] exist. Diverging contributions
become tractable by reordering the expressions in generic ways to isolate the divergencies
(regularisation) and omitting the divering parts (renormalisation). Additional informations
on the diagram rules in solid state theory can be found in [Pot98; Nol14; BF16; Col15].

2.1.5. Self-energy2 1 5
Perturbation theory is based on the assumption that the perturbation is small and higher order terms
can be neglected. As this might not be the case, partial sums such as the full single-particle Matsubara
function or the self-energy of the infinitely large perturbation series have to be considered. Combining
multiple partial sums and expressing each in terms of the others makes it possible to solve the problem
self-consistently. The presentation follows [Pot98; LW60; Nol14].

The basis of approaching the many-body problem perturbatively is the assumption that the
interaction is small which allows neglecting higher order terms. From the phenomenologi-
cal point of view, the interaction is not always small and one is left with the infinite series of
the exponential function to be summed up. A way to tackle this issue is to introduce partial
sums of diagrams.
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One example for such a partial sum is the self-energy. Self-energy insertions are diagrams
which have two open connections, one to an in- and one to an outgoing particle line. They
can be classified further by calling them proper/improper if they cannot/can be made to fall
into two parts by cutting a single particle line. Examples for proper and improper diagrams
are given in the figures 2.4. All improper self-energy insertions can be constructed by con-
necting two or more proper self-energy insertions by particle lines. Therefore only proper
self-energy insertions are required and their sum is called self-energy Σ.

(a) Proper, skeletons. (b) Proper,
no skeleton.

cut

(c) Improper.

2.4 – Examples for ‘proper’ and ‘improper’ diagrams, which cannot/can be made to fall into two
parts by cutting a single particle line. The other tag refers to ‘skeleton’ diagrams, which are
proper self-energy insertions, containing themselves no further self-energy insertions.

Apart from the zeroth order diagram, a diagram of the full single-particle Matsubara func-
tion can be constructed by combining the particle line of a free propagator, a proper self-
energy diagram and some other diagram of the full single-particle Matsubara function. Sum-
mation over all proper self-energy insertions yields the Dyson equation

G G(0) G(0) G
Σ

Gαβ(En) = G(0)
αβ
(En) +

∑

γ,δ

G(0)
αγ
(En)Σγδ(En)Gδβ(En), (2.72)

where Σ denotes the self-energy insertions. This equation can formally be solved by making
use of the von Neumann series and gives

G(En) =
�

G(0)(En)
−1 −Σ(En)

�−1
. (2.73)

Using this result and the von Neumann series makes it possible to determine the sum of all
proper and improper self-energy insertions Σ′ as

Σ′ Σ Σ
G(0)

Σ Σ
G(0)

Σ
G(0)

Σ

Σ′(En) = Σ(En) +Σ(En)G
(0)(En)Σ(En) +Σ(En)G

(0)(En)Σ(En)G
(0)(En)Σ(En) + . . . (2.74)

= Σ(En)G(En)G
(0)(En)

−1.

Conversely, one can now try to express the self-energy in terms of the full propagator. This
is achieved by introducing skeleton diagrams, which are proper self-energy insertions con-
taining themselves no further self-energy insertions. The missing self-energy insertions are
introduced by replacing the free propagator in the skeleton diagrams by the full propagator.
These diagrams are called dressed skeletons and their sum gives the self-energy. Examples
for skeleton diagrams can be found in the figures 2.4, whereas examples for dressed skeleton
diagrams are given in the figures 2.5.
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(a) Self-energy. (b) Grand potential.

2.5 – Examples for dressed skeleton diagrams of the self-energy and the grand potential.

Combining the Dyson equation and the equation for the self-energy defines a set of equations
which can be solved self-consistently. Starting from an initial self-energy, one can solve the
Dyson equation for the full propagator. Calculating then the new self-energy closes the
cycle. Going on until the self-energy remains the same within such an iteration results in
the full propagator and the self-energy.

2.1.6. Connection between Ω and G2 1 6
Connecting the static grand potential Ω and the dynamic Matsubara function G based on their dia-
grammatic expressions opens the door to a whole range of thermodynamically consistent ‘conserving
approximations’ [BK61; Bay62]. Besides finding distinct analytic approximations within diagrammatic
perturbation theory, it also provides the basis for self-energy-functional theory [Pot12], a framework to
construct cluster-approximations suited for numerical investigations to be introduced in section 2.2.1.
The presentation follows [LW60].

Since determining the self-energy is reduced to finding the dressed skeleton diagrams, the
question is now whether this reduction is also possible for the grand potential. It is possible,
but not in the same way as it is achieved for the self-energy. Merely replacing all free
by full propagators within the skeleton diagrams of the grand potential would lead to an
overcounting of diagrams, since the reduction of closed, linked diagrams to skeletons is not
unique as shown in figure 2.6a. This problem does not occur for the self-energy, since the
vertices connected to external lines are singled out as shown in figure 2.6b.

(a) Grand potential.

r
s

r

s

r ′
s

r

r

r
r ′

s

s

(b) Self-energy.

r s t

r

s

t

r r ′ r s t

r s s′ s t

r s t t ′ t

2.6 – Illustration, how skeleton diagrams would include several diagrams contributing to the
grand potential multiple times, whereas they can be used to construct the self-energy.
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The idea is now not to reduce the diagrams of the grand potential to skeletons, but to decom-
pose them into proper or improper self-energy insertions. Breaking one free propagator in
a diagram of the grand potential yields a proper or improper self-energy insertion as shown
in figure 2.7. Fixing the broken link by adding a free propagator gives back the diagram of
the grand potential.

break

Ω Σ

break

2.7 – Schematic illustration and explicit example, how breaking one single particle line transforms
a diagram contributing to the grand potential into a self-energy diagram.

Doing this for all 2n free propagators of an n-th order diagram of the grand potential gives
2n times the same diagram. Hence, the expression for an n-th order diagram of the grand
potential is

Ωn =
1

2n
1
β

∑

`

∑

α,γ

G(0)
αγ
(E`)Σ

′n
γα
(E`), (2.75)

where the factor 1/2n compensates for the overcounting and Σ′n
βγ

denotes the total self-
energy part of n-th order containing proper and improper diagrams. In comparison with
previous partial sums, here the overcounting correction complicates the summation over
diagrams of all order to the whole grand potential. To get rid of this factor, a coupling
constant λ in the interaction is introduced. This adds to each n-th order self-energy a factor
λn. Integrating over λ removes the overcounting factor and gives

Ωn(λ) =
1

2β

∑

`

∑

α,γ

G(0)
αγ
(E`)

∫

[0,λ]

dλ′

λ′
Σ′n
γα

�

E`,λ
′
�

. (2.76)

The whole grand potential follows as

Ω(λ) = Ω0 +
∑

n

Ωn = Ω0 +
1

2β

∑

`

∑

α,γ

G(0)
αγ
(E`)

∫

[0,λ]

dλ′

λ′
Σ′
γα

�

E`,λ
′
�

, (2.77)

where Σ′
γα

is the sum of all proper and improper self-energy insertions. Making use of
equation (2.74) and rewriting the integral equation as a differential equation, the grand
potential can be obtained by solving

λ
dΩ
dλ
=

1
2β

∑

`

∑

α,γ

Σαγ(E`)Gγα(E`,λ) (2.78)

with initial condition Ω(λ = 0) = Ω0. In order to obtain the grand potential, Luttinger and
Ward [LW60] proposed the expression

Y =

¨

−
1
β

∑

`

exp(i E`0
+)

�

∑

α

ln
�

−G−1(E`)
�

αα
+
∑

α,γ

Gαγ(E`)Σγα(E`)

�«

+ Y ′, (2.79)
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where Y ′ is the contribution from summing all closed, linked skeleton diagrams with the
free propagator replaced by the full one. By showing that Y solves the differential equa-
tion (2.78) with the correct initial condition, the connection between grand potential Ω and
propagator Σ is established.

Thus one searches

λ
d Y
dλ
= λ ·

�

δY
δΣαγ(E`)

∂Σγα(E`)

∂ λ
+
∂ Y
∂ λ

�

, (2.80)

where δY /δΣ denotes the functional derivative of Y w.r.t. Σ, since the indices denoting
the components of Σ are infinitely many. To show that δY /δΣ vanishes, Y ′ is formulated
similar to the n-th order diagram of the grand potential: Consider a ν-th order diagram of
Y ′. Breaking any of the 2ν full propagators yields a diagram contributing to the self-energy.
Fixing the broken link by a full propagator gives again the diagram of Y ′. Doing this with
every full propagator of the diagram, gives 2ν times the same diagram. Summing over all
ν-th order diagrams yields

Y ′ =
1
β

∑

ν

∑

`

∑

α,γ

1
2ν

Gαγ(E`)Σ
ν′′
γα
(E`). (2.81)

Taking the functional derivative w.r.t. the self-energy Σ is possible by employing that Σν′′

depends on the whole self-energy only via 2ν− 1 full propagators and by using the Dyson
equation

δY
δΣαγ(E`)

=
δ{·}

δΣαγ(E`)
+

δY ′

δΣαγ(E`)
(2.82)

= −
1
β

∑

α,γ,`

G2
αγ
(E`)Σγα(E`) +

1
β

∑

α,γ,`

G2
αγ
(E`)Σγα(E`)

= 0,

where {·} refers to the curly bracket in equation (2.79). Hence with the partial derivative
∂ Y /∂ λ only vertices of Σν′′ in Y ′ contribute. Writing Σν′′ = λνΣ′′ and performing the
summation over all ν to the whole self-energy Σ gives the differential equation

λ
d Y
dλ
=

1
2β

∑

`

∑

α,γ

Gαγ(E`)Σγα(E`) = λ
dΩ
dλ

. (2.83)

In order to verify the initial condition, the addends in the sum over energies at zero inter-
action λ= 0,

Y (λ= 0) = −
1
β

∑

α

∑

`

exp
�

i E`0
+
�

ln
�

−G(0)(E`)
−1
�

αα
(2.84)

is rewritten as residue of a function with poles at E`. Deforming the corresponding contour
and performing an integration by parts yields

Y (λ= 0) = −
1
β

ln [exp(−β(E` −µ) + 1] = Ω0. (2.85)

By that the expression

Ω= −
1
β

∑

`

exp(i E`0
+)

¨

∑

α

ln
�

−G−1(E`)
�

αα
+
∑

α,γ

Gαγ(E`)Σγα(E`)

«

+Φ (2.86)

≡ −Tr
�

ln
�

−G−1
��

− Tr [GΣ] +Φ (2.87)
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for the grand potential is established, where Φ denotes the Luttinger-Ward functional Y ′ and
Tr[A] abbreviates β−1

∑

`

∑

α exp(i E`0
+)Aαα. Although this is the main result, the station-

arity of the grand potential w.r.t. the variation of the self-energy

δΩ

δΣ
= 0 (2.88)

is essential for the self-energy-functional theory and is mentioned here for future reference.

2.1.7. Generalisation of the Luttinger-Ward functional2 1 7
The perturbative expression for the grand potential relies on the convergence of the skeleton diagram
series for the Luttinger-Ward functional. To derive the expression for the grand potential non-perturba-
tively, the Luttinger-Ward functional has to be generalised. The presentation follows [Pot12].

The validity of the diagrammatic expression for the grand potential relies on the conver-
gence of the skeleton diagram series for the Luttinger-Ward functional. Nevertheless, the
diagrammatic definition of Φ depending on the actual system can be condensed to a list of
defining properties and thereby generalised to a functional operating on a space of systems:

Φ̌U[G] is a functional.
The domain of Φ̌U is the ‘space of Green’s functions G’.
Evaluating the Luttinger-Ward functional at the physical Green’s function Gt ,U of a
system with Hamiltonian H = H(t ,U) relates it to the grand potential of the system
via

Ωt ,U = −Tr
�

ln
�

−G−1
t ,U

��

− Tr
�

Gt ,UΣt ,U

�

+ Φ̌[Gt ,U]. (2.89)

The functional derivative of Φ̌ w.r.t. its argument is again a functional of the Green’s
function

δΦ̌U[G]
δG

= Σ̌U[G]. (2.90)

As the diagrammatic expression shows, the evaluation of Σ̌U at the physical Green’s
function yields the physical self-energy

Σ̌U[Gt ,U] = Σt ,U . (2.91)

The Luttinger-Ward functional is universal in the sense, that it is fully determined by
the interaction parameters U .
Non-interacting limit: Φ̌U[G] = 0 for U = 0.

A way of deriving the expression of the grand potential non-perturbatively starts from the
path integral expression of the grand canonical partition function Ξ as given in [Pot12].
Therein, the physical action At ,U is generalised to a universal (U-dependent) functional
ǍU

�

G−1
0

�

with the inverse free Green’s function G−1
0 as argument. Inserting the physical free

Green’s function Gt ,0 gives again the physical action At ,U . This translates to a generalisation
of the grand canonical partition function Ξ̌U

�

G−1
0

�

and the grand potential Ω̌U

�

G−1
0

�

to
functionals giving at the physical free Green’s function the physical quantities Ξt ,U and Ωt ,U .
The functional derivative

δΩ̌U

�

G−1
0

�

δG−1
0

≡ −β−1ǦU

�

G−1
0

�

(2.92)
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defines a new universal functional ǦU

�

G−1
0

�

which gives at the physical free Green’s function
the physical full Green’s function Gt ,U . Setting up the equation

ǦU

�

G−1 +Σ
�

= G (2.93)

defines as solution the functional Σ̌[G]. From the Dyson equation it becomes clear, that
evaluated at the physical full Green’s function, this functional gives the physical self-energy
Σt ,U . Combining all these functionals leads to a functional satisfying the properties of the
Luttinger-Ward functional

Φ̌U[G] = Ω̌U

�

G−1 + Σ̌U[G]
�

− Tr ln(G) + Tr
�

GΣ̌U[G]
�

. (2.94)

2.2. Method2 2

2.2.1. Self-energy-functional theory (SFT)2 2 1
Self-energy-functional theory provides a framework to construct cluster-approximations of lattice models
in solid state theory. The method is thermodynamically consistent, since it is based on the expression
(2.86) for the grand potential and its variational property (2.88). The presentation follows [Pot12].

Within self-energy-functional theory (SFT), the functional Σ̌U[G] is assumed to be locally
invertible when the system is not at a critical point or a phase transition. This makes it
possible to form yet another universal functional, the Legendre transform of the Luttinger-
Ward functional

F̌U[Σ] = Φ̌U

�

ǦU[Σ]
�

− Tr
�

ǦU[Σ]Σ
�

. (2.95)

By defining the self-energy functional as

Ω̌t ,U[Σ] = Tr

�

ln

�

1
G−1

t ,0 −Σ

��

+ F̌U[Σ], (2.96)

one obtains a quantity,

which gives at the physical self-energy Σt ,U the physical grand potential Ωt ,U .
whose functional derivative w.r.t.Σ being stationary is equivalent to a Dyson-like equa-
tion

δΩ̌t ,U[Σ]

δΣ
= 0 ǦU[Σ] =

1
G−1

t ,0 −Σ
. (2.97)

The physical self-energy can therefore be determined by searching for the stationary point
of the self-energy functional. Having the physical self-energy, the grand potential and the
propagator can be calculated which give access to dynamic and thermodynamic quantities.
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In practice, expression (2.96) for the self-energy functional has to be approximated to
be of use. There are three types of approximation schemes which allow to determine the
physical self-energy:

Type I: The Euler equation δΩ̌/δΣ = 0 is explicitely derived, but simplified to de-
termine the physical self energy. This may lead to thermodynamic inconsistencies.
Type II: The functional Ω̌ is modified s.t. the Euler equation can be solved. Here, the
thermodynamic potential is consistent with the self-energy, but it is difficult to find
such approximations.
Type III: The functional Ω̌ is only considered on a restricted domain of self-energies,
where the Euler equation can be solved. By that, the functional form is kept and the
approximation is controlled by the extent of the domain.

In SFT, a specific version of type III approximation is employed, where the self-energy is con-
sidered to be parametrised by the parameters of one-body operators. Main motive for this
is the absence of a closed form for the Luttinger-Ward functional Φ̌U and the idea to remove
it from the agenda. To eliminate Φ̌U , the self-energy functional Ω̌′U of a ‘reference system’
with a Hamiltonian having the same interaction part as the original system, but different
one-body operators is considered. Taking the difference of both self-energy functionals gives

Ω̌U[Σ]− Ω̌′U[Σ] = −Tr ln
�

−G−1
0 +Σ

�

+ Tr ln
�

−G′−1
0 +Σ

�

, (2.98)

where the occurence of Φ̌U is replaced by quantities of a reference system, whose depen-
dence on the self-energy is yet unspecified. Evaluating the whole expression at the self-
energy of the reference system Σ′, the unknown quantities are determined

Ω̌[Σ′]−Ω′ = −Tr ln
�

−G−1
0 +Σ

′
�

+ Tr ln
�

−G′−1
�

, (2.99)

where Ω′ is the grand potential and G′ the full Green’s function of the reference system.
Choosing an at least numerically tractable reference system allows evaluation of the self-
energy functional. There are two possible types of reference systems:

Decompose the original lattice system into isolated clusters with on-site interaction.
Variational cluster approximation (VCA)
Start from a physical site and add bath sites to it, which possess bath energies (mean-
ing chemical potentials) and are connected to the physical site via hybridisation (mean-
ing hopping terms).
Dynamical impurity approximation (DIA).

In the limit of infinitely many bath sites, the DIA becomes the variational version of the dy-
namical mean-field theory (DMFT) which by itself performs the optimisation in an iterative
fashion. Combining both ways of constructing the reference system by adding bath sites to a
cluster leads to the variational version of the cluster dynamical mean-field theory (CDMFT).
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Since the only requirement for the reference system consists in having the same interac-
tion part as the original system, the Hamiltonian of the reference system can in principle be
extended by arbitrary one-body terms. Each parameter of a one-body term can in turn be
used to parametrise the self-energy. The number of variational parameters should be restric-
ted to physically meaningful ones, since finding the stationary point in the space spanned
by these parameters becomes harder with increasing dimension of the space. Examples for
terms already present in the Hamiltonian are the on-cluster hoppings and the chemical po-
tential. A physically motivated additional term would be a staggered magnetic field coupled
to the electron spins

H = h′ ·
∑

i

zi(ni − ni ), (2.100)

where zi = ±1 transforms the systen into a bipartite one. The magnetic field h′ is no physical
field, but a fictitious one similar to the internal fields occuring in mean-field theory and
therefore denoted as ‘Weiss field’. Its value is determined by the stationarity condition of
the self-energy functional. If the system would incorporate a physically applied magnetic
field, the Weiss field would depend on it, since it modifies the stationarity condition. Physical
and fictitious field differ in general and the Weiss field may be larger or smaller than the
physical one. A spontaneously symmetry broken state is found, if the self-energy functional
is stationary at vanishing physical, but finite Weiss field.

2.2.2. Cluster perturbation theory (CPT)2 2 2
In cluster perturbation theory (CPT), the self-energy of a lattice system is approximated by that of a
system composed of clusters in the limit of weak inter-cluster hoppings. It provides the basic equation
to determine the reference system’s Green’s function needed in VCA and allows computing well resolved
spectral functions. The presentation follows [Pot14; Sén12].

Just as the connection between grand potential and propagator have been introduced dia-
grammatically, this is the path to motivate cluster perturbation theory (CPT). Considering
a system composed of clusters, the generic Hamiltonian (2.15) is split into three parts illus-
trated in figure 2.8:

On-cluster hoppings H0(t ),
Inter-cluster hoppings H0(V),
On-cluster interactions H1,

where t denotes the on- and V the inter-cluster hopping matrix tαβ and Vαβ .

2.8 – Illustration of the on-cluster hoppings H0(t ), inter-cluster hoppings H0(V) and on-cluster
interactions H1. The bipartite character of the lattice supported by the cluster is highlighted
by filled and empty circles.
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Similar to the treatment of the on-site interaction H1, the inter-cluster hopping is also con-
sidered as perturbation. Following the procedure of section 2.1.4 with the perturbation
being the sum of interaction and inter-cluster hoppings, Wick’s theorem decomposes the
strings of construction operators into products of free single-particle Matsubara functions.
Since terms within the inter-cluster hopping consist of one creation and one annihilation op-
erator, the corresponding symbol V connects to one entering and one leaving particle line.
In addition to the diagrams, where only the interaction acts as perturbation, additional dia-
grams appear, where single particle lines are replaced by an alternating sequence of particle
lines and inter-cluster hoppings. Sharing the property of being connected to two lines, all
diagrams including either the inter-cluster hoppings or the self-energy, as well as propa-
gators can be constructed alike by a Dyson-like equation. The main question is in which
sequence the propagators are dressed by the perturbations. Since the self-energy contains
free propagators, but the inter-cluster hopping does not, the free propagators should first
be dressed by the inter-cluster hoppings and afterwards by the self-energy

1) G(0) = G′(0) +G′(0)VG(0),
2) G = G(0) +G(0)ΣG,

V

Σ

where G′(0) is the free cluster propagator, G(0) is the full free propagator, Σ is the full self-
energy and G the full propagator. By inverting this sequence, the contributions of inter-
cluster hoppings to the self-energy are neglected, which leaves effectively only the cluster
self-energy Σ′

1) G′ = G′(0) +G′(0)Σ′G′,
2) GCPT = G′ +G′VGCPT,

Σ′

V
with G′(0) as free cluster propagator, G′ as full cluster propagator and GCPT as CPT propa-
gator. This approximation to the full Green’s function is the basic equation of CPT. Another
way to obtain this relation is via strong-coupling perturbation theory described in reference
[PST00] based on the path integral approach. Knowing the cluster Green’s function and
the inter-cluster hopping, one can compute the Green’s function of a system of decoupled
clusters as it is required for the VCA.

Besides determining the Green’s function of a cluster system in real space, its shape in
reciprocal space is of major importance for the spectral function motivated in section 2.1.3.
Due to the artificial superlattice introduced by dividing the lattice into clusters, the Green’s
function is only periodic w.r.t. translations in the superlattice, but not w.r.t. arbitrary trans-
lations commensurate with the whole lattice. An example for this would be two sites on
different clusters, which are connected by a vector of the whole lattice, but not by one of the
superlattice. The full dependence on all reciprocal lattice vectors is obtained by periodisa-
tion of the Green’s function. Thereby, the Green’s function is regularly Fourier transformed
w.r.t. the superlattice vectors. Within the Fourier transformation w.r.t. vectors connecting
sites of (the same or different) clusters, the ‘off-diagonal terms’ are discarded, i.e. the (in
general) different reciprocal lattice vectors are replaced by the same vector. From a prag-
matic point of view, this is justified, since the quasiparticle DOS and the spectral function as
quantities of interest are independent from the off-diagonal terms. In a nutshell, each site
of a cluster is assigned the same reciprocal lattice vector and only sites on different clusters
have different reciprocal lattice vectors.
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Here, coordinates of sites relative to the cluster origin are denoted R and locations of
clusters are r̃ giving the absolute coordinate of sites on the lattice r = r̃ +R. The respective
reciprocal lattice vectors are K , k̃ and k = K + k̃. For a lattice of Ncl clusters of ` sites each,
the resulting k-dependent Green’s function reads

G(E, k) =
1
L

∑

R,R′
exp[− i k(R−R′)]GRR′(E, k̃), (2.101)

with L = Ncl · ` being the total number of lattice sites and k̃ the reciprocal lattice vector
occuring in V(k̃) constructed directly in reciprocal space giving k = k̃ + K . In practice,
the replacement k̃ k is used, where the available k ∈ {2πn/Ncl|ni = 0, . . . , N (i)cl − 1} are
parametrised by the number of clusters. One argument for this replacement is, that since
GRR′(E, k̃) is k̃-periodic, choosing a finer k-grid would yield no additional information. An-
other argument is, that since each site on the same cluster has the same phase, it amounts
to a constant offset which can be set to zero without changing the Green’s function.

Since the magnetic orders considered in this thesis transform the lattice into a bipartite
one, the clusters building it up have to be selected accordingly. For later reference, the
two-dimensional clusters employed in this thesis are depicted in figure 2.9 with the cor-
responding superlattice vectors specified in a table next to them. The lattice vectors of
one-dimensional clusters with n sites in one and the two-site cluster in two dimensions are
provided in the table as well.

cluster lattice vectors

n× 1 n
2× 1 (2, 0), (1,−1)
2× 2 (2, 0), (0,2)
3× 2 (3, 1), (3,−1)
4× 2 (4, 0), (0,2)p
8×
p

8 (2, 2), (2,−2)p
10×

p
10 (3, 1), (−1,3)

2.9 – Two-dimensional clusters employed in this thesis and corresponding superlattice vectors.
The bipartite character of the lattice supported by the cluster is highlighted by filled and
empty circles.
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2.2.3. Variational cluster approximation (VCA)2 2 3
Representing one of the two branches of possible approximation schemes within the SFT, the Variational
cluster approximation (VCA) can be perceived as variational extension of the CPT, where the self-energy
functional is optimised w.r.t. the coefficients of one-body operators. The presentation follows [Pot12;
Sén08].

Since now all properties required for the VCA have been discussed, the algorithm to follow
is shown in figure 2.10. Numerical details on how to obtain the cluster grand potential and
cluster Green’s function are discussed in section 2.3 for zero and 2.4 for finite temperature.

Cluster
solver

λ0

λi+1

Model Weiss fields: h Hamiltonian: H(λi)

Lattice Cluster Cluster grand
potential: Ωcl

Cluster Green’s
function: GclOn-cluster

couplings
Inter-cluster
couplings

CPT Green’s function:
G−1

CPT = G−1
cl − V (λi)Physical variational

parameters λ0

Self-energy functional:
Ω̌= Ωcl + Tr ln

�

−G−1
cl

�

− Tr ln
�

−G−1
CPT

�

stat
λ
Ω̌, λstat

Initialisation Variation

Result

2.10 – Algorithm of the VCA. A description is given in the text.

Starting point is a model defined by a Hamiltonian and a lattice of given geometry. By de-
composing the lattice into clusters, the couplings inside the Hamiltonian are divided into on-
and inter-cluster couplings. On-cluster couplings connect sites of the same cluster, whereas
inter-cluster couplings link sites of different clusters. As described in the end of section 2.2.1,
additional Weiss fields h followed by operators of on- or inter-cluster type are introduced
to extend the Hamiltonian. After the set of variational parameters λ0 is fixed, the initialisa-
tion is complete. Its result is a modified Hamiltonian H(λ0) depending on the variational
parameters.

In order to find the variational parameters λstat making the self-energy functional Ω̌ sta-
tionary, the quantities occuring in its definition have to be determined. Employing the
cluster solver gives the cluster grand potential Ωcl and the cluster Green’s function Gcl as
described in section 2.3 for zero and 2.4 for finite temperature. The cluster Green’s func-
tion Gcl and the analytically known inter-cluster couplings V yield the CPT Green’s function
GCPT introduced in section 2.2.2. Combining the cluster grand potential, the cluster Green’s
function and the CPT Green’s function to the self-energy functional Ω̌[Σ(λi)] completes the
construction of the function Ω̌(λi) to be made stationary. Minimisation of Ω̌(λi), maximi-
sation as minimisation of −Ω̌(λi) or searching the saddlepoint of Ω̌(λi) by minimising the
function’s derivative gives the variational parameters characterising the physical system.
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2.3. Cluster solvers at zero temperature2 3
Three cluster solvers and four representations of the Green’s function employed within the zero temper-
ature VCA are presented. Depending on the solver, only specific representations can be used.

2.3.1. Lanczos algorithm2 3 1
The Lanczos algorithm constructs iteratively an invariant subspace of the Hamiltonian in which it has
tridiagonal shape. Computing the eigenvalues and eigenvectors allows construction of the spectral rep-
resentation of the Green’s function. Inversion of the tridiagonal matrix yields the continued fraction
representation of the Green’s function to be discussed in section 2.3.2. The presentation follows [Aic04]
and is adapted from [Lot17].

Consider the problem of finding the ground state energy of a system determined by a given
Hamiltonian with discrete spectrum. A naive way of determining it, would be to choose a
suitable basis, rewrite the operator as matrix, diagonalise this matrix and obtain the ground
state energy as the lowest eigenvalue among the diagonal elements. Depending on the basis,
the matrix is more or less densely filled, but its size increases exponentially with system size.
Full diagonalisation (FD) therefore is limited to small systems.

The main restriction, in form of the size of the N × N Hamiltonian matrix H , can be
overcome by employing invariant subspaces K of size M < N . These spaces are spanned
by vectors {|ϕi〉}i=1,...,M of N components, where the application of the Hamiltonian matrix
leads to a linear combination of themselves

|χ〉 ∈ K H |χ〉 ∈ K ∀ |χ〉 ∈ K . (2.102)

Applying H to an N×M matrix K , whose columns consist of the vectors |ϕi〉merely produces
a new N × M matrix K ′ whose columns are linear combinations of the |ϕi〉. From the
perspective of a vector to which K ′may be applied, the same resulting vector can be obtained
by using K ′′ = K HM , where HM is an M ×M matrix

H K = K HM . (2.103)

Establishing these connections makes it possible to determine the eigenvalues E and eigen-
vectors |Ψ〉 of H via the eigenvalues E and eigenvectors K |Ψ〉 of HM

HM |Ψ〉= E |Ψ〉 (2.104)

H [K |Ψ〉] = E [K |Ψ〉] . (2.105)

In this manner, the cost of finding a subset of eigenvalues and eigenvectors of the Hamilto-
nian matrix is reduced by employing an invariant subspace and the smaller matrix HM .

Within the Lanczos algorithm, the Krylov subspace of the Hamiltonian H being

KM = linspan
�

|x0〉 , H |x0〉 , H2 |x0〉 , . . . , HM−1 |x0〉
	

, M < N , (2.106)

where |x0〉 is a normalised random vector, is constructed. Decomposing the initial vector
|x0〉 into eigenstates of H shows, that KM forms an approximately invariant subspace of H.
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This is due to the ground state dominating for large M within

HM |x0〉= HM
N
∑

k=0

ck |Ψk〉=
N
∑

k=0

ckEM
k |Ψk〉 (2.107)

= EM
0

�

c0 |Ψ0〉+
N
∑

k=1

ck

�

Ek

E0

�M

|Ψk〉

�

∝ |Ψ0〉 ,

since its energy E0 is according to amount the largest eigenvalue of H. Coming now to the
recursive procedure of the ground state Lanczos algorithm valid at T = 0, the initial state
|x0〉 is discussed first. Since only an approximately invariant subspace is considered, |x0〉
has to have a finite overlap with the ground state. Without any information on the ground
state, a normalised random vector in the canonical basis {e1, e2, . . . , eN} ∈ RN as initial state
is sufficient. Having some information on the ground state, the initial state should be writ-
ten in the basis spanning the subspace characterised by the respective quantum numbers
with random coefficients.

Within the Lanczos algorithm, the orthonormal basis of KM is constructed by iteratively
orthogonalising the vectors spanning the Krylov subspace (2.106) and normalising them
afterwards. Starting from |x0〉, the vector emerging from H |x0〉 orthogonal to the initial
state is

|ex1〉= H |x0〉 −α0 |x0〉 , (2.108)

where α0 = 〈x0|H|x0〉. Normalisation gives the Krylov subspace’s second basis vector |x1〉=
|ex1〉/‖ |ex1〉‖ . For all further states, the strategy can be summarised as iteration rule:

Construct an orthogonal basis vector: |exn+1〉= H |xn〉 −αn |xn〉 − βn |xn−1〉
with: • αn = 〈xn|H|xn〉,

• βn = 〈xn−1|H|xn〉= ‖|exn〉‖.

Normalise the basis vector: |xn+1〉=
|exn+1〉
‖|exn+1〉‖

.

In the following, the vectors forming this Krylov subspace’s basis {|x i〉}i=0,...,M−1 are called
Lanczos vectors. Expressed in terms of the Lanczos vectors, the Hamiltonian matrix is real,
symmetric and tridiagonal

〈x i|H|x j〉=

α0 β0 0 0

β0 α1 β1 0

0 β1 α2 β2 0

0 β2 βM−1

0 0 βM−1 αM−1





































. (2.109)

Its eigenvalues {ξi}i=0,...,M−1 converge for large M to the Hamiltonian’s eigenvalues within
the Krylov subspace {Ei}i=0,...,M−1. The eigenstates of the Hamiltonian {|Ψi〉}i=0,...,M−1 are
obtained by applying the matrix K , whose columns consist of the Lanczos vectors, to the
eigenvectors {|χ i〉}i=0,...,M−1 of 〈x i|H|x j〉,

|Ψi〉= K |χ i〉 . (2.110)
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In contrast to FD, methods constructing the Hamiltonian only partially and diagonalising
it are denoted exact diagonalisation (ED). One problem of Lanczos ED are ‘orthogonality
leaks’. This term refers to the loss of orthogonality between the Lanczos vectors due to
numerical errors after a sufficient number of iterations. A way to tackle this problem is to
reorthogonalise the new Lanczos vectors w.r.t. the old ones every North steps.

If one is interested only in the lowest lying eigenvalues as is the case here, one checks
every Ndiag steps by diagonalising the tridiagonal Hamiltonian matrix, whether the ground
state is converged and terminates, if this is the case. However it can also happen, that the
Lanczos algorithm constructs the whole basis of an invariant subspace, s.t. further iterations
do not offer any new information. Hence the norm of the new Lanczos vector should be
monitored and the procedure terminated once the norm becomes too small.

Employing the ground state |Ψ0〉, expectation values at T = 0 can be calculated. The
grand potential of a cluster Ωcl at T = 0—as required in the zero temperature VCA—is
formed by the ground state energy and the particle number

Ω= ε0 −µ 〈Ψ0|N̂ |Ψ0〉 . (2.111)

In practice, the chemical potential is included within the Hamiltonian s.t. the grand poten-
tial at T = 0 is equal to the ground state energy.

In addition to the grand potential, the VCA requires the Green’s function of the cluster.
Consider the spectral representation of the single-particle retarded Green’s function

Gret
αβ
(E) =

∑

n





¬

Ψ0
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 , (2.112)

where E±n = ε
±
n − ε0 is the energy difference between the nth excited state |Ψ±n 〉 with N ± 1

electrons and the ground state |Ψ0〉 with N electrons. The Green’s function is characterised
by its electron weights Q(e)

αn = 〈Ψ0|cα|Ψ+n 〉, hole weights Q(h)
βn = 〈Ψ0|c

†
β
|Ψ−n 〉 and poles E±n . In

order to obtain these quantities, the ground state |Ψ0〉 and its energy ε0 are approximately
determined within a first Lanczos run. From the ground state expressed in the canonical or
some specific basis, the states

|Ψ+
α
〉= c†

α
|Ψ0〉,

|Ψ+
β
〉= c†

β
|Ψ0〉,

|Ψ−
α
〉= cα |Ψ0〉,

|Ψ−
β
〉= cβ |Ψ0〉

are obtained by applying the creation or annihilation operator, i.e. changing the occupation
of one of the basis states specified by the indices α, β . Afterwards, the states |Ψ+

β
〉 and |Ψ−

α
〉

are used as initial states of two additional Lanczos runs to approximately construct two
eigenbases {|y+n 〉}n=0,...,M−1 and {|y−m〉}m=0,...,M−1 of the Hamiltonian to give the poles E+n , E−m
and weights Q(e)

αnQ(e)†
βn , Q(h)

βmQ(h)†
αm . To reduce the numerical effort, the weights are constructed

using matrix elements obtained during the Lanczos runs. They can be inferred by expressing
the approximate eigenstates as linear combination of the Lanczos vectors

|Ψ±n 〉=
∑

i

|y±i 〉 〈y
±
i |Ψ

±
n 〉 . (2.113)
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Exploiting the orthogonality of the Lanczos vectors 〈y±i |y
±
j 〉= δi j and that the initial Lanczos

vector |y+0 〉 is the normalised excited state |Ψ+
β
〉/‖ |Ψ+

β
〉 ‖, the electron weights become

Q(e)
αnQ(e)†

βn =

�

∑

i

〈Ψ+
α
|y+i 〉 〈y

+
i |Ψ

+
n 〉

�

· 〈Ψ+n |y
+
0 〉 · ‖ |Ψ

+
β
〉 ‖, (2.114)

requiring only two types of matrix elements to be determined within the Lanczos run. The
first type 〈Ψ+

α
|y+i 〉 contains the overlap of any initial Lanczos vector

�

|y+0 〉= |Ψ
+
α
〉/‖ |Ψ+

α
〉 ‖
	

α

of any Lanczos run with the ith Lanczos vector |y+i 〉 of a specific run β . For the second
type 〈y+i |Ψ

+
n 〉, the matrix elements contain the coefficients of the Hamiltonians eigenstates

expressed by Lanczos vectors. In contrast, the norms of any initial vector ‖ |Ψ+
β
〉 ‖ can be

determined in advance of all Lanczos runs. For the hole part with the initial Lanczos vector
|y−0 〉= |Ψ

−
α
〉/‖ |Ψ−

α
〉 ‖, the respective weights are

Q(h)
βmQ(h)†

αm =

�

∑

i

〈Ψ−
β
|y−i 〉 〈y

−
i |Ψ

−
m〉

�

· 〈Ψ−m|y
−
0 〉 · ‖ |Ψ

−
α
〉 ‖. (2.115)

Note that the two Lanczos runs have to be performed for all combinations of indices α, β .
Using this procedure in combination with the cluster Hamiltonian yields the cluster Green’s
function.

