
Spacecraft Datensimulator für den
DESTINY+ Dust Analyser

Spacecraft Data Simulator for the
DESTINY+ Dust Analyser

Bachelor Thesis of

cand. aer. Rafael Kniese

IRS-21-S-100

Examiner:

Priv.-Lect. Dr.-Ing. Ralf Srama

Supervisor:
Dipl.-Ing. (FH) Stephan Ingerl, M.Sc.

Institut für Raumfahrtsysteme, Universität Stuttgart
Institute of Space Systems, University of Stuttgart

August 2021

This bachelor thesis reports on the development of a data simulator for the dust

telescope �DESTINY+ Dust Analyser (DDA)�. The DDA is part of DESTINY+,

a space mission to the asteroid 3200 Phaethon, the presumed parent body of the

Geminids. It will analyze cosmic dust released by the asteroid to better understand

its role as a source of organic material on earth.

The DDA will communicate with the rest of the satellite using the SpaceWire

bus system and will be tested by the data simulator developed in this thesis, so

that possible errors in the �ight software can be detected and corrected as soon as

possible. The need for this arises from the fact that the DDA is being realized at

the Institute of Space Systems of the University of Stuttgart (IRS) together with

the electronics supplier �von Hoerner & Sulger�, while DESTINY+ is a mission of

the Japan Aerospace Exploration Agency (JAXA). The German Aerospace Center

(DLR) is the German project sponsor. The geographical distance between the ex-

periment and the spacecraft is too large to perform direct tests in the early stages

of the mission.

The data simulator is implemented as two Graphical User Interfaces (GUIs) in

C/ C++ in the Microsoft Visual Studio 2019 environment on Microsoft Windows

10. One sends data as broadcast or telecommand, the other receives telemetry. A

SpaceWire Brick Mk3 from STAR-Dundee is used as the interface between the PC

and the bus, which has two ports for SpaceWire cables and a USB port. Thus the

data stream from and to the DDA can be controlled from a PC. The messages follow

the packet protocol of the Consultative Committee for Space Data Systems (CCSDS).

In the future, however, they will be adapted to the Remote Memory Access Protocol

(RMAP).

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Abstract

1

Diese Bachelorarbeit berichtet über die Entwicklung eines Datensimulators für das

Staubteleskop �DESTINY+ Dust Analyser (DDA)�. Der DDA ist Teil von DES-

TINY+, einer Raumfahrtmission zum Asteroiden 3200 Phaethon, dem vermutlichen

Urprungskörper der Geminiden. Er soll den vom Asteroiden freigesetzten kosmischen

Staub analysieren, um dessen Rolle als Quelle organischen Materials auf der Erde

besser zu verstehen.

Die Kommunikation des DDA' mit dem restlichen Satelliten erfolgt mithilfe des

SpaceWire-Bussystems und soll durch den in dieser Arbeit entwickelten Datensimu-

lator getestet werden, damit mögliche Fehler in der Flugsoftware bereits frühzeitig

erkannt und behoben werden können. Die Notwendigkeit dafür ergibt sich daraus,

dass der DDA am Institut für Raumfahrtsysteme der Universität Stuttgart (IRS)

zusammen dem Elektronikzulieferer �von Hoerner & Sulger� realisiert wird, während

DESTINY+ eine Mission der Japan Aerospace Exploration Agency (JAXA) ist. Das

Deutsches Zentrum für Luft- und Raumfahrt (DLR) ist der deutsche Projekträger.

Die geographische Distanz zwischen Experiment und Raumfahrzeug ist zu groÿ, um

bereits in frühen Stadien der Mission direkte Tests durchzuführen.

Der Datensimulator wird als zwei Graphical User Interfaces (GUIs) in C/C++ in

der Umgebung Microsoft Visual Studio 2019 auf Microsoft Windows 10 umgesetzt.

Eines sendet Daten als Broadcast oder Telecommand, das andere empfängt Teleme-

trie. Als Schnittstelle zwischen PC und Bus kommt ein SpaceWire Brick Mk3 der

Firma STAR-Dundee zum Einsatz, der über zwei Anschlüsse für SpaceWire-Kabel

und einen USB-Anschluss verfügt. Somit kann von einem PC der Datenstrom vom

und zum DDA gesteuert werden. Die Nachrichten folgen dem Space Packet Protocol

des Consultative Committee for Space Data Systems (CCSDS). Zukünftig werden

sie jedoch an das Remote Memory Access Protocol (RMAP) angepasst.

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Kurzfassung (German Abstract)

2

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Contents

1 Glossary 5

1.1 Abbreviations . 5
1.2 File Extensions . 6

2 Introduction 7

2.1 DESTINY+ Mission Overview . 7
2.2 The DESTINY+ Dust Analyser . 8
2.3 Data simulator . 9
2.4 Thesis Overview and Timeline . 9

3 Requirements 10

3.1 SpaceWire . 10
3.2 CCSDS Protocol . 12

3.2.1 Packet Header . 12
3.2.2 Telemetry . 14
3.2.3 Telecommands . 16
3.2.4 Broadcast . 16

3.3 RMAP . 17
3.3.1 Time Slots and Distribution . 17
3.3.2 Read Commands . 18
3.3.3 Write Commands . 20

4 Implementation 22

4.1 Setup . 22
4.1.1 Hardware . 22
4.1.2 Software . 23

4.2 General . 23
4.2.1 Environment Customization . 23
4.2.2 Signals and Slots in Qt . 23
4.2.3 MainWindow Class . 24
4.2.4 Utilities . 25
4.2.5 Standalone Executable . 25

4.3 Send GUI . 26
4.3.1 Read from �le . 26
4.3.2 Telecommands . 27
4.3.3 Broadcast . 27

4.4 Receive GUI . 28
4.4.1 Telemetry . 28

4.5 RMAP Example . 29
4.6 Challenges . 30

4.6.1 Development Environment . 30
4.6.2 Multithreading . 30
4.6.3 Broken Hardware . 31
4.6.4 Protocol change to RMAP . 31

3

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

5 Conclusion 32

5.1 Summary . 32
5.2 Evaluation . 32
5.3 Outlook . 33

6 References 34

6.1 Articles and Conferences . 34
6.2 Books and Guides . 34
6.3 Other References . 35

A Zusammenfassung (German Summary) 36

A.1 Motivation . 36
A.2 Anforderungen . 36
A.3 Umsetzung . 37
A.4 Fazit . 37

B Files 38

B.1 Send GUI . 38
B.2 Receive GUI . 39
B.3 RMAP Example . 40

4

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

1 Glossary

1.1 Abbreviations

API Application Programming Interface

CCSDS Consultative Committee for Space Data Systems

DDA DESTINY+ Dust Analyser

Please note that although this thesis is oriented toward American English, �DESTINY+ Dust

AnalySer� is a name in British English.

DESTINY+ Demonstration and Experiment of Space Technology for INterplanetary voYage

with Phaethon fLyby and dUst Science

DLR German Aerospace Center

Deutsches Zentrum für Luft- und Raumfahrt e. V.

ESA European Space Agency

GUI Graphical User Interface

HK Housekeeping Data

IEEE Institute of Electrical and Electronics Engineers

IRS Institute of Space Systems of the University of Stuttgart

Institut für Raumfahrtsysteme der Universität Stuttgart

JAXA Japan Aerospace Exploration Agency

LEO Low Earth Orbit

LVDS Low Voltage Di�erential Signaling

MDP Mission Data Processor

OS Operating System

P2P Point-to-Point

PC Personal Computer

RMAP Remote Memory Access Protocol

VS Microsoft Visual Studio 2019

5

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

1.2 File Extensions

Files with these extensions are submitted (Appendix B) and/or are addressed in the text of this

thesis. The short descriptions on the right side are taken from Wikipedia [Wik21].

.c C Source Code

.cpp C++ Source Code

.csv Comma-Separated Values, to save Telemetry and open in a spreadsheet program

.exe Windows Executable

.h C/C++ Header

.lib C/C++ Library

.sln Visual Studio Solution

.txt Plain Text, to load Data

.ui Qt User Interface

.vcxproj Visual Studio C++ Project

6

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

2 Introduction

2.1 DESTINY+ Mission Overview

�Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon

fLyby and dUst Science (DESTINY+)� is a planned deep space mission by the Japan Aerospace

Exploration Agency (JAXA). The two main goals of the mission are the demonstration of the

usability of electrically propelled spacecrafts and the observation of the asteroid 3200 Phaethon.

