
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Coupling of macro and micro scale
in a continuum-biomechanical
model of the human liver using

preCICE
Fritz Otlinghaus.

Course of Study: M.Sc. Simulation Technology

Examiner: Jun.-Prof. Dr. Benjamin Uekermann

Supervisor: Ishaan Desai, Steffen Gerhäusser

Commenced: Febuary 1, 2022

Completed: August 1, 2022

Abstract

As the human liver is one of the most important organs in the human body, the scientific community
aims to improve our understanding of its internal processes to enable better planning for individual
liver surgeries. This includes the complex relationship between hepatic tissue and metabolic cell
processes.

This work is based on the modeling approach proposed by [RWH+14] where the hepatic tissue
is modeled by partial differential equations (PDEs) in a homogenization approach based on the
extended Theory of Porous Media (eTPM). These equations are then coupled with ordinary
differential equations (ODEs), representing the metabolic processes in the liver cells.
These models are solved by the FEM-solver FEBio for the hepatic tissue, and the ODEs on the cell
scale are solved by the biochemical software library libRoadRunner.

This work introduces a new two scale coupling using the coupling library preCICE and the Micro
Manager. A new FEBio-preCICE adapter is implemented and compared to an existing coupling. To
evaluate the differences in the couplings, three test cases are defined and simulation time, quality
and memory usage for each test case is compared. This is followed up by discussing and comparing
advantages and disadvantages for each coupling.

3

Contents

1 Introduction 9

2 Fundamentals of the Human Liver 11
2.1 Liver Anatomy . 11
2.2 Simulating a Human Liver . 12
2.3 System Biological Markup Language . 13

3 Models 15
3.1 Liver Model . 15
3.2 Paracetamol Metabolism Cell Model . 16

4 Software Tools 19
4.1 preCICE . 19
4.2 MPI . 20
4.3 FEBio . 20
4.4 libRoadRunner . 21

5 Implementation FEBio-preCICE adapter 23
5.1 Objectives . 23
5.2 FEBio Internals . 23
5.3 Proposed solution and challenges . 25
5.4 Configuration . 28

6 Methods 31
6.1 Coupling approaches . 31
6.2 Analysing the performance of both couplings 32
6.3 Benchmark cases . 32
6.4 Coupling . 34

7 Results 35
7.1 Benchmarks . 35
7.2 Acceleration schemes . 40
7.3 explicit and implicit coupling . 40
7.4 Memory usage and performance . 40

8 Conclusion and Outlook 43
8.1 Simulation Improvements . 43
8.2 Development Process Improvements . 43

Bibliography 45

5

List of Figures

2.2 Liver Marco meso micro overview. [RWH+14] 12
2.3 Structure of one liver lobules [RWH+14] . 12

3.1 Sketch of cell simulation model . 16

5.1 FEBio flow [MEAW22] . 24
5.2 MaterialPoint locations on FEElement . 24
5.3 FEBio Simulation Mesh Structure . 25
5.4 Control flow for FEAnalysis step in FEBio . 26
5.5 FEBio-preCICE adapter Checkpoint process . 27

6.1 Mesh of the liver lobule case . 33
6.2 Mesh of the liver lobule inflow case . 33
6.3 Mesh of the group tpm case . 33

7.1 Simulation time for each scenario . 36
7.2 Simulation time for each scenario . 37
7.3 Simulation time for each scenario . 38
7.4 Simulation time with a varying number of cores for MPI 39
7.5 Memory usage for the benchmark lobule case 40
7.6 Call graph of a micro manager instance during a simulation run. The Y axis

represents the call stack at a specific time X. 41

7

1 Introduction

The human liver is the largest solid organ in the body. It removes toxins from the body’s blood supply,
maintains healthy blood sugar levels, regulates blood clotting, and is responsible for metabolizing
medication. A solid understanding of all effects that occur in the human liver is required to predict
possible outcomes of new medication on a patient. Human trials that determine effects of medication
and treatment strategies on a human liver are dangerous and expensive in early stages. Simulations
are also a suitable, fast and inexpensive approach to gain insights on the biochemical processes in the
human liver. If the designed simulations are sufficiently realistic, they would allow individualized
functional prediction when planning liver surgeries [Com20].

To fully simulate liver lobule behavior, a two scale coupling between cell metabolism and blood
perfusion is required. [RWH+14] introduces such a modeling approach, where isolated biological
reactions are modeled on a micro scale and fluid simulations on a macro scale. Using this modeling
approach, this work aims to allow closer studies of inter-scale effects in the human liver, by
introducing a new coupling approach between both scales using the preCICE [BLG+16] library.

In Chapter 2, the human liver anatomy is described, along with the theory of porous media and the
system biological markup language (SBML) [HFSB01]. Chapter 3 presents the liver model from
Ricken [RL19] and the cell model from Koenig [Com20].
In Chapter 4, the software components are described, followed by the development strategy for
building a prototype coupling. The implementation details and challenges of a preCICE adapter for
FEBio are discussed in Chapter 5, as well as the software configuration options. This is followed up
by Chapter 6, which details the benchmark cases and outlines interesting features for a comparison
between the two coupling approaches.

Chapter 7 then presents the results of the coupling and Chapter 8 discusses the advantages of our
preCICE coupling approach in comparison to the existing coupling, and outlines improvements to
the development process.

9

2 Fundamentals of the Human Liver

To understand the big picture idea of this thesis, it is essential to acquire some basic knowledge of
the human liver anatomy and its functions, therefore we recap the liver anatomy and explain how to
simulate a human liver. This is followed by introductions to the theory of porous media and to the
System Biological Markup Language (SBML).

2.1 Liver Anatomy

On average, the human liver weighs one to two kilos and is located in the upper right stomach region,
see Figure 2.1a. It is responsible for producing bile, breaking down fats during digestion, converting
glucose into glycogen for storage and much more. Physically, the liver can be split into four liver
lobes, namely the left lobe, the right lobe, the quadrate lobe and the caudate lobe or into eight parts
as described by Couinaud [RK15], which can be seen in Figure 2.1b. In a broad understanding, all
parts perform the same functions and are only differentiated through their geographic location.

Each liver lobe consists of so-called liver lobules, which are approximately 1.5 mm wide hexagonal
components. Each lobule is supplied by multiple portal triads, one on each corner. The layout
can be seen in Figure 2.3. The portal triads supply the lobule with nutrients via a hepatic artery
and oxygen rich blood via the portal vein. This oxygen and nutrient rich blood mixture then flows
through tiny tunnels, so-called sinosoids (c.f. Figure 2.2) to the central vein. While passing through
the sinosoids, the hepatocyte cells, which are located on the tunnel wall, interact with the nutrients
in the blood. The third component of a portal triad is the bile duct that gathers bile produced in the
lobules and sends the bile towards the intestine, where it is needed for digestion.

