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A B S T R A C T   

Plastic deformation in metals is controlled by dislocation density and mobility. In bcc metals the mobility of 
screw dislocations, which takes place by temperature- and stress-driven nucleation of critical kink-pairs, is most 
essential for deformation. However, the critical resolved shear stresses at low temperatures, as determined from 
molecular dynamics (MD) simulations performed at constant strain rate, are typically 2–3 times larger than the 
yield stresses measured experimentally. Here, an accelerated MD procedure is developed and employed to 
investigate the onset of dislocation mobility in the prototypical system bcc Nb. The method combines constant 
strain and temperature MD with hyperdynamics, using a bond-boost potential. We demonstrate, with a careful 
statistical analysis, that the method enables nucleation of critical kink-pairs and the determination of the Gibbs 
energy of kink-pair formation from accelerated MD simulations at experimentally-measured shear stresses.   

1. Introduction 

Dislocations play a critical role in the plastic deformation (yielding) 
of metals. The yield stress for most metals is much lower than the 
theoretical ‘ultimate’ stress [1] due to the presence and movement of 
dislocations via dislocation slip. Bcc transition metals show, in com-
parison with fcc metals, a strong temperature- and strain dependence of 
the yield stress (the critical resolved shear stress τ*, CRSS) [2,3] at low 
temperatures, due to the large and anisotropic lattice resistance (Peierls 
barriers) for the glide of ½ [111] screw dislocations in these materials. 
The rate equation for the yield stress τ*, controlled by thermal fluctua-
tions, can be generally written as: 

γ̇ = γ̇0exp( − ΔG(τ*)/kBT), (1a)  

where γ̇ is the plastic shear strain rate, ΔG(τ*) the Gibbs energy for 
dislocation motion at a given CRSS, and kB the Boltzmann constant. The 
entropy contribution is generally believed to be a small fraction of the 
total Gibbs energy and Eq. (1a) is commonly simplified to [3,4]: 

γ̇ = γ̇0exp( − ΔH(τ*)/kBT), (1b)  

where ΔH(τ*) is the activation enthalpy for dislocation motion. The pre- 
exponential factor γ̇0 is usually taken equal to bρmνd, where b is the 
length of the Burgers vector, ρm is the density of mobile dislocations per 

unit dislocation length, ν is a characteristic frequency in the order of the 
Debye frequency and d is the distance between two Peierls valleys. The 
activation enthalpy ΔH(τ*) can be determined from experiments using 
the strain-rate dependence of the CRSS [4] and is of the order of 30kBT 
[4], but generally cannot be identified with a single atomistic process. 

On the other hand, significant understanding on the atomistic level of 
the structure and the glide mechanisms of ½ [111] screw dislocations in 
bcc metals has been obtained using molecular static and dynamic sim-
ulations [5]. However, all classical atomistic simulations of bcc metals 
with dislocations, starting 50 year ago with the study on bcc Na [6], 
predict Peierls stresses (at T = 0 K) and CRSS at higher temperatures by a 
factor 2 to 3 larger than experimental values [7–12]. Gröger and Vitek 
[13] proposed an explanation for the discrepancy between the experi-
mentally measured and the simulated Peierls stresses, based on the idea 
that in macroscopic experiments there are always Frank-Read sources 
emitting dislocations with non-screw components, so that groups of 
interacting non-screw and screw dislocations can start moving at lower 
applied stresses. This model, however, does not take into account that 
classical MD simulations are performed typically at shear strain rates 
that are 12 orders of magnitude larger than in experiments. Strain rates 
in MD simulations have to be in the order of 106–109 s− 1 to achieve 
strains of any physical significance, while typical laboratory deforma-
tion experiments are carried out at much lower shear strain rates in the 
range of 10− 4–10− 1 s− 1 [3,4,14]. 
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Generally, the experimentally-obtained CRSS increases with 
decreasing temperature and increasing strain rate [3,4]. Phenomeno-
logical thermodynamic models, based on Eq. (1b), lead to a logarithmic 
dependence of the thermally-activated shear stress τ on the strain rate 
[15,16]: 

τ = τ0A(T)[1 + B(T)ln(γ̇/γ̇0) ], (2)  

where A and B are temperature-dependent material (or fit) constants. 
Considering the many orders of magnitude larger strain rates in MD 
simulations, Eq. (2) shows clearly that any such brute-force MD simu-
lation will inevitably lead to a much larger CRSS. 

In MD simulations performed at a constant strain rate, the CRSS, 
denoted hereafter τc, is determined as the critical stress during shearing 
at which an isolated screw dislocation starts to move. This event takes 
place at a given critical MD time tc. The critical time tc (and the corre-
sponding computational run time) increases rapidly with decreasing 
shear strain rate (see Sec. 4.1), which makes impossible the execution of 
classical MD simulations at experimental shear strain rates in reasonable 
computational time frames. 

Several methods for accelerated MD simulations have been proposed 
in the literature (see e.g. Ref. [17] for an overview), beginning with the 
seminal work of Voter [18] in 1997 on the hyperdynamics (HD) method. 
Acceleration methods in general focus on processes where the long-time 
evolution consists of infrequent transitions from one to another equi-
librium state without correlations between successive state-to-state 
transitions (random rare events). The HD method, in particular, is 
based on a modification of the potential energy surface by addition of a 
positive boost potential ΔVb to the equilibrium state basins, which re-
duces the potential barrier for state-to-state transitions. Unfortunately, it 
is not possible to devise a general boost potential that captures all types 
of rare events. 

