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Abstract
The Gibbs energy ∆Gkp(τ , T ) of kink pair formation on screw dislocations in
bcc Nb has been determined as a function of shear stress τ at different tem-
peratures T ! 100 K using an accelerated molecular dynamics method and a
bond-boost potential. From ∆Gkp(τ , T ), the stress dependence of the entropy
and the enthalpy of kink pair formation could be obtained using standard ther-
modynamic relations. The entropy of formation increases with increasing shear
stress, following a phenomenologically predicted τ 1/2 dependence.
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1. Introduction

It is generally accepted that the motion of screw dislocations in bcc metals at low temperatures
takes place by thermally-activated and stress-assisted formation of kink pairs (double kinks)
in order to overcome the high Peierls barriers [1, 2]. The thermal activation of kink pairs is a
statistical process and their nucleation rate, Jkp, can be generally written as [3–6]

Jkp = J0 exp
(
−∆Gkp(τ , T )

kBT

)
, (1)
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where ∆Gkp(τ , T ) is the Gibbs energy of formation (activation energy) of a stable (critical)
kink pair at a given shear stress τ and temperature T, considered as independent state variables;
kB is the Boltzmann constant. The difference between existing rate theories lies in the pre-
exponential factor J0 [3, 7]. A critical kink-pair is de!ned as a kink pair, the length of which
rapidly increases after nucleation, leading to a jump of the dislocation into the next Peierls
valley. Thermodynamically, ∆Gkp is given by

∆Gkp(τ , T ) = ∆Hkp(τ , T ) − T∆Skp(τ , T ), (2)

where ∆Hkp(τ , T ) is the kink pair formation enthalpy (activation enthalpy) and ∆Skp(τ , T )
is the kink pair formation entropy (activation entropy). Both, ∆Hkp(τ , T ) and ∆Skp(τ , T ),
depend generally on stress and temperature. Yet, the temperature dependence of the activation
entropy is usually assumed negligible at low temperatures [3]. From the relation ∂∆Hkp/∂T =
T∂∆Skp/∂T, the temperature dependence of the activation enthalpy must be then likewise
small. Based on these arguments, it is common to approximate the temperature dependence
of the Gibbs energy of formation at low temperatures as

∆Gkp(τ , T ) ≈ ∆Hkp(τ ) − T∆Skp(τ ), (3)

where ∆Hkp(τ ) and ∆Skp(τ ) depend only on the shear stress, in contrast to equation (2). Using
equation (3), the nucleation rate Jkp can be written as

Jkp = J0 exp
(
∆Skp(τ )

kB

)
· exp

(
−∆Hkp(τ )

kBT

)
. (4)

A similar equation is also used for the prediction of dislocation nucleation rates [8].
While the stress dependence of ∆Hkp has been discussed in many publications

[2, 3, 5, 6, 9–11], very few results on the entropy of kink pair formation exist in the literature.
In fact, in many studies the entropy factor, exp

(
∆Skp(τ )/kB

)
in equation (4), is completely

neglected or ‘absorbed’ into the pre-exponential factor J0.
Several authors approached the problem from a continuum perspective. Speci!cally, the

entropy of thermally-activated dislocation motion has been investigated using the continuum
theory of thermo-elasticity at different levels of sophistication [3, 12–14]. For example, the
following equation for the activation entropy of dislocation motion, ∆S, was proposed in
reference [12]

∆S = − 1
µ

∂µ

∂T

(
∆G + τV ∗) , (5)

where µ is the shear modulus, ∆G the activation Gibbs energy of dislocation motion, and V ∗

the activation volume. The activation volume is de!ned such that τV ∗ is the work done by the
external stress [3, 15]

V∗ = −
(
∂∆G
∂τ

)

T
. (6)

Equation (5) has, however, the disadvantage that ∆S is an explicit function of the Gibbs energy
and thus the stress-dependence appears, in general, in both terms on the right-hand side [16].
Another approach to ∆S was taken by Dimel! et al [13] and later Burns [17], who derived !rst
an equation for the entropy per unit volume s,

s(τ ) =
1
2
∂(1/µ)
∂T

τ 2, (7)
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which upon integration over the whole volume Ω becomes

