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Abbreviations

AFM antiferromagnet
BER II Forschungsreaktor Berlin II
BG background
BKT Berezinkii-Kosterlitz-Thouless
CP critical point
DE double-exchange
FM ferromagnet
FRM II Forschungsreaktor München II
FWHM full-width at half-maximum
HWHM half-width at half-maximum
ILL Institut Laue-Langevin
INS Inelastic Neutron Scattering
KT Kosterlitz-Thouless
LD Larmor Diffraction
MC Monte-Carlo
MF mean-field
MIT metal-to-insulator transition
MLZ Heinz Maier-Leibnitz Zentrum
NRSE Neutron Resonance Spin-Echo
NSE Neutron Spin-Echo
NSF non-spin-flip
PD precession device
PL power-law
QCP quantum critical point
QPT quantum phase transition
RF radio-frequency
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Abbreviations

RIXS Resonant Inelastic X-ray Scattering
RKKY Ruderman-Kittel-Kasuya-Yoshida
RP Ruddelsdon-Popper
RTS ray-tracing simulation
SC superconductivity
SE superexchange
SF spin-flip
SOC spin-orbit coupling
TAS Triple-Axis Spectroscopy
TMO Transition Metal Oxides
2D-H two-dimensional Heisenberg
3D-H three-dimensional Heisenberg
2D-I two-dimensional Ising
3D-I three-dimensional Ising
2D-XY two-dimensional XY
3D-XY three-dimensional XY
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Abstract

Critical Magnetic Fluctuations in Strongly
Electron-Correlated Systems

In this work, we use high-resolution neutron Triple-Axis Spectroscopy (TAS) and
Neutron Spin-Echo (NSE) spectroscopy to study the critical properties of the
strongly electron-correlated 4d square-lattice antiferromagnets (AFMs) Ca2RuO4,
Ca3Ru2O7, and Ti-doped Ca3(Ru0.99Ti0.01)2O7, as well as of the heavy-fermion sys-
tem CeCu6−xAux (x= 0.1,0.2) in vicinity and above the Néel-temperatures TN. We
extract static and dynamical critical exponents to determine the spin dimensionali-
ties and relevant anisotropies. For the layered ruthenates with significant easy-plane
anisotropy it was of particular interest whether or not a seldom two-dimensional
XY (2D-XY) scaling can be observed and how the critical behavior is affected by
the additional intra-bilayer exchange interactions and Ti-doping. For CeCu6−xAux
(x= 0.1,0.2), we aimed to resolve an expected quantum-to-classical crossover in
the dynamical scaling behavior by taking advantage of the high energy-resolution
of NSE.

While in the layered ruthenates we probe the temperature-dependence of the AFM
Bragg-intensity, the Q-width, the amplitude and the energy-width of the magnetic
diffuse scattering close to TN to determine the critical behavior of the magnetic order
parameter M , correlation length ξ, susceptibility χ, and the characteristic energy
Γ with the corresponding critical exponents β, ν, γ, and z, respectively. We find
that the critical behaviors of the single-layer compound Ca2RuO4 follow universal
scaling laws that are compatible with predictions of the 2D-XY model. The bilayer
compound Ca3Ru2O7 is only partly consistent with the 2D-XY theory and best
described by the three-dimensional Ising (3D-I) model, which is likely a consequence
of the intra-bilayer exchange interactions in combination with an orthorhombic
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Abstract

single-ion anisotropy. In the Ti-doped bilayer compound Ca3(Ru0.99Ti0.01)2O7, we
observe no evidence of critical scattering due to the first-order character of the
magnetic transition. Our results imply that the layered ruthenates are potential
solid-state platforms for research on the 2D-XY model and the effects of 3D
interactions and additional spin-space anisotropies on the magnetic fluctuations.
For the near quantum critical compound CeCu5.8Au0.2, we investigate the

temperature-dependence of the AFM Bragg-intensity, the critical amplitudes and
the energy-width of the magnetic diffuse scattering near TN and determine the
corresponding critical exponents β, γ, and z. For the dynamical critical behavior
above TN, we exploit the high energy resolution of NSE spectroscopy to complement
previous TAS measurements by Stockert et al. [1] in the range TN < T < 1K. In
close vicinity of TN, we find a power-law behavior of the characteristic energy of
the magnetic fluctuations that is compatible with classical 3D-I scaling. Since the
previous TAS data [1] are in reasonable agreement with quantum critical scaling at
higher temperatures, our results indicate an expected, but hitherto not observed,
quantum-to-classical crossover at Γ∼ kBT . Furthermore, we find a scaling behavior
of the order parameter compatible with the predictions of the mean-field model,
which is consistent with prior works. The mean-field value is attributed to the
presence of dominant RKKY long-ranged interactions in the heavy-fermion system
CeCu5.8Au0.2. The extracted critical exponent of the critical amplitudes is not
related to any universality class. In addition, we also performed NSE scans at the
critically doped compound CeCu5.9Au0.1, but, contrary to previous TAS measure-
ments [1], our data did not reveal a critical scaling behavior. Our results imply
that the CeCu6−xAux series, especially the CeCu5.8Au0.2 compound, is a promising
platform to investigate the transition from classical to quantum-critical scaling
regimes. This can yield important insights on quantum critical points (QCPs)
in general and, in the end, might also help for a better understanding of the
unconventional superconductivity in heavy-fermions.
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Deutsche Zusammenfassung (kurz)

Kritische magnetische Fluktuationen in stark korrelierten
Elektronensystemen

In dieser Arbeit werden mittels hochauflösender Neutronenspektroskopie die kriti-
schen magnetischen Eigenschaften in den geschichteten (square-lattice) Ruthenaten
Ca2RuO4, Ca3Ru2O7 und in Ti-dotiertem Ca3(Ru0.99Ti0.01)2O7, sowie im schwere-
Fermionensystem CeCu6−xAux (x = 0.1, 0.2) in der Nähe der Néel-Temperatur
TN bzw. des quantenkritische Punkts untersucht. Experimentell werden statische
und dynamische kritische Exponenten zur Bestimmung der Dimensionalitiät der
magnetischen Ordnungsparameter und relevanter Anisotropien extrahiert. Spezi-
ell wird die Frage beantwortet, ob die kritischen Fluktuationen in geschichteten
Ruthenaten dem 2D-XY-Modell folgen und inwiefern zusätzliche Doppelschicht-
Austauschwechselwirkungen das kritische Verhalten beeinflussen. Die Motivation
zur Untersuchung des nahe quantenkritischen CeCu5.8Au0.2 bestand darin, den
prognostizierten, aber bisher nicht beobachteten Übergang von quantenkritischen
zu klassischem dynamischen Skalierungsverhalten zu bestimmen und die kriti-
schen magnetischen Eigenschaften mit dem kritisch-dotierten CeCu5.9Au0.1 zu
vergleichen.

Wir untersuchen in den geschichteten Ruthenaten die Temperaturabhängig-
keit der antiferromagnetischen (AFM) Bragg-Intensität, sowie die Amplitude und
Verteilung der kritischen Streuung im Impuls- und Energieraum mit Neutronen
Dreiachsen- (Triple-Axis Spectroscopy (TAS)) und Spin-Echo (NSE)-Spektroskopie.
Aus den Daten wird das kritische Verhalten des magnetischen Ordnungsparameters
M , der Korrelationslänge ξ, der Suszeptibilität χ und der charakteristischen Energie
Γ mit den entsprechenden kritischen Exponenten β,ν,γ und z bestimmt. Unsere
Ergebnisse zeigen, dass das kritische Verhalten des einfach geschichteten Ca2RuO4
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Deutsche Zusammenfassung (kurz)

kompatibel mit dem 2D-XY-Modell ist. Das Skalierungsverhalten des doppelt ge-
schichteten Ca3Ru2O7 ist dagegen nur teilweise konsistent mit dem 2D-XY-Modell
und wird besser durch das dreidimensionale Ising-Modell (3D-I) eingefangen. Dies
resultiert wahrscheinlich aus der Kombination von Doppelschicht-Kopplung und
orthorhombischer single-ion Anisotropie. In der Ti-dotierten Doppelschichtverbin-
dung Ca3(Ru0.99Ti0.01)2O7 beobachten wir aufgrund des Übergangs erster Ordnung
keine Anzeichen von kritischer Streuung. Damit veranschaulichen unsere Ergebnis-
se, dass die geschichteten Ruthenate potenzielle Festkörpersysteme sind, um das
2D-XY-Modell zu erforschen, sowie die Auswirkungen von 3D-Wechselwirkungen
und zusätzlichen Spin-Raum Anisotropien auf magnetische Fluktuationen zu unter-
suchen.
Bei CeCu5.8Au0.2 betrachten wir die Temperaturabhängigkeit der AFM Bragg-

Intensität, der Amplitude und der Energiebreite der magnetischen diffusen Streuung
in der Nähe von TN und bestimmen die entsprechenden kritischen Exponenten β,γ
und z. Für die Bestimmung des dynamischen kritischen Verhaltens benutzen wir
die höhere Energieauflösung der NSE-Spektroskopie um frühere TAS-Messungen
von Stockert et al. [1] im Bereich TN < T < 1K zu vervollständigen. Dabei finden
wir unmittelbar oberhalb von TN ein Skalierungsverhalten der charakteristischen
Energie, welches durch ein klassisches 3D Potenzgesetz beschrieben werden kann.
Da die TAS-Daten von Stockert et al. bei höheren Temperaturen mit einer quan-
tenkritischen Skalierung kompatibel sind, deuten unsere Ergebnisse demnach den
erwarteten Übergang vom quantenkritischen zum klassischen Skalierungsverhalten
an. Das Skalierungsverhalten des Ordnungsparameters ist mit der Molekularfeld-
theorie vereinbar, was auf die Präsenz von dominanten langreichweitigen RKKY-
Wechselwikungen zurückgeführt wird. Die Temperaturabhängigkeit der kritischen
Amplitude oberhalb von TN kann keiner Universalitätsklasse zugeordnet werden. Im
quantenkritischen System CeCu5.9Au0.1 konnte mit unseren NSE-Messungen kein
kritisches Verhalten beobachtet werden. Daher ist stattdessen geplant die Verände-
rung des kritischen Verhaltens bei Annäherung an den quantenkritischen Punkt in
CeCu5.8Au0.2 durch Anwendung von hydrostatischem Druck zu untersuchen.
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1. Introduction

Materials with strongly correlated electrons often show a wealth of physical ground
states due to competing energy-scales of spin-orbit coupling (SOC), crystal field
splitting, Hund’s coupling, and inter-site exchange interactions. Apart from the
extensively studied 3d-electron Transition Metal Oxides (TMO) [2], in recent years
also TMO of other periods attracted much attention [3]. In particular, the group
of layered ruthenates aroused interest by the discovery of unconventional super-
conductivity in Sr2RuO4 [4]. It turned out that the ruthenates exhibit a complex
phase diagram and spin-excitations [5–7], which highly encourage to investigate
the critical magnetic fluctuations close to the phase transitions. Such fluctuations
can reveal important information on a system as they are inherently coupled to
its ground state. In heavy-fermion systems the competition of interactions can
suppress magnetic ordering and induce a quantum critical point (QCP). Here, the
investigation of critical fluctuations is also of high interest as exotic physical phases
such as superconductivity can occur close to QCPs [8–11].

One of the first studies of critical phenomena was related to the transition between
the liquid and gaseous phases of carbon dioxide [12]. Due to the occurrence of density
fluctuations near the critical point, enhanced light scattering (critical opalescence)
was observed as soon as the correlation length of the density fluctuations coincided
with the wavelength of visible light. The magnetic analogue of density fluctuations
are critical fluctuations of the magnetic order parameter, that emerge in proximity
to the magnetic transition temperature T̃c (Curie- or Néel-temperature) of second
order phase transitions. These fluctuations are characterized by a correlation length
ξ and a response time τ , which both diverge at T̃c [13–16]. In the critical regime,
i. e. close to T̃c, fundamental physical properties of a material, such as the magnetic
susceptibility and the heat capacity, adopt critical behavior and can be described
by power-laws ∝ |t|λ, with critical exponents λ and t ≡ (T/T̃c−1) [14–18]. The
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Chapter 1. Introduction

scaling behavior in the spatial and time domains are related via Γ ∝ κz ∝ tzν

[15], with the critical exponents ν of the inverse correlation length κ = ξ−1 and
z of the characteristic energy Γ∝ τ−1. A hallmark of the corresponding scaling
theory is the concept of universality [16, 19, 20], which predicts that the critical
exponents are independent of microscopic details, and depend exclusively on the
dimensionality of the interactions and the dimensionality of the order parameter
as well as the range of the couplings. In magnetic systems, the scaling behavior
of magnetic critical fluctuations thus encodes the spatial dimensionality of the
system and possible magnetic anisotropies [16]. In particular the 2D-XY model
has attracted significant attention, since it was employed as the model system for
the unconventional vortex-unbinding transition proposed by Berezinskii, Kosterlitz,
and Thouless (BKT) [21–23]. The fingerprints of BKT-transitions were observed
in superfluid 4He-films [24, 25] and proximity-coupled Josephson junction arrays
[26, 27]. Yet, solid-state materials that realize the 2D-XY model are sparse [28–32].

Besides the classical second order phase transitions at finite temperatures, phase
transitions at T = 0 can also occur [33–36]. The so-called quantum phase transitions
(QPTs) are accompanied by quantum fluctuations and are driven by non-thermal
tuning parameters, including pressure, doping, and magnetic field. In analogy
to the critical point in classical phase transitions, the QPT takes place at the
QCP. The QCP at T = 0 cannot be reached experimentally, but it can affect the
critical behavior of the system at finite temperatures and support the emergence of
intriguing physical phases such as superconductivity [8–11, 37].

A key experimental technique for the investigation of critical magnetic scattering
is neutron TAS, which exploits the proportionality between the magnetic neutron
scattering cross section and the dynamic scattering function S(Q,ω), where the
latter contains κ and Γ [38–40]. Γ can be derived from TAS energy-scans of the
critical magnetic scattering, while κ corresponds to the energy-integrated width in
momentum space (Q-space). Pioneering studies investigated the critical magnetic
fluctuations in classical magnetic systems, such as the 3D ferromagnet (FM) EuO
[41–43] and the 3D AFM RbMnF3 [44, 45]. Furthermore, TAS studies were carried
out on systems with quasi-2D magnetic correlations, including the isotropic square-
lattice AFMs Rb2MnF4 [46], Sr2CuO2Cl2, and Sr2Cu3O4Cl2 [47], as well as the
AFM parent compounds of the cuprate superconductors [48], which exhibit two-
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dimensional Heisenberg (2D-H) scaling properties above their Néel temperatures.
Complementary to TAS experiments, improved energy resolution was achieved
with the NSE technique [49, 50], where groundbreaking works were on the critical
dynamics in the isotropic FMs EuO and Fe [51, 52]. More recently, NSE helped to
resolve controversies about the scaling behavior of heavy-fermion superconductors
[53] and revealed a crossover in the dynamic scaling of the classical AFMs MnF2

and Rb2MnF4 close to TN [54].
Furthermore, critical magnetic fluctuations were investigated in 5d-electron TMO

using X-ray scattering. In single-layer Sr2IrO4, which exhibits strong SOC [55, 56],
nearly ideal 2D-H scaling was reported [57, 58]. On the other hand, in bilayer
Sr3Ir2O7 the scaling behavior close to the transition is consistent with the 3D-I
universality class, but significant deviations were found and attributed to disorder
[59].
In 4d-electron TMO, critical fluctuations have remained unexplored to date.

Notably, ruthenates show a plethora of electronic ground states [3, 60–63] such as
unconventional superconductivity in Sr2RuO4 [4] and excitonic AFM order in the
Mott-insulator Ca2RuO4 [64, 65], arising from a delicate competition between the
energy scales of SOC, crystal field splitting, Hund’s coupling, and inter-site exchange
interactions. In the latter compound, spins are arranged in an AFM fashion within
square-lattice RuO2 planes and stacked along the c-axis in a G-type pattern with a
Néel temperature TN ∼ 110K [66–68]. The excitonic character is believed to result
from excitonic transitions between non-magnetic singlet (Jeff=0) and magnetic
triplet states (Jeff=1) [64, 65]. The nature of the excitonic magnetism was recently
corroborated by Resonant Inelastic X-ray Scattering (RIXS) [69], Raman scattering
[70], as well as Inelastic Neutron Scattering (INS), detecting a soft amplitude mode
(’Higgs-mode’) in the spin-wave spectrum [6].

The unquenched orbital angular momentum of the Ru magnetic moments in
Ca2RuO4 further results in a highly unusual spectrum of transverse magnons in
the AFM state [6]. The low-energy magnetic Hamiltonian derived from an analysis
of this spectrum is dominated by an XY-type single-ion anisotropy, which is much
larger than the nearest-neighbor exchange interaction and an Ising-type single-ion
anisotropy resulting from an orthorhombic distortion of the crystal structure. At
the same time, the INS experiments did not reveal any dispersion of the magnons
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Chapter 1. Introduction

perpendicular to the RuO2 layers, which implies that the interlayer interactions
are much weaker than the interactions within the layers. The evidence for an
approximate 2D-XY symmetry of the magnetic Hamiltonian derived from the
analysis of the magnon dispersions has motivated the present study.

In contrast to the Mott insulator Ca2RuO4, the bilayer compound Ca3Ru2O7 is
metallic in the paramagnetic state and maintains considerable electrical conductivity
below the Néel temperature TN,1 ∼ 56K [71]. The magnetic structure is A-type
AFM (i. e. FM bilayers with alternating orientation along the c-axis) [71, 72]. A
second magnetic transition associated with a reorientation of the spins from the
a- to the b-axis in the RuO2 planes [73] and a greater reduction of the electrical
conductivity occurs at TN,2 ∼ 48K [71]. As the crystal structure of Ca3Ru2O7

comprises two closely spaced RuO2 layers within a unit cell, substantial interlayer
interactions within a bilayer unit are expected and were indeed identified in INS
studies of the magnon dispersions [7, 74]. As exchange interactions between bilayer
units are weak, the dimensionality of the exchange-bond network is intermediate
between 2D and 3D. The INS data also revealed an anisotropy gap, but were
insufficient for a determination of the nature of the dominant anisotropy (Ising
versus XY).

Additionally was found that only a marginal doping of the Ru-sites in Ca3Ru2O7

with non-magnetic Ti-ions Ca3(Ru1−xTix)2O7 is sufficient to reverse the AFM
A-type state back to the G-type state that is realized in Ca2RuO4 [75–78]. In
this regard, the two step-transition in Ca3Ru2O7 turns into a sharp simultaneous
magnetic, electronic, and structural transition with rather first-order character.
The magnons in the spin-excitation spectrum of 1% Ti-doped Ca3Ru2O7 could
be described by a similar Hamiltonian as for Ca2RuO4, but with an additional
intra-bilayer coupling term [79].

From the spin-excitations in the ordered state, all three compounds can be con-
sidered as quasi-2D (bi-)layered square-lattice AFMs, with a significant easy-plane
anisotropy, which are the essential requirements for the 2D-XY model. Thus, a study
of the critical behavior near TN in Ca2RuO4, Ca3Ru2O7 and Ca3(Ru0.99Ti0.01)2O7

is of great interest.
The study of the critical magnetic fluctuations in 4f heavy-fermion systems is also

very interesting, as these compounds are particularly suitable to investigate QCPs
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due to a balanced interplay between Kondo screening and the RKKY interaction.
In this context, the heavy-fermion series CeCu6−xAux with a quantum critical
doping of xc ' 0.1 and the possibility to prepare sufficiently large crystals for
neutron scattering experiments aroused wide scientific interest. With respect to the
dynamical critical behavior, a temperature dependence of the characteristic energy
Γ was observed by TAS for the undoped (x= 0), the quantum critical (x= 0.1) and
the nearly quantum critical (x= 0.2) systems, which is compatible with a quantum
critical behavior (Γ ∝ kBT ) at elevated temperatures [1]. However, at least for
CeCu5.8Au0.2 with 3D AFM order below TN ∼ 0.25K, one would expect a crossover
to a classical scaling behavior near TN. Yet, such a crossover may not have been
observed because of the limited energy resolution of the TAS spectrometer.
In this work, we use high-resolution neutron TAS and NSE spectroscopy to

examine the critical magnetic properties in the single-layer Ca2RuO4, the bi-
layer Ca3Ru2O7, and the Ti-doped bilayer Ca3(Ru0.99Ti0.01)2O7 as well as in the
heavy-fermion compound CeCu5.8Au0.2. We extract static and dynamical critical
exponents to determine the spin dimensionalities and relevant anisotropies. For the
layered ruthenates it is of particular interest whether or not a 2D-XY scaling can
be observed and how the critical behavior is affected by the additional intra-bilayer
exchange interactions and Ti-doping. For CeCu5.8Au0.2, we aim to resolve the
expected quantum-to-classical crossover in the dynamical scaling behavior by taking
advantage of the high energy-resolution of NSE.
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2. Critical Magnetic Phenomena

We review critical phenomena in proximity to magnetic phase transitions. The
study of the critical behavior can help to understand the nature of the magnetic
ground state of complex systems by mapping them onto simple models
(universality classes). Critical scaling can uncover magnetic anisotropies and
dimensionality crossovers. We briefly discuss some basic aspects of quantum
phase transitions.

2.1. Introduction

There are a number of comprehensive textbooks and review articles on critical
phenomena. The most important for this work are Refs. [14–16, 80–83].
The first studies of critical phenomena were performed by Thomas Andrews in

1869 [12] on classical transitions between the gas-liquid phases of CO2. The p-T -
diagram of such systems contains phase boundaries, which separate the single-phase
regimes [Fig. 2.1a]. Right on top of such phase boundaries, the adjacent phases
of both sides coexist. Tuning parameters such as temperature or pressure can be
used to transfer one phase to the other across the phase boundaries. Since the two
phases coexist at the boundaries, their Gibbs potential G(p,T ) is equal, but the
partial derivatives may be discontinuous [14]. Depending on whether the first or
second derivative of G is discontinuous, a distinction was historically made between
first- and second-order phase transitions. Nowadays, instead of second-order phase
transition, one rather uses the terms continuous or critical phase transition since
G is actually non-analytic at the transition. In addition to the phase boundaries,
Fig. 2.1a also shows a critical point (CP) at the end of the gas-liquid line at T = T̃c.
Beyond this CP the gaseous and liquid forms of matter are indistinguishable and
can be transformed into each other by a process of continuous change [12].
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Fig. 2.1: (a) Generic p-T -diagram of a solid-liquid-gas system. The solid lines represent
the phase boundaries where the two adjacent phases coexist. Beyond the CP at T̃c the
gaseous and liquid phases are indistinguishable. (b) Generic H-T -diagram of a magnetic
system. Beyond the critical point at T > T̃c, the order parameter is ’0’ (dashed line),
while it is non-zero for T < T̃c (solid line). By applying a magnetic field the magnetization
can be changed. Adapted from [14].
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Chapter 2. Critical Magnetic Phenomena

The magnetic analogue of the p-T -diagram for solid-liquid-gas systems is the
H-T -diagram for magnetic systems [Fig. 2.1b]. Here the solid line corresponds
to the magnetization, which can be changed by applying an external magnetic
field or varying the temperature. In the H-T -diagram the CP is located at the
transition temperature T̃c, which is the Curie-temperature Tc for FMs and the
Néel-temperature TN for AFMs. The Gibbs potential for magnetic systems then
turns to G(T,H) = U −TS−MH, with the internal energy U , the entropy S, and
the external field H [82]. The relation between the specific heat at constant field
CH , the order parameter MT , and the isothermal magnetic susceptibility χT is [14]

CH =−T (∂
2G

∂T 2 )H , MT =−( ∂G
∂H

)T , χT =−( ∂
2G

∂H2 )T . (2.1)

Hence, for a continuous phase transition, MT (first derivative of G) is a continuous
function of T , whilst CH and χT (second derivatives of G) are discontinuous at T̃c

[Fig. 2.2]. It has been found that in proximity to a CP three characteristics are
often met [16]: (i) An order parameter M exists that is a continuous function of T
and shows symmetry breaking while traversing the CP at T̃c from M > 0 (T < T̃c)
to M = 0 (T ≥ T̃c). (ii) Fluctuating microregions emerge (magnetic moments),
which diverge in size (correlation length ξ) as T̃c is approached from both sides.
(iii) The relaxation time τ = ω−1

c of the system diverges when T̃c is approached
(critical slowing down). Here ωc denotes the characteristic energy of the fluctuating
microregions.

2.2. Universality, critical exponents and scaling

The Ginzberg-Landau theory —also called mean-field (MF) theory— is the simplest
approach to describe continuous phase transitions quantitatively [16]. The basic
assumption is that the free energy F (T,M) = U −TS can be expanded in power
series as a function of the order parameter close to T̃c [14]. Strictly speaking,
this is not correct since the thermodynamic properties at T̃c are non-analytic,
but the model is solvable and holds for long-ranged correlations. It follows from
the expansion that the magnetic order parameter M , the isothermal magnetic
susceptibility χ, and the correlation length ξ can be described with simple power-
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2.2. Universality, critical exponents and scaling
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Fig. 2.2: Generic order parameter-temperature diagram of a continuous magnetic phase
transition. Beyond the CP at T > T̃c the order parameter is 0, while it increases
continuously for T < T̃c. The grey solid line shows the heat capacity CH with the
corresponding discontinuity at T = T̃c.

laws (PLs) |t|λ with the reduced temperature t = (T − T̃c)/T̃c and the critical
exponents λ (see Tab. 2.1). In general, the MF theory allows different critical
exponents depending on whether the CP is approached either from above (T > T̃c)
or below (T < T̃c). This is often indicated in literature by the use of λ or primed
λ′, respectively. For the specific heat C a jump at T̃c is predicted by MF theory.
The correlation length ξ is mathematically defined as the mean distance r over
that the equal-time spin pair correlation function decreases by 1/e [82]

Gαβ(r, ξ)≡ 〈sα(0)sβ(r)〉 ≈ |r|−1 exp(−|r|/ξ) . (2.2)

Gαβ(r, ξ) is the probability of finding a spin at position r pointing along the
β direction, if a spin at the origin points along α. The Fourier transform of
G(r, ξ) is the static scattering function S(Q,κ) with Q = Gm + q, where Gm

is a magnetic reciprocal lattice vector, q the relative momentum transfer, and
κ≡ 1/ξ the inverse correlation length. S(q) is proportional to the real part of the
q-dependent susceptibility χ′(q)∝ S(q)/T (see Eqn. (2.27) below) [38, 84]. χ′(q)
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Chapter 2. Critical Magnetic Phenomena

was originally expressed in the Ornstein-Zernike form (η = 0) and later refined to
[13, 16, 85]

χ′(q) =
χ′(0)

[1 + q2(1−η/2)−1/κ2]1−η/2
, (2.3)

with the critical exponent η and the staggered magnetic susceptibility χ′(0)≡ χ0,
which includes the out-factored term κ−(2−η). We will see in Chap. 5 that χ′(q)
can be directly obtained from neutron scattering experiments [38, 82, 84].

Property Exponent PL Conditions MF value Exp.
Susceptibility χT γ t−γ T > T̃c 1 1.3-1.4
Magnetization M β (−t)β T < T̃c 0.5 0.2-0.4
Magnetization M δ H1/δ T = T̃c 3 3-6
Specific heat CH α t−α T > T̃c jump -0.3-0.3

Correlation length ξ ν t−ν T > T̃c 0.5 0.6-0.7

Tab. 2.1: Definitions of some magnetic critical exponents and comparison of the MF
predictions with values found in experiments. From [16].

Although it is evident from Tab. 2.1 that the predictions of the MF theory
deviate considerably from the experimentally observed critical exponents, the PL
behavior of the physical properties close to T̃c has been confirmed in a number
of experiments, as discussed in Ref. [16] and exemplarily shown for RbMnF3 in
Fig. 2.3.

Another hallmark of critical phenomena is the concept of universality [16, 19, 20],
dictating that λ depends exclusively on the long- or short-range nature of the
interactions as well as the dimensionality of the system d and order parameter n.
This is an important observation because it states that microscopic details such as
the type of the elements or the sign of the interaction J are not relevant close to T̃c.
This enables to assign even complex systems to simple models (universality classes).
In magnetic systems, the order parameter usually evolves according to an Ising
(n= 1), XY (n= 2), or Heisenberg (n= 3) model with the general Hamiltonian [16]

H =
∑
〈i,j〉

Jij(Sxi Sxj +Syi S
y
j +Szi S

z
j ) , (2.4)

where Jij > 0 (Jij < 0) couples the nearest neighbour spins on site i and j with pre-

16



2.2. Universality, critical exponents and scaling

Fig. 2.3: Inverse correlation length κ(T ) in RbMnF3. The critical exponent ν was
obtained from the slope of a linear fit on double logarithmic scales. From [44].

ferred antiparallel (parallel) alignment. In particular, the 2D-XY model attracted
much interest in recent years due to the proposed unconventional topological phase
transition (see below) [21–23].

In addition to the universality, the concept of critical scaling motivates the
study of critical phenomena. The basic assumption of critical scaling is that
only one fundamental length scale (ξ) is relevant [14, 86]. The static scattering
function can be expressed by a product of κ= ξ−1 and q with the scaling functions
f(x) = x−1f ′(x) where we define x≡ q/κ

S(q,κ) = qyf(x) , (2.5)
S(q,κ) = κyf ′(x) . (2.6)

In the asymptotic limits x� 1 and x� 1 the scaling functions can be ap-
proximated by limx→∞ f(x) ' 1 and limx→0 f ′(x) ' 1, respectively. If one then
compares for instance (i) S(q,0) ∝ q−2+η [Eqn. (2.3)] and S(q,0) ∼ qy with (ii)
χ0 ∝ S(0,κ) ∝ t−γ ∝ κ−γ/ν [see Tab. 2.1] and S(0,κ) ∼ κy one gets the scaling
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Model MF [16] 2D-I [16] 3D-I [18] 2D-XY [23, 91] 3D-XY [92] 3D-H [93]
α - 0 0.110(1) - -0.007(9) -0.1336(15)
β 0.5 0.125 0.3265(3) 0.23 0.346(9) 0.3689(3)
γ 1 1.75 1.2375(2) - 1.316(9) 1.3960(9)
δ 3 15 4.789(2) 15 4.81(8) 4.783(3)
η 0 0.25 0.0364(5) 0.25 0.03(2) 0.0375(5)
ν 0.5 1 0.6301(4) - 0.669(3) 0.7112(5)

Tab. 2.2: Overview of (approximated) critical exponents of conventional universality
classes. Besides the MF theory, only the 2D-I model is analytically solvable.

relation ν(2− η) = γ. Similarly, additional scaling relations between the critical
exponents can be found, such as [14, 86, 87]:

2β+γ = 2−α (2.7)
β(δ+ 1) = 2−α (2.8)

γ(δ+ 1)/(δ−1) = 2−α (2.9)
dν = 2−α (2.10)

dγ/(2−η) = 2−α (2.11)

Consequently, knowledge of only two critical exponents may be sufficient to deter-
mine the remaining exponents as well. The scaling hypothesis also implies that the
critical exponents λ and λ′, introduced in the MF theory for approaching T̃c either
from above or below, are the same.

To date only the two-dimensional Ising (2D-I) model could be solved analytically
[88] and exact critical exponents were calculated, while the other values are ap-
proximated by different methods [18], mostly based on the renormalization group
theory [89, 90] . In Tab. 2.2, the derived critical exponents for the conventional
universality classes are listed in comparison with the MF values. The values can
slightly vary depending on the underlying computation method, as described in
[18].
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2.3. Exceptions and crossover

Thus far, we only considered the critical behavior of models for which a magnetic
ordering at finite temperatures is predicted. This is not the case, for instance, for
the 2D-XY and 2D-H models [94]. Nevertheless, it has been shown experimentally
that in systems with weak interlayer coupling J ′, quasi-2D critical fluctuations
can occur at temperatures above the 3D long-range ordering and affect the scaling
behavior [48, 95, 96]. Above a crossover temperature Tco > T̃c, the scaling may
then be consistent with the predictions of quasi-2D models. Apart from that, the
scaling behavior in these models can deviate from the simple PL scaling, as will be
discussed below.

2D-Heisenberg model

Chakravarty, Halperin and Nelson [97, 98] described the 2D quantum Heisenberg
model by a quantum non-linear σ model and derived, via renormalization group
calculations, an expression for ξ(T ) and S(0,T ). Subsequently Hasenfratz and
Niedermayer [99] refined the expressions to

ξ ' e

8
c

2πρs
exp(2πρs/T )

(
1−0.5 T

2πρs

)
, (2.12)

with ρs and c denoting the T = 0 spin stiffness and the spin-wave velocity, re-
spectively. These quantities depend on the nearest neighbour exchange coupling
J and can be approached by using results from spin-wave approximation as de-
scribed in Refs. [100, 101]. In Fig. 2.4, we exemplarily show 2D-H scaling of κ(T )
[Eqn. (2.12)] for the AFM parent compounds of the cuprate superconductors
La2−xSrxCuO4. Keimer et al. [48] further proposed an expression accounting for
the effects of 3D critical fluctuations

ξeff = ξ0√
1−αeffξ2

0
, (2.13)
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Chapter 2. Critical Magnetic Phenomena

where ξ0 denotes the correlation length of the unperturbed Heisenberg Hamiltonian
and αeff defines a suitable combination of perturbative terms. The T -dependence
of S(0,T ) was estimated as [98]

S(0)∝ T 2ξ2 . (2.14)

Fig. 2.4: Temperature-dependence of κ(T ) for pure, lightly doped, and weakly metallic
La2−xSrxCuO4. The solid lines correspond to fits with the simple model κ(x,T ) =
κ(x,0)+κ(0,T ) with the 2D-H scaling included in the T-dependent part κ(0,T ). From
[48].

