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Abstract

Recently, quantum advantage has started to attract attention to the field of quantum computing.
While current devices are still noisy and error-prone, numerous vendors have already established
themselves, each offering their various approaches with different characteristics and optimizations.
In the era of Noisy Intermediate-Scale Quantum (NISQ) computers, quantum circuits must be
compiled and executed as efficiently as possible, to best utilize the limited quantum resources
available. Therefore, selecting a fitting vendor is a major part of programming for quantum devices.
However, different vendors offer different, often incompatible frameworks. Compiled circuits
are also highly complex, making manual comparison non-trivial. The NISQ Analyzer has been
presented as a solution to this issue. It automates the compilation process of a circuit over a subset
of usually incompatible providers. For this purpose it utilizes translation, allowing it to access
multiple frameworks even with a circuit only provided in one language. In this thesis, we extend
upon this functionality. We make new frameworks available for translation, employing existing
translation functionality where possible. For proof of concept, we also implement compilation for a
new vendor using the NISQ Analyzer, utilizing our translations. Additionally, we include a detailed
evaluation of the reliability of translation frameworks, as well as a case study showing how our
extensions can be put to use.

Kurzfassung

In letzter Zeit hat das Versprechen des Quantenvorteils Aufmerksamkeit auf den Bereich der
Quanteninformatik gezogen. Während die derzeitigen Geräte noch verrauscht und fehleranfällig
sind, gibt es bereits eine große Anzahl von Anbietern, die ihre verschiedenen Ansätze anbieten. Diese
weisen alle unterschiedliche Merkmale und Optimierungen auf. In der Ära der NISQ-Computer
ist es wichtig, dass die Quantenschaltkreise so effizient wie möglich kompiliert und ausgeführt
werden, um die limitierten Quantenresourcen bestmöglich zu nutzen. Daher ist die Auswahl eines
geeigneten Anbieters ein wichtiger Bestandteil der Programmierung für Quantencomputer. Die
verschiedenen Anbieter bieten jedoch unterschiedliche, oft inkompatible Frameworks an. Außerdem
sind kompilierte Schaltungen hoch komplex, was einen manuellen Vergleich schwierig macht. Der
NISQ Analyzer wurde als Lösung für dieses Problem vorgestellt. Er automatisiert den Prozess
der Kompilierung eines Schaltkreises über eine Teilmenge von normalerweise inkompatiblen
Anbietern. Zu diesem Zweck nutzt er Übersetzung, welche es ihm ermöglicht, auf mehrere
Frameworks zuzugreifen, selbst wenn ein Schaltkreis nur in einer Sprache vorliegt. In dieser Arbeit
erweitern wir diese Funktionalität, indem wir neue Frameworks für die Übersetzung verfügbar
machen. Hierbei nutzen wir, wenn vorhanden, bestehende Übersetzungsfunktionen. Um zu zeigen,
wie unsere Übersetzungen weiterführend eingebunden werden können, implementieren wir auch
das Kompilieren für einen der neuen Anbieter mit dem NISQ Analyzer. Außerdem führen wir
eine detaillierte Auswertung der Zuverlässigkeit der Übersetzungsframeworks durch, sowie eine
Fallstudie, die zeigt, wie unsere Erweiterungen eingesetzt werden können.
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1 Introduction

One of the most exciting technologies that have been emerging in the late 20th and early 21st
century is quantum computing. It promises to solve essential problems in numerous areas of
research significantly faster and sometimes more precisely than current classical computers [AHY20;
MEA+20; NSB+19]. The development in this field has reached a point where multiple quantum
computers are available to quantum software engineers. They are developed by different research
groups and utilize distinct technologies, each with unique benefits and limitations [LJL+10]. These
machines are so-called NISQ computers [LB20; Pre18]. As the name suggests, they are noisy
and have limited quantum resources. Still, multiple vendors have started granting access to their
devices to the public via a cloud. This way, quantum computing has recently become available
to a broad range of users [FBW18; LBF+20]. Since this is highly related to the Platform as a
Service (PaaS) concept, these offerings are called Quantum Computing as a Service (QCaaS) [RI15].

There are different models for quantum computation, based on concepts such as quantum automata,
quantum neural networks, and quantum annealing [NWA21]. However, we focus on gate-based
quantum circuits utilizing Quantum Bits (qubits), the quantum variant of Classical Bits (clbits)
[NC01], which is the currently most frequently used model. With this new form of computation
come new languages for the representation of quantum circuits. And even in this space of similar
concepts, a system of competitiveness between QCaaS providers has developed, where each one
only supports a small subset of languages for execution on their Quantum Processing Units (QPUs).

This diversity brings some issues with it. Users are offered a variety of languages, Software
Development Kits (SDKs), and QCaaS providers, that all rely on custom software and offer different
features. This includes everything from high-level language features offered by the SDK to the
gate set the quantum circuit is compiled to on the QPU [LBF+20]. Due to this heterogeneity,
quantum programs are distributed over multiple platforms. This means that finding required
quantum circuits in the preferred language might prove difficult. In the case that the circuit needs
to be compatible with multiple providers, supported features such as the native gate set and the
specification of supported hardware must be considered extra carefully. As a result, the comparison
and selection of fitting providers is a cumbersome process. While there have been efforts to provide
an analysis of the features and restrictions of the different languages, which are presented, for
example, in Qverview [VN21], these results remained purely theoretical and have yet to be put to use.

To solve these and other hindrances in the development of quantum programs, the Univer-
sity of Stuttgart has instantiated the Quantum Application Lifecycle Management (QuAntiL) project
[Wil22]. QuAntiL aims to enable service-based quantum computing. This includes the translation
of quantum circuits into different formats and languages, compilation for multiple devices, analysis
and comparison of compilations, and execution of quantum circuits. The translation is offered
by the Quantum Circuit Transpiler [22j; Wan20] and the compilation and analysis by the NISQ
Analyzer [SBB+20]. Another part of the QuAntiL repository is the project Quokka, which aims to
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1 Introduction

offer API-based quantum circuit generation, translation, execution, and error mitigation all in one
place [BT22b]. Generation of circuits is implemented in the Quantum Circuit Generator [BT22a].
Currently, these projects mostly address a small selection of the most popular languages. The goal
of this project is to widen the range of available platforms.

To achieve this, we first analyze the current state-of-the-art in both quantum SDKs and quantum
circuit translation, selecting components suitable for our implementation in the process. The
existing services are then extended with new functionality. Both the quantum transpiler and
consequently the NISQ Analyzer support two vendors with their respective SDKs and languages,
IBMQ using Qiskit and OpenQASM as well as Rigetti using PyQuil and Quil. Using translation
paths between languages presented alongside suitable translation framework options in Qverview
[VN21], we expand the translation service to support six languages using mostly existing translation
functionality. It is then used to allow compilation and analysis for a new provider in the NISQ
Analyzer. We also add a new circuit generator to the Quantum Circuit Generator, which we use to
evaluate the aforementioned translation functionality.

The remainder of this thesis is structured as follows: Chapter 2 discusses related work in
the field of quantum circuit translation, as well as similarities and differences to this project.
Chapter 3 gives an overview of the projects this thesis extends upon. Chapter 4 details the process
we use to analyze current frameworks and presents our results, giving an overview of our selection.
Chapter 5 shows how the different features are implemented. Chapter 6 describes the evaluation
process and presents its results. In Chapter 7, we provide a case study of our integration into
the NISQ Analyzer and Chapter 8 concludes this thesis, discussing possible future work in the
process.
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2 Related Work

In this chapter, we give a short overview of related projects in the field of quantum circuit translation.
We take a look at frameworks that allow translation of circuits, discussing their functionalities, by
what means circuit translation plays into it, as well as differences and similarities to this project.

2.1 t|ket〉

t|ket〉 is a platform for developing quantum software [SDC+20]. The unique characteristic of t|ket〉
is that it is platform-agnostic, i.e. it is not developed by or specifically tailored towards one quantum
hardware provider. This means it supports a variety of languages, both for the import of circuits
into its internal format and for the export back into the provider-specific languages, allowing circuits
to be executed on a wide range of devices. The core of t|ket〉 is formed by a C++ library, however,
it is available as the python module pytket, which provides the programming interface to interact
with t|ket〉. This root component offers mostly circuit creation, while the capability to interact with
vendors and their languages is offered in the form of plug-ins. These offer functionalities such as
import and export to that vendor’s quantum circuit representation, as well as execution on their
devices. At the time of writing, pytket offers a total amount of 14 plug-ins. Using import and export
of different vendors in combination allows translation between them. In our project, we want to
offer translation in a service-based way, which t|ket〉 currently does not provide.

2.2 PennyLane

PennyLane is a python framework developed by the quantum hardware vendor Xanadu, with its
focus on machine learning and optimization of quantum circuits [BIS+18]. This means that its
main feature is not the compilation for multiple vendors or translation. However, similar to t|ket〉,
PennyLane comes with a plug-in system that makes it compatible with an assortment of vendors.
The main focus of these plug-ins is to add devices to PennyLane that circuits can be executed
on. Importing circuits on the other hand is not useful for PennyLane, so it is rarely included.
Still, PennyLane is compatible with 12 plug-ins, each supporting one provider, which means its
translation functionality is significant, even if not the main focus. The obvious difference in our
project is that the core functionality of PennyLane is completely different. Also, due to only having
very limited import, the translation paths it offers are mostly unidirectional. In addition, it similarly
to t|ket〉, is mostly available as a python package, while we want to offer service-based translation.
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2 Related Work

2.3 staq

Another example of a quantum toolkit not developed by a vendor is staq [AG20]. It is developed in
C++ and its core functionality is reading and manipulating circuits written exclusively in the Open
Quantum Assembly Language (OpenQASM), even though it is not maintained by the corresponding
vendor. Its methodology is based on UNIX. It offers several small Command Line Interface (CLI)
tools, providing functionalities from optimizations and transformations to physical mappings. They
operate on an OpenQASM representation using staq’s internal syntax extensions. Most important
to this project, these tools also include translators, which allow staq to output circuits not only
to OpenQASM but also to the languages of other providers. staq is also available via the python
wrapper pystaq. While staq’s main focus is compilation, akin to t|ket〉, it only supports a single input
language, which makes it similar to PennyLane in the amount of functionality it offers. Concerning
our project, we again have the main differences in the way staq is provided and how it only offers
translations in one direction.