(a) The liver and nearby organs and struc-
tures [Wik22b]

(b) Segments of liver lobes as classified by
Couinaud. [Wik22a]

11

2 Fundamentals of the Human Liver

Figure 2.2: Liver Marco meso micro overview. [RWH+14]

Figure 2.3: Structure of one liver lobules [RWH+14]

2.2 Simulating a Human Liver

As most of the work is performed on the lobule level and the lobules do not interact with each
other, the simulation of a single lobule is a first step necessary for simulating a full human liver. To
simulate such a lobule, all relevant parts need to be addressed. This is accomplished by [RWH+14],
where the lobule is split into a simulation for the blood flow using the theory of porous media, and
the hepatocytes are simulated through an SBML model from König.
The theory of porous media, or short TPM, is used for materials where a traditional approach of
separating all involved constituents is not feasible. Instead of considering separate constituents, the
theory introduces one averaged multiphase volume segment. All balance equations are formulated
as a sum containing the volume fractions of the different phases [Ehl96]. The approach of describing
a multiphase volume fraction fits ideally to describe blood with different solutes that flows through
a solid sponge (sinusoids).

12

2.3 System Biological Markup Language

2.3 System Biological Markup Language

The System Biological Markup Language, or SBML for short, is an XML-based format for
representing biochemical reaction networks [HFSB01]. Such networks can be used to describe the
cell metabolism reaction to certain molecules or the decay of a molecule within the whole body.
The standardized language allows for using a variety of solvers that support SBML and can solve
the containing equations. In this work, SBML is used for describing how liver cells (hepatocytes)
transform the paracetamol molecule apap to napqi, while using the solver, libRoadRunner.

13

3 Models

This chapter describes the mathematical models used in this work, on both the macro- and micro
scale.

3.1 Liver Model

The model we are using in this work is based on the work of Ricken et al [RWH+14] and a work in
progress model by the same authors. It models the liver tissue as homogenization structure by using
the theory of porous media. There, liver tissue consists out of 𝜑𝛼 constituents, which are averaged
over the whole body. Using this theory, the model describes the whole body with Equation (3.1),
where 𝜑𝑆 is the tissue(solid) phase and 𝑣𝑎𝑟 𝑝ℎ𝑖𝐹 the blood(fluid) phase.

𝜑 =

𝐾∑︁
𝛼=1

𝜑𝛼 = 𝜑𝑆 + 𝜑𝐹 (3.1)

To allow for the modeling of solutes in the blood stream that transfer substances to and from the
hepatocytes, the model extends Equation (3.1) to the extended theory of porous media (eTPM)
Equation (3.2). 𝜑𝛼 denotes the solvent and 𝜑𝛼𝛽 the solute resolved in solvent 𝛼.

𝜑 =

𝐾∑︁
𝛼=1


𝑣−1∑︁
𝛽=1

(𝜑𝛼𝛽) + 𝜑𝛼
 (3.2)

The introduction of the eTPM yields the saturation condition, where 𝑛𝛼 stands for the volume
fractions (Solid, Fluid).

𝐾∑︁
𝛼=1

𝑛𝛼 = 1 (3.3)

The model describes the seepage velocity of external components with Equation (3.4). 𝑛𝐹 is the
volume fraction of the blood , 𝜆 the blood pressure and the permeability parameter Equation (3.5).

𝑛𝐹w𝐹𝑆 =
(𝑛𝐹)2

2𝛾𝐹w𝐹𝑆

[−𝑔𝑟𝑎𝑑𝜆] (3.4)

𝛾𝐹w𝐹𝑆
=

(𝑛𝐹)2

2𝑘𝐷
(3.5)

15

3 Models

A Neo Hookean solid with Helmholtz free energy is used to characterize the liver tissue, as can be
seen in Equation (3.6).

Ψ𝑆 =
1
𝜌𝑆0𝑆

[
𝜆𝑆

1
2
(𝑙𝑛J𝑆)2 − 𝜇𝑆 (𝑙𝑛J𝑆) +

1
2
𝜇𝑆 (𝑡𝑟C𝑠 − 3)

]
(3.6)

The interested reader is referred to Ricken et. al [RWH+14], for a motivation and complete
introduction of the model. This includes the balance equations for the model.

3.2 Paracetamol Metabolism Cell Model

Figure 3.1: Sketch of cell simulation model

The model for hepatic APAP metabolism in the liver used in this work is developed by
Koenig [Com20]. It consists of three compartments, as can be seen in Figure 3.1, separating the
cell into fatty tissue (𝑉𝑙𝑖 𝑓 𝑎𝑡), no fatty tissue (𝑉𝑙𝑖𝑛𝑜 𝑓 𝑎𝑡) and a membrane. Those compartments
are surrounded by plasma (𝑉𝑒𝑥𝑡). With those cell compartments, the cell model allows for adding
fatty tissue to simulate a so-called fatty liver, where fat deposits build up in the liver cells. Three
reactions describe the interaction of the cell with its surrounding tissue.

In the model, the speed of the APAP import (Equation (3.7)) into the cell depends on the
apap concentrations in the cell (𝑎𝑝𝑎𝑝) and the concentration in the surrounding plasma (𝑎𝑝𝑎𝑝𝑒𝑥𝑡).
The change in concentration is limited by the apap import speed (𝐴𝑃𝐴𝑃𝐼𝑀𝑉𝑚𝑎𝑥) and the Michaelis
constant1 𝐴𝑃𝐴𝑃𝐼𝑀_𝐾𝑚_𝑎𝑝𝑎𝑝.

¤𝑎𝑝𝑎𝑝 =

(1−𝑛𝑒𝑐𝑟𝑜𝑠𝑖𝑠)𝐴𝑃𝐴𝑃𝐼𝑀𝑉𝑚𝑎𝑥

𝐴𝑃𝐴𝑃𝐼𝑀_𝐾𝑀_𝑎𝑝𝑎𝑝 𝑉𝑙𝑖𝑛𝑜 𝑓 𝑎𝑡 (𝑎𝑝𝑎𝑝𝑒𝑥𝑡 − 𝑎𝑝𝑎𝑝)
1 + 𝑎𝑝𝑎𝑝𝑒𝑥𝑡

𝐴𝑃𝐴𝑃𝐼𝑀_𝐾𝑚_𝑎𝑝𝑎𝑝 + 𝑎𝑝𝑎𝑝

𝐴𝑃𝐴𝑃𝐼𝑀_𝐾𝑚_𝑎𝑝𝑎𝑝
(3.7)

1https://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_kinetics

16

3.2 Paracetamol Metabolism Cell Model

The 𝑎𝑝𝑎𝑝 concentration inside the cell is then metabolized by the enzyme "Relative Cytochrome
P450 2E1"(𝐶𝑌𝑃2𝐸1) to toxic 𝑁𝐴𝑃𝑄𝐼, at the speed of digestion 𝐴𝑃𝐴𝑃𝐷𝑉𝑚𝑎𝑥 and the Michaelis
constant 𝐴𝑃𝐴𝑃𝐷_𝐾𝑚_𝑎𝑝𝑎𝑝 in non fatty tissue, as described in Equation (3.8)

Passing the threshold 𝑛𝑒𝑐𝑟𝑜𝑠𝑖𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 with a high concentration of NAPQI in the cell will lead to
the cell dying off Equation (3.9).

