
Institute of Information Security

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

MPC Protocols For Comparisons

Timm Marquardt

Course of Study: Informatik

Examiner: Prof. Dr. Ralf Küsters

Supervisor: Marc Rivinius, M.Sc.

Commenced: November 10, 2021

Completed: May 10, 2022

Abstract

Multi-party computation allows to compute functions on private inputs without revealing any
information about input or output. Secure comparisons are an important building block for many
functions and find application in many MPC deployments like secret bidding at auctions, privacy-
preserving machine learning, secure linear programming or secure data mining. In recent years,
many different MPC protocols for comparisons have been proposed for various different MPC
settings. We collect the most promising proposed n-party protocols, compatible with SPDZ or
SPDZ2k and evaluate these regarding different MPC settings and cost parameters. The MPC settings
include the protocols security model, adversary model, majority model and arithmetic domain,
in which computation takes place. The costs are evaluated by determining necessary rounds,
communication, computation and precomputation. We provide an overview of the MPC settings and
costs for each protocol. Additionally, we contribute implementations in MP-SPDZ and benchmark
tests in multiple different MPC settings for most of the chosen protocols. Our results show the
advantages and disadvantages of each protocol and enable quick decisions for which protocol to
choose for a specific application.

3

Contents

1 Introduction 11

2 Related Work 13

3 Preliminaries 15
3.1 Secret Sharing for MPC . 15
3.2 MPC Settings . 16
3.3 Cost Evaluation of MPC Protocols . 17

4 Protocol Collection 19
4.1 Sub-Protocols . 19
4.2 Protocol by Reistad . 20
4.3 Protocol by Catrina and de Hoogh . 21
4.4 Protocol by Lipmaa and Toft . 22
4.5 Protocol by Goss and Jiang . 24
4.6 Protocol by Damgard et al. 24
4.7 Protocol by Duan et al. 25
4.8 Protocol by Makri et al. 26
4.9 Remarks . 28

5 Benchmarks 31
5.1 Benchmarks of the Full Comparison Protocols 31
5.2 Benchmarks of the Online Phase . 32
5.3 Influence of the Number of Parties . 34

6 Results 35

7 Conclusion and Outlook 37

Bibliography 39

A Summary in German 43

5

List of Figures

4.1 Implementation in MP-SPDZ of the Comparison Protocol by Reistad 21
4.2 Implementation in MP-SPDZ of the Comparison Protocol by Lipmaa and Toft . . 23
4.3 Implementation in MP-SPDZ of the Comparison Protocol by Damgard et al. . . . 26
4.4 Implementation in MP-SPDZ of the Comparison Protocol by Duan et al. 27
4.5 Implementation in MP-SPDZ of the Comparison Protocol by Makri et al. 28

5.1 Total Time and Communication for Increasing Number of Parties 34

7

List of Tables

4.1 Overview of the Comparison Protocol Settings 29
4.2 Overview of the Comparison Protocol Costs . 30

5.1 Benchmarks of the Full Comparison Protocols in Different MPC Settings 32
5.2 Benchmarks of the Online Phase of Comparison Protocols in Different MPC Settings 33

9

1 Introduction

In 1982, Yao [31] formulated the problem of comparing two private values in a privacy-preserving
manner as the millionaire’s problem. In the millionaires’ problem, two millionaires want to find
out who is richer without revealing their actual wealth. Since the problems’ introduction, many
different solutions have been proposed for the 2-party, 3-party and n-party setting, with = ∈ N.

Multi-party computation (MPC), sometimes called secure multi-party computation (SMC), can be
used to solve the millionaires’ problem in the n-party setting. Similar to Damgard et al. [7], we
describe MPC as a technique to compute the secret output H8 of a function 5 with private inputs
G8 from different parties %8 , ..., %= for 8 ∈ {1, ..., =} and H8 , ..., H= = 5 (G8 , ..., G=). The challenge
of MPC lies in computing the function 5 efficiently, regarding communication and computation,
without revealing any information about input or output. While research on MPC has been focused
on solutions for efficient arithmetic operations like addition and multiplication, other important
primitive operations, like comparisons, which can be used to solve the millionaire’s problem, are
still very expensive compared their insecure counterpart.

The range of deployment of privacy-preserving applications is increasing at a high pace and already
reaches very distinct areas like secret bidding at auctions [4], privacy-preserving machine learning
[21], secure linear programming [27] and secure data mining [3]. The importance of efficient secure
comparisons rises steadily because these are the bottleneck in the named areas and the amount of
available data for computation reaches new heights every day. In recent years, various research
has been conducted to increase the efficiency of secure comparisons, however, the solutions are
often limited to specific MPC settings, e.g. adversary model and bound to drawbacks like statistical
security or a larger arithmetic domain for computations.

In this work, we collect the vast amount of MPC protocols for comparisons in the n-party setting
compatible with SPDZ [9] or SPDZ2k [6], filter out the most promising ones, analyze them and
provide an overview of their performances in different environments. First, we present related
work for MPC and secure comparisons, Chapter 2. We follow with introducing several levels, on
which we analyze the protocols, to point out the differences in their constructions and compare their
theoretical costs based on other MPC primitives, Chapter 3. The different levels include the MPC
settings (security model, adversary model, majority model and arithmetic domain) and protocol cost
evaluation (rounds, communication, computation, precomputation). Next, we present our detailed
analysis of the protocols construction and theoretical costs in our protocol collection, Chapter 4. If
possible, we also provide implementations of the protocols in the MPC framework MP-SPDZ [11].
We benchmark the protocols in MP-SPDZ in multiple different MPC settings and provide a detailed
analysis of their performances, Chapter 5. Further, we discuss the results of this work by evaluating
the advantages and disadvantages of the protocols for different environments, Chapter 6 and finish
our work with a conclusion, Chapter 7.

11

2 Related Work

Yao’s [31] introduction of the millionaires’ problem in 1982, in which two millionaires try to
find out who is richer, without revealing their actual wealth, has become a cornerstone for secure
comparisons. While the millionaires’ problem only considers two parties who know their own
wealth, secure comparisons exist for the extension of the problem to the n-party setting with the
actual wealth being unknown to anyone.

Various research on secure comparison protocols for the specific 2-party or 3-party setting has been
conducted by [19], [29], [30] and [14]. Additionally, Shi et al. [26] present a quantum cryptographic
comparison protocol for the 2-party setting. We do not cover any of their research in our work,
because we focus on secure comparison protocols for the more general n-party setting.

Damgard et al. [8] proposed the first unconditionally secure constant round MPC protocol for
comparisons in the n-party setting. While their protocol was still lacking in efficiency, parts of
their work has been widely used and improved in the following years by [22], [24], [23], [5], [28],
[18], [15], [7], [13], [12] and [20]. We collect the most promising proposed MPC protocols for
comparisons of previously mentioned work and analyze these, to compare them with each other in
different MPC settings and environments.

With more and more frameworks for MPC coming into realization in recent years, the MPC protocol
evaluation has moved from theoretical cost analysis to benchmarks. In this work, we provide both
- theoretical cost analysis and benchmarks. Hastings et al. [16] evaluated eleven different MPC
frameworks, which have been released previous to the second half of 2018. For our work, we have
decided to utilize the framework MP-SPDZ published by Data61 in 2019 [11]. Keller [17] provides
further information on the MPC framework. MP-SPDZ was built to benchmark MPC protocols in
many different MPC settings and thus perfectly suits the purpose of this work. We implement the
analyzed protocols in MP-SPDZ, if possible.

The general field of application requiring MPC includes a wide range of different environments,
however, MPC protocols for comparisons are especially important for areas like secret bidding
at auctions [4], privacy-preserving machine learning [21], secure linear programming [27] or
secure data mining [3]. Optimization of MPC protocols for comparisons has a direct impact on the
efficiency in these areas and can increase the throughput of large data sets significantly.

13

3 Preliminaries

The related work on MPC protocols for comparisons is too vast to consider it all. This chapter
first introduces general aspects of MPC protocols, as well as important notations used in this work,
Section 3.1. Following this, the different MPC settings for MPC protocols are given, Section 3.2.
Finally, the metrics used to evaluate the different costs of MPC protocols for comparisons are
presented, Section 3.3. We adopt the notations used by relevant scientific literature related to our
work.

3.1 Secret Sharing for MPC

MPC is usually based on secret sharing, e.g. Shamir’s secret sharing [25], homomorphic encryption,
e.g. somewhat homomorphic encryption [10] or Yao’s garbled circuits. In this work, comparison
protocols refer to MPC protocols for comparisons. In our case, we focus on MPC protocols based
on secret sharing schemes in the n-party setting. We note, that some of the introduced comparison
protocols can also be applied to MPC based on homomorphic encryption.

