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Ab initio simulations of the surface free energy of TiN(001)
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The temperature dependence of the surface free energy of the industrially important TiN(001) system has been
investigated by means of an extended two-stage upsampled thermodynamic integration using Langevin dynamics
(TU-TILD) methodology, to include the fully anharmonic vibrational contribution, as obtained from ab initio
molecular dynamics (AIMD). Inclusion of the fully anharmonic behavior is crucial, since the standard low-
temperature quasiharmonic approximation exhibits a severe divergence in the surface free energy due to a high-
temperature dynamical instability. The anharmonic vibrations compensate for the quasiharmonic divergence
and lead to a modest overall temperature effect on the TiN(001) surface free energy, changing it from around
78 meV Å−2 at 0 K to 73 meV Å−2 at 3000 K. The statistical convergence of the molecular dynamics is facilitated
by the use of machine-learning potentials, specifically moment tensor potentials, fitted for TiN(001) at finite
temperature. The surface free energy obtained directly from the fitted machine-learning potentials is close to that
obtained from the full AIMD simulations.
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I. INTRODUCTION

It has recently been recognized that anharmonicity can
drastically impact defect formation, even at temperatures sig-
nificantly below the melting point when there is a breakdown
of local symmetry as, e.g., for atoms next to a vacancy [1,2]. In
such cases, the quasiharmonic approximation (QHA), nowa-
days widely used in combination with ab initio calculations,
cannot even qualitatively reproduce the temperature depen-
dence of the defect formation free energy.

One may expect anharmonic effects to be pronounced for
other geometrically open defects as well; for example, for
surfaces where atoms in the outermost layer have the freedom
to move much further out of the bulk than into the bulk.
Such a behavior was indeed observed in Monte Carlo calcu-
lations of the (001) surface of Al using a classical interatomic
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potential [3]. The surface free energy in fully anharmonic
calculations strongly deviated from the results obtained with
the QHA.

Nevertheless, so far there has only been one ab initio sur-
face study including the impact of anharmonicity [4]. In Ref.
[4], two approaches, producing similar results, were applied
to the TiO2(110) surface: thermodynamic integration of the
(1) internal energy over temperature and (2) stress over strain
while simultaneously splitting the initial bulk supercell into
slabs at a fixed temperature. The relation to the QHA was not
investigated. Because such explicitly anharmonic calculations
are in general computationally highly demanding, all other ab
initio surface studies, of which there are in any case only very
few so far, were performed within the QHA [5–9].

The availability of an efficient ab initio approach to com-
pute anharmonic surface free energies would be beneficial
from several perspectives. From an applied point of view,
it would enable access to accurate surface properties for in-
dustrially important high-temperature materials such as, e.g.,
coatings for abrasive wear resistance, precipitates in steels
or cemented carbides, or thin films used in electronics or
optics. From a more fundamental perspective, accurate high-
temperature surface energies are the only way to get a reliable
connection to experimental data since surface energies of
solids are measured at temperatures close to the melting point
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[10]. Therefore, the main aim of this paper is to devise an
ab initio methodology, based on density-functional theory
(DFT), for efficient and accurate calculations of the surface
free energy with total account of anharmonic effects, so that
the remaining error can be ascribed to the used approximation
for the exchange-correlation functional in the DFT approach.

For that purpose, we extend the previously developed two-
stage upsampled thermodynamic integration using Langevin
dynamics (TU-TILD) method [2,11] to surface free-energy
calculations. The TU-TILD method has already been used
for free-energy calculations of various systems, including
vacancy formation free energies [2] and stacking fault free
energies [12]. Combined with machine-learning potentials,
the computational demands can be substantially decreased
[13] by reducing the number of expensive DFT calculations.

Here, we apply the extended TU-TILD method to deter-
mine the temperature dependence of the surface free energy of
TiN(001). TiN is widely used as a coating material in different
applications due to its wear resistance [14]. Although there
exist several ab initio calculations of the (001) surface [15],
which is likely the most stable one at 0 K for TiN, noth-
ing is known about its temperature dependence. TiN has the
NaCl-structure (B1), exhibits mainly covalent bonding with
a metallic type density of states and has a quite high Debye
temperature of 900 K [16,17]. The temperature dependence
of bulk properties in TiN has been investigated before. The
studied bulk properties include the heat capacity [18–20] and
the thermal expansion coefficient [18,19,21] within the QHA
with a focus on lower temperatures, and elastic properties [22]
from ab initio molecular dynamics (AIMD).