¤𝑛𝑎𝑝𝑞𝑖 = (1 − 𝑛𝑒𝑐𝑟𝑜𝑠𝑖𝑠) ∗ 𝐶𝑌𝑃2𝐸1 ∗ 𝐴𝑃𝐴𝑃𝐷𝑉𝑚𝑎𝑥 ∗𝑉𝑙𝑖𝑛𝑜 𝑓 𝑎𝑡 ∗
𝑎𝑝𝑎𝑝

𝑎𝑝𝑎𝑝 + 𝐴𝑃𝐴𝑃𝐷_𝐾𝑚_𝑛𝑎𝑝𝑞𝑖
(3.8)

𝑛𝑒𝑐𝑟𝑜𝑠𝑖𝑠 =

{
1 if NAPQI ≥ necrosisthreshold

0 else
(3.9)

The toxic 𝑁𝐴𝑃𝑄𝐼 is cleared by the 𝑁𝐴𝑃𝑄𝐼𝐷𝐸𝑇𝑂𝑋 reaction Equation (3.10), where the
speed of clearance is limited the detox speed 𝑁𝐴𝑃𝑄𝐼𝐷𝐸𝑇𝑂𝑋𝑉𝑚𝑎𝑥 and the Michaelis con-
stant 𝑁𝐴𝑃𝑄𝐼𝐷𝐸𝑇𝑂𝑋_𝐾𝑚_𝑛𝑎𝑝𝑞𝑖

¤𝑛𝑎𝑝𝑞𝑖𝑑𝑒𝑡𝑜𝑥 = (1−𝑛𝑒𝑐𝑟𝑜𝑠𝑖𝑠)∗𝑁𝐴𝑃𝑄𝐼𝐷𝐸𝑇𝑂𝑋𝑉𝑚𝑎𝑥∗𝑉𝑙𝑖𝑛𝑜 𝑓 𝑎𝑡∗
𝑛𝑎𝑝𝑞𝑖

𝑛𝑎𝑝𝑞𝑖 + 𝑁𝐴𝑃𝑄𝐼𝐷𝐸𝑇𝑂𝑋_𝐾𝑚_𝑛𝑎𝑝𝑞𝑖
(3.10)

These reactions form a system of ordinary differential equations which represent the cell reaction
to the 𝑎𝑝𝑎𝑝 concentration in the bloodstream that is simulated by the macro model presented in
Section 3.1.

17

4 Software Tools

In this chapter, we present the software tools that will be used throughout this thesis. We give
a introduction into the preCICE library, the FEBio framework and the surrounding tools, detail
relevant preCICE features and the FEBio plugin system, that we use for our implementation. We
also introduce the microcodes for the microsimulation, which use the simulation environment
libRoadRunner.

4.1 preCICE

preCICE (Precise Code Interaction Coupling Environment) is a coupling library that allows a
minimally-invasive, black-box coupling to combine single physics solvers to form a multi physics
partitioned simulation [BLG+16]. preCICE handles data communication, mesh mapping and more,
allowing to treat the physics solver as a black box. The advantages of this approach are that solvers
can easily be replaced by a newer or better suited solver, users can continue to work in their known
domain and work can be split among different groups, each only working on a part of the problem.

preCICE provides these features using so-called preCICE adapters that hook into the solver suite
and manipulate the data and time steps as needed. A preCICE adapter is a piece of "glue-code",
which enables preCICE to access the simulation data and control the simulation flow for a specific
solver.

preCICE is written in C++ and boost and has a quite active community. It offers programming
interfaces for C++, Fortran, Python and Matlab, allowing easy coupling of proprietary simulations.
There are also already finished adapters for OpenFOAM, deal.II, CalculiX, SU2, FeniCS, code_aster
and Nutils.

With such a large feature set and the already provided adapters, preCICE reduces the time to solution
drastically by avoiding monolithic couplings that tailor the whole system to a specific problem and
cannot easily be reused.

For further details on preCICE, please refer to the preCICE documentation1.

1https://precice.org

19

4 Software Tools

4.1.1 Micro Manager

The preCICE Micro Manager is a tool to facilitate two-scale coupling in multi-physics simulations
using preCICE [Des22]. It handles the instantiation of all micro simulations, controls them for
the entire simulation time, and handles the data exchange with preCICE. The API and the micro
manager is written in python and publicly hosted on GitHub 2.

4.2 MPI

The Message Passing Interface (MPI) [GLDS96] is a communication protocol for high performance
computing. It supports one-to-one and one-to-many communication for distributed processes.
MPI ïs a message-passing application programmer interface, together with protocol and semantic
specifications for how its features must behave in any implementation.-[GLDS96]. It focuses on
scalability, portability and high performance.

4.3 FEBio

Finite elements for biomechanics (FEBio) [MEAW12] is a software tool for nonlinear finite element
analysis in biomechanics and biophysics and is specifically focused on solving nonlinear large
deformation problems in biomechanics and biophysics. Aside from structural mechanics, it can
also solve problems in mixture mechanics (i.e. biphasic or multiphasic materials), fluid mechanics,
reaction-diffusion, and heat transfer. As a true multi-physics code, it can also solve coupled physics
problems, including fluid-solid interactions 1. It is written in C++ and the code is hosted on GitHub
under a MIT License.2

4.3.1 FEBio Studio

FEBio Studio is the main software tool for designing, running, and analyzing FEBio models. It offers
a graphical user interface for interacting with the FEBio software. Since FEBio is a command-line
application, it uses file-based communication. FEBio Studio is the easiest way for creating FEBio
XML input files, and for visualizing and analyzing the FEBio output files 3.

2https://github.com/precice/micro-manager
1https://github.com/febiosoftware/FEBio
2https://github.com/febiosoftware/FEBio
3https://febio.org

20

4.4 libRoadRunner

4.3.2 Plugin System

FEBio provides a powerful plugin system to extend FEBio’s functionality [MLAW18]. This is
achieved by providing dynamically linked libraries that are loaded by FEBio at run-time, which
allows for plugins to be separated from the FEBio code base and to be maintained by different
developers. There are seven different plugin types, namely material plugins, plot data plugins,
callback plugins, task plugins, solver plugins and nonlinear constraint plugins. A callback plugin is
used for the FEBioPrecice Adapter in Chapter 5. This type of plugin allows to register callback
functions for certain events. The other plugin types are described in the FEBio documentation 4.

4.4 libRoadRunner

The libRoadRunner Simulation Engine is a C++ library for simulating and analyzing systems
of differential equations. libRoadRunner was designed with performance as a priority and is an
exceptionally fast SBML solver [SBG+15]. Roadrunner takes SBML files (Systems Biology Markup
Language) as input model and runs the included models. It provides C++ and python interfaces to
set input variables, run the simulation and extract the result data. In this work, libRoadRunner is
used to run a cell model that transforms paracetamol (apap) to the byproduct (napqi), but this can
easily be replaced with a different cell model.

