
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Processor Frequency Sweet Spot
Prediction based on

Dynamic Code Analysis

Tobias Schiffmann

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Dirk Pflüger

Supervisor: Dr. Christian Simmendinger,
Raphael Leiteritz, M.Sc.
Gregor Daiß, M.Sc.

Commenced: September 29, 2021

Completed: March 29, 2022

Abstract

Supercomputing centers are tackling sustainability for years. Their systems consume a huge amount
of electrical power and reducing the consumption only by a couple of percents can have a significant
impact on running costs. Currently, the research for energy optimization techniques is in progress
and there are promising techniques. However, there is a lack of regression based models which
predict the energy-optimal power cap.

In this work two machine learning models are created to predict these values. These models are
a random forest regression and a neural network. They are trained using a created dataset which
contains values taken from processor counters. The models are optimized during this work and
finally used in an experiment to set power caps during a benchmark execution.

The experiment findings show a first trend of energy savings and performance loss for different
power capping methods. Executions that use power caps predicted by the regression models are
able to save energy. These saving are about 8% for a benchmark while the impact on performance
is a loss of about 2%.

3

Acknowledgement

I’d like to thank M.Sc. Thomas Gruber — one of LIKWID’s developers. During the event set
creation process I kept in contact with him. He helped me to select the events and their placements
on the performance counters.

Thanks a lot to everybody who read this work and provided feedback. I am really grateful that you
took the time to support me at writing.

And a great thanks to my supervisors and examiner who made this work possible.

5

Contents

1 Introduction 17
1.1 Motivation . 17
1.2 Goals and Scope . 17
1.3 Structure of Work . 18

2 Related Work 19
2.1 Power Metering . 19
2.2 Power Capping . 20
2.3 Further Material . 22

3 Prerequisites 25
3.1 Regression . 25
3.2 Random Forest . 25
3.3 Artificial Neural Networks . 26
3.4 Tools and Frameworks . 30

4 Data Collection 33
4.1 Design . 33
4.2 Benchmarks . 34
4.3 Performance Counters . 36
4.4 Environments . 38
4.5 Implementation . 38

5 Machine Learning Models 41
5.1 Random Forest Regression . 41
5.2 Neural Network . 43

6 Optimization 45
6.1 Data Analysis . 45
6.2 Regularization . 49

7 Experiment 55
7.1 Design . 55
7.2 Results . 57

8 Conclusion 61
8.1 Summary . 61
8.2 Conclusion . 61
8.3 Future Work . 62

7

Bibliography 63

A Event Sets 69

B Cluster Diagrams 71

C Experiment Results Diagrams 73

8

List of Figures

2.1 Job energy consumption at different processor speeds [ISG07] 20
2.2 Global Extensible Open Power Manager (GEOPM) Tree Structure [ESC+17] . . 23

3.1 Example Decision Tree . 26
3.2 Detailed View of Neuron [SS15] . 27
3.3 ReLU Function . 27
3.4 Architecture of Artificial Neural Network [Nie15] 28
3.5 Tune’s Key Concept [Ray22] . 31

4.1 Data Collection Process . 33
4.2 Car Air Flow CFD Example [Gre16] . 35
4.3 Example Problem for NS3Dneo [Bab09] . 36
4.4 Data Preprocessing Implementation . 39

5.1 Results for Random Forest Regression . 42
5.2 Architecture of Created Neural Network . 43
5.3 Results for Neural Network Regression . 44

6.1 Target Variables for Different Benchmarks on Different Nodes 45
6.2 Illustration of DBSCAN [SSE+17] . 46
6.3 Clustering of Benchmark Interval Characteristics 47
6.4 Clusters of Normalized Benchmark Data . 49
6.5 MAE for Different Hyperparameters of Random Forest 50
6.6 Sigmoid Function [Wei22] . 51
6.7 Mean Absolute Error of Different Data Transformation Methods 52

7.1 Experiment Design . 55
7.2 Power Graphs of FT Benchmark . 58

B.1 Benchmark-Cluster Sankey Diagram . 71

C.1 Power Graphs of BT Benchmark . 73
C.2 Power Graphs of LU Benchmark . 73
C.3 Power Graphs of SP Benchmark . 74
C.4 Power Graphs of Ember Benchmark . 74
C.5 Power Graphs of OpenFOAM Benchmark . 75

9

List of Tables

4.1 Event Sets Used in Data Collection . 37
4.2 Test Environment . 38
4.3 Number of Data Points Collected . 39

5.1 Parameter Grid and Parameters for GridSearch 41

6.1 Number of Data Points per Time Interval Configuration 48
6.2 Hyperparameter Configuration . 53
6.3 Best Hyperparameter Configurations . 54

7.1 Models used in Experiment . 56
7.2 Validation and Testing Error . 57
7.3 Experiment Environment . 57
7.4 Power Consumption & Execution Time of Benchmarks with Interval Time of 15s 58

11

List of Listings

4.1 likwid-perfctr Example . 38

6.1 Ray Tune Hyperparameter Configuration . 53
6.2 Asynchronous Successive Halving Algorithm (ASHA) Scheduler Instantiation . . 54

13

Acronyms

ASHA Asynchronous Successive Halving Algorithm. 13

BDPO Bull Dynamic Power Optimizer. 23

CFD Computational Fluid Dynamics. 9, 35

CPMC Cache L3 Performance Monitoring Counters. 36

CPU Central Processing Unit. 17

CSV Comma-Separated Values. 38

DFC Data Fabric Counters. 36

DNN Deep Neural Network. 29

DVFS Dynamic Voltage and Frequency Scaling. 17

ECP Exascale Computing Project. 34

ELM Extreme Learning Machine. 28

FIXC Fixed Purpose Counters. 36

GEOPM Global Extensible Open Power Manager. 9

HLRS Höchstleistungsrechenzentrum Stuttgart. 34

HPC High Performance Computing. 17

HSMP Host System Management Port. 19

LIKWID Like I Know What I’m Doing. 24

MPI Message Passing Interface. 35

MSR model-specific register. 19

NPB NAS Parallel Benchmarks. 34

PMC Performance Monitoring Counters. 36

RAPL Running Average Power Limit. 19

REST Runtime Energy Saving Technology. 22

15

1 Introduction

Sustainability is growing in importance nowadays not only in society. Supercomputing centers also
have been tackling this topic for decades as this paper shows [FC07]. Several efforts are conducted to
motivate improvements in supercomputing in this area, for example the Green500 list. It is a ranking
of the most energy efficient supercomputers. [SDSM21] These supercomputers are consuming a
huge amount of electrical powers. Reducing the consumption only by a couple of percents can have
a significant impact on running costs. The Hawk supercomputer, ranked 66 in the Green500 list
for instance, consumes about 34 GWh in a year. To put this number in scale, a single household in
Germany consumed about 3,113 kWh in 2018 according to [Bun20].

1.1 Motivation

Currently, the research for energy optimization techniques is in progress and there are existing
promising techniques. A lot of them are using Dynamic Voltage and Frequency Scaling (DVFS)
which adapts a Central Processing Unit (CPU)’s frequency to reduce or increase its performance and
energy consumption. Some of these approaches are using machine learning to detect application
phases in which DVFS is suitable. They mainly differentiate between memory and compute bound
phases. In memory bound phases the application workload does not depend on the CPU and therefore
its frequency can be reduced to save energy without significant impact on overall performance.
During compute bound phases the processor’s frequency should be high to have the necessary
performance to conduct the workload. However, these solutions have the drawback of only two
options and in nearly all cases the system administrator has to know which value to put the CPU’s
frequency to. There exists a lack of regression based models which predict the energy-optimal
power cap.

1.2 Goals and Scope

The scope of this work is to create two regression based models that predict the energy-optimal
processor frequency for a given workload. These models shall conduct this prediction during an
application’s run time. Both models are compared with each other. Additionally, the system’s
performance is evaluated if fixed system power limits are set.

The models’ shall predict power caps for High Performance Computing (HPC) systems which tackle
high amounts of workload. Therefore, the aim is to save energy while not reducing the compute
power of a system. The power caps shall be place on the optimal power value which is based on
instructions per Watt.

17

1 Introduction

1.3 Structure of Work

In order to create these regression models the current state of literature is explained in the next
chapter. Additionally, other work closely related to this work is presented. Chapter 3 explains
the machine learning methods used. Furthermore, it introduces the tools and frameworks that are
necessary for the implementation. The process of data collection and forming the data foundation is
explained in Chapter 4. Afterwards in Chapter 5 first implementations and results of the machine
learning models are presented and evaluated. Based on these findings the models are optimized in
Chapter 6 and used in Chapter 7 to conduct a real system experiment. Different workloads are run
for which the systems’ power caps are predicted and adjusted on each node. Finally, a conclusion is
drawn, findings discussed, and insights about future work is given.

18

2 Related Work

This chapter introduces other work and material concerning power metering and limiting. Similar
work will be presented and differentiated to this thesis.

2.1 Power Metering

In current literature three popular approaches are known to measure energy consumption of applica-
tions. Firstly, physical measurement using external power meters. To do so additional hardware
devices are put between the system and the external power supply. This method is the most accurate
and is considered as ground truth in other papers. Secondly, processor vendors install on-chip power
sensors on their CPUs which can be used to meter the power consumption. These sensors write
their data in special hardware counters which can be read by software. Finally, energy predictive
models simulate the energy consumption of an application. These models are based on theoretical
energy models and require application specific parameters to predict the consumption of an entire
application or only a time interval. [FSML19] [SFML21] [RRS+14]

As different processing unit vendors offer different on-chip power sensors, the approach to access
them differs as well. The two main vendors, namely Intel and AMD, both offer different interfaces
to access their power hardware counters.

Running Average Power Limit (RAPL) is the name of Intel’s interface which provides mechanisms
for various power related tasks. The interface allows system administrators to meter the current power
of the CPU or to enforce power limits. It uses non-architectural model-specific registers (MSRs)
which are registers used for debugging, performance monitoring or execution tracing. [Int21b]

Host System Management Port (HSMP) is the interface provided by AMD. HSMP offers access
to system management functions like reading processor power or writing processor power limits.
To do so, values can be set or read in so-called mailbox registers on the CPU by software running
on the system. [Adv21]

Taking a look at current literature, it can be seen that some concerns are raised regarding the accuracy
of on-chip power sensors. The authors of [RRS+14] claim that RAPL is close enough to physical
measurements to use its power values for power metering. Other work, e.g. [FSML19], shows that
for some applications it cannot capture the holistic picture of dynamic power consumption. The
authors do not recommend the use of these sensors. However, to be more precise, they divided the
applications in three classes regarding the accuracy of the on-chip power sensors to meter their
power consumption. One class contains applications RAPL was able to measure precisely most of
the time. For another class RAPL’s values needed some calibration to be precise. The last class of

19

2 Related Work

applications consisted of ones whose consumption pattern could not be followed by RAPL. The
authors explain the existence of the last class by the increasing complexity in modern multicore
CPUs concerning shared resources like cache. However, they claim the power values by RAPL to
be deterministic and reproducible. They are therefore applicable to be used as parameters in energy
predictive models.

In this thesis the use of on-chip power sensors is chosen as power metering option. Although they
seem to have flaws regarding their accuracy, their results are deterministic and suitable as model
parameters. Furthermore, one of their biggest advantages is that they are state-of-the-art and present
in nearly all modern processors. On-chip power sensors do not have to be installed like external
power meters would have to be for the test environments or in production later on.

2.2 Power Capping

Power capping describes the process of configuring the CPU to never exceed a defined power limit.
As described in the previous Section 2.1, hardware vendors offer interfaces to set power limits
by software. Modern microprocessors have different power management states that can be set or
adjusted by these interfaces. These are throttle states (T-states), idle states (C-states), sleep states
(S-states) and performance states (P-states). Latter are used by RAPL and HSMP as they define the
amount of voltage the CPU is allowed to use during workload. [Int21b]

However, limiting the electrical power consumption of processing units comes with the price of
reduced compute power. Application executions need more time to finish and the overall computation
throughput is reduced. Therefore, reducing the processor power consumption may not always result
in energy savings. Used energy for an application to execute can be described by a convex function
with a global minimum.

%(B) = %10B4 (C) + %F>A: (C), C =
F>A:;>03

B

Where B is a processor’s speed and C is the time the processor needs to execute the workload.
Execution time C thereby equals the amount of workload divided by the processor speed. The
minimum of %(B) is the critical speed or frequency sweet spot in which the processor consumes the
least amount of energy during execution.

Figure 2.1: Job energy consumption at different processor speeds [ISG07]

20

2.2 Power Capping

Figure 2.1 illustrates the energy consumption function at different processor speeds. The total areas
of these bars are the amount of consumed energy. Base energy is marked with gray and is constantly
consumed at the same amount %(0). Differences can be seen in the bars’ areas as an increased
speed means a shorter execution time as well as a higher peak value of power consumption. Due to
the convex nature of %(B) the bar of %(2) shows the smallest area and can be seen as the critical
speed here. [ISG07]

Another important aspect of power capping are distributed parallel applications. They run on several
nodes simultaneously and slowing down single nodes has to be done carefully. The slowdown may
propagate to other nodes due to communication and synchronization used in distributed programs.
Thereby, the overall performance of the system decreases, and unnecessary waiting nodes are
wasting energy. [TLP+13]

Dynamic Voltage and Frequency Scaling (DVFS)

DVFS is special form of power capping. It is an effective method already implemented in modern
microprocessors. Here, the power caps are set during run time by DVFS controllers. Several
scientific literature about this topic does exist and resulting performance loss is handled differently
depending on the requirements of the compute system. [ISG07] [KCCC08] [GBI21]

In [WCC14] the authors present a DVFS system designed for cloud datacenters. Here, the main
goals besides energy consumption reduction are better resource utilization as well as the compliance
with service level agreements. Cloud datacenters can contain large numbers of heterogeneous
servers with different hardware. Therefore, each node has to be evaluated differently.