II. METHODOLOGY

A. Surface free energy

We use the slab technique to determine the surface free
energy γ (T ) according to

γ (T ) = Fslab(aT , T ) − Fbulk(aT , T )

2AT
, (1)

where Fslab(aT , T ) and Fbulk(aT , T ) refer to the Helmholtz free
energies of the slab and bulk with the same number of atoms,
for the lattice constant aT and temperature T , and AT is the
surface area of the slab. The factor of 1

2 accounts for the two,
alike surfaces in the slab calculation. The lattice constant aT

corresponds to the equilibrium one in the bulk aeq(T ) at the
given temperature and at zero pressure. For the slab geometry
aT fixes the two, lateral dimensions within the surface plane.
Since the additional degree of freedom perpendicular to the
surface plane is unconstrained and a homogeneous lattice
distortion of the slab in this direction is possible, it is assumed
here that the lateral interatomic distances in the surface planes
are the same as in the corresponding layers in the infinite bulk.
The interplane distances can be different for several surface
layers, while they converge to their bulk value in the middle
of the slab with increasing thickness. [As discussed below,
eight layers provide converged results in the specific case of
TiN(001).]

The Helmholtz free energies (here we omit the slab and
bulk subscripts) can be adiabatically decomposed into the

following contributions:

F (aT , T )=E (aT ) + F el(aT , T ) + F vib(aT , T ), (2)

where E denotes the conventional 0 K total energy of the sys-
tem (either bulk or slab), F el the thermal-electronic-excitation
contribution for the static lattice, and F vib the vibrational free
energy of the lattice, obtained here either in the QHA or in
the fully anharmonic form using the TU-TILD method. When
calculated with the latter method, the vibrational free energy
F vib contains the (adiabatic) coupling between one-electron
excitations and lattice vibrations.

To determine an accurate thermal expansion at zero pres-
sure required to fix aT , the full free-energy surface Fbulk(V, T )
as a function of volume V and temperature T is calculated for
the bulk including the same contributions as above,

Fbulk(V, T )=Ebulk(V ) + F el
bulk(V, T ) + F vib

bulk(V, T ). (3)

The thermal expansion is determined through the minima with
respect to the volume on this surface. In our implementation,
we perform a Legendre transformation of Fbulk(V, T ) to the
Gibbs energy surface Gbulk(P, T ), where P is the pressure,
from which the equilibrium volume is obtained through the
derivative with respect to pressure. Other equilibrium ther-
modynamic properties of the bulk, e.g., the heat capacity at
constant pressure, are accessible from Gbulk(P, T ) as well.
As already stated, the surface free energy is given at zero
pressure, and all the results for the bulk are also given for zero
pressure. The difference to ambient pressure bulk results is
negligible.

B. Anharmonic free energy calculations and machine learning
potentials

To calculate the full vibrational free energy including the
anharmonic contribution, a modified version of the original
TU-TILD method [2,11] is used:

F vib = F Einst + F Einst→MTP + F MTP→DFT, (4)

where

F Einst→MTP =
∫ 1

0
dλ1 〈EMTP − EEinst〉λ1 , (5)

F MTP→DFT =
∫ 1

0
dλ2 〈EDFT

low − EMTP〉λ2 + 〈�E〉UP. (6)

Further, F Einst is the free energy of an optimized Einstein
crystal; EEinst, EMTP, and EDFT

low are the energies of a particular
atomic configuration calculated for the Einstein crystal, with
a moment tensor potential (MTP) [23] as implemented in the
MLIP software [24], and with low-converged DFT parame-
ters, respectively; 〈...〉λ denotes a thermodynamic average for
a particular coupling constant λ and at a certain temperature
and volume/lattice constant; finally, the term 〈�E〉UP is ob-
tained within free-energy perturbation theory and accounts
for the difference in free energy between the low- and high-
converged DFT calculations [11].

The first modification with respect to the original TU-TILD
method is the usage of an optimized Einstein crystal as the
analytic reference to compute the absolute free energy, instead
of a quasiharmonic reference. The reason for abandoning
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the quasiharmonic reference is the occurrence of imaginary
frequencies at larger lattice constants for the present material
system (cf. discussion in Sec. IV), as well as computational
efficiency for large and complicated structures. The Einstein
crystal is a simple and convenient workaround [25]. The cor-
responding Einstein frequency can be chosen quite arbitrarily
within a reasonable interval specific for this system. Since
the Einstein system is used only as an auxiliary reference for
thermodynamic integration, the choice does not affect the final
result obtained after the integration. However, we note that a
careful study of the supercell size dependence is important
for this integration, as discussed in Sec. III A. Further, for the
corresponding slab calculations, the choice of the reference
positions around which the Einstein crystal is calculated is
important as discussed in Sec. III B.