∆S =

∫

Ω
∆s(τ (V))dV (8)

=
1
2
∂(1/µ)
∂T

∫

Ω

(
(τ ∗)2 − τ 2

0

)
dV , (9)

where τ ∗ and τ 0 are the shear stresses in the activated and the reference state, respectively.
In this approach τ ∗(V) and τ 0(V) generally depend on volume V, and the resulting entropy
increases quadratically with the shear stress. Equation (9) seems attractive for an estimation of
∆S from atomistic simulations, but the actual stress state near the dislocation core is generally
more complex than pure shear. Yet another continuum approach was pursued by Kocks et al
[3] who assumed that the dislocation glide resistance is proportional to the shear modulus µ
and with this derived a crude model for the activation Gibbs energy

∆G = µb3g(τ/µ), (10)

from which by de!nition

∆S = −∂∆G
∂T

= −d(µb3)
dT

g(τ/µ) +
τb3

µ

dg
d(τ/µ)

dµ

dT
, (11)

where b is the Burgers vector and g(τ/µ) an unknown function of τ/µ.
The applicability of these continuum models to the nucleation of kink pairs is generally

questionable, because the length of the critical kink pair could be as small as a few Burgers
vectors.

Other authors considered a purely atomistic (vibrational) origin of the dislocation entropy
and tried to calculate ∆S analytically [18, 19] or numerically [20–23] from the temperature
derivative of the vibrational Helmholtz (free) energy

∆S = −
(
∂∆F
∂T

)

τ

, (12)

where ∆F = F∗ − F0, with F∗ the free energy of the activated state and F0 the free energy
of the reference state. The free energy was speci!cally computed in the harmonic approxi-
mation. The phonon frequencies in this approximation are determined numerically by diago-
nalization of the 3N × 3N dynamical matrix (N = number of atoms), which explains why the
approach has been applied only to model systems with relatively small numbers of atoms (typi-
cally N = 75–2000). However, realistic atomistic calculations of dislocation properties require
much larger supercells due to their long-range stress !elds. Knowing the phonon frequencies
in the ground state (ν) and in the activated state (ν∗), the entropy factor can also be calculated
directly using transition state theory [24, 25] as

exp
(
∆S
kB

)
=

1
ν0

∏
iνi∏
jν

∗
j
, (13)

where i = 1, 2, . . . , 3N and j = 1, 2, . . . , 3N − 1 and ν0 is the attempt frequency. In the case of
screw dislocation mobility, the activated state corresponds to the formation of a critical kink
pair at a given external critical stress. Consequently, the phonon frequencies of the system must
be known as a function of the external stress. Jin et al [26] used a stochastic approach to estimate
the activation entropy of kink migration on a 30◦ partial dislocation in Si from equation (13).
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To the best of our knowledge, this method has not been applied yet to dislocations in fcc or
bcc metals.

The entropic impact on dislocation migration can also be investigated explicitly with molec-
ular dynamics (MD) simulations. A key challenge in such simulations, on top of !nite-size
restrictions as for the calculation of the phonon frequencies, is the accessible time scale. Several
enhanced sampling methods (umbrella sampling, metadynamics, adaptive strain-boost MD
and partial-path transition interface sampling) have been applied to estimate entropic effects
and the activation volume during dislocation nucleation and creep in fcc and hcp metals as
well as diffusion in metallic glasses [8, 27–33]. However, these sampling methods cannot be
straightforwardly adapted to the double-kink driven dislocation migration in bcc metals at low
temperatures, and thus corresponding investigations are not available.

