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Kurzzusammenfassung 

Das zunehmende Bewusstsein über die begrenzten Ressourcen unseres Planeten verlangt 

von den Industrieunternehmen ihre Ressourceneffizienz zu steigern. In diesem 

Zusammenhang ist die Verbesserung des Energieeinsatzes in Fabriken Gegenstand 

laufender Forschung. In jüngster Zeit wurden Fabriksimulationsmodelle vorgeschlagen, 

um die gegenseitigen Abhängigkeiten des Energieeinsatzes in den verschiedenen 

Peripherien eines Fabriksystems besser zu verstehen. Die Komplexität der vorgeschlagenen 

Modelle und ihre Unfähigkeit, mehrere energiebezogene Leistungskennzahlen 

gemeinsam zu bewerten, haben ihre Anwendung in der Praxis jedoch bisher 

eingeschränkt. Diese Arbeit erweitert bestehender Fabriksimulationsmodelle mit einem 

besonderen Schwerpunkt auf Vor-Ort-Energieversorgungssysteme und ergänzt 

konventionellen Energieleistungskennzahlen um nicht-energetische Vorteile. Die Arbeit 

präsentiert außerdem einen neuen Bewertungsprozess um Fabriksimulationsmodelle 

strukturiert auf Maßnahmen zur Verbesserung des Energieeinsatzes hin zu untersuchen. 

Die Ergebnisse zeigen, dass die Kombination aus Fabrikmodell und Simulations-

experimenten den Umfang der erforderlichen Simulationsläufe und die Verallgemeiner-

barkeit der erzielten Simulationsergebnisse verbessern kann. Die Ergebnisse zeigen, dass 

durch die Anwendung der vorgeschlagenen Methodik Energieeinsparpotenziale von 38% 

für das Fabrikgebäude und seine technischen Gebäudeanlagen erreicht werden können. 

Gleichzeitig können nicht-energetische Vorteil wie bspw. im Bereich der Arbeitssicherheit 

um 40% ermittelt werden. Ausgehend hiervon sind weitere Verbesserungen im Hinblick 

auf den Aufbau des Energieversorgungssystems möglich. Mithilfe des Bewertungs-

prozesses können verschiedene Energiekennzahlen der Fabrik weiter verbessert werden, 

darunter Energiekosten (-10 %), Energiebedarf (-7 %) und CO2-Emissionen (-11 %). 

Darüber hinaus wurde der Anteil der erneuerbaren Energien an der Energieversorgung 

um 16 % und die Energieflexibilität um 31 % erhöht. Die Ergebnisse dieser Arbeit sollen 

das Verständnis für die Zusammenhänge des Energieeinsatzes in Fabriken fördern und 

den Übergang der Fabriksimulationsmodelle und der damit verbundenen Bewertungs-

prozesse in die Planungspraxis beschleunigen. 
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Abstract 

The increasing awareness of the limited resources of our planet, coupled with a growing 

number of climate protection regulations, is demanding that industrial companies 

improve the sustainability of their business strategies and urging decision-makers to adopt 

environmentally friendly manufacturing practices. In this respect, identifying ways to 

improve energy use in factories is subject to ongoing research. Recently, factory simulation 

models have been proposed to better understand the interdependencies of energy use in 

the different peripheries of a factory system. However, the complexity of the proposed 

factory simulation models and their inability to jointly evaluate multiple energy-related 

performance metrics has so far limited their application in practice. This work extends the 

scope of existing factory simulation models with a particular focus on on-site energy 

supply systems and extends conventional energy performance metrics to include non-

energy benefits. It also improves upon the prevailing trial-and-error approaches currently 

used to evaluate improvement measures within these models. The findings show that an 

assessment procedure that combines a multi-peripheral factory model with a 

comprehensive evaluation process using design of simulation experiments can improve 

both the comprehensiveness and generalizability of the obtained simulation results. The 

results show that by applying the proposed methodology, combined energy-saving 

potentials of 38% can be achieved for the factory building and its technical building 

systems. At the same time, the non-energy benefits in terms of improved occupational 

safety can be increased by 40%. Starting from this baseline, further improvements are 

possible with regard to the energy supply system setup. Using the proposed evaluation 

process, it is possible to further improve various energy performance metrics of the 

factory, including energy costs (-10%), energy demand (-7%), and CO2 emissions (-11%). 

In addition, the share of renewables on the energy supplied was increased by 16% and 

energy flexibility by 31%. The results of this work should promote the understanding of 

the complex interdependencies of energy use in factories and advance the transition of 

the corresponding factory simulation models and related evaluation processes into 

planning practice. 
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1 Introduction 

1.1 Motivation and Background 

In an era of “The Great Acceleration”, improved strategies are needed to minimize the 

impact that economic activities have on planet Earth. Socio-economic trends such as the 

growth of the world’s population (9.8 billion by 2050 - 7.6 billion in 2017) and the 

alignment of consumption patterns between developing and industrialized countries 

intensify the continuous depletion of natural resources worldwide. (Steffen et al. 2015, 

p. 88 ff., UN 2017, p. 2, UNEP 2011, p. 1). In this context, the world energy demand is 

expected to grow by 30% by 2040, which from today’s perspective is equivalent to adding 

another China and India (IEA 2017, p. 23) (ref. Figure 1-1). Although renewables already 

account for two-thirds of the annual growth in installed electricity capacities, the scenarios 

developed by the International Energy Agency (IEA) assume that in 2040 more than 75% 

of the global primary energy demand will still be met by fossil fuels (81% in 2017) (IEA 

2017, p. 298; 80). Between 1970 and 2010, CO2 emissions from fossil fuel combustion 

and industrial processes increased and contributed 80% to the increase in greenhouse 

gas emissions (IPCC 2014, p. 5). Today, research can provide evidence that the increase 

in average global surface temperature from 1970 to the present is consistent with the 

increase in global greenhouse gas emissions. Moreover, half of the temperature increase 

is considered to be anthropogenic (WMO and GAW 2017, p. 1, IPCC 2014, p. 44 ff.). As 

a result, and despite various mitigation policies, the climate protection goals of the Paris 

Agreement, especially the goal of limiting global warming to 2 °C (or even 1.5 °C) above 

pre-industrial levels, remain under severe pressure (UN 2015, p. 3, IPCC 2014, p. 57 ff.). 

 

Figure 1-1 Development of CO2 emissions (world) (A) and primary energy consumption (world) (B). 
(C) Share of delivered energy consumption by end-use sector (world) (A, B - own 
representation based on BMWi 2019, Table 12 and Table 31, EIA 2019, p. 40, BP 2020 
and C - EIA 2019 Table F1)  
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Apart from households and transportation, industry, including manufacturing, is the 

single highest energy end-user, accounting for 53% (38% when electricity-related losses 

are taken into account) of the total energy supplied worldwide (EIA 2019 Table F1). 

Although energy productivity is increasing, especially in OECD countries, the growth rate 

for total energy demand in the industry sector is still projected to increase by 1.2% per 

year until 2040 (EIA 2016, p. 114).  

With the “Green Deal”, the European Union (EU) raised its reduction target for 

greenhouse gas emissions from 40% to 55% by 2030. What is more, the EU aims to 

become the first climate-neutral continent and establish a European economy with net-

zero greenhouse gas emissions by 2050 (EU 2019, p. 4). These ambitions are also reflected 

in the targets to improve energy efficiency and increase the use of renewables energies 

sources. Currently, the energy efficiency reduction target is set to 32.5% by 2030 (relative 

to modeling projections for 2030 made in 2007) for both final and primary energy 

consumption (EU 2018a, p. 211). The target for the overall share of renewable sources 

on the EU’s total energy needs is set to 32% by 2030 (EU 2018b, p. 83). In line with EU 

targets, Germany has developed a national energy policy that aims to ensure a secure, 

economical, and environmentally compatible energy supply (BMWi 2016, pp. 7-9). 

Although positive trends can be observed, the projections also show that efforts need to 

be intensified in order to achieve the national targets within the envisaged time frame 

(ref. Figure 1-2) (BMWi 2021a, pp. 4-5). 

 

 

Figure 1-2 Selected goals of the German “Energiewende” status quo and development trend (own 
representation based on BMWi 2021a, AGEE-Stat 2021, and BMWi 2019) 

Energy efficiency is considered a cost-effective means of reducing specific energy 

consumption and mitigating greenhouse gas emissions in all industries (Worrell 2010, pp. 

3,12). At a national level, primary and final energy productivities are the efficiency 

indicators used to monitor the decoupling of economic growth and energy consumption. 

However, according to Figure 1-3, current trends are lagging behind the long-term 

objectives. This is true even if the increases in primary energy productivity are adjusted for 

temperature, economic, and population growth (AGEB 2018, p. 7 f.). Moreover, 

assessments within various industry sectors point to a slowdown in the development 

trends with regard to energy efficiency improvements. For instance, the Energy Efficiency 
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Index collected by the Odyssee-Mure project shows that after an increase of 1.5%/year 

between 2000 and 2007, the optimization of energy consumption, including the progress 

in the implementation of energy efficiency measures, has slowed down to 1%/year since 

2007 (ref. Figure 1-3 B) (ADEME 2017, p. 7). Further evidence of a negative development 

trend is provided by the Energy Efficiency Index of the German industry, a qualitative 

survey of industry experts conducted twice a year, which shows that energy productivity 

has leveled off in recent years (ref. Figure 1-3 C). 

 

 

Figure 1-3 Development of final energy productivity (A); Odyssee-Mure Project – Energy Efficiency 
Index of EU industry sectors (B); Energy Efficiency Index of German industry (C) (own 
representation based on UBA 2020, ADEME 2017, EEP 2017) 

Unlike in the energy-intensive process industry, direct energy costs in discrete parts 

manufacturing account for between 2.7% and 5.3% of total costs (Löschel et al. 2015, 

p. 843, Müller et al. 2009, p. 24).1 In contrast, raw materials, auxiliary materials, and 

consumables account for up to 43% (Weissenberger-Eibl et al. 2014, p. 20). These figures 

suggest that the priority of reducing energy costs in a manufacturing company is low. 

However, in competitive market environments, the potential savings associated with 

energy as a resource have been identified as a lever to strengthen market position (Bunse 

et al. 2011, p. 667 f., Cagno and Trianni 2013, pp. 281, 283). Furthermore, the 

transposition of the European Energy Efficiency Directive (2012/27/EU – Article 8) into 

national law obliges EU companies to either conduct energy audits according to DIN EN 

16247-1 or introduce Energy Management Systems (EnMS) according to DIN EN ISO 

50001 or EMAS (EU 2012, p. 17 f., DIN EN 16247-1 , DIN EN ISO 50001 ). In several 

                                            

 

 

1 share of energy costs in energy-intensive industries: 2-11% (de Bruyn et al. 2020 de Bruyn, Sander, Jongsma, Chris, Kampman, 

Bettina, Görlach, Benjamin & Thie, Jan-Erik. 2020. Energy-intensive industries - Challenges and opportunities in energy transition. 

Luxembourg: Committee on Industry, Research and Energy (ITRE), Policy Department for Economic, Scientific and Quality of Life 

Policies, European Parliament. URL: https://cedelft.eu/publications/energy-intensive-industries-challenges-and-opportunities-in-the-

energy-transition/ [Accessed 08.05.2022].) 

1990 2010 2030 2050

0

50

100

150

200

250

300

350

 projection

 status quo

 goal

[Mt]A B C

2000 2005 2010 2015

60%

70%

80%

90%

100%

 Industry   Chemicals    Steel

 Cement   Paper    Food

 Machinery   Transport

[EJ]final energy productivity industry EEI-EU

2013 2015 2017 2019

0

2

4

6

8

10

12

 index value 

 actual value   

 expected value

industry EPI-GER



4 1.1 Motivation and Background 

 

 

countries, the introduction of EnMS is also motivated by tax relief, including the cap laid 

down in the German Electricity Tax Act and the German Energy Act (§ 10 StromStG, § 55 

EnergieStG) and the limitation of the energy surcharge under the German Renewable 

Energy Sources Act (§ 64 EEG).  

Accompanying existing regulatory frameworks, carbon pricing schemes have been 

introduced in many countries around the world as fiscal measures to mitigate climate 

change (ref. Figure 1-4) (The World Bank 2021). Emission Trading Systems (ETSs) and 

carbon taxes have been developed to provide incentives for different industries and 

individual companies to improve their sustainable operations by investing in low-emission 

technologies. An additional motivation for companies to pursue proactive emission 

reduction strategies is to secure access to prospective markets and customers (Boiral 2006, 

p. 328).  

 

 

Figure 1-4:  Overview of various carbon pricing initiatives worldwide (own representation based on 
Bloomberg 2017, The World Bank and Ecofys 2017, The World Bank 2021) 

Europe was the first carbon market to be established globally. Today, the EU is still the 

most important market, covering about 40% of all carbon emissions (European Comission 

2021). In 2005, the EU introduced an ETS that focused on the power generation sector, 

aviation, and energy-intensive industries. Under the ETS, energy and industrial companies 

purchase emission allowances and can trade them among themselves at market-based 

prices. In general, the number of new emissions allowances issued each year is steadily 

decreasing in order to increase pressure on carbon-intensive businesses (BMWi 2021b). In 

fear of “carbon leakage” and many energy-intensive industries moving their business 

activities to countries without a carbon pricing system, millions of ETS allowances were 

given out for free. As a result, the ETS price had fallen from an initial peak of almost 28 

euros per ton of carbon dioxide (tCO2) in 2008 to less than 5 €/tCO2 in 2014. After a 
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period of stagnation at levels between 4 to 7 €/tCO2 during 2014 and 2018, the price for 

ETFs has recovered to exceed 38 €/tCO2 in 2021 (Koch et al. 2014, p. 676, UBA 2015, p. 

20 f.). By 2021, the transport and housing sectors will also be included in the so-called 

new emission trading system (nETS). The nETS starts with a fixed price of 10 euros per ton 

and rises continuously to 35 euros per ton until 2025 (BMWi 2021b).  

In light of this changing environment, carbon neutrality has become a strategic priority 

for a growing number of countries and companies, leading to ambitious goals and 

commitments to become carbon neutral, climate neutral, or net-zero1 in the years leading 

up to 2050 (Forbes 2019, Race to Zero 2021, Carbon Neutrality Coalition 2021).  

Along the way of this transformation process, manufacturing companies have adjusted 

their management objectives and started to adopt energy efficiency measures and install 

carbon-free renewable energy supply systems. However, a low-emission economy relies 

on vast amounts of low-cost, zero-emission electricity and requires mechanisms to 

balance time-varying demand and supply (Davis et al. 2018, p. 7). Integrating energy 

producers, consumers, and those who do both (“prosumers”) requires a smart grid 

infrastructure as a source of both competitive advantage and security of supply (Buchholz 

and Styczynski 2020, p. 4 f.). Consequently, industry in general and manufacturing, in 

particular, have begun to take steps to improve demand-side flexibility to match 

intermittent renewable energy supply and demand (Heffron et al. 2020, p. 2). Other 

considerations and technology options for reducing the manufacturing footprint include 

tapping energy-saving potentials in cross-sectional technologies (ref. BCG and Prognos 

2018, pp. 139-141, Seidl 2017, pp. 279-292), the substitution of carbon-based fuels with 

biomass, synthetic fuels, or hydrogen (ref. Malico et al. 2019, pp. 971-973, Schemme et 

al. 2020, p. 13, El-Emam and Özcan 2019, p. 605 f., Rambhujun et al. 2020, p. 11) and 

the introduction of carbon capture and storage (CCS) technologies (ref. Boot-Handford 

et al. 2014, p. 130, Wilberforce et al. 2021, p. 2).  

Given the multitude of available technology options and the urgent need to pursue 

climate-friendly business strategies, it is becoming increasingly difficult for corporate 

decision-makers to filter out those improvement measures that best fit their desired 

improvement goal.  

Improving the economic and environmental performance of a production plant, therefore, 

requires a paradigm shift towards holistic and interdisciplinary planning approaches. 

Weissenberger-Eibl et al. (2014, p. V) sees holistic planning approaches as a prerequisite 

for achieving the vision of an efficient, emission-neutral, and ergonomic factory whose 

operation benefits people and protects the environment. In this context, May et al. (2016, 

pp. 629, 633-635) outline the eco-factory as a guiding principle and source of competitive 

advantage achieved through system efficiency and flexibility. In addition, practitioners 

                                            

 

 
1 These terms are often used interchangably, although climate neutral and net-zero reflect a broader inclusion of different emissions 
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from the industry have called for more integrated approaches that combine the expertise 

of all parties involved in the planning process (e.g., architects, civil and process engineers) 

and use advanced planning tools that are able to consider resource and energy efficiency 

together with conventional economic planning objectives (INFO 2013b, p. 29, Gourlis and 

Kovacic 2017, p. 954, Sobottka et al. 2018, p. 414). In addition to the planning of new 

energy-efficient and climate-friendly factories, the modernizing of existing factories is a 

particular challenge. The complexity inherent to building stock arises from the large 

number of interwoven system components, which are designed by different employees 

and assembled from different product generations. These framework conditions further 

complicate the planning process and reduce the degrees of freedom available for 

implementing improvement measures. 

Unfortunately, the general lack of holistic methods for assessment and prioritization is still 

a critical barrier to the widespread adoption of energy efficiency and other improvement 

measures in the industry sector (Sauer and Bauernhansl 2016, p. 6). Today, the evaluation 

of energy efficiency measures is usually carried out in isolation, taking into account narrow 

system boundaries. However, this does not reflect the reality of a networked factory 

environment. Also, research efforts in the past have focused predominantly on energy-

saving measures at the level of individual manufacturing processes rather than on 

improving the overall factory system (e.g., Zein 2012, Böhner 2013). Several authors have 

noted the importance of considering the energy consumption of all factory subsystems, 

including peripheral systems such as lighting, heating, cooling, and ventilation 

(Hesselbach et al. 2008, p. 2, Thiede 2012, p. 38, Fischer et al. 2015, p. 138).  

This is particularly important as studies at the European level report that cross-sectional 

technologies are responsible for about 45% of the total energy demand in the industrial 

sector (Bradke et al. 2002, p. 796 ff.). Findings from case studies in industry show that 

the share of energy demand from peripheral systems in factories can even be as high as 

51% (Engelmann 2009, p. 76).  

Hesselbach et al. (2009, p. 3) already emphasized the need to consider the interactions 

between different energy flows in manufacturing. Although it has been recognized that 

the interconnected structure of processes/machines, auxiliary equipment, technical 

building system (TBS), and the building envelope offer new opportunities for reducing the 

energy demand of manufacturing systems, current assessment methods lack the ability to 

represent the strong interdependencies and mutual relationships between these different 

subsystems of a factory (Thiede et al. 2016, p. 1118). The relationship between the energy 

demand of processes and peripheral systems requires new assessment methods that are 

able to quantify the negative or positive side effects of individual measures in the context 

of an entire factory (Apostolos et al. 2013, p. 632, Brunke 2017, pp. 3 f., 17, Flatau 2019, 

p. 135). This is intended to avoid possible problem shifts between the energy 

requirements of different factory subsystems and thus the over- or underestimation of the 

savings potential of individual measures (Herrmann and Thiede 2009, p. 221, Khattak et 

al. 2018, p. 2). In addition, performance metrics related to energy use in factories have 

become more diverse. Alongside conventional productivity targets, the improvement of 
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energy efficiency and energy flexibility, and the use of renewable energy sources have 

become additional improvement targets (Beier et al. 2016, p. 659 f.). Fleiter et al. (2012, 

p. 503 f.) and Trianni et al. (2014, p. 208 f.) stressed the need to consider the multiple 

effects of individual improvement measures in order to increase their acceptance and thus 

the adoption rate. For example, in addition to energy and cost savings, energy efficiency 

measures can also be associated with non-energy benefits (e.g., productivity gains, 

reduced local emissions, or improved working conditions). 

Hesselbach et al. (2009, p. 3) and Herrmann et al. (2011, p. 45) identified modeling and 

simulation as an adequate means of representing the complexity of a factory system and 

as a suitable method for representing the energy demand characteristics of a factory. 

Since then, progress has been made to integrate the different levels of a factory system 

into holistic energy simulations (e.g., Thiede 2012, Haag 2013, Hopf 2016, Beier 2017, 

Schönemann 2017). Nevertheless, the available solutions proved to be simplistic and 

“proof of concept”-like (Garwood et al. 2018, p. 909). Furthermore, the representation 

of the energetic characteristics of the entire factory leads to very complex models. The 

use of these models in search of appropriate improvement measures is likely to be guided 

by an unstructured trial-and-error approach. This results in new challenges, especially with 

regard to the applicability of the models and the validity of the derived simulation results. 

In order to promote the use of factory simulation models in industry practice, additional 

solutions are required to strengthen transparency and increase confidence in the 

simulation results obtained. 