In metals, the HD method has been therefore tested only on rather 
simple small-size systems with well-defined transitions like adatom 
diffusion on metal surfaces [19–21], using a bond boost potential [19]. 
In these studies: (i) the activation volume of the transition state involves 
only several atoms, (ii) the sequence and the direction of the adatom 
jumps from one lattice site to another are not correlated (only thermally 
activated) and (iii) the adatom jumps involve bond-breaking and 
reconstruction between nearest neighbours, which is the main ingre-
dient of the bond-boost method [19]. 

The original HD method [18] is applicable only to non-driven pro-
cesses. However, more complicated deformation processes of interest in 
material science and physics are not only thermally-activated but strain- 
or stress-driven as well, and they involve relatively large number of 
atoms as well as collective, cooperative events like the nucleation of kink 
pairs [22]. This is the reason why, up to now, only very few studies have 
applied HD (or modifications of it) to metal systems. Specifically, 
dislocation nucleation in Cu and Ni has been investigated [23–25]. 
However, in pure fcc metals the Peierls stress is negligible (<2 MPa) and 
the dislocation mobility is much faster [3]. 

In the present work, we develop a method that enables a controlled 
acceleration of dislocations in MD simulations, and we demonstrate its 
performance for the prototype case of screw dislocation mobility in bcc 
metals, specifically Nb, by successfully obtaining critical shear stresses 
typical for macroscopic deformation experiments. We consider Nb, 
mainly because Nb has the lowest shear modulus along the [111] di-
rection [3] and the lowest enthalpy of critical KP formation [22] among 
all bcc transition metals. Thus, it can be expected that Nb exhibits 
(relatively) high KP nucleation rates, more easily accessible with MD 
simulations. 

2. Computational details 

The simulations were performed on a dipole model, containing 
48,000 Nb atoms and initially two straight screw dislocations with 

opposite Burgers vectors, both at ‘easy-core’ positions. 
The model was generated using the ATOMSK program [26]. The 

crystallographic directions along the supercell axis were X || [011
−

], Y || 

[111] and Z || [21
−

1
−

] (see Fig. 1a), corresponding to the (21
−

1
−

)

maximum resolved shear stress (MRSS) plane. The simulation supercell 
had dimensions of Lx = 187Å, Ly = 10b = 28.6Å and Lz = 162Å, b =
2.86 Å for bcc Nb. The dipole model allows periodic boundary condi-
tions to be imposed along all three directions X , Y and Z, with the screw 
dislocations lying parallel to the Y axis. 

The length of the Y axis was selected in such a way that typically 
nucleation of only one critical KP on the dislocation line was observed. A 
constant shear along the Y axis was applied to the simulation cell at each 
time step, thus enabling simulations at a given constant shear strain rate 
over time, which is commonly used in experiments. In order to deter-
mine the rate dependence of the critical waiting time tc, standard MD 
simulations were performed at several strain rates from 1 × 106 to 1 ×
108 s− 1 using at least 10 different initial velocity distributions. For the 
simulations in the strain-reduction setup (described in the following 
section) the initial strain rate to reach the reduced strain was set to 1 ×
108 s− 1. It should be noted that, generally, a pure shear strain defor-
mation does not lead to a pure shear stress state and vice versa a pure 
shear stress deformation does not lead to a pure shear strain state, unless 
the material is isotropic [27]. In our shearing simulations, we observed 
very weak (0.002G{111}) stresses σXX = − σZZ, which arise from the non- 
zero elastic constant c’

14 in the coordinate system defined by the vectors 
of the simulation supercell, where G{111} =

1
3 (c11 − c12 +c44) is the shear 

modulus along the [111] direction [2]. c’
14 can be expressed in terms of 

c44 and the anisotropy (Zener) ratio A = 2c44
c11 − c12 

as c’
14 = c44(1 − A)/2A. 

This expression shows that shearing of elastically-anisotropic metals 
(A ∕= 1), like Nb, inevitably leads to such an effect. However, these weak 
stresses are non-glide stresses, which do not produce a driving force on 
the dislocations and thus should not affect the HD procedure (although 
they may influence the non-Schmid behaviour of bcc metals [28]). The 
MD time step was set to 1 fs. In order to maximize the effect of the MD 
acceleration, the temperature should be as low as possible, but specif-
ically for Nb > 50–60 K, because the Arrhenius rate equation (Eq. (1)) is 
valid for Nb for T ≥ 50–60 K [4]. Therefore, the temperature was set 
equal to 75 K in the present simulations. In all MD runs under constant 
strain (described in Sec. 3.1), the dipole model was first equilibrated 

Fig. 1. (a) Atomistic configuration of the dipole model with two ½ [111](211) 
screw dislocations used in the MD simulations. The bcc atoms are marked green 
and the atoms in the dislocation cores are marked red, based on the coordi-
nation neighbour analysis implemented in the OVITO [41] program; (b) Sketch 
of a trapezoidal kink pair formed from an initially straight dislocation, denoted 
ABCD: w is the width of a single kink, l is the width of the KP, h is the height of 
the KP which is smaller or equal to the distance d between two Peierls valleys; 
(c) Snapshot of the atoms in one of the dislocation cores (in red) evidencing the 
formation of a kink-pair on the dislocation line (in green). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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under a constant number of particles, pressure and temperature (NPT 
conditions) for 10 000 steps using the Nose-Hoover thermostat and at 
least 100 different initial velocity distributions. Temperature equili-
bration during the subsequent HD runs was achieved using a Langevin 
thermostat with a carefully chosen damping factor, so that the temper-
ature of the mobile atoms varied only within ±1 K. The same seed for the 
Langevin thermostat was used in each HD run performed at every strain 
reduction level (see Sec. 3.1). The potential energy per atom varied 
within  ±0.005 eV. All simulations were performed with LAMMPS [29] 
utilizing the embedded-atom method (EAM) potential of Farkas and 
Jones [30]. 