Therefore, the satellite is going to be equipped with four µ10 Ion Thrusters with a combined

power of 1670 W and a total thrust of 40 mN. Furthermore, three scienti�c instruments are going

to be installed. For the visual examination the Telescopic Camera for Phaethon (TCAP) and

the Multiband Camera for Phaethon (MCAP) will detect light in di�erent spherical angles and

wavelengths. The DESTINY+ Dust Analyser (DDA) will collect cosmic dust and determine cer-

tain properties of the particles. Additionally, new 20-µm-thick, light-weight Solar Array Paddles

are going to generate a maximum of 4.7 kW of electric power [Ara17; Toy17].

DESTINY+ is scheduled to launch into Low Earth Orbit (LEO) with an Epsilon rocket from

Uchinora Space Center, Japan in 2024. Afterwards, the spacecraft is going to raise its orbit with

the mentioned ion engines. After approximately 1.5 years the probe is going to perform a lunar

gravity assist maneuver to reach an interplanetary cruise orbit. In 2028, DESTINY+ is expected

to arrive at 3200 Phaethon, where it will �y past at a distance of 500 km. Subsequently, the

probe will be able to change its orbit again, which enables it to study another celestial body

[Som20]. A sketch of the mission can be seen in Fig. 1.

Figure 1: DESTINY+ Mission overview with sketch of the �ight path [Toy17]

7

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

2.2 The DESTINY+ Dust Analyser

The DESTINY+ Dust Analyser (DDA) is an in-situ dust analyzing instrument for the DESTINY+

mission. It is provided by the German Aerospace Center (DLR) and developed at the Institute

of Space Systems of the University of Stuttgart (IRS). It is going to measure both interplanetary

and interstellar particles during the cruise phase as well as the matter emitted by 3200 Phaethon

during the �yby. The probe is going to quantify mass, speed, arrival direction, charge, �ux, and

composition of the corpuscles [Mas18].

The shape of the device is going to be a hollow cylinder with electric grids on the inside.

In Fig. 2 the basic mechanism is displayed. Dust particles with less than 3.5 keV of charge are

rejected. All remaining dust will cross the Trajectory Sensors at (1) and (2). By scaling time

and changes in the electric �elds, speeds and �ight paths can be calculated. The object then

crashes on the Target (3) and ionizes. Due to the Acceleration Grid, the ions will then reverse

and be re�ected by the Re�ectron. Again, the time will be clocked to evaluate the mass of the

bodies [IRS19]. The DDA is going to collect particles within a 90° cone and the error is going to

be less then 10° in direction. Moreover, velocity can be determined for particles reaching speeds

of up to 100 km s−1 fast with an accuracy of 10%. Mass resolution will be between 10−16 g and

10−6 g [Mas18].

Figure 2: Reaction on a particle entering the DDA [IRS19]

8

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

2.3 Data simulator

Testing the DDA without a simulator is di�cult, because it is manufactured by the IRS on behalf

of the DLR in Stuttgart, Germany, while the rest of the satellite is created in Japan by JAXA.

Therefore, the DDA data simulator was developed and this document reports on the creation

process.

The simulator emulates the spacecraft's Mission Data Processor (MDP) in terms of its com-

munication behavior. Being built in that way, the link between the DDA and the rest of

DESTINY+ can be tested as well as the DDA's reaction to incoming or outgoing messages. In

short, the data simulator creates a communication environment similar to that in �ight, which

helps in the development of the dust experiment.

At �rst, the simulator was expected to only test the �ight software of the DDA. Now, the

IRS plans to use it for several tests of the whole dust telescope. Among other things, the DDA

will be exposed to particles at the institute's own Stuttgart Dust Accelerator. During these

tests the DDA will be controlled through this data simulator. This is supposed to reduce the

occurrence of errors in the merging of instrument and spacecraft, which will take place shortly

before launch.

2.4 Thesis Overview and Timeline

The work is divided into specifying and elaborating the requirements (Chapter 3) and the imple-

mentation of them (Chapter 4). Hence, the thesis is structured into these two major chapters.

However, chronologically, the project started with reading the basics about SpaceWire (Chapter

3.1) and the SpaceWire Brick Mk3 (Chapter 4.1.1).

Subsequently, the right hardware and software environment has been chosen (Chapter 4.1)

and the necessary skills for developing software and Graphical User Interfaces (GUIs) in C++

have been learned (Chapter 4.2). The functions of the Brick's Application Programming Interface

(API) were tested with the basic applications provided by the manufacturer STAR-Dundee.

Thereafter, the example code of the company was extended with a simple GUI, which can

transmit and receive SpaceWire packets.

Then, the requirements of the simulator were evaluated (Chapter 3), so that the parameters

could be adapted onto the GUI. The coding was continued and the parsing according to protocol

of the Consultative Committee for Space Data Systems (CCSDS) was started. The work had to

pause because the de�nition was incomplete and then changed to the Remote Memory Access

Protocol (RMAP). Plus, a defect of the Brick Mk3 was discovered (Chapter 4.6). In this recess,

the writing of this thesis started and the implementation was continued with assumptions.

After programming was �nished, the code was structured and commented. The thesis' text

was completed and proofread. As soon as JAXA and the IRS expanded and changed their

speci�cations, an example code of RMAP was added (Chapter 4.5). Due to the short remaining

time, a complete conversion could not be realized.

9

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

3 Requirements

The DDA communicates with the spacecraft via a single SpaceWire link (Chapter 3.1). The

data simulator shall be able to emulate the MDP's behavior, i.e. sending and reading packets

to and from a Personal Computer via a GUI. Furthermore, the packets should be led by a

header. There are three types of messages to be processed: Telemetry is transmitted by the

DDA, whereas telecommands and broadcast are transmitted by the simulator (Table 1). Hence,

the GUI must have buttons to start and stop sending and receiving.

This work was commenced under the hypothesis that the communication would follow the pro-

tocol of CCSDS because the European Space Agency (ESA) recommends it for sending Telemetry

and Telecommands (Chapter 3.2). The other common protocol is RMAP, which aims �to sup-

port reading from and writing to memory in a remote SpaceWire node� [ECS10]. Shortly before

submission of the thesis the desired protocol was set to RMAP (Chapter 3.3).

Simulator DDA

Telemetry receiving sending
Telecommands sending receiving
Broadcast sending receiving

Table 1: The three message types used by the DDA

3.1 SpaceWire

SpaceWire is a bus system for spacecrafts administered by ESA. Other space agencies use

the standard as well, among them the US-American NASA, the Russian RKA, and JAXA.

SpaceWire was published in 2003 and provides high-speed data exchange of up to 200 Mbits/s.

The bus can be used Point-to-Point (P2P) or with routers creating a network. SpaceWire is

based on the IEEE-1355 standard, which has been modi�ed for space usage. It works with

full-duplex and bidirectional P2P-Links between two nodes or a node and a router. A node is

equipment �using the services of a SpaceWire link or network� [Par12, p. 77]. The system ensures

compatibility between all nodes, even though they might be from di�erent manufacturers.

The DDA uses a P2P link. If interested in networks, routing, and addressing, please cf.

Parkes [Par12]. SpaceWire works with Low Voltage Di�erential Signaling (LVDS). LVDS sends

every signal via two strands, with voltage of the same absolute value but opposite signs, switching

between 0 and 1. As illustrated in Fig. 3, a voltage between Vin+ −250 and −400 mV means

logical 0 and +250 to +400 mV signals logical 1. For Vin- it is the other way around. Upon

receiving, the signals are subtracted from each other. The noise will then cancel itself out. Other

advantages are: Nearly �constant current which decreases switching noise�, up to ±1 V tolerance

in ground di�erence, low electromagnetic emissions because of LVDS, fail-safe operation, and

low power consumption [Par12, p. 51].

Two signals (data and strobe) are sent in each direction di�erentially, which equals a total of

eight strands per cable. The connectors have an additional ninth pin for the inner shield. The

structure of both cable and connector are shown in Fig. 4 and 5.

10

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Figure 3: Low Voltage Di�erential Signaling [Par12, p. 50]

Figure 4: SpaceWire cable structure [Par12, p. 46]

Figure 5: SpaceWire connector pin-out [Par12, p. 47]

11

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

The bus system can be used very freely because raw bytes terminated by an End of Packet

(EOP) (if no error occurred) or Error End of Packet (EEP) token (if an error occurred) are sent.

Therefore, additional standards are de�ned to increase compatibility. The most commonly used

are both the protocol of the CCSDS (Chapter 3.2) and RMAP by ESA (Chapter 3.3).