1.2 Research Focus and Central Aim 

The research focus of this work is on improving energy use in factory systems. However, 

the shortcomings of available approaches underline the need to further develop existing 

methods. Model-based approaches can only be successful if they help practitioners make 

informed decisions about how to improve both the productivity and climate-friendliness 

of their factory operations. Therefore, energy simulations of factories must holistically 

address several energy-related objectives. Furthermore, their use must be embedded in a 

consistent assessment procedure that is able to evaluate various improvement measures 

to allow objective decision-making. The general research question can therefore be 

summarized as follows:  

 

In this work, factory systems are considered as consisting of several interconnected 

subsystems, including processes/machines, auxiliary equipment, technical building system 

(TBS), the building envelope, and the energy supply system. From the life cycle perspective 

of factories, this work primarily aims to improve the planning practices during the 

General research question 

How is it possible to assess energy use holistically during  

the planning of a factory modernization? 
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modernization (e.g., redesign, revitalization, expansion, renovation, or restructuring) of 

existing (brownfield) factories with regard to their energy consumption. However, certain 

aspects of the methodology should also prove to be useful during the planning of new 

(greenfield) factories. The results are intended to support the decision-making process 

considering energy-related planning goals with the aim of optimizing the overall system 

rather than individual subsystems. To investigate the interdependencies of networked 

factory environments, simulation modeling is used to characterize the energy demand of 

a factory. The evaluation will examine the impact of energy efficiency and flexibility 

measures together with the use of renewable energies. The objective function in this work 

is holistic in that it considers non-energy benefits in addition to the conventional 

performance metrics energy demand, energy costs, and CO2 emissions. The main 

application focus of the developed methodology is on discrete parts manufacturing. 

However, individual findings can also prove useful in the process industry. 

The central aim of this thesis is to develop a methodology that supports the user during 

the modernization of factories, aiming at the improvement of several energy-related 

performance metrics. The central aim of this work can be summarized as follows:  

 

1.3 Research Design and Structure of the Thesis 

With reference to Popper's critical rationalism, science aims to explain reality through 

causal relations while searching for the most universally valid theories (Dyllick and 

Tomczak 2009, p. 67 f.). In contrast to fundamental science and research, which is 

"mainly concerned with generalizations and the formulation of a theory", this thesis 

classifies as applied research (Kothari 2004, p. 3). According to the definition by Ulrich 

(2001, p. 71) and OECD (2015, p. 29), applied research is "directed primarily towards a 

specific, practical aim or objective", while aiming for relevant and applicable solutions to 

pressing practical problems. Generally, the discovering of new scientific knowledge in the 

field of applied research "has specific commercial objectives with respect to products, 

processes, or services" (National Research Council 2005, p. 47).  

From a philosophy of science perspective, the way to progress scientific knowledge in 

natural science and applied research is deeply routed in the research philosophy of 

positivism and the work of John Stuart Mill (Schülein and Reitze 2021, pp. 112-115, Mill 

1843). From a positivism point of view, objective truth needs to be based on empirical 

evidence (Park et al. 2020, p. 690 f.). Generalizable theories and models can only be 

derived from observations, measurements, and experiments using quantitive methods 

(Fox 2008, p. 660). Critics of positivism argue that this perspective underestimates the  

Central aim 

Develop a consistent simulation approach to help manufacturing companies  

in simultaneously evaluating multiple, energy-related performance metrics  

during the planning of a factory modernization. 
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influence of the researcher's theories, hypotheses, background knowledge, and values on 

what is observed (Robson and McCartan 2016, p. 22). Objectivity has always been the 

author’s highest priority. However, with respect to these critics, the author cannot rule 

out the possibility that his own involvement biased the results of this research. With 

reference to Kubicek (1977, p. 5 f.), the heuristic frame of reference of this work is the 

author's background knowledge and experience as a scientist and consultant in the field 

of energy efficiency and factory planning. The research question of this work was 

motivated by practical problems encountered in manufacturing companies. The central 

aim was derived from the unavailability of ready-to-use methodologies to solve decision 

problems concerning the adoption of energy-related improvement measures and the 

development of related energy system designs.  

In consequence, this work is more in line with the research philosophy referred to as 

critical rationalism and the work of Karl Popper (Popper 1935). In this research, the author 

questions diverse aspects of existing theories related to the assessment of energy use in 

factories. However, the proposed extension of existing methodologies does not claim to 

be universally valid. On the contrary, and following the falsification principle of Popper, 

the author hopes to motivate other researchers to examine and potentially falsify the 

presented results (Popper 1969, p. 216 f., Chalmers 2001, p. 52). With reference to the 

concept of Thomas Kuhn, it will remain for the scientific community to decide whether 

this work is able to contribute to a paradigm shift in the assessment of energy use in 

factories (Schülein and Reitze 2021, p. 168 f., Kuhn 1970). Finally, the author wants to 

make reference to Paul Feyerabend, who strongly opposed any dogmatism in the way 

science is conducted. From his perspective, “anything goes” (Feyerabend 1975, p. 19). 

This thesis follows the research design outlined in Figure 1-5. The inner and outer loops 

illustrate the continuous refinement of the research objective and research demand based 

on the practical problems identified in manufacturing companies. The starting point is the 

definition of the subject domain, which in this thesis is energy use in manufacturing 

systems. The underlying research disciplines include systems theory, manufacturing, 

thermodynamics, modeling, and simulation. 

 

Figure 1-5 Research design (own representation adopted from Dekkers 2015, p. 4) 
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The research objective of this work follows the central aim introduced in Section 1.2. A 

literature review will be conducted to specify and detail the research needs. Although they 

are not considered rigid or distinct categories, one can generally distinguish between 

qualitative, quantitative, and mixed-methods research approaches (Creswell 2017, p. 3). 

This study takes a quantitative approach. The research method for data collection is based 

on measurements in the field. Data on factories in general and energy demand, in 

particular, are obtained through measurement campaigns in production plants. The 

collected data will be used for parameterization, verification, and validation of the 

developed factory model, including associated submodels. Statistical methods are used to 

analyze and interpret the measurement data and the simulation results. Following the 

outlined research design, this work is divided into a total of eight chapters. The following 

section provides a brief introduction to the content of each chapter. Chapter 1 introduces 

the subject domain and classifies its importance in a societal context. Chapter 2 provides 

the theoretical foundations relevant to the development of the methodology in the thesis. 

This includes general terms and definitions for factories, their energy use, modeling, 

simulation, and design of experiments. Chapter 3 gives an overview of the state of science 

and specifies the research demand. Chapter 4 derives the requirements for methodology 

development from the shortcomings of existing work. The chapter also specifies the scope 

of research and outlines its limitations. Chapter 5 presents the development of the 

methodology for a simulation-based assessment of energy use in factories. The 

development consists of three parts, namely the development of extended energy 

performance metrics, the development of an assessment procedure, and the development 

of the factory simulation model. Chapter 6 demonstrates the application of the developed 

methodology in a case study conducted in the aerospace composites industry. Chapter 7 

evaluates the development methodology against the requirements established in Chapter 

4 and with reference to the case study in Chapter 6. Chapter 8 summarizes the entire 

thesis. This chapter also provides an outlook on future research needs regarding the 

findings and shortcomings of this work. Figure 1-1 graphically summarizes the structure 

of this work. 

 

Figure 1-6 Structure and outline of this thesis 
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2 Theoretical Foundations 

This chapter presents the basic principles and theoretical foundations on which this work 

is based. Section 2.1 defines the system considered in this thesis, factories, and also 

provides definitions for production and manufacturing systems. Section 2.2 provides an 

overview of available methods and tools that have proven useful in assessing energy use 

in factories. This is followed by a brief introduction to the available modeling and 

simulation techniques used in energy-related studies (Section 2.3). Then, a background 

on the design of simulation experiments is given in Section 2.4. Section 2.5 summarizes 

Chapter 2 and concludes with preliminary findings. 

2.1 Introduction of Factories 

2.1.1 Terms and definitions 

Schenk and Wirth (2004, p. 7) define the factory as a “place of innovative, creative, and 

efficient value creation of industrial goods”. VDI 5200 (p. 3) expands this definition and 

describes a factory as a “place where value is created by the manufacture of industrial 

goods based on a division of labor while utilizing production factors.” Generally,  

“in a factory, manufacturing processes are assembled together to form a 
manufacturing system (MS) to produce a desired set of goods. The manufacturing 
system takes specific inputs, adds value, and transforms the inputs into products for 
the customer. It is important to distinguish between the production system which 
includes the manufacturing system and services it.” (Black 2000) 

Different definitions of production systems can be found in the literature. From a general 

point of view, Heinen et al. (2008, p. 20) define a production system as “a socio-technical 

system that transforms inputs (e.g., know-how, methods, materials, financial resources, 

energy) in value-adding (e.g., manufacturing or assembly) and associated processes (e.g., 

transportation) into outputs (e.g., products, costs, residual materials).” According to 

Schenk et al. (2014, p. 817), the production system comprises the “implementation of 

the production process, taking into account production preparation and manufacturing 

systems (parts manufacturing and assembly systems), including organization, personnel, 

and the respective corporate culture.” From an organizational point of view, production 

systems include all business processes related to the manufacturing of products (e.g., 

Mercedes-Benz, Toyota production system) (Ohno 1988, Ohno 1993).  

Factories only exist because there is a need to satisfy individual customer demands for 

manufactured products. With the definitions introduced in this subsection, a hierarchy 

can be set up according to Schenk et al. (2014, p. 48 f.). Customer demand is the trigger 

for product design, which affects the selection of the manufacturing processes, their 

composition as a manufacturing system, and their placement within a factory.  
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From a technical point of view, the factory houses the production system and consists of 

a building and its technical infrastructure. It is considered “a place and space for the 

provision of services” as well as an architectural expression that respects the surrounding 

environmental and infrastructural framework (Schenk et al. 2014, p. 49). 

2.1.2 Factories from a systems perspective 

General systems theory was developed in the 1930s by Ludwig von Bertalanffy. It is now 

understood as a framework for describing and solving complex problems (Westkämper 

and Hummel 2009, p. 57). Systems theory can help create a general understanding of 

factories as either closed or open systems (Wiendahl 1999, p. 7). Viewed from a systems 

perspective, factories consist of elements with individual characteristics and possibilities 

for action. The different elements are connected with each other and are functionally 

related. Some of these interconnected elements can be understood as separate 

subsystems with hierarchical structures and individual system boundaries embedded in 

another, larger system (ref. Figure 2-1). An open system is given if a system has relations 

to its environment. In the case of technical systems, it is generally assumed that the 

interactions between the various elements of a system outweigh those with the 

environment (Meyer 1978, p. 123). The elements of a production system are the factors 

of production, including equipment and other operating resources, materials, energy, and 

personnel (Müller et al. 2009, p. 37). Factories can also be understood as systems that 

transform inputs (resources – personnel, information, energy, material) into desired and 

undesired outputs (products, rejects, energy, and material emissions), influenced by 

controllable and uncontrollable factors. (Dyckhoff and Spengler 2010, pp. 4, 7, Schultz 

2002, p. 43). 

 

 

Figure 2-1 Left: Elements of a system (own representation based on Westkämper and Hummel 2009, 
p. 58); right: factory as a system that transforms inputs into outputs under the influence 
of controllable and uncontrollable factors (own presentation base on Montgomery 2001, 
p. 2)  

Systems theory can also be used to structure problems related to the use of energy in 

factories. Energy analysis generally aims to gain relevant knowledge about the energy-

related system elements of a factory, including their interaction within the system 

boundaries of a factory as well as their relationship to the environment. Hesselbach et al. 
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(2008, p. 625) and Hesselbach (2012, p. 15) introduced production machinery, technical 

building systems, and the building envelope as hierarchical categories to cluster and 

allocate the system elements of a factory that determine its energy demand. The authors 

have applied Wirth peripheral factory model shown in Figure 2-2 to the energy context. 

Further developments of the peripheral factory model can be found in Herrmann et al. 

(2014, p. 285), Posselt et al. (2014, p. 81), and Weeber et al. (2017, p. 436). These authors 

distributed the various energy consumers of a factory over an increased number of 

peripherals.  

 

 

Figure 2-2 Peripheral factory model (own representation based on Wirth 1990, p. 25, Schenk and 
Wirth 2004, p. 94, Schenk et al. 2014, p. 137, and Haag 2013, p. 21) 

2.1.3 Factories from a life cycle perspective 

In addition to understanding the different elements of a factory system and their 

relationships, it is also important to consider temporal aspects when assessing and 

improving energy consumption in factories across the different life cycle phases. With 

reference to Figure 2-3, the life cycle of a factory as a plant is much longer compared to 

the life cycle of a product or manufacturing process. This means that while products and 

associated manufacturing processes are frequently changed over, factory buildings can 

house multiple generations of products and processes.  

Changing long-term framework conditions (e.g., new technological developments, 

market trends, political and legal requirements, and sociocultural values) or short-term 

objectives (e.g., sales volumes, cost development, liquidity, or customer satisfaction) can 

require the modification and adaptation of existing production systems. Dyckhoff and 

Spengler (2010, p. 30) differentiate between strategic (approx. five years), tactical 

(approx. one to five years), and operational (up to one year) planning horizons. The tasks 

of production management at the strategic level include the selection of production sites 

or the development of existing factory sites with regard to new climate protection 

regulations. On a tactical level, tasks include layout planning or technology management. 

At the operational level, this involves short-term production planning and control or 

material requirements planning. 
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The time horizon of investments in the structure of a factory building and the associated 

technical infrastructure varies greatly. However, they are generally considered to be long-

term. Consequently, the possibilities of making changes to existing factory setups depend 

heavily on the remaining useful life of the various elements. This is particularly true where 

the changes require substantial investments. In general, designing new factories in a 

greenfield approach offers more degrees of freedom compared to redesigning, 

revitalizing, expanding, renovating, or restructuring existing factories in a brownfield 

approach.  

 

 

Figure 2-3 Comparison between product process, facility, and land use cycle (own representation 
based on Wirth et al. 2000) 

The left-hand side of Figure 2-4 illustrates the difference between the useful life of 

primary, secondary, and tertiary structures of a building following the definition of 

Friedrichs (2000, p. 67). With a special focus on the elements of the secondary structure, 

the right-hand side of Figure 2-4 uses the depreciation periods described in VDI 2067 (pp. 

29-36  Part 1 - Annex A) to illustrate the differences in useful lives for different categories 

of technical building systems. The box plot in Figure 2-4 shows that equipment used for 

building automation has the shortest average useful life. In contrast, heat transfer and 

distribution equipment have the longest average useful life. 

Given the long-term perspective of investment in the (infra)structure of a factory, there 

are only a limited number of opportunities along the life cycle of a factory to implement 

major changes and realize substantial investments. This also applies to projects that focus 

on optimizing the energy use of a factory. In order to exploit these opportunities in a way 

that increases the likelihood of a project being implemented, a structured approach is 

needed to help demonstrate the economic benefits. This is where factory planning 

methods can be helpful. 

The literature describes several ways to classify a planning process with respect to the 

factory life cycle phases. For example, Schenk and Wirth (2004, p. 104) distinguish 
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between the factory life cycle phases of planning, installation, ramp-up, operation, and 

dismantling or re-utilization. Considering the sequence of factory planning activities, VDI 

5200 (p. 8 f.) defined seven planning phases.  

 

 

Figure 2-4 Left: Facility structure differentiated according to the useful life of its elements (own 
presentation based on Friedrichs 2000, p. 67); Right: Depreciation period for elements of 
the secondary structure of a facility, H – heating, VAC – ventilation, and air-conditioning, 
and building automation (own representation based on values from VDI 2067, pp. 29-36 
Part 1 - Annex A) 

The relationship between the phases of the factory life cycle, the factory planning 

processes and the performance phases of the HOAI (“Honorarordnung für Architekten 

und Ingenieure”) is outlined in Figure 2-5. 

 

 

Figure 2-5 The phases of a factory planning process in connection with the life-cycle phases of factory 
(own representation based on Schenk and Wirth 2004, p. 104, VDI 5200, p. 8 f., Schenk 
et al. 2014, p. 115)  
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Given the specific challenges associated with improving environmental competitiveness 

when redesigning or revitalizing existing factories, Dombrowski and Ernst (2014, p. 338) 

extended existing factory planning processes and introduced tuning and adoption as an 

additional life cycle phase. Other motives for tuning and adapting existing factories can 

be found in the expansion, renovation, or restructuring of existing factory environments.  

The long useful life of factory buildings and their technical equipment motivates a 

thorough planning process that estimates the current and future costs of investment 

decisions from a life cycle perspective. Figure 2-6 shows the possibility of influencing life 

cycle costs along the different life cycle phases of a factory. In a greenfield setting, the 

early life cycle phases related to planning determine a large part of the total life cycle 

costs. It is found that a life cycle-oriented planning approach is superior to conventional 

planning approaches and can quickly offset additional costs through savings in the 

operational and even the dismantling phase of a factory's life cycle.  

Figure 2-6 also illustrates the possibility of improving the life cycle performance of factories 

in a brownfield setting if the available degrees of freedom (black dashed line) are used 

accordingly. The blue dashed line shows the reduction of future life cycle costs in existing 

factories as a consequence of improvements measures derived from suitable planning 

activities. Certainly, the redesign, revitalization, expansion, renovation, or restructuring of 

existing production sites may require additional investment (red shaded area), but with 

successful planning and implementation, future savings (green shaded area) can quickly 

offset this additional investment. 

 

 

Figure 2-6 Possibility of influencing life cycle costs in different planning tasks (own representation 
based on BBSR 2011, p. 9) 
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2.2 Assessment of Energy Use in Factories 

2.2.1 Terms and definitions 

 

Thermodynamics and efficiency 

Thermodynamics is at the core of understanding the opportunities and limitations of 

energy efficiency efforts. The first law of thermodynamics describes the conservation of 

energy in closed systems, which are ideally isolated from the environment. Although such 

systems do not exist in nature, one can use this concept to establish energy balances, 

which means that in a closed thermodynamic system, the change of internal energy ∆𝑈 is 

equal to the sum of energies ∑ 𝐸𝑖𝑖 , heat 𝛿𝑄, or work 𝛿𝑊, extracted from or performed by 

the system (ref. Equation 2-1).  

 

∆𝑈 = ∑ 𝐸𝑖𝑖 = 𝛿𝑄 + 𝛿𝑊  (2-1) 

 

However, a production system is considered an open system in which inputs (e.g., 

materials and energy) enter the system boundaries, either to be transformed or not, 

before they leave the system as outputs (e.g., products) or remain in it. According to 

Gößling-Reisemann (2011, p. 266), the difference between the use and consumption of 

material or energy within a system is that in the latter, the quantity or quality must change 

as it flows through the system. In contrast, the term ‘use’ has a broader meaning. For the 

production of a product, e.g., material and energy are used. Losses (e.g., waste heat, 

production waste) are inherent to technical systems and require consideration on the basis 

of the second law of thermodynamics. The second law describes the irreversibility of 

thermodynamic processes. The difference between the consideration of the first and 

second law is illustrated in Figure 2-7. 

 

 

Figure 2-7 Comparison of Sankey (energy flow) and Grassmann (exergy flow) (adapted from Bakshi 
et al. 2011, p. 5) 
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reduction of the energy available to do useful work. Entropy is also referred to as the 

degree of order or quality of energy. Two practical consequences of thermodynamics on 

the research field of efficiency are that 100% efficiency is impossible. Moreover, energy 

does not disappear but loses its quality (orderliness) over time (Song 2016, p. 17). 

 

Energy efficiency, energy productivity, energy intensity 

The efficiency paradigm intends to “do more with less” and is based on the first law of 

thermodynamics. “First law” efficiency (𝜂) can be described, according to Equation (2-2), 

as the quotient of desired energy output to required energy input. 

 

𝜂 =
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡 
 (2-2) 

 

Conservation of energy is considered in the first law of efficiency. Optimizations based 

solely on the efficiency paradigm, however, consider the energy quantities and not energy 

qualities. Changes in energy quality or irreversibilities can be quantified by the “second 

law” efficiency. According to Equation (2-3), (휀) can be expressed as the quotient of “first 

law” efficiency and maximum efficiency of an ideal reversible system, or the actual work 

required to complete a “task”, divided by the minimum work required for a task (Gellings 

2009, p. 16 ff.).  

 

휀 =
𝜂𝑎𝑐𝑡𝑢𝑎𝑙

𝜂𝑖𝑑𝑒𝑎𝑙  
=

𝑊𝑎𝑐𝑡𝑢𝑎𝑙

𝑊𝑚𝑖𝑛.  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
 (2-3) 

 

For further definitions of energy efficiency, see Patterson (1996, p. 383 f.) and Phylipsen 

et al. (1997, p. 717), who describe energy efficiency (𝐸𝐸) in the form of activities or end-

use services (e.g., number of products, m² heated area, km driven) divided by the 

corresponding energy consumption (ref. Equation 2-4). Consequently, the numerator is 

either an economic or physical indicator instead of heat content or working potential. 