2.3.2. Continued fraction representation2 3 2
The continued fraction representation of the Green’s function can be obtained without having to diag-
onalise the tridiagonal Hamiltonian in the Lanczos basis. It can thus be used in combination with a
matrix-product state solver which will be discussed in section 3. The presentation follows [Sén08].

In case the cluster solver does not allow to diagonalise the tridiagonal Hamiltonian to obtain
the Green’s function, the spectral representation cannot be constructed since the eigenener-
gies are not available. The continued fraction representation only requires the tridiagonal
structure of the Hamiltonian and circumvents diagonalising the Hamiltonian in the sector
of excitated states.

Starting from the spectral representation of the retarded single-particle Green’s function
in equation (2.112), one obtains by removing the identity within the excited subspace

Gret
AB (z) = G+AB(z)− G−BA(z) (2.116)

with the complex energy z = E + iη, η > 0, the operators A = cα B = c†
β

as well as the
short-hand notation

G±AB(z) = 〈Ψ0|A[±z − (H − ε0)]
−1B|Ψ0〉 . (2.117)

Exploiting the three-band structure of the Hamiltonian matrix obtained after evaluating the
Lanczos algorithm given in equation (2.109), one can compute the diagonal part of the
resolvent by means of Cramer’s rule [Dag94] as a continued fraction

G+
cα,c†

α

(z) =
β2

0

+z −α0 + ε0 −
β2

1

+z−α1+ε0−
β2

+z−α2+ε0−...

, (2.118)

−G−
c†
α,cα
(z) =

β2
0

−z −α0 + ε0 −
β2

1

−z−α1+ε0−
β2

−z−α2+ε0−...

, (2.119)
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where {αi}i=0,...,M−1 and {βi}i=0,...,M−1 are the entries of the Hamiltonian within the excited
state sectors.

In practice, the maximal number of Lanczos iterations determines the cut off. To obtain
the off-diagonal entries of the Green’s function with α 6= β , one considers linear combina-
tions [Sén08], which is sufficient in case G+cα,c†

β
(z) = G+cβ ,c†

α
(z) holds

G+
cα,c†

β

(z) =
1
2

�

G+
cα+cβ ,c†

α+c†
β

(z)− G+
cα,c†

α

(z)− G+
cβ ,c†

β

(z)
�

, (2.120)

G−
c†
β

,cα
(z) =

1
2

�

G−
c†
α+c†

β
,cα+cβ

(z)− G−
c†
α,cα
(z)− G−

c†
β

,cβ
(z)
�

. (2.121)

In general, only G+cα,c†
β
(z) = G+cβ ,c†

α
(z∗)∗ is valid, s.t. one needs to consider complex com-

binations of two annihilation and creation operators respectively. Considering the spectral
representation (2.112), the weights occuring therein can be complex. When evaluating the
Lanczos algorithm with a real valued starting vector, the Hamiltonian determines whether
the Lanczos vectors are real valued as well. Complex couplings, such as spin-orbit coupling,
can lead to complex Lanczos vectors, which may imply a complex ground and/or complex
excited states entering the weights. For the one-band Hubbard model without complex
couplings, the case presented above is sufficient. The details in case complex combinations
become necessary are shown in appendix C of [SSY18] and remain to be implemented.

2.3.3. Band Lanczos algorithm2 3 3
The Band Lanczos algorithm allows resolving degenerate or clustered eigenvalues. Constructing a joint
Krylov subspace of all excited states occuring in the electron/hole part of the Green’s function makes it
possible to separate weights from poles leading to the Q-matrix representation of the Green’s function to
be introduced in section 2.3.6. In the context of VCA, this enables performing the contour integration
analytically. The presentation follows [Fre00; Ali+99].

A major drawback of the approach described in section 2.3.1 is that for the computation of
the Green’s function, every initial vector

�

|y±0 〉= |Ψ
±
α
〉/‖ |Ψ±

α
〉 ‖
	

α
generates its own Krylov

subspace. Hence in general, the poles and eigenstates are different for each initial vector,
thus blurring the distinction between poles and weights by requiring the Green’s function
to be evaluated at explicite energies E for further computations. The ability to treat poles
and weights separately can be regained by using all initial vectors {|Ψ±

α
〉} to construct one

Krylov subspace with one joint set of eigenstates and corresponding poles. This is achieved
using the Band Lanczos algorithm [Fre00]. Furthermore, degenerate or clustered eigenval-
ues can be resolved using the Band Lanczos algorithm which becomes important at finite
temperature.

Starting from the set of initial random vectors {|C0〉 , . . . , |CB−1〉}= {|Cα〉}α=0,...,B−1, a basis
of the Krylov subspace is constructed. After the first vector |C0〉 is normalised and accepted
as Lanczos vector |x0〉, a new ‘candidate’ vector |CB〉 = H |x0〉 is created. The new set of
candidates {|Cα〉}α=1,...,B is then orthogonalised w.r.t. the newly accepted Lanczos vector
|x0〉. For the following B − 1 initial candidates, {|Cα〉}α=1,...,B−1, the same is done: they
are normalised and accepted as Lanczos vector or, as candidates, orthogonalised w.r.t. the
newly accepted Lanczos vector. However the newly created candidate |Ci+B〉 = H |x i>0〉 is
in addition orthogonalised w.r.t. all previously accepted Lanczos vectors. After all B initial
vectors are handled this way, one ends up with a list of 2B + 1 vectors

[|x0〉 , . . . , |xB−1〉 , |CB〉 , . . . , |C2B〉 , |·〉], (2.122)

32



2. Fundamentals2

of B Lanczos vectors, B candidates and one empty entry. This empty entry |·〉 serves as
space for the candidate of the next iteration H |xB〉, which is generated from |CB〉 being the
‘current’ candidate of the (B+1)th iteration. In the following iterations, the oldest Lanczos
vector is removed from the list (2.122) and the newly accepted Lanczos vector is added.
The new candidate is always orthogonalised w.r.t. the B Lanczos vectors in the list (2.122),
while the old candidates are only orthogonalised w.r.t. the newest Lanczos vector. One way
to imagine the procedure is to shift the list (2.122) by one element to the left while adding
one at the right, giving

[|x1〉 , . . . , |xB〉 , |CB+1〉 , . . . , |C2B+1〉 , |·〉]. (2.123)

There is an additional difference compared to the regular Lanczos algorithm: When the
norm of a vector becomes (approximately) zero, the procedure does not need to terminate.
Since each initial random vector may sweep its own invariant subspace, a zero norm means
only, that this specific Lanczos vector does not yield any further information and should not
be included in further iterations. This means, that the bandwidth 2B + 1 and the list size
are reduced by two, since no new Lanczos vector implies no new candidate, giving

[|x1〉 , . . . , |xB−1〉 , |CB〉 , . . . , |C2B−1〉 , |·〉]. (2.124)

Only once B vectors have been removed from the list (2.122) leaving the list empty, all avail-
able information has been obtained. Once one removes a vector from the list (2.122), one
has to make sure, that the Lanczos vectors remain out of the exhausted invariant subspace.
For that purpose, the vector |x i〉 generating the removed candidate |Ci+B〉 = H |x i〉 is kept
and all further new candidates are orthogonalised w.r.t. |x i〉. Removal of these vectors and
orthogonalisation w.r.t. the generating vector is called ‘deflation’. This leads to the following
schematic shape of the Hamiltonian matrix:

〈x i|H|x j〉=

H11 H12 H13 H14 H15 H16 0

H21 H22 H23 H24 H25 H26 H27 0

H31 H32 H33 H34 H35 H36 H37 H38 H39 H3,10 H3,11 H3,12 H3,13

H41 H42 H43 H44 H45 H46 H47 H48 0

H51 H52 H53 H54 H55 H56 H57 H58 H59 0

H61 H62 H63 H64 H65 H66 H67 H68 H69 H6,10 0

0 H72 H73 H74 H75 H76 H77 H78 H79 H7,10 H7,11 H7,12 H7,13

0 H83 H84 H85 H86 H87 H88 H89 H8,10 H8,11 0

H93 0 H95 H96 H97 H98 H99 H9,10 H9,11 H9,12 0

H10,3 0 H10,6 H10,7 H10,8 H10,9 H10,10 H10,11 H10,12 H10,13

H11,3 0 H11,7 H11,8 H11,9 H11,10 H11,11 H11,12 H11,13

H12,3 H12,7 0 H12,9 H12,10 H12,11 H12,12 H12,13

H13,3 H13,7 0 H13,10 H13,11 H13,12 H13,13

























































































































.

(2.125)
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Within the blue diagonal entries, the overlap between the new accepted Lanczos vector |y j〉
and the new candidate |C j+B〉 before orthogonalisation

|C j+B〉 |C j+B〉 − |y j〉 〈y j|C j+B〉 (2.126)

are contained. The red off-diagonal entries below the diagonal contain the overlap between
the new accepted Lanczos vector |y j〉 with the old candidates |Ck〉 before they are orthogo-
nalised

|Ck〉 |Ck〉 − |y j〉 〈y j|Ck〉. (2.127)

The green entries further below the diagonal are the norms of the candidates |C j〉, which are
generated by application of the Hamiltonian, once they are normalised to become accepted
Lanczos vectors |y j〉

〈y j|C j〉= ‖ |C j〉 ‖. (2.128)

When vectors are deflated, the overlap between the generating vector |y`〉 and the new
candidate |C j+B〉,

|C j+B〉 |C j+B〉 − |y`〉 〈y`|C j+B〉 (2.129)

give rise to the orange entries which form a ‘fishbone’ structure. The remaining entries are
obtained by complex conjugation, since the Hamiltonian is a Hermitian matrix. Note, that
the Band Lanczos algorithm without deflation leads to a band matrix with bandwidth 2B+1.
This bandwidth is reduced by two entries each time deflation occurs, hence the routine to
diagonalise the remaining matrix has to be selected accordingly.

In accordance with regular Lanczos ED, one may deal with ‘orthogonality leaks’ via re-
orthogonalisation w.r.t. saved Lanczos vectors and terminate the procedure once the re-
quired number of eigenvalues is converged. Also in analogy to regular Lanczos ED, the
eigenenergies of the Hamiltonian are given by the eigenvalues of the Hamiltonian matrix
in the basis of Lanczos vectors, whereas the eigenstates follow from the basis transforma-
tion (2.110). More details and an explicit listing of the algorithm for Hermitian matrices can
be found in [Fre00]. A more general and cleaner presentation for complex N × N -matrices
can be found in [Ali+99].

At T = 0, regular Lanczos ED is sufficient to determine the ground state. Hence the cluster
grand potential can be determined via equation (2.111). However for the single-particle re-
tarded Green’s function of a system with degenerate ground state or due to practical reasons
mentioned at the beginning of the section, it is reasonable to employ Band Lanczos ED for
construction of the basis of excited states |Ψ±

α
〉. Starting from the set of normalised states

¦

|Y+
β
〉= |Ψ+

β
〉/‖ |Ψ+

β
〉 ‖
©

β
as initial states of the Band Lanczos algorithm allows construct-

ing the basis {|y+n 〉}. Using this basis for the weights of the single-particle retarded Green’s
function yields

Q(e)
αnQ(e)†

βn = ‖ |Ψ
+
α
〉 ‖ ·

�

∑

i

〈Yα|y+i 〉 〈y
+
i |Ψ

+
n 〉

�

·

�

∑

j

〈Ψ+n |y
+
j 〉 〈y

+
j |Y

+
β
〉

�

· ‖ |Ψ+
β
〉 ‖, (2.130)

where the second basis {|y+j 〉} is needed since |Y+
β
〉 is not a basis vector. Following the first B

steps of the Band Lanczos algorithm, the initial vectors are orthogonalised stepwise, which
may be rewritten as

|Y+
β
〉= | ỹ+k 〉+

k−2
∑

i=0

|y+i 〉 〈y
+
i |Y

+
β
〉 , (2.131)
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where
�

|y+i 〉
	

i=1,...,k−1
are normalised Lanczos vectors, while | ỹ+k 〉 is not yet normalised.

Computing the overlap with a (normalised) Lanczos vector |y+j 〉 explicitely

〈y+j |Y
+
β
〉= ‖ | ỹ+k 〉 ‖δ jk +δ j∈[0,k−2]δk 6=0 〈y+j |Y

+
β
〉 (2.132)

proves the above claim. Writing the overlap as matrix, one finds a square, upper triangular
matrix whose rank is given by the number of initial vectors

〈y+j |Y
+
β
〉=

‖ | ỹ+0 〉 ‖ 〈y
+
0 |Y

+
1 〉 〈y+0 |Y

+
B−1〉

0 ‖ | ỹ+1 〉 ‖ 〈y
+
1 |Y

+
2 〉 〈y+1 |Y

+
B−1〉

〈y+B−2|Y
+
B−1〉

0 0 ‖ | ỹ+B−1〉 ‖













































. (2.133)

For the weights, one needs the norms of the initial vectors ‖ |Ψ+
α
〉 ‖, which can be deter-

mined before the Band Lanczos run. During the first B steps of the Band Lanczos algorithm,
one computes the overlap between the normalised initial vectors |Y+

α
〉 and the Lanczos vec-

tors |y+i 〉 filling the matrix (2.133). Diagonalising the Hamiltonian gives the coefficients
of the Hamiltonians eigenvectors expressed by the Lanczos vectors 〈y+i |Ψ

+
n 〉 as well as the

eigenvalues for the poles. The weights for the hole part are

Q(h)
βmQ(h)†

αm = ‖ |Ψ
−
β
〉 ‖ ·

�

∑

i

〈Yβ |y−i 〉 〈y
−
i |Ψ

−
m〉

�

·

�

∑

j

〈Ψ−m|y
−
j 〉 〈y

−
j |Y

−
α
〉

�

· ‖ |Ψ−
α
〉 ‖. (2.134)

2.3.4. Chebyshev expansion2 3 4
Computing the Green’s function as expansion of Chebyshev polynomials requires only the evaluation of a
recursion relation. Since no basis is constructed, orthogonality does not has to be enforced. Furthermore
no diagonalisations have to be performed. It thus provides an alternative representation of the Green’s
function to be employed with a matrix-product state solver. The presentation follows [Wei+06; BS14].

There appear to be two branches of expanding the single-particle retarded Green’s function
into orthogonal polynomials, the Kernel polynomial method (KPM) [Wei+06] and a brute-
force expansion [BS14]. Here, only Chebyshev polynomials Tn(x) are discussed, although
other orthogonal polynomials such as Legendre polynomials [Boe15] are used in practice
as well.

Within the KPM [Wei+06], the limit of zero broadening η 0 is considered, where the
imaginary part of the Green’s functions’ spectral representation of equation (2.112) becomes
for real weights a sum of δ-distributions with the Green’s functions’ poles as roots

lim
η 0

Im[Gret
αβ
(z = E + iη)] =−π

∑

n

�

Q(e)
αnQ(e)†

βn δ(E − E+n )
�

−π
∑

m

�

Q(h)
βmQ(h)†

αm δ(E + E−m)
�

. (2.135)
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The arguments of these δ-distributions are rescaled into the interval [−1,1] as

(E ∓ E±n )
1
a
· (E ∓ E±n − b) = (Ẽ ∓ Ẽ±n ) ∈ [−1,1], (2.136)

a =
ε±max − ε

±
min

2−δ
, (2.137)

b =
ε±max + ε

±
min

2
− ε0 (2.138)

with δ ∼ 0.01 and expanded into Chebyshev polynomials giving ‘moments’ µ±j as expansion
coefficients

∑

n

Q(e)
αnQ(e)†

βn δ(Ẽ − Ẽ+n ) = −
1

p

1− Ẽ2

�

µ+0 + 2
∞
∑

j=1

µ+j T j(Ẽ)

�

, (2.139)
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∑

n

Q(e)
αnQ(e)†

βn

∫
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d x δ(Ẽ − Ẽ+n )T j(Ẽ)

=
∑

n

Q(e)
αnQ(e)†

βn T j(+Ẽ+n ) = 〈Ψ0|cαT j(H̃ − ε̃0)c
†
β
|Ψ0〉 , (2.140)
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, (2.141)

µ−j =
∑

n

Q(h)
βmQ(h)†

αm

∫

[−1,1]

d x δ(Ẽ + Ẽ−n )T j(Ẽ)

=
∑

m

Q(h)
βmQ(h)†

αm T j(−Ẽ−n ) = 〈Ψ0|c
†
β

T j(−H̃ − ε̃0)cα|Ψ0〉 . (2.142)

Here and in the remainder of this section, a tilde highlights quantities rescaled according to
equation (2.136). By exploiting the recursion relations of the Chebyshev polynomials, the
moments µ±j are constructed in an iterative fashion similar to the Lanczos algorithm

|y±0 〉= |Ψ
±
β ,α〉 , (2.143)

|y±1 〉= H̃ |y±0 〉 , (2.144)

|y±j 〉= 2H̃ |y±j−1〉 − |y
±
j−2〉 , (2.145)

µ±j = 〈Ψ
±
α,β |y

±
j 〉 . (2.146)

In contrast to Lanczos or Band Lanczos ED, no basis of an invariant subspace is constructed,
s.t. no reorthogonalisation is required. Since numerically only a finite expansion order can
be handled, the series is truncated. To prevent Gibbs oscillations in the expanded function,
additional ‘kernel’ functions are multiplied to the moments for damping, giving the method
its name. These kernel functions also influence the broadening of the spectrum obtained
from the Green’s function. After the imaginary part of the Green’s function is obtained, the
real part is constructed as the Hilbert transform of the imaginary part

Re[Gret
αβ
(Ẽ)] = −

1
π
P
∫

[−1,1]

d E′
Im[Gret

αβ
(E′)]

Ẽ − E′
. (2.147)

Within each step, additional analytical properties of the Chebyshev polynomials can be ex-
ploited.
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Two major drawbacks prevent using the KPM for VCA. First, it requires an operator whose
eigenvalues form the poles of the Green’s function which is expanded. At least from the per-
spective of constructing the moments as matrix elements by applying an operator to states
requires the existence of the operator. This might be different from a Quantum Monte Carlo
perspective. For the cluster Green’s, function the cluster Hamiltonian exists, whereas the
CPT Green’s function lacks an explicit operator. Having such an operator would simplify VCA
enormously and is not likely to be possible. Second, the KPM is restricted to real energies,
hence a contour integration with complex energy arguments is not possible. This is related
to the limit of zero broadening meaning zero imaginary part of the complex energies. There
are implementations of the KPM in combination with Quantum Monte Carlo [Gul+18] us-
ing purely imaginary energies, but this is merely a constant phase which can be moved into
the function keeping the argument real. In the end, both reasons conspire against the ap-
plication in VCA. Due to the second issue, one must perform the semi-analytical treatment
of VCA described in section 2.3.6, where the Matsubara energy summation/contour inte-
gration is performed analytically, leaving only a dependence on real energies. However, the
issue of complex energies is replaced by the requirement of knowing the poles of the CPT
Green’s function. In the context of KPM, this corresponds to knowing the operator having
these poles as eigenvalues.

Performing a brute-force expansion into Chebyshev polynomials [BS14] allows explicitely
the usage of complex energy arguments. The relevant expressions for T = 0 are rederived
in the following, since the notation of Braun and Schmitteckert is sometimes unclear and
some expressions will be kept in a different form due to the possibility of branch cuts of
complex roots. Depending on where the branch cuts of functions are located for a given
programming language or library, the domain of the function may have to be altered by
shifting its argument [Chy+11].

Starting from the spectral representation of the retarded single-particle Green’s function
in equation (2.112), one obtains by removing the identity within the excited subspace

Gret
AB (z) = G+AB(z)− G−BA(z) (2.148)

with the complex energy z = E + iη, η > 0, the operators A = cα B = c†
β

as well as the
short-hand notation

G±AB(z) = 〈Ψ0|A[±z − (H − ε0)]
−1B|Ψ0〉 . (2.149)

Considering only the resolvent function f ±z (x) = [±z−x]−1 occuring therein, one can rescale
the argument x into the range [−1, 1] using its maximum and minimum values as

x x̃ =
x − b

a
∈ [−1, 1], (2.150)

a =
xmax − xmin

2−δ
, (2.151)

b =
xmax + xmin

2
, (2.152)

with δ ∼ 0.01 to avoid values on the margin. W.r.t. this rescaled argument, the resolvent
function becomes

f ±z ( x̃) = a−1 ·
�

±
1
a
(z ∓ b)− x̃

�−1

. (2.153)
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Expanding the resolvent function into Chebyshev polynomials yields

f ±z ( x̃) = a−1
∞
∑

n=0

α±n

�

z ∓ b
a

�

Tn( x̃) (2.154)

with the coefficients

α±n (z) =
2/π

1+δn,0

∫

[−1,1]

d x
Tn(x)p
1− x2

f ±z (x). (2.155)

Writing the resolvent function therein as Laplace transform

f ±z (x) = − i

∫

[0,±∞)
d t exp(i[±z − x]t) (2.156)

with z = E+iη, η > 0 to ensure convergence and extending the integral range as [−1, 1] R
while fixing the domain of the Chebyshev polynomials with Tn(x)||x |>1 = 0, one obtains

α±n (z) =
−2 i/π
1+δn,0

∫

[0,±∞)
d t exp(± i zt)

∫

R
d x

Tn(x)p
1− x2

exp(− i x t). (2.157)

Interpreting the second integral as Fourier transform, one obtains with equation 11.4.24 in
[AS72]

∫

R
d x

Tn(x)p
1− x2

exp(− i x t) = (− i)nπJn(t), (2.158)

where Jn(t) = (−1)nJn(−t) is the Bessel function of first kind. After substitution τ = ±t
and defining i z ≡ −s, the coefficients take the form of a Laplace transform

α±n (z) = ±
2(− i)n+1

1+δn,0

∫

[0,∞)
dτ exp(−sτ)Jn(±τ). (2.159)

Using equation 29.3.56 in [AS72] which requires n> −1, one ends up with the coefficients

α±n (z) = (±1)n+1 2(− i)n+1

1+δn,0

�p

1− z2 + i z
�np

1− z2
−1

. (2.160)

The real and imaginary part of some coefficients on the complex plane are shown in the
figures 2.11 and 2.12. Their range is restricted to [−1,1] since everything beyond this
range are signatures of poles and branch cuts. Already Re[α+n=0(z)] exhibits branch cuts
along most of the real axis. These discontinuities of multivalued complex functions are
more pronounced for higher n, where they show up as boundaries between entirely black
and white regions. It appears that besides branch cuts along the real axis they occur in the
lower part of the complex plane. For the real part, n− 1 branch cuts occur for n≥ 2, while
the imaginary part exhibits n− 2 branch cuts in case n≥ 3.
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2.11 – Real part of the coefficients Re[α+n (z)] for n ∈ {0, 1,2, 3,4, 5} on the complex plane. Its
range is restricted to [−1, 1] since everything beyond this range are signatures of poles
and branch cuts.
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2.12 – Imaginary part of the coefficients Im[α+n (z)] for n ∈ {0, 1,2, 3,4, 5} on the complex plane.
Its range is restricted to [−1, 1] since everything beyond this range are signatures of poles
and branch cuts.
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Note that in case of vanishing η, the Laplace transform in equation (2.156) does not yield
the resolvent since the limit L ∞ of the integral

− i

∫

[0,±L]

d t exp(i[±z − x]t) =
1− exp(± i[±z − x]L)

±z − x
(2.161)

is ambiguous with a purely real z. In practice this turned out to be of no concern.

Coming back to the Green’s function in equation (2.149) gives the expression

G±AB(z) = a−1
∞
∑

n=0

α±n

�

z ∓ b
a

�

〈Ψ0|ATn(H̃ − ε̃0)B|Ψ0〉 . (2.162)

It is obtained as follows:

1) Determine the scaling parameters a and b via the equations (2.137) and (2.138) by
performing two Lanczos runs for each excited state sector. The maximal eigenvalue
can be obtained by inverting the sign of the Hamiltonian within the Lanczos algorithm.

2) Compute the ground state within a Lanczos run.
3) Construct the ‘moments’ up to the desired order Nmom using the recursion relations

according to equation (2.146).
4) Compute the coefficients α±n and assemble the Green’s function.

Here two disadvantages of the Chebyshev expansion compared to the spectral represen-
tation should be mentioned. First, the Chebyshev expansion does not know about the poles
and respective weights of the Green’s function. Hence the energy range of the contour
integration always has to enclose all poles whose extent is obtained from the scaling param-
eters as b± a · (2− δ)/2. In contrast, for the spectral representation, poles with negligible
weight can be omitted and the integration range reduced. Trying to shorten the integration
contour for the Chebyshev representation by performing a bisection did not work, since the
data turned out too noisy. Second, the energy-dependent coefficients depend on the scaling
parameters a and b which contain the ground state energy. At finite temperatures, this single
ground state energy is replaced by the energies of the trace vectors. Hence for each trace
vector, the coefficients need to be computed anew. The energy-dependent coefficients and
moments are thus intertwined, just like the energy-dependent denominator of the spectral
representation is connected to the numerator. In other words: there is the same effort in
assembling the Green’s function using the Chebyshev expansion as there is for the spectral
representation. The speed-up achieved by separating the energy-dependence from the rest
of the Green’s function via a high-frequency expansion as described in section 2.4.4 should
in principle be possible for the Chebyshev expansion. Setting the coefficients a and b used
for rescaling for all poles to a sufficiently large value to convert all poles into the range
[−1,1] however gave detrimental results not matching those of the ED solver. Besides these
issues, without knowing the poles and weights of the Green’s function, the contour inte-
gration within the moments cannot be performed analytically as possible for the spectral
representation described in section 2.3.6.
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2.3.5. Brute-force numerical integration2 3 5
To compute contributions to the self-energy functional and one-body expectation values, sums over Mat-
subara energies have to be evaluated. Instead of infinite sums, integrations along contours in the complex
plane are performed. These can be deformed to be resilient against numerical errors when low sampling
of the contour is chosen to speed up computations. Further speed-up is achieved by a high-frequency
expansion to be described in section 2.4.4 which requires the deformation of the contour as well. The
presentation follows [LA09].

In order to evaluate the self-energy functional, the terms

Tr ln(−G−1) =
1
β

∞
∑

n=−∞

∑

α

exp
�

i En0+
�

ln[−GM(En)
−1]αα (2.163)

have to be computed for the cluster and CPT Green’s function. To obtain one-body expecta-
tion values of the cluster and CPT system, equation (2.62) has to evaluated. Contributions
to the functional and the expectation value are summarised as

S =
1
β

∞
∑

n=−∞

exp
�

i En0+
�

g(i En), (2.164)

where g(i En) represents the trace-logarithm
∑

α ln[−GM(En)−1]αα and the Matsubara Green’s
function GM

αβ
(En). The presentation combines the descriptions in [LA09] and [Sén08].

Since the Matsubara energies are the poles of the Fermi distribution f (z) with residue
Res[ f (z), z = i En] = −β−1, the sum over Matsubara energies can be written as contour
integral using the residue theorem

S = −
1

2π i

∮

C
d z exp(z0+)g(z) f (z) = −

1
2π i

∮

C
d z F(z), (2.165)

where the contour corresponds to circles around the Matsubara energies passed counter-
clockwise as illustrated in figure 2.13a. Adding zeros by means of Cauchy’s integral theorem
allows connecting the circular contours as displayed in figure 2.13b. Exploiting the decay
of the Green’s function at high energy as given in equation (2.219) allows adding further
zeros by means of arcs around the positive and negative real axis visible in figure 2.13c.
One might also follow Eder [Ede08], who argues that the Green’s function is analytical off
the real axis. Shrinking the contour to the poles of the finite system along the real axis
and extending it to a finite imaginary part δ gives the grey contour in figure 2.13d. The
extension to a non-negligible δ serves to achieve a good accuracy while using only few
points in the numerical integration. Again, zeros by means of Cauchy’s integral theorem are
added. This last step makes it possible to decompose the integration into two parts shown in
figure 2.13e, a contribution due to the Matsubara energies and a contribution by the poles
along the real axis.
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2.13 – Sequence of contour deformations employed to compute the quantity S. Poles are high-
lighted in red and zero contributions in green.

However the contour on which the integrand is evaluated can be simplified even further
by exploiting the property Gαβ(z∗) = Gβα(z)∗ which can be inferred from the spectral rep-
resentation at zero and finite temperature (2.112) and (2.190). While the switch in indices
can be reversed in the contributions to the self-energy functional Tr ln(−G−1) due to the trace
occuring therein, the operators within one-body expectation values have to be extended to
observables O =

∑

α,βsαβ c†
β
cα/L with L being the number of lattice sites of Ncl clusters with

` sites per cluster and s = s† a hermitian matrix. Without having to worry about the indices,
the integrand above and below the real axis are related via F(z∗) = F(z)∗. Hence contour
branches above and below the real axis can be combined to give

S23 = −
1

2π i

∫

C2∪C3∪C′2∪C
′
3

d z F(z) = −
1
π

∫

[−E,E]

d a Im[F](a+ iδ), (2.166)

S1 = −
1

2π i

∫

C1∪C′1

d z F(z) = −
1
π

∫

[0,δ]

d b Re[F](−E + i b), (2.167)

S4 = −
1

2π i

∫

C4∪C′4

d z F(z) =
1
π

∫

[0,δ]

d b Re[F](E + i b), (2.168)

SM =
1
β

∞
∑

n=−∞
En<δ

exp
�

i En0+
�

g(i En) =
2
β

∞
∑

n=0
En<δ

Re[exp
�

i En0+
�

g(i En)], (2.169)
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s.t. only contour branches with positive imaginary part remain. An additional simplification
follows from considering the shape of the Fermi function. At zero temperature it is a step
function which permits neglecting the integration contour for Re(z) > 0 entirely. But even
at finite temperature, the Fermi function decays exponentially with Re(z) s.t. by extending
the contour for Re(z) > 0 beyond E allows neglecting the vertical branch S4. This corre-
sponds to the contour signified in figure 2.13f. It is the same as employed by Lu and Arrigoni
[LA09] and Seki et al. [SSY18] which can be combined with the high-frequency expansion
described in section 2.4.4.

The trace occuring within the integrand is split into a trace over discrete quantum numbers
such as spin σ or orbital ρ and a summation over reciprocal lattice vectors k̃ with weight
1/Ncl associated with the lattice of clusters.

2.3.6. Q-matrix representation & Semi-analytical treatment2 3 6
Knowing the poles of the cluster and CPT Green’s function, the contour integration required for the
self-energy functional and one-body expectation values can be performed analytically. They are avail-
able when working with the Q-matrix representation of the Green’s function. The presentation follows
[Sén08].

If the poles of the CPT Green’s-function are known, the brute-force contour integration dis-
cussed above is not necessary, since the integrals can be computed via the Residue theorem.
Assuming the poles of the CPT Green’s function to be known, Potthoff [Pot03] obtained an
analytical expression for the grand potential

ΩCPT = Ωcl − LT
∑

σ

∑

m

1
Ncl

∑

k̃

ln[1+ exp(−βE(C PT )
mσ (k̃))] + 2LT

∑

m

ln[1+ exp(−βE(cl)
m )],

(2.170)
where L = Ncl · ` are the total number of sites on Ncl cluster of ` sites each, E(C PT )

mσ (k̃) are
the poles of the CPT Green’s function, E(cl)

m are the poles of the cluster Green’s function and
m enumerates the poles.

A procedure to obtain the poles of the CPT Green’s function which is numerically feasi-
ble (at least for zero temperature) consists in representing the cluster Green’s function in
terms of Q-matrices [Aic+06]. Following the presentation by Sénéchal [Sén08], the idea is
sketched and relevant expressions are given. First, the electron and hole part [Q(e)]αn and
[Q(h)]αn are combined into a matrix by appending the latter complex conjugated below the
prior as

Q = Q(e)

Q(h)∗







 , (2.171)

which gives the cluster Green’s function as a product of three matrices

Gcl(z) = Qg (z)Q†, (2.172)

where g (z) = (z1 − Λ)−1 and Λmn = diag(E(e)m , E(h)m ) = E(cl)
m δmn contains the poles of the

electron and hole part. To obtain the CPT-Green’s function

GCPT(z, k̃) =
�

G−1
cl (z)− V(k̃)

�−1
(2.173)
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also in terms of Q-matrices, one first pulls out G−1
cl from the denominator, rewrites the re-

maining fraction as von Neumann series and pulls out Qg to the front and Q† to the back.
Next, the series is summed up again and g = (g−1)−1 is moved into the denominator giving

GCPT(z, k̃) = Qg̃ (z, k̃)Q†, (2.174)

with

g̃ (z, k̃) = [g (z)−1 +Q†V(k̃)Q]−1

= [z1− L(k̃)]−1. (2.175)

Assuming that L(k̃) can be diagonalised as Λ̃(k̃) = U†(k̃)L(k̃)U(k̃) and pulling out the
matrices of eigenvectors U(k̃), one ends up with the CPT Green’s function in terms of Q-
matrices and poles

GCPT(z) = [QU(k̃)][z1− Λ̃(k̃)]−1[QU(k̃)]† (2.176)

This expression for the CPT Green’s function can further be used to compute the diagonal
of the CPT spectral function

Sαα(E, k̃) =
1
π

∑

m

η|[QU(k̃)]αm|2

{E1− Λ̃mm(k̃)}2 +η21
, (2.177)

to obtain the site resolved CPT DOS

ρα(E) =
1

Ncl

∑

k̃

Sαα(E, k̃) (2.178)

and to perform the contour integration for the CPT one-body expectation values

〈c†
β
cα〉=

∑

σ

∑

m

1
Ncl

∑

k̃

f [E(C PT )
mσ (k̃)]QαmQ∗

βm. (2.179)

Note that in order to obtain the fully k-dependent spectral function, an additional Fourier
transform in the cluster sites is needed. Employing the Q-matrices, it is sufficient to use the
Fourier transform of the matrix [QU(k̃)] in equation (2.177). For the DOS, no additional
Fourier transform is required, but the sum over k̃ has to include a summation over the
cluster site indices.

To obtain the Q-matrices numerically, the Band Lanczos algorithm is required. A set of
Lanczos runs is not sufficient, since each run with different initial vector leads to slightly
different eigenvectors. The resulting weights thus cannot be grouped into Q-matrices.

When considering finite temperature, the Q-matrices get an additional index replacing
the ground state with the trace. Hence one ends up with a tensor instead of a matrix.
Combining the indices of the bases in the ground and excited state sector into a multi-index
streamlines the appearence and gives again a matrix. However, the dimension of this matrix
is (NGS · NES) × L with NGS (NES) being the dimensions of the ground state (excited state)
sector. However for small systems, the Q-matrix representation is a viable option to perform
the VCA by hand and thus useful for testing purposes. Apart from this increase in size, the
procedure to construct the Q-matrix representation within a Band Lanczos run requires to
include all (NGS × L) excited states obtained by applying the construction operators to the
trace vectors. This produces a matrix with bandwidth 2(NGS× L)+1 which causes memory
issues for large systems.
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2.4. Cluster solvers at finite temperature2 4
The finite temperature versions of the FD, ED and Chebyshev solver are presented. For the latter two types
of solvers, traces with exact eigenvectors, with random vectors and a combination of both are discussed.
Several additional details relevant for reducing the computation time, new observables and realising
different reference systems are given.

