
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Visual Analysis of News Stories
Using Neural Language Models

Jena Satkunarajan

Course of Study: Informatik

Examiner: Prof. Dr. Thomas Ertl

Supervisor: Johannes Knittel, M.Sc.

Commenced: January 11, 2021

Completed: July 08, 2021

Abstract

With the introduction of computers of varying sizes in the everyday life of the majority of the world
population, we have seen a rapid increase in the amount of textual contents produced and distributed
across the digitized globe. Among the insurmountable amounts of text found in the internet, news
articles are of particular interest to many journalists, scientists and any other groups interested in
the events captivating the public interest. As hundreds and thousands of online news providers
report about the important and less important topics, it becomes an almost impossible challenge
to gather and collect the valuable knowledge provided by all these sources. To gain an overview
over the general happenings or to learn about specific topics thus becomes the task of identifying
the novel information among an ocean of recurring, duplicate and rewritten stories. This thesis
presents a combined approach to interactively visualise the novel content and the evolution of topics
in news story corpora. A prototype framework is developed that utilises the GPT-2 transformer
neural network based language model to assess the novelty of textual contents. Building on the
resulting novelty scores, the textual contents of articles are visually highlighted to emphasise the
novelty of the content. The novel article content is presented in multiple views, providing increasing
levels of aggregation as the underlying article data grows in size. Employing a term weighting
scheme incorporating the novelty scores, the ensuing document vectors are utilised to model the
topics of the article corpus over time. The resulting, time-dependant topic clusters are presented in a
multi-layered visualisation approach, providing multiple perspectives on the evolution of topics over
time. The different visualisations and functionalities are combined into an interactive framework
with multiple, coordinated views.

3

Contents

1 Introduction 11
1.1 Contribution . 12
1.2 Structure . 12

2 Foundations 15
2.1 Natural Language Processing . 15

2.1.1 Language Modelling . 21
2.1.2 Topic Modelling . 23

2.2 Deep Learning and Deep Neural Networks . 26
2.2.1 Feed Forward Neural Networks . 27
2.2.2 Recurrent Neural Networks . 30
2.2.3 Transformer Neural Networks . 31
2.2.4 Language Modelling with Neural Networks 32

2.3 Visualization Techniques . 36
2.3.1 Multiple Coordinated Views . 36
2.3.2 Gaussian Smoothing . 36
2.3.3 Node-Link Diagram . 37

3 Related Work 39
3.1 Detecting novel information in text . 39
3.2 Visual representation of textual content and insights 40
3.3 Topic Modelling: Identifying novel and recurring topics 42
3.4 Visualising the evolution of topics . 45

4 Conceptual Design & Realization of the Prototype 49
4.1 Requirements . 49
4.2 General Design . 51
4.3 Prototype Architecture & Realization . 51

4.3.1 Data . 52
4.3.2 Novelty Score calculation with GPT-2 53
4.3.3 Utilising the Novelty Scores . 58
4.3.4 Generate alternative sequences with GPT-2 69
4.3.5 Topic Modelling . 70
4.3.6 The interactive visualisation framework 80

5 Technical & Implementation Details 87
5.1 Data Preparation & Processing . 87

5.1.1 Text Preprocessing . 88
5.1.2 Storage . 88

5

5.2 Technologies . 89
5.2.1 GPT2 . 89
5.2.2 Topic Modelling . 90
5.2.3 Visualisation . 90

5.3 Web Application . 91
5.3.1 Backend . 91
5.3.2 Frontend . 91

6 Results 93
6.1 Use Cases . 93

6.1.1 Task description . 93
6.1.2 Gather a general overview of the data 94
6.1.3 Collect the key information . 94
6.1.4 identify specific articles of interest . 96
6.1.5 Examine articles of interest . 96
6.1.6 Identify prevalent topics . 98
6.1.7 Track the evolution of topics and topic keywords 98

6.2 Discussion . 100
6.2.1 Novel text content identification . 101
6.2.2 Modified tf-idf scores . 102
6.2.3 Novel text content visualisation . 102
6.2.4 Topic evolution visualisation . 104

7 Conclusion and Outlook 107

Bibliography 111

6

List of Figures

2.1 Decomposition of the document-term matrix � into the document-topic matrix,
and the topic-term matrix) . 25

2.2 The sigmoid function (1), the hyperbolic tangent (2) and the rectified linear unit
(ReLU) activation function (3) are three examples for activation functions in deep
neural networks. ReLU is among the most preferred activation functions due to its
simplicity and fast convergence [HSS15]. 28

4.1 The general, abstract design for a prototypical realization of the approach. The
user-driven approach places the user at the center of the system, influencing the
output of and the exchange between the novel detection pipeline and the topic
modelling pipeline. The user then dictates the outcome of the presentations of the
outputs, interactively changing the data to present and the properties to highlight. 51

4.2 The architecture of the prototype is mainly defined by two main components and
their procedures invoked on different sources of data. At the heart of the right
component, GPT-2 is utilised to predict novel text passages and the results are
subsequently presented in the article view and summary view. The left component
employs topic modelling to produce a topic overview shown in the topic graph,
while the cluster view and the keyword view allow to explore topics in more detail. 52

4.3 A four sentence mock example and constructed novelty scores illustrating the
potential novelty scoring by GPT-2. We assume the model is given as context the
introductory text on GPT-2 in chapter 2. The model subsequently scores the first
and second sentences rather low, as they contain little new information. The third
and fourth sentences contain unexpected and unusual words, reducing the overall
likelihood and thus increasing the novelty of the sequence. 57

4.4 The four sentence mock example and constructed novelty scores depicting the
novelty score dependant background coloring. Similar to the scores, the resulting
colors are manually defined for illustration purposes. The background visualisation
of each sentence reflects its novelty, being more visible and drawing more attention
as the novelty scores increase. 60

4.5 A side by side display of the article view and its visually emphasised content.
The left view shows the direct mapping of the novelty scores to the background
visualisation. The right view shows the Gaussian smoothed scores, with a window
size of 4. This results in more aligned scores and thus in a subtly smoother transition
between the different sentence backgrounds. 61

7

4.6 A visual comparison of sentence-wise background visualisation and word-wise
visualisation of the text background. Both instances display the direct mapping of
manually constructed novelty scores to the background coloring and the opacity.
Compared to the sentence-wise visualisation above, the word-wise visualisation
below clearly highlights the unexpected words contributing to the sentence’s novelty,
while the overall visualisation is not as fluent. 61

4.7 Illustration of the conceptual realization of thumbnails in (a) and the interactive
enlargement in (b). Depicted is the four sentence running example of this chapter
and their manually constructed novelty scores, the sentences interpreted as a single
article. The standard form (a) displays each sentence as a bar glyph, colored
according to the novelty score. On interaction, the thumbnail is enlarged (b),
displaying a number of important keywords of each sentence, in this case 4
keywords each. 66

4.8 A composite illustration of the components of the topic graph. The figure shows
both the concept behind each component in the above portion and the actual
implementation in the developed prototype. Both examples display a portion of
the topic graph for three time steps, assuming an arbitrary number of articles and
topics per time step: (a) depicts an empty topic node, while (b) adds in the topic
distribution per time step in each node and (c) finally displays the complete topic
nodes with the similarity dependant edges between each topic bar. The topic nodes
in the implementation portion display additional, interactive components, which
are detailed in the upcoming sections. 73

4.9 A topic node of the topic graph in the developed prototype is collapsed by clicking
on the corresponding button. After the collapse, the respective node is minimized,
while new, temporary connections are drawn between the topic bars of the adjacent
nodes. 74

4.10 An illustration of the topic list accompanying the topic graph, as found in the
developed prototype. Upon interaction with a specific topic entry in the list, the
remaining topics get inactive. As a result, only topic bars associated with the
activated topic remain highlighted, while the reminder is greyed out. 75

4.11 Depiction of the edge filter mechanisms of the developed prototype to reduce edge
overdraw and clutter. The displayed portion of the topic graph first draws all edges
in (a), before removing all edges in (b). In (c) the majority of edges are removed as
a threshold C for the minimum topic similarity score is defined, highlighting similar
topic groups. 76

4.12 The text view of the developed prototype, presenting the visualisations associated
with the summary view, article view and thumbnails. 81

4.13 The summary view of the developed prototype, aggregating the most important text
passages of a selected sequence of articles. 82

4.14 The article view (a) of the developed prototype, presenting the content of a specific
article and visually highlighting the novel content. Upon clicking on a specific
sentence, a small view presents the alternatives generated by GPT-2 (b). 82

4.15 The topic view of the developed prototype, presenting the visualisations associated
with the topic graph, cluster view and the keyword view. 84

8

List of Figures

4.16 Upon clicking on a specific keyword, in this case electricity, a view opens up,
displaying the passages of articles containing the keyword. The view behaves
similar to the summary view and provides an interactive header to easily switch
between different articles. 86

6.1 The text view provides a general overview of the articles, where we observe that
most articles reporting about coronavirus have been published at the end of the
month, as the date heatmap shows. 94

6.2 The list of titles shows, that the novelty of articles published at later dates, here
the 01.23., seem to contain less novel content - likely as they report about content
covered in the previous days. 95

6.3 The mashup shows some of the aggregated article passages presented in the summary
view. The background coloring draws the attention towards the novel information,
from which we can quickly gather information about the coronavirus. The sequences
outlined in red highlight how the underlying model recognizes already known content. 95

6.4 The overlapping illustration displays how we first sort the articles by their novelty,
resulting in the presentation of highly novel text passages (a). To make the passages
more readable, we adjust the Gaussian smoothing window size, resulting in a more
fluent background visualisation (b). 96

6.5 To restrict the number of articles to analyse, we cherry pick a small sequence
of articles via their identifier and inspect their thumbnails (a). The keywords on
demand draw interest towards a specific article (b). 97

6.6 The article view quickly draws the attention towards the interesting passages of the
article, as passages about animal diseases are heavily highlighted. Upon clicking
on the sentence How can diseases jump species?, the model generated alternatives
disclose the relation between the topic of this article and the coronavirus. 97

6.7 The topic graph in (a) displays the topics for the entire data set, covering a broad
set of topics. The topic graph in (b) narrows down the time frame and produces
clusters for five topics, as manually set via the menu. Hovering over the purple
topic bars associated discloses a general health related and especially coronavirus
related topic. 98

6.8 The cluster views of two distant time steps show that the general topics are similar,
while the topic health gains relevance in the later cluster. 99

6.9 The keyword views of each of the clusters illustrate that the underlying article
sequences report about content mostly related to coronavirus. In the earlier cluster
(a), we spot an odd topic revolving around Kobe Byant. 100

6.10 Inspecting the selected keyword in the view on the left side, provides us with the
interesting passages from the corresponding article reporting about Kobe Bryant. 100

9

1 Introduction

Living in the digital age, the amount of new information produced from online resources seems
endless. Textual data is published from multiple sources and in varying formats, constantly adding
up in massive quantities. Blog posts, social media or online news providers generate new data on
a daily basis, unpredictably accelerated by global phenomena like pandemics or natural disasters.
One, even if not a data analyst, might see the need to view and examine the sheer amounts of textual
contents, in order to gather relevant and previously unknown knowledge. The task at hand is not
only aggravated by the quantities involved, as novel information will be buried among an overload
of duplicate content: Social media users share and copy posts of particularly high interest, creating
a web of slightly altered replicates spanning from the original content. In a similar fashion, distinct
online news portal reporting the same event might present the same piece of information in different
ways. Articles might appear at various timings, building upon previous reports by appending
additional information marked as updates, even if the update offers little to no new insights. A full
picture of the novel knowledge to be gained at specific times requires both

• an analytical distinction between previously known and unknown information,

• as well as an aggregation of the individual contributions of each article circulating at the time
span of interest.

Gathering valuable insights from unstructured textual data has been and is still studied thoroughly
in the field of text mining [Fra06]. Adapting and integrating statistical techniques utilised in novelty
detection [PCCT14] has produced a number of works specializing in finding novel content in large
text corpora. Though the tools to solve the aforementioned task seem readily available, it is only
one step towards an insightful conclusion. Having extracted valuable, new information from a
stream of texts, understanding its thematic relations and implications given the context of previous
data requires further processing. This is especially relevant and challenging as successive new text
entries form a growing sequence, among which the evolution of specific themes or events is to be
followed. A structured approach is needed

• to reduce the complexity of the growing data at hand, by thematically grouping existing and
new texts into clusters representing the relationships in the data

• to present a visual overview of the resulting themes as they evolve with the addition of new
texts

• and to provide interactive tools to dynamically change the focus between multiple themes of
interest.

Research on topic modelling [KB19] offers techniques to find latent topics among groups or clusters
of texts and many works in the field of visual analytics [WT04] couple the results of such topic
modelling algorithms with interactive visualisations to present and explore the topical evolution of
temporary ordered text corpora.

11

1 Introduction

While visualisation approaches exist to interactively analyse the evolution of novel topics, such as
StoryTracker [KNMK13], there is little research on combining such approaches with state-of-the-art
techniques like deep neural networks for novelty detection. Conversely, there exist new approaches
to extract novel text content like the work by Knittel et al. [KKE18]. Yet, there is a lack of tools
that surround the findings of such approaches with an interactive framework that allows to visually
inspect the development of novel content over long periods times and for large amounts of text.

1.1 Contribution

This work proposes a combined approach to address the previously described task of extracting
novel content from a given document corpus and subsequently model the temporal evolution of the
prevalent topics found within the ordered set of documents. The approach utilises state-of-the-art,
deep neural network based language models to first analyse and locate novel textual information in
long sequences of news articles. The findings of the models are subsequently incorporated into
advanced text processing and topic modelling techniques to effectively group articles of similar
thematic content. The results of the process are embedded into a multi-level, interactive visualisation
framework utilising multiple coordinated views to present the information gathered in various
degrees of detail:

• On the lowest level, the approach allows to filter and examine singular news articles, visually
and distinctively highlighting novel text passages.

• On the intermediate level, the temporary ordered articles are aggregated with respect to given
search queries and filter settings. The presented results represent a summary of the novel,
most important content, relevant to the query and subject to the constraints set by filters.

• The highest level corresponds to a timeline of the most important topics prevalent in the given
corpus of news articles. The results of the topic modelling process are visualised with an
emphasise on the evolution of topics, highlighting both the continuity of long lasting topics
over time and the emergence and disappearance of new, potentially short lived topics. To
inspect the content of articles associated with selected topics of interest, the visualisation
is enriched with interactive tools to view relevant text passages and keywords in isolation,
emphasising the novel content.

A web based prototype of the interactive visualisation framework is implemented and discussed,
exploring the use cases of the combined novelty detection and topic modelling approach and
analysing its advantages, disadvantages and future direction.

1.2 Structure

The thesis presents the approach according to the following structure:

Chapter 2 introduces the necessary theoretical and technical background to the techniques and
approaches utilised throughout the thesis.

Chapter 3 explores related research on the topics of novelty detection, topic modelling and topic
visualisation and compares previous works with the approach presented here.

12

1.2 Structure

Chapter 4 illustrates the formation of the prototype, explaining the reasoning behind the concepts
of this work and how they tie in in the overall approach.

Chapter 5 presents the concrete implementation of the prototype and the selected technologies
involved.

Chapter 6 showcases selected application scenarios for the approach and its resulting prototype
and subsequently discusses the benefits and shortcomings.

Chapter 7 concludes the work with a look into alternative design decisions and future improve-
ments.

13

2 Foundations

The following chapter discusses fundamental concepts and core technologies utilised throughout this
work. First, we provide an introduction to Natural Language Processing, explaining basic and more
advanced techniques to process natural textual data, to describe and model its statistical properties
and to discover prevalent topics based on these statistical properties. The chapter continues with a
compact overview of the most important concepts related to the field of Deep Learning and relevant
to this work, laying the foundation to explain and discuss the usage of GPT-2 and its transformer
based language model. A short summary of the relevant concepts borrowed from the fields of
Visual Analytics and Text visualisation to build an interactive visualisation framework concludes
the chapter.

2.1 Natural Language Processing

Understanding natural languages has been an ever present task and with its complexity, Alan
Turing deemed it difficult enough to model his famous test 1 around it, have arisen a multitude of
challenges. With computers popularised and standardised as everyday equipment for consumers and
scientists alike, the field of computational linguistics has since targeted the issue of making artificial
intelligence ”understand” natural language in various ways. At the heart of Natural Language
Processing (NLP) stands the complex, composite task of finding a suitable representation for human
language a computer can work with and defining an automatic processing system to extract the
desired output. As Heimerl [Hei17] and Brill et al. [BM97] compactly summarise, the processing
and analysis methods applied in NLP are mainly influenced by two paradigms:

• A rule-based approach to manually encode and utilise domain-specific linguistic knowledge,
provided and often hand-coded by experts.

• An empirical, data-driven approach based on the automated, statistical analysis of text corpora,
i.e. working directly with ”real” data, finding recurring patterns and subsequently generalising
to learned rules.

The latter paradigm has been more and more prevalent as textual data became available in almost
arbitrary amounts, rendering the appliance of linguistic knowledge by hand to such data sizes
ineffective, due to cost and feasibility constraints. In contrast, with the increase in computing
resources and advanced probabilistic models, statistical approaches offer a more extensible and
robust framework when dealing with big data sets. While Heimerl points out that semi-supervised
approaches combining linguistic rules with automated inference methods are gaining traction
nowadays, the remainder of this work will focus mainly on data-driven statistical approaches.

1https://en.wikipedia.org/wiki/Turing_test

15

2 Foundations

Nowadays, applications related to NLP or utilising NLP driven techniques are plentiful. Examples
relevant for this work include

• Document Classification, where documents are assigned class labels from a predefined or
learned set of labels. In the case of document Clustering, a set of documents has to be
separated into groups of similar documents with respect to one or multiple properties of
interest. Topic classification is an example for the a classification task, where documents
are labelled by the topic or theme they belong to. Complementary to classification, in topic
clustering documents are clustered according to the latent topics among the documents.

• Information Retrieval (IR), where given a query consisting of terms, phrases or documents,
an IR system is tasked with finding related documents, that is, documents containing identical
or similar words and phrases, documents with similar content or documents retrieved in a
similar context.

• Language Modelling, a task to assess the likelihood of texts occurring as they are, enabling
to distinguish between texts written by humans versus texts written by artificial intelligence
for example.

• Text summarisation, where a given text is to be summarised by aggregating the most
important words, sentences or passages within the text.

• Part-of-Speech (POS) tagging, where the individual components of sentences are labelled
according to their corresponding grammatical function, example labels being nouns, verbs or
adjectives.

2.1.0.1 Machine Learning

Mitchel [Mit97] defines machine learning (ML) as the process of a computer program learning to
solve a given class of tasks) , improving its performance with respect to a performance measure %
as it gathers more experience � with respect to) . Goodfellow et al. [GBC16a] further describe the
roles of tasks, experiences and performance measures:

• The task specifies the overall goal to achieve and thus governs how the underlying program
processes a given data example.

• The experience is provided by the input data set, that is, the machine learning program learns
from the data examples, or samples, with respect to the given task.

• The performance measure guides the evaluation of the program’s performance, thus
providing feedback on how well the program has learned to solve the task.

The concept of experience can be further distinguished by the problem category: Supervised
learning problems additionally provide labels with the data examples, indicating the correct output
expected from the machine learning program when processing the specific data example and thus
guiding the learning process. Unsupervised learning problems on the other hand require the program
to estimate the correct output without any guidance, thus relying solely on the learned properties
from the data examples.

16

2.1 Natural Language Processing

Overall, a machine learning problem can be formally defined after Murphy [Mur21] as the task
of learning a function 5 : - → . that maps from the given set of input features G ∈ - to a target
representation H ∈ . . The difference between supervised and unsupervised learning lies in the
prediction of the target H. In the supervised setting, the machine learning algorithm is given a
set of samples {(G=, H=)}#==1 learning the mappings from inputs G8 to the correct targets H8, thus
estimating the conditional probability distribution ?(H |G), i.e. the likelihood of the outcome given the
observation. In an unsupervised learning task, the program is only given samples {G8 | 8 = 1, ..., #}
and subsequently has to learn the probability distribution ?(G), i.e. the likelihood of the observation
at hand for any possible outcome. Both supervised and unsupervised learning tasks aim to find
the parameters \ to model a function 5 (G; \) that that maximises the probabilities assigned to the
correct targets H in the case of supervised learning. In the case of unsupervised learnin, the task is
to model a probability distribution %(G; \) that best describes the given observations the best. The
model produced by the machine learning program is the result of the parameters learned while
processing the given inputs and a ”snapshot” of the programs current understanding of how to solve
the given task.

When denoting parameters in a machine learning program, one has to distinguish between the
model parameters to learn and the hyperparameters defining the setting of the task, as Goodfellow
et al. explain. Hyperparameters are control variables that affect the learning process but do not
determine the task performance, that is, they influence the quality of the learning process, but not the
quality of the model’s output. As such, hyperparameters are not learned, but fixed by the practitioner
before training ensues. Training refers to the learning process, where the machine learning program
receives the training data samples, subsequently processes the samples and fits the underlying model
parameters to achieve the best possible performance for the given task. This might be done in an
iterative process, where more and more data is fed into the model to improve the performance step
by step. Goodfellow et al. note that this can be seen as an optimization problem: When training
a machine learning program, the training error, i.e. the error rate of the model output after a
particular training step, is monitored and improvement is defined as reducing the training error.
Though as the authors further add, a machine learning task deviates from an optimization task as
not only the training error is of relevance, but so is the test error. The test error is measured after
the training process is completed, utilising a new data set the model has not ”seen” yet, i.e. the
samples have not been part of training. Of major importance for the data-generation process is the
assumption of independent and identically distributed samples in each data set provided for
the generation. After Goodfellow et al., the assumption of a shared probability distribution and
independence of samples enables the comparison of training and test error:

• A decreasing training error, but an increasing test error implies the overfitting of the trained
model to the training samples. Overfitting describes the phenomenon of the model learning
the provided data samples ”too well”, increasing the complexity of the model with respect to
the training samples, such that the model does not generalise to new data samples.

• If neither error improves, the model is underfitting, that is, the model is neither able to
extract the important properties of the training samples with respect to the given task, nor
does it achieve the same for new data samples.

The over aching goal is to generalise, that is, the model should be able to perform well not only for
the training set, but for any new, independent data samples. Goodfellow et al. name the capacity of
a model as a possible tuning point to prevent both over- and underfitting. The capacity determines
the range of functions a model is capable of fitting, i.e. learn the optimal parameters to solve the

17

2 Foundations

given task. The Section on Deep Learning and Deep Neural Networks discusses the example of
how linear function compositions are not able learn the XOR function, essentially underfitting on
any given training data set.

Different factors might influence generalisation, requiring to fine tune the learning algorithm and
possibly modifying it. Several regularization techniques have been developed to control the model
complexity and improve its generalisation capabilities, a range of which Hastie et al. [HTF09]
discuss in their work.

Fine tuning the model and the the algorithm setting has to be strictly separated from testing the
model’s generalisation capabilities: Utilising the test data repeatedly to optimize the generalisation
error produces a final model that is optimized with respect to the test set, overfitting the model on it
and underestimating the true test error after Hastie et al. In practice, in addition to the training and
test data sets, a validation set is utilised strictly to monitor the prediction error of a ”freshly” trained
model. Thus, a model is trained using the training set, subsequently fine tuned with the validation
set and finally tested for its generalisation capabilities on the test set.

2.1.0.2 Text Normalization

Jurafsky and Martin [JM09] refer to a corpus as a machine-readable collection of digitized, structured
textual data. As the data is collected from various sources, a relevant example being web based
news article providers, the texts are likely to be unprocessed and noisy and as such often referred to
as ”raw data”. This poses several challenges when performing NLP tasks: Special characters and
non-standard words such as emoticons, currencies or abbreviations and neologisms add noise to
the data, obscuring results of information retrieval or text summarisation tasks for example, as the
parsing unit might not recognize said characters and words.

The example above illustrate the need to convert the unprocessed text into a standardized, canonical
form, easing the subsequent processing. Text processing, which Indurkhya and Damerau [ID10]
define as the conversion of unprocessed natural text into a well-structured sequence of meaningful
units, incorporates subtasks commonly performed in a selected order depending on the application,
forming a text processing pipeline. Multiple tasks to normalize text exist, among which sentence
segmentation, tokenization, stemming and lemmatisation make up a significant portion of this
work’s text processing pipeline. The aforementioned terms shall thus be shortly presented and
discussed in the following.

• Sentence segmentation, as the name suggests, denotes the process of splitting up written
natural text into sentences, most commonly utilising punctuation characters like periods,
question marks or commas as boundary landmarks. The decision upon what is considered a
boundary again depends on the application and its settings, like the language for example. In
the English language, periods, exclamation marks and question marks are very commonly
used as sentence boundaries.

• Tokenization denotes the further segmentation of sentences or passages of the text into
words. Multiple tokenization approaches exist, again varying depending on the setting.
In space-delimited languages like English, white spaces are commonly utilised as word
boundaries. A token after the initial segmentation might still consist of multiple word
components or incorporate non-alphabetic characters like punctuation characters, for example

18

2.1 Natural Language Processing

could’ve. The several, task specific steps are performed by tokenizers, on the basis of
predefined rules or machine learned. Tokenizers commonly utilise filter mechanisms, using
regular expressions for example, to detect and split punctuation from words, creating two
or more separate tokens, to recognize special character sequences like currencies or to split
words containing numbers.

Given the sentence He went to the park to make something, which made her go home, a possible list
of output tokens from a tokenizer could be he, went, to, the, park, to, make, something, which, made,
her, go, home. When determining statistical properties like the frequency of word types, the unique
words appearing in a given word sequence, the above tokenization output raises certain issues.
Assuming the number of distinct tokens equals the number of types, will lead to an inaccurate
number of 13 word types, despite went and go, and make and made originating from the same words
go and make respectively.

• Word normalization helps to generalise such cases by transforming or reducing words into
a standard form. While the cleaning steps performed by tokenizers can be seen as a basis
step towards generalisation, more advanced techniques focus on the morphology of words,
the study of the composition of words from smaller ”meaning-bearing” units [JM09]. In
the example above, went is a morphological variant of go and to reduce the latter word to
its former base form, stemming and lemmatisation are commonly employed. Jurafsky and
Martin describe stemming as a crude, heuristic approach, as it reduces words to their stem,
the central part of the word containing its meaning, for example go in goes. Lemmatisation is
a more sophisticated approach, where words are mapped to their canonical form, their lemma,
for example both is and was to be. Jurafsky and Martin denote the difference in complexity
between stemming and lemmatisation: Where stemming applies a comparatively simple,
commonly rule based reduction, lemmatisation requires a morphological analysis of the word
and analysis of the surrounding context to disambiguate multiple potential lemmas.

2.1.0.3 Representation

Many NLP applications rely not only on normalized and cleaned textual data, but base their results
upon a meaningful representation of the texts. The word meaningful can be taken very literal:
Searching a documents for related phrases given a query, one assumes the information retrieval
system to search for phrases that exactly match and for phrases that are similar in their meaning.
Jurafsky and Martin define the term word senses, that is, the multiple meanings a single word can
have: Windows can either mean openings for light inside buildings or the operating system.

Choosing a representation for the words of a given document set, thus, becomes a task of encoding
the meaning of the words in way that enables to compare and assess the relationship between
similar and dissimilar words. Jurafsky and Martin name the concept of vector semantics: Given a
document from a corpus with a vocabulary of = distinct words, each word is mapped to a point in =
dimensions. In the resulting vector space model, every document is represented as a vector in =
dimensions, each dimension corresponding with a word in the vocabulary. The construction of the
vectors typically relies on statistical properties, where the 8-th entry in the word vector is weighted
with respect to the 8-th word in the vocabulary. Heimerl [Hei17] names the boolean weighting and
the term frequency weighting as two examples for simple weighting schemes and points out their
shortcomings. In the first approach, every entry in a vector is assigned a binary value denoting

19

2 Foundations

whether the word appears in the corresponding document, treating every word the same, irrespective
of its actual importance with respect to its document’s content. In the latter approach the binary
values are replaced with the absolute count of each word with respect to the document, skewing
the perception of importance: A word appearing a hundred times is not necessarily ten times
more important than a word appearing only then times. The tf-idf weighting scheme is a more
sophisticated approach, incorporating the relevancy of a word with respect to both its document and
the overall document corpus in its weighting. As Manning et al. explain, the approach constructs a
composite score from two core weighting components:

• The term frequency count C 5C ,3 of term C denotes its count specifically for the document
3. Commonly, rather than using the raw frequency, the weight is additionally normalized
to account for discrepancies in counts as described in the example above. Examples after
Manning et al. include dividing the weight by

∑
C′∈3 C 5C′,3 , the overall number of terms in the

document 3, dividing by the maximum term frequency C 5<0G (3) of a term in the document
or taking the logarithm of the term frequency 1 + ;>6(C 5C ,3).

• The inverse document frequency 835C of term C encodes the relevancy of a word with respect
to the document corpus, that is, it accentuates term weights for terms confined to a few
documents, but appearing often there, while scaling down weights for terms appearing often
and across multiple documents. The inverse document frequency first requires to calculate
the proportion #

3 5C
, with 35C being the document frequency of the term C and # being the

overall number of documents. Taking the logarithm of the aforementioned proportion gives
835C = ;>6(#3 5C). Going back to the example before, the word the is likely to appear in all
documents, producing a score of 0 or close to 0. On the other hand, if death is ”exclusive” to
a selected few documents, the rarity of the word across the corpus will yield a low document
frequency and subsequently increase the inverse document frequency.

The tf-idf score of a term C in a document 3 is then calculated as

C 5 _835 (C, 3) = C 5C ,3 · 835C

marking words appearing seldom across the corpus, but often in particular documents as an accurate
representation of the contents of those documents, while diminishing the influence of words shared
by multiple documents in the corpus and thus likely to be less representative. The approach
presented in this work utilises the tf-idf weighting as a ”base line”, further modifying it to encode
the novelty of the text passages the terms occur in, as described later on in 4.

Having determined a representation of the documents of a given corpus enables the comparison of
the documents. A common task involving such comparisons is to find similar documents given
a query or another document. A few selected similarity measures among a multitude of existing
approaches will be shortly presented and discussed in the following:

• The euclidean distance [Hua08] is a basic similarity measure commonly utilised in tandem
with vector based document representations. Interpreting documents as a point in vector
space, the similarity of the documents can be calculated as the inverse distance between the
points. A drawback of using the euclidean distance is the natural increase in distance as the
difference in length between documents grows, irrespective of the content similarity.

20

2.1 Natural Language Processing

• The cosine similarity measure [Hua08] offers a practical solution to the aforementioned issue,
as the measure calculates the cosine angle between two vectors. The angle is agnostic to the
length of the vectors and is mainly influenced by their orientation, thus growing or shrinking
as documents share more or less terms. The cosine similarity is computed by calculating the
dot product of the given vectors E and F and dividing it by the product of their lengths

2>B8=4_B8<8;0A8CH(E, F) = E · F
|E | |F |

where the dot product of E and F is calculated as
∑=
8 E8 · F8 and the length of a vector E is

calculated as its euclidean length
√∑=

8 E
2
8
. As Manning et al. point out, the denominator in the

equation above applies a length-normalization, producing unit vectors and measuring the angle
between them. Unit vectors are of the same length, 1, thus eliminating the aforementioned
issues related to different document lengths.

Document vectors stemming from the vector space model discussed so far are very sparse: Each
document naturally only consists of a fraction of the document set’s vocabulary and thus the
vectors consist mostly of 0 entries. Jurafsky and Martin highlight reasons to desire more compact
representations, examples being the increased complexity when training a classifier with such
vectors or the computational effort to operate on vectors with multiple thousands of entries. Word
embeddings [PSM14] offer an alternative representation based on short and dense vectors learned
by a trained classifier and are discussed in more detail in section 2.2.4. To stick to the vector space
model for now, sparsity can be reduced by simplifying the vectors, that is, reducing the size of the
vocabulary and thus the dimensionality. Of course, trimming the vocabulary means removing words
and arbitrary removal might result in the loss of important, ”content bearing” terms. A common
approach is to remove stop words, high frequency terms like determiners (the), conjunctions (and)
or auxiliary verbs (be).