 

𝐸𝐸 =
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑒𝑛𝑑 𝑢𝑠𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 
 (2-4) 

 

In addition to the definition of energy efficiency, the term energy productivity is often 

used synonymously. (𝐸𝑃) generally refers to the quotient of value-added and energy 

consumption (ref. Equation 2-5). Value-added and energy consumption are generally 

expressed in monetary units (Reinhart et al. 2010, p. 870). Depending on the approach 
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taken, the value-added in a manufacturing company can be represented by the turnover 

achieved or the number of products manufactured per unit of time. 

 

𝐸𝑃 [%] =
𝑣𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑

𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 (2-5) 

 

The inverse of energy efficiency is defined as energy intensity (𝐸𝐼) or specific energy 

consumption (𝑆𝐸𝐶) (ref. Equation (2-6). Energy intensity is referred to as energy 

consumption per activity or end-use service. If one refers to the activity or end-use service 

in terms of economic or monetary values, e.g., the gross domestic product (GDP), energy 

intensity is the commonly used term. If one refers to physical units, e.g., the number of 

cars produced, the term specific energy consumption is used. (Phylipsen et al. 1997, p. 

717)  

 

𝐸𝐼/𝑆𝐸𝐶 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑒𝑛𝑑 𝑢𝑠𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 
 (2-6) 

 

From a macroeconomic perspective, factory-level energy efficiency (𝐸𝐸𝐹𝑎𝑐𝑡𝑜𝑟𝑦) is 

commonly referred to as the net production value in euros divided by primary energy 

consumption in megawatt-hours during a defined time period (ref. Equation 2-7) (Müller 

et al. 2009, p. 36). 

 

𝐸𝐸𝐹𝑎𝑐𝑡𝑜𝑟𝑦  [€/𝑀𝑊ℎ] =
𝑛𝑒𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 

𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 
 (2-7) 

 

Given the outlined definitions of energy efficiency, energy productivity, energy intensity, 

and specific energy consumption, it is important to mention that decisions based solely 

on the efficiency paradigm can be misleading. To this end, Duflou et al. (2012, p. 588) 

contrast the efficiency paradigm (doing things right) with effectiveness (doing the right 

things) using the example of a grinding operation. Improving the efficiency of a grinding 

operation can include the modification of the machine drive or the use of different cutting 

fluids. In contrast, an effective approach completely rethinks the process plan itself, 

potentially making the grinding operation obsolete. 

 

Energy flexibility 

In addition to the efficiency paradigm, the ability of a production system to use energy in 

a flexible manner has become an additional target dimension for improving energy use in 

factories. This is due to the crucial role of industrial energy demand within energy systems 
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that include a growing share of fluctuating renewable energy sources. As part of a general 

strategy called demand-side management (DSM), energy flexibility in the context of 

production systems can be defined as their “ability (…) to adapt itself fast and without 

remarkable costs to changes in energy markets” (Graßl et al. 2014, p. 303). In general, 

there are three ways to provide energy flexibility, including augmenting, reducing, or 

shifting energy demand (Eisenhauer et al. 2018, p. 4). In today's energy market design, 

monetary benefits from energy flexibility can be achieved either through participation in 

the intraday, day-ahead, or futures market (Häfner 2018, S. 632). Access to these 

flexibility markets is usually restricted and requires a prequalification process (Leutgöb et 

al. 2019, p. 238). However, new time-of-use tariffs and associated payment models are 

continuously being tested and introduced around the world (IRENA 2019, p. 6 f.). 

In the literature, there is still no uniform definition of energy flexibility as an energy-related 

key performance indicator in factories. However, at an aggregated level, the maximum 

flexible energy supply (∆𝐸𝑓𝑙𝑒𝑥,𝑦𝑒𝑎𝑟) of a system during a one-year period, according to 

Equation (2-8) can be described as the sum of 𝑛 individual energy flexibilities, each with a 

specific flexible load ∆𝑃𝑓𝑙𝑒𝑥,𝑛(𝑡) and duration ∆𝑡𝑡𝑜𝑡𝑎𝑙,𝑛, where the flexible load is the 

difference between the current flexible load and a reference load without considering a 

flexibility corridor (ref. Equation 2-9) (Sauer et al. 2019, pp. 85, 103 f.). The duration of 

individual energy flexibility is composed of activation, duration, and deactivation times 

(ref. Equation 2-10).  

Referring to the energy efficiency indicators introduced in this section, the author 

proposes a factory level energy flexibility indicator (𝐸𝐹𝐹𝑎𝑐𝑡𝑜𝑟𝑦) according to Equation (2-11) 

as the quotient of maximum flexible energy supplied by a factory during one year divided 

by the total energy demand of a factory during the same period. 

 

∆𝐸𝑓𝑙𝑒𝑥,𝑦𝑒𝑎𝑟 = ∑ ∆𝑃𝑓𝑙𝑒𝑥,𝑛(𝑡) ∙ ∆𝑡𝑡𝑜𝑡𝑎𝑙,𝑛

𝑛

𝑖=1

 (2-8) 

∆𝑃𝑓𝑙𝑒𝑥(𝑡) = 𝑃𝑓𝑙𝑒𝑥(𝑡) − 𝑃𝑟𝑒𝑓(𝑡) (2-9) 

∆𝑡𝑡𝑜𝑡𝑎𝑙 = ∆𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 + ∆𝑡𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + ∆𝑡𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (2-10) 

  

𝐸𝐹𝑓𝑎𝑐𝑡𝑜𝑟𝑦  [%] =
∆𝐸𝑓𝑙𝑒𝑥,𝑦𝑒𝑎𝑟

𝐸𝑡𝑜𝑡𝑎𝑙

 (2-11) 

 

From primary energy to energy services 

In order to provide a consistent description of energy use within a factory system, this 

section further specifies and presents the different forms of energy as well as conversion 

path (ref. Figure 2-8). The following definitions are based on Pehnt (2010, p. 7 f.) and VDI 

4608 (p. 13 f.). Primary energy is defined as the energy content in primary energy 

carriers before conversion, for example, in combustion processes. Primary energy carriers 

can be either coal, crude oil, and gas or renewable energy sources such as solar radiation, 
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geothermal energy, or wind (Pehnt 2010, p. 7). Secondary energy is generated when 

primary energy carriers are converted into refined products, e.g., gasoline or natural gas 

from crude oil or gas. Secondary energy also includes forms of energy that are provided 

by regional or national energy suppliers. Secondary energies therefore also include 

electricity, local and district heating or cooling networks. Final energy defines the stage 

after the secondary energy carriers have been delivered to a consumer or end-user and 

before they are converted into useful energy. Examples include electricity, natural gas, 

and oil. Useful energy includes all forms of energy ultimately required by the consumer. 

Examples are “heat, mechanical energy, light, electric and magnetic field energy (…) and 

electromagnetic radiation – in order to be able to perform energy services” (VDI 4608, p. 

14). Energy services are  

“the requirements satisfied by or the goods produced from the use of useful energy 
and other production factors. Examples include lighting areas and spaces, 
movement and transportation, heating and cooling materials and goods, physical 
and chemical conversion of materials, forming of materials, and many more besides” 
(VDI 4608, p. 14).  

The author further distinguishes between useful energy, which is used to provide 

intermediate energy carriers (e.g., cold, warm, or compressed media) and useful energy 

to provide energy services within directly value-adding tasks. On the way from primary 

energy to energy services, the various forms of energy are subject to losses on their way 

from storage, distribution, and conversion to delivery. The symbols used to describe this 

cascade are inspired by Schenk et al. (2014, p. 125), who describe processes within factory 

systems through the essential functions of conversion, transportation, and storage. Figure 

2-8 summarizes the terms and specifies their application within factory systems. 

 

 

Figure 2-8 Conversion path from primary energy to energy services (based on Weeber and Sauer 
2018, p. 822) 
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2.2.2 Quantification of energy demand 

In the planning and assessment of factory environments, the value stream method with 

its extensions to energy and energy flexibility is a well-recognized approach to detect 

“energy waste” and to identify improvement measures. The general concept of the value 

stream method can be found in Erlach (2013, pp. 37-82). The adoption of the value 

stream method to include energy and other resources is discussed in more detail in Erlach 

(2009, pp. 23-26), Reinhart et al. (2010, pp. 871-873), Reinhart et al. (2011, pp. 253-

255), Posselt et al. (2014, pp. 82-84), and Cosgrove et al. (2017, pp. 214-219). Further 

enhancements include, e.g., the consideration of CO2 emissions and energy flexibility 

(Erlach and Sheehan 2014, pp. 655-657, Feder et al. 2015, pp. 313-315). Faulkner and 

Badurdeen (2014, pp. 10-14) took an even broader perspective. They developed 

Sustainable Value Stream Mapping (Sus-VSM) as an approach to evaluate and visualize 

the performance of manufacturing systems considering holistic performance metrics. The 

metrics are divided into environmental metrics, including process, raw material 

consumption, water, and energy consumption, and social metrics, including physical 

working and working environment conditions. Figure 2-9 summarizes the key elements 

of an energy value stream. The process blocks serve, among others, to collect information 

about operating time, process quantity, and cycle time. 

 

 

Figure 2-9 Value stream (own representation based on Erlach 2009, p. 80 f., Reinhart et al. 2011, p. 
255) 
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The value stream in Figure 2-9 contains further information on the specific energy 

consumption per unit and energy carrier (e.g., electricity, compressed air), including the 

average power demand for different operating states (e.g., ramp-up, processing, idle, and 

stand-by). Extensions of the value stream also include blocks representing energy use in 

auxiliary equipment associated with the process, such as compressed air, cooling, or 

heating systems. The parameters monitored in these blocks typically include average 

power consumption, flow rates, and pressure levels but can be adjusted depending on 

the requirements of the evaluation. 

Given the continuous improvement and adoption of the value stream method, it can be 

considered as a flexible tool with a wide range of useful applications that help in industrial 

practice. However, increasingly complex energy performance metrics require further 

improvements of the method, in particular, to enable continuous data collection and 

processing. However, the lack of value stream-oriented measurement concepts still limits 

the scope of analysis and optimization approaches that focus on energy use. 

The usefulness of the energy value stream method depends heavily on the quality of the 

available and supplemented data. Therefore, the following section briefly introduces the 

underlying physical principles for measuring energy consumption in a manufacturing 

environment. The overview focuses on power and energy measurements in electric circuits 

and pipe-bound fluid flows due to their relevance in field applications. 

 

Measurement of power and energy in single-phase electric circuits 

Energy is the integral of power over time (ref. Equation 2-12). Given Ohm’s law 

(Equation 2-13), the power in a single-phase circuit is the product of voltage and current 

(Steffen and Bausch 2007, p. 53). 

 

𝑊 = ∫ 𝑃(𝑡) ∙ 𝑑𝑡

𝑡2

𝑡1

 (2-12) 

𝑃 =
1

𝑇
∙ ∫ 𝑢(𝑡) ∙ 𝑖(𝑡) 𝑑𝑡

𝑇

0

 (2-13) 

  

𝑊 [𝑊𝑠] Electrical work/energy  

𝑝(𝑡)  Current power  

𝑇 Period  

 

In direct current (DC) circuits, the power dissipated in a load can be determined by 

measuring the current flowing through and the voltage drop across the load. In an 

alternating current (AC) circuit with sinusoidal currents and voltages, a distinction must 



24 2.2 Assessment of Energy Use in Factories 

 

 

be made between apparent power 𝑆, real power 𝑃, and reactive power 𝑄 when measuring 

power. The relationship between apparent, real, and reactive power is described by the 

formula in Equation (2-14). The fraction of power that, averaged over a complete cycle of 

the AC waveform, results in a net transfer of energy in one direction is known as real 

power – Equations (2-15) with (2-17) and (2-18). Real power is the part of the power in 

an AC system that is converted into non-electrical (e.g., mechanical or thermal) forms of 

energy (Lerch 2007, p. 206). The portion of power that returns to the source in each cycle 

due to capacitive or inductive components in the circuit is known as reactive power (ref. 

Equation (2-16). 

 

𝑆2 = 𝑃2 ∙ 𝑄2 (2-14) 

𝑃 = 𝑈𝑒𝑓𝑓 ∙ 𝐼𝑒𝑓𝑓 ∙ 𝑐𝑜𝑠𝜑 (2-15) 

𝑄 = 𝑈𝑒𝑓𝑓 ∙ 𝐼𝑒𝑓𝑓 ∙ 𝑠𝑖𝑛𝜑 (2-16) 

𝑈𝑒𝑓𝑓 = √
1

𝑇
∙ ∫ 𝑢2(𝑡)𝑑𝑡

𝑇

0

 (2-17) 

𝐼𝑒𝑓𝑓 = √
1

𝑇
∙ ∫ 𝑖2(𝑡)𝑑𝑡

𝑇

0

 (2-18) 

  

𝑆 [𝑉𝐴] Apparent power  

𝑃 [𝑊] Real power  

𝑄 [𝑣𝑎𝑟] Reactive power  

𝑈𝑒𝑓𝑓  and 𝐼𝑒𝑓𝑓 Effective values of voltage and current  

𝑐𝑜𝑠𝜑 Power factor with 𝜑 (angle between current and voltage)  

𝑇 Period  

 

When evaluating energy use, the active power is measured. Although only the active 

power contributes useful work to a load, the components of an electrical power system 

must be sized with respect to the amount of apparent power. High reactive power 

components require power correction installations to avoid voltage dips and other failures 

in the circuit (Kasikci 2018, pp. 292-232). 

In AC circuits, current and voltage are expressed by the root mean square (RMS) or 

effective values 𝐼𝑒𝑓𝑓 and 𝑈𝑒𝑓𝑓 (ref. Equations 2-17 and 2-18). When 𝑈 = 𝑈𝑒𝑓𝑓, the same 

power is dissipated in circuits with resistive loads for DC and AC configurations (Lerch 

2007, p. 145). The power factor 𝑐𝑜𝑠𝜑 describes the phase angle between effective current 

and voltage. Table 2-1 summarizes the relevant physical relationships for power 

measurement in single-phase circuits for both AC and DC systems. 
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Table 2-1 Formula for power in DC and AC single-phase electric systems 

  Direct Current (DC) Alternating Current (AC) 

Power 𝑃 [𝑊] 𝑃 = 𝑈 ∙ 𝐼  

Real Power 𝑃 [𝑊]  𝑃 = 𝑈𝑒𝑓𝑓 ∙ 𝐼𝑒𝑓𝑓 ∙ 𝑐𝑜𝑠𝜑 

Reactive Power 𝑄 [𝑣𝑎𝑟]  𝑄 = 𝑈𝑒𝑓𝑓 ∙ 𝐼𝑒𝑓𝑓 ∙ 𝑠𝑖𝑛𝜑 

Apparent Power 𝑆 [𝑉𝐴]  𝑆 = 𝑈𝑒𝑓𝑓 ∙ 𝐼𝑒𝑓𝑓 

 

Measurement of real power in multiphase electric circuits 

A common application scenario is the measurement of electrical power demand in three 

or four-phase circuits with symmetrical or asymmetrical loads. The different measurement 

setups and calculation methods are shown in Table 2-2. 

Table 2-2 Power measurement setups for multiphase electrical systems 

Three-conductor system Four-conductor system 

 
 

Symmetrical loading Symmetrical loading 

𝑈12 + 𝑈23 + 𝑈31 = 0   u.   𝑈𝑙𝑖𝑛𝑒 = √3 ∙ 𝑈𝑝ℎ𝑎𝑠𝑒 𝑈1𝑁 = 𝑈2𝑁 = 𝑈3𝑁 = 𝑈 

𝐼1 = 𝐼2 = 𝐼3 = 𝐼 𝐼1 + 𝐼2 + 𝐼3 = 𝐼𝑁 = 0 

cos 𝜑1 = cos 𝜑2 = cos 𝜑3 = cos 𝜑 cos 𝜑1 = cos 𝜑2 = cos 𝜑3 = cos 𝜑 

𝑷 = 𝟑 ∙ 𝑷𝒑𝒉𝒂𝒔𝒆 = 𝟑 ∙ √𝟑 ∙ 𝑼𝟏𝟐 ∙ 𝑰𝟏 ∙ 𝐜𝐨𝐬 𝝋 𝑷 = 𝟑 ∙ 𝑷𝒑𝒉𝒂𝒔𝒆 = 𝟑 ∙ 𝑼𝟏𝑵 ∙ 𝑰𝟏 ∙ 𝐜𝐨𝐬 𝝋 

  

Asymmetrical loading Asymmetrical loading 

Aron circuit  

 

 

𝐼1 + 𝐼2 + 𝐼3 = 0 𝐼1 + 𝐼2 + 𝐼3 = 𝐼𝑁 

𝑃 = 𝑃1 + 𝑃2 𝑃 = 𝑃1 + 𝑃2 + 𝑃3 

  

𝑷 = 𝑼𝟏𝟑 ∙ 𝑰𝟏 ∙ 𝐜𝐨𝐬(∢𝑼𝟏𝟑, 𝑰𝟏) 

+𝑼𝟐𝟑 ∙ 𝑰𝟐 ∙ 𝐜𝐨𝐬(∢𝑼𝟐𝟑, 𝑰𝟐) 

𝑷 = 𝑼𝟏𝑵 ∙ 𝑰𝟏 ∙ 𝐜𝐨𝐬(∢𝑼𝟏𝑵, 𝑰𝟏) 

+ 𝑼𝟐𝑵 ∙ 𝑰𝟐 ∙ 𝐜𝐨𝐬(∢𝑼𝟐𝑵, 𝑰𝟐) 

+ 𝑼𝟑𝑵 ∙ 𝑰𝟑 ∙ 𝐜𝐨𝐬(∢𝑼𝟑𝑵, 𝑰𝟑) 
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For power measurements in a three-phase or four-phase circuit with symmetrical loads, 

only one wattmeter is usually required. In a uniformly balanced three- or four-phase 

circuit, it is sufficient to measure only one phase. In this case, the total electrical power 

demand is a multiple of the power demand measured on a single conductor.  

In the case of unequally balanced phases or asymmetrical loadings, current and voltage 

must be measured separately for all conductors (Lerch 2007, p. 210). In the specific case 

of a three-conductor system with an asymmetrical load and no neutral conductor, the 

total electrical power demand can be quantified using a two-wattmeter method in an 

Aron-circuit measurement setup (Kories and Schmidt-Walter 2003, p. 186). In contrast to 

a four-conductor system with symmetrical loads, a current always flows through the 

neutral conductor – also called the star point – in the case of asymmetrical load conditions 

(Steffen and Bausch 2007, p. 266). In this case, three wattmeters are needed to measure 

the power across all three conductors separately (Kories and Schmidt-Walter 2003, p. 

185). Wattmeters measure both voltage and current. Depending on the current, sensitivity 

requirements, and accessibility, the person conducting the measurement can choose 

between different sensors: shunt resistor, current transformers, and hall sensors. A 

comparative overview of these different sensors is shown in Table 2-3. 

Table 2-3 Sensors for measuring electric current (based on O'Driscoll and O'Donnell 2013, p. 56 f.) 

 Shunt resistor Current transformer Hall sensor 

Principle of operation 

   

Installation in-line clamp on clamp on 

Method resistance based induction based magnetic field based 

Measurand current current current 

Advantage low cost, small size suitable for high currents  

Limitations invasive  sensitivity to nearby  
magnetic fields 

 

The evaluation of energy use in factory environments requires the use of different 

measurement setups. For example, power measurements at the mains supply of a factory 

building require a setup for a four-phase circuit with asymmetrical loads. In contrast, 

symmetric load conditions can be assumed when measuring the energy demand of a 

single electric motor. In general, for circuits with unspecified loads, a full measurement 

setup is preferred, which measures each phase individually (Plaßmann and Schulz 2009, 

p. 766 f.). For further guidance on the measurement of power and energy in electrical 

circuits, see also Plaßmann and Schulz (2009, p. 754 ff.), Kories and Schmidt-Walter 

(2003, p. 181 ff.), and Steffen and Bausch (2007, p. 266 ff.). A review on electrical energy 

metering systems and their use in manufacturing is presented by O'Driscoll and O'Donnell 

(2013, p. 55 ff.). 
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Measurement of power and energy of fluid-bound energy carriers 

In addition to electrical energy, a large part of energy demand in manufacturing is 

distributed and supplied via fluid-bound energy carriers. These energy carriers are routed 

in pipeline systems and require different measurement concepts. In general, the energy 

transported in fluids can be described according to Equation (2-19), where �̇� is the mass 

flow rate, 𝑐𝑝 is the heat capacity of the fluid, and ∆𝑇 is the temperature difference 

between the measurement point (2) and the reference conditions (1). For compressed air 

systems, the reference conditions are generally ambient temperature and pressure 

(Fraunhofer ISI 2003, p. 2). 