2.4.1. FD and ED2 4 1
The computation of expectation values, the partition function and the Green’s function at finite tempera-
ture using FD and ED are described. Approximations employed in case of ED are highlighted. Expressions
used numerically are explicitely given. The presentation follows [Dag01; Aic04; PB11].

At finite temperature, expectation values become traces as stated in equation (2.22). Know-
ing the eigenbasis of the Hamiltonian, one can evaluate the trace and compute these expec-
tation values as

Ξ=
∑

n

exp(−βεn), (2.180)

〈O〉=
∑

n

exp(−βεn)
Ξ

〈Ψn|O|Ψn〉 . (2.181)

For small systems (L = 6 spinful sites with Np = 6 particles gives dimH = 924) this is pos-
sible via FD. Larger systems (L = 8 spinful sites with Np = 8 particles gives dimH = 12870)
require the Lanczos or Band Lanczos algorithm. In this case one can approximate the com-
plete trace at a given inverse temperature β by restricting oneself to those eigenstates,
which provide a sufficient contribution to it as is done by Seki et al. in [SSY18]. Suffi-
cient means, that the contribution by the nth eigenstate with eigenenergy εn should provide
a ratio exp(−βεn)/exp(−βε0)≥ δ with the ground state energy ε0 and the tolerance δ, for
which Seki et al. [SSY18] used 1× 10−6. This value amounts to converge all eigenvectors
with energies up to ∼ 14× T (kB ≡ 1) above the ground state energy. Since every expec-
tation value contains the ratio between Bolzmann factor exp(−βεn) and partition function
Ξ, whose largest contribution is exp(−βε0), this approximation is rather precise. For large
systems with dense spectrum, it is however costly.

Assume now that one is provided with the vectors {|Ψn〉} forming the trace. This could
be due to a previous FD or ED. In order to obtain the expectation value (2.22) one performs
several additional Lanczos/Band Lanczos runs of length M with initial states {|Ψn〉}. To
determine which matrix elements need to be computed during one Lanczos/Band Lanczos
run, one makes use of projection operators onto the Krylov subspace initialised by the state
|Ψn〉 after m iterations

P(n)m =
m−1
∑

i=0

|x (n)i 〉 〈x
(n)
i | . (2.182)

Employing the iteration rule of the Lanczos algorithm connecting three Lanczos vectors, one
finds that the combined application of the Hamiltonian H first and the projection operator
P(n)m afterwards would transfer three Lanczos vectors |x i+1〉, |x i〉, |x i−1〉 into one Lanczos
vector |x i〉 as

P(n)m H =
m−1
∑

i=0

|x (n)i 〉
�

β
(n)
i+1 〈x

(n)
i+1|+α

(n)
i 〈x

(n)
i |+ β

(n)
i 〈x

(n)
i−1|
�

, (2.183)
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where βi+1 = ‖ | x̃ i〉 ‖ is used. A similar relation holds for the Band Lanczos algorithm,
where the central state of the band emerges from itself and B ‘old’ and B ‘new’ states if
no deflation occurs. For the Lanczos algorithm, this holds up to m ≤ M − 1, while it is
restricted to m ≤ M − B for the Band Lanczos algorithm. In a nutshell, the action of the
Hamiltonian does not lead out of the constructed Krylov subspace but branches only to
other Lanczos vectors provided one is far enough away from the last states of the iteration.
Since the Lanczos vectors of the Krylov subspace are orthogonal and normalised, applying
the projection operator P(n)m+B beforehand does not alter the action of P(n)m H. Each branch is
just transmitted to the right. Also projection operators belonging to later iterations such as
P(n)M do not change the throughput, because all states going beyond the branching give zero
contribution due to orthogonality. Hence one can write

P(n)m H = P(n)m HP(n)m+B = P(n)m HP(n)M . (2.184)

Projection operators P(n)m′ with m< m′ < m+ B however alter the action.

Expanding the exponential inside the density matrix of equation (2.22) sets the task of
computing at order k the matrix element 〈Ψn|HkO|Ψn〉. Since the initial state |Ψn〉 is pro-
portional or equal to the first Lanczos vector |x (n)0 〉, which is invariant under the projection
operator P(n)1 , one can introduce projection operators of later iterations using the resilience
described by equation (2.184), giving

〈Ψn|HkO|Ψn〉= 〈x
(n)
0 |P

(n)
1 HkO|x (n)0 〉

= 〈x (n)0 |P
(n)
1 HP(n)B+1H . . .HP(n)kB+1O|x

(n)
0 〉

= 〈x (n)0 |P
(n)
M HP(n)M H . . .HP(n)M O|x (n)0 〉 . (2.185)

The last step however requires k · B < M . Within this restriction the projection operator
P(n)M can be considered as identity matrix of the Krylov subspace. Using the idempotence
[P(n)m ]

2 = P(n)m of projection operators, the matrix element simplifies further to

〈Ψn|HkO|Ψn〉= 〈Ψn|[P
(n)
M HP(n)M ]

kO|Ψn〉 , (2.186)

where the Hamiltonian is now expressed as matrix in the basis of Lanczos vectors. Inserting
formally a real identity matrix on the Krylov subspace given by the eigenvectors of the
Hamiltonian 1 =

∑M−1
nx=0 |Ψnx 〉 〈Ψnx | between Hamiltonian and projection operator makes

it possible to replace the Hamiltonian by its eigenvalues. Since the projection operators
leave the eigenvectors invariant when expanded in the Lanczos basis, they can be omitted
except for the outmost ones, since these translate the initial vectors into the Lanczos basis.
Employing the orthogonality of the eigenvectors reduces the sums of the prior identities
over eigenvectors to one, giving

〈Ψn|HkO|Ψn〉=
M−1
∑

nx=0

εk
nx 〈Ψn|P

(n)
M |Ψnx 〉 〈Ψnx | P(n)M O|Ψn〉 . (2.187)
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Up to this point all expressions are exact but require sufficient iteration steps M > k ·B of the
Lanczos/Band Lanczos algorithm to be valid. However starting from an exponential series
within the density matrix, only part of it is captured when restricting oneself to a reasonable
value of M . The approximation consists now in assuming the validity of equation (2.187)
for all orders of k by resumming the exponential to obtain

〈O〉 ≈
∑

n

M−1
∑

nx=0

exp(−βεnx )
Ξ

〈Ψn|P
(n)
M |Ψnx 〉 〈Ψnx | P(n)M O|Ψn〉 (2.188)

Hence the error of the approximation is O(βM+1). Some relevant operators are the partition
function

Ξ=
∑

n

M−1
∑

nx=0

exp(−βεnx ) 〈Ψn|P
(n)
M |Ψnx 〉 〈Ψnx | P(n)M |Ψn〉

=
∑

n

M−1
∑

nx=0

exp(−βεnx )

�

�

�

�

�

∑

i

〈Ψn|x i〉 〈x i|Ψnx 〉

�

�

�

�

�

2

(2.189)

and the finite temperature retarded Green’s function

Gret
αβ
(E) =

∑

m,n

exp(−βεm)
Ξ





¬

Ψm

�

�

� cα
�

�

�Ψ+n

¶¬

Ψ+n

�

�

� c†
β

�

�

�Ψm

¶

E − E+nm + i 0+





+
∑

m,n

exp(−βεm)
Ξ





¬

Ψm

�

�

� c†
β

�
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�Ψ−n

¶¬

Ψ−n

�
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� cα
�

�

�Ψm

¶
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 (2.190)

with the poles E±nm = ε
±
n − εm, the electron weights

exp(−βεm)
Ξ

¬

Ψm

�

�

� cα
�

�

�Ψ+n

¶¬

Ψ+n

�

�

� c†
β

�

�

�Ψm

¶

=

exp(−βεmx )
Ξ

·

�

∑

i

〈Ψmx |x i〉 〈x i|Ψnx 〉

�

·





∑

j,k

〈Ψnx |x j〉 〈X+jα|y
+
k 〉 〈y

+
k |Ψ

+
ny 〉





·

�

∑

`

〈Ψ+ny |y+` 〉 〈y
+
`
|Y+
β
〉

�

· ‖ |Ψ+
β
〉 ‖ (2.191)

and hole weights

exp(−βεm)
Ξ

¬

Ψm

�

�

� c†
β

�

�
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The following quantities occur within the electron and hole weights:

{|x i〉}: basis constructed in the first Lanczos run
〈x i|Ψnx 〉: components of the eigenvalues of the Hamiltonian in the Lanczos basis {|x i〉}
belonging to the eigenenergies εnx

〈X+jα|= 〈x j| cα = (c†
α
|x j〉)†: auxiliary vector of the electron part

〈X−jβ |= 〈x j| c
†
β
= (cβ |x j〉)†: auxiliary vector of the hole part

{|y+k 〉}: basis constructed in the second Lanczos run starting from the initial vector
|Y+
β
〉= |Ψ+

β
〉/‖ |Ψ+

β
〉 ‖

{|y−k 〉}: basis constructed in the second Lanczos run starting from the initial vector
|Y−
α
〉= |Ψ−

α
〉/‖ |Ψ−

α
〉 ‖

〈y±k |Ψ
±
ny 〉: components of the eigenvalues of the Hamiltonian in the Lanczos basis

{|y±k 〉} belonging to the eigenenergies ε±ny

Depending on which solver (FD, Lanczos ED, Band Lanczos ED) one uses for the matrix
elements, one can reduce the number of required matrix elements or set them to the identity
implementation-wise. For the case of a one-dimensional Hilbert space, the matrix elements
simplify even further, since dot-products give only of a single entry. One has to keep in mind
however, that complex couplings can lead to complex Lanczos vectors and eigenvectors
which require usage of the correct dot product. For completeness, the respective electron
weights are given, which are sorted according to the first and second FD or ED run. The
colors highlight the run during which the marked quantities are determined. FD and Lanczos
ED require the same matrix elements when used within the first run. For completeness, in
case of the one-dimensional Hilbert space, the eigenvector is chosen to be |Ψ(+)1 〉= 1:

dimH = 1, dimH = 1:
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dimH = 1, FD:
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dimH = 1, Lanczos ED:
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FD/Lanczos ED, dimH = 1:
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FD/Lanczos ED, FD:
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FD/Lanczos ED, Lanczos ED:
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2.4.2. Finite temperature Lanczos method (FTLM)2 4 2
Within the FTLM, a trace over a complete basis is approximated via an average of independent and
identically distributed random vectors of zero mean and the identity as covariance matrix. Increasing the
system or employing more random vectors improve this approximation. Expressions and error estimates
used numerically are explicitely given. An improvement at low temperature by splitting the trace into
a part with exact and random trace vectors is described. The present FTLM implementation using real
Gaussian random numbers is contrasted with another FTLM implementation using a split trace and
a typicality-based solver employing random phase vectors. The presentation follows [Dag01; Aic04;
PB11].

Another way to tackle the problem is the finite temperature Lanczos method (FTLM) [PB11],
which approximates the trace formed by the basis |Ψn〉 spanning the N -dimensional Hilbert-
space of the system by R random vectors |r〉=

∑

nα
r
n |Ψn〉. These random vectors are chosen

to have a mean value of zero and to be orthonormal within the statistical expectation [PB11]:

E[αr
n] = 0, (2.199)

E[αr
nα

r ′

n′] = δnn′δr r ′ . (2.200)

One can interpret them as Gaussian random variables with zero mean value and the identity
matrix as covariance matrix. They can be constructed using independent and identically
distributed random numbers employing the central limit theorem, the Box-Muller method
or the polar method, just to name the ones implemented. For the computations in this thesis,
the polar method is used. Computing on top of the quantum mechanical expectation value
the statistical expectation w.r.t. the random numbers E[·], one ends up with the original
expectation value when using a complete basis

E[Ξr] = E[〈exp(−βH)〉r] = E [〈r|exp(−βH)|r〉]

=
∑

n,n′
E[αr

nα
r
n′] 〈Ψn|exp(−βH)|Ψn′〉

(2.200)
=

∑

n

exp(−βεn) = Ξ, (2.201)
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=

∑

n

exp(−βεn)
Ξ

〈Ψn|O|Ψn〉= 〈O〉 . (2.202)

The approximation consists now in replacing the statistical expectation w.r.t. a probability
distribution by an ensemble average with independent and identically distributed random
numbers

E[O]≈O =
1
R

∑

r

Or . (2.203)
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Its error can be estimated with the square root of the variance of a trace approximated with
random vectors Or = 〈r|O|r〉. For R uncorrelated samples, the variance is [Jah02]

Var[O] = E[(O−E[O])2] (2.204)

=
1
R
· Var[Or].

In analogy to expectation values, E[Or] = tr(O), while

E[O2
r ] =

N 2

N(N + 1)
[tr(O2) + tr(O)2] (2.205)

can be inferred from the Supplementary material of [SS13], with the additional factor N 2

due to the random vectors not being normalised within the statistical expectation as dis-
cussed below. Assuming N � 1, estimating for N × N -matrices tr(O) ∼ N and tr(O2) ∼ N ,
as well as using E[O] = tr(O), one finds the relative error

Æ

Var[O]
E[O]

=
1

p
R · N

. (2.206)

Hence the quality of the approximation can be improved by incorporating more random vec-
tors or increasing the systems Hilbert-space dimension. Increasing the system size lets the
Hilbert-space dimension grow exponentially and is thus advantageous. However within the
Lanczos, Band Lanczos and Chebyshev solvers, the overall system size is limited by memory.
And once smaller systems have to be investigated to verify the FTLM implementation by
comparing with FD, more random vectors can improve the quality as well.

In the context of the Lanczos, Band Lanczos or Chebyshev solvers, the approximated trace
vectors are normalised and used as initial states. Due to the identity covariance matrix in
equation (2.200), the random vectors are not normalised within the statistical expectation

E[〈r|r ′〉] =
∑

n,n′
E[(αr

n)
∗αr ′

n′] 〈Ψn|Ψ ′n〉
(2.200)
= Nδr r ′ . (2.207)

Approximating the actual norm with its statistical expectation, one sets |r〉 ≈ N |R〉 with
|R〉 = |r〉/‖ |r〉 ‖. In the following, |r〉 is considered as the normalised vector |R〉 |r〉.
This leads to an additional factor N in several expressions. The partition function reads

Ξ≈
N
R

R−1
∑

r=0

〈r|exp(−βH)|r〉

=
N
R

R−1
∑

r=0

M−1
∑

nx=0

exp(−βεnx )

�

�

�

�

�

∑

i

〈r|x r
i 〉 〈x

r
i |Ψnx 〉

�

�

�

�

�

2

. (2.208)

To arrive at this expression, an identity 1 =
∑

n |n〉 〈n| is inserted and approximated by the
eigenvectors obtained in a Lanczos/Band Lanczos run. Next, two projectors are inserted to
express the approximate eigenstates in the Lanczos basis. For a regular Lanczos run, this
simplifies further due to 〈r|x r

i 〉= δ1i, which does not hold for Band Lanczos ED. In a similar
manner, the weights of the Green’s function are obtained:

LanczosED, dimH = 1:
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Lanczos ED, FD:
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Lanczos ED, Lanczos ED:
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Again the overlap between random vectors and Lanczos basis can be simplified in case they
are obtained from the same Lanczos run.

In case of a high-dimensional Hilbert space, the matrix elements for the ground state and
excited state sector can be obtained either in a Lanczos or a Band Lanczos run. It turned out
in practice, that among the four possibilities, a Band Lanczos run for the ground state sector
and a Lanczos run for the excited state sector are sufficient. With Band Lanczos ED applied
to the ground state sector, degenerate eigenenergies are resolved which are relevant due to
the Boltzmann factor, while the excited state sector can be handled with a regular Lanczos
run.

In practice, the error of an observable O can be estimated by approximating the variance
within a Jackknife analysis [Jah02]. Considering therein Jackknife blocks of size R−1 gives
for the variance:

O−k =
1

R− 1

∑

r 6=k

Or , (2.212)

O =
1
R

∑

r

Or , (2.213)

Var[O] =
R− 1

R

∑

k

(O−k −O)2, (2.214)

where Or is the expectation value obtained from the rth Green’s function.
While this type of error analysis is natural in classical Monte Carlo, where running aver-

ages of the observables can be used to reduce the effort, here this treatment is artificial and
requires additional effort. In essence, the cluster Green’s function for each random vector
has to be constructed separately and for each of these Green’s functions, the observables
have to be computed to obtain their Jackknife variance. In practice, this amounts to arrays
of Green’s functions and observables, which serve only to compute the error.
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A technical advantage of using random trace vectors is that they are independent. Hence
the computations starting from different random vectors can be performed in parallel. Spe-
cifics on the implementation using OpenMP are given in appendix D.

To improve the low-temperature results, Weiße et al. [Wei+06] divide the trace up into
parts with exact and random trace vectors. In practice one first computes the eigenstates
with lowest energy. When coming to the Lanczos run starting from a random vector, one
orthogonalises the Lanzos basis w.r.t. the eigenstates obtained earlier. In addition one has
to keep in mind, that the random contributions are weighted by a factor N/R, while the
exact parts have a factor 1. Also, while each exact trace vector belongs to one energy, each
random vector is associated with a whole spectrum. After implementing and testing this
split trace as solver for the VCA, a study using it in combination with the bare FTLM for spin
systems was published by Morita and Tohyama [MT20].

Considering systems small enough for FD to assess the precision of the FTLM show, that
the method is insufficient to compute reliable grand potentials as needed in VCA. The com-
parison between FTLM and a trace determined with Band Lanczos ED for a larger

p
10×
p

10
site cluster is shown in figure 4.15. When explicitely orthogonalising the random vectors,
the results agree with increasing number with those from FD, because one just selects an-
other basis. When handling part of the trace with exact eigenvectors and part with random
vectors as done in [Wei+06], the results improve as well. But the results do not deteriorate
when omitting the random vectors. Hence the improvement is only due to the contribution
from the exact eigenvectors, which outweigh the random contributions. Hence the FTLM
procedure is working as it should, leaving only the random vectors and their insufficient
weight as the origin. Including more random vectors did not improve the results as can be
seen in figure 4.14.

There is a recent report of a typicality-based VCA solver [Nis+19], which is technically
close to the FTLM. However in contrast to the approximation performed in equation (2.188),
the Boltzmann factor is not expressed in the eigenbasis but explicitely applied as a truncated
series to the trace vectors, following the description of Hyuga et al. [Hyu+14]. In case of the
FTLM and the typicality-based solver, these are random vectors. A minor difference is that
the FTLM described above employs real Gaussian random variables, while the typicality-
based solver employs complex random numbers [Nis+19]. Judging by the use in another
implementation of the FTLM [SY20] and the original publication [IE04] arguing that these
random phase vectors are superior to real Gaussian variables needing less samples to achieve
a reasonable accuracy, one should consider them as a way to improve the implementation.

Since Nishida et al. investigated a single-band Hubbard model with real couplings, a set of
real vectors should be sufficient to approximate the trace. The results reported by them are
thus interpreted as follows: By applying the Boltzmann factor directly, the weights which
are missing in case of the FTLM are explicitely enhanced. This can be understood in terms of
the power method, where a Hamiltonian projects onto the eigenstate of (in absolute value)
largest eigenvalue when it is just applied enough times to a random initial state.

Attempting to implement the typicality-based solver and applying it to smaller systems
led, similar to the FTLM-based solvers, to unsatisfying results.
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2.4.3. Chebyshev expansion2 4 3
At finite temperature, the Chebyshev representation of the Green’s function requires proper rescaling of
the Hamiltonian during construction of the moments and when assembling the Green’s function.

In essence, the Chebyshev expansion of the Green’s function at finite temperature consists
in applying the expansion discussed at zero temperature for all trace vectors considered.
However one intricacy has to be stressed which was already mentioned in section 2.3.4 as
a disadvantage, the rescaling.

In case exact trace vectors are employed, the argument x = H−ε0 within equation (2.149)
becomes xm = H − εm at finite temperature, giving

G±AB(z) =
∑

m

exp(−βεm)
Ξ

〈Ψm|A[±z − (H − εm)]
−1B|Ψm〉 . (2.215)

Hence the expansion for each trace vector has to be rescaled separately, during computation
of the moments and assembly of the Green’s function. When using random trace vectors,
effectively an identity of exact eigenvectors is inserted as

G±AB(z) =
N
R

∑

r

∑

mx

∑

i, j

exp(−βεmx )
Ξ

〈r|x r
i 〉 〈x

r
i |Ψmx 〉 〈Ψmx |x r

j 〉 〈x
r
j |A[±z − (H − εmx )]−1B|r〉 .

(2.216)
and rescaling becomes necessary for each eigenvector associated with the respective trace
vector.

Besides having to rescale the Hamiltonian properly during construction and assembly, the
resolvent is computed as before using the moments constructed via the recursion relation
given in equation (2.146).

2.4.4. High-frequency expansion2 4 4
The number of iterations needed to assemble the Green’s function can be reduced by a factor O(103)
by employing a high-frequency expansion for most of the contour integration. The presentation follows
[SSY18].

A major obstacle consists in the time needed to assemble the Green’s function. For a cluster
of O(10) sites and resolving O(102) eigenstates in the ground state and excited state sector
respectively, one has to combine O(106) entries. Using the spectral representation gives an
additional factor due to the frequencies for which the Green’s function has to be evaluated.
Assuming O(103) frequencies leads to O(109) loop iterations until the Green’s function is
fully combined. This holds independent of using exact trace vectors or random vectors.

To reduce the effort, Seki et al. [SSY18] proposed to use the high-frequency expansion of
the spectral representation up to 15th order for complex frequencies whose absolute value
is larger than the largest pole. By this, one avoids a factor of O(103) for a considerable
portion of frequencies.
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In order to obtain a pleasant expression for the moments of the high-frequency expansion,
one writes the Green’s function using Cauchy’s integral formula, uses the geometric series
and combines everything apart from the frequency into the moments. This gives the Green’s
function

Gαβ(z) =

∮
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d z′

2π i
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z − z′
=

∮

C

d z′

2π i
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M (k)
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zk+1
(2.217)

with moments

M (k)
αβ
=

∮

C

d z′

2π i
Gαβ(z

′) · (z′)k. (2.218)

Note, that the integration contour z′ ∈ C within the moments has to run over frequencies
which are in absolute value smaller than the actual frequency argument z of the Green’s
function. Considering the infinite frequency limit of the spectral representation of the
Green’s function, one finds

lim
|z| ∞

Gαβ(z) = lim
|z| ∞

δαβ

z
+O(z−2) (2.219)

giving for the moment of zeroth order M (0)
αβ
(z) = δαβ . Moments of higher order are obtained

from the spectral representation of the Green’s function as
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by requiring |z′| > |E±nm|. This means that only those entries of the Green’s function can be
expressed via its high-frequency expansion which are evaluated at frequencies with |z| >
|E±nm|, enforcing a deformation of the contour as displayed in figure 2.14. Hence knowing the
elements of the spectral representation allows directly the computation of all moments of
the high-frequency expansion to arbitrary order. The only restriction on the high-frequency
expansion is due to the geometric series. Since the moments can be constructed independent
of the frequencies, a factor O(103) of iterations can be prevented.

Re(z)

Im(z) |z′|= |z|

|z′|> |z|

|z′|< |z|

Re(z)

Im(z)

2.14 – Contour deformation necessary to employ the high-frequency expansion. Since |z′| < |z|
is required, the contour of figure 2.13e has to be altered to avoid the integration ranges
highlighted in dark blue.
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2.4.5. Entropy2 4 5
An expression for the VCA entropy in terms of contour integrals is derived. Focus lies on providing the
expressions used numerically. The presentation is motivated by [SSY18], where the respective expressions
are given in terms of Matsubara energies.

Going to finite temperature not only makes it possible to consider the temperature-depen-
dence of observables already accessible at zero-temperature, but enables further thermody-
namic quantities directly connected to the temperature-dependence of the grand potential
Ω. These quantities are the first and second derivative of the grand potential w.r.t. tem-
perature giving the entropy S = −dΩ/d T and the specific heat CV = −T d2Ω/d T 2. In
general, the variational parameters λ determined by optimising the grand potential within
VCA are temperature dependent. While this temperature dependency drops out in case of
the entropy since the grand potential is stationary w.r.t. the variational parameter

d S = −
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=0

dλ
d T

d T, (2.221)

there remains a temperature derivative of the variational parameters in case of the specific
heat

CV = −T
∂ 2Ω

∂ T 2

�

�

�

�

µ,V,λ(T )

d T − T
∂ S
∂ λ

dλ
d T

. (2.222)

Since λ(T ) is not known a-priori and cannot be determined from a one-shot computation,
it is not worthwhile spending time on deriving the expression for CV , but rather to obtain
it from finite-differences of the entropy. Without variational parameters an expression for
CV can derived and is given by Seki et al. [SSY18] in terms of Matsubara energies, but this
case is usually uninteresting.

Having the expression for the grand potential (2.170) at hand, there are in total three
contributions to the entropy

− d Ω|µ,V,λ(T ) = −d Ωcl|µ,V,λ(T ) + d Tr[ln(−G−1
CPT)]− dTr[ln(−G−1

cl )] (2.223)

with the VCA-trace Tr(·). The first is the cluster entropy

− d Ωcl|µ,V,λ(T ) =
1
T
(〈H〉cl −Ωcl)d T (2.224)

with 〈H〉cl = Ξ−1
∑

m εm exp(−βεm), which is the average cluster energy [Sch06]. For each of
the two remaining contributions, there are two separate temperature dependencies. There
are the Boltzmann factors in the Green’s functions as well as the Fermi functions within
the VCA-trace Tr(·). Considering differentials of traces of inverse matrices, relations from
matrix algebra [Min00] are required. Making use of the three relations

d(X−1) = −X−1(d X)X−1, (2.225)

tr[ln(X)] = ln[det(X)], (2.226)

d ln[det(X)] = tr(X−1 d X) (2.227)

for a matrix X , one obtains for the term including the cluster Green’s function

d tr[ln(−G−1
cl )] = tr

�

G−1
cl

¨

∑

m,n

(〈H〉cl − εm)Ξ
−1 exp(−βεm)[G

+
cl +G−cl]

«�

1
T 2

d T (2.228)
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and for the one including the CPT-Green’s function

d tr[ln(−G−1
CPT)] = tr

�

(GclG
−1
CPTGcl)

−1

¨

∑

m,n

(〈H〉cl − εm)Ξ
−1 exp(−βεm)[G

+
cl +G−cl]

«�

1
T 2

d T.

(2.229)
Looking closer at the combination of these two terms gives the trace of a CPT-variant of the
T -matrix GCPT = Gcl +GclTCPTGcl multiplied by a modified Green’s function

d tr[ln(−G−1
CPT)]− d tr[ln(−G−1

cl )]

= tr

�

TCPT

¨

∑

m,n

(〈H〉cl − εm)Ξ
−1 exp(−βεm)[G

+
cl +G−cl]

«�

1
T 2

d T. (2.230)

In contrast, the parts including derivatives of the Fermi functions

d f (z)
d T

= f (z) f (−z)z · T−2 (2.231)

lead for low temperatures to erroneous results. This can be surmised by considering the
zero temperature limit, which requires l’Hôpital’s rule. To circumvent this expression from
appearing, one can perform a variant of partial integration based on Cauchy’s integral for-
mula as described in appendix B of [SSY18]. Their argument is repeated here for the sake
of completeness and to fill some gaps in their reasoning. First, the temperature derivative is
transformed into an energy derivative, since the Fermi function depends only on their ratio

∂ f (z)
∂ β

dβ
d T
=

z
β

∂ f (z)
∂ z

dβ
d T

. (2.232)

To proceed further, one requires a suitable expression for the Fermi function. This is ob-
tained by considering the function g(z) = tanh(βz/2)/2 used in [Nie95], which also has
the Matsubara energies as poles and is connected to the Fermi function as g(z) = 1/2− f (z).
Investigating the sum of residues

∑

n

Res[exp(−0+|z|)g(z)(z′ − z)−1, z = i En], (2.233)

one finds with lim
c ∞

tanh(c · (a+ i b)) = sign(a) another expression for g(z)

g(z) = −
1
β

∑

n

exp[−0+(| i En| − |z|)](i En − z)−1. (2.234)

Setting the converging factor 0+ to zero, one obtains for the Fermi function

f (z) =
1
2
+

1
β

∑

n

(i En − z)−1. (2.235)

Expressing a suitable function with Cauchy’s integral formula

h(z) =

∮

C

d z′

2π i
h(z′)
z′ − z

(2.236)

and computing its m-th derivative

∂ m

∂ zm
h(z) =

∮

C

d z′

2π i
m!

h(z′)
(z′ − z)m+1

(2.237)
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one obtains a similar expression as in the case of the part with derivatives of the Fermi
functions. This can be seen with the m-th derivative of the Fermi function

∂ m

∂ zm
f (z) =

1
β

∑

n

m!(i En − z)−(m+1). (2.238)

Combining these relations, one obtains similar to a partial integration
∮

C

d z′

2π i

�

∂ m

∂ zm
f (z)

�

�

�

�

�

z′
h(z′) =

1
β

∑

n

∮

C

d z′

2π i
m!

h(z′)
(i En − z′)m+1

(2.239)

=
1
β

∑

n

�

∂ m

∂ zm
h(z)

�

�

�

�

�

i En

(−1)m+1 (2.240)

=

∮

C

d z′

2π i
f (z′)

�

∂ m

∂ zm
h(z)

�

�

�

�

�

z′
(−1)m+1. (2.241)

Specifically for the part with derivatives of the Fermi functions, one finds
∮

C

d z′

2π i

�

∂ f (z)
∂ β

�

�

�

�

�

z′
h(z′) =

1
β

∮

C

d z′

2π i
f (z′)

�

h(z′) + z′
�

∂ h(z)
∂ z

�

z′

�

(2.242)

With h(z) = − tr[ln(−G−1
CPT)] + tr[ln(−G−1

cl )] one obtains the contribution

(−1)
�

−
1
T

�

(ΩCPT −Ωcl)

+(−1)

∮

C
d z f (z) tr

�

TCPT

¨

∑

m,n

(Tz)Ξ−1 exp(−βεm)

�

∂G+cl

∂ z
+
∂G−cl

∂ z

�

«�

1
T 2

, (2.243)

where the factor (−1) is due the contour used being left-handed. In total, the entropy is
given by

S = Scl +SCPT +Scl −
1
T
(ΩCPT −Ωcl) (2.244)

with the contributions

Scl = −
1
T
(Ωcl − 〈H〉cl), (2.245)

SCPT =

∮

C
d z f (z) tr[(GclG

−1
CPTGcl)

−1Gmod]
1
T 2

, (2.246)

Scl =

∮

C
d z f (z) tr[(−G−1

cl )Gmod]
1
T 2

(2.247)

and the abbreviations

〈H〉cl = Ξ
−1
∑

m

εm exp(−βεm), (2.248)

Gmod =
∑

m,n

(〈H〉cl − εm)Ξ
−1 exp(−βεm)[G

+
cl +G−cl]−

∑

m,n

(Tz)Ξ−1 exp(−βεm)

�

∂G+cl

∂ z
+
∂G−cl

∂ z

�

.

(2.249)

High- and low-temperature limits of the entropy which are useful to check the correct im-
plementation are given in the appendix B.
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2.4.6. Cluster-dynamical-impurity approximation (CDIA)2 4 6
The reference system employed in the CDIA is briefly described. Furthermore, the association of the bath
couplings with the cluster Hamiltonian, as well as the on- and inter-cluster part of the V -matrix are
explicitely stated. The presentation follows [SSY18].

While VCA incorporates spatial quantum fluctuations, it omits temporal fluctuations which
are considered in dynamical mean-field theory. A method that captures both is the cluster-
dynamical-impurity approximation (CDIA), where a cluster coupled to additional uncorre-
lated bath sites is used as reference system.

Since the reference system has more degrees of freedom than the original lattice system,
it is expedient to consider an auxiliary system [SSY18] where the uncorrelated bath sites
are decoupled from the cluster. Original, auxiliary and reference system are shown in fig-
ure 2.15.

(a) Original system. (b) Auxiliary system. (c) Reference system.
2.15 – Original system, auxiliary and reference system employed in CDIA. Circles denote cluster

sites, squares are bath sites. Clusters are highlighted in blue. Solid lines refer to regular
hopping, while dashed lines are hoppings between clusters.

For such a system, the partition function factorizes into one for the lattice system and one
for the bath sites since the Hamiltonians commute and the subspaces are independent:

Ξaux = Ξ ·Ξbath, (2.250)

giving the grand potential:
Ω= Ωaux −Ωbath. (2.251)

Approximating now the auxiliary system with the reference system of clusters coupled to the
bath sites in a VCA manner finishes the description of CDIA. More details on the derivation
can be found in [SSY18].

In practice, the bath sites can be realised as an orbital degree of freedom. The chem-
ical potential of the bath sites enters only the cluster Hamiltonian, while the hybridisation
between cluster and bath sites is added to the cluster Hamiltonian and subtracted via the on-
cluster part of the V -matrix. In contrast, the lattice hopping enters the cluster Hamiltonian
as well as the inter-cluster part of the V -matrix.

Care has to be taken concerning the degree of degeneracy considered. Since electrons on
the bath sites are non-interacting, the systems ground state is degenerate by the number of
permutations of electrons on the bath sites. Consider the case of a half-filled 2× 2 cluster
forming the ground state. Filling the system with N = 7 electrons leads to a 56-fold de-
generate ground state at negligible hybridisation. Hence 56 exact eigenvectors have to be
considered even at low enough temperatures for zero to low hybridisation.
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2.4.7. Setting the filling2 4 7
The filling or magnetisation of a system can be fixed by optimising the suitably Legendre transformed
grand potential w.r.t. the physical chemical potential or a physical magnetic field. The presentation
follows [BP10].

In order to set the filling of the system to some value N , instead of the grand potential, its
Legendre transform

F = Ω+µN (2.252)

is considered. Note that µ is the physical chemical potential. Optimising this free energy
w.r.t. the physical chemical potential enforces the demanded filling

∂ F
∂ µ
= −〈N〉+ N

!
= 0 (2.253)

as can be seen from section 2.1.2. Other observables such as the magnetisation can be fixed
in a similar fashion which is described in [BP10].
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3Matrix-product state solver for VCA3
Using matrix-product states (MPSs) makes it possible to consider larger systems but also requires more
time to handle them. It is argued that among the representations of the Green’s function presented in
section 2.3, the continued fraction and Chebyshev representations are most promising to be constructed
using MPS. A proof of principle is given using the continued fraction representation. Issues arising due
to loss of orthogonality could be overcome with the Chebyshev representation.

Matrix-product states (MPSs) form an efficient representation of many-body states. By trun-
cating the state space to those with a non-vanishing singular value, the exponential growth
of the Hilbert space dimension with increasing system size can – to some degree – be coun-
teracted.

Assuming that the ground state of the system can be found in its MPS representation, the
main task is to construct the single-particle Green’s function. Since the spectral representa-
tion of the Green’s function requires the (partial) diagonalisation of the Hamiltonian in the
excited state sectors, it is not an option within the MPS representation. This also discards
the possibility to construct the Q-matrix representation of the Green’s function. In turn only
the option to compute the self-energy functional by means of a contour integration in the
complex energy plane remains, discarding a purely real or imaginary time-evolution to com-
pute the Green’s function. This also implies that the Kernel polynomial method [Wei+06]
which has been used for a MPS-based solver for the dynamical mean-field theory [Wol+14]
is not available. As it stands, the continued fraction representation [Dag94; Sén08; SSY18]
remains as most straight-forward option to reconcile the different requirements. It is de-
scribed in section 2.3.2 for real couplings.

However, the continued fraction representation rests on the construction of the Lanczos
basis in the excited state sectors, which is supposed to be sufficiently orthogonal. Since the
basis is expressed in terms of MPSs, the reorthogonalisation is performed variationally. This
means that in order to keep the space of MPS small, the next state within the iteration rule is
approximated by one representable within the MPS space that is closest to the actual state.
Besides requiring more runtime, the truncation eventually leads to a loss of orthogonality.
Technical details on the solver can be obtained from [Pae20].

Considering the one-band Hubbard model in one dimension at half-filling while varying
the isotropic hopping on the cluster gives the grand potential shown in figure 3.1a. For
small systems, the MPS-based solver agrees for the entire parameter range considered with
the results obtained using an ED solver. Larger systems exhibit deviations at higher iso-
tropic hoppings. However close to the stationary point, both solvers agree. The run-times
necessary to compute one data point are shown in figure 3.1b. In all cases considered, the
MPS-based solver needs more time than the ED solver. Once an optimisation algorithm is
applied which requires a factor of O(10) iterations per variational parameter to achieve
convergence, the MPS-based solver has to be furher improved. Parallelisation is one option
which however collides with the intention of employing larger reference systems. Exhaust-
ing the capabilities of the MPS solver and interlocking it with the rest of the implementation
by making the solver more accessible would already be sufficient to investigate more inter-
esting systems.
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(a) CPT Grand potential. The purple
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(b) Run-times.