Reliability in task execution plays an important role in [CKMC21]. According to the authors, DVFS
reduces a system’s reliability as transient fault rates are higher at low frequency levels. An approach
is introduced to combine DVFS with techniques to ensure correct execution of tasks within their
deadlines. Task-level, processor-level, and system-level DVFS are considered.

DVFS is also used for chip temperature management. Most work regarding this topic takes action in
case the temperature exceeds a certain threshold. The DVFS controller then reduces the frequency
to cool down the processor. The approach of [PM21] aims to control processor activity and cooling
mechanisms with little impact on performance. Cooling phases during workload shall only be
executed if compulsory during runtime. Their approach aims to trigger cooling mechanisms prior
to workload execution to keep the impact on performance small.

As the work of this thesis shows, DVFS is also a field related to machine learning. Another work
which aims to combine these topics is [GBI21]. The authors introduce a regression model based on
workload characteristics to obtain the frequency sweet spot. They furthermore aim to maintain a
global power budget and enforce power constraints. Linear regression is chosen by the authors as it
is computational inexpensive and therefore results in little overhead during run time. Performance
monitoring counters gather instructions per cycle, power consumption, and operational frequency.
The models use these values as input parameters to define a voltage-frequency level. In contrast
to their paper, this work aims to gain further insights by collecting more performance monitoring
counters. Furthermore, different machine learning models are compared and evaluated.

21

2 Related Work

2.3 Further Material

This section presents frameworks, products and tools closely related to this thesis. Some of them
have goals that are close to the goal of this work. However, the approaches are always different. None
of the works shown here predicts the power cap sweet spot based on regression. Some frameworks
shown in this section may offer potential to improve the findings of this work. The references are
introduced in order of their publication dates.

The authors of [LTF+14] present a tool to detect application phases based on performance counters –
called Runtime Energy Saving Technology (REST). As described in 2.2 application phases can be
memory or compute bound and their work limits power differently according to their phase detection.
They use second level cache misses, number of CPU cycles and number of cycles spent waiting for
the superqueue to empty itself. A superqueue is a buffer for requests to the main memory. These
requests are conducted due to cache level two misses. Superqueues are present in each processor
core, according to [Int12].
REST uses a linear function to select one out of three processor frequencies. The lowest frequency
is for memory bound phases whereas the highest value is defined for compute bound phases. In
case the phase is neither memory nor compute bound the frequency to select depends on the overall
goal of the system. Hence, the method takes the lowest value if energy consumption shall be as low
as possible, or a different value in case REST shall work on low energy with high performance. A
great disadvantage of REST is that the exact values for these three frequencies have to be predefined
manually. It is therefore mainly a tool to conduct phase detection for an application.

The work presented in [TLP+13] is a tool to provide the sequence of frequencies of the lowest
energy consumption for a given application. It is called UtoPeak and profiles program executions
on all available CPU frequencies by gathering the number of executed instructions and measuring
consumed energy. Each phase of an application has to be profiled on every frequency level to gain
full insights. As lower CPU frequency lengthens the execution time, UtoPeak splits the application
in phases based on instructions and not based on time. This makes sure each phase contains the exact
amount of workload. These phase profiles are the foundation to create a sequence of frequencies
with the lowest energy consumption. Afterwards, the sequence is then validated with an actual run
in which the frequencies are set accordingly. UtoPeak’s precision in that work reaches an average of
96% and achieves good results compared to other DVFS based tools. However, UtoPeak was only
used on single node parallel applications in [TLP+13]. Furthermore, it is important to mention that
UtoPeak is only a tool to evaluate the potential of DVFS for an application. It is not able to adjust
the power consumption during run time, as it has to run the application several times in advance on
various frequencies.

FoREST-mn is presented in [HPGJ14] which is able to optimize the energy of parallel jobs running
on more than one node. This internode DVFS controller takes advantage of the low processor usage
of some program phases as well as communication to save more energy. The resulting slowdown
on programs is controlled and can have a user-defined threshold. Frequency decisions are taken
at run time and program phases are discovered without prior knowledge. However, FoREST-mn
can only save energy of iterative programs. These workloads are common in HPC and execute
tasks repetitively. This fact allows the controller to run different frequencies for each iteration and
determine which one is the power optimal one. In case the program behavior changes and no further

22

2.3 Further Material

iterations are executed, FoREST-mn has to determine the optimal frequency again. Each process is
individually controlled to select the suitable frequency for each task and node. Therefore, processes
that create slack time due to message emitting can be sped up to reduce the overall execution time.

Figure 2.2: GEOPM Tree Structure [ESC+17]

Another important work to mention
is Global Extensible Open Power
Manager (GEOPM) which is an
open source framework to explore
and optimize power usage of hetero-
geneous compute platforms. It works
as a tree-hierarchical runtime job-
level power manager. The framework
grants further insights in a job’s ap-
plication executions regrading energy
usage and can optimize distributed
applications by improving their en-
ergy efficiency. To do so it detects
MPI and OpenMP phases and aims
to reduce effects of work imbalance,
jitter, and hardware variation. Fur-
thermore, with GEOPM system ad-
ministrators are able to interact with
platform-agnostic interfaces to adjust
hardware settings manually. The key difference between other runtime power managers and GEOPM
is that the latter is designed for system scales ranging from rack-level to extreme-scale. It’s tree-
hierarchical structure allows fan-out communication while keeping the additional workload small.
A leaf controller is launched on each compute node during a job’s execution time. Some of these
controllers execute responsibilities of higher tree levels – the aggregator controllers. And finally,
one of the aggregator controllers is assigned to be the root controller of the tree. The overall thread
structure of GEOPM can be seen in figure 2.2. Lastly, this power manager offers the system job
scheduler mechanisms to optimize energy efficiency while not exceeding a scheduler-specified job
power budget. [GEO21] [ESC+17]
As it comes clear GEOPM mainly focuses on job power optimization. System-wide power is not
taken care of. Furthermore, this power manager’s abilities are limited to MPI and OpenMP programs,
which are the main used runtime frameworks in scientific computing.

The Bull Dynamic Power Optimizer (BDPO) is a very similar work to this paper and presented
in [Fra17] and [FM17]. The authors of the latter reach application optimization without source
code adjustments or pre-execution application profiling. No major performance minimization is
witnessed while saving energy by DVFS. BDPO tries to recognize compute behavior and detect
workload phases based on performance counters. The performance counters used in this work can
be found in appendix A. The authors’ selection is taken as baseline selection for this work and is
extended further to gain greater insights. The phases BDPO detects are CPU-bound, memory-bound
and balanced behavior. As mentioned in other work, the processor frequency can be decreased in
memory-bound phases to a certain degree without performance loss. In contrast, during computing
phases an increase of frequency directly increases the performance of a compute-system. At the
time of writing this work, BDPO is not able to define the optimal frequency on its own. Values for
these three phases have to be predefined manually.

23

2 Related Work

As mentioned previously, the goals of BDPO are very similar to the goals of this paper. Both
optimize applications without changes in source code and pre-execution analysis. However, the
work of this paper aims to be independent of application phases. The levels of optimal power shall
not only be defined by compute- or memory-bound phases. Each time interval of an application
shall be executed on the most optimal frequency level with a greater number of options.

Another source closely related to this work is [WKE+19]. The authors are using performance
counters collected by Like I Know What I’m Doing (LIKWID) to perform machine learning based
predictions — similar to this work. However, the work’s models predict how much the performance
of parallel applications is decreased by power caps. The authors evaluate different machine learning
algorithms ranging from clustering methods, over different types of tree based predictions, to neural
networks. As their work concentrates on parallel applications, they do not evaluate the performance
decrease of the whole application and concentrate only on parallel execution phases. Serial phases
are not of their interest.

Finally, when talking about power management frameworks Variorum has to be mentioned. It
is a vendor-neutral library which exposes interfaces for power monitoring and controlling. These
interfaces can be used by other software. Current state of Variorum is not yet production-ready
and the number of supported systems is limited. However, it offers great potential, as the calls for
power capping are independent of the hardware. They would call the corresponding method of the
Variorum interface which increases the flexibility of power management tools. [BBE+21]

In summary, the goals of this work differ to the current state of literature in the following points. This
work aims to conduct a regression based prediction of power cap sweet spots, instead of detecting
phases with pre-defined power caps. Power cap predictions shall be possible also for unknown
workload of any type. Therefore, machine learning models are trained to learn the relationship
between CPU behavior and sweet spot. Different types of regression based models are chosen for
this task.

24

3 Prerequisites

In this chapter machine learning concepts and models are clarified which are used in this work.
Random forests and neural networks are explained and methods to adjust these models for regression
problems are shown. Furthermore, tools and frameworks used in this work are introduced.

3.1 Regression

Regression is a machine learning method which learns relationships between inputs and a continuous
numerical output. Similar to other methods the model tries to represent a function 5 by learning
from training data and can thereby predict outputs for novel inputs. Function 5 can be represented
for regression models by 5 : R= → R<. The function takes an =-dimensional input and creates an
<-dimensional output of continuous values.

Regression is considered supervised learning as the data has to provide target variables to the model.
A commonly used category of regression is parametric regression. It assumes the function 5 is
well represented by a parameterized model. The model’s parameters have to be learned to fit the
training data best. [GBC16] [SS15]
Common examples for regression models are Locally Weighted Regression [AS95], Gaussian
Mixture Regression [HGCB08], and Support Vector Regression [Vap99].

The regression methods used in this thesis are using a random forest and an artificial neural network.
They are explained further in this section.

3.2 Random Forest

The initial idea of a random forest is a classifier consisting of a collection of classifiers Θ: . It
is called forest as the classifiers in the collection are decision trees. They are in depth presented
in [Bre01]. A random forest’s output for input G is the most popular output of all decision tree
classifiers ℎ(G,Θ:), : = 1, ... in the forest. The method is called random as the features for individual
classifiers are chosen to a certain degree randomly.

Decision trees consist of root and child nodes. These nodes are assigned with a data set’s features.
When predicting a single data point, one takes a look at the point’s values for these features.
Depending on these values, one walks down a path in the tree until reaching a leaf node. The leaf
contains the class label the data point is given then. An example decision tree and a prediction for a
data point can be seen in figure 3.1.

25

3 Prerequisites

Figure 3.1: Example Decision Tree

The authors of [Bre01] claim that the random forest method has various benefits. They are relatively
robust to outliers due to the majority vote. Furthermore, the algorithm is simple, can easily be
parallelized, and it can give further insights into the data. Internal estimates of error, decision
strength, correlation and variable importance can be analyzed. To do so, out-of-bag estimation can
be used which extracts some data sets from the training data. These data sets are not used during
the training process and predicted in a later step. The outcomes can be evaluated to retrieve the
previously mentioned metrics. More details can be found in [MS10].
Finally, random forests do not overfit when adding more trees. However, doing so creates an upper
bound for generalization error. This means that the prediction error on unknown data is limited.
This bound is influenced by the accuracy of individual classifiers and internal dependence between
the classifiers.

Random forests can be adjusted to conduct regression by using trees that output numerical values
instead of class labels. The predictor takes the average over the output values of individual classifiers.
Random feature selection increases the accuracy for regression.

3.3 Artificial Neural Networks

Artificial neural networks are machine learning models inspired by biological brains. However, they
are not designed as realistic models of brain functions. Fully trained, they represent mathematical
functions that are too complex to be created in advance, e.g. due to a high dimension input. These
networks learn an approximation of this function from data provided during their training process.
This learned function can later be executed on new unknown data. [GBC16]

Artificial neural networks contain several layers of neurons that are connected with each other.
These neurons can be activated individually depending on their inputs and forward their activation
to the next layer of neurons. A detailed illustration of such a neuron can be seen in Figure 3.2.
The output values of following neurons D1...D� are multiplied by so-called weights F 91...F 9� and
afterwards a bias 1 91...1 9� may be added. These results are summed up to I 9 and given to the
activation function k 9 . This function’s outcome is also the neuron’s outcome > 9 which is provided
to the following layer of neurons. [Sch20] [SS15]

26

3.3 Artificial Neural Networks

Figure 3.2: Detailed View of Neuron [SS15]

Figure 3.3: ReLU Function

An example of an activation function is the rectifier
linear unit or ReLU:

k(G) = <0G(G, 0)

It is the recommended function for neural networks.
As illustrated in Figure 3.3 the function consists
of two linear pieces. According to the authors of
[GBC16] the model therefore preserves benefits of
linear models. These are for instance, good general-
ization and easy optimization. [GBB11]

Training

During the training process of a neural network training data is processed by the network. The
output is evaluated by a cost function which provides insights of how big the difference between
the network’s output and the true label is. To minimize this error, weights of the neurons have to
be adapted by using the gradient descent method. One can say the network learns from the data.
The aim of training is to minimize the values of the cost function for all data points in the training
data set. However, as the network’s goal is to process unknown data sets, its performance is also
evaluated using a separate data set – the test set.

When trying to keep the error for the training data set small, it might be possible that the model
is no longer able to generalize. Meaning it cannot process new data points reliably which results
in overfitting. The opposite is to train the model not sufficiently. In this case even the model’s
outcome for the training data has a high error and the model is underfitted. One has to find a good
balance between a model’s performance on the training data and the test data. [GBC16]

Architecture

As introduced earlier neurons are usually arranged in layers. The architecture of a complete artificial
neural network starts with the input layer, as shown in Figure 3.4. On the other end there is an
output layer which provides the results of the neural network. Although in the example figure only

27

3 Prerequisites

one output neuron is seen, it can consist of more than just one neuron. Between these two layers,
there can be any arbitrary number of layers. They are called hidden layers as no direct outside
communication with their neurons is intended. [Nie15]

Figure 3.4: Architecture of Artificial Neural Network [Nie15]

All examples so far and all upcoming neural networks in this work send the output of neurons
to the neurons of the next layer. They forward their outcomes through the network, making it a
so-called feedforward neural network. However, it is possible to redirect outcomes of neurons to
previous layers to create recurrent neural networks. These are not used in this work as it increases
the complexity significantly.