2D-XY model

The 2D-XY model described by Berezinkii, Kosterlitz, and Thouless (BKT-theory
[21–23]). The basic concept of the BKT-theory is the existence of a topological
phase transition at TKT , with bound vortex-antivortex structures at T < TKT

[Fig. 2.5a], that start to dissociate at T > TKT [Fig. 2.5b]. The correlation length
in the 2D-XY model is defined as the distance between such vortices above TKT.
The vortices itself are characterized by the vorticity ṽ, which denotes the phase
change of the spins in multiples of 2π on a contour around the vortex. Regarding
the critical behavior, the parameters of this model are the Kosterlitz-Thouless
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temperature TKT , η = 0.25 in χ′(q) [Eqn. (2.3)], and a dimensionless non-universal
parameter b, which was previously determined to be approximately b= 1.9 [102].
The T -dependence of the correlation length was derived as [23]

ξ ∝ exp
(

b√
tKT

)
with tKT ≡ (T/TKT−1) . (2.15)

The fingerprints of BKT-transitions were observed in superfluid 4He films [24, 25]
and proximity-coupled Josephson junction arrays [26, 27], whereas solid-state
materials that realize the 2D-XY model are sparse [28–32]. BKT-transitions in real
magnetic systems were only indirectly observed [103, 104] since the actual vortex
unbinding is generally obscured by a 3D magnetic ordering due to finite interlayer
coupling J ′, as shown in Fig. 2.5c for K2CuF4. For AFMs the relation between
TKT and TN is proposed as [91, 102]

TN−TKT
TKT

= 4b2
[ln(J/J ′)]2 . (2.16)

Moreover, by using the scaling relation χ0 ∝ ξ2−η one gets [23]

S(0)
T
∝ exp

(
B√
tKT

)
, (2.17)

with B ≡ b(2− η) and TKT from above. Although the observation of the actual
BKT-transition at TKT is difficult, 2D-XY scaling may be suitable to describe
the critical behavior of systems with even weak magnetic easy-plane anisotropy
above TN, as was theoretically derived in Refs. [105–107] and shown in a number of
experiments [28, 29, 31, 102, 104, 108, 109]. Further study of the BKT-transition
in solid-state systems therefore requires quasi-2D compounds with pronounced
easy-plane anisotropy. In this respect, the square-lattice Ca-ruthenates Ca2RuO4

and Ca3Ru2O7 are promising candidates, as they exhibit strong tetragonal (XY)
single-ion anisotropy [6, 7] (see Chap. 3).
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ξ

(a) (c)(b)

TKT

Fig. 2.5: (a,b) Illustration of the BKT-transition. (a) Vortex-antivortex pairs with
vorticity ṽ =±1 dissociate at TKT into (b) single vortices. ξ defines the correlation length
between the isolated vortices above TKT. The blue and green circles indicate the center
of the vortices. Adapted from [110]. (c) Inverse correlation length κ(T ) for K2CuF4 with
corresponding 2D-XY fit. It is assumed that the actual BKT-transition at TKT is masked
by the 3D FM ordering at Tc > TKT. The saturation of κ(T ≤ Tc) at different nonzero
values results from a qc-dependence due to emerging 3D-couplings. From [29] (modified).
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Crossover behavior

The critical exponents can indicate a crossover in the scaling behavior as T̃c is
approached, which is associated with a change in the spin or lattice dimensions.
As an example for a crossover in the lattice dimensions from 2D-XY to three-
dimensional XY (3D-XY) near Tc, the temperature dependence of the magnetization
of K2CuF4 is shown in Fig. 2.6. In general, the smallest term of the Hamiltonian is
expected to eventually determine the critical behavior close to T̃c [94]. For example,
if we assume a magnetic Hamiltonian H =H0 +H1 +H2 +H3 with the following
terms

H0 = J
(d)∑
〈i,j〉

SiSj , (2.18)

for an isotropic Heisenberg chain or layer system (d= 1,2), with weak 3D interactions
J ′

H1 = J ′
(3−d)∑
〈i,j〉

SiSj , (2.19)

and additional easy-plane
H2 = E

∑
〈i〉
Szi

2 , (2.20)

and easy-axis anisotropies
H3 = ε

∑
〈i〉
Sxi

2 , (2.21)

we would expect for the energy scales |J |� |E|> |ε|> |J ′|, that the critical behavior
changes from 2D-H at T � T̃c upon cooling to 2D-XY, 2D-I, and eventually to 3D-I
at T ≥ T̃c. By following the T -dependence of the critical scaling, such crossovers
can be detected, revealing important information on the underlying correlations in
the system. Besides the empirical determination of the crossover regions, there are
simple models for estimating the spin-lattice crossovers. For example, in Ref. [29] it
is suggested that the crossover from 2D to 3D or Heisenberg to XY scaling behavior
occurs at sufficiently large correlation lengths

ξ ≥
√
J/JA , (2.22)
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where JA denotes an exchange anisotropy term such as J ′ or JXY and ξ is in
units of the corresponding lattice parameter. On the other hand, in Ref. [111], a
crossover temperature from Heisenberg (XY) to Ising scaling was derived as

Tco = (JA/J)1/δ̃TN +TN , (2.23)

with δ̃ = 1.25 (1.175).

Fig. 2.6: Exemplary crossover in the lattice dimensions of K2CuF4 indicated by a change
in the critical scaling of the magnetization M at Tco < Tc from 2D-XY (β = 0.22) to
3D-XY (β = 0.33) upon heating. From [94].

2.4. Dynamic critical scaling

In the following, the dynamic properties of the critical fluctuations are discussed.
Analogous to the static scattering function S(q), we consider now the dynamic
scattering function S(q,ω), which is the Fourier transform of the time-dependent
correlation function [84]. We will see in Chap. 5, that the cross section in neutron
scattering is proportional to the dynamic scattering function S(q,ω) with Q =
Gm+q = ki−kf and ω = h̄(k2

i −k2
f )/(2m), where ki,f are the incident and final
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neutron wave vectors [38, 84]. The scattering function S(q,ω) is related to the
imaginary part of the generalized magnetic susceptibility via

S(q,ω) =
χ′′(q,ω)

1− exp(−h̄ω/kBT ) . (2.24)

The denominator in Eqn. (2.24) is also known as the detailed balance factor
according to the detailed balance principle [84]:

S(−q,−ω) = exp(−h̄ω/kBT )S(q,ω) , (2.25)

which accounts for the probability of a transition in the sample, that will be lower
for excitation annihilation than for excitation creation [38]. The detailed balance
factor is only relevant for relatively low sample temperatures, as used e. g. in our
CeCu5.8Au0.2 study (cf. Chap. 7).
The real and imaginary parts of the generalized susceptibility χ(q,ω) are

Kramers–Kronig related. A general form of χ′′(q,ω) is given by χ′′(q,ω) =
χ′(q)F (ω)ω, where χ′(q) is the real part of the static susceptibility (see Eqn. (2.3))
and F (ω) the spectral weight function, which is an even function of ω and satisfies
the normalization condition

∫∞
−∞F (ω)dω = 1. Above the ordering temperature,

spin fluctuations at small q are strongly damped and the spectral-weight function
takes on a Lorentzian shape [38]:

F (ω) = 1
π

Γ
Γ2 +ω2 . (2.26)

In this case, the characteristic energy of the critical fluctuations ωc, that is
defined as

∫ ωc
−ωc

F (ω)dω = 0.5 equals the half-width at half-maximum (HWHM) Γ
of the Lorentzian-function.
The Kramers-Kronig relation connects χ′(q) and S(q,ω) via

kBTχ
′(q) =

∫ ∞
−∞

1− exp(−h̄ω/kBT )
h̄ω/kBT

S(q,ω) d(h̄ω)

'
∫ ∞
−∞

S(q,ω) d(h̄ω) = S(q) , (2.27)

where h̄ω� kBT was assumed [38, 84]. From this follows S(0)∝ χ0T for the static
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case at q = 0. To determine S(q), in principle, it would be required to measure the
entire S(q,ω) function and perform a numerical ω-integration. This can be avoided
in 2D systems by using an energy integrating TAS configuration, as introduced by
Birgeneau et al. [112] and described in Chap. 5.

In analogy to the static critical scaling, the dynamic scaling hypothesis [15, 17, 82]
states that the characteristic energy ωc can be expressed as a product of κ or q
and a scaling function Ω(q/κ) = (q/κ)zΩ′(q/κ)

ωc(q,κ) = κzΩ(q/κ) , (2.28)
ωc(q,κ) = qzΩ′(q/κ) , (2.29)

with the dynamical critical exponent z. In consequence, the concept of dynamic
scaling links the spatial and frequency domain of a system. In the asymptotic
limits, ωc is related to the correlation length by lim

q→0
ωc(q,κ) ∼ κz, and thus the

relaxation time τ = 1/ωc diverges as T̃c is approached (critical slowing down). On
the other hand, for the q-dependence of ωc at T̃c, it follows lim

κ→0
ωc(q,κ)∼ qz. In

the following, we refer ωc to Γ as we always assume a Lorentzian-shaped spectral
weight function F (ω) for the description of critical fluctuations [Eqn.(2.26)]. An
experimental example of the dynamic scaling for Rb2CoF4 is shown in Fig. 2.7.

In contrast to the universality of the static critical behavior (d, n, range of
correlations), the dynamic critical exponents depend also on the conservation laws
of the system [114, 115]. Thus, the dynamic critical exponents of systems belonging
to the same static universality class can differ. This is the case, for instance, for
3D isotropic magnets, where the order parameter commutes with the Hamiltonian
of the three-dimensional Heisenberg (3D-H) FM, while it does not commute with
that of the 3D-H AFM [16]. We have listed in Tab. 2.3 the approximated dynamic
critical exponents for various universality classes. The value of z for the 2D-I model
is still under debate and varies between 1.4 and 2.2 depending on the underlying
computation method, as discussed in Ref. [116]. The chosen value z = 1.75 follows
from a conventional theory z = 2−η and has been approved experimentally, for
example, for Rb2CoF4 [Fig. 2.7]. Similar to the static critical behavior, the dynamic
critical properties are also affected by changes in the spin-lattice dimensions, and
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(a) (b)

Fig. 2.7: Dynamic scaling of the characteristic energy Γ(T,q) of the 2D-I system Rb2CoF4.
(a) T -dependence of Γ(T ) with corresponding scaling fit Γ∝ κz ∝ tzν . (b) Q-dependence
of Γ(q) with scaling fit Γ∝ qz. The horizontal arrows indicate the energy resolution for
the corresponding neutron wavelengths. From [113].

Models Formula Approx. z ν zν
3D-H FM [15] (d+ 2−η)/2 2.5 0.7112 1.778
3D-H AFM [15] d/2 1.5 0.7112 1.067
3D-XY [117] d/2 1.5 0.669 1.004
3D-I [15, 118] 2 +α/ν 2 0.6301 1.260

2D-H AFM [15, 98] d/2 1 - -
2D-I [116]∗ 2−η 1.75 1 1.75

Tab. 2.3: Dynamical critical exponents. d denotes the dimensionality of the system
and η,α,ν correspond to the static critical exponents listed in Tab. 2.2. (∗) The values
for 2D-I systems are still under debate, but 1.75 has been experimentally approved for
Rb2CoF4 [113]. Adapted from [15].
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thus can show crossovers. Such crossovers have been studied, for example, by Tseng
et al. [54] in the classical systems MnF2 and Rb2MnF4, as shown in Fig. 2.8.

Fig. 2.8: Dynamic scaling of the characteristic energy Γ(T ) of the classical compounds
MnF2 and Rb2MnF4, with scaling fit Γ∝ tzν . The grey shaded areas indicate the crossover
regions and ΓR corresponds to the residual linewidth at TN. From [54].

In summary, the investigation of the critical behavior of a system can reveal
important information about the spin-lattice dimensions or the ranges of relevant
forces. Moreover, because of the hypothesis of universality, one can find simple
models to describe complex compounds, as the microscopic details are averaged
out by the large and diverging correlation length ξ near T̃c. This motivates us
to study the critical behavior in the layered Ca-ruthenates, which are strongly
correlated 4d electron systems with a plethora of ground states (see Chap. 3). We
take advantage of neutron scattering (see Chap. 5) as an effective tool to determine
critical phenomena, including the directly accessible dynamic scattering function
S(q,ω), the magnetic order parameter M , the correlation length ξ, the magnetic
susceptibility χ(0), and the characteristic energy Γ of the fluctuations.
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2.5. Quantum phase transitions

Classical continuous phase transitions are driven by thermal fluctuations at nonzero
temperatures. However, phase transitions can also occur at T = 0, where ther-
mal fluctuations are negligible. Such transitions are accompanied by quantum
fluctuations, which emerge due to the Heisenberg uncertainty principle, and are
therefore referred to as QPTs. While in the classical case the temperature dif-
ference |T − T̃c| to the critical point at T̃c is crucial, for the QPT the deviation
|r− rc| of a non-thermal tuning parameter r from a critical value rc at the QCP
is essential [119]. The tuning parameter r can be given by pressure, doping or an
external magnetic field. To date, there are several systems with a proposed QCP
studied by neutron spectroscopy, including heavy-fermion systems CeCu6−xAx with
A=Au, Ag [120–123] and CeCu2Si2 [8], coupled-dimer AFMs XCuCl3 [124–126]
with X =Tl, K, as well as TMO with 3d (high-Tc′ cuprates, [11]), and 4d-electrons
(Ca2RuO4, [127]). In the following, we will discuss some basic aspects of QPTs
based on Refs. [33–36].

A generic phase diagram with a QCP at rc is shown in Fig. 2.9a, which contains
characteristic regions: (i) Magnetic order at r < rc for T < T̃c with the corresponding
classical critical regime (dark shaded area), and the thermally disordered phase for
T � T̃c. (ii) Quantum disorder at r > rc and low T . (iii) A fan-shaped quantum
critical regime above the QCP at nonzero T separated from (i) and (ii) by phase
boundaries (dashed lines), which are given by T ∝ |r−rc|zν with critical exponents
z and ν. Although the QCP occurs at the experimentally inaccessible temperature
T = 0, it affects the physical properties of the system in the quantum critical region
at T > 0. In this respect, exotic physical phenomena such as superconductivity
can appear close to a QCP due to an balanced competition of interactions favoring
a magnetic or a nonmagnetic ground state [8, 9, 11, 37, 119]. An example of
a QPT and the corresponding rich phase diagram [Fig. 2.9b] is given by the
doping dependence of the high-temperature superconducting cuprates, as described
in Ref. [11]. Here, the AFM phase in the pristine compound is destroyed at
a certain level of hole-doping pmin (tuning parameter) and an unconventional
superconducting state occurs, which disappears at p > pmax and changes into a
Fermi-liquid state. A pseudogap and strange-metal state emerge in proximity to the
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QCP [11]. By analogy with the study of the critical behavior near Tc in classical
phase-transitions, the study of the critical spin-fluctuations close to QCPs at T > 0
can help to understand the nature of the QCP and the underlying mechanisms for
the occurrence of possible exotic phenomena.

rc
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disordered

quantum
disordered

quantum critical

QCP
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ordered
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(a) (b)

Copper oxides

Fig. 2.9: (a) Generic phase diagram for QPTs. The dashed lines are given by T ∝ |r−rc|zν
[119] and indicate the boundary of the quantum critical regime. Here r denotes a tuning
parameter, such as pressure, doping, or an external magnetic field. From [33]. (b)
Simplified phase diagram of high-temperature superconducting cuprates with a QCP
at a critical hole doping level pmin separating the AFM phase from the unconventional
superconductivity (SC) state. From [11] (modified).

In general, when approaching the QCP (r→ rc), divergent time τ and length
scales ξ are predicted. Similar to the classical case, the divergence can be described
by PL scaling with the corresponding scaling relations τ ∝ ξ−z ∝ |r− rc|zν and
additionally a so-called ω/T -scaling of an observable O(ω,T ) like, for example, the
dynamic scattering function S(q,ω) is expected [33]. It was further shown that a
QPT in d space dimensions can be mapped onto a classical transition in effectively
(d+ z) space dimensions [119], i. e. the critical behavior of a classical 3D-I system,
for example, can evolve to a MF behavior when the system is tuned towards the
QCP [128–130]. This results from the fact that the deviations from MF-theory
become the less the higher the space dimensionality is [33].
Moreover, when the magnetic fluctuations are responsible for the QPT, the

relaxation time of the spin-fluctuations is expected to exhibit a critical slowing
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down as T = 0 is approached, which is associated with a T -dependence of the
energy-width Γ(T ) according to Γ∝ kBT [1].

In consequence, we expect different scaling behaviors in the classical (Γ� kBT )
and the quantum critical (Γ� kBT ) regime, with a crossover to the classical
behavior at Γ∼ kBT near T̃c [33, 131]. According to the generic diagram in Fig. 2.9a,
such a crossover can be induced either by changing the tuning parameter r or by
varying the temperature close to a QCP. In this work, we vary the temperature
and determine Γ(T ) for the near quantum critical compound CeCu5.8Au0.2 and
also examine the critical behavior in the quantum critically doped CeCu5.9Au0.1

(see Chap. 7).
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3. Layered ruthenates

We give a brief overview of transition metal oxides in general, and discuss
the Ca-doped compounds Ca2RuO4 and Ca3Ru2O7 with the focus on their
magnetic properties, and the influence of doping with nonmagnetic Ti-ions
on the magnetism of bilayer Ca3Ru2O7.

3.1. Introduction to Transition Metal Oxides

Transition metals are elements with either incomplete d sub-shells or which can
form cations with incomplete d sub-shells [132]. The class of 3d-electron Transi-
tion Metal Oxides (TMO) has attracted much interest for many decades due to
the discovery of high-temperature superconductivity (SC) in the layered cuprates
(La,Ba)CuO4 [Fig. 3.1] by Bednorz and Müller [133]. Hitherto, the exact mechanism
behind the unconventional d-wave SC in cuprates is still under debate [11], which
has encouraged the investigation of structurally related systems. A plethora of
electronic phases in the 3d, 4d, and 5d TMO [2, 3] has been uncovered, including
Mott-Hubbard transitions in vanadates and titanates [134, 135], colossal magne-
toresistance and multiferroicity in manganites [136, 137], unconventional SC in
ruthenates [4], and Mott-physics in iridates [55, 56]. The wealth of physical ground
states in the TMO results from a competition between the energy-scales of crystal
field splitting, Hund’s coupling, and inter-site exchange interactions. The Hund’s
coupling contains the energy-gain associated with Hund’s semiempirical rules based
on Coulomb-repulsion, Pauli’s principle and spin-orbit coupling (SOC). The latter
can be described with the exchange Hamiltonian [138]:

HSO = λSOLS , (3.1)
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3.1. Introduction to Transition Metal Oxides

where λSO = ζSO/(2S) is related to the single-electron SOC strength ζSO.

Fig. 3.1: Layered perovskite structure of cuprate (right) and ruthenate (left) supercon-
ductors. From [139].

As shown in Fig. 3.2, the cubic component of the crystal field (∆CEF), typically
in the order of ∆CEF = 2−4 eV [2, 69, 140], lifts the degeneracy of the d-orbitals of
a free d-ion. For an octahedral oxygen-environment, as realized e. g. in cuprates or
ruthenates [Fig. 3.1], the splitting results in a lower-lying triplet state (t2g) and a
higher-lying doublet state (eg) [141]. A further splitting of the t2g and eg states can
be induced by the Jahn-Teller effect to avoid spin-frustration in systems with single
electrons in degenerated energy-levels [2]. Typically, in the 3d TMO, the Hund’s
coupling is similar to ∆CEF and thus a high-spin state occurs, whereas for 4d and
5d TMO, the Hund’s coupling is smaller than the eg− t2g splitting, which leads to
a low-spin state [138]. In addition, the TMO differ significantly in terms of SOC
strength, which increases as a rule of thumb with the fourth power of the atomic
number ζSO ∼ Z4 [142, 143]. In consequence, SOC in 3d TMO (ζSO ≈ 20meV [2])
can be considered as a small perturbation and the spin-orbit degrees of freedom
are quenched (L = 0), while SOC in 5d TMO is much stronger (ζ5d

SO ≈ 500meV)
and can no longer be considered as a small perturbation. Instead, it is more
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Chapter 3. Layered ruthenates

appropriate to describe the physics with a total angular momentum J = |S+L|.
In the 4d TMO, the strength of SOC is placed in between that of the 3d and 5d
analogues (ζ4d

SO ≈ 150meV [142, 143]), which can lead to exotic phenomena such as
the excitonic magnetism in Ca2RuO4 (see below). Due to the balanced interplay
of crystal field effects and moderate SOC, the 4d TMO are close to electronic and
magnetic instabilities [Fig. 3.3b] [5] and thus only a weak perturbation induced
by tuning parameters such as temperature, (chemical) pressure, or an external
magnetic field, can affect a pronounced change of the physical properties and
ground states [66, 75, 144].
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Fig. 3.2: (a) Spatial distribution of the electrons representing d-orbitals. From [141].
(b) The 2l+1-fold degenerated d-orbitals of the free ion (∆CEF = 0) split in a nonzero
crystal electric field (∆CEF 6= 0). Here, l= 2 denotes the quantum number of the d orbital
angular momentum. Depending on the arrangement of the ligands (here octahedral
symmetry) a splitting into eg and t2g manifolds occurs.

Apart from the intra-ionic SOC and the coulomb interaction with its ligands,
the physics in TMO depend on the inter-site exchange with adjacent ions. The
relevant interactions in TMO are the direct exchange between delocalized itinerant
electrons (favors parallel spin-alignment) [145] and the indirect superexchange via
nonmagnetic intermediate ions, where the spin-alignment depends on the symmetry
of the orbitals involved [146]. Usually in TMO, the superexchange (SE) interaction
outweighs the direct exchange [147]. The basic concept of SE is the (real or virtual)
hopping of electrons between the lattice sites via ligand-ions and can be described
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3.2. Layered ruthenates

by the Hubbard model [148–151], which includes the Coulomb energy U for double
orbital occupation and the hopping amplitude t̃, that is related to the bandwidth
W via the coordination number z̃ (t̃=W/2z̃).
In general, two extreme cases are distinguished: (i) U � t̃, i. e. the hopping of

charge carriers is energetically supported corresponding to a metallic state. (ii)
U � t̃, i. e. the significant on-site Coulomb repulsion prevents real electron hopping,
and thus an insulating state is formed (Mott-insulator). Although real electron
hopping through the solid is prevented in this case, virtual hopping between nearest
neighbours is still possible. The associated energy gain by virtual hopping yields
JSE = −2t̃2/U [152]. According to Pauli’s principle, parallel spin-alignment of
electrons within the same orbital is forbidden, and hence AFM order is preferred
due to the virtual hopping between isovalent ions. In a solid, the sign and strength of
the SE also depend on the symmetry of the electron orbitals involved (Goodenough-
Kanamori-Anderson-rules [146, 153, 154]). The SE describes the exchange between
isovalent ions, whereas the exchange between ions with different valences is called
double-exchange (DE) [155]. In contrast to the SE, the DE enables real charge
carrier hopping across the ligand orbitals and thus induces a FM alignment due to
Hund’s coupling. This can be exploited to change the magnetic ground state from
AFM to FM order using chemical doping, as was established for manganites [146]
and recently proposed to explain the magnetic ground state in Ti-doped Ca3Ru2O7

[77, 78].

3.2. Layered ruthenates

The layered ruthenates with Ru4+-ions (electronic configuration 4d4) are members
of a Ruddelsdon-Popper (RP) series [156], i. e. compounds that can be described
by the sum formula (Sr, Ca)n+1RunO3n+1 with n= [1,∞]. The index n indicates
the number of oxygen-coupled layers of RuO6 octahedra that are separated by non-
magnetic layers of Sr- or Ca-ions [Fig. 3.3a]. The infinite layer complex (n=∞),
on the other hand, corresponds to a distorted perovskite structure.

As indicated in Fig. 3.3b, the class of layered ruthenates shows various physical
phases such as the AFM Mott-insulator Ca2RuO4 [67, 159], the unconventional
superconductor Sr2RuO4 [4], and the FM metals SrRuO3, Sr3Ru2O7 and Sr4Ru3O10,
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Chapter 3. Layered ruthenates

(a) (b)

Fig. 3.3: (a) Crystal structure of the RP series (Sr, Ca)n+1TnO3n+1 with n= 1,2,3,∞
denoting the number of oxygen-coupled TO6 layers and T = Ti, Ru, Rh, etc. . (b)
Overview of magnetic and electronic phases of selected layered ruthenates. γ (in units
of mJ Ru−1 K−2) and µ0 (in units of µB Ru−1) denote the low-temperature electronic
specific heat coefficient and the ordered magnetic moment. In the FMM II states a spin
reorientation (canting) was proposed in [157, 158]. From [5].

respectively [157, 158, 160]. The enhanced electronic specific heat coefficients γ
(see Fig. 3.3b) compared to conventional metals [161] signal the importance of
electronic correlations in the layered ruthenates. The wealth of physical states
results from (i) the different number of coupled layers n that is related to the
number of Ru-Ru exchange interactions, which gradually decreases from six in the
(distorted) perovskite structure (n =∞), to five for bilayer compounds (n = 2),
to four in case of single layer ruthenates (n = 1), and (ii) the distortions of the
RuO6 octahedron, which are more pronounced in the Ca-ruthenates [5] due to the
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3.2. Layered ruthenates

smaller ionic radii of the Ca-ions compared to the Sr-ions [162]. This distortion
also amplifies the crystal field effects in the Ca-ruthenates.

Single-layer Ca2RuO4

Research on single-layer Ca2RuO4 was stimulated by the discovery of unconventional
SC in Sr2RuO4 [4, 139, 163]. Sr2RuO4 is isostructural to the parent compound of
the high-Tc′ cuprates (La,Ba)CuO4 [Fig. 3.1], but is a good metal compared to the
bad metallic cuprates [164, 165]. Hitherto the nature of the SC in Sr2RuO4, i. e. the
symmetry of the superconducting order parameter and the pairing mechanism, is
still under debate [139, 163, 166, 167], which motivates the study of structurally
related systems such as Ca2RuO4.

The physical properties of the ruthenates are significantly affected by the struc-
tural distortions of the RuO6 octahedron. Starting from the unconventional super-
conductor Sr2RuO4 [4], upon Ca-substitution Ca2−xSrxRuO4, the RuO6 octahedra
undergo a flattening, tilting, and rotation around the c-axis [168–171]. A rich
phase diagram appears [Fig. 3.4] [172] with the AFM Mott-insulating end-member
Ca2RuO4 [67, 68]. The proposed intermediate phases for 0.2< x≤ 0.5 in Fig. 3.4
are a magnetic-metal phase (M-M) with FM fluctuations [173, 174] and FM clusters
that freeze out to a cluster-glass phase (C-G)[175]. This signals that Ca2RuO4 is in
the vicinity of a magnetic instability. At low temperatures, Ca2RuO4 crystallizes
in the orthorhombic space group Pbca with the lattice parameters a = 5.39Å,
b= 5.63Å, and c= 11.75Å [66]. Ca2RuO4 can be synthesized in the two different
phases ’short’ or S-phase (orthorhombic) and ’long’ or L-phase (tetragonal), which
are classified by the value of the lattice constant c [66, 176]. In this work, we
focus on the S-phase of Ca2RuO4 and thus refer to it in the following as Ca2RuO4.
Since the lattice parameters are temperature-dependent [66, 168][Fig. 3.5a-d], the
distortions of the octahedron also change with temperature, which affects the
physical properties. The lattice parameters show a discontinuity at the first-order
metal-to-insulator transition (MIT) (TMIT = 360K), that is accompanied by an
abrupt jump in the in-plane resistivity [Fig. 3.5e] and heat capacity [67] [Fig. 3.6b].
In addition to the MIT, a magnetic transition occurs at TN = 110K [Fig. 3.6a]

with a reduced staggered moment M ≈ 1.3µB compared to 2µB expected for Ru4+
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Fig. 3.4: (a) Crystal and magnetic structure of Ca2RuO4. Oxygen-ions are omitted for
clarity. (b) Phase diagram of Ca2−xSrxRuO4 with the abbreviations: unconventional
superconductor (SC), cluster-glass (C-G), magnetic-metal (M-M). Below TFL Fermi-liquid
behavior was observed. From [172] (modified). The RuO6 octahedron in the lower part
of the panel indicates how the octahedra are quenched, tilted, and rotated around the
c-axis with Ca-substitution. (c) Crystal structure of Sr2RuO4. Oxygen-ions in (a) and
(c) are omitted for clarity.

[66, 159, 176]. Here the spins are arranged in an AFM fashion within square-lattice
RuO2 planes pointing along the crystallographic b-axis and stacked along the
c-axis in a G-type pattern [Fig. 3.4a]. Additionally a small canting in c-direction
(mc ≈ 0.1mb) was recently proposed [177]. The postulated quasi-2D nature of the
spin fluctuations [176] due to the isolated single-layers in Ca2RuO4 was recently
also derived from the magnon dispersion in the ordered phase (see below) [6].
Although magnetic ordering is confirmed by several experiments, one would

expect a non-magnetic (Van Vleck-type) singlet ground state for the 4d4 Ru4+-ion
in a strong octahedral ligand field [178]. The reasons for the unexpected magnetic
ground state are competing energy scales of the tetragonal component of the crystal
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3.2. Layered ruthenates

(a) (c)(b)

Fig. 3.5: (a,b) Temperature-dependence of the lattice parameter a,b, and c of Ca2RuO4.
The vertical blue lines indicate the metal-to-insulator transition at TMIT = 360K. From
[168] (modified). (c) Electrical resistivity ρ(T ) vs. T for the (a,b)-plane. The inset shows
the abrupt jump at TMIT in more detail. From [67].

field splitting (Ex,y ≈ 0.25 eV), spin-orbit coupling (λ = ζSO/2 = 0.07 eV), and
Hund’s coupling (JH ≈ 0.34 eV) [69], as we will see below. The cubic component of
the crystal field splitting in Ca2RuO4 dominates the Hund’s coupling and thus leads
to a splitting into eg and t2g states with all four electrons in the lower t2g levels
(low spin state) [179]. Taking into account SOC, we can distinguish two extreme
cases as described in [6] and shown in Fig. 3.7: (i) λ� Ex,y, i. e. the crystal field
splitting is much stronger than the SOC and thus the spin-orbit degree of freedom
is quenched to L= 0. The crystal field (Jahn-Teller effect) would then further split
the t2g orbitals due to distortions of the RuO6 octahedron in a lower lying orbital
with xy, and higher lying orbitals with xz,yz symmetry [179]. The consequence
would be a S = 1 Heisenberg magnet with a minimum at Q= (0,0) in the spin-wave
spectrum. The Heisenberg character results from the isotropic nearest-neighbour
exchange in absence of an orbital momentum [6]. (ii) For λ�Ex,y, a non-magnetic
singlet ground state occurs [178], according to J = |S+L|= 0 with S = 1 and an
effective orbital momentum L= 1, as proposed for Sr2IrO4 [55].