4https://help.febio.org/doxygen/html/plugins.html

21

5 Implementation FEBio-preCICE adapter

In this chapter, we describe the goals for the FEBio-preCICE adapter1, that is being developed
alongside this work and detail the relevant internal structures of FEBio. Further, we describe the
challenges we faced during the development and how these challenges were solved. The chapter
closes with an introduction to the FEBio-preCICE adapter configuration.

5.1 Objectives

The first objective for this prototype is that we want to avoid changing the FEBio code, as this would
require the user to recompile FEBio or use a separate release. We also wanted to keep the adapter
as general as possible to allow later extension to a more general FEBio-preCICE adapter that can be
used by the community. This meant that we wanted a way for the user to easily configure which
data should be exchanged.

The adapter is supposed to be a prototype to demonstrate a possible implementation option. At the
time of writing FEBio has been released at version 3.6, but as to allow for a correct benchmark
against the existing coupling, which is based on FEBio 3.2, we only tested and developed the adapter
against that version. The upstream code changes introduced since FEBio 3.2 did not modify the
plugin framework, therefore this adapter should work with every version from 3.2 onward.

5.2 FEBio Internals

The object that contains all relevant information in FEBio is the FEModel. From this object, all
relevant simulation information can be reached and it is responsible for running the simulation steps.
A simulation step is contained in a FEAnalysis object. A normal simulation may contain multiple
steps as can be seen in Figure 5.1 Usually, a simulation contains an initialisation step and a step in
which the actual finite element method is run. These steps are also responsible for maintaining the
simulation time.

Another important object is the FEMesh, which contains the simulation mesh with all nodes, elements
and data points. Nodes (FENode) are points located in the simulation domain that have a global 3D
position, that is provided by the user. These Nodes are then used to form elements (FEElement),
which can be either shell elements or solid elements with different shapes for each type (see
Figure 5.2).

1https://github.com/precice/febio-adapter

23

5 Implementation FEBio-preCICE adapter

Figure 5.1: FEBio flow [MEAW22]

Each element contains a number of FEMaterialPoints which are used as integration points and
contain the relevant data. The number of points is different per element type and can be found in
the FEBio Theory Manual 1. These elements can be grouped to element sets via FEBioStudio to
create an easy handle to refer to them. To visualize the relationship between the FEMesh, FEElements
and FEMaterialPoints please refer to Figure 5.3.

(a) Node numbering for solid elements [MEAW22] (b) Node numbering for shell elements [MEAW22]

Figure 5.2: MaterialPoint locations on FEElement

1https://help.febio.org/FEBioTheory/FEBio_tm_3-4-Section-4.1.html

24

5.3 Proposed solution and challenges

Figure 5.3: FEBio Simulation Mesh Structure

5.3 Proposed solution and challenges

The solution we propose is an adapter in the form of an FEBio callback plugin. As mentioned in
Section 4.3.2, callback plugins are loaded by FEBio on startup and register callback functions that
will be executed at certain points in the FEBio simulation. These points are shown in Figure 5.4
and are the labels that start with CB. The user can load the adapter via the febio.xml configuration
file, which can be provided on the command line and only requires the user to add a short plugin
snippet to the simulation model to couple the simulation using preCICE:

1 <Code>

2 <callback name="precice_callback"/>

3 </Code>

25

5 Implementation FEBio-preCICE adapter

Figure 5.4: Control flow for FEAnalysis step in FEBio
This flow chart displays how a simulation step in FEBio is solved and at what point which preCICE

action is executed.

With this plugin approach we have successfully created a system where the user does not have
to adapt any FEBio code, but as Figure 5.4 shows, we still have to propose a solution on how to
write/read data from preCICE and how we are going to save/reload a checkpoint. preCICE tells the
solver whether an iteration has converged or not, and if it has not converged, the solver state has to
be fully reverted. This means that the time and quantities which define the state of the solver need
to be reversed. To allow for such a revert, the prior state needs to be saved. The adapter does that by
replacing the running FETimeStepController with a new controller instance on checkpoint creation,
allowing to use the newly created controller to advance, or to copy the old state again if we need to
reset. Afterwards, the FEAnalysisStep is serialized to a binary archive, which is kept in memory for
a reset. The whole process is also detailed in Figure 5.5

26

5.3 Proposed solution and challenges

EB

Figure 5.5: FEBio-preCICE adapter Checkpoint process

If the solver state needs to be reset, the binary archive is extracted and a new time step controller is
generated to continue the simulation. The time step controller is treated separately here, by not
being serialized, as FEBio raises an error otherwise. This behavior was not further investigated, but
is probably a software bug.

To fulfill the objective of being a general adapter, we still need to show a way on how to read/write
data from preCICE that can be configured by the user during runtime.
We do this by reading a febio-config.json on startup, that is easily configurable by the user. This
file provides all required information on how to handle and exchange the simulation data. More
information on the configuration options can be found in Section 5.4.

As the simulation data is saved in the FEMaterialPoints of each element, we are using these
MaterialPoints as vertices in preCICE and read/write data from/to these points. We identify which
points to transfer by a named element set, the name being provided in the configuration file. This
allows the user to easily pick which vertices are transfered via preCICE.

To allow for custom material behaviors, a FEMaterialPoint can be an instance of multiple subclasses,
which have different variables and functions. To access these functions and variables and the data
contained within, FEBio requires the developer to cast the MaterialPoint reference to the correct
type. This creates an interesting challenge, as it requires the adapter to cast an object to a type
which is unknown during compile time, as the adapter read the configuration at startup. To deal
with this, we added the reflection framework rttr [RTT22] to the adapter project, preregister all
possible material points with all variables and functions with rttr, and autogenerated a code snippet,
which creates the correct cast operation in the code.

With all these approaches in place, we were able to select which elements with what variables
to transfer, but as preCICE and FEBio have different datatypes, we still needed to add code that
converts the data between both environments. preCICE offers scalar and vector options for data
transfer, while FEBio offers scalar(double, float, int), matrices (mat2d, mat3d, mat3da, mat3dd,
mat3ds, matrix), quaternions (quatd), tensors (tens3drs, tens3ds) and vectors (vec2d, vec3d) as data
types. As preCICE has the smaller set, we only support scalar vector data types. Further options
could be implemented later-on.

27

5 Implementation FEBio-preCICE adapter

5.4 Configuration

1 {

2 "coupling_params": {

3 "element_set_to_couple": "Part1",

4 "participant_name": "FEBio",

5 "config_file_name": "../precice-config.xml",

6 "read_mesh_name": "FEBioMesh",

7 "read_data_name": [

8 {"type": "function", "febio_class_name": "FESolutesMaterialPointTPM", "name":

"set_concentrations", "mapping_name": "apap_ext'", "febio_type": "double", "precice_type": "scalar"}↩→
9],

10 "write_mesh_name": "FEBioMesh",

11 "write_data_name": [

12 {"type": "function", "class_type": "materialPoint", "febio_class_name":

"FESolutesMaterialPointTPM", "name": "Vext", "mapping_name": "Vext", "febio_type": "double",

"precice_type": "scalar"}

↩→
↩→

13]

14 }

15 }

The configuration file needs to be named febio-config.json and has to be located in the folder
where the simulation is launched. It contains all relevant simulation options for the adapter. The keys
read_data_name and write_data_name contain the attributes that are supposed to be read/written
to/from FEBio. Each entry consists out of multiple options that are described in Section 5.4.