3.1 – CPT Grand potential ΩCPT/t and run-times needed to compute it vs on-cluster hopping t ′/t
at T/t = 0, U/t = 4 for various one-dimensional clusters comparing MPS- and ED-solver.

In the following some technical parameters used to obtain the results in figure 3.1a are
listed with a rough description of their implications based on the presentation by Paeckel
[Pae20], whose MPS solver was used. General parameters of the simulation are the maximal
bond dimension ranging at 20−500 which specifies the rank of the largest matrices occuring
in the MPS. The maximal discarded weight in the range 10−10−10−5 fixes how strongly the
MPSs are truncated by means of neglecting components which have a small singular value.
To find the ground state, 40 sweeps through the system are performed, during each of which
an effecive local Hamiltonian is partially diagonalised within 5−10 Lanczos iterations until
the lowest local eigenenergy changes per iteration by less than 10−10 − 10−8. The solver
allows selecting the quantum number sector of the ground state, which amounts here to
setting the particle number to half-filling and the total spin to zero. To construct the con-
tinued fraction representation of the Green’s function, the Hamiltonian is represented as a
tridiagonal matrix using the Lanczos algorithm. Besides applying the Hamiltonian to states,
the resulting Lanczos vectors have to be orthogonalised w.r.t. each other. As mentioned
earlier, this is done variationally for the MPS, which refers to a variational compression
with orthogonality to other states as constraint. There, a maximal distance of 10−8 between
the initial and the variationally compressed state are allowed, while the discarded weight
may be at maximum 10−6. A maximum of 20 sweeps through the system are performed. For
the continued fraction representation, a maximum of 50 Lanczos iterations of excited states
are employed. Each newly constructed Lanczos vector is orthogonalised w.r.t. 5 previously
obtained vectors. Once the lowest eigenvalue changes by no more than 10−8, the iteration
is stopped as well.

In summary using MPSs is a two-sided coin. On one side, they enable the handling of
larger systems since only necessary states are considered. On the other side, the time re-
quired to handle these larger systems is increased as well. In addition, the orthogonality
of the basis constructed to obtain a tridiagonal Hamiltonian in the excited state sectors is
not ensured. How strongly this affects the Green’s function as the inverse of the tridiagonal
Hamiltonian is unclear. A solution to this issue consists in using the Chebyshev representa-
tion put forward in section 2.3.4 which avoids any need for orthogonalisation.
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4One-band Hubbard model:4
Testing ground

The one-band Hubbard model serves as testing ground for the solvers implemented. Analytical results
on one-dimensional one and two site clusters serve to verify the implementation employing FD. The basic
implementation of FTLM-based solvers is verified by comparing their results on one-dimensional two
and four site clusters with those of FD. For all practical purposes considered, they are restricted to too
high temperatures to be of use. Using traces with exact and random vectors makes it possible to reach
lower temperatures. Comparing the results obtained using these split traces with literature confirms
their implementation. Employing solely exact trace vectors turns out to be the most expedient option.
The agreement between results of an ED solver with those of a Chebyshev solver, both using exact trace
vectors, verifies the implementation of the Chebyshev solver.

Note that all cluster observables (cluster particle density, cluster kinetic energy) determined
in this chapter are obtained from the cluster Green’s function. Appendix C discusses discrep-
ancies occuring between cluster expectation values obtained from the eigenstates following
equation (2.22) and the cluster Green’s function. However the discrepancies discussed in
appendix C do not alter the overall conclusion, since it is a systematic error which affects
the results from all solvers equally.

4.1. FD, ED and FTLM4 1

4.1.1. Hubbard atom4 1 1
The implementation of finite temperature VCA using a FD solver is verified on the cluster and CPT level.

One of the simplest exactly solvable models where finite temperature leads to different
behaviour is the Hubbard atom. It consists of one site described by the Hubbard model
without hopping

Hcl = −µ(n↑ + n↓) + Un↑n↓, (4.1)

where µ is the chemical potential, U the Hubbard repulsion and nσ the number operator
counting fermionic particles of spin σ on the site. Since the Hamiltonian (4.1) is diagonal
in the site basis, the partition function defined in equation (2.19) can be written down
straightforwardly

Ξcl = 1+ 2exp
�µ

T

�

+ exp
�

−
U − 2µ

T

�

(4.2)

and allows determining the grand potentialΩ defined in equation (2.20). The main quantity
of interest is the particle density 〈n〉= (−∂Ω/∂ µ)/` for one site `= 1, giving

〈n〉cl =
2
Ξcl
·
�

exp
�µ

T

�

+ exp
�

−
U − 2µ

T

��

. (4.3)
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4. One-band Hubbard model4

Combining the numerically obtained cluster particle density from the zero-, one- and two-
particle sectors according to equation (A.4), the analytical relation is recovered as can be
seen in figure 4.1. Hence for one- and low-dimensional Hilbert-spaces, the implementation
of the finite temperature treatment employing FD is verified from the perspective of the
cluster particle density.
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4.1 – Cluster particle density 〈n〉cl vs chemical potential µ for a one site cluster with U = 4
at various temperatures. The data is obtained via FD and compared with the analytical
relation (4.3).

Solving the equation of motion of the Green’s function in energy space without specifying
the boundary conditions one finds

Gcl
σσ′
(E) = δσσ′

�

1
E +µ

+
U 〈nσ̄〉cl

(E +µ) · (E +µ− U)

�

. (4.4)

By applying a partial fraction decomposition, Gcl
σσ′

can be written in its spectral representa-
tion. Employing the Dirac identity [Nol14], the spectral function follows as

Acl
σσ′
(E) = δσσ′

�

(1− 〈nσ̄〉cl)δ(E +µ) (4.5)

+ 〈nσ̄〉clδ(E +µ− U)
�

.

Applying the spectral theorem [Nol14] for fermions, the particle density can be expressed
in terms of a set of algebraic equations. After solving these for 〈nσ〉, one obtains the expres-
sion (4.3).

Starting from the cluster Green’s function (4.4) and considering the inter-atom hopping
matrix

Vσσ′(k̃) = −2tδσσ′ cos(k̃), (4.6)

with the reciprocal lattice vectors of the superlattice k̃ = {2πn/Ncl|n = 0, 1, . . . , Ncl − 1} of
Ncl atoms, the CPT Green’s function can be obtained via

GCPT
σσ′
(E, k̃) =

�

Gcl
σσ′
(E)−1 − Vσσ′(k̃)

�−1
. (4.7)

After a partial fraction decomposition, the CPT Green’s function takes the form

GCPT
σσ′
(E, k̃) = δσσ′

�

%+
E − ε+

+
%−

E − ε−

�

(4.8)
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4. One-band Hubbard model4

with weights and poles

%± = ±
µ− U(1− 〈nσ̄〉cl) + ε±

ε+ − ε−
, (4.9)

ε± =
1
2

h

(U − 2µ− 2t cos(k̃)) (4.10)

±
q

(U − 2t cos(k̃))2 + 8t cos(k̃)U(1− 〈nσ̄〉cl)
i

.

Using again the Dirac identity and the spectral theorem [Nol14], one obtains the CPT
particle density as

〈n〉CPT =
1

Ncl

∑

k̃

[〈n↑〉CPT (k̃) + 〈n↓〉CPT (k̃)] (4.11)

with
〈nσ〉CPT (k̃) = %+ f (ε+) +%− f (ε−) (4.12)

and the Fermi function f (E) = [exp(E/T )+1]−1. Note that this CPT treatment differs from
the treatment of Gros and Valentí [GV93], since they formally set 〈nσ̄〉cl = 〈nσ̄〉CPT within
equation (4.10) and determine the particle density self-consistently.

Numerically, the different particle number sectors are considered separately and their
densities are combined according to equation (A.4) as done for the cluster particle densi-
ty. The comparison of the CPT particle densities is shown in figure 4.2 with the analytical
results as dashed, light grey lines and the numerical results as solid, coloured lines. As it
turns out, it is not sufficient to treat each particle number sector separately and combine the
results afterwards. Due to the V -matrix, each particle number sector has to be considered,
when setting up the cluster Green’s function. Apart from the region where two sectors of
different particle number contribute, the agreement between analytical and numerical re-
sults is of quantitative nature. For higher temperatures, the quantitative agreement extends
over the whole range of the chemical potential considered, since each particle number sector
contributes uniformly throughout this range. A more general reason for the deviations is
the thermodynamic inconsistency of CPT [Sén12].

Thus for the purpose of verifying the implementation, this comparison is not suitable.
Hence the calculation leading to equation (4.11) is repeated for the cluster Green’s functions
of the zero-, one- and two-particle sector separately. These in turn are directly obtained by
constructing their spectral representations G(N)σσ′

G(0)σσ′(E) = δσσ′[E +µ]
−1, (4.13)

G(1)σσ′(E) = [G
(0)
σσ′(E) + G(2)σσ′(E)]/2, (4.14)

G(2)σσ′(E) = δσσ′[E − (U −µ)]
−1. (4.15)
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4. One-band Hubbard model4

The combination of the respective particle densities according to equation (A.4) for differ-
ent temperatures is shown in figure 4.2 as dotted, dark grey lines. Here, numerical and
analytical results agree.
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4.2 – CPT particle density 〈n〉CPT vs chemical potential µ for a one site cluster reference system
with U/µ = 4 and Ncl = 24 at various temperatures. The data (solid, coloured line) is
obtained via FD and compared with the analytical relation (4.11), which is evaluated using
the cluster Green’s function of all particle number sectors combined (dashed, light grey line)
and for all particle number sectors treated separately with the densities combined afterwards
(dotted, dark grey line).

In the context of CPT, the grand potential is further of importance, since it contains con-
tributions from the cluster grand potential, the cluster Green’s function and the CPT Green’s
function. Employing the analytical expression derived by Potthoff [Pot03], it is given by

ΩCPT = Ωcl + Tr ln
�

−G−1
CPT

�

− Tr ln
�

−G−1
cl

�

(4.16)

= Ωcl − L
∑

m,σ

1
Ncl

∑

k̃

ln

�

1+ exp

�

εCPT
mσ (k̃)

T

��

+ 2L
∑

m

ln

�

1+ exp

�

εcl
m

T

��

,

where L = Ncl·` is the number of all sites on a finite lattice of Ncl clusters with ` sites each and
the sum over m resembles the summation over all poles. The results from the equation of
motion, the separately treated particle number sectors and the numerical results are shown
in figure 4.3. Again, handling the different particle number sectors separately agrees with
the numerical results, while the equation of motion outcomes agree quantitatively apart
from where they are expected to differ.
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−1 0 1 2 3 4 5
−20

−15

−10

−5

0

µ

Ω
C

PT
/µ

T/t = 0.1
T/t = 1
T/t = 10
combined
separate

4.3 – CPT grand potential ΩCPT/µ vs chemical potential µ for a one site cluster reference system
with U/µ = 4 and Ncl = 24 at various temperatures. The data (solid, coloured line) is
obtained via FD and compared with the analytical relation (4.16), which is evaluated using
the cluster Green’s function of all particle number sectors combined (dashed, light grey line)
and for all particle number sectors treated separately with the grand potentials combined
afterwards (dotted, dark grey line).

Therefore the implementation of the FD solver used for CPT is correct for a one site cluster.

4.1.2. Two site Hubbard cluster4 1 2
The implementation of finite temperature VCA using a FTLM solver is considered on the cluster and CPT
level. There occur discrepancies in the cluster kinetic energy at low temperature.

With two instead of one site, analytical results can be obtained easily and the FTLM can be
used as solver. This is not possible for the Hubbard atom due to the small Hilbert space,
which is further decomposed into disconnected sectors of spin up and spin down particles.
Hence, the Hubbard atom is extended to the full Hubbard model

Hcl = −t
∑

〈i, j〉,σ

�

c†
iσc jσ + c†

jσciσ

�

−µ
∑

iσ

ni,σ + U
∑

i

ni↑ni↓, (4.17)

where t is the hopping amplitude, 〈i, j〉 denotes all nearest neighbour bonds and c(†)iσ an-
nihilates (creates) a fermion at site i with spin σ. Computing the eigenenergies of the
Hamiltonian (4.17) for each sector of fixed particle number and total spin separately al-
lows constructing the partition function giving the grand potential and thus all thermody-
namic expectation values as derivatives. The eigenenergies within each sector are listed in
table 4.1.
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4. One-band Hubbard model4

4.1 – Eigenenergies ε of the two site Hubbard model, sorted by fixed particle number with given
spin.

N↑ N↓ ε

0 0 0
1 0 −µ∓ t
0 1 −µ∓ t
1 1 U − 2µ

−2µ
(U − 4µ±

p
U2 + 16t2)/2

2 0 −2µ
0 2 −2µ
2 1 U − 3µ∓ t
1 2 U − 3µ∓ t
2 2 2U − 4µ

In the following, the observables are computed for each particle number sector separately
and combined afterwards via equation (A.4).

Figure 4.4a shows the cluster particle density, where the results using FD and the FTLM co-
incide with the analytical result. In contrast, the cluster kinetic energy shown in figure 4.4b
exhibits deviations of the FTLM result within an intermediate range of the chemical po-
tential for T/t ∈ {0.1,1}, while FD is reliable. When considering the sectors of different
particle number separately, the two-particle sector can be identified to give different results
for the FTLM and FD. When using combinations of FD and the FTLM for the ground state
and excited state sector, each time the trace is performed by the same method (e.g. FD+FD
and FD+FTLM or FTLM+FD and FTLM+FTLM), the results agree, while different methods
lead to deviations. Hence the origin of these deviations is the stochastic evaluation of the
trace using random vectors. Using more random vectors or considering higher temperatures
should allow to overcome these discrepancies.
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(a) Density.
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4.4 – Cluster particle density 〈n〉cl and cluster kinetic energy Ecl

kin/t vs chemical potential µ/t for a
two site cluster with U/t = 4 at various temperatures. The dashed, light-coloured lines are
obtained via FD, while the solid, dark-coloured lines originate from the FTLM employing R=
75 random vectors while requiring the convergence of one eigenenergy. Both are compared
with the analytical result (dotted, grey line) for which all particle number sectors are treated
separately with the observables combined afterwards.

67
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In order to assess the quality of the FTLM as solver within CPT, the CPT particle density
obtained via FTLM+CPT is shown in figure 4.5 and compared with the result from FD+CPT.
Apart from small deviations at T/t = 0.1, both results agree.
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4.5 – CPT particle density 〈n〉CPT vs chemical potential µ/t for a two site cluster reference system
with U/t = 4 and Ncl = 24 at various temperatures. The dashed, light-coloured lines are
obtained via FD, while the solid, dark-coloured lines originate from the FTLM employing
R= 75 random vectors while requiring the convergence of one eigenenergy.

4.1.3. Four site Hubbard cluster4 1 3
By considering the cluster kinetic energy as reference quantity, the FTLM solver is investigated. Its imple-
mentation is verified by constructing an explicit basis of random vectors. The importance of precise low
excited states is emphasized. Different combinations of Lanczos and Band Lanczos solvers for the ground
and excited state sector are considered. Splitting the trace into exact and random trace vectors makes it
possible to investigate lower temperatures.

Verification of the FTLM

Consider an one-dimensional, four site Hubbard cluster with antiferromagnetic (AFM) Weiss
field

HAFM = h′
∑

j

(−1) j(n j↑ − n j↓) (4.18)

entering the cluster Hamiltonian and being subtracted in the V -matrix as reference system.
Although the relative error of thermodynamic quantities obtained via FTLM should decrease
with increasing system size, considerable deviations in the kinetic energy occur for N ∈
[2, 6] particles on such a cluster. These deviations are random in the sense that expected
symmetries (e.g. particle-hole symmetry and spin-flip symmetry) are not satisfied by the
kinetic energy. An example for the lack of spin-flip symmetry is shown in figure 4.6 by the
blue crosses. To assess, whether the implemented FTLM is correct, the case of two particles
on the four site cluster is considered. By orthogonalising the random vectors explicitely
w.r.t. each other and considering R ∈ {20, 24,28} random vectors, two properties of the
implemented FTLM are found:
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4. One-band Hubbard model4

1) When considering R= 28 random vectors which is the dimension of the Hilbert space
of two particles on a four site cluster, the orthogonalised random vectors form a com-
plete basis. Hence one expects the kinetic energy to agree with the result from FD.
This is confirmed by the results in figure 4.6.

2) With less random vectors than the dimension of the Hilbert space, the orthogonalisa-
tion improves the results compared to no orthogonalisation. Nevertheless, the spin-
flip symmetry is not recovered by an orthogonal but incomplete set of random vectors.

Using the FTLM with orthogonalised random vectors as a means of constructing a basis of
random vectors to compute the trace confirms the implementation of the FTLM. However
the FTLM is supposed to handle small systems by considering enough random vectors, thus
increasing the sample size.
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4.6 – Cluster kinetic energy Ecl
kin/t vs AFM Weiss field h′/t of two particles on a four site cluster

with U/t = 4, µ = U/2, T/t = 0.1 for R random vectors. The index ‘◦’ refers to unortho-
gonalised, ‘⊥’ to orthogonal random vectors.

Importance of precise low excited states

When considering the cluster kinetic energy obtained using different seeds for the random
number generator as shown in figure 4.7, there appears to be a favour for either h′/t > 0 or
h′/t < 0. A possible reason for this may lie in the overlap of the sets of random vectors with
the respective ground state of the system. While a seed of 96 leads to random vectors with
a large overlap with the ground state commensurate with h′/t < 0, a seed of 756 constructs
random vectors which favour the ground state with h′/t > 0. This can be inferred from the
ground state weight to the partition function

ΞGS(h
′) =

∑

i

| 〈GS(h′)|ri〉 |, (4.19)

which is the prefactor of the Boltzmann factor from the ground state energy. For the seed
96 the current implementation gives ΞGS(±0.8t) ≈ 2.3,2.5, while the seed 756 yields
ΞGS(±0.8t) ≈ 2.5,1.8. Although the difference between these weights seems small, it is
amplified by the Boltzmann factor from the ground state, which is for h′/t = ±0.8 of order
O
�

exp(7.1158/0.1) = 8 · 1030
�

. Thus even a small difference in these weights is punished.
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4.7 – Cluster kinetic energy Ecl
kin/t vs AFM Weiss field h′/t of two particles on a four site cluster

with U/t = 4, µ = U/2, T/t = 0.1 for R = 75 random vectors generated using the seeds
given in the key.

Further methods and their verification

Apart from Lanczos ED to determine the matrix elements contributing to the Green’s func-
tion, Band Lanczos ED can be used as well. Its advantage lies in the ability to resolve
degenerate eigenstates. Hence for systems with degenerate ground or low lying excited
states, their contributions to the Green’s function can be determined precisely. Since the
Green’s function contains ingredients from three sectors of different particle number (N ,
N ± 1 particles), in principle for each of these sectors, the Lanczos basis can be determined
either through Lanczos or Band Lanczos ED. Here, the usage of Lanczos or Band Lanczos
ED is restricted to the ground state sector with N particles and the excited state sectors with
N ± 1 particles. If Band Lanczos ED is applied to the ground state sector, the number of
degenerate states Ndeg expected is specified externally. In practice Ndeg = 8 is used. Once
Band Lanczos ED is used for the FTLM, the number of random vectors R is increased such
that Ndeg becomes a divisor of it, specifically to

R̃=

�

R
Ndeg

�

· Ndeg. (4.20)

When Band Lanczos ED is applied to the excited state sector, the number of excitations fix
Ndeg. For a cluster with ` sites, including b orbitals of particles with spin, Ndeg = 2b`. Once
Band Lanczos ED is used within the ground and excited state sector, Ndeg is set externally
for the ground state sector and fixed by the number of excitations for the excited state
sector. The resulting combinations of Lanczos and Band Lanczos ED are denoted finite
temperature Lanczos method (FTLM), finite temperature Band Lanczos method (FTBLM),
degenerate finite temperature Lanczos method (DFTLM) and degenerate finite temperature
Band Lanczos method (DFTBLM), which are summarised in table 4.2.
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4. One-band Hubbard model4

4.2 – Abbreviations of the methods emerging by applying Lanczos (L) and/or Band Lanczos (BL)
ED within the ground and excited state sectors.

ground state excited state abbreviation

L L FTLM
L BL FTBLM
BL L DFTLM
BL BL DFTBLM

Note that in the meantime of writing this thesis an implementation using Block Lanczos ED
within the FTLM has been presented [SY20].

In order to test the implementations of this range of methods, again the cluster kinetic
energy of two particles on a four site cluster are shown in figure 4.8.
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4.8 – Cluster kinetic energy Ecl
kin/t vs AFM Weiss field h′/t of two particles on a four site cluster

with U/t = 4, µ= U/2, T/t = 0.1 for R random vectors while allowing Ndeg = 7 degenerate
vectors. The index ‘◦’ refers to R = 75 unorthogonalised, ‘⊥’ to R = 28 orthogonal random
vectors. The data lying far away from the FD results emerge from the unorthogonalised
random vectors.

The influence of the method used within the N -particle sector can be seen from the data
obtained via unorthogonalised random vectors (far away from the FD results). Employing
Band Lanczos ED leads to an overestimation, since more states contribute in each Band
Lanczos run than in each Lanczos run. Nevertheless, for a complete basis of random vectors,
the FD result is recovered for each method. Hence each of the implementations is confirmed,
although the quality of the results depend strongly on the number of random vectors.
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Extension to low temperatures

A way to overcome the limitations of high temperature is mentioned by Weiße et al. [Wei+06]
in the context of the KPM. There, an inital Lanczos run is used to determine the ground state
and several excited states. These states are used as trace vectors to compute contributions.
In the next step, random vectors are generated and orthogonalised w.r.t. these eigenvectors,
before they are used to stochastically sample the trace and compute matrix elements within
the KPM. Details are given in section 2.4.2.

This approach can also be applied to the FTLM and its variants giving satisfying results.
Variants of the FTLM combined with an exact contribution to the trace are denoted by a
leading ‘ex’ (exFTLM, exFTBLM, exDFTLM, exDFTBLM). The most important question that
arises is, whether a partial orthogonalisation is enough to circumvent the asymmetry in
figure 4.8. A more practical question is, how many exact and how many random trace
vectors are required to get results of satisfying precision. These questions are addressed in
figure 4.9. Therein again, the cluster kinetic energy of two particles on a four site cluster is
shown, this time for Nex ∈ {1, 2,4, 8,16} exact and R = 25 random trace vectors, as well as
for Nex ∈ {1, 2,4} and R ∈ {50,75}.
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4.9 – Cluster kinetic energy Ecl
kin/t vs AFM Weiss field h′/t of two particles on a four site cluster

at U/t = 4, µ = U/2 and T/t = 0.1 for R random trace vectors. The colour shades refer to
the number of exact trace vectors used, with light colours meaning more exact trace vectors
Nex ∈ {1,2, 4,8, 16}.

Already one exact trace vector is enough to achieve quantitatively appealing results. Increas-
ing the number of exact or random trace vectors further improves the agreement. While
more exact trace vectors lead to a better agreement, more random trace vectors do not
necessarily achieve this.

For larger systems more exact trace vectors are required, since with increasing system size
the number of eigenenergies increases and the states become denser in energy. Hence for a
given temperature more states contribute significantly to the trace.
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An extension of this approach is also possible, since the initial Lanczos run can also be
replaced by a Band Lanczos run. This becomes necessary, once the ground state and/or low-
est excited states are degenerate. If the number of exact trace vectors desired goes beyond
the number of vectors, which can be resolved by a regular Lanczos run, the incorporation of
degenerate eigenvectors is required. Variants of the FTLM combined with an exact contribu-
tion to the trace obtained via a Band Lanczos run are denoted by a leading ‘dex’ (dexFTLM,
dexFTBLM, dexDFTLM, dexDFTBLM). This happens for instance if Nex = 16 eigenvectors are
requested for the system shown in figure 4.9 at h′/t = 0. The dimension of the Hilbert space
dimH = 28 decreases from the perspective of the Lanczos algorithm to 14 non-degenerate
states, which lies below Nex = 16. Hence for Nex = 16 exact trace vectors, Ndeg = 7 is used.

Note that in the meantime of writing this thesis two variants denoted by RFTLM and
OFTLM using this decomposition of the trace have been presented in [MT20] as mentioned
in section 2.4.2.

Application to VCA

In order to use a variant of the FTLM as cluster solver within VCA, the grand potential of
the cluster as well as the cluster Green’s function have to be determined with sufficient
accuracy. To achieve this also at low temperatures, ‘enough’ eigenvectors have to be taken
into account. For a one-dimensional system of two particles on a four site cluster, Nex = 2
are enough according to section 4.1.3, but the question is now, how many eigenstates are
needed if FD is no longer applicable. How can one estimate a ‘reasonable’ number of states?
To answer this question one has to give a reason, why using the eigenstates lowest in energy
improves the result. The reason is the Boltzmann factor inside the trace, which punishes
small errors in the other matrix elements contributing to the trace at low temperatures and
low energies. Therefore it is enough to take into account those states of energy ε which
satisfy

exp(−βε)
exp(−βεGS)

> ηtol, (4.21)

with a small toleranceηtol as done in [SSY18] and mentioned in section 2.4.1. It is important
to note, that the existence of degenerate states at low energy make it necessary to employ
Band Lanczos ED to compute the eigenstates.

This criterion can however only be applied consistently for the exact part of the trace. For
the FTLM part, the different trace vectors cannot be associated with a specific Boltzmann
factor. Hence the criterion might limit the number of Lanczos runs, but not the number of
trace vectors.

Consider as an example four particles on a 2×2 site cluster in two dimensions on a square
lattice, which is still tractable via FD. Part of the energy spectrum of the cluster obtained via
FD is shown in figure 4.10a. It is divided into four groups of states which are considered as
contributions to the trace. As can be seen from the energy difference in the states, Nex = 16
eigenstates should be sufficient to recover the FD results up to T/t ≈ 1. To convince oneself
of this assumption, figure 4.10b shows the AFM magnetisation obtained via VCA 〈m〉VCA vs
temperature T/t and recovers in the case Nex = 16 the result from FD when employing
Band Lanczos ED to determine the eigenvectors.
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(a) Cluster eigenenergies.
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4.10 – Lowest cluster eigenenergies Ecl/t vs AFM Weiss field h′/t and AFM magnetisation 〈m〉VCA

vs temperature T/t. The reference system consists of four particles on a 2×2 square cluster
with U/t = 8, µ = U/2 and is solved via FD. The states in figure 4.10a are divided into
four, color-coded groups and are used together with R= 75 random vectors as trace vectors
to compute the magnetisation in figure 4.10b. Therein, besides the different symbols, the
data obtained with exFTLM is coloured lighter than the data obtained with dexFTLM to
make the figure less busy.

Another point verified is the requirement, that Band Lanczos ED is necessary to recover all
low energy eigenstates since they are degenerate. While the Band Lanczos run resolves
all lowest energy eigenstates, a Lanczos run obtains only one representative among the
degenerate states. Further states found by the Lanczos run are higher in energy and thus
less relevant due to the Boltzmann factor. Nevertheless, the deterioration of the results from
exFTLM with increasing Nex is sobering.

4.1.4. Comparison to solvers in literature4 1 4
The agreement of FD and ED results with those from literature confirm the implementation.

CT-QMC solver [Li+09]

Coming back to the thermodynamic properties at finite temperature, the central quantity is
the grand potential. A comparison with the FD data used by Li et al. [Li+09] to gauge their
implementation of VCA with a Quantum Monte Carlo (QMC) solver serves as further check.

First, the cluster grand potential as function of the chemical potential is compared in
figure 4.11. While the data belonging to the one and two site clusters agree, the three
site cluster clearly differs for small chemical potential µ. This is a miscalculation in the
paper, since even when considering all sectors of different particle number while building
the respective Hamiltonian matrix by hand, the results still differ in disfavour of Li et al.
The argument of thermodynamic consistency valid for CPT cannot be invoked since these
are results on a finite system.
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4.11 – Cluster grand potential Ωcl/t vs chemical potential µ/t for one-dimensional clusters of `
sites with U/t = 4, T/t = 0.1. Results from FD (×) combining all particle sectors, as well
as (semi-)analytic calculations employing Python including all particle sectors (dashed,
grey lines) are compared with those of Li et al. [Li+09] (solid, coloured lines).

In order to check the CPT implementation at finite temperature, the CPT grand potential
ΩCPT of the Hubbard model is computed for a 2× 2 cluster at half-filling, meaning µ= U/2
and four particles. The CPT part consists of an AFM Weiss field

HAFM = h′
∑

i

(−1)ix+iy(ni↑ − ni↓), (4.22)

which is added to the cluster Hamiltonian and subtracted via the V -matrix. A comparison
with the data from Li et al. is shown in figure 4.12. For large values of U/t ∈ [2, 4], the
grand potential agrees qualitatively with the paper. In contrast for lower U/t, the grand
potential seems to saturate faster with increasing h′/t than in the paper. Results from FD
and dexFTLM are consistent. Attempting to combine multiple particle sectors may not lead
to a better agreement, since CPT is not thermodynamically consistent.
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4.12 – CPT grand potential ΩCPT/t vs AFM Weiss field h′/t for a half-filled 2 × 2 cluster with
U/t ∈ {0.5,1, . . . , 4}, µ = U/2 and T/t = 0.2. Results from FD (solid, light-coloured
lines) and the dexFTLM using Nex = 16 eigenvectors and R = 75 random vectors (×) are
compared with those of Li et al. [Li+09] (dashed, dark-coloured lines).
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FTLM solver [Aic04]

Using the cluster Green’s function within CPT, highly resolved spectral functions can be
obtained. In order to assess the quality of the implementation of the FTLM, the spectra
for a one-dimensional Hubbard chain of eight sites are compared with those of Aichhorn
[Aic04] in figure 4.13. For higher temperature, it is sufficient to require the convergence of
one eigenenergy to achieve an almost quantitative agreement apart from some wiggles. At
lower temperature, more wiggles appear and make it necessary to require the convergence
of more eigenvalues. Demanding more converged eigenvalues while not using the respective
eigenvectors as trace vectors poses a missed opportunity.
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4.13 – CPT spectral function for a one-dimensional Hubbard cluster of eight sites with U/t = 4
at half-filling µ = U/2 obtained via the FTLM employing R = 75 random vectors while
requiring the convergence of Nconv eigenenergies for several temperatures T/t. Orange
lines are numerical data, whereas blue lines are taken from Aichhorn [Aic04].
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FD and ED solver [SSY18]

Approximating a full trace with a restricted number of converged eigenvectors from ED can
be systematically improved by incorporating more eigenstates. By the same measure, the
validity of the approximation can be extended to higher temperatures. In contrast, FTLM-
based approximations of a full trace as realised in this thesis do not systematically improve
with more trace vectors.

A direct comparison of how more exact and random trace vectors affect the precision of
the grand potential is shown in figure 4.14. Sweeps of the Weiss field with Nex = 20 exact
and R= 60 random trace vectors show an overall good agreement with the grand potential
of Seki et al. However the location of the minimum (+) becomes less precise with increasing
temperature, starting at T/t = 0.25. The amount of exact and random trace vectors is not
sufficient to determine the Néel temperature, which marks the phase transition from AFM
to paramagnet (PM). Increasing the number of exact trace vectors reproduces the results of
Seki et al. With more random vectors, the Néel temperature can be determined correctly as
well. However the deviation from the ED results upon approaching the phase transition is
significant and puts into question how reliable FTLM-based solvers are at low temperature.
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4.14 – CPT grand potential ΩCPT/t as function of the AFM Weiss field h′/t for a half-filled 4× 2
cluster with U/t = 8 and µ = U/2 at several temperatures T/t. Results from ED (solid,
coloured lines, +, × and stars) are compared with those of Seki et al. [SSY18] (dashed,
grey lines, open dots).
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To illustrate the discrepancy between exact and random trace vectors further, figure 4.15
shows the cluster and CPT grand potential for a

p
10×
p

10 site cluster obtained using either
type of trace vectors exclusively. While on the cluster level, the difference is less apparent,
the CPT grand potential obtained using random vectors lacks even the basic feature of being
symmetric w.r.t. flipping the direction of the AFM Weiss field. Within this scenario, where
the random vectors are supposed to be advantageous due to a larger cluster, this comparison
exhibits how inaccurate the results using the FTLM-based solvers are.
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(a) Cluster grand potential.
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(b) CPT grand potential.
4.15 – Cluster and CPT grand potential Ωcl and ΩCPT as function of the AFM Weiss field amplitude

h′/t for a
p

10 ×
p

10 site cluster with U/t = 8 and µ = U/2 at several temperatures
T/t ∈ {0.10,0.15, ..., 0.50} excluding T/t = 0.20. Results from FTLM (solid, coloured
lines) with R= 100 random trace vectors are compared with those from ED (dashed, grey
lines) with Nex = 120 exact trace vectors allowing an Ndeg = 8 fold degeneracy.

In summary, FTLM-based solvers exhibit a worse precision than using exact trace vectors.
They are restricted to high temperatures due to approximating the trace by a stochastic av-
erage with a uniform distribution. For FTLM-based solvers, large reference systems allow to
reduce the number of random trace vectors. However this requires a longer time to compute
the required matrix elements than reference systems of moderate size. For moderate and
small reference systems, a sufficiently large number of random trace vectors is needed to
achieve sufficient sampling for reliable averages. Both measures make the method numer-
ically more expensive. Technically, for FTLM-based solvers more data has to be assembled
when constructing the cluster Green’s function. By including more exact trace vectors, one
can systematically and reliably improve the cluster Green’s function and grand potential.

Hence an FTLM-based solver is supposed to be operated for as big of a reference system
as possible, while for the VCA the reference system has to be solved multiple times. There-
fore FTLM-based solvers are better suited for one-shot computations than as a solver for the
VCA. Increasing the number of exact trace vectors is therefore advantageous compared to
adding more random vectors.

When considering finite temperature, entropy as the change of the grand potential with
temperature can be computed. In order to verify the implementation using equation (2.244)
combined with FD, first the numerically obtained values SCPT are compared to the derivative
in terms of finite differences of the grand potential −(∆ΩCPT/∆T ). As can be seen from the
filled and empty dots in figure 4.16, the combination of both give an almost continously
looking line. Comparing both with the results of Seki et al. is another indication that the
implementation is correct.
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4.16 – CPT entropy SCPT for a half-filled 2× 2 cluster at U/t = 8 and µ = U/2 for the AFM and
PM solution as function of the temperature T/t. Results from FD (solid and open dots)
are compared with those of Seki et al. [SSY18] (grey lines).

For a larger cluster with 4 × 2 sites, the paramagnetic entropy for all particle number
sectors is computed separately, combined and shown in figure 4.17. Since the chemical po-
tential is chosen as µ = U/2, it suffices to consider only part of the sectors due to particle-
hole symmetry. Looking at the different particle number sectors separately as shown in
figure 4.17a, with increasing temperature the entropy per cluster site approaches the limit-
ing value limT ∞ SCPT = ln(dimHN )/(4×2) derived in appendix B. Combining the entropy
from all particle number sectors according to equation (A.3) agrees with the paramagnetic
entropy by Seki et al. as shown in figure 4.17b.
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4.17 – CPT entropy SCPT for several fillings of a 4×2 cluster at U/t = 8, µ= U/2 in the PM phase

as function of the temperature T/t. In case of small particle numbers N ≤ 3, the FD solver
is used, while for 3 < N ≤ 8 particles, the ED solver with Nex = 20 exact, Ndeg = 8 fold
degenerate trace vectors and R= 60 random trace vectors are employed. The combination
of all available particle number sectors is compared to those of Seki et al. [SSY18] (grey
line).
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4. One-band Hubbard model4

Besides ordered phases, also dynamical properties characterising the system can be inves-
tigated. To capture the metal-insulator transition in the one-band Hubbard model, another
type of reference system has to be considered. The cluster-dynamical-impurity approxima-
tion (CDIA) described in section 2.4.6 employs a cluster coupled to uncorrelated bath sites
as reference system. Considering the hybridisation with the bath sites as variational para-
meter, insulator and metal are characterised by a minimum in the grand potential at low
and high hybridisation strength, respectively. The deeper minimum determines the phase.