Static simulations were performed in order to obtain information on 
the energy barrier for the dislocation migration at 0 K under applied 
strain. The dipole model (see Fig. 1) was first equilibrated at 75 K and 
then strained at different strain reduction levels (see Sec. 3.1). In each 
case, the initial state represented 2 straight screw dislocations just before 
the first jump of one of them. The final state represented again 2 straight 
screw dislocations, with one of them moved to the next Peierls valley. 
The minimum energy path (MEP) under the applied strain from the 
initial to the final state through the transition state was determined 
using the nudged elastic band (NEB) method with improved tangent 
calculation [31]. Twelve replicas between the initial and the final state 
were constructed by linear interpolation. The calculations were per-
formed with LAMMPS [29] using the FIRE minimization algorithm and a 
parallel NEB spring constant of 1.0 eV/Å2. Convergence towards the 
MEP was rapidly achieved with force tolerance set to 0.001 eV/Å. 

3. Methodology for accelerated molecular dynamics of 
dislocation mobility 

3.1. Strain reduction 

It is commonly accepted that at low temperatures, the movement of 
screw dislocations in bcc metals takes place by thermally- and stress- 
assisted nucleation of kink pairs (see Fig. 1b and c) [22] along the 
initially straight screw dislocation. A critical kink-pair (KP) is defined as 
a KP, for which the applied shear stress is sufficient to rapidly increase 
the KP length l (see Fig. 1b) after nucleation, leading to a jump of the 
dislocation to the next Peierls valley. For unstable (sub-critical) KPs, on 
the other hand, the attractive force between the formed kink and anti- 
kink predominates over the applied shear stress and they quickly anni-
hilate. Different analytical models for the thermally-activated nucle-
ation rate Jkp of critical KPs have been proposed in the literature at a 
constant temperature and shear stress τ, which can be written in the 
general form: 

Jkp = J0exp
(
− ΔGkp(τ,T)

/
kBT

)
, (3)  

where ΔGkp(τ,T) is the Gibbs energy of formation of a critical KP at a 
given constant shear stress τ and temperature T, and J0 = cα(τ,T), with c 
a material (or a fitting) constant and α(τ,T) a function of T and/or τ, 
depending on the theoretical model used. The rate of KP nucleation is 
mainly controlled by the Gibbs energy of formation ΔGkp. 

Experimental studies on bcc Fe indicate that the KP entropy ΔSkp is a 
small fraction of the total Gibbs energy ΔGkp [32] and in most studies 
ΔGkp is approximated by the enthalpy of KP formation ΔHkp. The 
function α(τ,T) is equal to (ΔHkp/kBT)1/2 in the models of Celli et al. 
[33] as well as Büttiker and Landauer [34]; in the model of Hirth and 
Lothe [35] α(τ,T) = (τ/kBT); in the models of Ackerman et al. [36] as 
well as Rodney and Proville [37] α(τ,T) = (β/kBT)1/2 where β is an 
adjustable parameter. In the case of small velocity damping at low 
temperatures, J0 can be approximated by the result of transition state 
theory (TST), i.e., J0 = ν0, where ν0 is a characteristic attempt frequency 
of the system at the bottom of the potential well [38]. It can be seen that 
only in the TST case, the nucleation rate has a purely Arrhenius-type 

behaviour. 
The enthalpy of KP formation ΔHkp is commonly described by the 

phenomenological expression [39]: 

ΔHkp(τ) = ΔH0

(

1 −

(
τ
τc

)m )n

, (4)  

where ΔH0 is the enthalpy at zero stress, 0 < m ≤ 1 and 1 < n ≤ 2 are 
fitting parameters. Eq. (4) incorporates several published models for 
specific values of m and n [40]. 

The nucleation rate Jkp in Eq. (3) can be calculated from MD simu-
lations as the inverse of the waiting time for the nucleation of a critical 
KP. The computation of the average waiting time at a given constant 
shear stress and temperature is the basis of our methodology to deter-
mine the stress and temperature dependence of ΔGkp(τ,T) (including the 
entropy contribution ΔSkp) by accelerated molecular dynamics (as 
described below). A similar approach was advocated in the study of 
dislocation nucleation from grain boundaries in Cu [24] under tensile 
stress. 

A system in equilibrium, subjected to a constant strain γ, is described 
by the Helmholtz energy F(γ, T). In the case of a constant stress 
ensemble, the system is described by the Gibbs energy. However, in 
standard MD shearing experiments performed at a constant strain rate, 
the strain increases continuously until the critical strain γc and the cor-
responding critical shear stress τc are reached. Under these conditions 
the driven system is not in mechanical equilibrium. In order to determine 
the average waiting time at constant shear strain γ and temperature T, we 
devise the following MD procedure. 

The simulation supercell is first sheared with a computationally 
accessible strain rate (in our case γ̇ = 1 × 108 s− 1) using different initial 
velocity distributions in order to determine the average critical strain γc 
and average critical stress τc. Afterward, a new simulation is started from 
the original configuration and the system is sheared again with the same 
strain rate, but now only until a pre-defined, reduced shear strain γred < γc 
[corresponding to a given strain reduction level (in %) 100(γc − γred) / 
γc] is reached at a given MD time t0 (see Fig. 2a). A linear elastic regime 
is observed up to the time t0. Fit of τ as a function of strain in the elastic 
regime gives a shear modulus 46 ± 1 GPa, in excellent agreement with 
the value for the G{111} shear modulus, calculated with the elastic con-
stants obtained with the EAM potential [30]. 