The second modification is the usage of a machine-learning
potential, specifically MTP, as a highly efficient bridge be-
tween the analytical reference system and the DFT system.
Very recently, MTPs have been proven to be efficient in
combination with the TU-TILD method [13]. In summary,
MTPs describe the atomic environment of the ith atom by the
moments of inertia of the neighboring atoms j,

Mμ,ν =
∑

j

fμ,i, j (ri j ) ri j ⊗ · · · ⊗ ri j︸ ︷︷ ︸
ν times

, (7)

where fμ,i, j (ri j ), μ = 1, 2, . . . are radial functions and define
different shells around the ith atom, and ri j ⊗ · · · ⊗ ri j is a
ν-dimensional tensor. Contractions of these moments into a
scalar then serve as basis functions, whose linear combination,
with parameters fitted to data, can approximate the local inter-
action energy. (For more details, see Ref. [23].) The MTPs are
also used here to directly calculate the anharmonic vibrational
surface free energy. This provides a significant speed-up com-
pared to running the computationally heavy AIMD, while still
providing results in good approximation, as will be discussed
in Sec IV B.

III. COMPUTATIONAL DETAILS

All DFT calculations were done using the PAW method
[26] as implemented in the Vienna ab initio simula-
tion package (VASP) [27,28]. We used the titanium PAW
potential with the semi-core p-electrons included in the
valence band (Tipv) and the nitrogen PAW soft-core po-
tential (Ns), as provided in VASP version 5.4.4. The
generalized gradient approximation (GGA) in the PBE
parametrization [29] was used for the exchange correlation
energy.

A. Bulk free energy calculations

The bulk free-energy surface Fbulk(V, T ) was obtained by
computing the different free-energy contributions according
to Eq. (3). In general, the convergence parameters were cho-
sen such as to achieve an accuracy in the free energy of below
1 meV/atom.

The 0 K energy Ebulk(V ) was computed for a 32-atom
supercell built from a 1 × 1 × 4 expansion of the conventional
cubic unit cell for consistency with the slab calculations, as
described in Sec. III B. It was computed on a mesh of six

volume points in the relevant range, as required to cover the
thermal expansion. The plane-wave cutoff was set to 500 eV
and the k-point mesh to 17 × 17 × 5. The Methfessel-Paxton
scheme [30] of order 1 was utilized with a smearing width of
0.1 eV. The computed energy points were fitted to the Vinet
equation of state [31].

The electronic free energy F el
bulk(T,V ) for the static lat-

tice was computed for the primitive unit cell (two atoms)
using the self-consistent field approach [32] within finite-
temperature DFT [33]. We used a mesh of 13 volume times
14 temperature points (up to 3000 K). The plane-wave cutoff
was set to 500 eV and the k-point mesh to 25 × 25 × 25.
The temperature-volume dependence was parametrized as
discussed in Ref. [34]. We used in particular a fourth order
fit for the temperature expansion of the density of states and a
third order polynomial for the volume dependence of the free
energy.

The vibrational free energy F vib
bulk(V, T ) was computed

according to the prescription in Eq. (4). An MTP was
trained to energies and forces from in total 9000 atomic
configurations obtained from initial DFT AIMD runs for
the bulk at 3000 K and a set of six volumes. The other
specifications for the bulk initial DFT AIMD were adjusted
to the ones for the low-converged DFT runs in the TU-TILD
method (discussed below). In particular, a 128-atom supercell
built from a 4 × 4 × 4 expansion of the primitive unit cell
(two atoms), a plane-wave cutoff of 350 eV, and a 2 × 2 × 2
Monkhorst-Pack [35] k-point mesh were used. The MTP had
a cutoff radius of 4.5 Å, including the three nearest-neighbor
shells. The level of the MTP was chosen to be 20. The level is
a degree-like hyperparameter controlling the number of MTP
parameters [24], which in the present work was equal to 410.
The resulting root-mean-square error (RMSE) of the energy
difference between DFT and MTP was 2 meV/atom and the
RMSE of the force was 0.16 eV Å−2.