2.1.1 Language Modelling

The field of Automatic Speech Recognition (ASR) is concerned with the conversion of audio signals
produced by human speech into a highly accurate textual translation of the spoken words relating to
the signal. Any representation of the resulting words is inherently stochastic, as noise in the signal
data induces uncertainty. As Jurafsky and Martin denote, the issue of converting ambiguous data
into text can be found in other applications as well, examples being automatic query completion in
search engines or spelling correction. The aforementioned tasks require a probabilistic model of
language, or shortly language model, to predict the likelihood of a sequence of words occurring as
it is, for example assessing whether the partial sequence The weather today is rather is followed by
the word cold or gold.

As natural language follows certain grammatical rules and structures, the likelihood of words change
as their context vary. In English, a sentence ending on the word the is rather unlikely, barring an
error. Consider the event of a word F= appearing as a random variable - taking on the value F=,
where the probability %(- = F=) is simplified to %(F=). The probability of a sequence of words
F1, ..., F=−1 followed by the word F= can then be seen as a chain of random events, describing a

21

2 Foundations

joint probability distribution. Jurafsky and Martin illustrate how the chain rule can be applied to
calculate the joint distribution as a sequence of conditional probabilities:

%(F1, ..., F=−1, F=) =
=∏
8

%(F8 |F1:8−1) [�"09]

The authors further explain why it is highly inefficient at best and infeasible at worst to esti-
mate the true distribution with above equation: One way to calculate the conditional probabil-
ity %(F= |F=−1, ..., F=−:) is to utilise the relative frequency, i.e. estimate the probability as
|F=−: ,...,F=−1,F= |
|F=−: ,...,F=−1 | in a corpus containing ”enough” samples of either sequence. This is a challenging

task, as it first requires a corpus that contains a representative amount of samples of all word
sequences of interest to accurately estimate the relative frequency. Assuming such a corpus is given,
modelling the joint distribution for = words requires a product over = factors, each factor estimated
via the relative frequency count, subsequently resulting in a potentially very small probability.

More practical and widely used are n-gram language models, based on Markov models [MTG09].
The key assumption, also called the Markov assumption or Markov property, allows to model the
conditional probability distribution of random variables with respect to a limited past. Precisely, in
the context of language modelling, the property assumes the word F= in a Markov model of order
(: − 1) to only depend on its : − 1 preceding words of the sequence, approximating the conditional
probability %(F= |F1, ..., F=−1) as

%(F= |F1, ..., F=−1) ≈ %(F= |F=−:+1, ..., F=−1) [�"09]

As Jurafsky and Martin point out, the n-gram probabilities can be estimated as maximum likelihood
estimates (MLE) utilising the relative frequency as established before, resulting in normalized
counts ranging between 0 and 1. In the case of a bigram model, a first order Markov model, the
probability %(F= |F=−1) is calculated as

%(F= |F=−1) =
|F=−1F= |∑
G |F=−1G |

=
|F=−1F= |
|F=−1 |

[�"09]

where the first equation determines the proportion of bigrams starting with the same word F=−1 and
ending on F= or another word G respectively. The denominator can be simplified to the unigram
count of the word F=−1, as every bigram in the denominator contains the unigram F=−1.

While n-gram language models offer a straight forward solution to model word probabilities, certain
disadvantages can hinder their performance. A major factor in the effectiveness of n-gram models
is the size of the training data, i.e. the underlying corpus. Word sequences occurring rarely with
low corresponding counts will result in low probabilities or zero probabilities, heavily affecting the
overall sequence probability. In the worst case, if the model encounters a word it has never seen
during training, the entire sequence probability will be set to 0. Smoothing is a common method
to handle unseen words and sequences, where probability mass is reallocated to low frequency
events by discounting high frequency events. Additive smoothing [CG99] achieves this by adding
a constant _ to each n-gram count, pretending to have seen additional training samples. The
denominator of the maximum likelihood estimates is normalized to accommodate the ”new” data
samples, resulting in new bigram probabilities

%(F= |F=−1) =
|F=−1F= | · _
|F=−1 | + |+ | · _

22

2.1 Natural Language Processing

with |+ | being the training vocabulary size.

While smoothing alleviates the issues of insufficient or sparse training data, generalisation remains a
difficult task for n-gram models. A change in the application domain is likely coupled with a change
in the underlying vocabulary and the statistical properties of the application corpus. Subsection 2.2.4
introduces neural network based language models as an alternative to n-gram language models with
better generalisation properties and discusses the advantages and disadvantages of such models.

Assessing whether one language model performs better than another requires a metric to evaluate
the predictive capability of the models. Perplexity is such a metric commonly utilised to evaluate
language models, where the quality of a model is assessed with respect to its predictive performance
on new and unseen data.

After Jurafsky and Martin, the perplexity of a model \ can be calculated as the normalized, inverse
probability assigned to a test set) of = words:

%%\ ()) =
=

√
1

%\ (F1, ..., F=)

The intuition of utilising perplexity to evaluate the model quality can be seen in the assigned
probabilities: A better model is likely to assign higher probabilities to unseen data samples, as it
has generalised better and is thus more ”confident”. A higher average probability will thus decrease
the perplexity, marking a higher quality language model.

Suppose the underlying model is a unigram language model assigning word probabilities %\ (F8).
Manning et al. [MRS08] additionally illustrate how perplexity can be expressed in terms of cross
entropy:

%%\ ()) =
=

√
1

%\ (F1, ..., F=)
≈ =

√√
=∏
8=1

1
%\ (F8)

= 2�\

with �\ = − 1
=

∑=
8=1 ;>6(%\ (F8)) being the cross entropy for the model with respect to the true

probability distribution.

As the authors explain, the above exponentiated cross entropy can be viewed as the branching factor
of a language model, i.e. defined by the authors as the ”number of possible words that can follow
any given word” [MRS08]. Intuitively, the higher the confidence of a model in selecting the most
probable next word, the lower will be the branching factor and thus the perplexity.

2.1.2 Topic Modelling

When analysing large corpora of text with hundreds or thousands of documents, it is often practical
to not examine every single individual document, but rather analyse collections of documents and
extract common and shared properties among the collection members. Topic modelling is an
unsupervised statistical learning approach commonly utilised to cluster documents according to
latent topics described by the contents of the document corpus. Assuming a given corpus consists of
documents that can be categorized by their theme, i.e. words appearing within the same semantic
context: Intuitively, not every word in a document will be related to a document’s topic or carry any

23

2 Foundations

importance with respect to it, while documents of the same topic are likely to share those words that
are highly related to the topic. Topic modelling aims at extracting the topic defining keywords that
function as a summary and representation of the topic and thus the key content of the documents
they appear in. Furthermore, topic modelling can be applied to reduce the complexity of the both
corpus and the documents, grouping and summarising similar documents that share the same theme,
while separating documents of distinct topics.

2.1.2.1 Latent Dirichlet Allocation

As suggested by Liu et al. [LTD+16], a topic can be statistically described as a probability
distribution over a set of words, assigning higher probabilities to related words. Conversely, every
document can be described as a distribution over topics, the assigned topic probabilities reflecting
the relevancy of a document’s word content with respect to each topic. Recalling unsupervised
learning tasks introduced in subsection 2.1.0.1, topic modelling thus becomes the task of fitting
a probability distribution that best describes the given composition of words representing each
document. After Blei [Ble12], the aforementioned probability distribution can be derived as the
conditional probability distribution for the latent topics, given the observed documents.

Latent Dirichlet Allocation [BNJ03] assumes the given documents to stem from a generative process,
resulting in the conditional distribution describing the latent topics. LDA subsequently leverages
the assumption to infer the document-topic and topic-word distributions that best approximate the
conditional distribution. Given " documents, each a sequence of #3 words from a fixed Vocabulary
+ , with possible topics, the generative process of a document is described as follows:

• A categorical Dirichlet distribution %(\3;U) describes the topic mixture for the document
and the available topics.

• The topic-word distribution for each of the topics is again described by a Dirichlet
distribution %(l8; V),

• For every of the #3 words of the document, sample a topic I3 from a multinomnial distribution
%(I3 |\) derived from the topic mixture.

• Then, sample a word FI3 according to the multinomial distribution %(FI3 |l8) derived from
the topic-word mixture.

The document-topic Dirichlet distribution is parameterized by U, determining the mixture of
topics per document: A high value indicating more evenly distributed probabilities, while a low
value concentrates the probability mass around certain topics. Comparably, V parameterizes the
topic-word distribution, its value characterizing the relevancy of words with respect to the topic.
The equation of the conditional probability distribution describing the latent topics of a document
corpus resulting from above generation can then be stated as:

?(\, l, I, F |U, V) =
"∏
3

%(\3;U)
 ∏
8

%(l8; V)
#∏
9

%(I3, 9 |\3)%(FI3 , 9 |l8) [�#�03]

Various inference algorithms exist to approximate above equation, Variational Inference [HBWP13]
and Gibbs Sampling [GS04] being two examples. Viewing this as a machine learning task, we
now want to maximise the probabilities assigned to the documents serving as our observations.

24

2.1 Natural Language Processing

Having found the document-topic distribution and the topic-word distribution that achieve the
aforementioned goal, we can manually associate documents and words with topics according to
each distribution.

2.1.2.2 Non-negative Matrix Factorization

The previously introduced LDA interprets topic modelling as solving a probabilistic model.
Alternatively, there exist approaches to topic modelling borrowing techniques from the field of
multivariate analysis. Non-negative Matrix factorization (NMF) [PT94] is a dimension reduction
technique to factorize matrices as low-rank approximations. The application of NMF for topic
modelling relies on the concept of document-term matrices. Given a shared vocabulary + of size
= for a corpus of < documents, the documents can be presented in a matrix of size = × <:

• Each document is a row vector akin to the representation discussed in subsection 2.1.0.3,
thus the vector entries reflecting whether the document contains each of the = words aligned
along the columns. Recalling the construction of the document vectors utilising functions of
word and document frequencies, we can determine each vector to contain only non-negative
entries.

• Conversely, every column vector represents the corresponding word’s membership to each of
the < documents.

The resulting matrix � ∈ R<×= is non-negative by nature, such that NMF can be utilised to
decompose the matrix � into two new, lower dimensional matrices: A matrix , ∈ R<×: and a
matrix) ∈ R:×=, where : � <8=(<, =) is provided by the practitioner. To relate the decomposition
to topic modelling, we can view the desired dimension : as the number of topics assumed to be
prevalent in the document corpus. The resulting matrices can then be interpreted as follows:

• , represents a document-topic matrix, each row corresponding to a document. Each of the :
columns then provides a numeric assessment of the topic’s relevancy with respect to each
document.

• The matrix) can be seen as a topic-word matrix determining the content of each topic:
Each of the : rows represents a topic, while the = columns correspond with the words of the
vocabulary + . Each entry then gives insight about the relevancy of a word with respect to
each topic.

Figure 2.1: Decomposition of the document-term matrix � into the document-topic matrix, and
the topic-term matrix) .

25

2 Foundations

Figure 2.1 illustrates the decomposition of the document-term matrix �. In this work, we select
NMF over the previously introduced LDA. This is motivated by the nature of the algorithm, allowing
to define and, very importantly, modify the document-term matrix provided for decomposition.
The resulting document-topic and topic-term matrices are simple to interpret and utilise, allowing
for further processing, like computing the similarity of topics. Lastly, NMF returns deterministic
results for multiple runs on the same input data, an important property with respect to the prototype
developed in this approach: The user is allowed to create arbitrary groupings of articles with respect
to their time ordering, thus being capable of testing the topic modelling results for different article
groupings. Deterministic outputs are key for comparing the different topic modelling results.

2.2 Deep Learning and Deep Neural Networks

The field of deep learning has evolved into a major driver of many state-of-the-art, performance
leading problem solving techniques, finding application in a broad spectrum of fields such as medical
imaging [BKS+19], image recognition [FHY19] or automatic speech recognition [PCZ+19].

Central to all deep learning techniques are deep neural networks, layer wise architectures of
numerous smaller processing units, configured to learn the parameters to approximate a function
that solves a given task. The term deep refers to the stacking of multiple hidden layers to compose
deep networks, transforming a given input into a different representation as the data passes through
each layer and deriving the input’s important features. The number of layers of such a network
denotes the depth of the network, where every layer consists of multiple processing units commonly
named neurons and the number of neurons determines the width of a layer. Starting from the
input layer, every neuron receives an input from the neurons of the previous layer, computes a
mathematical function to transform said input and propagates the output to the neurons of the next
layer. The final output layer receives the transformed inputs and emits the output Ĥ = 5̂ (G, \):
The output produced by the approximation 5̂ of the CAD4, data generating function 5 , given the
input G and the learned parameters \. While Deep Learning can be applied both in a supervised
and an unsupervised task environment, this work will focus primarily on supervised tasks such as
classification. In the aforementioned case, the neural model is provided a labeled data set, where
the labels H function as the ground truth. The model then learns the parameters to approximate a
function that produces outputs Ĥ as close as possible to the ground truth for the given input. The
learning process is guided by a loss function: The difference between Ĥ and H is utilised to adapt the
parameters learned so far, expecting to subsequently produce an output with smaller loss.

Beginning with fully connected Feed forward networks, many neural network variations like
convolutional neural networks, recurrent neural networks or encoder-decoder-networks haven been
since derived, often tailored towards specific applications. The subsequent sections will first provide
a detailed look into Feed forward networks and the core principles of non-linear activation functions,
the forward and backward propagation and loss functions, before moving on to short discussions of
more advanced network architectures.

26

2.2 Deep Learning and Deep Neural Networks

2.2.1 Feed Forward Neural Networks

A neuron in a deep neural network can be described as a function computing the weighted sum of
its input. Given an input vector G = [G1, ..., G=]) , a weight vector F = [F1, ..., F=]) and a bias 1,
the neuron output is calculated as

I =

=∑
8

F8G8 + 1 = F · G + 1[�"09]

where the second equation simplifies the notation by expressing the weighted sum in terms of
vectors and the dot product. Above equation produces a linear transformation of the input vector
and the task of the neural model would be to learn the parameters F and 1 to approximate the
desired function. The XOR problem is a commonly discussed issue ([JM09], [MRS08], [Mur21])
showcasing the limitations of linear functions for function approximation: The XOR function for
two binary variables G1 and G2, G1, G2 ∈ {0, 1} can be expressed as

5 (G1, G2) =
{

1, if G1 ≠ G2

0, else

A linear function, i.e. a function linear in its parameters, would not be able to compute the XOR
function as it is not linearly separable. As Jurafsky and Martin denote, a linearly separable function
only requires a linear decision boundary, as provided by a linear function. A neural network of
one or multiple hidden layers with linear activation functions can be collapsed into a single hidden
layer with linear activation, as Goodfellow et al. [GBC16a] discuss. Such a layer can be thought of
as separating the space into two hyperplanes, mapping inputs falling into either region to 0 and 1
respectively. Intuitively, such a separation does not solve the XOR problem.

This motivates the usage of non-linear activation functions, that is, the intermediate output I is
further transformed using a non-linear function 0 to produce H = 0(I). As noted by Jurafsky and
Martin, the activation function can be applied to both scalars and vectors, where in the latter case
the function is applied element wise. The advantage of a non-linear activation function can be
illustrated via the universal approximation theorem 2: We can approximate any continuous function
with a non-constant, bounded and monotonically increasing continuous activation function.

The sigmoid function, the hyperbolic tangent and the rectified linear unit (ReLU) are common
activation functions and shown in figure 2.2. A good choice of the activation function depends on
the requirements with respect to its properties, for example might one select the sigmoid function if
a differentiable (at all points) activation function is required, while ReLU is widely popular due to
its convergence properties [HSS15].

A Feed Forward network is constructed by chaining multiple layers of neurons with non-linear
activation functions, where the input passes through each layer in one direction towards the output
layer. The term fully connected is used to describe such Feed Forward networks, as every a neuron
in layer ; receives the outputs from all neurons in the previous layer ; − 1. Each layer is associated
with a weight matrix, ; shared by its neurons, such that the output of a layer ; can be described as

2https://en.wikipedia.org/wiki/Universal_approximation_theorem

27

2 Foundations

Figure 2.2: The sigmoid function (1), the hyperbolic tangent (2) and the rectified linear unit (ReLU)
activation function (3) are three examples for activation functions in deep neural
networks. ReLU is among the most preferred activation functions due to its simplicity
and fast convergence [HSS15].

a vector E; = 0(I;), with E;
8
= 0;

8
(I;
8
) being the output of neuron 8 given an activation function 0 and

I;
8
= , ;0;−1 + 1; being the weighted outputs of the previous layer. The final output of the network

can be written as Ĥ = 5 (G, \) = >(,> · E>) where > is the selected output function and H the target
output for the given input. \ denotes the set of parameters to learn, being the collection of weights
and biases \ = [,1, 11,,2, 12, ...] of each layer. The output function > receives a special notation
here to denote the variety of output functions available, as the selected function depends on the task
and the required target. In the case of multinomial classification for example, the network might be
required to output a probability distribution over the set of classes. Commonly utilised for such
cases is the softmax function, which Jurafsky and Martin define as

softmax(I8) =
4I8∑#
9=1 4

I 9
1 ≤ 8 ≤ # [�"09]

where z denotes a #-dimensional vector and as such the softmax function outputs again a #-
dimensional vector. The softmax function normalizes the given vector and outputs a distribution
ranging between 0 and 1, the probabilities summing up to 1.

The so far discussed forward propagation or forward pass emits an approximation of the outputs
the ”true” function solving the task at hand would provide. A loss function indicates how well
the function was approximated, where the resulting loss ! (Ĥ, H), i.e. the difference between
expected output and actual output, builds the first step to adapt the learned weights to improve the
approximation. For (multinomial) classification tasks, the cross entropy function is commonly
utilised to determine the loss. Recalling the calculation of the cross entropy for an estimated
distribution @ and the true distribution ? as � (?, @) = −∑G ?(G);>6(@(G), we identify the output
of the neural network Ĥ taking on the role of the estimated distribution, while H describes the true
distribution. As such, the cross entropy loss of a neural network for a multinomial classification
task with = classes can be written as

! (Ĥ, H) = −
=∑
8

H8;>6(Ĥ8) [�"09]

where H8 and Ĥ8 denote the probability assigned for the 8-th class respectively.

Jurafsky and Martin illustrate in their work [JM09] that the above loss function can be simplified if
the true labels are deterministic, i.e. the correct class for the given input is assigned a probability of
1 by the true distribution, while the remaining classes have probability 0. In this case the cross

28

2.2 Deep Learning and Deep Neural Networks

entropy loss can be expressed as the negative log likelihood of the correct class label estimated by
the network:

! (Ĥ, H) = −;>6(Ĥ8) with H8 = 1 [�"09]

The objective is then to find a parameter set

\∗ = arg min
\

1
<

"∑
8=1

! (5̂ (G8 , \), H) 1 ≤ 8 ≤ " [�"09]

that minimises the average loss over all data samples G = G1, ..., G" , i.e. that maximises the
estimated likelihood of the correct class given the input, as Jurafsky and Martin formulate.

Finding the minimum of the loss function with respect to the learned parameters is not an easy task,
as Jurafsky and Martin and Goodfellow et al. argue: With the integration of non-linear activation
functions, the loss function becomes nonconvex, that is, global convergence is not guaranteed and
depending on the initialization of the model parameters, might the optimization algorithm only
ever find local minima. The optimization algorithm at hand is most commonly gradient descent.
Intuitively, we have a function 5̂ of multiple parameters to minimise, where the derivative of the
function with respect to the parameters indicates the direction in parameter space with the greatest
change of 5̂ . Utilising the partial derivative X

XF
5̂ to measure the change of 5̂ with respect to

individual parameters F, we can construct the gradient ∇\ 5̂ , a vector of all partial derivatives of
5̂ for every parameter F of the parameter set \ [GBC16a]. If 5̂ : R< → R= maps from vector
valued inputs to vector valued outputs, the derivatives can be expressed as the Jacobian matrix
� ∈ R<×=, �8, 9 = X

XF
ˆ5 (F)8 [GBC16a]. To minimise 5̂ , in our case the loss function, we can thus

employ gradient descent by moving into the direction the negative gradient points to, i.e. update the
previously learned parameters \C as:

\C+1 = \ − [∇\! (5̂ (G, \C), H) [�"09]

where [denotes the learning rate, a hyperparameter to prevent the algorithm from converging too
slow due to small directional increments, or overshooting the target with large increments, after
Jurafsky and Martin. Gradient descent updates the parameters of each layer utilising the gradient of
the loss with respect to the parameters. Computing the gradient of the loss function requires to
”backtrack” the network, i.e.compute the product of the derivatives with respect to each layer and
its neurons. The backward pass or backpropagation provides an efficient algorithm to compute
the gradients and is discussed in detail in the works of Goodfellow et al. [GBC16a] and Murphy
[Mur21].

Recalling the activation functions shown in figure 2.2, we can identify a potential issue to encounter
during gradient based learning. The computation of the derivatives for the gradient requires to
differentiate the activation functions of the neurons. Depending on the choice of activation function,
the resulting derivative might be small: The sigmoid function for example saturates as the input
approaches either −∞ or +∞, leading to very small derivatives close to 0. As the derivatives are
multiplied according to the chain rule, the over all gradient will vanish. Conversely, if the network
produces many errors for the current set of inputs, the resulting loss will be large, leading to a
exploding gradient. Vanishing gradients are commonly prevented by selecting a non-saturating
activation function, motivating the usage of ReLU: The derivative is either 1 if the input G > 0 and 0
if G < 0, the only issue being that the derivative is not defined for G = 0. Other preventive techniques
employ regularization [GBC16b] and analyse the influence of weight initialization [YC00].

29

2 Foundations

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) derive from Feed Forward networks by introducing the notion
of memory or context. The feed forward networks discussed so far do not contain cycles, i.e.
information flows, starting at the input, in one direction through the network until the output is
produced. RNNs add a circular flow component in the form of hidden memory units: The input
undergoes the transformation steps discussed for feed forward networks to extract relevant features,
which are then stored by memory units in the hidden layer. Note that the memory unit can be
simply a hidden unit with storage properties, but for exemplary purposes, the following will make a
distinction between hidden units employing the non-linear activation and memory units storing
intermediate results. The memory units then provide the intermediate results to produce the output:
The output is formed with the information extracted from the current input and the information
from the previously processed input stored in the memory units. These cycle inducing, ”recurrent
links” between hidden units, as Goodfellow et al name them, constitute the recurrent hidden layers
of RNNs. RNNs thus specialize in processing sequential data, i.e. the input G is segmented into
a sequence of values GC , C ∈ {1, ..., =}, the indexing representing an implicit or explicit temporal
ordering. The contextual information from previous steps provided by the hidden units can span
the entire input sequence, such is the case when the hidden units are updated after every step. The
forward pass for a given input vector G = [G1, ..., G=]) , the memory ℎC , activation functions 0, >
and weight matrices,ℎ,,<,,> (biases omitted) can then be expressed as:

ℎC = 0(,ℎGC +,<ℎC−1)
HC = >(,>ℎC)

for C ∈ 1, ..., =, ℎ0 = 0 and ℎC−1 being the previously stored memory. The simplified network
illustrates the important concept of weight sharing, i.e. the weights are shared across multiple time
steps. This allows the model to abstract from specific input positions when identifying important
features and propagate those features as the input sequence is being processed. Subsection 2.2.4
illustrates how the the advantages of contextual information stored in memory units can be leveraged
for neural language modelling.

2.2.2.1 Long Short Term Memory

Hochreiter and Schmidhuber [HS97] identified the issue of vanishing and exploding gradients
when employing Backpropagation Through Time to train RNNs. As a progression from RNNs,
the authors proposed Long Short Term Memory (LSTM) recurrent networks as an answer to the
challenges when working with long input sequences: Far reaching dependencies are difficult to
learn from as the gradient vanishes, effectively stopping the propagation of contextual information
extracted at the beginning of the sequence as more and more time steps are processed. As Jurafsky
and Martin denote, the addition of units to selectively ”forget” or ”remember”, that is, to remove or
keep the stored contextual information, alleviate the issues of vanishing and exploding gradients.
For that, LSTMs introduce gated units into the previously discussed recurrent architecture. These
LSTM cells maintain a state to actively control the contextual information that is propagated or
removed by updating the state appropriately. The cell gates act as binary gates employing the

30

2.2 Deep Learning and Deep Neural Networks

sigmoid activation function, with its output values ranging between 0 and 1 and thus indicating
how much information to keep. The gates take in the input at the current step GC and the memory
ℎC−1 and subsequently update the internally maintained context state as the input and previous
state pass through a forget gate, an input gate, an update gate and an output gate. LSTMs have
shown to perform well on sequential data, for example in speech recognition [LW15] and are often
subject to approaches combining different neural network architectures, for example in time series
classification [KMDC18].

2.2.3 Transformer Neural Networks

Research on LSTM over the years has motivated a multitude of approaches to maximise its
effectiveness when processing sequences, yet remains the core issue of information loss as inputs
pass through the recurrent architecture: LSTMs process the data sequentially, input by input,
learning ”along” long gradient paths with continuously updated hidden memory states. While
LSTMs are able to alleviate the issue of vanishing gradients compared to RNNs, the issue is still
prevalent, especially for very long input sequences. Additionally, as Vaswani et al. [VSP+17] point
out, does the sequential nature of LSTMs prevent the efficient utilisation of parallel computation.
Transformer neural networks thus move away from the sequential approach of maintaining an
up-to-date hidden memory of previous inputs and instead integrate the concept of self-attention.

Transformer networks originate from the encoder-decoder sequence to sequence architecture
[SVL14], a popular network architecture utilised when training models to map from a specified
input domain to a specified output domain. This is commonly applied in language translation for
example, where a sequence of words from language A is first processed by an encoder, a sequential
network like a RNN or LSTM. Relevant extracted features are subsequently processed by a decoder,
again a sequential network, to convert the sequence into the target language B. While sequence to
sequence models specialize in converting variable length sequences, transformer networks map
from and to sequences of the same length.

Transformer networks are heavily utilised in NLP applications like text generation or text translation.
In such cases, the input consists of a sequence of words, turned into vector representations, i.e. word
embeddings, by the encoder and the decoder respectively. An important distinction from RNNs lies
in the processing of the input sequences, as transformer networks processes the entire sequence
at once. The sequential nature of RNNs imposed an order onto the processed input, while the
learned input embeddings in transformer networks do not carry positional information on their own.
Transformer networks thus add positional encodings, i.e. vectors calculated based on the input’s
relative position in the sequence, to the input embeddings. The input is subsequently processed by
self-attention layers, marking the heart of the transformer network architecture. A self-attention
layer makes use of having the entire input at its disposal, to determine the relevancy of inputs with
respect to the rest of the sequence. The need to store a memory of important features encountered
so far is eliminated by comparing the 8 − Cℎ input against all of its predecessors. The comparison is
guided by the notion of attention, that is, the network computationally determines the most relevant
inputs to attend to when focusing on a specific input, including itself. To encode the relevancy,
Vasvani et al. introduce query, key and value vectors:

• A query vector @8 represents the current input of interest and center of focus, constructed by
linearly transforming the input 8 with a learned weight matrix,@

31

2 Foundations

• A key vector :8 represents a preceding input, the input of interest is compared against,
constructed by linearly transforming the input 8 with a learned weight matrix,:

• A value vector E8 represents the input’s contribution to the output for the current input of
interest, constructed by linearly transforming the input 8 with a learned weight matrix,E

Given an input sequence of length = ∈ N, = > 1, to compute the self-attention of a specific input 8,
the self-attention layer takes the query vector @8 and calculates the pair-wise dot products of @8 and
the key vectors E 9 , of the remaining inputs 9 in the sequence. These dot products, representing
8’s relevance score with respect to all other inputs of the sequence, are subsequently normalized
using the softmax function to produce the relevance weights F8, 9 , ∀ 9 ∈ =. The output for 8 is then
computed as the weighted sum of the relevance scores and 8’s value vector E8 and further processed
by the remaining components of the transformer architecture. As the outputs can be calculated
independent of each other, the procedure described so far can be easily employed in parallel by
forming input embedding matrices and query, key and value weight matrices. Note that both the
encoder and the decoder consist of such self-attention layers, producing self-attention vectors for
their corresponding inputs. The encoder stack, consisting of multiple encoders, processes the input
by computing the embeddings and the positional encodings first, subsequently transforming the input
in the self-attention layers followed by a feed forward network and normalization steps. The decoder
stack utilises the resulting output embeddings as its input, adding positional encodings to the input
similar to the encoder. The input is subsequently processed step by step, going through self-attention
layers similar to the encoder stack. Though, a key difference distinguishes the attention mechanism
of encoders and decoders, influencing the architecture of succeeding transformer networks like
BERT and GPT-2 as we will see later on: The encoder is allowed to peek towards ”future” inputs,
i.e. inputs to the right of the currently processed position, utilising the context of these inputs. The
decoder masks all inputs starting at the current position up until the end of the sequence, preventing
the model to simply look up the next output it is tasked to generate. To allow the network to ”pay
attention” to multiple aspects of inputs and relationships between them, Vasvani et al. furthermore
introduce the concept of multihead attention. The different stacks of transformer networks thus
consist of not only one, but multiple self-attention layers working in parallel, each with a distinct set
of parameters to learn.

Transformer neural networks are thus capable of modelling long distance interaction and dependen-
cies in long input sequences. Inputs sequences are processed as a whole, relying on the attention
mechanism to capture relevant contextual information instead of using a hidden memory mechanism
which needs to be updated after every processing step. The highly parallelizable process of both
encoders and the decoders allows to effectively speed up the training of the network using additional
computational resources.

2.2.4 Language Modelling with Neural Networks

Neural networks based language models perform very well in various NLP applications revolving
around the prediction and generation of text, outperforming the previously introduced statistical
methods like n-grams. Neural language models learn to approximate the probability distribution
%(F= |F, ..., F=−1) for a given word sequence (F1, ..., F=−1), thus predicting the most probable
word following the given sequence. Recalling the training process of neural networks, a neural
language model is trained with various samples of text sequences, such that the model learns word

32

2.2 Deep Learning and Deep Neural Networks

embeddings, accurate, abstract representations of each word it encounters. Word embeddings are
short and dense, real-valued vectors and each word is associated with such a vector. Contrary to the
count based vectors introduced in section 2.1.0.3, the values for word embeddings are learned by
trained models, word2vec [MCCD13] or the BERT transformer language model [DCLT19] being
two examples. The word embeddings are learned based on contextual statistical information. In the
case of word2vec, the co-occurrence statistics of neighbouring words are utilised to train a binary
classifier predicting whether a word is likely to appear near a given context of words. The learned
weights of the classifier are then used as the word embeddings. In comparison, BERT takes in
entire sentences as input and creates dynamic, context dependant word embeddings: Different word
senses are captured by employing masked language modelling (MLM), where specific words in a
given sequence are masked. The model is then tasked to predict the masked input by processing
and understanding the bidirectional context. BERT combines the task of MLM with next sentence
prediction (NSP), where the model is given two sentences and is tasked to predict whether one
sentence contextually follows the other. The transformer language model thus learns to represent
words with respect to the context they appear in, even across sentences. The learned embeddings
provided by word2vec are static, pretrained embeddings, that can be utilised without further
processing. Comparably, but on a bigger scale, BERT provides pretrained language models, i.e.
models based on the embeddings learned from sizeable amounts of unlabelled data. Such pretraining
is commonly performed in an unsupervised or semi-supervised fashion. These pretrained models
perform well for various tasks [PNI+18], [EBA19], even if the specific tasks are performed on
data unrelated to the training data set used for pretraining, thus offering a solution for tasks where
labelled data is sparse. Pretrained models can be further fine tuned by training such models with task
specific, labelled data and thus adapting the learned parameters for the new task. Both pretraining
and fine tuning combine the concept of transfer learning, which many of the new transformer
based models like BERT specialize in. Examples for such fine tuned models are the many variations
of BERT [BLC19], [MMO+20].

To summarise, neural language models offer important advantages in areas where statistical methods
fall short:

• As shown in the sections before, recurrent network and transformer networks are capable of
processing sequences of increasing size and incorporating contextual information extracted
from previous inputs. This is especially true for transformer networks, being able to process
very long sequences without losing valuable information due to vanishing gradients. Language
models based on such neural networks can utilise the additional contextual information
to dissipate long distance relationships and dependencies between words, for example in
translation tasks.

• The usage of word embeddings reduces the number of parameters to learn, as the resulting
vectors are dense and shorter than count based vectors. Furthermore, word embeddings allow
neural language models to generalise well: The learned, real-valued vector representation
of words allows to easily compare seen and unseen words. If the word picture has not been
part of the training corpus, but is represented similarly to the already seen word illustration,
the model will be able to generalise and predict the former word in a context the latter word
appears in.