 

𝑃𝑓𝑙𝑢𝑖𝑑 = �̇� ∙ 𝑐𝑝 ∙ ∆𝑇 = �̇�𝑓𝑙𝑢𝑖𝑑 ∙ 𝑐𝑝 ∙ (𝑇2.𝑓𝑙𝑢𝑖𝑑 − 𝑇1.𝑓𝑙𝑢𝑖𝑑) (2-19) 

 

According to the continuity equation, the mass flow of a fluid through a cross-section 𝐴1.𝑖 

with density 𝜌1.𝑓𝑙𝑢𝑖𝑑 must be equal to the mass flow through the cross-section 𝐴2.𝑖 with 

density 𝜌2.𝑓𝑙𝑢𝑖𝑑 (ref. Equation 2-20). 

 

�̇�𝑓𝑙𝑢𝑖𝑑 = 𝑐𝑜𝑛𝑠𝑡. = 𝜌2.𝑓𝑙𝑢𝑖𝑑 ∙ �̇�2.𝑓𝑙𝑢𝑖𝑑 = 𝜌2.𝑓𝑙𝑢𝑖𝑑 ∙ 𝐴2.𝑖 ∙ �̅�2.𝑖 = 𝜌1.𝑓𝑙𝑢𝑖𝑑 ∙ 𝐴1.𝑖 ∙ �̅�1.𝑖  (2-20) 

  

�̅�𝑖 Average flow velocity in cross-section area  

𝐴𝑖 Internal cross-section area  

�̇� Volumetric flow rate  

 

Furthermore, the relationship between the density 𝜌1.𝑓𝑙𝑢𝑖𝑑 and 𝜌2.𝑓𝑙𝑢𝑖𝑑 can also be 

expressed according to the ideal gas law (ref. Equation 2-21). 

 

𝑝 ∙ 𝑉 = 𝑚 ∙ 𝑅 ∙ 𝑇  ;   𝑝 = 𝜌 ∙ 𝑅 ∙ 𝑇  (2-21) 

  

𝜌1.𝑓𝑙𝑢𝑖𝑑 =
𝑝1.𝑓𝑙𝑢𝑖𝑑

𝑅 ∙ 𝑇1.𝑓𝑙𝑢𝑖𝑑

  ;   𝜌2.𝑓𝑙𝑢𝑖𝑑 =
𝑝2.𝑓𝑙𝑢𝑖𝑑

𝑅 ∙ 𝑇2.𝑓𝑙𝑢𝑖𝑑

  (2-22) 

  

𝑅 Ideal gas constant  

𝑝 Pressure  

𝑇 Temperature difference between supply and return flow  
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According to Equations (2-19), (2-20), and (2-22), it is necessary to measure the volumetric 

flow rate, temperature, and pressure to quantify the power and energy transported in a 

fluid. Table 2-4 summarizes various sensors that can be used to measure the volumetric 

flow rate in fluids. 

Table 2-4 Selection of sensors to measure the volumetric flow rate in fluids 

 Impellor anemometer Thermal mass flow meter Ultrasonic flowmeter 

Principle of operation 

   

Installation in-line in-line clamp on 

Method volumetric calorimetric ultrasonic 

Measurand flow rate flow rate flow rate 

 

An impeller anemometer measures the rotational speed of the impeller, which is 

proportional to the flow rate of the fluid. The thermal mass flow meter measures the flow 

rate through convection losses that occur at the surface of the sensor relative to the 

surrounding fluid. Ultrasonic flow meters transmit ultrasonic waves between a transmitter 

and a receiver unit through a liquid or gaseous fluid. The flow rate in the fluid deflects 

the emitted ultrasound waves and causes a transit time difference that is proportional to 

the flow velocity (Probst and Schnell 1993, p. 207 f.). Compared to the other sensor 

setups, ultrasonic flowmeters do not directly intervene with the measured fluid. They are 

installed on the pipe using a clamp-on technique. For further guidance on measurement 

concepts used to quantify volume and mass flow, see also Probst and Schnell (1993, p. 

193 ff.) and Bonfig et al. (2014, p. 793 ff.).  

Figure 2-10 shows the installation of various energy metering systems in a milling center 

with the purpose of quantifying the electricity and compressed air demand of a milling 

center together with the electricity demand for the operation of the connected cooling 

lubricant supply unit. 

 

Figure 2-10 Example of an energy metering setup in a milling center. (A) – machine tool, (B) – 
compressed air flow measurement, (C) – current collectors installed on the main switch of 
the machine tool, (D) – voltage reference 

vflow vflow
vflow

A B C D
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Figure 2-11 shows the results of the energy metering setup quantifying the energy 

demand of the milling center (top) and the connected cooling lubricant supply unit 

(bottom). The setup measures the electrical power demand of the machine tool and the 

cooling lubricant supply. It also measures the flow rate and pressure requirements for 

compressed air used in the machine tool. 

 

 

Figure 2-11 Exemplary results of a measurement setup used to quantify the energy demand of a milling 
center (top) together with the connected cooling lubricant supply unit (bottom) 

 

Allocation of the energy demand to the operating states of a machine 

The energy demand of production plants can be divided into constant and variable shares. 

Depending on the type of manufacturing system and the system boundary considered, 

the variable shares grow proportionally to increasing production rates. 

Figure 2-12 shows how the production rate can affect the constant and variable shares 

of the energy demand of manufacturing systems in different ways. In the case of a 

machine tool (Example A), the variable shares can account for up to 65.8% of the total 

energy demand, while in Example B, the influence of the production rate is limited, and 

the energy consumption is dominated by baseload consumers with at least 85.2%.  

Dietmair and Verl (2009, p. 130) first proposed the consideration of operating states in 

processes and machine models. The authors distinguished between “machine off”, “run-

up”, “emergency stop”, “machine ready”, “drives active”, “spindle running”, “coolant 

running”, “chipping/milling”, and “chipping/milling end”. Other authors adopted this 

approach and specified the operating states in more detail. Today, the operating states 

first classified by Weinert (2010, p. 62) and Weinert et al. (2011, p. 42) “turned-off’’, 
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‘‘start-up’’, ‘‘warm-up’’, ‘‘stand-by’’, ‘‘processing’’ or ‘‘stopping” are commonly used 

terms. The consideration of operating states, including the transition between the states, 

can already be implemented as a function in the Technomatrix Plant Simulation software 

environment, which is commonly used to model and simulate production systems. 

 

 

Figure 2-12 Shares of variable and constant energy demand as a function of different production rates 
for (A) a 3-axis CNC milling machine (Kordonowy 2002, p. 67), (B) machining operations 
at an automobile manufacturer (Gutowski et al. 2005, p. 4 and Gutowski et al. 2006, p. 2 
f.) 

Figure 2-13 shows an example analysis of machine operating states. 

 

 

Figure 2-13 Exemplary analysis of the machine operating states 
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In our example, a total of seven operating states are used to characterize a representative 

load profile. In addition, the operating states are further differentiated into value-adding, 

non-value-added but necessary, and non-value-adding operations. This characterization 

can also be used when more than one input resource is under observation (e.g., electricity 

and compressed air). The information on characteristic operation states can be derived 

from measurements in the field and machine operation logs. The values are then used to 

implement characteristic load profiles in the respective simulation environment. 

Slight variations of the operating states have been proposed in the literature depending 

on the characteristics of the different processes; for example “off”, “start-up”, “idle”, 

“runtime/ready for machining”, “operation” or “idle”, “changeover”, “ramp-up”, 

“preproduction”, “production”, “stand-by”, “failure” or “off”, “on”, “ramp up”, 

“idle”, “setup”, “processing”, “blocked” and “failure” (Thiede 2012, p. 21, Mousavi et 

al. 2016, p. 15 f., Schönemann 2017, p. 82).  

 

Visualization of the energy demand 

There are various ways in which energy consumption can be visualized. Conventional 

visualization techniques include load-curve diagrams that show the power demand of 

different energy carriers in a time-resolved manner. Sankey diagrams, named after Irish 

engineer Matthew Henry Phineas Riall Sankey, are suitable means of visualizing energy 

and material flows in multi-stage energy systems with many transfer and conversion 

stages.  

In addition, heat-map visualization of power measurement data can support the search 

for anomalies in the energy demand characteristics of a factory system (e.g., peak loads, 

energy demand during non-working periods). Using the measured data visualized in 

Figure 2-14, it was possible to identify, for example, the exceptional peak energy demand 

in the first days of the year. 

 

 

 

Figure 2-14 3D (left) and 2D (right) “heat map” visualization of power measurement data for a 
one-year period 

5 0
1 0 0

1 5 0
2 0 0

2 5 0
3 0 0

3 5 0

00
:00

04
:00

08
:00

12
:00

16
:00

20
:00

0

15

30

45

60

75

90

tim e of the day

p
o

w
e
r 

[k
W

]

da
ys 
of 

the
 ye

ar

0 50 100 150 200 250 300 350

00:00

04:00

08:00

12:00

16:00

20:00

day of the year

ti
m

e
 o

f 
th

e
 d

a
y



32 2.2 Assessment of Energy Use in Factories 

 

 

2.2.3 Improvement of energy use 

 

Improvement of energy efficiency 

The product design triggers the selection of suitable manufacturing processes and their 

orchestration in a process chain. Auxiliary equipment supplies all the technical media 

required for the operation of individual machines and entire multi-machine ecosystems. 

The process chain is enclosed by a factory building envelope, while technical building 

systems ensure that the manufacturing environment is operated within specified 

temperature and humidity limits. Various improvement measures enable energy efficiency 

to be increased at different levels of a manufacturing system, either in an individual or 

collective manner. 

Engelmann identified six generalizable categories for energy efficiency measures at the 

process/machine level (Engelmann 2009, pp. 93-97). This includes the use of highly 

efficient machine components (e.g., high-efficiency electric motors), the reduction of 

energy losses (e.g., compressed air leakage), energy recuperation (e.g., regeneration of 

braking energy), the substitution of energy carriers, processes, or materials (e.g., warm 

with cold metal forming), the improvement of equipment dimensioning to reduce the less 

efficient partial load operation (e.g., oversized process cooling system) and the 

improvement of machine utilization and its demand-oriented operation through 

optimized control (e.g., control of extraction systems according to machine operating 

states). In Kellens (2013, pp. 152-162) and Kellens et al. (2013, pp. 29-32), three main 

categories are proposed, namely optimized machine tool design, process and machine 

tool selection, and optimized process control. Furthermore, the authors specified 13 

individual measures at the machine level. In addition, further energy efficiency categories 

have been added, such as the comparison of integrated and central peripherals (e.g., 

compressed air, cooling lubricant, or cabinet cooling systems).  

Several use cases are presented in the scientific literature, which employ simulation in the 

assessment and improvement of energy efficiency. At the unit process level, Dietmair 

and Verl (2009, pp. 124-126), Abele et al. (2012, p. 234 f.), and He et al. (2012, pp. 168-

171) present methods that focus on machine tools. Saidur et al. (2010, p. 1145) analyzed 

various energy-saving measures for compressed air systems at the auxiliary equipment 

level. The author’s analysis also mentions the benefits of a model-based assessment using 

software tools such as AIRMaster+ and AirSim. Examples of improving the energy 

efficiency of cooling lubricant systems, including modeling methods, have been given by 

Brecher et al. (2012, p. 240 f.), Yingjie (2014, pp. 1125, 1128 f.), and Rahäuser (2015, p. 

79 ff.). Pohl et al. (2013, p. 139 f.) present a model-based assessment of energy efficiency 

in compressed air systems and Puls et al. (2019, p. 1876 f.) for industrial cooling systems 

by the application of free cooling. Herrmann and Thiede (2009, p. 225) extend simulation-

based energy efficiency assessments to the level of the process chain and technical 

building systems. Their approach aims to identify potential conflicts and trade-offs 

between different technical and organizational measures in terms of production time, 
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electricity consumption, and electricity costs. Mose and Weinert (2015, p. 45 f.) also 

extended the system boundaries of an energy efficiency assessment and introduced a 

process chain assessment method. Instead of optimizing individual processes, their 

method focuses on improving overall energy efficiency by comparing alternative process 

chains. The authors presented an exemplary use case for a welding shop. Heinzl et al. 

(2013, p. 306) and Weeber et al. (2018, p. 338 f.) added further details to their model-

based energy assessment, covering both the building and energy system levels. 

A general procedure model for the assessment of energy efficiency in industry is described 

in VDI 3922 (p. 6). Thiede et al. (2012, pp. 30-32) and Böhner (2013, pp. 45-53) propose 

individual methods to assist in prioritizing the most promising areas for action, using either 

a Pareto analysis or a fuzzy logic approach. Building on the Plan-Do-Act-Check (PDCA) 

framework of the ISO 50001 energy management standard, Khattak et al. (2018, pp. 5-

8) proposed an evaluation strategy that quantifies energy efficiency measures against 

baseline conditions using a holistic factory simulation. The authors reference their 

improvement measures to one of six general categories (stop, eliminate, repair, reduce, 

recover, change). 

 

Improvement of non-energy benefits 

Including non-energy benefits in the scope of an assessment may shed a different light 

on the overall benefits and associated productivity gains of energy efficiency measures 

(Worrell et al. 2003, p. 1082). There is evidence that non-energy benefits outweigh energy 

savings in many cases (Pye and McKane 2000, pp. 177-182, Hall and Roth 2003, p. 134). 

Worrell et al. (2003, p. 1082) identified five broad categories for non-energy benefits: 

reduced waste, lower emissions, improved maintenance, and operating costs, increased 

production and product quality, and an improved working environment. These categories 

were complemented by Nehler (2018, p. 4) and shown in Figure 2-15. 

Looking for ways to quantify the real value of energy efficiency measures by integrating 

non-energy benefits in a management decision process, Rasmussen (2014, p. 738) 

categorizes non-energy benefits according to their level of quantifiability. However, 

Nehler and Rasmussen (2016, p. 479) added that the quantifiability of non-energy 

benefits is not an absolute prerequisite for the successful implementation of energy 

efficiency measures and that a qualitative approach can also favor the investment 

decision. An additional challenge in assessing non-energy benefits is that in many cases 

non-energy benefits cannot be attributed to individual measures, and there are potentially 

interdependencies between individual non-energy benefits (Nehler 2018, p. 17). When 

non-energy benefits are measured within the same category, there is a significant risk of 

double-counting them and thus underestimating the risk of the associated investment 

(Nehler and Rasmussen 2016, p. 480)  

From an extensive literature review, Nehler (2018, p. 18 f.) synthesizes a scheme for the 

improved use of non-energy benefits in industry. It involves five steps: observation, 

measurement, quantification, monetization, and evaluation (including impact 
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assessment), and can be used from either an ex-post (pre-implementation) or an ex-ante 

(post-implementation) perspective. According to the author, the assessment of non-

energy benefits requires the combined use of user experience, observation, calculation, 

and/or estimation methods. In addition, model-based approaches are proposed to 

improve the transparency of the obtained results. Trianni et al. (2014, pp. 212-218) 

attributed different non-energy benefits to a wide range of cross-cutting technologies to 

support the selection process of promising energy efficiency measures. 

 

 

Figure 2-15 Categories of non-energy benefits (own representation based on Nehler 2018, p. 4) 

 

Improving energy flexibility 

Graßl and Reinhart (2014, p. 130) introduced a total of nine categories for measures to 

improve energy flexibility in manufacturing systems (ref. Figure 2-16), including the 

interruption of processes, the adaptation of staff free time, machine scheduling, order 

sequence, shift times, process start and process parameters, the changes in energy carrier 

and the storage of energy.  
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With minor modifications, Khripko et al. (2018, p. 703) summarized energy flexibility 

measures in just five categories, namely power-to-battery (flexibility through the use of 

battery storage), power-to-storage (flexibility through decoupling production and 

consumption over time by storing energy in converted form), power-to-product (flexibility 

through indirect energy storage from shifting mostly batch production processes), power-

to-system (flexibility through switching between at least two energy sources), and flex-

supply (flexibility through the grid-oriented operation of a decentralized energy supply 

system). 

 

 

Figure 2-16 Categories for measures to improve energy flexibility (taken from Graßl 2015, p. 59) 

Energy flexibility measures can be implemented at different levels of a manufacturing 

system. Stoldt et al. (2015, p. 448) generally distinguish between the energy supply level, 

the production level, and the infrastructure level. The following paragraph briefly 

summarizes the existing simulation modeling approaches that have been developed to 

improve energy flexibility at different levels of a manufacturing system. Further references 

on energy flexibility in manufacturing can be found in the literature review by Beier et al. 

(2017, pp. 649-652), which is organized according to three clusters: 1. planning or real-

time approaches, 2. strategic, tactical, and operational time horizons, and 3. single-stage 

(one process) or multi-stage (process chains) approaches. The search for adequate energy 

flexibility measures can be supported by the six-step procedure model presented by Graßl 

(2015, pp. 107-120), which helps with identification and prioritization.  

At the unit process level, Popp et al. (2017, pp. 79-81) showed that an energy flexible 
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level while maintaining machine productivity. Further approaches to increasing energy 

flexibility at the unit process level can also be found in Graßl et al. (2014, pp. 304-306) 

and Dietrich et al. (2020, pp. 4-6) using a Petri-net-based and a machine-learning 

approach, respectively. 

In the scientific literature, various approaches are presented to increase energy flexibility 

at the process chain level by means of adaptive planning, scheduling, and control of 

manufacturing processes. For example, Fang et al. (2011, p. 235 f.) developed a multi-

objective mixed-integer linear programming model (MILP) for a flow shop scheduling 

problem to jointly optimize cycle time and peak load along with total energy consumption 

and associated carbon dioxide emissions. While they also use a mixed-integer linear 

programming model, Emec et al. (2013b) developed a model-based method to reduce 

electrical energy cost by adjusting the production schedule of process chains operating at 

less than full capacity to spot market prices. This method has also been applied to a use 

case in the automotive industry (Emec et al. 2013a, p. 3 f.).  

Further development includes a load management strategy for manufacturing systems 

with an on-site combined heat and power (CHP) plant. The authors followed a mixed-

integer nonlinear programming approach to formulate the scheduling problem and used 

particle swarm optimization to reduce operating costs without compromising throughput 

(Sun et al. 2015, p. 115 f.). By augmenting conventional planning data with energy data, 

Keller et al. (2016, pp. 754-756) presented an approach to energy-oriented production 

planning and control that takes lot size, delivery, capacity planning, and machine 

scheduling into account. With the goal of reducing energy costs, a MILP approach is used 

to match energy demand and energy availability during lot sizing and capacity planning. 

In addition, a simulated annealing approach is implied to account for power demand 

constraints in machine scheduling (Keller 2018, p. 145 f.).  

At the level of auxiliary equipment and technical building systems, Beier et al. (2015, 

pp. 21-23) demonstrated the feasibility of implementing demand-side management in 

the industry, without jeopardizing the availability of production equipment, by using 

compressed air systems as a means of storing electrical energy. Machalek and Powell 

(2019, pp. 101-105) explore the possibilities of using auxiliary equipment together with 

their integrated energy storage capacities (e.g., chiller with associated buffer storage) to 

balance demand peaks through short-time energy storage. With a particular focus on the 

flexible operation of heating, ventilation, and air-conditioning (HVAC) systems, Sun et al. 

(2016, p. 1651) developed a method for determining appropriate demand response 

strategies, taking into account production capacity, electricity pricing, electricity demand 

limitation, and ambient temperature.  

At the energy supply system level, Khripko et al. (2018, pp. 704 f., 707 f.) 

demonstrated the usefulness of introducing a gas-fired combined cooling, heat, and 

power plant (CCHP) to meet the energy demand of a polymer processing factory while at 

the same time increasing its responsiveness to fluctuations in the local energy grid. With 

a special focus on battery storage systems (BSS) in industrial applications, Lehmann et al. 

(2016, p. 316) carried out an economic viability assessment based on the ability of a BSS 
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to reduce peak loads and improve self-consumption. Looking for additional revenue 

streams to improve the net present value (NPV) of a BBS in non-intrusive energy flexibility 

application, Braeuer et al. (2019, p. 1426 f.) also considered the BSS to participate in the 

arbitrage trading and power control reserve (PCR) market. 

 

Development of the energy supply system 

The aim of planning and further development of energy supply systems is to ensure a low-

emission supply of energy demand with maximum operating efficiency and minimum 

investment costs while ensuring the adaptability of the system design to uncertain 

changes in future framework conditions. Hinker et al. (2018, p. 1) summarized these 

uncertainties to be future energy prices, applicable subsidies, regulation, and the 

evolution of market design. 

Adaptability has been identified as a prerequisite for the evolution of energy supply 

systems over time, as it reduces the costs for redevelopment and redesign, installation, 

and system integration. It thus improves the compatibility with future market 

requirements. Hinker et al. (2018, p. 9) differentiated adaptability into two main 

characteristics using the definitions from Wiendahl et al. (2007, p. 788). First, scalability 

– the ability of a system with spatial degrees of freedom to change and adapt 

incrementally, rather than in an all-or-nothing manner. Second, modularity – the use of 

interchangeable, autonomously operating elements with standardized interfaces (e.g., 

standardized thermal and electrical connections) enables coupling between different 

conversion and storage units. 