2.4 qconvert

Lastly, we take a look at qconvert, which is part of the Quantum Programming Studio developed
by Quantastica [22h]. The Quantum Programming Studio is a web-based quantum programming
IDE, which allows both simulation and execution on real QPUs directly from the UI. qconvert is
the service that allows the translation of quantum circuits between languages [22e]. Currently, it
is available as a CLI tool or online1, both as an Application Programming Interface (API) and a
Graphical User Interface (GUI), hosted on the Quantum Programming Studio website and written
in JavaScript (JS). There is also a python package in development, but currently, it only supports a
vanishingly small number of languages in comparison to the 27 formats the JS version does [21].
However, it needs to be mentioned that qconvert, while supporting an extensive amount of formats,
does not support many providers. Some of the formats are only graphical or universal JSON
representations, but more importantly, qconvert supports multiple versions of the same languages,
which all count as separate formats. It is also important to note that some of the supported versions
are outdated. In terms of import, the JS version of qconvert supports exactly two languages,
OpenQASM, and Quil. Out of the works listed, qconvert might seem like the one most closely
related to our project, however, there is still a major difference. While both use a service-based
access model, qconvert, similarly to staq and PennyLane, mostly offers unidirectional translation,
while we want a bidirectional translation to be available for all languages.

1https://quantum-circuit.com/qconvert
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3 Foundations

In this section, we give an overview of the projects that we work on during this thesis. We discuss
the concepts behind them as well as their functionalities.

3.1 Quantum Application Lifecycle Management

QuAntiL by the University of Stuttgart has the goal of providing tools for the implementation,
deployment, execution, and monitoring of quantum applications [22g]. It comprises several services,
which implement different functionalities. One of the main components of QuAntiL is the QC
Atlas, which allows the documentation of quantum circuits and also offers a GUI that can be used
to access other services of QuAntiL such as the NISQ Analyzer. This work is largely concerned
with the NISQ Analyzer and the Quantum Circuit Transpiler services, which are discussed in more
detail in the following sections.

3.2 Quantum Circuit Transpiler

The Quantum Circuit Transpiler1 [22j; Wan20] is responsible for converting circuits between
languages, either by using its GUI or via API if requested by other services, such as the NISQ
Analyzer or the Quokka API. The term transpile here refers to the process of creating compiled
code by translating source code from one language to another. Compiled code is code on the
hardware instruction level, usually created from high-level language code using a compiler program.
In our case, the languages are quantum circuits on the gate level, compiled using quantum SDKs.
Thus, translation between these languages is transpilation. This also results in the terms translate
and transpile referring to the same process in our specific case. Figure 3.1 displays how the
Quantum Circuit Transpiler allows a circuit to be imported from any supported language for usage
in transpilation and analysis. It is translated to a Qiskit Quantum Circuit object, which is the
internal format used by the Quantum Circuit Transpiler. The user is then provided with a graphical
representation of the circuit after it has been translated to Qiskit, which is presented in Figure 3.2.
It can be adjusted by moving, adding, and deleting gates. Figure 3.3 shows results of the local
simulation functionality. Lastly, the circuit is mapped onto the basis gate sets of different providers’
SDKs and different depths of the resulting circuit are presented to the user. The depth is the longest
path of gates that needs to be transversed when executing the circuit. The transpiled circuit can
then be exported to the different supported languages. Both the analysis result as well as the export
functionality are depicted in Figure 3.4.

1sometimes also known as Circuit Transformer or simply Quantum Transpiler
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3 Foundations

Figure 3.1: Importing a Circuit

While the analysis functionality of the Quantum Circuit Transpiler is very useful, as part of QuAntiL
it is mostly used for translation purposes. For this, it offers an API, which combines import and
export into a single conversion endpoint. As shown in Figure 3.5, its user interface can be accessed
using the second tab of the GUI. Circuits are translated by first importing them to the intermediate
format used by the transpiler, a Qiskit Quantum Circuit, and then exporting that circuit to the target
language. The Quantum Circuit Transpiler does not use any external frameworks for its translations
yet. Instead, it uses a list of mappings of gates from Qiskit and PyQuil to each other to convert the
circuits.

3.3 NISQ Analyzer

While the Quantum Circuit Transpiler offers some analysis functionality, the main service for
analysis and comparison of compilations in QuAntiL is the NISQ Analyzer [SBL+21]. Its main
goal is to assist in the selection of the device best suited for the execution of a quantum circuit. For
this purpose, it offers an automated comparison of suited compilers and QPUs for an algorithm
implementation, independently of the language in which the algorithm is currently implemented.
This is done in a multi-step process, which is depicted in Figure 3.6.
First, a quantum circuit is supplied as input to the API. Furthermore, the user chooses whether
SDKs or QPUs should be compared. Based on the selected mode, either a QPU needs to be supplied
and a list of suitable SDKs is created, or an SDK is given and its list of supported QPUs is returned.
This can be done since each SDK defines which vendors and thus which QPUs it supports. After
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3.3 NISQ Analyzer

Figure 3.2: Editing a Circuit
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Figure 3.3: Simulation Results

Figure 3.4: Transpilation Results and Export
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3.4 Quantum Circuit Generator

Figure 3.5: Conversion of Circuits

this, the languages supported by the selected SDKs are determined. In case the original language of
the given circuit is not supported by all SDKs, it is translated to a supported language using the
aforementioned Quantum Circuit Transpiler.
In the second phase, the circuits in their supported languages are compiled for the chosen QPU(s)
using the selected compiler(s). The different compilers are executed in parallel. This compilation
results in a list of compilations of the quantum circuit in the languages compatible with the chosen
SDKs.
In the third phase, the compilations are analyzed and compared regarding their properties, such as
depth and width. First, some automatic checks are executed to determine whether the circuit could
even be executed on the device. Afterward, the user can manually choose a preferred compilation.
In the final phase, after a compilation has been chosen, it can be directly executed on the QPU using
the SDK. Since not every QPU is directly accessible like this, simulators might be used instead.
The NISQ Analyzer supports IBMQ and Rigetti QPUs, as well as the compilers Qiskit, PyQuil, and
Pytket.

3.4 Quantum Circuit Generator

The last service that is extended is the Quantum Circuit Generator. Contrary to the other mentioned
projects, while being part of the QuAntiL repository, it is not directly interconnected with the NISQ
Analyzer or the QC Atlas. Instead, its purpose is to serve as the quantum circuit library for the
project Quokka [BT22b]. To allows this, its API offers functionality to provide both encodings for
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3 Foundations

①: Translation ②: Compilation
③: Analysis 
& Selection

④: Execution

Circuit 
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QPU/Compiler

Local
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QPU

Figure 3.6: Working Scheme of the NISQ Analyzer - Adapted From [SBL+21]

input data, as well as algorithms. The first endpoint can be used to prepare a quantum state, using,
for example, basis, angle, or amplitude encoding. The second endpoint provides the user with
algorithm circuits or circuit fragments. This includes the algorithms HHL and QAOA. Since these
circuits have real applications, using them for the evaluation of other services, like those extend in
this project, gives meaningful results.
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4 Analysis

As mentioned in Chapter 1, the variety of QCaaS providers is large, and so is the variety of quantum
SDKs. Furthermore, Chapter 2 shows that the frameworks offering translation functionality between
these languages are diverse, with the number of supported languages and features, as well as the
quality of translations varying widely. Therefore we start with an analysis of the relevant space and
select the vendors and frameworks most suitable for this project. After that, we give a more detailed
look at the selected assets. This helps in getting a better understanding of the steps we are taking in
Chapter 5.

4.1 Evaluating Provider-Specific SDKs

Before we can start analyzing translation frameworks, we first have to select which languages and
frameworks we want to support utilizing them. Thus we provide an analysis of quantum SDKs in
the following section, choosing which to support and giving reasoning to our choices.

4.1.1 Selection Criteria and Information Gathering

When it comes to selecting which SDKs and languages we want to support, we first need to define
which criteria we evaluate them by. In the case of this project, we decided on the quantum cloud
services we cover by supporting the selected SDKs, as well as whether they are still actively
developed and upheld. Lastly, if multiple languages support the same native compiler format for
the import and export of circuits, all are simultaneously supported. Languages are selected from
the Quantum Open Source Foundation [FB22] and information on the languages is sourced from
existing work [LaR19], the QCaaS specific documentation as listed in Table 4.1, as well as study
results viewable using the Qverview tool [VN21]. The languages we analyze are summarized in
Table 4.2.

Name URL
IBMQ https://quantum-computing.ibm.com/docs/

Forest https://docs.rigetti.com/qcs/

Azure Quantum https://docs.microsoft.com/en-us/azure/quantum/

Amazon Braket https://docs.aws.amazon.com/braket/

ProjectQ http://projectq.ch/code-and-docs/

Quantum Inspire https://www.quantum-inspire.com/kbase/

Table 4.1: QCaaS Vendor Documentation
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SDKs Compiler Language Hosts Quantum
Cloud Services

Active

Qiskit OpenQASM Python
Java Script

IBM Quantum
AQT Cloud

true

Cirq Cirq-JSON Python Google Cloud
AQT Cloud
Pasqal

true

Forest Quil Python Rigetti QCS true
ProjectQ OpenQASM Python IBM Quantum

AQT Cloud
false

Quantum Development Kit Q# C#
Python

Azure Quantum true

Amazon Braket Python SDK Braket IR Python AWS Braket true
Quantum Inspire SDK cQASM Python Quantum Inspire

IBM Quantum
true

Table 4.2: Comparison of Different SDKs

4.1.2 Selection and Reasoning

The next step is to select the most suitable SDKs. To start with, Qiskit and Forest are already
supported by the Quantum Transpiler. Consequently, IBM Quantum, Rigetti QCS, Quil, and
OpenQASM are supported as well. Since ProjectQ is out of active development and overlaps with
Qiskit in both compiler language and supported services, explicitly supporting it is not necessary.
Cirq supports multiple unique cloud services and has a unique compiler language, so it is certainly
worth supporting. This leaves us with the Quantum Development Kit, the Amazon Braket Python
SDK, and the Quantum Inspire SDK. These all would allow access to one new cloud service, are in
active development, and have a unique compiler language. However, due to time constraints, we
need to limit ourselves to 3 main translations. As AWS Braket and Azure Quantum promise more
future potential due to their financing and integration into web service frameworks by tech giants
like Amazon and Microsoft, we decide in favor of the Quantum Development Kit and Amazon
Braket Python SDK. Conveniently, all selected frameworks are also available in python.