In contrast to (i), the magnon dispersion in the ordered phase [Fig. 3.8] shows
a global maximum at Q= (0,0) indicating significant SOC in Ca2RuO4. Due to
this contradiction, the appearance of an excitonic magnetism in Ca2RuO4 was

39



Chapter 3. Layered ruthenates

(a)

100 200 300 400
0

100

200

100 110 120

60

70

80

C
m

(J
/m

ol
·K

)

T (K)

TN

T*

TMIT

CRO214

C
m

T (K)

(b)

0 50 100 150 200 250 300
2

3

4

H || a
H || b
H || c (x0.5)

�
(1

0-3
em

u
/m

ol
)

T (K)

CRO214
H = 1000 Oe

TN TN' T*

Fig. 3.6: (a) Magnetometry measurements of a Ca2RuO4 single crystal. We observe an
AFM transition at TN = 111K and anomalies at (i) TN′ = 150K associated with the
transition temperature of a ’B-centered’ phase with a different magnetic ordering vector
[66], and (ii) at T ∗ = 270K associated with the proposed transition to orbital order.
During the measurement with H ‖ a we lost a small part of the crystal with an undefined
mass, and thus we scaled the data for H ‖ a on the 300K value of H ‖ b. (b) Specific
heat measurements on a different Ca2RuO4 single crystal obtained from M. Krautloher.
We find a sharp feature corresponding to a first order transition at the MIT at TMIT =
370K, and a lambda anomaly at TN related to a second order transition.
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postulated in Refs. [64, 65]. Here, a mixing of the singlet ground state (J = 0) with
higher-lying triplet states Tx,y,z (J = 1) via inter-ionic SE is suggested. This mixing
enables excitonic transitions (Triplons T ) by Bose-Einstein condensation into the
J = 1 states beyond a QCP, where the interionic SE (JSE ∝ t̃2/U) exceeds the
energy gap λ. In consequence, magnetic long-range order occurs. In Ca2RuO4, the
non-thermal tuning parameter for this QPT are the tetragonal distortions (Ex,y)
of the RuO6 octahedra, which split the degenerated triplet states Tx,y,z in a higher
singlet Tz and a lower doublet Tx,y level [Fig. 3.7] [64, 69, 138]. Close to the QCP,
the condensate fluctuations are expected to be strong in both phase and amplitude,
corresponding to an oscillation of the moments and their amplitudes, and thus the
ordered moment can be reduced. This explains the aforementioned experimentally
obtained reduced magnetic moment of 1.3µB [66]. Experimentally, the excitonic

λ >> Exy
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λ ~ Exy 
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J = 1
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QCP

L = 1
S = 1
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λ << Exy 

xy
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Fig. 3.7: Schematic splitting of energy-levels in Ca2RuO4 for the cases (i) λ� Exy, (ii)
λ ' Exy, and (iii) λ� Exy. For (i) the dominant SOC yields a non-magnetic singlet
(J = 0) ground state. Due to the tetragonal distortions Exy the degenerated triplet states
Tx,y,z split into a higher Tz singlet and lower doublet Tx,y levels. This enables excitonic
condensations leading to a magnetic ground state beyond a QCP. For strong distortions
(iii) the effective orbital momentum is quenched (L= 0), the degenerated t2g states are
split (Jahn-Teller effect), and a Heisenberg AFM with S = 1 is expected. Based on
[6, 171].

condensations are indicated by the occurrence of a soft longitudinal amplitude
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(’Higgs’) mode in the spin-excitations, besides the two-fold degenerated transverse
spin-waves (Goldstone modes), corresponding to the magnitude fluctuations of J
[65]. This Higgs-mode was recently corroborated in Ca2RuO4 by INS [Fig 3.8] [6],
resonant x-ray scattering (RIXS) [69], and Raman scattering [70].
The dispersion of the transverse magnons obtained from INS could be well

described by the following simplified Hamiltonian, where only nearest neighbour
couplings were respected [6]:

H = J
∑
〈i,j〉

(SiSj−αSzi Szj ) +E
∑
〈i〉
Szi

2 + ε
∑
〈i〉
Sxi

2 . (3.2)

J = 5.8meV denotes the in-plane nearest-neighbour SE coupling, α = 0.15 the XY-
type exchange anisotropy, E = 25meV and ε= 4.0meV the single-ion anisotropy
terms of tetragonal (easy-plane) and orthorhombic (easy-axis) symmetries. S is
here considered as a pseudospin accounting for the spin-orbit entanglement. The
weak interplane interaction J ′ [180] is neglected. Accordingly, Ca2RuO4 can be
considered as a quasi-2D system with significant easy-plane anisotropy (E-term)
and therefore a promising solid-state system to study the 2D-XY model [6] with
potential vortex excitations (see Chap. 2). Moreover, it remains controversial to
this day whether an additional phase in Ca2RuO4 at TN < T < T ∗ with T ∗ ∼ 270K
exists [Fig. 3.6a], which could be associated with orbital ordering [177, 181–183],
and/or a Jahn-Teller driven spin-nematic phase [184].
Ca2RuO4 exhibits further intriguing physical properties when pressure p or an

electrical DC current is applied. More precisely, the Mott-insulator Ca2RuO4

can be tuned by hydrostatic pressure to a FM metal [185, 186] that shows SC
below 0.4K for p > 90 kbar [187]. Interestingly, the SC transition temperature
in Ca2RuO4 thin films can be significantly increased up to Tc′ = 64K [188]. On
the other hand, an electric current of a few milliamperes is sufficient to induce a
semimetallic behavior at room-temperature, suppress the AFM order in Ca2RuO4,
and cause a strong diamagnetic response below 50K [189–191].
In summary, the AFM square-lattice Mott-insulator Ca2RuO4 exhibits uncon-

ventional excitonic magnetism due to an interplay of moderate SOC and crystal
field effects. Therefore, it is an excellent candidate to investigate the magnetism
in layered ruthenates. In addition, the spin-wave dispersion indicates that it is a
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Fig. 3.8: Spin-excitations of Ca2RuO4 obtained from INS. The solid lines show model
calculations derived in Ref. [6]. The red solid line denotes the longitudinal mode L
according to the Higgs-mode, whereas the transverse in-plane magnon T and out-of-plane
magnon T ′ are indicated by the blue solid and dotted lines, respectively. The magnon
motions are depicted by the symbols. From [6, 138].

potential solid-state system to study the 2D-XY model. In consequence, a detailed
investigation of the critical behavior in Ca2RuO4 close to the magnetic transition is
of great interest, which could also provide information about the possible additional
phase below T ∗.

Bilayer Ca3Ru2O7

The number n of oxygen-coupled RuO6 layers determines the physical properties
of the layered ruthenates. Therefore, we will compare in this work the critical
behaviors of Ca2RuO4 with its bilayer analogue Ca3Ru2O7 (n= 2).
Ca3Ru2O7 crystallizes in orthorhombic structure (Bb21m). The lattice param-

eters are (50 K) a = 5.36Å, b = 5.53Å, and c = 19.54Å [71, 72] [Fig. 3.9a]. The
octahedral distortions are less pronounced compared to Ca2RuO4 [7]. Figure 3.9b
shows the T -dependence of a and c. The abrupt change at T ∼ 48K is assigned to
a structural transition that also affects the magnetic structure, as discussed below.
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Parallel to the structural changes the electrical properties vary in a complex manner.
In Fig. 3.9c, we show the in-plane (ρa) and out-of-plane (ρc) electrical resistivity
vs. T with the following features [192]: (i) ρ exhibits significant anisotropy with
metallic character in the planes and insulating character perpendicular to the planes.
(ii) A small anomaly at TN,1 = 56K occurs that is followed by a discontinuity at
TN,2 = 48K with an increase of ρa,c by a factor of 2. (iii) Below TN,2, ρc increases
by an order of magnitude, while ρa stays roughly constant with metallic character
[193]. This behavior of ρ is suggested to result from a gapping of the Fermi-surface
through a Fermi-surface reconstruction with remaining ungapped metallic pockets
[60, 62, 194].
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Fig. 3.9: (a) Crystal and magnetic structure of Ca3Ru2O7. Oxygen-ions are omitted
for clarity. (b) T -dependence of the lattice parameter a and c. Data from [72]. (c)
T -dependence of in-plane ρa and out-of-plane ρc electrical resistivity. From [71] (modi-
fied). The vertical blue dotted line indicates a structural transition at T = 48K that is
accompanied by an increase of ρ.

The features in the electrical resistivity are similarly reflected in the heat capacity
C [Fig. 3.10a], which has a small anomaly at TN,1 and a sharp peak at TN,2 [71].
While the former is associated with a second-order magnetic transition, the sharp
peak was assigned to a first-order transition [195].

Both transitions were also observed in the magnetic susceptibility χ [Fig. 3.10b]
[192]. From X-ray [73] and neutron scattering [72] experiments, it was derived
that the magnetic structure of Ca3Ru2O7 below TN,1 contains FM bilayers that are
antiferromagnetically stacked along c (A-type AFM), with the moments within the
planes pointing along a. The second transition at TN,2 was found to be accompanied
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by a reorientation of the magnetic moments from m ‖ a to m ‖ b [Fig. 3.9a]. In this
context, it was recently proposed that the spin-reorientation at TN,2 is a gradual
process starting at TN,2 +2K by formation of a cycloidal structure [196]. Moreover,
a giant magnetoresistance in Ca3Ru2O7 was found as a result of the spin-valve
effect, which describes the decrease of resistance from an antiparallel to a parallel
alignment of adjacent FM bilayers [197–200].

T(K)

(a) (b)

T(K)

Fig. 3.10: T -dependence of the (a) specific heat and (b) magnetic susceptibility. (a)
Shows the first- and second-order characteristics of the magnetic transitions at TN,2 =
48K and TN,1 = 56K, indicated by a sharp peak and a lambda anomaly, respectively.
The inset shows a zoom on the transitions. From [71] (modified). (b) Shows a two-step
like magnetic transition signalling a reorientation of the easy axis from m ‖ a below TN,1
to m||b at TN,2. From [192] (modified).

Analogous to Ca2RuO4, the magnon dispersion of Ca3Ru2O7 in the ordered
phase could be described by the following Hamiltonian [Fig. 3.11] [7]:

H = J
∑
〈i,j〉

SiSj +Jc
∑
〈i,j〉

SiSj +E
∑
〈i〉
Szi

2 + ε
∑
〈i〉
Sxi

2 , (3.3)

with the FM nearest neighbour Heisenberg coupling term J =−3.75meV, the intra-
bilayer interaction Jc =−6.5meV, and the single-ion anisotropy terms E = 5.5meV,
ε = 2.5meV. The weak inter-bilayer interaction J ′ was neglected. Strikingly, no
magnon dispersion was found perpendicular to the bilayers, i. e. along the c-axis [74]
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indicating a 2D nature of the magnetic interactions. Hence, the strong intra-bilayer
coupling together with the weak inter-bilayer coupling in Ca3Ru2O7 implies that
the dimensionality of the exchange-bond network is intermediate between 2D and
3D. On the other hand, if the strongly coupled bilayers in Ca3Ru2O7 behave like
quasi-2D structures, as previously discussed in [75], then the significant easy-plane
anisotropy term E suggests that Ca3Ru2O7 may also be a potential solid-state
system to study the 2D-XY model. Therefore, an investigation of the critical
behavior in Ca3Ru2O7 is of high interest.

Ca3Ru2O7

Fig. 3.11: Spin-wave excitations of Ca3Ru2O7 obtained from RIXS and INS. The white
solid line corresponds to the fitted magnon dispersion according to Eqn. (3.3). For
comparison, the distinct INS results on Ca2RuO4 are shown with the global maximum at
Q= (0,0). From [7] (modified). No magnon dispersion was observed along the c-axis [74].

Ti-doped bilayer Ca3(Ru1−xTix)2O7

The complex behavior of the electrical resistivity ρ [Fig. 3.9c] and the reorientation of
the magnetic moments [Fig. 3.10b] indicate that Ca3Ru2O7 is close to an electronic
and magnetic instability [194, 200]. Accordingly, only a marginal perturbation such
as chemical doping of the Ru-sites with non-magnetic Ti4+-ions Ca3(Ru1−xTix)2O7
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is sufficient to significantly alter the physical properties of pristine Ca3Ru2O7

[75–78].
In this work, we therefore also investigate the critical behavior of the 1% Ti-

doped bilayer compound Ca3(Ru0.99Ti0.01)2O7, which crystallizes in orthorhombic
structure (Bb21m) with the lattice parameters a= 5.370Å, b= 5.601Å, and c=
19.351Å [79]. The Ti-doping (electronic configuration 3d0) weakens the structural
distortions in the lattice due to the smaller ionic-radii of the Ti-ions. This can
be seen in the smaller tilting and rotation angles of the RuO6 octahedron or
the orthorhombicity (a− b)/(a+ b) of the lattice [3.12a,b] [162]. Accordingly, a
bandwidth reduction is proposed, that increases the U/W ratio and thus induces a
MIT [76], which contrasts with the metallic ground state in pristine Ca3Ru2O7.
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Fig. 3.12: (a) Rotation and tilting angles of RuO6 octahedron, and (b) lattice parameter
vs. Ti-doping in Ca3(Ru1−xTix)2O7. (c) Magnetic susceptibility and (d) specific heat
vs. temperature for a Ti-content of x= 0.1. From [77].

Moreover, the magnetic susceptibility and specific heat for 10% Ti-content
(x= 0.1) indicate a drastic change in the magnetic properties [Fig. 3.12c,d]. The
two-step transition in the A-type AFM Ca3Ru2O7 (at TN,1 and TN,2) changes to a
sharp single-step transition with G-type AFM ground state for x≥ 0.05 [77], that
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Chapter 3. Layered ruthenates

resembles the ground state of Ca2RuO4 [66]. Between the doping-levels with the
pure A-type or G-type AFM ground states, the appearance of an intermediate phase
and thus a three-step transition has also been proposed [78]. This complex behavior
is summarized in the magnetic phase diagram [Fig. 3.13] and was explained by a
gradual suppression of the FM double-exchange between the Ru-ions due to the
presence of non-magnetic Ti-ions. As a result, the AFM superexchange dominates
the double-exchange [77, 78], which is reminiscent to the transition from an AFM
to a FM state in manganites induced by chemical (hole)-doping [146].

No intermediate phase was observed in the crystals provided for our measurements
and the onset of the pure G-type AFM state was found for lower substitution-
levels (x≥ 0.005)[201]. Both features have been assigned to possible distribution
inhomogeneities of the Ti-dopants in the bulk crystals.

Fig. 3.13: Magnetic phase diagram of Ca3(Ru1−xTix)2O7. We would like to note, that
the onset of the pure G-type AFM phase may vary depending on the homogeneous
distribution of the Ti-ions. From [78].

The spin-excitations in Ti-doped Ca3Ru2O7 investigated by INS [79] show an
unusual collective mode associated with the non-magnetic Ti-impurities in addition
to the regular AFM magnons (Goldstone modes). The amplitude of the former
mode was found to be comparable to the regular magnons, but the mode itself
is localized in both energy and momentum space. This feature was explained
by a non-local impurity-induced reduction of the orbital moment at the Ru-sites
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3.2. Layered ruthenates

near a Ti-impurity, which is due to a suppression of the orthorhombicity. Apart
from that, the regular magnons could be described by the Hamiltonian used for
single-layer Ca2RuO4, but with an additional intra-bilayer coupling-term Jc. The
resulting parameters are J = 4.5meV, Jc = 3.0meV and E = 18.0meV, ε= 4.5meV
accounting for inter-ionic couplings and the single-ion anisotropy. Analogous to
Ca2RuO4, a global maximum was found at the Γ-point indicating a discrepancy
from the pure S = 1 Heisenberg-model.

In summary, from the G-type AFM ground state in Ca3(Ru0.99Ti0.01)2O7 and the
quasi-2D magnon dispersion with a significant easy-plane anisotropy, in principle, a
similar critical behavior as for Ca2RuO4 or Ca3Ru2O7 would be expected. On the
other hand, however, the question arises of how the Ti-impurities affect the critical
fluctuations since the second-order magnetic transition in pristine Ca3Ru2O7 turns
into a sharp transition with first-order character. In this respect, the critical
fluctuations could be suppressed. Nevertheless, a study of the critical behavior in
Ca3(Ru0.99Ti0.01)2O7 is crucial for comparison with the other two compounds.
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4. Heavy-fermion system
CeCu6−xAux

We give an overview of the heavy-fermion series CeCu6−xAux, which exhibits
a QCP for xc ' 0.1. We focus one the properties of the near-critical doped
compound CeCu5.8Au0.2, which we studied by NSE spectroscopy.

Heavy-fermion systems, i. e. intermetallic compounds containing 4f and 5f ele-
ments with high effective masses [202] such as Ce(Cu,Ru)2Si2 [203, 204], CeCu6[10],
CeIn3 [9], and UGa3 [205] are model compounds to investigate QPTs. This arises
from a balanced competition between the Kondo-effect [202, 206] and the RKKY-
interaction (see Chap. 3) in these systems [207]. The Kondo-effect describes the
screening of a local impurity/moment by the conduction electrons below a crossover
temperature TK , associated with an energy gain of kBTK ∝ e

− 1
JN(EF ) , and thus sup-

presses magnetic long-range order. Here, J and N(EF ) denote the AFM coupling
constant and the electronic density of states at the Fermi-level EF . Conversely, the
RKKY-interaction, which occurs between local magnetic moments mediated by
the conduction electrons, supports magnetic order with an associated energy-gain
of kBTRKKY ∝ J2N(EF ) [207]. In this work, we specifically investigate the critical
behavior of CeCu5.8Au0.2 belonging to the 4f heavy-fermion series CeCu6−xAux
to study QPTs.

Pristine CeCu6 (electronic configuration Ce3+) is metallic and crystallizes in an or-
thorhombic Pnma structure at room temperature (cf. Fig. 4.1a), that changes upon
cooling into a monoclinic P21/c structure at T < 230K [208]. Below TFL ≈ 0.2K
[Fig. 4.1b] Fermi-liquid behaviour is indicated by an almost constant Sommerfeld
coefficient of the electronic specific heat (γ = C/T ≈ const.) and a quadratic
dependence of the electrical resistivity (∆ρ∝ T 2) [10, 209–212]. It was proposed
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that the deviation from C/T = const. may result from the effects of magnetic order
at T ≈ 2mK [213]. The suppression of the magnetic ordering down to very low
temperatures is attributed to a predominant Kondo-screening with TK ∼ 6K [211].

The situation changes when the Cu(2)-sites [214] in CeCu6 are doped by Au-ions
with bigger ionic radii [162] [Fig. 4.1a]. The unit-cell volume increases gradually
and negative (chemical) pressure is induced [215]. This in turn leads to a weakening
of the hybridization of the local 4f moments with the conduction electrons (Kondo-
screening) [212] and eventually to the emergence of an AFM ground state above a
critical Au-content of xc ∼ 0.1 [Fig. 4.1b]. It was found that the doping dependence
of the transition temperature TN at x > xc can be described as TN(x)∝ |x−xc|zν

with zν = 1 [34, 211]. According to the generic phase diagram [Fig. 2.9a] the
CeCu6−xAux system therefore undergoes a QPT with a QCP located at x = xc

separating the quantum disordered (x < xc) and magnetically ordered (x > xc)
regime. The QPT is accompanied by a structural transition from the low-T
monoclinic symmetry in CeCu6 to orthorhombic Pnma symmetry that is realized
in CeCu6 at room-temperature [208], and it can be reversed by applying either
hydrostatic pressure or an external magnetic field [121, 216].

(a)

TN

Single crystals
Polycrystals

TFL

(b)
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K
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Fig. 4.1: (a) Crystal structure of stoichiometric CeCu5Au with orthorhombic Pnma
symmetry. The position of the doped Au-ions correspond to the Cu(2)-site of the parent
CeCu6 [217]. (b) Phase diagram of CeCu6−xAux in dependence of Au-doping with the
QCP at xc = 0.1. From [10] (modified).
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Chapter 4. Heavy-fermion system CeCu6−xAux

The QPT is accompanied by a significant variation of the heat capacity and
electrical resistivity as shown in Fig. 4.2. A more detailed analysis in Ref. [212]
revealed for the critically doped compound (x = 0.1) non-Fermi-liquid behavior
[10, 211, 218], i. e. C/T ∝ − ln(T ) and ∆ρ ∝ T . Together with the dependence
of the transition temperature from the tuning parameter TN(x) ∝ |x−xc| [34] a
coupling of 3D conduction electrons with 2D critical fluctuations near the QCP
[219] was proposed for CeCu5.9Au0.1.

(a) (b)

Fig. 4.2: (a) Heat capacity, and (b) electrical resistivity of CeCu6−xAux single-crystals for
various Au-dopings x. The Fermi-liquid behaviour of pristine CeCu6, i. e. C/T ≈ const.
and ∆ρ∝ T 2 changes to a non-Fermi-liquid behaviour in the quantum critically doped
compound (x= 0.1), i. e. C/T ∝− ln(T ) and ∆ρ∝ T . From [211, 212].

The 2D nature of the critical fluctuations was corroborated by comprehensive
neutron experiments described in Refs. [219–224]. They found that the incom-
mensurate positions of the enhanced diffuse critical scattering intensity for x= 0.1
(h̄ω = 0.1meV), and the elastic magnetic Bragg-peaks for 0.1< x < 0.5 could be
captured by four 1D rods in the reciprocal a,c-plane [Fig. 4.3a]. Such 1D rods in
reciprocal space indicate quasi-2D correlations between the Ce-ions in real space.
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Furthermore, there is no indication that for x= 0.1 the critical fluctuations act like
3D precursors, i. e. there is no particularly enhanced diffuse scattering only at the
Bragg-position for x= 0.2. Both observations go along with the interpretation of
the specific heat and electrical resistivity data, which suggest that 2D fluctuations
couple with 3D fermionic quasiparticles [219]. The ’X’ shape of the two rods in
Fig. 4.3a results from the orthorhombic symmetry [222]. The displacement of the
magnetic Bragg-peak positions for x≥ 0.5 is due to a reorientation of the magnetic
ordering vector, which is not understood so far [220, 224, 225].
To check for a critical slowing down upon approaching the QCP (Γ→ 0), the

characteristic energy Γ(T ) of the fluctuations for the doping levels x= 0,0.1,0.2 was
determined with TAS by Stockert et al. [1]. As shown in Fig. 4.3b, Γ(T ) increases
almost linearly for all doping levels at elevated temperatures, i. e. the temperature
itself is the only relevant scale in the system. This changes at low-T , however,
where CeCu6 and CeCu5.9Au0.1 show a nonzero offset, whilst CeCu5.8Au0.2 becomes
critical at T = TN. The offset of the potential (quantum) critically doped compound
CeCu5.9Au0.1 emerges at lower T and is less pronounced than for CeCu6, which
indicates that the actual critical doping is at slightly higher xc > 0.1. Overall a
critical slowing down upon approaching the QCP was established.

An expected quantum-to-classical crossover in the scaling behavior (see Chap. 2)
for the x = 0.2 compound close to the AFM transition was not reported so far.
To be exact one would even expect a dimensionality crossover within the classical
critical regime from 2D to 3D critical scaling as TN is approached [226]. One
possible reason for the lack of such crossovers could be the limited energy-resolution
of the used TAS spectrometers [inset Fig. 4.3a] consistent with a recent NSE study
on the dynamical scaling in the classical AFMs MnF2 and Rb2MnF4 [54]. This
highly encourage our NSE experiments on CeCu5.8Au0.2 with significant higher
energy-resolution than TAS at moderate neutron flux.

CeCu5.8Au0.2

CeCu5.8Au0.2 crystallizes in orthorhombic Pnma structure with lattice parameters
a= 8.105, b= 5.100, and c= 10.171 and undergoes an AFM transition at TN∼ 0.25K
[211]. The proposed magnetic structure contains a sinusoidal modulation of the
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Fig. 4.3: (a) Positions of critical scattering intensity (x= 0.1, h̄ω= 0.1meV) and magnetic
Bragg-peaks (0.2< x < 1.0) in CeCu6−xAux. The errorbars indicate the linewidth of the
diffuse scattering peak for x = 0.1. The four rods are attributed to the orthorhombic
Pnma symmetry. The open symbols for x = 0.2 correspond to short-range ordering
peaks [219, 223]. The inset shows a resolution limited magnetic Bragg-peak. From [220]
(b) T-dependence of the characteristic energy 2Γ at Q=Q3D for various doping. The
solid line corresponds to Γ = kBT , and the dashed line denotes Γ = Γ0 +kBT . From [1]
(modified).

Ce-moments along the a-axis with the moments pointing along the c-axis [223, 224].
The derived effective moment is with 0.02µB ∼ 1% of the free Ce3+ value 2.54µB.
CeCu5.8Au0.2 can be tuned to quantum criticality by either applying a hydrostatic
pressure of pc = 5kbar or an external magnetic field of Bc = 0.4T [121].
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5. Experimental Techniques

We review the main experimental techniques used in this work, namely neutron
scattering on triple-axis and spin-echo spectrometers. We begin with a short
summary of the basics concepts of neutron scattering and then focus on
the concepts of the specific methods with a detailed discussion of the data
analysis.

5.1. Neutron scattering

The experiments in this work were conducted at the research reactors FRM II (Mu-
nich), BER II (Berlin), and ILL (Grenoble), where nuclear fission of 235U is used to
generate neutrons. This concept differs from spallation sources, where neutrons are
produced by bombarding a neutron-rich material with a pulse of accelerated protons
[84]. The fission-neutrons with energies in the 100meV range are then thermalized
in a D2O moderator and guided to the instruments in beam tubes. For some
experimental techniques such as NSE spectroscopy (see below), a spin-polarized
neutron beam is required. This can be achieved, for instance, by implementation
of additional polarizing magnetic multi-layer guide-elements (supermirrors), which
reflect only spin-up neutrons. At the instrument, the monochromator then defines
the momentum h̄ki and energy Ei = (h̄ki)2/(2mn) of the incident neutrons imping-
ing on the sample. In the scattering process, i. e. the interaction with matter, the
momentum h̄kf and energy Ef of the scattered neutrons can change [Fig. 5.1a].
The basic concept of all neutron scattering techniques is then to determine the trans-
fer of momentum h̄Q= h̄(ki−kf ) and/or energy ∆E = h̄ω = h̄2(k2

i −k2
f )/(2mn),

where Q is the scattering vector. This provides important information about the
microscopic static (e. g. atomic positions) and dynamic properties (e. g. phonons,
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Chapter 5. Experimental Techniques

magnons) of the sample. Usually h̄ = 1 is assumed, and Q and ω are named
momentum and energy-transfer, respectively.

The actual quantity measured in a neutron scattering experiment is the rate of
neutrons scattered to k̂f (θ,ϕ) in a solid angle dΩ with a final energy Ef ±dEf
[Fig. 5.1b]. This quantity is called the double differential cross-section d2σ

dΩdE , which
contains contributions from coherent and incoherent scattering [38, 84]. Coherent
scattering results from interference effects between the scattering from different
atoms or magnetic moments, such as elastic Bragg-scattering or inelastic scattering
from magnons. The incoherent part includes spin- and isotope incoherent scattering.
Spin-incoherence results from scattering of a neutron on a single nucleus where
the neutron spin and the nuclear spin simultaneously undergo a spin-flip. This
leads to the localization of the scattering event to this single nucleus and results
in a isotropic s-wave scattering amplitude. Isotope-incoherence does not involve
spin-flips, and results from a variance of scattering lengths [227] of different isotopes.

ki  Ei
kf  Ef

x

y

z

Θ

(a) (b)

Fig. 5.1: (a) Illustration of the neutron-interaction with matter. By determining the
transfer of momentum h̄Q= h̄(ki−kf ) and energy ∆E =Ei−Ef , one obtains information
on the microscopic static (e. g. atomic positions) and dynamic (e. g. phonons) properties
of the sample. (b) Definition of double differential cross-section d2σ

dΩdE . From [40].
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5.1. Neutron scattering

For nuclear scattering, the separation of d2σ
dΩdE reads [36]:

(
d2σ

dΩdE

)
nuc

=
(

d2σ

dΩdE

)
coh

+
(

d2σ

dΩdE

)
inc

=N
kf
ki

(
b2cohScoh(Q,ω) + b2incSinc(Q,ω)

)
,

(5.1)

where N denotes the number of nuclei (scattering centers) and bcoh and binc are the
tabulated [227] coherent and incoherent scattering lengths [84]. S(Q,ω) are the
scattering functions:

Scoh(Q,ω) = 1
2πN

kf
ki
b2coh

l 6=l′∑
l,l′

∫ ∞
−∞
〈e−iQrl′(0)eiQrl(t)〉e−iωtdt (5.2)

and
Sinc(Q,ω) = 1

2πN
kf
ki
b2inc

∑
l

∫ ∞
−∞
〈e−iQrl(0)eiQrl(t)〉e−iωtdt . (5.3)

Here rl′(0) and rl(t) denote the position vectors of the l′-th and l-th nuclei at
time 0 and t, respectively. The brackets 〈...〉 describe the thermal average. The
double-sum is missing in Sinc(Q,ω), because incoherent scattering does not result
from interference effects with other atoms. The incoherent part is not relevant
for the critical scattering and not further discussed here. S(Q,ω) is connected by
Fourier-transforms to the real-space correlation function G(r, t), which describes the
probability of finding a particle at time t and position rl when another particle was
at position rl′ at t= 0 [84, 228]. Thus, S(Q,ω) contains the information neutrons
can provide about condensed matter: (i) Where do atoms sit (Q-dependence), and
(ii) how do they move (t-dependence).

For elastic Bragg scattering at a Bravais-lattice, the t-dependence vanishes and
S(Q,ω) can be written as [84]

Snuc(Q,ω)∝ δ(h̄ω)
∑
G

δ(Q−G) , (5.4)
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with the reciprocal lattice vectors G. The corresponding nuclear cross-section is
then (

dσ
dΩ

)
nuc
∝
∑
G

δ(Q−G)|FN (G)|2 , (5.5)

where the nuclear structure factor FN (G) accounts for more than one atom per unit
cell and also contains fluctuations of the atoms about their equilibrium positions.
The latter are included in the Debye-Waller factor e−2W with W = 1/2〈(Q ·u)2〉
and u as the thermal displacement of an atom from its equilibrium position r
[38]. Hence, the resulting differential cross-section, i. e. the experimental neutron
scattering intensity, is proportional to |FN (G)|2. Due to the short range strong
interaction between neutron and nucleus, the nuclear structure factor for a single
atom is constant.

Magnetic scattering arises from interactions of the neutron spins with unpaired
electrons. The cross section depends on the polarization (orientation) of the
neutron spins as well as on the direction of the magnetic moments of the unpaired
electrons in the sample. More specifically, the magnetic moments of the neutrons
µn =−γnµNσ (γn = 1.9132 [39]) interacts with the magnetic field B generated by
the dipole moment of the electron µe =−2µBs and its orbital motion [39]. Here
µN and µB denote the nuclear and Bohr-magneton and σ describes the Pauli spin
operator with its components

σx =
 0 1

1 0

 σy =
 0 −i
i 0

 σz =
 1 0

0 −1

 . (5.6)

Analogous to Eqn. (5.1) for nuclear scattering, the magnetic cross-section is also
proportional to the (magnetic) scattering function S(Q,ω) and can be written as
[84] (

d2σ

dΩdE

)
mag

= kf
ki

(
γnr0
2µB

)2
S(Q,ω) , (5.7)

with r0 = µ0e2/(4πme). However, a general expression of S(Q,ω), i. e. taking
into account polarized neutrons, spin and orbital momentum of the electrons, is
lengthy, especially for atoms with two or more unpaired electrons [84]. Thus, for
simplicity, we consider here only the case of unpolarized neutrons, neglect the
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5.1. Neutron scattering

orbital momentum, and assume just one type of magnetic ion. The magnetic
scattering function is then [84]:

S(Q,ω) = |f(Q)|2e−2W∑
α,β

(δα,β− Q̂αQ̂β)
︸ ︷︷ ︸

P−factor

Sα,βmag(Q,ω) , (5.8)

with
Sα,βmag(Q,ω) = g2µ2

B
N

2π
∑
l

eiQl
∫ ∞
−∞
〈sα0 (0)sβl (t)〉e−iωtdt , (5.9)

where α,β stand for the x,y,z components, and the sum is over the lattice vectors
l = rl−rl′ . N,f(Q), and Sα,βmag(Q,ω) denote the number of magnetic atoms, the
magnetic form factor and the partial magnetic scattering function. The latter is the
space-time Fourier-transform of the spin pair correlation function [41, 84, 112], which
yields the probability of finding the β-component sβl (t) of a spin at position rl and
time t if the α-component of a spin was sα0 (0) at the origin and time t= 0 [41, 229].
The polarization factor (P -factor) in Eqn. (5.8) is only nonzero for magnetic
componentsM⊥ perpendicular to the momentum transfer Q: M⊥ =Q× (M ×Q)
and thus neutrons can only probe M⊥ [84].

The magnetic form factor f(Q) [Eqn. (5.8)] corresponds to the Fourier transform
of the spin density of unpaired electrons in real-space, which is in the order of
several angstroms. This results in a non-constant Q-dependence, which is typically
described by spherical Bessel-functions [84]. Both the magnetic form factor and
the P -factor can be exploited to separate nuclear and magnetic scattering.

In addition, magnetic scattering may induce neutron spin-flips, which can be
addressed by a polarization analysis of an initially polarized neutron beam. Moon,
Riste, and Köhler [230] introduced the so-called 1D polarization-analysis where the
neutron spins are defined with respect to the magnetic guide field, which serves
as a quantization axis. With spin-flippers up- and down-stream the sample, the
four scattering channels ++, −− (non-spin-flip) and +−, −+ (spin-flip) can be
probed, where the symbols ’+’ and ’−’ define the orientation of the neutron spins
and indicate the state before and after the scattering process (cf. App.A). In case
of pure nuclear scattering, this can help to separate coherent or isotopic incoherent
scattering, which do not affect the neutron spin state, from the spin incoherent
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scattering, which affects a spin-flip (SF) of two-thirds of the neutron spins [84].
Moreover, magnetic contributions can be unambiguously distinguished from the
coherent nuclear signal since the magnetic scattering shows pure SF scattering.

In NSE spectroscopy, as used in this work, the precession of neutron spins is
used to measure energy-transfers. Thus, spin-flips from magnetic scattering disturb
the spin-echo signals. However, by the analysis method discussed below and shown
in [54], it is possible to exploit these spin-flips to separate signals from in-plane
and out-of-plane magnetic scattering.

5.2. Triple-axis spectroscopy

The Triple-Axis Spectroscopy (TAS) technique was invented by Brockhouse more
than 60 years ago [231] and has always been an important spectroscopy method.
This results mainly from the ability to measure S(Q,ω) at essentially any point in
momentum h̄Q and energy h̄ω space [38]. The basic setup includes three rotation
axes defining the monochromator-sample (MS), sample-analyzer (SA), and analyzer-
detector (AD) angles, respectively [Fig. 5.2]. The monochromator, sample, and
analyzer angles define ki, kf , Q= ki−kf , and ω ∝ k2

i −k2
f . Conventionally, ω > 0

(kf < ki) is named energy-loss scattering.

The energy- and momentum-resolution of TAS is given by the monochromaticity
and collimation of the neutron beam. Since the neutron flux is rather limited, both
parameters are set to relaxed values by choosing a modest collimation in the order of
1 ° and by using mosaic monochromator and analyzer crystals [Fig. 5.2], which reflect
a band of neutron wave vectors k0±k around the mean value k0. Accordingly, a
distribution of momentum and energy transfers arises (Q0±Q,ω0±ω). To account
for this resolution effect and extract the intrinsic scattering function S(Q,ω),
deconvolution of the experimental data with the instrumental resolution function
R(Q,ω) is required.