After the time t0 has been reached, an MD run is performed at the 
constant shear strain γred until the time tjump, which corresponds to the 
first jump of the screw dislocation (Fig. 2a). In each MD run, the first 
jump can be easily detected by the sudden small drop in the shear stress 
(see Fig. 2a). From tjump, the waiting time Δtw = tjump − t0 at constant 
strain is determined. The distribution of waiting times Δtw and the 
average waiting time 〈Δtw〉 are then computed by sampling different 
initial velocity distributions. The average waiting time 〈Δtw〉 for the first 
jump increases rapidly with increasing strain reduction (see Fig. 2b) and 
clearly indicates the necessity for an accelerated molecular dynamics 
treatment, if higher strain reduction levels are targeted at. 

It should be noted that the shear stress remains practically constant 
during these MD runs (with variations in a very narrow range of ±0.003 
GPa for our system, see Fig. 2), so that the system can be regarded as 
subjected to a constant shear stress as well. This procedure allows, first 
of all, to study, in principle, the nucleation of both unstable and critical 
KPs at lower stress levels τ < τc. Further, the nucleation of KPs at constant 
shear stress τ and temperature T becomes a statistical (probabilistic) 
event driven mainly by thermal vibrations, which is a key prerequisite 
for the subsequent application of hyperdynamics. 

Detailed atomistic analysis of the MD configurations using the co-
ordination neighbour analysis (CNA), implemented in the OVITO pro-
gram [41], shows that the first jump takes place by nucleation and 
growth of a kink pair on one of the screw dislocations, in which each of 
the two kinks are along 2 different (110) slip planes (see Fig. 1c). The 
first jump occurs statistically evenly-distributed on the left and the right 
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screw dislocation of our dipole model. 

3.2. Bond-boost potential 

In the HD method, acceleration is achieved by adding a boost po-
tential ΔVb to the original interatomic potential [18]. In this way, the 
system can escape faster from a given local minimum, because the 
biased potential V +ΔVb is shallower than the potential well in the 
original potential energy surface V. The boost potential ΔVb is generally 
a function of the instantaneous coordinates of the boosted atoms. The 
boost factor (BF) is defined at a given MD step ti by [18]: 

BFi = exp
(

ΔVb(ti)

kBT

)

(5)  

The accelerated time of the hyperdynamics (thyp) is given by [18]: 

thyp = ΔtMD

∑
BFi, (6)  

where the sum is over the performed MD integration steps and ΔtMD is 
the MD integration time step. 

The migration of a screw dislocation from one Peierls valley to 
another via the formation of KPs is a complex, collective event and 
different collective variables (CV) can be, in principle, designed to 
describe quantitatively the transition. Within our method, we use a 
modification of the bond-boost scheme [20], which is validated below. 
In this boost potential, the CV is the maximum relative change of the 
bonds in the boosted region. At every MD time step during boosting ΔVb 

is defined as: 

ΔVb =

⎧
⎪⎨

⎪⎩

Vmax

[

1 −
εmax

q

]2

if εmax < q

0, if εmax ≥ q
(7)  

as implemented in LAMMPS [29]. Vmax is the magnitude of the boost 
potential, εmax is the maximum bond strain at a given MD step (εmax =

maxα{εα}), where εα = ‖bα − b0
α‖/b0

α, bα is the instantaneous value of 
bond α, b0

α is the initial value of bond α in the boosted region and q is the 
so-called threshold parameter. The achievable boost factor depends both 
on q and Vmax. 

The boost potential reaches its maximum value (Vmax) when the 
bonds are at equilibrium (i.e., when εmax = 0) and this leads to a 

maximum boost factor BFmax = exp
(

Vmax
kBT

)

. On the other hand, the boost 

potential goes to zero when the fractional change in bond length εmax 

reaches the threshold value q. Eq. (7) guarantees [19] that the boost 
potential satisfies the condition ΔVb = 0 at any dividing hypersurface 
between two local minima (at the transition state), one of the main re-
quirements of the HD method [18]. In this case the boost factor becomes 
equal to 1 and there is no boosting. 

At each MD step the bond with the maximum bond strain εmax is first 
determined, then the extra force on this bond δFb is calculated [19], after 
which equal and opposite forces ±½ δFb are applied along the bond di-
rection to the two atoms forming the bond. Here a bond is defined 
simply as any interatomic distance smaller or equal to a cut-off distance 
of 3.25 Å, taken between the first and the second nearest-neighbour 
distances. This cut-off radius ensures that the boost potential is short- 
ranged and should not be affected (in first approximation) by the long- 
range elastic interactions between the two dislocations along the Z axis. 

To summarize, the application of the HD method for the acceleration 
of the dislocation mobility within the here proposed method is based on 
the following assumptions: (i) The system remains in thermal equilib-
rium at a given strain γ and temperature T, which is realised with our 
strain reduction procedure, (ii) the local minima represent neighbouring 
Peierls valleys, occupied by a straight screw dislocation before and after 
the transition; (iii) the transition state between the two local minima 
represents the nucleation of critical KPs, which is confirmed by disloca-
tion analysis using OVITO [41]; (iv) the KP formation is accompanied by 
a significant change of the lengths of selected nearest-neighbour bonds 
between atoms in the dislocation core, such that the boost potential (Eq. 
(7)) with physically meaningful threshold parameters Vmax and q can be 
operational. 