33

2 Foundations

• The dynamic, context dependant embeddings learned by pretrained language models like
BERT can be utilised to disambiguate different contextual meanings of words. This allows
the underlying model to further generalise and provides it with more information, potentially
increasing its confidence and thus the quality of its predictions.

• Statistical models like n-gram language models are usually domain and data bound, i.e. it is
difficult to utilise n-gram models trained on a specific data set in application domains with
structurally different data. Neural network based models allow to solve such tasks in two
steps, first pretraining a model that provides a baseline performance for general tasks, while
task specific performance can be greatly improved by fine tuning.

This is not to say that statistical models are unanimously inferior, as there are certain use cases where
the benefits of statistical models might outweigh the aforementioned advantages of neural language
models. Statistical models like the previously discussed n-gram models are easy and especially fast
to learn, requiring less expertise to use. They further require less computational power compared to
the extensive weight learning and optimization process of neural language models.

2.2.4.1 Generative Pretrained Transformer 2

The Generative Pretrained Transformer (GPT) and its successors GPT-2 and GPT-3 are
transformer network based language models comparable to the previously introduced BERT. The
different variations of GPT differ mostly in the size of the respective models and the size of the data
set they have been trained on, with the largest GPT-2 model containing 1.5 billion parameters and
GPT-3 containing up to 175 billion parameters. As GPT-2 offers models in multiple sizes to use for
research, while GPT-3 is both licensed commercially and simply too large for research purposes
like this thesis, the reminder of this work will mainly focus on GPT-2. GPT-2 is specialised in
autoregressive generation, which Jurafsky and Martin [MMO+20] describe as the generation of
text word by word, where each word is conditioned on the preceding sequence. More generally,
GPT-2 performs well in causal language modelling, that is, predicting the the next word given a
sequence of words. GPT-2 exhibits certain architectural differences compared to BERT, reflecting
the different intended usages of either transformer network:

• BERT, as discussed before, specializes in extracting bidirectional context on sentence level
by employing masked language modelling. BERT is not autoregressive, as it has access to
the entire input sequence when attending to a specific input within the sequence. While the
model thus learns an accurate representation of the sequence by recovering the masked inputs,
it ”loses” the ability to generate text: The model does not learn to predict an upcoming token
conditioned on the preceding sequence. BERT consists of a multi-layer encoder stack and no
decoder stack. Its functionality as a bidirectional encoder requires the encoder stack only,
as the self-attention layers of encoders allow to attend to the entire input sequence during
all processing steps. As shown by the authors [DCLT19], BERT thus performs well in NLP
tasks like question answering, where the model is predominantly required to understand the
contextual dependencies within a given question sentence to derive a possible answer.

• GPT-2, as alluded to before, is autoregressive in its nature, learning a generative model
to produce texts token by token. Complementary to BERT’s approach, GPT-2 employs a
multi-layered decoder stack architecture, omitting the encoder stack as the transformer network
is not concerned with bidirectional encoding. Each decoder utilises masked self-attention

34

2.2 Deep Learning and Deep Neural Networks

similar to the mechanism discussed for the general encoder-decoder transformer network.
GPT-2 was trained on web data crawled from the social media platform reddit, containing up
to 40GB of text across 8 million cleaned documents and a vocabulary size of 50 000. GPT-2
language models are pretrained with a language model objective, maximising the conditional
log-likelihood for any given word of a corpus and its preceding context. Depending on the
size, the models allow a context size of up to 1024 tokens. The so learned word embeddings
are utilised to encode the given input word sequences in predictive and generative tasks,
modelling the probability of a given sequence with respect to the corresponding embeddings.
The pretrained models can be subsequently fine tuned on task specific, labelled data sets,
further optimizing the learned embeddings and model parameters for the task at hand.

Having decided on of the GPT-2 based, different sized models for language modelling, we can
utilise the model both to model the probability of a sequence and to generate text. For the former
task, we can input a sequence whose likelihood we are interested in, for example to determine
whether the sequence contains any unlikely words of word structures. GPT-2 will calculate the
likelihood of the sequence as the average log likelihood of words of the sequence, conditioning
the = − Cℎ word on the = − 1 preceding words when determining its likelihood. In the case of text
generation, the model takes in a sequence F1, ..., F=−1 acting as the context and starting point to
continue on. The model subsequently processes the sequence and conditions any follow-up token
on the provided context. To predict the upcoming token F=, the model samples for the token F=
maximising the conditional probability %(F= |F1, ..., F=−1), i.e. the model finds the most likely
word given the context. GPT-2 allows to repeat this process with a predefined text length, such
that the model starts with an empty sequence or a given context and iteratively generates follow-up
token until the desired sequence length has been obtained. In the generation process, there are
several different methods to determine a specific token at a specific position. Greedy Search
[Hug20] selects the token that maximises the sequence likelihood given the preceding context.
This is prone to producing repeating sequences and little variation in the generated text, as high
probability words dominate less probable, yet possible words given the context. Beam Search
[Hug20] is often considered as an alternative, expanding multiple promising sequence paths rather
than deterministically following the path of the locally highest probability. Beam Search does
so by keeping track of multiple beams, i.e. multiple tokens branching from the current position
and follows these branches while monitoring the most likely path among the tracked paths. This
produces less repetition and more natural sounding text sequences, though it does not eliminate the
repeating sequences. A more sophisticated approach and the method utilised for this work is top-p
sampling. Sampling denotes the process of probabillistically picking the next token of the sequence.
This ensures that low probability words, that are plausible continuations of given a specific context,
are still picked from time to time. The randomness induced by the probabilistic approach can result
in unnatural word sequences, which we can counteract by restricting the set of words to consider. In
top-p sampling [Hug20], we define a value ? ∈ [0, 1], such that the next word is sampled from only
the subset of words whose cumulative probability exceeds ?. This can be combined with top-k
sampling [Hug20], specifying the maximum number : of words to consider in the subset, such that
highly improbable words are eliminated from the sampling process. The top-p sampling method
thus reflects the natural text generation considerably well: Human produced texts are usually a
colorful mix of both highly likely, but also uncommon and unlikely word sequences, depending on
the context and the intention of the writer or speaker.

35

2 Foundations

2.3 Visualization Techniques

This final section concludes the foundations chapter with an assemble of different visualisation and
interaction techniques utilised throughout the approach proposed in this work.

2.3.1 Multiple Coordinated Views

When presenting multi-faceted data, it is often desirable to have multiple perspectives to view
the data from. Certain aspects and insights might reveal themselves as we interactively compare
two or more different visual presentations of the same underlying data. Multiple Coordinated
Views (MVC) [Rob07] is a visualisation technique targeting the visual, exploratory analysis of
potentially high dimensional data. At the heart of the technique stands the coordination of multiple
views on the same data, each view providing the user with interactive tools to actively search and
reveal potentially hidden insights. The MVC approach is central to many interactive visualisation
approaches, as it allows for the effective analysis of high-dimensional, complex data. It further
allows to integrate multiple approaches, yielding different visualisation results, without interference
and in a space-efficient manner with respect to the presentation canvas. Thus, the MVC approach is
key to the approach of this thesis and the development of the interactive visualisation framework
prototype.

2.3.2 Gaussian Smoothing

The Gaussian blurring or Gaussian smoothing is a common filter technique employed in image
processing, aiming to reduce noise and smooth the borders of images [GH11]. The Gaussian
smoothing is a form of kernel convolution: A convolution matrix, essentially a grid of values, is
passed over a matrix or array of numbers representing the input data. In the one-dimensional case,
most relevant in the context of this work, the kernel is a one-dimensional window, which is passed
through the array of values. The input is subsequently transformed, adjusting the values with respect
to their local neighbours by producing weighted averages. The transformation and the weighting
depend on the type of kernel and in the case of Gaussian smoothing, the Gaussian function 3 is
applied for the transformation. The Gaussian function in one dimension can be expressed as

6(G) = 1
√

2cf
exp−

G2
2f2

where f denotes the standard deviation. f denotes the window size of the kernel, i.e. the size
of the neighbourhood to consider for the weighted averages. In image processing, the Gaussian
blur is applied to all pixels of an image, weighting pixels at the center of the kernel more heavily,
while the pixels on the borders are roughly preserved. The Gaussian blur thus is commonly applied
when edges and boundaries are to be preserved. The Gaussian blur further acts as a low-pass
filter, reducing high value components while aligning lower value components in the surrounding
neighbourhood. In our approach, we borrow the image processing technique and apply it in the

3https://en.wikipedia.org/wiki/Gaussian_function

36

2.3 Visualization Techniques

context of novelty in textual contents. Chapter 4 discusses the usage of Gaussian smoothing to
average out a sequence of novelty scores, subsequently influencing the outcome of the background
visualisation of novel text regions.

2.3.3 Node-Link Diagram

Node-link diagrams are a frequently utilised visualisation technique to present graph or graph-like
structures. Given an acyclic, directed graph � (+, �) with vertices E ∈ + and edges 4 ∈ � , a
corresponding node-link diagram maps the vertices to visual objects called nodes and visualise the
edges as arcs. Nodes represent data points and can be presented in multiple forms, circular and
rectangular forms being common choices. Edges are utilised to connect nodes and signify their
relationship. A node-link diagram can thus be viewed as a visualisation of a network of data points
and their relationships, where the explicit presentation of edges allows to track paths formed by
interconnected nodes. The specific choice of form and dimensions of nodes and edges is commonly
utilised to encode additional information, for example the volume of a data point in the size of the
node or the relevance of a connection in the width of an edge. Ghoniem et al. [GFC04] denote
certain advantages and disadvantages of the node-link visualisation:

• Node-link diagrams are easy to read, as nodes and edges provide an intuitive representation
of data points and their relationships

• The explicit visualisation of relationships and connections allows the simple traction of
sequences of connected data points, further providing an intuitive way to display hierarchies.

• The readability of node-link diagrams depends heavily on the size of underlying data set and
the relationships among the data points, as drawing a huge amount of densely connected
nodes induces heavy visual clutter.

• Node-link diagrams thus scale relatively poor with increasing data set sizes, if left unmodified.

Chapter 4 discusses how we utilise the node-link diagram in the context of topic evolution, but
modify the resulting visualisation with interactive mechanisms to reduce clutter and scale well for
large data sets.

37

3 Related Work

The following chapter describes relevant scientific literature closely related to the approaches
presented in this work. Three areas are of central interest:

• Detecting and visually emphasising passages within documents qualifying as novel and their
insights

• Clustering documents according to representative topics extracted from the documents

• Visualising the evolution of the extracted topics, with respect to their temporal aspects and
emphasising on continuity and the lack thereof respectively

A range of works addressing the aforementioned areas of interest will be analysed, describing both
similarities and discrepancies in their approaches compared to this work.

3.1 Detecting novel information in text

Works on novelty detection in text corpora are plentiful, but often differ vastly in their methodology.

The Distance, or inversely the similarity between documents, is a commonly used metric to assess
the novelty of documents with respect to their history. Earlier works have been studying different
similarity measures based on the shared word content between documents. Zhang et al. [ZCM02]
for example evaluate five novelty measures based on the similarity of documents, among which
distributional similarity measures are of high interest for this work. While Zhang et al. explore
differences in word distributions retrieved via Maximum Likelihood Estimation, this work utilises
probability distributions from neural network based language models. The authors further state that
the cosine similarity measure performs most stable among the tested measures. Though cosine
similarity finds no direct usage to detect novel text passages in this work, it is utilised heavily to
compare topic clusters later on.

When assessing the similarity of documents, the documents can either be compared as one entity or
segmented into their components: According to Tsai et al. [TZ11], novelty can be measured on
different levels, including document-level novelty and sentence-level novelty. The authors describe
a model to compute a document’s novelty with respect to the proportion of novel sentences in the
document. Documents are segmented into sentences and sentences compared to their history using
the cosine similarity metric. The novelty of a sentence is set with respect to the highest similarity
to a sentence from its history. Subsequently, the document novelty is calculated as the proportion
of novel sentences compared to all sentences and a document assessed as novel if the resulting
rate exceeds a predefined threshold. In a comparable manner, the work presented here calculates
probabilities for each sentence of a document using its neural network based language model and
assesses the novelty of a document with respect to the aggregated probabilities of its sentences.

39

3 Related Work

Closest related to the novelty detection approach presented here is the work by Knittel et al. [KKE18].
The authors propose a visual analytics approach utilising character based Long-Short-Term Memory
(LSTM) recurrent networks to highlight novel text passages. Using the LSTM recurrent networks,
the authors build character-level language models to assess the likelihood of text fragments and
sequences, defining novelty with respect to the probabilities assigned by the models. Knittel et
al. argue that low probabilities assigned by complex language models stem from less predictable
character or word sequences, indicating novel and more interesting information contained in
such regions. The authors focus on character-level dependencies, training their model by feeding
characters step by step into the LSTM recurrent network. They subsequently predict probability
distributions %(28 |22>=C4GC), where 28 is the character in the current step and 22>=C4GC the preceding
context. In contrast, this work utilises OpenAI’s GPT-2 [RWC+18], a pre-trained, transformer based
language model. The model generates word-level probability distributions by predicting a token’s
probability given its predecessors for a given sequence F8−=, ..., F8 , conditioning each word token
on its preceding left context. The usage of a pretrained language model is motivated akin to Knittel
et al.: The language model’s inability to uniformly predict among the words of a given sequence
indicates at novel content the model has not ”seen” yet, resulting in low probabilities for these text
regions. With their character based LSTM recurrent network, Knittel et al. capture and incorporate
subword information like morphological variations into the computed probability distributions.
This allows a more fine grained and robust assertion of novel words, as the model is more likely to
recognize and assign similar probabilities to variations like perfect and perfectly, even if the model
has not encountered one of the variations beforehand. In contrast, word based language models, as
used in this work, are trained on word embeddings and word vectors as introduced in chapter 2,
relying on the underlying tokenization and word selection to reliable discern different variations.
As such, the frequency of encounters with specific word variations influences the model’s ability to
predict them, resulting in lower probabilities for previously unseen variations of similar words. As
sequences within text regions grow in length, character based language models have to process more
tokens over more time steps to capture long range dependencies. If the preceding context is chosen
too short in length, the model is more likely to inaccurately assess later subsequences as novel.
Word based language models cover larger sequences with smaller frictions of processed tokens,
thus requiring a smaller preceding context. To summarise, both works investigate the application of
trained, neural network based language models to detect novel text regions. While Knittel et al.
extract insights from character-level dependencies, the approach presented here analyses on the
word-level how the underlying language model’s confidence in predictions correlates with novelty
in text.

3.2 Visual representation of textual content and insights

Different visualisation techniques have been explored to visually present the textual content in a
manner that allows to quickly gather relevant insights. Word clouds find usage in many applications
aiming to summarise text corpora. The technique commonly extracts the most frequent words of a
corpus and weights the word font with respect to the frequency. Each keyword is algorithmically
placed on a given canvas, often optimizing the space usage while encoding the importance of each
word in its position [BGN08]. Word Cloud Explorer [HLLE14] and SparkClouds [LRKC10] are
two examples building more complex frameworks with and around word clouds, pairing world
clouds with natural language processing and filtering methods or integrating and conveying trends

40

3.2 Visual representation of textual content and insights

between word clouds respectively. Word clouds are not directly utilised in this work, as several
studies, for example Hearst et al. [HPP+20], Felix et al. [FFB18] and Heimerl et al. [HLLE14],
have evaluated shortcomings of word cloud visualisations: The lack of a natural reading order and
layout dependant difficulties in grouping topic related words being two main examples contributing
to the decision. Still, two core concepts of word clouds can be found in works discussed later on, as
well as the approach presented here: Extracting important keywords from text corpora utilising a
selected metric for importance, for example similarity or novelty and displaying the keywords in a
layout targeted at preserving additional context like temporal ordering.

Strobelt et al. [SOR+09] developed a compact representation of the key content of documents
based on a mixture of document images and keywords. The authors extract descriptive images
and key terms in two separate multi-step processes to produce document cards, as the authors call
the compact visual summarisation of the underlying document. Document cards consist of up to
four images, sized by their semantic weight and iteratively positioned on the canvas utilising a
packing algorithm. After placing the images, the rest of the canvas is populated with key terms, the
number of terms chosen according to the available space to avoid overcrowding. Important terms
are oriented towards the middle of free canvas spaces, where position and size of a term depend on
its relative weight with respect to the document the term originates from. The approach presented
in this work employs a comparable visualisation to summarise the novel content of a document.
After the underlying language model predicts the novelty of each sentence of a document, the most
important keywords of every sentence are extracted. The importance of a keyword in this case is
evaluated by calculating TF-IDF scores for every word in the corpus. Documents are subsequently
presented in a compact, ”card-like” fashion, akin to the document cards by Strobelt et al. As this
work only processes the textual content of the given documents, the entire card is utilised to present
all of the sentences of a document. Unlike the approach by Strobelt et al., no textual information
is displayed at first, but sentences visually encoded as horizontally stacked bars. The bars are
ordered by their appearance within the original document and colored according to their novelty. On
interaction with a sentence bar are shown the most important keywords from that sentence. Thus,
while Strobelt et al. focus on summarising the semantic content of a document in a compact visual
representation, the card-like visual encoding of this work emphasises first the distribution of novel
content within a document and provides an aggregation of the important content on demand.

Hoover et al. [HSG20] presented exBert, an interactive visualisation tool to investigate the contextual
text representations learned by transformer based language models. Transformer language models
[VSP+17] incorporate self attention layers, modelling the relevance of the remaining tokens
of an input sequence for each specific token of the sequence and thus capturing contextual
relationships. Hoover et al. provide three views in exBert to analyse the development of internal
word representations as they pass through each attention layer: An attention view to explore the
attention layers and the attentions between input tokens, a corpus view to display searched tokens
within an annotated corpus and a summary view presenting histogram summaries of metadata
encoded in the searched corpus. In contrast to exBert, the approach presented in this work does
not aim to provide insights into how its underlying language model predicts novelty, but rather
visualises the results of its application in novel text detection. That said, this work adapts some
visualisation techniques found particularly in exBert’s attention and corpus view. Among other
functionalities, the attention view provides a duplicated, vertically aligned view of the tokens of
a given input sequence, as well as the attention relationships between each token pair, drawn as
edges. On selecting a masked language model and interacting with a token, exBert shows a small
window with predicted alternative words at that spot, given the left and right context of the input

41

3 Related Work

sequence. In a comparable fashion, when interacting with sentences in the dedicated article view of
the framework developed in this work, a side panel will display alternative sentences the underlying
language model predicted, given the preceding left context in the article. The corpus view of exBert
displays the top 50 most similar tokens found in the annotated corpus for a given query token, shown
within their context in the corpus and sorted by similarity. exBert colors the token backgrounds
in the corpus view, where the opacity correlates with the attention score for the specific token,
highlighting the contextual relevancy of each token. Likewise, the approach presented here colors
the background of the sentences shown in its dedicated article view, mapping the model-assigned
probability to the opacity and thus emphasising the novelty of each sentence.

Knittel et al. [KKE18] offer different visualisation modes to enable customizing the appearance
of novel text passages and their surroundings. The authors compute the odds of a character not
being sampled by their model and map these odds to the saturation of the background color or
the transparency of the text. Akin to Knittel et al., this work first normalizes its computed model
novelty scores between 0 and 1 and subsequently utilises the scores as inputs to a continuous color
scheme for the background colors. In the work of Knittel et al., the probability dependant colors can
be mapped to the background or the foreground. Furthermore, the colors can be smoothed by either
applying a Gaussian blur or averaging the probabilities sentence-wise, allowing the colors to extend
to and emphasise not only a specific novel sequence, but also its surrounding context. Similarly, in
this work, the normalized model scores can be either mapped directly to the background color of
text passages or Gaussian blurred sentence-wise before the mapping. This enables varying degrees
of locality when emphasising the surrounding context, which Knittel et al. achieve differently by
adding the ability to change the radius of the blur or completely hide sentences that do not meet a
specified threshold. Contrary to Knittel et al., this work always maps the resulting colors to the
background of the text, while coloring of the text itself is reserved for interactive highlighting of
specific words using different, non-conflicting colors. While Knittel et al. provide a dedicated view
to inspect novel text passages only, the approach presented in this work further presents multiple
perspectives to investigate the insights gained from novel text passages, showing the distribution of
novel sentences, model predicted alternative text passages, the temporal distribution of documents
and the evolution of topics in the document corpus. Overall, Knittel et al. focus on visually
encapsulating the novelty of local text passages in a document and provide interactive tools to
further emphasise and distinguish a passage’s novelty compared to its textual neighbourhood. While
the approach presented in this work adapts the text highlighting scheme utilised in the work by
Knittel et al., it extends the visual and interactive capabilities to a global context, incorporating
exploratory topic visualisation and insights gained from the temporal evolution of the document
corpus.

3.3 Topic Modelling: Identifying novel and recurring topics

Latent Dirichlet Allocation (LDA) [BNJ03] is a generative probabilistic model of a corpus and
an often utilised method for topic modelling. Documents are assumed representations of random
mixtures over latent topics and every topic is associated with a distribution over words. LDA is
commonly applied in topic modelling to retrieve topics from a collection and classify the relevance
of each document for the extracted topics with respect to the document’s word distribution. An
application example relevant to this work is Dynamic Topic Models [BL06], a topic modelling

42

3.3 Topic Modelling: Identifying novel and recurring topics

approach for time series data. Dynamic Topic Models extracts topics in a sequentially organized
corpus of documents, akin to the time ordered news article corpus the approach presented in this
work operates on.

Non-negative Matrix Factorization (NMF) [PT94] is a matrix factorization algorithm for finding the
positive factorization of a given positive matrix. NMF finds usage in topic modelling as a dimension
reduction and clustering method, where a document corpus represented as a term-document matrix
is factorized into a document-topic matrix and a word-topic matrix. Xu et al. [XLG03] show in
their work how NMF can be utilised effectively to cluster documents according to latent topics.
The approach is adapted similarly in the work presented here to determine topics of time ordered
document clusters.

The following works mostly utilise one of the aforementioned topic modelling algorithms, in
conjunction with a recurrent procedure: A topic analysis technique is employed to reduce the
dimensions and complexity of the corpus, i.e. mapping documents to representative sets of
keywords. Topics are subsequently extracted from the alternative document representations and
further processed, e.g. to incorporate time.

TIARA [WLS+10] is one example, where Wei et al. employ such a procedure to first summarise a
collection of documents into topics and afterwards interactively visualise the evolution of resulting
topics over time. The authors framework processes a given document corpus in multiple steps,
applying first LDA or document clustering to derive document-topic and topic-word distributions
from the corpus. Wei et al. pre-define a threshold and assign topics to documents, where the
document-topic probability exceeds said threshold. The approach presented here determines
the number of topics to extract for a document cluster based on the average pair-wise cosine
similarity between all documents and subsequently assigns each document the topic with the highest
document-topic probability for the given document. Alternativey, the prototype developed in this
work allows the user to manually define the number of topics to search for in a specific article
cluster. Following the topic analysis, the authors rank the resulting topics by importance, where
they specify the importance with respect to the topic content coverage and the topic variance. As
a result, in TIARA topics are ranked higher if they cover more content within the corpus, while
appearing in only a few documents. The approach presented in this work focuses less on content
coverage and more so on the content of the documents assigned to a topic. Both TIARA, as well
as the approach presented here, aggregate documents with respect to the time intervals they are
associated with. While Wei et al. create dynamic intervals adjusted around (peak) topic activity,
this work accurately segments the corpus according to the publication date of the news documents,
while offering the possibility to group clusters of multiple, subsequent segments.

Pokharel et al. [PHJG19] analyse and visualise the evolution of topics across multiple social media
platforms. The authors present a framework that utilises LDA to extract topics as well as term
significance values for every associated term. Topics within the same time window are ranked
according to the standard deviation of the topics, i.e. a higher standard deviation proposes a ”more”
emerging topic. Topics across different media sources are then compared with respect to similarity,
where similarity scores are constructed based on the semantic similarity of a topic’s associated
terms. This work compares and ranks topics in a comparable manner, albeit the applied techniques
differing in certain aspects. The approach presented here utilises tf-idf based keyword vectors from
the documents to extract topics using NMF. The cosine similarity between the topic’s associated
keyword vectors is subsequently used to model and visualise the evolution of topics within and
across adjacent time windows. The preference of cosine similarity over semantic similarity as the

43

3 Related Work

comparison metric, is motivated by the assumption that news articles within the same time window
share multiple words and phrases, as they cover similar or the same events. As this induces very
similar tf-idf vectors, the cosine angle between the underlying documents will be small, hinting at
repeating content. Conversely, outliers with respect to the cosine angle, having a high distance to
”neighbouring” documents, indicate novel content and thus aligning with the central focus of the
approach of this work.

TopicFlow [MSH+13] by Malik et al. is a comparable approach, where the authors analyse twitter
stream data over time to extract complex topical trends in twitter discussions. The approach applies
binned topic modelling, a novel statistical topic modeling application presented by the authors,
generating topic models independently for adjacent time slices of data. Bins represent time slices
of equal width, where each bin holds an unrestricted number of tweets. Similar to Pokharel et
al., the authors apply LDA to each bin, retrieving word distributions for every topic and topic
distributions for every document. Both TopicFlow and the approach presented here allow changing
the granularity of the modelling by scaling the size of the bins/groups and adjusting the number of
retrieved topics per bin/cluster. Additionally, this work offers the option to automatically determine
an appropriate number of topics by choosing the number proportional to the average similarity of
the documents of the respective cluster. Akin to the approach presented here, Malik et al. utilise
cosine similarity to align topics and subsequently visualise emerging, converging and diverging
topics interactively.

Choo et al. [CLRP13] propose UTOPIAN, a visual analytics system for topic modelling centered
around semi-supervised NMF. Akin to the approach presented here, the UTOPIAN framework
performs NMF on a given data set to retrieve relevant topics, which the authors subsequently
present in an interactive node-link diagram based visualisation. The authors prioritize NMF over
LDA due to its consistent and deterministic nature, as they allow user provided inputs for NMF to
alter the modelling output. Where NMF originally performs on the input matrix # ∈ R<×=+ and a
non-negative integer : to produce factors " ∈ R<×:+ and � ∈ R:×=+ , the semi-supervised approach
by Choo et al. adds reference matrices + ∈ R<×:+ and � ∈ R:×=+ for " and � respectively. The
authors further include diagonal matrices assigning weights on the columns of + and � to penalize
differences between " and + and � and � respectively. As a result, by changing the reference
and diagonal matrices, the output matrices " and � are regularized, augmenting the resulting
topic model with prior user knowledge. While not semi-supervised, the approach presented in
this work augment the inputs for NMF as well, imposing restrictions on the resulting topics. The
document-term matrix representing the documents and acting as the input matrix # , is constructed
based on modified TF-IDF vectors: The score for every word of a document incorporates the novelty
scores stemming from the probabilities assigned by the underlying language model. Thus, while
UTOPIAN adds user provided prior knowledge to NMF to refine topic keywords or merge or split
topics, the approach presented here adds context about and restrictions with respect to novelty. For
example, modifying the inverse document frequency with the average novelty scores of the affected
document, induces greater influence to keywords appearing in more novel documents, as assessed
by the underlying model.

With Story Tracker [KNMK13], Krstajic et al. present a visual analytics system for temporal analysis
of news stories. The authors develop an incremental approach that extracts stories from online news
streams, identifying and visualising stories that split and merge over time. To achieve this, they
cluster articles in consecutive 24-h time intervals, comparing neighbouring clusters sequentially to
analyse the evolution of new, recurring and overlapping topics. In contrast to the works presented

44

3.4 Visualising the evolution of topics

before, the clustering is employed using phrase based cluster algorithms, with the core assumption
that similar articles are more likely to share phrases. While the assumptions are similar, contrary to
Krstajic at al. the system presented here generates descriptive topics from representative keywords
extracted directly from the documents. StoryTracker further compares stories from time adjacent
clusters by calculating the Jaccard distance between clusters, using the story title, document titles
and descriptions. In this work, every keyword is assigned a modified tf-idf score, thus topics are
subsequently compared via the cosine similarity of their respective keyword vectors. To show the
evolution of topics, Krstajic et al. set empirically chosen thresholds to connect and present stories as
merging or splitting depending on their cluster similarity scores. In a similar fashion, the approach
presented here models the evolution of topics by comparing the aggregated similarity scores of
articles assigned to time adjacent topics.

3.4 Visualising the evolution of topics

Krstajic et al. [KNMK13] define three requirements to effectively visualise the topical variations in
a corpus of documents over time: Encode the flow of time in an understandable manner, encode the
importance of themes and events as they evolve over time and incrementally incorporate new data
with as little (major) changes to existing visual representation as possible.

ThemeRiver [HHN00] makes use of a river metaphor to effectively encode the flow of time as well
as the importance of individual themes. The authors map time to the horizontal axis, while each
vertical section represents an ordered time slice. Themes, defined as single words, are then depicted
as colored currents flowing horizontally, where the thematic strength is encoded in the width of the
current.

ThemeDelta [GJG+15] builds upon a comparable visualisation to display temporal trends among
time-indexed textual data sets. The framework by Gad et al. performs dynamic temporal
segmentation and topic modelling to determine and focus on significant shifts in topics. Akin to
the aforementioned river metaphor, ThemeDelta utilises sinuous trend lines with variable width to
depict trends across time, encoding the prominence of a trend at a particular time in its line-width
and the category in its color. Similar to ThemeRiver, trend lines flow from left to right on a
horizontal time axis, where the horizontal space along the axis is divided equally among segments
and similar trends grouped to topics along the vertical axis. Unlike ThemeRiver, ThemeDelta uses
splines to create smooth curves and communicate a better perception of continuity.

The method of illustrating the flow of topics along the horizontal or vertical axis has been adopted in
a similar fashion by the following works, as well as the approach presented in this work: The TIARA
[WLS+10] framework visualises the topic evolution in a stacked graph based layout, first generating
keyword word clouds as summaries of the underlying topics and aligning the word clouds along the
horizontal time axis. Topics are then stacked vertically as layers, while the number of associated
documents is encoded in the height of each topic layer. Malik et al. utilise a node-link diagram
based flow diagram in TopicFlow [MSH+13], visualising the topic evolution as a horizontal graph
segmented into time slices. The nodes of the graph represent topics and edges between neighbouring
time slices depict the topic similarity. The framework maps the number of associated documents to
the size of the topic nodes, while the similarity between topics is reflected in the strength of the
edges. StoryTracker by Krstajic et al. visualises its topic evolution in a similar manner, placing
in its main view lists of daily story clusters of a specific time frame along the horizontal axis and

45

3 Related Work

connecting clusters via shapes based on Bézier curves. Story clusters are ordered within each list by
their cluster strength, choosing rectangular representations for the stories. As before with TIARA
and TopicFlow, the height is mapped proportionally to the number of articles associated with that
story. Visual mappings as described before can also be found in the approach presented in this work,
albeit embedded into a different layout: The topical evolution over a specific time frame is visualised
as a vertical graph, showing only the relevant topics per time step as rectangular nodes and their
relationships to time adjacent topics as edges. Similar to the aforementioned works, the height of
each node describes the strength of the cluster, while the width of edges between time adjacent
clusters denote the cluster similarity. In contrast to the foregoing works, time frames can be set
arbitrarily by selecting a day-wise or month-wise segmentation, where subsequently, multiple time
adjacent topic clusters can be variably grouped together to form one time segmented cluster. While
the previous works focus on a flow like, left to right alignment, the vertical orientation of the graph
in the approach presented here is chosen specifically to ensure the scalability of the visualisation
with respect to the dynamic and varying sizes of the clusters. The layout further allows to utilise the
remaining space on both sides of the graph to incorporate more context and perspectives.