The resolution function of a TAS instrument was first analytically described by
Cooper and Nathans [233]. They developed a second-order matrix formalism to
map the six components of ki,kf onto the physically interesting four components
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M

A

S

VSPNG

D

ki

kf

ℏω

-Q

2θ

M

A

D

ki ± dki

kf ± dkf
ℏ(ω ± dω)

-Q ± dQ

Fig. 5.2: Left: Schematic drawing and picture of the spin-echo TAS instrument TRISP
at the FRM II [232]. For completeness, the polarizing neutron guide (PNG) and velocity
selector (VS) are included. Right: Illustration of the limited instrumental TAS resolution
due to mosaicity of monochromator and analyzer crystals.

of Q and ω. The resolution function describes an ellipsoid in the four-dimensional
(Q,ω)-space:

R(Q0−Q,ω0−ω) =R0 exp
−1

2

4∑
i=1

4∑
j=1

M̃i,jXiXj

 , (5.10)

where X = (Q0−Q,ω0−ω), and M̃ denotes the 4× 4-resolution matrix. The
signal I at the detector for a specific (Q0,ω0)-position is given by the convolution
of the resolution function with the sample-intrinsic S(Q,ω):

I(Q0,ω0)∝
∫
R(Q0−Q,ω0−ω)S(Q,ω)dQdω . (5.11)

Later Popovici [234] refined the elements of M̃ to include spatial effects such as
the curvature of focusing monochromators and analyzer, as well as the sample size.
To simulate the corresponding resolution functions for the analysis of the data in
this work, we use the RESLIB [235] and TAKIN [236] softwares and found the best
agreements for our relatively large samples with the Popovici-model. In 1D, i. e. for
a cut through the resolution ellipsoid in a certain direction, the TAS resolution
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function is described by a Gaussian-function. Moreover, the resolution function
and the corresponding slope of the ellipsoid in (Q,ω) depend on the instrumental
configuration, which has to be adjusted to the studied excitations to obtain optimal
Q- and ω-resolution [38].

Considering the energy-resolution ∆E of TAS instruments, typical values are 20-
200µeV for cold TAS instruments such as the IN12 at the ILL [237]. The best energy-
resolution to date, however, can be achieved using NSE spectroscopy with ∆E ≈
1 neV (IN15 at the ILL [238]). The NSE technique takes advantage of a completely
different approach than TAS (see below), where beam monochromatization is the
limiting factor due to the limited neutron flux. In this work, we use a combination
of TAS and NSE spectroscopy at the TRISP spectrometer, which achieves an
energy-resolution better than 1 µeV.

For the study of critical magnetic scattering both the width in Q and ω of S(Q,ω)
are essential parameters. For a proper determination of the static scattering function
S(Q), it would be necessary to measure the entire S(Q,ω) function and perform a
numerical ω-integration (see Eqn. (2.27)). This can be circumvented in quasi-2D
systems by using an energy integrating TAS configuration as described by Birgeneau
et al. [112]. In this configuration, the TAS analyzer is removed (two-axis mode) and
kf is aligned perpendicular to the 2D-layers [Fig. 5.3], corresponding to the ab-plane
in Ca2RuO4. The magnitude of kf varies with ω, but the relevant components
of q2D in the 2D planes are constant and independent of ω. In consequence, the
detector signal corresponds to an energy integration according to Eqn. (5.12), where
the lower integration limit (energy-gain scattering) is given by the thermal energy
of the fluctuations, and the upper limit (energy-loss scattering) is given by the
energy Ei of the incident neutrons:

S(Q) =
∫ ∞
−∞

S(Q,ω) d(h̄ω)≈
∫ Ei

−kBT
S(Q,ω) d(h̄ω) . (5.12)

In the case of Ca2RuO4, we achieved this energy-integrating configuration with
kf ‖ c by choosing Q= (1 0 0.83) for ki = 1.75Å−1.

For materials with more 3D character of the magnetic order, like Ca3Ru2O7 [7],
all components of q are relevant and QL cannot be chosen arbitrarily. Thus, the
aforementioned integration-technique, which depends on the integration along the
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Fig. 5.3: Schematic representation of the energy-integration (grey arrows) in two-axis
mode for systems with (a) quasi-2D and (b) 3D magnetic character. (a) In the quasi-
2D system with assumed magnetic rod along the c-axis, the energy-integration can be
performed without inelastic momentum transfer by choosing a configuration with kf ‖ c.
This is possible since QL can be chosen arbitrarily on top of the magnetic rod. (b) In the
general (3D) case, inelastic momentum transfers qine due to a variance of kf (indicated by
light blue arrow) contribute to S(Q,ω) and possibly change the experimental Q-width.

irrelevant c-axis, cannot be applied. Nevertheless, the two-axis mode in the case of
3D magnetic fluctuations still can lead to a good energy-integration, but the effect
of additional momentum-transfers qine resulting from a variation of kf (inelasticity
effects) have to be carefully studied [Fig. 5.3]. These momentum-transfers affect
the experimental Q-width κ [112, 239]. Therefore, we performed a numerical
simulation based on [239] to estimate the effects of inelasticity on the experimental
κ and found that the integration according to Eqn. (5.12) is sufficiently satisfied for
our two-axis configuration in Ca3Ru2O7 [Fig. 5.4]. More precisely, we assume an
intrinsic κin and calculate an experimental κout, which nominally corresponds to the
width in the experimental QH-scans. For the simulation we assume a Lorentzian
S(q) = 1/[1+(q/κin(T ))2] with a T -dependent Q-width κin(T ) = κ0tν , with ν = 0.5
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and κ0 = 0.2Å−1. This choice of parameters is close to experimental values extracted
from power-law fitting (see Chap. 6). Furthermore, we assume a Lorentzian
S(ω) = Γq/[Γ2

q +ω2] with a q-dependent energy width Γq = Γ(T )[1+(q/κin(T ))2]
[44, 239, 240]. Here, the T -dependent energy-width is Γ(T ) = Γ0tzν , with Γ0 = 1meV
and zν = 1. We then calculate the integral [Eqn. (5.12)] in the limits between −kBT

and Ei for each qi in the QH-scan and fit the resulting intensity with a Lorentzian
with HWHM κout. The results of this simulation are shown in Fig. 5.4. For the
two-axis mode, the difference of the measured κout compared to the intrinsic κin

is only of the order of a few percent. Such a change in the scaling behavior lies
within our statistical error of the critical exponent ν. Hence, we did not correct
the two-axis data of Ca3Ru2O7 in Chap. 6 for the integration effect.

For comparison, we also conducted the same simulation for the triple-axis case
[Fig. 5.4], where we added a Gaussian-distribution with the instrumental energy-
resolution (±0.04meV for ki = 1.3Å−1) as full-width at half-maximum (FWHM).
For the latter case the difference between κin and κout is much larger.
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Fig. 5.4: Simulated ratios of κout/κin vs. T in the two- and three-axis mode, respectively
(see details in text).
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5.3. Neutron spin-echo spectroscopy

5.3. Neutron spin-echo spectroscopy

The essential property of Neutron Spin-Echo (NSE) is that the energy-resolution is
decoupled from the monochromatization [49, 241, 242]. This is achieved by using
the neutron spin as an internal clock to measure the difference in flight-time in two
magnetic field regions up- and down-stream the sample. The difference in flight-time
corresponds to the energy-transfer and is monitored by a difference in the Larmor
precession angle of the neutron spin in the two field regions. In this way, high energy-
resolution is achieved without limiting the neutron flux by monochromatization.
NSE directly measures the real part of the intermediate scattering function Ĩ(Q, t)
[50], which corresponds to the time Fourier-transformation of S(Q,ω). This
intrinsic Fourier-transform property also facilitates the treatment of the resolution-
function, because the usual convolution of the resolution function with S(Q,ω)
in conventional spectrometry (see Eqn. (5.11)) is converted to a product in NSE
[242].

There are two main types of spin-echo techniques in use [50]: (i) The original NSE
spectrometer invented by Mezei [49, 241, 242] uses static magnetic fields generated
by large solenoid coils. These spectrometers provide very high energy-resolution for
small momentum transfers Q and quasi-elastic scattering (the mean energy-transfer
is zero) [50]. (ii) For the spectroscopy of excitations at higher momentum- and
energy-transfers the Neutron Resonance Spin-Echo (NRSE) technique has proven
useful [243–247]. The Larmor-precession is induced by small radio-frequency coils.
These compact devices are inserted into a TAS [Fig. 5.8]. The TAS provides the
momentum-resolution and a coarse energy-resolution to suppress background, the
NRSE then boosts the energy-resolution by two orders of magnitude to the sub-µeV
range. The same setup can be used for the high-resolution Larmor Diffraction (LD)
technique (see below) [248, 249]. In this work, measurements were performed at
the hybrid thermal neutron triple-axis NRSE spectrometer TRISP at the FRM II
[232].
Prior to the discussion of the NRSE approach used at TRISP, we describe the

general concept of the spin-echo technique based on the original setup suggested
by Mezei [Fig. 5.5] [49, 241].

We first assume a z-polarized neutron beam propagating along the y-axis (v1 ‖ y)
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B0

polarizer analyzer

P0
Px ~ 0 P0

dephasing rephasing

PD1 PD2
S

P(τ1)
P(τ2 > τ1)
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-B0

Fig. 5.5: Schematic drawing of the conventional NSE spectrometer as proposed by Mezei
[241]. The neutrons enter the first PD1 (B0 ‖ z) with spins oriented perpendicular to B0.
While traversing PD1, the neutron spins precess an the initial beam polarization P0 ‖ x
vanishes due to a slight variation in the Larmor phases ϕi of the neutron spins resulting
from a variance of the neutron velocities. After the scattering process in the sample, the
neutrons enter a second precession device PD2 with an opposite magnetic field (B0 ‖ −z),
which reverses the precession phases accumulated in precession device (PD)1 and affects
recovery of the neutron beam polarization. For excitations in the sample with Γ = 0,
P0 is reproduced (echoed) after PD2 (P = P0). However, for excitations with Γ> 0, an
additional variance in the neutron phase is induced and Pf is lowered (P < P0). The
dependence of P vs. the spin-echo time τ (the magnetic field B0) is proportional to the
Fourier-transform of S(Q,ω).

[Fig. 5.5]. In a π/2-flipper the spins of the neutrons with velocity v1 are rotated
parallel to the x-axis (σ ‖ x), which is perpendicular to the direction of the static
magnetic fields in the precession devices (PDs) (B0 ‖ z). Hence, upon entering the
first PD, the neutron spins start precessing around B0 with a Larmor frequency of

ωL = γnB0 , (5.13)
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5.3. Neutron spin-echo spectroscopy

where γn =2.916 kHz/Oe denotes the gyromagnetic ratio of a neutron. The total
spin precession after traversing both PDs takes [242]

Φ = ϕ1 +ϕ2 = ωL

( 1
v1
− 1
v2

)
L≈ ωL

δv

v2
1
L , (5.14)

where we used the approximation v2 = v1 + δv with δv � v1, i. e. we assumed
very small velocity changes. For small energy transfers, we can use the following
approximation

h̄ω = m

2 (v2
2−v2

1)≈mv1δv (5.15)

and Eqn. (5.14), to relate Φ and the energy transfer h̄ω in the scattering process
within the sample

Φ = ω

(
h̄ωLL

mv3
1

)
≡ ωτNSE . (5.16)

The so-called spin-echo time τNSE is a measure for the energy resolution of a NSE in-
strument. Accordingly, instead of measuring the energy of in- and outgoing neutrons
independently as in TAS, NSE spectroscopy directly probes the energy transfer of
each neutron. Thus, the resolution is not limited by the monochromatization of
the incoming neutrons [244].

In the experiment, the polarization P =̂Px [Fig. 5.5] given by the average 〈cos(Φ)〉
is monitored. With the scattering function S(Q,ω) as the probability of a neutron
being scattered with an energy transfer h̄ω, this average is [49, 241]:

P (Q, τNSE) = 〈cos(Φ)〉=
∫
S(Q,ω)cos(ωτNSE)dω . (5.17)

Accordingly, NSE spectroscopy effectively measures the cosine Fourier transform of
S(Q,ω), which corresponds to the real part of the intermediate scattering function
Ĩ(Q, τNSE) [242]. In the following we refer to τ as the spin-echo time τNSE. It
follows from Eqn. (5.17) that the final polarization P decays exponentially with τ
if we assume a simple Lorentzian profile for the spectral weight function F (ω) with
HWHM Γ in S(Q,ω) [Eqn. (2.26)], as expected e. g. for critical magnetic scattering

P (τ) = P0 exp(−Γτ) . (5.18)
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To determine Γ(T ) one measures the decrease of P vs. τ at different temperatures
T . The polarization for a certain value of τ can be extracted from scanning the
precession phase accumulated in the second PD by a small phase offset ∆ϕ(x) =
2π(x−x0)/dL with the period dL. The resulting sinusoidal count rates I(∆ϕ) are
then given by the expression

I(∆ϕ) = I0
2 (1 +P cos(∆ϕ)) , (5.19)

where I0/2 is the mean intensity corresponding to P = 0. Experimentally, such a
scan of ∆ϕ can be achieved either by changing the magnitude of the magnetic field
B0 or the length L of the second PD. Accordingly, the parameters of a spin-echo
scan are the polarization P , the intensity I0, and the phase shift x0.

NRSE spectroscopy

Brf

P A
S

B0

x

y

z
B=0 B=0

RF1 RF2 RF3 RF4

L L

Fig. 5.6: Schematic design of a NRSE spectrometer as proposed in [243, 244, 246, 247].
The large solenoid coils of the conventional NSE, indicated by the grey boxes, are replaced
by four or eight (bootstrap [245]) π-flipper coils. The π-flipper coils utilize a combination
of an oscillating radio-frequency (RF) field Brf, that consists of two counter-rotating
components, and a static magnetic field B0. Depending on the direction of B0, only one
rotating component affects the spin (green arrow), while the other is averaged out (grey
arrow).

In the following, we describe the NRSE method and explain the main differences
to NSE based on the works [243–247, 250]. The design of a NRSE spectrometer is
schematically shown in Fig. 5.6. We first describe the RF spin-flipper. Each RF
spin-flipper coil consists of a static magnetic field B0 (here ‖ ±z) and an radio-
frequency field Brf (‖±x) oscillating with the frequency ωrf of the Larmor-precession
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5.3. Neutron spin-echo spectroscopy

(ωrf = γnB0 = ωL). The linear RF field can be decomposed in two counter-rotating
components where only the component rotating in the same direction as the neutron
spin is effective [250]. Depending on the direction of B0, either the clockwise or
counter-clockwise component affects the neutron spin. Inside the coil, the neutron
spin sees this rotating component as a static field Brf and performs a π-rotation
around this field [Fig. 5.7].

Brf

x

y

φ0

φrf = ωLt0

φ1 = φrf - (φ0 - φrf) + ωLtπ  

σi

σf

Fig. 5.7: Principle of a RF spin flipper coil as implemented in the NRSE spectrometer.
We assume an incoming neutron whose spin σi and the x-axis form an angle ϕ0 at time t0.
Upon entering the RF-flipper, the spin will be π-flipped around a rotating field Brf ending
up in the state σf with an angle ϕ1. The rotation of Brf during the π-flip (ϕπ = ωLtπ) is
neglected in the drawing. Adapted from [250].

We assume in Fig. 5.7 an incoming neutron at time t0 whose spin takes the
angles ϕ0 and ϕrf = ωLt0 with respect to the x-axis and Brf, respectively. While
the neutron spin performs the π-flip around Brf, the magnetic field also rotates
by ωLtπ, where tπ = d/v is the time the neutron with velocity v spends in the
coil of width d. The precession angle of the neutron spin after traversing one RF
spin-flipper coil (C1) writes [250]

ϕ1 = 2ωLt0−ϕ0 +ωLtπ . (5.20)
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As shown in Fig. 5.6, one precession arm in the NRSE spectrometer consists of
two identical RF coils, i. e. after travelling a field-free distance L, the neutron will
enter a second RF flipper-coil (C2) at time t1 = L/v. The total precession angle
after C2 becomes

ΦC1-C2 = 2ωLt1−ϕ1 +ωLtπ = 2ωL(t1− t0) +ϕ0 = 2ωL
L

v
+ϕ0 . (5.21)

If we now compare ΦC1-C2 after two RF spin-flipper coils separated by a zero-field
region of length L, with the precession angle ΦPD1 after one PD with length L in
the conventional NSE spectrometer [Eqn. (5.14)], we obtain ΦC1-C2 = 2ΦPD1. Thus,
the resolution of NRSE is equivalent to that of conventional NSE spectrometer
consisting of solenoids of length L containing a field B0 twice the static field in the
flipper coils.

The second precession region with negativeB0 is formed by the coils C3, C4. The
RF coils work efficiently at higher frequencies, but at lower frequencies (typically
< 40 kHz) the field-component rotating opposite to the neutron spin disturbs the
spin-flip. To bride the gap between this minimum RF and zero, additional DC
spin-echo coils are inserted in between the RF flippers [Fig. 5.8]. The RF-coils at
TRISP provide spin-echo times in the range τmin ≤ τ ≤ 15τmin with τmin = 4.087 ps
(3.43 ps) for ki = 2.51Å−1(2.66Å−1). The additional DC-coils cover the smaller
τ -range 0≤ τ ≤ 1.8τmin.

In a spin-echo scan the polarization at each τ is measured by a small variation
∆ϕ in the interval ±π of the precession phase in PD2 (see Eqn. (5.19)). This is
realized either by scanning the electrical current I02 in coil DC2 (change of B0)
or by scanning the translational position TC4 of C4 (change of L). ∆ϕ is much
smaller than the total Larmor-phase and the variation of τ is negligible. The
corresponding ∆ϕ are

∆ϕ(I02) = 2π(I02− I01)/∆I02 , (5.22)
∆ϕ(TC4) = 2π(TC4)/∆TC4 , (5.23)

with the periods ∆I02 = 2πkf/Ccoil and ∆TC4 = 2πh̄kf/(mωL), where Ccoil =
50.074Å−1A−1 is a parameter of the DC coils used at TRISP.
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Fig. 5.8: Schematic drawing and picture of the NRSE instrument TRISP at FRM II.
Before entering the first PD, the neutron beam is spin-polarized by a polarizing neutron
guide (PNG) and monochromatized by both a velocity selector (VS) and a monochromator
(M). The sample is positioned in between the PDs, which include the DC-coils (DC1,2) as
well as the RF spin-flipper coils (C1−4). The earth magnetic field is shielded by µ-metal
shields (MS) around the PDs and the sample region. After the PDs, the final polarization
Pf and the energy of the scattered neutron beam is determined by an analyzer and
detector, respectively. The inset shows an example of a spin-echo scan. The polarization
P is measured either by scanning the current I02 in DC2 or by linear translation TC4 of
C4.
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Spin-flip scattering

So far, we have considered only non-spin-flip (NSF) scattering in the sample. For
magnetic scattering, however, SF processes act on incoming neutron spins and
thereby affect the precession angle [Fig. 5.9]. Adjusting the sign of the static
magnetic fields in the PDs can be exploited not only to differentiate between
nuclear and magnetic scattering, as described above, but also to separate the
contributions from in-plane (M⊥,y) and out-of-plane (M⊥,z) magnetic fluctuations
[54]. The (⊥)-symbol indicates that only magnetic components perpendicular to
Q can be observed. In Fig. 5.9, we assume an incoming neutron with a spin phase
ϕi after the first PD. We use the conventional coordinate system with x ‖Q, y
perpendicular to theQ in the scattering plane, and z perpendicular to the scattering
plane. According to [54], the neutron can then be π-flip scattered at either M⊥,y
or M⊥,z with the corresponding spin-phase ϕf after scattering (cf. App. A)

ϕfy = π−ϕi , (5.24)
ϕfz = π+ϕi . (5.25)

Scattering on in-plane fluctuations M⊥,y reverses the sign of ϕi, effectively
inverting the field of B0 in the first PD, whilst from scattering on the out-of-
plane fluctuations M⊥,z the sign remains unaffected. Thus, depending on the field
directions of B0 in the PDs, i. e. parallel (↑↑) or anti-parallel (↑↓) to each other,
either the scattering on My (↑↑) or Mz (↑↓) fulfills the echo-condition, whereas
the other component will be depolarized. To determine the contributions from in-
plane M⊥,y and out-of-plane M⊥,z magnetic fluctuations in the signal, we therefore
measure spin-echo scans for both directions of the magnetic field B0 in PD2 [54].
The component not fulfilling the echo-condition has a nonzero polarization at

small τ < τdep and interferes with the other component leading to a fast oscillation
of the polarization. For τ > τdep, this component is depolarized and the oscillations
disappear. According to [251], the period of these oscillations in units of the
current[Amps] in coil DC2 is

Tosc = ki
2C ′coil

(5.26)
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M⟂,y

M⟂,z

Pf,y

Pf,z

φf,y = π - φi  
φi

φf,z = π + φi  

Pi

Fig. 5.9: Model of magnetic spin-flip processes from scattering at in-plane (M⊥,y) and
out-of-plane (M⊥,z) fluctuations. Depending on the direction of the static magnetic field
B0 in the second PD, either the neutrons scattered on M⊥,y(↑↑) or on M⊥,z(↑↓) fulfill
the echo-condition (5.14), whereas the other component will be depolarized at sufficiently
high τ . The two arrows denote parallel (↑↑) or antiparallel (↑↓) magnetic fields in the
PDs. Adapted from [54].

with an instrumental parameter C ′coil = 50.074/(2π)Å−1A−1 for the coils used
at TRISP. To determine τdep for the experiments in this work, we assume a
Gaussian distribution of wave vectors with FWHM ∆ki around the nominal ki.
The corresponding distribution of the Larmor-phase ∆ϕ1 around ϕ1 due to ∆ki is
∆ϕ1 = ∆ki/ki ϕ1 [54]. We get a beam depolarization ∆ϕ1 = 2π after passing two
PDs for τdep > 10 ps for ki = 2.66Å−1 and ∆ki = 0.034Å−1.

Data analysis based on ray-tracing model

As mentioned above, in-plane and out-of-plane magnetic scattering channels can
interfere with each other and lead to a complex spin-echo signal with a fast oscillating
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polarization. A simple analytical analysis of this complex signal containing linewidth
information of both My and Mz is not possible. We therefore describe both the
Larmor-precession and the spin-flip processes in the sample in a numerical model,
which is included in the fit-function. This approach was implemented in MATLAB
and first used to analyse critical scattering in the classical model systems MnF2

and Rb2MnF4 [54], and in the heavy-fermion system UGe2 [53]. It was possible to
separate the contributions of My and Mz. This is a clear advantage of NRSE over
TAS, where separation of transverse and longitudinal signals requires measurement
at different Q-positions, as described in [252].
The numerical simulation is similar to a Monte-Carlo (MC) simulation where

the parameters are selected by random numbers. It turned out that MC does
not work inside the fitting function due to the statistical noise. We therefore use
discrete distributions instead of random numbers. The main steps of the simulation
(ray-tracing simulation (RTS)) are [251]:

1. Definition of an incoming spin-polarized neutron band (ki±dki,ϕi) with a
Gaussian velocity distribution pk with FWHM ∆ki

2. Simulation of the accumulated precession angle ϕ1 of each defined neutron
after the first PD

3. Simulation of the scattering process on (i) in-plane (M⊥,y) and (ii) out-of-
plane (M⊥,z) fluctuations with the corresponding spin-flips in the precession
angle ϕS = π∓ϕ1 weighted with the probability pω = S(Q,ω)dω of being
scattered with an energy transfer ω. We assume S(Q,ω)∼ S(ω), i. e. that
S(Q,ω) is independent of Q within the Q-resolution of the TAS. S(ω) further
includes the intensities I of the involved scattering components. For Ca2RuO4

at Q= (1 0 0), we observe two signals denoted as ’1’ and ’2’, which each can
consist of in-plane (ip) and out-of-plane (op) components:

S(ω) = I1
I1 + I2

·
[

I1,ip
I1,ip + I1,op

·L(ω,Γ1,ip) + I1,op
I1,ip + I1,op

·L(ω,Γ1,op)
]

+ I2
I1 + I2

·
[

I2,ip
I2,ip + I2,op

·L(ω,Γ2,ip) + I2,op
I2,ip + I2,op

·L(ω,Γ2,op)
] (5.27)

with L(ω,Γ) = Γ/(ω2 + Γ2).
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5.4. Larmor diffraction

4. Inclusion of the Gaussian energy resolution R(ω) of the background TAS as
pω = S(ω)R(ω)dω.

5. Calculation of the precession angles ϕf while traversing the second PD

6. Summation over the contributions of each neutron spin to the final polarization
Pf

Some exemplary RTS for different parameters are shown in Fig. 5.10. The fast
oscillations appear only when the intensity of the in-plane scattering is nonzero
[Fig. 5.10a-c], as observed for CeCu5.8Au0.2 (see Chap. 7). On the other hand, we
will see in Chap. 6, that panel (d) describes the situation in Ca2RuO4 at Q= (1 0 0)
best, where a saturation of the polarization is observed for τ > 20 ps.

5.4. Larmor diffraction

Larmor Diffraction (LD) was invented by Rekveldt [248, 249] and is closely related
to the neutron spin-echo technique. In the following, we briefly discuss the principle
of LD based on Refs. [248, 249, 253–256]. Similar to TAS, the resolution in
conventional neutron diffraction techniques depends on the monochromatization
and divergence of the neutron beam, which is limited by the finite neutron flux.
In LD the Larmor-phase is used to determine the lattice spacings dhkl ≡ d, and
the resolution is decoupled from the beam-collimation and monochromatization.
With this approach, small changes in the lattice spacings and its spread ∆d can
be resolved with a resolution better than ∆d/d ∼ 10−5, as shown in [255]. This
corresponds to at least one order of magnitude higher resolution compared to
conventional neutron diffraction instruments. The development of new designs for
Larmor-diffractometers is an ongoing procedure [50], but for simplicity we focus in
the following on the conventional design proposed by Rekveldt [Fig. 5.11].
LD requires an initially polarized neutron beam and a precession region with

an applied magnetic field B perpendicular to the polarization direction. At the
entrance of the magnetic field region, the neutron spins perform Larmor precessions
with precession angle ϕLD = ωLtL before and after the diffraction process with the
precession time tL =L∗/v⊥ [Fig. 5.11]. Here L∗ denotes the length of the precession
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Fig. 5.10: Illustration of the neutron ray-tracing simulation. In (a) only one signal
component with identical Γ for in-plane (My) and out-of-plane (Mz) scattering was
assumed, whereas in (b-d) two signal components (1,2) with different Γ were considered,
each with contributions from My and Mz. The grey shaded part corresponds to the
high-frequency polarization oscillations resulting from the interference of My and Mz
(resolved in the inset of panel (a)). In most of our experiments this oscillation was not
resolved and sampled with a low point-density (p.d.) shown by the green curve in panel
(a). For the examples different parameters were used: (a) Γy = Γz = 100µeV, Iy/Iz = 1.
The inset shows the oscillating behavior due to the interference of My and Mz. (b)
Γz,1 = Γy,2 = Γy,1/2 = Γz,2/2 = 50µeV, I1/I2 = 1, Iy/Iz = 1/2. (c) Γy,1 = 100µeV,Γz,1 =
50µeV,Γy,2 = 500µeV,Γz,2 = 20µeV, I1/I2 = 1, Iy/Iz = 1/2. (d) Γy,1 = 200µeV,Γy,2 =
1neV, Iy/Iz ∼ 0, I1/I2 = 1. For details regarding the scattering function see text. We
assumed kf = 2.66Å−1 and the velocity distribution ∆k = 0.034 FWHM.
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5.4. Larmor diffraction

region and v⊥ defines the velocity component perpendicular to the magnetic field
boundaries. The velocity v⊥ = (h̄/m) k⊥ = (h̄/m) G/2 is proportional to the lattice
spacing d via the reciprocal lattice vector G= 2π/d and is independent of k and
the Bragg-angle, if the field boundaries are aligned parallel to the lattice planes.
After running through both precession-regions the phase is:

ϕLD = 2ωLL∗m
h̄π

d . (5.28)

ϕLD is a measure for the lattice spacing d.
A variation of the d spacing by thermal expansion effects, for instance, induces a

shift of the total precession angle

∆Φ = Φ∆d
d

. (5.29)

At TRISP, ∆Φ is measured by scanning the length of the precession region L∗ by
translational variation TC4 of the fourth coil position [Fig. 5.11b]. ∆Φ is then
obtained by fitting the sinusoidal intensity I(Φ + ∆Φ) with Eqn. (5.19). For an
orthorhombic system like Ca2RuO4, the lattice spacing is related to the lattice
parameter by d(h,k,l) = (h2/a2 +k2/b2 + l2/c2)−0.5. Hence, with a proper choice
of nuclear Bragg-peaks, the temperature dependence of the lattice parameter itself
can be measured directly.
From the depolarization of the neutron beam vs. Φ, the FWHM εFW of a

normalized Gaussian distribution function f(∆d/d) of the lattice spacing variations
around the mean value d can be extracted. This is similar to NSE spectroscopy,
where the energy width Γ of the scattering function S(ω) can be determined from
the depolarization of the neutron beam vs. τ (see Eqn. (5.18)). The corresponding
expression for LD is:

P (Φ) = P0 exp(−Φ2ε2
FW

16ln2 ) . (5.30)

At TRISP, P (Φ) can be obtained by varying the frequency applied in the RF-coils
(Φ = ωτ) [Fig. 5.11c].

In summary, LD is a powerful method to study the thermal expansion of lattice
spacings (parameter) and to determine the distribution function f(∆d/d) of the
lattice spacings to reveal structural changes.
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Fig. 5.11: (a) Concept of LD. The neutron spins S of a polarized neutron beam undergo
Larmor precessions in the precession region with a perpendicular magnetic field (grey
box). The precession of each neutron spin depends solely on the component of k⊥
perpendicular to the field boundaries, which is proportional to the lattice spacing d. At
TRISP, the precession region is defined by four RF-spin flipper coils, as indicated by the
boxes with broken lines. From [255]. (b) Example for a LD scan performed on a Ca2RuO4
single-crystal at the nuclear Bragg-peak (0 0 6). From the phase-shift δx0 between two
temperatures, the relative change of lattice spacings ∆d/d can be obtained. (c) Example
for a P (Φ) curve to determine FWHM εFW of the variance of lattice spacings f(∆d/d).
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6. Critical magnetic fluctuations
in layered ruthenates

We present TAS and NSE studies on the critical behavior in the layered
ruthenates Ca2RuO4, Ca3Ru2O7, and Ca3(Ru0.99Ti0.01)2O7 in the vicinity of
the Néel-temperatures. We find that the critical behavior of single-layer
Ca2RuO4 is compatible with predictions of the 2D-XY model. The bilayer
compound Ca3Ru2O7 is only partly consistent with the 2D-XY theory and
best described by the 3D-I model, likely due to the intra-bilayer exchange
interactions in combination with an orthorhombic single-ion anisotropy. No
critical behavior is observed in Ca3(Ru0.99Ti0.01)2O7, because of the to first-
order character of the magnetic transition.

6.1. Single-layer Ca2RuO4

Characterization and experimental details

High-quality single crystals of Ca2RuO4, Ca3Ru2O7, and Ca3(Ru0.99Ti0.01)2O7

were grown by the optical floating zone method [68], as described in Refs. [6, 7, 79].
The lattice parameters of Ca2RuO4 are a = 5.39Å, b = 5.63Å, and c = 11.75Å
[66]. In addition to the magnetic characterization of a particular Ca2RuO4 single-
crystal [Fig. 6.1], we measured a number of various other crystals with a SQUID
magnetometer to check their uniformity. Figure 6.1a displays an overview of the
corresponding normalized c-axis susceptibilities (H ‖ c) of selected crystals. The
extracted variance of the maximum positions Tmax,i is small (±0.5K) [Fig. 6.1b],
whereas the widths of the curves around Tmax are significantly broad (FWHM
≈ 8K). This signals that TN is not sharply defined in our Ca2RuO4 samples, but
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

that an intrinsic distribution of Néel-temperatures is present. Such a variance of
TN can e. g. result from microstrains within the crystal, which can be expected in
Ca2RuO4 below the simultaneous structural and metal-to-insulator transition at
360K [67].

As described in Chap. 5, neutron Larmor Diffraction is specialized to study not
only the T -dependence of the lattice spacings d, but also the Gaussian distribution
of the lattice spacings f(∆d/d) with FWHM εFW . In particular, the latter contains
information on the microstrains within the sample. We therefore took advantage
of the LD capability at TRISP and performed LD scans on a selected Ca2RuO4

single-crystal (≈ 2.5mg) at various nuclear Bragg-peaks (4 0 0), (0 4 0), and (0 0 6).
This was used to determine the thermal expansion ∆L = L(T )−L(4K) of the
lattice parameter L = a,b,c and εFW [Fig. 6.2]. The obtained T -dependence of
the lattice parameters [Fig. 6.2a-c] is in good agreement with previous neutron
measurements [66]. The distribution of the lattice spacings is in the order of ∼ 10−4

and approximately doubles upon cooling from 200K [Fig. 6.2d-f]. Above 200K,
the distribution enhances slightly as the structural MIT at 370K is approached.
Additionally, small anomalies were found at TN [Fig. 6.2e,f]. These observations
are consistent with the appearance of microstrains within our samples and support
our conjecture of a strain-dependence of TN in Ca2RuO4, which is reminiscent of
the (pseudo)spin-lattice coupling in Sr2IrO4 [257, 258]. In the following analysis,
we take this distribution of TN into account, which allows us to extract the critical
properties of Ca2RuO4 similar to the case of a sharply defined TN.
Now we proceed with the experimental details of the following neutron experi-

ments. To enhance the intensity of neutron scattering, about 100 single-crystals
containing orthorhombic (a,b)-twins with a total mass of 1.5g were co-aligned
on three Si-plates with thicknesses of 0.5 mm and placed in Al-sample holders
[Fig. 6.3a]. The mosaicity of the sample array obtained from rocking-scans was
between 2-3 ° [Fig. 6.3b] in line with [6]. Due to the (a,b)-twinning, the scattering
planes were (H 0 L)/(0 K L).
The energy integrating TAS experiments (two-axis mode) on Ca2RuO4 were

carried out at the thermal neutron spectrometer TRISP [232, 259] at the FRM II
neutron source. The instrument was operated with clockwise scattering sense at the
monochromator and sample (SM =−1, SS =−1) at ki = 1.75Å−1. The dynamic
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6.1. Single-layer Ca2RuO4
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(0 0 6). (d-f) T -dependence of the FWHM εFW of the corresponding lattice spacing
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

properties were determined from measurements at (i) the cold neutron TAS FLEXX
[260] at the BER II neutron source and at (ii) TRISP by using the NSE capability.
For the TAS measurements, an instrumental configuration SM = −1, SS = 1,
SA=−1, open collimation, and a neutron wave vector kf = 1.3Å−1 (TAS energy
resolution/vanadium width≈ 0.15meV) were used. In addition to a velocity selector,
a Be-filter in the primary spectrometer was used to suppress higher monochromator
orders. The NSE measurements were conducted at Q= (1 0 0) with ki = 2.66Å−1

(TAS energy resolution ≈ 1meV) and Q = (1 0 0.53) with ki = 2.51Å−1 (TAS
energy resolution ≈ 0.9meV) with the same instrumental configurations SM =−1,
SS =−1, and SA=−1. A small offset in the thermometry between TRISP and
FLEXX was corrected by comparing the (1 0 0) peak intensities.