The improvement of the adaptability of technical building systems and energy supply 

systems in factories through standardized units was also proposed by Weeber et al. (2017, 

p. 437 f.) and is shown in Figure 2-17. 

 

 

Figure 2-17 Adaptability of technical building systems and energy supply systems based on 
standardized supply units (Weeber et al. 2017, p. 438) 

Heterogeneous energy system architectures with system components of different ages 

make future adaptations to the system architecture, as shown in Figure 2-18, particularly 
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challenging. This also includes the coordinated operation of new and old equipment. In 

energy supply system design, Voll et al. (2015, p. 447) generally distinguish between three 

levels, the synthesis level, the design level, and the operational level. The synthesis focuses 

on the selection of the technical components of the system, its configuration, and layout. 

The design level determines the technical specification, including installed capacities, 

operating limits, etc. Finally, the operating level defines the operating strategies of the 

energy supply system as a whole and for its individual system components. The author 

emphasizes the need to engage simultaneously at all three levels of the design process in 

order to derive near-optimal solutions.  

 

 

Figure 2-18 Evolution of energy system design (figure adapted from Hinker et al. 2018, p. 8) 

At the synthesis level, co-simulation can be used to investigate different predefined energy 

supply scenarios (ref. Table 2-5). Use cases include companies that move their existing 

production to a new factory building (Bleicher et al. 2014, p. 444). Another possibility for 

the use of simulation at the synthesis and design level is to compare the suitability of 

different refurbishment concepts for the energy supply of a factory (Dunkelberg et al. 

2018, pp. 792-799). The aim of this investigation is to identify energy supply system 

setups that help to increase supply flexibility and improve energy supply system efficiency 

considering specific manufacturing operations (e.g., injection modeling). At the operation 

level, multi-criteria simulation-optimization can help to improve the operating strategy of 

existing energy supply systems used in factories (e.g., an automotive assembly plant) (Feng 

et al. 2016, pp. 457-464). The investigation of different operating strategies can also assist 

during the identification of possible conflicts between energy demand, costs, and 

emission-optimized operating strategies. 

Simulation modeling can be used at various levels of a planning process to improve the 

design and operation of a factory’s energy supply system. However, Voll et al. (2015, p. 

447) has carefully considered the practical advantages of deriving promising solution 

candidates over a single optimal solution. This is because simulation models never provide 

a perfect representation of the real system and modeling constraints (energy tariffs, 

energy demand, etc.) are objective to future changes. Therefore, an optimal solution 
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shows only temporary validity, while near-optimal solutions provide insights into the 

recurring features of good solutions and enable robust decision-making. 

Table 2-5 Predefined energy supply system setups (Bleicher et al. 2014, p. 444) 

 Scenario 1 Scenario 2 Scenario 3 

Heat supply (baseload) CHP (natural gas) district heat 
groundwater well 

heat pump 

Heat supply (peak load) district heat district heat district heat 

Heat recovery from exhaust air heat pump heat exchanger heat pump 

Warm water supply solar thermal & electric solar thermal & electric solar thermal & electric 

Cold supply adsorption chiller compression chiller groundwater well 

Electricity supply 

PV 

CHP 

grid 

PV 

Grid 

PV 

grid 

2.3 Modeling and Simulation of Energy Use in Factories 

This chapter presents general definitions (2.3.1) and theoretical foundations on the 

subject of modeling and simulation (2.3.2), with a particular focus on the methods and 

tools used in the context of manufacturing and, more specifically, in the assessment of 

the associated energy consumption characteristics (2.3.3). For a more detailed discussion 

of modeling techniques and simulation methods, see Banks (1998a), Chung (2004), and 

Law (2015). 

2.3.1 Terms and definitions 

According to VDI 3633 (p. 3), a model is a “simplified reproduction of a planned or 

existing system with its processes in a different conceptual or concrete system”. A 

reproduction implies that within a tolerance range, there is a difference between the real 

system and the features relevant to the study of the model. In general, the simulation 

comprises the ”preparation, execution and evaluation of (…) experiments with a (…) 

model”, the simulation itself is defined as the “representation of a system with its dynamic 

processes in an experimentable model to reach findings which are transferable to reality 

(…)” (VDI 3633, p. 3). In a broader sense, this is consistent with Biles (1984, p. 99), who 

defines simulation “(…) as the establishment of a mathematical-logical model of a system 

and the experimental manipulation of that model on a digital computer”. This definition 

emphasizes two principal activities in a computer simulation: model development and 

experimentation. While various modeling and simulation techniques are presented in 
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Subsections 2.3.2 and 2.3.3, the theoretical principles applied in the design of simulation 

experiments are discussed in Section 2.4.  

The use of computer models and simulation techniques is motivated by the constraints 

imposed by the properties of physical experiments. Performing physical experiments on 

complex systems or processes is often too time-consuming, expensive, or practically 

impossible (Sacks et al. 1989, p. 409). The benefits of simulation modeling include the 

ability to explore the behavior of a system without interrupting its ongoing operation, the 

opportunity to verify system behavior, and gaining insight into the interaction of system 

variables and their effects on system performance. Challenges include the need for 

specialized training, the difficulty of interpreting simulation results, and the effort 

associated with modeling, simulation, and analysis (Banks et al. 2010, p. 24). 

2.3.2 Modeling paradigms and simulation techniques 

 

Modeling paradigms 

An overview of different modeling paradigms can be found in Banks (2012, p. 16), 

including physics-based, finite element, data-based, aggregate, and hybrid models. 

Physics-based models are represented by a mathematical equation based on 

fundamental physical principles. Although they are also based on physical principles and 

described by mathematical equations, finite element models are different. They 

decompose models of large complex systems into a set of interconnected smaller models 

called finite elements. This approach involves the construction of a mesh to discretize the 

spatial dimensions of the object under consideration. Applications include structural 

analysis and fluid dynamic problems. Data-based/driven models use various data 

sources from both qualitative and quantitative research methods to describe the various 

aspects of the model subject (e.g., experiments with the real system, interviews with 

subject matter experts, etc.). The relationship between model inputs and outputs is 

developed by recording and tabulating the response of the system under varying 

conditions. Aggregate models are not physics-based models and generally combine 

different objects and actions of models to evaluate their aggregate performance. Hybrid 

models are composed of different modeling paradigms to represent the properties of the 

object or system under consideration. Following Pritsker (1998, p. 36), we further refer to 

simulation modeling as the “principles for building and using models that are analyzed 

using simulation”. 

 

Simulation techniques 

Law (2015, p. 5 f.) categorizes simulation models according to three dimensions. 

Depending on whether models evolve over time, they are referred to as either static or 

dynamic. Depending on the presence of a probabilistic component, simulation models 
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can be further differentiated into deterministic or stochastic. Finally, one can distinguish 

between discrete simulation models “for which the state variables change instantaneously 

at separated points in time” and continuous simulation models “for which state variables 

change continuously with respect to time” (Law 2015, p. 3). 

Figure 2-19 outlines the different simulation techniques presented in this subsection. The 

figure categorizes possible areas of application and the different levels of abstraction used 

in the underlying modeling approach.  

Accordingly, a discrete-event simulation (DES) model can be defined as a model in 

which the state variables “change only at those discrete points in time at which events 

occur” (Banks 1998b, p. 8), whereas “an event is defined as an instantaneous occurrence 

that may change the state of the system” (Law 2015, p. 6). Software solutions are, e.g., 

ARENA (Rockwell Automation) and Tecnomatix Plant Simulation (Siemens).  

 

 

Figure 2-19 Simulation modeling according to different levels of abstraction (own representation 
based on Borshchev and Filippov 2004, p. 3) 

Agent-based simulation (ABS) models are considered a variant of DES. This is due to 

the fact that in ABS equal to DES, changes of state occur at a countable number of points 

in time. ABS is defined as a DES “where the entities (agents) do (…) interact with other 

entities and their environment in a major way.” In ABS, agents  

“are referred to as autonomous entities that can sense its environment, including 
other agents, and use this information to make decisions. Agents have attributes 
and a set of basic if/then rules that determine their behaviors. They may also learn 
(gain a better understanding of the status of other agents and their environment) 
and adapt their behaviors (change their decision rules) over time, which will require 
them to have some form of memory.” (Law 2015, p. 694) 
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A widely used ABS software solution is AnyLogic (The AnyLogic Company). Open-source 

alternatives include MASON, NetLogo (Northwestern University), and Repast Simphony 

(Argonne National Lab) (Law 2015, p. 694).  

Depending on the model abstraction level, continuous simulation can be further divided 

into dynamic systems and system dynamic simulations. In a dynamic-systems 

simulation (DSS) model, the state variables change continuously with respect to time. 

They are based on differential equations, which in most cases cannot be solved analytically 

and require the use of numerical solvers. Simulation software products include, for 

example, SIMULINK (MathWorks), Modelica, and Dymola (Dassault Systemes). (Law 2015, 

p. 707)  

System-dynamics simulation (SDS) modeling is a high-level technique for simulating 

continuous models developed to evaluate policy or business strategies. While they can 

accommodate both deterministic and stochastic components, system dynamic models 

consist of three main components: stock of resources, flows of incoming and outgoing 

resources with corresponding valves to control the rate of flow, and information links that 

transfer information between the stock and the valve. Corresponding software products 

are, for example, AnyLogic (The AnyLogic Company) and Vensim (Ventana Systems) (Law 

2015, p. 708)  

Several systems require the implementation of both discrete and continuous 

characteristics in their simulation model representation. According to Pritsker (1998, p. 

46), three types of general interactions can occur in a combined discrete-continuous 

simulation model. First, “a discrete event may cause a discrete change in the value of a 

continuous state variable”; second, “a discrete event may cause the relationship 

governing a continuous state variable to change at a particular time”; and third, “a 

continuous state variable achieving a threshold may cause a discrete event to occur” (Law 

2015, p. 713). 

Related to the static stochastic category, the last simulation modeling paradigm presented 

in this subsection is Monte Carlo simulation (MCS). MCS employs random numbers to 

solve various stochastic or deterministic problems (Law 2015, p. 714). According to Diaz 

et al. (2012, p. 245), MCS is considered static compared to DES and SDS because “the 

simulation does not progress in time”. Rather than being influenced by past behavior, the 

variables in MCS are stochastic, uncertain, and defined by a probabilistic distribution. An 

MCS “randomly samples values for each input variable distribution and uses that sample 

to calculate a model output” (Banks 2012, p. 15). 

 

Carrying out simulation studies 

In general, the use of simulation in finding a solution to a problem consists of three steps, 

namely the definition of the simulation goal, the solution search, and the selection process 

(Reinhart 2000, p. 27). For operational purposes, Maria (1997, p. 8) proposes a procedure 

model consisting of eleven steps. Step 1: identify the problem, Step 2: formulate the 
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problem, Step 3: collect and process real system data, Step 4: formulate and develop a 

model, Step 5: validate the model, Step 6: document the model for future use, Step 7: 

select a suitable experimental setup, Step 8: set experimental conditions for runs, Step 9: 

perform simulation runs according to Steps 7-8 above, Step 10: interpret and present 

results, Step 11: recommend further courses of action. 

Verification, validation, documentation, and communication are tasks that must 

continuously accompany the various steps of a modeling and simulation analysis (VDI 

4465, p. 5). In general, verification and validation efforts are undertaken to “increase the 

credibility of models and simulation results by providing evidence and indication of 

correctness and suitability” (Brade 2004, p. 13). According to Balci (1998a, p. 41), “model 

validation is substantiating that within its domain of applicability, the model behaves with 

satisfactory accuracy consistent with the study objectives”, whereas “model verification 

is substantiating that the model is transformed from one form into another, as intended, 

with sufficient accuracy.” Banks (2012, p. 10) summarizes the issues related to verification 

and validation as follows: “Did we build the right thing (as to function and purpose)?” 

and “Did we build it right (as to the degree of correctness)?” In Balci (1998b, pp. 354-

379), 75 different verification, validation, and testing techniques are presented that cover 

each life cycle phase of a simulation study. These techniques include, for example, model 

debugging, graphical (heuristic) comparison between graphs of values for model and real 

system variables, special input tests with boundary or extreme values to check if the model 

behaves appropriately, but also statistical techniques like analysis of variance, confidence 

intervals, or regression analysis. Chung (2004, pp. 162-167) highlights animation-based 

verification of model performance, testing of face and statistical validity using domain 

experts, and quantitative comparison between model and system output performance 

(Chung 2004, pp. 175-178). 

2.3.3 Simulation modeling of energy use 

 

Modeling and simulation of energy use in manufacturing systems 

Strategies to reduce energy demand and resource consumption must cover the different 

levels of a manufacturing system, including unit processes at the machine level, process 

chains in a multi-machine ecosystem, and the facility including its technical infrastructure 

(Duflou et al. 2012, p. 588). The requirement to extend the scope of an energy assessment 

from individual processes to entire factories, and to include auxiliary equipment and 

technical building systems, was already recognized by Herrmann and Thiede (2009, p. 

221). The authors further showed that simulation of a manufacturing system is a suitable 

tool to capture the inherent dynamics within a factory (Herrmann et al. 2011, p. 45). 

Mourtzis et al. (2014, pp. 216-222) and Garwood et al. (2017, pp. 28-30) present a 

general overview of software tools used for the simulation modeling of manufacturing 

systems. With a particular focus on material flow and energy simulation modeling, Fuss 
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and Beißert (2014, p. 42) identified several of-the-self software solutions, including 

Tecnomatix Plant Simulation (Siemens AG); Dosimis (SDZ GmbH); Any Logic (Any Logic 

Company); FlexSim (FlexSim Software Products Inc.); SIMUL8 (SIMUL8 Corporation); 

Witness (Lanner Group); Enterprise Dynamics (INCONTROL Simulation Solutions); 

ExtendSIM (Imagine That Inc.); and AutoMod (Applied Materials). There are also many 

domain-specific software tools for the modeling and simulating energy use in buildings 

and associated energy systems. According to a review by Jarić et al. (2013, p. 109), the 

most established software tools are Energy Plus, IDA ICE (EQUA Simulation AB), IES-VE 

(Integrated Environmental Solutions), and TRNSYS (University of Wisconsin-Madison). 

 

Model coupling and cooperative (co)-simulation 

Thiede et al. summarize the four main coupling concepts used in the simulation of 

manufacturing systems (ref. Figure 2-20). Offline coupled models are simulated 

separately, and the results are exchanged after each simulation run. Integrated models 

refer to different models that are created and executed within a software tool. To facilitate 

the exchange and integration of models, the Functional Mock-up Interface (FMI) specifies 

the standard interface of models that include differential, algebraic, and discrete models 

(Wetter 2011, p. 186). In this case, data exchange occurs either continuously at each time 

step or at discrete events. Co-simulation refers to the use of different domain-specific 

software tools and requires that the data exchange between the software tools is 

synchronized. Direct coupling refers to a scenario where only two software solutions are 

coupled, while model synchronization refers to a scenario where multiple simulation tools 

are coupled and a middleware software handles the synchronization and exchange of 

data. Heinzl et al. (2018, p. 690) further specify co-simulation as a multi-method 

cooperative simulation modeling approach that “uses multiple simulation environments 

–each implementing a distinct part of the overall model – as well as multiple 

computational algorithms (ordinary differential equation - ODE) solvers, discrete-event 

schedulers, etc.) where the submodels exchange data during runtime via specialized 

communication interfaces.” 

 

 

Figure 2-20 Concepts for model coupling (Thiede et al. 2016, p. 1122) 

Motivated by the possibility of using domain-specific simulation tools, Leobner et al. 

(2011, pp. 64-66) introduced an abstract model for the analysis of energy flows within 

manufacturing systems, consisting of 16 subcomponents. The authors propose to 
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synchronize the different components of the simulation model in fixed time steps by using 

a co-simulation environment such as the Building Controls Virtual Test Bed (BCVTB). 

BCVTP is a software framework that enables data exchange between EnergyPlus, 

Modelica (Dynmola), and MATLAB Simulink software. Other middleware includes the TISC 

software suite (Kossel et al. 2006, p. 486). Schönemann (2017, p. 142 f.) successfully 

applied TISC to a multiscale simulation of a manufacturing system.  

Co-simulation allows the use of specialized simulation environments, model descriptions, 

and solver algorithms adapted to individual needs of the submodels of a manufacturing 

system representation with multiple levels (Bleicher et al. 2014, p. 442). Although co-

simulation can help coordinate and automate the handling of simulation data and enable 

parallelization of simulation model execution, implementation still requires significant 

expert knowledge and effort. (Thiede et al. 2016, p. 1122). 

A detailed discussion of the latest simulation modeling approaches used in the assessment 

of energy use in manufacturing systems is presented in Chapter 3.  

2.4 Design of Simulation Experiments 

This section provides a brief overview of the challenges around the design of simulation 

experiments (DoSE). Subsection 2.4.1 provides general terms and definitions and 

addresses the difference between the classical design of experiments (DoE) and the design 

of simulation experiments. Subsection 2.4.2 briefly introduces experimental designs in 

general, followed by a more detailed outline of the Taguchi orthogonal array designs. 

The challenge with computer experiments is that one has to deal with many more 

parameters than usually present in real-world experiments (Kleijnen et al. 2005, p. 263). 

However, varying each parameters is an ineffective approach, especially for complex 

systems. Besides, a one-parameter-at-a-time approach cannot identify interaction effects 

between two or more parameters. This applies both to parameters that complement each 

other (positive interaction) and to parameters that partially replace each other (negative 

effects) (Kleijnen et al. 2005, p. 267). In addition, analysts tend to use a trial-and-error 

approach when testing different parameter configurations. As a result, they may never be 

able to uncover the true functional relationship between different parameters or 

parameter settings that lead to the best results (Simpson et al. 2001, p. 129). 

Despite the general increase in computing power, the analysis of complex computer 

models can still be time-consuming, taking from minutes to hours or even longer. It is 

therefore critical that, within given time and budget restraints, there are sufficient 

resources left over after model creation and validation to train the model and schedule 

simulation runs that provide insights for decision-making. (Barton 2013, p. 342)  

The design of a simulation experiment should help to improve both the efficiency and the 

quality of the simulation model analysis. This makes it possible to make better use of 

limited computational resources, overcome trial-and-error approaches, and improve the 
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expressiveness of models with many parameters, taking into account their input and 

output relationships as well as possible interaction effects. 

2.4.1 Terms and definitions 

Design (and analysis) of simulation experiments, design of computer experiments, or 

design of computer experiments summarize a set of methods that originate in the 

statistical theory of the design of experiments and are adapted and used to design, 

conduct, and analyze experiments on computer models as a substitute for physical 

experiments. 

The goal of using experimental designs is to extract as much information as possible from 

a limited number of experiments (Giunta et al. 2003, p. 1). It can therefore be defined as 

"a procedure for choosing a set of samples in the design space with the general goal of 

maximizing the amount of information gained from a limited number of experiments" 

(Giunta et al. 2003, p. 3). Kleijnen et al. (2005, p. 265 f.) summarize the three main 

objectives in the analysis of simulation models to be: 

 development of a fundamental understanding of system behavior 

 find robust decisions 

 comparison of different decision options according to predefined goals 

The use of a design of experiments is most appropriate in early design phases, where 

engineers want to gain insight into a system whose underlying mechanisms are not well 

understood or where access to real-world data is either limited or even nonexistent 

(Kleijnen et al. 2005, p. 266). In this phase, the focus is on generating, evaluating, and 

comparing potential conceptual configurations. In the search for good system 

configurations, tools are needed that offer a good compromise between accuracy and 

efficiency and which allow management of a large amount of uncertain information. 

(Simpson et al. 2001, p. 137 f.) 

In computer models analysis, proper design of simulation experiments can help in finding 

robust “satisficing” solutions that work well across a wide range of scenarios, rather than 

finding optimal solutions that depend on a high number of future events and are 

inherently uncertain (Kleijnen et al. 2005, p. 267). Given a set of predefined objectives, 

the design of simulation experiments supports robust decision-making while achieving 

near-optimal design solutions in a manner that is superior to ad hoc "trial-and-error" or 

“one-parameter-at-a-time variation” approaches, which are often used in the analysis of 

simulation models (Giunta et al. 2003, p. 2).  

In the literature on the design of simulation experiments, there is no consistent use of 

terms and notions in the description (Giunta et al. 2003, p. 2). Table 2-6 provides an 

overview of the predominant and discipline-specific terminologies in statistics and 

engineering. Following the prevailing usage in the literature, this work uses the terms 

from statistics, with the exception of the overall combination of factor levels, which is 
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referred to as the design point or sample, and the term response surface, which is more 

commonly referred to as the meta-model. 