A common approach to provide multiple perspectives and a wide range of interactive tools is to
include multiple dedicated and possibly interconnected views. TIARA does so by including a
view besides its stacked graph visualisation to inspect documents containing specific keywords.
TopicFlow provides four coordinated views, supporting its topic overview with additional context:
The flow diagram is accompanied by the topic panel on one side, presenting the discovered topics
in the underlying data group. On the other side, the corresponding documents can be inspected in
detail in the tweet panel, alongside statistical information like the topics with the highest probability
for each associated document. The final and fourth view allows interactive filtering of topics.
In a comparable, but slightly different approach, both StoryTracker and the approach presented
in this work combine multiple perspectives, increasing the detail as perspectives change. Story
tracker’s overview provides a broader, less detailed temporal context showing news stories and
their relationships over time, while the main view shows the topic evolution for a specific time
frame as described before. This work utilises its vertical graph based topic evolution visualisation
as a starting point to explore the general topic distribution for arbitrary time frames and cluster
groupings. Akin to the topic panel in TopicFlow, a list representation of all topics shown in the
overview is provided. Additionally, topic clusters in the overview graph can be individually selected
or grouped and subsequently examined in a cluster view. The cluster view allows to inspect and
compare selected topic clusters in more detail, displaying the associated article distribution and
the most important keywords functioning as summaries of each topic. The keyword evolution can
then be further analysed in a visualisation comparable to the main view of StoryTracker: Article
keywords are vertically aligned in lists and the lists horizontally placed according to the article
order, forming a time-ordered cloud of word lists. In contrast, neither of the aforementioned related
works provide a dedicated view to further inspect the keyword evolution for an associated topic.
StoryTracker’s three level view is completed by an article view, showing selected articles and their
detailed information, akin to TIARA and its interactive keyword view. Similarly, in the approach
presented here, keywords in the keyword view can be selected to open an aggregated article view
showing sentences containing the selected keyword. In summary, while TIARA and TopicFlow
enrich their topic visualisation with a single keyword view and multiple views providing textual and
statistical context for the displayed topics respectively, StoryTracker and this work present additional
information across multiple levels, starting at a broad overview and consecutively increasing the
detail as the data is narrowed down. Where StoryTracker begins at an overview of topics and

46

3.4 Visualising the evolution of topics

finishes the zoom down on the data at the level of a single article, the approach presented here
allows the user to begin at the overall temporal evolution of topics and interactively explore groups
of topics, specific topics, clusters related to topics, articles within these clusters up until the keyword
evolution of specific articles within these clusters.

StoryTracker, TopicFlow, as well as the work presented here approach to visually emphasise the
emergence, continuation and divergence of topics. In StoryTracker, time adjacent story clusters with
a similarity score exceeding a predefined threshold are visually encoded the same, to emphasise on
topics ”splitting” from the same parent. Extending the emphasise on evolving stories to its main
view, the framework only colors and connects stories if they evolve over several days, while stories
appearing on a single day remain gray. Closer to the approach presented here, TopicFlow displays
the convergence or divergence of topics via multiple paths that enter and leave topic nodes: The
authors draw connections between any topic node pairs, if the cosine similarity exceeds a specified
threshold, thus not only comparing the most similar topics with each other. Additionally, topic
nodes are colored according to their evolution state, i.e. whether the associated topic is emerging,
continuing, ending or a standalone topic. Where TopicFlow orders its topic nodes by size, thus
displaying the most prevalent topic at a specific time at the top, the approach presented here utilises
the layout of nodes in its vertical graph based topic overview as a way to visualise the continuity
of topics or the lack thereof. After determining all prevalent topics in the clusters to be displayed,
the topics are horizontally ordered the same for all clusters: If a topic appears within a cluster, a
node will be drawn, otherwise the space will be left empty. As the cluster topic nodes are vertically
stacked according to the flow of time, the emergence, continuity and disappearance of topics can be
directly tracked. Similar to TopicFlow, this work furthermore utilises the connections between topic
clusters to emphasise the evolution. For that, two edge weighting mechanisms are provided: The
similarity weighting draws edges between every pair of adjacent cluster topics and maps the cosine
similarity to the thickness of the edge. The keyword weighting displays converging and diverging
topics, i.e. edges are drawn between clusters if and only if they share at least one associated keyword,
while the thickness of the edge depends on the exact number of keywords shared. Additionally,
in the keyword view, the user has the option to filter keywords with respect to their continuity in
two ways: Either display discontinuing keywords appearing only once across the current group
of temporary ordered documents, or display only continuing keywords appearing in at least two
documents or more.

Several interactive tools for explorative analysis are incorporated in the approach presented here,
as well as the discussed related works. In TIARA the authors allow the user to merge and split
topics, comparable to the grouping of topic clusters in the approach presented here. In both cases,
the underlying system adjusts its topic distribution output with respect to the changes, grouping
for example a set of distinct topics into one representative topic. TopicFlow provides a search
functionality to locate topics containing specific keywords and displays the result both in the topic
panel and the flow graph. Additionally, the filter panel allows to filter topics depending on their size
or their evolution state and filter edges depending on similarity. StoryTracker allows to adapt the
outcome of the visualisation by changing the clustering algorithm, the weighting of keywords or
the sorting of topics within clusters, adapting the focus selectively on the intra cluster similarity or
the importance of individual clusters for example. In a comparable manner, the work presented
here provides an interactive menu to adjust the time frame as well as parameters like the number
of topics to extract per cluster, the number of articles to group per cluster or the edge weighting
scheme. Similarly motivated, this work pairs its keyword view with a collapsible menu providing a
filter, sort and a search mechanism to aggregate, to isolate or remove keywords of specific topics.

47

3 Related Work

StoryTracker additionally approaches to reduce clutter by incorporating the filtering of connections
between clusters depending on the strength of the connection and optimizing the layout. In addition
to a comparable edge filtering mechanism, the work presented here provides a cluster filtering
mechanism: To fully eliminate particularly cluttered regions within the graph, individual time
steps including all the afflicted topic clusters and their connections to time adjacent clusters can be
collapsed. Overall, the approach presented here adapts and extends the interactive tools provided by
the discussed works, allowing to individualize and filter the results of the visualisation on multiple
levels.

48

4 Conceptual Design & Realization of the
Prototype

In this chapter, we dissect the conceptual decisions underlying the prototypical realization of the
proposed visual analytics approach. We first define the requirements to fulfill with respect to novel
content detection, topic evolution modelling and building the interactive visualisation framework.
Afterwards, we describe in detail how the design and architecture of the prototype are tailored
towards the defined requirements, explaining how each decision contributes to each task at hand.
Each section dedicated to a core component of the approach presents in detail the task it aims to
solve, the conceptual solution it proposes and the abstract implementation of the component in the
prototype. We finally combine each of the building blocks of the presented approach and present
the resulting interactive visualisation framework consisting of multiple coordinated views.

4.1 Requirements

We define the goal of the approach as realizing an interactive visualisation system for novel text and
topic evaluation analysis in time-ordered corpora. At the center of the approach stands the detection
of novel content in sequences of text, determining the data of interest among the extensive, but
not necessarily informative inputs. The extracted data is to be subsequently presented in multiple,
interactive views providing different insights, with two major, functionality defining points of focus:
Assisting the user in the comprehension of texts and extraction of relevant, new information, as well
as enabling the user to grasp the evolution of the corpus content over time, presenting key topics
and how they evolve. We can thus define a set of requirements to fulfill with respect to each core
functionality, as we aim to realize the overall approach:

Finding novel text passages Central to the approach presented in this work is the system’s
ability to process text documents and identify the passages containing novel content with respect to
the document’s past. Given a sequence of documents 31, ..., 3=−1, 3=, the system should be able to
determine the passages containing novel content in document 3=, after seeing the contents of the
previous documents. This identification of novel content can be based on new words, entities and
phrases and sentences the system has not observed before, actively distinguishing from synonyms,
words of similar meaning and reformulations.

Present & highlight novel text passages Having extracted novel text passages, the content
needs to be displayed in a way such that novel and already seen contents are easily distinguishable.
Furthermore, novel content needs to be visually highlighted to stand out and catch the attention
first, guiding the viewer while easing and fastening the reading process. As multiple documents are

49

4 Conceptual Design & Realization of the Prototype

considered, the system should provide a summarising view of individual documents, presenting
only the novel and most important words or sentences at first and providing the reminder of the
documents on demand.

Identify representative topics To inspect the key themes shared by multiple documents of larger
document sequences, the system should incorporate a topic modelling component, finding the
latent topics in a given document (sub-)set. To emphasise the influence of documents containing
novel content, the system should enable to modify the results of the topic modelling procedure by
primarily attending to novel text passages when determining topics related content in documents.
For very large data sets, where it is infeasible to view all documents and their topics at the same time,
the system should enable user-defined document groups, clustering documents within a specified
time frame and subsequently determine the topics of these dynamic document groups.

Present the evolution of topics over time To provide an overview over the entire data set or
sequences of documents over long time periods, the system should provide a view reducing the
underlying data to its main topical content and features. The overview should illustrate the prevalent
topics at a specific time, showing the most important, topic related keywords for example. The
visualisation should enable the viewer to identify newly emerging, continuing and disappearing
topics as the document clusters are explored along the timeline. If a specific topic or group of
documents is to be examined in more detail, the system should provide the functionality to select
such topics or groups and display additional information and details on demand.

Multiple Coordinated Views Providing all the visualisations and functionalities described so far
at once, might not only overload the user with information, it might also be infeasible to present the
sheer amount of details involved, especially if the underlying data set is large. As a solution, the
system should integrate the various sources of information into different views. Each view should
aggregate functionalities and visualisations providing insights of similar type and similar usage.
The arrangement of the views should reflect a natural workflow guiding the user, for example in a
multi-level visualisation starting with a low level view on singular items and objects and ending
with a high level overview over a specified time frame.

Interactive filtering and search Complementing the multiple coordinates views, each view
should provide filter and search functions to explicitly narrow down the scope of data presented to
the user, with respect to specific items, topics or properties of interest. The filter mechanisms should
allow to adjust the provided functions and augment the presented results: Restrict and expand
the time frame and articles to extract the information from, change the way novel text is visually
highlighted, specify the topics to visually track or isolate specific contents with respect to a given
search query and more.

50

4.2 General Design

4.2 General Design

Designing a prototype for the proposed approach, the requirements as stated above suggest to model
the prototype around two major components, dedicated to the novel content detection and to topic
modelling respectively. As the aim is to provide multiple dynamic views and perspectives on the
data, revealing insights that may be hidden in a static presentation, the user predominantly decides
the outcome of the data processing and subsequent presentation. Figure 4.1 illustrates how the
general design thus adopts the human-in-the-loop [EHR+14] approach: The user is given the roles
of the main initiator and main driver of the data processing and visualisation procedures. As the data
passes through each processing pipeline, the user can adapt the parameters of the applied functions
to determine what information is extracted from the data, while directing any information exchange
between the pipelines. The user is given the tools to interact with each of the views presenting the
novel textual contents and topics found in the corpus, both deciding on the data or information to
compose the currently displayed visualisation from and directing the information flow between
views. Such tools include filter and search mechanisms, a fluent switch between different views,
as well as the capability to select and deselect visual components to temporarily show or hide the
corresponding visualisation.

Figure 4.1: The general, abstract design for a prototypical realization of the approach. The user-
driven approach places the user at the center of the system, influencing the output of
and the exchange between the novel detection pipeline and the topic modelling pipeline.
The user then dictates the outcome of the presentations of the outputs, interactively
changing the data to present and the properties to highlight.

4.3 Prototype Architecture & Realization

From the previously discussed general design, we can derive the possible architecture of a
prototypical implementation. Two main components will be responsible for the processing and
transformation of the data related to the major functionalities of the prototype: A component
detecting novel content among the supplied texts and a component finding topics and modelling
the topic evolution. Both main components can be decomposed into subcomponents consisting of
procedures to process the various data sources and to supplement the inputs with additional data
and user input. Figure 4.2 illustrates the resulting architecture of the prototype. A web crawler
fetches the unprocessed articles to construct the initial news corpus. The text processing pipeline

51

4 Conceptual Design & Realization of the Prototype

subsequently transforms and cleans the articles, producing a corpus of documents ready to be
presented as they are or to be further processed. The major novelty detection component on the
right side of the figure utilises the GPT-2 language model to predict novel content, which forms the
basis for the visualisations and data presented in the article view and the summary view. The major
topic modelling component on the left gets as inputs the tf-idf vectors produced from the cleaned
corpus, optionally modified by the predictions of the language model. Taking into consideration any
user defined restrictions or groupings with respect to the articles involved, the topic clusters and
topic keywords outputs are interactively presented in cascading degrees of detail in the topic graph,
the cluster view and the keyword view. The following sections explore each of the components
shown in figure 4.2. We discuss in detail the problem the component attends to, the design decisions
to solve the task at hand and the abstract realization of the component.

Figure 4.2: The architecture of the prototype is mainly defined by two main components and their
procedures invoked on different sources of data. At the heart of the right component,
GPT-2 is utilised to predict novel text passages and the results are subsequently presented
in the article view and summary view. The left component employs topic modelling
to produce a topic overview shown in the topic graph, while the cluster view and the
keyword view allow to explore topics in more detail.

4.3.1 Data

While the proposed approach holds the potential to be utilised as a novel text detection and topic
evolution solution for arbitrary sequences of temporary ordered text documents, the prototype
developed in this work is based and tested on a corpus of news stories. Recalling chapter 1, we
quickly touched upon the structure and properties of online news articles: News stories are reported
by multiple providers at once and important topics or events might last for a long time, being
covered across multiple articles, gradually shifting from a central topic to a side story as public

52

4.3 Prototype Architecture & Realization

interest recedes. Depending on the situation, a story or event might attract major public interest
over a longer time period. Yet, there might be a lack of new content to report if the supply of new
information is lacking, prompting news providers to revisit formerly covered content from different
perspectives. News articles collected from multiple news providers over a long time span are thus
likely to contain clusters of articles with similar content, often sharing the same key words and
reformulated phrases. This important property of news story corpora plays a significant role in the
selection of neural network based language models to detect novel content.

The news data set in question consists of 300 000 to 400 000 digitized, English news article stories
crawled from multiple online news outlets. Each article in the corpus thus corresponds to a single
news story. The unprocessed corpus is unordered, though each article is accompanied by necessary
meta data to structure the corpus:

• A publishing date in various formats.

• A retrieval date from the web crawler in various formats.

• The name of the news provider and a URL linking to the web page.

• The article title and the article content, both as strings.

The article content has minimum structure according to the formatting of the corresponding
displaying web page. After employing the processing steps described in chapter 5, the processed
corpus contains articles of the following form:

• The title is a tokenized and lemmatized list, or vector, of words.

• The content is a list of sentences, each sentence a vector of tokenized and lemmatized words.

• The uniform date corresponds to the article’s publishing date or the retrieval date, if the
former is not provided.

• Two separate fields contain the normalized provider name and URL.

4.3.2 Novelty Score calculation with GPT-2

We have established in the sections before that articles reporting about similar events and topics will
consist of similar and recurring keywords and phrases. It seems thus logical, to define novel content
as passages of text containing content not encountered in the preceding context of said passage.
The new content can be new words that are not part of the vocabulary of the preceding context,
possibly excluding semantically similar words. Equally, new sentences in a passage might derive
from pre-existing sentences with the addition of important content words, for example the sentence
He will not take the job adding important information with the addition of the word not. Viewing the
last example from the perspective of a language model, potentially novel content might be hidden in
passages the model deems unlikely, either due to the usage of uncommon words or irregular sentence
structures. Chapter 2 further introduced how a GPT-2 based language model can be utilised to
calculate the likelihood of a given word sequence, i.e. the model averages the likelihoods of every
word in the sequence, conditioned on the respective predecessors. GPT-2 performs well in language
modelling tasks due to its extensive pretraining, thus having learned accurate word embeddings to
represent any word input it receives. Furthermore and very importantly, as a transformer based
language model, GPT-2 is able to model the likelihood of long word sequences, thus being able to

53

4 Conceptual Design & Realization of the Prototype

condition tokens on extensive contexts. We now combine both ideas for the novel content detection
component of the prototype: Given a document 3= and its preceding documents 31, ..., 3=−1, the
component utilises GPT-2 to extract the novel content in document 3= with respect to the context
31, ..., 3=−1, 3=. As we are interest in novel passages and sentences within given documents, we
assign novelty scores to each sentence in a document, allowing to compare individual sentences
within a document and across different documents with respect to their novelty.

Let the document 3= = [B=1 , ..., B
=
<] consist of < > 0 sentences, each sentence B=

8
a sequence of

words (FB=1 , ..., F
B=

:
), : > 1. We first define the novelty score # (B=

8
) of sentence B=

8
as its inverse

probability assigned by the GPT-2 language model, conditioned on the context �:

(B=8) :=
1

%� (B=8)

As the preceding context �, we consider all documents preceding the current document plus the
preceding sentences of the document, thus all sentences in the corpus leading up to the sentence of
interest. Intuitively, if the current sentence of interest consists of

• Keywords and phrases that appear often in the given context or

• Keywords and phrases that are similar in their meaning compared to many words in the
context, thus sharing similar word embeddings,

GPT-2 will assign a higher probability to the sentence, as the content has been encountered already
with respect to the context, decreasing the novelty score. Conversely, the probability of the sentence
will decrease as the sentence carries words and phrases new to the model with respect to the context,
thus increasing the novelty score. To summarise, the novelty score corresponds directly with the
model’s assessment of how likely a sequence is, given the preceding content in the text corpus.

To calculate %� (B=8), we consider both B=
8

and � as sequences of word tokens: As � denotes
the textual context preceding the current sentence of interest in the text corpus, we consider
� ′ = (F1, ..., F)) to be a concatenated list of the words of all preceding documents 31, ..., 3=−1,
each document a concatenated list of its word tokens. We then utilise GPT-2 to condition each word
F
B=
C of the sentence B=

8
on the preceding context � ′ = (F1, ..., F)) plus the preceding the tokens in

the sentence, resulting in � = � ′ + (FB=1 , ..., F
B=
C−1).

We can then model the probability of a given sentence B=
8

conditioned on � as the joint probability
%(F1, ..., F

B=
C−1):

%� (B=8) = %(F1, ..., F
B=
C−1) =

:∏
C=1

%(FB=C |F1, ..., F) , F
B=
1 , ..., F

B=
C−1)

Chapter 2 discusses how and why the calculation of such joint probabilities is a hard task. Thus,
rather than computing the probability directly to then obtain the novelty score, we can model the
novelty directly with the help of the loss of the model. We utilise GPT-2 to compute the novelty
score as the average negative log-likelihood of the tokens of the sentence, conditioned on �. We
use the average log-likelihood as it corresponds with the language modelling loss output of GPT-2
when tasked with predicting the given sentence. That is, GPT-2 takes in as input the entire sequence
� + B=

8
, subsequently conditions each word token of B=

8
on the given context and predicts the

54

4.3 Prototype Architecture & Realization

likelihood of the token following the preceding sequence. The model produces the log-likelihood
%(FB=C |F1, ..., F) , F

B=
<C) of each token according to the cross entropy loss, introduced in chapter 2.

Summing up the individual token likelihoods and normalizing by the sequence length then gives
the average log-likelihood of the sentence.. The novelty score # (B=

8
) is thus computed as

(B=8) = −
1
:
·
:∑
C=1

;>6(%(FB=C | F1, ..., F) , F
B=
1 , ..., F

B=
C−1))

utilising the average negative log-likelihood is computationally efficient, as GPT-2 is able to compute
the log-likelihoods of the entire sequence in a single forward pass. In the context of the interactivity
of the overall prototype, the decrease in computation time translates directly into a better response
time of the system, as the user interacts with the views utilising the novelty scores. The average
negative log-likelihoods further realizes the same intuition as describing the novelty score with the
inverse sentence probability: The loss of the model corresponds directly with the model’s ability to
predict the given sequence and the errors it produces during the process. If a sequence is novel
with respect to the provided context, the resulting model loss of the sequence is likely to be higher.
Further recalling the evaluation of language models in chapter 2, we can retrieve the perplexity
of the given word sequence by exponentiating the inverse negative log-likelihood of the sequence.
The perplexity evaluates the model’s confidence in its predictions, assigning higher probabilities
as the confidence grows. Thus, as the model predicts a sequence consisting of words and phrases
prevalent in the given context, the model produces less mistakes, resulting in a smaller loss. This
again results in a decrease in both the perplexity and the novelty score: The predicted sequence
contains little new content after the model.

As the last step, we apply min-max normalization to the novelty scores to obtain scores in the range
[0, 1], ∀B=

8
: # (B=

8
) ∈ [0, 1] .

We generalize from the sentence-wise novelty scores to the novelty # (38) of the overall document
38 by averaging over the novelty scores of all sentences [B=1 , ..., B

=
<]:

(3=) =
1
<

<∑
8=1

(B=8)

Averaging over the sentence scores offsets small outliers within documents and aligns them with
respect to the average document-wise scores. It serves as an efficient to compute approximation of
the true likelihood of the document given the preceding context. As a result, this will highlight
documents with text passages the model deems highly novel and documents with a high volume of
novel content, as these documents are assigned a comparatively big novelty score. Alternatively, we
can define the novelty score # (38) with respect to the highest sentence-wise novelty score occurring
in the document:

(3=) = max
1≤8≤<

(B=8)

This emphasises on particular outliers within documents, reducing the documents to their most
relevant, i.e. most novel, text passage. For our purposes, we focus on the former definition,
modelling the document score as the average over the sentence scores. This allows us to interpret
the document score as an estimate of the average novel information provided by an article and utilise
the document scores to modify the tf-idf weighting scheme, as described in section 4.3.3.3.

55

4 Conceptual Design & Realization of the Prototype

Assigning sentence-wise novelty scores to each document of interest, allows to retrieve novel text
passages by searching for the sentences with the highest novelty score, corresponding to the least
likely sentences according to the underlying language model. utilising GPT-2 as a language model
over traditional statistical language models bears two important advantages: GPT-2, as a transformer
network, is capable of conditioning sentences on long range contexts. As a document is preceded
by many different articles, focusing on different topics, GPT-2 is capable of utilising the context
provided by related articles covering similar content to the document of interest, but appearing
early in the corpus compared to the document. The second advantage lies with the pretrained word
embeddings used by the transformer network based language model: As GPT-2 assesses the novelty
of a particular sentence, it is able to recognize words and phrases that are new with respect to
occurrences in the given context, but are represented by word embeddings similar to representations
the model has already seen, thus correctly decreasing the novelty score for the particular sentence.
Outside the contextual information provided with the inputs, as GPT-2 is pretrained on a language
model objective, the model is capable of noticing unusual sentences, for example with an irregular
sentence structure or containing uncommon words. News stories, with the aim to captivate the
reader, can often consist of passages formulated and structured in a way to build up and guide the
reader towards the key content of the story. As sentences finish abruptly or are prolonged with
decorative phrases and as rather uncommon words are utilised, the GPT-2 will mark these sequences
as unlikely and thus potentially novel.

Figure 4.3 shows the novelty scoring for a mock example, emulating a small news story. Note
that the scores do not match the scores provides by the GPT-2 language model. They are instead
manually constructed and reflect our expectation, to illustrate the core idea discussed in the sections
before. Assume the model is provided as context the section on GPT-2 in chapter 2 and subsequently
scores the novelty of each of the four sentences. The first sentence provides no new information
with respect to the introduction of GPT-2 and is thus assigned a low novelty score. The chapter
introduces GPT-2’s capability in predicting text, but not poems. The word poem shares similar
contexts with text and should thus not be completely unexpected, yet it comes as new information
and thus increases the novelty score of the second sentence. The third and fourth sentences each
intentionally throw a curve ball at the model: They contain out of place words given the context,
like fishing or Cow, and a sudden change in structure in the case of the unexpected definitely not.
These odd tokens significantly reduce the likelihood of the sequences, conversely increasing the
novelty scores of these sentences: The sentence contains, in the given context, new information.

We utilise the pretrained, but not yet fine tuned, medium sized English GPT-2 model with 345
million parameters for the novelty score calculation. Details on the technical aspects of the model
can be found in chapter 5. While the model provides many of the advantages discussed so far, it also
comes with an important limitation, preventing the desired usage as described in the passage above:
The model allows to condition a particular token on a contexts of up to 1024 tokens. The calculation
of the novelty score as defined above requires the model to condition a particular sentence on its
entire history with respect to the corpus. Intuitively, the limitation of 1024 tokens is exceeded very
fast: Popular stories covered by big news publisher like The New York Times average around 600 to
over 1000 words 1. Dissolving each word into a separate token would thus render the novelty score
prediction for sequences of more than 2 articles infeasible.

1https://www.newswhip.com/2017/01/long-shared-stories-social-media/

56

4.3 Prototype Architecture & Realization

Figure 4.3: A four sentence mock example and constructed novelty scores illustrating the potential
novelty scoring by GPT-2. We assume the model is given as context the introductory
text on GPT-2 in chapter 2. The model subsequently scores the first and second
sentences rather low, as they contain little new information. The third and fourth
sentences contain unexpected and unusual words, reducing the overall likelihood and
thus increasing the novelty of the sequence.

As a workaround, we employ a sliding windows approach2: If the context size |� | exceeds a
predefined maximum number of input tokens 2<0G , for example the maximum number the model
can process, we condition each token on the last 2<0G − 1 tokens of the given context, sliding the
context window by 1 position as the sentence is processed. We thus approximate the conditioning on
the entire context sequence with a fixed sized, moving window, providing the model with as much
context as the technical limitations allow. Using a windowed context is not strictly disadvantageous:
Depending on the surrounding context, textual information encountered once again can have novel
value. The shorter context induced by the windowed approach can thus be interpreted as a ”short
term memory”, updating its context faintly similar to the LSTMs introduced in chapter 2.

We further employ fine tuning to side step the technical limitations and improve the likelihood
assessments made by the GPT-2 language model. For that, we train the pretrained GPT-2 model on
10% of the given news article corpus. That is, we utilise said portion of the corpus as a labelled
training set and employ supervised learning to fine tune the parameters of the pretrained model.
The fine tuning of the model on a subset of the data set is motivated by two major reasons:

• The model learns to adapts its parameters to the specific use case, that is, the data set consisting
of news stories. The fine tuning ”prepares” the model with respect to the average length of
news articles and the common and unusual sentence structure and vocabulary utilised in news
stories. The model thus learns to find and learn from common patterns in the data.

• As the model has ”seen” a proportion of the data set, it has learned about potential sentences
and text passages being produced by the corpus. The sequence samples provide the model
with a first intuition of the likelihood of certain sequences, increasing the confidence of the
model when predicting such sequences.

2https://huggingface.co/transformers/perplexity.html

57

4 Conceptual Design & Realization of the Prototype

Intuitively, both cases will lead to an increase in the probability assigned to text passages the
model has some form of knowledge about, thus likely to contain less novel information and aptly
decreasing the resulting novelty score for such text regions. In the reminder of this work, we assume
the novelty scores utilised in various functions to stem from the fine tuned GPT-2 model, employing
the aforementioned sliding windows approach to approximate long range contexts.

4.3.3 Utilising the Novelty Scores

The key motivation behind the numerical assessment of the novelty of text passages was to integrate
the resulting scores into a visual framework, allowing the user to efficiently locate and extract the
most important information from a text document.

As the corpus at hand consists of temporary ordered news articles forming a sequence, we identify
two different levels to extract from and visually emphasise the novel content. Thus, the following
first focuses on individual documents at a specific time, finding and visually highlighting text
passages of interest with respect to the sentence-wise novelty scores. The text highlighting is
employed within a dedicated article view, presenting the textual content of individual articles. In
preparation of transforming news articles into word vectors, a modified tf-idf weighting mechanism
incorporating novelty scores is introduced, with the aim to emphasise on and potentially restrict
to novel keywords within the corresponding articles. Moving up from the level of individual
documents to sequences of documents, we propose thumbnails as a space-efficient visual metaphor
to summarise and quickly compare novel content in individual documents. utilising the novelty
scores to extract the most important passages within a document, we further aggregate documents
with respect to search queries and filter settings and provide the summary view as a search page
themed overview of the relevant documents retrieved.

4.3.3.1 Conceptual realization and implementation in the framework

As the following sections discuss different visualisations, functions and views of the prototypical
framework, we want to quickly address the difference between abstract or conceptual realization
and the actual implementation in the framework.

We denote a visualisation or a view as an abstract or conceptual realization, when proposing the
conceptual design of such a potential components of the resulting framework. In such a context, we
discuss the elemental components the corresponding view or visualisation could consist of. We
then argue about how these components contribute to solve the task at hand and explore potential
shortcomings. Most of this chapter is concerned with this line of thinking, analysing the conceptual
realization of different problem solving ideas.

Conversely, we designate the views and visualisations implemented into the final interactive
visualisation framework as the actual realization or implementation of the aforementioned conceptual
designs and components. Section 4.3.6 is mainly dedicated for this purpose: Presenting the
visualisations and views discussed throughout the preceding chapter in the context of the finalized
framework and providing functional details omitted in the presentation of the concepts.

58

4.3 Prototype Architecture & Realization

4.3.3.2 Highlighting novel text passages in the Article View

Inspecting individual news articles, potentially among a sequence of articles to be explored
consecutively, can be tedious without visual guidance. To accelerate the analysis of articles and
to prevent overlooking potentially import content, we identify and visually emphasise novel text
passages with respect to their novelty scores. We employ text highlighting by mapping the novelty
score of each sentence in the article to the visualisation of its background: Both the hue of the
color and the opacity of the background increase and decrease proportionally to the novelty score
of the underlying sentence. We normalize the novelty scores between 0 and 1, before computing
the percentage opacity as >?B=

8
= <8=(# (B=

8
) + 0.1, 1) · 100, adding 0.1 to the intermediate score

such that sentences with low scores are still assigned a minimum opacity of 10%. Employing a
continuous sequential color scale, we then define the background color with respect to the novelty
score. The color scheme is a function that takes in a numeric value from a continuous input domain,
in this case the normalized novelty scores, and subsequently maps the input to a continuous output
range, from which a color representation is interpolated. The usage of a color scale guarantees that
each sentence with a distinct novelty score is assigned a different background color. We utilise a
sequential scale, such that an increase in the input novelty score corresponds with an increase in the
hue of the mapped background color.

Figure 4.4 depicts the conceptual article view, which we later integrate into the prototype as a
dedicated view displaying the contents of selected news article. The figure shows again the four
sentence example introduced in section 4.3.2. The figure presents the novel content in the manner
described so far, with the corresponding novelty scores on the left side. Note, that both the novelty
scores and the background coloring and opacity do not reflect the actual outputs of GPT-2 or the
color scale, but are constructed for demonstration purposes. The hue and opacity of the background
of the first two sentences correspond tot their low novelty scores, thus letting the sentences appear
muted. The high novelty scores of the third and fourth sentences are reflected in the increased
background visibility, drawing the attention towards these sentences.

The novelty score dependant opacity and background color of sentences ensures that each sentence
is distinguishable from its textual neighbourhood, if the novelty of the respective contents differ.
As opacity and hue scale with the novelty score, sentences containing higher volumes of novel
content are more prominently visible, attracting the attention compared to sentences with little
new content. Conversely, sentences falling into the latter category will, to some extend, blend into
the canvas, further extending the visual discrepancy compared to standout sentences with higher
novelty scores. While the differences in color hue and opacity are not as pronounced in figure
4.4, the figure illustrates a potential shortcoming of the background visualisation described so far:
As sentences differ in their assigned novelty score, the background visualisation differs as well,
resulting in abrupt transitions. On one hand, this further visually distinguishes novel text regions
from less novel regions. On the other hand, it disrupts the visual flow, potentially interfering with
the reader’s attention as sudden and rigorous transitions in the background visualisation distract
from the text.

We thus refine the background visualisation by Gaussian smoothing, introduced in chapter 2, to
further smooth the coloring. The smoothing is employed by applying a 1-dimensional Gaussian filter
to the input novelty scores, with a chosen window size l. Given a sequence of scores [#8 , ...], the
scores of a passage of consecutive sentences for example, the filter is shifted through the sequence.
The filter subsequently averages every l consecutive scores according to the filter. The resulting

59

4 Conceptual Design & Realization of the Prototype

Figure 4.4: The four sentence mock example and constructed novelty scores depicting the novelty
score dependant background coloring. Similar to the scores, the resulting colors are
manually defined for illustration purposes. The background visualisation of each
sentence reflects its novelty, being more visible and drawing more attention as the
novelty scores increase.

scores are then mapped to background colors using the color scheme as described before. The
smoothing process transforms the scores of the input sequence, calculating weighted averages, with
an emphasise on the values at the center of the filter window. Assume as input a list of sentence
novelty scores B=

8
of a given document 3=. Applying the Gaussian blur on the sequence smooths

out the sentence scores, aligning the scores around the higher value components, while scaling
down the outliers. Mapping the resulting smoothed scores to background visualisation, we can
observe a reduced discrepancy between color hue and opacity resulting from low novelty scores
and high novelty scores respectively. The Gaussian blur thus provides a way to smooth out the
transitions between text sequences of varying content novelty. Furthermore, the blurring extends
the visual emphasis of highly novel regions to their textual surroundings: The alignment induced by
the blurring increases the scores of sequences with a low novelty score, but bordering on passages
containing novel content. The increased color hue and opacity stemming from these scores enhance
the visibility of the corresponding sequences, hinting towards novel content as the reader approaches
the text passage.

