
Trifluoromethanesulfonates of a-Hydroxycarboxylates—Educts for the Racemization—Free Synthesis of N-Substituted a-Amino Acids

By Franz Effenberger*, Ulrike Burkard, and Joachim Willfahrt

Many N-substituted α -amino acids exhibit high biological activity^[1]. They can be prepared by substitution at the NH₂ group of the respective amino acid; this synthetic procedure is limited, though, by the reactivity of the alkylating or arylating agent as well as by the possibility of

^[*] Prof. Dr. F. Effenberger, U. Burkard, Dr. J. Willfahrt Institut f
ür Organische Chemie der Universit
ät Pfaffenwaldring 55, D-7000 Stuttgart 80 (Germany)

either elimination or multiple reactions. Alternatively, the desired amino function can be introduced directly by nucleophilic substitution of appropriate α -substituted carboxylic acid derivatives. Especially with α -halo carboxylates, however, this reaction is accompanied by extensive racemization; with α -methanesulfonyloxy and α -toluene-sulfonyloxy carboxylic acid derivatives, both racemization and elimination products are formed, *inter alia*, owing to the drastic conditions required^[1a,2].

 α -Trifluoromethanesulfonyloxy carboxylates 2 are obtained in high yield from α -hydroxy carboxylates 1 and trifluoromethanesulfonic acid anhydride/pyridine^[3]. The trifluoromethanesulfonates 2 are fairly stable and can be kept for months at 0–10 °C. Even with weakly nucleophilic amines, however, they are smoothly converted, with Walden inversion, into the corresponding α -amino carboxylates 3; the compounds 3 are isolated in excellent yield by distillation or filtration through a silica gel column (Table 1).

Comparison of the relative reactivity of various α -substituted ethyl propionates towards benzylamine in refluxing dichloromethane reveals a strong dependence on the nature of the leaving group, not quite expected for S_N2 reactions^[4]. **2c** is converted quantitatively into **3f** within 20 min; for α -bromo, α -methanesulfonyloxy, α -toluenesulfonyloxy and α -chloro ethyl propionate, on the other hand, conversion to **3f** is only 40, 10, 5, and <1%, respectively, after 22 h.

The high reactivity of the trifluoromethanesulfonates 2 proves especially advantageous for the synthesis of phenylalaninic and aspartic acid derivatives since in this case poorer leaving groups (e.g. Br^{Θ} , $CH_3SO_3^{\Theta}$) strongly favor elimination. The unequivocal stereochemistry of the sub-

Table 1. N-Substituted α -aminocarboxylic esters 3 from 2 and amines in dichloromethane at room temperature [5]. In the reaction scheme, S-configuration is given for 2, and R-configuration for 3.

			Educts		Products	Yield
2	R	R ¹	R ²	R³	3	[%]
(S)-2a	Me	Ph	PhCH ₂	н	(R)-3a	92
			Ph	H	(R)-3b	93
			$-(CH_2)_4$ - CH -Et	[b]	(2R, 2'R) - 3c	83
(S)- 2b	Et	EtCO ₂	PhCH ₂	н	(R)-3d	93 [c]
			Ph	н	(R)-3e	94
(S)-2c	Et	н	PhCH ₂	н	(<i>R</i>)-3f	85
			-(CH ₂) ₄ -		(R)-3g	84
			2,6-(CH ₃) ₂ C ₆ H ₃	н	(R)-3h	92
			Ph	Me	(R)-3i	75
			Ph-CH-Me [a]	н	(2 <i>R</i> ,1'S)- 3j	76
			Ph-CH-Me [b]	н	(2 <i>R</i> ,1' <i>R</i>)- 3 k	78
			EtCO ₂ -CH-Me [a]	н	(2 <i>R</i> ,2′ S)- 3 I	81
(R)-2c			$EtCO_2 - CH - Me[a]$	н	(2 <i>S</i> ,2' <i>S</i>)- 3 m	93

[a] S-form. [b] R-form. [c] Addition at -65 °C.

stitution reaction has been confirmed by reaction of 2 with optically active amines; the diastereomeric amino carboxylates 3 can be differentiated by capillary GLC.

Both *R*- and *S*- α -amino carboxylates can be prepared by the synthetic procedure described here; subsequent hydrolysis of the esters to the corresponding *N*-substituted α -amino carboxylic acids proceeds without detectable racemization.

> Received: August 19, 1982 [Z 135 IE] revised: November 16, 1982 German version: Angew. Chem. 95 (1983) 50

- a) R. M. Scott, G. D. Armitage, DOS 2650434 (3. Nov. 1976), Shell Int. Res. Maatschappij B.V.; Chem. Abstr. 87 (1977) 67990n; b) J. D. Kemp, Biochem. Biophys. Res. Commun. 74 (1977) 862.
- [2] A. J. Speziale, E. G. Jaworski, J. Org. Chem. 25 (1960) 728.
- [3] a) C. D. Beard, K. Baum, V. Grakauskas, J. Org. Chem. 38 (1973) 3673; b)
 K. Shiosaki, G. Fels, H. Rapoport, *ibid.* 46 (1981) 3230.
- [4] R. D. Howells, J. D. McCown, Chem. Rev. 77 (1977) 69.
- [5] Procedure: (R)-3f: A solution of (S)-2c (1.75 g, 7 mmol) in CH₂Cl₂ (25 mL) is added dropwise within 5 min at room temperature to a stirred solution of benzylamine (1.50 g, 14 mmol) in CH₂Cl₂ (25 mL), and stirring continued for 30 min at room temperature. The reaction mixture is filtered, the solution washed with water, dried over Na₂SO₄, concentrated, and the residue (1.36 g) distilled *in vacuo*. Yield 1.24 g (85%) (R)-3f, b.p. 73 °C/5 × 10⁻³ torr.