Key Possible Values Description

type function
variable

Type of attribute for the FEMaterialPoint that is
read or written.

class_type materialPoint This option sets what class type is accessed in
FEBio, in future the possibility of a FEMaterial
or something similar could be added.

febio_class_name Class name of the object that is being manipulated
in FEBio e.g FEFluidMaterialPoint

name Name of the attribute that is written/read

febio_type

vec3d
vec2d
double
int
float
vector<dobule>

Data type of the attribute being write/read

mapping_name Name of data point in preCICE

precice_type scalar
vector

Type of data point in preCICE

Table 5.1: Configuration options for read/write_data_name

28

5.4 Configuration

For more configuration options, refer to the adapter README 1.

1https://github.com/precice/febio-adapter

29

6 Methods

Our objectives are to compare two coupling approaches and investigate improvements to simulation
results and the development process. In direct response, in this section we will first discuss both
coupling approaches and parameters that are relevant for the simulation performance, followed by a
description of the benchmark cases. We then discuss possible improvements to the simulation.

6.1 Coupling approaches

This section introduces the different simulation setups used in this work.

6.1.1 FEBio proprietary coupling

The existing approach from the Ricken [LWWR17; RDD10; RWH+14] allows to directly couple the
FEBio code with the roadrunner micro simulations. The coupling is done by adding libRoadRunner
as a dependency to the FEBio project and using the libRoadRunner C++ bindings. The bindings
are used to create a libRoadRunner micro simulation for each node. A list of active simulations is
managed in FEBio1.

6.1.2 FEBio preCICE coupling with Micro Manager

This work approaches the coupling thats different that the proprietary coupling. Instead of extending
the FEBio code base, a FEBio plugin is developed, which allows the FEBio simulation to interface
with the preCICE library. To add the libRoadRunner simulations to the coupling, a micro manager
is used. The micro manager handles instantiating and data transfer for the micro simulations. On
this basis, only a minimal Python based simulation for a single cell had to be developed in order to
add the required libRoadRunner functionality.

1https://github.tik.uni-stuttgart.de/isd/FEBio3.2

31

6 Methods

6.2 Analysing the performance of both couplings

To compare the two couplings, we first need to define measurements for this comparison. The first
measurement we choose to validate the new simulation approach is simulation accuracy, which is
measured through the Equation (6.1). This is done by selecting all elements, creating a graph and
exporting the raw graph data, which can then be compared between the different simulation runs.
These steps are necessary because FEBio lacks a standardized data output format like .vtk2.

𝑇∑︁
𝑡

𝐼∑︁
𝑖

|𝐴𝑖𝑡 − 𝐵𝑖𝑡 | (6.1)

with 𝑇 being the set of all timesteps, 𝐼 the length of the vectors 𝐴𝑡 and 𝐵𝑡 , and 𝐴,𝐵 being the matrix
holding the effective apap concentration for each timestep and node.

The second measurement is the execution time, as this is the most interesting metric when using
different simulation setups that produce similar results. As FEBio provides the simulation run time
on completion, this is chosen as a measurement, where shorter times are better. Another choice is
the memory usage of the simulation setup. As the actually used memory can not be easily measured
by the operating system, heaptrack3 was used to track memory allocation for the coupling setups.
In cases of multiple concurrent processes, each process memory usage was tracked and summed up,
where less resource usage is better. Another interesting metric would be the processor utilization,
but as we are already tracking execution times, monitoring CPU usage would just introduce another
measurement that does not provide further insights.

We also compare different acceleration schemes for the preCICE coupling for the benchmark case in
Section 6.3.2. For the same case, we also investigate the difference between an explicit and implicit
coupling.

6.3 Benchmark cases

In this section we describe the four benchmark cases used for the macro micro coupling as well
as their macro topology. The test cases were developed at the Institute of Mechanics, Structural
Analysis and Dynamics of Aerospace Structures4 and are scheduled to be published in the near
future as a reproducible dataset.

2https://en.wikipedia.org/wiki/VTK
3https://github.com/KDE/heaptrack
4https://www.isd.uni-stuttgart.de/

32

6.3 Benchmark cases

6.3.1 Benchmark liver lobule

(a) side view (b) top view

Figure 6.1: Mesh of the liver lobule case

The liver lobule case simulates a single liver lobule with 1584 nodes over 8 seconds. The mesh is
shown in Figure 6.1. Boundary conditions provide an initial fixed concentration of apap, which
then gets processed in the liver lobule.

6.3.2 Benchmark liver lobule inflow

(a) side view (b) top view

Figure 6.2: Mesh of the liver lobule inflow case

The liver lobule inflow case simulates a single liver lobule with 1584 nodes over 10 seconds. The
mesh is shown in Figure 6.2. It uses different inflow conditions than the liver lobule case by
providing a linear decreasing apap supply to the lobule.

6.3.3 benchmark group tpm

(a) side view (b) top view

Figure 6.3: Mesh of the group tpm case

33

6 Methods

The group benchmark case is the largest test case with 24006 nodes. It groups seven liver lobules
together, as can be seen in Figure 6.3. Boundary conditions provide an initial fixed concentration of
apap, which then gets processed in the liver lobules. The test case is simulated for 2 seconds.

6.4 Coupling

As we are using the preCICE library, we want to test the possible simulation acceleration schemes,
expecting that these schemes can provide real time improvements. We used the benchmark
case in Section 6.3.2 with a constant under-relaxation, a dynamic Aitken under-relaxation and a
Quasi-Newton scheme.

For the constant under-relaxation, we chose 0.5 as a relaxation value, as the preCICE manual
recommends that value.5

The dynamic Aitken under-relaxation was run with a 0.1 initial under relaxation value, as this
should lead to a robust simulation according to the preCICE manual6.

For the Quasi Newton scheme, the following config section was used.
1 <acceleration:IQN-ILS>

2 <data name="apap_ext'" mesh="FEBioMesh"/>

3 <preconditioner type="residual-sum"/>

4 <filter type="QR2" limit="1e-3"/>

5 <initial-relaxation value="0.1"/>

6 <max-used-iterations value="100"/>

7 <time-windows-reused value="20"/>

8 </acceleration:IQN-ILS>

In order to see whether an explicit test case is a viable solution, we ran the benchmark case in
Section 6.3.2 and compared it to the implicit test case.

5https://precice.org/configuration-acceleration.html#constant-under-relaxation
6https://precice.org/configuration-acceleration.html#dynamic-aitken-under-relaxation

34

7 Results

All tests were performed on a 32 core AMD EPYC 7502P 2.5 GHZ server with 128 GB of DDR4
memory. FEBio version 3.2 with extensions from the ISD and libRoadRunner 2.2.0 were used.