Table 2-6 Comparison between discipline-specific terms and notions used in the literature to describe 
simulation experiments – the terms in bold are used further in this work (based on Giunta 
et al. 2003, p. 2 f., Kleijnen et al. 2005, p. 264 f., Fang et al. 2006, p. 4 f., Barton 2013, 
p. 345) 

Statistics (DoE) Engineering (DoSE) 

Factor input, parameter, design variable, independent variable, controllable variable 

Factor level  

Level combination sample, design point, experimental point, scenario 

Experiment run, trial 

Response output, performance parameter, dependent variable 

Response surface model, meta-model, surrogate function, auxiliary model, emulator 

 

The classical design of experiment and the design of simulation experiments have specific 

differences that originate in the deterministic nature of simulation models, as illustrated 

in Subsection 2.3.2. For this reason, the main principles used in the design of laboratory 

experiments, namely replication, blocking, and randomization, are not suitable for 

simulation experiments (Santner et al. 2018, p. 2). In contrast to error-prone physical, 

field, or laboratory experiments, deterministic computer simulations have no sources of 

random error arising from measurement error or other sources (Giunta et al. 2003, pp. 1, 

4-5). Since the replications of a sample within a simulation model simply reproduce its 

output (apart from numerical errors), the problem of non-repeatability can be dropped 

(Giunta et al. 2003, p. 5). Due to the lack of random error, the use of various statistical 

methods commonly used to analyze models and test the significance of parameters 

cannot be appropriately used in computer experiments. These include mean-square error 

and least-square regression, which are used to fit polynomial models as well as f-statistics, 

which are commonly used to test the significance of parameters and to decide whether 

to include or exclude certain parameters in or from a model (Simpson et al. 2001, p. 142). 

The randomization principle used in laboratory experiments to protect against time-

related changes in the experimental environment also has a different meaning in the 

context of the design of simulation experiments. Random errors are either absent 

(deterministic models) or are implemented intentionally, resulting in a stochastic model. 

However, statistical methods can be applied to approximate the simulation model code. 

These approximations are called “models of the model” or meta-models (ref. Figure 2-21) 

(Simpson et al. 2001, p. 129).  

Simulation models describe the unknown relationship between inputs (cause) 𝑥 and 

outputs (effects) 𝑦 in a “real world” physical system under observation by a function 𝑓(𝑥), 

objectified to an approximation error 휀𝑏𝑖𝑎𝑠,1 (ref. Equation 2-23). A meta-model is a 

simplified functional representation 𝑔(𝑥) of the relationship between inputs 𝑥 and outputs 
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�̅� compared to the full simulation (Giunta et al. 2003, p. 2, Kleijnen et al. 2005, p. 265). 

The bias between the simulation model and the meta-model representation is described 

by 휀𝑏𝑖𝑎𝑠,2 (ref. Equation 2-24). 

 

 

Figure 2-21 Development of meta-models from the real system using simulation models and design of 
simulation experiments (own representation inspired by Gregor et al. 2008, pp. 66-68) 

Modeling practice aims at meta-models that capture the properties of a system's behavior 

in its simplest form (Kleijnen et al. 2005, p. 270). 

 

𝑦 = 𝑓(𝑥) + 휀𝑏𝑖𝑎𝑠,1 (2-23) 

�̅� = 𝑔(𝑥)  + 휀𝑏𝑖𝑎𝑠,2   𝑎𝑛𝑑   𝑓(𝑥) + 휀𝑏𝑖𝑎𝑠,1 + 휀𝑏𝑖𝑎𝑠,2 (2-24) 

 

In general, the use of a design of experiments in the analysis of simulation models, 

according to Kleijnen et al. (2005, p. 263), needs to meet the following qualitative 

attributes: 

 

 Simplicity of design construction 

 Flexibility of analysis 

 Efficiency of application (time and resources required for the study) 

 

After introducing the specific terms and definitions used in the design of simulation 

experiments, the next subsection provides general information on selecting the 

appropriate experimental design to efficiently analyze engineering systems in their 

simulation model representation. 
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2.4.2 Experimental design techniques 

The review of the design of experiment techniques presented in this section is far from 

exhaustive, although the specific selection aims to provide the reader with the necessary 

background used to develop the methodology presented in Chapter 5.  

Figure 2-22 categorizes the use of different experimental designs in terms of the number 

of factors considered and the complexity of the meta-model. 

 

 

Figure 2-22 Recommended designs classified according to the model complexity assumptions and the 
number of factors (own representation based on Kleijnen et al. 2005, p. 275) 

The next sections present more information on the designs highlighted with bold letters 

in Figure 2-22. For further information on the design of experiments, the author refers to 

the textbooks by Siebertz et al. (2017), Klein (2014), and Saltelli et al. (2008).  

 

Full factorial designs 

A full factorial experiment design allows the study of the joint effect of the factors on a 

response (Montgomery 2001, p. 218). Meta-models derived from full factorial designs 

include all factor interactions, and when more levels per factor (𝑛 > 2) are included, the 

derived meta-model is also able to represent nonlinear effects. According to 

Equation (2-25), the number of level combinations for all factors or experiments is given 

by the number of factor levels 𝑛 to the power of 𝑘, the number of factors considered. 

 

𝑚 = 𝑛𝑘 (2-25) 
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𝑚 Number of factor level combinations 

𝑛 Number of factor levels 

𝑘 Number of factors 

 

Common designs for evaluating main effects and interactions of factors with two levels 

are 2𝑘 designs. The low and high factor levels are usually indicated by -1 and +1 or + and – 

(Sanchez 2005, p. 73). Interpolation of models derived from experiments with factors at 

two levels is only useful if the factors can be continuously adjusted. Moreover, 

extrapolation is not allowed because new physical effects can occur outside the tested 

design space (Siebertz et al. 2017, p. 24). 3𝑘 designs are used in case of main effects, and 

factor interactions are subject to nonlinear behavior (Simpson et al. 1997, p. 2 Giunta et 

al. 2003, p. 8.). However, authors report that nonlinear effects are usually overestimated, 

especially for factors with small distances between the different factor levels (Siebertz et 

al. 2017, p. 23). The number of experiments 𝑚 grows exponentially as the number of 

factors 𝑘 increases. For example, a full factorial design for an experiment with 𝑘 = 10 

factors at 𝑛 = 2 levels already requires 1024 trials (Simpson et al. 1997, p. 2, Kleijnen et 

al. 2005, p. 276). When an analyst intends to consider a high number of factors in full 

factorial designs, one primarily analyzes the interactions of two or more factors. If at least 

higher factor interactions can be omitted, the locations in the design reserved for factor 

interactions can be replaced by additional factors. (Kleppmann 2016, p. 122 f.)  

 

Fractional factorial designs 

Fractional factorial designs are used to efficiently analyze a high number of factors while 

accepting a minimum amount of information loss. In the literature, these designs are also 

referred to as screening designs (Siebertz et al. 2017, p. 28.). Fractional factorial designs 

are used in situations where the problem statement is still quite vague, but one needs to 

know which are the most relevant factors as well as how and in which direction the 

change of a factor level affects the objective function (Kleppmann 2016, p. 122). 

Fractional factorial designs can be implied to reduce the number of simulation runs. They 

usually come at the cost of aliasing or biasing effects and loss of design resolution 

(Simpson et al. 2001, p. 130 f.). The number of experiments 𝑚 or factor level combinations 

in fractional factorial designs can be described according to Equation (2-26). 𝑚 is given 

by the number of levels per factor 𝑛 to the power of the number of factors 𝑘 minus the 

fraction of the full factorial design 𝑝 used. 

 

𝑚 = 𝑛𝑘−𝑝 =
1

𝑛𝑝
∙ 𝑛𝑘 (2-26) 
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𝑚 Number of factor level combinations 

𝑛 Number of levels per factor 

𝑘 Number of factors 

𝑝 Portion of the full factorial design 

 

Figure 2-23 shows various experimental designs for three factors, including the full 

factorial design, the fractional factorial design, the central composite design, the face-

centered central composite design, the Box-Behnken design, and the space-filling design. 

 

 

Figure 2-23 Examples of different experimental designs for three factors. A: full factorial design (23), 
B: fractional factorial design (23-1), C: central composite design, D: face-centered central 
composite design, E: Box-Behnken design, F: space-filling design 

In a 23 full factorial design, one can evaluate the combination of eight-factor levels for 

three factors and analyze the main effects (A, B, C), all two-factor interaction (AB, AC, 

BC), and one three-factor interaction (ABC) separately (ref. Figure 2-23a). In general, the 

aliasing of effects in a fractional factorial design is given by the design resolution. If one 

reduces, for example, the number of experiments to half a fraction of the 23 full factorial 

design, we obtain 23−1 fractional factorial designs of Resolution III, aliasing main effects 

with two-factor interactions and two-factor interaction with each other (ref. Figure 

2-23b). Assuming that the effect of the three-factor interaction (ABC) can be omitted, an 

additional fourth factor (D) can be included in the experiment while maintaining the 

number of required simulation runs. This results in a 24−1 fractional factorial design of 

Resolution IV. In Resolution IV designs, the main effects are not aliased with other main 

effects nor with any two-factor interactions. 2𝑘−𝑝 fractional factorial designs commonly 

used in screening are two-level Plackett-Burman designs with 𝑘 = 𝑛 − 1 factors and 𝑛 = 4 ∙

𝑚 ; 𝑚 = ℤ+, where 𝑛 is a power of two. If factor interactions are negligible, an unbiased 

estimate of all main effects can be obtained from Plackett-Burman designs. While 

maintaining the smallest possible variance, they require only one more design point than 

the number of factors (Simpson et al. 2001, p. 131). Central composite designs are used 

when a first-order model has a lack of fit. By adding a center point 𝑛0 and two ‘star’ points 

for each factor positioned at ±𝛼 from the midpoint, the derived models include quadratic 

effects in addition to main effects and two-factor interactions (ref. Figure 2-23c). For ±𝛼 =

C
A

B

a b fdc

n0
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1, the design is called a face-centered central composite design (ref. Figure 2-23d) 

(Simpson et al. 2001, p. 131, Kleijnen et al. 2005, p. 277). When design points at the 

extremes of a design space are difficult or impossible to test, Box-Behnken designs can be 

used. In these designs, the design points are analyzed at the center of each edge of the 

hypercube rather than at the vertices (ref. Figure 2-23e) (Montgomery 2001, p. 458 f.). In 

general, 3𝑘−𝑝 fractional factorial designs are possible; however, their practical application 

is very limited, and the effects are very difficult to interpret. For example, in a 33−1 design, 

each main effect is aliased with an interaction component. Montgomery (2001, p. 380) 

advises to use them only if all interactions are negligible. Kleppmann (2016, p. 213 f.) also 

does not advocated their use for quantitative factors, but concedes their usefulness in 

screening qualitative factors (Kleppmann 2016, p. 213 f.). 

If a preselection of dominant factors is required for a large number of samples, fractional 

factorial designs can be used as a way to "screen" for important factors (Simpson et al. 

2001, p. 131). The prerequisite is that one assumes that the principle of the sparsity of 

effects is valid and that the system under consideration is dominated by main effects and 

low-order interactions (Montgomery 2001, p. 303, Fang et al. 2006, p. 8). 

 

Space-filling designs 

The number of experiments is generally less limited in computer experiments than in 

laboratory or field experiments. While classic experiments draw their conclusions from 

observing the extremes of the design space, the interior of a design space remains largely 

unexplored. Many researchers advocate the use of space-filling designs (ref. Figure 2-23f) 

in the analysis of deterministic simulation models to treat all regions of the design space 

equally (Simpson et al. 2001, p. 131). Computer experiments can imply space-filling 

designs to gain a more accurate understanding of the functional relationship within the 

design space. Therefore, it is possible to increase the prediction accuracy over the entire 

experimental range while reducing the bias error between the real response of a model 

and the assumed or estimated responses (Santner et al. 2018, p. 151, Giunta et al. 2003, 

p. 4 f.). Space-filling designs that imply random number-based sampling methods, 

including Monte-Carlo and Latin-Hypercube, are effective methods to distribute samples 

uniformly across the design space and thus reduce the bias error in the estimated response 

(Giunta et al. 2003, p. 5). However, these designs come at the cost of a large number of 

simulation runs and thus computer execution time, as well as a large data management 

overhead. In contrast, by carefully selecting and using experimental designs, a user can 

answer more specific questions while using fewer computational resources. (Saltelli et al. 

2008, p. 54, Siebertz et al. 2017, p. 44) 

Since the main goal of this work is to screen complex design spaces in early design phases 

and identify the most influential factors, as well as to understand how these factors affect 

different design goals, understanding the exact functional behavior is not the main focus, 

so further discussion of space-filling designs is not included in this subsection. For more 
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background information on space-filling designs, see Siebertz et al. (2017, p. 189 ff.) and 

Santner et al. (2018, p. 145 ff.). 

2.4.3 Orthogonal array-based matrix designs 

Orthogonal array-based matrix designs are special fractional factorial designs with factors 

on two, three, or even more levels. These designs are often identical to Plackett-

Burmann’s experimental designs (Simpson et al. 2001, p. 131). Mixed-level orthogonal 

arrays are generally denoted by 𝐿𝑁(𝑠𝑚 × 𝑡𝑛), where 𝑁 is the number of experiments 

required, 𝑚 the number of 𝑠-level factors, and 𝑛 the number of 𝑡-level factors. 

Orthogonality is a desirable property for matrix experiments because it simplifies the 

computation (Kleijnen et al. 2005, p. 273).  

In orthogonal designs, the columns within the design matrix are orthogonal to each other, 

which means that the factors are uncorrelated (Chen et al. 2006, p. 280). The pairwise 

correlation between any two columns and their factor levels is zero (Siebertz et al. 2017, 

p. 7, Sanchez 2005, p. 74). Furthermore, the different level settings appear equally often 

in each vertical column (Kujawski 2014, p. 429). Moreover, all possible level combinations 

for each pair of factors appear only once in the design matrix (Chen et al. 2006, p. 278). 

Furthermore, orthogonal array-based designs maintain orthogonality even when the 

position of the rows and columns in the matrix is changed (Siebertz et al. 2017, p. 34). 

Since all factors and their levels are equally represented within the experiment, orthogonal 

array-based designs are considered balanced (Cavazzuti 2013, p. 21). Table 2-7 shows a 

selection of standardized orthogonal arrays. 

The use of orthogonal arrays gained popularity in quality engineering and engineering 

design through the work of Dr. Genichi Taguchi on robust parameter design outlined in 

Taguchi (1987). In industrial practice, there are a large number of use cases that underline 

the appropriateness and usefulness of the Taguchi method in solving engineering design 

problems (Simpson et al. 2001, p. 139). Criticisms of the method include the use of highly 

fractional factorial designs, the combined evaluation of controllable factors, noise factors 

in a cross (inner/outer) array design, and the combination of response mean and variance 

(referred to as signal-to-noise ratio) in a single loss function (Montgomery 2001, p. 491, 

Simpson et al. 2001, p. 139). 

With reference to the experimental designs presented in Subsection 2.4.2, an 𝐿8(27) 

orthogonal array can analyze seven two-level factors in eight simulation runs, while the 

same design is able to accommodate a 23 full factorial design to study all possible 

combinations of the three two-level factors, or a 24−1 fractional factorial design of 

Resolution IV to study four two-level factors, aliasing only the two-factor interactions with 

each other. If one omits the active interactions, the potential for reducing the number of 

experiments becomes even more apparent, for example, if one compares the 18 

experiments of an 𝐿18(21 × 37) orthogonal array with the 4374 experiments required if all 

possible factor combinations were to be analyzed. 
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The limitations associated with orthogonality in experimental designs are that one is not 

able to specify an arbitrary number of factor combinations (Giunta et al. 2003, p. 10). 

Moreover, different combinations of factor levels may not be feasible in practice, making 

exploration in an experiment unnecessary (Kleijnen et al. 2005, p. 273). Because of their 

highly fractional factorial design characteristics, critics also claim that Taguchi orthogonal 

arrays can only characterize the average effect of each factor level. However, quadratic 

effects and the effects of higher-order factor interactions are not presented (Siebertz et 

al. 2017, p. 58). Moreover, the orthogonal designs proposed by Taguchi target 

experiments conducted in factory environments and the derived models are limited to 

main effects. These restrictions may be too limiting for certain simulation environments. 

(Kleijnen et al. 2005, p. 278) 

Table 2-7 Standard orthogonal arrays (Klein 2014, p. 97, Su 2016, p. 61) 

Orthogonal  
array  

Number of  
rows  

Maximum 
number of 

factors 
Maximum number of columns 

   Level 2 Level 3 Level 4 Level 5 

L4 4 3 3 - - - 

L8 8 7 7 - - - 

L9 9 4 - 4 - - 

L12 12 11 11 - - - 

L16 16 15 15 - - - 

L16 16 5 - - 5 - 

L18 18 8 1 7 - - 

L25 25 6 - - - 6 

L27 27 13 - 13 - - 

L32 32 31 31 - - - 

L32 32 10 1 - 9 - 

L36 36 23 11 12 - - 

L36 36 16 3 13 - - 

L50 50 12 1 - - 11 

L54 54 26 1 25 - - 

L64 64 63 63 - - - 

L’64 64 21 - - 21 - 

L81 81 40 - 40 - - 
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Although the focus of orthogonal array-based designs is on evaluating main effects, it is 

possible to adapt the design to analyze a limited number of factor interactions (Klein 

2014, pp. 100-113). Factor plots, according to Figure 2-24, can be used to identify 

possible interactions between factors. In Figure 2-24 a, the parallel lines imply that as the 

three-level factor A changes from A1 to A2 to A3, the corresponding change in the 

response trend y is the same, regardless of the magnitude of Factor B. The same applies 

to the change of factor B and the corresponding effect on Factor A. The factors are 

referred to as additive. Figure 2-24 b indicates a weak interaction, meaning that a change 

in the level of Factor A leads to a change in y, which is affected by the level of Factor B. 

Even if interactions are present, the trend of the effect (either positive or negative) remains 

the same. Klein (2014, p. 52) refers to this type of interaction as synergetic. In the latter 

case, Figure 2-24 c shows a strong interaction. The crossing lines indicate that there is an 

inconsistent change in response for Factor A and Factor B. This suggests opposing effects 

in the change in the levels of Factors A and B. Therefore, the model responding to factor 

changes cannot be considered additive. (Klein 2014, p. 52, Su 2016, p. 65) 

 

Figure 2-24 Factor plots with different types of factor interactions (Klein 2014, p. 52, Su 2016, p. 65) 

Orthogonal array-based designs can be used to screen systems for factors that have a 

large effect on a response by performing only a small number of experiments. The reduced 

number of experiments comes with the disadvantage that no higher-order interaction 

between the individual factors can be analyzed. Orthogonal array-based matrix designs 

are shown to be advantageous in a situation where a large number of factors need to be 

analyzed for their importance before fine-tuning in subsequent steps (Ho et al. 1993).  

For example, the use of orthogonal array-based designs to improve the design of technical 

systems has been studied by Shang et al. (2004, p. 3835 f.) for supply chains, by Huynh 

(2011, pp. 213-220) for maritime threat security and a bandwidth allocation algorithm, 

by Obara and Morel (2017, p. 26 f.) for energy systems, and by E et al. (2018, p. 511 f.) 

for the battery cooling system. 

2.5 Summary and Preliminary Findings 

Chapter 2 presents the theoretical foundations relevant to the research question 

introduced in Chapter 1. Section 2.1 introduces the object of consideration of this work, 
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the factory, from both a system and a life cycle perspective. After general definitions, 

systems theory, life cycle thinking, and factory planning are presented as ways to structure 

tasks around the questions of where, when, and how best to identify opportunities to 

improve a factory’s energy use. Section 2.2 provides background on energy-related terms, 

definitions, and performance metrics along with their application to factory environments. 

In addition, the physical principles required to quantify the energy demand in electric 

circuits and thermodynamic systems are presented as well as techniques for visualizing 

the measurement results. Finally, Section 2.2 presents different categories of measures to 

improve energy use in a factory. The categories include measures related to energy 

efficiency, non-energy benefits, energy flexibility, and energy supply system design.  

Given the complexity inherent in the characteristics of energy consumption in factories, 

modeling and simulation is introduced as an adequate method to evaluate different 

improvement measures in terms of extended performance metrics. In Section 2.3, after 

the introduction of different modeling paradigms and simulation techniques, an overview 

of the available procedure for structuring simulation studies follows. The section 

concludes with an introduction to state-of-the-art modeling and simulation approaches 

used in the assessment of energy use in manufacturing systems. The introduction includes 

coupling concepts for the connection, integration, and (co-)simulation of individual 

submodels and domain-specific simulation tools for representing the various peripheries 

of a factory system. 

Section 2.4 concludes Chapter 2 with an introduction to the key terms and definitions 

used in the research field, referred to as the Design of Simulation Experiments (DoSE). 