Z" is the arithmetic domain, in which all computations in the arithmetic circuit take place. It
is possible to secretly share a value 0 ∈ Z" across all parties. We denote a secret shared value
0 ∈ Z" as [0] ∈ Z" . Each party %8 for 8 ∈ {1, ..., =} then holds a share 08 of [0]. To reveal [0],
the parties need to combine their shares 08 by communicating with each other. The number of
parties required to reveal a secret shared value depends on the underlying secret sharing scheme.
Secret sharing schemes allow for the three arithmetic operations [0] + 1, [0] + [1] and [0] · 1 to
be calculated locally. In this work, we refer to these three as arithmetic operations. However, the
multiplication of two secret shared values [0] · [1] requires communication between the parties. In
this work, multiplication always refers to multiplication of two secret shared values. MPC protocols
may provide different implementations to compute [0] · [1].

Some protocols make use of a binary circuit for the domain Z2 for efficient, non-linear operations like
“xor”, “or” and “negation”. These operations are in general more expensive in the arithmetic circuit.
To distinguish values in the binary circuit from values in the arithmetic circuit, we denote secret
sharings in the binary circuit as [0]2 ∈ Z2. Non-linear operations between two secret shared values
in the binary circuit require communication between the parties. However, non-linear operations
between a public value and a secret shared value can be performed locally. This is similar to
multiplication in the arithmetic circuit.

We denote the bit-decomposition of a value 0 ∈ Z" as 00, ..., 0:−1 for : ∈ N and 0 =
∑:−1

8=0 08 · 28 .
Furthermore, a bitwise shared value consists of : secret sharings [00], ..., [0:−1] ∈ {0, 1} with
[0] = ∑:−1

8=0 [08] · 28 and : ∈ N.

15

3 Preliminaries

Based on multiplication, share, reveal and arithmetic operations, MPC usually provides protocols
for the generation of different random components. Comparison protocols make direct use of these
random components. Random components are secret shared when generated. We consider the
following random components in our work: random bits, random bitwise shared values, random
elements, random inverses and edaBits.

A random bit consists of the sharings of a bit [0] ∈ {0, 1}. Random bits can be used to generate
random bitwise shared values, consisting of : random bits [A0], ..., [A:−1] with : ∈ N and [A] =∑:−1

8=0 [A8] · 28. Further, random elements are elements of the arithmetic domain [A] ∈ Z" . In
some arithmetic domains, like prime fields, it is possible to generate inverses of elements. In these
domains, it is possible to create a random element and its inverse [A], [A]−1 ∈ Z" .

Opposed to random bitwise shared values, Escudero et al. [13] introduce edaBits. EdaBits have a
small, but important, difference compared to random bitwise shared values. An edaBit consists of a
secret shared value in the arithmetic circuit [0] ∈ Z" and : secret shared bits in the binary circuit
[00]2, ..., [0:−1]2 ∈ Z2, such that 0 =

∑:−1
0 08 · 28 . EdaBits are usually created in large batches for

efficient generation.

3.2 MPC Settings

The settings for MPC are usually separated by security model, adversary model, majority model
and arithmetic domain, in which computation takes place. In general, all comparison protocols
must be compatible with the models and domain of the underlying MPC protocols.

The security model can either be perfect security or statistical security. For perfect security, an
adversary can not learn any secrets. For statistical security, an adversary can not learn any secret
under some security parameter B. A default value for the security parameter B is 40. The parameter
B is also often used as a correctness parameter.

The adversary model describes whether an adversary is either passive (semi-honest) or active
(malicious). A passive adversary tries to obtain knowledge about secrets without deviating from
any protocols. However, after protocol execution, a passive adversary can work together with other
adversaries to try to reveal (parts of) secrets. An active adversary additionally might deviate from
protocols. If an active adversary does deviate from any protocol, the execution aborts, which is also
known as an active adversary with abort.

The majority model can either be an honest majority or a dishonest majority. The majority refers
to the number of adversaries. For = parties and 2C < =, an honest majority consists of at most C
adversaries, while a dishonest majority consists of up to = − 1 adversaries. The security model is
guaranteed under both majority models. Although some related works also distinguish between
static and dynamic adversaries, we only consider the more standard, static adversaries. This means,
that the adversaries do not change from one party to another during execution.

All computations take place in the arithmetic domain Z" . We generally distinguish between the
arithmetic ring Z" with " = 2: and : ∈ N and the arithmetic field Z" with " = ? for a large odd
prime ?, sometimes also referred to as F?. The comparison protocols analyzed in this work are
accurate for integers in [0, 2; − 1], ; ∈ N and 2;+B+1 < " . This allows for the reasonable condition,
that all inputs, outputs and intermediate values are less than the chosen value for " .

16

3.3 Cost Evaluation of MPC Protocols

3.3 Cost Evaluation of MPC Protocols

A standard approach to evaluate MPC protocol costs is the separation between an offline phase and
an online phase. In the offline phase, precomputations are performed. This includes, but is not
limited to, the generation of random components. These precomputations are independent of the
data, on which the protocols operate. For the online phase, the protocols do require the data, on
which they operate. In this work, we focus on the online phase, which varies a lot for comparison
protocols. We note, that the offline phase is also relevant in practice, because the generation of
random components can be very expensive depending on the MPC settings.

To analyze the different comparison protocols, we separate between five different metrics for cost
estimation: online rounds, online communication, online computation, offline computation and
random components. The cost often depends on a parameter : , which is the bit length of values in
the arithmetic domain. Similar metrics are used by related works, however, most provide only the
complexity but omit coefficients. Since the order of the complexity of most metrics is similar across
many comparison protocols, we provide the costs as accurate as possible instead. Even though
some older works have made similar approaches, many recent works focus on benchmarks instead
of providing accurate, theoretical protocol costs.

The number of online rounds can dominate the execution time, especially in wide area networks
(WAN). We consider one online round as one send and receive cycle in the online phase, in which
parties can send an arbitrary amount of data to each other exactly once. Before, between and after
the send and receive, parties can do any amount of local computation. This definition is widely
used in related works and has been established by Ben-Or et al. [2]. In this work, we refer to online
rounds as rounds.

The amount of online communication can be critical for networks with low bandwidth. Online
communication between parties is often only measured by the number of multiplications in the
online phase. We additionally include the number of reveals, because they have a similar online
communication need as multiplications. The total online communication usually grows linearly
with the number of parties.

Most related works omit the online computation, because it is either dominated by the online
communication or by the number of online rounds. However, in a local area network (LAN) with
high bandwidth and low round trip time, the online computation is an important factor. We measure
the amount of online computation with the number of local arithmetic operations in the online
phase. For example, addition of two secret shared values is considered as one arithmetic operation,
because parties can compute it locally. We also assume, that computing the bit representation of
a public value has the same cost as one arithmetic operation. We note, that arithmetic operations
are often more expensive for protocols with the active adversary or dishonest majority model. The
number of arithmetic operations required by multiplications and reveals depends on the underlying
MPC protocols and is therefor not included in our calculation of online computation and has to be
added manually.

Many comparison protocols require different random components. They include random bitwise
shared values, random elements, random inverses, random bits and edaBits. These components can
be generated in the offline phase. The generation of random components depends on the underlying
MPC protocols and can vary a lot. We note, that the cost of generating random components is often

17

3 Preliminaries

multiple times more expensive for protocols with the active adversary or dishonest majority model.
This is often due to additional expensive techniques being added to the underlying secret sharing
scheme.

The offline computation is calculated similar to the online computation. We measure the amount
of offline computation with the number of local arithmetic operations in the offline phase. We
additionally provide the number of necessary multiplications and reveals. Calculating constants for
certain protocols has no cost, as these only have to be computed once and can be used for every
protocol iteration afterwards. The number of arithmetic operations required by the generation of
random components depends on the underlying MPC protocols and is therefor not included in our
calculation of offline computation and has to be added manually.

18

4 Protocol Collection

This chapter contains the collection of the comparison protocols deeper analysed in this work.
We first present some necessary and common sub-protocols for comparison protocols, Section
4.1. For the rest of this chapter, we present the most promising comparison protocols of related
works for various MPC settings, Section 4.2 - 4.8, with some remarks at the end, Section 4.9.
These comparison protocols can be deployed in different environments to suit security and cost
characteristics of a diverse number of applications.

In case a related work introduces multiple similar comparison protocols, we always chose the
protocol with the lowest (constant if possible) number of rounds. The other introduced versions
usually trade a few rounds for communication. However, because the complexity order of rounds
and communication stays the same, we do not further analyze those protocols in our work.

We put a focus on the MPC settings and cost evaluation introduced in Section 3.2 and 3.3 and point
out the basic ideas behind the protocols. We note, that we conduct our analysis on the raw protocols,
not the implementations. Due to the limitations of the framework MP-SPDZ [11], some of our
implementations have different online and offline costs compared to the raw protocols.