The difference in free energy between the Einstein crystal
and the MTP, F Einst→MTP, was calculated in a 512-atom su-
percell built from a 4 × 4 × 4 expansion of the conventional
cubic unit cell (eight atoms). A large enough supercell is
important for this integration to capture the contribution of
long wavelength phonons to the free energy. With the chosen
512-atom supercell the corresponding free-energy contribu-
tion is converged to below 1 meV/atom even for the highest
temperature and largest lattice constants (Fig. 1). A dense
mesh of 10 volume times 12 temperature points was chosen
for the calculation of F Einst→MTP. At each volume-temperature
point, a dense set of λ1 values (typically 26) was used for the
integration in Eq. (5). At each λ1 value statistically very well
converged results were obtained from long MD simulations
(50 000 steps). Note that for the computation of F Einst→MTP

no expensive DFT runs are required.
The difference in free energy between the MTP and DFT,

F MTP→DFT, was obtained in a 128-atom supercell build from
a 4 × 4 × 4 expansion of the primitive unit cell (two atoms).
Note that this free energy difference converges much more
rapidly with supercell size than F Einst→MTP. Test calculations
show that F MTP→DFT changes by less than 2 meV/atom be-
tween a 128- and 512-atom supercell. A mesh of three volume
times five temperature points was chosen for the calculation
of F MTP→DFT (corresponding lattice constants (Å): 4.2, 4.3,
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FIG. 1. Convergence of the bulk free energies with respect to the
supercell size at 3000 K and at a lattice constant of 4.4 Å. The results
for F Einst→MTP are shown by a blue line, and F qh by a dotted orange
line. The difference in free energy �F is given with reference to the
last value in each set.

4.4; temperatures (K): 250, 500, 1000, 2000, 3000). At each
volume-temperature point, five λ2 values (0, 0.25, 0.5, 0.75,
1) were chosen for the integration in Eq. (6). At each λ2

value, two MD runs initiated with different random seeds
were conducted to achieve simulation lengths of about 1000
MD steps (excluding equilibration). This sampling resulted in
statistical errors of below 0.2 meV/atom, due to the excellent
performance of the MTP in predicting the DFT energetics (cf.
also Sec. IV). For the low-converged DFT parameters [EDFT

low
in Eq. (6)], we used a plane-wave cutoff of 350 eV and a
2 × 2 × 2 Monkhorst-Pack [35] k-point mesh. For the high-
converged parameters [entering the last, upsampling term in
Eq. (6)], we used 500 eV and a 6 × 6 × 6 k-point mesh, and
about 15 upsampling calculations at each volume-temperature
point, which was more than enough to obtain well converged
energies. The impact of lattice vibrations on the electronic free
energy was included both in the corresponding AIMD and at
the stage of the upsampling. The explicitly computed mesh of
volume-temperature points for F MTP→DFT was parametrized
with a polynomial expansion in order to obtain an analyti-
cal description of F MTP→DFT(V, T ) as function of V and T .
Specifically, we used a polynomial up to third order in both V
and T.

The two vibrational contributions F Einst→MTP and
F MTP→DFT were added together on the dense mesh used
to calculate the former of the contributions. Additionally, the
quantum-mechanical Einstein free energy F einst was added on
top, such as to obtain the final vibrational free energy F vib

bulk [as
specified in Eq. (4)] on the dense set of volume-temperature
points. These points were then parametrized utilizing the

FIG. 2. Convergence of the time step in the integration from an
Einstein crystal reference to the bulk-MTP for 4.4 Å and 3000 K.

analytical formula

F vib
bulk(V, T ) = h̄

2
ω(V )

+
n∑
i

CikBT ln

[
1 − exp

(
− h̄ωi(V )

kBT

)]
, (8)

where ω(V ) is expanded in a polynomial in V up to second
order, ωi(V ) a polynomial in V up to third order and Ci is an
additional fitting parameter. Using n = 3, already gives good
fitting results. The starting parameters for the fit were adjusted
to the low-temperature QHA results. This fitting procedure
follows in spirit the one introduced in Ref. [36] [Eq. (29)/(30)
in that reference] where a renormalized anharmonic frequency
was introduced to fit the anharmonic free energy. Here, we
have extended the ansatz to account for the full vibrational
free energy.

All the MD simulations were run with a Langevin ther-
mostat [36] with a damping parameter of 0.01 fs−1. The
van-Gunsteren-Berendsen algorithm [37] was used for the
integration of Newton’s equations of motion in the time step-
ping. A 2 fs time step was deemed sufficient for all AIMD
runs (cf. Fig. 2).

B. Slab free energy calculations

In principle, Fslab(aT , T ) needs to be calculated only along
the thermal expansion of the bulk [aT = aeq(T )]. However, to
increase numerical stability and to easily be able to account
for changes in the thermal expansion (induced for example by
accounting for thermal contributions from the electronic sys-
tem), we extended the mesh of investigated lattice constants at
each temperature. That is, we computed Fslab(a, T ) at several
(lateral) lattice constants a around the required equilibrium
lattice constant aT . A parametrization of Fslab(a, T ) was then
used to obtain Fslab(aT , T ).