In order to validate these assumptions and to determine optimal 
values for the potential parameters Vmax and q, unboosted constant-strain 
MD runs were first performed at 75 K as introduced in the previous 
subsection. The first jump of the screw dislocation in the unboosted 
constant-strain MD simulations was monitored by the variation of the 
maximum bond strain (εmax) and the maximum shift (ΔRmax) of the 
atoms in the dislocation core with MD time. ΔRmax is defined as the 
maximum atomic shift at a given MD step calculated for all atoms in the 
dislocation cores, with respect to their initial positions. Both parameters 
exhibit fluctuations for times t < 122 ps and a sharp jump of the average 
values 〈εmax〉 and 〈ΔRmax〉 at tjump ~ 122 ps at 20% strain reduction (see 
Fig. 3). Such a behaviour is qualitatively similar for all strain-reduction 
levels. 

Visualization of the topology of the screw dislocations with time 
using the OVIT0 [41] program shows that the maxima in εmax (εmax > 0.1 

(a)

< tW>

to

tW

tjump

(b)

Fig. 2. (a) A typical stress-time curve at 20% strain reduction (τ = 0.33 GPa). The time t0 marks the start of the constant strain regime, tjump marks the first jump and 
Δtw = tjump − t0; (b) Stress-time curves at 75 K for standard shearing (pink) and constant strain reduction: 5 % (green), 20% (blue) and 25% (orange). The average 
waiting times 〈Δtw〉 in Fig. 2b are 12, 57 and 95 ps, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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for our setup) for times t < 122 ps correspond to the nucleation of un-
stable KPs, while the large jumps of ΔRmax and εmax at about 122 ps 
correspond to the nucleation of a critical KP on one of the screw dislo-
cations and a subsequent jump (within ~1 ps) of the corresponding 
screw dislocation. This correlation between ΔRmax, as well as εmax, and 
the topology of the screw dislocations shows that by monitoring ΔRmax 

and εmax it is possible to detect correctly the transition state. Further, this 
finding suggests that the selected CV and the form of the bond-boost 
potential (Eq. (7)) should be suitable for acceleration of the screw 
dislocation. 

3.3. Hyperdynamics runs 

After a given reduced strain γred is reached within the strain reduction 
approach (Sec. 3.1), a constant temperature and constant strain HD run 
is performed using the bond-boost potential (Sec. 3.2, Eq. (7)). The 
boosted region consists of all atoms in the dislocation cores of the two 
screw dislocations (e.g., all atoms at a distance less than 3.9 Å from the 
corresponding straight dislocation line, as validated with the OVITO 
[41] program). The maximum atomic shift ΔRmax within the boosted 
region is monitored at every MD step. If ΔRmax becomes larger than the 
threshold value 0.55 Å (see above), the HD run is aborted and the results 
are analysed. The extra computational cost for the HD generally scales as 
the number of atoms in the boosted region, but in our case the number of 
atoms in the dislocation cores is very small (240 atoms), so that the 
computational overhead is negligible. 

3.4. Determination of the optimum bond-boost potential parameters 

Increase of εmax on a short time scale (~1 ps) indicates that the sys-
tem is approaching a transition state. Selecting a too low threshold value 
(q smaller than the average εmax value between unstable KP nucleation 
events, in our case ~0.085), the boosting will stop (ΔVb will become 
zero) prematurely. During an MD run, it is not known a priori if a 
nucleated KP will be a critical or unstable KP. Thus, selecting a too-high 
threshold value (q > 0.11), on the other hand, could lead to over- 
boosting. The boost potential will be too strong and will not go to 
zero, although the screw dislocation will already be (almost) entirely in 
the next Peierls valley. The threshold parameter was set tentatively 
equal to 0.09 and this value will be confirmed further below. 

The parameter Vmax in Eq. (7) determines the maximum achievable 
boost for a fixed q parameter. Ideally, Vmax should be as high as possible 
to give a significant acceleration through Eqs. (5) and (6). However, it 
should be not too high, so that the boost potential does not create 
additional potential barriers and/or does not change strongly the shape 

of the original potential basins. For a properly selected Vmax, the following 
conditions should be fulfilled: (i) acceleration of the KP nucleation rate, 
manifested by the decrease of the average waiting time during boosting 
〈Δtb

w〉 as well as a decrease of 〈Δtb
w〉 with increasing Vmax; (ii) the actual 

time evolved during the HD run, 〈thyp〉, remains equal to the average 
waiting time without boosting, 〈thyp〉 = 〈Δtw〉. 

The Vmax parameter was first increased in steps from 0 to 0.1 eV for 
20 % strain reduction (see Fig. 4). Up to Vmax ~ 0.03 eV, 〈Δtb

w〉 decreases, 
whereas 〈thyp〉 remains, with increasing Vmax, constant and equal (within 
error limits) to the value of 〈Δtw〉 at Vmax = 0.0, as expected. This 
emphasizes the fact that up to Vmax ~ 0.03 eV our boost model works 
correctly, without modifying significantly the transformation pathway 
for the onset of dislocation migration. Above Vmax ~ 0.03 eV, 〈thyp〉

increases rapidly. 
As a further validation, the waiting times with and without boosting 

were compared at 5, 20 and 25 % strain reduction levels with Vmax set 
equal to 4kBT (~0.025 eV) for two threshold values. The various average 
times, obtained from these HD runs, are summarized in Table 1. The 
decrease of the shear stress with increasing strain reduction leads to an 
increase of the average waiting time without boosting 〈Δtw〉. The HD 
runs lead for all strain reduction levels to acceleration (a decrease of the 
boosted waiting time 〈Δtb