3.2 CCSDS Protocol

The DDA had been expected to follow the CCSDS recommended standards of packet protocol

[CCS20] and time codes [CCS10] before the change to RMAP. The CCSDS however is a multi-

national organization with 11 member agencies including the DDA and DESTINY+ project

sponsors DLR and JAXA, as well as the space agencies of Europe, Russia, China, and the

United States [CCSMA]. It issues recommended standards and practices to standardize space

data systems and was founded in 1982.

3.2.1 Packet Header

Telemetry and Telecommand packets use the same header protocol. It includes basic information

about the delivered message, such as length and time. Additionally, it includes �ags and a

counter, that show the order of packages sent in a sequence (Table 2). Sequences will occur if a

message is larger than the capacity of a single packet. This will be the case when transmitting

telemetry messages.

An explanation of the time code in the Secondary Header should be given here (Table 2).

Originally, the word �Epoch� has been attributed to the Unix time, which counts the seconds

since January 1, 1970, 00:00:00 UTC [IEE17]. The advantage is that only one integer is needed

compared to the display of years, months, days, hours, minutes, and seconds. The CCSDS's

counter has started on January 1, 1958 [CCS10, p. 3-2]. The basic time unit (i.e. seconds) is

saved into 32 bits, which allow for approximately 136 years of time, until the de�nition would

su�er an over�ow. This would be in 2094, long after the mission's end.

Moreover, one byte is set aside for passing fractional time, with the syntax shown in Table

3. The conversion from milliseconds to the fractional time unit can be implemented as follows

in Source Code 1. Because the fractional time is conveyed with eight bits, the decimals are lost

after the division. Therefore, the resolution is 1
256 s ≈ 3.9 ms.

1 unsigned char fractional_time = msec_time * 256 / 1000 ;
2 /* 165 [FTU] = 645 [msec]* 256 / 1000 */

Source Code 1: Conversion from msec to fractional time unit incl. an example

12

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

DDA Packet Header in accordance with CCSDS

Header Name Bits Binary Value

Primary
Header

Packet Version Number 3 000
Packet Packet Type 1 0 = Telemetry
Identi�cation 1 = Telecommand

Sec. Header Flag 1 1 = Sec. Header available
Application Pro-
cess Indenti�er

11

Packet Sequence Flags 2 00 = Continuation of sequence
Sequence 01 = First packet of sequence
Control 10 = Last packet of sequence

11 = Unsegmented data
Packet Sequence
Count or Packet
Name

14 var, increased with every packet

Packet Data Length 16 (Total number of octets in the
Packet Data Field) - 1

Secondary
Header

P-Field P-Field Extension 1 0 = No extension
Time Code Iden-
ti�cation

3 001 = Epoch January 1, 1958

(Number of octets
of the basic time
unit) - 1

2 11 = 4 octets

Number of octets
of the fractional
time unit

2 01 = 1 octet

T-Field Basic time unit 32 var = Number of seconds past the
epoch

Fractional time
unit

8 var = msec fraction byte

Table 2: DDA Packet Header in accordance with CCSDS [CCS10; CCS20]

Bit 1 2 3 4 5 6 7 8

Value [s] 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8

Fraction [s] 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

Expanded [s] 128
256

64
256

32
256

16
256

8
256

4
256

2
256

1
256

Example 1 0 1 0 0 1 0 1

Value [s] 2−1 0 2−3 0 0 2−6 0 2−8

Fraction [s] 1
2 0 1

8 0 0 1
64 0 1

256

Expanded [s] 128
256 0 32

256 0 0 4
256 0 1

256

Σ over fractions = 165
256 s ≈ 645 ms

Table 3: De�nition and Example (10100101) of the fractional time unit

13

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

3.2.2 Telemetry

Telemetry is data generated by the DDA, e.g. the parameters of an impact of a dust particle. The

experiment's preprocessor compresses the information, splits it into multiple SpaceWire packets

and provides them with a header. Afterwards, the packets are sent to the MDP because the

satellite's downlink system is located outside the DDA [Toy17]. Telemetry can be received on

earth and evaluated by the IRS.

As mentioned above, telemetry is data sent by the DDA, thus received by the simulator.

Therefore, the GUI must be able to receive telemetry packets, parse the message according to

protocol, and save it into a .csv �le. This practice guarantees that the information can be accessed

and edited easily in a spreadsheet application. It is necessary to enable sequencing because on

the one hand the amount of data generated by one dust particle impact is about 400 kbit and on

the other hand an assumable DDA Packet transports a maximum of 1 kByte = 8192 bit of data.

This leads to a sequence of approximately 49 packets per measurement.

The packets themselves consist of a Primary and a Secondary Header (Table 2), plus the

Packet Data Field. Table 4 shows the de�nition of the DDA Packet Data Field. The content

of the Coded Data Sets (Table 4, p. 16) has not yet been de�ned because the instruments

speci�cation have not been �nished, so their size cannot be determined.

Telemetry Packet Data Field according to the IRS

Field Name Bits Binary Value

Source

Data Field

Grouping Data Length Field 16 0000 + var = �rst four bits

reserved + number of pack-

ets within the group minus one

(max. 4096)

Compression Technique 8 var = Compression technique

Identi�cation Field all zero = No compression

Reference

Sample In-

terval Field

(r)

8 var = Number of data sets

counted from one data set con-

taining a reference sample up to

but not including the next con-

secutive data set containing a ref-

erence sample

Preprocessor

Sub�eld

Header 2 00 = Preprocessor

Preprocessor 1 0 = Absent

Status 1 = Present

Predictor 3 000 = Bypass predictor

Type 001 = Unit delay predictor

111 = Application-speci�c pre-

dictor

Mapper Type 2 00 = Prediction error mapper

11 = Application-speci�c mapper

14

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Continuation Telemetry Packet Data Field according to the IRS

Field Name Bits Binary Value

Block Size (J) 2 Number of Samples per Block

00 � J=8

01 � J=16

10 � J=32 or J=64

11 � Application-speci�c

Data Sense 1 0 = Two's complement

1 = Positive; mandatory if pre-

processor is bypassed

Input data sample

resolution (n)

5 var = Input data sample resolu-

tion minus one (max. 32)

Entropy

Coder

Sub�eld

Header 2 01 = Entropy Coder

Data 2 00 = Spare

Resolution 01 for n ≤ 8

Range 10 for 8 < n ≤ 16

11 for 16 < n ≤ 32

Number of CDS

per packet (m)

12 var = Number of CDSs per

packet minus one

Extended

Parameter

Sub�eld

Header 2 11 = Extended Parameters

Reserved 2 00

Block Size 4 Number of Samples per Block

0000 � J=8

0001 � J=16

0010 � J=32

0011 � J=64

1111 � Application Speci�c

Reserved 1 0

Restricted Code 1 0 = Basic set of code options

Options Flag 1 = Restricted set of code options

Reserved 2 00

Reference Sample

Interval Exten-

sion

4 var = (r-1)/256 as an integer, i.e.

the largest integer less than or

equal to (r�1)/256 shall be en-

coded

Instrument

Con�gura-

tion Sub�eld

Header 2 10 = Instrument con�guration

Event Number 16 var = Consecutive number of the

current event

To be determined

(TBD) by the IRS

TBD Unique instrument con�guration

parameters

15

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Continuation Telemetry Packet Data Field according to the IRS

Field Name Bits Binary Value

Coded

Data Sets

CDS 1 TBD Lossless compressed, lossy

compressed or raw coded data

sets that contain a science or

housekeeping data frame

CDS 2 TBD

CDS n TBD

Fill bits var Fill bits if necessary, as the

packet length is �xed

Table 4: De�nition of the Source Data Field of the DDA Telemetry packet

3.2.3 Telecommands

Telecommands are packets which present information to the DDA, e.g. starting or stopping the

experiment, turning the sensor, etc. They are led by the same header as telemetry, speci�ed in

Chapter 3.2.1. The actual content has not been de�ned yet. Therefore, the GUI shall have the

possibility to enter the bytes sent after the header manually. This is realized either through a

free text �eld or a .txt-�le.

3.2.4 Broadcast

Broadcast is data distributed by the spacecraft to all science instruments via a single SpaceWire

packet each. The di�erent assumable broadcast types are currently:

� Periodically every n seconds

� Spacecraft time to synchronize DDA's internal time

� Spacecraft's attitude (accuracy ±0.1°)

* Quaternion

* Three angles to the sun

� On mode change

� Safe mode

� TLM mode

� OP mode

� Articulation allowed/forbidden

� Low power mode

� Ion engine on/o�

� Thruster �ring is/was active

Just as telecommands, broadcast has not been �xed yet. Hence, the GUI should also have a free

text �eld and a .txt-�le, where the user can enter the contents of the broadcast. Additionally,

the repetition period can be determined.