7.1 Benchmarks

In this section, we look at the performance of both the proprietary and the preCICE coupling
approach for each benchmark case, followed by a summary and comparison of the results. In
order to see the influence of adding libRoadRunner to the simulation pipeline, FEBio was also run
standalone with just the macro model and its simulation times were included in the results.

7.1.1 Simulation accuracy

We compared the simulation results for each simulation between the preCICE coupling, the
proprietary coupling and the standalone simulation. We extracted the result data by opening the
simulation results in FEBioStudio, selecting all elements and exporting the data. This export is done
by creating a graph, selecting the effective solute concentration TPM(apap) and then saving the
graph. We then calculated the distance between both exported data sets with Equation (6.1). The
calculation resulted in the value 0 for all benchmark pairs. Our investigation showed that the FEBio
graph export facility only outputs numbers with a precision of 10−9, which is not precise enough
for our simulation results. Thus, a conclusive comparison was not possible as FEBio lacks an
output format like vtk. Under these circumstances, the test cases only deal with simulation solving
times.

35

7 Results

7.1.2 Benchmark liver lobule

Figure 7.1: Simulation time for each scenario

Running the test case resulted in the following solution times.

test case solving time in seconds
standalone 7
proprietary 321
preCICE 182

preCICE with MPI and 32 cores 27

36

7.1 Benchmarks

7.1.3 Benchmark liver lobule inflow

Figure 7.2: Simulation time for each scenario

Running the test case resulted in the following solution times.

test case solving time in seconds
standalone 3
proprietary 368
preCICE 1212

preCICE with MPI and 32 cores 130

37

7 Results

7.1.4 Benchmark group tpm

Figure 7.3: Simulation time for each scenario

test case solving time in seconds
standalone 9
proprietary failed
preCICE 562

preCICE with MPI and 32 cores 63

38

7.1 Benchmarks

7.1.5 MPI

Figure 7.4: Simulation time with a varying number of cores for MPI
The benchmark case group tpm failed when only 1 core was used.

To analyze the performance improvements of adding MPI capabilities, to the preCICE coupling
approach we measured the execution times for different numbers of cpu cores. As can be seen in
Figure 7.4, the simulation time decreases for each benchmark case with the increasing number of
cores. The benchmark_group_tpm case with just one core produced stack traces with memory
errors, seemingly originating from the libRoadRunner framework. As the same happened with the
proprietary coupling, the only way to solve this benchmark case was with the preCICE MPI setup.
The memory errors seemed to be originating from the libRoadRunner framework.

7.1.6 Summary

Our experiments show similar results for both coupling approaches, but faster simulation times for
the preCICE coupling. The test case Section 7.1.3 is slower with the preCICE setup on a single core,
but this is caused by the convergence measurement, which runs a step multiple times if necessary.
The group tpm benchmark in Section 7.1.4 only shows results for the preCICE coupling, as the
proprietary coupling execution fails with a memory error.

39

7 Results

This demonstrated that the preCICE coupling using the FEBio-preCICE adapter is faster and more
reliable.

7.2 Acceleration schemes

All acceleration schemes produced the same results and similar solving times than cases without an
acceleration scheme. Presumably, this is because the cell contribution to the overall simulation is
too small (< 1012).

7.3 explicit and implicit coupling

The explicit coupling produces the same results as an implicit test case, but does so in a considerably
shorter run time of only around 15 seconds, compared to the 130 seconds needed to run the implicit
test case.

7.4 Memory usage and performance

Analyzing the memory usage displayed in Figure 7.5 showed that the proprietary coupling performed
a lot better than the preCICE approach (2,3GB vs 9,8GB). Further research showed an increasing
memory footprint over time for the preCICE micro manager which hints at a memory leakage
somewhere either in the micro manager, micro simulation or in the libRoadRunner Python
bindings.

Figure 7.5: Memory usage for the benchmark lobule case

40

7.4 Memory usage and performance

While looking at the memory usage, the resulting flamegraph (c.f. Figure 7.6) also shows that the
cell simulations spent most of their time in the libRoadRunner bindings. This shows that the micro
manager and preCICE overhead for the simulation is negligible.

Flame Graph Search

libsbml::SBMLReader::re..libsbml::Model::writeElements(libsbml::XMLOutputSt..

libsbml:..

_PyObject_Call_Prepend

_PyEval_EvalFrameDefault
_PyObject_MakeTpCall

_PyObject_MakeTpCall

readSBMLFromString

xm..

li..

_PyEval_EvalCode

function_code_fastcall

run_mod

_PyEval_EvalFrameDefault

li..libsbml::SBa..

_PyFunction_Vectorcall

libs..

cfunction_call

libsbml::Unit.. libsbml::SBase::read(lib..

libsbml::SBase::re..

_pickle_dumps

_Pickle_FastCall

dump

PyObject_Call

libsbml::SBase::write(libsbml::XMLOutputStream&) const

libsbm..

xm..

libs..

function_code_fastcall

_PyEval_EvalFrameDefault slot_tp_init

libsbml::SBase::read..

type_call

l..

l..

_PyEval_EvalFrameDefault

_PyEval_EvalCode

method_vectorcall
type_call

libsbml::SBase::write(libsbml::XMLOutputStream&) ..

libs..

Py_BytesMain

xm..

libsbml::SBase::read(..

libsbm..

libsb..

_PyEval_EvalFrameDefault

_PyEval_EvalCode

cfunction_vectorcall_FASTCALL_KEYWORDS

_PyEval_EvalFrameDefault

_wrap_new_RoadRunner__SWIG_1.constprop.0

libsbml::SBMLReader::re..

Py_RunMain

_PyFunction_Vectorcall

_wrap_RoadRunner_loadStateS

libsbml::SBMLReader::re..

_PyEval_EvalFrameDefault

method_vectorcall

PyObject_Call

_PyObject_Call_Prepend

libsbml::S..

l..

_wrap_RoadRunner_saveStateS

slot_tp_init

li..

xm..

libsbml::SBa..

_PyEval_EvalFrameDefault

cfunction_call

libsbml..
libs..

__libc_start_call_main

_wrap_new_RoadRunner

object___reduce_ex__

_PyEval_EvalCode

li..

_PyEval_EvalFrameDefault

__libc_start_main_impl

l..l..

libsbml::ListOf::writeElements(libsbml::XMLOutp..

_PyFunction_Vectorcall

libs..

li..

l..

cfunction_vectorcall_O

l..

libsbm..

l..

l..

libsbml::SBase::write(libsbml::XMLOutputStream&..

_PyFunction_Vectorcall_pickle_loads

function_code_fastcall

li..

libsbml::SBase::read(..

_PyObject_MakeTpCall

_PyEval_EvalFrameDefault

l..

m..

libsbml::SBase::read(libs..

li..

_PyEval_EvalFrameDefault

PyEval_EvalCode

l..
libs..

libsbml::SBase::read(l..

li..

f..