4.2 Evaluating Translation Frameworks

Now that we are set on which SDKs we want to support, we next have to look into the implementation
of the translation between them. This section is split into three parts. We start by specifying our
approach to translation, then provide an analysis of the availability and compatibility of frameworks
with our selected quantum SDKs and afterward give reasoning to our choices based on these
results.
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4.2 Evaluating Translation Frameworks

4.2.1 Approach to Translation

Before starting, we have to decide on which formats we want to use as the in- and output of our
translation process. Currently, the quantum circuit transpiler supports both python code, which uses
the SDKs to define circuits, as well as compiled gate level code. Despite that, we decide to not
support translation to python code implementations due to our main goal for this project being to
provide compiler code that can be compared and executed.
While it is possible to manually implement translations between all languages, this process is
very cumbersome. Additionally, as mentioned in Chapter 2, there already exists a broad range of
frameworks that implement the import and export of different formats and even packages dedicated
solely to the translation and compilation of various languages. This is why in this project we only
implement paths manually that are not yet available and otherwise make use of existing frameworks.
On a different note, we do not implement direct translation between languages, since this would
result in a superlinear increase in translation paths. Instead, the Quantum Circuit Transpiler, similar
to pytket [SDC+20] and PennyLane [BIS+18], utilizes a plug-in architecture [Wan20]. We use
Qiskit as the single intermediate format that all circuits are translated to and from. This means
that for every additional SDK, only one new service and thus one additional path needs to be
implemented. In contrast to pytket, we choose not to implement a unique format for this, as Qiskit
is already supported by a large number of frameworks and for a new language no translations would
be available. It is also the internal storage format of the Quantum Circuit Transpiler, allowing this
functionality to be reused. This means that we only have to analyze translation paths from and to
Qiskit for the selected languages.

4.2.2 Selection Criteria and Available Framework Options

Frameworks are chosen mainly based on restrictions on translation, as well as the quality of
translated circuits. However, since both of these values cannot be determined purely in advance,
it might be necessary to implement multiple paths and compare results before choosing a final
framework. Available paths for the selected languages can be seen in Figure 4.1, which is an
adjusted sub-graph of the conversion graph presented in Qverview [VN21]. If a compiler language
can be both imported and exported using its native SDK, it is included using +. Otherwise, it is
listed separately.

4.2.3 Selection and Reasoning

Analogous to the previous analysis, we now narrow down which paths to use in our implementation.
The results of this selection are also shown in Figure 4.1. It represents selected paths by a solid
arrow. The reasoning behind these choices is explained hereafter. For Cirq, there exists an import
and export function for OpenQASM code. While we do use third-party translation frameworks in
this project, functionality included as part of the original SDK is preferred, since it is more likely
to be up-to-date and maintained. This is why we choose this approach for supporting Cirq. For
Q#, the language associated with Microsofts Quantum Development Kit, we have an interesting
case. While there are four ways to translate from Qiskit to Q#, there is none for the other direction.
This means that the translation from Q# to Qiskit is implemented manually. For the other direction,
we have the aforementioned pytket, PennyLane, pystaq, and qconvert. Out of these, we do not
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Figure 4.1: Translation Paths Between Selected Languages

implement qconvert [22e]. This is because it only supports an outdated version of Q#, 0.10. With
the current Q# build being 0.24, this is not acceptable. Furthermore, the python version of qconvert
does not support Q# at all [21], only the JS version does. With various superior alternatives present,
we decide to omit qconvert. pytket, PennyLane, and staq do not have any obvious advantages
over each other. Thus, all are implemented and evaluated. Next, we take a look at the Braket
SDK. When translating from Braket, we are only given one option, which is pytket, so we are
implementing it. In the other direction, we are given the options pytket and PennyLane. Again,
both are integrated and tested. However, Braket comes with another issue. While all other chosen
frameworks allow their exported compiler language to be imported again, Braket does not. Yet,
there is no alternative way to export circuits created in Braket. This means that the direction from
Brakets intermediate representation back to the SDK is implemented manually. Lastly, while not
mentioned in our analysis of vendors, there is an online tool called Quirk, that allows for the easy
creation of quantum circuits via a web GUI. Cirq can import and export Quirk URLs. Since we
already integrate translation to Cirq, implementing translation to Quirk is very little effort and is
supported as well.

4.3 Selected Quantum SDKs

After assessing the providers and SDKs we are working with, we now provide a more detailed look
into their operating principles and how to interact with their quantum hardware and simulators.
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4.3 Selected Quantum SDKs

4.3.1 Qiskit, Cirq, and Braket

The SDKs provided by IBMQ, Google, and Amazon work similarly for the most part and thus are
discussed simultaneously [22b; 22d; 22f; AAA+22; Dev21]. All three quantum SDKs are offered in
form of a python package that provides the user with the tools to build quantum circuits, as well as
compile and then execute or simulate the circuit on their own or different hardware. In this section,
we give a short overview of the base operation principles behind these frameworks: At the center
of all of these SDKs is an object that represents a quantum circuit. While named differently, the
circuit is handled similarly in all frameworks. On creation, a circuit is supplied with qubits and
clbits. In Qiskit, this is either done by directly passing a list of bit registers or by simply defining
the circuit size in the form of integers. In Cirq, qubits are also defined using registers, but they are
independent of the circuit object. In Braket, neither bits need to be defined in advance.

After the creation of the circuit, operations need to be added. The different SDKs offer various
ways of doing this, but all allow you to append instruction class objects to the end of the circuit.
Qiskit and Braket even offer methods on their circuit object that allow you to skip the creation of the
operation and just directly add it to the circuit. In the case of Cirq and Braket, the core data structure
of a circuit is called moments, where each moment represents a single time slice, and operations
are inserted into these slices using different strategies. They include adding to the earliest moment
possible or always creating a new moment.

After the state transforming gates are added, the resulting states of the qubits need to be measured.
Qiskit and Braket implement a measure operation that allows the evaluation of qubits and maps that
measurement either to a tag or to some amount of clbits. Braket does not support this. Instead,
similar to instructions, it is possible to add result types to a circuit. They define how the state of the
quantum circuit is evaluated, such as the observable under which to measure the circuit.

While this allows creating the circuit, to retrieve a computation result, it needs to be compiled and
executed. For this purpose, the frameworks offer compilers as well as simulators and quantum
devices that can execute quantum circuit objects. These objects are called backend (Qiskit), engine
(Cirq), or device (Braket) but all serve a similar purpose. They are created by defining which QPU
or simulator the user wishes to use and can then be passed a quantum circuit object to execute
as well as the number of shots to take and other meta parameters. In addition, local simulators
that simulate the execution on local hardware and use a simplified creation process can be created.
Note that while circuits can be compiled automatically before execution, the frameworks offer
functionality that allows you to manually do the compilation for specific devices or even optimize
the circuit before execution. The results of execution are the frequencies of measurements over the
defined amount of shots. They can be represented, for example, in the form of a histogram. In the
case of simulators, access to otherwise inaccessible information like the complete state vector can
be granted. A demonstration of this process is shown in Listing A.1. Its results can be viewed in
Listing A.2.

4.3.2 The Quantum Development Kit and Q#

The next framework we support is Microsoft’s Quantum Development Kit, which is part of Azure
Quantum [22c]. As its mode of operation is rather different from the other SDKs, it is discussed
separately. The main reason for this is that it does not allow the definition of quantum circuits
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in object representation at all. Instead, it separates between a definition language, Q#, in which
circuits are written and the package qsharp which allows host languages like python and C# to
call and execute circuits. Circuits can be written exclusively in the Q# language. A host language,
such as python with the qsharp package installed, can be used to execute the defined operations
but is not able to add new gates or modify the circuits. There is no quantum circuit object and in
general, the functionality available in the host language is rather sparse. Instead, at the center of
the Quantum Development Kit is Q#. It is used to define operations, which are methods that can
be called from inside and outside of the file. These methods can contain quantum operations, but
also non-quantum operations. Base functionalities are imported from preexisting Q# libraries that
provide everything from maths to quantum gates. Again, even in these files, no quantum circuit
object is used. Instead, qubits are defined individually and operations are defined directly on them.
An example circuit can be seen in Listing A.8

Q# files can be executed directly via dotnet using a CLI. However, we mostly use Q# in combination
with its package qsharp in the host language python. Its main functionality is to import functions
from Q# files and simulate them, as can be seen in Listing A.3. Different simulators are addressed
by using different methods. Other functionalities include getting information on circuits, and,
essential for this project, compiling operations from strings. This allows the use of the qsharp
package without necessarily having to create Q# files.

4.3.3 Quirk

Finally, we take a look at Quirk [Gid16]. While it is not an SDK in the measure of the aforementioned
candidates, it still is interesting to support, because of its value as an introductory simulator that
allows experimentation with small quantum circuits. Quirk’s main features are drag-and-drop
circuit editing and a simulator that reacts to modifications of the circuit in real-time. It is mainly
accessible using its GUI, which can be built locally, but is also available and hosted online1. It
however does not have any integration with a host language like python, limiting its use cases.
There is a function for exporting circuits in the shape of a JSON, but since Quirk encodes the
currently created circuit in its URL, it also offers a feature to export this URL in a safe format
for sharing and reusing. An example circuit is shown in Figure 4.2. Exporting it returns the
URL https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22H%22%5D%2C%5B%22%E2%

80%A2%22%2C%22X%22%5D%2C%5B%22Measure%22%2C%22Measure%22%5D%5D%7D which can then be opened
to view and edit the circuit again.

4.4 Selected Quantum Circuit Languages

While quantum circuits can be created using the aforementioned SDKs, having them in the form of
objects, although useful for creation and usage in code, is not suitable for both saving and sharing
applications or even execution. This is why most of the quantum computing providers offer a
separate language in combination with their SDK that their objects can be exported to. And even
though the frameworks are rather similar, these languages all differ, be it in the syntax used to define

1https://algassert.com/quirk
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4.4 Selected Quantum Circuit Languages

Figure 4.2: A Simple Circuit in Quirk

operations or the whole data format used. To us, they are very relevant, since they are the format
that most users have quantum circuits available in. However, since most frameworks also allow the
import of their languages into quantum circuit objects with one-to-one gate support, this translation
is rather trivial and not a major problem. We still give a brief overview of the different languages,
except Q# which has already been discussed.

4.4.1 OpenQASM

OpenQASM is the quantum circuit language released for use with IBMQ [CBSG17; CJA+21].
Thus, it can be easily ported in and out of Qiskit. It is used as the compiler code that circuits
are sent to the QPU in. The current version is OpenQASM 2.0, with OpenQASM 3.0 being in
pre-release since 2020. It uses a syntax that resembles parts of C and assembly languages. A file
always starts by defining the current OpenQASM version. After that, other source files can be
included. Qubits and clbits are defined either individually or as registers. Gates and operations
such as measurements, resets or barriers are defined on these bits, with each line corresponding to
one operation. Custom gates can also be defined as a sequence of other gates. A simple example of
an OpenQASM circuit can be seen in Listing A.9.