16

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

3.3 RMAP

RMAP is a protocol designed by ESA to con�gure SpaceWire networks and control units, as

well as gather data and status information from the applications [ECS10]. JAXA changed the

packet protocol to RMAP in the later course of this thesis.

The two modes used by DESTINY+ are the �Read Command� for all data transferred from

DDA to spacecraft (Chapter 3.3.2) and the �Write Command� for information transmitted from

satellite to DDA (Chapter 3.3.3). The third mode �Read-Modify-Write� is not used. In addition,

DESTINY+ de�nes �Time Slots� and �Time Distribution� (Chapter 3.3.1).

The following Chapters 3.3.3 and 3.3.2 aim to simplify and merge the information of the

RMAP standard [ECS10] and the de�nitions of the DESTINY+ Project Team [Des21] and give

an overview of the relevant speci�cations for the data simulator. For further information please

consider those documents. The values assigned to the di�erent header bytes are listed in Table 5.

RMAP Header Values

1 byte per �eld (exceptions are marked)
Name Value

Target Logical Address/ 0x80 = MDP (Spacecraft)
Initiator Logical Address 0xB0 = DDA
Protocol Identi�er 0x01 = RMAP
Instruction Cf. Fig. 6,7,8,9
Key 0x00
Status 0x00 = Command executed successfully

0x01 - 0x0C = Various error code
Transaction Identi�er 01b = Mission data

00b = Other content
Rest of bits = Irrelevant

Adress Field (5 bytes) TBD
Data Length (3 bytes) var = Number of octets in the

Data Field
CRC var = Check value

Table 5: Values in RMAP Header [Des21; ECS10]

3.3.1 Time Slots and Distribution

�Fine Time�, i.e. fractional time, is distributed by Time-Code, while �Coarse Time�, i.e. whole

seconds, are sent via a Write Command (Chapter 3.3.3). The DDA can recreate the master time

from those to broadcasts.

Fine Time Time-Code is an unconventional SpaceWire packet, which starts with an Escape

Token (ESC) and conveys six bits of data. Therefore, the time resolution is 1
26

s = 1
64 s =

15.625 ms.

17

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Coarse Time Coarse Time is distributed by a single Write Command with four octets of data

without Reply. The integer resembles a time in seconds after a certain Epoch which is not de�ned

yet. The CCSDS however recommends January 1, 1958 [CCS10, p. 3-2].

Time Slots JAXA de�nes slots to limit delay time and prevent blockages. Time-Codes divisi-

ble by four limit one Mission Time Slot each. As a result, every data transfer must be completed

after 4 · 15.625 ms = 62.5 ms, otherwise the transmission is aborted and an Error End of Packet

(EEP) token is sent.

3.3.2 Read Commands

Read Commands can be used to request Housekeeping Data (HK) or Mission Data, i.e. they

replace the telemetry packets in Chapter 3.2.2. The spacecraft asks for data through the Com-

mand and the Reply of the DDA carries the data. The syntax of the Read Command is shown

in Fig. 6 and of the Read Reply in Fig. 7. Because DESTINY+ works with logical addressing,

the Target SpaceWire Address and the Reply Address are not part of the packets. Thus, Read

Commands are 16 and the Read Reply Header is 12 bytes long.

HK Collection and Reply HK is collected in raw data. A total of 144 bytes is gathered per

packet. The �rst 16 bytes are called �Essential HK� and are prioritized at downlink. What type

of and how much HK data is generated by the DDA, has yet to be determined.

Mission Data Collection and Reply Mission Data is collected by Read Reply as well. These

packages contain data, which will be de�ned by the IRS. Additionally, the data �eld is led by

a CCSDS primary and secondary header, similar to Table 2. Despite that, the assigned values

di�er (e.g. the Time Field does not constitute the transmission time but the time of the dust

impact) and the secondary header has additional �elds.

The maximum amount of user data transmittable in one packet is 2032 bytes (= 2048 −
15 (CCSDS header) − 1 (reserved)), whereas the data is split into messages of 1002 bytes for

downlink on the spacecraft. Therefore, it is recommended that one SpaceWire packet does not

carry more than 1002 bytes of data plus headers.

Memory Dump (optional) It is possible to read the DDA's memory directly through Mem-

ory Dump. A basic Read Command asks for the data at a certain address. The Reply provides

up to 512 bytes of data. If the amount of data exceeds that, the MPD will send more than one

Read Command.

18

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Figure 6: RMAP Read Command Protocol (top) and Instruction Field (bottom) [ECS10, p. 40]

Figure 7: RMAP Read Reply Protocol (top) and Instruction Field (bottom) [ECS10, p. 42]

19

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

3.3.3 Write Commands

As mentioned above, Write Commands are used for packets carrying information for the DDA,

therefore replacing the assumed telecommand and broadcast in the CCSDS protocol. The syntax

of an RMAP Write Command is shown in Fig. 8. Because DESTINY+ works with logical

addressing, the Target SpaceWire Address and the Reply Address are not part of the packets.

Thus, the length of the header is 16 bytes.

There are optional, short Replies which con�rm the reception of the message. Their headers

are similar to the Command's, with initiator and target logical address exchanged. Replies use

logical addressing too, hence they are eight bytes long (Fig. 9). JAXA split the Write Commands

into di�erent packages as follows.

Coarse Time Distribution Coarse Time will be sent by a Write Command without Reply.

For more information please confer Chapter 3.3.1.

Command Distribution and Reply The Command Distribution contains a Telecommand

as data. It asks for a Reply. The data itself (max. 512 bytes) starts with a CCSDS primary

header (Table 2) but has no secondary header. The purpose of commands can be found in

Chapter 3.2.3.

Data Distribution Data Distribution replaces the makeshift broadcast (Chapter 3.2.4). It

does not require Replies. Similar to Command Distribution, the RMAP header is followed by

an CCSDS packet but also including a secondary header. Its contents have not yet been de�ned

completely.

Memory Load (optional) The memory load is a possibility to write directly onto the dust

telescope's memory. This enables updates and bug-�xes. It is realized through a simple Write

Command, without Reply. If the amount of update data is bigger than 512 bytes, the information

is split into more than one package.

20

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

Figure 8: RMAP Write Command Protocol (top) and Instruction Field (bottom) [ECS10, p. 24]

Figure 9: RMAP Write Reply Protocol (top) and Instruction Field (bottom) [ECS10, p. 27]

21

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

4 Implementation

The implementation is the main subject of this thesis. The setup is speci�ed in Chapter 4.1.

Splitting the tasks between sending and receiving and creating two GUIs, was considered useful

in the process. Thus, the report on developing is split into general �les and tasks that are used

similarly in both Send and Receive GUI (Chapter 4.2) and code that was developed for sending

(Chapter 4.3) or receiving (Chapter 4.4). The documentation of the RMAP example (Chapter

4.5) and the challenges are enclosed as well (Chapter 4.6).

4.1 Setup

4.1.1 Hardware

The company �STAR-Dundee Ltd.� from Dundee, Scotland provides USB to SpaceWire conver-

sion hardware. Their �SpaceWire Brick Mk3� [StaMk] is equipped with two SpaceWire ports.

Therefore, a loop can be created to test the simulator before attaching it to the DDA. Because

of a hardware defect, the company sent a �Brick Mk4� as a replacement, which is the back-

ward compatible successor. The Brick is controlled on a Personal Computer (PC) via USB. The

hardware setup is illustrated in Fig. 10.

Figure 10: Hardware setup; top: USB cable to PC; center: Brick Mk4; bottom: SpaceWire loop

22

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

4.1.2 Software

The Operating System (OS) installed on the PC used is Windows 10 [MicWi]. Coding has been

taking place in Microsoft Visual Studio 2019 (VS), an integrated development environment by

Microsoft [MicVS]. The VS extension �Qt Visual Studio Tools� enables the creation of GUIs

with the Qt toolkit (Version 6) by The Qt Company [Qt21].

The data simulator is based on the �STAR-System� API of STAR-Dundee's Bricks, which uses

C/C++ [StaSy]. The manufacturer provides a documentation, function libraries, and example

code for all customers. The functions of the API access the properties of the brick, e.g. open

and close ports for sending/receiving, create and destroy packages, etc.