3.3.1 Neural Network Regression

In [SS15] artificial neural networks are mentioned as a possible algorithm for regression. However,
several versions of them are explained. Some of them are listed in the following subsections.

Extreme Learning Machine (ELM)

The simplest version is the Extreme Learning Machine (ELM). It is a method to train single-hidden
layer feedforward network. Meaning, it does only have one hidden layer besides the input and output
layers. Furthermore, it is important to mention that Extreme Learning Machines (ELMs) are a
batch regression algorithm. Meaning, training examples are provided to the model all at once and
the model parameters are fixed afterwards. Doing so reduces the training time significantly. The
authors of [HZS06] state that an ELM has the potential to train a neural network thousands of times
faster than backpropagation. Its mathematical model looks like this:

#∑
8=1

V86(F8 ∗ G + 18) = >

Here, # is the number of hidden nodes and 6(G) the activation function. F8 is the weight vector
connecting input nodes and the hidden layer. And all 18 are the biases in this network. Whereas,
V8 is the weight vector connecting the hidden layer and the output layer. Finally, G are the input
samples and > the output values.

28

3.3 Artificial Neural Networks

The ELM algorithm only consists of three steps. First of all, random values are assigned to the
weights in F and biases in 1. Afterwards the hidden layer output matrix � is calculated using the
training samples. And lastly the output weights in V are computed to fit the training set. As this
method is not using gradients during training, it is resilient to local minima in error functions and
can be used for non-differentiable activation functions. [HZS06]

Backpropagation

The opposite of an ELM is the backpropagation method. Here, training is done incrementally by
updating the weights of the neural network using one training example at a time. Data sets create an
output and a value for the cost function. In backpropagation the resulting error flows backwards
through the network. This information can be used at each layer to compute the gradients which
are used to adjust the network’s weights and to minimize the cost function for this data point. A
gradient ∇ 5 is the partial derivative of a function 5 and shows how much and in which direction
parameters have to be adjusted to reach extreme points of function 5 . Weights can be adjusted using
gradient descent and a learning rate n :

F=4F = F>;3 − n ∗ ∇ 5

This computation is done at each layer and the weights can be computed in parallel as vectors. The
chain rule is used to propagate the error backwards through the complete network. Thereby, the
gradient of the cost function at each layer can be computed. [GBC16] [RHW86]

3.3.2 Deep Neural Network (DNN)

In contrast to ELMs, backpropagation can be used in multi-layer feedforward neural networks. The
authors of [SS15] state that using ELM only the final hidden layer’s weights can be trained. This
is due to the fact that these are the only weights linear with respect to the network’s output. A
multi-layer feedforward network is also called Deep Neural Network (DNN). Each layer can learn its
own representation of the data and may discover structures in large data sets. This deep architecture
of the network allows it to learn and represent more complex mathematical functions than single
layered networks could. [SS15] [Ben09] [LBH15]

Constructing a Deep Neural Network (DNN) involves many design choices. One has to choose
a cost function, an optimizer, the form of output, and the design for the hidden layers. The form
of output in this case is a numerical value as the DNN is used for regression in this work. For
the hidden layers several further options exist: the amount of layers, how the layers are connected,
their activation function, and each layer’s width. This part is an active research area and there is
no guiding theory yet. The authors of [GBC16] state that the design process consists of trial and
error. Different designs can be tested against a validation data set and the most promising can be
used. [GBC16]

29

3 Prerequisites

3.4 Tools and Frameworks

3.4.1 Like I Know What I’m Doing (LIKWID)

LIKWID offers a variety of tools for performance oriented programmers. It is developed at the
computing center in Erlangen and funded by the Federal Ministry of Education and Research of
Germany. LIKWID provides engineers insights and interfaces to CPUs produced by AMD and
Intel. For instance, using likwid-topology one can probe hardware thread and cache topology in
multi-socket nodes or likwid-pin enforces threads to execute on defined cores. [THW10]

likwid-perfctr

However, LIKWID’s only tool used in this work is likwid-perfctr. It grants insights into a CPU’s
performance counters. Performance counters count hardware events which are taking place on a
processor during code execution. This functionality is implemented directly in the hardware and
therefore results in no overhead. These counters allow engineers to know what is exactly happening
on a processor at the moment or during their program’s execution. likwid-perfctr contains various
modes to allow different types of measurements. For example, the wrapper mode measures only
hardware events that are related to an application’s execution. The mode used in this work is
the stethoscope mode. It allows to profile the complete performance counter for a defined time
interval. [THW10] [RTHW14]

The number and types of performance counters as well as for the hardware events differs from CPU
to CPU as they are closely related to hardware. A list of the available hardware events for the AMD
Zen2 architecture which is used in this work can be found in the appendix A. An example for how
likwid-perfctr is used can be seen in section 4.5 in listing 4.1.

3.4.2 scikit-learn

scikit-learn is a widely used Python module for machine learning. As an open source project it aims
to provide various machine learning algorithms on an easy-to-use basis. These algorithms can be
supervised or unsupervised and face tasks of classification, regression, and clustering.
Furthermore, scikit-learn offers a variety of tools that might be used in model evaluation and data
processing — for example feature extraction or cross validation. [PVG+11]

3.4.3 PyTorch

PyTorch is an open source library for tensor computation and deep learning. A tensor is a multidi-
mensional array which is utilized in neural network computations. They can be transferred to the
graphical processing unit by PyTorch to utilize its highly parallel and compute intensive architecture.
PyTorch offers a simple interface to work with neural networks in Python. A neural network can be
created in a few lines of code. [IPK21]

30

3.4 Tools and Frameworks

Different types of network layers and activation functions can be added to the network. All types of
layers and activation functions offered by PyTorch can be found in [Tor19a]. Furthermore, different
optimization functions for the neural network are provided by PyTorch which are used during the
training process. These can be found in [Tor19b].

3.4.4 Tune

Tune is an industry standard tool for distributed hyperparameter tuning maintained by the Ray team.
Hyperparameters are model variables that are defined before training a machine learning model.
They mainly consist of model architecture decisions. For instance, the number of tree classifiers in
a random forest is a hyperparameter.
Tune is simple to be integrated with PyTorch to be used on neural network models. It offers a simple
interface between training functions and hyperparameter search algorithms. The concept of Tune can
be seen in Figure 3.5. One defines a training function for the neural network which will be wrapped by
Tune’s trainable interface (Trainable API). This function will be executed by tune.run() with various
options for the models hyperparameters. The model is trained several times or even simultaneously
with different hyperparameter configurations. tune.run() furthermore allows us to log training
results, set training checkpoints, or utilize early stopping. In the last step — tune.Analysis — all
models are evaluated and the best hyperparameter setting is chosen. [Ray22] [LLN+18]

Figure 3.5: Tune’s Key Concept [Ray22]

Furthermore, Tune offers different searching algorithms. Ranging from basic ones like grid or ran-
dom search to more advanced algorithms. It converts the provided search space of hyperparameters
values to a format the search algorithm expects.
To increase the training’s process efficiency, Tune provides Trial Schedulers. They allow stopping or
tweak hyperparameter trainings. For example, in case a hyperparameter configuration is performing
badly compared to another one, the Trial Scheduler can terminate that training to save compute
resources and decrease the overall training time. [Ray22]

31

4 Data Collection

The goal of this work is to create machine learning models that are able to predict power caps based
on workload behavior. As a first step it is important to create a dataset that can be used to train the
machine learning models. It has to capture a workload’s behavior and contain a power cap target
variable.
This chapter presents how and what data is collected to characterize a workload. Additionally, it
shows how the energy-optimal power caps are defined. The data collection process is explained
and which type of data is collected. Furthermore, the benchmarks to collect the data from are
introduced.

4.1 Design

To characterize a workload, performance monitoring counters are collected as they keep track of
which tasks are conducted by the CPU. These counters are collected for a time interval C1 which is
called characterization phase. As the aim is to predict the optimal power cap for the follow-up
execution interval C2 instructions and power in Watt are measured during that phase. This follow-
up interval of length C2 is referred to as performance interval. These measurements have to be
gathered for all power caps and can be used to calculate the instructions per Watt ratio. The power
cap providing the best ratio will be the resulting label.

Figure 4.1: Data Collection Process

Figure 4.1 shows the data collection process of a benchmark. Firstly, the benchmark has to be build
and the execution environment is prepared. The power caps are set to the maximum value. This
ensures that the benchmark is at the same point of execution after time interval C0 as it has to be run
several times. Afterwards, the benchmark can start its execution. At the same time another process
is started which waits for the time interval C0 to pass. This process then caps the power of the system
to the value - of that iteration and measures the performance counters for time interval C1. Then,
the process caps the system again to a different power cap . and measures instructions and Watt for

33

4 Data Collection

time interval C2. When this is done an interrupt signal is sent to the benchmark execution as the rest
of the execution is no longer needed. This process is executed for each benchmark �, power level -
and power level . .

4.2 Benchmarks

In this work different types of workloads are chosen for the data collection. They are explained in
this section. The Exascale Computing Project (ECP) Proxy Applications and NAS Parallel Bench-
marks (NPB) suite are benchmark collections that are available on their websites. An OpenFOAM
application, a molecular dynamics simulation, and a NS3Dneo application are provided by the
Höchstleistungsrechenzentrum Stuttgart (HLRS). All of them are real world applications.

4.2.1 Exascale Computing Project (ECP) Proxy Applications

This benchmark suite offers several proxy applications which are small, simplified codes. They
model computational characteristics of large applications without the complexity of large code
bases. The ECP proxy apps specifically aim to represent the most important features of exascale
applications. Ember and SWFFT proxy apps are used in this paper. [Exa22]

Ember represents multi-node communication patterns that are relevant to HPC workloads. These
patterns have a great impact on scalability and parallel performance. In this paper the halo3d and
the halo3d-26 pattern are chosen. The benchmarks are therefore named ember and ember26. Both
are nearest neighbor-like. However, halo3d is defined as structured, in contrast to halo3d-26 which
is unstructured nearest neighbor-like.

SWFFT is a distributed fast Fourier transformation. The proxy app firstly distributes data between
ranks and afterwards computes the Fourier transformation algorithm.

4.2.2 NAS Parallel Benchmarks (NPB)

NAS Parallel Benchmarks (NPB) is a collection of programs to evaluate the performance of
parallel supercomputers. It is created by the NASA Advanced Supercomputing (NAS) Division.
The collection contains kernels and pseudo-applications which can all be adjusted in workload
size. [NAS22]

The embarrassingly parallel (EP) kernel measures performance without interprocessor communi-
cation. Limits of floating point performance are estimated.

Short and long distance communication is tested by multigrid (MG). The kernel utilizes highly
structured data communication.

An approximation of the smallest eigenvalue of a large, sparse, symmetric positive definite matrix is
computed by the conjugate gradient (CG) kernel. Long distance communication of an unstructured
grid is tested. As well as matrix-vector multiplication.

Fast Fourier transformation (FT) is a kernel that tests long distance communication perfor-
mance.

34

4.2 Benchmarks

Integer computation is tested in a large integer sort (IS) kernel.

During the execution of the lower-upper Gauss-Seidel solver (LU) a large number of very small
messages are sent. A matrix is decomposed into a lower and an upper triangular matrix.

Scalar Penta-diagonal solver (SP) as well as block tridiagonal solver (BT) are pseudocodes
which solve three sets of uncoupled systems of equations. The difference between both codes are
the structure of these systems of equations. Coarse grained communication is tested.

4.2.3 OpenFOAM

Figure 4.2: Car Air Flow CFD Example [Gre16]

OpenFOAM is an open source object-
oriented library for Computational
Fluid Dynamics (CFD) written in
C++. Its goal is to create physical
models to simulate motion and forces
of fluids – namely liquids and gases.
However, it might also include simula-
tion of thermodynamic models. CFD
applications are created to simulate
their behavior. An example applica-
tion would be the air flow around a
car as shown in Figure 4.2. Instead
of creating a new physical model for
every change in a vehicles design and test them in wind tunnels, one can adjust the virtual model and
run the simulation. This method is less expensive and offers more flexibility for designers. [Jas09]

The workload of an OpenFOAM application is separated into three stages – Pre-processing, Solving,
and Post-processing. Pre- and Post-processing take care of data handling and make sure that the
actual solver can execute in different environments. Running the solver in parallel, the associated
fields of fluids are divided and allocated to different processors. This method is called domain
decomposition and uses the Message Passing Interface (MPI) for communication. In the parallel
execution cases pre-processing is responsible for decomposing and distributing the workload.
Whereas during post-processing the solvers’ solutions are reconstructed into one field. As the
solvers’ workload contains numerical analysis a lot of matrix multiplications are executed iteratively.
To finish the iterative work of a solver either a defined number of iterations is exceeded or the current
solution’s value is below a tolerance threshold. [Gre21]

4.2.4 Molecular Dynamics Simulation

This type of application tries to capture the behavior of biomolecules in atomic detail and in fine
temporal resolution. Molecular dynamics simulations predict the movement of every atom in a
molecular system over time. Several steps are calculated repeatedly to predict the current state of
motions of these atoms. The atoms’ positions, forces, and velocities are updated constantly based
on physical computations. Furthermore, bonding and non-bonding molecular interactions are also
taken into account. The workload of these systems is an iterative calculation for multiple particles
in parallel. [HD18] [All+04]

35

4 Data Collection

Molecular dynamics simulations are for example used in drug discovery. Molecules are modified in
simulations to test how the molecule binding process behaves. Thereby, scientists can adjust these
molecules until they behave as intended.