All contributions to Fslab(a, T ) were calculated with eight
atomic layers perpendicular to the surfaces of the slab and
with a vacuum region of 4a (≈17 Å) inserted between the two
surfaces. Figure 3 shows that the 0 K and (full) vibrational
contributions are converged to within 1 meV Å−2 for a slab
with eight layers. Further computational details specific to
the contributions to Fslab(a, T ) are provided in the follow-
ing, however only if they differed from the respective bulk
calculations; otherwise, we refer to the parameter settings
given in Sec. III A.
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FIG. 3. Convergence of the (a) DFT surface energy at 0 K γ T =0 K

and (b) MTP vibrational surface free energy γ vib at 2000 K with
respect to the number of atomic layers in the slab. The lattice constant
is fixed close to aT for the corresponding temperature (a = 4.25 Å
for 0 K and a = 4.35 Å for 2000 K). The MTP corresponds to the
one fitted to the slab calculations (“slab-MTP”).

The 0 K energy Eslab(a) was computed in a slab of 32
atoms built from a 1 × 1 × 4 expansion of the conventional
cubic unit cell with eight atoms (plus the vacuum region),
at six different lattice constants a. At each lattice constant
atomic relaxation was allowed perpendicular to the surface for
two surface layers. A k-point mesh of 17 × 17 × 5 was used.
The difference Eslab(a) − Ebulk(a) was parametrized with a
third order polynomial and included together with the other
contributions to the surface free energy.

The electronic contribution F el
slab(a, T ) was calculated in

the same 32-atom slab supercell as Eslab(a), on a mesh of six
lattice constants times six temperatures. The k-point mesh was
set to 17 × 17 × 5. For consistency, the same fitting procedure
was applied as in the case of F el

bulk(T,V ), by utilizing an
effective volume derived from the (lateral) lattice constant a.

For the calculation of F vib
slab(a, T ) a second, separate MTP

(“slab-MTP”) was fitted to optimize the TU-TILD slab cal-
culations. In the same way as for the bulk-MTP, we utilized
initial DFT AIMD runs for the slab at 3000 K and sev-
eral lattice constants with the other specifications as for the
low-converged runs (see below; specifically a 512-atom slab,
350 eV cutoff, and the � point). The level of the slab-MTP
was the same as for the bulk-MTP.

The difference in free energy between the Einstein crystal
and the slab-MTP, F Einst→MTP, was calculated in a 512-atom
supercell built from a 4 × 4 × 4 expansion of the conventional
cubic unit cell with 4a of vacuum along the z direction. A
mesh of six lattice constants times 12 temperature points was
used for the calculation of F Einst→MTP. The other parameters
were set as for the respective bulk calculations, except for the

important difference in the choice of the reference positions
around which the Einstein contribution was calculated. Due
to the fact that the mean positions of the surface atoms are
shifted outwards with respect to the 0 K relaxed positions (see
the discussion in Sec. IV D), the reference positions for the
Einstein crystal had to be adjusted to the mean position from
the MD. Taking the 0 K relaxed positions instead gives a poor
overlap of the phase space covered by the Einstein crystal and
the one from the slab-MTP, and thus a very bad convergence
of the integration in Eq. (5).

The difference in free energy between the slab-MTP and
DFT F MTP→DFT was obtained in a 512-atom slab build from
a 4 × 4 × 4 expansion of the conventional cubic unit cell
with 4a of vacuum along the z direction. A total of nine
lattice constant-temperature points were used for the explicit
calculation of F MTP→DFT around aT . The same set of λ2 val-
ues (0, 0.25, 0.5, 0.75, 1) and different random seeds were
used as for the respective bulk calculations. At each λ2 value
shorter simulation lengths (about 500 MD steps, excluding
equilibration) were sufficient to achieve the same statistics
due to the larger supercell in the slab than in the bulk cal-
culations. For the low-converged DFT parameters, we used a
plane-wave cutoff of 350 eV and the � point for sampling the
Brillouin zone. For the high-converged parameters, we used
500 eV and a 4 × 4 × 4 k-point mesh. The explicitly com-
puted F MTP→DFT(a, T ) points were parameterized in the same
manner as for the respective bulk contribution by utilizing an
effective volume derived from the (lateral) lattice constant a.

Finally, all the parametrized contributions were extracted
at aT in the full temperature range and the surface free energy
was calculated including all relevant excitation mechanisms
according to Eq. (1).

C. Quasiharmonic calculations

The QHA was obtained with phonopy [38] using finite
displacements of 0.015 Å in the corresponding VASP calcu-
lations. The bulk phonons were sampled with a 250-atom
supercell based on a 5 × 5 × 5 expansion of the primitive
unit cell with two atoms. A plane-wave cutoff of 500 eV
and a 5 × 5 × 5 k-point mesh were used for calculations at
six different volumes. The volume dependence of the phonon
free energies was fitted to a third order polynomial for each
temperature up to 3000 K in steps of 1 K.