Static critical properties of Ca2RuO4
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Fig. 6.3: (a) Picture of the Ca2RuO4 array. (b) (H 0 0) scan shows the (2 0 0) and
(0 2 0) peaks due to (a,b)-twinning of the Ca2RuO4 crystals. The grey solid line is a
fit with two Gaussian-functions (FWHM ≈ 0.04 r.l.u.). (c) Rocking scans at the AFM
(1 0 0) peak at 80K (T � TN).

First, we like to determine the critical exponent β of the order parameter M
(staggered magnetization). For an ideal second-order phase transition, the order
parameter is M ∝ |t|β and vanishes above TN. Thus, the critical exponent β
can be extracted from the measured nominal magnetic (1 0 0) peak intensity
I100 ∝M2 ∝ |t|2β in Fig. 6.4a. In general, β and the other critical exponents are
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6.1. Single-layer Ca2RuO4

extracted from the slopes of linear fits in double-logarithmic plots (see Ca3Ru2O7

below). However, the data in Fig. 6.4a cannot be described directly with a PL
scaling function. Especially the intensity around the anticipated TN = 110K
[66, 176] does not show the expected sharp drop, but is smeared out. In principle,
there are two reasons for a rounding of the magnetic Bragg-intensity at TN, namely
critical scattering or a variance of transition temperatures. One way to distinguish
between them is to measure the scattering intensity at a Q-position in distance
to the magnetic Bragg-peak, where its contribution is suppressed. This can be
especially useful in quasi-2D systems, where the critical scattering is expected to
be independent along the direction perpendicular to the isolated 2D planes and
can therefore be particularly pronounced [261].
Ca2RuO4 is considered as a good realization of a quasi-2D system with a magnetic

rod perpendicular to the (a,b)-plane, i. e. along the c-direction. This was previously
suggested by the magnetic susceptibility in the paramagnetic state [176], which
contains a broad maximum for H ‖ b (easy axis) [Fig. 3.6a], and recently established
by the magnon dispersion in the ordered phase [6] (see Chap. 3). We therefore expect
also the critical fluctuations in Ca2RuO4 to be quasi-2D like, i. e. independent of QL.
Accordingly, we measure an enhancement of the scattered intensity at Q= (1 0 0.83)
[inset in Fig. 6.4a], i. e. in distance to the (1 0 0) peak, for temperatures in
vicinity to the anticipated TN of approximately 110K [66, 176]. More specifically,
we observe that the critical scattering intensity peaks at a temperature slightly
higher than 110K. This behavior is likely related to the fact that TN of our
Ca2RuO4 sample is not sharply defined, but there is an intrinsic distribution of
Néel temperatures around a rather uniform mean TN of our crystals [see gray
shaded area in Fig. 6.4a]. This observation is consistent with our results from
magnetometry and LD measurements (see above).
As the rounding of the (1 0 0) peak intensity cannot be attributed to critical

scattering above TN, since the data in the inset of Fig. 6.4a indicate that the
contribution of critical scattering is two orders of magnitude smaller, we fit the
(1 0 0) data in the range 90 - 120K (−0.2< t < 0.1) instead with a convolution of
the above mentioned PL and a Gaussian distribution of TN with a FWHM ∆TN

[Fig. 6.4a]. The resulting fit parameters are TN = 112.20(1)K, ∆TN = 4.84(1)K,
and β = 0.158(6). It can be found in Tab. 2.2, that the β-value lies in between the
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Fig. 6.4: Magnetic order parameter and critical scattering in Ca2RuO4. (a) Intensity
of the magnetic (1 0 0) peak measured as a function of temperature. The red solid
line is a PL fit I ∝M2 ∝ |t|2β, with β = 0.158(6) and TN = 112.20(1)K, convoluted
with a Gaussian-distribution of Néel temperatures TN with a FWHM of 4.84(1)K (grey
shaded area). The inset shows the intensity measured at Q= (1 0 0.83). The increase
of intensity in vicinity to TN indicates the presence of critical scattering from critical
magnetic fluctuations. (b) Shows the same data as in (a) on a double-logarithmic scale.
The data and fits are non-linear due to the distribution of TN.

limits of the 2D-I (β = 0.125 [16]) and 2D-XY model (β = 0.23 [91]), as suggested
for a XY system with fourfold crystal field anisotropy (XYh4) [262]. Figure 6.4b
shows I100 and the fit curve on a double-logarithmic scale, illustrating that the PL
fit provides an adequate description of the data below TN, and also for a range of
temperatures above TN. The strong deviation from a simple PL (straight line in
double logarithmic plot) is due to the Gaussian distribution of TN.

Next, we like to extract the inverse correlation length κ(T ) and the critical
amplitude S0(T ) from the static scattering function S(q), which would in principle
require an energy-integration of the dynamic scattering function S(q,ω) (see
Eqn. (2.27)). However, due to the 2D-character of the magnetism in Ca2RuO4,
we can take advantage of the energy-integrating two-axis mode (see Chap. 5 and
Ref. [112]) in the following TAS measurements. For this, we chose Q= (1 0 0.83)
for the QH-scans [Fig. 6.5], which lies on the rod of the 2D magnetic scattering
intensity, and corresponds to the proper energy-integrating configuration with
alignment of kf ‖ c at Q= (1 0 0.83) for ki = 1.75Å−1.

84



6.1. Single-layer Ca2RuO4

Prior to fitting of the scans with Voigt-profiles, we thoroughly determine the
background (BG) contributions. Representative scans are shown in Fig. 6.5a-d. We
identify several components of the BG: (i) A temperature-independent component,
which is determined at 170K [Fig. 6.5a], i.e. well above TN. The obtained fit is
employed as ’high-temperature’ BG (H-T BG) in the analysis of the data measured
at all other temperatures (see dashed-dotted lines in Fig. 6.5a-d). (ii) The scan at
the lowest measured temperature T = 80K [Fig. 6.5b] shows two incommensurate
peaks besides the H-T BG. By comparing the T -dependent intensity of these
resolution limited peaks with the intensities of the magnetic (1 0 0) [Fig. 6.4a]
and (1 0 1) peaks [66], they can be assigned to the (1 0 1) peak of the main
domain, and the (0 1 1) peak of the twin domain [177]. The (1 0 1) peak is likely
associated with a minority ’B-centered’ phase with a different propagation vector
and transition temperature TN,101 ≈ 150K [66]. For our crystals the amount of
the ’B-centered’ phase was estimated to be less then 5% [6]. Finally, we subtract
the H-T BG and the aforementioned two peaks with a proper T -scaling from the
Q-scans, i. e. according to their T -dependence measured in Fig. 6.4a and [66],
and obtain the corrected data shown in Fig. 6.5e. These data are well described
by Voigt-profiles, which correspond to the convolution of the intrinsic Lorentzian
(η = 0) with HWHM κ [Eqn. (2.3)] and the Gaussian instrumental resolution. The
constant width of the instrumental Gaussian (FWHM ≈ 0.034 r.l.u.) was extracted
from the 80K scan in agreement with simulations carried out with the RESLIB
[235] and TAKIN [236] softwares, respectively. Some models on critical scattering
suggest a deviation of χ′(q) from the Lorentzian form, taking into account the
critical exponent η (see Eqn. (2.3)). However, as we will see below, for our case a
variation of η does not affect the results significant. Therefore, we used the simplest
approach for χ′(q), which is the Lorentzian-function.

Prior to the discussion of the inverse correlation length κ(T ) extracted from
Fig. 6.5e, we address the possible presence of concurrent longitudinal (parallel to
the static ordering vector) and transverse fluctuations. In general, for the TAS
configurations used in this work both components are expected to contribute to
S(Q,ω) and thus to the TAS signal. This results from the fact the neutrons are
sensitive to the components of magnetic fluctuations perpendicular to Q, which
correspond for Ca2RuO4 to fluctuations along the b-axis and along the (a,c)-axes,
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6.1. Single-layer Ca2RuO4

respectively. A separation of longitudinal and transverse contributions from TAS
would require measurements at another Q-position, as described in [239, 252].
However, NSE spectroscopy [49–52] is capable to separate the two components
[54] by solely measure at one Q-position (see Chap. 5). To this end, we carried
out high-resolution NSE measurements on Ca2RuO4 at TRISP (see below) and
obtained that transverse fluctuations along the c-axis are negligible or absent. Thus,
we assume in the following that the fluctuations observed in the TAS experiments
are also purely longitudinal. A possible explanation for this absence is that these
fluctuations are gapped and not excited in the T -range of our study.
The inverse correlation length κ(T ) resulting from the fits in Fig. 6.5 is shown

in Fig. 6.7. A temperature-dependent broadening above 116 K (TN + 4K) can be
observed, while the Q-width is approximately constant for T < 116K. This contrasts
the conventional critical scaling theory where the correlation length ξ should diverge
at TN and thus κ= ξ−1 should converge to zero. In the following, we will discuss
several models to explain this saturation of κ at T < 116K: (i) An obvious reason
for such lower bound of the linewidth are crystallographic defects [263, 264]. One
possible type of defect in Ca2RuO4 can be domain walls of the structural twins,
which can disrupt the long-range magnetic ordering. However, from the Q-width
(FWHM) of the resolution-limited (1 0 0) magnetic peak [∆Q ≈ 0.035 r.l.u.] we
can estimate a lower border of the domain size ds > 2π/∆Q≈ 150Å [40], which is
much larger than the extracted correlation length of 20Å at Q = (1 0 0.83) and
T = 110K. Thus we exclude domain size effects as the origin of the observed
linewidth saturation. (ii) At T ' TN, i. e. close to the 3D ordering, one expects a
crossover of the critical fluctuations from a 2D to a 3D character with an increasing
influence of the QL component on κ.
To check a corresponding QL-dependence close to TN, we measured QH-scans

in the same configuration at the magnetic Bragg-peak position Q = (1 0 0) at
80K, 111K and, 114K [Fig. 6.6a-c]. At 80K, where the contributions from critical
fluctuations are small, we observe three resolution-limited (FWHM ≈ 0.035 r.l.u.)
components in the signal: (i) The strong magnetic (1 0 0) peak from the main
domain, (ii) the magnetic (0 1 0) peak of the minority ’B’-centered phase [66]
at about QH = 0.96 from the twin domain, and (iii) a T -independent spurious
peak at QH = 0.9. Yet, the origin of the last component is unclear. These three
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

components together with a constant offset are defined as the BG in the following.
A high-T BG at (1 0 0) was not measured. Analogous to above, we subtract the
BG with the aforementioned two peaks (i) and (ii) with a proper T -scaling from the
Q-scans, i. e. according to their temperature-dependence measured in Fig. 6.4a and
[66]. By doing so, we could extract a critical component at 111K and 114K, which
can be well described with a Voigt-function (red lines in Fig. 6.6b,c). The data
after BG-subtraction are plotted in Fig. 6.6d and the corresponding Q-widths are
included in Fig. 6.7. The latter are significantly smaller than the values obtained
at (1 0 0.83). However, the separation of the critical component at 111K has
to be taken with caution due to the high-intense (1 0 0) peak. Moreover, the
ideal energy-integration configuration (kf ‖ c) is not fulfilled at this Q-position and
ki = 1.75Å−1. Nevertheless, with an analogous simulation as described for 3D-like
systems in Chap.5, we could estimate that the fitted κ is in maximum 25% smaller
than the intrinsic Q-width due to inelasticity effects. Even if we assume a 25%
broader Q-width than the extracted κ= 0.0075 r.l.u. at 114K, the Q-width is still
significant smaller as the κ= 0.035 r.l.u. obtained at (1 0 0.83).
This supports our conjecture of a QL-dependence arising from 3D couplings

close to TN. Such an effect was also described in Refs. [29, 102] (cf. Fig. 2.5c) and
modelled by an effective κ with κ2

eff = κ2
3D +κ2

pow, κ2
3D ≡Q2

LJ
′/J , and κ2

pow ≡ κ0t2ν .
A fit of our experimental κ(T ) with a convolution of κeff and the aforementioned
Gaussian distribution of TN results in an exponent ν = 1.0(1) and κ3D = 0.035(1),
and describes the data over the entire measured T -range (green dashed-dotted
line in Fig. 6.7). The exponent ν matches the universal value of the 2D-I model
(ν2DI = 1 [16]). From κ3D = 0.035(1) we obtain the ratio J ′/J = 0.002. This is in
agreement with J ′/J = 0.004 derived from INS on 1% Ti-doped Ca2RuO4 [180].
Assuming J = 5.8meV [6], this corresponds to an interlayer coupling J ′ ≈ 0.01meV.

The red dashed line in Fig. 6.7 shows a PL fit κ ∝ |t|ν without a κ-offset at
TN, i. e. without a QL dependence due to 3D correlations, convoluted with the
variance of TN. Only the data for T > 116K, i. e. beyond the saturation region, were
included in the fit. The rounded shape of the red line towards TN results from the
TN variance. The resulting ν = 0.42(4) is close to the MF value of νMF = 0.5, but is
at odds with ν = 1.0(1) obtained in the previous PL fit with the offset in κ, although
both fits give a satisfactory description of the data for T > 116K. Furthermore, a
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Fig. 6.6: Selected energy-integrated QH-scans around (H 0 0) for Ca2RuO4 before (a-c)
and after (d) BG subtraction. The BG, shown as a black dotted line in panels (a-c),
consists of a T -independent offset and peak at H = 0.9, and two T -dependent resolution
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domain and the (0 1 0) peak of the twin domain, respectively. The critical scattering
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after BG subtraction with corresponding fit functions (solid lines). For clarity the data
are plotted with a constant offset.
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

fit of κ(T ) with a 2D quantum Heisenberg model described in Chap. 2 and Refs. [97–
99], with an anisotropy parameter αeff accounting for perturbations, such as 3D
correlations, from the 2D-H model close to TN [48], also gives a good agreement
with the data (not shown here). However, we excluded this model because of two
reasons: (i) The extracted effective perturbation term αeff ≈ 10−2 was two orders
of magnitude higher than found in established 2D-H systems [48] and (ii) due to
the large easy-plane anisotropy in Ca2RuO4 [6].

We now focus on the 2D-XY model (see Chap. 2), which was already suggested
in the context of the magnon dispersion [6] and describes a topological phase
transition accompanied by an unbinding of vortex/antivortex pairs [21–23]. The
parameters of this model are the Kosterlitz-Thouless (KT)-temperature TKT , a
critical exponent η = 0.25, and a dimensionless non-universal parameter b [23, 265],
which was previously determined to be approximately 1.9 [102]. According to
Eqn. (2.15) and Ref. [23], the correlation length in this model is defined as

ξ ∝ exp
(

b√
tKT

)
, with tKT ≡ (T/TKT−1) .

For systems with magnetic long-range order the actual KT-transition at TKT <TN

is usually obscured by the 3D ordering with nonzero interlayer couplings J ′, which
occur around TN. The relation between TKT and TN is given by Eqn. (2.16)
[91, 102]:

TN−TKT
TKT

= 4b2
[ln(J/J ′)]2 .

Assuming J ′/J = 0.002, as derived from the above PL fit with QL-dependence to
capture the κ-offset, we obtain T̃KT = 82K, with T̃KT denoting the KT-temperature
derived from Eqn. (2.16) and TKT the KT-temperature extracted from fits to κ(T )
in Fig. 6.7 in the following. As expected for a system with TKT < TN, our data
do not show any signatures of a transition around 82K. Nonetheless, we use this
model in the following to describe the scaling above TN, as it was demonstrated
[105–107] and experimentally confirmed [28, 29, 104], that even a XY anisotropy
much weaker than in the case of Ca2RuO4 can result in 2D-XY scaling. Next, we
fit Eqn. (2.15) to κ(T ) for T > 116K. As TKT is much lower than the lower limit of
the fitting range, a possible distribution of TN and TKT temperatures in the sample
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6.1. Single-layer Ca2RuO4

will not affect the result of the fit significantly and is therefore not considered
here. The resulting fit (black solid line in Fig. 6.7) with TKT = 87(2)K ≈ 0.8TN

provides an excellent description of the data, and is in reasonable agreement with
T̃KT = 82K from Eqn. (2.16). A fit with b as a free parameter did not converge,
since it couples strongly to TKT. Thus, b was fixed to 1.9 [102].
In summary, the data in Fig. 6.7 are consistent with both, the 2D-XY (black

solid line) and 2D-I (green dashed-dotted line) scaling behavior for T > 116K.
Nevertheless, we rule out the latter scaling for the description of κ(T ), as the critical
peak amplitudes S0(T )/T [Fig. 6.9] with the corresponding critical exponent γ
(see below) are not compatible with the 2D-I model, although a crossover to 2D-I
scaling close to TN is expected due to the orthorhombic anisotropy ε [6]. While
this crossover from 2D-XY to 2D-I scaling presumably occurs in a T -range very
close to TN and is not resolved in our data, we attribute the observed saturation
for T < 116K to a crossover to 3D coupling, which eventually drives the magnetic
transition. An estimation of the crossover regions according to Eqns. (2.22) and
(2.23) is not reliable for Ca2RuO4 due to the predominant tetragonal anisotropy
term E, as the approximations were originally derived for systems with dominant
Heisenberg-exchange and only small exchange anisotropies.
Prior to the discussion of the staggered susceptibility χ0(T ) obtained from

Fig. 6.5e, we address the peak-shape of our Q-scans. As described above, for the
analysis of the Q-scans, we fitted the data with a Voigt-profile, i. e. a convolution of
a Gaussian (instrumental resolution) and a simple Lorentzian function. Beyond this
approximation, which is commonly used to describe critical scattering [32, 58, 59],
subtle deviations from the Lorentzian form were proposed, accounting for the
critical exponent η 6= 0 (see Eqn. (2.3)). In this respect, for 3D and 2D universality
classes η ≈ 0 and η = 0.25 was predicted [16]. Hence, the peak-shape of the Q-scans
also includes information on the critical behavior of the system. However, we
find that for Ca2RuO4 fits with η = 0 and η = 0.25 yield peak shapes that are
essentially the same within the experimental error of our data [Fig. 6.8, inset].
Nevertheless, we carried out the analysis of the full set of Q-scans not only for
η = 0 (Ornstein-Zernike form, Eqn. (2.3)), but also for η = 0.25 (2D-XY model,
[23]). As can be seen in Fig. 2.3, the effect of η on our Q-widths is small, and is
negligible with respect to the corresponding scaling behavior of κ(T ). Specifically,
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Fig. 6.7: Inverse correlation length κ(T ) of Ca2RuO4 with various fit functions: The
green dashed-dotted line is a PL fit with ν = 1.0(1) and κ3D =QL

√
J ′/J = 0.035(1). The

red dashed line is a PL fit for T > 116K and κ(T ≤ TN) = 0, with ν = 0.42(4). The black
solid line corresponds to a 2D-XY fit for T > 116K, with TKT = 87(2)K and b= 1.9. The
smaller Q-width at the (1 0 0) (orange points) indicate the emergence of 3D-couplings
close to TN. The vertical dashed line shows the average TN and the grey bar the variance
of TN.
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6.1. Single-layer Ca2RuO4

we obtain from 2D-XY fits [Eqn. (2.15)] on the non-Lorentzian data (η = 0.25)
for the KT-temperature TKT = 88(2)K for Ca2RuO4, which coincides within the
statistical errors with the value derived from the Ornstein-Zernike fits. In principle,
a variety of other factors such as a non-Gaussian instrumental resolution and
surface effects [266, 267] can also influence the peak-shape, which generally make
the determination of η challenging.
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Fig. 6.8: Comparison of the Q-widths κ for a fitting of the Q-scans of Ca2RuO4 with
η = 0 (blue points) and η = 0.25 (red points) [Eqn. (2.3)]. The grey points were not
considered in the fits. The black vertical line indicates TN and the grey bar the variance
of TN. The inset shows the corresponding fits at T = 125K.

In addition to κ(T ), we analyzed the staggered susceptibility χ0, which also
shows critical behavior close to TN. Related via the Kramers-Kronig relation, χ0

is proportional to S(0) ∝ χ0T (see Eqn. (2.27)), i. e. the peak amplitude of the
Lorentzian-profile S(q). In the following, S(0) will be denoted as S0. Figure 6.9
shows the temperature-dependence of the amplitude measured at (1 0 0.83). First,
we fit a PL ∝ |t|−γ in the range 110K< T < 140K, convoluted with the Gaussian
TN distribution by assuming S0 = 0 for T < TN. The agreement with the data is not
convincing and the extracted critical exponent γ = 0.47(2) does not match universal
values [16], especially not the value predicted for the 2D-I model γ2DI = 1.75.
Furthermore, since scaling theory predicts PL behavior for temperatures both
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above and below TN (see Chap. 2), we also carried out a PL fit in the entire T -range
(95-140K) where A−|t|−γ and A+|t|−γ for T < TN and T > TN was assumed (not
shown here). Nevertheless, the resulting critical exponent γ = 0.426(7) is similar
to the value extracted from A+|t|−γ in the range 110-140K (γ = 0.47(2)). This
corroborates that PL scaling is unsuited to capture the temperature-dependence of
the amplitudes. Next, we fit the range 110K< T < 140K with the 2D-XY model
(see Eqn. (2.17)) by using the scaling relation χ0 ∝ ξ2−η [23]:

S(0)
T
∝ exp

(
B√
tKT

)
,

with B ≡ b(2−η) and TKT = 87(2) from above. We fixed η = 0.25 as suggested for
the 2D-XY model [23]. The model gives a good description of the data with only
one free parameter in the fit, that is, the proportionality constant in Eqn. (2.17).
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Fig. 6.9: Peak amplitude S0(T )/T of Ca2RuO4. The red dotted line is a PL scaling fit
(γ = 0.47(2)) and the black solid line corresponds to the 2D-XY model. The grey data
points were not included in the fit. The black vertical line indicates TN and the grey bar
the variance of TN.
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6.1. Single-layer Ca2RuO4

Dynamic critical properties

TAS measurements

Figures 6.10a-d show selected energy-scans at (1 0 0) measured on the cold neutron
TAS FLEXX with kf = 1.3Å−1. A temperature-independent BG from elastic
incoherent scattering recorded at 170K was subtracted from the raw data. The
BG corrected data are described by a fit with the sum of a resolution-limited
Gaussian-peak (FWHM ≈ 0.12meV) and a Voigt-function for the critical scattering.
The resolution was extracted from the width of the elastic magnetic scattering
at 80K, i. e. well-below TN. The free parameters of the fits are the amplitude of
the Gaussian-peak, and the amplitude and width of the Voigt-peak. As shown
in Fig. 6.11, the T -dependence of the amplitudes of the Gaussian and the Voigt
match the intensities of the (1 0 0) peak [Fig. 6.4b] and the amplitude of the
critical scattering at (1 0 0.83) [Fig. 6.4b, inset], respectively. Thus we assign the
former to elastic magnetic scattering from the (1 0 0) still present above TN due
to the variance of TN, which agrees with our NSE results discussed below. An
overview of the energy-scans and the resulting fit curves at selected temperatures
is shown in Fig. 6.10e. The noise in our data around ∆E = 0 is attributed to
the BG subtraction of the intense elastic (1 0 0) peak. Nevertheless, the tails
of the quasi-elastic scattering, which mainly contain the information on Γ, are
well-captured by our Voigt-fits.

The resulting energy-width Γ(T ) of the critical component is plotted in Fig. 6.12a.
Above 115 K, the data show a significant broadening, while below, no systematic
trend was observed. For these data (T ≤ 115K) the intensity of the (1 0 0) peak is
much stronger than the critical scattering and extraction of Γ(T ) in the fit is not
reliable. Therefore, we exclude this T -range in the following scaling analysis. We
will see below, that even with the higher energy-resolution of NSE spectroscopy
the separation of the two contributions at Q= (1 0 0) is challenging. To determine
the dynamic critical exponent z from Γ(T ) above 115K, in analogy to κ(T ), we
fit a convolution of the PL Γ ∝ |t|zν with a Gaussian distribution of TN (red
dotted line). By assuming Γ(T ) = 0 for T ≤ TN as predicted by dynamic scaling
theory [15], the PL fit yields zν = 1.1(1). In spite of the good agreement with the
data in Fig. 6.12a, the error margin is relatively large and only the 3D-H model
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Fig. 6.10: Selected energy scans of Ca2RuO4 before (a-d) and after (e) BG subtraction.
(a-d) Besides a constant high-T BG (170K), we fitted a sum of a broad critical Voigt-
profile and a resolution limited Gaussian-peak over the entire T-range. The latter is
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corresponding fits (solid lines). For clarity the curves are plotted with a constant offset.
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indicates the intensity level of the high-temperature (H-T) BG at 170 K.
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(zν3DH = 1.067, [15, 93]) and the 3D-I model (zν3DI = 1.26, [15, 18]) are reasonably
close to the obtained exponent (see Tab. 2.3). However, 3D-scaling is not expected
well above TN for this quasi-2D system. Furthermore, zν = 1.1(1) is far away from
the 2D-I scaling (zν2DI = 1.75, [16, 116]), which was discussed in the context of
κ(T ) of Ca2RuO4 (green dashed-dotted line in Fig. 6.7).

Next, we also examine the critical dynamics of Ca2RuO4 in terms of the 2D-XY
model. For the motion of vortices in a FM square-lattice a dynamic scattering
function S(q,ω) with a quadratic Lorentzian form (central peak) was derived
[265, 268, 269], and also experimentally observed [28, 270, 271]. However, such
a central peak is not present in our data [Fig. 6.10], which can be described by
a simple Lorentzian function. Thus, we use instead the dynamic scaling relation
Γ∝ κz suggested to be appropriate for relaxational dynamics in the 2D-XY model
[117] to check for 2D-XY scaling above 115K. The black solid line in Fig. 6.12a
shows the scaling for a critical exponent zXY = 2.0, which was postulated for
the 2D-XY model [117]. The agreement with the data is lower than for the PL
fit. Nevertheless, the black solid line lies almost within the errorbars at high
temperatures and deviations at low temperatures could be due to the variance of
TN or a crossover to a different scaling behavior. Using z as a free fit parameter
increases the agreement with the data, but the obtained value of zXY = 3.04(6) (fit
not shown here) is at odds with the 2D-XY universality class.

In addition, we determine z directly from plotting Γ vs. κ on double logarithmic
scales [Fig. 6.12b]. In such a plot, the slope of a linear fit on the data corresponds
to the critical exponent of the scaling relation Γ = κz. The resulting critical
exponent z = 2.9(2) (red dotted line) is not comparable to any known universal
value. However, the plotted Γ vs. κ data points might be affected by uncertainties
arising from the fact, that the Q- and energy-scans on Ca2RuO4 were performed
at different instruments, Q-positions, and temperatures. In more detail, the data
points in Fig. 6.12b were generated by interpolating κ(T ) to the temperatures at
which Γ(T ) was measured and the same fitting range (T > 115K) was included,
where the impact on TN distribution is negligible. We find that the 2D-XY model
(solid black line) with the exponent zXY = 2.0 [117] captures the Γ vs. κ data
reasonable well. Nevertheless, we performed complementary NSE measurements
with higher energy-resolution to confirm the TAS results.
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Fig. 6.12: (a) Energy-width Γ of Ca2RuO4 vs. temperature. The red dotted line is a
PL scaling fit with exponent zν = 1.1(1). The black solid line corresponds to a 2D-XY
scaling fit with zXY = 2.0 [117]. The grey data points are not included in the fits. The
black vertical line indicates TN and the grey bar the variance of TN. (b) Energy-width Γ
of Ca2RuO4 vs. the inverse correlation length κ on double-logarithmic scales. The red
dotted line is a linear fit with the slope corresponding to the dynamical critical exponent
z = 2.9(2), according to the scaling relation Γ ∝ κz. The black solid line corresponds
to the 2D-XY model with zXY = 2.0 [117]. This exponent is also proposed for the 3D-I
model [15, 18], but the 2D-XY model is consistent with the static critical properties.
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NSE measurements

At Q= (1 0 0)

Neutrons are sensitive to components of magnetic fluctuations perpendicular to
Q. For the TAS configurations used in this work, both the critical longitudinal
fluctuations (parallel to the static ordering vector) and the transverse fluctuations
are expected to contribute to the same S(Q,ω) and so to the TAS signal. In case
of Ca2RuO4, the corresponding fluctuations are along the b-axis (longitudinal)
and along the (a,c)-axes, respectively [Fig. 6.13]. A separation of the two compo-
nents would therefore require additional TAS measurements at another Q-position
[239, 252]. This can be circumvented by operating NSE with different magnetic
field orientations (see Chap. 5 and Ref. [54]). In consequence, we performed
complementary high-resolution measurements at the hybrid thermal neutron TAS
and NRSE spectrometer TRISP. The measurements were conducted at the same
array of co-aligned Ca2RuO4 single crystals described above [Fig. 6.3]. The data
were collected from different experimental runs, which we refer in the following to
exp. 1-3. In the first experimental run (exp. 1), the high-T BG was not measured in
all configurations and the BG-scan from exp. 2, scaled by a factor close to one, was
used instead. This scaling factor was extracted from a comparison of the scattering
intensities at T = 150K.
The spin-echo scans at TRISP are carried out either by scanning the electrical

current I02 through the DC-coil (DC2) in the second PD or by scanning the
translational position TC4 of the fourth RF-coil C4 [Chap. 5]. Depending on the
alignment of the magnetic fields B1,2 in the PDs (↑↓ or ↑↑) either SF-scattering on
the in-plane or out-of-plane magnetic fluctuations fulfill the echo condition and yield
a polarized signal. To assign the measured signal to the corresponding fluctuations
in Ca2RuO4, we apply the general spin-flip model [Fig. 5.9] on the scattering plane
and Q-position used in Ca2RuO4 [Fig. 6.13]. It follows that the scattering on the
fluctuations along the c-axis satisfies the echo-condition for parallel (↑↑) fields
due to the effective field inversion (ϕf,c = π−ϕi), whereas the echo-condition for
scattering on the fluctuations along the twinned (a,b)-axis (ϕf,(a,b) = π+ϕi) is
fulfilled for antiparallel (↑↓) fields. In this channel also contributions from both
nuclear coherent and incoherent scattering can be expected.

100



6.1. Single-layer Ca2RuO4

x || Q = (100)

y

My 

Mz

Pf,y

Pf,z

φf,y = π - φi  
φi

φf,z = π + φi  

Pi
Mz = M|| || b

My = M⟂ || c 

Fig. 6.13: The model of magnetic spin-flip scattering, shown in Fig. 5.9, applied on the
scattering plane used in our sample (H 0 L). We assume that QAFM = (100) is parallel
to the x-axis and hence the intrinsic longitudinal M‖ and transverse M⊥fluctuations
correspond to Mz and My of the model.

In Fig. 6.14, we show exemplary spin-echo scans for τ = 2ps (DC-mode) and
τ = 20ps (RF-mode) for parallel and antiparallel field alignments at various tem-
peratures. We observe a phase-shift of ∼ π between the 80K data (T � TN) and
the 150K data (T � TN), where magnetic scattering is weak [Fig. 6.4]. Since
nuclear spin-incoherent scattering is negligible in Ca2RuO4 [227], which could affect
spin-flip scattering, we assign the phase-shift instead to the magnetic spin-flip
scattering. To extract the polarization from the spin-echo scans, we fitted the data
with the sinusoidal relation [Eqn. (5.19)] and used the corresponding ∆ϕ for DC-
and RF-mode [Eqn. (5.22)].
The resulting phase-offset of the raw-data relative to the high-T BG in units

of π is plotted in Fig. 6.15. We observe for all three experiments a phase-shift of
∼ π at T ≤ 120K, which abruptly changes towards ∼ 0 at 120K. This indicates
that magnetic spin-flip scattering becomes weak above 120K. In addition, there
is a phase-shift of ∼ π/4 in the exp. 1 data (blue points) compared to the other
experiments. Such a phase-shift can have two origins in our measurements: (i)
Hysteresis effects due to a rapid change of the magnetic field alignments from
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Fig. 6.14: Example NSE-scans for the parallel (↑↑) and anti-parallel (↑↓) magnetic field
directions B1,2 at selected temperatures and spin-echo times τ . The echo-condition can
be fulfilled either by scanning the current I02 (DC-mode, τ = 2ps, a-d) or the length of
the second PD (RF-mode, τ = 20ps, e-h). The latter is realized by translation TC4 of
the fourth NRSE-coil. The signal at 150K (a,e), i. e. far above TN, is associated with a
non-magnetic high-T BG. The resulting cosine-fits [Eqn. (5.19)] are indicated by dashed
and solid lines. For comparison the H-T BG in (↑↓) configuration is included by grey
solid lines. Based on the phase-shift of the data compared to the H-T BG, we can infer
magnetic spin-flip scattering.
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(↑↑) to (↑↓) or (ii) A general phase-shift of the exp. 1 scans relative to the other
experiments and thus also to the used BG from exp. 2. As we measured at least the
BG in DC-mode for antiparallel fields in exp. 1, we could determine the phase-shift
of the exp. 1 data relative to this BG (not shown here). We found a smaller but still
significant phase-shift compared to the other experiments. We therefore propose
hysteresis effects as origin for the differing phase-shift in the exp. 1 measurements.
However, a correction for hysteresis effects would be complex. Thus, we did not
correct our exp. 1 data for these effects and used the scaled BG from exp. 2 for the
analysis. We will see below, that at higher temperatures where the signal to BG
ratio becomes low, the energy-widths of the exp. 1 series are no longer reliable due
to this non-ideal BG treatment.
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Fig. 6.15: Phase-offset of the NSE-scans for antiparallel fields (before BG subtraction)
related to the high-T BG in units of π vs. temperature. The colors are assigned to the
different experimental runs.