4.4.2 Cirq JSON

While IBMQ has a unique language for its representation of compiled quantum circuits and Q# is
purely based on such a language, this is not necessarily the standard for all providers. Google, for
example, does not have a unique language that circuits created in Cirq can be exported to. However,
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some sort of serializable representation is necessary, at the latest when it comes to communicating
with quantum hardware. In the case of Cirq, a simple JSON format is used [Dev21]. It represents the
moment structure Cirq is based on, first listing all included moments. These then, in turn, contain a
list of operations with corresponding targets. In addition, supplementary data such as the target
device are defined as part of the JSON. As can be seen in Listing A.10, this sort of representation is
rather spacious and in contrast to OpenQASM not easily readable for humans. However, as it can
be directly ported in and out of Cirq, it is still the best representation of circuits for that vendor.

4.4.3 Braket Intermediate Representation

Similar to Google, Amazon also does not support a unique export language for their Braket SDK.
Instead, there is something called the Braket Intermediate Representation (IR), which is the format
quantum circuits are converted to before they are sent to the Amazon API for execution [22a]. This
is again a JSON representation of the quantum circuit. As Braket’s circuit objects are simpler than
Cirq’s, the resulting JSON file is also a bit simpler, as can be seen in Listing A.11. It consists of
a simple list of used gates with their associated qubits. Since Braket has result types instead of
measurement instructions, there is a separate section in the JSON describing how the circuit should
be measured.

4.5 Selected Translation Frameworks

While we already mentioned all the frameworks we are using for translation in Chapter 2, we only
described them superficially. Nonetheless, to follow how we implement translation using them, it
is very advantageous to get a deeper understanding of their mode of operation. In the following
sections, we describe how the packages associated with the frameworks work, with our focus for the
largest part being the functionalities that allow us to use them for translation.

4.5.1 pytket

pytket is the package that allows accessing the t|ket〉 compiler via python [SDC+20]. As mentioned
in Chapter 2, translation from and to pytket is implemented in its plug-ins. The use of these plug-ins
is twofold. On the one side, they allow the import of their associated language. On the other side,
they allow pytket to simulate or execute on their vendor’s devices, which means exporting to their
language again. The pytket package itself works very similar to Qiskit and the other SDKs, with
circuits being represented as python objects that can be compiled for devices and then executed.
However, since pytket is platform-agnostic, circuits can be compiled for and executed on devices
from all available plug-ins. For our project, the most important functionality lies within the plug-ins
themselves and their methods which translate objects from the language or object representation
supported by the plug-in to a pytket circuit and the other way around. As seen in Listing A.4, this
translation process is easily accessible. It is important to note though that the pytket circuit has
its own gate set that is not necessarily compatible with the source language and thus compilation
to suitable gate sets might be required before translation. It is also important to note that not all
extensions must support both directions. The pytket-qsharp package for example does only support
translation to, but not from Q#.
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4.5 Selected Translation Frameworks

4.5.2 PennyLane

As indicated in Chapter 2, PennyLane’s core focus is not actually translation or even compilation
for multiple vendors [BIS+18]. This results in a structure that is rather different from the one used
in pytket and the aforementioned quantum SDKs. PennyLane uses special python functions with
annotations to define its quantum functions. Each function includes a list of operations. Wires are
used to represent the qubits of the circuit. Measurements can only be taken as the final step of the
circuit and are represented by the return values of the function. To make a circuit executable, it
needs a device. This device function pair is called a node and can be executed. An example node
can be seen in Listing A.5.
While we do not want to manipulate circuits in PennyLane at all in this project, this principle is
still very important to understand, because of the way importing and exporting works using it. In
PennyLane, these two processes are very different, so we go over them one by one. Both however
are reliant on the plug-ins of the languages that are supposed to be imported and exported being
installed. For importing, PennyLane, if used with the PennyLane-Qiskit or PennyLane-Forest
plug-ins, offers functions for converting circuits from these frameworks’ objects or languages into
PennyLane subcircuits. These can be called inside a PennyLane node to execute that circuit. If no
other circuit is included in the node, it corresponds to the translated circuit. As measurements in
PennyLane are the return values, it is important to note that no measurements can be imported into
a node. On the other hand, since it is required to have at least one return value, each circuit needs to
have some measurement added to it in the end. Listing A.6 shows an example implementation of
this process.
Although importing a circuit is only supported for two SDKs, the process is straightforward and well
documented. Exporting on the other hand supports a wider range of providers, but is not always
as easily accessible. This is because exporting is purely reliant on the plug-in used. In contrast
to pytket, plug-ins in PennyLane are not uniform. Outside of the base functionality of providing
a device, they are rather distinct. The PennyLane-Qiskit plug-in, for example, offers a compile
method on its devices that can be used to translate PennyLane nodes to Qiskit QuantumCircuits, but
this is not the case for all plug-ins. This means that for other languages different approaches must
be taken.

4.5.3 pystaq

Last in the list of translation frameworks we selected is pystaq, the python wrapper of the CLI
tool staq [22i; AG20]. Since staq only supports a single import language, OpenQASM, importing
in pystaq is done in a single function, either .parse_str or .parse_file, which returns a pystaq
program. pystaq then offers functions that correspond to CLI commands, such as .simplify or
.estimate_resources, that take as input a program, followed by the options the staq tool would
normally have. Among these are functions named .output_LANGUAGE, that export the program to
the target language. Thus, translation using pystaq is very simple, as can be seen in Listing A.7.
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5 Design and Implementation

In Chapter 3 we described the projects this work is based on. Later in Chapter 4, we analyzed both
what we want to implement, as well as what can be used to do so. In this chapter, we now discuss
how we utilize these findings in our implementation. To accomplish this, we start by giving an
overview of the project architecture, showing dependencies as well as what components we added
or modified in the scope of this project. This facilitates understanding the relations the changes
have to each other and the general structure we build upon. We then go into more detail on the
individual changes, describing the ideas and structures on which our implementation is based.

5.1 Architectural Overview

Figure 5.1 presents the architecture and dependencies of the components relevant to our project.
As is evident from the diagram, we not only extend about half of the components shown in some
way but also add a new service to the architecture. The baseline is the extension of the Quantum
Circuit Transpiler. For the other services to support more languages, translation from and to
them must be made possible and this functionality is included in the circuit transformer. The
new transpilation paths are implemented based on the results of Chapter 4. Unavailable paths
are manually implemented by using new and existing gate mappings. The Representational State
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Figure 5.1: Architecture Diagram of Relevant Components Included in the QuAntiL Repository -
Adapted From [22g]
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Transfer (REST) API is also extended to make these new paths available for use. Similarly, we
adapt the Quantum Circuit Transpiler’s GUI to allow conversion of the new languages.
The next objective is to use these paths to add new supported languages to the NISQ Analyzer.
This is first implemented for Cirq as a proof-of-concept. For this, we expand upon the analyzer’s
implementation. Since it outsources compilation and execution to multiple smaller services, we
add a new one to the list, the Cirq Service, which is complementary to the other services and
provides functionality to compile for and simulate execution on Google QPUs. In addition, the
NISQ Analyzer also relies on QPU data sourced from the provenance database QProv. For the
NISQ Analyzer to take the new QPUs into account, data regarding the devices supported by the
new Cirq Service are injected into QProv. For the other languages, only translation, but neither
compilation, analysis, nor execution are added, so their devices are not included in the database.
The new functionalities are now available from the REST API provided by the analyzer, but
not yet from any frontend. To achieve this, the QC Atlas UI, which offers access to the NISQ
Analyzer’s functionalities is also fitted to accommodate the new languages. Now all functionalities
are integrated into QuAntiL’s main structure.
For the last feature, the Quantum Circuit Generator is extended by adding the Quantum Fourier
Transform (QFT) to its circuit library. Its API is also extended to allow access to this new circuit.
Both the Quantum Circuit Generator and the Quantum Circuit Transpiler are also conceptually
integrated into Quokka.

5.2 Implementation Details

After describing how the features we implement relate to each other in the project architecture and
quickly going over what was implemented, we examine the different components and describe how
we realize the aforementioned functionalities in this section.

5.2.1 Quantum Circuit Transpiler

Implementing the translation functionality of the Quantum Transpiler is done in accordance with
the results of Chapter 4. During our selection, we further concluded that some paths are not
implemented yet and thus need manual transpilation. We now outline the design principles we
apply for our manual translations. Subsequently, we specify how both our earlier results and these
new principles are applied to implement service-based translation.

Concept for Transpilation

The foundation we work on when implementing transpilation is the fact that on both sides of
the process are expressions that represent gate-based quantum circuits, and that every gate has a
corresponding transformation matrix. At its core, a quantum circuit is nothing more than one large
transformation matrix. Decomposition allows us to represent a matrix as a product of other matrices.
Be it a file or a python object, if both represent a matrix and both provide several sub-matrices
(gates) sufficient to decompose arbitrary translation matrices, they can also represent the same
circuit [NC01]. This way, translation between them is possible. Even though both sides allow
representations of the same circuit, it is in no way guaranteed that these representations are similar.
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The types of gates provided, as well as their names, are most likely not identical. In addition,
the base structure of circuits and qubits might vary from representation to representation. This
means the same circuit in some cases has a different depth, width, and types of gates in different
languages. Hence, to facilitate translation, we define equivalences of operations between our
languages. There is a large number of standard gates that are supported by most frameworks that
are directly translated. Similarly, operations such as resets, barriers, and measurements are also
translated directly. For gates not supported by the target language, decomposition gives us a way to
represent them in terms of standard gates that then in turn can be translated. Difficulties mostly arise
when languages include higher-level features, that are not part of the quantum operation. These are
likely not compatible with both languages and even if they are, there is no tool taking the role of the
decomposition available, which would allow us to translate them. For quantum gates, we use a
mapping structure to facilitate transpilation. If every operation is mapped to an operation with an
equivalent transformation matrix, the resulting circuit is also equivalent. If gates or operations are
included in both languages, they are mapped one to one trivially guaranteeing matrix equivalence.
Given that the target language does not offer a gate, its transformation matrix is decomposed to a set
of gates available in the target language. If the gate is translated, this replacement circuit takes its
position. Since they have equivalent matrices, the resulting circuit is also equivalent. In the case
that the target language allows custom gate definitions, we just define a new gate with the matrix of
the gate we want to translate. Lastly, we map the qubits and clbits of the different representations to
each other, so the targets of our operations remain unaltered.