For reference, on modern CPUs a common insecure comparison 0 < 1 of two positive values 0 and
1 is determined in one clock cycle by the arithmetic logic unit. The arithmetic logic unit calculates
0 − 1 and sets the negative flag, if an overflow occurs. The negative flag indicates whether 0 < 1.

(0 < 1) =
{

1, ((0 − 1) < 0) = 1,
0, ((0 − 1) < 0) = 0

4.1 Sub-Protocols

We present the most important sub-protocols for the comparison protocols in this section. While
many protocols either use a common prefix-multiplication, Section 4.1.1 or a common bitwise-carry-
add, Section 4.1.2, a new bitwise-less-than sub-protocol is introduced for almost every comparison
protocol, Section 4.1.3.

4.1.1 Prefix-Multiplication

Catrina and de Hoogh [5] present a constant round prefix-multiplication protocol (PreMulC) based
on the works of Bar-Ilan and Beaver [1]. For secret shared non-zero values 01, ..., 0: ∈ Z" with
" = ? for a prime ? and 9 ∈ {1, ..., :}, the prefix-multiplication protocol computes:

[@ 9] =
∏ 9

8=1 [08]

19

4 Protocol Collection

The protocol has an online cost of 1 round, : reveals and 3: − 2 arithmetic operations. Additionally,
it requires 2: random elements, 2: − 1 multiplications and 2: − 1 arithmetic operations in the
offline phase. We have used the implementation in MP-SPDZ [11] for our own implementations.

4.1.2 Bitwise-Carry-Add

The project SecureSCM [24] introduces a bitwise-carry-add, which calculates the bitwise shared
sum and carry bit of two bitwise shared values 0, 1 ∈ Z" and B = 0 + 1:

[B1], ..., [B:+1] ⇐ bitwise-carry-add([01], ..., [0:], [11], ..., [1:]).

As the prefix-multiplication protocol in Section 4.1.1 is not applicable to arithmetic rings Z" with
" = 2: for : ∈ N, the bitwise-carry-add is often used as a replacement. The protocol has an online
cost of log(:) + 1 rounds, : log(:) + : multiplications and 7: − 1 arithmetic operations. We have
used the implementation in MP-SPDZ [11] for our own implementations.

4.1.3 Bitwise-Less-Than

The bitwise-less-than protocol compares a bitwise shared value 0 ∈ Z" with a public value ':

([0] < ') =
{

1, bitwise-less-than([01], ..., [0:], ') = 1,
0, bitwise-less-than([01], ..., [0:], ') = 0

This protocol is a very important building block to compare two secret shared values. It has been
reconstructed, adapted and optimized to suit different MPC settings and cost characteristics. Each of
the introduced protocols hereafter provides very different bitwise-less-than variations with different
features and requirements. It is thus often not possible to use a specific bitwise-less-than protocol in
a different MPC setting to the one introduced by the authors of the protocol. The bitwise-less-than
protocol is often a critical part of comparison protocols.

4.2 Protocol by Reistad

Reistad [23] presents a comparison protocol against an active adversary in the dishonest majority
setting. His protocol provides perfect security over the arithmetic field Z" for positive integers in
[0, 2; − 1], ; ∈ N and 2;+B+1 < " = ?.

The protocol requires the prefix-multiplication sub-protocol. Together with the comparison protocol
introduced by Reistad, this adds up to a total online cost of 5 rounds, 2 multiplications, : + 2 reveals
and 12: + 38 arithmetic operations and additionally 2 random bitwise shared values, 2: random
elements, 2: − 1 multiplications and 2: − 1 arithmetic operations in the offline phase.

The basic idea of the protocol is to turn the comparison of two secret shared values 0, 1 ∈ Z" into
extracting the least significant bit (LSB) of I = 2 · (0 − 1) and was first introduced by Nishide and
Ohta [22]. The LSB determines whether 2 · (0 − 1) is reduced by modulo ?. This is only the case
if 0 − 1 is less than zero and thus the least significant bit is 1, as ? is odd.

20

4.3 Protocol by Catrina and de Hoogh

Figure 4.1: Implementation in MP-SPDZ of the Comparison Protocol by Reistad [23]

(0 < 1) =
{

1, LSB(2 · (0 − 1)) = 1,
0, LSB(2 · (0 − 1)) = 0

To extract the LSB of I, a constant round bitwise-less-than sub-protocol, which uses the prefix-
multiplication sub-protocol, is used. We provide an implementation in MP-SPDZ [11] with our
cost calculation annotations in Figure 4.1.

4.3 Protocol by Catrina and de Hoogh

Catrina and de Hoogh [5] present a comparison protocol against a passive adversary in the honest
majority setting. Their protocol provides statistical security over the arithmetic field Z" for positive
and negative integers in [−2;, 2; − 1], ; ∈ N and 2;+B+1 < " = ?. It can be extended for fixed-point
rational numbers.

21

4 Protocol Collection

The protocol requires the prefix-multiplication sub-protocol. The combined online cost results in 3
rounds, : + 2 reveals and 10: + 17 arithmetic operations and additionally 2 random bitwise shared
values, 2: + 2 random elements, 2: − 1 multiplications and 2: − 1 arithmetic operations in the
offline phase.

The basic idea of the protocol is to determine whether the difference between two secret shared
values 0, 1 ∈ Z" is less than zero. To calculate this, Catrina and de Hoogh introduce a truncation
protocol to obtain the most significant bit (MSB) of 0 − 1, since it indicates whether 0 − 1 < 0.

(0 < 1) =
{

1, MSB(0 − 1) = 1,
0, MSB(0 − 1) = 0

The truncation protocol is based on a constant round bitwise-less-than sub-protocol, which uses
the prefix-multiplication sub-protocol. As this comparison protocol is already implemented in
MP-SPDZ [11], we do not provide our own implementation. However, we have conducted a similar
analysis compared to the other protocols to calculate the online and offline costs.

4.4 Protocol by Lipmaa and Toft

Lipmaa and Toft [18] present a comparison protocol against an active adversary in the honest
majority setting. Their protocol provides perfect security over the arithmetic field Z" for positive
and negative integers in [−2;, 2; − 1], ; ∈ N and 2;+B+1 < " = ?.

The protocol requires the prefix-multiplication sub-protocol. However, the prefix-multiplication sub-
protocol is only used in the offline phase. The combined online cost results in approximately 5 log(:)
rounds, 2 log(:) multiplications, 3 log(:) reveals and 16: + 30 log(:) arithmetic operations and
additionally 3 log(:) random bitwise shared values, 4: + 4 log(:) random elements, log(:) random
inverses, 2: random bits, 4: − log(:) multiplications, 2: + 2 log(:) reveals and 24: + 16 log(:)
arithmetic operations in the offline phase. We note that even though the number of required
random objects is estimated accurately, the random objects may differ in their length : . Further, we
note that both online and offline costs might appear more expensive at first, however, the online
communication cost is logarithmic.

The basic idea of the protocol is to recursively check whether the :
2 upper bits of two secret shared

values 0, 1 ∈ Z" , both of length : , are different, until only the highest bit, in which 0 and 1 differ,
is left. The remaining bit indicates whether 0 < 1. To check whether the :

2 upper bits of 0 and
1 are different, an equal-zero sub-protocol, based on the hamming distance between 0 and 1, is
introduced. We provide an implementation in MP-SPDZ [11] with our cost calculation annotations
in Figure 4.2. For simplicity, our protocol is implemented with bit length : = 2= with = ∈ N and a
Mersenne prime ?.

22

4.4 Protocol by Lipmaa and Toft

Figure 4.2: Implementation in MP-SPDZ of the Comparison Protocol by Lipmaa and Toft [18]

23

4 Protocol Collection

4.5 Protocol by Goss and Jiang

Goss and Jiang [15] present an asymmetric comparison protocol against a passive adversary with two
mutually incorruptible parties and additive secret sharing scheme. Their protocol provides perfect
security over the arithmetic ring Z" for positive integers in [0, 2;−1], ; ∈ N and 2;+B+1 < " = 2: .

Despite the protocol not quite fitting into our usual MPC setting by requiring two mutually incorrupt-
ible parties and additive secret sharing, instead of an honest- or dishonest majority and any secret
sharing scheme, we have decided to analyze it in this work, as the asymmetric nature allows for new
possibilities in MPC. Additionally, we add a bit-decomposition protocol because the protocol by
Goss and Jiang operates on shared and bit-decomposed inputs. The bit-decomposition protocol,
however, limits the otherwise required arithmetic group to an arithmetic ring.

For our analysis, we have used the bit-decomposition protocol introduced by Damgard et al. [7],
which requires the bitwise-carry-add protocol. Additionally, we need to adapt our cost analysis
to the asymmetric protocol. We consider sending a value to a different party as the same cost as
revealing a value. We note, however, that no additional arithmetic operations are required after
sending a value, which is implied by the reveal operation of the other protocols. The combined
online cost results in log(:) + 7 rounds, : log(:) multiplications, 12: + 8 reveals and 47.5: + 13
arithmetic operations and additionally 2:−1 random elements, 4: +1 random bits and 2: arithmetic
operations in the offline phase.