In the present study, we address the above-discussed simulation challenges by utilizing a
recently proposed method for the calculation of the Gibbs energy of kink pair formation [7].
The method gives direct access to the stress and temperature dependence of∆Gkp(τ , T ) via the
general relation of equation (1). It makes use of accelerated MD and overcomes the time-scale
problem of atomistic dislocation migration simulations by facilitating the double-kink driven
dislocation motion at experimental stresses. Utilizing the method, we determine the entropy
∆Skp for a large system size (N = 48 000), as compared to previous studies, by standard ther-
modynamic relations. We choose bcc Nb as a prototype system, because Nb has the lowest
experimental enthalpy of critical kink pair formation of all bcc transition metals [2].

2. Computational details

The simulations were performed with the LAMMPS package [34] utilizing the embedded-atom
method potential of Farkas and Jones [35], which had been thoroughly validated in reference
[36]. A dipole model with two (initially) straight screw dislocations with opposite Burgers
vectors, both at ‘easy-core’ positions, was employed (see !gure 1). The model was generated
using the ATOMSK program [37]. The crystallographic directions along the supercell axes
were X ‖ [011̄], Y‖[111] and Z ‖ [21̄1̄], corresponding to the (21̄1̄) maximum resolved shear
stress plane. The screw dislocations were aligned parallel to the Y axis. Periodic boundary
conditions were imposed along all three directions X, Y and Z, thus allowing us to model an
in!nitely long screw dislocation.

The simulation supercell was chosen to have a size of Lx = 187 Å, Ly = 10b = 28.6 Å
and Lz = 162 Å, where b is the length of the Burgers vector, equal to 2.86 Å for bcc Nb. The
resulting number of atoms in the simulation cell amounted to 48 000. The Lx and Lz values
were selected to be the minimum lengths for which the forces between the two screw dislo-
cations along X and the image forces along Z are less than 0.005 eV Å−2 (per unit dislocation
length). To determine an appropriate Ly value, we performed MD simulations of the disloca-
tion velocity vd at the relevant temperatures (50, 75, 100 K) using dipole models with supercell
sizes from 5b to 40b along the dislocation line. (Due to the periodic boundary conditions, any
simulation cell contains an in!nite dislocation line; however, !nite size effects due to periodic
boundary conditions require explicit tests.) The respective results show that vd is, within error
limits, independent of the (explicit) dislocation length in the investigated range. Accordingly,
the nucleation rate of critical kink pairs, commonly written as Jkp(τ , T ) = vd/h, where h is the
height of the KP [38], is in !rst approximation also independent of the (explicit) dislocation
length for the used simulation setup. Based on these tests, the size of the simulation supercell
along the Y axis was set equal to 10b, in order to be able to perform the necessary, large number
of MD and hyperdynamics (HD) simulations within reasonable computational times.
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Figure 1. Orientation of the dipole supercell. The core atoms of the two screw disloca-
tions, parallel to [111], are shown in red.

To generate the strain-reduced simulation setup [7], a constant shear along the Y axis was
applied to the simulation cell at several temperatures (50, 75 and 100 K; shear strain rate
1 × 108 s−1). Using different initial velocity distributions, the average critical strain γ̄c and
average critical stress τ̄ c (corresponding to an average critical time t̄c), at which one of the
screw dislocations starts to move, were determined at each temperature. Afterward, new simu-
lations at several constant reduced shear strains γred < γ̄c were performed at each temperature
under NVE conditions in order to determine the average waiting time 〈∆tw〉 for the occurrence
of the !rst jump of one of the screw dislocations. Detailed atomistic analysis of the MD con!g-
urations using the coordination neighbor analysis, implemented in the OVITO program [39],
showed previously [7] that the !rst jump takes place by nucleation and growth of a critical kink
pair on one of the screw dislocations. The geometry of a critical kink pair is shown in !gure 2.