PyRun_SimpleFileExFlags.localalias

_PyEval_EvalCode

libsbml::SBMLReader::readIn..

method_vectorcall

libsbml::SBase::read..

save.constprop.0

_PyEval_EvalCode

libsbml::SBase::write(libsbml::XMLOutputStream&) co..

load

l..

rr::SBMLReader::read(std::__cxx11::b..

function_code_fastcall
load_build.isra.0

rr::RoadRunner::saveStateS[abi:cxx11](char)

rr::RoadRunner::loadStateS(s..

li..

libsbml:..

cfunction_call

method_vectorcall

libsbml::SBase::toSBML()

lib..

function_code_fastcall

l..

_..

_PyEval_EvalFrameDefault

l..

li..

rr::RoadRunner::load(std::__cxx11::basic_string<> const&, rr::Di..

libsbml::SBase::re..

rr::RoadRunner::RoadRunner(std::__cxx11::basic_string<> const&, ..

_PyFunction_Vectorcall

_start

libsbm..

libsbml::SBMLDocument::writeElements(libsbml::XMLOu..

libsbml::SBase::..

_PyFunction_Vectorcall

libsbml::SBa..libs..

_PyEval_EvalCode

_Pickle_FastCall

Figure 7.6: Call graph of a micro manager instance during a simulation run. The Y axis represents
the call stack at a specific time X.

41

8 Conclusion and Outlook

We set out to develop a FEBio-preCICE adapter to investigate whether such a coupling would prove
to be superior to the existing proprietary coupling. We achieved that goal by demonstrating that
both coupling produce similar results, that solving times using the adapter are faster and that with
the preCICE library we allow for parallelization of the micro scale simulation.

In this chapter, we discuss in detail the advantages of the preCICE coupling approach and outline
future work. The chapter is split into three sections, the first considers simulation improvements,
where we discuss advantages gained for the simulation process and pipeline. The second section
then deals with advantages that directly affect the development process. Lastly, we finish this chapter
by discussing future work.

8.1 Simulation Improvements

8.1.1 Full Body Model

It is a necessity and important step to further extend the liver simulation model to include the effects
of other organs in the human body. This could be done by adding a sbml model that bundles all
contributions from other organs and interfaces with the liver macro scale simulation. Using the
preCICE approach, adding such a model would be an easy task, as it would only be another coupling
partner that needs to be added in the xml configuration file. In order to use the proprietary coupling
for this, it would be required to write additional C++ code in a huge work effort, compared to the
preCICE solution.

8.1.2 Distributed resources

Another direct advantage of the preCICE coupling are the parallelization capabilities, which we
already demonstrated in this work. To implement the same feature set into the proprietary coupling
would require months of work and even then would not be as flexible and tested as the preCICE
solution.

8.2 Development Process Improvements

To estimate the improvements and work hours saved for the development process, one has to focus
on the advantages and disadvantages that each approach supplies. The proprietary approach is really
flexible and new features can modify every aspect of the simulation as one is not bound to plugin
system capabilities or the limits of the preCICE library. These advantages are negligible compared

43

8 Conclusion and Outlook

to the disadvantages of this approach. As the proprietary coupling approach is split from the FEBio
toolkit on version 3.2 and the git history was not kept, correctly integrating upstream updates will
lead to massive amounts of work. Further, this approach is completely implemented in C++ and is
deeply integrated with the FEBio toolkit. As such, new developers need to be familiar with the
FEBio architecture and have prior experience on how to extend existing C++ frameworks, which is
a difficult skill to find. On top of that, this approach leads to more lines of code being written that
need to be maintained by a small PhD team that wants to focus on improving the liver simulation
model, instead of fixing memory leaks.

The preCICE coupling approach is not without disadvantages, as it adds another framework to the
simulation stack that could cause problems and that developers need to be familiar with to diagnose
errors. But the advantages outweigh that drawback in that most users would only need to be familiar
with the preCICE framework and their excellent documentation and could depend on the active
community for support. Further, the preCICE coupling allows for easily adding new coupling
partners. Updates to the FEBio toolkit would just require installing the new version, instead of
painfully managing the whole compilation process that the proprietary coupling requires. Should
the plugin interface of FEBio change, adaptation to the FEBio-preCICE adapter would be needed,
but as this is an open source project, one could benefit from potential external contributors.

Outlook

As the FEBio-preCICE adapter has only been tested against the existing proprietary coupling, the
first order of business should be extending the test cases to ensure the adapter works reliably. The
adapter could also be extended to allow for more configuration options, e.g passing constant values,
instead of always extracting data via reflected function calls or variable access.

Another interesting test case for the adapter would be to use multiple liver lobule simulations and
couple these via preCICE to allow for a distributed FEBio simulation setup.

Officially releasing the FEBio-preCICE adapter as open source software would benefit this work
immensely, as the support of the adapter plugin would shift to the preCICE project.

44

Bibliography

[BLG+16] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev,
B. Uekermann. “preCICE – A fully parallel library for multi-physics surface coupling”.
In: Computers and Fluids 141 (2016). Advances in Fluid-Structure Interaction,
pp. 250–258. issn: 0045-7930. doi: https://doi.org/10.1016/j.compfluid.2016.04.
003. url: http://www.sciencedirect.com/science/article/pii/S0045793016300974
(cit. on pp. 9, 19).

[Com20] T. G. A. for Computational Mechanic. GACM-Report Qualiperf 2020. 2020. url:
https://livermetabolism.com/paper/GACM-Report_Qualiperf2020.pdf (cit. on pp. 9,
16).

[Des22] I. Desai. preCICE Micro Manager. https://github.com/precice/micro-manager.
2022 (cit. on p. 20).

[Ehl96] Ehlers. “Grundlegende Konzepte in der Theorie Poröser Medien”. In: Technische
Mechanik (1996) (cit. on p. 12).

[GLDS96] W. Gropp, E. Lusk, N. Doss, A. Skjellum. “A high-performance, portable imple-
mentation of the MPI message passing interface standard”. In: Parallel Computing
22.6 (1996), pp. 789–828. issn: 0167-8191. doi: https://doi.org/10.1016/0167-
8191(96)00024-5. url: https://www.sciencedirect.com/science/article/pii/
0167819196000245 (cit. on p. 20).

[HFSB01] M. Hucka, A. Finney, H. Sauro, H. Bolouri. “Systems Biology Markup Language
(SBML) Level 1: Structures and Facilities for Basic Model Definitions”. In: (Mar.
2001) (cit. on pp. 9, 13).

[LWWR17] L. Lambers, N. Waschinsky, D. Werner, T. Ricken. “A Multi-scale and Multi-phase
Model for the Description of Toxicity caused by Paracetamol in Biological Tissue
using the Example of the Human Liver”. In: PAMM 17.1 (2017), pp. 199–200. doi:
https://doi.org/10.1002/pamm.201710069. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/pamm.201710069. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/pamm.201710069 (cit. on p. 31).