Figure 4.5 shows side by side the difference the Gaussian smoothing makes for the visualisation,
compared to the direct mapping of the scores. The Gaussian smoothed scores have been manually
constructed by applying a 1-dimensional Gaussian filter on the original novelty scores seen on the
left of the figure, with a window size of 4. Compared to the visually more distinct background
visualisations in the direct mapping on the left, the Gaussian smoothed scores produce a more subtle
transition between the backgrounds of each sentence. This slightly reduces the stark visual difference
between text regions of low and high novelty respectively as seen in the direct mapping. At the same
time, it provides a visually more fluent alternative, emphasising a bit more on the surrounding of the
highly novel sentences. Providing the user with both options in the implementation of the approach,
we allow to customize the appearance of the text visualisation depending on the requirements

60

4.3 Prototype Architecture & Realization

discussed so far. For the concrete window size in the developed prototype, we chose a small multiple
of the standard deviation of the given sequence as the default window size. As the window size
directly affects how much the values of the sequence are aligned, the standard deviation can be
interpreted as an indicator of how much smoothing is required. Alternatively, we add the option to
manually define a custom window size, allowing to experiment with different windows.

Figure 4.5: A side by side display of the article view and its visually emphasised content. The left
view shows the direct mapping of the novelty scores to the background visualisation.
The right view shows the Gaussian smoothed scores, with a window size of 4. This
results in more aligned scores and thus in a subtly smoother transition between the
different sentence backgrounds.

Both the background visualisation and the Gaussian blur have been discussed so far only within the
scope of sentence-wise highlighting, i.e. we have viewed sentences as a single unit to visualise.
The discussed techniques can be easily applied on a word level, such that the canvas around each
word is visualised with respect to the word’s novelty score, subsequently smoothing the background
visualisation of the overall sentence by employing a Gaussian blur with a window size equaling the
number of tokens in the sentence. Figure 4.6 compares the visualisation result for sentence-wise
and word-wise direct mapping of the novelty scores to the background of the text.

Figure 4.6: A visual comparison of sentence-wise background visualisation and word-wise visuali-
sation of the text background. Both instances display the direct mapping of manually
constructed novelty scores to the background coloring and the opacity. Compared
to the sentence-wise visualisation above, the word-wise visualisation below clearly
highlights the unexpected words contributing to the sentence’s novelty, while the overall
visualisation is not as fluent.

Comparing the visualisations shown in Figure 4.6, we can identify merits and shortcomings when
highlighting the background on the sentence level and the word level respectively: On the word level,
the individual highlighting of tokens according to their novelty score supports the easy identification
of novel keywords in sentences. The word level visual emphasis on novelty quickly draws the
attention towards important words, allowing a reader to skip over surrounding words. This can

61

4 Conceptual Design & Realization of the Prototype

be especially helpful if text passages within documents have to be analysed in detail, sentence
by sentence, such that a reader can effectively jump from highlighted word to highlighted word.
While the enhanced word level emphasis can help finding keywords quickly, if a document consists
of multiple such attention drawing words, the multitude of visually highlighted points of interest
might overwhelm a reader. This is further aggravated if the novelty of words oscillates within and
across sentences, leading to a disrupted background visualisation as the mapped color hue and
opacity changes frequently. In the prototype developed in this work, we thus employ sentence level
background highlighting. Applying the discussed visualisation techniques on the sentence level
removes some of the advantages gained from word level visualisation: Most notably, we lose the
highlighting of individual novel keywords as we utilise a single novelty score to represent the entire
sentence. If a document mainly consists of sentences the underlying language model mostly assesses
as predictable, with the exception of singular, highly novel words, the averaged likelihood will likely
lead to similar novelty scores and thus similarly mapped background colors. As a result, large parts
of document background visualisation might look the same, failing to point the reader towards
the potentially existing, highly novel keywords. Despite these shortcomings, the sentence-wise
background visualisation offers great advantages in the uses cases the proposed approach is aimed
at. With a large corpus of multiple documents at hand, the more comprehensive sentence-wise
background visualisation provides a better visual summary of the overall document’s novel content
and the trends among the individual passages. This is largely attributable to the more coherent and
fluent background visualisation stemming from less variance in the input novelty score data, as the
sentence scores average out the individual token scores. The fluency of the background change
allows to quickly discern regions of novel content from uninteresting passages, even as high value
components in the inputs are smoothed out. In the end, the sentence-wise background visualisation
functions well in the context of analysing large text corpora: As the user has to examine multiple
text documents, the visual summary provided by the sentence-wise visualisation might be more
beneficial in terms of efficiency, than the more fine grained word-wise visualisation.

Overall, the novelty score dependant background visualisation proposed in this approach guides the
user in their analysis of the document, providing the user with points to focus on, as it draws the
attention towards novel text passages. The novelty score dependant opacity and color hue of the text
background makes passages of varying novelty easily distinguishable. Adding the Gaussian blur,
the overall visualisation can be smoothed out. This reduces the visual disruption of text regions
with little novel content transitioning into regions of highly novel content and vice versa, though at
the cost of losing a bit of distinctiveness of different backgrounds.

We proposed the article view as a dedicated visual container to inspect and explore individual texts
and their novel content. The user can utilise the article view to isolate and focus on specific articles
of interest and thoroughly analyse the novelty of individual text regions. The dedicated view allows
to add complementary information like the publishing date and the news provider name and URL.
Going a step further, we can incorporate interactive tools to provide additional insights: Section
4.3.4 introduces the generation of alternative text sequences with the help of GPT-2, providing
the user with a way to sanity check the novelty assessment of the model. Finally, section 4.3.6
showcases the integration and realization of the article view in the prototypical realization of the
interactive visualisation framework.

62

4.3 Prototype Architecture & Realization

4.3.3.3 Modified TF-IDF Scores for novel keywords

The section before argued and disclosed the reasoning behind the focus on sentence-level novelty
and sentence-level text highlighting when displaying the contents of individual documents. Still,
several situations arise where we are interest in particular keywords from articles, preferably those
keywords associated with the important, novel content of the article. We can define important both
in the sense of being meaningful and as related to the overall topic of the document: When we are
interested in the novel content provided by a news article, we are often particularly interested in
those text passages containing information related to certain topics of interest the article might cover.
Topic related keywords act as beacons in such scenarios, as they lead towards the text passages
of interest. Solely relying on word-wise novelty scores, i.e. high novelty scores, to extract such
keywords can yield inconsistent and erroneous results. That is, there are several instances where
a high word score does correspond to a novel word after the model, but not necessarily with an
important word:

• A high word score can stem from uncommon words the model simply did not expect in the
context of a particular sentence or sequence. This might occur within a passage containing
relevant information, but it might also occur in isolated passages unrelated to the overall topic
and the sole novelty score provides no way to discern between each case.

• A high word score might be the result of an insufficiently trained language model, such that
the model assesses a word as unlikely given the context, despite the context containing many
semantically similar words.

• A high word score might simply occur due to a spelling error, such that the underling language
model is not able to recognize the resulting misspelled word.

To retrieve novel, topic-related keywords, we thus utilise the tf-idf score weighting technique
discussed in chapter 2 in junction with the pre-computed novelty scores. The tf-idf weighting
allows to transform documents into vectors, where each article of = distinct words is presented as a
=-dimensional vector. Each entry of the vector corresponds with a word and the tf-idf weighting
assigns each word a score denoting its relevancy with respect to both the document it stems from
and the overall document corpus. The tf-idf vector representation is thus commonly utilised
to group documents related to the same topic, as they are likely to share relevant, topic-related
keywords. The tf-idf weight of a term C in a document 3 is calculated as C 5 _835 (C, 3) = C 5C ,3 · 835C
with C 5C ,3 =

2 (C ,3)∑
C′∈3 2 (C′,3) the normalized term-frequency of C in 3 and 835C = ;>6(#3 5C) the inverse

document frequency of C.

We now modify the tf-idf weight of each word utilising the sentence-wise and document-wise
novelty scores, combining the relevance encoding of the tf-idf weights and the novelty encoding
of the novelty scores. For that, we augment each of the components, i.e. the term frequency and
inverse document frequency, as follows:

• The normalized term frequency count as defined before accounts for the frequency of terms
in relation to the document length, thus weighting down for example frequent stop words in
long documents. Note the frequency count 2(C, 3) denoting the number of times C appears in
3, where each appearance of C in 3 is weighted equally with 1. We now refine the frequency
counts by further prioritizing the words stemming from novel sentences. That is, we weight

63

4 Conceptual Design & Realization of the Prototype

each individual count of a term C from a sentence B3
8

in document 3 with the novelty score
(B3

8
). Formally, the term frequency of C ∈ 3 is then computed as

C 5 ∗C ,3 =

∑
B3
8
∈3 2(C, B38) · # (B38)∑
C′∈3 2(C ′, 3)

where
∑
B3
8
∈3 2(C, B38) individually counts the number of occurrences of C in each sentence in

3 and weights the count with the novelty score of the sentence, subsequently summing up all
weighted counts. With the described adjustment, we discount the term frequency of terms
appearing in sentences with low novelty scores. If a term mostly appears within sentences
the underlying model deems as familiar given the context, the overall term frequency will
be weighted down by the corresponding novelty scores. Conversely, if each occurrence of C
is tied to a sentence the underlying model deems novel, i.e. # (B3

8
) = 1, the modified term

frequency becomes the standard, normalized term frequency without the novelty discount.
As such, the modified term frequency reflects both the relevancy of the term C with respect to
the document and the novelty of the passages each occurrence originates from.

• The inverse document frequency encodes the relevancy of a term for a document with respect
to the overall corpus, placing more weight on terms limited to a few documents. In the context
of novelty, this can already indicate towards novel content since affected documents contain
words encountered seldom within the corpus. Following a similar approach to the modification
of term frequencies, we strengthen the emphasis on novel content by incorporating the novelty
scores of each document a term appears in. For that, we simply multiply 835C with the average
over the novelty scores # (3<) of each document the term C appears in:

835 ∗C = ;>6(#
35C
) ·

∑#
< 1C ∈3< · # (3<)∑#

< 1C ∈3<

with 1C ∈3< the characteristic function evaluating to 1 if C appears in the corresponding
document and 0 if not. The resulting modified idf score of C functions as a weighted idf score,
incorporating the average novelty of the documents containing the term. The modified score
thus accounts for the influence of terms originating from documents utilising a vocabulary
limited to these documents, yet providing little new insight in the reminder of their textual
contents.

We finally combine each modified component to construct the modified tf-idf weighting of a term
C ∈ 3 as

C 5 _835 ∗(C, 3) = C 5 ∗C ,3 · 835
∗
C

The resulting weight for a word C preserves the encoding of the relevancy of the word with respect to
the document it belongs to as well as the corpus: The modified tf score still increases and decreases
as a term is more or less prevalent within a document and the modified inverse document frequency
still provides a measure of the distribution of a specific word over the documents of the corpus.
With the proposed modification, the tf-idf weighting now additionally involves the influence of
words originating from novel text regions in the adjustment of the term frequency and the influence
of the novelty of the overall documents in the adjusted inverse document frequency. Intuitively, as

64

4.3 Prototype Architecture & Realization

we represent each article as a vector of modified tf-idf weighted word scores, we expect to retrieve
relevant, meaningful and at the same time novel words when polling for the keywords with the
highest scores.

Overall, the modified tf-idf weighting scheme provides a way to retrieve relevant and at the same
time novel keywords from documents. The subsequent sections demonstrate the usage of the
keywords retrieved in this manner, including the summary of individual documents as a collection
of the keywords and clustering documents according to their topics, based on the keywords as
features.

4.3.3.4 Aggregation of novel content in document sequences

So far, we have discussed several visualisation approaches utilising the novelty scores, applied to
present a focused view of singular articles. utilising and extending the same proposed techniques,
we now look at the aggregation of the most important passages in a document and the subsequent
presentation of such aggregations for multiple documents of interest.

We have touched upon the potential task of analysing multiple articles in succession, for example
gathering the available information from a sequence of documents related to a topic of interest. In
such tasks, if the amount of documents to inspect is large, a user might want to first gain an overview
of the documents relevant to their task and subsequently select a subset of the documents to examine.
This requires an aggregated representation of each document, summarising the most important
properties of the document with respect to the search criterion, such that the user can discover
promising looking subsets. In the context of finding novel text passages containing valuable new
information about the topic of interest, we need an abstract view, visually compiling the novelty
information about each text passage in a concise manner. Ideally, the visualisation provides enough
of an overview to select and examine specific regions for further details, omitting on details not
necessary for the decision.

4.3.3.5 Thumbnails as abstract article summaries

To construct such an abstract summary of articles, we first define the text regions to visualise as the
sentences of each article. We thus utilise the sentence-wise novelty scores # (B=

8
) of a document 3=

to provide a visual summary of the novelty of each sentence. For that, we propose a glyph-based
approach to hint at the novelty of a sentence: The sentences of an article are visualised as vertically
stacked horizontal bars, each bar functioning as a glyph that represents a sentence. Comparable to
the coloring of the text background discussed in previous sections, we then color the bar associated
with a sentence with respect to the novelty score of that sentence. That is, we map the novelty
score # (B=

8
) to a color, utilising the same continuous color scale employed in section 4.3.3.2. As a

result, each article is abstractly presented as a stack of vertically aligned glyphs, the coloring of
each glyph indicating the novelty of the corresponding sentence. Note the omission of the textual
content of the sentences for now: The glyphs do not contain any text and only function as a novelty
indicator. The omission of text allows to compress the visualisation to a smaller size, as there
is no fixed-sized, font-dependant space required to present the words. It thus remains to select
an appropriate width and height for each bar with respect to the presentation canvas, such that
individual bars can be recognized and potentially interacted with. Thus, we introduce the concept

65

4 Conceptual Design & Realization of the Prototype

of thumbnails, a card-like visual container for the glyph based visualisation of the sentences of an
article. Thumbnails present the article glyphs in a central, window like canvas that constitutes to
most of the card-like visualisation. The glyph window is optionally complemented with additional
information, for example the title of the corresponding article in a small handle on top of the glyph
window. Choosing a rectangular container to function as the overall thumbnail and placing the
bordered, glyph window at the center, we approximate the appearance of a small document, such
that the visualisation can be recognized as presenting an article. Figure 4.7(a) shows the conceptual
realization of a thumbnail and its glyph based abstract visualisation of the four sentence running
example of this chapter.

Figure 4.7: Illustration of the conceptual realization of thumbnails in (a) and the interactive
enlargement in (b). Depicted is the four sentence running example of this chapter and
their manually constructed novelty scores, the sentences interpreted as a single article.
The standard form (a) displays each sentence as a bar glyph, colored according to the
novelty score. On interaction, the thumbnail is enlarged (b), displaying a number of
important keywords of each sentence, in this case 4 keywords each.

The glyph based representation of articles provides a simple aggregation view over the novelty
distribution over the sentences of an article. Encoding the novelty score in the color of the bar
representing a sentence, works as a clear and intuitive indication of potential novel content in a
sentence. The omission of any textual contents, as we are for now only interested in an abstract
overview of the distribution of novel content, results in an uncomplicated and space efficient
visualisation. This allows to shrink the glyph based representation to a minimal, yet appropriate size.
Placing the resulting visualisation inside a thumbnail produces a distinct visual unit, recognizable
as an abstract representation of an article. Thumbnails allow to add additional information like the
article title or the publishing date, while still remaining efficient in their space utilisation, as they
mostly consist of the glyph based visualisation. As such, multiple thumbnails can be easily aligned
along a vertical or horizontal row on the presentation canvas, emphasising on the sequential nature
of the underling corpus. Thumbnails furthermore provide the opportunity to interactively change
the appearance of the thumbnail and add more detail to the sentence glyphs: So far, we have ignored
the textual contents of the article for the thumbnails, aiming to visualise each article as minimal,
abstract aggregations. We can now retrospectively add the textual contents of each sentence inside
the corresponding bar, though it comes at the cost of losing the flexibility in terms of sizing. For the
text to be readable, the bars and the thumbnails would require a certain, minimal width and height.
This in turn might remove the possibility to align multiple thumbnails, if they cumulative occupied
space exceeds the available space on the canvas in either direction. As a solution, we can integrate

66

4.3 Prototype Architecture & Realization

an interactive mechanism to show the textual contents only on demand: Upon interacting with a
thumbnail, for example clicking on it or hovering over it, the thumbnail and the inside visualisation
is temporarily enlarged. The enlargement factor can be chosen with respect to the available space
and the desired font size, as subsequent to the enlargement, the textual contents of each sentence
are drawn within each glyph representation. As the interaction ends, the thumbnail is reverted
back to its original size and the textual contents removed from inside the glyphs. What content do
we display inside the glyph, when the thumbnail is enlarged? Whole sentences, especially long
sentences, are difficult to show inside the restricted space provided by the bars. Furthermore, as the
thumbnails are intended to visually summarise the novel information in an article, displaying the
entire text hinders the quick analysis of the articles. It thus seems logical, to reduce each sentence
to its core content, showing only the most important keywords for example. Thus, we utilise the
previously introduced modified tf-idf score to retrieve the relevant and novel keywords of each
sentence of an article. After the modified tf-idf vector for an article is computed as shown in section
4.3.3.3, we sort the vector according to the scores in descending order and select the : first terms as
the keywords to display. The number : can be chosen arbitrarily, depending on the available canvas
space and thus depending on the desired font size for the keywords. In our case, we chose : = 3
as it still allowed to minimize the space required for the thumbnails , while : = 5 terms provide a
decent context with respect to the content of the sentence. Figure 4.7(b) presents the transition from
a standard thumbnail to an enlarged one, subsequently showing the 4 best scoring keywords of each
sentence, functioning as short summary of its content.

The interactive change of appearance and addition of information provides a user-driven solution
to selectively examine the textual contents of articles in more detail. The enlargement draws the
attention towards its content, highlighting the textual information shown on demand, as well as
the novelty dependant coloring of the background. By selecting the : most important keywords
according to the modified tf-idf weighting scheme, we effectively summarise the contents of each
sentence, providing only the necessary information with respect to relevant and novel words. As the
information is provided only on demand, the user can first gain an overview of novelty of the article
contents with the help of the thumbnails. After identifying specific articles to examine in more
detail, the interactive enlargement provides a way to analyse each of these articles successively, one
by one.

Overall, thumbnails can be utilised as complementary visualisation to abstractly summarise the
contents of documents. Vertically or horizontally aligning the thumbnails of a sequence of articles
alongside a dedicated view showing large parts or even entire articles, allows an efficient workflow
where a user can first consults the thumbnails to filter out articles of interest and subsequently
examine their partial or full content. Section 4.3.6 shows how thumbnails have been implemented
in the interactive visualisation framework developed in this work.

4.3.3.6 Aggregate novel passages in the Summary View

We can pair thumbnails with a view showing individual articles, yet for the analysis of multiple
documents in a sequence of articles, it can be beneficial to have another level of abstraction.
Ideally, between the full content and the summary of individual articles, the user is additionally
provided a selection of the most important text passages found within the sequence of articles. In
the approach of this work, we integrate such an intermediary abstraction level in the form of the
summary view: Given a sequence of temporary ordered articles to examine, we again utilising the

67

4 Conceptual Design & Realization of the Prototype

sentence-wise novelty scores to first retrieve the most important, i.e. the most novel, sentences
within an article. The articles are subsequently displayed as a vertically aligned list to emphasise on
both the sequential structure and the temporal ordering. Each article is predominantly represented
by the = most novel sentences found in the article, determined via their novelty score. With = being
arbitrarily selected, when chosen as a smaller number to filter just a few sentences per article, the
summary view functions as an aggregation of the most novel content found in the article sequence
of interest. We utilise = = 3 sentences in our approach, as it provides enough context to account for
outlier sentences with little to no relation to the rest of the article. The retrieved sentences of every
individual article provide the information to get a first impression of the content provided by the
articles of the sequence. Highlighting the background of each displayed sentence with respect to
the novelty score, i.e. map the novelty score to the opacity and color of the background as seen in
section 4.3.3.2. This helps to quickly compare articles of a long sequence, thus allowing to narrow
down and identify articles containing useful, new information without explicitly examining the
entire content of each article. Figure 4.13 shows the implemented summary view as described so
far.

As the novel passages of specific articles catch the eye of the user, such that the need arises to open
and examine the full content of said articles, we can again employ the concept of information on
demand: Changing the perspective to a full text view of a specific article might potentially harm
one’s mental map of the summary view, subsequently losing sight of other text passages of interest.
We thus again couple the display of the reminder of the article content with user interaction. For
that, instead of displaying at first only the = most novel sentences of an article, we surround the
sentences with visual indicators hinting at the reminder of the article. The indicators represent the
collapsed article content, where the visual properties of the indicators imply the content volume
hidden between each of the = most novel sentences. We decided upon a simple, horizontal bar
indicator, where the number of missing sentences is mapped to the height of the bar. The decision
has an impact on the overall visualisation, as for long articles with a lot of content, a space inefficient
visual indicator will disrupt the readability of the displayed novel text passages, due to occupying
most of the space in between. As such, we utilise a stack of horizontal bars per hidden passage,
mapping every 5 sentences to a single bar with a height of 1 pixel, each bar separated by another 1
pixel of empty space. We have noted before the average length of around 1000 words per articles,
commonly encountered in popular news providers. As such, the height of the cumulative indicators
scales reasonably well, with a maximum height of 2 · #5 pixels for an article with # sentences. The
selection of a constant factor for the height increase guarantees that the volume of hidden passages
of different articles can be easily compared. Conversely, the minimum height of 1 pixel + 1 pixel
for up to 5 hidden sentences allows to map the interactive expansion of the hidden text passages to
the indicators: On interaction with the hidden text indicators of an article, for example a click on
the respective bars, the article is expanded by displaying the corresponding hidden sentences in
place of the indicators. This allows to view the hidden passages individually, as each passage can
be expanded or collapsed one at the time by interacting with the corresponding indicators. The
article thus temporarily grows along the vertical axis, now showing the formerly hidden sentences
between the already seen novel passages. To provide the user also with the novelty of the expanded
text passages, we again color the background of each sentence as described in section 4.3.3.2.

The summary view can be further coupled with a search mechanism, to efficiently search for articles
providing novel information with respect to a search query: Given a query, a sequence of articles
matching the query is retrieved and subsequently presented in the summary view. The user then
first identifies interesting articles related to the query, utilising the summary of the overall sequence

68

4.3 Prototype Architecture & Realization

provided by the display of the most novel text passages. As the user acquires knowledge about
the novelty of most interesting passages of each article in the sequence, specific articles can then
be further analysed, either focusing on individual hidden passages one at the time or viewing the
entire article after expanding all hidden passages. Recalling the potential usages discussed in the
introduction of the thumbnails, we can align the thumbnails of each article in the sequence either
vertically or horizontally along the summary view. The combination of both approaches to visually
summarise the contents of articles allows an efficient workflow by switching between different levels
of abstraction as required. The user can easily transition from inspecting the novel keywords of an
article in the thumbnails, to examining the novel passages found in the given article sequence in the
summary view, to further examine specific passages for potential information not yet displayed.

Section 4.3.6 provides an overview of the integration the summary view into the interactive
visualisation framework of this work, illustrating the arrangement of the thumbnails around the
summary view and the user-steered interaction between the views.

4.3.4 Generate alternative sequences with GPT-2

With the introduction of the GPT-2 language model and the novelty scores based on GPT-2’s
likelihood assessment, we have thus far assumed the model to produce sensible predictions. We
have argued about how to interpret and explain the novelty scores and the ”correctness” of the scores
given an appropriate preceding context. Yet, it would be helpful to understand how GPT-2 came to
its assessment about certain regions of text. In particular, it would be interesting to compare one’s
expectation of what follows a certain text sequence with what GPT-2 had expected to follow said
sequence, as it sheds light on the novelty score of the actually following text sequence. If a user
inspects the highlighting of novel text regions in the article view and discovers a highlighted, yet,
on closer look, seemingly uninteresting passage, it would be interesting to see the textual content
GPT-2 expected at that particular place.

We thus explore this idea in more detail by utilising GPT-2’s generative capabilities: For each
sentence of an article, we employ GPT-2’s text generation to predict the current sentence, given the
preceding context. As discussed before in section 4.3.2, we define the preceding context as the
article contents of the corpus preceding the current sentence and approximate this context with the
sliding windows approach. The generation is employed as described in 2, generating a sentence of
roughly the same length word by word. The most likely word at the currently predicted position is
selected via top-p sampling with ? = 0.95. We chose the top-p sampling over beam search and
top-k sampling as it produced more coherent and less repetitive sequences. To provide a bigger
sample size when comparing the expected sentences, we generate up to 5 predictions for the current
sentence.

We propose to interactively present the resulting alternative sentences in the article view. That is,
we enable the user to instantly view the alternative sentences of a specific sentence in the article
view by interactively selecting the sentence, for example by clicking on it. For that, we open a
dedicated view within the article view, displaying all predicted alternatives for the currently selected
sentence. To emphasise on the textual overlap and similarities between the actual sentence and the
generated alternative, we highlight the words shared by the sentences.

69

4 Conceptual Design & Realization of the Prototype

The generation and presentation of alternative sentences according to the GPT-2 language model
enables to understand the model’s expectation with respect to the textual content following the given
context. As the expectation corresponds with the model’s assessment of how likely the current
sentence is, the generated sequences provide insight into GPT-2’s understanding of the given context.
The generated alternatives can thus be used to sanity check highlighted text passages if the user
is unsure whether the assessment is reasonable. It can further be seen as a debugging tool when
optimizing the hyperparameters of the test setting and evaluating the difference in results. Section
4.3.6 showcases the visual presentation of the generated alternatives in the finalized interactive
visualisation framework.

4.3.5 Topic Modelling

The so far discussed article view, summary view and thumbnails provide the means to explore
the novel, textual content in sequences of articles. As these sequences grow in length, it gets
successively harder to keep track of the novel content related to specific topics prevalent in the
examined articles. Even with the different forms of summaries and aggregations discussed in the
previous sections, following a certain topic across multiple articles would require one to view and
identify the summaries or passages containing new information about the topic of interest. This
potentially becomes a difficult task when following news stories about specific topics or events:
Articles usually report about many different topics, the emphasis on each topic depending on the
public interest. Topics outside the ”mainstream” scope with little coverage can thus be difficult to
track. Additionally, the fluctuation of relevant topics with respect to the general interest makes it a
challenging task to oversee the evolution of certain topics over time. The same holds for identifying
newly emerging topics, which can be further aggravated if topics of high interest and traction
overshadow new topics. Lastly, topics like climate change might last over long periods of time,
emerging and disappearing from the general interest in turn and providing small amounts of new
information with each emergence. Depending on the length of the time frame, these small bits of
new information can be easily overlooked.

The need arises for a visual presentation of the articles, focusing on the topical evolution over time,
while incorporating the information provided by the novelty assessment of the textual contents. We
approach such a presentation by extending our framework with dedicated views for each task at
hand, building an interactive visualisation that aims to

• provide an overview over the topics prevalent in the set of articles viewed at a specific time,

• display the topics at specific times on a timeline, allowing to analyse the development of
topics over time,

• provide the interactive tools to track the continuity and discontinuity of specific topics and

• provide the interactive tools to examine specific topics and the novel content related to them
in more detail

The following sections present and discuss the concepts involved in building the necessary
components to realize the above specified interactive visualisations.

70

4.3 Prototype Architecture & Realization

4.3.5.1 Topic Clustering

Suppose we define a time frame from which we retrieve all articles and subsequently want to model
the evolution of topics. We start with the task of determining the prevalent topics in the given
sequence of time ordered articles. Chapter 2 presented techniques for topic modelling, from which
we utilise the Non-negative Matrix factorization (NMF). NMF allows us to specify a term-document
matrix for the words and articles of our selected corpus and subsequently decompose said matrix
into an article-topic matrix and a topic-term matrix. This intuitively helps us in the realization of
the specified topic evolution visualisation: We can utilise the article-topic matrix to categorize each
article as belonging to the most relevant topics according to the matrix output. The term-topic
matrix helps us to identify the most representative keywords for each topic found in the given
sequence of articles. To construct the term-article matrix, we need to first transform the articles into
a vector form. For that, we can again utilise the modified tf-idf weighting scheme introduced in
section 4.3.3.3, scoring each word of the articles with respect to relevancy and novelty. Pooling the
words from all articles into a set of unique word types, we then obtain the term-document matrix
by constructing row vectors for each article. Each entry of such a row vector is a score assigned
to a word type, the score originating from the modified tf-idf representation of the corresponding
article. Finally, we combine the row vectors into the term-article matrix and apply NMF to extract
the article-topic and topic-term matrices. NMF requires the specification of the number : of
expected topics to find in the given sequence of articles. We propose to algorithmically retrieve : by
determining the overall similarity of the given articles: utilising the aforementioned modified tf-idf
vectors, we calculate the pairwise cosine similarity X8 between each article vector, before averaging
over all pairwise similarity scores to obtain the average similarity X = 1

=
·∑=

8 X8 , X ∈ [0, 1] for a
sequence of = articles. We then set the number of topics as : = <0G (1, (1 − X · =)). Intuitively, if
the articles of the sequence belong mostly to the same or similar topics, they will likely produce
similar word vectors. In turn the average similarity will be high, thus suggesting to search for a
small number : of topics. Conversely, as the articles cover a diverse set of topics, the average
similarity will be low and thus lead to a higher number of prevalent topics to search for. As a
user-driven alternative, we enable the user to input the desired number of topics to retrieve from the
article sequence.

With the : topics NMF returns, we group the given articles by assigning each article to the topic
yielding the highest relevancy score according to the article-topic matrix. For each of the : topics,
we further specify each topic’s content by retrieving the < most relevant keywords utilising the
relevancy scores of the topic-term matrix. We select < = 10, aiming to retrieve a diverse, but
representative set of keywords for each topic. As the final result of the topic clustering procedure,
we obtain

• : topic clusters, where each cluster is assigned a subset of the articles in the given sequence
and

• a summary of the content of each of the topics, in the form of the < most relevant topic
keywords

We now build the interactive views around the results of the topic modelling procedure, incorporating
a multi-layered visualisation approach to effectively present the information from the different scales
involved.

71

4 Conceptual Design & Realization of the Prototype

4.3.5.2 Visualise the topic evolution with the Topic Graph

Recalling our initial goal to present the topic evolution over time, we first need to segment our :
topic clusters according to the segmentation of the given articles with respect to the time ordering.
The user specifies the time frame to consider: We provide an interactive mechanism with which the
user can either select the entire time period span by all articles or specifically restrict the time frame
and thus the article sequence to consider. Then, we construct groups of articles for each time step in
the given sequence. In our approach, we consider two granularity levels: We segment the articles
within a specified time frame either day-wise or month-wise. As the following procedure is the
same for either granularity, differing only in the grouping of the articles, we discuss the ensuing
concepts assuming a day-wise segmentation. The articles from a specific time step are grouped
according to their topic membership, leading to 1 ≤ : ′ ≤ : article sub-clusters for each time step.
This allows us to determine and visualise the topic distribution at each time step, ideally in such
way that the distribution of different time steps can be easily compared.

To visualise the topic distribution for each time step, we first need to decide on a layout. This first
decision is a challenging one, as it determines how well the visualisation scales with the available
canvas space. A simple stacked bar chart for example, aligned horizontally with the horizontal
axis displaying the time steps, is likely to either not fit into the available space or produce a lot
of clutter: As we consider time frames spanning across multiple months or even years, we might
need to present the distribution of topics for multiple hundreds of time steps. We thus propose
the concept of topic graphs, a node-link diagram of the following structure: The nodes of the
topic graph are drawn as rectangular nodes, each individual rectangle corresponding with a time
step and thus displaying its topic distribution. The nodes are aligned vertically, in a layer-wise
placement of one node per layer, such that the topic graph could also be seen as a visualised list of
nodes. Figure 4.8 illustrates a portion of an example topic graph, both in concept as well as in the
developed prototype, which we will reference in the following passages. Figure 4.8(a) depicts both
the concept of a topic node in the above portion and the resulting implementation of a topic node in
the developed prototype in the bottom portion of the figure.