The developed functions are based on the examples advanced_send_example.c and advanced_

receive_example.c, which use the API. The programs could be tested step by step because of

the �Transmit�/�Receive� applications included in the STAR-System: Status and content of the

sent messages could be seen in the �Receive� application. Packets obtained from the �Transmit�

application inspect the other direction.

4.2 General

4.2.1 Environment Customization

Before the examples and the data simulator are compilable, certain adjustments to VS have to

be made. As mentioned above, the Qt extension has to be installed and a Qt �MainWindow�

project has to be created. In addition, both the examples and the data simulator use STAR-

Dundee's libraries and header �les. Therefore, their folders are pasted into the project. The

directory star contains all .h �les, while lib consists of the .lib �les for 32-bit and 64-bit OSs.

To access this data, the project settings have to be adapted. The compiler needs an additional

include path to the header directory and the linker to the libraries. For this, the project must be

opened and right clicked on. Then to �Properties→ C/C++→ General→ Additional Include Di-

rectories� has to be navigated. In this �eld the header �les can be added with $SolutionDir$star.

The libraries are included similarly under �Properties→ Linker→ General→ Additional Library

Directories�. The commands are $SolutionDir$lib\x86-64 and $SolutionDir$lib\x86-32.

If linking errors still occur, the language has to be set to �ISO C++ 17� under �Properties

→ General → C++ Language Standard� and/or include the untraceable .lib �les directly under

�Properties → Linker → Input → Additional Dependencies�.

4.2.2 Signals and Slots in Qt

Signals and slots are the solution to communicate between function classes in Qt. The derived

class cannot access functions or variables from the parent. Therefore, when wanting to release

information or to call a function, a signal in the derived class and a slot for it in the parent class

are de�ned. An example can be seen in Source Code 2.

23

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

1 /* der ived . h */
2 class Derived /* . . . */
3 {
4 signals :
5 void errorExample (void) ;
6 }
7

8

9 /* der ived . cpp */
10 void Derived : : a_function (void)
11 {
12 /* . . . */
13 emit errorExample () ;
14 /* . . . */
15 }
16

17

18 /* mainwindow . h */
19 class MainWindow /* . . . */
20 {
21 private slots :
22 void on_errorExample (void) ;
23 /* . . . */
24 }
25

26

27 /* mainwindow . cpp */
28 MainWindow : : MainWindow (QWidget* parent)
29 : QMainWindow(parent)
30 {
31 /* Opening the GUI */
32 ui . setupUi (this) ;
33

34 /* Declare " t h i s " as parent o f "Derived" */
35 derived_item = new Derived(this) ;
36

37 /* Connect the e r r o r s i g n a l s */
38 connect (derived_item , SIGNAL(errorExample (void)) , this , SLOT(←↩

on_errorExample (void))) ;
39 }
40

41 void MainWindow : : on_errorExample (void)
42 {
43 /* Action performed when emit t ing errorExample in der ived . cpp */
44 }

Source Code 2: Example of signals and slots in Qt with MainWindow as parent

4.2.3 MainWindow Class

The source code needed for the GUI is de�ned via Qt. There are several possibilities from which

QMainWindow was selected as the Qt class. It provides all functions needed to display the

GUI. The four �les mainwindow.h, mainwindow.cpp, main.cpp, and mainwindow.ui are created

automatically when opening a Qt project in VS.

24

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

mainwindow.h Following the C/C++ manner, the header �le contains the declarations of all

functions, global variables, and the GUI itself. Moreover, it encloses the signals and slots, which

allow Qt to communicate between classes (cf. Chapter 4.2.2).

mainwindow.cpp mainwindow.cpp de�nes all declarations of mainwindow.h, i.e. setting up

and destroying the GUI as well as connecting signals and slots (cf. Chapter 4.2.2). The con-

sequences of clicking buttons on the window will be de�ned in functions, with the syntax of

void on_<buttonName>_clicked(void). Besides, all changes on the GUI are set here, e.g. when

opening a channel, the �Close� button will be enabled, while the �Open� button will be disabled.

The slots, i.e. errors emitted from another class, are de�ned as well.

main.cpp The �le consists of the main function, which only has four lines of code. They

declare the QApplication and the MainWindow. In other words, they initialize and show the

application, while the execution happens in the background and in the mainwindow.cpp �le.

mainwindow.ui mainwindow.ui is the �le which de�nes the graphical appearance of the ap-

plication towards the user. In VS it can be edited graphically, VS translates it into code.

4.2.4 Utilities

There are additional utilities provided by StarDundee. Not all of the functions are used but they

are all included, in case the IRS wants to make adjustments to this work.

utilities.h The utility functions are declared here.

utilities.cpp The utilities are de�ned here. They include functions which create device and

channel lists, ask the user to select a device or channel on the console, and write the input string

into bytes. Furthermore, the packet contents and version information can be printed.

4.2.5 Standalone Executable

Running the data simulator without opening VS for it is not possible without further measures.

When trying to open the executable, error messages are displayed. Certain Qt Dynamic Link

Libraries (.dll) are not found. Fortunately, the Qt distribution has a tool called windeployqt.exe

which can create a standalone version of Qt project .exe �les. Qt provides a documentation for

it [QtWin].

The easiest possible solution is opening the Windows command prompt and navigating to

windeployqt.exe's path which is similar to C:\Qt\6.0.3\msvc2019_64\bin while version number

and hard disk drive designation may di�er. Afterwards, �windeployqt --release $The path to

your GUI .exe �le$� is entered. Now a standalone should be created. When wanting to start it

from another directory, consider using Windows Shortcuts because changing the path afterwards

might result in errors.

25

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

4.3 Send GUI

The send application consists of three columns. On the left, a short manual and possible errors

are displayed. Opening and closing a channel can be performed too. In the middle, telecommands

can be sent. The user can select whether a header is needed and whether they want to enter the

message by hand or read it from a .txt �le. The message can be entered and transmitted below.

On the right, broadcast can be started and stopped. The layout is basically the same as in the

middle, except for the time interval which can be set for broadcast as well. The �nal version of

the send GUI is shown in Fig. 11.

mainwindow.h is led by two macros which let the IRS change the length of the header

(COMM_HEADER_LEN) and the message itself (MAX_LEN) easily. Note that if the length of the header

is changed, the assignment of the header bytes in send_telecommand.cpp must be adjusted as

well. Otherwise, zeros are added when extended or information is lost when shortened. The

following subsections list all source �les and their functions, which complete the ones speci�ed

in Chapter 4.2.

Figure 11: Send GUI of the data simulator with error displayed

4.3.1 Read from �le

readFromFile.h In this header the global readFromFile() function is declared, so that it is

accessible from both Broadcast_Thread and MainWindow.

readFromFile.cpp The readFromFile() function opens a .txt �le and reads the �rst line in it.

It is called by the send/broadcast functions when needed.

26

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

4.3.2 Telecommands

Sending telecommands is realized in the MainWindow class. When the �Transmit� button is

pressed, one of the following functions are called.

send_telecommand.cpp This �le contains the MainWindow::send_telecommand() function,

which sends messages with a telecommand header. The time is read from the OS. The message

input is converted into a C-array, considering the hexadecimal or binary base because the API

works with C. For the actual sending process, a packet and a transfer operation are created and

destroyed after completion.

send_vanilla.cpp TheMainWindow::send_vanilla() function is similar toMainWindow::send_

telecommand() but skips the creation of a header. However, the code di�ers slightly in several

places. Because the clarity would su�er, a common function has been waived.

4.3.3 Broadcast

Broadcast is implemented as an additional thread, so that it can run independently in the

background. Otherwise, no telemetry could be sent and the GUI would freeze while broadcasting.

Thus, a new class must be created with the properties of �QThread�. When the �Start Broadcast�

button is pressed, all important variables are initialized and the thread is started.

broadcast_thread.h The header �le declares the class Broadcast_Thread, its variables, and

the error signals to the MainWindow class.

broadcast_thread.cpp This �le contains the function Broadcast_Thread::run(), which is a

function of the �QThread� library. This part of code executes the actual broadcast as long as

stop is false. The boolean is used as a termination criterion for a while loop. Therefore, stopping

the broadcast can take up to one full �Time Interval�.

27

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

4.4 Receive GUI

The receive GUI is signi�cantly easier, cf. Fig. 12. The user can only start and stop receiving.