Implementation of Transpilation

Transpilation by the aforementioned principle is already implemented in the Quantum Circuit
Transpiler to facilitate Translation between Qiskit and PyQuil, complete with a mapping table of
gates from Qiskit and PyQuil to each other. To realize the translation from Q# to our intermediate
representation of Qiskit, we reuse this table. Since the Qiskit gates are already included, only
one extra column is added. The complete translation process is laid out in a simplified form in
Figure 5.2. Before we start the mapping process, the gates that represent the circuit are extracted
from the Q# code. For this purpose, we employ the qsharp python library. It offers functionality to
return a tree structure representing both a decomposition of the circuit to the set of gates necessary
to execute it, as well as the qubits included in the circuit. Thereby, qubits can be directly adopted.
The graph is then recursively traced, with recursion terminating when we find an operation that is
included in our mapping. These gates are saved in a list. In the final step, we iterate over this list
and map each gate to an equivalent one in Qiskit. Since the tree already is a decomposition, we do
not need to manually decompose any gates.
For the translation from Braket IR to the Braket SDK’s objects, we use a similar procedure, except
that this time no mapping data structure is necessary. We work with two representations of the
same vendor, which have almost the same structure, gates, and designations. Gate mapping thus is
simply done by name. Braket’s result types can also directly be taken over. The few exceptions are
individually addressed.
The other paths are implemented and evaluated by integrating the frameworks selected for them in
Chapter 4. If necessary, we also implement pre and postprocessing for the circuits. This includes
compilation to a certain gate set to avoid unsupported gates, but also in some cases more specific
adjustments. For Cirq and Braket, code written in python that creates a quantum circuit object can
also be used as an input. A unique translation path is necessary for Quirk, since here also no direct
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path is available. However, it is simply implemented by first translating to Cirq, and then exporting
to a Quirk URL.
These new translation paths are then integrated into the API and thus made available to be called by
other services like the Quantum Circuit Transpilers’ Angular GUI. Here only some minor adjustments
are necessary to make the new languages available for all import, export, and conversion.

5.2.2 NISQ Analyzer and QC Atlas UI

As is clear from the architectural overview, the NISQ Analyzer is the most interconnected component
we are working with. It not only depends on the Quantum Circuit Transpiler but also on SDK-specific
compiler services and QProv. In this section, we detail the relation of the NISQ Analyzer to its
sub-components and then briefly describe our approach to extending it.

Design of the NISQ Analyzer

Figure 5.3 is an illustration of the NISQ Analyzer and the services it communicates with. For
simplification purposes, we only cover services that are important to our project. To help understand
how the tool deals with compilation and execution requests, we describe the process necessary to
handle them. First, the NISQ Analyzer has a main control service that offers an API from which
compilation can be requested. If such a request reaches the analyzer, it uses its QProv Connector
to query QProv. It retrieves information on the QPUs that are available for the provider included
in the request from its database. If the QPU is specifically defined, it only gets its information.
Subsequently, it is reviewed what services can compile for the selected QPUs and in consequence
which circuit languages they support. If the circuit currently is not in a language supported by one of
the services, a translation request is formed using the Translator Service, which requests translation
from the Quantum Transpiler’s API. Now the circuit is present in a language compatible with the
compiler. However, the NISQ Analyzer itself is implemented in Java, while almost all quantum
frameworks are python-based. This is why the compilers are outsourced to their complimentary
services. The analyzer has a connector for each service, that propagates the compilation request
to the service. They compile the circuit for the chosen QPUs and return the compiled versions.
These results are then made available via the analyzer’s API. Subsequently, the user can request the
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execution of the compilation results. Execution is also handled by the complementary services, so
the request is again propagated using the associated connector, and results are made available in a
similar manner to compilation.

Implementation of Cirq Compilation and Simulation

We extend the Quantum Circuit Transpiler by four languages and make all four languages available
to the NISQ Analyzer to translate to and from. However, due to time constraints, we only implement
compilation and execution functionality for one of the SDKs, namely Cirq. We choose Cirq since it
provides the best analysis functionality out of the new frameworks, which comes in handy when
returning details on the compilation results to the analyzer. For the NISQ Analyzer to even consider
this new compiler, we first extend the QProv’s database to include information on the four Google
QPUs Sycamore, Sycamore23, Bristlecone, and Foxtail. Now, information on them can be retrieved
by the Analyzer when querying the provider Cirq-Google. For compilation and execution, we create
a new service analogous to the existing services, using the required functionality from the Cirq SDK.
Importantly though, since we do not have access to the actual Google devices, execution is currently
only simulated. Similarly, we also implement a new Cirq Connector that allows the analyzer to
communicate with our new service. Now the new functionality is available via the REST API.
Since the NISQ Analyzer receives requests from the QC Atlas UI, we implement minor adjustments
for it to consider all new languages, Cirq as a compiler, and the Google QPUs as target devices.

5.2.3 Quantum Circuit Generator

For our last implementation goal, we extend the Quantum Circuit Generator’s circuit library. In
particular, we want the QFT and its inverted form to be available via the API. In the following
section, we briefly discuss the QFT, followed by a summary of our implementation approach.
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5 Design and Implementation

The Quantum Fourier Transform

The QFT is the quantum implementation of the discrete Fourier transform [NC01]. At its core,
the Fourier transform is a basis transformation of a signal into the basis of its frequencies. In
quantum computing, we transform from the computational basis (Z) to the Fourier basis. In the
computational basis, we encode binary numbers as a sequence of the states |0〉 and |1〉. In the
Fourier basis, we store them as rotations around the Z-axis. Consequently, the Quantum Fourier
transform is an 𝑛 qubit operation that operates on the amplitudes of qubits. It is usually implemented
using Hadamard H and controlled rotation CROT𝑘 gates. The Fourier transform is one of the most
important quantum operations, with applications in quantum phase estimation and Shor’s algorithm
to name only a few.

Quantum Fourier Transform Implementation

We implement the QFT by using Qiskit’s circuit library. It allows the creation of the circuit for a
selected width and approximation degree. It can also be inverted by simply inverting the order of all
gates. This new algorithm is added to the generator’s API. A request needs to include information on
the number of qubits, the approximation degree, and whether or not to invert the circuit. Returned
is the generated circuit as a OpenQASM string, as well as information on its size, the generation
input, and a timestamp.
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6 Evaluation

While describing the concepts used in implementation is essential, it is equally important to evaluate
the implemented features. This proves that they provide their intended function as described. In this
chapter, we take a detailed look at the transpilation functionality provided by the Quantum Circuit
Transpiler. It forms the core of most features implemented in this project and therefore is especially
important to it. Therefore it is thoroughly evaluated to ensure the correct function of both itself
and the components depending on it. In the following sections, we first describe the design of our
evaluation regarding this core component and afterward detail the results we obtain when applying
the aforementioned design.

6.1 Concept of Evaluation

When it comes to evaluating translation functionality, we are confronted with the question: “What is
the correct translation of a quantum circuit?” Answers to this might include “The most one-to-one
mapping of gates to the target language,” or “The most compact representation of the circuit possible
in the target language.” For this project, we define equality of circuits as the equality of the quantum
operations they represent. This means the gates and operations defining each circuit are currently
not relevant to us, instead we only look at the circuit as a whole. This leads us to the next question:
“How do we test, whether two circuits implement the same quantum operation?” The simple answer
to this is to create the complete transformation matrices for both circuits and test their equivalence.
However, there are multiple issues with this method. First, while there exist various approaches, all
of them are rather complex and thus the effort necessary to apply them is not reasonable, especially
since we want to evaluate a large number of circuits. The implementation of these algorithms is
also not easily available. In addition, these algorithms check for the exact equality of the circuits.
However, if both circuits approximate the same function to a very high degree, it would satisfy
our criteria of equality of operations, as they would not be differentiable. In the past, there have
been efforts to show that simulation is a powerful tool for checking the equivalence of quantum
circuits [BW20]. This is due to the fact, that simulation is nothing more than the multiplication of
the initial state vector with the transformation matrix that is the circuit. If the resulting vectors for
both matrices are equal for a large number of initializations, then both matrices most likely define a
sufficiently similar operation. While it is also stated that this comparison alone is not definitive
proof of equality, for our purposes and constraints, we accept this limitation. Because we work with
results of quantum circuits, which do not have to be deterministic, we compare the histograms of
results that we obtain over a large amount of execution to compare the results of the circuits.
Our evaluation approach is based on random circuit generation. We use Qiskit to generate
randomized circuits with varying width and depth. These circuits contain gates with up to three
qubits. Initialization is not done manually, since by definition the circuits are random, and so is their
initialization. For each implemented translation path, we translate the circuits to the new language
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and then translate them back again to Qiskit. All of the original, translated, and restored circuits are
then simulated. We measure all qubits, creating measurement histograms. For comparison, we use
histogram intersection, a similarity measure usually applied to color histograms of images [SB91].
It is a simple comparison algorithm that adds the minima of the values of both histograms and
divides it by the sum of all values of the original histogram to calculate similarity. This similarity is
averaged over a certain amount of circuits to mitigate outliers. Of course, for the translation to be
correct, it has to be possible first and foremost. So if the translation of a circuit leads to an error, it
is noted, and the overall error rate is recorded.
As the description indicates, our approach is not static, but dependent on the number of circuits we
create, the shots we use when executing, the size of the circuits we use, and which language we
are evaluating. Since evaluating all of this together is not practical, we use an approach where we
always only evaluate a subsection of parameters while keeping the others static or random.
Finally, we also carry out supplementary manual tests of all paths to detect issues not covered by
the systematical evaluation.

6.2 Evaluation Results

Because quantum circuits are inherently not deterministic, the first parameter we vary is the number
of shots we use when executing the circuits. As the simulation is done locally and all frameworks
operate similarly, we only repeat this for one language. We choose Cirq and record similarities
dependent on the number of shots used. The results are presented in Figure 6.1. The amount of
circuits is fixed at 50 per run due to run time limitations. Circuits have random widths and depths
between one and six. The success rate is not relevant here, since it is determined before the circuit
is executed at all, so it is independent of shots.
The average similarity of the results for both the once and twice translated circuit to the original
circuit rises with the increased shot amount. This is to be expected, as by the law of large numbers,
with increasing shots, we approximate the actual distribution better and thus dissimilarity caused by
variation is eliminated. We can also see that the overall similarity is very satisfactory, reaching 99%
at about 3000 shots. This means that the results of our circuits are 99% equal and consequently
our circuits are also satisfactorily similar. We have to note that this result is only relevant to the
Cirq framework. Nonetheless, since shots work identical in most frameworks, their impact on
similarity is also similar. Thus, we now know that fixing the shots at around 3000 is enough to
reach a satisfactory similarity.
However, while we could just calculate the overall similarity at 3000 shots and 50 circuits for
the other frameworks as well, these results are not really of much value. Instead, we want to see
in which way the size of the circuit influences this similarity, to find more unique aspects of the
different translation paths. This is why we choose to calculate the average similarity dependent
on circuit depth and width. As we are still limited by run time, we take into consideration circuits
up to the value of eight in both parameters. Simultaneously, we also evaluate the success rate of
translation and execution. In the following sections, we go over the different SDKs, specifying the
individual evaluation process, and afterward present and discuss the results.
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6.2.1 Evaluation of Translation to and From Cirq