The average waiting time 〈∆tw〉 increases rapidly with increasing strain reduction (i.e.,
decreasing constant shear stress τ red). In order to extend the accessible range of shear stresses,
the method [7] uses HD [40] and a global bond-boost potential ∆Vb, de!ned as

∆Vb =





Vmax

(
1 − εmax

q

)2

εmax < q

0 εmax " q
, (14)

where Vmax is the magnitude of the boost potential, εmax is the maximum bond strain at a given
MD step, i.e., εmax = maxα{εα}, where εα = ‖bα − b0

α‖/b0
α, bα is the instantaneous value of

bond α, b0
α is the initial value of bond α in the boosted region, and q is a threshold parameter.

The boost factor BFi at each MD step ti is de!ned as

BFi = exp[∆Vb(ti)/kBT] (15)

and the accelerated time of the HD (thyp) is given by

thyp = ∆tMD

∑

i

BFi, (16)

where the sum is over the performed MD integration steps and ∆tMD is the MD integration
time step (1 fs in the present case). The boosted region consists of the dislocation cores of
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Figure 2. Double-kink nucleation and growth at 75 K and 0.4 GPa. (a) Straight screw
dislocation at an easy core position, observed at a time step of 86.70 ps. Only the core
atoms (in gray), as determined with OVITO, are shown. The core is non-planar and
comprises 30 atoms. (b) A just-nucleated, critical kink pair at a time step of 86.75 ps.
The length of the KP is ≈4.0 Å (1.4b) and its height ≈1.6 Å (0.6b). The formation of
the KP involves only 5–6 additional (new) core atoms, corresponding to about 4b3. The
kinks (in blue) are along the (1̄01) and (01̄1) planes at 30◦ and 90◦ to the glide plane,
respectively. The effective orientation of the KP is along the (1̄1̄2) plane, at 60◦ to the
(21̄1̄) glide plane. (c) The expanding KP has reached a length of about ≈14 Å (5b) at a
time step of 87.55 ps. (d) The screw dislocation has jumped at a time step of 87.85 ps
to the neighboring hard core position, at which the core is comprised of 50 atoms. The
lower panels are projections perpendicular to the [111] direction. The screw dislocation
line is shown in red.

Table 1. Computed critical shear stresses τ c and optimized bond-boost parameters q
and Vmax for the investigated temperatures T. The estimated standard deviations in τ c
are given in brackets.

T (K) τ c (GPa) q Vmax (eV)

50 0.55(3) 0.07 0.01125
75 0.41(2) 0.09 0.025
100 0.29(6) 0.1012 0.031

the two dislocations. The boost potential was applied until a critical kink pair forms on one
of the screw dislocations. Temperature equilibration during the HD runs was achieved using
a Langevin thermostat with a carefully chosen damping factor. At least 50 HD runs with dif-
ferent initial velocity distributions were performed at each stress level and temperature for
suf!cient statistical averaging. The boost parameters q and Vmax were determined at each tem-
perature (see table 1) for a few small strain-reduction levels from the requirement that the
average hypertime 〈thyp〉 is equal (within statistical errors) to the average waiting time without
boosting, 〈thyp〉 = 〈∆tw〉 (see reference [7] for details). These values were then used in all other
HD runs at a given temperature.

The critical shear stress decreases with increasing temperature [41]. Thus, the range of shear
stresses in the thermally-activated regime, accessible with the above-described strain-reduction
procedure, also decreases with increasing temperature. In addition, the boost factor decreases
exponentially with increasing temperature (equation (15)), leading to a decrease of the compu-
tational speedup of the HD method. In order to maximize the effect of the strain-reduced HD

6
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Figure 3. Hypertime versus the boosted waiting time for 48% strain reduction at 100 K.
The dashed line is a linear !t yielding an average boost factor of 1.51 ± 0.02.

simulations, the temperature should be as low as possible. However, for bcc Nb, the Arrhe-
nius rate equation (equation (4)) is not valid below ≈50 K [41]. These are the reasons why the
present HD simulations were performed in the range 50–100 K.

The individual hypertimes, plotted as a function of the boosted waiting times, show very
little scatter (see an example in !gure 3). This indicates that the boost potential (equation (14))
is well sampled and the boost parameters, given in table 1, are properly selected [42]. The
accelerated MD method leads to average boost factors in the range of 1.2–2.4, depending on
the stress level and temperature.