In the case of the slab, we used the same 512-atom su-
percell as in the MD, a plane-wave cutoff of 500 eV and
a 3 × 3 × 1 k-point mesh. The DFT dynamical matrix was
obtained for a completely relaxed slab supercell, for six differ-
ent volumes. However, we also used the slab-MTP to obtain
dynamical matrices expanded around three different geome-
tries (cf. Sec. IV B): (1) for a completely relaxed slab; (2) a
slab with positions rescaled from the relaxed ones at aeq(0 K);
and (3) a slab using mean positions from the slab-MTP MD.
The forces from the slab-MTP were in good agreement with
forces from DFT and gave the same qualitative behavior in the
phonon free energy for the relaxed slab, as well as for a control
calculation for the rescaled positions (at aT = 4.25 Å).

The phonon free energy F vib(aT , T ) was added to the
electronic total energy E (aT ) for the bulk as well as for the
slab. The surface free energy γ (T ) within the QHA was then
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FIG. 4. Linear thermal expansion coefficient (TEC) for bulk TiN
obtained in the QHA (dashed green line) and from AIMD including
the full vibrational and electronic impact (black solid line). Experi-
mental values (orange crosses) are from Ref. [21].

calculated according to Eq. (1). It should be noted, that for the
different approximations that have been mentioned above (us-
ing relaxed, rescaled, and mean positions), E (aT ) can differ
substantially.

IV. RESULTS AND DISCUSSION

A. Bulk thermal properties of TiN

In Fig. 4, the DFT (GGA-PBE) calculated thermal ex-
pansion coefficient (TEC) of TiN is shown together with
experimental data [21]. The QHA breaks down at elevated
temperatures and the corresponding TEC (green dashed) di-
verges well below the experimental melting point of 3220 K
[39]. A similar diverging behavior of the QHA was reported
earlier for ZrC (for GGA-PBE) by Duff et al. [11]. The
breakdown of the QHA in the present TiN system is due to a
dynamical instability that occurs at increased lattice constants.
Analysis of the phonon spectrum reveals a softening of the
longitudinal acoustic phonon mode for q ≈ 0.7π

a (110), which
eventually leads to imaginary frequencies at larger volumes.
We note that the use of the PBEsol [40] functional decreases
the thermal expansion; however, the dynamical instability per-
sists at similar volumes.

Inclusion of explicit anharmonicity is essential to obtain
accurate bulk properties for TiN at elevated temperatures.
The full DFT curve including all relevant excitation mecha-
nisms (black solid line in Fig. 4) is in good agreement with
experimental data and it shows no diverging behavior. The
experimental values for the TEC close to room temperature
in fact exhibit larger uncertainty [21], which may explain
the small discrepancy with DFT. The quality of the DFT
results can be even better assessed for the heat capacity shown
in Fig. 5, for which a wider range of experimental data is

FIG. 5. Isobaric heat capacity for bulk TiN obtained in the QHA
(dashed green line) and from AIMD including the full vibrational and
electronic impact (black solid line). Experimental values are from
Ref. [41] (orange crosses) and from Ref. [42] (blue pluses).

available. The heat capacity is, similarly as the expansion
coefficient, a sensitive measure of the curvature of the free-
energy surface. Indeed, we observe an excellent agreement
with experiments in the whole temperature range for the full
DFT calculation including anharmonicity.

B. Surface free energy of TiN(001)

Figure 6 shows the temperature dependence of the final
DFT (GGA-PBE) surface free energy including the full, an-
harmonic vibrational contribution and electronic excitations
(black solid line). There are no experimental data available
and the present DFT data therefore serve as the first high-
accuracy prediction of the surface energetics of TiN(001).
Confidence in the DFT results was established in the last sub-
section based on the available experiments for bulk properties
of TiN.

Overall we observe a temperature-induced decrease in
the surface free energy of −5 meV Å2 (−0.08 J m2), from
78 meV Å−2 at 0 K to 73 meV Å−2 at 3000 K. Thermal elec-
tronic excitations can be seen to have a noticeable impact
(difference between orange solid and black solid line) at
higher temperatures; they decrease the surface free energy
by up to 3 meV Å−2. The impact of zero-point vibrations is
small. They decrease the surface free energy (at 0 K) by
−1 meV Å2 (−0.08 J m2). However, there is a compensation
effect in play, because the zero-point contribution also in-
creases the equilibrium 0 K lattice constant and this leads to a
positive shift of the surface free energy by the same amount,
such that the combined impact of the zero-point contribution
is negligible.