4.2.5 NS3Dneo

NS3Dneo is another CFD application similar to OpenFOAM. However, this one is a direct numerical
simulation for aeroacoustic simulations. Its goal is to simulate turbulences resulting from airplane
turbine jet streams. These findings are used to check noises produced by these turbines and reduce
them. An example is illustrated in Figure 4.3. A flow field including two streams with different
velocities is simulated. These streams result in disturbances creating roll-ups. The Figure shows
these roll-ups between X values of 100 and 150. They are the dominant source of noise of a jet
turbine and have to be avoided to reduce the level of sound. NS3Dneo uses domain decomposition to
assign the workload to different processes which solve their tasks using multithreading. Simulations
of flows require costly iterative procedures to find correct pressure distributions. The workflow
therefore contains multiple iterations. [WPS+19] [Bab09]

Figure 4.3: Example Problem for NS3Dneo [Bab09]

4.3 Performance Counters

The authors of [FM17] decided to detect application behavior based on three performance groups.
These are Instructions & Cycles, Package Energy Consumption and Memory Usage including level
one and two cache usage. This mix of event sets which can also be seen in Appendix A looks
promising and includes all essential dimensions to characterize an application. This set of events is
chosen as a great foundation to be adjusted. It is extended to face this work’s problem and to fit in
this work’s environment.

LIKWID offers several groups of performance counters to reflect an application’s behavior in
different dimensions. For the Zen2 architecture a list of the corresponding events in each group
can be found in Appendix A. To grasp as much information as possible about an application the
event mix for the data collection is desired to spread across several of these performance groups.
The Zen2 processor offers 2 Fixed Purpose Counters (FIXC), 6 Performance Monitoring Counters
(PMC), 4 Data Fabric Counters (DFC) and 2 Cache L3 Performance Monitoring Counters (CPMC)
allowing to measure 14 events at a time. However, events are bound to a certain type of performance
counter. E.g. the RETIRED_INSTRUCTIONS event is only possible to be measured with a PMC.

36

4.3 Performance Counters

A solution to this limited counter problem is to measure different event sets after another. This
method allows further insights into other dimensions of the application. However, it does not grasp
the full potential of an event as there might be a different behavior of an application during the time
this event is not measured.

Counter Event Set 1 Event Set 2
PMC0 CPU_CLOCK_UNHALTED ICACHE_FETCHES
PMC1 RETIRED_INSTRUCTIONS ICACHE_L2_REFILLS
PMC2 RETIRED_BRANCH_INSTR RETIRED_SSE_AVX_FLOPS_ALL
PMC3 RETIRED_MISP_BRANCH_INSTR MERGE
PMC4 DATA_CACHE_ACCESS LS_DISPATCH_LOADS
PMC5 DATA_CACHE_REFILLS_ALL LS_DISPATCH_STORES
DFC0 DRAM_CHANNEL_0 DRAM_CHANNEL_0
DFC1 DRAM_CHANNEL_1 DRAM_CHANNEL_1

CMPC0 L3_ACCESS L3_ACCESS
CPMC1 L3_MISS L3_MISS

Table 4.1: Event Sets Used in Data Collection

As a trade off the number of event sets is chosen to be small and thus reducing the time certain
events are not measured. The event sets can be seen in Table 4.1. FIXC are not utilized as they
are only capable of measuring events concerning the CPU clock. However, it is not recommended
measuring these using the FIXC. PMC should be used instead.

Therefore, PMC counters are used to measure the CPU clock (CPU_CLOCKS_UNHALTED) in addition
to executed instructions (RETIRED_INSTRUCTIONS). Additionally, they are used to take a look at in-
structions that are executed before the CPU knows which execution path it will take. These are either
predicted correctly (RETIRED_BRANCH_INTR) or it comes clear that these instructions are executed
falsely (RETIRED_MISP_BRANCH_INSTR) and have to be reverted according to [Int21a]. Cache events
for the PMC counter type are read, write and prefetch access to the data cache (DATA_CACHE_ACCESS),
allocations to the data and instruction cache (DATA_CACHE_REFILLS_ALL / ICACHE_L2_REFILLS)
and fetching access to the instructions cache (ICACHE_FETCHES). Executed floating point vector
instructions are measured using two PMC counters. According to Thomas Gruber, a LIKWID
developer, the corresponding events (RETIRED_SSE_AVX_FLOPS_ALL & MERGE) have to be placed on
PMC2 and PMC3 for Zen2 architecture. This is due to the fact that AMD transferred these counters
from an older processor generation in which increments of performance counters are smaller than 16.
However, in this Zen2 it might be necessary to increment by 16 although only a signal path of four
bits is available, e.g. when using single precision fused-multiply-add with AVX512. The MERGE
event is therefore used as an extension of the RETIRED_SSE_AVX_FLOPS_ALL event to combine the
signal paths of both counters and enable greater increments. The last events measured by PMC
count the dispatched load and store operations (LS_DISPATCH_LOADS / LS_DISPATCH_STORES).

Finally, the last counters are DFC and CPMC. Two DFC measure events counting read and write
commands to the memory (DRAM_CHANNEL_0 / DRAM_CHANNEL_1). The last registers are CPMC
which measure accesses and misses to L3 cache. The events of both counter types are gathered in
both event sets. [Adv19] [Adv21]

37

4 Data Collection

4.4 Environments

The environment the data is gathered from is described in table 4.2. The system contains several
nodes of which three or four were used during benchmark execution. All nodes have the same
hardware configuration and two sockets with an AMD EPYC 7702 processor installed. These
have 64 cores and cache sizes of 512 kilobytes for L2 and 16384 kilobytes for L3 cache. The total
memory of a single node is about 52 gigabytes.

CPU Sockets Cache (L2 / L3) Total Memory
AMD EPYC 7702 (64 Cores) 2 512 KB / 16384 KB 5̃2 GB

Table 4.2: Test Environment

4.5 Implementation

Scripts are created to execute the data collection process automatically and several times. The
values for the power cap are 100, 120, 140, 160, 180 and 200 Watt for the processors. Therefore,
six power caps exist which each have to be executed six times to get the optimal cap for the next
execution interval. According to this, each benchmark has to be run 36 times.

The size of C1 is ten seconds as each performance counter event set is measured for five seconds.
The likwid-perfctr command is executed with each event set, as for example in Listing 4.1.

EVENT_1="CPU_CLOCKS_UNHALTED:PMC0,RETIRED_INSTRUCTIONS:PMC1,"\

"RETIRED_BRANCH_INSTR:PMC2,RETIRED_MISP_BRANCH_INSTR:PMC3,"\

"DATA_CACHE_ACCESSES:PMC4,DATA_CACHE_REFILLS_ALL:PMC5,L3_ACCESS:CPMC0,"\

"L3_MISS:CPMC1,DRAM_CHANNEL_0:DFC0,DRAM_CHANNEL_1:DFC1"

./likwid-perfctr -f -c 0-255 -g "$EVENT_1" -O -S 5s

Listing 4.1: likwid-perfctr Example

The -f flag tells likwid-perfctr to force the writing of registers. -c defines the processor’s hardware
threads to measure. Each processor core has two of them and the system does have two sockets with
64 cores each. Therefore, 256 hardware threads per node have to be measured. Which performance
monitoring counters are measured is defined by the -g flag and the EVENT_1 variable which is defined
in the top line. It is a list of events which are followed by a colon and the corresponding counter to
measure this event in. -O tells likwid-perfctr to output the values in Comma-Separated Values
(CSV) format. Finally, -S tells LIKWID to measure in stethoscope mode a defined time. In the
listing 4.1 it is defined as five seconds.

For the next execution interval of C2 a size of 15 seconds is chosen. During this time only instructions
are measured by likwid-perfctr and the used power is measured by HSMP. As the latter is only able
to gather the power in points of time, four power values are taken. This happens at the beginning
and three times in gaps of five seconds.

Different numbers of nodes are used for the benchmarks. For NPB and ECP four nodes are used.
Whereas the OpenFOAM benchmark is executed on three nodes only. The measurements for each
node are written into a file named by a node’s name followed by -pm.out. These files are formatted,

38

4.5 Implementation

merged, and appended to a file by format_data.sh. The result is a single CSV file for several
benchmark executions – formatted_data_n.csv. This process is illustrated by the first part of Figure
4.4.

Figure 4.4: Data Preprocessing Implementation

The next step in the data preprocessing is the execution of the preprocess_data.py. Data is grouped
by benchmark and power cap - . To get the value of energy, the mean of the power values is taken
and multiplied by the time interval which is 15 seconds. All cores’ instruction value are summed
and divided by the number of cores to also get the mean value. The instruction mean is then divided
by the average power used to get the instruction per Watt ratio. As this is done for all power caps in
an execution interval, one can select the power cap giving the max value for this ratio. This power
cap becomes the target value for this data point.
The process is repeated for each group in each hostname-pm.out file. Thereby a single file is created
containing data ready to be processed by the machine learning models – preprocessed_data.csv.

A first dataset is created containing 96,192 data points as shown in Table 4.3. 22,464 of these points
contain data for runs of ECP Proxy Apps. Meaning, each application has about 7,500 points. For
the NPB benchmark suite 63,360 data points are created which makes approximately 8,000 points
per benchmark. Finally, the OpenFOAM application has about 10,000 data points.

ECP Proxy Applications 22,464 (7,488 each)
NAS Parallel Benchmarks 63,360 (7,920 each)

OpenFOAM 10,368

Table 4.3: Number of Data Points Collected

A best practice in machine learning is to separate a dataset into training, test and validation datasets.
Training data is used during the learning process and the models are adjusted based on this data. To
evaluate the learning process testing data is processed, and their prediction error can be checked.
These datasets are created out of points generated by the ECP and NPB benchmarks. The training
set contains three fourth of the data and the testing set contains the rest. Before splitting the dataset,
it is shuffled. The data points of the OpenFoam benchmark are used as a validation dataset. This
dataset is put aside to check later on how the models perform on new data which is unknown to
them.

39

5 Machine Learning Models

The collected data is used to train the machine learning models in this chapter. It is stated how the
random forest regression and neural network are created. Furthermore, first results for both models
are shown and evaluated.

5.1 Random Forest Regression

5.1.1 Design

Random forest regression is implemented in Python using the scikit-learn package which is
explained in further detail in Subsection 3.4.2. Parameters for this model are the number of trees,
maximum depth of the trees and other tree splitting related options. To find the most suitable ones
for the training and testing dataset parameter search is conducted. GridSearch is used which is
also part of the scikit-learn library and defined in [sci22]. It creates a parameter grid with every
combination of values for these parameters that are provided to GridSearch. The parameters are
then optimized using k-fold cross-validation.

Cross-validation aims to prevent overfitting by resampling data. It splits the learning dataset in
training and test dataset. In k-fold cross validation the overall dataset is split into k equal sized
disjoint datasets. k - 1 subsets are taken to form the first training dataset which is used to train
the model. The model is then evaluated by the remaining subset – the test subset. This training
and evaluation process is repeated until each subset has been the test subset. The average of these
evaluation performances is then the cross-validation performance. [Ber19]

Number of Trees 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000
Maximum Depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Split Features 'auto', 'sqrt'
Cross Validation 3

Scoring 'neg_mean_absolute_error'

Table 5.1: Parameter Grid and Parameters for GridSearch

The provided parameter grid and parameters for GridSearch itself are listed in Table 5.1. For the
number of trees a value range from 200 to 2000 is chosen. It might be important to mention that
using more trees in random forest regression does not lead to overfitting. Meaning the only downside
when choosing more trees is a reduced performance due to more computational workload. A list
ranging from 10 to 100 is provided to the maximum depth of the trees in the forest. Two options are

41

5 Machine Learning Models

provided to the split feature parameter max_features. It defines how many features are considered
when a tree has to be split. 'auto' means that all features are considered whereas using 'sqrt' only
as many features are considered as equal to the square root of the total amount of features.

The last two options in the table are parameters provided to GridSearch. Cross validation tells the
algorithm what kind of k-fold cross validation should be conducted. Here, a three-fold cross valida-
tion is used. Scoring defines how the validation should be conducted. 'neg_mean_absolute_error'
means to minimize the Mean Absolute Error [CM04].

! (H, Ĥ) = 1
#

#∑
8=0

|H8 − Ĥ8 |

It is the sum of absolute difference between predicted, and actual value divided by the number of
data points. This metric is chosen here and in further evaluation of the model as it describes the
error distance well. Furthermore, it can be illustrated greatly as it contains the exact value without
further processing needed.

5.1.2 Results and Evaluation

The resulting forest consists of 2,000 trees with a maximum depth of 20. First results on the
training dataset look promising as random forest regression achieved a mean absolute error of
about 4,330 for ECP Proxy Apps and about 4,742 for the NPB suite. As the processor has a power
range starting at 100,000 milliwatts up to 200,000 milliwatts an error of 5,000 is only 5 percent of
the possible value range. It can be considered a rather good value. However, for the OpenFoam
application the mean absolute error is equal to 34,765. Figure 5.1 shows the error values for each
benchmark.

(a) Absolute Errors ECP (b) Absolute Error NPB (c) Absolute Error OpenFoam

Figure 5.1: Results for Random Forest Regression

One can see in Subfigure 5.1a that the results for the ECP Proxy Applications are spread across the
whole range. However, the three fourths of all values are below an error value of 20,000 as the box
plots show. This is illustrated by the upper bound of the box which also is the third quantile.
Although the NPB benchmark suite performs slightly worse in terms of mean absolute error, the
results are less spread as shown in Subfigure 5.1b. No prediction exceeds 60,000 and all boxes are
below 20,000.
The results for the OpenFOAM application can be seen in Subfigure 5.1c. It can be seen that
the box is placed in a higher value range and that the error values are spread across the whole
range. The OpenFOAM application is not part of the training nor the test dataset. It is therefore
completely unknown to the random forest regression. These bad results might suggest that the
model is overfitting to the training data which is investigated in Section 6.

42

5.2 Neural Network

5.2 Neural Network

5.2.1 Design

For the neural network an architecture with four layers is chosen which is illustrated in Figure
5.2. The input layer consists of 121 neurons which normalizes the inputs. Meaning, the values are
adjusted to be in range between zero and one. The next two layers are hidden layers and equal in
size. They consist of 256 neurons and are fully connected with their following layer. The output
layer does only consist of one neuron as only one numerical output value is expected.