w〉, compared to 〈Δtw〉) and the condition 〈thyp〉

= 〈Δtw〉 is fulfilled well within error limits for the threshold q = 0.09. For 
larger thresholds, e.g. q = 0.12, 〈Δtb

w〉 decreases further only marginally, 
but the average hypertimes become unphysically high, as can be infer-
red already from Fig. 3a. Based on this analysis, Vmax and q were set 
equal to 0.025 eV and 0.09 in the subsequent HD simulations at higher 
strain reduction levels. In the case of adatom surface diffusion, the boost 
potential is considered independent of temperature (see e.g. Refs. 
[19,42]). In the present case, the nucleation of critical KPs is generally 
stress- as well as temperature-dependent [9,22,40]. This would require 
eventually optimization of the bond-boost parameters at different tem-
peratures in order to comply with the requirement 
〈thyp〉 = 〈Δtw〉. 

The average hypertime 〈thyp〉 increases linearly with increasing 〈Δtb
w〉, 

indicating that the bias potential is properly selected and the average 
boost factor 〈BF〉 = 1.9 ± 0.1 is well sampled. This was further checked 
by plotting the individual hypertimes versus the boosted waiting times 
for the different strain reduction levels. All HD runs with q = 0.09 show 
little scatter (see examples in Fig. 5), while q = 0.12 leads to a much 
larger scatter, indicating again that the boost potential with q = 0.09 and 
Vmax = 0.025 eV is properly selected [42]. 

Fig. 3. Variation with time of the maximum bond strain εmax (a) and the maximum atomic shift ΔRmax of the atoms in the dislocation cores (b); data for 20% 
strain reduction. 
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4. Results and discussion 

4.1. Distribution of hypertimes 

For our simulation setup, the average critical time tc and the average 
critical shear stress τc at 75 K, obtained from standard MD simulations 

using a typical strain rate of 1x108 s− 1, are 91 ± 5 ps and 0.41 ± 0.02 
GPa, respectively. Experimentally, the CRSS τ* for Nb at 75 K, measured 
at a shear strain rate of 1.5x10− 4 s− 1, is almost 50% smaller – approxi-
mately 0.23 GPa [4]. The critical time tc increases almost exponentially 
with decreasing strain rate (see Fig. 6). Therefore, trying to determine tc 

with a strain rate of 1.5 × 10− 4 s− 1 using standard MD simulations 
would require infeasibly long simulation times, e.g., 4320 years on a 3 
GHz Intel i5 Processor with 6 cores. Instead, we can apply the here 
proposed methodology. 

We thus increased systematically the strain reduction from 20 to 50 
%, performing at each strain level at least 100 HD runs, using the bond- 
boost potential (Eq. (7)) with parameters Vmax = 0.025 eV and q = 0.09. 
The onset of the screw dislocation migration via the nucleation of a 
critical KP was observed in all HD runs at all constant stress levels down 
to 0.21 GPa. This demonstrates that the onset of the screw dislocation 
mobility can be realized at lower shear stresses with this procedure. 

At constant shear stress and temperature, the nucleation of critical 
KPs can be regarded as a random process driven only by thermal fluc-
tuations of the dislocation cores. This probabilistic behaviour leads 

Fig. 4. Variation of the boosted waiting time (full squares) and the hypertime (empty circles) with increasing Vmax parameter. The dashed lines are only a guide for 
the eye. 

Table 1 
Average waiting time without boosting 〈Δtw〉, average boosted waiting time 
〈Δtb

w〉 and average hypertime 〈thyp〉 (all in ps) together with their estimated 
standard deviations for different shear stresses τ and threshold parameters q.  

Strain Reduction τ(GPa)  q 〈Δtb
w〉 〈thyp〉 〈Δtw〉

5%  0.39  0.09 8 ± 7 16 ± 15 12 ± 12    
0.12 7 ± 6 45 ± 45  

20%  0.33  0.09 32 ± 36 60 ± 68 57 ± 50    
0.12 30 ± 25 207 ± 188  

25%  0.31  0.09 60 ± 60 113 ± 120 95 ± 86    
0.12 55 ± 50 393 ± 374   

Fig. 5. Hypertimes (o), as defined in Eq. (6), versus the boosted waiting time for: (a) 20% and (b) 40% strain reduction. The full lines are linear fits through the data 
points in each panel, yielding average boost factors equal to 1.9 ± 0.1. 
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naturally to a distribution of the waiting times. The AMD method allows 
to determine the distribution of the hypertimes and to calculate the 
average hypertimes 〈thyp〉 over a larger time scale. 

If the probability of nucleation of critical KPs in any given time in-
terval is constant and the nucleation of a given KP is independent of any 
previous nucleation, the probability distribution of forming p critical 
KPs can be considered as a general Poisson process: 

P(t, p) =
(
Jkpt

)p

p!
exp

(
− Jkpt

)
, (8)  

in which the nucleation rate of critical KPs Jkp should be independent of 
time. In principle, Eq. (8) can be used to fit the distributions obtained 
from the HD runs, and thus determine the nucleation rates Jkp. 