The topic distribution is drawn as a simple bar chart, placed inside the nodes. To construct the bar
chart, each topic prevalent at a specific time step is represented by a bar. The height of the bar
encodes the number of articles in the sub-cluster associated with the specific topic at the time step.
The width of each bar is constant for all bars at all time steps, simplifying the visual comparison of
different topic bars. The center of the node is used as a baseline to position each bar, such that the
height of the bars can be easily compared. Furthermore, we employ a diverging color scheme to
map each topic to a color and subsequently color the corresponding topic bars with that color. We
chose a diverging color scheme as it allows us to first sort topics according to their similarity and
subsequently find a mapping where the similarity of the colors correspond to the topic similarity.
The color scheme is employed consistently for all time steps. Additionally, we horizontally order the
bars of each individual bar chart the same way across all time steps. That is, if a topic is prevalent
at two separate time steps, the corresponding topic bars will be aligned horizontally. Both the
consistent coloring and the consistent positioning of the bars in the chart allow to easily compare
the topic distribution of different time steps and to track specific topics prevalent at multiple time
steps. Note, that the usage of a horizontally aligned bar chart has consequences for the scalability
of the topic distribution visualisation: Individual bars might get very thin, if the number of topic
groups to display is too high. To salvage this problem, we propose the addition of an interactive
mechanism for the user, with which the number of topics per topic cluster can be manually set to

72

4.3 Prototype Architecture & Realization

a constant, allowing to test appropriate numbers for the display of the topic bars. Figure 4.8(b)
illustrates how the resulting topic nodes with the drawn topic distribution look like, both in concept
and in the developed prototype.

Each adjacent node in the topic bar is connected by edges, drawn as straight lines. More specifically,
the edges run between each of the topic bars of adjacent nodes. As such, the edges are utilised to
encode the topic similarity between the prevalent topics at adjacent nodes: For two separate time
steps and their respective subsets of prevalent topics)1 and)2, we calculate the pairwise cosine
similarity between each topic in)1 and)2. For that, we utilise the previously computed topic-term
matrix and represent each topic with its corresponding row vector in the matrix. Each row vector
contains the relevancy scores for each topic and the article vocabulary, thus we can interpret the
cosine similarity between these vectors as the closeness of the topic contents. As an alternative, we
can compute the similarity directly as the number of topic keywords shared between each topic,
where each topic is represented by the < = 10 keywords as selected in section 4.3.5.1. This provides
a more interpretable numeric result, since we can specify the number of keywords to consider for
the comparison, eliminating the influence of irrelevant words. The resulting similarity scores W8
are then mapped to the width of each edge by computing the width as F = 5 · W8 pixels, returning
a 0 width, non-visible edge if the topics have strictly nothing in common. The upper bound of
5 pixels for the edge width is selected to ensure the scalability of the visualisation. Finally, we
color each edge outgoing from a topic bar in the color assigned to the corresponding topic. Figure
4.8(c) completes the illustration of the topic graph by depicting the edges drawn between each of
the example topic bars.

Figure 4.8: A composite illustration of the components of the topic graph. The figure shows both
the concept behind each component in the above portion and the actual implementation
in the developed prototype. Both examples display a portion of the topic graph for three
time steps, assuming an arbitrary number of articles and topics per time step: (a) depicts
an empty topic node, while (b) adds in the topic distribution per time step in each
node and (c) finally displays the complete topic nodes with the similarity dependant
edges between each topic bar. The topic nodes in the implementation portion display
additional, interactive components, which are detailed in the upcoming sections.

73

4 Conceptual Design & Realization of the Prototype

The vertically aligned, layer-wise graph visualisation functions as an overview of the topic distribution
over the articles at each time step in the time frame of interest. Displaying the topic distribution as a
bar chart in each layer works as an intuitive presentation of the relevant topics at a specific time.
The article-to-height mapping further functions as an easy to interpret encoding of the relevance of
each topic at a specific time and enables to compare the relevance of a topic across multiple time
steps. The consistent coloring and the consistent horizontal ordering of the topic bars across all
time steps allows to easily track topics: As topics continue to be relevant over multiple time steps,
the evolution of such topics can be followed along the vertical layout of the graph. It is simple
to recognize if a topic continues or disappears, as both color and positioning are deterministic,
allowing to easily verify the prevalence of a specific topic at a specific time step. At the same time,
new topics emerging at certain time steps draw the attention, as the corresponding position will
be ”empty” in all preceding topic distribution charts. The colored edges further simplify tracking
particular topics, while the similarity encoding in the edge width can be utilised to identify related
topics across time steps. Mapping the presentation of the topics of a time step to the nodes of the
graph, allows to interactively filter entire time steps: We add a simple button mechanism to each
node, such that the entire node can be collapsed, temporarily removing the node from the graph. To
prevent the disruption of the visual flow, we ”pretend” as if the time step does not exist while it
remains collapsed, thus connecting the topic bars of the previous and the subsequent time step with
edges as described before. Figure 4.9 depicts the procedure of collapsing and re-activating a graph
node in the previously shown topic graph implementation in the developed prototype.

Figure 4.9: A topic node of the topic graph in the developed prototype is collapsed by clicking on
the corresponding button. After the collapse, the respective node is minimized, while
new, temporary connections are drawn between the topic bars of the adjacent nodes.

Note the omission of text labels for the topic bars: To ensure that the bar charts scale well with
increasing numbers of prevalent topics at each time step, we do not label the bars directly. Instead,
we propose to visualise the topics found in the article sequence as a list, accompanying the topic
graph on either side: We select the most relevant keyword related to a topic as the representation or
the name of the topic and subsequently depict the topic names in a vertically aligned list. To visually
connect the topic names and the topic distribution charts presented in the topic graph, we color
the background of each list entry according to the color assigned to the topic. The ulterior motive,
besides the scalability of the bar charts, is to incorporate another interactive filter mechanism with

74

4.3 Prototype Architecture & Realization

the list of topics. While the visualisation of the topics already greatly enables the traction of specific
topics, said task gets increasingly challenging as the number of time steps and thus the number
of nodes in the graph grows. Thus, we add the function to filter specific topics: Upon interacting
with a topic in the topic list, for example clicking the corresponding entry, all topic bars and their
outgoing edges, as well as topic list entries, not corresponding to the selected topic are greyed out.
Only the topic bars and their outgoing edges associated with the selected topic remain colored. This
eases the identification of the topic bars associated with the selected topic and allows to examine
the similarities of the associated topics with the topics of the adjacent cluster in isolation. Figure
4.10 showcases the topic list and one example of interactively filtering a specific topic for a portion
of the topic graph implementation in the developed prototype.

Figure 4.10: An illustration of the topic list accompanying the topic graph, as found in the developed
prototype. Upon interaction with a specific topic entry in the list, the remaining topics
get inactive. As a result, only topic bars associated with the activated topic remain
highlighted, while the reminder is greyed out.

In a similar vain, adding to the capability of the prototype to reduce visual clutter, we integrate a
simple edge filtering mechanism. Certain issues arise when visualising all pair-wise similarities
between topic clusters of adjacent time steps: As the number of prevalent topics increases, more
and more edges overlap, making it difficult to visually follow specific edges between topic clusters.
While one way to solve the issue would be to employ a more sophisticated drawing technique to
”route” the edges with as little overlaps as possible, it is not the focus of this thesis. Thus, we allow
the user to interactively filter edges by

• temporarily completely remove all edges to just focus on the topic bars or

• temporarily remove all edges associated with a similarity score smaller than a user-specified
filter value C, which allows to derive the degree of similarity of adjacent topic clusters from
the density of edges drawn for different filter values.

75

4 Conceptual Design & Realization of the Prototype

In Figure 4.11, we see both of the aforementioned cases for filtering edges to reduce the visual
clutter induced by the overlap of edges, where 4.11(b) showcases the removal of all edges. 4.11(c)
filters out all edges with similarity scores smaller than an arbitrarily chosen threshold C.

Figure 4.11: Depiction of the edge filter mechanisms of the developed prototype to reduce edge
overdraw and clutter. The displayed portion of the topic graph first draws all edges
in (a), before removing all edges in (b). In (c) the majority of edges are removed as
a threshold C for the minimum topic similarity score is defined, highlighting similar
topic groups.

The topic list proves a major advantage of the vertical layout of the topic graph: We can utilise the
remaining horizontal space on the presentation canvas to accompany the topic graph with additional
visualisations, as we will see in the following sections. The vertical layout can be further coupled
with a scroll mechanism to increase the scalability of the visualisation. This provides a crucial
advantage, as it allows to fixate the height of the graph nodes, ensuring that the topic bars and edges
remain ”visible” as the number of nodes in the topic graph grows. Finally, we consider the case
where a user is interested in the content of specific topics. As denoted before, we do not label the
topic bars and instead provide a list of topic names. Of course, this does not provide any meaningful
context about the contents of specific topics. To interactively provide a short summary of topics as
a first impression of the topic content, we depict the full list of the < topic keywords we retrieved
from the topic-term matrix for each topic. Displaying the keywords in the topic nodes at all times
leads to visual clutter, such that we draw the keywords only on interaction with a topic bar, for
example by clicking on the bar. This enables the user to inspect and focus on the keywords on
demand, while reducing the information overload in the topic graph.

Overall, the topic graph provides an interactive, visual solution to gain an overview over the prevalent
topics found within a sequence of time ordered articles. The vertical graph approach allows for the
analysis of long sequences spanning over large time periods, as the interactive layout provides a
scalable environment to visualise the topic distribution at each individual time step. Coupling the
vertical graph with interactive filter and focus mechanisms improves the scalability, while it enables
the user to selectively track and examine the evolution of topics. Section 4.3.6 provides a look into
the realization of the topic graph and its interactive mechanisms in the interactive visualisation
framework.

76

4.3 Prototype Architecture & Realization

We now go a step further and want to consider the exploration of the topics and articles at specific
times, i.e. wanting to inspect the corresponding sub-cluster of articles in more detail. For that, we
leave the environment of the topic graph: Adding more visual objects presenting more information
and detail will eventually lead to visual clutter and overload the overall visualisation. Thus, we
utilise the available canvas space surrounding the topic graph to incorporate another view, dedicated
to the detailed presentation of a selected time step. To provide an intuitive transition from the topic
graph to the newly emerging view, we connect each of the views interactively. That is, we place a
selection mechanism, for example a button, on each of the graph nodes corresponding to a time step.
The selection mechanism adds the capability to focus on the articles of the specific time frame and
their topic distribution. Thus, upon selecting the corresponding node, the cluster view discussed
in the following section expands on the details with respect to the article sub-cluster and its topic
distribution.

4.3.5.3 Explore topics of sub-clusters in the Cluster View

Having determined a specific time step and its corresponding sub-cluster to take a closer look at, the
following questions might arise and motivate the closer inspection: What are the topics, prevalent in
the article cluster of this time step, exactly about? What are their characteristic features, with respect
to their textual contents? How does the article distribution look like? The topic bars in the topic
graph provide only a visual indication of how many articles are assigned per topic, so what is the
actual number of articles assigned per topic? And how do the articles belonging to different topics
compare or differ? To answer these questions, we complement the prototypical realization with the
cluster view. The aim of the cluster view is to summarise the topic related contents found at the time
step of interest. For that, we construct a simple view consisting of the following components:

• A small overview presenting the overall number of articles at the time step and the number of
topics found in these articles

• A short description of each topic, presented in a way that enables to compare the topics

• A small visualisation showing the article distribution per topic

Figure 4.15 presents the realization of the cluster view for an arbitrarily selected time step,
incorporating each of the aforementioned components. The topic summary field simply corresponds
with the first point of the enumeration. We additionally highlight the core of each topic by
emphasising on the most relevant topic related keyword, after the topic-term matrix retrieved
from the topic modelling procedure. A keyword field solves the second task of the enumeration,
summarising each topic as the list of < keywords yielding the highest relevance score for the
respective topic. Each list is presented side by side, enabling to compare the contents of each topic
and identify possible overlaps. The background of each list is colored according to the topic colors
assigned in the context of the topic graph, i.e. we utilise the same color scheme and mapping. The
cluster view is completed by an article distribution field, displaying the number of articles per topic
in a simple bar chart, thus carrying over the same intuition from the topic distribution visualisation
in the topic graph.

The cluster view thus gives a simple and space-efficient overview of the topics found in the article
sub-cluster of a specific time step. The space-efficiency of the presentation allows the concatenation
of multiple cluster views: The selection of multiple topic nodes in the topic graph provides the

77

4 Conceptual Design & Realization of the Prototype

means to examine arbitrary time frames consisting of multiple, possibly non-adjacent time steps.
We arrange the cluster views resulting from the selected time steps in a vertically aligned list and
position the list of cluster views alongside the topic graph. Adding the interactive mechanism to
remove the cluster view of a currently selected and expanded time step, for example via a button on
the topic nodes, a user is able to coordinate the exploration of article sequences on multiple time
scales and in multiple degrees of detail. Section 4.3.6 provides an overview of how the final cluster
view is integrated into the interactive visualisation framework.

4.3.5.4 Explore related articles and novel topic keywords in the Keyword View

With the topic graph and the composition of cluster views, we provide the user with a high level
overview of the topic evolution and a focused, intermediary level overview of the topics within
specific time periods. We complete the interactive decomposition possibilities provided by the
prototypical realization with a final, low level view: Suppose a user wants to further expand on
a selected time frame presented in a cluster view, aiming to inspect and compare the contents of
the articles belonging to the prevalent topics at that time step. In particular, might the user be
interested in the similarities and dissimilarities of the key article contents related to each topic.
For that purpose, we utilise the remaining presentation canvas to extend a selected cluster view in
the keyword view. The intend of the keyword view is in parts similar to that of the topic evolution
overview: To examine and compare the contents of articles of the selected sub-cluster, it can be
helpful to physically group the contents of each article and present them in one, unified view. As
before, do we need to consider the restriction set by the available canvas space and the prevention
of information overload, disqualifying the option of displaying the entire article. Thus, we utilise
again the modified tf-idf score vectors of each article to construct summaries of the article content:
Displaying the ; highest scoring keywords of each article, we provide an overview of the key content
of each article. As the topics have been determined on the basis of the modified tf-idf vectors of
the underlying article corpus, are the most important keywords of the articles likely to correspond
to the topic the article belongs to. The selection of ; depends again on the degree of context we
want to provide with each article summary. We automatically set : < ; ≤ 30, with : the number of
keywords chosen for each topic. Thus, we extend beyond the context given by the topic keywords
and allow to compare articles of different topics in more detail. Alternatively, the user can define the
number of keywords to show for each article, allowing for flexibility and the ability to test multiple
values. Figure 4.15 illustrates how we use the subset of keywords returned from the article vectors
to construct the keyword view.

We display the retrieved keywords as vertical lists, aligned horizontally according to the temporary
ordering of the underlying articles. This allows to analyse the progression and development of
shared and unique keywords across articles of different topics. As seen in the figure, do the displayed
keywords vary in their font size: We further count the number of times a keyword appears within
an article and map the number linearly to the font size, encoding the relevancy of a keyword for
the article it belongs to. To visualise the emergence of new words, we additionally count for each
word C the document frequency 35C and map 35C inversely linear to the opacity of the displayed
keyword. Thus, keywords appearing across multiple articles within the specified time frame will be
less visible, while new and limited keywords are easily distinguishable by their full opacity.

78

4.3 Prototype Architecture & Realization

In the keyword view, the list-wise presentation of the article keywords enables to track the evolution
of the keyword contents over the selected time span. We can easily identify keywords common
among multiple articles of the same or different topics. Adding the functionality to interactively
dismiss the time ordering and group articles according to their topic membership, we add the
ability to compare the common and unique keywords uniting and separating articles of the same
topic. The term frequency dependant font size additionally enables to analyse how the relevancy of
recurring keywords changes over time and for articles of different topics. Furthermore, we are able
to identify emerging and disappearing keywords with the help of the visibility of the keywords, as
keywords newly emerging in a specific article immediately draw the attention. To refine the tracking
capabilities, we add both an interactive filter and a search mechanism, allowing the user to either

• display only the recurring keywords shared by at least two or more articles or

• display only the unique keywords appearing in exactly one article or

• display only the occurrences of a specific keyword of interest

Finally, the situation might arise where a user develops interest in the article a specific keyword
originates from, for example to inspect the text regions the keyword appears in. We want to provide
the means to have a quick look into the article, without augmenting the current configuration, i.e.
the extended node in the topic graph and the selected cluster to examine in the cluster view. Thus,
we add the functionality to interactively open a space-efficient view displaying the article in place:
Upon interacting with a keyword of interest, for example clicking on the keyword, we shrink the
keyword view in one dimension and open a small view presenting the corresponding article. Figure
4.16 illustrates the idea behind the flow of actions:

The newly opened view functions as a miniature article view, displaying only the text passages
containing the keyword of interest. Akin to the summary view, we can collapse passages with
no occurrence of the keyword to save space, bringing them into view as the user interacts with
the collapsed indicator. We finalize the miniature article view by adding a simple mechanism to
switch to another article in the given article cluster where the keyword appears in, enabling to cycle
through all affected articles without leaving the dedicated view.

Overall, the proposed keyword view completes the topic evolution analysis functionality of the
prototype of this work. The keyword view complements the preceding topic graph and cluster view
by providing a deeper look into the articles of the topics and topic clusters catching the user’s eye
in the higher level views. The addition of the keyword view allows to deploy the presentation of
keyword related insights into a separate place, providing an isolated visualisation of the keyword
evolution. The interactive filtering and search mechanisms enable the user to extensively track
specific keywords, while the miniature article view contributes a way to quickly view articles of
interest.

Having now seen the components making up the visualisation of the topic evolution and their
abstract realization, section 4.3.6 will now showcase the actual integration of the each of the views
discussed so far in the interactive visualisation framework of this work.

79

4 Conceptual Design & Realization of the Prototype

4.3.6 The interactive visualisation framework

In this chapter, we have so far introduced and discussed the different building blocks of a prototype
realizing the interactive visualisation of novel text regions and the topic evolution in a corpus of time
ordered news stories. This section brings together the individual components to form the resulting,
finalized prototypical visualisation framework. For that, we present the multiple coordinated views
of the framework, illustrating how each of the components and their interactive mechanisms are
integrated into the visualisation tool. We round up and complete the developed prototype with the
presentation of complementary and interactive functionalities not discussed so far.

4.3.6.1 Multiple Coordinated Views

The interactive visualisation framework is realized as a single-page web application, the technical
details presented in more detail in chapter 5. To explore the multiple facets and insights of the given
corpus of news stories, most importantly the novel content and the prevalent topics, the developed
framework adopts the Multiple Coordinated Views approach.

Incorporating multiple distinct views, each view tasked with the presentation of one or multiple
coherent facets of the data, allows for the effective usage of the available canvas space and the
separation of concerns. Thus, we sectioned the framework into two major views:

• The text view is dedicated to the presentation of novel content in individual and sequences of
articles. The text view is further subdivided into the interconnected article view, summary
view and the thumbnails, introduced in the preceding sections.

• The topic view is centered around the visualisation of the topics of the corpus and their
evolution. The topic view combines the previously discussed topic graph, cluster view and
keyword view into a single, dynamic and interactive view.

The text view and the topic view are decoupled, i.e. the user is able to explore two different subsets
of the same underlying text corpus in either view. This simplifies the transition from one view to
another, as the user is not required to remember a mental map of the selection and state of one view
when switching to the other. We complement each view with a set of interactive functions, aiming
to assist the user in the exploration and analysis of the data with an interface focused on the ease of
use.

4.3.6.2 The Text View

We arrange the components of the text view to support an effective workflow, narrowing down the
exploration starting from a specified sequence of articles to the analysis of novel content in a single
article of interest and vice versa. Figure 4.12 depicts the resulting layout of the text view.

The date selection field sets up the exploration of the underlying corpus, allowing the user to
first specify the time frame of interest in (A)(1). We decided upon a simple input mechanism, as
visualising the number of available dates becomes difficult as multiple hundreds to thousands of
dates have to be considered. Upon input of a time frame, we display the number of articles published
within the specified time period below the selection field. The user can then decide to immediately
display all found articles by pressing the button below. Alternatively, the user can further refine

80

4.3 Prototype Architecture & Realization

Figure 4.12: The text view of the developed prototype, presenting the visualisations associated
with the summary view, article view and thumbnails.

the selection by restricting the time frame to certain months or days utilising the date heatmap in
(A)(2). The date heatmap has two modes: We depict a month as a horizontal bar, where we map
the number of articles published during this month to the color of the bar. Upon clicking on a bar
associated with a certain month, we indicate the number of articles published for each day of the
month via the corresponding rectangle’s background color. In both cases, we utilise a continuous
color scale to visually encode the gradual differences in article volumes for different dates. When a
specific month or day is clicked on and thus selected, the corresponding articles from that month
or day are retrieved and displayed: The list of titles field in (A)(3) provides a dropdown selection
grouping the articles from a specific month or day. Each dropdown field denotes the specific date
and the number of articles published on that date, while the background color again functions as
an easy to interpret visual indication of the article volume. Upon clicking on a dropdown field,
the corresponding list of titles of the articles is displayed. The background of each title is colored
according to the document novelty score of the corresponding article, providing an overview over
the novel content of the articles. The user can then select a title, which prompts the framework
to open the corresponding article in the article view. Furthermore, after selecting a month or day
in the heat map, all corresponding articles are displayed in the summary view in (B). The date
selection field in (A)(1) thus allows to successively refine the set of articles to inspect, starting with
a broad time period and narrow down the time frame to a specific day and a specific article from
that day. The dynamic heat map and the aggregating list of titles provide a space-efficient overview
of the article distribution for the dates involved, effectively encoding the volume in the background
color.

Area (B) has two modes, each mode presenting a previously discussed view and depicted as isolated
snippets in figure 4.13 and 4.14 respectively: The search page view depicts the summary view
introduced in section 4.3.3.6, alongside a search bar (C)(1), the identifier selection bar and the
expandable search menu (C)(2). As mentioned in the passage before, the article selection originating

81

4 Conceptual Design & Realization of the Prototype

Figure 4.13: The summary view of the developed prototype, aggregating the most important text
passages of a selected sequence of articles.

from the interaction with the date selection field or the heat map is displayed in the summary view.
Each article is depicted as a summary of its most important passages (C)(3), with the indicators
(C)(4) in between hinting at the collapsed reminder of the article.

Figure 4.14: The article view (a) of the developed prototype, presenting the content of a specific
article and visually highlighting the novel content. Upon clicking on a specific
sentence, a small view presents the alternatives generated by GPT-2 (b).

We embed each article in a bordered frame, accompanying the article with a highlighted presentation
of the title, its publication date, the corresponding news provider and the URL to the article webpage.
The articles are then presented as a vertically aligned list, inspired by common web search engines
like Google or Bing. To handle the computational load when showing multiple hundreds of articles

82

4.3 Prototype Architecture & Realization

at once, we paginate the search page view, only depicting 10 articles at once and displaying the
reminder as the user interactively switches between pages. The search field allows to query articles
containing specific strings or keywords. The search string can contain optional parts, separated
by white spaces, and keywords, that must occur together, chained with &. Alternatively, the user
can directly query for specific articles via their unique identifier, clearly denoted in the summary
view, thumbnails and article view for each displayed article in some way. Multiple identifiers can
be specified at once to retrieve batches of articles, allowing the user to compose a summary view of
arbitrarily selected articles and their important passages. Instrumental to the interactive capabilities
of the search page view is the expandable search menu (C)(2) and its search and filter options. Here,
the user can refine the set of articles displayed and augment the presentation by

• changing the order in which the articles are presented. The user is able to order the articles
either by their publishing date or the average novelty score of the articles, thus providing two
different perspectives on the order and easing the exploration of long sequences of articles.

• filtering the articles according to the news provider. The user is shown a list of all providers
that have published an article in the specified time frame. Upon selecting an entry from the
list, the search page view depicts only articles originating from the selected provider during
the specified time frame.

• filtering the articles according to their novelty score. The user can specify a minimum and
a maximum novelty score, such that only the articles with an average novelty score falling
within the specified range are shown.

• activating or removing the Gaussian blur. If the user is interested in comparing the visualisation
results of either blurring or not blurring the sentence background visualisation or is simply
not satisfied with either result, the blurring can be interactively (de-)selected.

• changing the blur window. If the current smoothing is too strong or too weak, the user can
adjust and experiment with the blur window size.

The search and filter options provided by the search field and the expandable menu provide the
means to interactively customize and refine the results presented by the summary view. The user
is thus given multiple tools to narrow down the articles of the specified time frame to a specific
subset of various specific properties. The summary view itself, as discussed before, allows the user
to effectively gather an overview of a long sequence of articles.

The second mode of Area (B) is selected by switching the view to the article view in 4.14(a). The
article view (D)(1), as discussed in section 4.3.3.2, depicts the novel text passages of a selected
article. The selection can occur in the list of titles, by clicking on a title of an article in the summary
view or clicking on a thumbnail. Each article is displayed alongside its identifier, its date, the news
provider and the webpage URL in the header of the article (D)(2). The sentence backgrounds
are visualised according to the novelty score of the sentences, where hovering over a sentences
highlights it by temporarily increasing the background opacity to 100 %. Additionally, as alluded
to in section 4.3.4, we provide for each sentence a set of alternative sentences: As can be seen in
4.14(b), upon clicking on a specific sentence (D)(3), a view opens up in the article view, displaying
5 alternative sentences generated by the GPT-2 language model (D)(4). We highlight the overlap of
words between the actual sentence and the generated sentences by coloring the background of the
corresponding words.

83

4 Conceptual Design & Realization of the Prototype

The text view is finally completed by the thumbnails in figure 4.12(E)(1), introduced in section
4.3.3.5. The list of thumbnails mirrors the selection of articles displayed in the summary view,
remaining on the canvas even if the user changes from the summary view to the article view. This
provides the user with an overview of the selected article subset at all times, even when the user is
analysing individual articles in the article view. As discussed in section 4.3.3.5, we make efficient
use of the available canvas space by only providing a visual summary of the novel content inside
the card-like visualisation (E)(2).

4.3.6.3 The Topic View

Figure 4.15: The topic view of the developed prototype, presenting the visualisations associated
with the topic graph, cluster view and the keyword view.

The user transitions from the text view to the topic view by selecting the corresponding tab in the
header of the page. Akin to the text view, the topic view again centers its layout around an efficient
workflow: The user starts with a high level overview of the topic evolution in the topic graph and
progressively descends to lower level abstractions as the cluster view and the keyword view are
opened up, from left to right on the canvas. Figure 4.15 shows the entire topic view for arbitrarily
selected and extended nodes in the topic graph.

Similar to the text view, the user is provided a date selection field (F)(1) to initially define a broad
time frame of interest. utilising a slider mechanism in the time frame selection slider (F)(2), the
user can then further specify the time frame. The slider mechanism was chosen to enable to user to
make fine granular time frame selections. Upon changing the broad time frame in the date selection
field and pressing the button above, the slider ranges automatically update to reflect the selected
time range. As the user moves the slider handles and further adjusts the time frame, the system
calculates ”on-the-fly” the number of articles falling into the current time frame and displays that
number. The expandable menu in (F)(3) allows to specify the parameters of the ensuing topic
evolution procedure:

84

4.3 Prototype Architecture & Realization

• The user can specify the granularity to cluster the articles by, where the day selection groups
topics from the same publishing day before finding the prevalent topics and the month
selection does the same on a per-month basis.

• A variety of input parameters allow to specify restrictions on the clustering. The user can
manually specify the maximum number of articles to consider for a single cluster and the
number of topics to find in such a cluster. Alternatively, the number of articles per cluster
can be determined dynamically, while the procedure algorithmically finds the number of
prevalent topics, as described in section 4.3.5.1.

Pressing the button below the article number field then triggers the topic evolution procedure,
subsequently displaying the resulting topic graph in (G)(1) and its accompanying topic list in (H)(2),
as discussed in section 4.3.5.2. As described in the corresponding section, the topic graph presents
for each time step the resulting topic clusters, i.e. the article groups assigned to the same topic. The
topic distribution of each time-dependant cluster is shown in a topic node and the distribution is
visualised as a bar chart.

With the topic graph on screen, the user can then utilise the reminder of the expandable menu (F)(3)
to augment the presentation of the topic graph:

• A user defined input specifies the number of keywords to assign per topic, the resulting
keyword vector representing the corresponding topic.

• A set of buttons allow to define the edge similarity, either calculating the similarity between
topic clusters based on the cosine similarity of the topic vectors or based on the number of
keywords shared.

• An edge filter enables to restrict the edges, drawing only edges between topic clusters if the
computed similarity score exceeds the defined threshold or the minimum required number of
shared keywords respectively.

• Two additional options are provided to augment the edges, where edges can be completely
removed or only drawn between the most similar topic clusters.

As the graph grows in size, the user can utilise the collapse button on the topic nodes to temporarily
remove the node from the visualisation. Conversely, selecting a node for expansion via the circular
expansion button on the node, selects the corresponding topic cluster for the cluster view in (H)(1),
displaying the information discussed in section 4.3.5.3. The user is able to create a custom selected
group of arbitrary topic clusters from the time ordered sequence and then choose to display the
selection. Alternatively, the user can decide to expand the entire sequence of article clusters,
creating a list of cluster views. The background of an expanded node is highlighted to emphasise
its expansion. In the cluster view, the user can observe the topic statistics and the main keywords
representing each corresponding topic. This is followed by the topic keyword vectors presented as
side by side lists. The cluster view of an expanded node is then completed by a bar chart, displaying
the article distribution for each topic.

The final component of the topic view is drawn upon selecting a cluster view for expansion,
prompting the system to visualise the keyword distribution of the corresponding topic cluster in the
keyword view (I)(1). The keyword view, as discussed in section 4.3.5.4, presents each article of the
corresponding cluster as a list of its keywords. The keywords of each list are sorted with respect to
their modified tf-idf scores. Each keyword list, associated with a certain article, displays at its top

85

4 Conceptual Design & Realization of the Prototype

the id of the corresponding article, enabling the user to track specific articles and for example search
for them in the text view. To allow the visualisation to scale for big clusters of multiple articles, the
keyword lists are placed inside a scrollable container, displaying only a subset of the lists at a time.
The expandable settings menu in (I)(2) further provides the interactive means to search and filter for
certain keywords:

• The user can specifiy the number keywords to display per article, the number being set to 30
per default.

• Per default, the lists are ordered with respect to their publishing date, to simplify the traction
of the evolution keywords. Alternatively, the user can group the articles according to their
topic membership. Furthermore, each article list is faintly colored according to the color
assigned to the corresponding topic. If the user is more interested in the novelty of the
corresponding article, the keyword lists can be colored according to the articles’ novelty
scores.

• The user is provided multiple keyword filtering options, displaying only keywords occurring
once or those occurring across multiple articles.

• Lastly, the user can search for specific keywords, prompting the system to only display
keyword lists containing the keyword.

Finally, if a user is interested in the article a specific keyword originates from, clicking on the
keyword opens up the miniature article view, illustrated in figure 4.16(J)(1). As described in
section 4.3.5.4, at first are only shown the passages containing the keyword of interest, with the
reminder of the article collapsed (J)(2) and coming into view as the user clicks on the collapsed
passages. The header at the top of the view allows the user to cycle through all articles of the
currently inspected cluster that contain the specific keyword, without having to manually search for
and select the keyword in the keyword view.

Figure 4.16: Upon clicking on a specific keyword, in this case electricity, a view opens up,
displaying the passages of articles containing the keyword. The view behaves similar
to the summary view and provides an interactive header to easily switch between
different articles.

86

5 Technical & Implementation Details

The following chapter provides an overview of the technical details with respect to the implementation
of the interactive visualisation framework of this thesis. We first describe the libraries utilised
in the data processing pipeline, the format of the articles before and after the processing and the
way articles and intermediary results are temporarily stored. Subsequently, we detail the two core
technologies of the prototype in GPT-2 and the components of the topic modelling procedure.
We then denote the implementation details of the construction of the different visualisations of
the framework. The final section of the chapter shortly presents the general set-up of the web
application.

5.1 Data Preparation & Processing

The interactive framework was developed on and works on a text corpus consisting of news story
articles, each article containing a single story. The news stories where fetched from multiple online
news provider sources, examples being The New York Times 1, The Guardian 2 or CNN 3. The
resulting data set consists of 300 000 - 400 000 JSON 4 files of the following structure:
{

...,

...,

"Title" : "...",

"Link" : "...",

"PublishingDateString" : "...",

"PublishingDate" : "...",

"ArticlePageFetchedTime" : "...",

"FetchedArticleContent" : "...",

"FeedTitle" : "...",

...,

...