Figure 5.2: Architecture of Created Neural Network

The network is implemented also in Python using PyTorch which is presented in Subsection 3.4.3.
It offers various tools to create neural networks in Python. Both hidden layers are using the ReLU
function as activation function as this one is simple and gives the model the ability to generalize
well, as stated in Subsection 3.3. As regression is conducted no activation function is necessary
for the output neuron. The difference between actual target values and the values predicted by the
network are evaluated by a loss function. The network uses the Mean Squared Error Loss [CM04]
which is often used for regression. It is the average squared difference between the predicted and
actual value for the dataset.

! (H, Ĥ) = 1
#

#∑
8=0

(H8 − Ĥ8)2

Adam is chosen as optimizer. It is a gradient-based optimization for neural networks’ weights. The
authors of [KB14] state that it is computationally efficient and easy to use as its hyperparameters
require little tuning.

The network is trained with a batch size of 64 and 200 epochs. The batch size describes how many
data points form a subset which are processed for one learning step. Each update to the weights is
computed based on the average cost function results of this subset. [GBC16]
An epoch describes one complete usage of the dataset. The number of epochs therefore states how
often the complete dataset is used in the training process. Each data point of a set is used during
one epoch, either in a batch or processed as a single data point.

43

5 Machine Learning Models

5.2.2 Results and Evaluation

Results for this model can be seen in Figure 5.3. Errors values of the model’s prediction are
illustrated in a boxplot for each benchmark.

(a) Absolute Errors ECP (b) Absolute Error NPB (c) Absolute Error OpenFoam

Figure 5.3: Results for Neural Network Regression

Predicted values are overall quite close to the target variable for ECP and NPB applications. As
Subfigures 5.3a and 5.3b show the boxes are all below error values of 20,000. The main difference
between both box plots is that for the ECP Proxy Apps the errors are spread across the whole
value range. In contrast, the NPB applications never exceed error values of 65,000 milliwatts.
Nevertheless, the mean absolute error for ECP Proxy Apps is 6,043 and therefore lower than the
mean absolute error for the NPB suite which is 7,696.
For the OpenFOAM application the neural network behaves similar to the random forest regression.
This application was also unknown by the network and the mean absolute error is about 29,925
milliwatts. Behavior like this might suggest that the model is overfitting to the training dataset.

44

6 Optimization

Based on the results of the last chapter the models are optimized in this chapter. The gathered
data is analyzed first to gain insights and relations between data points. Afterwards, the models’
architecture and parameters are adjusted to perform better on the validation dataset.

6.1 Data Analysis

Before diving into model adjustments, it is clever to take at look at the data and check if it is
reasonable. Therefore, the benchmarks’ behavior with different power caps during characterization
phase is evaluated and if the target variable is equal for the same execution phase. Figure 6.1 shows
the target variables of three benchmarks for all power caps on two different systems. It can be seen
that overall the target variables are quite close to each other. Except for a few outliers the data points
form a single or two lines. In the cases of two lines, e.g. in Subfigure 6.1b, it is supposed that the
exact optimal power limit is between those two values.

(a) Target Variable of Ember (b) Target Variable of BT (c) Target Variable of OFOAM

Figure 6.1: Target Variables for Different Benchmarks on Different Nodes

45

6 Optimization

However, it can be seen in Subfigure 6.1a that the ECP Proxy Apps are not using all nodes the
measurement is running on. This is due to a mistake in the execution scripts as not enough processes
are spawned to fully utilize the systems. However, these data points are not useless. They are
characterizing nodes in idle state which can be capped on lowest power. The models can therefore
also learn how to react to this kind of behavior. Nevertheless, this mistake is fixed, and additional
data is collected for the ECP Proxy Applications fully utilizing their resources.

Clustering

Clustering is used to gain further insights about the dataset. Similar workload characteristics should
result in the same cluster. Therefore, the majority of a benchmark’s data points are expected to be
in the same clusters. DBSCAN is chosen as clustering algorithm.

DBSCAN is a density-based clustering algorithm and creates clusters based on a threshold number
of neighbors minPts and a radius n . Both are parameters that can be adjusted when using this
algorithm. Data points that have more than minPts neighbors within their radius of n are called core
points. All these neighbors within this radius of a core point are assigned to the same cluster. In
case, these neighbors are also considered core points their neighbors are assigned to this cluster as
well. [SSE+17]

Figure 6.2: Illustration of DBSCAN [SSE+17]

Figure 6.2 illustrates the principle of DBSCAN. The radius n for each point is illustrated by a circle
and the minimum number of neighbors to be a core point is equal to four. # is a noise point and
is the only point that is not assigned to the cluster. � and � are both border points as they do not
exceed the <8=%CB threshold of neighbors. All other points including � are core points.

Before conducting DBSCAN 1 clustering with the help of scikit-learn a scaler has to be run on
the dataset. It standardizes the set by transforming the data to Gaussian distributions with zero
mean and a unit variance. This is done because many machine learning estimators in scikit-learn
achieve bad results if the features are not normally distributed data. Standardization therefore is

1scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html, Accessed: 9th Feb, 2022

46

6.1 Data Analysis

often a requirement using scikit-learn estimators. A StandardScaler 2 is used to perform this task.
DBSCAN formed 124 clusters for the 96,192 data points using an epsilon value of 1.5 and a minPts
of five.

To see how each benchmark is assigned to a cluster a Sankey diagram is created and shown in Figure
6.3. On the left of the chart the benchmarks are listed whereas the clusters are listed on the right.
The output flows show which clusters a benchmark is assigned to. Additionally, the thickness of the
flow indicates how often a benchmark is assigned to the cluster. To simplify the understanding and
increase readability, clusters which contain only one benchmark are merged with others that contain
only the same benchmark. Performance counters are used as input values to the clustering algorithm.
Therefore, it can be expected that workloads which are behaving similar should be assigned to the
same cluster.

Figure 6.3: Clustering of Benchmark Interval Characteristics

The Sankey diagram shows that ember26, ember and swfft are often assigned to cluster 1. This
cluster is containing idle phases in which no real workload is done on the nodes and the optimal
power level is at the lowest. It can also be seen that Figure 6.3 has only a few intersections of flows
except for flows to the outlier cluster. However, it can be seen that its bar is not very thick and
therefore only a few data points are defined as noise. Overall one can see that the benchmarks can
be distinguished in the dataset quite well.

Another point interesting to mention is that, changing the value of the radius n to 2.0 results in
different clusters. The OpenFOAM benchmark is assigned mainly to cluster 1. An illustration
of this assignment can be found in Appendix B by another Sankey diagram. This means that the
characteristics of the OpenFOAM benchmark overall are closer to idle state than to other benchmarks.
OpenFOAM is the only benchmark which is not part of the training and test dataset as it is contained

2scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html, Accessed: 9th Feb, 2022

47

6 Optimization

in the validation dataset. It is therefore new to the models. The models often seems to consider it
an idle phase and predict low power caps while the actual power cap is higher. This might be the
reason why the OpenFOAM results for the models are so bad.

Data Mixture

Next on the models’ behavior is checked in case a few data points of the OpenFOAM application
are provided during training to it. 300 of them are added to the training and test datasets and train
the models with it. For the random forest regression a maximum depth of 16 and 4096 trees are
used. The neural network stays unchanged.
The results for both models look much better for the validation dataset whereas the testing error
only slightly increases. Mean absolute error for OpenFOAM is decreased from 33,350 to 9,733 for
random forest regression. For the neural network the mean absolute error decreased from 29,925 to
17,220.

It can be concluded that the models did not overfit the testing data. Instead, the models did just not
know how to handle these datasets. However, the results of the regression using the neural network
are not yet satisfying and further investigation is planned.

Data Set Expansion

Additional applications are provided by the HLRS. They are integrated in the data collection system,
and the workloads are included in the dataset. Namely, a molecular dynamics simulation and a
NS3Dneo application are added. Both are explained in Subsections 4.2.4 and 4.2.5.

Another point of interest is to adjust time intervals in the data collection process. The question is
if the lengths of these intervals have an impact on the system. The characterization interval C1 is
extended from 10 seconds to 60, and 120 seconds. For the performance interval C2 it is decided to
adjust it from 15 seconds to 120, and 300 seconds. The resulting interval setups and number of data
points collected can be seen in Table 6.1 for each benchmark.

C1 C2 BT CG EP FT IS LU MG
10 15 7,920 7,920 7,920 7,920 7,920 7,920 7,920
60 120 864 720 864 1,008 864 864 1,008
120 300 1,008 864 864 720 1,008 720 864
C1 C2 SP Ember Ember26 SWFFT TGV NS3Dneo MD
10 15 7,920 7,488 7,488 7,488 10,368 864 864
60 120 1,008 1,440 1,440 1,440 1,512 864 864
120 300 864 1,344 1,296 1,296 1,080 864 1,296

Table 6.1: Number of Data Points per Time Interval Configuration

48

6.2 Regularization

Data Set Normalization

Next on, it is checked if it is possible to normalize the time intervals in the data and merge the
benchmark data. If this is the case, one machine learning model for all interval lengths can be used
as they would not depend on this value.

To do so, the metrics collected during the characterization phase are divided by the length of this
interval in seconds C1. In case the data could be normalized, using the clustering algorithm of earlier
sections the same benchmark would be assigned to the same cluster. Figure 6.4 shows the clustering
results of the FT benchmark which is part of the NPB suite and the Ember benchmark from ECP
proxy applications. Furthermore, the figure shows how each normalized interval of the Molecular
Dynamics and OpenFOAM applications are clustered.

Figure 6.4: Clusters of Normalized Benchmark Data

One can see that the workloads’ normalized intervals are strongly split into different clusters. Some
clusters contain multiply interval lengths, e.g. cluster 179 in Subfigure 6.4c. However, these are
the minority and consist of fewer data points which is illustrated by the thickness of the flows.
Clusters that contain only one interval length consist of more data points. For instance, cluster 180
in Subfigure 6.4c for the Molecular Dynamics application has more data points than cluster 179.
Therefore, it is concluded that it is not possible for us to normalize and merge the data based on the
interval lengths.

6.2 Regularization

When it comes to reduce overfitting the terms generalization and regularization are often used.
Generalization describes the ability of a model to perform well on unknown data. Its measurement
is the generalization error which is the error of predictions on data not used during the training
process. As the same benchmarks are used in the training and the test set so far, the validation
set is the only dataset in this use case that is completely unknown to the model. Therefore, the

49

6 Optimization

generalization error is conducted on this data.
Regularization describes any modification to the learning algorithm to reduce the generalization
error. However, it aims not to influence the error on the training dataset. [GBC16] [JGR19]

6.2.1 Random Forest Regression

The results for unknown datasets are not yet good enough. To check if the model architecture
is responsible for overfitting of the model, a deeper look at the parameters of the random forest
regression is taken. The dataset with the characterization interval C1 equal to 10 seconds and the
performance interval C2 equal to 15 seconds are utilized. A GridSearch was already conducted
on the parameters of the random forest regression, however it did not consider the error on the
validation dataset.

As previously stated in Section 3.2, the authors of [Bre01] prove that random forests do not overfit
by adding more trees to the model. In some cases adding more models to the overall model can
even decrease the generalization error. This concept is used in boosting which combines several
models to average their output. Thereby all models will usually not do all the same errors on test
data. However, it comes with the price of high computation and memory costs. [GBC16]
To prove this concept within the scenario random forests with 100, 1,000, 2,000, 4,000, 6,000,
8,000, and 10,000 trees are created. No changes in the model performance can be seen. All models
had a mean absolute error of approximately 6,780 for the test set and approximately 9,600 for the
validation set. The results are illustrated in Subfigure 6.5a. However, the run times of the forests did
increase significantly. A forest with small numbers of trees is therefore used. As the validation error
of the forest with a number of 1,000 trees is slightly smaller than for the 100 and 2,000, it seems
better to use this parameter value for the random forest regression.

(a) Number of Trees in Forest (b) Maximum Depth of Trees

Figure 6.5: MAE for Different Hyperparameters of Random Forest

The next parameter to take a look at is the maximum depth for the trees. Several forests with
different parameter values are executed for max_depth. Namely, the list of [4, 8, 16, 32, 64, 128].
The corresponding mean absolute errors can be seen in Subfigure 6.5b. It can be seen that the
minimum is somewhere between a maximum depth of 16 and 32 for the mean absolute error for
both datasets. Using a maximum of 16 results in an error of approximately 6,795 for the training

50

6.2 Regularization

and 9,752 for the validation dataset. For a maximum depth of 32 these values are 6,811 and 9,557.
The differences between these values are rather small. Hence, it is decided to use a maximum depth
of 16 as this reduces the computational overhead out of both options.

For the max_features parameter two trees with maximum depth of 16 and 1,000 trees are run using
both possible parameters — 'sqrt' and 'auto'. It defines how many features are considered when
a tree has to be split. The difference between the performance of both is slightly as the forest with
’sqrt’ parameter has a mean absolute error of 6,791 for the test set and 10,541 for the validation
set. The other forest performed slightly better with numbers of 6,783 for the test and 9,625 for
the validation dataset. Performances of both forests are quite similar. However, as the forest using
’auto’ for max_features performs slightly better at generalization, this parameter is utilized from
now on.

6.2.2 Neural Network

Target Variable Normalization

During investigation of the neural network model it is discovered that the model has quite small
outputs in the beginning of the training process. The maximum reached values were in ranges of
hundreds. However, the desired value range is 100,000 to 200,000. It is possible to either use initial
weights of that scale or modify the architecture to transform output values to this range. For the first
option one decides to assign defined values to the neural network’s weights. The model then uses
these weights as starting point for the training process. However, in the scenario this comes with the
price of increased execution cost as values in ranges of hundred thousand are used. Furthermore,
values of this size increase the space which is needed in memory. Therefore, the architecture of the
neural network is adjusted.