The overall decrease in the full surface free energy of
TiN(001) amounts to −6 % with reference to the absolute
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FIG. 6. Temperature dependence of the TiN(001) surface free energy predicted by fully anharmonic DFT calculations including the impact
of electronic excitations (black solid line). The orange lines exclude the electronic excitations and show the full vibrational contribution
obtained with DFT (solid orange) and from MTPs (dashed orange). The green lines represent the QHA results for the MTPs with different
choices for the atomic positions at which the dynamical matrix is computed (see text for details). DFT QHA results are similar to the MTP
results.

value of 78 meV Å−2 at 0 K. This relative change is rather
small when compared to temperature-induced changes found
from high-accuracy finite temperature DFT calculations for
formation free energies of other defects. For example, for
vacancy formation free energies, changes of about −20 %
up to the melting temperature were observed for Ni [43],
Al and Cu [1]. For stacking fault free energies even larger
changes of between −39 % to −86 % were found from 0 K
up to the melting point for the same three elements, Ni, Al,
and Cu [12].

The fact that the overall impact of temperature on the
surface free energy of TiN(001) is small should, however, not
be misinterpreted as a small impact of explicit anharmonicity.
The latter is in fact crucial in order to balance the diverg-
ing behavior obtained within the QHA as revealed by any
of the green lines in Fig. 6. (These lines are for the MTP,
but the DFT results show the same behavior.) The failure of
the QHA can be traced back to the pronounced softening of
interatomic forces in TiN at larger lattice constants, leading
to the dynamical instability that has been discussed in the
previous subsection. The dynamical instability and softening
is observed primarily for the bulk as the 0 K surface relaxation
stiffens the forces in the slab calculations. Fully anharmonic
calculations are indispensable to get a sensible result for the
surface free energy.

The shortcoming of the QHA is also reflected in the ex-
treme sensitivity of the results to the choice of the atomic
positions around which the dynamical matrix is calculated for

the slab. The three green lines in Fig. 6 reflect the following
choices:

(1) dashed green line (rel): relaxed atomic positions ob-
tained at a lateral lattice constant a = aeq(T ) fixed to the bulk
equilibrium lattice constant aeq(T ) at the given temperature
T ;

(2) solid green line (resc): rescaled atomic positions ob-
tained by rescaling the atomic positions with the 2 layers
closest to the surface relaxed at the 0 K bulk equilibrium
lattice constant aeq(0 K) with the factor aeq(T )/aeq(0 K);

(3) dotted green line (mean): mean atomic positions ob-
tained from the AIMD at the corresponding temperature and
lattice constant (cf. black circles in Fig. 7 below).

Regardless of which of these options is employed as the
origin for the Taylor expansion of the potential energy sur-
face, sooner or later a diverging behavior is found for the
second order term (i.e., the dynamical matrix) as a function
of temperature. We note that yet another choice of atomic
positions for the expansion was proposed to be obtained
by minimizing the free energy of the surface region [3].
Yet, whatever the choice, the QHA is a too severe approxima-
tion for the TiN(001) surface due to the dynamical instability
at higher temperatures.

C. Comparison of MTP and DFT results

The MTP result for the surface free energy, obtained from
the bulk-MTP and the slab-MTP, including the full impact
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FIG. 7. Histogram of the trajectories from a slab-MTP MD of Ti and N atoms in TiN(001) at 3000 K: (a) Top view of the surface atoms
and (b) side view of the first four layers. The atomic mean positions are indicated by the black circles. The circle sizes reflect the radii ratio
between Ti and N [44].

of vibrations is shown in Fig. 6 by the orange dashed line.
This result should be compared with the corresponding DFT
result given by the solid orange line (part of which is hidden
under the black solid line). The MTP curve is very close to

the DFT curve over the full temperature window from 0 K to
3000 K. The difference is at most a few meV Å2. The MTPs,
fitted according to the prescription discussed in the Methodol-
ogy section Sec. III, can thus be used to determine surface
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free energies with a high accuracy at small computational
cost.

Interestingly, we do not only observe that the finite tem-
perature, anharmonic properties are very well predicted by
the MTPs. Moreover, the QHA results obtained from the
MTPs are in good agreement with DFT (not shown in Fig. 6).
The difference is somewhat larger than for the anharmonic
results (several meV Å2) due to the sensitivity of the QHA
as discussed in the previous subsection. Nevertheless, it is
astonishing that the MTPs, which have been exclusively fitted
to finite temperature DFT AIMD results, show a reasonable
prediction also of the curvature of the potential energy surface
at the 0 K equilibrium positions (i.e., the dynamical matrix).