Knowledge of the average hypertimes at different temperatures and constant shear stresses
τ (=τ red), provides access to the Gibbs energy of kink pair formation via [7]

∆Gkp(τ , T) = −kBT ln
(
σ(̄tc)
〈thyp〉

)
, (17)

where σ(̄tc) is the estimated standard deviation of the critical time t̄c at the corresponding
temperature.

3. Results and discussion

The stress-dependence of ∆Gkp at the three investigated temperatures (50, 75 and 100 K),
determined using equation (17), is shown in !gure 4 by the symbols. The estimated standard
deviations in ∆Gkp increase with increasing temperature due to enhanced thermal vibrations.

7
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Figure 4. Gibbs energy of kink pair formation as a function of shear stress at different
temperatures. The full lines represent the !t of the data using equation (18) (see text for
details). The light shaded regions indicate the 95% con!dence interval of the !t.

Figure 5. Gibbs energy of kink pair formation as a function of temperature at different
stress levels as indicated in the legend in units of GPa. The dashed lines are !ts through
the data using equation (3).

Using the accelerated MD methodology, it was possible to determine ∆Gkp at each temper-
ature to at least 40% strain reduction (40% at 50 K, 50% at 75 K and 65% at 100 K). The
activation energies of kink pair formation increase with decreasing shear stress and decreasing
temperature.

8
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Figure 6. (a) Enthalpy of kink pair formation, ∆Hkp(τ ), as a function of external shear
stress τ . (b) ∆Hkp(τ ) !tted with the expression 2Hk − A ·

(
τ/τP

)1/2 (dashed line) and
plotted as a function of

(
τ/τP

)1/2. (c) Entropy of kink pair formation, ∆Skp(τ ), as a
function of shear stress. The dashed line in (c) is a !t assuming a square root dependence
on τ (see text).

9
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Figure 7. Activation volume as a function of shear stress at different temperatures. The
full lines are !ts through the data using equation (23).

As shown by the colored solid lines in !gure 4, all of the ∆Gkp values can be !tted
simultaneously using the empirical model of reference [3]

∆Gkp(τ , T ) = ∆G0

[
1 −

(
τ

τc(T )

)p]l

, (18)

where the critical shear stresses τ c(T ) are obtained from the constant strain-rate calculations
(mean values in table 1), p = 0.5, l = 1, and the !t parameter ∆G0 is optimized to 0.138 ±
0.007 eV. The adjusted R2 value of the !t is 0.991. Note that equation (18) can also be used to
derive an expression for the critical shear stress as a function of temperature (see equation (6)
in reference [36] and references therein), which describes very well the experimental data for
bcc Nb [41] with the same !t parameters p = 0.5 and l = 1.

The ability to !t well all the ∆Gkp data with the same set of model parameters demonstrates
the internal consistency of the methodology. Further, the good !t indicates that the same atom-
istic mechanism, i.e., the kink-pair formation, is responsible for the onset of the dislocation
migration, regardless of stress and temperature.

The temperature dependence of ∆Gkp(τ , T ) at different stresses, calculated using
equation (18), is shown in !gure 5 by the symbols. The dashed lines in !gure 5 represent
!ts of ∆Gkp(T) as a function of temperature using equation (3) at the different stress levels.
From the offset and the slope of the !ts, the temperature-averaged, stress-dependent enthalpy
and the entropy of kink formation can be obtained. The resulting stress dependence of∆Hkp(τ )
and ∆Skp(τ ) is shown in !gure 6.