Figure 6.6: Sigmoid Function [Wei22]

First, as it is desired to have values in a certain range, a
decision is made to utilize the Sigmoid function to set
limits for the output. This function takes input values of
infinitely negative or positive size and projects them on
values between zero and one. [Wei22]

((G) = 1
1 + 4−1

Figure 6.6 illustrates the shape of the Sigmoid function.
This function is applied to the output of the neural network.
To set the output limits to the desired values the output of
the Sigmoid function is multiplied with 100,000 and add

a value of 100,000 on top. The new function looks therefore as the following:

5 (G) =
(

1
1 + 4−1 ∗ 100 000

)
+ 100 000 , 5 (G) : [−∞;+∞] ↦→ [100 000; 200 000]

Another option to face this issues is to normalize the dataset. Meaning, the input variables are
transformed to values between zero and one. The network will learn to predict values in this data
range. After training, when using the model for predicting power cap sweet spots the outputs are
transformed back to values in the actual value range.

51

6 Optimization

An experiment is run to see which constellation performs best using the test and training dataset for
a performance interval C2 equal to 15 seconds. To do so after each epoch the mean absolute error
for the test dataset is taken. This experiment is run ten times and take the average of these runs for
each model. Figure 6.7 illustrates the results.

The black dashed curve shows how the old neural network performs. It’s training error reduces
significantly during first 50 epochs and reduces in a smaller degree afterwards.
The model design which introduces the output transformation layer and the sigmoid function
performs the worst on the training dataset. It is illustrated by the green dotted curve. Training error
does not reduce for this model.
The second approach of normalizing the dataset can be seen in the Figure by the red solid and blue
dashed-dotted curves. Difference between both models is that the latter does include a sigmoid
function in last layer. Both do not improve significantly, however reduce the training error in a small
but steady way. However, the blue dashed-dotted curve does overall perform best compared to all
other models.

Figure 6.7: Mean Absolute Error of Different Data Transformation Methods

Nevertheless, one can see that after 25 epochs the training error declines rather slowly for all curves.
Only the black dashed curve further reduces its training error further. However, never reaches error
values the blue dashed-dotted curve achieves. Therefore, and as early stopping is a great concept of
avoiding overfitting for a neural model, it is decided not to stay at 200 epochs. Instead, the number
of epochs is reduced to 25 which furthermore reduces the workload for the model training process
as side effect. From now on, the model represented by the blue curve is used. It performs variable
normalization and uses a sigmoid function.

Hyperparameter Tuning

A neural network has a lot of hyperparameters that impact the performance of the model. Hy-
perparameters are variables that are defined before training the model. For example, the number
of layers in a neural network is a hyperparameter. Furthermore, the numbers of neurons in each
layer are additional hyperparameters. Finding the best settings for the network’s hyperparameters a
hyperparameter tuning is conducted. Tune is chosen which is explained in Subsection 3.4.4. It is a

52

6.2 Regularization

framework for hyperparameter tuning and integrates well with PyTorch which is used to implement
the neural network. It is possible to train several neural networks with different hyperparameters
at the same time and compare their performance. Table 6.2 lists the hyperparameters of scope
and which possible values are provided to them. The number of hidden layers, each of their sizes,
the learning rate of the optimization function, and the batch size used in the training process are
checked.

Hyperparameter Value Range
Number of Hidden Layers 2, 4, 6, 8

Layer Sizes 32, 64, 128, 256, 512
Learning Rate 0.1, 0.01, 0.001, 0.0001

Batch Size 2, 4, 16, 64, 128

Table 6.2: Hyperparameter Configuration

To execute the hyperparameter tuning a training function has to be implemented and a configuration
of these hyperparameters has to be created. The creation of the configuration can be seen in Listing
6.1. For number of hidden layers, learning rate, and batch size tune.choice() is used which picks
one value from the provided list. tune.sample_from() makes it possible to create own functions
which create a hyperparameter configuration. It is used for the size of each layer to define a list of
values that match the number of hidden layers. This way each hidden layer can have a different
width. layer_size is therefore a list that contains as many integers as the number of hidden layers
which is represented by spec.config.nr_of_hidden_layers in Listing 6.1. Training function and
hyperparameter configuration are provided to tune as parameters to the tune.run() function which
then executes the training function several times with different sets of the configuration. A random
search is conducted which samples from the configuration and define it to do so 1,000 times.

config = {

"nr_of_hidden_layers": tune.choice([2, 4, 6, 8]),

"layer_size": tune.sample_from(lambda spec: random.choices(

[32, 64, 128, 256, 512],

k=spec.config.nr_of_hidden_layers)),

"lr": tune.choice([1e-1, 1e-2, 1e-3, 1e-4]),

"batch_size": tune.choice([2, 4, 16, 64, 128])

}

Listing 6.1: Ray Tune Hyperparameter Configuration

Tune allows us to use trial schedulers which fasten the hyperparameter tuning process. They
terminate bad trials and may also alter hyperparameters of already running trials. A recommended
trial scheduler is Asynchronous Successive Halving Algorithm (ASHA). It is introduced in
[LJR+20] and the authors describe it as parallel, aggressively early-stopping way for large scale
hyperparameter tuning. The concept of successive halving is quite simple as it first evaluates
all configurations and keeps only a portion of the best performing ones. In case of halving, it
would be the best performing half of configurations. However, one can set the fraction to continue
working with to a desired value. This step is then repeated several times. ASHA is a parallel and
asynchronous implementation of this successive halving algorithm. Hence, compute resources can
be utilized completely and the overall tuning time is minimized.
The ASHA scheduler is defined as seen in Listing 6.2. The configuration evaluation is based on

53

6 Optimization

training iterations as this value is passed in time_attr to the scheduler. Each trial is evaluated a
maximum number of training iterations equal to the number of the epochs which is 25. The ASHA
scheduler tries to minimize the loss and reduces the configurations by factor four. Meaning only a
fourth of all configurations are evaluated further. These are the best performing ones. Furthermore,
a grace_period is defined which is equal to a fifth of the epochs. This means that each configuration
has to have 5 iterations before being stopped.

scheduler = ASHAScheduler(

time_attr='training_iteration',

metric="loss",

mode="min",

max_t=EPOCHS,

grace_period=EPOCHS/5,

reduction_factor=4

)

Listing 6.2: ASHA Scheduler Instantiation

Table 6.3 shows the ten best hyperparameter configurations based on training error. Additionally,
the validation error is calculated for the models to decide which configuration seems most suitable
for the work. One can see that a lot of models have a learning rate of 0.0001 and a batch size of 2.
The small batch size means that more learning steps are being conducted which is the reason for the
frequent occurrence of this batch size.
Although the models perform great on the testing data, they have rather bad results on the validation
dataset. For instance, the models number nine and ten have an average testing errors of approximately
7,100 whereas their validation error is higher than 40,000. Only three of these ten models have a
validation error of less than 30,000. However, it is possible to not consider these models overfitted
because of the small batch size. There are two models in the top list that have a batch size of 16 and
nearly all models use the smallest learning rate provided. Although there are more steps performed
with small batch sizes, the small learning rate makes these steps small.

No. Layers Learning Rate Batch Size Test Error Validation Error
1 [128, 64, 256, 256, 128, 64, 256, 64] 0.0001 2 6,984 27,656

2 [32, 512, 128, 512] 0.0001 2 7,051 34,263

3 [256, 32, 128, 512, 64, 32] 0.0001 2 7,060 30,927

4 [512, 512, 64, 512, 32, 64, 64, 512] 0.0001 16 7,071 29,589

5 [512, 512, 512, 256, 512, 128] 0.0001 2 7,082 33,530

6 [256, 512, 128, 256, 256, 64, 512, 128] 0.0001 2 7,083 35,041

7 [256, 256, 512, 32, 128, 256] 0.001 16 7,107 29,852

8 [512, 512, 64, 32, 128, 256, 512, 128] 0.0001 2 7,111 31,369

9 [256, 64, 256, 32] 0.0001 2 7,121 43,963

10 [512, 256, 64, 32] 0.0001 2 7,129 67,726

Table 6.3: Best Hyperparameter Configurations

Model number one is taken as it is the best model for the test dataset and also the best for the
validation dataset. It has 8 layers, a learning rate of 0.0001, and a batch size of 2. For the number of
neurons in each layer the values from Figure 6.3 are taken which are 128, 64, 256, 256, 128, 64,
256, and 64.

54

7 Experiment

In this chapter the machine learning models introduced earlier are tested in production. The trained
models are running simultaneously on a system under workload. They are going to adapt the power
cap of the compute system during that time. The dynamical power capped application execution are
compared with fixed power caps and executions with no power cap.

7.1 Design

In the experiment all benchmarks introduced so far are executed several times. One time without
power cap, once with a power cap at 160W per socket and multiple times with a dynamic power cap
predicted by the models. For each interval length previously defined an execution with the random
forest regression and another using the neural network are run. The experiment process is illustrated
in Figure 7.1. The only steps that differ between each run are marked in gray.

Figure 7.1: Experiment Design

In case a benchmark included in the NPB suite is run the first step is to building the benchmark.
Otherwise, this step is omitted, and the process starts with the next task which to set the power limit.
In this step which is marked in gray two options are possible. Firstly, power caps are removed in
case the execution is conducted without or dynamic power cap. Or secondly, the power cap is set

55

7 Experiment

to a value of 160 Watt for each socket. This is done in case the execution uses a fixed power cap.
To do so a message is sent to each node involved in the benchmark execution which then sets the
power caps accordingly. Afterwards a time stamp is taken to mark the beginning of the execution
interval.

The next steps in the experiment process are executed in parallel. These steps are the actual
benchmark execution, power measuring, and the power cap prediction. Power is measured by
a separate process on each node. It uses HSMP to get the current power on each socket. This
measurement is retrieved every ten seconds and can thereby calculate the overall energy consumption
of the execution. The power cap prediction is only conducted when executing dynamic power capping.
This task starts a process on each node which is represented in Figure 7.1 by the subprocess.

As mentioned earlier, a random forest and a neural network are created for the time intervals defined
earlier. In this subprocess performance counters are collected during the characterization phase
C1 that is 10, 60, or 120 seconds long. The model then predict the optimal power cap for the
performance phase C2 that is 15, 120, or 300 seconds. Similar to the data collection process power
caps of 100, 120, 140, 160, 180 and 200 Watts are used. The power is capped to the value which is
closest to the cap the model predicted. Afterwards, wait for the end of the performance phase to
repeat this process by collecting performance counters.

Finally, when the benchmark finishes its execution another time stamp is taken to calculate the
benchmark’s execution time. Furthermore, an interrupt signals is sent to the power measuring and
power cap prediction processes. These process just terminate as they are no longer needed.

Machine Learning Models

The models used, and their hyperparameters can be seen in Table 7.1. For random forest regression
1,000 trees with a maximum depth of 16 are used. Whenever a tree has to be split all features are
considered.
The neural network is trained by an Adam optimizer with a learning rate of 0.0001 and a batch size
of 2. Its architecture contains eight layers of different sizes and ReLU activation functions. Expect
the last layer which uses a Sigmoid activation function. The networks inputs are normalized to
values between zero and one and its outputs are retransformed to the value range between 100,000
and 200,000.

Random Forest Neural Network
Hyperparameters No. trees: 1,000 No. Layers: 8

Max Depth: 16 Learning Rate: 0.0001
Split Features: ’auto’ Batch Size: 2

Layer Sizes:
[128, 64, 256, 256, 128, 64, 256, 64]
Optimizer: Adam

Table 7.1: Models used in Experiment

56

7.2 Results

The resulting models’ performance on the testing and training datasets can be seen in Table 7.2.
The models for the performance interval C2 equal to 15 are performing great on the testing data
set. However, they perform rather badly on the validation dataset compared to the models for other
interval lengths. For the other interval lengths the models have a mean absolute error between
10,000 and 20,000.

Random Forest Neural Network
C2 = 15
Testing Error 4,892 7,464
Validation Error 34,762 26,662
C2 = 120
Testing Error 11,533 12,181
Validation Error 13,901 15,805
C2 = 300
Testing Error 14,562 16,241
Validation Error 16,497 19,189

Table 7.2: Validation and Testing Error

Environment

The experiment is executed on the same environment as the data is gathered from, which is described
in Section 4.4. Four nodes are used for all application workloads except for the OpenFOAM
benchmark for which three nodes are used. The hardware configuration of each node can be seen in
Table 7.3. They have two sockets equipped with AMD EPYC 7702 processors. These processors
have 64 cores and cache sizes of 512 kilobytes for L2 and about 15 megabytes for L3 cache. The
total memory of a single node is about 52 gigabytes.

CPU Sockets Cache (L2 / L3) Total Memory
AMD EPYC 7702 (64 Cores) 2 512 KB / 16384 KB 5̃2 GB

Table 7.3: Experiment Environment

7.2 Results

The experiment is conducted for the FT, BT, LU, SP, Ember, and OpenFOAM benchmarks. Each of
them are evaluated for the first performance interval C2 which is 15 seconds. It has to be mentioned
that it has only been possible to run the experiment once. Therefore, the numbers and graphs of
these findings are not statistically reliable and have to be observed with care. However, they show a
first trend and are a foundation for further steps.

Figure 7.2 shows the power measurements of the FT benchmark on a single node. The other nodes
involved in the execution behave the same and are therefore omitted. The red dashed line shows
the measurements without power cap and the blue dotted line the power with a fixed power cap.

57

7 Experiment

The power measurements with dynamic power caps that are predicted by the random forest model,
are illustrated by the green solid line. Finally, the measurements with power caps predicted by the
neural network are shown by the black dashed-dotted line.
The other benchmarks’ graphs can be found in the Appendix C.

Figure 7.2: Power Graphs of FT Benchmark

The overall power consumption of a benchmark can be calculated by the area under each curve. To
do so, the average value of the power measurements is taken and multiplied by the total execution
time of the benchmark. Finally, these values are summed for each of the nodes involved in the
execution. Results of these calculations and the corresponding execution time are seen in Table 7.4
for all benchmarks. Furthermore, the energy savings and performance loss based on execution time
can be seen in percentage values.