Received messages are saved into a �le after distinguishing if the telemetry header is present

or not. The following subsection lists all source �les and their functions, which complete the

ones speci�ed in Chapter 4.2. In mainwindow.h, there are three macros, where the two �lenames

(FILE_TELEMETRY and FILE_NO_HEADER) and the wait time (WAIT_TIME) can be edited without

searching the right place in the code.

Figure 12: Receive GUI of the data simulator with error displayed.

4.4.1 Telemetry

Similar to broadcast, the Receive GUI is controlled by two threads. This is necessary because

otherwise the GUI would freeze while waiting for messages. The derived class has been called

Receive_Thread and consists of the following three �les.

receive_thread.h This header contains the class de�nition and all declarations, i.e. variables,

functions, and signals.

receive_thread.cpp This �le contains the receiving task, performed by the Receive_Thread::

run() function. The thread waits for messages, but for a maximum of WAIT_TIME. The default

value of the macro is 50 ms. Then, a while loop will check if the �Stop Receiving� button has

been clicked. No messages will be lost because the Bricks Mk3 and Mk4 have bu�ers. If a

message is received, the function will stop waiting and the content will be written into a �le by

the writeToFile() function.

28

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

writeToFile.cpp The Receive_Thread::writeToFile() function performs several tasks with the

aim of preparing the data for further use in a spreadsheet program. At �rst, it converts the

received data into a string of binary numbers and sets a semicolon between bytes. Then, de-

pending on the user's input and the validity of the �rst byte, the message is either parsed into

the di�erent header bits and saved into FILE_TELEMETRY or unparsed into FILE_NO_HEADER. The

default �le telemetry.csv has a table header. Opening it in a spreadsheet program shows the

di�erent header sections as columns including their labels (Fig. 13).

Figure 13: telemetry.csv opened in Microsoft Excel, incl. labels and example headers.

4.5 RMAP Example

As the deadline for the thesis approached, the switch to RMAP had not been known for long.

Hence, a complete reconstruction of the GUI was not possible, instead a VS project without GUI

was created, which can send and receive RMAP packets. Thus, the continuation of this work is

easier.

The example is again based on the advanced_send_example.c and the advanced_receive_

example.c, which use the STAR-API. Additionally, the RMAP functions, e.g. a check value

(CRC) calculator, are used. Therefore, the headers (star) and libraries (lib) folders are included

as well as the utilities (Chapter 4.2.4) and the readFromFile() function (Chapter 4.3.1).

RMAPexample.h The header contains all relevant macros and function declarations for the

project.

main.cpp The main function calls either the RMAPSend(), the RMAPReceive() function or

both, depending on which is commented out.

RMAPSend.cpp This �le contains the RMAPSend() function which creates an example

packet from the data loaded out of RMAP.txt, including header and data CRCs and sends

it via SpaceWire.

RMAPReceive.cpp This �le contains the RMAPReceive() function which prints the received

SpaceWire packet and checks its CRCs.

29

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

4.6 Challenges

As in almost every project, certain challenges arose. Finding the right development environment

turned out to be challenging. The di�culty of freezing GUIs could be solved relatively fast

by using multithreading. The broken hardware was a bit more complicated to replace and the

sudden change to RMAP has not been completed yet.

4.6.1 Development Environment

At the beginning of the work a suitable coding environment had to be selected. Initially the

software provided by Qt [Qt21] was used. When handling the external libraries and source �les

of StarDundee, this tool was inappropriate. Next, the environment Eclipse by Oracle [Ecl21] was

tested. The linker issued an error, stating that it could not �nd the header �le sal.h. Through

internet research it could be identi�ed as an internal �le of VS. Subsequently, the program was

changed again. VS itself had some initial di�culties as well concerning the linker and compiler

settings (cf. Chapter 4.2.1) but they could all be solved.

4.6.2 Multithreading

The �rst approach to the matter was to implement all functions in one thread. As mentioned

above, when putting a function to sleep, either through Sleep() or STAR_waitOnTransfer-

OperationCompletion(), the GUI freezes and the data simulator cannot be controlled or even

closed.

Although this behavior is obvious, it created additional workload. Fortunately, Qt is equipped

with the developer-friendly multithreading package �QThread�. Together with �QMutex� it guar-

antees thread safety. When using a variable mutex, shared variables are blocked from unde�ned

behavior. If a thread has called mutex.lock() and has not called mutex.unlock() yet, other threads

calling mutex.lock() have to wait until it has been unlocked again.

Upon closing the GUI the destructor MainWindow::~MainWindow is called. It ensures that

the boolean stop is set and the main thread waits until the termination of the background. Oth-

erwise, channels would not be closed and allocated memory would not be freed. The destructor

of the Send GUI in Source Code 3 shows the use of mutex, the access to variables of the derived

thread, and wait().

1 MainWindow : :∼MainWindow () {
2 /* Upon c l o s i n g the GUI */
3 /* Stop the r e c e i v e thread */
4 bc_thread=>mutex . lock () ;
5 bc_thread=>stop = true ;
6 bc_thread=>mutex . unlock () ;
7 /* Wait un t i l the thread s tops */
8 bc_thread=>wait () ;
9 }

Source Code 3: Destructor of the Send GUI

30

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

4.6.3 Broken Hardware

After creation of the Receive GUI and checking the transmitted packets for errors, discrepancies

between sent and received messages were detected. Possible reasons for this were examined and

invalidated. Among them, of course, checking the code for errors, restarting the OS, power

cycling the Brick, and checking every cable and every plug.

While investigating the bug with StarDundee GUIs in binary mode, it was noticed that it

occurred very regularly. In every fourth byte, starting with the third, the second bit was set to

�false�, no matter the circumstances. When sending messages with all bits set to �true�, the fault

could be seen easily through the received bits set to �false� (cf. Fig. 14).

Figure 14: StarDundee's Transmit (l) and Receive (r) GUIs showing the defect of the Brick Mk3

This extraordinary regularity indicated a systemic error. Because the reason for the error could

not be found on the software side, StarDundee's customer service was contacted. Their kind

support sent the Brick Mk4 as a replacement. Nevertheless, it proved to be di�cult to send the

faulty Brick Mk3 for repair to Scotland since the United Kingdom has left the European Union.

After several time consuming attempts of shipping it, it �nally worked out. The device is still in

Dundee for repair.

4.6.4 Protocol change to RMAP

Shortly before completion of the data simulator with the protocol of the CCSDS, it was changed

to RMAP. This has made changes to the header necessary, which could not be realized in the

remaining time. When comparing the two protocols (Chapter 3) the headers are very di�erent.

A sample project, in which the general behavior of the API in connection with RMAP was tested,

is included.

31

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

5 Conclusion

5.1 Summary

The aim of this work has been the creation of a data simulator for the DDA. The overall

functionality has been achieved. Two GUIs were developed, one sending data as broadcast or

telecommand, the other receiving telemetry. Additionally, both of them can process raw data

without a header.

At the beginning of the work, it was considered realistic that all speci�cations of the packages

would be known before submission of the thesis. As time went on, it became clear that a lot of

work had to be done with assumptions. In consultation with the IRS, it was determined that

telecommands and broadcast should be controlled primarily via free-text �elds. Also, data can

be sent from .txt �les. Telemetry, by contrast, is su�ciently de�ned. In addition to the headers,

the Source Data Field is also speci�ed. The received packets are parsed accordingly and saved

into .csv �les. Therefore, data can be processed into a spreadsheet.

The change of protocol to RMAP was announced only during the writing of the report.

Therefore, the data simulator stayed in its original form and a draft of the RMAP version was

additionally submitted. This guarantees better comprehensibility and at least one functional

version.

5.2 Evaluation

The work can be classi�ed as an entry into implementation. Important literature has been

evaluated and a coding frame has been issued. All basic functions work impeccably. The IRS

can now start testing their experiment. When proceeding with the development of the simulator,

the needed software, hardware, and environments can be inherited. However, the project fell

short of expectations. During the development of the source code, the packet de�nitions were

not extended. On the contrary, they were discarded altogether by changing the protocol.

Nevertheless, the GUIs are much better adapted to the DDA when compared to the basic

StarDundee programs, regardless of protocol. They reduce the user's workload by creating a

workspace suitable for the needed functionality. The changes in protocol are relatively easy to

implement because the existing source �les provide examples. The �nal result can consequently

be considered a success.

32

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

5.3 Outlook

The simulator is supposed to become a powerful tool of the DESTINY+ mission. The IRS

wants to use it not only as test equipment for the �ight software but also for tests of the

whole instruments. It has to be enhanced to be �t for use. The following improvements are

recommended.