The basic idea of the protocol is that two mutually incorruptible parties hold all the shares of two
secret shared values 0, 1 ∈ Z" . Instead of comparing their values directly with one another, they
use a third party for the comparison. With the use of random values, they mask 0 and 1 in such
a way, that the third party can compute a result of 0 < 1 with neither knowing the values 0 or 1,
nor knowing the result of the comparison. The third party simply outputs another masked value,
which is turned into a secret share of the result in return. The importance of the requirement of two
mutually incorruptible parties in this comparison protocol can not be understated, because these
two parties could reveal the secret values by themselves, if they were colluding. We do not provide
an implementation for this protocol in MP-SPDZ, because we can not find a way to implement an
asymmetric protocol in MP-SPDZ.

4.6 Protocol by Damgard et al.

Damgard et al. [7] present a comparison protocol against an active adversary in the dishonest
majority setting. Their protocol provides statistical security over the arithmetic ring Z" for positive
and negative integers in [−2;, 2; − 1], ; ∈ N and 2;+B+1 < " = 2: .

The protocol requires the bitwise-carry-add sub-protocol. The combined online cost results in
log(:) + 4 rounds, : log(:) + : multiplications, 3 reveals and 4: + 23 arithmetic operations and
additionally 1 random bitwise shared value, 2 random bits and 2 arithmetic operations in the offline
phase. We note, that it is possible to use 1 edaBit instead of 1 random bitwise shared value, to avoid
: conversions from the arithmetic domain Z" to the binary domain Z2. We have used 1 edaBit for
our implementation.

24

4.7 Protocol by Duan et al.

The basic idea of the protocol is identical to the one introduced by Catrina and de Hoogh [5] and
it is to check whether the difference between two secret shared positive values 0, 1 ∈ Z" is less
than zero. However, instead of using a truncation protocol, Damgard et al. directly extract the most
significant bit (MSB) of 0 − 1, which indicates whether 0 − 1 < 0.

(0 < 1) =
{

1, MSB(0 − 1) = 1,
0, MSB(0 − 1) = 0

The extraction of the MSB is based on a logarithmic round bitwise-less-than sub-protocol, which
requires the bitwise-carry-add sub-protocol. We provide an implementation in MP-SPDZ [11] with
our cost calculation annotations in Figure 4.3.

4.7 Protocol by Duan et al.

Duan et al. [12] present a comparison protocol against an active adversary in the honest majority
setting. Their protocol provides perfect security over the arithmetic field Z" for positive and
negative integers in [−2;, 2; − 1], ; ∈ N and 2;+B+1 < " = ?. It can be extended for fixed-point
rational numbers.

The online cost for their comparison protocol is log(:) + 2 rounds, 2: + 2 multiplications, 1 reveal
and 8: + 13 arithmetic operations and additionally 1 random bitwise shared value in the offline
phase.

The basic idea of the protocol is identical to the one used by Reistad [23], first introduced by Nishide
and Ohta [22] and it is to turn the comparison of two secret shared values 0, 1 ∈ Z" into extracting
the least significant bit (LSB) of I = 2 · (0 − 1). The LSB determines whether 2 · (0 − 1) is reduced
by modulo ?. This is only the case if 0 − 1 is less than zero and thus the least significant bit is 1, as
? is odd.

(0 < 1) =
{

1, LSB(2 · (0 − 1)) = 1,
0, LSB(2 · (0 − 1)) = 0

Opposed to the bitwise-less-than sub-protocol by Reistad [23], Duan et al. use a different bitwise-
less-than sub-protocol to extract the LSB of I, which does not require the prefix-multiplication
sub-protocol. Their bitwise-less-than sub-protocol, however, needs log(:) rounds. We provide an
implementation in MP-SPDZ [11] with our cost calculation annotations in Figure 4.4. For simplicity,
our protocol is implemented with bit length : = 2= with = ∈ N and a Mersenne prime ?.

25

4 Protocol Collection

Figure 4.3: Implementation in MP-SPDZ of the Comparison Protocol by Damgard et al. [7]

4.8 Protocol by Makri et al.

Makri et al. [20] present a comparison protocol against an active adversary in the dishonest majority
setting. Their protocol provides perfect security over the arithmetic ring Z" for positive integers in
[0, 2; − 1], ; ∈ N and 2;+1 < " = 2: . It additionally provides statistical security over the arithmetic
field Z" for positive integers in [0, 2; − 1], ; ∈ N and 2;+B+1 < " = ?. The different security
model properties exist due to the nature of the edaBit generation. Note, that for the arithmetic ring,
we have 2;+1 < " = 2: instead of 2;+B+1 < " = 2: compared to the other protocols. This is an
important difference, which is only possible, because the security parameter B is not necessary for
computation over the arithmetic ring. The security parameter B is not needed in this case, because
the comparison protocol by Makri et al. [20] considers all overflows in Z2: .

26

4.8 Protocol by Makri et al.

Figure 4.4: Implementation in MP-SPDZ of the Comparison Protocol by Duan et al. [12]

The protocol requires the bitwise-carry-add sub-protocol in the offline phase. Additionally, it
requires a prefix-or sub-protocol. We have used the prefix-or by SecureSCM [24]. The combined
online cost results in log(:) + 1 rounds, 3: log(:) multiplications, 2 reveals and 15: + 11 arithmetic
operations and additionally 2 edaBits, : log(:) + : multiplications and 7: − 1 arithmetic operations
in the offline phase.

The basic idea of the protocol is that the sum of two secret shared values 0, 1 ∈ Z" modulo " is
less than 0 and less than 1, iff 0 + 1 is reduced by ":

(0 + 1) mod " = 0 + 1 − " · LT(0 + 1 mod ", 0) = 0 + 1 − " · LT(0 + 1 mod ", 1)

Using this characteristic, as well as the commutative property of addition in arithmetic fields, Makri
et al. derive a formula to efficiently calculate 0 < 1 with three parallel iterations of a logarithmic
round bitwise-less-than sub-protocol. Their bitwise-less-than sub-protocol is based on the one
introduced by Damgard et al. [8]. We provide an implementation for the domain Z2: in MP-SPDZ
[11] with our cost calculation annotations in Figure 4.5.

27

4 Protocol Collection

Figure 4.5: Implementation in MP-SPDZ of the Comparison Protocol by Makri et al. [20]

4.9 Remarks

Our collection consists of the most promising MPC protocols for comparisons in the n-party setting,
regarding the different MPC settings and cost evaluation introduced in Section 3.2 and 3.3. These
protocols can be applied to a wide range of applications. We provide an overview of the different
MPC settings for each protocol in Table 4.1 and an overview of the protocol costs in Table 4.2.

We note, that the comparison protocols in the domain F?, with a large odd prime ?, are also
applicable for the domain Z@ with @ being the product of two large odd primes @ = ?1 · ?2. The
in this way constructed @ is also known as an RSA-modulus. The extension to the domain Z@ is
possible, because the protocols usually require multiplicative inverses or a modulo reduction with
an odd modulus. Both of the above mentioned arithmetic domains provide these features. However,
some MPC settings, costs and implementations might change slightly.

28

4.9 Remarks

Protocol Adversary Majority Security Domain
Reistad Active Dishonest Perfect F?
[23]
Catrina and de Passive Honest Statistical F?
Hoogh [5]
Lipmaa and Active Honest Perfect F?
Toft [18]
Goss and Passive 2 mutually Perfect Z2:

Jiang [15] incorruptible
parties*

Damgard et al. Active Dishonest Statistical Z2:

[7]
Duan et al. Active Honest Perfect F?
[12]
Makri et al. Active Dishonest Perfect**, Z2: ,
[20] Statistical F?

Table 4.1: Overview of the Comparison Protocol Settings. *The comparison protocol by Goss and
Jiang [15] requires two mutually incorruptible parties instead of an honest or dishonest
majority. **Perfect security for the comparison protocol by Makri et al. [20] only holds
for the domain Z2: . In the domain F?, the protocol only provides statistical security.

Additionally we want to mention, that the protocols [15], [7] and [20] operate over binary and
arithmetic circuits. The online communication appears a lot higher in those protocols, because we
do not differentiate between the costs of a multiplication of two secret shared values in the binary
circuit and the costs of a multiplication of two secret shared values in the arithmetic circuit. We
note, that in those protocols, most multiplications refer to multiplications in the binary circuit.