FT BT LU
Without Power Cap 547,147 Ws 342 s 616,061 Ws 385 s 627,496 Ws 392 s

Fixed 160W Power Cap +14.62% +6.73% +8.0% +15.06% +11.89% +10.2%
Dynamic RF Power Cap +6.64% +5.56% +3.57% +9.35% +8.43% +13.27%
Dynamic NN Power Cap +8.42% +1.46% +4.76% +5.19% +4.04% +11.99%

SP Ember OpenFOAM
Without Power Cap 627,496 Ws 526 s 8,522,623 Ws 5,327 s 6,984,866 Ws 7,511 s

Fixed 160W Power Cap +18.93% +0.57% +20.1% -0.11% +9.74% +0.6%
Dynamic RF Power Cap +5.09% +6.84% +10.11% +0.08% -0.31% +4.46%
Dynamic NN Power Cap +7.7% +1.33% +10.32% +0.02% +2.29% +3.91%

Table 7.4: Power Consumption & Execution Time of Benchmarks with Interval Time of 15s

One can see that the fixed power cap of 160W overall saves most power. For the SP and Ember
benchmarks power savings of 20 percent are reached. Its execution time is most of the time longer
compared to runs without power cap. This is the case as the computational performance is degraded
with decreased power. However, for the Ember and OpenFOAM benchmarks the fixed cap is close
to the execution performance without power cap or even faster. Again, it has to be emphasized that
it has only been possible to run this experiment once and have to say that this might be the case due
to statistical noise.

58

7.2 Results

The dynamic power caps perform best for the FT and BT benchmark. Especially, the power caps
that are predicted by the neural network model look promising. Although they do not reach the
power savings of executions with a fixed power cap, the performance loss is significant smaller
compared to fixed power caps.

Nevertheless, one can see that the dynamically capped executions often take longer than the fixed
power cap ones, although the latter have lower caps. This is due to the fact that the dynamic power
capping mechanism introduces additional workload. Computational effort is necessary to predict
the optimal power cap. This overhead is expected to be reduced when running this experiment with
greater time interval lengths.

59

8 Conclusion

In this last chapter this work is summarized, and a conclusion is drawn. Afterwards, possible future
steps are listed.

8.1 Summary

During this work an introduction to the current state of literature is presented. Work that aims to
achieve similar goals as this work is evaluated and compared. Afterwards, a dataset is created based
on performance counters. It aims to capture the characteristics of a workload and a corresponding
power cap sweet spot. Meanwhile, two machine learning models are designed which shall predict
these power caps. These models are a random forest regression and a neural network. They are
trained based on the created dataset, optimized, and adjusted to achieve generalization on unknown
data. Finally, these models are used in an experiment to set power caps during a benchmark
execution.

8.2 Conclusion

The aim of this work is to create machine learning models which can predict energy-efficient
power caps. These models shall save energy with only few impacts on a workload’s performance.
Prediction results of the machine learning models look promising. The models perform well on the
testing dataset with error values around ten percent of the value data range.
Executions in the experiment with predicted dynamic power caps perform well in some cases. For
example the power caps predicted by the neural network save 8% of energy while reducing the
performance by less than 2%. It has to be mentioned that it has not been possible to execute the
experiment several times. Hence, the numbers and graphs in this case are not statistically correct.
However, they show a trend and dynamic power caps predicted by machine learning models have
the potential to save power with few impact on performance.

Although the executions with a fixed power cap perform overall better in the experiment, it is not
recommend using fixed power caps for all workload types. In the experiment only MPI based
workloads are executed which use several messages as means of communication between processes.
In these scenarios a reduced fixed power cap can save energy without a great impact on performance.
However, when conducting shared memory or hybrid workload an increase in power does also
result in an increasing performance. A fixed power cap can therefore reduce a system’s performance
significantly in these cases.

61

8 Conclusion

8.3 Future Work

In the future it is possible to adapt this work to not use only on-chip power sensors. External power
meters have higher accuracy and are considered ground of truth concerning power. Additionally,
it is possible to extend the work to power cap predictions of additional hardware components, for
instance graphical processing units.

Furthermore, running the experiment several times to justify the findings is considered. It is of
interest to see how the system behaves in case of extended interval lengths. The workload introduced
by prediction computation might also be investigated.

Finally, further machine learning algorithms might be evaluated. They can be compared concerning
accuracy, as well as computational overhead. A deeper look into the performance counter selection
can be done. It is possible to check which of these counters has the most impact on the power cap
prediction. Or it might be interesting to see if there are any metrics that might even be irrelevant for
this use case.

62

Bibliography

[Adv19] Advanced Micro Devices Inc. Available performance monitors for the AMDr Zen2
microarchitecture. 2019. url: https://github.com/RRZE-HPC/likwid/blob/master/
doc/archs/zen2.md (cit. on p. 37).

[Adv21] Advanced Micro Devices Inc. “Preliminary Processor Programming Reference (PPR)
for AMD Family 19h Model 01h, Revision B1 Processors Volume 2 of 2”. In: (2021).
url: developer.amd.com/resources/epyc-resources/epyc-specifications (cit. on
pp. 19, 37).

[All+04] M. P. Allen et al. “Introduction to molecular dynamics simulation”. In: Computational
soft matter: from synthetic polymers to proteins 23.1 (2004), pp. 1–28 (cit. on p. 35).

[AS95] C. G. Atkeson, S. Schaal. “Memory-based neural networks for robot learning”. In:
Neurocomputing 9.3 (1995), pp. 243–269. issn: 09252312. doi: 10.1016/0925-
2312(95)00033-6 (cit. on p. 25).

[Bab09] A. Babucke. “Direct Numerical Simulation of Noise-Generation Mechanisms in the
Mixing Layer of a Jet”. PhD thesis. May 2009. doi: 10.13140/RG.2.2.11798.19523
(cit. on p. 36).

[BBE+21] P. Bailey, S. Brink, D. Ellsworth, A. Marathe, L. Morita, T. Patki, B. Rountree,
K. Shoga, S. Walker. Variorum Documentation: Release 0.4.1. 2021. url: variorum.
readthedocs.io (cit. on p. 24).

[Ben09] Y. Bengio. Learning deep architectures for AI. Now Publishers Inc, 2009 (cit. on
p. 29).

[Ber19] D. Berrar. “Cross-Validation”. In: Encyclopedia of Bioinformatics and Computational
Biology. Elsevier, 2019, pp. 542–545. isbn: 9780128114322. doi: 10.1016/B978-0-
12-809633-8.20349-X (cit. on p. 41).

[Bre01] L. Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32. issn:
08856125. doi: 10.1023/A:1010933404324 (cit. on pp. 25, 26, 50).

[Bun20] S. Bundesamt. GREEN500. 2020. url: https://www.destatis.de/EN/Themes/
Society-Environment/Environment/Material-Energy-Flows/Tables/electricity-

consumption-households.html (cit. on p. 17).
[CKMC21] M. Cui, A. Kritikakou, L. Mo, E. Casseau. “Fault-Tolerant Mapping of Real-Time

Parallel Applications under multiple DVFS schemes”. In: 2021 IEEE 27th Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, 18.05.2021 -
21.05.2021, pp. 387–399. isbn: 978-1-6654-0386-3. doi: 10.1109/RTAS52030.2021.
00038 (cit. on p. 21).

[CM04] V. Cherkassky, Y. Ma. “Comparison of loss functions for linear regression”. In: 2004
IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541).
Vol. 1. IEEE. 2004, pp. 395–400 (cit. on pp. 42, 43).

63

https://github.com/RRZE-HPC/likwid/blob/master/doc/archs/zen2.md
https://github.com/RRZE-HPC/likwid/blob/master/doc/archs/zen2.md
developer.amd.com/resources/epyc-resources/epyc-specifications
https://doi.org/10.1016/0925-2312(95)00033-6
https://doi.org/10.1016/0925-2312(95)00033-6
https://doi.org/10.13140/RG.2.2.11798.19523
variorum.readthedocs.io
variorum.readthedocs.io
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.1023/A:1010933404324
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Material-Energy-Flows/Tables/electricity-consumption-households.html
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Material-Energy-Flows/Tables/electricity-consumption-households.html
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Material-Energy-Flows/Tables/electricity-consumption-households.html
https://doi.org/10.1109/RTAS52030.2021.00038
https://doi.org/10.1109/RTAS52030.2021.00038

Bibliography

[ESC+17] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi, K. Livingston,
F. Keceli, M. Maiterth, S. Jana. “Global Extensible Open Power Manager: A Vehicle
for HPC Community Collaboration on Co-Designed Energy Management Solutions”.
In: High Performance Computing. Ed. by J. M. Kunkel, R. Yokota, P. Balaji, D. Keyes.
Vol. 10266. Lecture Notes in Computer Science. Springer International Publishing,
2017, pp. 394–412. isbn: 978-3-319-58666-3. doi: 10.1007/978-3-319-58667-0-21
(cit. on p. 23).

[Exa22] Exascale Computing Project. Exascale Proxy Applications. 2022. url: https://
proxyapps.exascaleproject.org (cit. on p. 34).

[FC07] W.-c. Feng, K. Cameron. “The green500 list: Encouraging sustainable supercomput-
ing”. In: Computer 40.12 (2007), pp. 50–55 (cit. on p. 17).

[FM17] Fabio Ferrero, Matteo Sonza Reorda. “Analysis and dynamic optimization of energy
consumption on HPC applications based on real-time metrics”. PhD thesis. POLITEC-
NICO DI TORINO, 2017. url: https://webthesis.biblio.polito.it/6423/1/tesi.
pdf (cit. on pp. 23, 36, 69).

[Fra17] France Boillod-Cerneux. Towards energy consumption application profiling with
BULL energy software. Montpellier, France, October 4-5, 2017. url: https://
public.weconext.eu/eocoe/2017-10-04/video_id_003/index.html (cit. on p. 23).

[FSML19] M. Fahad, A. Shahid, R. R. Manumachu, A. Lastovetsky. “A Comparative Study
of Methods for Measurement of Energy of Computing”. In: Energies 12.11 (2019),
p. 2204. doi: 10.3390/en12112204 (cit. on p. 19).

[GBB11] X. Glorot, A. Bordes, Y. Bengio. “Deep sparse rectifier neural networks”. In: Proceed-
ings of the fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 315–323 (cit. on p. 27).

[GBC16] I. Goodfellow, Y. Bengio, A. Courville. Deep learning. Adaptive computation
and machine learning. Cambridge, Massachusetts: The MIT Press, 2016. isbn:
9780262035613 (cit. on pp. 25–27, 29, 43, 50).

[GBI21] M. Gupta, L. Bhargava, S. Indu. “Dynamic workload-aware DVFS for multicore
systems using machine learning”. In: Computing 103.8 (2021), pp. 1747–1769. issn:
0010-485X. doi: 10.1007/s00607-020-00845-2 (cit. on p. 21).

[GEO21] GEOPM Working Group. GEOPM Service Documentation. 2021. url: https://
geopm.github.io (cit. on p. 23).

[Gre16] C. Greenshields. Computational Fluid Dynamics. 2016. url: https://cfd.direct/
openfoam/computational-fluid-dynamics (cit. on p. 35).

[Gre21] C. Greenshields. OpenFOAM User Guide Version v2112. 2021. url: https://www.
openfoam.com/documentation/overview (cit. on p. 35).

[HD18] S. A. Hollingsworth, R. O. Dror. “Molecular dynamics simulation for all”. In: Neuron
99.6 (2018), pp. 1129–1143 (cit. on p. 35).

[HGCB08] M. Hersch, F. Guenter, S. Calinon, A. Billard. “Dynamical system modulation for
robot learning via kinesthetic demonstrations”. In: IEEE Transactions on Robotics
24.6 (2008), pp. 1463–1467 (cit. on p. 25).

64

https://doi.org/10.1007/978-3-319-58667-0-21
https://proxyapps.exascaleproject.org
https://proxyapps.exascaleproject.org
https://webthesis.biblio.polito.it/6423/1/tesi.pdf
https://webthesis.biblio.polito.it/6423/1/tesi.pdf
https://public.weconext.eu/eocoe/2017-10-04/video_id_003/index.html
https://public.weconext.eu/eocoe/2017-10-04/video_id_003/index.html
https://doi.org/10.3390/en12112204
https://doi.org/10.1007/s00607-020-00845-2
https://geopm.github.io
https://geopm.github.io
https://cfd.direct/openfoam/computational-fluid-dynamics
https://cfd.direct/openfoam/computational-fluid-dynamics
https://www.openfoam.com/documentation/overview
https://www.openfoam.com/documentation/overview

Bibliography

[HPGJ14] J.-P. Halimi, B. Pradelle, A. Guermouche, W. Jalby. “FoREST-mn: Runtime DVFS
beyond communication slack”. In: International Green Computing Conference. IEEE,
11/3/2014 - 11/5/2014, pp. 1–6. isbn: 978-1-4799-6177-1. doi: 10.1109/IGCC.2014.
7039158 (cit. on p. 22).

[HZS06] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew. “Extreme learning machine: theory and appli-
cations”. In: Neurocomputing 70.1-3 (2006), pp. 489–501 (cit. on pp. 28, 29).

[Int12] Intel Corporation. Intelr 64 and IA-32 Architectures Optimization Reference Manual.
2012. url: https : / / www . intel . com / content / dam / doc / manual / 64 - ia - 32 -

architectures-optimization-manual.pdf (cit. on p. 22).
[Int21a] Intel Corporation. Intelr 64 and IA-32 Architectures Optimization Reference Manual.

2021. url: https://www.intel.com/content/www/us/en/develop/documentation/
vtune - help / top / analyze - performance / custom - analysis / custom - analysis -

options/hardware-event-list/instructions-retired-event.html (cit. on p. 37).
[Int21b] Intel Corporation. Intelr 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3B: System Programming Guide, Part 2. 2021. url: https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html (cit. on pp. 19,
20).

[IPK21] S. Imambi, K. B. Prakash, G. Kanagachidambaresan. “PyTorch”. In: Programming
with TensorFlow. Springer, 2021, pp. 87–104 (cit. on p. 30).

[ISG07] S. Irani, S. Shukla, R. Gupta. “Algorithms for power savings”. In: ACM Transactions
on Algorithms 3.4 (2007), p. 41. issn: 1549-6325. doi: 10.1145/1290672.1290678
(cit. on pp. 20, 21).