}

Detailed are the fields expected by the processing module of the framework and necessary for the
subsequent steps of the processing pipeline. The news corpus was unordered at first and has been
sorted afterwards, such that the articles are sorted according to their publishing date in ascending
order.

1https://www.nytimes.com/
2https://www.theguardian.com/international
3https://edition.cnn.com/
4https://de.wikipedia.org/wiki/JavaScript_Object_Notation

87

5 Technical & Implementation Details

5.1.1 Text Preprocessing

Having retrieved a, at first unordered, corpus of news articles, the documents need to be cleaned first.
The textual contents are provided as single strings of text, retrieved directly from the corresponding
web page. As such, the texts contains various forms of special, non-alphanumerical characters, for
example formatting related HTML character codes like ANSI escape sequences to display certain
types of punctuation characters. The data is thus cleaned, employing sentence splitting, tokenization,
token cleaning and lemmatization. For that, we utilise the Natural Language Processing Toolkit
(NLTK) 5, a language processing python library. As the final text processing step, we remove
stop words from each article. As the language model still requires the context provided by stop
words, we keep two copies of each article, where only one has its stop words removed. We further
shorten the article URL and normalize the provider name extracted from the FeedTitle field. After
the cleaning step, we utilise the textual contents to compute the novelty scores with GPT-2. Having
computed the novelty scores, we employ the modified tf-idf procedure to compute the tf-idf vectors
for each article.

Before the tool can be used, the processing of the data and the related computations have to be
employed in advance. A configuration file config.json guides the preprocessing pipeline, as the
following parameters can be specified for the ensuing processing pipeline:
{

"data_key" : "",

"num_per_day" : "",

"num_lines" : "",

"num_sent_keywords" : "",

"start_date" : "",

"end_date" : "",

"predict_with_context": "",

"gen_param : []

}

The date_key field specifies the data file to store the articles, while the start_date and the end_date
determine the time frame to retrieve articles from. Parameters with the prefix num_ determine
the number of corresponding items to retrieve, while gen_param provides the parameter for the
text generation. predict_with_context is a boolean flag that determines whether the preceding
context is utilized in the loss calculation. The processing in advance is mostly motivated by the
long processing times to calculate the novelty scores and produce the tf-idf vectors for each article.
Employing the processing at runtime would decrease the response time of the system, as well as
delay any interactions between the user and the system.

5.1.2 Storage

After the processing and computation steps, we store each processed article in a single dedicated
JSON file, functioning as a permanent store. The structure of each article entry in the JSON file is
as follows:

5https://www.nltk.org/

88

5.2 Technologies

ID : {

"title_cleaned" : [],

"title_sanitized" : [],

"content_cleaned" : [],

"content_sanitized" : [],

"time_stamps" : {

"fetched_date" : "...",

"publication_date" : "...",

},

"link" : "...",

"provider" : "...",

"tf_idf" : [],

"novelty" : {

"doc" : # (3),
"sentences" : [],

}

"alternatives" : []

}

where ID denotes the article identifier and # (3) denotes the document novelty score. The title
and content entries are stored as arrays of sentences, each sentence again an array of tokens. The
suffix cleaned denotes the cleaned content with stop words, utilised to display the text of articles in
the different views of the framework and for the novelty score computation. The suffix sanitized
denotes cleaned and lemmatized content without stop words, utilised for the topic modelling. The
entry tf_idf stores the modified tf-idf vectors for each article, while the entry novelty stores the
sentence wise and overall article novelty scores. Lastly, the alternatives entry stores an array of
alternative sentences for each sentence of the article.

5.2 Technologies

Instrumental to the functions and visualisations are the outputs of GPT-2 and the topic modelling
procedure. For each of the technologies, we quickly describe the technical details including the
source of the tools, parameter and model settings and the concrete usage of the respective tools.

5.2.1 GPT2

The GPT-2 transformer based language model functions as the underlying language model of the
prototypical realization of our presented approach. We utilise the OpenAI GPT-2 6 implementation
provided by the open-source artificial intelligence library Huggingface [WDS+20] for python.
The library offers multiple pretrained models, corresponding with the different model sizes of
GPT-2, from which we use the third largest model gpt2-medium, with 345 million parameters. To
make use of the implementation, we additionally utilise the open source machine learning python

6https://huggingface.co/transformers/model_doc/gpt2.html

89

5 Technical & Implementation Details

frameworks tensorflow 7 and pytorch 8 and the math library numpy 9. We utilise the medium sized
model, as our computational resources restricted our capabilities to fine tune any bigger model. We
fine tuned the pretrained gpt2-medium on 10% of the article news data set.

To compute the novelty scores of the articles with GPT-2, we process each article sentence by
sentence. We encode a currently processed article with the fine tuned GPT-2 tokenizer, providing
both the sentence, as well as the preceding context as sequences of tokens. As the model can at most
encode 1024 tokens at a time, we set the context window such that the model utilises a window of
1023 preceding tokens when predicting the current token in the sentence. The model subsequently
calculates the loss of the sentence as the average loss of the tokens of the sentence, which we then
invert and store as the novelty score of the sentence. We perform the encoding and the model
inference on a GPU to significantly speed up the process.

We further utilise GPT-2’s text generation function to generate the alternatives for each sentence
of each article. We provide the model again with a context window adhering to the input length
constraint when generating a single sentence. We choose top-p sampling as the token sample
method, with ? = 0.95 and : = 20, : denoting the number of most likely tokens to consider for the
sampling. The values of ? and : have been obtained through testing and observing the resulting
sequences, paying attention especially to the coherence of the produced sentences and minimal
repetition. We generate and store the alternative sentences at runtime, when the user first views
the corresponding article in the article view and subsequently load the generated alternatives for
subsequent usages from data.json.

5.2.2 Topic Modelling

The topic modelling procedure of our approach employs Non-Negative Matrix Factorization (NMF)
to factorize a provided term-document matrix according to a predefined number of topics. We
utilise the NMF implementation 10 provided by sklearn, a machine learning library for python.

5.2.3 Visualisation

The interactive web framework of our approach creates multiple visualisations to present the insights
to be gained from the underlying data. We utilise the HTML-document styling language CSS for
the novelty-dependant background visualisations in the text view of our framework. To create the
topic graph, as well as its nodes and edges, we utilise the javascript library D3 11. To visualise
the the time frame selection slider in the topic view of the prototype, we utilise the open source
javascript library noUiSlider 12. Both CSS and D3 are further utilised for minor visualisations
like the date heatmap and for all of the styling of the single-page web application representing the
prototypical framework.

7https://www.tensorflow.org/
8https://pytorch.org/
9https://numpy.org/

10https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
11https://d3js.org/
12https://refreshless.com/nouislider/

90

5.3 Web Application

5.3 Web Application

The interactive visualisation framework of this approach is implemented as a single-page web
application, i.e. we do not route the user to different HTML pages upon changing views, but
re-render and redraw the current HTML page to display different visualisations. The framework
is set-up with a backend, the server-side portion handling the data processing and intermediary
result computation. The processed data and results are subsequently transferred to the frontend, the
client-side portion rendering the web page. Frontend and backend communicate asynchronously
via AJAX 13, initiated by the client-side.

5.3.1 Backend

We utilise the python programming language to implement our backend. For that, we set up a
development server with the web application framework flask 14. Upon starting the development
server, the backend renders and serves the initial, yet empty, HTML web page to the frontend.
The backend subsequently listens for client-side AJAX requests, containing parameters and values
specifying the required computational results the backend then produces and sends to the frontend.

5.3.2 Frontend

For the client-side web page rendering, the user interaction handling and the styling of the HTML
web pages, we utilise javascript in junction with CSS and the open source frontend styling toolkit
bootstrap 15. We further utilise the javascript library Jquery 16 for the AJAX communication
between backend and frontend. After the backend server has been started and the initial HTML
web page has been served, the frontend is tasked with the majority of the page rendering. Switching
between the different views of the prototype is handled in majority by the frontend, removing and
rendering new HTML components of the web page at runtime. Data and intermediary results
required for new components and views are fetched via AJAX calls to the backend.

13https://en.wikipedia.org/wiki/Ajax_(programming)
14https://flask.palletsprojects.com/en/2.0.x/
15https://getbootstrap.com/
16://jquery.com/

91

6 Results

After the development of the prototype, realizing the interactive visualisation approach to novel
context detection and topic evolution modelling, we dedicate this chapter to discuss the results of
this work. Thus, in the first half of the chapter, we explore a set of real-world use cases and present
the different ways the developed prototype can be utilisd to solve each of the problems and tasks.
The latter half subsequently thoroughly discusses the utility provided by the interactive visualisation
framework of this work: We highlight the advantages of the developed prototype, the disadvantages
of our concrete realization and overall discuss the suitability of our framework with respect to the
over aching goals we set at the beginning of this thesis.

6.1 Use Cases

Recalling the scenarios we described in chapter 1, we denoted several issues to overcome when
searching for new insights in large, sequential text corpora. At the core, we can summarise
and convert these issues into three big tasks to solve: Identify documents of interest, recall the
information gathered so far and finally extract the new information in the documents given the
context. The following sections decompose these major tasks into smaller real-world tasks and
demonstrate the capabilities of the prototype developed in this work, to step by step solve each task
at hand. For that, we will look at an exemplary use case in the context of examining news stories in
a large corpus of news articles.

6.1.1 Task description

We assume a given corpus of news articles, published in the time frame spanning from the beginning
of the year 2020 to the end of 2020. In this use case, we are particularly interested in the unfolding
of the COVID-19 pandemic 1 during January 2020. For that, we prepare a subset of the articles
spanning from the beginning of January, 2020.01.01, to the end of January, 2020.01.31, randomly
sampling up to 100 articles containing the keyword coronavirus per day. Specifically, we set out the
task of gathering an overview about the news progression during the month of January:

• Gather an overview about the general topic of coronavirus.

• Identify and examine interesting articles to gather more in-depth information.

• Find out about the general topical evolution during the time frame and the relevance of the
topic coronavirus.

1https://en.wikipedia.org/wiki/COVID-19_pandemic

93

6 Results

6.1.2 Gather a general overview of the data

Figure 6.1: The text view provides a general overview of the articles, where we observe that most
articles reporting about coronavirus have been published at the end of the month, as
the date heatmap shows.

We begin to solve the aforementioned tasks by examining the prepared data set in the search page
view. Of the 891 retrieved articles related to the topic coronavirus, most are published at the end of
the month, as the date heatmap and the list of articles in figure 6.1 show. Looking at the list of
articles and the article novelty score dependant coloring of the titles, we can observe the novelty
of the articles to fluctuate, with a slight decrease for articles at the and of the month. Figure 6.2
illustrates this by comparing articles from 2020.01.09 and 2020.01.23. We select and open the
articles from 2020.01.09 as the first day with multiple reports on the topic coronavirus.

6.1.3 Collect the key information

As the articles from the specified day are presented in the summary view, we can utilis the important
passages highlighted in each article to get a gist of the key information related to the coronavirus.
Figure 6.3 shows a mashup of the novel text passages retrieved from a few selected articles. From
the aggregated passages, as well as the additional information provided in the hidden passage in
6.3(b), we can quickly gather the main information provided by novel sentences as highlighted by
the background coloring: It seems to be a pneumonia outbreak mainly affecting China, with the
circulating virus being related to the SARS respiratory disease. In 6.3(a) and 6.3(b), we can further
observe how two very similar sentences are reported in different articles and the underlying model
correctly visualising the second occurrence as less novel. In addition, 6.3(c) shows how general
statements about the coronavirus are old news to the underlying model.

94

6.1 Use Cases

Figure 6.2: The list of titles shows, that the novelty of articles published at later dates, here the
01.23., seem to contain less novel content - likely as they report about content covered
in the previous days.

Figure 6.3: The mashup shows some of the aggregated article passages presented in the summary
view. The background coloring draws the attention towards the novel information,
from which we can quickly gather information about the coronavirus. The sequences
outlined in red highlight how the underlying model recognizes already known content.

95

6 Results

Figure 6.4: The overlapping illustration displays how we first sort the articles by their novelty,
resulting in the presentation of highly novel text passages (a). To make the passages
more readable, we adjust the Gaussian smoothing window size, resulting in a more
fluent background visualisation (b).

6.1.4 identify specific articles of interest

Having roughly determined what the retrieved articles report about, we want to gather specific
information about the coronavirus topic. For that, we want to identify promising articles to examine
in detail. We return from the subset of articles retrieved from January 9, to the overall data set and
start our search by sorting the articles by their novelty score, in descending order. This gives us an
overview of the most interesting articles after the underlying model. As figure 6.4(a) shows, since
the articles contain many highly novel passages, the background highlighting makes it difficult
to read some of the passages. Thus, in Figure 6.4, we adjust the Gaussian blurring window size,
resulting in more fluent background visualisations. As a side effect, it now becomes difficult to
identify particularly interesting articles, as most backgrounds have similar color hue and opacity.
Rather than going though each of the aggregated passages, we select a few promising looking
articles and restrict the summary view to these article, before we consult the thumbnails and look
out for keywords of interest. Figure 6.5 shows the aforementioned identifier search (a) and the
close inspection of a thumbnail (b). Its sentence-wise keywords hint at an interesting article with
keywords of different topics like diseases, wildlife and climate, causing us to examine the specific
article in the article view.

6.1.5 Examine articles of interest

Viewing the selected article in the article view, the highlighted text passages guide as towards the
more interesting and novel information with respect to the insights we have gathered so far. We
can quickly identify the transmission of diseases between animals and humans as the main topic.
As expected, since we are viewing the 786-th article in the provided data set, passages concerning
general information about the coronavirus are not highlighted. Meanwhile, passages containing
new information about animal disease transmission are predominantly put into focus. Looking at

96

6.1 Use Cases

Figure 6.5: To restrict the number of articles to analyse, we cherry pick a small sequence of articles
via their identifier and inspect their thumbnails (a). The keywords on demand draw
interest towards a specific article (b).

Figure 6.6: The article view quickly draws the attention towards the interesting passages of the
article, as passages about animal diseases are heavily highlighted. Upon clicking on the
sentence How can diseases jump species?, the model generated alternatives disclose
the relation between the topic of this article and the coronavirus.

the sentence How can diseases jump species?, highlighted in figure 6.6, we would like to know the
context of this question and the relation to the topic of coronavirus. We can consult the knowledge
the underlying model has compiled, by displaying the alternative sentences the model proposes

97

6 Results

instead of the question. Figure 6.6 shows alternative sentences outlined in red, illustrating the
connection the model has drawn between the preceding context about animal diseases and the
coronavirus.

6.1.6 Identify prevalent topics

Figure 6.7: The topic graph in (a) displays the topics for the entire data set, covering a broad set
of topics. The topic graph in (b) narrows down the time frame and produces clusters
for five topics, as manually set via the menu. Hovering over the purple topic bars
associated discloses a general health related and especially coronavirus related topic.

The selected articles we examined in less or more detail already covered a broad set of topics,
which now prompts us to look at the evolution of topics in the data set. Drawing the topic graph
for the data set, figure 6.7(a) highlights an unfortunate, yet expected side effect of the modified
tf-idf vectors we utilis for the topic modelling. While we would expect very frequently covered
terms like coronavirus to be a major prevalent topic, the discount induced by the modification of
the weighting scheme likely penalized such terms. As a result, we have a rather broad set of topics.
We thus refine the displayed topic graph in figure 6.7(b) by restricting the time frame to the end of
march, as we know that the density of articles was high for those days. We further search for five
topics overall, producing bigger topic clusters. As we inspect the topic keywords of a selected topic
bar, we identify the general topic health to be related to the coronavirus.

6.1.7 Track the evolution of topics and topic keywords

As we are interested in the evolution of the topic health and its relevance, we extend two distant time
steps and examine their cluster views. Figure 6.8 shows that the general topics of each cluster are
the same, while the strength of the topic health increases for the later, meaning at a later time step,
cluster. The topic keywords seem slightly different, but do not provide enough indication whether
the contents of the underlying articles change over time. We thus have a look at the keyword view

98

6.1 Use Cases

Figure 6.8: The cluster views of two distant time steps show that the general topics are similar,
while the topic health gains relevance in the later cluster.

of each of of the clusters and inspect the keyword evolution in the underlying article sequences.
Figure 6.9 side by side displays snippets of the keyword views of each cluster. Visible are the first
ten articles of the underlying article sequences. Having set the number of keywords to display in
each keyword list to ten and displaying only the recurring keywords in each article, we can identify
that both clusters report topics closely related to and centered around keywords as coronavirus,
restrictions and outbreak. In the earlier cluster in (a), we spot one, outlined in red, article standing
out and seemingly reporting about Kobe Bryant, catching our interest.

We click on the keyword to open an in-place view of the passages containing the keyword Bryant.
Reading the passages, we conclude that the anniversary of Bryant’s death fell into the inspected
time frame, thus shorty overshadowing the other topics.

99

6 Results

Figure 6.9: The keyword views of each of the clusters illustrate that the underlying article sequences
report about content mostly related to coronavirus. In the earlier cluster (a), we spot an
odd topic revolving around Kobe Byant.

Figure 6.10: Inspecting the selected keyword in the view on the left side, provides us with the
interesting passages from the corresponding article reporting about Kobe Bryant.

6.2 Discussion

The exemplary use case discussed in the previous section provided a first look into the effectiveness
of the developed prototype for novel text exploration and topic evolution analysis in news story
corpora, while revealing a range of shortcomings we need to address in the future. This section

100

6.2 Discussion

takes a closer look at the advantages and disadvantages accompanying the interactive visualisation
framework of this work and touches upon potential improvements and additions we concretize in
chapter 7.

6.2.1 Novel text content identification

Central to our approach is the identification of novel text regions by utilizing the transformer
network based language model GPT-2. Given a sequence of words to asses and a preceding textual
context as prior knowledge, GPT-2 can accurately model the likelihood of the sequence, given the
context. The likelihood assessment of GPT-2 functions as an intuitive approximation of the novelty
of the sequence: As we define the novelty score of a sentence as the loss output of GPT-2 for that
sequence, we can interpret the high loss as the model’s inability to predict the sequence. This in turn
indicates two major factors we desire to reveal, as we search for novel content: The given sequence
consists of unusual content the model did not expect and the given context does not provide enough
information about similar content or comparable patterns. Thus, the sequence of interest is likely to
be novel with respect to the model’s knowledge. This has mainly motivated the usage of GPT-2,
as the transformer network’s trained prior knowledge and likelihood assessments are among the
most reliable in the area of neural language models. Additionally, GPT-2’s ability to process long
input sequences enables to model long distance relationships between the textual inputs, allowing
the model to recognize similarities between the sequence to predict and distant sequences in the
given context. That said, the likelihood assessments are in no way perfect and the modelling of long
input sequences leave room for improvement. The technical restriction set by the maximal input
length of 1024 tokens requires to narrow the possible prior context, potentially cutting off valuable
information and thus leading to worse likelihood assessments. This is especially detrimental in
the context of large news story corpora, as news topics might span over large sequences of news
articles, where the first few articles reporting about the topic of interest offer valuable information
and context. With the restriction on the context length, the model cannot access the valuable
context when processing later articles of the sequence. We alleviated this issue by fine tuning
the model, albeit only on 10% of the data set, which improves the model’s underlying parameters
and the model’s performance on the given news corpus and similar text corpora. New application
domains with structurally different text data would require to fine tune the initial model again,
which is a computationally expensive task and thus not always a possibility. Generally, utilizing
GPT-2 to model the novelty of text regions comes at the cost of a more difficult setup, compared
to traditional statistical approaches like n-gram models. We decompose the given text documents
and passages into sentences and assess the novelty sentence-wise, rather than calculating novelty
scores for each token. While the sentence-wise assessment provides certain advantages, which we
discussed in chapter 4, a major motivation against computing novelty scores for each word was
the prolonged processing speed. As we built an interactive visualisation framework around the
computed novelty scores, slow processing speeds are very disadvantageous with respect to the
response time and interactivity of the system. As a trade-off for a better interactive framework,
we miss out on individual, word level novelty scores, giving potential insight into which words
specifically contribute to the novelty of a text region.

101

6 Results

6.2.2 Modified tf-idf scores

To summarise individual articles and to extract important and novel keywords for topic modelling,
we modified the tf-idf weighting scheme with the insights gained from the novelty assessment of
individual text segments. The modification consisted of two added components, each part penalizing
terms depending on the novelty of their originating text region: We discount the term frequency of
individual tokens by counting each occurrence of a term in a document not with a weight of 1, but
with the weight of the corresponding sentence’s novelty score. As a result, the term frequency of
a term in a document reflects the average novelty of the sentences within the document the term
appears in. The document frequency of a term is additionally weighted by the average document
novelty of all documents the term appears in. This works as a discount of terms that may appear
frequently only in a selected few documents, getting assigned a high document frequency after
the standard weighting scheme, but where the documents possess little new novel content. When
querying for the top keywords of a document, with respect to the modified tf-idf score, the modified
scoring thus prioritizes a mix of representative terms and terms appearing in highly novel text
regions. At the same time, as we map documents to tf-idf vectors and cluster multiple documents,
the discounted document frequency emphasises on terms appearing in novel documents. As the
document space is separated based on the features, i.e. the terms, of the documents, these terms
receive a greater influence in defining the resulting document groups. On one hand, this yields
keyword-based article summaries with an heavy emphasise on novel and content-bearing keywords.
On the other hand, it counteracts and harms the retrieval of representative keywords with respect to
an article’s topic: Important, topic relevant keywords within articles are likely to appear often, in
multiple passages of varying novelty. These keywords hold important information with respect to
the overall content of the article, yet might get discounted heavily if some of the text passages or the
article overall contain little new information otherwise. Furthermore, articles associated with a
topic are likely to share the same topic keywords, while the overall novelty of the articles fluctuate
as articles within a time ordered sequence cover the same or similar topics. This can be problematic
in the context of topic modelling, as we have seen in the discussion of figure 6.7 in the use cases:
We utilis NMF to extract topic and assign these topics to articles based on the decomposition of
the article keyword vectors. The discount of broadly appearing terms might yield high variance
in the selection and assignment of topics, as the selection of frequent and continuously appearing
keywords to represent topics is discouraged. As one of the goals of the prototype is to model the
topic evolution and find both newly emerging and continuously developing topics among the given
article corpus, the latter requires to either refine the modification or give the user the option to
selectively remove the modification. We discuss such refinements in chapter 7.

6.2.3 Novel text content visualisation

To visualise novel text regions in articles and sequences of articles, we proposed and developed the
article view, the summary view and the thumbnails. The article view, as a dedicated presentation of
novel content in individual article documents, allows the user to analyse the novelty of specific text
regions in detail. The mapping of the sentence-wise GPT-2 based novelty scores to the background
color hue and opacity of each sentence, provides an intuitive visual emphasise on the novelty of
text regions. Utilizing a continuous color scale, we are able to map fine granular differences in
novelty scores to visually different backgrounds. Composite text regions of highly novel sentences
immediately draw the attention due to the more intensive background visualisation. At the same

102

6.2 Discussion

time, novel and less novel textual regions are easy to distinguish as the latter blends into the
background, further emphasising the former. Adding the option to Gaussian blur the transition
between the background visualisation of the sentences, further allows to customize the presentation:
If the novelty of individual passages fluctuates heavily, leading to stark contrasts in the background
coloring and opacity, the user can activate the smoothing to create a more fluent visualisation. If the
differences in novelty between regions are not as pronounced, the user can turn of the smoothing,
emphasising more on the transitions. The visual results of the smoothing can be dependant on the
chosen window size though, requiring either the fine tuning of the window size by the practitioner
or an option to manually set the window size for the user. The smoothing results further depend
heavily on the overall variance in the novelty scores, where little differences in the initial scores
will lead to very similar smoothed scores, subsequently producing homogeneous and hard to
distinguish backgrounds. This issue is partly connected to and aggravated by the sentence-wise
novelty scoring, as each sentence reflects the average novelty of its tokens, smoothing out high
and low value components. As a result, sentences of varying length might be scored similarly,
despite longer sequences with a high average novelty score potentially holding more interesting
information. The lack of the word-wise background visualisation in the article view further removes
the ability to identify individual components and terms with the biggest influence on the overall
novelty of certain passages. The sole mapping of the sentence-wise scores to the background color
hue and opacity provides the opportunity for the visual emphasises of such components, potentially
requiring additional visual encodings as discussed in chapter 7.

Thumbnails were introduced as an abstract summarisation of individual articles, providing an
intermediary level overview of articles among a time-ordered sequence. The visual encoding
of individual sentences as bar glyphs and coloring the bars according to the novelty score of
the sentence, works as a space-efficient and easy to interpret representation of the novel content
distribution in articles. When viewing multiple articles among a sequence, the thumbnails allow
to quickly identify and distinguish articles containing interesting passages, without specifically
inspecting each of the articles. The space-efficiency of thumbnails is coupled with the on demand
presentation of novel keywords of each sentence. As the keywords are only shown on interaction
with a thumbnail, the user can first interactively decide whether the novel content distribution of
an article looks promising and individually gather more detailed information about the passages
independently. Displaying only a selected few keywords provides the user with a short description
of each sentence, abstracting from the content and summarising the important portions. Thumbnails
thus alleviate the possible overload of information when multiple articles are to be inspected, leaving
the decision to present details to the user. Though, the utility provided by the details on demand
heavily depend on the extracted keywords. As we utilis the modified novelty scores to sort and
extract high value keywords, the emphasises lies on novel keywords, yet it does not guarantee to
return representative results, as discussed in the section before. This can conflict with the initial
abstract presentation of the thumbnails, if the provided keywords on interaction do not match
the expectation induced by the color coding of the sentence glyph. The visual encoding of the
sentences is kept simple, where each glyph representing a sentence has the same length. As such,
the visualisation lacks an indication about the length of individual sentences, which the constant
number of keywords do not provide either. The user would thus need to individually inspect an
article to distinguish long and short sequences, even if they share similar novelty scores. As we
interactively present the keywords in thumbnails on hover, the user can only analyse thumbnails one

103

6 Results

by one, requiring the user to preserve a mental map of multiple thumbnails if multiple articles are to
be examined. In chapter 7, we thus discuss potential aggregation mechanisms and additional visual
encodings to incorporate.

The summary view provides the highest level overview with respect to novel content inspection,
summarising articles among a time-ordered sequence. Extracting the : = 3 most novel passages,
i.e. sentences, from each article, the summary view constructs a coherent aggregation of the most
interesting text passages found in a sequence of articles. Color coding the background of each
extracted passage akin to the text view, the user is provided a quick to explore overview of the
novel text regions in the specified time frame. Complementing each summary of an article with
a collapsed, interactive visual indicator of the article content missing in the summary, enables
the user to analyse articles of interest without changing views. The indicators were chosen as
horizontal bars, where each bar of 1 pixel width encodes the existence of five hidden sentences
within the collapsed passage. The indicators are thus space-efficient and easy to interpret, providing
an overview of the amount of text omitted from each article. Coupling the summary view with an
interactive time frame selection mechanism, allows for a fine granular restriction and selection of
arbitrary article sequences. Complementing the interactive functionality with a search and a filter
mechanism, enables the user to search for articles with specific identifier or containing specific
keywords and phrases or filter the given sequence with respect to a specified novelty score threshold
for each article. The provided search mechanism is kept simple, leaving room for the addition of
more complex search patterns, like defining regular expressions. Similarly, the filter mechanism
only allows for filtering entire articles based on their average novelty, while a more sophisticated
search of specific text passages exceeding a predefined novelty threshold is not possible. The
vertical alignment of the extracted text passages in the summary view akin to a list provides a simple
overview, but lacks a visual indicator towards novel text passages currently not in view. Potentially
interesting passages can thus be easily missed, if the specified time frame produces a long sequence
of articles. While the horizontal bar indicators for the hidden passages display roughly the amount
of collapsed text, the stacking of the horizontal bars does not scale well for long article sequences.
This in turn complicates the examination of novel text passages, as they are spread apart by the
stacked indicators occupying large portions of the canvas. Potential improvements to the summary
view thus need to address the interactive functionalities of the view, the presentation of the novel
passages and the visual encoding chosen for the indicators, further discussed in chapter 7

Overall the combination of each of three views provides an efficient workflow, starting with the
summary view as a high level search space to aggregate potentially interesting articles, identify a
subset of articles for further examination with the help of the thumbnails and analyse individual
articles in the text view.

6.2.4 Topic evolution visualisation

The visualisation of prevalent topics in the given corpus of news stories was a second major focus
of the approach presented in this work. Similar to the text view of the developed prototype, we
composed a multi-level approach of different visualisation levels. On the highest level, we provided
an overview of the topic distribution in the topic graph. After specifying a time range, the topic
graph produces a vertical alignment of topic nodes, each node corresponding with a time step
and visualising the topic distribution for the articles associated with the time step. The vertical
alignment akin to a list allows for the scalability of the graph, visualising large sequences of article

104

6.2 Discussion

clusters by displaying a portion of the graph at a time as the user scrolls through it. Presenting
the topic distribution in the node of a time step as a bar chart, provides an intuitive overview of
the prevalent topics and an easy to understand encoding of the topic strength in the height of each
bar. It further allows to sort the topic bars consistently across all time steps, crucially enabling the
traction of specific topics. If topics are prevalent across multiple time steps, the corresponding
bar charts visualising each topic distribution will position the associated topic bar the same. This
allows to easily track topics continuing over multiple time steps, as well as identify newly emerging
topics. Connecting the topic bars of adjacent topic nodes with edges, where the edge strength
encodes the similarity of the topics, further simplifies the classification of similar topics, as well as
similar topic distributions. Providing the user with two modes to determine the similarity, either
by cosine similarity or the set difference of the topic keyword vectors, enables to define varying
degrees of similarity. The interactive topic evolution exploration is rounded up by both the edge
filtering and topic filtering mechanisms, restricting the visualisation to the emphasis of topic clusters
exceeding a minimum similarity score or clusters associated with specific topics of interest. The
edge filter and removal functionality coupled with the node collapse functionality allows the user to
reduce the visual clutter, if length of the graph or the density of the drawn edges grow too large.
While the chosen layout and the filter capabilities secure the scalability with respect to the occupied
canvas space and visual clutter, the topic graph provides no real way to observe the entirety of
the topic evolution if the underlying article subset is too large. The topic evolution visualisation
only shows a subset of the topic nodes at any time. In junction with the layer-wise alignment of
the nodes, it is not possible to visually compare the topic distributions of two distant time steps
without memorization. The bar chart visualisation of the topic distribution at a time step further
faces scalability issues if the number of topics grows too large. This produces very thin topic bars
or forces to employ a scrolling mechanism, resulting in the same issues as described for the topic
nodes. Within this context, connecting each topic bar with edges drawn as straight lines between
the bars, inevitably produces visual clutter. Figure 6.7 shown in the discussed use case hints at
the issue of densely drawn edges. The provided filter mechanisms allow to reduce the clutter in a
coarse grained fashion, but do not allow to restrict the visualisation to a fine grained selection of
specific connections. Chapter 7 thus discusses potential improvements on the graph layout, the
topic distribution visualisation and the filter mechanisms.

The cluster view functions as the natural progression from the topic graph to a lower level abstraction,
providing an intermediary level overview of specific topic distributions of interest. The user is able
to interactively select arbitrary time steps of interest and construct a customized list of cluster views,
each view displaying information about the topics and articles of the associated time frame. Each
cluster view provides the necessary information to understand the content of each topic prevalent at
a time step and the strength of the topics. As the user can construct arbitrary groupings of time steps,
the relevance of topics occurring across distant time steps can be easily compared in the cluster
view. Apart from the details about a selected topic distribution, the cluster view is comparatively
”empty” and leaves room to encode and visualise more information. We have seen glimpses of this
in the use case discussing figure 6.8. While the presentation of the topic keywords as lists enables to
compare the topic contents, the presentation does not effectively encode similarities, as the user has
to read each entry and manually search for shared keywords. The bar chart visualising the article
distribution faces the same issues as the bar chart in the topic nodes, providing an intuitive, but not
very precise overview of the topic strengths. We could extend the cluster view with further details
and interactive mechanisms to explore the topics, thus being further discussed in chapter 7.