RMAP The GUIs should be adjusted to match the requirements of JAXA concerning the

headers. There will be more than the previously assumed three message types. Once these

subcategories can be displayed, their de�nitions can be converted into code. Note that some

messages in RMAP have a Command and a Reply. Therefore, the amount of messages will

increase and additionally, received and transmitted packets will have to be linked to each other.

Additional functions could check for incomplete transfers by evaluating the returning information.

Specify Telecommands It should be possible to enter telecommands and their parameters

in drop-down menus and spin boxes on the GUI. The free-text �eld would be obsolete. For

example, the user should be able to select the command �Turn DDA� and add the angle, e.g.

�10 Degrees�. The data simulator should be able to create the packet automatically with this

information. This has not been carried out because the packet de�nitions have not been speci�ed

yet.

Specify Broadcast Similarly, all broadcast should be de�ned and carried out automatically.

The user can input mode changes, e.g. �Safe Mode On� or �O��. Other information, like time

or temperature, should be incorporated. This would replace the free-text makeshift. JAXA is

responsible for determining the content of the broadcast, which it has not �nished yet.

Data Model for Telemetry Once the contents of telemetry packets are de�ned more precisely,

the simulator could be equipped with a detailed sorting algorithm. A distinction could be made

between housekeeping and science data, incomplete or questionable data could be separated from

trustworthy, etc.

33

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

6 References

6.1 Articles and Conferences

[Ara17] T. Arai et al. �DESTINY+�. In: 17th Meeting of the NASA Small Bodies Assessment

Group (2017). url: https : / / www . lpi . usra . edu / sbag / meetings / jun2017 /

presentations/Araia.pdf.

[Mas18] M. Masanori, R. Srama, et al. �DESTINY+ Dust Analyzer�. In: 49th Lunar and

Planetary Science Conference (2018). url: https://www.hou.usra.edu/meetings/

lpsc2018/pdf/2050.pdf.

[Som20] M. Sommer, R. Srama, et al. �Destiny+ Dust Analyzer � Campaign & timeline prepa-

ration for interplanetary & interstellar dust observation during the 4-year transfer

phase from Earth to Phaethon�. In: Europlanet Science Congress (2020). url: https:

//doi.org/10.5194/epsc2020-342.

[Toy17] H. Toyota et al. �DESTINY+: Deep Space Exploration Technology Demonstrator and

Explorer to Asteroid 3200 Phaethon�. In: Low-Cost Planetary Missions Conference

(2017). url: https://web.archive.org/web/20170914034331/http://www.

lcpm12.org/wp-content/uploads/2017/08/1415-1435-Toyota.pdf.

6.2 Books and Guides

[CCS10] CCSDS. Time Code Formats, Recommended Standard (301.0-B-4). Vol. 4. CCSDS,

2010. url: https://public.ccsds.org/Pubs/301x0b4e1.pdf.

[CCS20] CCSDS. Space Packet Protocol, Recommended Standard (133.0-B-2). Vol. 2. CCSDS,

2020. url: https://public.ccsds.org/Pubs/133x0b2e1.pdf.

[ECS10] ECSS. SpaceWire - Remote memory access protocol (ECSS-E-ST-50-52C). ECSS-E-

ST-50-52C. ESA, 2010. url: https://ecss.nl/standard/ecss-e-st-50-52c-

spacewire-remote-memory-access-protocol-5-february-2010/.

[IEE17] IEEE. Portable Operating System Interface Base Speci�cations (IEEE Std 1003.1).

Vol. 7. The Open Group, 2018. url: https://pubs.opengroup.org/onlinepubs/

9699919799/.

[Par12] S. Parkes. SpaceWire User's Guide. STAR-Dundee Limited, 2012. url: https://

www.star-dundee.com/wp-content/star_uploads/general/SpaceWire-Users-

Guide.pdf.

34

https://www.lpi.usra.edu/sbag/meetings/jun2017/presentations/Araia.pdf
https://www.lpi.usra.edu/sbag/meetings/jun2017/presentations/Araia.pdf
https://www.hou.usra.edu/meetings/lpsc2018/pdf/2050.pdf
https://www.hou.usra.edu/meetings/lpsc2018/pdf/2050.pdf
https://doi.org/10.5194/epsc2020-342
https://doi.org/10.5194/epsc2020-342
https://web.archive.org/web/20170914034331/http://www.lcpm12.org/wp-content/uploads/2017/08/1415-1435-Toyota.pdf
https://web.archive.org/web/20170914034331/http://www.lcpm12.org/wp-content/uploads/2017/08/1415-1435-Toyota.pdf
https://public.ccsds.org/Pubs/301x0b4e1.pdf
https://public.ccsds.org/Pubs/133x0b2e1.pdf
https://ecss.nl/standard/ecss-e-st-50-52c-spacewire-remote-memory-access-protocol-5-february-2010/
https://ecss.nl/standard/ecss-e-st-50-52c-spacewire-remote-memory-access-protocol-5-february-2010/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.star-dundee.com/wp-content/star_uploads/general/SpaceWire-Users-Guide.pdf
https://www.star-dundee.com/wp-content/star_uploads/general/SpaceWire-Users-Guide.pdf
https://www.star-dundee.com/wp-content/star_uploads/general/SpaceWire-Users-Guide.pdf

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

6.3 Other References

[CCSMA] CCSDS. CCSDS Member Agencies. 2021. url: https : / / public . ccsds . org /

participation/member_agencies.aspx.

[Des21] DESTINY+ Project Team. �C&DH Overview�. Internal Document. 2021.

[Ecl21] Eclipse Foundation. Eclipse. Version 4.20. 2021. url: https://www.eclipse.org/.

[IRS19] Institute of Space Systems. �DESTINY+ Dust Analyzer�. Internal Presentation.

2019.

[MicVS] Microsoft Corporation. Visual Studio 2019. Version 16.9. 2021. url: https : / /

visualstudio.microsoft.com.

[MicWi] Microsoft Corporation. Windows 10. Version 10.0. 2015. url: https : / / www .

microsoft.com/windows/.

[Qt21] The Qt Company. Qt. Version 6.0. 2021. url: https://www.qt.io/product/qt6.

[QtWin] The Qt Company. Qt for Windows - Deployment. 2021. url: https://doc.qt.io/

qt-6/windows-deployment.html.

[StaMk] STAR-Dundee Ltd. SpaceWire Brick Mk3. Factsheet. url: https://www.star-

dundee . com / wp - content / star _ uploads / product _ resources / datasheets /

SpaceWire-Brick-Mk3_0.pdf.

[StaSy] STAR-Dundee Ltd. STAR-System. Factsheet. 2020. url: https : / / www . star -

dundee.com/wp-content/star_uploads/product_resources/datasheets/STAR-

System.pdf.

[Wik21] Wikipedia. List of �lename extensions. Wikimedia Foundation Inc. 2021. url:

https://de.wikipedia.org/wiki/Liste_von_Dateinamenserweiterungen.

35

https://public.ccsds.org/participation/member_agencies.aspx
https://public.ccsds.org/participation/member_agencies.aspx
https://www.eclipse.org/
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://www.microsoft.com/windows/
https://www.microsoft.com/windows/
https://www.qt.io/product/qt6
https://doc.qt.io/qt-6/windows-deployment.html
https://doc.qt.io/qt-6/windows-deployment.html
https://www.star-dundee.com/wp-content/star_uploads/product_resources/datasheets/SpaceWire-Brick-Mk3_0.pdf
https://www.star-dundee.com/wp-content/star_uploads/product_resources/datasheets/SpaceWire-Brick-Mk3_0.pdf
https://www.star-dundee.com/wp-content/star_uploads/product_resources/datasheets/SpaceWire-Brick-Mk3_0.pdf
https://www.star-dundee.com/wp-content/star_uploads/product_resources/datasheets/STAR-System.pdf
https://www.star-dundee.com/wp-content/star_uploads/product_resources/datasheets/STAR-System.pdf
https://www.star-dundee.com/wp-content/star_uploads/product_resources/datasheets/STAR-System.pdf
https://de.wikipedia.org/wiki/Liste_von_Dateinamenserweiterungen

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

A Zusammenfassung (German Summary)

A.1 Motivation

Ziel dieses Projekts ist die Erstellung von GUIs, die die Kommunikation zwischen der Raumfahrt-

mission DESTINY+ und dem dazugehörigen Staubteleskop DESTINY+ Dust Analyser (DDA)

simulieren sollen. Dieser Bericht fasst den Entwicklungsprozess zusammen, unterteilt in die An-

forderungen (Kapitel 3) und die Umsetzung (Kapitel 4).