In Fig. 6.16a, the intensity I0 of the raw data vs. temperature is plotted. The
data show order parameter-like behavior over the entire T -range, that is smeared
out in vicinity of TN analogous to the (1 0 0) Bragg-peak intensity measured in
TAS mode [Fig. 6.4].

The polarization of the raw data vs. τ for selected temperatures is shown in
Fig. 6.17. Here the polarization was normalized for the instrumental depolarization,
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Fig. 6.16: Intensity of the NSE-scans in DC-mode and with antiparallel fields vs. tem-
perature before (a) and after (b) BG subtraction. The colors are assigned to the different
experimental runs.

i. e. the loss of beam polarization as it passes through the spin-echo coils. More
precisely, we normalized the data on the polarization extracted from the 80K
scan with antiparallel fields, where strong elastic magnetic scattering is expected.
The small fluctuations of the polarization around ’1’ at 80K after normalization
[Fig. 6.17a] arise from the fact, that the τ -dependence of the polarization at
small spin-echo times was approximated by an exponential function according to
Eqn. (5.18).

From the polarization of the raw data in Fig. 6.17, we can conclude: (i) The signal
contains a small polarization for parallel magnetic fields (τ > 0). (ii) For τ < 0 (↑↓)
and T >TN, the polarization starts to decrease with |τ | and temperature [Fig. 6.17b],
as expected for nonzero energy-widths Γ(T ). Interestingly, the polarization saturates
at 117K for τ <−10 ps at a nonzero value [Fig. 6.17c]. This cannot be explained
by accounting the critical scattering alone, but indicates an additional component.
(iii) The polarization of the high-T BG is almost constant at 0.5 and thus higher
than the 117K data [Fig. 6.17d]. However, from the T -dependence of the phase-
offset [Fig. 6.15a] and the critical fluctuations [Fig. 6.4a, inset], we can infer that
the magnetic scattering is small or absent at 150K. Hence, the polarization is
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6.1. Single-layer Ca2RuO4

solely attributed to elastic (Γ = 0) NSF scattering [84, 230] without magnetic
contributions.
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Fig. 6.17: Polarization vs. τ before BG subtraction for selected temperatures. While the
τ and T -dependent depolarization is expected for critical scattering above TN (b,c), there
is no significant polarization at τ > 0. The saturation of the polarization for |τ |> 10 ps
for antiparallel fields in panel (c) indicates an additional NSF component. The constant
polarization of the 150K data (BG) for τ < 0 is assigned to elastic NSF scattering with
energy linewidth Γ = 0.

Next, we discuss the data after subtracting a high-T BG. The BG-subtraction was
performed as explained in the following: First, we fitted the 150K scan (BG) with
the sinusoidal function [Eqn. (5.19)] and then subtracted the BG-scan IBG(∆ϕ)
from the data I(T,∆ϕ) = Iraw(T,∆ϕ)−IBG(150K,∆ϕ). The resulting BG-corrected
data are then fitted again with Eqn. (5.19) to determine the polarization. In this
procedure, we assume that the phases of the NSE scans are constant for each
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

τ , which is reasonable for Ca2RuO4 as the experimental set-up did not change
in between the different runs. A more general BG treatment is shown below for
CeCu5.8Au0.2 (see Chap. 7), where the BG is instead included in the fit function.
In Fig. 6.16b, the mean NSE intensity I0 vs. T is plotted after BG subtraction. I0

still shows an order parameter-like behavior that is smeared out in vicinity of TN,
which is in line with the TAS experiments above [Fig. 6.4a].

Now, we discuss the spin-echo polarization P vs. τ and temperature. In Fig. 6.18,
a number of P (τ) curves at selected temperatures are shown. For the parallel field
alignment (τ > 0), still no significant polarization is observed at T ≤ 121K. The
small constant polarization found at T > 121K is attributed to artefacts from the
limited statistics of our data. Moreover, no fast oscillations of the polarization at
small τ were found, which are a hallmark of interfering scattering from in-plane and
out-of-plane fluctuations [54]. This signals that the in-plane fluctuations (along
the c-axis) are weak or absent. A possible explanation for this is that the c-axis
fluctuations might be gapped in our T -range for the quasi-2D system Ca2RuO4.
The black solid line in the overview plot [Fig. 6.18e] represents the depolarization
due to the nonzero velocity-distribution of the neutrons. It indicates that P (τ > 0)
results mainly from the depolarization of the out-of-plane scattering component,
which does not fulfill the echo-condition for parallel fields.

For τ < 0, on the other hand, we observe a T -dependent depolarization upon
heating with a saturation at nonzero polarization for τ <−10 ps. This resembles the
observations made before BG correction and confirms that the second component
with Γ = 0 does not result from the subtracted elastic nuclear NSF BG, but is
attributed to elastic magnetic (1 0 0) scattering (elastic component). To finally
extract Γ(T ), we fitted our data with a ray-tracing simulation (RTS) based on
[54, 251] and described in Chap. 5 [Fig. 6.18]. The assumptions of our simulation
are: (i) P (τ = 0) = P0 = 1. (ii) The detailed balance factor (cf. Eqn.(2.24)) in
our T -range is 1. (iii) Fast oscillations of the polarization are absent in our data
and therefore in-plane fluctuations (along c-axis) are neglected. (iv) The linewidth
of the so-called elastic component at τ < 0 is constant and 0. (v) The neutron
velocity distribution ∆ki of the incident beam is constant. (vi) The intensity-
ratio of the critical and elastic component is fixed to the ratio of the integrated
intensities derived from the TAS energy-scans at FLEXX. Assumption (vi) was
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6.1. Single-layer Ca2RuO4

made to reduce the total number of free parameters in the RTS. We also tried
fitting the data without assumption (vi), i. e. with a free intensity-ratio, and found
agreement with the ratio derived from the TAS experiment close to TN, whereas at
T > 120K deviations emerged. These deviations, however, were assigned to the
larger statistical errors of the NSE data at higher T .
The resulting Γ(T ) of the critical component, i. e. the longitudinal fluctuations

along the magnetic easy axis (b-axis) is plotted in Fig. 6.19 (triangles). For compar-
ison, we have also included the energy widths derived from the TAS measurements
on FLEXX (blue circles). With the exception of the exp. 1 data at T ≥ 120K (light
orange triangles), a continuous broadening of Γ(T ) is observed from TN to 125K,
similar to the TAS measurements. Above 125K, the signal-to-BG ratio is too
small for a reliable extraction of Γ(T ).The deviation of the exp. 1 data above 120K
from the other experiments is assigned to the non-ideal subtraction of the scaled
BG from exp. 2, which is only an approximation that deteriorates with a smaller
signal-to-BG ratio. We therefore neglect these data and the 130K point in the
following analysis of the scaling behavior. Moreover, analogous to the TAS data, a
reliable separation of the critical component and the strong elastic component in
close vicinity to TN was not possible.

Overall, the NRSE data show a similar temperature-scaling, as derived from the
TAS experiments. This is also reflected in the extracted critical exponents from
the PL fits (dotted lines). While the TAS data reveal an exponent of zν = 1.1(1),
the PL fit on the NRSE data in the range 112-126K yields zν = 0.90(3) (a fit in
the same T -range as for TAS reveals zν = 0.91(3)). We attribute the deviation
between the critical exponents to the rather broad signals for the high-energy
resolution of NRSE. For Γ > 0.2meV, for instance, the cut of the Lorentzian
tails due to the resolution of the background triple-axis spectrometer (FWHM
≈ 1meV for ki = 2.66Å−1) can yield an effective experimental Γ that is about 20%
smaller than the intrinsic value. This was estimated by fitting the product of a
Lorentzian-function L(Γin,ω) with an intrinsic width Γin and a Gaussian-function
(TAS resolution), with a Lorentzian function L(Γout,ω) with width Γout (not shown
here). Although we account for the energy-cut from the TAS resolution in the
RTS, it might be underestimated due to the limited statistics of our data. We
therefore conclude that the NSE results are broadly consistent with the dynamic
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Fig. 6.18: (a-d) P(τ) curves after BG subtraction at representative temperatures. The
solid lines correspond to fits from neutron ray-tracing simulations. We observe two
components for τ < 0: (i) A component (grey dashed line) with constant polarization
according to a linewidth Γ = 0 (elastic component) and (ii) a component assigned to critical
fluctuations (black dotted line) with a nonzero, T -dependent Γ (critical component).
In the fit the two components are weighted with an intensity ratio according to the
integrated intensities from the TAS measurements at FLEXX. (e) Overview of P(τ)
curves for selected temperatures with corresponding fits from ray-tracing simulations.
The black solid line indicates the depolarization of an elastic component not fulfilling the
echo-condition. For clarity, we plotted the curves with a constant offset.
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6.1. Single-layer Ca2RuO4

scaling derived from our TAS measurements and furthermore, that our TAS data
are more trustworthy for the broad energy-widths.

110 120 130
0.0

0.5

1.0

TAS data
NRSE data
PL fit

�
(m
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)

T (K)

Ca2RuO4

Q = (1 0 0)

Fig. 6.19: Energy-width Γ(T ) of Ca2RuO4 derived from TAS (blue points) and NRSE
(red triangles). The light orange triangles were obtained from the exp. 1 dataset, in which
no high-T BG was measured. Although the NRSE data show a small y-offset, the scaling
behavior is similar with an exponent of zν = 0.90(3) from a PL fit in the range 112-126K.
For comparison we added the PL scaling fit on the TAS data with exponent zν = 1.1(1)
(blue dotted line). The grey and light orange data are not included in the fits and the
grey bar indicates the variance of TN.

At Q= (1 0 0.53)

In addition, we performed a series of NRSE-scans in distance to the magnetic
Bragg-peak at Q= (1 0 0.53) to suppress the elastic component and determine the
energy-width close to TN. We choose QL = 0.53 corresponding to an instrumental
TAS configuration with kf ‖ c for the used neutron wave vector 2.51Å−1.

According to the spin-flip model of Ca2RuO4 at Q= (1 0 0) [Fig. 6.13] described
above, we illustrate the corresponding spin-flip processes at Q = (1 0 0.53) in
Fig. 6.20. It appears that overall the echo-conditions are fulfilled for the same
configurations, i. e. we mainly probe the scattering on fluctuations along the c-axis
for parallel field alignment (τ > 0), while we are sensitive to the scattering on the
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

fluctuations along the twinned (a,b)-axis for antiparallel fields (τ < 0). However,
since we study the magnetic components perpendicular toQ with neutron scattering,
strictly speaking we only detect the projection of M⊥,c on My. From the lattice
parameter we can only estimate a marginal difference My = 0.97M⊥,c and thus
assume My ∼M⊥,c in good approximation. In Fig. 6.21, we show exemplary spin-

a

c

My 

Mz

Pf,y

Pf,z

φf,y = π - φi  

φi

φf,z = π + φi  

Pi
Mz = M|| || b

My ~ M⟂ || c 

x || Q = (1 0 0.53)

y

M⟂,c 

14°

Fig. 6.20: Model of magnetic spin-flip scattering used for Ca2RuO4 at (1 0 0)
(cf. Fig. 6.13) adjusted for Q= (1 0 0.53). My is a projection of M⊥,c||c (light blue arrow)
as neutrons probe only the magnetic components perpendicular to Q. However, with the
corresponding lattice parameter M⊥ ∼My is assumed in good approximation.

echo scans for τ = 3ps (DC-mode) and τ = 30ps (RF-mode) in both operation
modes at various temperatures. The scans at 80K (T � TN) and 170K (T � TN)
are essentially the same in contrast to the measurements at (1 0 0) [Fig. 6.14].
This unambiguously confirms that the contributions from the 3D magnetic (1 0 0)
Bragg-peak are negligible at (1 0 0.53). On the other hand, the magnetic spin-flip
scattering at 114K (T > TN), indicated by a phase-offset of π [Fig. 6.21c], signals
the appearance of pure quasi-2D critical magnetic fluctuations. This is consistent
with the peaked scattering intensity observed at (1 0 0.83) [inset Fig. 6.4a].

The resulting phase-offset of the raw-data relative to the high-T BG in units of π
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Fig. 6.21: Exemplary NSE scans for the parallel (↑↑) and antiparallel (↑↓) magnetic
field alignments of B1,2 at selected temperatures and spin-echo times τ = 3ps (DC-mode,
a-d) and 30 ps (RF-mode, e-h), respectively. The resulting cosine-fits [Eqn. (5.19)] are
indicated by dashed and solid lines. For comparison the high-T BG in (↑↓) configuration
is shown by grey solid lines.
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is plotted in Fig. 6.22. For the DC-mode scans [Fig. 6.22a], the phase-offset shows
a peaked structure with its maximum at π and 114K. Whereas, the RF-mode scans
show no phase-offset over the entire T -range.
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Fig. 6.22: Phase-offset of the NSE scans in SE-mode (↑↓) at Q= (1 0 0.53) before BG
subtraction relative to the high-T BG in units of π vs. temperature for two selected τ .

Figure 6.23a shows the corresponding mean intensity I0 of the raw NSE data
vs. temperature. The intensity exhibits a peaked T -dependence with the maximum
at 114K in agreement with the critical scattering intensity measured at (1 0 0.83)
[inset in Fig. 6.4a]. This allows us to interpret the phase-offsets shown in Fig. 6.21
as follows: (i) The peaked-shaped phase-offset at small τ [Fig. 6.21a] results from
SF scattering on critical magnetic fluctuations, which becomes weaker as one moves
away from TN. Hence, the BG-to-signal ratio becomes more prominent at low
and high temperatures and the phase-offset disappears. (ii) The absence of a
phase-offset at higher τ [Fig. 6.21b] over the entire T -range indicates that the
depolarization P (τ) of the critical component happens already at relatively small
τ , i. e. the linewidth of the signal is significantly broad even at low temperatures.
The normalized polarization of the raw data vs. τ for selected temperatures is

shown in Fig. 6.17. Since no elastic magnetic scattering was observed at (1 0 0.53),
we used the same normalization as for the (1 0 0) data. Prior to the BG subtraction,
we can already assume the following: (i) The polarization of the 80K and 170K
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Fig. 6.23: Intensity of the NSE scans (DC mode) for antiparallel fields vs. temperature
before (a) and after (b) BG subtraction.

(BG) data are essentially the same and describe an elastic NSF BG. (ii) For 114K,
the polarization shows a sudden drop at small τ and increases again for larger τ ,
indicating a mixture of critical fluctuations and the NSF BG. This is in line with
the absence of a phase-offset at larger τ .

Next, we discuss the data after subtracting a high-T BG analogous to the
Q = (1 0 0) data. The intensity I0 vs. T is shown in Fig. 6.23b. I0 is still
peaked at TN, which is consistent with the TAS experiments above [Fig. 6.11].
Figure 6.25 shows several P (τ) curves at selected temperatures. No significant
polarization is observed for the parallel field alignment (τ > 0). Moreover, again no
fast oscillations of the polarization at small τ were found, which are a hallmark of
interfering scattering from in-plane and out-of-plane fluctuations [54]. This coincides
with our results obtained at (1 0 0) and signals that the in-plane fluctuations,
i. e. along the c-axis are weak or absent and might be gapped in our T -range.
The black solid line in Fig. 6.25 represents the depolarization due to the nonzero
velocity-distribution of the neutrons. It indicates that P (τ > 0) mainly results from
the depolarization of the out-of-plane scattering (longitudinal), which does not
fulfill the echo-condition for parallel fields. For τ < 0, we observe a fast τ -dependent
depolarization. To extract Γ(T ), we fitted our data with a RTS based on [54, 251]
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Fig. 6.24: Normalized polarization vs. τ before BG subtraction for selected temperatures.
The polarization of the 80K and 170K data (BG) are essentially the same describing a
NSF BG. For 114K the polarization shows a sudden drop at small τ and increases again
for larger τ due to a mixture of critical fluctuations and the NSF BG.
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and described in Chap. 5 [Fig. 6.25]. The assumptions of our simulation are: (i)
P (τ = 0) = P0 = 1. (ii) Since fast oscillations of the polarization are absent at small
τ , in-plane fluctuations (along c-axis) are neglected. (iii) The neutron velocity
distribution ∆ki of the beam is constant.
The resulting Γ(T ) of the longitudinal critical component, i. e. the fluctuations

along the magnetic easy axis (b-axis), is plotted in Fig. 6.26 (black squares). For
comparison, we also included the energy widths derived from the TAS (blue circles)
and the NRSE measurements at (1 0 0) (triangles). Below 120K, the linewidths
do not fit the data from the other two experiments. The deviation from the TAS
data could, in principle, be explained by the quite broad signals for NSE, which
are cut by the background TAS. However, this cannot explain the deviation from
the NRSE data obtained at (1 0 0). We therefore attribute the offset in Γ close to
TN to the appearance of 3D-couplings, which is associated with a QL-dependence
of Γ, reminiscent of what we observed previously for κ at (1 0 0.83) [Fig. 6.7]. This
is also consistent with predictions of the dynamic scaling theory Γ(TN, q)∝ qz (see
Chap. 2). Furthermore, such a QL-dependence close to TN would also explain the
agreement of Γ(T ) with the other experiments at elevated temperatures, where
the 3D-couplings become negligible. In this respect, it would be of major interest
to determine z also from the q-dependence at T ∼ TN and compare it with the
non-universal value extracted from the temperature-scaling of Γ and κ [Fig. 6.12].
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Fig. 6.26: Energy-width Γ(T ) of Ca2RuO4 derived from TAS (blue points), NRSE
at (1 0 0) (blue triangles), and NRSE at (1 0 0.53) (black squares). For T ∼ TN, the
(1 0 0.53) data do not match the linewidths from the other experiments likely due to
the appearance of 3D-couplings and thus a QL-dependence close to TN. The light orange
triangles were part of the exp. 1 dataset where no high-T BG was measured. Although
the NRSE data at (1 0 0) show a small y-offset, the scaling behavior is similar with an
exponent of zν = 0.90(3) from a PL fit in the range 112-126K. For comparison, we added
the PL scaling fit on the TAS data with exponent zν = 1.1(1) (grey dotted line). The
grey and light orange data are not included in the fits.
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6.2. Bilayer Ca3Ru2O7

We have seen so far that the critical scaling in single-layer Ca2RuO4 in consistent
with the 2D-XY model. The following section on Ca3Ru2O7 shows that the critical
behavior changes to more 3D character due to the occurrence of intra-bilayer
exchange interactions.

Experimental details

About 30 Ca3Ru2O7 single-crystals with a total mass of 0.8g that included or-
thorhombic (a,b)-twins were co-aligned on Si-plates with thicknesses of 0.5 mm and
arranged in Al-sample holders [Fig. 6.27a]. The lattice parameter are a= 5.36Å,
b= 5.53Å, c= 19.54Å and the mosaicity of the sample array was about 3 °. Due
to the (a,b)-twinning, the scattering plane was (H 0 L)/(0 K L) as for Ca2RuO4

[Fig. 6.27a,b].
The experiments on Ca3Ru2O7 [272] were carried out at ThALES [273], which

is a cold neutron TAS at the ILL. For the Q- and energy-scans the instrument
was operated (i) in two-axis mode with scattering sense SM = 1, SS = −1 and
ki = 1.3Å−1 and (ii) in three-axis mode with SM = 1, SS = −1, SA = 1 and
kf = 1.3Å−1 with double focusing monochromator and analyzer (energy resolution
≈ 0.08meV). A Be-filter was used to suppress higher monochromator orders.

Static critical properties of Ca3Ru2O7

Figure 6.28a shows the magnetic (0 0 1) peak intensity I001 measured upon warming,
with a first-order transition at TN,2 ≈ 48K and a second-order transition at TN,1 ≈
56K, in good agreement with Ref. [195]. In contrast to the magnetic peak of
Ca2RuO4 [Fig. 6.4a], I001 of Ca3Ru2O7 drops sharply towards TN,1, suggesting
that possible distribution of Néel temperatures ∆TN,1 is negligible. We explain this
observation with the appearance of less pronounced intrinsic crystal strains above
the structural transition at TN,2. Moreover, in comparison to Ca2RuO4, the crystal-
field distortions are expected to be weaker in Ca3Ru2O7 [7]. In order to establish
the presence of critical scattering, we measure the scattering intensity in distance to
the (0 0 1) Bragg position at Q= (0 0 1.3) as a function of temperature (see inset
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Fig. 6.27: (a) Picture of the used sample array of Ca3Ru2O7 (b) (H 0 0) scan shows
(2 0 0) and (0 2 0) peaks due to twinning of the Ca3Ru2O7 crystals in the (a,b)-plane.
The peak positions are slightly shifted with respect to the nominal QH values because
the lattice parameter were not yet adjusted. The grey solid line corresponds to a fit with
two Gaussian-functions (FWHM ≈ 0.04 r.l.u.). (c) Rocking (A3) scans at the magnetic
(0 0 1) peak in the ordered regime at 50K (T < TN).

Fig. 6.28a). The corresponding critical intensity in the inset in Fig. 6.28a peaks at
TN,1, and its magnitude is compatible with the remaining intensity for T > TN,1

in Fig. 6.28a. A PL fit (without a TN,1 distribution) in the range 49K< T < TN,1

(0< |t|< 0.1), i. e. between TN,1 and TN,2, yields a critical exponent β = 0.230(6)
and TN,1 = 54.16(2)K [Fig. 6.28]. Figure 6.28b shows I001 and the PL fit on a
double-logarithmic scale, suggesting a purely linear evolution of I001 in such a plot
for the measured temperatures. The obtained value of β matches the universal value
of the 2D-XY model (β = 0.23 [91, 274]), although it should be taken with caution
as the point density in close vicinity of TN,1 is sparse. Moreover, the intrinsic scaling
behavior could be obfuscated due to a contribution in the scattering intensity from
an overlap with the second transition at TN,2.
To extract κ(T ) and the amplitude of the critical scattering, we carried out

QH-scans around (H 0 1) in the two-axis mode. The ideal energy-integrating config-
uration used for Ca2RuO4 is not applicable for 3D systems (see Chap. 5). Therefore,
we performed a numerical simulation to estimate the effects of inelasticity on the
experimental Q-width and found that the integration according to Eqn. (5.12)
is sufficiently satisfied for our two-axis configuration in Ca3Ru2O7 (see Chap. 5).
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Fig. 6.28: Critical scattering and magnetic order parameter in Ca3Ru2O7. (a) Intensity
of the magnetic (0 0 1) peak. Below TN,2 = 48K, the magnetic moments reorient from
m ‖ a to m ‖ b. The red solid line is a power-law fit, which yields TN = 54.16(2)K and
β = 0.230(6). The inset shows the intensity measured at Q= (0 0 1.3), with the increase
of intensity in vicinity to TN ∼ 54K indicating the presence of critical scattering. (b)
Shows the same data as in (a) for T < TN on a double-logarithmic scale. In contrast
to Ca2RuO4 [Fig. 6.4b], no deviation from a straight line is visible, suggesting that a
possible distribution of TN,1 is negligible.
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6.2. Bilayer Ca3Ru2O7

Moreover, for Ca3Ru2O7, spin-echo experiments to discern longitudinal and trans-
verse fluctuations are planned in future experiments, but have not been carried
out yet. Nonetheless, from the fact that in the present study both, the static and
dynamical critical fluctuations in Ca3Ru2O7 are well-captured by power-laws (see
below), we conclude that the non-critical transverse fluctuations do not contribute
significant intensity around TN,1 [261].
From the QH-scans we subtracted two BG components: (i) A sharp peak at

H = 0, which is clearly visible at high-T (150K) [Fig. 6.30a]. In addition, we
performed a scan around (H 0 1.25) at 100K and found that the sharp feature
is independent of QL and T [Fig. 6.29]. Thus, we assign it to 2D diffuse nuclear
scattering from disorder along the c-axis due to e. g. stacking faults. (ii) The
sharp resolution-limited (0 0 1) peak with Gaussian-width ≈ 0.01 r.l.u. [Fig. 6.30b],
which rapidly vanishes above TN,1. The (0 0 1) peak is intense at T ≤ 54.5K and
the extraction of critical scattering is not reliable. The BG corrected QH-scans
can be captured by a simple Voigt-profile (intrinsic Lorentzian critical scattering
convoluted with instrumental Gaussian-profile) [Fig. 6.30e], as expected for 3D-like
systems (η ≈ 0). A critical scattering intensity can be clearly observed at least
up to 70K. There might also be a contribution from critical fluctuations even at
100K, but since it is very weak we do not consider this temperature in the following
analysis.

In order to extract the critical exponent ν, the resulting Q-width κ(T ) is plotted
in Fig. 6.31a on double logarithmic scales. In the following analysis of Ca3Ru2O7,
we extract the critical exponents of the PLs from the slopes of linear fits in plots
with double logarithmic scaling, whereas plots with linear scaling were employed in
the above analysis of Ca2RuO4, due to the variance of TN in the latter material.
The red dotted line shows a linear fit in the range 55K ≤ T ≤ 70K with the
slope corresponding to the critical exponent in the scaling relation κ ∝ tν . The
obtained ν = 0.550(4) lies between the 3D-I (ν3DI = 0.630, [18]) and the MF model
(νMF = 0.5). The MF model, however, is at odds with the modeling of the magnon
dispersion of Ca3Ru2O7 in Ref. [7], which used only nearest-neighbor couplings
and no long-ranged interactions in the spin Hamiltonian [16]. Thus, we assign the
critical scaling of κ(T ) rather to the 3D-I model. In analogy to Ca2RuO4, we also fit
κ(T ) of Ca3Ru2O7 with the 2D-XY model, using Eqn. (2.15), η = 0.25, and b= 1.9.
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Fig. 6.29: (H 0 QL) scans in the two-axis mode at QL = 1 and 1.25 for T = 100 and
150 K. The corresponding TAS angles are: A4 (A3) = 13.8 ° (83.1 °) and 17.3 ° (81.3 °).

The obtained KT-temperature is TKT = 45.42(6)K, but the agreement between the
fit (black dashed-dotted line) and the data is unsatisfactory for most temperatures
[Fig. 6.31a]. We also test a fit with b as a free parameter, since lower values of b
were reported in some experiments [109, 275] and derived in numerical calculations
[265]. Such a fit (not shown here), with b = 0.44(1) and TKT = 53.18(7), yields
a better agreement with the κ(T ) data of Ca3Ru2O7. However, using the latter
values of b and TKT as an input for the fit of the critical amplitudes (see below)
results in a very strong deviation from the data (not shown here) and is therefore
disregarded. In summary, we conclude that the 3D-I model is most appropriate to
describe the critical behavior of κ(T ) above TN.

Additionally, the data might indicate a deviation from the straight line at
T ≥ TN + 5K (∼ 60K), signalling a potential crossover in the scaling behavior.
We therefore coarsely estimated the crossover to Ising scaling in Ca3Ru2O7 from
Eqns. (2.22) and (2.23) by assuming ε as the anisotropic exchange JA. We derived
Ising scaling for correlations lengths ξ ≥

√
Jc/ε= 1.6, which corresponds to

κ≤ 1/(2π ·1.6)≈ 0.1r.l.u. . (6.1)
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Fig. 6.30: Selected energy-integrated transverse QH-scans around (H 0 1) for Ca3Ru2O7
before (a-d) and after (e) BG subtraction. (a) The high-T BG contains a sharp peak
that is independent of QL. (b) Close to TN,1, a resolution limited Gaussian-component
arising from the (0 0 1) magnetic Bragg-peak is observed in addition to the Voigt-profile
of the critical scattering. (c,d) Above TN,1, the sharp peak and critical scattering are
observed. (e) Selected QH-scans after BG subtraction with corresponding fits (solid lines).
For clarity the data are plotted with a constant offset.
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For the crossover temperature, we get

Tco = TN +TN · (ε/Jc)
1

1.175 ≈ 80K .

Thus, both estimations suggest that we are close to a XY to Ising crossover, albeit
in our T -range we expect Ising scaling. This is consistent with κ(T ).

The critical exponent γ of the staggered susceptibility is obtained by fitting the
corresponding peak amplitudes S0/T with the PL scaling χ ∝ t−γ in the range
55K≤ T ≤ 70K. From the slope of the corresponding linear fit (red dotted line)
in the double-logarithmic plot [Fig. 6.31b], we extract γ = 1.290(4), which is close
to the value predicted for the 3D-I model (γ3DI = 1.238, [18]), as indicated by the
green solid line in Fig. 6.31b. For the comparison with the 2D-XY model, we use
Eqn. (2.17), with η = 0.25 and b= 1.9, as well as TKT = 45.42K determined from
the fit of κ(T ) above. In spite of good agreement with the data at T > TN + 2K
(see black dashed-dotted line), the PL fits are much more suitable to describe the
scaling of the critical amplitudes closer to TN.

Dynamic critical properties of Ca3Ru2O7

Figures 6.32a-d display selected energy-scans at the (0 0 1) peak of Ca3Ru2O7. A
constant elastic incoherent high-T BG is subtracted from the energy-scans, which
was measured at T = 100K, where the contribution of critical scattering is negligible
[Fig. 6.30d]. Subsequently, a single Voigt-function (Gaussian-width ≈ 0.06meV) is
fitted to the scans. An overview of the energy-scans after BG subtraction with the
corresponding fits is plotted in Fig. 6.32e for selected temperatures. The resulting
energy-width Γ(T ) of Ca3Ru2O7 is shown in Fig. 6.33a on double logarithmic
scales. The data are well-captured by a linear fit (red dotted line) in the range
55K≤ T ≤ 70K with a slope zν = 1.186(8), corresponding to the critical exponent
in the scaling relation Γ∝ tzν . This exponent is close to the value predicted for the
3D-I model (zν3DI = 1.260, [15, 18]) indicated by the green solid line in Fig. 6.33a,
which is consistent with the static critical properties. In analogy to Ca2RuO4, we
also carry out a fit with the 2D-XY model, using the dynamic scaling relation Γ∝ κz

with zXY = 2.0 [117]. The resulting fit (black dashed-dotted line in Fig. 6.33a)
describes the data reasonably well at high temperatures, but deviates strongly in
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Fig. 6.31: Temperature-dependence of (a) inverse correlation length κ(T ) and (b) peak
amplitude S0(T )/T of Ca3Ru2O7 on double logarithmic scales. (a) The data are well-
captured by a linear fit in the range 55K≤ T ≤ 70K (red dotted line), with the slope
corresponding to the critical exponent ν = 0.550(4) in the scaling relation κ∝ tν . The
green solid line indicates 3D-I scaling. The black dashed-dotted line corresponds to the
2D-XY model with TKT = 45.42(6)K and b= 1.9. (b) The red dotted line is a linear fit
with the slope corresponding to the critical exponent γ = 1.290(4), according to the scaling
relation χ∝ t−γ . The green solid line indicates 3D-I scaling. The black dashed-dotted
line corresponds to the 2D-XY model with TKT = 45.42(6)K, b= 1.9, and η = 0.25. The
grey data points were not included in the fits
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Fig. 6.32: Selected energy scans of Ca3Ru2O7 before (a-d) and after (e) BG subtraction.
(a-d) In contrast to Ca2RuO4, the Ca3Ru2O7 data could be well fitted by a single Voigt-
profile and a constant elastic high-T BG measured at 100K. (d) Selected energy scans
after BG subtraction with corresponding fit functions (solid lines). For clarity the curves
are plotted with a constant offset.
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6.2. Bilayer Ca3Ru2O7

proximity to TN. Figure 6.33b shows a plot of Γ vs. κ on double logarithmic scales,
which allows to determine z directly. From the slope of a linear fit (red dotted line),
we derive z = 2.14(2) as the critical exponent, which is close to z = 2.0 proposed
for the 3D-I model [15, 118] and consistent with the Γ(T ) scaling above. Note that
z = 2.0 also corresponds to the 2D-XY model [117]. However, since the 3D-I scaling
is also compatible with the temperature-dependence of the Q-width and critical
amplitudes at T > TN of Ca3Ru2O7, we consider this model as most appropriate.
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Fig. 6.33: Energy-width Γ of Ca3Ru2O7 vs. temperature (a) and the inverse correlation
length (b) on double-logarithmic scales. (a) The red dotted line is a linear fit with
the slope corresponding to the critical exponent zν = 1.186(8), according to the scaling
relation Γ∝ tzν . The green solid line indicates 3D-I scaling with zν3DI = 1.260 [15, 18].
The black dashed-dotted line corresponds to the 2D-XY model with the exponent z = 2.0
[117]. (b) The red dotted line is a linear fit with the slope corresponding to the critical
exponent z = 2.14(2), according to the scaling relation Γ ∝ κz. The green solid line
corresponds to 3D-I scaling and the 2D-XY model, which both exhibit the exponent
z = 2.0 [15, 117]. However, the 3D-I model is also consistent with the static critical
properties of Ca3Ru2O7. The grey data points were not included in the fits.
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

6.3. Ti-doped bilayer Ca3(Ru0.99Ti0.01)2O7

Ca3Ru2O7 is close to electronic and magnetic instabilities, as outlined in Chap. 3.
In consequence, only a marginal doping with Ti-ions is sufficient to tune the ground
state of the A-type AFM correlated metal Ca3Ru2O7 to a G-type AFM Mott-
insulator, similar to what is realized in Ca2RuO4. It is therefore of great interest
to study how the critical behavior in Ca3(Ru1−xTix)2O7 changes in vicinity to the
G-type magnetic transition. According to [201], for our crystals a sharp single-step
transition to a pure G-type AFM ground state is expected from 1%-Ti doping
(x≥ 0.01). We see below, that this sharp-transition has first-order character and
thus critical magnetic fluctuations are suppressed in Ca3(Ru0.99Ti0.01)2O7.