D. Atomic trajectories at high temperatures

Figure 7 visualizes the slab-MTP MD trajectories of the
TiN(001) slab at 3000 K. In order to achieve reasonable
statistics and to be able to analyze the shape of the atomic
distributions, a very large number of MD steps is neces-
sary. Figure 7 in particular is constructed from 100 000 MD
steps with trajectories from symmetrically equivalent atoms
mapped to every shown atom. Specifically, each shown atom
imparts the information of 16 symmetrically equivalent atoms,
i.e., each shown atom trajectory contains 1 600 000 steps. To
reach such a number of steps directly with DFT AIMD would
be computationally extremely demanding. The availability
of the MTP that accurately reproduces the DFT anharmonic
properties is therefore essential for an analysis as presented in
the following.

For the surface N atoms (i.e., the N atoms in the first
surface layer), we can clearly observe strongly anharmonic
vibrations. The surface N atoms vibrate significantly further
into the vacuum region than into the bulk. These pronounced
vibrations into the vacuum are not only directed along the
normal direction to the surface as one may have expected, but
in particular along any of the symmetrically equivalent [111]
directions (when extended from the bulk into the vacuum) and
thus at an angle of 55.5◦ with the surface. A careful inspection
of the N atoms inside of the bulk reveals that already these
bulk-like atoms have a preference to vibrate along the [111]
directions. However, this preference becomes much more pro-
nounced for the surface N atoms, particularly into the vacuum
region.

Interestingly, despite the strongly anharmonic shape of the
distribution of the surface N atoms, their mean positions (as
extracted from the MD and indicated by the black circles in
Fig. 7) are surprisingly close to the positions that would be ex-
pected for the bulk at this temperature. These expected mean
positions from the bulk are indicated by the gray horizontal
lines. The (vertical) distance between these lines corresponds
to the nearest-neighbor distance from a bulk calculation at
3000 K, i.e., including the effect of thermal expansion. We
can see that the mean positions of the atoms inside of the
bulk and also of the surface N atoms nicely fall on these
gray lines. This means that on average the surface N atoms
prefer the same distance to the lower lying Ti atoms as in
the bulk.

For the surface Ti atoms, the situation is somewhat dif-
ferent. We can see that the mean positions are shifted into

the bulk. This means that the nearest-neighbor distance to the
lower lying N atoms is smaller than in the bulk at the respec-
tive temperature. Further, although not as pronounced as for
the surface N atoms, one should appreciate that the surface Ti
atoms exhibit anharmonic vibrations as well. These vibrations
are now primarily directed along the surface normal, i.e., at an
angle of 90◦ with the surface. Interestingly, for the Ti atoms, it
is not only the first surface layer that shows distinct vibrations
from the bulk. A detailed analysis of the second layer of Ti
atoms reveals that they vibrate with preference toward the
N atoms in the first surface layer. This can be understood
as a second-order effect induced by the strong anharmonic
vibrations of these first-layer surface N atoms into the vacuum
region.

V. CONCLUSIONS

We have developed an efficient methodology for accurately
computing the fully anharmonic surface free energy from first
principles by extending the TU-TILD method to surfaces. By
using machine-learning MTPs, the computational effort of ob-
taining well converged results has been significantly reduced.
The method has been applied to the industrially important TiN
system, in particular to the TiN(001) surface.

As demonstrated, the quasiharmonic approximation breaks
down due to a high-temperature dynamical instability that
originates from the softening of the longitudinal acoustic
mode at q ≈ 0.7π

a [110]. Inclusion of the fully anharmonic
vibrations is crucial to obtain a stable thermal expansion
coefficient and heat capacity, in excellent agreement with
experimental data. Anharmonic effects are likewise critical to
predict the temperature dependence of the surface free energy.
Analysis of the high-temperature dynamic trajectories reveals
symmetry-breaking vibrations of the surface atoms into the
vacuum region. However, the mean positions of the N surface
atoms remain close to their bulk positions at the respective
temperature, and the mean positions of the Ti surface atoms
even relax towards the bulk.

The full temperature effect on the TiN(001) surface free
energy is comparably small, with the surface free energy
changing from the 0 K value of around 78 meV Å−2 to
73 meV Å−2 at 3000 K. This contrasts with previous results
for Al(001) [3] and TiO2(110) [4], which showed a stronger
decrease of the surface energy with temperature. For TiN, the
anharmonic vibrational contribution to the free energy in the
bulk and at the (001) surface largely compensate each other in
the surface free energy.
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