Figure 4.18 shows the grand potential of the auxiliary system introduced within CDIA
for a 2 × 2 cluster with one bath site per cluster site at T/t = 0.015. It is obtained by
combining the grand potentials of all particle number sectors available for the reference
system according to equation (A.2). Since the chemical potentials are chosen to give a
particle-hole symmetric Hamiltonian with µ = U/2 and µbath = 0, it suffices to consider
only the particle number sectors with N = 0,1, . . . , 8 particles. While for the case of N ∈
{0,1, 2,3, 4,5} particles, {1, 16,120, 500,1000, 4368} iterations within Band Lanczos ED
are enforced to construct the entire Hilbert spaces, for N ∈ {6, 7,8} particles, the number
of iterations is restricted to at maximum 4000. For N ∈ {0, 1} particles, the number of
degenerate vectors is restricted to {1, 16} and for the remaining sectors to 70, which is
the number of possibilities to position four particles on the eight uncorrelated bath sites
including spin. The additional contributions within figure 4.18 are the bath grand potential
per cluster site Ωbath/` = −T ln(4`)/` and the Legendre transform to the free energy with
N = 1.
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4.18 – CPT grand potential ΩCPT as function of the hybridisation Weiss field amplitude V ′/t for
a 2× 2 cluster with one bath site per cluster site and U/t = 5.4, µ= U/2 at T/t = 0.015.
Results using an ED-solver are compared with those of Seki et al. [SSY18].

The steps in the combination of all sectors originates from steps in the separate sectors.
They originate from the decomposition of the hybridisation-sweep into multiple sections.
Since the N ∈ {5,6, 7} particle sectors contributions are significant, deviations of O(10−3)
in the grand potential at these steps translate into visible steps. Hence in case CDIA is used
in ‘production’ runs, one has to be careful about precision and might need to take additional
measures to improve it. These steps do not occur on the cluster level.
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4. One-band Hubbard model4

4.2. Chebyshev expansion4 2
Comparing the results employing the ED solver with those of the Chebyshev solver confirms the latter
one. Depending on the number of Chebyshev moments, the runtimes are comparable.

Besides expressing the Green’s function in its spectral representation, one can also expand
the resolvent into Chebyshev polynomials as described in the sections 2.3.4 and 2.4.3. As
a proof of principle, figure 4.19 shows the grand potential of the one-band Hubbard model
on a

p
10×

p
10 site cluster with U/t = 8 and µ = U/2 at half-filling for various temper-

atures employing different numbers of moments, i.e. expansion orders. Already Nmom = 10
moments are sufficient to quantitatively reproduce the grand potential. Other cluster sizes
exhibit the same agreement between Chebyshev and ED results.
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4.19 – CPT grand potential ΩCPT as function of the AFM Weiss field amplitude h′/t for ap
10 ×

p
10 site cluster with U/t = 8 and µ = U/2 at several temperatures T/t ∈

{0.00, 0.05, ..., 0.50}. Results via Chebyshev expansion (solid, coloured lines) for differ-
ent number of moments Nmom ∈ {1,10, 100} are compared with those obtained from ED
(dashed, grey lines). Both solvers employ Nex = 120 exact trace vectors while allowing a
Ndeg = 8 fold degeneracy.

A comparison of the runtimes while using either the Chebyshev or the spectral represen-
tation is shown in figure 4.20. For several clusters of different size and shape at different
temperatures, the runtimes per Ω-value averaged over 101 computations for different Weiss
fields are depicted therein. While the spectral representation can make use of the high-
frequency expansion, the Chebyshev representation can restrict the number of moments
and thereby perform similarly. Hence compared to the performance of the MPS-based solver
using the continued fraction representation in figure 3.1b, the Chebyshev representation is
rather promising.
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4.20 – Average runtimes per datapoint of the grand potential for several cluster sizes using dif-

ferent solvers. For the Chebyshev solver, Nmom = 100 moments are used, while the FD and
ED solvers employ the high-frequency expansion. For the 2 × 2 site cluster, Nex = 60 is
used for the Chebyshev solver and FD is applied in comparison, whereas for larger clusters
Nex = 120 exact trace vectors are employed in both cases.

4.3. Conclusion4 3

As the test cases exemplified, exact trace vectors should be used instead of random ones.
Employing a combination of exact and random trace vectors appears to increase the work-
load without providing benefits. The solver used to obtain the exact trace vectors should be
capable of resolving degenerate eigenstates. For the sector of excited states this is irrelevant
and a regular Lanczos solver can be used. Besides the spectral representation, the Cheby-
shev representation of the Green’s function can be used efficiently at finite temperature.
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5Three-band Hubbard model:5
Physical application

5.1. d5 configuration: Sr2IrO45 1
Here a three-band Hubbard model with five electrons is used to investigate the AFM to PM phase transi-
tion in Sr2IrO4 employing the VCA. The magnetic signatures in the spectrum and the orbital responsible
for them are identified. Within VCA, a local self-energy omitting nonlocal quantum fluctuations is suf-
ficient to qualitatively reproduce the spectra of magnetically ordered systems. Yet such a treatment
overestimates the magnetic orders stability and misses spectral features in the unoccupied states. In or-
der to contribute to the discussion, whether the Mott- or Slater-type insulating mechanism dominates in
Sr2IrO4, VCA is not sufficient and a CDIA study should be attempted.

From the perspective of orbital physics, the compound Sr2IrO4 is interesting since it exhibits
upon lowering the temperature the opening of an insulating gap close to the Néel tem-
perature TN = 240K [Li+13] with the insulator being enabled by spin-orbit coupling (SOC)
[Kim+08]. The scenario deduced from first-principles bandstructure calculations [Kim+08]
is illustrated in figure 5.1 and can be summarised as:

1) Octahedral crystal field (CF) splits the 5d states into low energy t2g and high energy
eg subspaces.

2) SOC splits the t2g subspace into a half-filled high energy jeff = 1/2 and a completely
filled low energy jeff = 3/2 subspace.

3) Realistic Hubbard repulsion U splits the half-filled jeff = 1/2 subspace into a lower
and an upper Hubbard band.

1)

µ

wide t2g-band metal

t2g band 2)

λ

jeff band split due to SOC

jeff = 3/2 band

jeff = 1/2 band

3)

λ

U

jeff = 1/2 Mott ground state

jeff = 3/2 band

jeff = 1/2 LHB
jeff = 1/2 UHB

5.1 – Scenario leading to a Mott insulator driven by SOC λ. After the octahedral CF splits t2g and
eg states, SOC goes on to split the t2g states into jeff = 1/2 and 3/2 states. The half-filled
jeff = 1/2 states are then split by a realistic value for the Hubbard interaction U into lower
and upper Hubbard band (LHB, UHB). Reproduced from [Kim+08].

Several subsequent publications using tight-binding models obtained via density functional
theory (DFT) investigated the influence of correlations on the mean-field level [Jin+09] and
on a cluster mean-field level [WSY10; SWY10]. All of these detected the jeff = 1/2 character
of the ground state/lowest unoccupied excited state.

83



5. Three-band Hubbard model5

The importance of structural distortions besides SOC for the system to be insulating was
addressed using DFT+DMFT [Mar+11]. Since single site DMFT was used, the system was
considered in its paramagnetic phase. From their DFT results they deduce that the system
is spin-orbitally ordered, while there is neither orbital nor spin order on its own. To assess
the importance of structural distortions and SOC, the critical value of U/t necessary for the
Mott metal-insulator transition was monitored. Without either structural distortions or SOC
as well as without both, the critical interaction strength is larger than when including both.

Another paper by the same group [Mar+18] aimed at improving the theoretically ob-
tained single-particle spectral function on a qualitative level. In order to capture the effects
of AFM fluctuations in the paramagnetic phase, an oriented cluster was used as the impu-
rity. Adding nonlocal quantum fluctuations in such a manner makes the lowest unoccupied
excited jeff = 1/2 state more dispersive as was observed in experiment. Comparing the
angle-resolved photoemission spectra measured above and below the Néel temperature im-
plies that the spectral properties are insensitive to the presence or absence of magnetic order.

A topic related to this observation is the question, whether the magnetic order is the
result or partially the origin of the insulating behaviour [Ari+12; Li+13; WSY14]. In a
Mott-type insulator, the Coulomb interaction opens the insulating gap with the AFM being
a secondary effect. Within a Slater-type insulator, the insulating gap is opened by the AFM
order breaking the translational symmetry, meaning that the band structure is relevant for
the insulators stability.

An investigation of Sr2IrO4 via DFT+DMFT [Ari+12] concludes that the compound is
a Slater-type insulator, which is a consequence of Mott correlations. On the theoretical
side, the Hartree part of the self-energy driving the Slater insulator is not sufficient for the
insulating gap to open, while a contribution characteristic for the AFM order helps opening
the gap. In experiment, the insulating gap size measured in scanning tunneling spectroscopy
[Li+13], which behaves with temperature similar to a mean-field AFM order parameter,
hints only at a Slater-type origin of the metal-insulator transition.

The question of Mott- vs Slater-type insulator was picked up again in a variational Monte
Carlo study [WSY14]which considered the different energy gain mechanisms to distinguish
the types of insulators. A Mott-type insulator is considered interaction-energy driven, while
a Slater-type insulator is promoted through the band-energy gained. For low interaction
strength U/t, the AFM insulator is stabilised opposed to the paramagnetic metal through
the interaction energy U ′/t. At large interaction U/t, the band energy Ekin stabilises the
AFM insulator w.r.t. the paramagnetic insulator. When the paramagnet is a metal, the
band-energy is lost during the transition to the AFM insulator as compared to the transition
from the paramagnetic insulator, where band-energy is gained. For the region of intermedi-
ate interaction U/t, both gain mechanisms are active due to the strong renormalisation of
the paramagnetic metal. With Sr2IrO4 residing at intermediate interaction strength, Slater-
as well as Mott-type behaviour are expected to be observed.

In this chapter, the following questions are addressed using VCA:

What are the spectral signatures of the AFM? Which orbitals are relevant for the mag-
netism?
Does an extended cluster with local self-energy capture the essential physics as com-
pared to a cluster with nonlocal self-energy? What is the influence of nonlocal quantum
fluctuations onto spectral properties?
Can VCA contribute to the discussion of Mott- vs Slater-type insulator or should the
reference system be extended to include bath sites leading to CDIA?
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5. Three-band Hubbard model5

5.1.1. Hamiltonian, basis and orders5 1 1

As hinted at in figure 5.1, the CF splits the 5d states such, that only the t2g states are of rele-
vance. Hence the Hamiltonian considered is a three-band Hubbard model with interactions
of Kanamori form [GMM13; Ole83]

H = Hkin +Hint +HSOC +HCF +Hµ (5.1)

with the kinetic part

Hkin =− t1

∑

〈i, j〉1,σ

(c†
i,xy,σc j ,xy,σ + c†

j ,xy,σci,xy,σ)− t2

∑

〈i, j〉2,σ

(c†
i,xy,σc j ,xy,σ + c†

j ,xy,σci,xy,σ)

− t3

∑

〈i, j〉3,σ

(c†
i,xy,σc j ,xy,σ + c†

j ,xy,σci,xy,σ)

− t1

∑

〈i, j〉1,y,σ

(c†
i,yz,σc j ,yz,σ + c†

j ,yz,σci,yz,σ)− t1

∑

〈i, j〉1,x,σ

(c†
i,xz,σc j ,xz,σ + c†

j ,xz,σci,xz,σ), (5.2)

the interaction part

Hint = U
∑

i,α

niα↑niα↓ + U ′
∑

i,α,β 6=α

niα↑niβ↓ + (U
′ − J)

∑

i,α,β>α,σ

niασniβσ

− J
∑

i,α,β 6=α

c†
iα↑ciα↓c

†
iβ↓ciβ↑ + J

∑

i,α,β 6=α

c†
iα↑c

†
iα↓ciβ↓ciβ↑, (5.3)

the SOC

HSOC =
λ

2

∑

i

(c†
i,yz,↑, c†

i,yz,↓, c†
i,xz,↑, c†

i,xz,↓, c†
i,xy,↑, c†

i,xy,↓)
0 − iσz iσy

iσz 0 − iσx

− iσy iσx 0

















ci,yz,↑

ci,yz,↓

ci,xz,↑

ci,xz,↓

ci,xy,↑

ci,xy,↓













































,

(5.4)
the CF splitting

HCF =∆
∑

i,σ

ni,xy,σ (5.5)

and the chemical potential
Hµ = −µ

∑

i,α,σ

niασ. (5.6)

Within this enumeration, the following conventions are used:

The meaning of the angular brackets 〈i, j〉1,2,3 is illustrated in figure 5.2. They refer
to the bonds consisting of a site i and its first, second or third nearest neighbouring
site j . In case of the first nearest neighbours, the labels x and y added in 〈i, j〉1,x and
〈i, j〉1,y refer to the first nearest neighbouring sites along the x- or y-direction.
σx,y,z refer to the Pauli matrices.
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5. Three-band Hubbard model5

〈i, j〉1,x

〈i, j〉1,y 〈i, j〉2

〈i, j〉3

5.2 – Illustration of the various hoppings present within the kinetic part (5.2).

The hoppings and SOC used within the Hamiltonian are approximately taken from [SWY10],
while CF splitting is motivated by [Kim+14; Bog+15]. Hunds coupling is inferred from
[Li+13] and [Mar+11]. In contrast, the Hubbard-repulsion is adapted to match the insu-
lating gap measured in [Li+13]. In summary, the parameters amount to:

t1 = 0.36eV ≡ t
t2 = 0.18eV = t/2
t3 = 0.09eV = t/4
λ= 0.36eV = t
∆= t/2= 0.18eV
U = 1.8eV = 5t
J = 0.7t ≈ 0.25eV
U ′ = U − 2J = 3.6t ≈ 1.3eV

Conversely, the chemical potential is determined such, that the system is filled by one hole
per site as described in section 2.4.7. In practice, the nearest neighbour hopping of the
xy-orbital forms the unit of energy and is denoted by t.

As mentioned in the introduction, the systems ground state was argued several times to be
of jeff = 1/2 character [Jin+09; WSY10; SWY10], indicating that jeff forms a good quantum
number. Hence instead of looking at the decomposition of the spectral properties in terms
of the t2g orbitals, the jeff = 1/2 and 3/2 states are used. Since these states are also denoted
as Kramers doublets A ( jeff = 1/2), B and C ( jeff = 3/2) in the literature [SWY10; Sch16;
Fel19] this notation is used in the rest of the chapter. In essence, they are the eigenstates of
an atomic Hamiltonian including only SOC and CF splitting. For completeness, the Kramers
doublets as used in [Fel19] and within this thesis are given by

c†
A,± = sin(θ )c†

xy,σ +
1
p

2
cos(θ )(±c†

yz,σ̄ + i c†
xz,σ̄), (5.7)

c†
B,± = −

1
p

2
(±c†

yz,σ + i c†
xz,σ), (5.8)

c†
C ,± = cos(θ )c†

xy,σ −
1
p

2
sin(θ )(±c†

yz,σ̄ + i c†
xz,σ̄), (5.9)

86



5. Three-band Hubbard model5

where ± denotes the pseudospin of the Kramers doublets. The angle θ depends on SOC λ
and CF ∆ in the following fashion

cos(θ ) =
1
p

2

√

√

1+
λ/2+∆

R
, (5.10)

sin(θ ) =
1
p

2

√

√

1−
λ/2+∆

R
, (5.11)

R=

√

√9
4
λ2 +∆2 +λ∆. (5.12)

However not only spectral properties are decomposed into contributions from Kramers
doublets, but also the fillings and orders considered. The orders considered take the general
form

H = h′
∑

j

Λ j exp(iq · j), (5.13)

where Λ j is a one-body operator and q the ordering wavevector. In practice, AFM and
ferromagnetic (FM) orderings expressed in the cubic harmonics (C) and the Kramers (K)
basis with different spin orientations (x,z) are investigated:

CAFM: Λ j =
∑

α∈{xy,yz,xz}
(n jα↑ − n jα↓), q = (π,π),

CFM: Λ j =
∑

α∈{xy,yz,xz}
(n jα↑ − n jα↓), q = (0,0),

KAFM Sz: Λ j =
∑

α∈{A,B,C}
(n jα+ − n jα−), q = (π,π),

KFM Sz: Λ j =
∑

α∈{A,B,C}
(n jα+ − n jα−), q = (0,0),

KAFM Sx: Λ j =
∑

α∈{A,B,C}
(c†

jα+c jα− + c†
jα−c jα+), q = (π,π),

KFM Sx: Λ j =
∑

α∈{A,B,C}
(c†

jα+c jα− + c†
jα−c jα+), q = (0,0),

with n jασ = c†
jασc jασ. The in-plane orderings employing the pseudospin components in

x-direction Sx are obtained via a SU(2) spin-rotation applied to the creation/annihilation
operators as used in [Sch16], meaning

c†
jα+x
= (c†

jα+ + c†
jα−)/

p
2, (5.14)

c†
jα−x
= (−c†

jα+ + c†
jα−)/

p
2. (5.15)

For the investigation of small reference systems such as the 1 and 2× 1 site clusters, FD is
employed at zero and finite temperature. In case of the larger 2× 2 site cluster illustrated
in figure 2.9, all computations are performed with Nex = 60 exact trace vectors, which are
obtained by performing a maximum of 1800 Band Lanczos iterations allowing Ndeg = 8
starting vectors. The excited state sectors are handled with a regular Lanczos solver with a
maximum of 800 iterations. For the construction of the Green’s function, the high-frequency
expansion is employed up to 15th order.
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5. Three-band Hubbard model5

As for the modus operandi, first the free energy as a function of the physical and cluster
chemical potential µ and µ′ is evaluated on a grid. This is done for the PM phase with
h′/t = 0 for three temperatures T/t ∈ {0, 0.01,0.1} to assess which optima survive to finite
temperature. After an estimate of both parameters is obtained with a resolution of ∆µ/t =
0.1=∆µ′/t, the corresponding optimum is determined starting from the estimate. Starting
from this optimum, the free energy is computed for a range of Weiss field amplitudes h′/t ∈
{0.00,0.01, . . . , 0.20} at all temperatures considered, while optimising the two chemical
potentials. The free energies obtained allow to determine the optimal magnetic Weiss field
with a resolution of ∆h′/t = 0.01. For the computation of further observables, the system
is evaluated at the optimum.

5.1.2. 2× 1 site cluster5 1 2

Starting with a small 2× 1 site cluster, various magnetic orders are compared at zero tem-
perature T/t = 0 as shown in figure 5.3. Among all orders shown, the AFM ones exhibit
minima at finite Weiss field |h′/t| > 0, while the FM ones have a maximum at h′/t = 0.
Since the lowest minimum is interpreted as being realised, the Kramers in-plane ordering
‘KAFM Sx’ will be considered in the following. The interaction strength U/t = 5 is chosen
such, that the gap in the DOS belonging to the KAFM Sx order amounts to ∼ 0.2 eV as found
experimentally at the lowest temperature reached [Li+13].
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5.3 – CPT free energy FCPT as function of several Weiss fields amplitudes h′/t at T/t = 0 and
U/t = 5. The Weiss fields considered induce AFM and FM orderings expressed in the cubic
harmonics (C) and the Kramers (K) basis, where different spin orientations (x,z) are used.

Upon raising the temperature, the minimum associated with the KAFM Sx order shifts
to smaller values of the Weiss field, until it vanishes at the Néel temperature TN/t = 0.2.
This can be inferred from figure 5.4. It signals a transition from the KAFM Sx order to a
paramagnet. Since in order to fix the particle number, the free energy is optimised w.r.t.
the chemical potential µ/t and the cluster chemical potential µ′/t, the Weiss field h′/t is
only scanned with a resolution of δh′/t = 0.01. Hence the rough looking behaviour of the
highlighted minima.
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5.4 – CPT free energy FCPT as function of the KAFM Sx Weiss field amplitudes h′/t for several
temperatures T/t ∈ {0.0,0.01, . . . , 0.20}.

In order to evaluate the spectral properties of the system, the variational parameters are
fixed to those of the minima highlighted in figure 5.4.

The DOS for the different temperatures is shown in figure 5.5. While the left-hand fig-
ure 5.5a shows the DOS for all temperatures as computed, the DOS is shifted within the
right-hand figure 5.5b such that any change of the gap with temperature can be inferred.

Up to T/t = 0.07, the chemical potential changes almost linearly with temperature. While
it first resides at the lower edge of the gap, it shifts with increasing temperature to its center
where it stays until the maximum temperature T/t = 0.3 is reached. Starting at T/t = 0.16,
a peak develops at the lower edge of the gap, while the upper edge starts to develop a
shoulder which spreads into the gap. When considering the DOS in figure 5.5b with the
upper edges of the gap shifted on top of each other, within the KAFM Sx phase the gap
shrinks starting from its lower edge. In the paramagnetic phase, this extension of the lower
gap boundary slows down, however a peak in the gap starts to emerge making the base of
the gap asymmetric. This can be seen by the slope of the blue and orange lines, which serve
as guides to the eye for the lower edge of the gap marked by points where the DOS takes
the value 0.3.
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5.5 – Total DOS as is and energy shifted onto the T/t = 0 total DOS for different temperatures

T/t ∈ {0.00,0.01, . . . , 0.30} in (a) and specified in (b). The red curve highlights the phase
transition at TN. To illustrate the difference in how the gap closes in the AFM and PM phase,
the blue and orange lines serve as guides to the eye for the points which mark the energy,
where the DOS takes the value 0.3.
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Considering the spectral function with its additional dependence on the reciprocal vectors
in figure 5.6 encompasses further information on the magnetic features and how they vanish
with increasing temperature. Since the contributions for different signs of m jeff

are the same,
only those with positive sign are shown and denoted by a plus sign.

The main feature associated with magnetism is the dispersive arc around k/π = (1,0)
[SWY10], which is visible for all jeff states at T/t = 0.01. With increasing temperature, this
arc flattens in case of the jeff = 1/2 state and vanishes for the jeff = 3/2 states until it is gone
for all orbitals at the Néel temperature TN/t = 0.2. Another subtle hint at the connection
to an AFM order is the peak within the occupied states around k/π = (1/2,1/2). For a
perfect AFM, the points k/π= (1, 0) and k/π= (1/2, 1/2) are equivalent. Due to nonlocal
quantum fluctuations, this is not the case. However the presence of peaks at k/π = (1,0)
and k/π= (1/2,1/2) can be interpreted as remnants of the perfect AFM.

Coming back to the gap and how it shrinks with increasing temperature, the path con-
sidered suggests at low temperature weight of the unoccupied states extending at the point
k/π = (1/2,1/2) into the gap, which changes at higher temperature to k/π = (0,0). This
bending of the dispersion around k/π= (0,0) has been identified by Seki et al. [SSY18] as
a signature of the AFM state in case of the one-band Hubbard model. Given the spectrum in
the AFM phase, this change is expected. Due to doubling of the unit cell in a perfect AFM,
the band weights at k/π = (0,0) and k/π = (1,1) are expected to be at the same energy.
Within the PM phase however, the point k/π= (0, 0) is expected to be of lower energy than
the one at k/π= (1,1), which is the change observed.

Similar to how the magnetic feature is most pronounced in the jeff = 1/2 spectrum, the
lowest unoccupied states keep their jeff = 1/2 character [WSY10; SWY10] as temperature
is raised.
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5.6 – Spectral function decomposed into contributions from the atomic states |A,+〉 =
| jeff = 1/2, m jeff

= 1/2〉, |B,+〉= | jeff = 3/2, m jeff
= 3/2〉 and |C,+〉= | jeff = 3/2, m jeff

= 1/2〉
for different temperatures T/t.

The jeff = 1/2 character of the lowest unoccupied states can also be inferred from the
respective DOS shown in figure 5.7. Since one edge of the gap is essentially formed by the
jeff = 1/2 states, it determines how the gap is reduced.
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5.7 – Total and orbital resolved DOS for temperatures used for the spectra in figure 5.6.
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Looking at the occupations of the respective states in figure 5.8, for the entire range of
temperatures considered, the jeff = 3/2 states remain occupied, while the jeff = 1/2 states
stay half-filled.
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5.8 – Occupations per site and spin (electron perspective) as a function of temperature.

5.1.3. 1 site cluster5 1 3

Since a single site cluster cannot accommodate an AFM order, figure 5.9 shows only the
low-temperature spectrum in the PM phase. As seen for the high-temperature PM phase for
the 2 × 1 site cluster in figure 5.6, the states below the chemical potential are very much
dispersionless away from the center k/π = (0,0) of the Brillouin-zone. The unoccupied
hole in turn exhibits a free dispersion in two dimensions as promoted by the free hopping
between the clusters.
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5.9 – Spectral function decomposed into contributions from the atomic states |A,+〉 =
| jeff = 1/2, m jeff

= 1/2〉, |B,+〉= | jeff = 3/2, m jeff
= 3/2〉 and |C,+〉= | jeff = 3/2, m jeff

= 1/2〉
for the temperature T/t = 0.01.
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5.1.4. 2× 1 site cluster with local self-energy5 1 4

A local self-energy similar to single site DMFT [Mar+11] is achieved by treating all hoppings
perturbatively. In practice, all hoppings entering the cluster Hamiltonian are moved into the
V-matrix. The KAFM Sx order being local is still optimised, as well as the chemical potential.
This approach is similar to the comparison performed in the supplementary material of
[Mar+18], where the oriented cluster DMFT is employed for a single site.

In contrast to the VCA results in figure 5.4, the optimal Weiss field in figure 5.10 first
increases and then decreases with increasing temperature, while it kept decreasing within
VCA. Due to this detour, the Néel temperature TN/t = 0.25 turns out to be larger compared
to VCA.

A possible explanation is that the reference system is not well suited to capture the mag-
netic features of the original system. Since the cluster sites of the reference system have no
means of exchanging particles via hopping, they are decoupled and an effective superex-
change interaction between the sites cannot emerge. The reference system itself thus has
no mechanism to stabilise a magnetic order which should therefore be entirely driven by
the Weiss field. With increasing temperature, more excited states of the ground state sec-
tor become relevant. In order to preserve the magnetic order which resembles the original
system, the Weiss field has to enforce magnetic states as the lowest excited states and thus
first increases with temperature. Once the temperature is too high, the Weiss field cannot
ensure that only magnetic states contribute and the system starts to approach a PM.
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5.10 – CPT free energy FCPT as function of the KAF Sx Weiss field amplitudes h′ for several tem-
peratures T/t ∈ {0.03,0.04, . . . , 0.25}.

Concerning the magnetic features in the spectral function, figure 5.11 shows, that the arc
at k/π = (1, 0) is present at low temperature and vanishes above the Néel temperature as
observed before. However compared to VCA, all states A, B and C exhibit such an arc, which
remains visible also up to higher temperature.

Besides the magnetic features, the wavevectors forming the edges of the gap and the
lowest unoccupied state being of jeff = 1/2 character are captured qualitatively by the local
self-energy. Subtle differences are sharper features for the local self-energy, missing features
above the chemical potential and a bigger gap between occupied and unoccupied states.
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5. Three-band Hubbard model5

In comparison to the 2 × 1 and 2 × 2 site cluster with nonlocal self-energy a band with
incoherent weight is missing. Considering the unoccupied states as those of a one-band
Hubbard model [Kim+08], it describes the hole-dynamics of the respective low-energy t-J -
model [Dag94].

The increased gap is accompanied in the supplementary material of [Mar+18] with a
constant energy map strongly differing from the one with an oriented cluster as reference
system.
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5.11 – Spectral function decomposed into contributions from the atomic states
|A,+〉 = | jeff = 1/2, m jeff

= 1/2〉, |B,+〉 = | jeff = 3/2, m jeff
= 3/2〉 and |C,+〉 =

| jeff = 3/2, m jeff
= 1/2〉 for different temperatures T/t.
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5.1.5. 2× 2 site cluster5 1 5

To check the stability of the observations made with the 2×1 site cluster, a larger 2×2 site
cluster as reference system is investigated.

The free energy shown in figure 5.12 behaves similar to the 2 × 1 site cluster in the
sense, that the Weiss field is continuously reduced until it vanishes at the Néel temperature.
Compared to the smaller reference system, the Néel temperature TN/t = 0.18 is reduced as
expected, since according to the Mermin-Wagner theorem [GN01] breaking of a continuous
symmetry leading to the system ordering cannot occur in a two-dimensional system at finite
temperature.

0.00 0.05 0.10 0.15 0.20
−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
·10−2

T

h′/t

[F
C

PT
(h
′ )
−

F C
PT
(0
)]
/

t

5.12 – CPT free energy FCPT as function of the KAF Sx Weiss field amplitudes h′ for several tem-
peratures T/t ∈ {0.00,0.01, . . . , 0.18}.

Considering the DOS in figure 5.13, going from zero to non-zero temperature, the chem-
ical potential exhibits a jump. This is most likely a numerical artifact due to the small
weight in the gap allowing for a range of chemical potentials to realise the filling intended.
In the range of T/t ∈ [0.01,0.06], the chemical potential shifts again almost linearly with
temperature. For higher temperature, the chemical potential remains in the same order of
magnitude. Just as in case of the 2 × 1 site cluster, the lower gap edge develops a peak,
while the upper one exhibits a shoulder. Comparing the KAFM Sx phase with the PM phase,
the gap closes rapidly in the prior one starting from the lower edge of the gap, while a peak
emerges in the latter making the gap asymmetric. The speed by which the gap closes from
its lower edge can be assessed from the blue and orange lines, which serve as guides to the
eye for the points which refer to a value of 0.8 in the DOS. Both features of the gap closing
are the same as for the 2× 1 site cluster.
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5.13 – Total DOS as is and energy shifted onto the T/t = 0 total DOS for different temperatures

T/t ∈ {0.00,0.01, . . . , 0.25} in (a) and specified in (b). The red curve highlights the phase
transition at TN. To illustrate the difference in how the gap closes in the AFM and PM
phase, the blue and orange lines serve as guides to the eye for the points which mark the
energy, where the DOS takes the value 0.8.

As for the 2×1 site cluster, the arc at k/π= (1, 0) remains as feature of the magnetic order
as shown in figure 5.14 when going to a larger reference system. In constrast to the smaller
reference system, the arc seems to flatten by moving towards the chemical potential. Just
as in case of the smaller cluster, the arc is present at low temperature for all states, while
it flattens for the jeff = 1/2 states and vanishes for the jeff = 3/2 states when going beyond
the Néel temperature.

The gap seems to keep closing from the point k/π = (1/2,1/2), since the weight previ-
ously present around k/π= (0,0) is missing.

In addition, the jeff = 1/2 character of the lowest unoccupied states is pronounced further
compared to the 2× 1 site cluster since weight from the jeff = 3/2 states is missing above
the chemical potential.
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5.14 – Spectral function decomposed into contributions from the atomic states |A,+〉 =
| jeff = 1/2, m jeff=1/2〉, |B,+〉 = | jeff = 3/2, m jeff=3/2〉 and |C,+〉 = | jeff = 3/2, m jeff=1/2〉 for
different temperatures T/t.

As for the 2 × 1 site cluster, the jeff = 1/2 character of the lowest unoccupied states is
visible within the respective DOS shown in figure 5.15. The jeff = 1/2 states determine how
the gap is reduced. In contrast to the 2× 1 site cluster, it seems that the asymmetry in the
gap of the total DOS is entirely determined by the asymmetry of the gap in the jeff = 1/2
DOS.
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5.15 – Total and orbital resolved DOS for temperatures used for the spectra in figure 5.14.
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On the front of the states occupation shown in figure 5.16 nothing changes compared to
the 2× 1 site reference system. The jeff = 1/2 states are approximately half-filled while the
jeff = 3/2 states are completely occupied over the entire temperature range considered.
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5.16 – Occupations per site and spin (electron perspective) as a function of temperature.

5.1.6. Néel temperature5 1 6

As a summary, figure 5.17a shows the magnetisation as a function of temperature for the
various reference systems. In case of the 2 × 1 site cluster with local self-energy Σloc, the
amplitude of the magnetisation as well as the stability of the magnetic phase are overes-
timated. This behaviour is expected, since a local, atom-like self-energy lies closer to the
mean-field limit than the self-energy of a cluster with local degrees of freedom. In the latter
case, nonlocal quantum fluctuations can inhibit ordering.

With a nonlocal self-energy, the amplitude of the magnetisation drops and remains at
low temperature independent of the size of the reference system. Furthermore, the Néel
temperature is reduced from local to nonlocal self-energy to larger reference system. The
latter is expected from the Mermin-Wagner theorem [GN01].

Further signatures of the KAFM Sx phase are the kink in the entropy and the resulting
peak in the specific heat at the Néel temperature visible in the figures 5.17b and 5.17c.

0.0 0.1 0.2 0.3
0.0
0.2
0.4
0.6
0.8
1.0

T/t

m

(2× 1)
(2× 1),Σloc

(2× 2)

(a) Magnetisation.

0.0 0.1 0.2 0.3
0.0
0.2

0.4

0.6
0.8 TN/t

T/t

S

(b) Entropy.

0.0 0.1 0.2 0.3
0.0
0.5
1.0
1.5
2.0
2.5

TN/t

T/t

C

(c) Specific heat.
5.17 – Magnetisation, entropy and specific heat as function of temperature for the 2×1 site cluster

with full and single site self-energy as well as for the 2× 2 site cluster.
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5.1.7. Conclusion and Outlook5 1 7

To answer the questions raised at the beginning of this chapter:

The AFM is characterised by an arc around the point k/π = (1, 0) which vanishes
with increasing temperature. Within the unoccupied states, the dispersion at the point
k/π = (0, 0) flips [SSY18] for a 2× 1 site reference cluster. Such a behaviour cannot
be confirmed for the larger 2×2 site reference system, where weight around this point
is missing.

The orbitals responsible for the magnetic ordering are the jeff = 1/2 states. When
going above the Néel temperature, the occupation of the states does not change.
A local self-energy within the VCA qualitatively reproduces the spectra of the magnet-
ically ordered system. However it overestimates the magnetic order’s stability (larger
Néel temperature, larger spectral gap) and misses out on spectral features in the un-
occupied states, which show up when considering nonlocal quantum fluctuations.
Within VCA, the insulating gap changes with temperature only marginally. The gap
filling up above and below the Néel temperature appear to be different. However this
occurs in such a faint manner, that definitive conclusions cannot be drawn.

Trying to describe a metallic state with a finite cluster as reference system can be
improved by adding bath sites and performing CDIA instead of VCA [BHP08; SSY18].
Since the d5 system investigated within this section allows for a 2× 2 site reference
cluster in VCA, a CDIA reference system of a 2× 1 site cluster with one bath-site per
cluster site should be in reach. Hence the question of Mott- vs Slater-type insulator
should be revisited within CDIA.

As a side note, the number of variational parameters should first be restricted to the
system, cluster and a bath chemical potential to fix the filling. Once a suitable starting
point with satisfying filling is found, one can start sweeping the bath hybridisation.
Similar to the one-band Hubbard model [SSY18], a minimum at low hybridisation
is expected to hint at an insulator, while a minimum at higher hybridisation should
imply a metal. By finally comparing the PM computation with a hybridisation sweep
with finite AFM field on the reference cluster or even sweeping an AFM Weiss field
and comparing the DOSs should give an indication which scenario might be occuring.
Another way to investigate the question of Mott- vs Slater-type insulator would be
to perform a parameter study similar to the one for the half-filled one-band Hubbard
model [SSY18]. There, the paramagnetic entropy, specific heat and double occupa-
tion 〈D̂〉 = ∂UΩ for all particle number sectors combined are computed for a large
range of temperature and Hubbard repulsion U . Peaks in the specific heat highlight
spin and charge excitations. Regions with ∂US = −∂T 〈D̂〉 > 0 mark spin fluctuations
which increase the entropy by means of increased U . Their origin can be motivated
by a double-occupancy susceptibility χD = −T∂U 〈D̂〉 and the superexchange coupling
constant J = 4t2/U . Comparison with other studies allowed to assign the spin-
fluctuations at small U to the Slater-type insulator and the ones at large U to the
Mott-type insulator. The entropy and specific heat presented may serve as a starting
point for such a study.
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For a three-band Hubbard model, such a study will be more involved, since more
couplings are present, which are usually chosen to depend on each other. Another
point worth mentioning is the fixed filling of the present system. In order to enforce a
specific filling in a thermodynamically consistent way, the physical chemical potential
and a cluster chemical potential have to be optimised. This leads to the question,
whether it is sufficient to perform the optimisation only in the particle number sector
corresponding to this fixed filling and use the chemical potentials obtained in the
other particle number sectors. A numerically more expensive approach would be to
optimise for arbitrary fillings which can be realised within CDIA.
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5.2. d4 configuration: Ca2RuO45 2
Another compound described by a three-band Hubbard model but with four electrons is Ca2RuO4. Using
VCA, SOC is found to destabilize the magnetic order. However it seemingly does not affect the Néel
temperature which is most likely a finite-size effect. With increasing temperature, the capability of SOC to
mix different orbitals becomes less effective. The combination with signatures of orbital fluctuations and
the absence of real orbital order [Por+18] suggests phase fluctuations between the orbital components
which are no longer fixed by SOC as the origin of these fluctuations. The results presented here have in
part been published in [LD21].