The enthalpy of kink pair formation ∆Hkp(τ ) (!gure 6(a)) decreases with increasing shear
stress in qualitative agreement with the trend observed in previous studies [9, 10, 43–45]
performed at different levels of sophistication. In particular, Koizumi et al [10] derived the
following expression for the enthalpy of kink pair formation at low τ : ∆Hkp(τ ) = 2Hk − A ·
(
τ/τP

)1/2, where τP is the Peierls stress, 2Hk is the energy of two isolated kinks at zero
stress and A is a parameter depending on the shape of the Peierls potential, the cut-off radius
of the dislocation core and the shear modulus. The ∆Hkp(τ ) data obtained in the present
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study can be well !tted with this equation (!gure 6(b)) with 2Hk = 0.138 ± 0.001 eV and
A = 0.109 ± 0.006 eV, which justi!es the extrapolation using equation (18). The derived
energy of two isolated kinks at zero stress, i.e., 2Hk = 0.138 eV, is rather low, compared to
the experimental results for bcc Nb (0.68 eV [2, 5]). However, this is not caused by the appli-
cation of the accelerated MD method. The same too low activation enthalpies are also obtained
in brute force MD simulations due to the speci!city of the atomistic simulations as compared
to experiment [7].

The entropy of kink pair formation ∆Skp(τ ) increases with increasing shear stress
(!gure 6(c)), similarly to the results for the entropy of high-temperature "ow in Zr, obtained
by Jonas and Luton [46]. The observed stress dependence of the activation entropy can be
qualitatively understood on the atomistic level using the Boltzmann entropy equation

∆Skp(τ ) = kB log
(
Wkp(τ )

)
, (19)

where the number of microstates Wkp is taken as the number of possible sites for the nucle-
ation of a critical kink pair with a critical width w∗. Numerical calculations using a range of
Peierls potentials [10, 11] have shown that w∗ decreases rapidly with increasing shear stress
for relatively small stresses (τ/τP < 0.3). The Peierls stress for the investigated dipole model
is about τP = 910 MPa and thus the shear stresses τ , considered in !gure 6, fall in this range
of τ/τP < 0.3. Taking a common formulation Wkp = L̃/w∗, where L̃ is the dislocation length
[9], it can be seen that both Wkp and ∆Skp should be increasing functions of stress.

A phenomenological model for the observed stress-dependence of the entropy can be
motivated as follows. The entropy can be written as [3, 46]:

∆Skp(τ ) = ∆Skp(τ = 0) +

∫ τ

0

(
∂∆Skp

∂τ ′

)

T
dτ ′. (20)

Equation (20) can be transformed, using the Maxwell relation
(
∂∆Skp/∂τ

)
T =

(
∂V∗/∂T

)
τ

and assuming that ∆Skp(τ = 0) = 0 [17], into:

∆Skp(τ ) =

∫ τ

0

(
∂∆V∗

∂T

)

τ

dτ ′. (21)

The stress dependence of the activation volume V ∗ can be calculated from the Gibbs energy of
kink pair formation equation (18) (with p = 0.5 and l = 1.0) using equation (6) and it reads

V∗(τ ) =
∆G0

2

(
1

τ · τc(T )

)0.5

. (22)

Figure 7 exempli!es the stress dependence of V ∗ for the three investigated temperatures (!lled
symbols). The activation volume decreases with increasing shear stress in qualitative agree-
ment with experiments [47]. To utilize equation (22) in equation (21), we need an explicit
functional dependence of V ∗ on temperature. Our results (table 1) suggest that in the inves-
tigated temperature interval this functional dependence can be approximated by an inverse
relation between the temperature and the critical stress τ c, which implies that the temperature
dependence of the activation volume can be approximated as

V∗(τ , T) ≈ ∆G0

2

(
α T
τ

)n

, (23)

with n = 0.5 and a proportionality constant α. The activation-volume data from all temper-
atures (all symbols in !gure 7) can be very well !tted with equation (23) using α as the

11
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single !tting coef!cient as highlighted by the solid colored curves in !gure 7 (α = 3.415 ×
10−5 (MPa K)−1, adjusted R2 = 0.9996). The same stress dependence V ∗ ∼ τ−1/2 is predicted
in the framework of the so-called elastic-interaction model [2]. The good !t of the computed
activation volume and the consistency with the elastic-interaction model further validates the
extrapolation procedure using equation (18).