The distribution of the hypertimes, obtained from the present HD 
runs (see example in Fig. 7), exhibits statistical scatter and qualitatively 
resembles the Poisson distribution with p = 2 (formation of 2 KPs on top 
of each other). This is a strong indication that the nucleation of critical 
KPs is a statistically random event, one of the key assumptions of HD. 
However, the shape of the distributions is actually more right-skewed 
than the Poisson distribution, the maximum values of the distributions 
and the estimated standard deviations σ

( 〈
thyp〉

)
increase with increasing 

strain reduction level, respectively with decreasing shear stress (see 
Table 1). The enthalpy of formation of critical KPs increases at lower 

stresses (see Eq. (4) and Sec. 4.2). This leads to a spread of the hypertime 
distribution, because statistically larger hypertimes are necessary to 
overcome the higher potential barriers at lower stresses. A detailed 
analysis of the hypertime distributions will be the subject of a future 
study. 

4.2. Determination of the activation Gibbs energy for kink-pair formation 

The average nucleation rate of the critical KPs can be determined 
from the HD runs, without fitting Eq. (8) to the hypertime distributions, 
as: 

〈Jkp〉 = 1
/
〈thyp〉. (9)  

The nucleation rates, calculated from Eq. (9), decrease with increasing 
strain reduction (decreasing shear stress, respectively). The average 
nucleation rate 〈Jkp〉 allows, in turn, to determine the average Gibbs 
energy for KP formation, using Eq. (3). However, it is necessary to es-
timate J0 in Eq. (3). For that purpose, we take into account that at τ = τc 

the Gibbs energy of kink-pair formation ΔGkp ≈ ΔHkp should be zero 
(see Eq. (4)) and thus Jkp = J0 at τ = τc. But at τ = τc, 〈thyp〉 is zero and 
the nucleation rate is determined mainly by the variation of the average 
critical waiting time tc. Thus, we propose that: 

J0 = 1
/

σ
(
tc
)
, (10)  

where σ(tc
−
) is the estimated standard deviation of the average critical 

time tc
−

, obtained from the MD simulations at constant strain rate (see 
Sec. 3.1). Combining Eq. (3), (9) and (10), 〈ΔGkp〉 is given by: 

〈ΔGkp〉 = − kBTln

⎡

⎣
σ
(

tc
−
)

〈thyp〉

⎤

⎦ (11)  

Since both σ(tc
−
) and 〈thyp〉 depend generally on stress and temperature, 

Eq. (11) allows to calculate 〈ΔGkp〉 without assuming specific stress- and/ 
or temperature dependence of the pre-Arrhenius factor J0 in Eq. (3), as 
in Refs. [34–36], or performing additional free-end nudged elastic band 
calculations in order to determine the attempt frequency ν0, as in Refs. 
[23,24,43], provided that the boost potential fulfils the requirement 〈
thyp〉 = 〈Δtw〉. 

Thus, the AMD methodology introduced in this work, allows us to 
compute directly the stress and temperature-dependent Gibbs energy 
surface ΔGkp(τ,T) of thermally-activated kink-pair formation. Fig. 8 
shows an example of the stress-dependence of ΔGkp(τ,T) for a screw 
dislocation in bcc Nb at a temperature of T = 75 K, determined at 
several stress levels. 

From Fig. 8, it can be seen a posteriori that the maximum of the boost 
potential Vmax = 0.025 eV used in our HD implementation, is similar to 
the values of ΔGkp. This agrees well with the general requirement that 
the boost potential should be comparable to the natural energy barriers 
of the system under study [19]. The 〈ΔGkp〉 values are in good agreement 
with Eq. (4) with adjusted parameters m = 0.5 ± 0.2, n = 1.0 ± 0.1 and 
ΔH0 = 0.14 ± 0.06 eV. 

0 K minimum energy paths ΔE(τ, α) as a function of the reaction 
coordinate α and at different shear stresses τ were calculated with the 
NEB method [31] (i.e., no boosting included) and are shown in Fig. 9. To 
facilitate comparison, the energies are referenced with respect to the 
initial structure, i.e., ΔE(τ,α) = E(τ,α) − E(τ,0), where E(τ,α) is the total 
energy at a specific reaction coordinate value α and E(τ, 0) is the total 
energy of the initial configuration. The energy maxima (barriers) 
ΔE(τ)max decrease and move toward smaller α values with increasing the 
applied stress, in agreement with previous NEB calculations under 
applied stress [44–46]. Visualization with OVITO [41] of the atomic 
configurations, as generated with the NEB method (not displayed here 
explicitly), clearly shows that the transition state is associated with the 

Fig. 6. Variation of the average critical time tc
−

with strain rate.  

Fig. 7. Distribution of the hypertimes at 25% strain reduction.  
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nucleation and growth of a kink-pair. Moreover, the width l of the 
critical KPs (see Fig. 1c) of about 3.0 Å, as observed in the NEB simu-
lations, is practically the same as the width of the critical KPs docu-
mented during the AMD simulations. 

In order to estimate the enthalpies of KP nucleation from the NEB 
calculations, the ΔE(τ)max values have to be corrected for the work, W(τ), 
done by the applied stress: ΔHNEB(τ) = ΔE(τ)max − W(τ) [46]. The 
external work W(τ) is approximately taken equal to τb3. The calculated 
values ΔHNEB(τ) decrease from 0.064 eV to 0.0045 eV with increasing 

stress from 0.21 to 0.40 GPa. The relatively good agreement between 
these enthalpies, obtained at 0 K and without boosting, and the 〈ΔGkp〉

values, obtained at 75 K and with the AMD procedure (see Fig. 8), in-
dicates that the activated (transition) state is neither (strongly) affected 
by the entropic contribution nor by the application of the boost poten-
tial. The consistency of the static and dynamic calculations provides a 
further validation of the proposed methodology. 