[Jas09] H. Jasak. “OpenFOAM: open source CFD in research and industry”. In: International
Journal of Naval Architecture and Ocean Engineering 1.2 (2009), pp. 89–94 (cit. on
p. 35).

[JGR19] D. Jakubovitz, R. Giryes, M. R. Rodrigues. “Generalization error in deep learning”.
In: Compressed Sensing and Its Applications. Springer, 2019, pp. 153–193 (cit. on
p. 50).

[KB14] D. P. Kingma, J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014) (cit. on p. 43).

[KCCC08] J. Kong, J. Choi, L. Choi, S. W. Chung. “Low-Cost Application-Aware DVFS for
Multi-core Architecture”. In: 2008 Third International Conference on Convergence
and Hybrid Information Technology. IEEE, 11.11.2008 - 13.11.2008, pp. 106–111.
isbn: 978-0-7695-3407-7. doi: 10.1109/ICCIT.2008.124 (cit. on p. 21).

[LBH15] Y. LeCun, Y. Bengio, G. Hinton. “Deep learning”. In: nature 521.7553 (2015),
pp. 436–444 (cit. on p. 29).

[LJR+20] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-Tzur, M. Hardt, B. Recht,
A. Talwalkar. “A system for massively parallel hyperparameter tuning”. In: Proceed-
ings of Machine Learning and Systems 2 (2020), pp. 230–246 (cit. on p. 53).

[LLN+18] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, I. Stoica. “Tune: A Re-
search Platform for Distributed Model Selection and Training”. In: arXiv preprint
arXiv:1807.05118 (2018) (cit. on p. 31).

65

https://doi.org/10.1109/IGCC.2014.7039158
https://doi.org/10.1109/IGCC.2014.7039158
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/custom-analysis/custom-analysis-options/hardware-event-list/instructions-retired-event.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/custom-analysis/custom-analysis-options/hardware-event-list/instructions-retired-event.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/custom-analysis/custom-analysis-options/hardware-event-list/instructions-retired-event.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/1290672.1290678
https://doi.org/10.1109/ICCIT.2008.124

Bibliography

[LTF+14] K. Livingston, N. Triquenaux, T. Fighiera, J. C. Beyler, W. Jalby. “Computer using too
much power? Give it a REST (Runtime Energy Saving Technology)”. In: Computer
Science - Research and Development 29.2 (2014), pp. 123–130. issn: 1865-2034.
doi: 10.1007/s00450-012-0226-0 (cit. on p. 22).

[MS10] G. Martı́nez-Muñoz, A. Suárez. “Out-of-bag estimation of the optimal sample size in
bagging”. In: Pattern Recognition 43.1 (2010), pp. 143–152 (cit. on p. 26).

[NAS22] NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. 2022. url:
https://www.nas.nasa.gov/software/npb.html (cit. on p. 34).

[Nie15] M. A. Nielsen. Neural Networks and Deep Learning. 2015. url: http:/neuralnetwor
ksanddeeplearning.com (cit. on p. 28).

[PM21] J. Pérez Rodríguez, P. Meumeu Yomsi. “An Efficient Proactive Thermal-Aware
Scheduler for DVFS-enabled Single-Core Processors”. In: 29th International Con-
ference on Real-Time Networks and Systems. Ed. by A. Queudet, I. Bate, G. Lipari.
New York, NY, USA: ACM, 4072021, pp. 144–154. isbn: 9781450390019. doi:
10.1145/3453417.3453430 (cit. on p. 21).

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 30).

[Ray22] Ray Team. Tune: Scalable Hyperparameter Tuning. 2022. url: https://docs.ray.
io/en/latest/tune/key-concepts.html (cit. on p. 31).

[RHW86] D. E. Rumelhart, G. E. Hinton, R. J. Williams. “Learning representations by back-
propagating errors”. In: nature 323.6088 (1986), pp. 533–536 (cit. on p. 29).

[RRS+14] T. Rauber, G. Rünger, M. Schwind, H. Xu, S. Melzner. “Energy measurement, mod-
eling, and prediction for processors with frequency scaling”. In: The Journal of
Supercomputing 70.3 (2014), pp. 1451–1476. issn: 0920-8542. doi: 10.1007/s11227-
014-1236-4 (cit. on p. 19).

[RTHW14] T. Roehl, J. Treibig, G. Hager, G. Wellein. “Overhead Analysis of Performance
Counter Measurements”. In: 43rd International Conference on Parallel Processing
Workshops (ICCPW). 2014, pp. 176–185. doi: 10.1109/ICPPW.2014.34 (cit. on p. 30).

[Sch20] J. Schmidt-Hieber. “Nonparametric regression using deep neural networks with ReLU
activation function”. In: The Annals of Statistics 48.4 (2020), pp. 1875–1897 (cit. on
p. 26).

[sci22] scikit-learn. Tuning the hyper-parameters of an estimator. 2022. url: https://scikit-
learn.org/stable/modules/grid_search.html#exhaustive-grid-search (cit. on
p. 41).

[SDSM21] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer. GREEN500. 2021. url: https:
//www.top500.org/lists/green500/ (cit. on p. 17).

[SFML21] A. Shahid, M. Fahad, R. R. Manumachu, A. Lastovetsky. “Improving the accuracy of
energy predictive models for multicore CPUs by combining utilization and perfor-
mance events model variables”. In: Journal of Parallel and Distributed Computing
151 (2021), pp. 38–51. issn: 07437315. doi: 10.1016/j.jpdc.2021.01.007 (cit. on
p. 19).

66

https://doi.org/10.1007/s00450-012-0226-0
https://www.nas.nasa.gov/software/npb.html
http:/neuralnetworksanddeeplearning.com
http:/neuralnetworksanddeeplearning.com
https://doi.org/10.1145/3453417.3453430
https://docs.ray.io/en/latest/tune/key-concepts.html
https://docs.ray.io/en/latest/tune/key-concepts.html
https://doi.org/10.1007/s11227-014-1236-4
https://doi.org/10.1007/s11227-014-1236-4
https://doi.org/10.1109/ICPPW.2014.34
https://scikit-learn.org/stable/modules/grid_search.html#exhaustive-grid-search
https://scikit-learn.org/stable/modules/grid_search.html#exhaustive-grid-search
https://www.top500.org/lists/green500/
https://www.top500.org/lists/green500/
https://doi.org/10.1016/j.jpdc.2021.01.007

Bibliography

[SS15] F. Stulp, O. Sigaud. “Many regression algorithms, one unified model: A review”. In:
Neural networks : the official journal of the International Neural Network Society 69
(2015), pp. 60–79. doi: 10.1016/j.neunet.2015.05.005 (cit. on pp. 25–29).

[SSE+17] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, X. Xu. “DBSCAN revisited, revisited:
why and how you should (still) use DBSCAN”. In: ACM Transactions on Database
Systems (TODS) 42.3 (2017), pp. 1–21 (cit. on p. 46).

[THW10] J. Treibig, G. Hager, G. Wellein. “LIKWID: A Lightweight Performance-Oriented
Tool Suite for x86 Multicore Environments”. In: 2010 39th International Conference
on Parallel Processing Workshops. IEEE, 2010, pp. 207–216. isbn: 978-1-4244-7918-
4. doi: 10.1109/ICPPW.2010.38 (cit. on p. 30).

[TLP+13] N. Triquenaux, A. Laurent, B. Pradelle, J. C. Beyler, W. Jalby. “Automatic estimation
of DVFS potential”. In: 2013 International Green Computing Conference Proceedings.
IEEE, 6/27/2013 - 6/29/2013, pp. 1–6. isbn: 978-1-4799-0623-9. doi: 10.1109/IGCC.
2013.6604501 (cit. on pp. 21, 22).

[Tor19a] Torch Contributors. torch.nn: Basic Building Blocks for Graphs. 2019. url: https:
//pytorch.org/docs/stable/nn.html (cit. on p. 31).

[Tor19b] Torch Contributors. torch.optim: Optimizing Algorithms. 2019. url: https://pytorc
h.org/docs/stable/optim.html (cit. on p. 31).

[Vap99] V. Vapnik. The nature of statistical learning theory. Springer science & business
media, 1999 (cit. on p. 25).

[WCC14] C.-M. Wu, R.-S. Chang, H.-Y. Chan. “A green energy-efficient scheduling algorithm
using the DVFS technique for cloud datacenters”. In: Future Generation Computer
Systems 37.1 (2014), pp. 141–147. issn: 0167739X. doi: 10.1016/j.future.2013.
06.009 (cit. on p. 21).

[Wei22] Weisstein, Eric W. Sigmoid Function. 2022. url: https://mathworld.wolfram.com/
SigmoidFunction.html (cit. on p. 51).

[WKE+19] B. Wang, J. Klinkenberg, D. Ellsworth, C. Terboven, M. Müller. “Performance Pre-
diction for Power-Capped Applications based on Machine Learning Algorithms”.
In: 2019 International Conference on High Performance Computing & Simulation
(HPCS). IEEE. 2019, pp. 842–849 (cit. on p. 24).

[WPS+19] C. Wenzel, J. M. Peter, B. Selent, M. B. Weinschenk, U. Rist, M. J. Kloker. “DNS of
compressible turbulent boundary layers with adverse pressure gradients”. In: High
Performance Computing in Science and Engineering’18. Springer International Pub-
lishing, 2019, pp. 229–242. isbn: 978-3-030-13325-2 (cit. on p. 36).

67

https://doi.org/10.1016/j.neunet.2015.05.005
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/IGCC.2013.6604501
https://doi.org/10.1109/IGCC.2013.6604501
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://doi.org/10.1016/j.future.2013.06.009
https://doi.org/10.1016/j.future.2013.06.009
https://mathworld.wolfram.com/SigmoidFunction.html
https://mathworld.wolfram.com/SigmoidFunction.html

A Event Sets

BDPO Event Set

Event set used by [FM17]:

1. Intructions & Cycles

• INSTRUCTION_RETIRED

• READ_TIME_STAMP_COUNTER

• UNHALTED_REFERENCE_CYCLES

• UNHALTED_CORE_CYCLES

2. Memory Usage

• MEM_UOPS_RETIRED:ALLLOADS

• MEM_UOPS_RETIRED:ALLSTORES

• L1D:REPLACEMENT

• L2_TRANS:L1D_WB

• L2_RQSTS:MISS

3. Package Energy Consumption

• rapl::RAPL_ENERGY_PKG

• rapl::RAPL_ENERGY_DRAM

69

A Event Sets

Zen2 Event Groups

Branch
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
RETIRED_BRANCH_INSTR
RETIRED_MISP_BRANCH_INSTR

Cache
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
DATA_CACHE_ACCESSES
DATA_CACHE_REFILLS_ALL

Clock
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
RAPL_PKG_ENERGY

CPI
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
RETIRED_UOPS

Data
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
LS_DISPATCH_LOADS
LS_DISPATCH_STORES

Divide
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
DIV_OP_COUNT
DIV_BUSY_CYCLES

Energy
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
RAPL_CORE_ENERGY
RAPL_PKG_ENERGY

FLOPS_DP
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
RETIRED_SSE_AVX_FLOPS_ALL
MERGE

FLOPS_SP
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
RETIRED_SSE_AVX_FLOPS_ALL
MERGE

iCache
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
ICACHE_FETCHES
ICACHE_L2_REFILLS
ICACHE_SYSTEM_REFILLS

L2 Cache
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
REQUESTS_TO_L2_GRP1_ALL_NO_PF

L3 Cache
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
L3_ACCESS
L3_MISS

Main Memory
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
DRAM_CHANNEL_0
DRAM_CHANNEL_1

Memory DP / SP
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
CPU_CLOCKS_UNHALTED
RETIRED_SSE_AVX_FLOPS_ALL
MERGE
DRAM_CHANNEL_0
DRAM_CHANNEL_1

TLB
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
RETIRED_INSTRUCTIONS
DATA_CACHE_ACCESSES
L1_DTLB_MISS_ANY_L2_HIT
L1_DTLB_MISS_ANY_L2_MISS

NUMA
ACTUAL_CPU_CLOCK
MAX_CPU_CLOCK
DATA_CACHE_REFILLS_LOCAL_ALL
DATA_CACHE_REFILLS_REMOTE_ALL
HWPREF_DATA_CACHE_FILLS_LOCAL_ALL
HWPREF_DATA_CACHE_FILLS_REMOTE_ALL

70

B Cluster Diagrams

Sankey diagram of benchmark to cluster assignment with n = 2.0 in addtion to the illustration in
Chapter 6.

Figure B.1: Benchmark-Cluster Sankey Diagram

71

C Experiment Results Diagrams

BT Benchmark

Figure C.1: Power Graphs of BT Benchmark

LU Benchmark

Figure C.2: Power Graphs of LU Benchmark

73

C Experiment Results Diagrams

SP Benchmark

Figure C.3: Power Graphs of SP Benchmark

Ember Benchmark

Figure C.4: Power Graphs of Ember Benchmark

74

OpenFOAM Benchmark

Figure C.5: Power Graphs of OpenFOAM Benchmark

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Goals and Scope
	1.3 Structure of Work

	2 Related Work
	2.1 Power Metering
	2.2 Power Capping
	2.3 Further Material

	3 Prerequisites
	3.1 Regression
	3.2 Random Forest
	3.3 Artificial Neural Networks
	3.4 Tools and Frameworks

	4 Data Collection
	4.1 Design
	4.2 Benchmarks
	4.3 Performance Counters
	4.4 Environments
	4.5 Implementation

	5 Machine Learning Models
	5.1 Random Forest Regression
	5.2 Neural Network

	6 Optimization
	6.1 Data Analysis
	6.2 Regularization

	7 Experiment
	7.1 Design
	7.2 Results

	8 Conclusion
	8.1 Summary
	8.2 Conclusion
	8.3 Future Work

	Bibliography
	A Event Sets
	B Cluster Diagrams
	C Experiment Results Diagrams