When evaluating similarity for Cirq, we choose to use 3000 shots, since this is the value that
previously allowed us to reach a 99% similarity. As before we use 50 random circuits for each size
since we still cannot afford more due to run time limitations. As can be seen in Figure 6.2, the
similarity is overall great, both after one and two translations. It decreases slightly when reaching
larger circuits. The influence of depth and width is also very similar. Both graphs are also very akin
to each other. Figure 6.2c shows the success rate of translation and execution to Cirq. Here we
use twice the amount of circuits but only a single simulation since we do not care about the actual
results. The rate is overall almost perfect, with small declines around the depth of 2.
Decreases in similarity can be explained by the inclusion of more and larger gates, which often
are split up into smaller ones during translation, causing very minor differences during simulation.
Since the change from one to two translations is minimal, we can also deduct that the restoration
back to Qiskit is very reliable with minimum impact on the circuit. The declines in success rate are
mostly caused by measurement issues. As translation can change the position of measurements, we
add measurements manually in a final step after all translations are done. However, Qiskit random
circuits can include empty qubits to which no operations are applied. They are ignored and thus lost
during translation because they have no impact on the functionality and therefore lead to different
measurement histograms, even if the operations of the circuits are identical. This happens mostly at
around the depth of 2 since here we start getting empty qubits, but an even larger depth would mean
more chances for operations to appear on them. Nonetheless, it might also happen in other sizes,
since it is purely dependent on chance.
Manual testing mostly confirms the documentation of the import function, which states that neither
barriers nor conditionals are supported for translation to Cirq [22d]. In addition, we also find
that certain double-controlled gates are not compatible with translation back to Qiskit, but this is
discussed in more detail in the evaluation regarding Quirk.
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Figure 6.2: Similarities and Success Rates for Cirq

6.2.2 Evaluation of Translation to and From the Amazon Braket SDK

For Braket, we use parameters identical to those we use for Cirq. The main difference is that
this time, we have two frameworks to work with. As discussed in Chapter 4, we evaluate both
individually and then compare their results. It is noteworthy though, that the frameworks are
not compatible. This is due to the fact, that PennyLane uses a large amount of custom unitary
transformations in its definition of circuits, which pytket does not support. PennyLane itself also
does not support translation back to Qiskit. So in the case of PennyLane, only the similarity between
the original and translated circuits can be compared. As seen in Figure 6.3a, using pytket results in
similar findings to Cirq. Similarity decreases slightly with size but is overall very high. Reasoning
similar to Cirq applies here. Figure 6.3b also has a very similar pattern, so translation back to Qiskit
works as intended as well.
In contrast, Figure 6.3c shows that using PennyLane results in unsatisfactory similarity as soon
as the size starts to increase. Especially with increasing depth, it drops significantly. The width’s
influence is most relevant at greater depths. Upon inspection, this seems to be due to PennyLane
mistranslating certain multi-qubit-gates. This is also the reason why at width one we still get high
similarities at all depths. As for the success rate, circuits are translated and executed successfully
100% of the time. While Figure 6.3d is labeled tket, the results using PennyLane are identical under
the assumption that we do not translate twice. If we do, the rate drops to 0% almost instantly, due to
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Figure 6.3: Similarities and Success Rates for Braket

the ubiquity of custom unitary gates in PennyLane translations.
Further findings which were obtained during further manual testing include the inability of both
frameworks to translate measurements to Braket, as well as the incompatibility of pytket with
Braket’s Unitary, PPhaseshift, and PSwap gates. Nonetheless, we conclude that using pytket as the
framework to translate to and from Braket is favorable.

6.2.3 Evaluation of Translation to and From Q#

Next, we take a look at translation around Q#. This case is rather special since we have three
different frameworks to work with for translation to Q# and the translation from Q# was implemented
manually. Additionally, simulation in Q# is remarkably slow. Since both our manual translation
and the translation using PennyLane require execution of the circuit as well, the time needed for
just one circuit is significantly larger than with the previous paths. Due to time constraints, we,
therefore, are limited to 20 circuits and 100 shots for our evaluation. Furthermore, while staq
translates measurements, it does so in a way that does not allow accessing them directly. This means
that for staq, we only provide measurements in the original and restored circuit.
Figure 6.4a-e show the similarities we recorded for translation to and from Q#. We directly notice
that values are in general smaller than they were for translation to and from Braket. This however
can be explained by the significant decrease in shots. Both once and twice translated similarities are
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again very similar, so the translation back to Qiskit works sufficiently. On further inspection though,
we notice that pytket has the best similarity by a large margin whereas staq’s and PennyLane’s
similarities suffer tremendously at greater sizes.
Finding the reason for this however is not trivial, as both PennyLane and staq create greatly inflated
circuits that are hard to compare by hand. We can nonetheless prove that the issue is indeed related
to the translation and not to our approach to measurements for evaluation. We do this by examining
a subset of histograms in detail. The histograms1 in Figure 6.5 show the counts of an example
circuit that resulted in similarity under 50%. If the issue was due to a swap of qubits or change of
order in measurements, the histograms would need to be similar, just shifted in some way. What
we see here though are completely different histograms. Consequently, the issue is indeed rooted
somewhere in the frameworks producing flawed translations for gates of all sizes.
As for the success rates that can be seen in Figure 6.4f-h, we notice that both pytket and PennyLane
have very good success rates in general, except for very large circuits, where it seems to drop
significantly. In contrast, staq’s success rate seems to drop rather randomly. It is to note that,
because we are limited by rather small sample sizes, small break-ins might be purely coincidental.
Further manual testing yielded only results that were already mentioned, such as PennyLane’s
inability to translate measurements, the fact that the circuit created by staq cannot be executed
without adjustments, and that non-quantum operations cannot be translated from Q# to Qiskit. We
conclude that due to its compatibility with measurements and the by far best results for translation
similarity, pytket is the most suitable tool for translation in our case and thus is used as the
standard. Though, since we are limited by rather small sample sizes, the results regarding the other
frameworks are not as devastating as they seem, and they are still made available for access via a
special request.

6.2.4 Evaluation of Translation to and from Quirk

Finally, we take a look at Quirk, where our approach is again mostly similar to Cirq, with 3000 shots
and 50 circuits for each size. Since Quirk is imported as an URL, we have no means of simulating
the actual circuit in Quirk. Instead, we only have the original and restored circuit to work with.
As can be seen from Figure 6.6a, we have a lot of zeroes in this similarity. This is because the
success rate of translating from and to Quirk is almost 0 for larger circuits, as is evident from
Figure 6.6c. If no circuit is ever successfully executed, it is shown as a similarity of 0. The issue
this time is not the execution, but the translation itself. We use Cirq to translate to Quirk and this
direction works without errors. Cirq exports circuits to Quirk and also imports them back in. Yet,
the circuit gained from this process is different from the original, especially in the definition of
three qubit operations. They use a special class that Cirq cannot export to OpenQASM and in turn,
not to Qiskit. Since three qubit gates are responsible for this phenomenon, it happens exclusively at
widths greater than three. If we turn off three qubits gates in circuit generation, a success rate very
similar to the one when translating to Cirq can be observed, as presented in Figure 6.6c.
But this is not the only restriction. As Quirk is a purely graphical tool, it offers a lot of functionalities
that are hard to translate. Manual testing shows that this includes anything with classical feedback,
as well default values for arithmetic operations.

1The histograms of the translated circuits are very similar to the ones of the restored circuits, but since we can afford
more shots if we skip the execution using qsharp, we choose to do so for this purpose.
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Figure 6.4: Similarities and Success Rates for Q#
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Figure 6.5: Exemplary Histogram Comparison for PennyLane and staq

(a) (b)

(c)

Figure 6.6: Similarities and Success Rates for Quirk
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After evaluating the translation functionality and showing its correctness, we now demonstrate its
integration into the NISQ Analyzer. As mentioned in Chapter 5, we offer the new SDKs as import
options to the Quantum Circuit Transpiler. In addition, we also implemented a new component that
allows the compilation and execution of Cirq circuits. To make all these extensions evident, in this
chapter we provide an example process of using the NISQ Analyzer, utilizing the new features. To
show how the new components play into the NISQ Analyzer’s functionality, we use the example
of the QFT. We generate a QFT circuit using the Quantum Circuit Generator, then use the NISQ
Analyzer to compile it for Google QPUs and afterward execute our chosen compilation on the Cirq
simulator.

7.1 Generation of the Quantum Circuit

For the first step, we need to acquire an implementation of the quantum circuit we want to analyze, in
this case, the QFT. In this project, we implemented an extension to the Quantum Circuit Generator
that adds QFT circuit generation to its functionality, so we use that to generate our circuit. For
demonstration purposes, we use a size of 5 qubits with an approximation degree of one. Currently,
the best way to access the Quantum Circuit Generator is its Swagger GUI. The corresponding
request can be seen in Figure 7.1.
The resulting circuit is given as a OpenQASM string. We add measurements to the circuit to
make the results gained upon execution more interesting. To make this circuit usable for the NISQ
Analyzer, we upload it to a platform where it can be accessed as raw text. Such an URL is one type
of input compatible with the NISQ Analyzer. Listing 7.1 shows the QFT with measurements as a
OpenQASM string.