Another compound interesting for its orbital physics is Ca2RuO4 [Bur08]. In contrast to
Sr2IrO4 discussed in the previous section, it hosts two holes in 4d orbitals. Similar to the
prior compound, CF splitting leads to the four electrons occupying the t2g orbitals indicating
a system with three active orbitals. With increasing temperature, Ca2RuO4 starts off at
low temperature as an AFM insulator until it reaches its Néel temperature TN = 110 K. At
TMIT = 360K, the paramagnetic insulator transitions further into a paramagnetic metal. In
between, at TOO = 260K, the transition from an orbitally ordered into a disordered state
may [Zeg+05] or may not [Por+18] be present.

After finding, that the orbital occupation changes strongly with temperature and attribut-
ing this to strong SOC [Miz+01], Hotta and Dagotto [HD01] predicted an orbital ordered
(OO) state responsible for this behaviour. Several groups [HD01; Jun+03; FNT04] argued
in favour of an orbital order, however the actual order as well as the stabilisation mecha-
nism remained debated. Experimentally, Zegkinoglou et al. [Zeg+05] associated the order
parameter-like vanishing of the (100) reflex of the L2-edge at TOO ≈ 260K with the orbital
order, while the phase at TN ≤ T ≤ TOO was identified as a paramagnet.

A DFT+DMFT study [Gor+10] argued, that structural change with temperature is the
main driver of the orbital order accompanying the insulator-metal transition, which prevails
against an orbital-selective Mott phase due to CF splitting dominating over the bandwidths
influence. This study as well as another one by the same group [ZP17] attributed the metal-
insulator transition (MIT) occuring at TMIT = 360 K [Bur08] to the structural change as
well. The second publication [ZP17] claimed, based on the local spectral function, that
SOC on the LDA-level, an anisotropic, orbital dependent Coulomb interaction and magnetic
ordering are not decisive for the MIT.

A thorough resonant elastic x-ray scattering study [Por+18] brought the conclusion by
Zegkinoglou et al. of orbital order into question. At TOO = 260 K, no abrupt behaviour was
detected in the x-ray reflex at (013) of the L2-edge addressing the same order parameter as
the one at (100) of the L2-edge and hence the assignment of an orbital-order phase tran-
sition to this temperature should be reanalysed. However the continuous decrease in the
above mentioned reflexes cannot be explained entirely by the contraction of the octahedra,
allowing for a complex phase relation in the (yz, xz)-subspace.

As for this chapter, the influence of SOC and CF splitting onto the temperature-dependence
of static quantities as well as of dynamic properties is investigated following the treatment at
zero temperature [Fel19]. The prior comprises magnetisation, specific heat and orbital oc-
cupation, while the latter refers to the DOS and spectral function. Furthermore, the cluster
expectation value of projectors onto the local LS-coupled states |J = 0, 1,2〉 is determined.
The overall focus lies on the magnetic phase transition and features in the above mentioned
observables hinting at orbital-selective behaviour. An attempt to model the metal-insulator
transition by means of CDIA turned out difficult already while searching for a starting point
at zero temperature.
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5.2.1. Hamiltonian, observables and orders5 2 1

Since only the t2g states are of relevance, the Hamiltonian considered is again a three-band
Hubbard model with interactions of Kanamori form [GMM13; Ole83]

H = Hkin +Hint +HSOC +HCF +Hµ (5.16)

with the kinetic part

Hkin =− t
∑

〈i, j〉1,σ

(c†
i,xy,σc j ,xy,σ + c†

j ,xy,σci,xy,σ)

− t
∑

〈i, j〉1,y,σ

(c†
i,yz,σc j ,yz,σ + c†

j ,yz,σci,yz,σ)− t
∑

〈i, j〉1,x,σ

(c†
i,xz,σc j ,xz,σ + c†

j ,xz,σci,xz,σ), (5.17)

the interaction part

Hint = U
∑

i,α

niα↑niα↓ + U ′
∑

i,α,β 6=α

niα↑niβ↓ + (U
′ − J)

∑

i,α,β>α,σ

niασniβσ

− J
∑

i,α,β 6=α

c†
iα↑ciα↓c

†
iβ↓ciβ↑ + J

∑

i,α,β 6=α

c†
iα↑c

†
iα↓ciβ↓ciβ↑, (5.18)

the SOC
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(5.19)
the tetragonal CF splitting

HCF =∆
∑

i,σ

ni,xy,σ (5.20)

and the chemical potential
Hµ = −µ

∑

i,α,σ

niασ. (5.21)

The coupling parameters used are approximately taken from [Fel19]. Since anisotropic
first nearest neighbour, second nearest neighbour, and inter-orbital hopping do not alter
the results significantly, only isotropic first nearest neighbour hopping is considered. Most
values for SOC are chosen as λ/t > 0.4 since at T/t = 0, excitonic AFM order with or-
dering wavevector q/π = (1, 1) dominates. For λ/t ≤ 0.4 a stripy pattern with ordering
wavevectors q/π = (0, 1) for spins and q/π = (1,0) for orbitals is realised, which is not of
interest. CF splitting and interaction parameters are taken from [Fel19] in order to realise
an excitonic AFM order and are further motivated by [Gre+19; Sut+17; Por+18; Gor+10;
Miz+01]. Altogether, the coupling parameters used in practice are given below:

102



5. Three-band Hubbard model5

t = 0.2eV
λ ∈ {0,0.1, 0.6,0.8, 1}t = {0, 0.02,0.12, 0.16,0.2}eV
∆ ∈ {0,1.5, 5}t = {0,0.3, 1}eV
U = 12.5t = 2.5eV
J = 2.5t = 0.5eV
U ′ = (U − 2J) = 7.5t = 1.5eV

Besides these parameters, the chemical potential is fixed s.t. the system is filled by two holes
per site as described in section 2.4.7. The unit of energy used in practice is given by the
nearest neighbour hopping of the xy-orbital denoted by t.

In order to assess the influence of SOC on the magnetic and orbital composition, the
squared absolute value of the overlap of the local LS-coupled states |J = 0, 1,2〉 with the
cluster ground state were considered at zero temperature [Fel19]

〈J〉= | 〈Ψ0|J〉 |2. (5.22)

This overlap can be extended to finite temperature by interpreting it as the expectation value
of a projector onto the LS-coupled states, which gives at finite temperature

〈J〉= Tr(% |J〉 〈J |) (5.23)

=
∑

n

exp(−βεn)
Ξ

| 〈Ψn|J〉 |2, (5.24)

where in practice the sum is truncated to the exact trace vectors determined by the cluster
solver. Computing the overlap on a VCA level is not possible, since only the single-particle
Green’s function containing one-body operators is available, while the overlap is a two-body
observable. One may argue that this overlap yields information on the local magnetic and
orbital composition of a cluster embedded in its environment. Note that also the expectation
values of projectors including other states can be computed in order to characterise the
system.

Since this cluster expectation value is computed from the eigenstates following equa-
tion (2.22) and not from the cluster Green’s function, the discrepancies discussed in ap-
pendix C do not affect the results presented in this section.

The orders considered within VCA take the general form

H = h′
∑

j

Λ j exp(iq · j), (5.25)

where Λ j is a one-body operator and q the ordering wavevector. In practice, the following
orders are investigated:

CAFM Sz: Λ j =
∑

α∈{xy,yz,xz}
(n jα↑ − n jα↓), q = (π,π),

CAFM Sx: Λ j =
∑

α∈{xy,yz,xz}
(c†

jα↑c jα↓ + c†
jα↓c jα↑), q = (π,π),

with n jασ = c†
jασc jασ. The in-plane orderings employing the spin components in x-direction

Sx are obtained via a SU(2) spin-rotation applied to the creation/annihilation operators as
used in [Sch16], meaning

c†
jα↑x
= (c†

jα↑ + c†
jα↓)/
p

2, (5.26)

c†
jα↓x = (−c†

jα↑ + c†
jα↓)/
p

2. (5.27)
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The reference system considered for the major part is a 2×1 site cluster. At zero temper-
ature, a 2× 2 site cluster can be employed as reference system [Fel19], while tests at finite
temperature showed that ∼ 20 converged exact trace vectors obtained after ∼ 1600−2000
Lanczos iterations already form a limit, since the optimisation requires multiple evaluations
of the grand potential. To assess the size dependence and local character of the observations,
a 1 site cluster is employed.

Technically, for finite temperature all computations for the 2×1 site cluster are performed
with Nex = 120 exact trace vectors, which are obtained by performing a maximum of 800
Band Lanczos iterations allowing Ndeg = 8 starting vectors. The excited state sectors are
handled with a regular Lanczos solver with a maximum of 800 iterations. In case of the
1 site cluster, FD and all exact trace vectors are used. For the construction of the Green’s
function, the high-frequency expansion is employed up to 15th order for both cluster sizes.

Employing the Band Lanczos and Lanczos solver instead of FD for the 2× 1 site cluster
is due to the latter taking too much time to construct the Green’s function. Details on this
can be found in appendix D.2. The restriction to Nex = 120 exact trace vectors is used, since
it turned out to be sufficient for large clusters of the one-band Hubbard model. In general,
the decision to restrict the number of trace vectors instead of setting them depending on
the temperature [SSY18] is discussed in appendix D.2.

As for the modus operandi, first the free energy as a function of the physical and cluster
chemical potential µ and µ′ is evaluated on a grid. This is done for the PM phase with
h′/t = 0 for three temperatures T/t ∈ {0, 0.01,0.1} to assess which optima survive to fi-
nite temperature. After an estimate of both parameters is obtained with a resolution of
∆µ/t = 0.1=∆µ′/t, the corresponding optimum is determined starting from the estimate.
Starting in case of the 2× 1 site cluster from this optimum, the free energy is computed for
a range of the magnetic Weiss field amplitudes h′/t ∈ {0.00,0.01, . . . , 0.20} at all temperat-
ures considered while optimising the two chemical potentials. The free energies obtained
allow to determine the optimal magnetic Weiss field with a resolution of ∆h′/t = 0.01. For
the 1 site cluster this step is omitted, since such a cluster does not allow for an AFM order.
For the computation of further observables, the system is evaluated at the optimum.

5.2.2. Zero tetragonal CF splitting5 2 2

As a reference, first the system without tetragonal CF splitting ∆/t = 0 is considered. Ac-
cording to investigations at zero temperature [Fel19], the interaction parameters under
consideration lead to an AFM order with the spin pointing out-of plane and Sz as relevant
spin component to quantify the order.

Figure 5.18 shows the free energy for three values of SOC λ/t ∈ {0.6, 0.8,1} as a function
of the AFM Sz Weiss field h′/t for several temperatures T/t ∈ {0.00,0.01, . . . , TN/t}. Within
these images, the optimal Weiss field decreases with increasing temperature for all SOCs
considered. Interpreting the depth of the free energy minimum as a measure of stability,
smaller SOC leads to a more stable AFM Sz order. This is reasonable, since larger SOC
implies the system to lie closer to a PM [Fel19]. However the Néel temperature does not
seem to depend on the SOC as inferred from the values considered. Besides the possibility
of strong finite-size effects, another explanation lies in the system being close to the stripy
phase for lowest SOC λ/t = 0.6 considered, which could affect the stability of the magnetic
order in that limit.

In order to fix the particle number, the free energy is optimised w.r.t. the chemical poten-
tial µ/t and the cluster chemical potential µ′/t. Thus the Weiss field h′/t is only scanned
with a resolution of ∆h′/t = 0.01 leading to the discrete appearance of the highlighted
minima.
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5.18 – CPT free energy FCPT/t at the given SOC λ/t as function of the AFM Sz Weiss field ampli-

tudes h′/t for several temperatures T/t ∈ {0.00, 0.01, . . . , TN/t}.

A direct measure of the AFM Sz order is the AFM magnetisation shown in figure 5.19a as
function of temperature. Its saturation value at low temperature decreases with increasing
SOC. This can be understood in terms of the atomic limit, where SOC promotes a singlet
state [Fel19]. Given the resolution of the Weiss field, the magnetisation amounts to its
saturation value up to rather large temperatures T/t = 0.07 for λ/t = 0.6 and T/t = 0.09
for λ/t ∈ {0.8,1}. However the Néel temperature does not seem to depend on SOC.

The Néel temperature can also be inferred from the kink visible in the entropy displayed in
figure 5.19b. However with increasing SOC, the kink becomes less distinct and the entropy
at a given temperature decreases.

The specific heat shown in figure 5.19c as function of temperature exhibits up to two
peaks, depending on the SOC. At low and intermediate SOCs λ/t ∈ {0.6, 0.8} only one
peak close to TN is present. Its height decreases with increasing SOC. Since it lies close to
the Néel temperature, it is identified as signature of AFM fluctuations. Only for high SOC
λ/t = 1, a second, broader peak occurs at higher temperature TC2/t = 0.225.
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5.19 – Magnetisation, entropy and specific heat as function of temperature for λ/t ∈ {0.6, 0.8,1}.
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To get an overview of the local magnetic and orbital composition of a cluster embedded
in its environment, the overlaps introduced in equation (5.24) as a function of temperature
are shown in figure 5.20. For all SOCs considered, the overlaps remain almost constant
below the Néel temperature TN. Starting at TN, the overlaps start to change significantly.
The overlap 〈J = 0〉 decreases rapidly, while 〈J = 1〉 and 〈J = 2〉 increase.

An increase in 〈J = 1〉 during the transition from AFM to PM deviates from what is ob-
served when this transition is mimicked at zero temperature by considering the system at
optimal (AFM) and at zero (PM) AFM Sz Weiss field [Fel19]. There, weight seemingly shifts
from 〈J = 1〉 to 〈J = 0〉 upon setting the AFM Sz Weiss field to zero. While for the artificial
transition at zero temperature the spectrum is altered via the Weiss field, the finite temper-
ature treatment leads besides that also to more states contributing to the trace. Hence a PM
state of the system is induced partially also by including PM excited states while the ground
state may still be an AFM enforced by the Weiss field.

With increasing SOC, 〈J = 0〉 starts for low temperatures at a higher value at the expense
of 〈J = 1〉, leading to the intersection of both shifting to higher temperatures. Expressed
differently, a higher temperature is required to mix different J -states into the system. This
can be understood by considering the atomic limit, where the level splitting is proportional
to the SOC [Fel19]. Hence a higher temperature is required to populate these states.
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5.20 – Overlaps as functions of temperature at λ/t ∈ {0.6,0.8, 1} considering holes.

Coming to dynamic properties, the DOS for various temperatures is shown in figure 5.21.
It exhibits three occupied bands below the chemical potential related to Hunds coupling
[Sut+17]. For all SOCs, there occurs a drift in the chemical potential until the transition to
the PM. The small detour in the drift when going from finite to zero temperature as well
as the jump for λ/t = 1 at T/t = 0.14 is due to the chemical potential deviating from
the tendency at the other temperatures. It seems the chemical potential fixed by the filling
depends more on the AFM Sz Weiss field than on temperature. This is reasonable, since
temperature itself may broaden the states in the DOS or provide them with weight, which
fills up the gap eventually. However in case of an insulator, the chemical potential lying
in the gap may only be affected by this at high temperature or small gaps. At small and
intermediate SOCs, the gaps shape remains more or less the same. Small shoulders start to
emerge from the borders of the gap somewhat above the transition to the PM. For large SOC,
first a shoulder and later a peak emerges from the lower edge of the gap at the temperature
which may belong to the second peak in the specific heat.
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5.21 – Total DOS considering electrons at λ/t ∈ {0.6, 0.8,1} for different temperatures T/t ∈
{0.00, 0.01, . . . , 0.45}. The red curve highlights the phase transition at TN, while the blue
curve refers to the temperature closest to, but below the second peak in the specific heat
at TC2.

Aligning the DOS within the AFM Sz phase and thus removing the shift due to the chemical
potential is shown in figure 5.22. Within the AFM Sz phase, the gap size decreases slightly
with increasing temperature until the system enters the PM phase. Past this temperature
there occurs almost no change in the gap size as can be inferred from figure 5.21. Further-
more, a peak present at the upper edge of the highest occupied band becomes less sharp
and decreases in height with increasing temperature. This behaviour is most noticeable for
λ/t ∈ {0.8,1}.
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5.22 – Total DOS shifted onto the T/t = 0 total DOS at λ/t ∈ {0.6,0.8, 1} for several tempera-

tures. The red curve highlights the phase transition at TN, while the blue curve refers to
the temperature closest to, but below the second peak in the specific heat at TC2.

In order to highlight the features discussed in the spectral function, the dispersion rela-
tions of several tight-binding models are shown in figure 5.23. The AFM order is realised by
considering a system with doubled unit cell. Its dispersion relation shown in figure 5.23a
can be considered as being the PM dispersion mirrored around the chemical potential. A
comparison of the dispersions of one-dimensional chains embedded in a two-dimensional
system with the complete two-dimensional dispersion is shown in figure 5.23b. While the
chain along the x-direction is dispersionless in y-direction, the opposite is true for the chain
in y-direction. The two-dimensional system is only dispersionless for a small plateau around
k/π= (1,0).
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5.23 – Illustration of tight-binding dispersions comparing those of a PM and an AFM system as
well as hoppings of different dimensionality.

While the total DOS enabled only a rough overview of the energetics, the orbital-resolved
spectral function for λ/t = 0.8 shown in figure 5.24 makes it possible to identify hallmarks
of the AFM Sz order. It is characterised by an arc within the unoccupied states at k/π= (1,1)
which vanishes at TN. While this feature occurs in the spectral contributions from all orbitals,
it is most noticeable for the xy-orbital. Comparing the spectra with the dispersion relation
of a perfect AFM as shown in figure 5.23a confirms the arc as a signature of the AFM order
since it resembles the mirrored dispersion relation.

The spectral weight at k/π= (0,0) of the unoccupied states does not switch from bending
up- to downwards upon transition from the AFM to the PM as observed for the half-filled
one-band Hubbard model [SSY18]. For the three-band Hubbard model associated with
Sr2IrO4 with one hole shown in figure 5.6 however, such a bending is present. One may
be inclined to argue that the system is closer to the Hubbard-I approximation of ordered
local moments than a mean-field theory of long-range order since here the spectral weight
keeps facing downwards throughout the entire AFM phase [SSY18]. However the analogy
with one-band results may be restricted further to systems with an active half-filled band
as seems to be the case for Sr2IrO4. Considering the Hubbard-I and a self-consistent SDW
mean-field approximation for one- and three-band models at different fillings may provide
clarity if there is a change in the limiting cases considered.

Apart from the signatures of magnetism, the dimensionality of the orbital-resolved highest
occupied and lowest unoccupied band changes with temperature. Just considering the kin-
etic term of the Hamiltonian, the xy-orbital exhibits a two-dimensional dispersion relation,
while the xz- and yz-orbital are supposed to have a one-dimensional dispersion relation
as those shown in figure 5.23b. Since the Hamiltonian describes holes while the spectral
function is shown for electrons, focus lies on the unoccupied band which signifies the hole-
dynamics. While the unoccupied xy-orbital keeps its two-dimensional dispersion relation at
higher temperatures, the xz- and yz-orbital change from a two- to a more one-dimensional
dispersion.

Spectra employing the other SOCs λ/t ∈ {0.6,1} considered exhibit similar features and
are omitted here.
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5.24 – Orbital-resolved spectral function considering electrons at λ/t = 0.8 for two temperatures
below and one above TN/t = 0.15.

Taking a step back, figure 5.25 shows the orbital-resolved DOS at the temperatures used
within figure 5.24. At zero temperature, there occur peaks at the lower edge of the gap
formed by the yz- and xz-orbitals and a peak at the upper edge of the gap belonging to the xy-
orbital. Judging by the energy, the latter belongs to features at the boundary of the Brillouin
zone due to the doubled unit cell within the AFM phase which show up at k/π= (1,0) and
k/π = (1/2, 1/2). The former peaks might compensate the missing electrons in the xy-
orbital to realise a filling of two holes per site.
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This compensation can be argued in a simple manner by considering the available space in
terms of orbitals and the fixed filling. Since one orbital can host two particles, the integral of
the orbital-resolved DOS over the entire energy range yields two for each orbital. Therefore
an increase in the orbital-resolved DOS at one energy leads to a decrease in the orbital-
resolved DOS at other energies. Enforcing a certain filling implies for an integral of the
total DOS up to the chemical potential to return this filling. If for one orbital the weight
of the orbital-resolved DOS shifts above the chemical potential, the other orbitals have to
compensate this and accumulate weight below the chemical potential.

The height of the peaks decreases with increasing SOC. With increasing temperature, the
different orbitals start to contribute weight of similar order of magnitude in the bands above
and below the chemical potential.

As for the arc, it forms the sharp edge of unoccupied states above the gap.
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5.25 – Total and orbital-resolved DOS at λ/t = 0.8 for two temperatures below and one above
TN/t = 0.15 also used for the spectra in figure 5.24.

In comparison to T/t = 0.14 and T/t = 0.35 the orbital-resolved DOS at the temperature
T/t = 0.22 closest to, but below TC2/t shows no prominent features or significant differ-
ences. All orbitals contribute above and below the gap which itself is rather symmetric.
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5.26 – Total and orbital-resolved DOS at λ/t = 1 for T/t = 0.22 which is closest to, but below
the second peak of the specific heat in figure 5.19c.
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Coming back to static observables, the orbital occupations as function of the temperature
are shown in figure 5.27. Below the Néel temperature, the xy-orbital is less occupied than
the (almost) equally occupied yz- and xz-orbital. Above TN, all three orbitals are (almost)
equally occupied. Upon closer inspection, crossings between the different orbital occupa-
tions occur at TN and TC2. For λ/t = 0.6, the xy- and xz-orbital neither cross nor touch,
while the yz-orbital crosses the xy-orbital close to TN. At λ/t = 0.8, the xy- and xz-orbital
touch at TN, while for λ/t = 1, both orbitals cross at TN and TC2.

Differences between the yz- and xz-orbital occpations are due to magnetic symmetry
breaking below TN and due to the cluster geometry. Hence crossings between one of these
orbitals with the xy-orbital is considered to hold for both and may be signatures of the
characteristic temperatures TN and TC2.
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5.27 – Occupations (electron perspective) as a function of temperature at λ/t ∈ {0.6,0.8, 1}.

5.2.3. Dominant tetragonal CF splitting5 2 3

Now the case of dominant tetragonal CF splitting ∆/t = 5 which separates the xy-orbital
from the yz- and xz-orbital and thus orbitally polarises the system is considered. Following
again the incentive of zero temperature investigations [Fel19], the interaction parameters
under consideration lead to an AFM order with the spin lying in-plane and Sx as relevant
spin component to quantify the order.

The free energy as a function of AFM Sx Weiss field h′/t for two values of SOC λ/t ∈
{0.1,0.8} at temperatures T/t ∈ {0.00,0.01, . . . , TN/t} is shown in figure 5.28. In contrast
to no CF splitting, the optimal Weiss field first increases with increasing temperature before
decreasing at low SOC λ/t = 0.1. At intermediate SOC λ/t = 0.8, the optimal Weiss field
keeps decreasing with increasing temperature as is the case for all SOCs considered without
CF splitting. In agreement with the case of no CF splitting, smaller SOC gives a more stable
AFM Sx order in terms of a lower free energy minimum. However, here the influence of SOC
is reduced. This can be seen already from the zero temperature phase diagram obtained via
VCA [Fel19], where at significant CF splitting a larger SOC is required to reach the PM.
While the Néel temperature changes from zero to finite CF splitting, SOC has no significant
influence on TN in both cases.
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5.28 – CPT free energy FCPT/t at the given SOC λ/t as function of the AFM Sx Weiss field ampli-

tudes h′/t for several temperatures T/t ∈ {0.00, 0.01, . . . , TN/t}.

As for the signature of the AFM Sx phase, the magnetisation shown in figure 5.29a exhibits
the same features as at zero CF splitting just with another direction of the ordering moments.
The magnetisation’s saturation value at low temperature decreases with increasing SOC. Yet
the saturation value here is significantly higher than at zero CF splitting and corresponds
with close to m = 2 to a perfect ordering of spin-one magnetic moments. Furthermore,
the temperature range over which the magnetisation amounts to its saturation value ranges
only up to a lower temperature T/t ≈ 0.05 as compared to zero CF splitting.

The Néel temperature and active degree of freedom can also be deduced from the entropy
shown in figure 5.29b. While the kink marks the prior, the plateau value S1 = ln(3) amounts
to the entropy of a single spin-one degree of freedom.

In contrast, the specific heat in figure 5.29c lacks the broad humps for small and inter-
mediate SOCs λ/t ∈ {0.6,0.8} present at zero CF splitting. This could be connected to the
orbital polarisation which prevents orbital mixing. The peak close to TN is associated with
AFM fluctuations.
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5.29 – Magnetization, entropy and specific heat as function of temperature for λ/t ∈ {0.1,0.8}.

For low SOC λ/t = 0.1, the overlaps defined in equation (5.24) and shown in figure 5.30
are separated in the order 〈J = 2〉 > 〈J = 1〉 > 〈J = 0〉 opposite to the order for zero CF
splitting at low temperatures. Furthermore in contrast to zero CF splitting, the overlaps
change below TN and remain almost constant above it. Thereby, 〈J = 0〉 and 〈J = 2〉 de-
crease, while 〈J = 1〉 increases with temperature.
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With moderate SOC λ/t = 0.8, the overlaps change continuously over the entire tem-
perature range considered. No kinks remain from the cases with zero CF splitting and low
SOC. Upon increasing SOC, 〈J = 0〉 is raised, while the other two overlaps are lowered as
happens at zero CF splitting. This leads to an intersection between the 〈J = 0〉 and 〈J = 1〉
overlap occuring below the Néel temperature.
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5.30 – Overlaps as functions of temperature at λ/t ∈ {0.1,0.8} considering holes.

The orbital-resolved occupation displayed in figure 5.31 confirms the orbital polarisation.
From an electron perspective, the xy-orbital is fully occupied, while the yz- and xz-orbitals
are half-filled over the entire temperature range considered.
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5.31 – Occupations (electron perspective) as a function of temperature at λ/t ∈ {0.1, 0.8}.

5.2.4. Realistic tetragonal CF splitting5 2 4

Finally, the case of moderate tetragonal CF splitting ∆/t = 1.5, for which the model lies
closer to the compound Ca2RuO4 [Fel19], is considered. As for dominant CF splitting, the
ordering considered is an AFM order with the spin lying in-plane and Sx as relevant spin
component to quantify the order.

Figure 5.32 displays the free energy evaluated as a function of the AFM Sx Weiss field h′/t
for four values of SOC λ/t ∈ {0,0.6, 0.8,1} at various temperatures T/t ∈ {0.00, 0.01, . . . ,
TN/t} and shares the features present at dominant CF splitting discussed in section 5.2.3.
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At low SOC, the optimal Weiss field first increases before decreasing, while it keeps de-
creasing for intermediate and large SOC. Again, smaller SOC gives a more stable AFM order
(lower free energy) having less of an impact compared to zero CF splitting but affecting the
stability more than at dominant CF splitting. Just as SOC has no significant influence on the
Néel temperature, going from dominant to realistic CF splitting does not change TN either.
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5.32 – CPT free energy FCPT/t at the given SOC λ/t as function of the AFM Sx Weiss field ampli-

tudes h′/t for several temperatures T/t ∈ {0.00, 0.01, . . . , TN/t}.

Also the magnetisation visible in figure 5.33a agrees with the trends observed before
in section 5.2.3. Its saturation value decreases with increasing SOC, yet it is significantly
higher than at zero CF splitting. At zero SOC, the saturation value lies close to m= 2 which
corresponds to a perfect ordering of spin-one magnetic moments. The temperature range
over which the magnetisation assumes its saturation value does not change compared to
dominant CF splitting.

Compared to dominant CF splitting, the entropy shown in figure 5.33b exhibits no plateau.
However the kink still marks the Néel temperature and the entropy at a given temperature
decreases with increasing SOC.
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In contrast to zero and dominant CF splitting, the specific heat shown in figure 5.33c
exhibits two peaks for all SOCs considered. The first peak slightly below TN is associated
with AFM fluctuations. Its height decreases with increasing SOC. Since all SOCs exhibit a
second peak, the peaks dependence on SOC can be inferred. With increasing SOCs λ/t ∈
{0,0.6, 0.8,1} the peaks temperature TC2/t ∈ {0.315, 0.335,0.365, 0.375} increases. This
suggests a connection between the second peak and the impact of SOC mixing the orbitals.
In turn the lack of broad humps for dominant CF splitting in figure 5.29c would be due to
the suppression of orbital mixing.
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5.33 – Magnetisation, entropy and specific heat as function of temperature for

λ/t ∈ {0,0.6, 0.8,1}.

To obtain a more refined picture of the magnetic and orbital composition, the overlap
introduced in equation (5.24) is shown in figure 5.33 as function of temperature.

The case of zero SOC matches that of dominant CF splitting and low SOC. All overlaps
are separated in the order 〈J = 2〉 > 〈J = 1〉 > 〈J = 0〉. They change below TN and re-
main almost constant above it. 〈J = 0〉 and 〈J = 2〉 decrease, while 〈J = 1〉 increases with
temperature.

With finite SOC, the overlaps change continuously over the entire temperature range con-
sidered. No kinks remain from the cases with zero CF splitting and zero SOC. The overlaps
〈J = 1〉 and 〈J = 2〉 appear to be fixed relative to each other, with an intersection close to
T/t = 0.15 for λ/t ∈ {0.6,0.8} and T/t = 0.19 for λ/t = 1. There is almost no shift
relative to each other. Apart from their absolute position, the overlaps behaviour resembles
that visible at zero CF splitting.

With increasing temperature, the overlap 〈J = 0〉 decreases, while the other two increase
leading to multiple intersections between them. Upon increasing SOC, 〈J = 0〉 is raised,
while the other two overlaps are lowered. An increase in the 〈J = 0〉-contribution with
increasing SOC thus survives from zero to finite CF splitting. Intersections between 〈J = 0〉
and the other overlaps thereby shift to higher temperatures. Hence, a higher temperature
is required to mix different J -states into the system.
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5.33 – Overlaps as functions of temperature at λ/t ∈ {0,0.6, 0.8,1} considering holes.

Concerning dynamic observables, the rough shape of the DOS shown in figure 5.34 stays
the same as for zero CF splitting described in section 5.2.2. Already there, three occupied
bands are present and the chemical potential drifts with occasional ‘jumps’ until the Néel
temperature is reached.

However there is a change in the highest occupied band. Compared to zero CF splitting, a
peak previously located at the edge of the gap lies now at the center of the band. This peak
signals the Néel temperature, since it vanishes at this temperature among the surrounding
band. Above TN and for all finite SOCs considered λ/t ∈ {0.6,0.8, 1}, small shoulders
develop at the upper edge of the gap. At the temperature belonging to the second peak in
the specific heat, nothing noteworthy is observed.
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5.34 – Total DOS at λ/t ∈ {0.6, 0.8,1} for different temperatures T/t ∈ {0.00, 0.01, . . . , 0.45}.
The red curve highlights the phase transition at TN, while the blue curve refers to the
temperature closest to, but below the second peak in the specific heat at TC2.

To infer changes in the DOS below TN besides the drift in the chemical potential, fig-
ure 5.35 shows the aligned DOSs. Similar to zero CF splitting, the gap size decreases slightly
with increasing temperature below TN. Within the PM phase, the gap size remains almost
unchanged, as can be seen in figure 5.34. The height of the peak located at the center of the
highest occupied band, which vanishes at the Néel temperature decreases with increasing
SOC.
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5.35 – Total DOS shifted onto the T/t = 0 total DOS at λ/t ∈ {0.6,0.8, 1} for several tempera-

tures. The red curve highlights the phase transition at TN, while the blue curve refers to
the temperature closest to, but below the second peak in the specific heat at TC2.

Going beyond the total DOS, the orbital-resolved spectral function for λ/t = 1 shown
in figure 5.36 provides additional information about the bandstructure of the system. All
orbitals exhibit a faint lowest and a well visible middle occupied band. While the xy-orbital
dominates the highest occupied band, the yz- and xz-orbitals have a more pronounced un-
occupied band.

In comparison to the spectral function at zero CF splitting in figure 5.24, the feature of
AFM ordering is still an arc within the unoccupied states centered around k/π = (1, 1)
which vanishes at TN. Comparing the spectral function to the tight-binding dispersion in
figure 5.23a confirms the arc as signature of AFM order. However besides highlighting in-
plane ordering, the arc is most prominent in the yz- and xz-orbitals in contrast to zero CF
splitting. The domination of these two orbitals is due to orbital polarisation via CF splitting
as can be inferred by comparing figures 5.27 and 5.37. In addition, there are faint traces
of the highest occupied band bending upward at k/π= (0, 0) for all orbitals. Both features
are signatures of an AFM, whose doubled unit cell implies weight at the same energy for
k/π= (0, 0) and k/π= (1,1).

Besides the arc, the peak at the center of the highest occupied band in the total DOS also
vanishes at TN. Since the highest occupied band is dominated by the xy-orbital, the vanishing
peak appears in the spectral function as broadening of the band around k/π = (1,0) and
k/π = (1/2, 1/2) which mark the boundary of the Brillouin zone due to the doubled unit
cell.

Just as for zero CF splitting, there is no real bending of the dispersion of unoccupied
states as compared to the one-band Hubbard model [SSY18]. There is only a loss of upward
bending weight in the yz-orbital at the point k/π= (0,0), while downwards bending weight
remains. Whether this behaviour can be interpreted in the limits of the one-band Hubbard
model [SSY18] or requires investigation of the respective limits of the three-band Hubbard
model is an open question.

Similar to the case without CF splitting, the dimensionality of the dispersion for several
orbitals changes with temperature. As a reference, one- and two-dimensional dispersions
are illustrated in figure 5.23b. Focussing first on the unoccupied band, at zero tempera-
ture the dominating features resemble a two-dimensional dispersion relation for all orbitals.
With increasing temperature, the xy-orbital stays two-dimensional, while the yz- and xz-
orbitals turn one-dimensional and become more incoherent, i.e. diffusive. The yz-orbital
propagates in y- and the xz-orbital in x-direction. Since these coincide with the dispersion
relations of the orbitals within the Hamiltonian without SOC, the influence of SOC to couple
the orbitals appears to be reduced with increasing temperature.
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Concerning the occupied states, the highest occupied band of the xy-orbital keeps its two-
dimensional dispersion upon increasing temperature. The occupied yz- and xz-orbitals, in
turn become more coherent, i.e. sharper, when going from zero to finite temperature and
thereby unveil a rather one-dimensional dispersion. This unconventional behaviour can be
related to a study focussing on these states. It shows that AFM order in a strong-coupling t-J -
like model without SOC induces ladder-like spectral features [Kło+20]. The loss of magnetic
order thus lets the underlying dispersion be seen more easily. Since the occupied bands of
the yz- and xz-orbitals exhibit a rather one-dimensional dispersion at higher temperature,
SOC appears to be less effective for higher binding energies. This is in agreement with
results on metallic Sr2RuO4 [Kim+18], where SOC is not needed to explain features of the
spectral function further away from the chemical potential.

Spectra employing the other SOCs λ/t ∈ {0.6,0.8} considered exhibit similar features
and are omitted here.
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5.36 – Orbital-resolved spectral function considering electrons at λ/t = 1 for one temperature
below, one at and one above TN/t = 0.14.