After contrasting the discipline-specific terms of statistics with those commonly used in 

engineering disciplines, various experimental design techniques are presented. Following 

the introduction, their advantages and disadvantages are discussed with respect to their 

use in deterministic computer simulations and the challenges and requirements specific 

to the research question. Finally, orthogonal array-based matrix designs are presented as 

a feasible way to evaluate different improvement measures simultaneously within 

complex factory simulation models considering different energy-related performance 

metrics. 
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3 State of Science and Need for Research 

Chapter 3 provides an overview of the state of science relevant to the research field and 

the research questions raised in Section 1.2. Section 3.1 defines the scope of the literature 

review and presents the criteria used in its evaluation in Section 3.2. Based on the 

evaluation in Section 3.3, the research needs are refined. 

3.1 Scope and Evaluation Criteria 

The scope of the literature review is restricted to simulation approaches that couple at 

least two peripheries of a production system using one or more simulation environments 

and focus on the assessment of energy consumption within manufacturing systems given 

predefined performance metrics. Research with a predominant focus on identifying and 

prioritizing energy-related improvement measures was not considered within the scope 

of this review. The approaches described in the literature are evaluated using four 

categories and corresponding sub-criteria. Table 3-1 summarizes the findings.  

 

Suitability 

The “suitability” category evaluates in which phase of a factory life cycle the presented 

methodology can offer valid decision support to the user, taking into account the specific 

restrictions (e.g., availability of planning specification and energy demand characteristics) 

of the respective phase. The sub-categories are chosen according to the life cycle phases 

of the factory: planning, operation, tuning and adoption (ref. Subsection 2.1.3). In the life 

cycle phase of tuning and adoption, existing building infrastructure, and equipment 

installations are common barriers to improvements during redesign, revitalization, 

expansion, renovation or restructuring. The demolition phase is not taken into account. 

Completeness 

“Completeness” assesses which energy-related objectives and performance criteria are 

addressed by the existing methodologies and to what extent they are taken into account. 

The category evaluates the holistic nature of the objective function within given system 

boundaries. In addition to energy demand and costs, energy efficiency, flexibility on the 

demand side, and the use of renewable energies are also taken into account. Fulfillment 

is given if, first, the criteria are taken into account, and second, a certain level of detail is 

presented. For example, the energy efficiency can be evaluated at the factory level as the 

quotient of production output and energy input (low level of detail) or for individual 

machines and equipment, taking into account various operating states and utilization 

rates (high level of detail). Non-energy benefits themselves are considered a multi-

dimensional criterion. Again, the criterion is met if, first, the non-energy benefits are 

generally considered within a given framework of performance criteria and, second, if 

they are elaborated to a certain level of detail. 
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Inclusiveness 

“Inclusiveness” evaluates the system boundaries and granularity presented in the 

simulation model (e.g., how many different peripheries of a factory system are included 

or represented as submodels). The sub-criterion refers to the peripheral factory model 

presented in Subsection 2.1.2. In contrast to the conventional peripheral factory, model-

specific levels are either combined (e.g., process and machine) or subdivided (e.g., 

auxiliary equipment and technical building systems and energy supply systems). This is 

done to highlight the diversity presented in the literature and differentiate the existing 

approaches. The levels considered are product, process/machine, process chain, auxiliary 

equipment, technical building systems, building envelope, and energy supply systems. In 

general, the criteria are met when a model for a particular level is described and 

implemented. If a particular level of the factory is neither described nor implemented in 

the model, the criterion is not met. Harvey Balls are used to summarize and visualize the 

results. Empty Harvey Balls represent the levels of the factory system that are not 

considered in the literature reference. Depending on the level of detail and the quality of 

implementation, Harvey Balls filled to one quarter, one half, or three-quarters are used. 

For example, Harvey Balls filled to one quarter are assigned when the level is described in 

theory, but the informative value of the description is low or unspecific. Harvey Balls filled 

to one-half or three-quarters are assigned, depending on the level of detail of the 

modeling approach. Filled Harvey Balls represent levels described in theory and 

implemented as models with an increased level of detail.  

Comprehensiveness 

The category “comprehensiveness” evaluates the transparency and reproducibility of the 

presented modeling and simulation approach. The individual criteria are designated as 

“transferability”, “generalizability”, “precision”, “usefulness”, and “integrability”.  

The criterion “transferability - ease of model adoption and specification” is fulfilled 

if the modeling and simulation approach can be adopted, specified, or extended 

according to new requirements and different use cases. The criterion thus assesses the 

extent to which the framework presented is consistent and generalizable. The criterion is 

not met if the approach is specific to a particular field of application and the effort to 

adopt the model is high.  

The criterion “precision - accuracy and verification of simulation models” evaluates 

the accuracy of the approaches presented and whether or not the models presented have 

been verified. Trade-offs between precision and transferability are possible, as precision 

requires specific models, which may subsequently limit transferability. However, the 

quality of the acquired results can compensate for these trade-offs. The criterion is fulfilled 

if the approach has been verified and shows a realistic system behavior that is a good 

approximation to reality. The criterion is not met if no verification of the model has been 

carried out or if the deviation between model and reality is significant. 

The criterion “usefulness/effectiveness – application in practice” of an approach is 

assessed according to the possibility of being applied in practice. The application in 
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practice requires that the knowledge gained is relevant, can be achieved with a favorable 

cost-benefit ratio, and is “ready for decision”. Therefore, the criterion also evaluates the 

time effectiveness of the simulation approach, considering both modeling and 

computation time. The criterion is fulfilled if the use of the presented approach can be 

directly transferred to applications in practice, and the gained knowledge (benefits) 

justifies the efforts (cost) associated with its use. The criterion is partly fulfilled if the 

findings advance the development of the methodology in general; however, the high 

complexity requires extensive user expertise, and the time-consuming application may 

prevent further use in practice. If none of the above characteristics are taken into account, 

the criterion is not met. 

In accordance with the criterion usefulness, simulation models should provide decision 

support. While the process of modeling itself is capable of improving the understanding 

of a system’s behavior, more importantly, the purpose of the model is to test and evaluate 

measures before they are implemented in reality. The criterion “generalizability – 

systematics of assessment method” therefore evaluates whether the model is 

presented together with a methodological approach for the simulation-based evaluation 

of different improvement measures. If such a methodological approach is presented, the 

criterion is fulfilled. The criterion is not met if only a random selection of measures is 

made, and their evaluation is carried out on a trial-and-error basis. 

The criterion “integrability – consideration of digital factory concepts” is completely 

fulfilled if software and/or a hardware-based link is established between the simulation 

results and the factory environment (e.g., active control of room temperature or planning 

and scheduling of production orders based on simulation results). The criterion is not met 

if no indication is given of how the simulation approach, including data acquisition and/or 

active control loops, could be established in a factory environment. This is the case if no 

subsequent events are automatically triggered by the simulation results, but the results 

are used to support experts in decision-making processes. 

3.2 Simulation Approaches for Evaluating Energy Use in Factories 

Junge (2007) developed a simulation-based framework for improving energy demand in 

the plastics processing industry through non-technical measures such as improved 

production planning and scheduling. The objective function evaluated in his study 

calculated the trade-offs between logistical, economic, and energy planning targets. For 

the simulation experiments, a prototypical coupling between the logistics model 

(SIMFLEX/3D), the machine model, and the building simulation (TRNSYS) was 

implemented via TCP/IP. Three energy-efficient production planning and scheduling 

strategies were evaluated against standard priority rules: “outdoor temperature trend”, 

“difference between day and night”, and “ventilation-related heat losses” – a control-

based approach to the operation of a ventilation system based on the maximum allowable 

concentration (MAC) of substances in the workplace. The results presented showed that 

26.5% of the heating demand could be reduced. However, evaluation of the trade-offs 
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between logistical, economic, and energy targets showed that none of the energy-

efficient strategies outperformed conventional planning and scheduling strategies. 

The aim of the “ENOPA” project (energy efficiency through optimized coordination of 

production equipment and technical building services) was to determine the energy 

demand of manufacturing facilities for various final energy needs (e.g., electrical energy, 

compressed air, heating, and cooling) (ENOPA 2011). To overcome the uncertainties of 

conventional planning approaches that approximate energy demand based on 

simultaneity factors and estimate load curves based on empirical values, the ENOPA 

consortium extended a material flow simulation to include information on energy demand 

and heat emissions. Subsequently, the results from the extended material flow simulation 

were assigned to other simulation environments to derive time-discrete demand profiles 

for different final energy needs (Martin et al. 2008, pp. 178, 181). The approach coupled 

the SIMFLEX/3D simulation software used for the material flow simulation with TRNSYS 

for the calculation of building energy demand, HKSim for the design of the technical 

building services, and AnyLogic for the evaluation of different production management 

measures (Hesselbach et al. 2008, p. 627 f.). With regard to the “ENOPA” project, 

Herrmann and Thiede (2009) presented process modules characterized by standardized 

parameters to facilitate the implementation of process chain models.  

In the context of the “SIMTER” project, Heilala et al. (2008) introduced a hybrid simulation 

approach that combines discrete event simulation with analytical calculation. The method 

is intended to support the joint analysis of environmental impact, level of automation, 

and ergonomics as part of an evaluation and optimization process for manufacturing 

systems in the design phase. To reduce the modeling effort, the authors relied on 

commercial software, namely 3DCreate and 3DRealize from Visual Components, a factory 

and robotics simulation environment with reusable submodels. The environmental 

inventory data were taken from public databases. In the case study presented, the per 

product energy consumption was assessed based on machine operating states (idle - 

standby, down - off, busy – operation). Direct and indirect environmental impacts were 

also calculated. The authors mentioned the possibility of shifting production in order to 

reduce peaks in energy consumption. However, no further details on how to implement 

these measures were presented. Building on the results of the “SIMTER” project, the 

“EPES” project further developed the process-oriented sustainability simulation toolkit, 

which combines life cycle assessment (LCA), values stream mapping (VSM), and discrete 

event simulation (DES). The project focused on material flows, process cycle times, 

resource utilization, equipment, and even human operator activities. The advantage of 

the proposed methodology is its usefulness for non-simulation experts, as well as their 

integrated product-process-production system modeling, which enables the design of 

manufacturing systems through a simultaneous assessment of production requirements 

and environmental aspects. (Heilala et al. 2013) 

Michaloski et al. (2011) suggested integrating Energy Management Systems (EnMS) and 

Manufacturing Executing Systems (MES) using Discrete Event Simulation (DES). The 

authors claim that opportunities to improve sustainability, including a reduction in energy 
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demand, can be addressed by connecting and integrating EMS and MES data. The 

possibility of using such integrated systems in demand-side management applications is 

mentioned. The objective of the presented research is to modify the production schedule 

according to a predefined set of performance metrics (KPIs). The authors present KPIs for 

MES (e.g., throughput, yield, machine and process efficiencies, waste or scrap cost, and 

maintenance scheduling), EMS (e.g., energy consumption, energy losses, and indoor 

climate conditions) but also HVAC control, Overall Equipment Effectiveness (OEE), and 

product quality. However, no information is given on how the different KPIs are combined 

in a decision process to reorganize production jobs. Other limitations of the research 

conducted were the low level of detail presented on the DES simulation model as well as 

its practical implementation. Furthermore, only a qualitative description of the simulation 

results was presented. 

Hao et al. (2011) developed an integrated simulation approach that is able to take into 

account both building design and daily production schedules while aiming for minimum 

energy consumption in a welding shop. For this reason, the authors derived the process 

energy demand analytically based on the process parameters and production schedules. 

Subsequently, the derived results were integrated into the EnergyPlus simulation 

environment to consider the effects of welding operation on building energy 

consumption. Due to the complexity of the energy flows within the buildings, no singular 

analytical expression for the objective function could be determined. Therefore, the 

authors present a two-level simulation-based optimization approach for both the building 

design and the production schedule. At the first level, an ordinary optimization (OO) 

assuming common working shifts is performed to derive the optimal window position 

and glass transmittance. Assuming additional constraints, including an equal amount of 

finished products per day, maximum working hours, as well as varying energy prices and 

outdoor temperatures, a genetic algorithm (GA) was used at the second level of the 

optimization in order to find the best time to execute welding jobs. A general framework 

for solving multi-objective optimization problems using simulation modeling has been 

presented in the research. However, the practical application is limited as no details on 

data processing between EnergyPlus (for deriving energy consumption) and MatLab (for 

optimization) have been presented. Moreover, the optimization requires a high number 

of iterative simulation runs (N ≥ 1000). In the context of the above work, Liu et al. (2013) 

provided further information on the two-level simulation-based optimization approach. 

Information was also given on the statistical programming problem concerning 

uncertainty arising from varying weather conditions and energy prices and on ordinary 

optimization. 

As a result of the “THERM” project (THrough Life and Energy Resource Management), 

Oates et al. (2011) and Oates (2013) presented a model that combines energy flows in 

manufacturing with those in factory buildings using only one simulation environment. The 

authors addressed the limitation of discrete event simulation, which is used to model 

stochastic behaviors but does not characterize the continuous thermal behavior of 

machine operations in a factory environment. First, a graphical representation of the 
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energy and material flows was presented. Second, individual models for industrial 

processes, auxiliary equipment, and the factory building were introduced into 

Matlab/Simulink using the International Building Physics Toolbox (IBPT). In addition, the 

material flow model represented the heat transfer between the material and its 

environment. The model was validated against the commercial building physics software 

IES. A variation of max. 15% was found. Simulation results for the operation of a drying 

process were presented, which show that energy-saving measures on the process level 

increase the energy demand on the facility level (e.g., for heating purposes). Further 

results from the THERM Project can be found in Despeisse et al. (2013) and Wright et al. 

(2013). 

Thiede (2012) expressed the importance of going beyond improving individual machines 

and looking at energy efficiency in factories in an integral manner considering machines, 

auxiliary processes, and technical building systems. In a related publication, Thiede co-

authored a paper on the importance of estimating time-based consumption patterns for 

the various resources used in factories (e.g., electricity, compressed air, etc.). The authors 

propose to use the estimated consumption pattern for demand-oriented dimensioning 

and control of auxiliary processes (e.g., compressed air) and technical building systems 

(e.g., heating and cooling), the assessment of energy costs and environmental impacts as 

well as the derivation and selection of energy efficiency measures (Herrmann et al. 2011). 

Given the above requirements, the author proposed an energy-aware planning and 

evaluation tool based on a multilevel simulation framework. He developed various 

parametric modules to represent auxiliary processes (e.g., compressed air system and 

steam generation). Co-simulation of discrete events was performed using the AnyLogic 

software environment. The scope of performance metrics considered by Thiede was 

limited to energy costs and GHG emissions. Although the developed simulation approach 

is generic, modular, and scalable, the authors suggest further research on automated 

methods for optimization and multi-criteria decision-making. 

Moynihan and Triantafillu (2012) coupled DesignBuilder and EnergyPlus to evaluate 

energy efficiency measures in production plants. DesignBuilder was used to model the 

construction, HVAC system, lighting, and zone activities. EnergyPlus contained 

information on energy costs and the operation of the boiler system. However, in their 

approach, the authors only consider average values for internal gains without specifying 

the operating schedule of processes and equipment. The accuracy of the simulation 

approach was assessed by calculating the percentage error between the energy 

consumption determined by the simulation and the actual energy consumption 

determined by the energy supplier. The authors considered activities in the building zones 

such as occupancies and internal heat gains from machine operation based on average 

values. 

In the “INFO” project, researchers at the Vienna University of Technology, together with 

industry partners, developed a co-simulation approach for production systems by linking 

various simulation environments (INFO 2013a, INFO 2013b). As part of the project, 

Leobner et al. (2011) presented a generalizable model for the integrated simulation-based 
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assessment and optimization of energy use within production plants. Synchronization and 

data exchange between various simulation programs was accomplished using a Building 

Controls Virtual Test Bed (BCVTB), middleware software developed by the Lawrence 

Berkeley National Laboratory at the University of California (Wetter 2011). Within the 

specific application in the “INFO” projects, MATLAB (used for modeling the machine tool) 

is connected with Dymola/Modelica (used for modeling the energy system) and EnergyPlus 

(used for modeling the building). Focusing on greenfield planning tasks, the researchers 

evaluated different scenarios for the energy-efficient design of technical building systems 

and the building envelope. However, the relationship between energy efficiency measures 

at different levels of a production system was not the specific focus of the project. In 

addition, demand-side flexibility and non-energy benefits were not considered as 

evaluation criteria. Further results from the “INFO” project can be found in Bleicher et al. 

(2014). 

Haag (2013) proposed a method that aims to assist factory planners and operators in 

energy-related planning, evaluation, and optimization tasks. A simulation approach is 

chosen to evaluate the impact of organizational improvement measures on the energy 

consumption of machine tools and their peripheral equipment. The submodels take into 

account the energy consumption depending on different operating states. Using Plant 

Simulation, the author has evaluated various scheduling and sequencing strategies, 

together with varying process and logistic parameters (e.g., buffer size), in terms of their 

energy and productivity performance. However, a verification of the individual submodels 

is not carried out. In addition, equipment in the periphery of the factory is considered 

using simplified models. The combined effects of energy efficiency measures were not 

evaluated in the research conducted. 

In the context of the “EMC2-Factory” research project, Stahl et al. (2013) presented 

“Total Factory Simulation” as a coupled simulation framework to support different 

stakeholders involved in the factory planning process, e.g., architects, civil engineers, and 

production planners. The core of the presented model was built in a discrete event 

simulation (DES) environment, namely Plant Simulation. This is done to account for the 

influence of production schedules, batch sizes, and other value stream-related 

parameters. The production plants are modeled considering different operating states 

(off, starvation, set-up, failure, blocked, and working), implying the EnergyBlock 

methodology developed by Weinert et al. (2011). In addition to production equipment, 

the EMC2 Factory project also included modules developed for peripheral systems, e.g., 

compressed air systems. The coupling with the energy building simulation software 

EnergyPlus was suggested by the authors but not specified. The main contribution of the 

presented research was the development of a module for the simulation of the energy 

demand of peripheral systems, e.g., of a compressed air system and its implementation 

in Plant Simulation.  

Brundage et al. (2014) developed an energy-conservation strategy for production lines 

and technical building facilities that does not affect throughput. The goal of the research 

presented was to optimize the energy consumption of production lines and HVAC systems 
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by shutting down machines and adjusting the setpoints of the HVAC system during 

periods of peak energy demand. Therefore, the concept of energy opportunity windows 

and recovery times was developed and applied to each machine of a production line. The 

concept took into account machine speed, buffer sizes, and random downtime events. 

To quantify the energy-saving potential, the authors coupled a production line model 

(represented by a continuous flow model in MATLAB/Simulink) and a thermal model of 

the factory building (using the conduction transfer functions for the heat balance 

algorithm in EnergPlus). The machines were considered at two operating states, operation 

(100%) and shut down (0%). 

Davé et al. (2016) presented an eco-efficiency modeling framework based on resource 

and production data. First, performance indicators (e.g., power factor, water footprint, 

energy mix, material yield, energy per unit, and thermodynamic minimums) have been 

developed for use in various subdivisions (e.g., facilities, facility zones, single-zone utilities, 

and manufacturing cells) and for different assets of a factory (e.g., heating, lighting, 

compressor, machine tool, etc.). Second, the authors performed a regression analysis to 

compare models derived from cursory (per quarter time-step) and detailed (per hour time-

step) measurement data. The strongest correlation between cursory and detailed models 

was found at the facility level. In addition, the need for detailed models for utility and 

manufacturing cell subdivisions was derived. In summary, a different time-step granularity 

is required for different assets to enable informed decisions on technical interventions. 

Although the presented research can be characterized as conceptual, the findings from 

the case study at a furniture manufacturer contribute to improving the efficiency of future 

modeling approaches through an appropriate choice of model granularity. Further details 

on the modeling approach can be found in Davé et al. (2015). 

Mousavi et al. (2016) investigated the energy efficiency assessment of unit processes and 

their dynamic interaction within process chains. First, the different dynamics of unit 

processes in terms of operational states and production load were discussed (e.g., milling 

and turning processes compared to furnace processes). Depending on the sensitivity of a 

process to changes in system parameters, the authors proposed either a screening or an 

empirical modeling approach. Thus, the authors suggested that certain processes (e.g., 

furnaces) allow for simplified process models due to their stable power consumption. 

Second, an energy-oriented framework for the simulation of manufacturing systems was 

presented. Finally, a hybrid model structure combining both state-based and empirical 

modeling methods for processes and process chains was proposed. The authors presented 

the results of an energy efficiency assessment for different combinations of lathes and 

milling machines, assuming a heterogeneous machine park with the possibility of 

processing products on different machine tools. Also, the effects of changing the process 

parameters and batch sizes were evaluated for the three most efficient combinations, 

showing, for example, that increasing the material removal rate can more than double 

the energy efficiency. Limitations of the presented research include the limited 

consideration of TBS within the modeling framework. In addition, strategies to improve 

the systems performance focus on short-term planning problems, including scheduling, 
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product routing, and lot sizing rather than strategic mid- to long-term decisions towards 

energy efficiency. 