[MEAW12] S. Maas, B. Ellis, G. Ateshian, J. Weiss. “FEBio: Finite Elements for Biomechanics”.
In: Journal of biomechanical engineering 134 (Jan. 2012), p. 011005. doi: 10.1115/
1.4005694 (cit. on p. 20).

[MEAW22] S. Maas, B. Ellis, G. Ateshian, J. Weiss. FEBio Documentation. https://help.
febio.org/. 2022 (cit. on p. 24).

[MLAW18] S. A. Maas, S. A. LaBelle, G. A. Ateshian, J. A. Weiss. “A Plugin Framework for
Extending the Simulation Capabilities of FEBio”. In: Biophysical Journal 115.9
(2018), pp. 1630–1637. issn: 0006-3495. doi: https://doi.org/10.1016/j.

bpj.2018.09.016. url: https://www.sciencedirect.com/science/article/pii/
S0006349518310695 (cit. on p. 21).

45

https://doi.org/https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/https://doi.org/10.1016/j.compfluid.2016.04.003
http://www.sciencedirect.com/science/article/pii/S0045793016300974
https://livermetabolism.com/paper/GACM-Report_Qualiperf2020.pdf
https://github.com/precice/micro-manager
https://doi.org/https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/https://doi.org/10.1016/0167-8191(96)00024-5
https://www.sciencedirect.com/science/article/pii/0167819196000245
https://www.sciencedirect.com/science/article/pii/0167819196000245
https://doi.org/https://doi.org/10.1002/pamm.201710069
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201710069
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201710069
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201710069
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201710069
https://doi.org/10.1115/1.4005694
https://doi.org/10.1115/1.4005694
https://help.febio.org/
https://help.febio.org/
https://doi.org/https://doi.org/10.1016/j.bpj.2018.09.016
https://doi.org/https://doi.org/10.1016/j.bpj.2018.09.016
https://www.sciencedirect.com/science/article/pii/S0006349518310695
https://www.sciencedirect.com/science/article/pii/S0006349518310695

[RDD10] T. Ricken, U. Dahmen, O. Dirsch. “A biphasic model for sinusoidal liver perfu-
sion remodeling after outflow obstruction”. In: Biomechanics and modeling in
mechanobiology (Jan. 2010). doi: 10.1007/s10237-009-0186-x (cit. on p. 31).

[RK15] J. Renz, M. Kinkhabwala. “Surgical Anatomy of the Liver”. English (US). In:
Transplantation of the Liver: Third Edition. Elsevier Inc., Jan. 2015, pp. 23–39. isbn:
9780323396936. doi: 10.1016/B978-1-4557-0268-8.00002-6 (cit. on p. 11).

[RL19] T. Ricken, L. Lambers. “On computational approaches of liver lobule function
and perfusion simulation”. In: GAMM-Mitteilungen 42.4 (2019), e201900016. doi:
https://doi.org/10.1002/gamm.201900016. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/gamm.201900016. url: https://onlinelibrary.wiley.com/
doi/abs/10.1002/gamm.201900016 (cit. on p. 9).

[RTT22] RTTR. rttr. [Online; accessed July 21, 2022]. 2022. url: https://github.com/
rttrorg/rttr (cit. on p. 27).

[RWH+14] T. Ricken, D. Werner, H. Holzhütter, M. König, U. Dahmen, O. Dirsch. “Modeling
function–perfusion behavior in liver lobules including tissue, blood, glucose, lactate
and glycogen by use of a coupled two-scale PDE–ODE approach”. In: Biomechanics
and modeling in mechanobiology (Sept. 2014). doi: 10.1007/s10237-014-0619-z
(cit. on pp. 3, 9, 12, 15, 16, 31).

[SBG+15] E. T. Somogyi, J.-M. Bouteiller, J. A. Glazier, M. König, J. K. Medley, M. H. Swat,
H. M. Sauro. “libRoadRunner: a high performance SBML simulation and analysis
library”. In: Bioinformatics 31.20 (June 2015), pp. 3315–3321. issn: 1367-4803.
doi: 10 . 1093 / bioinformatics / btv363. eprint: https : / / academic . oup . com /

bioinformatics/article-pdf/31/20/3315/17087875/btv363.pdf. url: https:
//doi.org/10.1093/bioinformatics/btv363 (cit. on p. 21).

[Wik22a] Wikipedia, the free encyclopedia. Liver loves. [Online; accessed July 21, 2022]. 2022.
url: https://en.wikipedia.org/wiki/File:Liver_04_Couinaud_classification.
svg (cit. on p. 11).

[Wik22b] Wikipedia, the free encyclopedia. Liver structure. [Online; accessed July 21, 2022].
2022. url: https://en.wikipedia.org/wiki/Lobes_of_liver#/media/File:

Liver_and_nearby_organs.jpg (cit. on p. 11).

All links were last followed on July 30, 2022.

https://doi.org/10.1007/s10237-009-0186-x
https://doi.org/10.1016/B978-1-4557-0268-8.00002-6
https://doi.org/https://doi.org/10.1002/gamm.201900016
https://onlinelibrary.wiley.com/doi/pdf/10.1002/gamm.201900016
https://onlinelibrary.wiley.com/doi/pdf/10.1002/gamm.201900016
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201900016
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201900016
https://github.com/rttrorg/rttr
https://github.com/rttrorg/rttr
https://doi.org/10.1007/s10237-014-0619-z
https://doi.org/10.1093/bioinformatics/btv363
https://academic.oup.com/bioinformatics/article-pdf/31/20/3315/17087875/btv363.pdf
https://academic.oup.com/bioinformatics/article-pdf/31/20/3315/17087875/btv363.pdf
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btv363
https://en.wikipedia.org/wiki/File:Liver_04_Couinaud_classification.svg
https://en.wikipedia.org/wiki/File:Liver_04_Couinaud_classification.svg
https://en.wikipedia.org/wiki/Lobes_of_liver#/media/File:Liver_and_nearby_organs.jpg
https://en.wikipedia.org/wiki/Lobes_of_liver#/media/File:Liver_and_nearby_organs.jpg

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Fundamentals of the Human Liver
	2.1 Liver Anatomy
	2.2 Simulating a Human Liver
	2.3 System Biological Markup Language

	3 Models
	3.1 Liver Model
	3.2 Paracetamol Metabolism Cell Model

	4 Software Tools
	4.1 preCICE
	4.2 MPI
	4.3 FEBio
	4.4 libRoadRunner

	5 Implementation FEBio-preCICE adapter
	5.1 Objectives
	5.2 FEBio Internals
	5.3 Proposed solution and challenges
	5.4 Configuration

	6 Methods
	6.1 Coupling approaches
	6.2 Analysing the performance of both couplings
	6.3 Benchmark cases
	6.4 Coupling

	7 Results
	7.1 Benchmarks
	7.2 Acceleration schemes
	7.3 explicit and implicit coupling
	7.4 Memory usage and performance

	8 Conclusion and Outlook
	8.1 Simulation Improvements
	8.2 Development Process Improvements

	Bibliography