118



5. Three-band Hubbard model5

To get an overview of how the orbital-resolved bands change compared to zero CF split-
ting, figure 5.37 shows the total and orbital-resolved DOS at the temperatures used for the
spectra in figure 5.36. Compared to zero CF splitting, the roles of the xy-orbital on one side
and the yz- and xz-orbital on the other side have switched. The band below the chemical po-
tential is almost entirely characterised by the xy-orbital, while the band above the chemical
potential is determined by the yz- and xz-orbital. In contrast to zero CF splitting, this orbital
polarisation remains intact with increasing temperature. Since CF splitting determines the
spectrum and temperature affects the weights of states, the latter cannot compensate for
contributions of states dominated by the yz- and xz-orbital being shifted to higher energies
by the former.
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5.37 – Total and orbital-resolved DOS at λ/t = 1 for one temperature below, one at and one
above TN/t = 0.14 also used for the spectra in figure 5.36.

Since changes in the orbital occupation of Ca2RuO4 with temperature [Miz+01] is one of
the observations that sparked interest in the compound, figure 5.37 shows this change of the
electron filling with temperature for various SOCs considered. Due to CF splitting, the xy-
orbital is almost full, while the yz- and xz-orbital are almost half-filled. Differences between
occupation of the yz- and xz-orbitals below TN are due to the magnetic symmetry breaking.
Above the Néel temperature, the xy-occupation is reduced, while the yz- and xz-orbital are
filled upon increasing the temperature. A crossing does not occur within the temperature
range considered. The overall change in occupation is reduced with increasing SOC. This
change also occurs for zero SOC, where holes induced in the xy-orbital at temperatures
above TN correspond to the orbital fluctuations forming the second peak in the specific
heat.
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5.37 – Occupations (electron perspective) as a function of temperature at λ/t ∈ {0, 0.6,0.8, 1}.

5.2.5. 1 site cluster5 2 5

In order to assess how the features related to orbital mixing change with cluster size, a 1 site
cluster is considered. Such a cluster also serves to infer how local in nature the orbital mixing
is. Note, that a 1 site cluster is not sufficient as a unit cell for AFM order which will thus not
be considered here. Throughout this section, different CF splittings ∆/t = {0, 1.5,5} will
be considered, while SOC is fixed to λ/t = 0.8.

Considering the entropy shown in figure 5.38a, it exhibits qualitatively similar features as
the 2×1 site cluster. The kink which previously marked the Néel temperature is smoothened
out. However increasing CF splitting still reduces the high-temperature value of the entropy
and leads to a plateau for dominant CF splitting ∆/t = 5 at S1 = ln(3) marking a spin-one
degree of freedom.

For the specific heat displayed in figure 5.38b, also qualitatively similar trends as for the
2×1 site cluster can be inferred. While zero and dominant CF splittings exhibit one distinct
peak, moderate CF splitting ∆/t = 1.5 shows two. However while the peak for ∆/t = 0
decays slowly with increasing temperature, it decays fast for dominant CF splitting. The low
temperature peak, which is likely related to AFM spin fluctuations shifts with increasing CF
splitting to lower temperature.
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5.38 – Entropy and specific heat as function of temperature for ∆/t ∈ {0, 1.5,5} and λ/t = 0.8.

120



5. Three-band Hubbard model5

Also the overlaps defined in equation (5.24) and shown in figure 5.39 agree qualitatively
with those of the larger cluster. Specifically the sequence of states and the temperatures
where they cross match. While the weight of the J = 2 state increases and decreases with
temperature at zero and dominant CF splitting, it remains almost unchanged for moderate
∆/t = 1.5. For all CF splittings, the J = 1 state gains weight, mostly at the expense of the
J = 0 state.
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5.39 – Overlaps as functions of temperature at∆/t ∈ {0,1.5, 5} and λ/t = 0.8 considering holes.

Without magnetic order present, the orbital occupation at zero CF splitting shown in
figure 5.40 is unpolarized throughout the entire temperature range. In contrast for domi-
nant CF splitting∆/t = 5, the system is fully orbitally polarised over the entire temperature
range, unchanged as compared to when magnetic order is present. For moderate ∆/t =
1.5, the system is orbitally polarised as well, with the orbital occupation changing only
marginally and non-monotonously with increasing temperature.
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5.40 – Occupations (electron perspective) as a function of temperature at ∆/t ∈ {0,1.5, 5} and
λ/t = 0.8.
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Considering the spectral function shown in figure 5.36, signatures of the AFM order are
missing, since only the PM phase is investigated. The transition from a two-dimensional
dispersion at low temperature to a one-dimensional dispersion at high temperature is still
present and can best be seen from weights of the unoccupied yz- and xz-orbitals.
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5.41 – Orbital-resolved spectral function considering electrons at ∆/t = 1.5 and λ/t = 0.8 for
the same temperatures as in figure 5.36.

Since the behaviour of all observables presented here agree qualitatively with those of the
larger 2× 1 site cluster, orbital mixing is local in nature and thus not significantly affected
by the finite cluster size.

122



5. Three-band Hubbard model5

5.2.6. Conclusion and Outlook5 2 6

First, the implications of SOC and tetragonal CF splitting for the magnetic order and its
signatures in dynamic observables, both at finite temperature, are summarised.

Increasing SOC λ/t = 0.6 1 destabilizes the magnetically ordered phase at low temper-
ature for zero, realistic and dominant CF splittings ∆/t ∈ {0,1.5, 5} as expected from the
atomic limit [Fel19]. Signatures of this are shallower free energy minima, a reduced satu-
ration value of the magnetisation at low temperature, a peak in the specific heat associated
with AFM fluctuations whose height decreases with increasing SOC and the overlap with
the non-magnetic |J = 0〉-state increasing with SOC. However the Néel temperature does
not seem to be affected when increasing SOC. This might be a finite-size effect or due to
the systems proximity to a stripy magnetic phase at low SOC [Fel19]. From zero to realistic
CF splitting ∆/t = 1.5, the Néel temperature increases but does not alter any further when
going to dominant CF splitting ∆/t = 5.

Features of the AFM order in the total DOS are a peak located at the upper edge of the
highest occupied band at zero CF splitting and at the center of this band at realistic CF split-
ting ∆/t = 1.5 which vanishes at the Néel temperature. Considering the orbital-resolved
DOS, at zero CF splitting, this peak is formed by the yz- and xz-orbital while at realistic CF
splitting ∆/t = 1.5 the xy-orbital dominates.

In the spectral function, magnetism shows up as an arc in the unoccupied states implying
a doubled unit cell which vanishes upon reaching the Néel temperature. At zero CF split-
ting, it occurs within all orbitals, most noticeable in the xy-orbital, at k/π = (1, 1). Due to
the orbital polarisation at realistic CF splitting ∆/t = 1.5, the arc appears in the yz- and
xz-orbital at k/π= (1,1).

Next, orbital-selective features observed in the spectral function, specific heat, overlap
and orbital occupation are surveyed.

At low temperatures, all orbitals exhibit a two-dimensional dispersion despite the yz- and
xz-orbital being restricted to one-dimensional motion by their bare dispersion relations.
Increasing temperature makes the dispersion of the unoccupied yz- and xz-orbital more
one-dimensional. Thus SOC becomes less effective with increasing temperature in mixing
the yz- and xz-orbitals.

For zero CF splitting and high SOC λ/t = 1, a second peak appears in the specific
heat. In case of a realistic CF splitting ∆/t = 1.5, it is present for all SOCs considered
λ/t ∈ {0,0.6, 0.8,1} and shifts with increasing SOC to higher temperature. At dominant CF
splitting∆/t = 5, such a second peak is suppressed. This suppression is associated with the
polarisation of the orbital occupation visible at realistic CF splitting in the orbital-resolved
DOS with the highest occupied band being of xy-character, while the lowest unoccupied
band is of yz- and xz-character. Hence the presence of such a peak in the specific heat hints
at orbital fluctuations.
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5. Three-band Hubbard model5

The overlaps with local LS-coupled states 〈J〉 providing information on the magnetic and
orbital composition change strongly with temperature leading at finite SOC and CF splitting
to crossings. These changes suggest the presence of orbital fluctuations. At zero CF splitting
and finite SOC λ/t ∈ {0.6, 0.8,1}, the overlaps start to change significantly with temper-
ature above the Néel temperature, while at realistic CF splitting ∆/t = 1.5 and zero SOC,
the overlaps vary for temperatures below TN. In case both CF splitting and SOC are some-
what larger than zero, the overlaps change over the entire temperature range. Comparing
different parameter sets, overlaps at zero SOC and realistic CF splitting resemble those at
dominant CF splitting orbitally polarising the system. However at realistic CF splitting and
finite SOC, they lie closer to the unpolarised case of zero CF splitting.

Also the orbital-resolved occupations 〈nρ〉 change comparably strong with temperature,
albeit without crossings. Again, this hints at orbital fluctuations being present. Its behaviour
is somewhat in contrast with the overlaps. At zero CF splitting, the occupations change
mostly below the Néel temperature while above TN the orbitals are more or less equally
occupied. For realistic CF splitting ∆/t = 1.5, the occupations stay almost constant below
the Néel temperature and start to change once the temperature increases beyond it. The
latter behaviour is associated with the second peak in the specific heat. At dominant CF
splitting ∆/t = 5, the orbital occupations remain the same over the entire temperature
range considered, just as the second peak in the specific heat is suppressed.

Without a real orbital order possible as it is denied by the findings of Porter et al. [Por+18],
a complex phase relation in the (yz, xz)-subspace remains as explanation for the orbital fluc-
tuations observed here. These phase fluctuations can be understood in the following man-
ner: In order to realise the |J = 0〉-state preferred by SOC at low temperatures, each spin
projection has to have a specific phase relation between the orbital components. In con-
trast at higher temperature, no definite phase relations can be expected, since SOC does not
suffice to enforce mostly non-magnetic contributions. Since the signatures of these orbital
fluctuations are also found for a 1 site cluster, they are expected to be local in nature.

Once sufficiently high temperatures are reached, eigenstates from other particle number
sectors become relevant besides those of the ground state sector. In an attempt to reach
higher temperatures and to detect the metal-insulator transition expected, a CDIA study
was initiated. The reference system consists of a 1-site cluster described by the three-band
Hubbard model with realistic CF splitting∆/t = 1.5 connected to an uncorrelated bath site
with three bands as well. In practice, this is achieved by considering the site type (correlated,
bath) as a new quantum number.

While the magnetic order can no longer be captured with such a cluster, three additional
variational parameters enter the problem. Due to the realistic CF splitting ∆/t = 1.5, two
bath chemical potentials µxy and µyz,xz for the xy- and (yz, xz)-orbital are considered as well
as the hybridisation between cluster and bath. However the investigation is stuck at the
determination of the bath chemical potentials. Starting from a half-filled reference system
with six particles on two sites with three orbitals and two spin-orientations and requiring
the correlated cluster site to be occupied by two particles leaves two scenarios for the bath
occupation. Either the xy-orbital is full and the yz- and xz-orbital together are half-filled or
the xy-orbital is empty and the remaining two orbitals are full. However up to now for both
scenarios no reliable optimas were found to which the system could be fixed when raising
the temperature.
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6Kondo lattice model6
Motivated by a zero temperature study [Len16], the half-filled Kondo lattice model is investigated with
finite temperature VCA. Considering the AFM magnetisation, the AFM and PM specific heat as well as
the on-site spin-spin correlator allows constructing a phase diagram. The characteristic temperatures
lead to three phases: an AFM, a PM of Kondo singlets and a thermal PM. Looking at the DOS and the
spectral function provides information on the fate of the Kondo singlets with increasing temperature as
well as their signatures compared to the thermal PM.

Physically, the Kondo lattice model (KLM)

H = −t
∑

〈i, j〉,σ

c†
iσc jσ + J

∑

i

Si · si (6.1)

with hopping conduction electrons created by c†
iσ at site i with spin σ and localised spins

Si coupled to conduction electron spins [si]α =
∑

s,s′ c
†
is[σs,s′]αcis′ describes a regular lattice

of magnetic impurities [Col15]. In practice, it can be used to model heavy fermion systems
and Kondo insulators. Compared to normal metals, heavy fermion metals exhibit a strongly
increased effective mass. This is encapsulated in the model via the singlet formation induced
by the Kondo coupling J . Kondo insulators emerge in the limit of dominant J and are
paramagnets formed by Kondo singlets at each site.

As the name implies, the KLM is the lattice version of the Kondo model which was used
to describe the increase in resistivity as the temperature is lowered once magnetic impu-
rities are present in a metal. The scattering associated with this increase induces Friedel
oscillations in the spin DOS which extend over some range around the impurity. Within
a regular lattice of magnetic impurities, these Friedel oscillations lead to an interaction
between localised spins called RKKY interaction named after Ruderman, Kittel, Kasuya and
Yosida. Typically, it gives rise to an AFM ordering of the localised moments with the Néel
temperature TN ∼ J2ρ(EF) and ρ(EF) as the DOS at the Fermi energy.

Upon increasing the Kondo coupling, the AFM order induced by the RRKY interaction
starts to compete with the singlet formation between the localised and the conduction elec-
tron spins leading to a PM. An interaction induced phase transition at zero temperature
denoted as ‘quantum phase transition’ occurs at a critical coupling strength.

While the AFM phase is characterised by the RKKY interaction and separated from the
thermal PM at the Néel temperature, the PM of local Kondo singlets (KS) is also distinct
from the thermal PM. The temperature describing the crossover between resonant and co-
herent elastic scattering of conduction electron spins via singlet formation and free spins is
called Kondo temperature TK = D exp{−1/[Jρ(EF)]} with D being half the bandwidth of
the Hamiltonian as defined in [Col15]. It emerges within the ‘Poor man’s’ scaling treatment
of the Kondo model as the energy scale, where coming from higher temperature the dimen-
sionless coupling constant g = Jρ(EF) diverges which is associated with singlet formation.
Within a generalised variant of the KLM, it determines the gap size stabilising the singlet.
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6. Kondo lattice model6

In theory, the presence of a singlet on a lattice site i can be inferred from the spin-spin
correlator

〈Si · si〉=
1
2
[〈(Si + si)

2〉 − 〈S2
i 〉 − 〈s

2
i 〉]. (6.2)

For pure spin states present at low temperature, the expectation values of the separate spins
amount to 〈S2

i 〉 = S(S + 1) and 〈s2
i 〉 = s(s+ 1) with quantum numbers S and s. At elevated

temperature, mixed states % = exp(−βH)/Ξ have to be considered. Upon considering a KS,
the total spin amounts to zero, giving 〈(Si + si)2〉= 0. For localised and conduction electron
spins 1/2, this leads to the following limiting cases:

KS, small T/t: 〈Si · si〉= −3/4
KS, large T/t: 〈Si · si〉= −3/8 (% 1/2)
PM, large T/t: 〈Si · si〉= 0

With the DOS being the k-integrated single-particle spectral function, it measures the
energetics of single-particle excitations. In the KLM, each site has the possibility to host
a Kondo singlet. Upon adding one particle to or removing one particle from the system
of conduction electrons, a Kondo singlet can be destroyed. The localised spin can neither
couple to a missing electron nor to a non-magnetic singlet of conduction electrons. Hence
peaks in the DOS of conduction electrons at energy (E −µ)/t ≈ 3J/4 are signatures of KSs
as well.

In case of a metallic system, another way to assess the presence of KSs is the Fermi sur-
face. Invoking the Luttinger sum rule, the volume of the Fermi surface counts the number
of fermions forming the Fermi liquid. This implies, that at low Kondo coupling without KSs
only conduction electrons are counted, while at larger J with KSs also the localised spins
contribute to the number of electrons as they now belong to the heavy Fermi liquid. The
Fermi surface is thus increased in the latter case.

The present investigation of the KLM is motivated by the one by Lenz [Len16] employing
zero temperature VCA using mostly a 3× 2 site cluster as reference system. In the follow-
ing, his results for a half-filled system are summarised with a focus on the observables he
investigated and their implications.

Lenz considered the PM and AFM phase in the half-filled and doped case as well as the
possibility of s- and d-wave superconductivity. The main observables for the half-filled case
are the magnetisation, the spin-spin correlator

∑

i 〈Si · si〉, the DOS and the spectral func-
tion. Considering sufficient doping to reach a metal, the emerging Fermi surface becomes
available and the size of the quasiparticle gap can be assessed. Technically, the PM phase is
realised by optimising the grand potential w.r.t. the on-cluster hopping, while for the AFM
phase an AFM Weiss field is added to the set of variational parameters.

Quantitative observations in the half-filled case include comparisons with QMC results.
The finite-size scaled quasiparticle gap in the PM phase for reasonable Kondo coupling and
the finite-size scaled critical Kondo coupling where the AFM transitions into a PM lie within
the error bars of the QMC treatment. On the qualitative side, a kink occuring in the spin-
spin correlator

∑

i 〈Si · si〉 at the critical Kondo coupling provides other means to distinguish
the AFM and PM phase. However the main question is whether the KSs present in the PM
phase break up at the critical Kondo coupling or if this Kondo breakdown occurs at lower
couplings. The prior case is dubbed unconventional quantum critical point (QCP), while the
latter is a conventional QCP. Considering the spin-spin correlator

∑

i 〈Si · si〉 and trying to
identify which peaks in the DOS describe the destruction of KSs leads to the conclusion of a
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6. Kondo lattice model6

conventional QCP. In case of a doped system, a change in the Fermi surface within the AFM
phase may indicate the Kondo coupling where all KSs are destroyed, however this cannot
be confirmed. Hence the question remains at which Kondo coupling the Kondo breakdown
occurs.

More details on the doped system and superconductivity therein can be found in [Len16].

As for the finite temperature behaviour, Zerec et al. [ZST06] investigated the KLM in its
PM phase on an

p
8×
p

8 site cluster with open and periodic boundary conditions employ-
ing the FTLM. The observables considered comprise the specific heat, the on-site spin-spin
correlator of the localised and conduction electrons spin 〈Si · si〉, the inter-site spin-spin cor-
relators of the localised spins 〈Si · S j〉, the magnetic susceptibility as well as the total local
magnetic moments 〈(Si + si)2〉. Here, the correlators and the local moment are measured
only for one site/between sites in the center of the cluster.

Characteristic temperatures obtained from these observables are the peak temperatures
of the specific heat and susceptibility, as well as the temperatures belonging to the inflection
point of the on- and inter-site spin-spin correlators normalised w.r.t. their zero temperature
values. Within the phase diagram these characteristic temperatures of different quantities
show up as one characteristic temperature of the system. This characteristic temperature
scales at low Kondo coupling as (J/t)2 associated with the RKKY interaction and at high
coupling as J/t connected to the formation of on-site KSs.

Further details on the scaling behaviour of on- and inter-site spin-spin correlators as well
as the implications of open and periodic boundary conditions can be inferred from [ZST06].

A follow-up investigation by the same group [Sia+12] of the correlated KLM, which ex-
tends the tight-binding part of the conduction electrons to the Hubbard model, asked about
the influence of correlations on the Kondo temperature scale. It turned out to scale linearly
as U/t at small correlations until it reaches a plateau at high enough temperature coinciding
with the highest excitation enegies present in the system. Also interesting is the coopera-
tion and competition of correlations with the formation of KSs and the RKKY interaction.
Increasing U/t promotes the localisation of conduction electrons simplifying the formation
of KSs. Small correlations support the RKKY interaction and enhance the inter-site corre-
lator of localised spins. Larger correlations inducing a superexchange interaction however
counteract the RKKY interaction and lead to a reduction of the inter-site correlators.

Motivated by the zero temperature results obtained using the VCA and at finite tempera-
ture with the FTLM, here the half-filled KLM is investigated employing the finite temperature
VCA. Initially, several results of the zero temperature VCA treatment are reproduced to es-
tablish the correctness of the model implementation. Then, the Néel temperature of the
magnetisation, as well as the characteristic temperature scales of the PM and AFM specific
heat and the temperature scale of the on-site spin-spin correlator are extracted. The kink
observed at zero temperature at J/t ≈ 2.05 of the on-site spin-spin correlator is quantified
via its derivative and shown as a function of temperature. These energy scales are sum-
marised in a phase diagram. Afterwards, the fate of KSs with increasing temperature is
considered by observing the DOS and the spectral function. Lastly, the filling of a PM sys-
tem as a function of the chemical potential is considered to show the attempt to investigate
a doped system with a Fermi surface.
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6. Kondo lattice model6

6.1. Hamiltonian, observables and orders6 1

In practice, the Kondo Hamiltonian of equation (6.1) is implemented as a spinfull two or-
bital model. The requirement for one localised spin on each lattice site is realised explicitely
by restricting the state space of the reference cluster. When constructing the cluster Green’s
function, the contribution by the orbital resembling the localised spins is omitted.

An observable specific to the KLM is the on-site spin-spin correlator. Following the defi-
nition of the grand potential and expectation values at finite temperature, it is obtained as
derivative

∑

i

〈Si · si〉=
∂Ω

∂ J
(6.3)

and abbreviated in the following as 〈S · s〉.
The PM order is realised by optimising the grand potential w.r.t. the (isotropic) on-cluster

hopping. In case of the AFM order, the Weiss field

H = h′
∑

j

Λ j exp(iq · j), (6.4)

with one-body operator Λ j = (n j↑ − n j↓) and ordering wavevector q = (π,π) is considered
in addition to the on-cluster hopping.

Technically, for finite temperature all computations are performed with Nex = 120 exact
and R= 60 random trace vectors. While the exact trace vectors are obtained by performing
a maximum of 1200 Band Lanczos iterations allowing Ndeg = 8 starting vectors, the random
trace vectors employ at maximum 800 iterations of a regular Lanczos solver. The excited
state sectors are handled with a regular Lanczos solver with a maximum of 800 iterations.
For the construction of the Green’s function, the high-frequency expansion is employed up
to 15th order.

As discussed in section 4.1.4, using random trace vectors is not expedient. Their us-
age here is a remnant of when this was not yet clear. Considering the cases with Kondo
couplings J/t ∈ {1.5,2, 2.5} with only Nex = 120 exact trace vectors and comparing the op-
timised grand potential, the magnetisation as well as the optimal Weiss fields, there occur
no significant deviations in either quantity within the temperature range T/t ∈ [0.01,0.50]
as compared to runs employing the additional random vectors.

The reference system considered is formed by a 2× 2 site cluster with two orbitals and
two spin orientations. At zero [Len16] and finite temperature a larger cluster with 3 × 2
sites can be employed. Both clusters and the lattice vectors of the superlattice are given
in section 2.2.2. However for the purpose of constructing a phase diagram with sufficient
temperature resolution, the smaller cluster is chosen to achieve lower run-times.

As for the modus operandi, first the grand potential at zero temperature is evaluated
as function of the Kondo coupling J/t while optimising the on-cluster hopping in case of
the PM and in addition the AFM Weiss field for the AFM solution. Starting from the op-
timal variational parameters at zero temperature, the optimisations are performed at finite
temperatures T/t ∈ {0.01,0.02, . . . 0.50}. Special observables such as entropy, DOS and
spectral function are computed afterwards using the optimal variational parameters.
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6. Kondo lattice model6

6.2. Comparisons at zero temperature6 2

First only the PM solution of the KLM is considered. For this purpose, the grand potential
is optimised w.r.t. the (isotropic) on-cluster hopping. The optimised grand potential Ω/t of
a 2× 2 site cluster and the optimal values of the variational parameter t ′/t of a 2× 2 and
3× 2 site cluster as function of the Kondo coupling shown in figure 6.1 agree with those of
Lenz [Len16]. While the on-cluster hopping diverges monotonously with lowering J/t in
case of the 2× 2 site cluster, it exhibits a minimum in case of the 3× 2 site cluster before
diverging as well.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

J/t

Ω
/

t

Lenz, 2× 2
thesis, 2× 2

(a) CPT grand potential.
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(b) Variational parameter.
6.1 – CPT grand potential Ω and variational hopping amplitude t ′ belonging to its minima as

function of the Kondo coupling J/t at T/t = 0. The results are compared to those of Lenz
[Len16].

Allowing for an AFM solution, the system exhibits a finite magnetisation which is com-
pared for a 2×2 and a 3×2 site cluster in figure 6.2a to those of Lenz [Len16]. The critical
Kondo coupling where the AFM transitions into a PM lies at Jc/t ≈ 2 for the 2×2 and at 2.1
in case of the 3×2 site cluster. Furthermore, figure 6.2b displays the on-site spin-spin corre-
lator 〈S · s〉with a kink well visible at the respective critical Kondo coupling. It is highlighted
by fitting the correlator before and after the critical value with a second order polynomial
whose derivative ∂J 〈S · s〉 is shown in the figure as well. The correlator approaches with
increasing Kondo coupling the limit of one KS per site, −3/4.
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(a) Magnetisation.
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(b) Spin-spin correlator 〈S · s〉 and its J -
derivative ∂J 〈S · s〉.

6.2 – AFM magnetisation m of the conduction electrons and spin-spin correlator 〈S · s〉 between
localised and conduction electron spin at T/t = 0 of a 2 × 2 and a 3 × 2 site cluster. The
results are compared to those of Lenz [Len16].

Another way to quantify the presence of KSs described in the introduction is the DOS
whose peaks at the energy 3J/4 indicate breaking of KSs in case these are present. Fig-
ure 6.3 displays the DOS for the 2 × 2 and 3 × 2 site cluster with different broadenings
η/t ∈ {0.05, 0.1}. Within the reference [Len16], three different peaks in the PM DOS are
considered significant, the side resonance SR and the two peaks MR1 and MR2 of the split
main resonance as labeled in figure 6.3c. Since here the smaller 2×2 site cluster is used as
reference system, some peaks may not be sufficiently developed as can be seen by compar-
ing the DOS of the different clusters, figure 6.3b for the 2× 2 and figure 6.3c for the 3× 2
site cluster. In the following, the DOS is evaluated for the 2× 2 site cluster and the slightly
larger broadening η/t = 0.1 as illustrated in figure 6.3a.
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(a) 2 × 2 site cluster
with η/t = 0.1.
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(c) 3 × 2 site cluster
with η/t = 0.05.

6.3 – DOS of the conduction electrons for J/t = 1.5 at T/t = 0 of a 2 × 2 site cluster for two
broadenings η/t ∈ {0.05,0.1} and a 3× 2 site cluster for η/t = 0.05.
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6.3. Finite temperature6 3

Allowing for finite temperature provides an additional path from the AFM to a PM phase.
This thermal PM is however distinct from the PM phase of KSs emerging at the critical
Kondo coupling Jc/t since it consists of more than a pure state. The transition temperature
from AFM to thermal PM is the Néel temperature TN where the AFM magnetisation becomes
zero. It can be inferred from figure 6.4, where the magnetisation is shown as function of
temperature for several Kondo couplings. Given the temperature resolution ∆T/t = 0.01,
the Néel temperature appears to remain the same below J/t = 1.7 while it changes above
the given value. Increasing J/t at zero temperature leads to a transition from the AFM to
a PM phase at Jc/t = 2.1 as shown in figure 6.2a. This is reflected here by the magnetic
moment vanishing at J/t = 2.1 for all temperatures.
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6.4 – AFM magnetisation m of the conduction electrons as function of the temperature T/t of a
2× 2 site cluster at several Kondo couplings J/t ∈ {1.5, 1.6, . . . , 2.1}.

Another observable providing a characteristic temperature is the specific heat. Obtained
as the temperature derivative of the entropy shown in figure 6.5a for the PM and AFM
solution at J/t = 1.5, the respective specific heats shown in figure 6.5b both exhibit a peak
at temperatures TPM and TAFM. While the PM specific heat is smooth, the high temperature
flank of the peak in the AFM specific heat appears to exhibit a jump. Going beyond the
example of J/t = 1.5 given here, TAFM follows the Néel temperature, while TPM increases
linearly with Kondo coupling J/t as can be seen in the phase diagram 6.8. The behaviour of
the PM specific heat agrees with the observations of Zerec et al. [ZST06] at elevated Kondo
couplings which confirms the present investigation.

Judging from the increase of the specific heat above T/t ≈ 0.3, a second peak occurs at
higher temperature. It is likely related to charge excitations [Sia+12; SSY18] and could be
considered within a correlated Kondo lattice model [Sia+12] to check its dependence on
the Hubbard repulsion.
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(a) Entropy.
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(b) Specific heat.
6.5 – Entropy and specific heat as function of the temperature T of a 2×2 site cluster at J/t = 1.5.

The peaks of the PM and AFM specific heat are highlighted in green and red.

Following the observation of Lenz [Len16] the on-site spin-spin correlator 〈S · s〉 is con-
sidered as function of the Kondo coupling. Fitting the correlator by two second order poly-
nomials, one below and one above J/t ∈ {1.75,1.85, . . . , 2.25} aims at capturing kinks
possibly present at these Kondo couplings. J -derivatives of these fits exhibit a jump and
thereby provide a measure of the kinks occuring at a given J/t. Figure 6.6a illustrates this
at the temperature T/t = 0.1 for a kink at J/t = 2.05. Since this jump is obtained by fitting
over restricted ranges of the Kondo coupling, it must be taken with a grain of salt. This can
be seen by considering the example shown in figure 6.6a and the summary in figure 6.6b
where all values of J/t imply a significant kink. Following the observation at zero tem-
perature [Len16] according to which the kink is located at the critical Kondo coupling Jc/t
where the system transitions into a PM, the respective curves in figure 6.6b are highlighted
by a darker colour (purple, red, orange). The curves are chosen to overlap due to the finite
resolution in J/t.

As for its meaning, the jump is a measure of how much the change with J/t of the (abso-
lute value of the) spin-spin correlator decreases at the critical value Jc/t. It thus splits the
system into different regimes depending on how it reacts to the KSs starting to dominate.

Considering the critical Kondo coupling at low temperature given by the dark, puple
curve, the change to the PM is associated with the largest jump. In addition the case of
Kondo couplings below and above the critical value can be distinguished qualitatively. Below
Jc/t, the jump shows a peak, whose temperature decreases with increasing Kondo coupling.
Above the critical value, the jump decreases and exhibits an inflection point. At Jc/t, the
jump seems to have a saddlepoint. Passing the Néel temperature depending on the Kondo
coupling, the jump remains non-zero up to a temperature T/t ∼ 0.45, signifying the PM of
KSs before ending in a thermal PM.
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(a) Spin-spin correlator 〈S · s〉 and its J -
derivative ∂J 〈S · s〉 at T/t = 0.1 as
function of J/t.
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6.6 – Spin-spin correlator 〈S · s〉 and its J -derivative ∂J 〈S · s〉 at T/t = 0.1 as function of J/t
as well as the jump occuring in the latter, ∆[∂J 〈S · s〉], for J/t ∈ {1.75,1.85 . . . , 2.25} as
function of T/t. Dark curves highlight the critical Kondo coupling Jc/t where the system
transitions into a PM.

Perceiving the on-site spin-spin correlator as function of temperature as done by Zerec
et al. [ZST06] provides another means to determine a characteristic temperature scale. The
normalised correlator as function of the scaled temperature T/J shown in figure 6.7a illus-
trates the decay of spin correlations with increasing temperature (lower absolute value of
correlator). In agreement with Zerec et al. [ZST06], the spin-spin correlator scales as J/t.
‘Scaling as’ means, that when displaying the spin-spin correlator as function of T/J , the
curves for different coupling J/t collapse on top of each other.

The characteristic temperature scale is obtained as the temperature of the inflection point
which corresponds to the maximum in the T -derivative shown in figure 6.7b. It is summar-
ised in the phase diagram 6.8.
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6.7 – Normalised spin-spin correlator and its numerical derivative used to determine the inflection
point and thus the temperature scale of onsite correlations T〈S·s〉.
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6. Kondo lattice model6

In order to summarise the characteristic temperatures of the observables investigated up
to now, figure 6.8 displays the corresponding phase diagram.

The AFM phase is highlighted by blue squares whose shade refers to the magnetisation.
Its boundary to the thermal PM phase coincides with the peak of the specific heat upon
including an AFM order TAFM which is shown in red. This peak thus describes the AFM spin
fluctuations. The peak of the specific heat when restriciting oneself to the PM solution TPM

is shown in green. Its temperature increases linearly with increasing Kondo coupling J/t.
Following the reasoning of Zerec et al. [ZST06], this peak is associated with the breaking
of KSs. Fitting this temperature with a linear function in J/t yields (J/t)(T = 0) ≈ 1. A
temperature scale describing both types of spin fluctuations is the inflection point of the
spin-spin correlator T〈S·s〉 as a function of temperature T/t shown in purple. It interpolates
between both temperature scales. Since the spin-spin correlator considered as a function
of the Kondo coupling J/t exhibits a kink at the critical value, the jump introduced in fig-
ure 6.6 is shown for the low-temperature case of Jc/t = 2.05. The transition to a thermal
PM coincides with the fast decay of the jump. A plateau in the jump remains, until the
temperature TPM/t is passed.
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6.8 – T -J phase diagram of the half-filled Kondo model with a 2×2 site cluster as reference system.
Blue squares highlight the AFM region with the shade representing the magnetisation. Peak
positions of the specific heat introduced in figure 6.5b are shown in red for the AFM phase,
TAFM, and in green for the PM phase, TPM. The temperature scale of onsite correlations T〈S·s〉
is given in purple. A measure of the kink in the spin-spin correlator ∆[∂J 〈S · s〉] introduced
in figure 6.6 at J/t = 2.05 is depicted in orange.

After having discussed the thermodynamics of the KLM, dynamical observables are con-
sidered to shed more light onto the fate of the KSs. Figure 6.9 shows the DOS for several
temperatures T/t ∈ {0.00,0.01, . . . , 0.30} in case of J/t = 1.5 for the PM and AFM solution
as well as for J/t = 2 in the AFM case. The green and red DOS highlight the temperature
closest to but below TPM and TAFM. Note that TPM < TAFM in case of J/t = 1.5 but TPM > TAFM

for larger J/t = 2. Orange lines highlight the peaks occuring in the DOS up to T/t = 0.30
while the orange dots at the top refer to the location of peaks at T/t = 0.50. Blue ar-
rows denote the energy required to break a KS at low and high temperature as given in
the introduction. Since the KLM is considered at half-filling, the DOS is symmetric around
(E −µ)/t = 0 due to particle-hole symmetry.
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6. Kondo lattice model6

In case of the PM DOS at J/t = 1.5, two peaks occur at low temperature T/t < TPM/t
below the chemical potential. The one closer to the chemical potential lies near the energy
required to break a KS. It survives up to T/t ≈ TPM/t. For the temperature range TPM/t ®
T/t ® TAFM/t only one peak is present in the DOS. Slightly above TAFM a new peak emerges
in the gap and can be associated with a thermal PM phase since it requires less energy than
breaking a KS. At even higher temperature, additional peaks occur in the gap whose position
at T/t = 0.5 is highlighted by the orange dots.

For the AFM DOS at J/t = 1.5 also two peaks occur at low temperature T/t < TAFM/t
below the chemical potential. Since these peaks merge at the Néel temperature, they are as-
sociated with the AFM order. This assessment is confirmed upon considering the ‘staggered-
average local DOS’ considered by Lenz [Len16] which measures the imbalance of the spin-
resolved DOS on the sublattices formed by the AFM order. Adopting the labels used by
Lenz, the presence of a SR and MR peak are signatures of the AFM phase. Besides these
signatures, there is no peak visible close to the energy required to break a KS. Slightly above
TAFM/t a new peak emerges in the gap and can be associated with a thermal PM phase since
it requires less energy than breaking a KS. Going to even higher temperature, additional
peaks occur in the gap.

In contrast closer to the PM of KSs at the Kondo coupling at J/t = 2, three peaks occur
at low temperature T/t < TAFM/t below the chemical potential. The peak MR2 closest to
the chemical potential lies near the energy required to break a KS. It survives slightly past
TPM/t. The remaining two peaks MR1 and SR merge at the Néel temperature. Slightly above
TAFM/t a new peak emerges in the gap and can be associated for TAFM/t ® T/t ® TPM/t with
the energy required to break a KS at high temperature. Hence there exists a temperature
range where the low- and high-temperature KSs coexist. The transition AFM KS at low
T/t may at higher temperature eventually result in a thermal PM phase, since the peak in
the gap moves back towards the chemical potential as can be inferred from the orange dots.