7.2 Creation and Configuration in the QC Atlas UI

For the next big step, we want to request the NISQ Analyzer to compile our circuit for a single QPU.
While we could do so via the Swagger GUI, the NISQ Analyzer can be accessed via the QC Atlas
UI, which is the intended and thus preferred approach. To use the NISQ Analyzer this way, we first
create an algorithm named Quantum Fourier Transform and then add to it an implementation. We
start by heading to the Algorithms tab via the sidebar and clicking the button marked in Figure 7.2
to add a new algorithm. In the algorithm view, we can add various metadata, but more importantly,
we can add an implementation to the algorithm, which we can execute. To do so, we head to the
Implementation tab seen in Figure 7.3 and click on a similar button as we did when creating the
algorithm. We name it QFT (Quantum Circuit Generator) and can again add meta information if
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Figure 7.1: Request a QFT Implementation From the Quantum Circuit Generator

Listing 7.1 Example Implementation of the QFT as an OpenQASM String

OPENQASM 2.0;

include "qelib1.inc";

gate qft q0,q1,q2,q3,q4 { h q4; cp(pi/2) q4,q3; cp(pi/4) q4,q2; cp(pi/8) q4,q1; h q3; cp(pi/2)

q3,q2; cp(pi/4) q3,q1; cp(pi/8) q3,q0; h q2; cp(pi/2) q2,q1; cp(pi/4) q2,q0; h q1; cp(pi/2)

q1,q0; h q0; swap q0,q4; swap q1,q3; }

qreg q[5];

creg meas[5];

qft q[0],q[1],q[2],q[3],q[4];

measure q[0] -> meas[0];

measure q[1] -> meas[1];

measure q[2] -> meas[2];

measure q[3] -> meas[3];

measure q[4] -> meas[4];

we wish to. We then open the Selection Criteria Tab displayed in Figure 7.4. Here we configure the
file location to be the URL of the OpenQASM file we generated and uploaded. Correspondingly we
choose OpenQASM as the circuit language.
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Figure 7.2: Creating a new Algorithm

Figure 7.3: Creating a new Implementation for an Algorithm

7.3 Compilation and Execution for a Specific QPU

After the implementation is set up, we can start using the NISQ Analyzer. Its function to simply
compile a circuit for a specific QPU is available under the tab Execution seen in Figure 7.5. We
start a new compilation, choosing Cirq-Google as our vendor and sycamore as our target QPU from
the creation dialog shown in Figure 7.6a. We then wait for the compilation to finish and deliver
the results. The compiler currently implemented for Google Devices is Cirq, so we get a result
compiled using it. As visible in Figure 7.6b, the characteristics of the compiled circuit are listed
in the GUI. In addition to the ones shown, these include information on the number of specific
operations or gate times and error rates, if available for the QPUs. Since Cirq is currently only
simulated, this is not the case here yet. If we scroll through these characteristics on the far right,
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Figure 7.4: Configuring File URL and Type

Figure 7.5: Execution Tab

we find a button labeled Execute that allows us to execute our selected compilation. Figure 7.7
represents how the button changes and reveals the retrieved results after the execution concludes.
The results are the measurement histograms obtained from simulating the circuit using the Cirq
service, listed in the structure of a JSON.

7.4 Analysis of Compilation for Multiple QPUs

We now showed how we can use the NISQ Analyzer to compile and execute our circuit. Nonetheless,
we also want to show that we can apply its main functionality, the compilation for multiple QPUs
at once with various compilers and a comparison of the compilation results. The tab titled NISQ
Analyzer found in Figure 7.8 provides this function. We start a new analysis using the corresponding
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(a) Compilation Dialog
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…

(b) Compilation Result

Figure 7.6: Compilation for a Single QPU

…

Figure 7.7: Execution and Result Retrieval

button which opens the dialog shown in Figure 7.9. Here we select the vendor whose QPUs we
want to compile for, the compilers we want to use, and whether or not we want to include simulators.
As the compilation for Google QPUs in the NISQ Analyzer is only supported by Cirq, we select it
as our compiler. In addition, since we do not have access to the real Google devices yet, execution
is currently only simulated. Thus the corresponding field is ticked as well. The results are available
under the button Show analysis in the NISQ Analyzer tab. It leads to the view depicted in Figure 7.10
where results are listed similarly to the compilation results of the last section. This time, not only
one but compilations for all QPUs are displayed right next to each other. If we had more compilers
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Figure 7.8: NISQ Analyzer Tab

Figure 7.9: Analysis Creation Dialog

selected, these results would be listed here as well. Pressing the Execute button works identical to
the one under the Execute tab and gives similarly structured results to the ones shown earlier in
Figure 7.7.
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…

Figure 7.10: Analysis Creation Dialog
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8 Conclusion and Outlook

In this thesis, we presented extensions to multiple components of the QuAntiL project, most
prominently to the Quantum Circuit Transpiler and the NISQ Analyzer. Combining established
translation functionalities with manual implementation, we were able to make all of Google’s
Cirq, Amazon’s Braket SDK, Microsoft’s Quantum Development Kit as well as Quirk available
as translation endpoints and in consequence as import options for the NISQ Analyzer. Utilizing
these results now also makes it possible to compile circuits for QPUs of these vendors, which we
successfully implemented with the example of Cirq. Utilizing these results more than doubled
the number of languages available for import to the NISQ Analyzer and made compilation for a
completely new set of QPUs possible. The goal of the NISQ Analyzer to reduce dependencies
between circuit languages and vendors was thus advanced further to complete fulfillment. The
results obtained from analyzing and evaluating the reliability of various frameworks will also prove
valuable when selecting such for future projects. We also added a new circuit to the Quantum
Circuit Generators library, which together with the new translations will be valuable to Quokka in
the future.
As mentioned before, when we selected which frameworks to support, we were limited by time
constraints and thus had to cut down on certain choices. In future projects, these options can be
revisited and implemented analogously to the previous languages. Additionally, adding services
akin to the one we implemented for Cirq is now possible and will allow the NISQ Analyzer to
utilize the translation functionalities to the full extent. Thus, their implementation will certainly
be a focus of subsequent projects. Furthermore, once we gain access to Google QPUs, the local
simulation will be replaced with the execution of the circuits on real quantum devices. Finally,
since our evaluation of translation frameworks returned mixed results, it might be useful to further
evaluate these translations and if necessary implement manual alternatives in a fashion similar to
how translation to Quil and from Q# is currently implemented.

57





Bibliography

[21] Quantum programming language converter. https://github.com/quantastica/
qconvert. 2021 (cit. on pp. 18, 28).

[22a] Amazon Braket Python Schemas Documentation. https://amazon-braket-schemas-
python.readthedocs.io/en/latest/index.html. 2022 (cit. on p. 32).

[22b] Amazon Braket Python SDK Documentation. https://amazon-braket-sdk-python.
readthedocs.io/en/stable/index.html. 2022 (cit. on p. 29).

[22c] Azure Quantum Documentation. https://docs.microsoft.com/en-us/azure/quantum/.
2022 (cit. on p. 29).

[22d] Cirq Documentation. https://quantumai.google/cirq/. 2022 (cit. on pp. 29, 43).

[22e] Q-Convert-JS - Quantum Language Converter. https://github.com/quantastica/
qconvert-js. 2022 (cit. on pp. 18, 28).

[22f] Qiskit Documentation. https://qiskit.org/documentation/. 2022 (cit. on p. 29).

[22g] QuAntiL Documentation. https://quantil.readthedocs.io/en/latest/. 2022 (cit. on
pp. 19, 35).

[22h] quantum-circuit Documentation. https://quantum-circuit.com/docs/quantum_
circuit. 2022 (cit. on p. 18).

[22i] staq, a full-stack quantum processing toolkit. https://github.com/softwareQinc/staq.
2022 (cit. on p. 33).

[22j] Vendor-Independent Quantum Transpiler. https://github.com/UST- QuAntiL/

QuantumTranspiler. 2022 (cit. on pp. 15, 19).

[AAA+22] M. S. ANIS et al. Qiskit: An Open-source Framework for Quantum Computing.
Version 0.36.2. 2022. doi: 10.5281/zenodo.2573505 (cit. on p. 29).

[AG20] M. Amy, V. Gheorghiu. “staq—A full-stack quantum processing toolkit”. In: Quantum
Science and Technology 5.3 (2020), p. 034016. doi: 10.1088/2058-9565/ab9359
(cit. on pp. 18, 33).

[AHY20] A. Ajagekar, T. Humble, F. You. “Quantum computing based hybrid solution strategies
for large-scale discrete-continuous optimization problems”. In: Comput. Chem. Eng.
132 (2020). doi: 10.1016/j.compchemeng.2019.106630 (cit. on p. 15).

[BIS+18] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M. Arrazola,
C. Blank, A. Delgado, S. Jahangiri, K. McKiernan, J. J. Meyer, Z. Niu, A. Száva,
N. Killoran. PennyLane: Automatic differentiation of hybrid quantum-classical com-
putations. 2018. doi: 10.48550/ARXIV.1811.04968 (cit. on pp. 17, 27, 33).

[BT22a] M. Beisel, F. Truger. Quantum Circuit Generator. https://github.com/UST-

QuAntiL/quantum-circuit-generator. 2022 (cit. on p. 16).

59

https://github.com/quantastica/qconvert
https://github.com/quantastica/qconvert
https://amazon-braket-schemas-python.readthedocs.io/en/latest/index.html
https://amazon-braket-schemas-python.readthedocs.io/en/latest/index.html
https://amazon-braket-sdk-python.readthedocs.io/en/stable/index.html
https://amazon-braket-sdk-python.readthedocs.io/en/stable/index.html
https://docs.microsoft.com/en-us/azure/quantum/
https://quantumai.google/cirq/
https://github.com/quantastica/qconvert-js
https://github.com/quantastica/qconvert-js
https://qiskit.org/documentation/
https://quantil.readthedocs.io/en/latest/
https://quantum-circuit.com/docs/quantum_circuit
https://quantum-circuit.com/docs/quantum_circuit
https://github.com/softwareQinc/staq
https://github.com/UST-QuAntiL/QuantumTranspiler
https://github.com/UST-QuAntiL/QuantumTranspiler
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1088/2058-9565/ab9359
https://doi.org/10.1016/j.compchemeng.2019.106630
https://doi.org/10.48550/ARXIV.1811.04968
https://github.com/UST-QuAntiL/quantum-circuit-generator
https://github.com/UST-QuAntiL/quantum-circuit-generator


Bibliography

[BT22b] M. Beisel, F. Truger. Quokka - The quantum API Gateway. https://github.com/UST-
QuAntiL/quokka. 2022 (cit. on pp. 16, 23).

[BW20] L. Burgholzer, R. Wille. “The power of simulation for equivalence checking in
quantum computing”. In: 2020 57th ACM/IEEE Design Automation Conference
(DAC). 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218563 (cit. on p. 41).

[CBSG17] A. W. Cross, L. S. Bishop, J. A. Smolin, J. M. Gambetta. Open Quantum Assembly
Language. 2017. doi: 10.48550/ARXIV.1707.03429 (cit. on p. 31).

[CJA+21] A. Cross, A. Javadi-Abhari, T. Alexander, N. de Beaudrap, L. S. Bishop, S. Heidel,
C. A. Ryan, P. Sivarajah, J. Smolin, J. M. Gambetta, B. R. Johnson. “OpenQASM 3: A
broader and deeper quantum assembly language”. In: ACM Transactions on Quantum
Computing (2021). doi: 10.1145/3505636 (cit. on p. 31).

[Dev21] C. Developers. Cirq. Version v0.12.0. See full list of authors on Github: https://github
.com/quantumlib/Cirq/graphs/contributors. 2021. doi: 10.5281/zenodo.5182845

(cit. on pp. 29, 32).
[FB22] M. Fingerhuth, T. Babej. Quantum Open Source Foundation. 2022. url: https:

//qosf.org/project_list/ (cit. on p. 25).
[FBW18] M. Fingerhuth, T. Babej, P. Wittek. “Open source software in quantum computing”.

In: PLOS ONE 13.12 (2018), pp. 1–28. doi: 10.1371/journal.pone.0208561 (cit. on
p. 15).