In the case when n = 1 and α∆G0/2 = kBm, equation (23) reduces to the commonly used
expression V ∗ = kBT/mτ , where m is the strain rate sensitivity. Inserting equation (23) into
equation (21) and integrating over τ , a square root dependence on τ is obtained for the entropy

∆Skp(τ ) ∝ τ 1/2. (24)

Utilizing this insight and !tting the previously discussed∆Skp(τ ) values to a square root depen-
dence, gives an excellent !t as shown in !gure 6(c) by the dashed line (adjusted R2 = 1,
proportionality coef!cient 0.51 ± 0.02kB MPa−1/2).

The entropy values obtained are larger than the simple vibrational estimate (∆Skp ≈ 2/3kB)
derived analytically by Friedel [18]. This suggests that the vibrational contribution to the
entropy of kink pair formation at low temperatures is smaller than the con!gurational (elastic)
contribution.

The enthalpy decreases (!gure 6(a)), while the entropy increases (!gure 6(c)) with increas-
ing shear stress. This implies that the thermodynamic data computed here do not follow
the empirical Meyer–Neldel rule [48], according to which the entropy is proportional to the
enthalpy (∆S = ∆H/TMN, where TMN is the Meyer–Neldel temperature). The Meyer–Neldel
rule can be derived using standard thermodynamic relations from the following Gibbs activa-
tion energy: ∆G(τ , T ) = (1 − T/TMN)∆H(τ ). This simple approximation does not describe
well the Gibbs energy of kink pair nucleation in bcc metals with a large Peierls barrier like Nb,
because it neglects con!gurational contributions to the entropy and the temperature depen-
dence of the critical shear stress [49]. The Meyer–Neldel rule is observed, for example, during
dislocation cross-slip in Al at high temperatures [50] and creep in fcc Cu [30], but not during
the dislocation motion through a !eld of solutes in Al–Mg alloys [49].

4. Conclusions

The Gibbs energy of kink pair formation on screw dislocations in bcc Nb has been computed at
different shear stress levels and temperatures using a recently proposed method. This method
features a strain reduction procedure that brings the system into mechanical equilibrium at a
constant stress level, a situation that is ideally suited to apply acceleration techniques to MD
simulations. Thereby, dislocation migration can be studied within accessible simulation times
at low temperatures in the thermally-activated regime of kink pair nucleation for stresses below
the critical shear stress.

The computed Gibbs energy of kink pair formation increases with both, decreasing shear
stress and decreasing temperature. The functional dependence on the shear stress and temper-
ature can be well !tted by an empirical model with only a single set of model parameters.
This result demonstrates the consistency of the method and reveals that—for all investigated
stresses and temperatures—the same type of kink-pair formation on the screw dislocation is
the active atomistic mechanism responsible for the onset of dislocation migration.

From the Gibbs energy dependencies, the corresponding enthalpy and entropy of kink pair
formation and the activation volume could be obtained by utilizing standard thermodynamic
relations. The activation enthalpy and activation volume decrease with increasing shear stress
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in qualitative agreement with phenomenological models proposed in the literature. The acti-
vation entropy of kink pair formation is of the order of 2kB at τ = 25 MPa and increases
signi!cantly with increasing shear stress. A phenomenological derivation has been provided
to motivate the stress dependence of the entropy. The derivation predicts a τ 1/2 dependence,
which !ts well the entropy data obtained in the molecular dynamic simulations.

The utilized strain-reduction approach based on accelerated MD and the global bond-boost
potential can be extended to larger supercells, other metals and interatomic potentials. The
boost potential does not depend explicitly on the underlying interatomic interactions and it is
short-ranged, boosting a single bond at every HD step. Moreover, the formation of critical kink
pairs is a localized event, involving only few additional atoms in the dislocation core. Appli-
cation of local HD, in which multiple pairs of atoms are boosted at each time step and which
could thereby speed-up the simulations further, is a promising direction for future studies.
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