29

4 Protocol Collection

Protocol Online Online Offline Random
Rounds Communication/ Computation Components

Computation
Reistad 5 2 MUL, 2: − 1 MUL, 2 RBSV,
[23] : + 2 R/ 2: − 1 AOP 2: RE

12: + 38 AOP
Catrina and de 3 : + 2 R/ 2: − 1 MUL, 2 RBSV,
Hoogh [5] 10: + 17 AOP 2: − 1 AOP 2: + 2 RE
Lipmaa and 5 log(:) 2 log(:) MUL, 4: − log(:) MUL, 3 log(:) RBSV,
Toft [18] 3 log(:) R/ 2: + 2 log(:) R, 4: + 4 log(:) RE,

16: + 30 log(:) 24: + 16 log(:) log(:) RI,
AOP AOP 2: RB

Goss and log(:) + 7 : log(:) MUL, 2: AOP 2: − 1 RE,
Jiang [15] 12: + 8 R*/ 4: + 1 RB

47.5: + 13 AOP
Damgard et al. log(:) + 4 : log(:) + : MUL, 2 AOP 1 RBSV
[7] 3 R/ (or 1 EdaBit),

4: + 23 AOP 2 RB
Duan et al. log(:) + 2 2: + 2 MUL, - 1 RBSV
[12] 1 R/

8: + 13 AOP
Makri et al. log(:) + 1 3: log(:) MUL, : log(:) + : MUL, 2 EdaBits
[20] 2 R/ 7: − 1 AOP

15: + 11 AOP

Table 4.2: Overview of the Comparison Protocol Costs. We have used the following abbreviations
for the table entries: MUL stands for multiplication; R stands for reveal; AOP stands
for arithmetic operations; RBSV stands for random bitwise shared value; RE stands for
random Element; RI stands for random inverse; RB stands for random bit. *The reveal
operation by Goss and Jiang [15] does not require any additional arithmetic operations
in contrast to the reveal operation of the other protocols.

30

5 Benchmarks

We have run all our benchmarks on a single machine equipped with 16 GB RAM and an I7 processor
with 6 cores. We use Windows Subsystem for Linux (WSL2) to run the MPC protocols on the
Windows OS. In general, we use the 3-party setting for our benchmarks. We choose : = 64 for the
arithmetic ring Z2: and a prime ? with log(?) ≈ 64 for the arithmetic field F?. We additionally
run our benchmarks for the protocol by Makri et al. [20] in the arithmetic ring Z2: with : = 32,
because their comparison protocol enables a smaller arithmetic domain due to the possibility of
eliminating the need for the security parameter B.

While protocols in the dishonest majority (active adversary) model are also applicable to the
honest majority (passive adversary) model, this does not hold for the opposite. Therefore, we
benchmark comparison protocols in their respective applicable MPC settings only. We measure the
protocols performance in throughput (comparisons per second (ops/s)) and communication (kbits
per comparison per party).

We note, that it is not possible to implement all MPC protocols for comparisons optimally in
MP-SPDZ [11] due to the limitations of the framework. However, we have given our best efforts in
the limited time of this work to design our implementations as efficient as possible without deviating
too much from the original comparison protocols.

We benchmark the full comparison protocols in different MPC settings with 50, 000 comparisons per
protocol per applicable MPC setting and present our results in Section 5.1. Further, we benchmark
the online phase in the same setup, but with 500, 000 comparisons instead and show our results
in Section 5.2. Lastly, we run the online phase of the comparison protocol by Damgard et al. [7]
with different numbers of parties to show the influence of the number of parties on comparisons per
second and communication per comparison. We provide our results thereof in Section 5.3.

5.1 Benchmarks of the Full Comparison Protocols

We present an overview of our benchmarks of the full comparison protocols (offline and online
phase) in Table 5.1 and discuss the results in this section. We run 50, 000 comparisons in parallel
per protocol per applicable MPC setting to achieve comparable results. We note, that we only run
5, 000 comparisons in parallel in the active adversary, dishonest majority setting for the comparison
protocols by Damgard et al. [7] and Makri et al. [20], as the edaBit generation in the offline phase of
these protocols requires more than 16 GB RAM for 50, 000 comparisons in MP-SPDZ. Our results
are not optimal in this case due to the low number of only 5, 000 comparisons and the necessarily
small bucket size [13] for the edaBit generation.

The throughput is up to multiple 100 times lower and the communication up to multiple 1,000 times
higher in the active adversary, dishonest majority setting for all comparison protocols compared to
the other MPC settings. The throughput only differs about 7 times and the communication only

31

5 Benchmarks

Protocol Measure Dishonest Majority Honest Majority
Active Passive Active Passive

Reistad Thru. (ops/s) 39 233 2732 11904
[23] Comm. (kb) 5118.1 1104.2 31.2 4.4
Catrina and de Thru. (ops/s) - - - 1021
Hoogh [5] Comm. (kb) - - - 8.8
Lipmaa and Thru. (ops/s) - - 533 2861
Toft [18] Comm. (kb) - - 105.2 10.5
Damgard et al. Thru. (ops/s) 67 3674 16835 37878
[7] Comm. (kb) 2839.2 66.5 6.3 0.5
Duan et al. Thru. (ops/s) - - 5494 27521
[12] Comm. (kb) - - 13.1 1.8
Makri et al. Thru. (ops/s) 54 4108 9192 12260
[20] (64-bit) Comm. (kb) 3019.6 53.8 10.5 0.7
Makri et al. Thru. (ops/s) 99 6817 18293 23889
[20] (32-bit) Comm. (kb) 1584.8 30.8 4.6 0.4

Table 5.1: Benchmarks of the Full Comparison Protocols in Different MPC Settings

differs about 15 times between the other MPC settings. The throughput and communication of
the passive adversary, dishonest majority setting in the arithmetic field F? seem odd compared
to our other results. We conclude, that this is most likely due to the underlying MPC protocols
implemented in MP-SPDZ.

The overall best performances show the more recently proposed comparison protocols by Damgard et
al. [7], Duan et al. [12] and Makri et al. [20]. Each of these protocols has their own favorable specific
setting to be deployed in. The communication is mainly lower for comparison protocols over the
arithmetic ring Z2: compared to protocols over the arithmetic field F?. In general, the comparison
protocols by Catrina and de Hoogh [5] and Lipmaa and Toft [18] show very poor performances in
both throughput and communication. Outside of the passive adversary, dishonest majority setting,
the comparison protocol by Reistad [23] shows decent throughput and communication, but does not
quite reach the performance of the more recently proposed comparison protocols. The comparison
protocol by Makri et al. [20] is about twice as efficient for : = 32 compared to : = 64.

5.2 Benchmarks of the Online Phase

We present an overview of our benchmarks of the online phase of the comparison protocols in Table
5.2 and discuss the results in this section. We properly separate the online phase of each protocol
using MP-SPDZ and run 500, 000 comparisons in parallel per protocol per applicable MPC setting
to achieve comparable results.

The throughput is up to 7 times lower in the active adversary, dishonest majority setting for all
comparison protocols, compared to the other MPC settings, where the throughput is within a factor
of two. The communication is within a small margin for the active adversary, dishonest majority
and the passive adversary, honest majority setting, as well as for the passive adversary, dishonest

32

5.2 Benchmarks of the Online Phase

Protocol Measure Dishonest Majority Honest Majority
Active Passive Active Passive

Reistad Thru. (ops/s) 5780 5513 6735 8704
[23] Comm. (kb) 4.5 4.5 8.1 1.9
Catrina and de Thru. (ops/s) - - - -
Hoogh [5] Comm. (kb) - - - -
Lipmaa and Thru. (ops/s) - - 1620 1940
Toft [18] Comm. (kb) - - 0.8 0.2
Damgard et al. Thru. (ops/s) 6558 38058 23890 41855
[7] Comm. (kb) 0.9 6.9 5.2 0.4
Duan et al. Thru. (ops/s) - - 15462 20912
[12] Comm. (kb) - - 4.7 0.9
Makri et al. Thru. (ops/s) 3485 13901 10243 13250
[20] (64-bit) Comm. (kb) 1.6 12.1 9.0 0.6
Makri et al. Thru. (ops/s) 7465 27568 20682 26662
[20] (32-bit) Comm. (kb) 0.7 4.9 3.7 0.3

Table 5.2: Benchmarks of the Online Phase of Comparison Protocols in Different MPC Settings

majority and the active adversary, honest majority setting. Between these two pairs of settings
however, the communication differs up to 20 times. Unfortunately, it is not possible to separate
the online and offline phases of the already in MP-SPDZ implemented comparison protocol by
Catrina and de Hoogh [5]. Similar to the full comparison protocol benchmarks, the throughput and
communication of the passive adversary, dishonest majority setting in the arithmetic field F? seem
odd compared to our other results. We conclude, that this is most likely due to the underlying MPC
protocols implemented in MP-SPDZ.