Experimental details

About 30 Ca3(Ru0.99Ti0.01)2O7 single-crystals with a total mass of 1g that included
orthorhombic (a,b)-twins were co-aligned on Si-plates with thicknesses of 0.5 mm and
arranged in Al-sample holders [Fig. 6.34a]. The lattice parameters are a= 5.370Å,
b= 5.601Å, c= 19.351Å [79] and the mosaicity of the sample array was about 3 °.
Due to the (a,b)-twinning, the scattering plane was (H 0 L)/(0 K L) [Fig. 6.34a,b].
The experiments on Ca3(Ru0.99Ti0.01)2O7 [276] were carried out at the cold

neutron TAS IN12 [237] at the ILL. The instrument was operated in three-axis
mode with scattering sense SM = −1, SS = 1, SA = −1 and kf = 1.3Å−1 with
double focusing monochromator and analyzer (energy resolution ≈ 0.07meV). In
addition, a Be-filter was used to suppress higher monochromator orders.

Neutron scattering on Ca3(Ru0.99Ti0.01)2O7

Before discussing the neutron scattering results, we consider the heat capacity of
a selected Ca3(Ru0.99Ti0.01)2O7 single-crystal [Fig. 6.35a]. On cooling, the curve
shows a small anomaly at TN,1 = 56K and a divergence at TN,2 = 55K indicating a
first-order transition. According to Fig. 3.12 and [201], we assign the latter to the
sharp G-type AFM transition, whereas the small anomaly at TN,1 signals also the
occurrence of an A-type AFM phase in our crystals. Such a mixed ground state
of A- and G-type phases is consistent with the phase diagram shown in Fig. 3.12,
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Fig. 6.34: (a) Picture of the Ca3(Ru0.99Ti0.01)2O7 sample array. (b) (H 0 0) scan shows
(2 0 0) and (0 2 0) peaks due to twinning of the Ca3(Ru0.99Ti0.01)2O7 crystals in the
(a,b)-plane. The grey solid line corresponds to a fit with two Gaussian-functions (FWHM
≈ 0.03 r.l.u.). (c) Rocking (A3) scan at the AFM (1 0 2) peak of the G-type phase at
10K (T � TN). The (1 0 2) peak is forbidden in pure Ca3Ru2O7.

and further supported by our neutron scattering experiments, where the magnetic
Bragg-peaks of both phases occur: (i) The (0 0 1) peak associated with the A-type
phase (not shown here) and (ii) the (1 0 2) peak associated with the G-type phase
[Fig. 6.34c] [75].
In this work, we aim to clarify whether critical magnetic fluctuations occur

in vicinity of the sharp G-type transition with supposed first-order character.
Thus, we focus on the temperature-dependence of the magnetic Bragg-intensity
at Q = (1 0 2) as well as the Q-width of the diffuse scattering above TN,2. The
T -dependence of the (1 0 2) peak intensity was measured upon heating and is
shown in Fig. 6.35b. In contrast to the continuous behavior of the (0 0 1) peak
in pure Ca3Ru2O7 at TN,2 < T < TN,1 [Fig. 6.28], the intensity of the (1 0 2) peak
in Ca3(Ru0.99Ti0.01)2O7 abruptly drops at TN,2 ≈ 55K. This is a clear evidence
of a first-order transition consistent with the heat capacity measurement on one
selected single-crystal [Fig. 6.35a]. We note that the sharp drop of the (1 0 2) peak
is 0.25K above the discontinuity detected in the heat capacity, which might result
from a different thermometry at IN12. The typical peaked structure of the critical
scattering intensity around TN, detected in Ca2RuO4 and Ca3Ru2O7 in small
distance to the nominal magnetic Bragg-position [see insets of Figs. 6.4a and 6.28a],
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was not visible in Ca3(Ru0.99Ti0.01)2O7. This suggests that the critical fluctuations
associated with the G-type AFM ground state are absent in Ca3(Ru0.99Ti0.01)2O7

due to the first-order transition.
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Fig. 6.35: (a) Heat capacity of a selected Ca3(Ru0.99Ti0.01)2O7 single-crystal. On
cooling, the heat capacity shows a small anomaly at TN,1 = 56K and a discontinuity at
TN,2 ∼ 55K. The former indicates a transition to the A-type AFM phase and the latter
a first-order transition to the G-type AFM phase, which is accompanied by a MIT. (b)
Magnetic (1 0 2) Bragg intensity of the G-type phase vs. T . The sharp intensity-drop
corresponds to the first-order transition at TN,2 in panel (a). The small anomaly in the
heat capacity at TN,1 (red dashed line) is not visible since Q = (1 0 2) is a forbidden
peak-position for the A-type AFM phase.The inset shows a zoom on the data.

The T -dependence of the Q-width and amplitude obtained from (H 0 2)-scans
further supports this assumption. In Fig. 6.36a-d, we present the corresponding
QH-scans at selected temperatures before BG subtraction. The BG is derived
from a scan at T = 150K [Fig. 6.36a], where magnetic scattering is negligible, and
is indicated by a grey solid line in the other panels. In Fig. 6.36e, we show an
overview of selected QH-scans after BG subtraction with corresponding Voigt-fits.
The instrumental resolution of the TAS spectrometer (FWHM ≈ 0.035) was experi-
mentally determined from the elastic magnetic Bragg-peak consistent with TAKIN
simulations. The resulting Q-width κ(T ) is plotted in Fig. 6.37a. Except for the
two data points between TN,1 and TN,2, κ(T ) is close to the instrumental resolution
in the entire T -range. We therefore assign the broadening between TN,1 and TN,2

to a variance in the lattice parameter in proximity to the structural transition at
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as a red solid line. (e) Selected QH-scans after BG subtraction with corresponding fit
functions (solid lines). For clarity the data are plotted with a constant offset.
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TN,2. This is similarly reflected in the T -dependence of the lattice parameters and
the Q-widths of the nuclear (2 0 0), (0 2 0), and (0 0 2) peaks [Fig. 6.38]. Here, the
lattice parameters were determined from the peak positions of the corresponding
nuclear peaks. From these observations, we conclude that the critical fluctuations
associated with the G-type phase are suppressed in Ca3(Ru0.99Ti0.01)2O7 due to
the first-order character of the transition at TN,2.

55 60 65

0.000

0.001

0.002

0.003
Ca3(Ru1.99Ti0.01)2O7

Q = (1 0 2)

�
(r

.l.
u

.)

T (K)

Fig. 6.37: Inverse correlation length κ(T ) of Ca3(Ru0.99Ti0.01)2O7. No critical behavior
is observed in Ca3(Ru0.99Ti0.01)2O7. The enhanced Q-width at TN,2 <T <TN,1 is assigned
to a variance of lattice parameter prior to the structural transition at TN,2. The vertical
dashed lines show TN,1 (red) and TN,2 (black), respectively.
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Fig. 6.38: (a) Lattice parameter vs. T extracted from the peak-position of Gaussian-fits
on the nuclear (2 0 0), (0 2 0), and (0 0 2) peaks, respectively. (b) Corresponding
Gaussian Q-widths (FWHM) of the nuclear peaks vs. T . The black dashed line, which
indicates the first-order transition at TN,2 = 55K, agrees with the jump in the lattice
parameters and Q-widths.

6.4. Discussion and Conclusion

For Ca2RuO4, we revealed that the description of the static critical properties by
PL scaling gave only partially satisfactory results, whereas application of the 2D-XY
model provided a conclusive picture. In more detail, the obtained critical exponent
β = 0.158(6) is consistent with a 2D-XY model with fourfold crystal anisotropy
(XYh4) [262]. The inverse correlation length κ, in principle, could be fitted with
different PLs and the 2D-XY model. Specifically, the observed saturation of κ in
the range between TN and TN + 4K was captured by a PL with QL-dependence,
likely indicating the presence of 3D fluctuations close to TN. Nevertheless, the
employed PL fits, with and without κ offset, were not consistent with the 2D nature
of Ca2RuO4 far above TN and results from fits of the amplitudes of the critical
scattering.
Instead, the 2D-XY model captured both, κ and the amplitude adequately.

The resulting Kosterlitz-Thouless temperature TKT = 87(2)K was consistent with
the ratio J ′/J = 0.002 derived from the offset in κ(T ). Our attempt to describe
the amplitude of the critical scattering by PL scaling showed that the functional
form does not capture the data appropriately and the extracted critical exponent
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

γ = 0.47(2) is not compatible with universal values. Yet, 2D-XY scaling captured
the critical amplitudes in a broad T-range around TN, in agreement with the
Hamiltonian extracted from the magnon dispersion in the ordered phase [6].
The energy-width Γ(T ) derived from TAS was best captured by a PL fit with

zν = 1.1(1), which is compatible with 3D AFM Heisenberg scaling (zν3DH = 1.067,
[15, 93]). However, such a model for the dynamical critical scaling would be in
stark contrast to the static critical behaviors, the magnon dispersion [6], and the
quasi-2D character of Ca2RuO4. Consequently, we fitted the data with the 2D-XY
model and zXY = 2.0 [117], which also captured the data reasonably well in a
Γ vs. κ plot on double logarithmic scale.

In general, a crossover in the critical behavior from 2D-XY to Ising scaling close
to TN can be expected in Ca2RuO4 due to the orthorhombic terms in the spin
Hamiltonian [6]. The observed saturation of κ(T ) close to TN might be indicative
for a dimensionality crossover to 3D scaling, whereas signatures of such a crossover
were less clear in the analysis of the other critical exponents.

This apparent absence could be due to the limited instrumental resolution
of our TAS measurements and called for a complementary high-resolution NSE
study, focusing on the temperature range in close vicinity to TN. The enhanced
energy resolution of NSE previously helped to resolve controversies about the scaling
behavior of heavy-fermion superconductors [53] and revealed scaling crossovers close
to TN in the classical AFMs MnF2 and Rb2MnF4 [54]. We therefore conducted NSE
experiments on Ca2RuO4 at Q= (1 0 0) and Q= (1 0 0.53). With the capability
of separating in-plane and out-of-plane fluctuations [54], we could confirm that
the critical scattering intensity results purely from longitudinal fluctuations. The
temperature-scaling of Γ(T ) measured at Q = (1 0 0) with the critical exponent
zν = 0.90(3) was close to the results from TAS (zν = 1.1(1)). We attribute the
deviations to the broad energy-widths for NSE. In consequence, the dynamic
scaling of Γ(T ) from TAS was corroborated by the NSE experiments. As our NSE
data at Q= (1 0 0.53) indicate a q-dependence of the energy-width we propose for
a future study to alternatively determine z via Γ∝ qz at T ∼ TN. Apart from that,
it will be interesting to probe the existence of possible vortex/antivortex-pairs with
cryogenic microscopy techniques, such as Lorentz transmission electron microscopy
[277], which might be particularly pronounced in thin films of Ca2RuO4 [278].
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Overall, the distribution in TN in our sample introduces some uncertainty in
our analysis of the critical scattering in Ca2RuO4. Nonetheless, we find that our
determination of the critical exponents of the Q-width, critical amplitudes, and
energy-width is relatively insensitive to the details of the variance of TN. Along
these lines, we performed fits (not shown here) assuming a difference of ±0.5K
to our above value of ∆TN = 4.84(1)K. The resulting values for ν and z are
closely similar to the above ones (difference smaller than the error bars). This is
plausible since we fit the data only for T > TN + 4K, where the impact of the TN

distribution is relatively small. For the critical amplitudes, where the impact of the
TN distribution on the critical exponent is expected to be strongest, as we fit in the
range 110-140K, we find a deviation of only four percent. Also in the case of the
critical amplitudes, the change of the critical exponent is smaller than the error
bars. This result suggests that even a putative uncertainty in our value of ∆TN

would not critically affect our determination of the critical exponents, corroborating
the robustness of our analysis. A definitive determination of the critical behavior
close to TN will require the synthesis of large, monolithic Ca2RuO4 single crystals,
which appears to be out of reach of the methodologies currently at hand.

Next, we like to compare our results on Ca2RuO4 with related TMOs and
more established solid-state systems, that can be described within the 2D-XY
model. As already pointed out, critical scattering studies on 4d-electron TMOs
are to date unexplored. Nevertheless, we can compare the critical behavior with
structurally related, quasi-2D square-lattice 3d- and 5d-electron TMOs. In the
3d AFMs Rb2MnF4 [46], Sr2CuO2Cl2, and Sr2Cu3O4Cl2 [47], as well as the AFM
parent compounds of the cuprate superconductors [48], for instance, 2D-H scaling
properties above their Néel temperatures were observed. Whereas, in the single-
layer 5d AFM Sr2IrO4 an admixture of easy-plane anisotropy to the 2D-H behavior
was observed [57, 58]. The isotropic scaling behavior in the 3d-electron systems
is consistent with the suppression of the spin-orbit coupling [6], which likely is
responsible for the admixture of 2D-XY behavior to the critical scaling in Sr2IrO4.
For Ca2RuO4, we propose that an interplay of the moderate spin-orbit coupling
and the strong single-ion anisotropy [6, 7], which was not required to describe
the spin-wave excitations in Sr2IrO4 [58, 279], reveals a more pronounced 2D-XY
behavior. In comparison with more established solid-state systems for the study
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Chapter 6. Critical magnetic fluctuations in layered ruthenates

of the 2D-XY model Rb2CrCl4 [30, 270, 280], K2CuF4 [29] (square-lattice FMs),
as well as Ba(MXO4)2 with (M = Ni, Co, X = As, P, V [28, 32]) and MnPS3[31]
(honeycomb AFMs), it is striking that Ca2RuO4 is the only realization of the
2D-XY AFM on a square lattice.

For the bilayer compound Ca3Ru2O7, which exhibits strong intra-bilayer cou-
plings, the critical scaling was only partly compatible with the 2D-XY model.
Although β = 0.230(6) extracted from the temperature-dependence of the magnetic
(0 0 1) peak matches the expected value for realistic 2D-XY systems [91, 274], the
result should be taken with caution, due to a relatively low point density around
TN,1 and a possible overlap with the signal from the transition at TN,2. While
the extracted β is seemingly far from the corresponding value of the 3D-I model
(β3DI = 0.327, [18]), previous works in the context of Sr3Ir2O7 pointed out that
a significant underestimation of β can arise when the power law analysis is not
narrowly focused around TN [59], which provides a possible reconciliation between
our small β and the proposed 3D-I scaling. The critical scaling of the Q-width,
amplitude, and energy-width above TN,1 showed deviations from the 2D-XY the-
ory (especially at low temperatures), whereas the 3D-I model captured the data
comprehensively. The Ising character of the magnetic correlations likely results
from the orthorhombic anisotropy, which eventually drives the magnetic transition
at TN,1. We remark, however, that in the Γ vs. κ plot, 3D-I scaling and the 2D-XY
model were indistinguishable, due to identical dynamical critical exponents of the
universality classes (z = 2). Consequently, the 3D-I model provides the most con-
clusive description of the critical behaviors in Ca3Ru2O7, although a partial 2D-XY
character can not be excluded. This ambiguity likely reflects the geometry of the
exchange bonds in the bilayer structure of Ca3Ru2O7, which is intermediate be-
tween 2D and 3D. The theoretical description of the resulting crossover phenomena
and detailed comparison with the experimental data are important challenges for
future research. In the 1% Ti-doped compound Ca3(Ru0.99Ti0.01)2O7, no evidence
for critical magnetic fluctuations was found due to the first-order character of the
G-type AFM transition.
In conclusion, our results imply that the layered ruthenates are potential solid-

state platforms for research on the 2D-XY model and the effects of 3D interactions
and additional spin-space anisotropies on the magnetic fluctuations. Along with
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Sr2IrO4, which hosts a nearly ideal 2D Heisenberg AFM [57, 58], this work illustrates
the power of 4d- and 5d-electron materials with strongly spin-orbit-entangled
magnetic moments as a platform for fundamental research on quantum magnetism.
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7. Critical magnetic fluctuations
in CeCu6−xAux (x = 0.1, 0.2)

We present a NSE study on the critical magnetic fluctuations in the near quan-
tum critical heavy-fermion system CeCu5.8Au0.2, and briefly compare it with
measurements on the critically doped CeCu5.9Au0.1. We find a quantum-to-
classical crossover in the dynamical scaling behavior of CeCu5.8Au0.2, whereas
the NSE scans on CeCu5.9Au0.1 could not resolve critical scaling.

7.1. CeCu5.8Au0.2

Experimental details

The measurements were conducted at TRISP [232, 259] on a single-crystal of
CeCu5.8Au0.2 (size ≈ 1 cm3) [Fig. 7.1a], that was grown by the Czochralski-method
by Stockert and previously used in other neutron scattering experiments [1, 220,
223, 281, 282]. The mosaicity of the crystal with lattice parameters a = 8.105,
b= 5.100, and c= 10.171 was about 0.5 ° [Fig. 7.1c]. For the measurements, the
sample was mounted on two small piezo-goniometer to provide an in-situ crystal
alignment with neutrons Fig. 7.1a. We installed the sample holder in a closed-cycle
dilution cryostat, and observed with a thermometer close to the sample a sample
base temperature of ∼ 40mK. The scattering plane was (H 0 L).

The TRISP spectrometer was operated in two-axis mode, i. e. only a polarization
analyzer (Bender crystal) was implemented, with clockwise scattering sense at the
monochromator and sample (SM =−1, SS =−1) at ki = 2.51Å−1. The two-axis
mode was chosen to increase the intensity at the detector by a factor of three.
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Fig. 7.1: (a) Picture of the CeCu5.8Au0.2 single crystal detached on a small piezo-
goniometer. (b) (H 0 0) scan. The grey solid line correspond to a Gaussian-fit (FWHM
≈ 0.07 r.l.u.). (c) Rocking scan at the magnetic (1.375 0 0.275) Bragg-peak and at 50mK
(T < TN).

Critical scattering in CeCu5.8Au0.2

Prior to the discussion of the NSE results, we address the critical behavior of
the magnetic order parameter derived from the temperature-dependence of the
magnetic (1.375 0 0.275) Bragg intensity [Fig. 7.2a]. On heating, the intensity
indicates a second-order transition at TN ≈ 0.25K in agreement with previous
works [211, 223]. The Bragg-intensity drops sharply towards TN, which indicates
that no significant variance of TN is present in our sample. After subtracting the
BG, we assign the remaining intensity for T > TN mostly to the critical magnetic
fluctuations, as was also suggested in [1]. In addition, we find a small bump in
the scattering intensity at T > TN discussed below (see Fig. 7.3b), which likely
results from small fractions of the crystal with higher Au-dopings and thus a higher
transition temperature. To extract the critical exponent β and TN, we fitted the
peak intensity with a PL ∝ |t|2β in the range 0.1K< T < TN (0< |t|< 0.6) without
a TN variance [Fig. 7.2]. A fit of the intensity of the magnetic Bragg-peak yields TN

= 0.254K in agreement with previous works [211, 223]. The resulting β = 0.414(5)
is between the universal values of the 3D-H (β3DH = 0.369, [93]) and the MF-model
(βMF = 0.5, [16]). The latter was similarly reported in previous neutron scattering
studies on the same crystal [222, 283].
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Fig. 7.2: (a) Intensity of the magnetic (1.375 0 0.275) peak measured vs. T . The red
solid line is a PL fit I ∝M2 ∝ |t|2β, with β = 0.414(5) and TN = 0.254K. (b) Shows the
same data as in (a) on a double-logarithmic scale.

Similarly, the temperature-dependence of the magnetic Bragg-intensity I(T ) can
be obtained from the mean intensity of the NSE scans [Fig. 7.3a]. This approach
benefits from the long measuring time used for the spin-echo scans, as it ensures
good statistics and temperature stability. The latter is particularly important at the
relatively low sample temperatures used in this experiment. I(T ) exhibits a small
bump (0.5% of Imax) between 0.3-0.4K (T > TN), which was only faintly indicated
in the T -dependence of the magnetic Bragg-intensity (grey line in Fig. 7.3a). The
bump is reminiscent of an order parameter-like behavior with higher transition
temperature TN,imp ∼ 0.4K and is therefore assigned to an enhanced Au-doping
in small fractions of the CeCu5.8Au0.2 crystal, as TN ∝ |x−xc| (see Fig. 4.1a). It
turns out that the small bump has only negligible impact on the results and thus
we ignore it in the following. To extract the corresponding β exponent of I(T ),
we performed a PL fit I(T )∝ |t|2β [Fig. 7.3b] in the same range as for the T -scan
(0.1K< T < TN) [Fig. 7.2]. The data are described by the parameters TN = 0.259K
and β = 0.402(2). Both parameters are in good agreement with the values obtained
from the T -scan: β = 0.414(5), TN = 0.254K. The slightly reduced TN likely results
from temperature-drifts during the T -scan, which are averaged out in the long NSE
scans. In consequence, we will use TN = 0.259K and β = 0.402(2) in the following.
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comparison, we also plot the data from the T -scan (red triangles) [Fig. 7.2] normal-
ized on the 0.05K point. The smoothed T -scan data (grey solid line) indicate also a
small bump. The black dashed vertical line indicate TN. (b,c) T -dependence of corre-
sponding (b) (1.375 0 0.275) peak intensity and (c) diffuse scattering intensity S0/T at
Q= (1.375 0 0.275) derived from the data in (a). (b) From a PL fit (red solid line) in
the range 0.1K≤ T < TN we extract the parameters TN = 0.259K and β = 0.402(2). The
grey data point was not considered in the fit. (c) From a PL fit (red solid line) in the
range 0.27K ≤ T < 0.5K we extract γ = 0.557(8). For comparison, we also show fits
according to the MF model (green dotted lines).
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Chapter 7. Critical magnetic fluctuations in CeCu6−xAux (x = 0.1, 0.2)

As the NSE intensity at Q = (1.375 0 0.275) above TN can be assigned to the
critical scattering, we can also determine the critical exponent γ via the scaling
relation χ0 ∝ S0/T ∝ |t|−γ . The corresponding linear fit in the double-logarithmic
plot [Fig. 7.3c] in the range 0.27K≤ T < 0.5K reveals γ = 0.557(8). This critical
exponent is not related to any universality class. Here, additional Q-scans would
be desirable, as they would allow the investigation of the scaling behavior of the
correlation length κ−1.
Now, we discuss the NSE results. At first, we address the NSE spin-flip model

in CeCu5.8Au0.2. Depending on the alignment of the magnetic field B2 in the
second PD (↑↑ or ↑↓), either the in-plane (My) or out-of-plane (Mz) magnetic
fluctuations fulfill the echo-condition, as described in the methods (see Chap. 5).
To assign the measured polarization for the different operation modes (↑↑ or ↑↓) to
the corresponding fluctuations, we apply the general NSE spin-flip model [Fig. 5.9]
on the scattering plane and Q-position used in CeCu5.8Au0.2 [Fig. 7.4]. Due to
the effective field inversion (ϕf,c = π−ϕi), neutrons scattered by the longitudinal
fluctuations along the c-axis (My) fulfill the echo-condition for parallel fields (τ > 0),
while the echo-condition for scattering on the transverse fluctuations along the
b-axis (Mz) is fulfilled for antiparallel fields (τ < 0). The position of the magnetic
Bragg-peak Q= (1.375 0 0.275) is incommensurate and thus My ⊥Q is not exactly
along the c-axis, but slightly tilted by 9 ° [Fig. 7.4]. However, the corresponding
projection of M‖,c on My yields My = 0.99Mc and we approximate My ∼M‖,c in
the following.
In Fig. 7.5, we show exemplary raw spin-echo scans with corresponding fits for

τ = 1ps (DC-coils) and τ = 23ps (RF-coils) in both operation modes at various
temperatures. The background (BG) [Fig. 7.5a] was measured in distance to the
magnetic Bragg position at Q= (1.875 0 0.275) and T = 0.9K, and is indicated in
the other panels by grey lines. To extract the polarization from the NSE scans, we
fitted the data, analogous to Ca2RuO4, with the sinusoidal relation [Eqn. (5.19)].
From panel (e), we conclude that the small background polarization at higher
τ obtained from the fit is likely a statistical artefact as the data show no clear
evidence for a nonzero polarization.
Now, we consider the normalized spin-echo polarization vs. τ and temperature.

The BG shows significant polarization at small τ [Fig. 7.6a], which requires a
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Fig. 7.4: Model of magnetic spin-flip scattering of Fig. 5.9 was adjusted according
to the used scattering plane for our CeCu5.8Au0.2 sample (H 0 L) such that QAFM =
(1.375 0 0.275) is parallel to the x-axis. The longitudinal and transverse fluctuations
M‖,c and M⊥,b correspond to My and Mz of the model. Q is almost parallel to the a-axis
(≈ 9 ° tilting) and thus the projection of My ∼M‖,c.

polarized BG subtraction from the data. As we collected our data from different
experimental runs, the phase relations between the data and the BG are not
known and cannot be reproduced. In consequence, we used for CeCu5.8Au0.2 a
different BG treatment as for Ca2RuO4, where in the latter the BG scans were
fitted by Eqn. (5.19) and subtracted from the raw data. Due to the unknown
phase relations, such a procedure could artificially generate or extinct polarization.
We therefore used a more general approach, where we first determined the BG
components contributing to the polarization, which are then fixed in the RTS
of the data. For this, we consider the polarization vs. τ obtained from the NSE
scans at Q = (1.875 0 0.275) in more detail [Fig. 7.6a]. The polarization of the
BG shows fast oscillations at small τ signalling interference of different scattering
processes. We fitted the BG with the RTS by including the following components:
(i) A non-polarized BG (P = 0), that reduces the polarization. (ii) A spin-flip
component (ϕf = π+ϕi) from incoherent scattering. (iii) An elastic non-spin-flip
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and indicated as grey lines in the other panels. The corresponding fits on the data with
Eqn. (5.19) including the BG are also drawn (solid and dotted lines).
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component (ϕf = ϕi). (iv) A small inelastic magnetic spin-flip component My

(ϕf = π−ϕi) as remainder of the critical scattering. We assign a fixed energy-width
Γ∼ 100 µeV for the fit of the BG, where the fit is very insensitive to this Γ value.
With these components the BG polarization, in particular the fast oscillations, are
well described [Fig. 7.6a].
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Fig. 7.6: NSE polarization vs. τ for (a) the background scans measured at 900mK
and Q = (1.875 0 0.275) and (b) the 260mK scans measured at (1.375 0 0.275). Both
data show fast oscillations of the polarization at small τ due to an interference of
different scattering processes, as described in the text, where the orange lines include the
components (ii) and (iii). The grey shaded region corresponds to the RTS fit and the
blue and orange solid lines are attributed to the pure components as if the other would
not be present. (b) The significant polarization at τ > 0 results from in-plane magnetic
scattering, whereas no evidence for an additional out-of-plane magnetic scattering for
τ < 0 was observed.

Having determined the BG components, we can now discuss the polarization
associated with the critical scattering in vicinity of TN. As exemplarily shown for the
260mK data [Fig. 7.6b], the critical longitudinal scattering (My) reveals significant
polarization at τ > 0, whereas no evidence for transverse critical scattering (Mz)
was observed at τ < 0. Thus, we performed the RTS with the BG components
previously determined [Fig. 7.6a] and an in-plane magnetic component (My) with
intensity I0,crit(T ) = I0,sig(T )− I0,BG and variable energy-width accounting for the
critical scattering. An overview of the RTS for selected temperatures is shown
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Chapter 7. Critical magnetic fluctuations in CeCu6−xAux (x = 0.1, 0.2)

in Fig. 7.7a. Moreover, Figs. Fig. 7.7b-e show a zoom on the small τ region to
illustrate the quality of the fits.
The extracted energy-width Γ(T ) is plotted in Fig. 7.8 on double logarithmic

scaling (TN = 0.259K). The blue points indicate the NSE results from this work,
while the green squares correspond to previous TAS measurements by Stockert et al.
[1]. The NSE data are compatible with the TAS data, but show a better energy-
resolution and a higher point-density in the range T < TN + 0.25K (∼ 0.5K). On
heating, Γ(T ) shows a significant broadening at T > TN + 0.02K up to Γ = 40 µeV
at T = TN +0.1K (∼ 0.4K), which is compatible with a classical PL scaling Γ∝ tzν ,
as indicated by the red solid line with slope zν = 1.2(1). Although we would
like to point out that the data are noisy likely due to the limited statistics, this
critical exponent is close to the value predicted for the 3D-I model (zν3DI = 1.26,
[15, 118]), which is expected close to TN due to the orthorhombic anisotropy and
the 3D magnetic ordering. Above 0.4K, Γ(T ) consists of a small plateau up to
T = TN + 1K and increases again for higher temperatures broadly consistent with
a quantum critical scaling ∝ kBT (black dashed line). In consequence, our results
suggest the expected quantum-to-classical crossover in the scaling behavior, which
takes place almost exactly at Γ = kBT . An additional dimensionality crossover
from 3D to 2D scaling, that could be expected from the proposed 2D nature of the
critical fluctuations in CeCu6−xAux (see Chap. 4), was not observed.
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Fig. 7.7: (a) Overview of P(τ) curves for selected temperatures with corresponding
fits from ray-tracing simulations (grey shaded region). The pink solid line indicates the
depolarization of an elastic component not fulfilling the echo-condition. For clarity we
plotted the curves with a constant offset. (b-e) Shows zooms on the small τ region for
selected temperatures.
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Fig. 7.8: Energy width Γ(T ) on double logarithmic scaling (TN = 0.259K). The blue
points indicate the NSE results from this work, while the green squares correspond to
previous TAS measurements by Stockert et al. [1]. Close to TN, the energy-width can be
described by a classical PL scaling Γ∝ tzν , as indicated by the red solid line with slope
zν = 1.2(1). At higher temperatures (T > 1K), the scaling behavior is broadly consistent
with a quantum critical scaling ∝ kBT (black dashed line) signalling a quantum-to-
classical scaling crossover at Γ∼ kBT .
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7.2. CeCu5.9Au0.1

7.2. CeCu5.9Au0.1

Complementary to the measurements on CeCu5.8Au0.2, we also examined the
critically doped compound CeCu5.9Au0.1 with TN ≈ 0K on critical scaling behavior
by using NSE. The measurements were conducted at TRISP [232, 259] on a high-
quality single crystal of CeCu5.9Au0.1 (size ≈ 1 cm3), that was similarly grown by
the Czochralski-method and previously used in other neutron scattering studies
[1, 220, 223]. The lattice parameters are a= 8.049, b= 5.0835, and c= 10.11. For
the measurements, the sample was mounted on two small piezo-goniometers to
provide an in-situ crystal alignment by neutrons just as for CeCu5.8Au0.2 [Fig. 7.9a].
We further installed the sample holder in a closed-cycle dilution cryostat with
a sample base temperature of ∼ 40mK. The scattering plane was (H 0 L). The
TRISP spectrometer was operated in the configuration SM =−1, SS =−1, SA= 1
at ki = 2.51Å−1.
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Fig. 7.9: (a) Photography of the CeCu5.9Au0.1 single crystal detached on a small
piezo-goniometer. (b,c) Display (1.375 0 QL) scans at 40mK and 900mK for various
energy-transfers ∆E. The curves show an enhanced scattering intensity around Q =
(1.375 0 −0.275), i. e. at the 3D magnetic Bragg position of CeCu5.8Au0.2. The blue and
red solid lines are guides to the eye.

Analogous to previous works on the same crystal [1, 220], we found in QL-scans
a slightly enhanced scattering intensity [Fig. 7.9b,c] at the 3D magnetic Bragg-
position of CeCu5.8Au0.2, i. e. on top of the proposed 1D rods [Fig. 4.3a]. For
nonzero energy-transfers the peaked structure becomes more prominent as the elastic
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BG is more suppressed. Despite these indications for critical scattering, we were
not able to separate it from the BG in our NSE measurements at ki = 2.51Å−1 and
with ∆E = 0.8meV. This follows from the absence of a T -dependent depolarization
of P (τ) [Fig. 7.10], which contradicts the previous results obtained from TAS
experiments [1]. Potential reasons for this might be that the critical scattering is
weak and/or very broad compared to the NSE resolution, or obscured by the BG.
We therefore propose for a future NSE experiment rather to take the CeCu5.8Au0.2

compound, tune it gradually towards quantum criticality by hydrostatic pressure
and examine how the critical behavior changes.
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Fig. 7.10: Polarization of raw data vs. τ for T = 0.06K and 10K. No T -dependent
change of the depolarization is observed indicating that the critical scattering cannot be
separated from the BG in our experiment.

7.3. Discussion and Conclusion

We investigated the critical behavior of the magnetic fluctuations in the near
quantum critical compound CeCu5.8Au0.2 with high-resolution NSE spectroscopy.
From a PL fit on the magnetic (1.375 0 0.275) Bragg-intensity vs. T [Fig. 7.3b]
we derived the transition temperature TN = 0.259K and a critical exponent β =

150



7.3. Discussion and Conclusion

0.402(2). The extracted β is between the values predicted for the 3D-H model
(β3DH = 0.369) and the MF-model (βMF = 0.5). The 3D-H model is at odds
with the orthorhombic anisotropy in CeCu5.8Au0.2, whereas a MF value was also
reported in previous neutron studies on the same CeCu5.8Au0.2 crystal [222, 283].
A MF value generally indicates the presence of long-ranged couplings [16], which
would be in line with the dominant RKKY interactions, as similarly proposed for
metallic erbium [284]. Alternatively, a continuous change of the β exponent from
a 3D-I value (β3DI = 0.327) to the MF value was observed in the 3D anisotropic
antiferromagnet MnCl2· 4H2O while the systems’ QCP was approached [128–130].
This was attributed to a dimensionality crossover due to quantum fluctuations
(deff = d+ z, [33]). Although the picture of the long-ranged RKKY interactions
is more consistent for CeCu5.8Au0.2 located in the classical ordered regime, it
would be interesting to examine the temperature scaling of the order parameter
for different pressures (0< p < pc) or Au-dopings (xc < x 6= 0.2). In addition, we
derived a critical exponent γ = 0.557(8) from the temperature-dependence of the
critical amplitudes S0/T above TN. This exponent is not related to any universality
class.