Der Sinn dieses Datensimulators ergibt sich daraus, dass das Instrument im Auftrag des

Deutschen Zentrums für Luft- und Raumfahrt e.V. (DLR) am Institut für Raumfahrtsysteme

(IRS) der Universität Stuttgart in Deutschland gefertigt wird, während die Mission ein Projekt

der Japan Aerospace Exploration Agency (JAXA) ist. Die geographische Distanz zwischen den

Modulen macht ein frühzeitiges Testen schwierig. Eine wirtschaftlichere Alternative ist dieser

Simulator. Nicht nur der Datentransfer von und zum Staubteleskop wird damit getestet werden,

auch der gesamte DDA kann bei Experimenten, z. B. am institutseigenen Staubbeschleuniger,

über die GUIs angesteuert und überwacht werden.

A.2 Anforderungen

Der DDA kommuniziert über SpaceWire mit dem Satelliten. Dieses Bussystem wurde von der

europäischen Raumfahrtbehörde (ESA) als Standard für die Raumfahrt entworfen und kann

Rohdaten versenden. Um eine standartisierte Syntax zu garantieren, werden hauptsächlich zwei

Nachrichtenprotokolle genutzt. Eines von CCSDS und eines von der ESA selbst, namens RMAP.

Vorgabe für die vorliegende Arbeit war, jenes von CCSDS zu nutzen, so wie es die ESA emp-

�ehlt. Gegen Ende der Bearbeitungszeit wurden die Spezi�kation von JAXA konkretisiert. Die

Kommunikation läuft nun über RMAP.

Unter der Annahme, die Pakete würden dem Protokoll des CCSDS folgen, wurde der Rah-

men für drei verschiedene Pakete erstellt. Telemetrie soll vom DDA gesendet und somit vom

Datensimulator empfangen und verarbeitet werden. Der Inhalt dieser Pakete war zu Beginn der

Bearbeitung vom IRS ausführlich de�niert. Vom Datensimulator zum Experiment werden Te-

lecommands (direkte Anweisungen an den DDA) und Broadcast (allgemeine Informationen

und Anweisungen für alle Experimente der Mission) versandt. Deren Spezi�kationen waren noch

nicht vollständig, deshalb sollte die GUI Freitextfelder zur manuellen Eingabe von Daten haben.

Die neuen Anforderungen zu RMAP verfügen über mehr verschiedene Pakete, jedoch bleibt

die Anforderung an die im Rahmen dieser Arbeit entwickelte Software, Nachrichten zu senden,

die Anweisungen oder Informationen transportieren, und Telemetrie zu empfangen. Bei einigen

RMAP-Paketen werden CCSDS-Header zusätzlich intern verwandt. Dennoch sind die Protokolle

grundverschieden und manche RMAP-Pakete verlangen Antworten des Kommunikationspart-

ners, was dazu führt, dass die zuvor erstellten Spezi�kation teilweise hinfällig sind.

36

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

A.3 Umsetzung

Die Umsetzung des Simulators erfolgte in Qt in der Entwicklungsumgebung Microsoft Visual

Studio 2019 (VS) auf Microsoft Windows 10. Qt ist eine C++ Erweiterung für die Erstellung

von GUIs. Zusätzlich wurde die Hardware von STAR-Dundee Ltd. aus Schottland in Form eines

�SpaceWire Brick Mk3� bzw. �Mk4� und die dazugehörige Schnittstelle (API) genutzt. Die Bricks

werden mit USB an den PC angeschlossen und wandeln die zu sendenden Bytes in ein SpaceWire-

Signal um. Empfangene Nachrichten werden entschlüsselt.

Zunächst wurden gemäÿ der Anforderungen zwei GUIs entwickelt, eine zum Senden und eine

zum Empfangen. Die empfangenen Nachrichten werden in eine .csv -Datei gespeichert, um sie

anschlieÿend in einem Tabellenkalkulationsprogramm auswerten zu können. Vor dem Senden

kann der Inhalt der Nachricht aus einer .txt-Datei importiert werden, wenn das Textfeld zu

umständlich erscheint. Zusätzlich können Parameter, wie Periode oder Header, eingestellt werden.

Die Änderungen zu RMAP konnten aus Zeitgründen leider nicht mehr vollständig in die

GUIs aufgenommen werden. Stattdessen wurde jedoch ein Beispielprogramm zur Demonstration

erstellt, welches RMAP-Nachrichten versenden und empfangen kann. Dabei wurde Wert auf die

Kommentare und den modularen Aufbau gelegt, wodurch nachfolgenden Personen der Einstieg

in dieses Projekt erleichtert werden soll.

A.4 Fazit

Während der viermonatigen Bearbeitungszeit konnte ein funktionierender Datensimulator ge-

scha�en werden. Die initialen Anforderungen werden damit erfüllt. Die GUIs sind deutlich bes-

ser an den DDA angepasst, als die Software von STAR-Dundee. Leider kam die Konkretisierung

der Spezi�kationen zu spät, um sie im Rahmen der Arbeit vollständig umsetzen zu können. Das

Projekt muss also fortgesetzt werden. Dabei kann das Send-GUI erweitert werden, sodass die

verschiedenen Nachrichten und deren Parameter durch Auswahllisten und andere Eingaben ein-

gestellt werden, anstatt das Freitextfeld nutzen zu müssen. Das Empfangs-GUI kann beispiels-

weise um einen Sortieralgorithmus ergänzt werden, der die empfangenen Daten verschiedener

Messungen trennt.

37

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

B Files

The following �les are submitted along with this thesis. Each subsection represents one VS

project and they all access the libraries lib and headers star included in their folder for this

purpose.

B.1 Send GUI

The project's name is �Send03�, therefore the project �les and the executable carry this name.

� Executables

� Send03.exe (release version, incl. Release directory)

� VS project �les

� Send03.sln

� Send03.vcxproj

� Form �les

� mainwindow.ui

� Header �les

� broadcast_thread.h

� mainwindow.h

� readFromFile.h

� utilities.h

� Source �les

� broadcast_thread.cpp

� main.cpp

� mainwindow.cpp

� readFromFile.cpp

� send_telecommand.cpp

� send_vanilla.cpp

� utilities.cpp

� Text �les

� broadcast.txt

� telecommand.txt

38

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

B.2 Receive GUI

The project's name is �Receive01�, therefore the project �les and the executable carry this name.

� Executable

� Receive01.exe (release version, incl. Release directory)

� VS project �les

� Receive01.sln

� Receive01.vcxproj

� Form �les

� mainwindow.ui

� Header �les

� mainwindow.h

� receivethread.h

� utilities.h

� Source �les

� main.cpp

� mainwindow.cpp

� receivethread.cpp

� utilities.cpp

� writeToFile.cpp

� Text �les

� telemetry.csv

� no_header.csv

39

Spacecraft Data Simulator for the DESTINY+ Dust Analyser Rafael Kniese

B.3 RMAP Example

The project's name is �RMAP01�, therefore the project �les and the executable carry this name.

� Executable

� RMAP01.exe (release version, incl. Release directory)

� VS project �les

� RMAP01.sln

� RMAP01.vcxproj

� Header �les

� RMAPexample.h

� utilities.h

� Source �les

� main.cpp

� readFromFile.cpp

� RMAPSend.cpp

� RMAPReceive.cpp

� utilities.cpp

� Text �le

� RMAP.txt

40

	Glossary
	Abbreviations
	File Extensions

	Introduction
	DESTINY+ Mission Overview
	The DESTINY+ Dust Analyser
	Data simulator
	Thesis Overview and Timeline

	Requirements
	SpaceWire
	CCSDS Protocol
	Packet Header
	Telemetry
	Telecommands
	Broadcast

	RMAP
	Time Slots and Distribution
	Read Commands
	Write Commands

	Implementation
	Setup
	Hardware
	Software

	General
	Environment Customization
	Signals and Slots in Qt
	MainWindow Class
	Utilities
	Standalone Executable

	Send GUI
	Read from file
	Telecommands
	Broadcast

	Receive GUI
	Telemetry

	RMAP Example
	Challenges
	Development Environment
	Multithreading
	Broken Hardware
	Protocol change to RMAP

	Conclusion
	Summary
	Evaluation
	Outlook

	References
	Articles and Conferences
	Books and Guides
	Other References

	Zusammenfassung (German Summary)
	Motivation
	Anforderungen
	Umsetzung
	Fazit

	Files
	Send GUI
	Receive GUI
	RMAP Example