The best throughput shows the comparison protocol by Damgard et al. [7], closely followed by the
comparison protocol by Makri et al. [20]. The comparison protocol by Lipmaa and Toft [18] shows
very poor throughput instead, but has the best communication of any protocol. The communication
is in general slightly lower for comparison protocols over the arithmetic ring Z2: compared to
protocols over the arithmetic field F?, outside of the comparison protocol by Lipmaa and Toft [18].
The comparison protocol by Duan et al. [12] has considerable throughput and communication, but
does not outshine the other comparison protocols in any of these categories. While the comparison
protocol by Reistad [23] is comparable in the active adversary, dishonest majority setting, it does lack
in efficiency in the honest majority model. We note, that this might be due to the recursive character
of the comparison protocol and an iterative implementation might improve the performance. It
again holds true, that the comparison protocol by Makri et al. [20] is about twice as efficient for
: = 32 compared to : = 64.

33

5 Benchmarks

Figure 5.1: Total Time and Communication for Increasing Number of Parties

5.3 Influence of the Number of Parties

We present an overview of our benchmarks of the online phase of the comparison protocol by
Damgard et al. [7] with different numbers of parties in Figure 5.1 and discuss the results in this
section. Due to the nature of MPC protocols, the benchmark test would yield the same results for
other protocols and settings. We run 50, 000 comparisons in parallel for 2, 3, 4, 5 and 11 parties.

Our results show a linear increase for total communication and total time for a linear increase
in the number of parties. For our measurements this means, that for an increasing number of
parties, the communication per party roughly stays the same, while the comparisons per second
decrease. The communication per party is constant due to the nature of using star-shaped instead
of direct communication. The comparisons per second decrease with an increasing number of
parties, because we are running our benchmarks on a single machine. However, if we add a new
machine for each new party, as it is often the case in practice, the comparisons per second would not
decrease. We conclude, that the number of parties has no significant influence on our measurements
of comparisons per second and communication per comparison per party.

34

6 Results

In this work, we analyze seven comparison protocols out of the vast research around MPC, benchmark
six out of the seven comparison protocols and provide implementations for five in MP-SPDZ [11].
Overall, we focus on the online phase, but do not entirely disregard the offline phase. We present
an overview of our theoretical cost analysis in Table 4.1 and Table 4.2 and an overview of our
benchmarks in Table 5.1 and Table 5.2.

In the online phase, the throughput differs up to 7 times and the communication differs up to 20 times
between the different MPC settings. For the offline phase however, the choice of the MPC setting has
a much higher impact, as the throughput differs up to multiple 100 times and the communication up
to multiple 1,000 times. The offline phase is especially expensive for the active adversary, dishonest
majority setting. It is in general favorable to choose the least secure, but acceptable, MPC setting
for the highest efficiency. We note, that we do not see any direct correlation between the throughput
in our benchmarks and the online computation in our theoretical cost analysis. We are not exactly
sure why this is, but it might be due to inefficient implementations on our side, or large overhead
produced by the underlying MPC protocols implemented in MP-SPDZ.

The benchmarks of the comparison protocols by Damgard et al. [7] and Makri et al. [20] show,
that the online communication of these protocols is indeed similar to other comparison protocols,
despite the theoretical cost analysis indicating log-linear amount of communication, due to assuming
multiplications in the binary circuit and arithmetic circuit as equivalent.

Utilizing the smaller size of values for the comparison protocol by Makri et al. [20], e.g. by setting
: = 32 instead of : = 64, is not always feasible, due to other protocols potentially requiring a larger
arithmetic domain Z2: . However, in case a smaller arithmetic domain Z2: is possible, it should be
used, as it increases the efficiency of all MPC protocols.

For the passive adversary, honest majority setting, the benchmarks of the full comparison protocols
indicate slightly better efficiency over the separated online phase for some comparison protocols.
This is most likely due to the separation process and underlying MPC protocols implemented in
MP-SPDZ. We conclude, that the offline phase is very fast compared to the online phase in the
passive adversary, honest majority setting.

The benchmarks demonstrate the overall best performances in throughput and communication for
the two comparison protocols by Damgard et al. [7] and Makri et al. [20] (: = 32), which both
operate over the arithmetic ring Z2: . The comparison protocol by Duan et al. [12] follows closely
behind, but operates over the arithmetic field F?. While most modern CPUs operate on 64-bit
architectures and thus favor the use of the arithmetic ring Z2: in general, the arithmetic field F?
can not be disregarded, because it enables other primitives significant for specific applications, e.g.
efficient division of secret shared values by public values. These three comparison protocols are the
best choice for most environments.

35

6 Results

The comparison protocol by Lipmaa and Toft [18] is the only comparison protocol with a logarithmic
amount of communication in the online phase, which is also noticeable in the benchmarks. However,
the offline phase is very expensive due to the high number of necessary random components. Further,
the throughput is very low in our benchmarks. Thus, their protocol only makes a good choice, if
communication in the online phase is the limiting factor by a large margin.

The comparison protocols by Reistad [23] and Catrina and de Hoogh [5] perform poorly in the
benchmarks. However, referring to the theoretical cost analysis, these are the only constant round
comparison protocols. Thus, if latency between parties is the limiting factor, these comparison
protocols might demonstrate high efficiency in practice. We note, that the number of rounds are not
represented in our benchmarks.

36

7 Conclusion and Outlook

In this work, we present the seven most promising MPC protocols for comparisons in the n-party
setting, introduced by related works and compatible with SPDZ or SPDZ2k . We analyze the MPC
protocols for comparisons and provide their theoretical costs and the MPC settings, in which they
can be deployed in. Further, we provide implementations for five out of the seven and benchmark
six out of the seven MPC protocols for comparisons.

Our benchmarks show, that the choice of the MPC setting has a much bigger influence on the offline
phase compared to the online phase. Thus we conclude, that a more secure MPC setting should only
be considered above the least secure, but acceptable, MPC setting, if it is possible to precompute the
offline phase in a separate manner. In general however, the least secure, but acceptable, MPC setting
achieves the highest efficiency for MPC protocols for comparisons. We demonstrate the best suited
MPC protocols for comparisons for different MPC settings in our results, Chapter 6. Our decisions
build upon the theoretical cost analysis and the benchmarks run for different MPC settings.

As we only focus on MPC protocols for comparisons in the n-party setting in this work, future
research could include the various related work on MPC protocols for comparisons in the 2-party
and 3-party setting and confront them with the most efficient protocols of this work. Further,
the influence of the number of rounds on the throughput of comparisons in a wide area network
(WAN) could be of interest and provides material for more benchmarks. Additionally, the different
random components, sub-protocols and basic ideas, introduced by various research papers and
presented in this work, may all serve as starting points to increase the efficiency of MPC protocols
for comparisons in the future.

37

Bibliography

[1] J. Bar-Ilan, D. Beaver. “Non-Cryptographic Fault-Tolerant Computing in Constant Number
of Rounds of Interaction”. In: Proceedings of the Eighth Annual ACM Symposium on Prin-
ciples of Distributed Computing. PODC ’89. Edmonton, Alberta, Canada: Association for
Computing Machinery, 1989, pp. 201–209. isbn: 0897913264. doi: 10.1145/72981.72995.
url: https://doi.org/10.1145/72981.72995 (cit. on p. 19).

[2] M. Ben-Or, S. Goldwasser, A. Wigderson. “Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation (Extended Abstract)”. In: Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA.
Ed. by J. Simon. ACM, 1988, pp. 1–10. doi: 10.1145/62212.62213. url: https://doi.org/
10.1145/62212.62213 (cit. on p. 17).

[3] D. Bogdanov, M. Niitsoo, T. Toft, J. Willemson. “High-performance secure multi-party
computation for data mining applications”. In: Int. J. Inf. Sec. 11.6 (2012), pp. 403–418. doi:
10.1007/s10207-012-0177-2. url: https://doi.org/10.1007/s10207-012-0177-2 (cit. on
pp. 11, 13).

[4] P. Bogetoft, I. Damgård, T. P. Jakobsen, K. Nielsen, J. Pagter, T. Toft. “A Practical Imple-
mentation of Secure Auctions Based on Multiparty Integer Computation”. In: Financial
Cryptography and Data Security, 10th International Conference, FC 2006, Anguilla, British
West Indies, February 27-March 2, 2006, Revised Selected Papers. Ed. by G. D. Crescenzo,
A. D. Rubin. Vol. 4107. Lecture Notes in Computer Science. Springer, 2006, pp. 142–147.
doi: 10.1007/11889663_10. url: https://doi.org/10.1007/11889663%5C_10 (cit. on pp. 11,
13).

[5] O. Catrina, S. de Hoogh. “Improved Primitives for Secure Multiparty Integer Computation”.
In: Security and Cryptography for Networks, 7th International Conference, SCN 2010, Amalfi,
Italy, September 13-15, 2010. Proceedings. Ed. by J. A. Garay, R. D. Prisco. Vol. 6280.
Lecture Notes in Computer Science. Springer, 2010, pp. 182–199. doi: 10.1007/978-3-642-
15317-4_13. url: https://doi.org/10.1007/978-3-642-15317-4%5C_13 (cit. on pp. 13, 19,
21, 25, 29, 30, 32, 33, 36).