The DOS at J/t = 2.5 not illustrated here, exhibits a coexistence of the low-temperature
KS and further PM peaks. The KS peak starting out for T/t = 0 at (E − µ)/t = 0.98 ≈
0.9375 = (1/2) · 3J/4 vanishes for T/t = 0.43 at (E − µ)/t = 1.06. PM peaks emerge for
T/t = 0.26 at (E−µ)/t = 0.02 moving to higher energies until they reach (E−µ)/t = 0.27
for T/t = 0.5. This is below the pure KS at high temperature (1/2) · 3J/8= 0.46875.
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6.9 – DOS of the conduction electrons for two Kondo couplings J/t ∈ {1.5, 2} at several temper-
atures T/t ∈ {0.00,0.01, . . . , 0.30}. For J/t = 1.5, the DOS is evaluated once for a PM
system and once allowing an AFM order among the conduction electrons. Peak positions
of the specific heat introduced in figure 6.5b are shown in red for the AFM phase and in
green for the PM phase. Relevant peaks in the DOS are highlighted with orange lines and
for T/t = 0.5 as dots at the top. Blue arrows emerging from the bottom and top highlight
the energy needed to break a KS at low and high temperature, 3J/4 and 3J/8.
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6. Kondo lattice model6

After discussing the energetics of the system in terms of the DOS, the structural depen-
dence within the spectral function follows. Figure 6.10 shows the spectral function for three
Kondo couplings J/t ∈ {1.5,2, 2.5} and three temperatures T/t ∈ {0.01, 0.15,0.5}.

Signatures of the AFM phase corresponding to the splitting between SR and MR1 occur
along the path k/π = (0,1) (1, 0) which is the boundary of the Brillouin zone due to the
doubled unit cell within the AFM phase. Within the AFM phase, the KS is located around
k/π = (1, 1) in the occupied band and k/π = (0, 0) in the unoccupied bands since these
k-points are equivalent in the doubled unit cell. It vanishes with increasing temperature.
However depending on the Kondo coupling J/t, its signature survives to large temperatures.
Since for the Kondo couplings considered, the KS is a localised object due to the local spin,
it is not dispersive and stays at k/π = (0,0). The thermal PM shows signatures within the
gap along the path k/π= (0,1) (1,0) corresponding to the boundary of the Brillouin zone
due to the doubled unit cell. Thermal PM and KS are therefore distinct.
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6.10 – Spectral function for different Kondo couplings at several temperatures. KS refers to
signatures of the Kondo singlets.
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6. Kondo lattice model6

6.4. Doped paramagnet6 4

In order to investigate the effect of KSs on the Fermi surface, a metallic system has to be
considered which can be reached by doping the KLM. In practice, doping entails two ad-
ditional variational parameters, the physical chemical potential µ to fix the filling and the
cluster chemical potential µ′ to determine the filling in a thermodynamically consistent fash-
ion. The idea behind this is described in section 2.4.7. Figure 6.11 shows the filling of a
PM system at T/t = 0 as function of the physical chemical potential for two cluster sizes.
The variational parameters considered are the on-cluster hopping and the cluster chemical
potential. While the fillings observed here appear erratic, those presented by Lenz [Len16]
are smooth. This discrepancy is likely due to the usage of a self-refining grid from the CUBA
library within the k-space integration employed by Lenz.
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6.11 – Accessible fillings as function of the chemical potential µ/t for J/t = 2 at T/t = 0 em-
ploying a grid of 100×100 k-vectors. The results are compared to those of Lenz [Len16].

6.5. Conclusion and Outlook6 5

The characteristic temperature scales obtained from the AFM magnetisation, the specific
heat and the on-site spin-spin correlator are summarised in the phase diagram 6.8. A def-
inite phase boundary is formed between the AFM and thermal PM by the Néel temperature
and the peak temperature of the specific heat for the AFM solution. In contrast, the peak
temperature of the specific heat for the PM solution appears to be more of a crossover tem-
perature between PM of KSs and thermal PM. Fitting this temperature with a linear function
in J/t yields a crossover at zero temperature for (J/t)(T = 0) ≈ 1. The entire thermal PM
is separated from the low-temperature phases by the temperature associated with the in-
flection point of the on-site spin-spin correlator. Hence three phases can be identified.
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6. Kondo lattice model6

The DOSs displayed in figure 6.9 exhibit features of the AFM phase, the PM of KSs and
the thermal PM as well. A merger of two peaks at the Néel temperature denotes the tran-
sition from the AFM to the thermal PM. Each peak is associated with the magnetisation
on one sublattice of the AFM. Peaks at the energy required to break a KS at low and high
temperature signify the presence of KSs. Additional peaks at lower energies hint at a thermal
PM. However there is no sharp transition but a coexistence of the KS peak with further PM
peaks before the prior vanishes with increasing temperature. Furthermore it is difficult to
distinguish between the peak of a KS at high temperature and peaks related to a thermal
PM. Thus the KS to thermal PM transition is considered to be a crossover.

For the spectral function shown in figure 6.10, the split peaks of the AFM present in the
DOS show up as two almost dispersionless, split bands along the boundary of the Brillouin
zone k/π = (0,1) (1, 0) related to the doubled unit cell. Signatures of the KSs are also
almost dispersionless and occur at k/π = (0, 0) and k/π = (1,1). For the thermal PM, the
gap is flooded along the boundary of the Brillouin zone k/π = (0,1) (1, 0) with spectral
weight. Hence for the spectral function the distinction between KS and thermal PM is better
visible.

Sticking to the half-filled system, observables of the converged reference cluster such as
the PM total moment, the inter-site correlator or the spin susceptibility as done in [ZST06]
may provide further characterisation of the KLM.

However the more interesting prospect lies in modelling a metallic system close to half-
filling. This would enable the quasiparticle gap and the Fermi surface as well as their be-
haviour with temperature as observables. The transition from a small Fermi surface count-
ing only the conduction electrons to a large Fermi surface which includes the localised spins
would serve as additional temperature scale to characterise the PM of KSs. Another inter-
esting topic is the emergence of non-Fermi liquid behaviour, such as deviations from the
T -linear term in the specific heat or the electrical resistivity from the expected T 2 depen-
dence, in heavy fermion metals [GSS08]. On a microscopic level, the energy-dependence
of the cluster self-energy can be investigated [Nol14].
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7Conclusion and Outlook7

In this thesis, the implementation details of several cluster solvers used for the VCA at finite
temperature have been described. The most reliable, sufficiently benchmarked and best
performing solver among them (see below) was then used to investigate the magnetic and
orbital properties of Sr2IrO4 and Ca2RuO4 described by three-band Hubbard models, as well
as the Kondo model at half-filling.

It was shown, that MPSs can be used within a cluster solver for VCA to construct the con-
tinued fraction representation of the cluster Green’s function and obtain results in agreement
with an ED solver.

For future attempts to use MPSs in a cluster solver, the following points should be kept
in mind. First, suitable hardware should be used, since access to larger reference systems
comes at the price of longer runtimes. Second, the Chebyshev representation of the Green’s
function should be considered, since it avoids the technical issue of loosing the basis or-
thogonality when constructing the continued fraction representation. Third, specifically
concerning the solver employed in this thesis, its accessibility should be improved. With the
given solver, a staggered AFM order, which is the default order used to benchmark the VCA,
could not be investigated.

Concerning the solvers for finite temperature VCA, the FD as well as ED and Chebyshev
solvers using exclusively exact trace vectors were reliable and performed well when mak-
ing use of the high-frequency expansion or when using a moderate number of Chebyshev
moments. The exact trace vectors should be obtained with a solver capable of resolving
degenerate or clustered eigenvalues like a Band Lanczos solver. In case of the excited state
sector for ED, a regular Lanczos solver is sufficient.

For all practical purposes considered, random trace vectors did not provide any advantage
compared to their exact counterparts. Using purely random trace vectors within the FTLM
gives insufficient results within the temperature range of interest where phase transitions
occur and restricts its application to high temperatures. To obtain reliable results within
FTLM, a large system or a sufficient number of random trace vectors is required. However
to solve larger systems, more time is needed. Hence the FTLM is better suited for one-shot
computations than for VCA, where the system has to be solved multiple times to find the
optimal variational parameters. Increasing the number of random trace vectors also makes
the solver numerically more expensive. When trying to improve the FTLM by requiring more
converged eigenvalues one misses the opportunity of using them as exact trace vectors while
having to compute them multiple times.

Splitting the trace into an exact and a random part, i.e. employing exact and random
trace vectors, is unnecessary when already using exact trace vectors. At low temperature,
the exact trace vectors are sufficient. When higher temperatures are of interest, the results
can be improved systematically by incorporating more exact eigenvectors. In contrast it is
unclear how many random vectors are required for a given temperature to achieve a satis-
fying precision.
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7. Conclusion and Outlook7

Apart from being perceived as a SOC enabled Mott insulator at low temperature, the
investigation of Sr2IrO4 was motivated by two questions. On the practical side the question
was posed, whether the insulator emerging when going below the Néel temperature is more
of Mott- or Slater-type [Ari+12; Li+13; WSY14]. This could not be answered using VCA,
since the insulating gap changed only marginally. The closing of the gap with increasing
temperature above and below the Néel temperature appeared to proceed at different rates.
However this occured in such a faint manner, that definitive conclusions could not be drawn.
Future attempts to address this question should be directed towards a CDIA study or a
parameter study similar to the one conducted for the half-filled one-band Hubbard model
[SSY18].

A more academic question concerned the necessity of nonlocal quantum fluctuations to
properly capture the spectral features of magnetically ordered systems [Mar+18]. As far
as the spectral function along the path k/π = (0,0) (1, 0) (1,1) (0,0) is concerned,
nonlocal quantum fluctuations are not required to qualitatively reproduce the spectra of the
magnetically ordered system modelling Sr2IrO4. Besides overestimating the stability of the
order considered (larger Néel temperature, larger spectral gap) which can be anticipated
for meanfield theories, the spectral function missed features in the unoccupied states.

In contrast to the previous compound, in Ca2RuO4 the transition from AFM to PM is
separated from the insulator to metal transition. The question motivating the investigation
concerned the temperature range between these two transitions, more specifically whether
the system changes from an orbitally ordered state into a disordered state [Zeg+05] or not
[Por+18].

It was observed, that with increasing temperature, the capability of spin-orbit coupling
to mix different orbitals became less effective. Combined with signatures of orbital fluc-
tuations and the absence of real orbital order [Por+18], this suggested fluctuations in the
phase between the orbital components, which is no longer fixed by spin-orbit coupling, as
the origin of these orbital fluctuations.

Motivated by a VCA study at zero temperature [Len16] and a FTLM study at finite temper-
ature [ZST06], the half-filled Kondo lattice model was investigated with finite temperature
VCA. Considering the AFM magnetisation, the AFM and PM specific heat as well as the on-
site spin-spin correlator made it possible to construct a phase diagram. The characteristic
temperatures led to three phases: an AFM, a PM of Kondo singlets and a thermal PM. While
the thermal PM is the final high temperature phase for all Kondo couplings J/t considered,
there exists a range J/t ∈ [1.8, 2.05] where increasing the temperature destroys the AFM
order but leaves a PM of Kondo singlets before the thermal PM is reached.

Looking at the DOS and the spectral function provided information on the fate of the
Kondo singlets with increasing temperature as well as their signatures compared to the
thermal PM.
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7. Conclusion and Outlook7

Having access to finite temperature but being restricted to commensurate fillings and
insulating reference systems allows one only to witness the passive action of temperature
which dilutes the ground state character with other states of higher energy. If doping could
provide states within the insulating gap, a metallic system with a Fermi surface could be
investigated or a metal-insulator transition could be captured and thus should allow more
interesting dynamics in the spectral function like spectral weight shifting. Focus should be
directed towards achieving a reliable level of doping and to properly use the CDIA.

Numerically, the Chebyshev representation of the Green’s function should be used in com-
bination with a MPS-based cluster solver and applied to realistic physical problems like
Ca2RuO4, where larger clusters are in reach. To consider finite temperature, random trace
vectors can be employed which should give reliable results with the larger system sizes
accessible to a MPS-based solver.

141



A Mixed ensembleA

In general, symmetries of the Hamiltonian which are compliant with the boundary condi-
tions can be exploited to reduce the effort of calculations. Since these symmetries imply
conserved quantities, the Hamiltonian and the conserved quantity share a common eigen-
basis. Hence, the eigenvalues of the conserved quantity can be used as quantum numbers
to characterize the states. If the physical problem at hand fixes the conserved quantity, the
space of states used in setting up the Hamiltonian can be restricted.

In the present work, all Hamiltonians considered are particle-number conserving. Thus
only states with a specific number of particles are considered. In context of the VCA, this
restriction is in contradiction to the notion of a grand potential of the grand canonical en-
semble. Working in a subspace with fixed particle number while computing observables in
a grand canonical scheme is denoted in the following as working in a mixed ensemble.

To obtain observables within the grand canonical ensemble, one has to combine the ob-
servables measured in the different particle-number sectors in a suitable manner. Recalling
the connection between the partition functions of the grand canonical ensemble Ξ(µ, V, T )
and the canonical ensemble Ξ(N , V, T ),

Ξ(µ, V, T ) =
∑

N

Ξ(N , V, T ) · exp
�

−
(−µN)

T

�

, (A.1)

the full grand potential Ω(µ, V, T ) can be expressed via the grand potential in the mixed
ensemble ΩN (µ, V, T ) as

Ω(µ, V, T ) = −
1
β

ln

¨

∑

N

exp
�

−
ΩN (µ, V, T )

T

�

«

. (A.2)

Equation (A.2) forms the dictionary between the mixed and the grand canonical ensemble.
Observables within the grand canonical ensemble are obtained by computing the derivative
of the grand potential Ω(µ, V, T ). Identifying the derivatives on the r.h.s. with the observ-
ables measured within the mixed ensemble in various particle-number sectors gives the
recipe of how to assemble the observables. An important observable in this context is the
entropy whose expression is derived in section 2.4.5. To obtain the entropy in the grand ca-
nonical ensemble from the quantities measured in the mixed ensemble, one has to assemble
the derivative

S(µ, V, T ) = −
∂

∂ T
Ω(µ, V, T )

= −βΩ(µ, V, T ) + β 〈ΩN (µ, V, T )〉N + 〈SN (µ, V, T )〉N (A.3)

with the average

〈O(N , V, T )〉N =

¨

∑

N

exp[−βΩN (µ, V, T )]

«−1¨
∑

N

exp[−βΩN (µ, V, T )]O(N , V, T )

«

.

(A.4)
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B High- and low-temperature limitsB

The easiest route to the high- and low temperature limits of the entropy is to express each
quantity in equation (A.3) in terms of the partition function of the mixed ensemble

ΞN (µ, V, T ) = exp[−βΩN (µ, V, T )], (B.1)

which gives for the entropy of the grand canonical ensemble

S(µ, V, T ) = ln

�

∑

N

ΞN (µ, V, T )

�

−

�

∑

N

ΞN (µ, V, T )

�−1 �
∑

N

ΞN (µ, V, T ) ln[ΞN (µ, V, T )]

�

+ 〈SN (µ, V, T )〉N . (B.2)

Employing the analytical expression for the CPT grand potential provided in equation (2.170),
one can see in the limit of high and low temperature

lim
T ∞

βΩN (µ, V, T ) = lim
T ∞

βΩcl, (B.3)

lim
T 0

βΩN (µ, V, T ) = lim
T 0

βΩcl. (B.4)

At high temperature, the remaining terms cancel, while at zero temperature, each remaining
term vanishes separately. Considering the cluster partition function of equation (2.19) with
the trace represented by the eigenstates of the Hamiltonian, it becomes at high temperature
the dimension of the Hilbert space of the respective particle number sector, while at zero
temperature only the gN -fold degenerate ground state contributes significantly

lim
T ∞

Ξcl = dimHN , (B.5)

lim
T 0

Ξcl = lim
T 0

gN exp(−βE0). (B.6)

Similar to the CPT grand potential, the entropy given in equation (2.244) approaches its
cluster counterpart in the high- and low temperature limit. In case of the high-temperature
limit, blatantly setting β = 0 givesSCPT = 0,Scl = 0. Since the CPT grand potential becomes
the cluster grand potential, only the cluster entropy remains

lim
T ∞

SN (µ, V, T ) = lim
T ∞

Scl. (B.7)

The limit of zero temperature is more involved. One may follow the physical reasoning of
Seki et al. [SSY18], who start from the internal energy EN = ΩN (µ, V, T )+ TSN (µ, V, T ) and
argue that it should approach the grand potential upon lowering the temperature. Com-
paring the different expressions leads to a cancellation of all but the cluster entropy within
SN (µ, V, T ). Here, a more technical argument is presented. Following the derivation of the
expression for the entropy presented in section 2.4.5, one can identify

−
∂ [ΩN (µ, V, T )−Ωcl]

∂ T
= SCPT +Scl −

[ΩN (µ, V, T )−Ωcl]
T

. (B.8)
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B. LimitsB

Considering the zero temperature limit of this equality and applying l’Hôpital’s rule one
expects

lim
T 0

[ΩN (µ, V, T )−Ωcl]
T

= lim
T 0

∂ [ΩN (µ, V, T )−Ωcl]
∂ T

(B.9)

and hence
lim

T 0
(SCPT +Scl) = 0, (B.10)

leaving only the cluster contribution to the entropy

lim
T 0

SN (µ, V, T ) = lim
T 0

Scl. (B.11)

With the average cluster energy given by equation (2.248) not scaling with temperature in
the high temperature limit, its contribution to the cluster entropy (2.245) vanishes

lim
T ∞

β 〈H〉cl = 0. (B.12)

This leaves for the high temperature limit of the entropy in the mixed and grand canonical
ensemble

lim
T ∞

SN (µ, V, T ) = ln[dimHN], (B.13)

lim
T ∞

S(µ, V, T ) = ln

�

∑

N

dimHN

�

. (B.14)

In the low temperature limit, only the gN -fold degenerate ground state contributes, giving

lim
T 0

Scl = lim
T 0
[ln(gN)− βE0 + βE0] = ln(gN ). (B.15)

For the zero temperature limits of the mixed and grand canonical entropy thus follows

lim
T 0

SN (µ, V, T ) = ln(gN ), (B.16)

lim
T 0
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·





∑
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gN ln(gN )



 , (B.17)

where {N} refers to case of degenerate ground states within different particle number sec-
tors.
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C Finite temperature expectation valuesC

At finite temperature, the expectation values obtained numerically from the cluster Green’s
function appear to differ in specific cases from those obtained as a trace over the eigenstates.
Intuitively, this discrepancy follows from erroneously using the hole and the electron part
of the Green’s function to compute expectation values. The deviation can be quantified by
evaluating the integral (2.165) starting from the grey contour shown in figure 2.13d which
encircles the poles of the Green’s function on the real axis as well as using f (ε) = 1− f (−ε)
for the Fermi function and gives

−
1

2π i

∮

C
d z Gαβ(z) f (z) =

∑
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exp(−βεm)
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n |c
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β
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−
n |cα|Ψm〉

= 〈c†
β
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exp(−βεm)
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−
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†
β
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where the electron and hole part are explicitely denoted by ± and the expectation value is
given according to equation (2.22). If the additional terms besides the expectation value
neither vanish nor cancel, the integral over the Green’s function is different from the ex-
pectation value. Considering the shape of the Fermi function, the difference compared to
the expectation value consists mostly in states with ε±n < εm which lead to poles illustrated
in figure C.1 for T/t > 0.

Re(z)

Im(z)

T/t = 0

holes electrons

Re(z)

Im(z)

T/t > 0

holes electrons

C.1 – Relevant poles of the electron and hole part of the Green’s function at zero and finite tem-
perature.
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C. Expectation valuesC

A specific example for this discrepancy is shown for the kinetic energy in figure C.2 for a
half-filled one-band Hubbard model with U/t = 8 on a 2× 2 site cluster. In contrast, the
density is captured correctly via the contour integral.
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C.2 – Illustration of the discrepancies ∆A motivated in equation (C.1) for the cluster kinetic en-
ergy and cluster density A ∈ {Ekin, n}. Lines mark the difference between the expectation
values obtained via contour integration and trace, while dots refer to the expression contain-
ing Fermi functions. The differences are normalised w.r.t. the expectation value obtained
via the trace 〈A〉.

Analytically, the additional terms are prevented by evaluating the Matsubara function at
suitable imaginary times as done in equation (2.62). This implies a phase factor in the
Fourier series of the Matsubara function which formally allows extending the contour with
arcs around the positive and negative real axis as described in section 2.3.5. Missing this
phase factor gives different results as is illustrated in two exercises in [Nol14] for the diag-
onal Matsubara function.

At zero temperature, such a phase factor is not required, since the poles of the hole and
electron part are well separated as sketched in figure C.1 and the Fermi function only in-
cludes the poles of the hole part since f (E) Θ(−E).

Considering the contour motivated in section 2.3.5, the effect of such a phase factor is
limited. Due to the infinitesimal 0+ in the exponent, the real part of z could be ignored,
while a change in the sign of the imaginary part may lead to a sign change. However
adding phase factors of different size 0+ ∈ {10−6, 10−3, 10−1} or replacing the phase factor
by exp[i Im(z)], sign[Im(z)] or i sign[Im(z)] within the numerical integration does not get
rid of the discrepancy. Hence the question remains of how to prevent the electron part from
contributing.

Besides altering the cluster expectation values, it is unclear how this affects the expecta-
tion values obtained from the CPT Green’s function.

Among the cluster observables presented in chapter 4, the discrepancies discussed here do
not alter the overall conclusion, since it is a systematic error which affects the results from all
solvers equally. Differences between solvers thus do not originate from these discrepancies.
Within section 5.2, the overlaps computed on the cluster are obtained via the trace, which
yields the correct results.
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D ParallelisationD

To reduce the execution time, the evaluation of the trace using random vectors is executed
in parallel using OpenMP. The respective loop is parallelised via OpenMP leading to several
threads executing separate iteration steps in parallel.

Since the Hamiltonian matrix scales with the system size and is not modified within
Lanczos ED, it is shared among the threads. Thus switching between the ground-state and
excited-state sector requires synchronisation of the threads using a barrier. Furthermore,
the Hamiltonian is updated by only one thread using a single construct.

To ensure thread-safety each thread is endowed with its own seed for the random number
generator (RNG) used to construct the random vectors. The RNG is contained in a critical
section, which allows only one thread at a time to execute its contents. Each thread updates
its own seed once the random vector is generated.

In order to avoid blocking the execution due to barriers when some threads finish their
share of jobs, the total number of loop iterations is reduced to be divisible by the number
of maximally available threads. For the remaining loop iterations, the number of threads is
reduced. After all loop iterations are performed, the number of threads is reset again. Thus,
the available threads are used best.

Arrays and variables used within the subroutines running in parallel are declared thread-
private to avoid accidental data sharing and overwriting.

Besides the computation and output to file, the input from file to construct the Green
function as spectral representation is parallelised as well. This can also be used in case the
trace vectors are determined via FD or ED. To avoid race conditions while combining the
data, there are two possibilities:

1) Each thread has a private variable to store the partial sum. After the loop is finished,
the partial sums are combined in a critical section by one thread at a time.

2) A shared array of Green functions is used, where each thread changes the entries
specified by the trace vector. After the loop is finished, the input is combined in a
serial manner.

The first case coincides with the reduction clause of OpenMP, while the second is required
for the error analysis.

D.1. Improved IOD 1

In order to exploit the enhanced speed in computation, writing the components to disk and
reading them to assemble the Green function has to be improved too. First, the number of
files used is reduced since the operating system/hard drive limits the time to find the file to
be read. Next, raw IO is used to keep the disk space small. A symbiosis of these points is
that raw output allows storing whole matrices with their internal structure maintained thus
reducing the number of files by at least two indices and more indices by appending similar
quantities to the same file.
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D. ParallelisationD

It has to be noted that using Band Lanczos ED compared to Block Lanczos or regular
Lanczos ED for the excited subspaces is slower. The convergence of the lowest eigenvalue
is determined by the number of times the Hamiltonian is applied to a single state. Since
regular Lanczos ED has only one state and in Block Lanczos ED, the Hamiltonian can be
applied to multiple states in parallel, they converge similarly fast. For Band Lanczos ED,
deflation [Fre00] can occur which reduces the bandwidth of the Hamiltonian matrix in the
Lanczos basis. Therefore, the Hamiltonian cannot be applied to all states in parallel, since
some states may not contribute and an explicit orthogonalisation w.r.t. deflated Lanczos
vectors might be necessary.

D.2. Debatable implementation choicesD 2

This paragraph aims at pointing out some aspects of the implementation, where efficiency
and quality of life features were sacrificed for the purpose of a slim code base and efficiency
of other parts of the code. These are aspects, that have led in practice to (counter-intuitively)
using one solver over the other and it may be reasonable to adapt them in the future.

When allowing for a FD solver for ‘small’ systems and ED solvers for ‘larger’ systems,
both at finite temperature, one has to decide between less compact code and redundant
computations.

In case a Lanczos solver is intended for the excited state sectors, the trace vectors and
excitations are handled in a loop, each excitation on top of a trace vector is used as initial
vector of a Lanczos run. This is similar to a Band Lanczos solver, where all excitations are
handled at once, but the trace vectors are treated in series. For FD, the Hamiltonian of
the excited state sectors in principle has to be diagonalised only once. Hence either the FD
solver is separated from the ED solvers, meaning less compact code, or the FD is performed
multiple times within the loop required by the Lanczos or Band Lanczos solvers, leading to
a redundancy in computation. Instead of diagonalising the Hamiltonian of the excited state
sectors once, it is diagonalised NGS × ` = O(103) times, with NGS being the dimension of
the ground state Hilbert space and ` the number of cluster sites, including spin and orbital
degrees of freedom.

The latter option was chosen, meaning that for each exactly obtained trace vector and
each excitation, the Hamiltonian in the excited state sector is diagonalised. In case of the d4

configuration of section 5.2, this led to the use of Band Lanczos and Lanczos solvers although
the system is small enough for FD. The time it takes to solve the system with the redundancy
described simply turned out to be too long for sufficient optimisation steps. For two particles
in a three-band Hubbard model, a 792-dimensional Hamiltonian is diagonalised 495× 12
times.

Since performance of the FD solver became important eventually, it was separated from
the Lanczos and Band Lanczos solvers. However the d4 configuration of section 5.2 was
already investigated using Band Lanczos and Lanczos solvers at the time where the number
of exact trace vectors was restricted to Nex = 120 at all finite temperatures.
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A quality of life feature used by Seki et al. [SSY18] is the automatic use of ‘sufficient’ trace
vectors for a given temperature. This has been mentioned in section 2.4.2 and amounts
to requiring a sufficiently large ratio of Boltzmann factors between an excited state and
the ground state of the ground state sector. This automatic feature is not implemented,
since it cannot be applied straightforwardly to the FTLM and misses the original aim of
restricting the number of trace vectors depending on their weight. Since originally, a FTLM
solver was intended as use-case and exact and random trace vectors used the same routine,
additional flags would have been necessary. Also, when splitting the trace into an exact
and a random part, the mentioned criterion cannot assess how many exact trace vectors are
required compared to additional random trace vectors.

Since the FTLM turned out to be unreliable and unnecessary and performance of using
exact trace vectors became important, a redundant copy of the original routine was added
with minor details changed. Hence now the automatic adaptation of exact trace vectors can
be added to the code.
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Zusammenfassung

In dieser Arbeit wurde die Implementation mehrerer Cluster-Solver für VCA bei endlichen
Temperaturen beschrieben. Der verlässlichste, hinreichend getestetste und performanteste
Solver wurde anschließend dazu verwendet den Magnetismus und die Orbitalphysik von
Sr2IrO4 und Ca2RuO4, beschrieben durch Drei-Band Hubbard Modelle, sowie das halb-
gefüllte Kondo Gittermodell zu untersuchen.

Es wurde gezeigt, dass MPSs in einem Cluster-Solver von VCA verwendet werden können
um die Kettenbruchdarstellung der Greenschen Funktion zu konstruieren und daraus ein
Selbstenergiefunktional zu erhalten, welches mit denen eines ED-Solvers übereinstimmt.

Für zukünftige Versuche MPSs in einem Cluster-Solver zu verwenden sollten folgende
Punkte beachtet werden. Erstens sollte angemessene Hardware verwendet werden, da der
Zugang zu größeren Referenzsystemen durch längere Laufzeiten erkauft wird. Zweitens
sollte die Chebyshev-Darstellung der Greenschen Funktion verwendet werden, da auf diese
Weise technische Komplikationen in Form des Verlusts der Orthogonalität der Basis bei Kon-
struktion der Kettenbruchdarstellung vermieden werden. Drittens sollte die in der Arbeit
verwendete Implementation der MPSs zugänglich gestaltet sein. In der vorhandenen Ver-
sion konnte keine AFM Ordnung untersucht werden, was in der Praxis die Standard-Ordnung
zum Testen von VCA darstellt.

Unter den präsentierten Solvern für VCA bei endlichen Temperaturen stellten sich der FD-,
ED- und Chebyshev-Solver mit exakten Spurvektoren als zuverlässig heraus. In Kombination
mit der Hochfrequenzentwicklung, bzw. einer moderaten Anzahl an Chebyshev Momenten
sind sie darüber hinaus performant. Die verwendeten exakten Spurvektoren sollten mit
einem Solver bestimmt werden, welcher in der Lage ist entartete oder geclusterte Eigen-
werte aufzulösen, z.B. einem Band Lanczos Solver. Im Fall des Sektors angeregter Zustände
bei ED reicht ein Lanczos Solver aus.

In allen betrachten Fälle wiesen die Zufallsvektoren keinerlei Vorteile gegenüber ihren
exakten Pendants auf. Die reine Verwendung von Zufallsvektoren in FTLM führt zu fehler-
behafteten Ergebnissen innerhalb des Temperaturbereichs von Interesse in welchem Phasen-
übergänge auftreten und beschränkt den Anwendungsbereich des Solvers damit auf hohe
Temperaturen. Um mit FTLM zuverlässige Ergebnisse zu erhalten müssen große Systeme
oder eine hinreichend hohe Anzahl an Zufallsvektoren verwendet werden. Allerdings benöti-
gen größere Systeme mehr Zeit um sie exakt zu diagonalisieren. Aus diesem Grund ist die
FTLM besser für einmalige Rechnungen geeignet als für VCA, bei welcher das System mehr-
fach exakt diagonalisiert werden muss um die optimalen Variationsparameter zu bestimmen.
Mehr Zufallsvektoren lassen den Solver ebenfalls numerisch teurer werden. Beim Versuch
die FTLM zu verbessern indem mehr Eigenwerte zur Konvergenz gebracht werden, verpasst
man die Gelegenheit die exakten Eigenvektoren in der Spur zu verwenden, während sie für
jeden Zufallsvektor erneut berechnet werden.
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Eine Aufspaltung der Spur in einen exakten und einen zufälligen Anteil, d.h. die Ver-
wendung exakter und zufälliger Spurvektoren, ist unnötig da bereits exakte Vektoren ver-
wendet werden. Bei niedrigen Temperaturen genügen die exakten Eigenvektoren. Sofern
höhere Temperaturen von Interesse sind, können die Ergebnisse systematisch verbessert
werden, indem mehr exakte Eigenvektoren in der Spur hinzugenommen werden. Im Ge-
genzug ist unklar, wie viele Zufallsvektoren benötigt werden um bei einer gegebenen Tem-
pe-ratur eine zufriedenstellende Präzision zu erreichen.

Neben der Erkenntnis, dass Sr2IrO4 bei niedrigen Temperaturen ein durch Spin-Bahn
Kopplung induzierter Mott-Isolator ist, war die Untersuchung dieser Verbindung durch zwei
Fragen motiviert. Auf der praktischen Seite wurde die Frage gestellt, ob der Isolator welcher
unterhalb der Néel Temperatur auftritt eher Mott- oder Slater-artig ist [Ari+12; Li+13;
WSY14]. Dies konnte mit VCA nicht eindeutig beantwortet werden, da sich die isolier-
ende Bandlücke nur geringfügig änderte. Die Art wie sich die Bandlücke mit zunehmender
Temperatur füllt unterscheidet sich unter- und oberhalb der Néel Temperatur. Allerdings
findet das Auffüllen in so geringen Maßen statt, dass eindeutige Schlussfolgerungen nicht
gezogen werden können. Zukünftige Versuche diese Frage zu beantworten sollten in Form
einer CDIA Studie oder eine Parameterstudie ähnlich jener für das Ein-Band Hubbad Modell
[SSY18] durchgeführt werden.

Eine eher akademische Frage befasste sich mit der Notwendigkeit nicht-lokaler Quanten-
fluktuationen um spektrale Signaturen magnetisch geordneter Systeme zu reproduzieren
[Mar+18]. Was die Spektralfunktion entlang des Pfades k/π= (0, 0) (1,0) (1,1) (0, 0)
anbelangt, so werden keine nicht-lokale Quantenfluktuationen benötigt um qualitativ die
Spektren des magnetisch geordneten Systems welches Sr2IrO4 modelliert zu erhalten. Neben
einer Überschätzung der Stabilität der Ordnung (höhere Néel Temperatur, größere Bandlü-
cke) welche für Molekularfeldtheorien zu erwarten ist, fehlen Signaturen der unbesetzten
Zustände in der Spektralfunktion.

Im Gegensatz zur vorherigen Verbindung treten die Übergänge vom AFM zum PM und
vom Isolator zum Metall in Ca2RuO4 bei unterschiedlichen Temperaturen auf. Die Frage,
welche diese Untersuchung motivierte betraf den Temperaturbereich zwischen diesen beiden
Übergängen, nämlich ob das System von einem orbital geordneten Zustand in einen un-
geordneten Zustand übergeht [Zeg+05] oder nicht [Por+18].

Es konnte beobachtet werden, dass mit zunehmender Temperatur die Fähigkeit der Spin-
Bahn Kopplung unterschiedliche Orbitale zu mischen abnimmt. In Kombination mit Signa-
turen von Orbitalfluktuationen und der Abwesenheit reeller Orbitalordnung [Por+18] sug-
geriert dies Phasenfluktuationen zwischen den verschiedenen Orbitalkomponenten, welche
nicht mehr durch Spin-Bahn Kopplung fixiert sind und als Ursprung der Orbitalfluktuationen
angesehen werden können.
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Motiviert durch eine VCA Studie beim absoluten Temperaturnullpunkt [Len16] und einer
FTLM Studie bei endlicher Temperatur [ZST06] wurde das Kondo Gittermodell bei halber
Füllung mit VCA bei endlicher Temperatur untersucht. Anhand der AFM Magnetisierung,
der AFM und PM spezifischen Wärmekapazität sowie des lokalen Spin-Spin Korrelators kon-
nte ein Phasendiagramm konstruiert werden. Die charakteristischen Temperaturen führen
zu drei Phasen: ein AFM, ein PM aus Kondo Singuletts und ein thermischer PM. Während
der thermische PM für alle berücksichtigen Kondo-Kopplungen J/t die endgültige Hochtem-
peraturphase darstellt, existiert ein Bereich J/t ∈ [1.8, 2.05] in welchem die Temperatur die
AFM Ordnung zerstört und eine PM Ordnung von Kondo Singuletts verbleibt, bis schließlich
ein thermischer PM erreicht wird.

Die Zustandsdichte und Spektralfunktion erlaubten Rückschlüsse auf das Schicksal der
Kondo Singuletts mit steigender Temperatur und ihre Signaturen in Abgrenzung zum ther-
mischen PM.

Der Zugang zu endlichen Temperaturen bei gleichzeitiger Einschränkung der Füllungen
auf jene, welche mit dem Cluster als Referenzsystem realisierbar sind und auf isolierende
Referenzsysteme, ist unbefriedigend. Auf diese Weise wird nur die passive Wirkung der
Temperatur erfasst, welche den Grundzustandscharakter durch Zustände höherer Energie
abschwächt. Wenn Dotierung für Zustände in der isolierenden Bandlücke sorgen könnte, so
könnten ein metallisches System mit einer Fermi-Fläche untersucht oder ein Metall-Isolator
Übergang modelliert werden. Dies könnte ein interessanteres Verhalten in der Spektral-
funktion mit sich bringen, wie etwa die Verschiebung spektralen Gewichts.

Auf numerischer Seite sollte die Chebyshev-Darstellung der Greenschen Funktion in Kom-
bination mit einem MPS-basierten Cluster-Solver auf reale physikalische Probleme, wie
Ca2RuO4 angewandt werden, wo größere Cluster in Reichweite sind. Um dort endliche
Temperaturen zu realisieren, sollten Zufallsvektoren hinreichend zuverlässige Ergebnisse
liefern, da mit einem MPS-basierten Solver größere Systeme zugänglich sind.
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