The activation volume of dislocation migration is thermodynami-
cally defined as the derivative of the Gibbs energy with respect to stress: 

V* = − ∂〈ΔGkp〉
/

∂τ. (12a)  

In the present method, V* can be calculated directly using Eq. (12a), 
without performing simulations at different strain rates and using the 
expression V* = kBTΔln(γ̇)/Δτ [4]. For example, we obtain V* = 0.02 ±
0.01 b3 at τ = 0.23 GPa. These values are much smaller than the 
experimental values (4 b3), reported for Nb by Takeuchi et al. [4]. 

We stress that these low activation volumes are not caused by the 
application of the AMD method. The same too low activation volumes 
are also obtained using brute force MD simulations. The possible reasons 
for the differences between simulations and experiments are: (1) in real 
crystals, in comparison with the present MD simulations, there are al-
ways vacancies, impurities and forest dislocations which affect strongly 
the flow properties of bcc metals and lead to much larger activation 
volumes and enthalpies of KP formation; (2) the interatomic interactions 
as provided by the EAM potential are not sufficiently well reproducing 
the true interactions. As for the second point, the recent, very successful 
advancements in developing machine learning potentials (see, e.g., Refs. 
[47,48,49]) may offer future solutions, also in combination with the 
present AMD technique. 

Specifically, according to Conrad [50], the activation volume can be 
written phenomenologically as: 

V* = bd*l*, (12b) 

Fig. 8. Average Gibbs energies (■) for kink-pair formation at 75 K as a function of shear stress, determined from Eq. (11). The full line is a fit using Eq. (4).  

Fig. 9. Minimum energy paths for migration of the screw dislocation at 
different stress levels, calculated using the NEB method without boosting at 0 K. 
Only the most relevant first part of the paths, which contains the energy bar-
riers corresponding to the activated (transition) state, is shown. The lines are 
only a guide for the eye. 
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where d* is the distance swept by the dislocation during the jump from 
one to the next Peierls valley (equal to 2b

̅̅
2

√

3 for KPs on the (110) slip 
plane) and l* is the activation length. Apparently, l* is much larger in real 
crystals. The formation of isolated kinks and KPs requires an abrupt 
change of the topology of the initially straight dislocation and l* can be 
tentatively identified as the width w of the kinks, see Fig. 1b. Both in our 
standard MD and AMD simulations, w is 0.2Å. By increasing the length Ly 

of the simulation supercell from 10b to 40b, it was confirmed that the 
width of the isolated kink remains practically the same and does not 
depend on Ly. Using the above value for w, Eq. (12b) leads to V* = 0.07 b3. 
This estimate is of the same order as the calculated activation volume, 
using Eq. (12a). The absence of any defects in the simulation supercell, 
apart from the dislocation itself, apparently leads to a small width of the 
KPs and low activation volumes. 

Finally, in order to estimate the accessible strain rate reduction with 
the presented methodology, we assume that the activation free energy 
for dislocation motion ΔG is, in a first approximation, equal to the 
average Gibbs energy of KP formation 〈ΔGkp〉 [39,51]: 

ΔG(τ) ≈ 〈ΔGkp(τ,T)〉. (13a)  

In this case, it follows from Eq. (1) and (3) that: 

ln
(

γ̇
γ̇0

)

≈ ln
(
〈Jkp〉

J0

)

= − 〈ΔGkp(τ, T)〉
/

kBT. (13b)  

Since 〈ΔGkp〉 increases with decreasing shear stress τ (see Eq. (4) and 
Fig. 8), Eq. (13b) shows that lower strain rates (γ̇/γ̇o) (i.e., more negative 
values for the right side of Eq. (13b)) can be achieved with accelerated 
MD simulations, if nucleation of critical KPs and the subsequent start of 
screw dislocation motion can be realized at lower stresses, as has been 
demonstrated above. 

5. Conclusions and outlook 

A methodology for the study of the onset of dislocation mobility at 
constant temperature and constant strain has been introduced. Our 
method features a strain reduction procedure, which enables the 
coupling to accelerated molecular dynamics (AMD) using the hyper-
dynamics method and the bond-boost potential. 

It has been demonstrated, on the example of bcc Nb, that the 
developed AMD technique: 

(i) can successfully be applied to complex metal systems like models 
with screw dislocations, in which the temperature- and stress-driven 
transition from one state to another involves cooperative motion of a 
relatively large number of atoms (nucleation of kink pairs); 

(ii) can access lower shear stresses, comparable to the CRSS, typically 
measured in macroscopic deformation experiments; 

(iii) gives direct access to the stress- and temperature-dependent 
Gibbs energy surface ΔGkp(τ,T) of thermally-activated kink-pair for-
mation from finite-temperature MD simulations. 

The calculation of the Gibbs energy does not require any additional 
assumptions except that the double-kink formation mechanism is a 
thermally-activated process. By standard thermodynamic relations this 
enables the determination of the corresponding activation enthalpy, 
entropy and volume. 

The present approach can be straightforwardly implemented using 
existing molecular dynamics codes like LAMMPS. It is not limited to 
simulation models containing only 2 screw dislocations, bcc Nb or the 
employed EAM potential. The method can be extended to mixed dislo-
cations, other metals and different interatomic potentials, e.g. machine- 
learning potentials, because the calculation of the boost potential does 
not depend explicitly on the form of the underlying interatomic poten-
tial. The method can be applied as well to other stress-driven processes 
like dislocation drag by impurities or dislocation mobility in multi-
component alloys. 
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