[6] R. Cramer, I. Damgård, D. Escudero, P. Scholl, C. Xing. “SPDZ
2k: Efficient MPC mod 2k for

Dishonest Majority”. In: Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II.
Ed. by H. Shacham, A. Boldyreva. Vol. 10992. Lecture Notes in Computer Science. Springer,
2018, pp. 769–798. doi: 10.1007/978-3-319-96881-0_26. url: https://doi.org/10.1007/
978-3-319-96881-0%5C_26 (cit. on p. 11).

39

https://doi.org/10.1145/72981.72995
https://doi.org/10.1145/72981.72995
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/s10207-012-0177-2
https://doi.org/10.1007/11889663_10
https://doi.org/10.1007/11889663%5C_10
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4%5C_13
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0%5C_26
https://doi.org/10.1007/978-3-319-96881-0%5C_26

Bibliography

[7] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl, N. Volgushev. “New
Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learn-
ing”. In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019. IEEE, 2019, pp. 1102–1120. doi: 10.1109/SP.2019.00078. url:
https://doi.org/10.1109/SP.2019.00078 (cit. on pp. 11, 13, 24, 26, 29–35).

[8] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, T. Toft. “Unconditionally Secure Constant-
Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation”. In:
Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York,
NY, USA, March 4-7, 2006, Proceedings. Ed. by S. Halevi, T. Rabin. Vol. 3876. Lecture
Notes in Computer Science. Springer, 2006, pp. 285–304. doi: 10.1007/11681878_15. url:
https://doi.org/10.1007/11681878%5C_15 (cit. on pp. 13, 27).

[9] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, N. P. Smart. “Practical Covertly Secure
MPC for Dishonest Majority - Or: Breaking the SPDZ Limits”. In: Computer Security -
ESORICS 2013 - 18th European Symposium on Research in Computer Security, Egham, UK,
September 9-13, 2013. Proceedings. Ed. by J. Crampton, S. Jajodia, K. Mayes. Vol. 8134.
Lecture Notes in Computer Science. Springer, 2013, pp. 1–18. doi: 10.1007/978-3-642-
40203-6_1. url: https://doi.org/10.1007/978-3-642-40203-6%5C_1 (cit. on p. 11).

[10] I. Damgård, V. Pastro, N. P. Smart, S. Zakarias. “Multiparty Computation from Somewhat
Homomorphic Encryption”. In: IACR Cryptol. ePrint Arch. (2011), p. 535. url: http:
//eprint.iacr.org/2011/535 (cit. on p. 15).

[11] Data61. MP-SPDZ: Versatile Framework for Multi-party Computation. [Online]. 2019. url:
https://github.com/data61/MP-SPDZ (visited on 04/08/2022) (cit. on pp. 11, 13, 19–22, 25,
27, 31, 35, 43).

[12] X. Duan, V. Goyal, H. Li, R. Ostrovsky, A. Polychroniadou, Y. Song. “ACCO: Algebraic
Computation with Comparison”. In: CCSW@CCS ’21: Proceedings of the 2021 on Cloud
Computing Security Workshop, Virtual Event, Republic of Korea, 15 November 2021. Ed.
by Y. Zhang, M. van Dijk. ACM, 2021, pp. 21–38. doi: 10.1145/3474123.3486757. url:
https://doi.org/10.1145/3474123.3486757 (cit. on pp. 13, 25, 27, 29, 30, 32, 33, 35).

[13] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, P. Scholl. “Improved Primitives for MPC
over Mixed Arithmetic-Binary Circuits”. In: Advances in Cryptology - CRYPTO 2020 - 40th
Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
August 17-21, 2020, Proceedings, Part II. Ed. by D. Micciancio, T. Ristenpart. Vol. 12171.
Lecture Notes in Computer Science. Springer, 2020, pp. 823–852. doi: 10.1007/978-3-030-
56880-1_29. url: https://doi.org/10.1007/978-3-030-56880-1%5C_29 (cit. on pp. 13, 16,
31).

[14] W. Fujii, K. Iwamura, M. Inamura. “Secure Comparison and Interval Test Protocols based
on Three-party MPC”. In: Proceedings of the 6th International Conference on Information
Systems Security and Privacy, ICISSP 2020, Valletta, Malta, February 25-27, 2020. Ed.
by S. Furnell, P. Mori, E. R. Weippl, O. Camp. SCITEPRESS, 2020, pp. 698–704. doi:
10.5220/0009161406980704. url: https://doi.org/10.5220/0009161406980704 (cit. on
p. 13).

[15] K. Goss, W. Jiang. “Efficient and Constant-Rounds Secure Comparison through Dynamic
Groups and Asymmetric Computations”. In: IACR Cryptol. ePrint Arch. (2018), p. 179. url:
http://eprint.iacr.org/2018/179 (cit. on pp. 13, 24, 29, 30).

40

https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/11681878%5C_15
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6%5C_1
http://eprint.iacr.org/2011/535
http://eprint.iacr.org/2011/535
https://github.com/data61/MP-SPDZ
https://doi.org/10.1145/3474123.3486757
https://doi.org/10.1145/3474123.3486757
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1%5C_29
https://doi.org/10.5220/0009161406980704
https://doi.org/10.5220/0009161406980704
http://eprint.iacr.org/2018/179

Bibliography

[16] M. Hastings, B. Hemenway, D. Noble, S. Zdancewic. “SoK: General Purpose Compilers
for Secure Multi-Party Computation”. In: 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 1220–1237. doi:
10.1109/SP.2019.00028. url: https://doi.org/10.1109/SP.2019.00028 (cit. on p. 13).

[17] M. Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”. In: CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020. Ed. by J. Ligatti, X. Ou, J. Katz, G. Vigna. ACM, 2020, pp. 1575–
1590. doi: 10.1145/3372297.3417872. url: https://doi.org/10.1145/3372297.3417872
(cit. on p. 13).

[18] H. Lipmaa, T. Toft. “Secure Equality and Greater-Than Tests with Sublinear Online Complex-
ity”. In: Automata, Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II. Ed. by F. V. Fomin, R. Freivalds,
M. Z. Kwiatkowska, D. Peleg. Vol. 7966. Lecture Notes in Computer Science. Springer, 2013,
pp. 645–656. doi: 10.1007/978-3-642-39212-2_56. url: https://doi.org/10.1007/978-3-
642-39212-2%5C_56 (cit. on pp. 13, 22, 23, 29, 30, 32, 33, 36).

[19] X. Liu, S. Li, J. Liu, X. Chen, G. Xu. “Secure multiparty computation of a comparison
problem”. In: SpringerPlus 5.1 (Sept. 2016). doi: 10 . 1186 / s40064 - 016 - 3061 - 0. url:
https://doi.org/10.1186/s40064-016-3061-0 (cit. on p. 13).

[20] E. Makri, D. Rotaru, F. Vercauteren, S. Wagh. “Rabbit: Efficient Comparison for Secure Multi-
Party Computation”. In: Financial Cryptography and Data Security - 25th International
Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part I.
Ed. by N. Borisov, C. Dı́az. Vol. 12674. Lecture Notes in Computer Science. Springer, 2021,
pp. 249–270. doi: 10.1007/978-3-662-64322-8_12. url: https://doi.org/10.1007/978-3-
662-64322-8%5C_12 (cit. on pp. 13, 26, 28–33, 35).

[21] P. Mohassel, Y. Zhang. “SecureML: A System for Scalable Privacy-Preserving Machine
Learning”. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017. IEEE Computer Society, 2017, pp. 19–38. doi: 10.1109/SP.2017.12. url:
https://doi.org/10.1109/SP.2017.12 (cit. on pp. 11, 13).

[22] T. Nishide, K. Ohta. “Multiparty Computation for Interval, Equality, and Comparison Without
Bit-Decomposition Protocol”. In: Public Key Cryptography - PKC 2007, 10th International
Conference on Practice and Theory in Public-Key Cryptography, Beijing, China, April 16-20,
2007, Proceedings. Ed. by T. Okamoto, X. Wang. Vol. 4450. Lecture Notes in Computer
Science. Springer, 2007, pp. 343–360. doi: 10 . 1007 / 978 - 3 - 540 - 71677 - 8 \ _23. url:
https://doi.org/10.1007/978-3-540-71677-8%5C_23 (cit. on pp. 13, 20, 25).