105

6 Results

Lastly, the keyword view completes the multi-level visualisation with a low level view of the articles
associated with a specific topic cluster. The articles are presented as vertically aligned lists of their
keyword vectors, each list ordered along the horizontal axis with respect to the publication date
of the article. This enables to easily compare articles along the flow of time and determine the
progression of relevant keywords. As we map the tf-idf score and frequency of each word to its font
size and font strength, the user can track the relevancy of specific topics shared among multiple
articles. By mapping the document frequency of a keyword up until a specific article to its opacity
in the corresponding keyword list, the user is able identify emerging and fading keywords. The
keyword view is completed with a sorting mechanisms to group articles according to their topic
association, a filter mechanism to filter keywords occurring at most once or at least twice and a
search mechanisms to only display occurrence of a specific keyword. These interactive tools allow
the user to search for, identify and track the evolution of specific keywords and keyword subsets and
examine their relevance with respect to the article’s topic. The interactive, in place presentation of a
view displaying the articles a selected keyword appears in, rounds up the user-driven drill down of a
topic distribution of interest. Similar to the cluster view, the keyword view provides little additional
information apart from the keyword content and their relevancy progression. The keyword lists
additionally suffer from scalability issues, if the corresponding article clusters consist of large article
batches. This in turn aggravates the comparison of articles at distant time steps, similar to the issue
of topic nodes, which was one of the reasons for the discussed use cases to display only a subset of
articles in figure 6.9. Chapter 7 explores some of the potential enhancements to the keyword view.

Overall, the developed prototype provides a multitude of interactive visualisations to explore
novel text content and the topic evolution of news story corpora. The resulting framework suffers
from scalability issues as very large sequences of articles are to be examined and leave room for
improvement with respect to the novelty assessment and identification of representative topics.

106

7 Conclusion and Outlook

This final chapter concludes the thesis by recapping the approach presented in this work, closing
the chapter with an outlook on the general future of the developed prototype, including potential
additions and improvements.

Summary

The goal of the proposed approach was to build an interactive visualisation framework that combines
state-of-the-art novelty detection techniques and topic modelling techniques, to visualise novel text
content and the evolution of topics in news story corpora. For that, we first reviewed the fundamental
concepts building the basis for the developed prototype. We introduced basic and advanced Machine
Learning and Natural Language Processing (NLP) techniques to clean and process the articles of
the underlying corpus, producing tf-idf based vector representation of each article. We continued
with a look at Language Modelling and Topic Modelling, before we summarised the essential and
relevant techniques of Deep Learning. Starting with Deep Neural Networks, we discussed several
neural network architectures, leading to the discussion of neural language models. We concluded
the foundations with the introduction of the GPT-2 transformer network based language model,
which we later utilised in our approach. As the second step towards the realization of the approach,
we discussed a range of related works, shining light on different approaches to identify and visualise
novel text and the evolution of topics. Drawing valuable insights from the reviewed works, we then
concluded a set of requirements the prototypical realization of our approach has to fulfill. The
defined requirements guided the subsequent discussion of and decision about different concepts and
designs of the components to incorporate into the prototype. The first requirement defined the need
for a component to asses the novelty of a text region, given a preceding context. We utilised the
previously mentioned GPT-2 language model to predict the likelihood of an input sequence, given a
context, deriving a novelty score function to identify novel text passages. Building on the novelty
scores, we defined the requirement to visualise the novel text passages in individual articles, as
well as sequences of articles. For that, we introduced the concepts of the article view, summary
view and thumbnails as different views visualising the novel content in specific articles, in article
summaries and in aggregations of sequences of articles. As the third requirement, we identified
the task of finding representative and novel topics among a given sequence of articles. To solve
the task, we first introduced a modified tf-idf weighting scheme, utilising the novelty scores. With
the emphasise on novel and representative keywords, we mapped each article to a vector of its
keywords, subsequently applying Non-negative Matrix Factorization to extract prevalent topics
from the articles. Tying in on the topic modelling, we fulfilled the fourth requirement of visualising
the topic evolution by designing a multi-level visualisation component. The component consists of
a topic graph for the general topic overview, the cluster view to inspect specific topic clusters of
interest and the keyword view to examine the keyword evolution among the articles of a cluster.

107

7 Conclusion and Outlook

The fifth requirement defined the need to provide multiple perspectives on the visualisations of
the approach, which we achieved by integrating Multiple Coordinated Views, combining each of
the views described. As the last requirement, we concluded the need to interactively manipulate
the data presentation, for which we included interactive selection, search and filter mechanisms
in each of the views. We then presented the resulting interactive visualisation framework, before
detailing the technicalities of the implementation. Lastly, we presented a real-word use case to
showcase the application of the developed prototype, followed by a discussion of the advantages
and shortcomings of the prototype.

Outlook

During the discussion of the prototype in chapter 6, we have shone light on issues and potential
points of improvement. The novelty scoring with GPT-2 is currently based on an approximation of
the conditional likelihood, due to the context size restriction of 1024 token for GPT-2. The scores
thus do not reflect the actual likelihood of the sentence provided a sufficiently long context, but
rather based on a ”short sighted” window. We could improve the novelty scores by utilising a
bigger model like XLNet 1, which allows for longer input sequences. That said, arbitrarily long
input sequences are not quite feasible yet, at least if the computational resources are limited. The
fast technical advancement of the field of Deep learning might provide a different solution in the
future. We calculate sentence-wise novelty scores in the developed prototype, due to inefficient
computation of token-wise likelihoods, which could influence the response time of the framework.
We could define minimum system requirements for the execution of the prototype, enabling the
computation of token-wise likelihoods without a drop in performance. Alternatively, we could look
to outsource the heavy compute components, like the novelty scoring, by hosting the prototype
in the cloud for example. Token-wise novelty scores would further enable to employ a more fine
grained modification of the tf-idf scores of article vectors, discounting tokens based on the token
scores. The proposed modification requires a slightly different approach to dissolve the conflicting
weighting of representative keywords and novel keywords. One possible solution could be to base
the modification on a different weighting scheme or even a different word vector representation, for
example by utilising modified word embeddings. In the article view, we can further improve the
novelty score dependant background visualisation. For that, we can construct a more sophisticated
background visualisation by not only mapping the novelty score to the color hue and opacity, but also
the font size for example. We can further incorporate additional smoothing techniques, emphasising
on outliers for example. The summary view provides several points for improvement, starting with
the encoding of the volume of the hidden text passages. We can employ a more space-efficient,
but less direct encoding, for example utilising a constant sized glyph or object, whose background
color is determined by the volume of the hidden text passage. Alternatively, we could simplify the
display by showing the actual number of words or sentences, without any visual indicator. In terms
of interactive functionalities, the summary view could be extended by a mechanism to search based
on regular expressions, as well as search for topics, allowing for a more fine grained search. The
latter point would require to couple the text view and the topic view of the prototype, such that
intermediary results can be shared without recomputation. Allowing to fully collapse or remove
passages of specific articles would further provide a solution if the summary view presents many

1https://huggingface.co/transformers/model3>2/G;=4C.ℎC<;

108

articles of little interest for the user. For the thumbnails, we could employ a selection mechanism to
specify multiple thumbnails to enlarge, solving the issue of only being able to enlarge one thumbnail
at a time. To incorporate the length of sentences in the glyph based sentence representation, we
could map the length of the sentence to the length of the bar or display the length as textual label.
The topic graph visualisation could be refined by selecting a different layout, relocating the graph
into a separate view and utilising the entire canvas space to position topic nodes according to similar
topic distributions for example. The scalability issue of the topic distribution bar charts could be
solved by choosing a different, more space-efficient visualisation like Treemaps 2 for example. An
important interactive enhancement of the topic graph could be a search mechanism to search for
specific topics, extending the search restriction to the cluster view and the keyword view. The cluster
view can be extended to display more information, for example show a statistical summary of the
novel content found in the articles of the selected topic cluster. The keyword view could add an
additional, alternative display of the article keywords, for example a StreamGraph 3 themed visual
flow of the keywords over time. Such a differently aligned visualisation can alleviate the issues of
scalability, while providing a different perspective on the keyword progression. In terms of utility, a
future task is to move away from the requirement to process the data in advance and allow to flexibly
select arbitrary time frames, providing the fast computation of the article related data. This can then
be extended to a streaming approach, processing articles as they are fetched from the web. Lastly,
we could extend the interactive visualisation framework with additional views. One such potential
view could be an evaluation view, where multiple articles can viewed, examined and compared
side by side. Additionally, a statistics view could visualise statistical properties of the corpus, for
example the average novelty score across arbitrary time frames or a numerical assessment of the
topics prevalent across such time frames.

2https://en.wikipedia.org/wiki/Treemapping
3https://en.wikipedia.org/wiki/Streamgraph

109

Bibliography

[BGN08] S. Bateman, C. Gutwin, M. Nacenta. “Seeing Things in the Clouds: The Effect of
Visual Features on Tag Cloud Selections”. In: Association for Computing Machinery,
2008, pp. 193–202. doi: 10.1145/1379092.1379130. url: https://doi.org/10.1145/
1379092.1379130 (cit. on p. 40).

[BKS+19] M. Biswas, V. Kuppili, L. Saba, D. R. Edla, H. S. Suri, E. Cuadrado-Godia, J. R. Laird,
R. T. Marinhoe, J. M. Sanches, A. Nicolaides, J. S. Suri. “State-of-the-art review on
deep learning in medical imaging”. In: Frontiers in bioscience (Landmark edition) 24
(Jan. 2019). doi: 10.2741/4725. url: https://doi.org/10.2741/4725 (cit. on p. 26).

[BL06] D. M. Blei, J. D. Lafferty. “Dynamic Topic Models”. In: ICML ’06. Association for
Computing Machinery, 2006, pp. 113–120. doi: 10.1145/1143844.1143859. url:
https://doi.org/10.1145/1143844.1143859 (cit. on p. 42).

[BLC19] I. Beltagy, K. Lo, A. Cohan. “SciBERT: A Pretrained Language Model for Scientific
Text”. In: Association for Computational Linguistics, Nov. 2019, pp. 3615–3620. doi:
10.18653/v1/D19-1371. url: https://www.aclweb.org/anthology/D19-1371 (cit. on
p. 33).

[Ble12] D. M. Blei. “Probabilistic Topic Models”. In: Commun. ACM 55 (Apr. 2012). doi:
10.1145/2133806.2133826. url: https://doi.org/10.1145/2133806.2133826 (cit. on
p. 24).

[BM97] E. Brill, R. J. Mooney. “An Overview of Empirical Natural Language Processing”.
In: AI Magazine 18.4 (Dec. 1997). doi: 10.1609/aimag.v18i4.1318. url: https:
//ojs.aaai.org/index.php/aimagazine/article/view/1318 (cit. on p. 15).

[BNJ03] D. M. Blei, A. Y. Ng, M. I. Jordan. “Latent Dirichlet Allocation”. In: J. Mach. Learn.
Res. 3 (Mar. 2003) (cit. on pp. 24, 42).

[CG99] S. F. Chen, J. Goodman. “An empirical study of smoothing techniques for language
modeling”. In: Computer Speech Language 13 (1999). doi: https://doi.org/10.
1006/csla.1999.0128. url: https://www.sciencedirect.com/science/article/pii/
S0885230899901286 (cit. on p. 22).

[CLRP13] J. Choo, C. Lee, C. K. Reddy, H. Park. “UTOPIAN: User-Driven Topic Modeling
Based on Interactive Nonnegative Matrix Factorization”. In: IEEE Transactions on
Visualization and Computer Graphics 19 (2013). doi: 10.1109/TVCG.2013.212 (cit. on
p. 44).

[DCLT19] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: 2019. doi: 10.18653/
v1/N19-1423 (cit. on pp. 33, 34).

111

https://doi.org/10.1145/1379092.1379130
https://doi.org/10.1145/1379092.1379130
https://doi.org/10.1145/1379092.1379130
https://doi.org/10.2741/4725
https://doi.org/10.2741/4725
https://doi.org/10.1145/1143844.1143859
https://doi.org/10.1145/1143844.1143859
https://doi.org/10.18653/v1/D19-1371
https://www.aclweb.org/anthology/D19-1371
https://doi.org/10.1145/2133806.2133826
https://doi.org/10.1145/2133806.2133826
https://doi.org/10.1609/aimag.v18i4.1318
https://ojs.aaai.org/index.php/aimagazine/article/view/1318
https://ojs.aaai.org/index.php/aimagazine/article/view/1318
https://doi.org/https://doi.org/10.1006/csla.1999.0128
https://doi.org/https://doi.org/10.1006/csla.1999.0128
https://www.sciencedirect.com/science/article/pii/S0885230899901286
https://www.sciencedirect.com/science/article/pii/S0885230899901286
https://doi.org/10.1109/TVCG.2013.212
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Bibliography

[EBA19] S. Edunov, A. Baevski, M. Auli. “Pre-trained language model representations for
language generation”. In: Association for Computational Linguistics, June 2019,
pp. 4052–4059. doi: 10.18653/v1/N19- 1409. url: https://www.aclweb.org/

anthology/N19-1409 (cit. on p. 33).
[EHR+14] A. Endert, M. Hossain, N. Ramakrishnan, C. North, P. Fiaux, C. Andrews. “The

human is the loop: new directions for visual analytics”. In: Journal of Intelligent
Information Systems 43 (Dec. 2014). doi: 10.1007/s10844-014-0304-9 (cit. on p. 51).

[FFB18] C. Felix, S. Franconeri, E. Bertini. “Taking Word Clouds Apart: An Empirical
Investigation of the Design Space for Keyword Summaries”. In: IEEE Transactions
on Visualization and Computer Graphics 24 (2018). doi: 10.1109/TVCG.2017.2746018
(cit. on p. 41).

[FHY19] H. Fujiyoshi, T. Hirakawa, T. Yamashita. “Deep learning-based image recognition
for autonomous driving”. In: IATSS Research 43 (2019). doi: https://doi.org/
10.1016/j.iatssr.2019.11.008. url: https://www.sciencedirect.com/science/
article/pii/S0386111219301566 (cit. on p. 26).

[Fra06] L. A. Francis. “Taming Text: An Introduction to Text Mining”. In: 2006 (cit. on p. 11).
[GBC16a] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016. url:

http://www.deeplearningbook.org (cit. on pp. 16, 27, 29).
[GBC16b] I. Goodfellow, Y. Bengio, A. Courville. “Deep Learning”. In: MIT Press, 2016. url:

http://www.deeplearningbook.org (cit. on p. 29).
[GFC04] M. Ghoniem, J.-D. Fekete, P. Castagliola. “A Comparison of the Readability of

Graphs Using Node-Link and Matrix-Based Representations”. In: 2004, pp. 17–24.
doi: 10.1109/INFVIS.2004.1 (cit. on p. 37).

[GH11] E. Gedraite, M. Hadad. “Investigation on the effect of a Gaussian Blur in image
filtering and segmentation”. In: Jan. 2011, pp. 393–396. isbn: 978-1-61284-949-2
(cit. on p. 36).

[GJG+15] S. Gad, W. Javed, S. Ghani, N. Elmqvist, T. Ewing, K. N. Hampton, N. Ramakrishnan.
“ThemeDelta: Dynamic Segmentations over Temporal Topic Models”. In: IEEE
Transactions on Visualization and Computer Graphics 21 (2015). doi: 10.1109/
TVCG.2014.2388208 (cit. on p. 45).

[GS04] T. L. Griffiths, M. Steyvers. “Finding scientific topics”. In: Proceedings of the
National Academy of Sciences 101 (2004). doi: 10.1073/pnas.0307752101. url:
https://www.pnas.org/content/101/suppl_1/5228 (cit. on p. 24).

[HBWP13] M. D. Hoffman, D. M. Blei, C. Wang, J. Paisley. “Stochastic Variational Inference”.
In: Journal of Machine Learning Research 14.4 (2013). url: http://jmlr.org/
papers/v14/hoffman13a.html (cit. on p. 24).

[Hei17] F. Heimerl. “Exploratory visual text analytics in the scientific literature domain”. In:
2017. doi: 10.18419/OPUS-9218 (cit. on pp. 15, 19).

[HHN00] S. Havre, B. Hetzler, L. Nowell. “ThemeRiver: visualizing theme changes over time”.
In: 2000, pp. 115–123. doi: 10.1109/INFVIS.2000.885098 (cit. on p. 45).

[HLLE14] F. Heimerl, S. Lohmann, S. Lange, T. Ertl. “Word Cloud Explorer: Text Analytics
Based on Word Clouds”. In: 2014, pp. 1833–1842. doi: 10.1109/HICSS.2014.231
(cit. on pp. 40, 41).

112

https://doi.org/10.18653/v1/N19-1409
https://www.aclweb.org/anthology/N19-1409
https://www.aclweb.org/anthology/N19-1409
https://doi.org/10.1007/s10844-014-0304-9
https://doi.org/10.1109/TVCG.2017.2746018
https://doi.org/https://doi.org/10.1016/j.iatssr.2019.11.008
https://doi.org/https://doi.org/10.1016/j.iatssr.2019.11.008
https://www.sciencedirect.com/science/article/pii/S0386111219301566
https://www.sciencedirect.com/science/article/pii/S0386111219301566
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/INFVIS.2004.1
https://doi.org/10.1109/TVCG.2014.2388208
https://doi.org/10.1109/TVCG.2014.2388208
https://doi.org/10.1073/pnas.0307752101
https://www.pnas.org/content/101/suppl_1/5228
http://jmlr.org/papers/v14/hoffman13a.html
http://jmlr.org/papers/v14/hoffman13a.html
https://doi.org/10.18419/OPUS-9218
https://doi.org/10.1109/INFVIS.2000.885098
https://doi.org/10.1109/HICSS.2014.231

Bibliography

[HPP+20] M. A. Hearst, E. Pedersen, L. Patil, E. Lee, P. Laskowski, S. Franconeri. “An
Evaluation of Semantically Grouped Word Cloud Designs”. In: IEEE Transactions on
Visualization and Computer Graphics 26 (2020). doi: 10.1109/TVCG.2019.2904683
(cit. on p. 41).

[HS97] S. Hochreiter, J. Schmidhuber. “Long Short-term Memory”. In: Neural computation
9 (Dec. 1997). doi: 10.1162/neco.1997.9.8.1735 (cit. on p. 30).

[HSG20] B. Hoover, H. Strobelt, S. Gehrmann. “exBERT: A Visual Analysis Tool to Explore
Learned Representations in Transformer Models”. In: Association for Computational
Linguistics, July 2020, pp. 187–196. doi: 10.18653/v1/2020.acl-demos.22. url:
https://www.aclweb.org/anthology/2020.acl-demos.22 (cit. on p. 41).

[HSS15] K. Hara, D. Saito, H. Shouno. “Analysis of function of rectified linear unit used in
deep learning”. In: 2015, pp. 1–8. doi: 10.1109/IJCNN.2015.7280578 (cit. on pp. 27,
28).

[HTF09] T. Hastie, R. Tibshirani, J. Friedman. The elements of statistical learning: data
mining, inference and prediction. 2nd ed. Springer, 2009. url: http : / / www -

stat.stanford.edu/~tibs/ElemStatLearn/ (cit. on p. 18).
[Hua08] A. Huang. “Similarity measures for text document clustering”. In: Proceedings of

the 6th New Zealand Computer Science Research Student Conference (Jan. 2008)
(cit. on pp. 20, 21).

[Hug20] Huggingface. How to generate text using different decoding methods. 2020. url:
https://huggingface.co/blog/how-to-generate (visited on 07/01/2021) (cit. on
p. 35).

[ID10] N. Indurkhya, F. J. Damerau. Handbook of Natural Language Processing. 2nd.
Chapman amp; Hall/CRC, 2010. isbn: 1420085921 (cit. on p. 18).

[JM09] D. Jurafsky, J. H. Martin. Speech and language processing : an introduction to natural
language processing, computational linguistics, and speech recognition. Pearson
Prentice Hall, 2009. isbn: 9780131873216 0131873210. url: http://www.amazon.
com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_

img_y (cit. on pp. 18, 19, 22, 27–29).
[KB19] P. Kherwa, P. Bansal. “Topic Modeling: A Comprehensive Review”. In: EAI Endorsed

Transactions on Scalable Information Systems 7.24 (July 2019). doi: 10.4108/eai.13-
7-2018.159623 (cit. on p. 11).

[KKE18] J. Knittel, S. Koch, T. Ertl. “Highlighting Text Regions of Interest with Character-
Based LSTM Recurrent Networks”. In: 2018 (cit. on pp. 12, 40, 42).

[KMDC18] F. Karim, S. Majumdar, H. Darabi, S. Chen. “LSTM Fully Convolutional Networks
for Time Series Classification”. In: IEEE Access 6 (2018). doi: 10.1109/ACCESS.
2017.2779939 (cit. on p. 31).

[KNMK13] M. Krstajić, M. Najm-Araghi, F. Mansmann, D. A. Keim. “Story Tracker: Incremental
visual text analytics of news story development”. In: Information Visualization
12 (2013). doi: 10.1177/1473871613493996. url: https://doi.org/10.1177/

1473871613493996 (cit. on pp. 12, 44, 45).

113

https://doi.org/10.1109/TVCG.2019.2904683
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2020.acl-demos.22
https://www.aclweb.org/anthology/2020.acl-demos.22
https://doi.org/10.1109/IJCNN.2015.7280578
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://huggingface.co/blog/how-to-generate
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.4108/eai.13-7-2018.159623
https://doi.org/10.4108/eai.13-7-2018.159623
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1177/1473871613493996
https://doi.org/10.1177/1473871613493996
https://doi.org/10.1177/1473871613493996

Bibliography

[LRKC10] B. Lee, N. H. Riche, A. K. Karlson, S. Carpendale. “SparkClouds: Visualizing Trends
in Tag Clouds”. In: IEEE Transactions on Visualization and Computer Graphics 16
(2010). doi: 10.1109/TVCG.2010.194 (cit. on p. 40).

[LTD+16] L. Liu, L. Tang, W. Dong, S. Yao, W. Zhou. “An overview of topic modeling
and its current applications in bioinformatics”. In: SpringerPlus 5 (2016). url:
https://doi.org/10.1186/s40064-016-3252-8 (cit. on p. 24).

[LW15] X. Li, X. Wu. “Constructing long short-term memory based deep recurrent neural
networks for large vocabulary speech recognition”. In: 2015, pp. 4520–4524. doi:
10.1109/ICASSP.2015.7178826 (cit. on p. 31).

[MCCD13] T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient Estimation of Word Representa-
tions in Vector Space. 2013 (cit. on p. 33).

[Mit97] T. M. Mitchell. Machine Learning. 1st ed. McGraw-Hill, Inc., 1997. isbn: 0070428077
(cit. on p. 16).

[MMO+20] L. Martin, B. Muller, P. J. Ortiz Suárez, Y. Dupont, L. Romary, É. de la Clergerie,
D. Seddah, B. Sagot. “CamemBERT: a Tasty French Language Model”. In: Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics
(2020). doi: 10.18653/v1/2020.acl-main.645. url: http://dx.doi.org/10.18653/
v1/2020.acl-main.645 (cit. on pp. 33, 34).

[MRS08] C. D. Manning, P. Raghavan, H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, 2008. doi: 10.1017/CBO9780511809071 (cit. on pp. 23,
27).

[MSH+13] S. Malik, A. Smith, T. Hawes, P. Papadatos, J. Li, C. Dunne, B. Shneiderman.
“TopicFlow: Visualizing Topic Alignment of Twitter Data over Time”. In: ASONAM
’13. Association for Computing Machinery, 2013, pp. 720–726. doi: 10.1145/

2492517.2492639. url: https://doi.org/10.1145/2492517.2492639 (cit. on pp. 44,
45).

[MTG09] S. Meyn, R. L. Tweedie, P. W. Glynn. Markov Chains and Stochastic Stability. 2nd ed.
Cambridge University Press, 2009. doi: 10.1017/CBO9780511626630 (cit. on p. 22).

[Mur21] K. P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2021.
url: probml.ai (cit. on pp. 17, 27, 29).

[PCCT14] M. A. Pimentel, D. A. Clifton, L. Clifton, L. Tarassenko. “A review of novelty
detection”. In: Signal Processing 99 (2014), pp. 215–249. doi: https://doi.org/
10.1016/j.sigpro.2013.12.026. url: https://www.sciencedirect.com/science/
article/pii/S016516841300515X (cit. on p. 11).

[PCZ+19] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, Q. V. Le. “SpecAug-
ment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
In: Interspeech 2019 (Sept. 2019). doi: 10.21437/interspeech.2019-2680. url:
http://dx.doi.org/10.21437/Interspeech.2019-2680 (cit. on p. 26).

[PHJG19] R. Pokharel, P. D. Haghighi, P. P. Jayaraman, D. Georgakopoulos. “Analysing Emerg-
ing Topics across Multiple Social Media Platforms”. In: ACSW 2019. Association
for Computing Machinery, 2019. doi: 10.1145/3290688.3290720. url: https:

//doi.org/10.1145/3290688.3290720 (cit. on p. 43).

114

https://doi.org/10.1109/TVCG.2010.194
https://doi.org/10.1186/s40064-016-3252-8
https://doi.org/10.1109/ICASSP.2015.7178826
https://doi.org/10.18653/v1/2020.acl-main.645
http://dx.doi.org/10.18653/v1/2020.acl-main.645
http://dx.doi.org/10.18653/v1/2020.acl-main.645
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1145/2492517.2492639
https://doi.org/10.1145/2492517.2492639
https://doi.org/10.1145/2492517.2492639
https://doi.org/10.1017/CBO9780511626630
probml.ai
https://doi.org/https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/https://doi.org/10.1016/j.sigpro.2013.12.026
https://www.sciencedirect.com/science/article/pii/S016516841300515X
https://www.sciencedirect.com/science/article/pii/S016516841300515X
https://doi.org/10.21437/interspeech.2019-2680
http://dx.doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.1145/3290688.3290720
https://doi.org/10.1145/3290688.3290720
https://doi.org/10.1145/3290688.3290720

Bibliography

[PNI+18] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer.
“Deep contextualized word representations”. In: 2018. arXiv: 1802.05365 [cs.CL]

(cit. on p. 33).
[PSM14] J. Pennington, R. Socher, C. Manning. “GloVe: Global Vectors for Word Representa-

tion”. In: Association for Computational Linguistics, Oct. 2014. doi: 10.3115/v1/D14-
1162. url: https://www.aclweb.org/anthology/D14-1162 (cit. on p. 21).

[PT94] P. Paatero, U. Tapper. “Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values”. In: Environmetrics 5 (1994).
doi: https://doi.org/10.1002/env.3170050203. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/env.3170050203 (cit. on pp. 25, 43).

[Rob07] J. C. Roberts. “State of the Art: Coordinated Multiple Views in Exploratory Visual-
ization”. In: 2007, pp. 61–71. doi: 10.1109/CMV.2007.20 (cit. on p. 36).

[RWC+18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever. “Language Models
are Unsupervised Multitask Learners”. In: (2018). url: https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf (cit. on p. 40).

[SOR+09] H. Strobelt, D. Oelke, C. Rohrdantz, A. Stoffel, D. A. Keim, O. Deussen. “Document
Cards: A Top Trumps Visualization for Documents”. In: IEEE Transactions on
Visualization and Computer Graphics 15 (2009). doi: 10.1109/TVCG.2009.139 (cit. on
p. 41).

[SVL14] I. Sutskever, O. Vinyals, Q. V. Le. “Sequence to Sequence Learning with Neural
Networks”. In: NIPS’14. MIT Press, 2014, pp. 3104–3112 (cit. on p. 31).

[TZ11] F. S. Tsai, Y. Zhang. “D2S: Document-to-sentence framework for novelty detection”.
In: Knowledge and Information Systems 29 (2011). doi: 10.1007/s10115-010-0372-2.
url: https://doi.org/10.1007/s10115-010-0372-2 (cit. on p. 39).

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
I. Polosukhin. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017). url:
http://arxiv.org/abs/1706.03762 (cit. on pp. 31, 41).

[WDS+20] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite,
J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, A. Rush. “Transformers:
State-of-the-Art Natural Language Processing”. In: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. doi: 10.18653/v1/2020.emnlp-demos.6. url:
https://www.aclweb.org/anthology/2020.emnlp-demos.6 (cit. on p. 89).

[WLS+10] F. Wei, S. Liu, Y. Song, S. Pan, M. X. Zhou, W. Qian, L. Shi, L. Tan, Q. Zhang.
“TIARA: A Visual Exploratory Text Analytic System”. In: KDD ’10. Association
for Computing Machinery, 2010, pp. 153–162. doi: 10.1145/1835804.1835827. url:
https://doi.org/10.1145/1835804.1835827 (cit. on pp. 43, 45).

[WT04] P. C. Wong, J. Thomas. “Visual Analytics”. In: IEEE Comput. Graph. Appl. 24.5 (Sept.
2004). doi: 10.1109/MCG.2004.39. url: https://doi.org/10.1109/MCG.2004.39
(cit. on p. 11).

115

https://arxiv.org/abs/1802.05365
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://doi.org/https://doi.org/10.1002/env.3170050203
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.3170050203
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.3170050203
https://doi.org/10.1109/CMV.2007.20
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1109/TVCG.2009.139
https://doi.org/10.1007/s10115-010-0372-2
https://doi.org/10.1007/s10115-010-0372-2
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1145/1835804.1835827
https://doi.org/10.1145/1835804.1835827
https://doi.org/10.1109/MCG.2004.39
https://doi.org/10.1109/MCG.2004.39

[XLG03] W. Xu, X. Liu, Y. Gong. “Document Clustering Based on Non-Negative Matrix
Factorization”. In: SIGIR ’03. Association for Computing Machinery, 2003, pp. 267–
273. doi: 10.1145/860435.860485. url: https://doi.org/10.1145/860435.860485
(cit. on p. 43).

[YC00] J. Y. Yam, T. W. Chow. “A weight initialization method for improving training speed
in feedforward neural network”. In: 30 (2000). doi: https://doi.org/10.1016/S0925-
2312(99)00127-7 (cit. on p. 29).

[ZCM02] Y. Zhang, J. Callan, T. Minka. “Novelty and Redundancy Detection in Adaptive
Filtering”. In: SIGIR ’02. Association for Computing Machinery, 2002, pp. 81–88.
doi: 10.1145/564376.564393. url: https://doi.org/10.1145/564376.564393 (cit. on
p. 39).

All links were last followed on July 08, 2021.

https://doi.org/10.1145/860435.860485
https://doi.org/10.1145/860435.860485
https://doi.org/https://doi.org/10.1016/S0925-2312(99)00127-7
https://doi.org/https://doi.org/10.1016/S0925-2312(99)00127-7
https://doi.org/10.1145/564376.564393
https://doi.org/10.1145/564376.564393

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Contribution
	1.2 Structure

	2 Foundations
	2.1 Natural Language Processing
	2.1.1 Language Modelling
	2.1.2 Topic Modelling

	2.2 Deep Learning and Deep Neural Networks
	2.2.1 Feed Forward Neural Networks
	2.2.2 Recurrent Neural Networks
	2.2.3 Transformer Neural Networks
	2.2.4 Language Modelling with Neural Networks

	2.3 Visualization Techniques
	2.3.1 Multiple Coordinated Views
	2.3.2 Gaussian Smoothing
	2.3.3 Node-Link Diagram

	3 Related Work
	3.1 Detecting novel information in text
	3.2 Visual representation of textual content and insights
	3.3 Topic Modelling: Identifying novel and recurring topics
	3.4 Visualising the evolution of topics

	4 Conceptual Design & Realization of the Prototype
	4.1 Requirements
	4.2 General Design
	4.3 Prototype Architecture & Realization
	4.3.1 Data
	4.3.2 Novelty Score calculation with GPT-2
	4.3.3 Utilising the Novelty Scores
	4.3.4 Generate alternative sequences with GPT-2
	4.3.5 Topic Modelling
	4.3.6 The interactive visualisation framework

	5 Technical & Implementation Details
	5.1 Data Preparation & Processing
	5.1.1 Text Preprocessing
	5.1.2 Storage

	5.2 Technologies
	5.2.1 GPT2
	5.2.2 Topic Modelling
	5.2.3 Visualisation

	5.3 Web Application
	5.3.1 Backend
	5.3.2 Frontend

	6 Results
	6.1 Use Cases
	6.1.1 Task description
	6.1.2 Gather a general overview of the data
	6.1.3 Collect the key information
	6.1.4 identify specific articles of interest
	6.1.5 Examine articles of interest
	6.1.6 Identify prevalent topics
	6.1.7 Track the evolution of topics and topic keywords

	6.2 Discussion
	6.2.1 Novel text content identification
	6.2.2 Modified tf-idf scores
	6.2.3 Novel text content visualisation
	6.2.4 Topic evolution visualisation

	7 Conclusion and Outlook
	Bibliography