[Gid16] C. Gidney. My Quantum Circuit Simulator: Quirk. 2016. url: https://algassert.
com/2016/05/22/quirk.html (cit. on p. 30).

[LaR19] R. LaRose. “Overview and Comparison of Gate Level Quantum Software Platforms”.
In: Quantum 3 (2019), p. 130. doi: 10.22331/q-2019-03-25-130 (cit. on p. 25).

[LB20] F. Leymann, J. Barzen. “The bitter truth about gate-based quantum algorithms in
the NISQ era”. In: Quantum Science and Technology 5.4 (2020), p. 044007. doi:
10.1088/2058-9565/abae7d (cit. on p. 15).

[LBF+20] F. Leymann, J. Barzen, M. Falkenthal, D. Vietz, B. Weder, K. Wild. “Quantum
in the Cloud: Application Potentials and Research Opportunities”. In: Proceedings
of the 10th International Conference on Cloud Computing and Services Science,
CLOSER 2020, Prague, Czech Republic, May 7-9, 2020 (2020), pp. 9–24. doi:
10.5220/0009819800090024 (cit. on p. 15).

[LJL+10] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. R. Monroe, J. L. O’Brien.
“Quantum computers”. In: Nat. 464.7285 (2010), pp. 45–53. doi: 10.1038/nature08812
(cit. on p. 15).

[MEA+20] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, X. Yuan. “Quantum com-
putational chemistry”. In: Rev. Mod. Phys. 92 (1 2020), p. 015003. doi: 10.1103/
RevModPhys.92.015003 (cit. on p. 15).

[NC01] M. A. Nielsen, I. L. Chuang. “Quantum computation and quantum information”. In:
Phys. Today 54.2 (2001), p. 60. url: https://csis.pace.edu/~ctappert/cs837-
19spring/QC-textbook.pdf (cit. on pp. 15, 36, 40).

[NSB+19] E. National Academies of Sciences, D. Sciences, I. Board, C. Board, C. Computing,
M. Horowitz, E. Grumbling. Quantum computing: progress and prospects. 2019. url:
https://books.google.de/books?id=jjiPDwAAQBAJ (cit. on p. 15).

60

https://github.com/UST-QuAntiL/quokka
https://github.com/UST-QuAntiL/quokka
https://doi.org/10.1109/DAC18072.2020.9218563
https://doi.org/10.48550/ARXIV.1707.03429
https://doi.org/10.1145/3505636
https://doi.org/10.5281/zenodo.5182845
https://qosf.org/project_list/
https://qosf.org/project_list/
https://doi.org/10.1371/journal.pone.0208561
https://algassert.com/2016/05/22/quirk.html
https://algassert.com/2016/05/22/quirk.html
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.5220/0009819800090024
https://doi.org/10.1038/nature08812
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1103/RevModPhys.92.015003
https://csis.pace.edu/~ctappert/cs837-19spring/QC-textbook.pdf
https://csis.pace.edu/~ctappert/cs837-19spring/QC-textbook.pdf
https://books.google.de/books?id=jjiPDwAAQBAJ


[NWA21] P. Nimbe, B. A. Weyori, A. F. Adekoya. “Models in quantum computing: a systematic
review”. In: Quantum Inf. Process. 20.2 (2021), p. 80. doi: 10.1007/s11128-021-
03021-3 (cit. on p. 15).

[Pre18] J. Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (2018),
p. 79. doi: 10.22331/q-2018-08-06-79 (cit. on p. 15).

[RI15] M. Rahaman, M. M. Islam. “A review on progress and problems of quantum computing
as a service (QcaaS) in the perspective of cloud computing”. In: Global Journal of
Computer Science and Technology (2015). url: https://computerresearch.org/
index.php/computer/article/view/1279 (cit. on p. 15).

[SB91] M. J. Swain, D. H. Ballard. “Color indexing”. In: International journal of computer
vision 7.1 (1991), pp. 11–32. doi: 10.1007/BF00130487 (cit. on p. 42).

[SBB+20] M. Salm, J. Barzen, U. Breitenbücher, F. Leymann, B. Weder, K. Wild. “The NISQ
Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms”.
In: Symposium and Summer School on Service-Oriented Computing. Vol. 1310. 2020,
pp. 66–85. doi: 10.1007/978-3-030-64846-6\_5 (cit. on p. 15).

[SBL+21] M. Salm, J. Barzen, F. Leymann, B. Weder, K. Wild. “Automating the Comparison of
Quantum Compilers for Quantum Circuits”. In: Symposium and Summer School on
Service-Oriented Computing. Vol. 1429. 2021, pp. 64–80. doi: 10.1007/978-3-030-
87568-8\_4 (cit. on pp. 20, 24).

[SDC+20] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, R. Duncan. “t| ket>:
a retargetable compiler for NISQ devices”. In: Quantum Science and Technology 6.1
(2020), p. 014003. doi: 10.1088/2058-9565/ab8e92 (cit. on pp. 17, 27, 32).

[VN21] D. Vietz, T. Niederhausen. Qverview. https://github.com/UST-QuAntiL/Qverview.
2021 (cit. on pp. 15, 16, 25, 27).

[Wan20] T. Wangler. “Development of a vendor independent quantum computing transpiler”.
MA thesis. 2020. doi: 10.18419/opus-11219 (cit. on pp. 15, 19, 27).

[Wil22] K. Wild. QuAntiL - Quantum Application Lifecycle Management. https://github.
com/UST-QuAntiL. 2022 (cit. on p. 15).

All links were last followed on May 30, 2022.

https://doi.org/10.1007/s11128-021-03021-3
https://doi.org/10.1007/s11128-021-03021-3
https://doi.org/10.22331/q-2018-08-06-79
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://doi.org/10.1007/BF00130487
https://doi.org/10.1007/978-3-030-64846-6\_5
https://doi.org/10.1007/978-3-030-87568-8\_4
https://doi.org/10.1007/978-3-030-87568-8\_4
https://doi.org/10.1088/2058-9565/ab8e92
https://github.com/UST-QuAntiL/Qverview
https://doi.org/10.18419/opus-11219
https://github.com/UST-QuAntiL
https://github.com/UST-QuAntiL




A Appendix

A.1 Example Implementations of Frameworks



Listing A.1 Quantum Circuit Creation and Execution in Qiskit

from qiskit import QuantumCircuit

from qiskit.circuit.library import HGate

from qiskit import Aer, transpile

from qiskit import IBMQ

#Creation of the circuit object

circuit = QuantumCircuit(2, 2)

# Appending using append method

circuit.append(HGate(), [0])

# Appending using gate method

circuit.cnot(0,1)

# Measures qubit 0 to clbit 0

circuit.measure(0,0)

# Measures qubit 1 to clbit 1

circuit.measure(1,1)

# Execution on a simulator

simulator = Aer.get_backend('aer_simulator')

circuit = transpile(circuit, simulator)

result = simulator.run(circuit, shots=1024).result()

counts = result.get_counts(circuit)

print(counts)

# Execution on the IBMQ backend

IBMQ.enable_account('TOKEN')

provider = IBMQ.get_provider(hub='ibm-q')

print(provider.backends())

backend = provider.get_backend('ibmq_manila')

circuit = transpile(circuit, backend)

job = backend.run(circuit, shots=1024)

# Check for the job to finish

...

result = job.result()

counts = result.get_counts(circuit)

Listing A.2 Count Results

{'11': 496, '00': 528}



Listing A.3 Executing Q# Code Using the qsharp Library in Python

import qsharp

from Example import Circuit

# Simulating on full state simulator

result = Circuit.simulate()

# Simulating on toffoli simulator

result_tof = Circuit.toffoli_simulate()

Listing A.4 Translation From and to Qiskit using pytket

{

from pytket.extensions.qiskit import tk_to_qiskit, qiskit_to_tk

...

circuit_pytket = qiskit_to_tk(circuit_qiskit)

circuit_qiskit = tf_to_qiskit(circuit_pytket)

}

Listing A.5 Example Circuit in PennyLane

{

import pennylane as qml

dev = qml.device('default.qubit', wires=2, shots=1024)

@qml.qnode(dev)

def circuit():

qml.H(wires=0)

qml.CNOT(wires=[0,1])

return qml.expval(qml.PauliZ(0)), qml.expval(qml.PauliZ(1))

result = circuit()

}



Listing A.6 Import in PennyLane

{

import pennylane as qml

...

dev = qml.device('default.qubit', wires=2, shots=1024)

@qml.qnode(dev)

def circuit():

qml.from_qiskit(circuit_qiskit)

return qml.expval(qml.PauliZ(0)))

result = circuit()

}

Listing A.7 Translation to Q# Using pystaq

{

import pystaq

...

p = pystaq.parse_str(qasm_str)

result = pystaq.output_qsharp(p)

}



Listing A.8 Example Circuit in Q#

namespace Example{

open Microsoft.Quantum.Intrinsic;

open Microsoft.Quantum.Convert;

open Microsoft.Quantum.Canon;

open Microsoft.Quantum.Math;

//Entry point defines where the file is executed from when called

@EntryPoint()

operation Circuit() : Unit {

using (q = Qubit[2]) {

mutable c = new Result[2];

H(q[0]);

CNOT(q[0], q[1]);

set c w/= 0 <- M(q[0]);

set c w/= 1 <- M(q[1]);

ResetAll(q);

}

}

}

A.2 Example Circuits

Listing A.9 Example Circuit in OpenQASM

OPENQASM 2.0;

include "qelib1.inc";

qreg q[2];

creg c[2];

h q[0];

cx q[0],q[1];

measure q[0] -> c[0];

measure q[1] -> c[1];



Listing A.10 Example Circuit in Cirq JSON

{

"cirq_type": "Circuit",

"moments": [

{

"cirq_type": "Moment",

"operations": [

{

"cirq_type": "GateOperation",

"gate": {

"cirq_type": "HPowGate",

"exponent": 1.0,

"global_shift": 0.0

},

"qubits": [

{

"cirq_type": "NamedQubit",

"name": "q_0"

}

]

}

]

},

{

"cirq_type": "Moment",

"operations": [

{

"cirq_type": "GateOperation",

"gate": {

"cirq_type": "MeasurementGate",

"num_qubits": 1,

"key": "c_0",

"invert_mask": []

},

"qubits": [

{

"cirq_type": "NamedQubit",

"name": "q_0"

}

]

}

]

}

],

"device": {

"cirq_type": "_UnconstrainedDevice"

}

}



Listing A.11 Example Circuit in Braket IR

{

"braketSchemaHeader": {

"name": "braket.ir.jaqcd.program",

"version": "1"

},

"instructions": [

{

"target": 0,

"type": "h"

},

{

"control": 0,

"target": 1,

"type": "cnot"

}

],

"results": [

{

"type": "statevector"

}

],

"basis_rotation_instructions": []

}
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