For the study of the dynamical critical properties, we investigated the temperature
scaling of the energy-width Γ(T ). Taking advantage of the higher energy resolution
of NSE, we complemented previous TAS measurements [1] in close vicinity to
TN. On heating, we find a broadening of the critical scattering in energy that
is consistent with a classical PL scaling Γ ∝ tzν with zν = 1.2(1). The critical
exponent contains uncertainties due to the noise in our data. Nevertheless, it is
close to the value predicted for the classical 3D-I model (zν3DI = 1.26, [15, 118]),
which can be expected for CeCu5.8Au0.2 close to TN because of the orthorhombic
anisotropy and the 3D magnetic ordering. In combination with the proposed
quantum critical scaling at higher temperatures Γ∝ kBT [1], our results indicate
the expected quantum-to-classical scaling crossover. The crossover takes place at
Γ∼ kBT , i. e. where the condition Γ> kBT of the quantum critical regime is no
longer valid. Although a quantum-to-classical crossover in the scaling behavior of
systems close to QCPs is predicted by theory [33, 34, 131, 226, 285], there are only
a few experimental studies reporting on such a crossover in solid-state systems
[128–130, 286–288]. In this respect, our results signal that the CeCu6−xAux series
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is a good platform to investigate the transition from classical to quantum critical
behavior. To further establish this scaling crossover, we propose additional cold
neutron TAS measurements with higher point-density around 0.5K. By this, we
can also address the question whether or not an additional dimensionality crossover
from 3D-I to 2D-I scaling behavior occurs. Such a crossover was not observed in
our NSE data but can be expected [226] from the previously proposed 2D nature
of the magnetic fluctuations in CeCu6−xAux [219–224]. Moreover, the capability
of TAS to measure high-resolution Q-scans would allow us to study the critical
scaling of the correlation length and re-examine the temperature-dependence of
the critical amplitudes.
In addition to the CeCu5.8Au0.2 compound, we also investigated the quantum

critically doped compound CeCu5.9Au0.1. Despite an enhanced scattering intensity
at the 3D magnetic Bragg-position of CeCu5.8Au0.2 in agreement with previous
TAS experiments [1, 220], we did not observe a T -dependent depolarization of P (τ).
This indicates that the critical scattering could not be separated from the BG in
our NSE measurements. Possible reasons for this are that the critical scattering is
relatively weak and/or that the linewidth is broad compared to energy-resolution
of NSE. We therefore plan in a future experiment to rather put the CeCu5.8Au0.2

crystal in a pressure cell, gradually tune the system to quantum criticality by
a hydrostatic pressure of p ≤ pc ∼ 5 kbar [121] and examine with NSE how the
dynamical critical behavior changes vs. p.
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Appendix A.

1D and 2D spin-flip scattering

In the following, we discuss the spin-flip processes of polarized neutrons in 1D and
2D. Prior to this, we note that a more general expression of Eqns. (5.1) and (5.7)
can be obtained by using Fermi’s Golden Rule, which describes the excitation of
a system from a ground state |i〉 into an excited state 〈f | through an external
perturbation. For the transition rate it follows [84]:

Wi→f = 2π
h̄
|〈f |V |i〉|2ρf (E) , (A.1)

where ρf (E) and V denote the density of final scattering states and the interaction
potential between the probe and the sample, respectively. For neutron scattering
the change of the sample state λ from λi to λf is accompanied by a change of
the neutron states from (ki,σi) to (kf ,σf ), where σi,f denote the neutron spin-
polarization states. From Eqn. (A.1), the so-called master equation can be derived,
which generally is the basis of the interpretation of all experimental neutron
scattering data [39]:
(

d2σ

dΩdE

)
k0→k1

∝
∑
λiσi

Pλi
Pσi

∑
λfσf

|〈kfσfλf |V (r)|kiσiλi〉|2δ(h̄ω+Eλi
−Eλf

) .

(A.2)
Equation (A.2) sums over all final states of the sample λf and final polarization
states σf of the neutron, averaged over all initial states of the sample λi and initial
polarization states σi of the neutron, which occur with the probability Pλi

and Pσi

[39]. The delta-function ensures energy conservation. By the assumption of various
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Appendix A. 1D and 2D spin-flip scattering

interaction potentials V (r), one can describe different scattering processes such as
nuclear or magnetic scattering.

Now, by using the magnetic interaction potential V (r) = −µnM⊥ [39] and
calculating the matrix elements 〈i|V (r)|f〉, one can address the elastic magnetic
SF scattering. As has been shown in [84, 230], for the 1D case this corresponds to
〈+,−|σM⊥|+ ,−〉, where spin-up |+〉 and spin-down states |−〉 of the neutron are
defined as the eigenfunctions of σz (see Eqn. (5.6))

|+〉 ≡
1

0

 |−〉 ≡

0
1

 . (A.3)

The matrix elements for the possible NSF and SF scattering channels are

〈+|σM⊥|+〉=M⊥,z , (A.4)

〈−|σM⊥|−〉=−M⊥,z , (A.5)

〈−|σM⊥|+〉=M⊥,x+ iM⊥,y , (A.6)

〈+|σM⊥|−〉=M⊥,x− iM⊥,y . (A.7)

From (A.2) it also follows that the scattering cross section of polarized neutrons on
magnetic fluctuations is proportional to the square of the above matrix elements.

For NSE spectroscopy (2D-case) the scattering process can be described as the
following: We assume an incoming neutron with its spin making an angle of ϕi
with the x-axis after the first PD [Fig. 5.9]. Further, we define the coordinate
system such that the momentum transfer Q is along x. Depending on ϕi, the
initial spin-state |σi〉 (spinor) of the neutron reads [251]

|σi〉 ≡ |si〉= 1√
2

exp(−iϕi/2)
exp(iϕi/2)

 . (A.8)
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The corresponding expectation value of the initial polarization Pi can be calculated
by

Pi = 〈σ〉i =


〈si|σx|si〉
〈si|σy|si〉
〈si|σz|si〉

=


cos(ϕi)
sin(ϕi)

0

 . (A.9)

In the scattering process, the neutron spin can either interact with M⊥,y or with
M⊥,z to reach the corresponding states |σMy,z〉 ≡ |sMy,z〉

|sMy〉= σyM⊥,y|si〉= M⊥,y√
2

−iexp(iϕi/2)
iexp(−iϕ/2)

 , (A.10)

|sMz〉= σzM⊥,z|si〉= M⊥,z√
2

exp(−iϕi/2)
−exp(iϕ/2)

 . (A.11)

The expectation value for the final polarization PMy,z is then

Pfy = 〈σ〉M,y =


〈sMy |σx|sMy〉
〈sMy |σy|sMy〉
〈sMy |σz|sMy〉

=M2
⊥,y


−cos(ϕi)
sin(ϕi)

0

 , (A.12)

Pfz = 〈σ〉M,z =


〈sMz |σx|sMz〉
〈sMz |σy|sMz〉
〈sMz |σz|sMz〉

=M2
⊥,z


−cos(ϕi)
−sin(ϕi)

0

 . (A.13)

Thus, the SF scattering on in-plane (M⊥,y) and out-of-plane fluctuations (M⊥,z)
affect the following change of the precession angles ϕfy,z

ϕfy = π−ϕi , (A.14)
ϕfz = π+ϕi . (A.15)
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Deutsche Zusammenfassung

Kritische magnetische Fluktuationen in stark korrelierten
Elektronensystemen

Aufgrund konkurrierender Energieskalen intra- und interionischer Wechselwirkun-
gen, zeigen stark korrelierte Elektronensysteme oft eine Fülle von physikalischen
Grundzuständen. Neben den umfassend untersuchten 3d-Elektronen Übergangsme-
talloxiden (Transition Metal Oxides (TMO)) [2], haben in den letzten Jahren auch
TMO der benachbarten 4d und 5d Perioden viel Aufmerksamkeit auf sich gezogen
[3]. Insbesondere die Gruppe der geschichteten Ruthenate (4d TMO) hat durch die
Entdeckung der unkonventionellen Supraleitung in Sr2RuO4 [4] breites Interesse
geweckt. Dabei stellte sich heraus, dass die Ruthenate ein komplexes Phasendia-
gramm und Spinanregungen aufweisen [5–7], was eine Untersuchung der kritischen
magnetischen Fluktuationen in der Nähe der Phasenübergänge motiviert. Solche
Fluktuationen sind mit dem Grundzustand des Systems gekoppelt und können
daher wichtige Informationen liefern. Neben den TMO, zählen auch die schweren
Fermionensysteme zu stark korrelierten Elektronensystemen. Hierbei ist häufig der
magnetische Grundzustand durch konkurrierende Wechselwirkungen unterdrückt,
was zur Ausbildung eines quantenkritischen Punkts (quantum critical point (QCP))
führt. In der Nähe eines QCP können exotische Phasen wie z. B. Supraleitung
auftreten [8–11], weshalb die Untersuchung der kritischen Fluktuationen in diesen
Systemen ebenfalls von großem Interesse ist.

Eine der ersten Studien zu kritischen Phänomenen bezog sich auf den Übergang
zwischen der flüssigen und gasförmigen Phase von Kohenstoffdioxid [12]. Hierbei
konnte durch das Aufkommen von Dichtefluktuationen nahe des kritischen Punktes
bei T̃c eine verstärkte Lichtstreuung (kritische Opaleszenz) beobachtet werden
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sobald die Korrelationslänge der Dichtefluktuationen mit der Wellenlänge des
sichtbaren Lichts übereinstimmte.

Bei magnetischen Übergängen sind das Analogon der Dichtefluktuationen die
Fluktuationen des magnetischen Ordnungsparameters, deren Korrelationslänge
ξ und Relaxationszeit τ bei Annäherung an T̃c (Curie- oder Néel-Temperatur)
divergieren [13–16]. Weitere fundamentale physikalische Größen des Materials wie
z. B. die magnetische Suszeptibilität und die Wärmekapazität zeigen auch ein
kritisches Verhalten in der Nähe von T̃c, welches oftmals durch ein Potenzgesetz
∝ |t|λ mit den kritischen Exponenten λ und t ≡ (T/T̃c− 1) [14–18] beschrieben
werden kann. Dabei sind die Skalierungsverhalten der statischen und dynamischen
Eigenschaften eines Systems über das dynamische Skalierungsgesetz Γ∝ κz ∝ tzν

[15] miteinander verknüpft, wobei ν und z die kritischen Exponenten der inversen
Korrelationslänge κ= ξ−1 und der charakteristischen Energie der Fluktuationen
Γ∝ τ−1 bezeichnen. Ein weiterer wichtiger Bestandteil der Skalentheorie ist das
Konzept der Universalität [16, 19, 20], welches besagt, dass die kritischen Ex-
ponenten zwar unabhängig von mikroskopischen Details sind, jedoch universell
von der Dimension des Ordnungsparameters bzw. des Systems, sowie der Reich-
weite der Wechselwirkungen abhängen. Dadurch können auch komplexe Systeme
anhand der kritischen Exponenten einer Universalitätsklasse zugeordnet und vor-
handene Anisotropien durch Veränderungen im Skalierungsverhalten aufgedeckt
werden [16]. In diesem Zusammenhang weckte vor allem das zweidimensionale XY
(2D-XY)-Modell breites wissenschaftliche Interesse, da es als Ausgangspunkt für
die Beschreibung des von Berezinskii, Kosterlitz, and Thouless (BKT) [21–23] pos-
tulierten topologischen BKT-Phasenübergangs diente. Der BKT-Phasenübergang
beschreibt die Bildung von magnetischen Wirbelpaaren unterhalb einer Tempe-
rature TKT, welche oberhalb von TKT aufbrechen. In diesem Fall wurde für die
Temperaturabhängigkeit der Korrelationslänge zwischen den Wirbelpaaren ein
exponentielles Verhalten ξ ∝ exp(b/

√
tKT) mit dem nicht-universellem Parameter

b und tKT ≡ (T/TKT− 1) postuliert. Übereinstimmungen mit den abgeleiteten
Eigenschaften des BKT-Phasenübergangs konnten in superfluiden 4He-Dünnfilmen
[24, 25] und proximity-coupled Josephson junction arrays [26, 27] beobachtet werden.
Bisher sind jedoch Realisierungen des 2D-XY-Modells in Festkörpersystemen selten
[28–32].
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Neben den klassischen Phasenübergängen zweiter Ordnung bei endlichen Tempe-
raturen, können auch Phasenübergänge bei T = 0 auftreten [33–36]. Die sogenannten
Quantenphasenübergänge (quantum phase transition (QPT)) werden dann durch
nicht-thermische tuning-parameter kontrolliert und von Quantenfluktuationen be-
gleitet. In Analogie zum kritischen Punkt in klassischen Phasenübergängen, findet
der QPT am quantenkritischen Punkt (QCP) statt. Dieser kann zwar experimentell
nicht erreicht werden, aber seine Präsenz bei T = 0 kann das kritische Verhalten
des Systems bei endlichen Temperaturen beeinflussen und so das Auftreten neuer
physikalischer Phasen wie Supraleitung fördern [8, 9, 11, 37]. Damit ist die Unter-
suchung des kritischen Verhaltens von magnetischen Fluktuationen in der Nähe
eines QCP von großer Bedeutung [10].
Prädestiniert für die experimentelle Untersuchung von kritischen magnetische

Phänomenen ist Neutronen Dreiachsen-Spektroskopie (Triple-Axis Spectroscopy
(TAS)), welche eine direkte Messungen der dynamischen Streufunktion S(Q,ω)
ermöglicht. Diese beinhaltet κ and Γ [38–40], wobei Γ aus TAS Energie-Scans
der kritischen magnetischen Streuung abgeleitet werden kann und κ der energie-
integrierten Q-Breite im Impulsraum entspricht. Wegweisende Arbeiten in diesem
Zusammenhang waren die Studien der kritischen magnetischen Fluktuationen
in klassischen magnetischen Systemen wie dem 3D FM EuO [41–43] und dem
3D AFM RbMnF3 [44, 45]. Im späteren Verlauf wurden auch TAS-Studien an
Systemen mit quasi-2D magnetischen Wechselwirkungen durchgeführt, wie z. B. den
isotropen (square lattice) AFM Rb2MnF4 [46], Sr2CuO2Cl2, and Sr2Cu3O4Cl2 [47],
sowie am AFM Ausgangsmaterial der Kupratsupraleiter [48], welche ein 2D-H-
Skalierungsverhalten oberhalb ihrer Néel-Temperaturen zeigen. Ergänzend zu den
TAS Experimenten, konnte die Neutronen Spin Echo (NSE) Spektroskopie [49–52]
mit besserer Energieauflösung beispielsweise dazu beitragen Unstimmigkeiten im
Skalierungsverhalten von schweren Fermionen Supraleitern aufzulösen [53] und einen
Übergang von Heisenberg zur Ising Skalierung aufgrund von uniaxialer Anisotropie
im klassischen 3D AFM MnF2 nahe TN aufzudecken [54].

Darüberhinaus wurden erste Studien zu den kritischen magnetischen Fluktuatio-
nen in 5d-Elektronen TMO mit Hilfe von Röntgenstreuung durchgeführt. Dabei wur-
de für das einfach geschichtete AFM Sr2IrO4, welches starke Spin-Bahn-Kopplung
aufweist [55, 56], von einer 2D-H-Skalierung mit schwacher easy-plane Anisotropy
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berichtet [57, 58]. Im Gegensatz dazu zeigt das Doppelschicht-System Sr3Ir2O7 ein
Skalierungsverhalten, welches unter der Berücksichtigung von kristallographischer
Unordnung im System konsistent mit der 3D-I-Universalitätsklasse ist [59].
Das kritische Verhalten in den 4d-Elektronen TMO wurden bisher noch nicht

untersucht. Diesbezüglich sind besonders die geschichteten Ruthenate interessant,
da sie eine Fülle an elektronischen Grundzuständen zeigen [3, 60–63], wie zum Bei-
spiel unkonventionelle Supraleitung in Sr2RuO4 [4] und exzitonische AFM Ordnung
im Mott-Isolator Ca2RuO4 [64, 65]. Dies lässt sich auf die ähnlichen Energieska-
len von Spin-Bahn-Kopplung, Kristallfeldaufspaltung, Hundscher Kopplung und
interatomaren Austauschwechselwirkungen in 4d-Elektronen TMO zurückführen.
Im einfach geschichteten Ca2RuO4, mit einer Néel-Temperatur von TN ∼ 110K

[66–68], sind die magnetischen Momente AFM entlang der b-Achse in quadratischen
RuO2-Ebenen angeordnet und nach dem G-Typ Schema entlang der c-Achse
gestapelt. Der exzitonische Charakter des Magnetismus soll von exzitonischen
Übergängen zwischen nicht-magnetischen Singluett (Jeff=0) und magnetischen
Triplett Zuständen (Jeff=1) resultieren [64, 65]. Dieses physikalische Bild wurde
kürzlich durch die Detektion einer Soft-Amplituden-Mode im Spinwellenspektrum
durch resonante inelastische Röntgenstreuung (RIXS) [69], Raman-Streuung [70],
sowie inelastische Neutronenstreuung (INS) [6] bestätigt.
Darüberhinaus führt der nicht-unterdrückte Bahndrehimpuls der magnetischen

Ru-Momente in Ca2RuO4 zu einem ungewöhnlichen Spektrum der transversalen
Spinwellen im AFM Zustand [6]. Die aus der Analyse dieses Spektrums abgeleitete
magnetische Hamilton-Funktion wird von einer XY single-ion Anisotropie domi-
niert, die viel größer ist als die Austauschwechselwirkung zwischen den nächsten
Nachbarn, sowie von einer Ising single-ion Anisotropie, die auf eine orthorhombi-
sche Verzerrung der Kristallstruktur zurückzuführen ist. Gleichzeitig zeigten die
INS-Experimente keine Dispersion der Magnonen senkrecht zu den RuO2-Schichten,
was bedeutet, dass die Wechselwirkungen zwischen den Schichten viel schwächer
sind als die Wechelwirkungen innerhalb der Schichten. Die Bestätigung einer Quasi-
2D-XY Symmetrie der magnetischen Hamilton-Funktion, die aus der Analyse der
Magnonendispersionen abgeleitet wurde, hat unter Anderem diese Arbeit motiviert.

Im Gegensatz zumMott-Isolator Ca2RuO4, ist das Doppelschichtsystem Ca3Ru2O7

im paramagnetischen Zustand metallisch und behält unterhalb der Néel Tempe-
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ratur TN,1 ∼ 56K eine signifikante elektrische Leitfähigkeit [71]. Die magnetische
Struktur kann dem A-Typ AFM zugeordnet werden, d. h. FM Doppelschichten
mit den magnetischen Momenten orientiert entlang der a-Achse sind alternierend
gestapelt entlang der c-Achse [71, 72]. Bei einem zweiten magnetischen Übergang
bei TN,2 ∼ 48K kommt es zu einer Umorientierung der Spins von der a- zur b-Achse
in den RuO2-Ebenen [73] und einer stärkeren Abnahme der elektrischen Leitfä-
higkeit [71]. Da die Kristallstruktur von Ca3Ru2O7 aus zwei eng benachbarten
RuO2-Schichten innerhalb einer Einheitszelle besteht, existieren erhebliche Wechsel-
wirkungen zwischen den Schichten innerhalb einer Doppelschicht-Einheit wie durch
INS-Studien der Magnonendispersionen nachgewiesen wurde [7, 74]. Die Austausch-
wechselwirkungen zwischen den jeweiligen Doppelschicht-Einheiten sind dagegen
schwach, weshalb die Dimensionalität des Austauschbindungsnetzwerks zwischen
2D und 3D liegt. Obwohl die INS-Daten auch eine Anregungslücke aufgrund der
Anisotropie zeigten, reichten sie nicht aus, um die Art der vorherrschenden Anisotro-
pie zu bestimmen (Ising oder XY). Es wurde zudem festgestellt, dass die Dotierung
mit einer kleinen Menge an nicht-magnetischen Ti-Ionen im Doppelschicht-System
Ca3(Ru1−xTix)2O7 ausreichend ist, um den AFM A-Typ Zustand wieder in den
G-Typ Zustand von Ca2RuO4 zu invertieren [75–78]. Der zweistufige Übergang in
Ca3Ru2O7 wird dann zu einem scharfen einstufigen Übergang erster Ordnung.

In dieser Arbeit benutzen wir TAS- und NSE-Spektroskopie zur Untersuchung
der kritischen Streuung in Ca2RuO4, Ca3Ru2O7 sowie Ca3(Ru0.99Ti0.01)2O7 in
der Nähe und oberhalb von TN. Wir bestimmen dabei statische und dynamische
Exponenten und ordnen sie den Universalitätsklassen zu, um die Dimension des
Ordnungsparameters sowie mögliche Anisotropien zu erhalten. Diese Ergebnisse
vergleichen wir dann mit den Hamiltonoperatoren, die durch frühere INS- und
RIXS-Experimente unterhalb von TN abgeleitet wurden. Aus der Temperaturab-
hängigkeit der AFM (1 0 0) Bragg-Intensität [Fig. Ia] erhalten wir für Ca2RuO4

mit dem Potenzgesetz (rote Linie) I ∝M2 ∝ |t|2β, welches zusätzlich mit einer
intrinsischen Gaussverteilung an Néel-Temperaturen TN mit einer Vollwertsbreite
von 4.84(1)K (graue Schattierung) gefaltet wurde, die Parameter β = 0.158(6)
und TN = 112.20(1)K. Die weiteren statischen kritischen Eigenschaften werden
aus der Q-Breite (inverse Korrelationslänge κ) und der Amplitude (magnetische
Suszeptibilität χ) der diffusen magnetischen Streuung bei (1 0 0.83) oberhalb
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von TN abgeleitet [Fig. Ib,c]. Der dynamisch kritische Exponent z wird aus der
Temperaturabhängigkeit der Energiebreite der diffusen magnetischen Streuung bei
(1 0 0) bestimmt [Fig. Id]. Die Skalierungen der statischen kritischen Eigenschaften
können gut durch das 2D-XY-Modell beschrieben werden mit den Parametern
TKT = 87(2)K und b= 1.9. Die dynamische Skalierung zeigt zwar Abweichungen
vom theoretisch vorhergesagtem 2D-XY-Verhalten [117], jedoch ist es verglichen
mit den anderen Modellen das Geeignetste. Obwohl, das dynamische Verhalten
von Ca2RuO4 sowohl durch TAS- als auch NSE-Messungen bestätigt wurde, wäre
eine alternative Bestimmung von z durch die q-Abhänigkeit der Energiebreite über
Γ(TN, q)∝ qz wünschenswert. Desweiteren bieten Experimente mit Kryoelektronen-
mikroskopie [277] einen vielversprechenden Zugang zur Untersuchung magnetischer
Wirbelstrukturen.

Für Ca3Ru2O7 mit starker Kopplung zwischen den Doppelschichten bestimmen
wir β aus Temperaturabhänigkeit der AFM (0 0 1) Bragg-Intensität unterhalb
von TN [Fig. IIa], während ν, γ und z wiederum von der Q-Breite, Amplitude
und Energiebreite der diffusen Streuung bei (0 0 1) oberhalb von TN abgeleitet
werden Fig. IIb,c]. Die Skalierung des Ordnungsparameters β = 0.230(6) stimmt
zwar mit dem prognostizierten Wert des 2D-XY-Modells überein [91, 274], jedoch
werden die übrigen Skalierungsverhalten besser durch das 3D-I-Modell eingefangen.
Diese Zweideutigkeit spiegelt vermutlich die Geometrie der Austauschbindungen
in der Doppelschichtstruktur von Ca3Ru2O7 wider, die zwischen 2D und 3D liegt.
Die theoretische Beschreibung der daraus resultierenden Crossover-Phänomene
und ein detaillierter Vergleich mit den experimentellen Daten sind wichtige Auf-
gaben für die künftige Forschung. Für das 1% Ti-dotierte Doppelschichtsystem
Ca3(Ru0.99Ti0.01)2O7 mit G-Typ AFM Grundzustand beobachten wir, dass der ma-
gnetische Übergang von erster Ordnung ist und daher die kritischen Fluktuationen
unterdrückt sind.
Zusammenfassend veranschaulichen unsere Ergebnisse, dass die geschichteten

Ruthenate vielversprechende Festkörperplattformen für die Erforschung des 2D-XY-
Modells und der Auswirkungen von 3D-Wechselwirkungen und zusätzlichen Spin-
Raum-Anisotropien auf die magnetischen Fluktuationen sind. Damit konnten wir
zeigen, dass der 2D-XY AFM auf einem quadratischen Gitter realisiert werden kann.
In Verbindung mit Sr2IrO4, was einen nahezu idealen 2D-H AFM [57, 58] abgibt,
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Fig. I: Ergebnisse der kritischen Streuung in Ca2RuO4. (a) Temperaturabhängigkeit
der Intensität des magnetischen (1 0 0) Bragg-Peaks. Die durchgezogene rote Linie
beschreibt einen Fit mit dem Potenzgesetz I ∝M2 ∝ |t|2β, welches zusätzlich mit einer
Gaussverteilung an TN (graue Schattierung entspricht Vollwertsbreite) gefaltet wurde.
Das Inset zeigt die gemessene Intensität bei Q= (1 0 0.83). Der Anstieg der Intensität in
der Nähe von TN resultiert von der Streuung an kritischen magnetischen Fluktuationen.
(b) Inverse Korrelationslänge κ(T ). Die durchgezogene schwarze Linie beschreibt einen
2D-XY-Fit. Die konstanteQ-Breite bei κ∼ 0.035 r.l.u. für T ≤ 116K wird dem Aufkommen
von 3D-Wechselwirkungen in der Nähe von TN zugeschrieben. (c) Peak-Amplitude der
kritischen Streuung χ ∝ S0(T )/T . (d) Energiebreite der magnetischen Fluktuationen
Γ aufgetragen gegen die inverse Korrelationslänge κ in einem doppelt-logarithmischen
Plot (Γ∝ κz). Zum Vergleich ist eine Skalierung passend zum 2D-XY-Modell gezeigt mit
zXY = 2.0 [117] (schwarze Linie).
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veranschaulicht diese Arbeit das Potenzial der 4d- und 5d-Elektronensystemen mit
stark spin-orbit entangled magnetischen Momenten als Plattform für die Grundla-
genforschung zum Quantenmagnetismus.
Ergänzend zu den geschichteten Ruthenaten, haben wir ebenfalls das Verhal-

ten von kritischen magnetischen Fluktuationen in der Nähe eines QCP studiert.
Besonders geeignet für die Untersuchung von QCPs ist die Gruppe der schwere-
Fermionensysteme aufgrund der Konkurrenz zwischen Kondo-Abschirmung und
den RKKY-Wechselwirkungen. In diesem Zusammenhang weckte die CeCu6−xAux
Reihe mit einer quantenkritischen Dotierung von xc ' 0.1 (TN→ 0) und der Mög-
lichkeit ausreichend große Kristalle für Neutronenstreuexperimente herzustellen
breites wissenschaftliches Interesse. In Bezug auf das dynamisch kritische Verhalten
wurde dabei für das undotierte (x = 0), das quantenkritische (x = 0.1) und das
nahe-quantenkritische (x= 0.2) System eine Temperaturabhängigkeit der charak-
teristischen Energie Γ beobachtet, die bei höheren Temperaturen kompatibel mit
einem quantenkritischen Verhalten ist (Γ∝ kBT ). Für CeCu5.8Au0.2 mit 3D AFM
Ordnung unterhalb von TN ∼ 0.25K, würde man jedoch einen Übergang zu einem
klassischen Skalierungsverhalten nahe TN erwarten [33]. Ein solcher Übergang
konnte bisher möglicherweise aufgrund der begrenzten Energieauflösung des TAS
Spektrometers nicht beobachtet werden.
Wir haben deshalb hochauflösende NSE-Messungen an CeCu5.8Au0.2 durchge-

führt um das dynamisch kritische Verhalten nahe von TN zu untersuchen und einen
möglichen quanten-klassischen Übergang aufzudecken. Wie in Fig. IIIb gezeigt, ver-
vollständigen unsere NSE-Messungen (blaue Punkte) dabei frühere TAS-Ergebnisse
(grüne Quadrate) von Stockert et al. [1] im Bereich TN < T < 1K. Während unsere
Daten bis etwa 0.5K durch ein klassisches Skalierungsverhalten mit 3D Charakter
beschrieben werden können, können die TAS-Daten bei höheren Temperaturen
durch eine quanten-kritische Skalierung angenähert werden. Dadurch deuten un-
sere Ergebnisse einen erwarteten Übergang von quanten- zu klassisch-kritischer
Skalierung an. Um diesen Übergang weiter zu charakterisieren, sind zusätzliche
TAS-Messungen mit kalten Neutronen und erhöhter Punktdichte um T = 1K ge-
plant. Mit solchen TAS-Messungen könnte möglicherweise ein zusäzlicher Übergang
in der Dimensionalität von 3D zu 2D Verhalten aufgedeckt werden, welcher auf-
grund des postulierten 2D Charakters der kritischen Fluktuationen in CeCu6−xAux
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Fig. II: Ergebnisse der kritischen Streuung in Ca3Ru2O7. (a) Temperaturabhängigkeit
der Intensität des magnetischen (0 0 1) Bragg-Peaks. Die durchgezogene rote Linie
beschreibt einen Fit mit dem Potenzgesetz (power law (PL)) I ∝M2 ∝ |t|2β mit β =
0.230(6) und TN,1 = 54.16(2)K. Der kritische Exponent ist in guter Übereinstimmung
mit dem 2D-XY Wert. Die zweite übergangstemperatur TN,2 indiziert den strukturellen
Übergang erster Ordnung. Das Inset zeigt die gemessene Intensität bei Q = (0 0 1.3).
Der Anstieg der Intensität in der Nähe von TN resultiert von der Streuung an kritischen
magnetischen Fluktuationen. (b-d) Zeigen doppelt-logarithmische Plots der (b) inverse
Korrelationslänge κ(T ), (c) der kritischen Amplitude S0(T )/T und (d) der Energiebreite
Γ der kritschen Fluktuationen. Die Skalierungsverhalten sind konsistent mit dem 3D-I
Modell (durchgezogene grüne Linie). Die grauen Datenpunkte wurden in den Fits nicht
berücksichtigt.
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zu erwarten wäre. Desweiteren haben wir die statisch kritischen Exponenten β und
γ des magnetischen Ordnungsparameters unterhalb von TN sowie der kritischen
Amplitude oberhalb von TN aus der Temperaturabhängigkeit des magnetischen
(1.375 0 0.275) Bragg-Peaks bzw. der diffusen Streuung bestimmt [Fig. IIIa]. Der
resultierende kritische Exponent β befindet sich in der Nähe des ’mean-field’ Wertes,
was auf den Einfluss der langreichweitigen RKKY-Wechselwirkungen zurückgeführt
wird [16, 284]. Die Temperaturabhängigkeit der kritischen Amplitude folgt einem
nicht-universellem Verhalten, was durch zusätzliche TAS-Messungen (Q-Scans)
bestätigt werden könnte. In Ergänzung zu den Messungen an CeCu5.8Au0.2, haben
wir auch das quantenkritische System CeCu5.9Au0.1 mit NSE untersucht. Hierbei
wurde jedoch im Gegensatz zu früheren TAS-Experimenten [1] kein kritisches
Verhalten beobachtet. Dies kann damit erklärt werden, dass die kritische Streuung
in CeCu5.9Au0.1 entweder schwach oder besonders breit in der Energie ist. Aus
diesem Grund soll in einem zukünftigen Experiment die Veränderung des Skalie-
rungsverhaltens von CeCu5.8Au0.2 bei Annäherung an den QCP untersucht werden.
Praktisch kann das z. B. durch die Verwendung einer Druckzelle umgesetzt werden.

Insgesamt tragen die Ergebnisse der Arbeit zum besseren Verständnis des kriti-
schen Verhaltens in stark korrelierten Elektronensystemen bei.
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Fig. III: Ergebnisse der kritischen Streuung in CeCu5.8Au0.2. Temperaturabhängigkeit
der (a) Energiebreite, (b) des Ordnungsparameters und (c) der kritischen Amplitude der
kritischen magnetischen Fluktuationen in doppelt-logarithmischer Auftragung. (a) Die
NSE-Messungen dieser Arbeit (blaue Punkte) vorvollständigen die Ergebnisse aus früheren
TAS-Studien (grüne Quadrate) von Stockert et al. [1] nahe TN. Das Skalierungsverhalten
(rote Linie) kann durch ein klassisches Potenzgesetz (power law (PL)) Γ ∝ tzν mit
kritischen Exponent zν = 1.2(1) beschrieben werden. Bei höheren Temperaturen sind
die TAS-Daten dagegen mit einem quantenkritischen Skalierungsverhalten kompatibel
(gepunktete schwarze Linie). (b) Die rote Linie beschreibt einen PL Fit I ∝M2 ∝ |t|2β
mit dem kritischen Exponenten β = 0.402(2) und TN = 0.259K. Dieser Exponent ist
nahe des MF Wertes, wie durch die gepunktete grüne Linie angedeutet ist. (c) Das
Skalierungsverhalten der kritischen Amplitude kann durch einen PL fit S0/T ∝ t−γ mit
einem nicht-universellem γ = 0.557(8) beschrieben werden. Die grauen Punkte wurden
nicht im Fit berücksichtigt.
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