[23] T. I. Reistad. “Multiparty Comparison - An Improved Multiparty Protocol for Comparison of
Secret-shared Values”. In: SECRYPT 2009, Proceedings of the International Conference on
Security and Cryptography, Milan, Italy, July 7-10, 2009, SECRYPT is part of ICETE - The
International Joint Conference on e-Business and Telecommunications. Ed. by E. Fernández-
Medina, M. Malek, J. Hernando. INSTICC Press, 2009, pp. 325–330 (cit. on pp. 13, 20, 21,
25, 29, 30, 32, 33, 36).

[24] SecureSCM. Security Analysis. EU FP7 Project Secure Supply Chain Management (Se-
cureSCM). [Online]. 2009. url: https://faui1-files.cs.fau.de/filepool/publications/
octavian_securescm/SecureSCM-D.9.2.pdf (visited on 04/08/2022) (cit. on pp. 13, 20, 27).

41

https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-39212-2%5C_56
https://doi.org/10.1007/978-3-642-39212-2%5C_56
https://doi.org/10.1186/s40064-016-3061-0
https://doi.org/10.1186/s40064-016-3061-0
https://doi.org/10.1007/978-3-662-64322-8_12
https://doi.org/10.1007/978-3-662-64322-8%5C_12
https://doi.org/10.1007/978-3-662-64322-8%5C_12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1007/978-3-540-71677-8%5C_23
https://faui1-files.cs.fau.de/filepool/publications/octavian_securescm/SecureSCM-D.9.2.pdf
https://faui1-files.cs.fau.de/filepool/publications/octavian_securescm/SecureSCM-D.9.2.pdf

Bibliography

[25] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–613. doi:
10.1145/359168.359176. url: http://doi.acm.org/10.1145/359168.359176 (cit. on p. 15).

[26] R. Shi, B. Liu, M. Zhang. “Secure two-party integer comparison protocol without any third
party”. In: Quantum Inf. Process. 20.12 (2021), p. 402. doi: 10.1007/s11128-021-03344-1.
url: https://doi.org/10.1007/s11128-021-03344-1 (cit. on p. 13).

[27] T. Toft. “Solving Linear Programs Using Multiparty Computation”. In: Financial Cryptogra-
phy and Data Security, 13th International Conference, FC 2009, Accra Beach, Barbados,
February 23-26, 2009. Revised Selected Papers. Ed. by R. Dingledine, P. Golle. Vol. 5628.
Lecture Notes in Computer Science. Springer, 2009, pp. 90–107. doi: 10.1007/978-3-642-
03549-4_6. url: https://doi.org/10.1007/978-3-642-03549-4%5C_6 (cit. on pp. 11, 13).

[28] T. Toft. “Sub-linear, Secure Comparison with Two Non-colluding Parties”. In: Public Key
Cryptography - PKC 2011 - 14th International Conference on Practice and Theory in Public
Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings. Ed. by D. Catalano,
N. Fazio, R. Gennaro, A. Nicolosi. Vol. 6571. Lecture Notes in Computer Science. Springer,
2011, pp. 174–191. doi: 10.1007/978-3-642-19379-8_11. url: https://doi.org/10.1007/
978-3-642-19379-8%5C_11 (cit. on p. 13).

[29] T. Veugen, F. Blom, S. J. A. de Hoogh, Z. Erkin. “Secure Comparison Protocols in the
Semi-Honest Model”. In: IEEE J. Sel. Top. Signal Process. 9.7 (2015), pp. 1217–1228. doi:
10.1109/JSTSP.2015.2429117. url: https://doi.org/10.1109/JSTSP.2015.2429117 (cit. on
p. 13).

[30] S. Wagh, D. Gupta, N. Chandran. “SecureNN: 3-Party Secure Computation for Neural
Network Training”. In: Proc. Priv. Enhancing Technol. 2019.3 (2019), pp. 26–49. doi:
10.2478/popets-2019-0035. url: https://doi.org/10.2478/popets-2019-0035 (cit. on
p. 13).

[31] A. C. Yao. “Protocols for Secure Computations (Extended Abstract)”. In: 23rd Annual Sym-
posium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982.
IEEE Computer Society, 1982, pp. 160–164. doi: 10.1109/SFCS.1982.38. url: https:
//doi.org/10.1109/SFCS.1982.38 (cit. on pp. 11, 13).

42

https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1007/s11128-021-03344-1
https://doi.org/10.1007/s11128-021-03344-1
https://doi.org/10.1007/978-3-642-03549-4_6
https://doi.org/10.1007/978-3-642-03549-4_6
https://doi.org/10.1007/978-3-642-03549-4%5C_6
https://doi.org/10.1007/978-3-642-19379-8_11
https://doi.org/10.1007/978-3-642-19379-8%5C_11
https://doi.org/10.1007/978-3-642-19379-8%5C_11
https://doi.org/10.1109/JSTSP.2015.2429117
https://doi.org/10.1109/JSTSP.2015.2429117
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

A Summary in German

Multiparty Computation (MPC) bietet die Möglichkeit, verschiedene Funktionen auf privaten
Eingaben von mehreren Individuen zu berechnen, ohne die privaten Eingaben oder Ausgaben zu
veröffentlichen. In den letzten Jahren haben sich verschiedene Forschungsarbeiten mit diesem
Thema beschäftigt und dabei vor allem arithmetische Operationen, wie Addition und Multiplikation,
untersucht. Allerdings spielen in der Praxis häufig auch andere Funktionen eine wichtige Rolle.
Insbesondere die Vergleichsoperation ist von großer Bedeutung für bestimmte Anwendungen,
wie zum Beispiel Geheimhaltung bei Data-Mining, geheimes Bieten bei Auktionen, Privatsphäre
bewahrendes maschinelles Lernen oder Geheimhaltung bei linearer Programmierung.

In dieser Arbeit werden sieben verschiedene MPC Protokolle für Vergleichsoperationen von ver-
wandten Arbeiten vorgestellt, analysiert und teilweise implementiert und getestet. MPC Protokolle
werden meist in unterschiedliche Kategorien unterteilt, welche die Anwendungsumgebung vorgeben,
in denen die Protokolle genutzt werden können. Die Anwendungsumgebung stellt verschiedene
Sicherheits- und Angreifermodelle dar. Die Analyse bezieht sich auf die in der Theorie anfallenden
Kosten, welche meist in anderen MPC Primitiven (z. B. Additionen/Multiplikationen) angegeben
werden. In den Tests wird die Anzahl der Vergleichsoperationen pro Sekunde, sowie die Kommu-
nikation zwischen Individuen pro Vergleichsoperation pro Individuum, berechnet. Dabei werden
bis zu 500.000 Vergleichsoperationen pro Protokoll pro Anwendungsumgebung ausgeführt. Fünf
der sieben MPC Protokolle für Vergleichsoperationen werden in dem Framework MP-SPDZ [11]
implementiert und getestet. Das Framework bietet die Möglichkeit, die Performance von MPC
Protokollen in verschiedenen Anwendungsumgebungen zu messen.

Während drei der sieben Protokolle bei den Tests besonders gut abschneiden, zeigen die anderen
Protokolle besondere Eigenschaften in ihrem Aufbau oder bei den in der Theorie anfallen Kosten.
Durch die besonderen Eigenschaften sind die jeweiligen Protokolle ebenfalls interessant für die
Praxis. Die Tests werden sowohl für die vollständigen Protokolle für Vergleichsoperationen, wie
auch für Protokollversionen, in denen die Vorberechnungen extrahiert wurden, durchgeführt. Es
zeigt sich deutlich, dass eine striktere Anwendungsumgebung, mit einem stärkeren Sicherheits-
und Angreifermodell, die Vorberechnungen der Protokolle sehr stark verlangsamt, während die
Protokollversionen ohne Vorberechnungen nur leicht negativ beeinflusst werden. Eine striktere
Anwendungsumgebung sollte also nur in Erwägung gezogen werden, wenn es möglich ist, die
Vorberechnungen separat auszuführen.

Die Ergebnisse dieser Arbeit ermöglichen es, schnelle und einfache Entscheidungen bei der Auswahl
des zu implementierenden MPC Protokolls für Vergleichsoperationen für bestimmte Programme,
unter Berücksichtigung der Anwendungsumgebung, zu treffen.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Secret Sharing for MPC
	3.2 MPC Settings
	3.3 Cost Evaluation of MPC Protocols

	4 Protocol Collection
	4.1 Sub-Protocols
	4.2 Protocol by Reistad
	4.3 Protocol by Catrina and de Hoogh
	4.4 Protocol by Lipmaa and Toft
	4.5 Protocol by Goss and Jiang
	4.6 Protocol by Damgard et al.
	4.7 Protocol by Duan et al.
	4.8 Protocol by Makri et al.
	4.9 Remarks

	5 Benchmarks
	5.1 Benchmarks of the Full Comparison Protocols
	5.2 Benchmarks of the Online Phase
	5.3 Influence of the Number of Parties

	6 Results
	7 Conclusion and Outlook
	Bibliography
	A Summary in German