Schönemann (2017) developed a multiscale simulation approach for a battery production 

system. As a novelty, the author presented a co-simulation approach that incorporates 

the product perspective into a holistic simulation framework. The author claims to have 

improved existing co-simulation frameworks that provide an integrated assessment of 

technological, economic, and environmental objectives. Further contributions included 

improvements with respect to the structuring of individual simulation models, the 

definition of relevant system elements, their input and output parameters, and connecting 

interfaces as well as a detailed procedure model to improve the applicability of 

co-simulation approaches in general. Schönemann developed the process chain model to 

be the central submodel that links the multiscale simulation approach. The core model 

was developed in the AnyLogic software environment. Matlab/Simulink was used for the 

compressed air generation system and the building model. The coupling was realized 

using the middleware software TISC. To enable the use of different simulation 

environments, data exchange between models and simulation environments is required. 

Schönemann co-authored a related publication that discusses the advantages and 

disadvantages of different coupling concepts and their application in holistic factory 

models (Thiede et al. 2016).  

Khattak (2016) developed a hybrid simulation approach to evaluate energy and exergy 

efficiency within energy management. In subsequent publications, Khattak and his 

co-authors have further extended the approach and presented additional case studies 

(Khattak et al. 2016, Khattak et al. 2018). The approach combines a physics-based energy 

modeling with a data-driven approach that is able to compare improvement measures 

with predefined baseline scenarios. The authors use ‘rough-cut’ profiles when the 

availability of energy consumption data at the process or factory level is limited. No 

modeling approach for the machine or process chain level was presented. Khattak et al. 

implied a holistic understanding of factories that took into account the interaction 

between production equipment and factory buildings. This also includes the consideration 

of heat emissions dissipated into the factory environment during machine operation. The 

models of the building and the technical building system are calibrated and verified by 

comparing the simulated heating demand with the demand measured by the building 

management system. The approach was applied to a production line for an engine 

cylinder head and a food factory. The improvement measures assessed included the use 

of a heat recovery unit, the connecting of an external heat exchanger (free cooling) to the 

cooling system, and the integration of a photovoltaic system (Khattak 2016, p. 56 f., 

Khattak et al. 2018, p. 9 f.). 

Greinacher (2017) introduced a model-based approach to optimize manufacturing 

systems with respect to multi-objective lean and resource-efficiency goals. Its simulation 

model includes individual modules for manufacturing processes, the process chains as 

well as simplified modules for parts of the technical building and the energy supply 

systems. The various modules were implemented in Siemens Plant Simulation. The 
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methodology presented by the author implies the design of the experiment to analyze the 

effects and interdependences of improvement measures within manufacturing systems. 

Based on the Fast Flexible Filling Design response data, the author uses Kriging to compute 

Gaussian-process meta-models for cost per finished part, throughput time, specific energy 

consumption, and delivery reliability. Although considerable effort is required to create 

meta-models in the first place, they outperform simulation models when it comes to 

performing multi-objective optimizations. This is true as long as the considered design 

space of the underlying system parameters does not change significantly. (Greinacher 

2017, Greinacher et al. 2020) 

As part of the “Balanced Manufacturing” project, Gourlis and Kovacic (2016) used 

thermal modeling to assess the impact of refurbishment measures on the energy 

performance of industrial buildings. Their simulation in EnergyPlus is based on an exact 

representation of waste heat emissions of machines and auxiliary equipment. Retrofit 

measures focus on the building envelope and include passive measures to reduce thermal 

discomfort due to summer overheating (Gourlis and Kovacic 2017, p. 1181). Also, in the 

context of the “Balanced Manufacturing” project and building on the results of the 

“INFO” project, Sobottka et al. (2018) and Sihn et al. (2018) developed an integrated 

hybrid simulation approach capable of optimizing the scheduling and sequencing of 

orders within complex production systems. The approach integrates discrete and 

continuous simulation models at the component level, referred to as “cubes”. Cubes can 

be used at different levels of a production system, including machines and auxiliary 

equipment, buildings, and energy converters (Smolek et al. 2018, pp. 383-387).  

To cope with the restrictions of co-simulation models, such as the limited reusability and 

the high computational costs, the hybrid simulation approach aims at improving the 

possibility to perform simulation-based optimizations based on iterative simulation runs. 

The authors described the example of a furnace process that combines the continuous 

behavior of energy-related variables, represented by balance equations, with the discrete 

behavior of the material flow. The authors also develop an objective function that takes 

into account not only energy and associated CO2 costs but also storage costs for goods 

completed before the delivery date and penalty costs for late deliveries. A genetic 

algorithm (GA) with pattern search is implied to solve the optimization problem. The 

runtime is improved by splitting the optimization procedure into two parts. In the first 

part, scheduling and sequencing are optimized. In the second part, the production 

schedule is determined, and the operation time of the equipment in the periphery is 

optimized in order to reduce energy costs. The developed approach has been tested in an 

industrial bakery, and scenario-dependent energy-cost savings between 5-25% are 

reported. Although the authors assume a holistic understanding of networked factory 

environments, the focus is on scheduling and sequencing. Further measures to improve 

energy efficiency are not taken into account. In addition, the strategy for flexible operation 

of the peripheral equipment is not specified. Furthermore, the authors admit that the 

hybrid simulation approach is difficult to use for non-simulation experts.  
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Kuhlmann (2020) investigated the possibility of designing agile energy supply systems for 

factories. In order to conduct the agility analysis, the author developed a procedure model 

consisting of five steps. These steps included the analysis of agility drivers, the derivation 

of technological and organizational agility options, and the modeling, simulation, and 

evaluation of these agility options within the energy system (steps three, four, and five). 

The author developed an agent-based factory simulation model and applied Monte Carlo 

simulation to evaluate scenarios with different agility enabling options, also considering 

uncertainties with respect to the agility-increasing characteristics (modularity, mobility, 

compatibility, universality, and scalability). The factory model proposed by the author 

combines individual models for the production system, including machines and peripheral 

equipment, the energy supply system including the usage of on-site renewable energy 

sources, and the energy pool including energy storage capabilities used to balance energy 

supply and demand. Based on his results, the author suggested augmenting the factory 

model and including the factory building and its technical building systems. He also 

suggested complementing additional performance metrics in order to enable a holistic 

evaluation of agility options. (Kuhlmann 2020)  

With reference to the evaluation criteria used in this work, the improvement of agility in 

energy supply systems is considered a specific non-energy benefit. 
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Table 3-1  Evaluation of the state of science (degree of fulfillment: not ○, partial ◔◑◕, complete ●) 
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 Suitability – Factory life cycle 

Planning ● ○ ● ○ ○ ○ ◑ ○ ◔ ◑ ● ○ ◑ ○ ◑ ○ ● ● ○ 

Operation ○ ● ◑ ● ◑ ● ○ ◑ ◕ ◕ ○ ◑ ● ● ◕ ● ○ ● ● 

Tuning and adoption ○ ◑ ○ ○ ● ○ ◔ ○ ○ ○ ◑ ◑ ○ ○ ○ ○ ○ ◑ ○ 

 Completeness – Objectives 

Energy demand/costs ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 

Energy efficiency ○ ● ◑ ◑ ● ● ◔ ◔ ◑ ◑ ◑ ◔ ● ◔ ◔ ◑ ◑ ◑ ◑ 

Energy flexibility ◔ ◑ ◑ ○ ○ ○ ○ ● ○ ○ ○ ○ ○ ○ ○ ◔ ◔ ○ ○ 

Manufacturing KPIs ○ ◑ ● ◕ ○ ◕ ○ ◔ ◔ ● ○ ○ ◕ ○ ◔ ◔ ◕ ◔ ◕ 

Non-energy benefits ◑ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ◔ ○ ○ ◑ ◑ ◔ ○ 

 Inclusiveness – System boundaries 

Product ● ○ ◑ ○ ○ ◔ ○ ○ ○ ◑ ○ ○ ○ ○ ○ ○ ◑ ○ ○ 

Process/machine ● ● ● ● ○ ● ◑ ◑ ◑ ◕ ◕ ○ ● ◕ ◕ ◑ ● ◕ ◕ 

Process chain ○ ● ● ● ◑ ● ◑ ● ● ○ ○ ○ ● ◑ ○ ◑ ● ● ● 

Auxiliary equipment ◑ ● ● ◑ ○ ◑ ◑ ○ ● ◑ ◕ ○ ● ● ○ ○ ○ ◕ ○ 

Technical building system ○ ● ◕ ◑ ● ◑ ◑ ◕ ○ ○ ● ● ◕ ◕ ◕ ◑ ○ ● ◕ 

Building (envelope) ○ ● ◕ ○ ● ○ ○ ◕ ◑ ○ ● ● ○ ◑ ◑ ○ ○ ◕ ◕ 

Energy supply system ● ◑ ○ ○ ◑ ○ ○ ○ ○ ○ ◑ ◔ ○ ○ ○ ○ ○ ○ ○ 

 Comprehensiveness – Modeling and simulation approach 

Transferability  ● ◑ ◑ ◑ ● ◑ ◔ ◔ ◑ ◑ ◕ ◕ ◕ ◑ ◑ ◔ ◕ ◕ ◕ 

Precision ◑ ◕ ◕ ◑ ◑ ◑ ◔ ◑ ◑ ◑ ● ◕ ◑ ◕ ◑ ◔ ◑ ◕ ◕ 

Usefulness/effectiveness ◕ ◕ ◑ ◑ ◕ ◕ ◑ ◔ ◕ ◑ ◕ ◕ ◕ ◑ ◔ ◔ ◕ ◑ ◑ 

Generalizability ● ◔ ○ ● ○ ◑ ○ ○ ◔ ○ ◔ ○ ◑ ○ ○ ○ ○ ○ ○ 

Integrability ○ ◔ ○ ◑ ◔ ○ ○ ◔ ○ ○ ○ ○ ○ ○ ○ ◑ ○ ○ ○ 
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3.3 Summary and Refined Research Needs 

This section summarizes the findings of the literature review conducted with reference to 

the evaluation criteria introduced in Section 3.1. This includes the analysis of shortcomings 

present in existing methodologies in general and the limitations of available factory 

simulation approaches in particular. The section concludes by refining the research needs.  

 

Suitability 

Reviewing the state of research showed the limitations of existing methodologies with 

regard to a holistic assessment of energy use within existing manufacturing facilities. 

While several methods have been developed to reduce the energy use of factory 

operations through improved production planning and scheduling (e.g., Junge 2007, 

Michaloski et al. 2011, Haag 2013, Sobottka et al. 2018), few authors have addressed 

the specifics related to the redesign, revitalization, expansion, renovation or restructuring 

of existing factories (e.g., Moynihan and Triantafillu 2012, Khattak et al. 2018).  

Completeness 

Energy demand and associated costs, as well as energy efficiency, are performance 

metrics considered by all methodologies studied. In addition, several authors also include 

conventional manufacturing KPIs in their energy assessment, such as process time, 

throughput (ref. Mousavi et al. 2016, p. 22), inventory levels (ref. Junge 2007, p. 98), 

machine utilization (ref. Schönemann et al. 2019, p. 166), overall equipment efficiency 

(OEE) (ref. Haag 2013, p. 108 f.), reliability of delivery (ref. Greinacher et al. 2020, p. 168), 

production output (ref. Thiede 2012, pp. 117-121), or production deficits (ref. Sobottka 

et al. 2018, p. 418). However, only a few authors take into account additional 

performance metrics, such as energy flexibility or the share of energy demand met by 

renewable energies.  

In their assessment, Heilala et al. (2008, p. 1925), Michaloski et al. (2011, p. 95) extend 

the existing performance metrics and take into account ergonomics, as well as worker 

comfort, safety, and health aspects, in their assessment of energy use in factories. 

Kuhlmann (2020, pp. 90-103) introduced agility as an additional performance metric. 

However, none of the authors has yet introduced non-energy benefits as an independent 

category of performance metrics that can be evaluated in a factory simulation model.  

Inclusiveness 

First factory models that couple different subsystems and focus on energy use in factories 

have already been presented by Junge (2007, p. 81) and the consortium of the ENOPA 

project (ENOPA 2011). Thiede (2012, p. 108 ff.) added further submodels for auxiliary 

equipment and technical building systems. Additional efforts were made by the INFO 

project consortium that resulted in an improved level of detail for models representing 

technical building systems, the building envelope, and the energy supply system (INFO 

2013a, p. 24). Haag (2013, p. 92) and Schönemann (2017, pp. 88-93) added the product 
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perspective at the lower end of a multiscale factory model, while Khattak (2016, p. 54) 

and the Balanced Manufacturing project consortium have further detailed the energy 

supply system on the upper end of the scale. 

Although the overview shows a general trend toward extending the system boundaries 

of factory simulation models, the level of detail still varies considerably. In addition, many 

models either focus on the modeling of machines and process chains (e.g., Heilala et al. 

2008 – SIMTER, EPES project, Michaloski et al. 2011, Stahl et al. 2013, Greinacher 2017) 

while others focus their attention more on the technical building systems and the building 

(e.g., Moynihan and Triantafillu 2012, INFO 2013a, Khattak 2016). In general, the energy 

supply system is still one of the least considered parts in existing factory simulation models. 

Comprehensiveness 

The transferability of existing multiscale factory models and co-simulation approaches 

is limited, as most models and/or co-simulation approaches are tailored to specific 

applications (Raich et al. 2016, p. 1). Although individual authors developed scalable 

factory models based on building blocks and with a modular structure (e.g., Thiede 2012, 

p. 97), the initial construction of representative factory models still requires considerable 

time and effort. In addition, so far there is no simple approach to adapt and verify complex 

multiscale factory models to individual use cases. Furthermore, there is no consensus on 

whether to pursue an integrated modeling approach (using only one modeling and 

simulation software) or to couple domain-specific software tools with a middleware. 

While Thiede (2012) advocates an integrated approach, the INFO project and 

Schönemann use a middleware software, either BCVTB or TISC Suite, to couple different 

software environments or submodels (INFO 2013a, pp. 23-25, Schönemann 2017, p. 

142). 

In particular, with reference to the criteria precision and usefulness, the trade-offs 

between the use of approved domain-specific modeling and simulation tools must be 

weighed against the challenges associated with coupling them. Today, the level of detail 

and consistency of existing factory simulation models varies considerably with respect to 

the different levels of a manufacturing system. Various multiscale factory models 

represent either one or the other submodel in a simplified form. For example, Moynihan 

and Triantafillu (2012, p. 76), Khattak et al. (2016, p. 102), and Gourlis and Kovacic (2020, 

p. 7) simplify the representation of the underlying manufacturing process and process 

chain model but specify the technical building systems, building, and energy supply 

system model. The opposite is the case with Stahl et al. (2013, p. 494), Mousavi et al. 

(2016, p. 14), Greinacher et al. (2020, p. 169), and Greinacher et al. (2020, p. 169), who 

specify the process chain model but simplify the technical building systems and building 

model. Different levels of detail within complex multiscale factory model representations, 

inconsistent levels of model verification and validation, high computational overhead (ref. 

Smolek et al. 2018, p. 391, Greinacher et al. 2020, p. 157), and insufficient 

standardization are major shortcomings of existing factory simulation models and limit 

their practical application and user acceptance. Mawson and Hughes (2019, p. 104) also 

identified the neglected dynamics and interdependencies between different levels of 
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manufacturing systems and the lack of model verification and validation to be limitations 

in existing multilevel factory simulation. While there are many references in the literature 

to the development of submodels and model structures, there is only a limited number of 

references on the usefulness of these complex models in industry case studies as well as 

on the efforts to implement and adapt them. Focusing on the improved operation of 

machines, process chains, and auxiliary equipment, Thiede reports relatively little effort in 

applying his modeling approach to use cases in the die casting, weaving mill, electronics 

industry (Thiede 2012, p. 175). During the relocation of production equipment to a new 

building, Bleicher et al. used a multiscale factory simulation based on domain-specific 

modeling environments to compare different energy supply system designs. The authors 

affirm the validity of the coupled factory simulation based on verified submodels. 

However, no indication is given of the implementation effort nor the runtime of each 

simulation (Bleicher et al. 2014, p. 444). In summary, the data collection effort for model 

parameterization, as well as the data exchange between different models and simulation 

environments, requires significant time and effort (ENOPA 2011, p. 71 f.). The 

development of initial factory models also involves considerable expertise (Sihn et al. 

2018, p. 450).  

The literature reports a steadily increasing level of detail of multilevel factory simulation 

models, but still lacks a generalizable approach for the combined and simultaneous 

assessment of different energy-related improvement measures. So while models are 

accessing an ever-expanding design space, there has been limited progress in managing 

the increasing complexity involved. Thiede (2012, p. 141) uses scenarios to evaluate 

individual or a combined set of measures, Mousavi et al. (2016, p. 22 f.) run simulations 

for all parameter combinations to evaluate the combined effect of machine selection, 

process parameter selection, and job sequencing on completion time, electricity 

consumption, and energy efficiency. Greinacher et al. (2020, p. 170) first applied the 

design of experiments (Fast Flexible Filling Designs) to deal with a large number of factor 

combinations. The authors derive meta-models that are further used to optimize a 

production-planning problem. Compared to the use of simulation models, meta-models 

allow performing multi-objective optimization almost in real-time, although they must be 

regenerated each time the system setup is changed (Greinacher et al. 2020, p. 171).  

With regard to the criterion of integrability, this extends the possibilities to use the 

knowledge gained from simulation models in different operational planning tasks. 

Michaloski et al. (2011, p. 98 f.) discussed the use of data from energy management and 

manufacturing executing systems (EMS and MES) in a simulation model to improve 

process scheduling and technical building systems operation. However, none of the 

references in the literature report the implementation of continuous feedback loops based 

on the information obtained from multiscale factory simulation models.  

Taking into account the aforementioned, the refined research needs and the aspired 

novelty can be summarized as follows. This work addresses the lack of comprehensive 

and generalizable assessment procedures that imply simulation modeling and can be used 

for the development of new and the modernization of existing factory sites considering 
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multiple energy-related performance metrics. The aspired novelty in this work is to 

develop a methodologically sound way to exploit the complex design space captured by 

multiscale factory simulation models in the search for appropriate combinations of 

improvement measures and to quantify the combined effect of a large number of 

improvement measures while targeting near-optimal design solutions. 

The refined research question can be summarized as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Refined research question 

How is it possible to evaluate different improvement measures simultaneously in 

terms of multiple energy-related performance metrics  

using a factory simulation model? 
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4 Requirements on the Methodology 

Based on the review of the state of science in Section 3.2 and the research needs that 

were specified in Section 3.3, Chapter 4 outlines the objectives and associated 

requirements for the development of a new model-based methodology and its use in the 

assessment of energy use in factories. Again, the objectives and requirements are linked 

to the same categories and subcategories introduced in the assessment of the state of 

science in Section 3.1. 

4.1 Specification of Requirements 

This section sets out the objectives for the development of the methodology and identifies 

the related requirements. Finally, the requirements are clustered in requirements for the 

assessment procedure in general and the factory simulation model in particular. 

Taking into account the category “suitability”, the methodology intends to provide 

decision support for various energy-related planning tasks and the associated factory life 

cycle phases. A particular goal of the methodology is to consider the challenges associated 

with energy planning in a brownfield environment during the modernization (e.g., 

redesign, revitalization, expansion, renovation or restructuring) of existing factories. Yet, 

certain aspects of the methodology should also prove to be beneficial for the energy 

planing in greenfield environments. In order to provide a solid basis for investment 

decisions, the methodology must allow a quantified assessment of improvement 

measures in relation to the resource energy. Four different requirements are derived from 

this objective. First, a comprehensive representation of the energy consumption 

characteristic within the model is required, covering all peripheries of the factory system. 

Second, the model architecture must be modular and extensible to accommodate the 

individual characteristics of existing factories. Third and fourth, the effort for model 

implementation and adjustment must be low while maintaining high accuracy and good 

verifiability. 

Referring to the category “completeness”, the methodology must take into account the 

diversity of multi-criteria planning objectives. This results not only in the requirement to 

complement conventional energy-related performance metrics with non-energy benefits, 

but also to implement models that enable their evaluation. The detailed assessment of 

additional performance metrics requires the methodology to embed advanced models 

and verified software tools from different engineering domains (manufacturing 

engineering, architecture, energy systems engineering, etc.). This results in the 

requirement to use a co-simulation approach that allows the flexible coupling of domain-

specific software tools. 

The aim of the methodology is to improve the assessment of energy use within factories 

and to match energy demand and supply, taking into account energy-efficient supply 

systems and strategies to reduce CO2 emissions. For this reason, the methodology must 
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also be able to evaluate improvement measures, their mutual effects, and their 

relationship to the energy supply system design. However, according to the evaluation in 

Section 3.3, the existing approaches do not comprehensively cover the energy supply 

system as part of a multi-peripheral factory simulation model. The “inclusiveness” 

category thus requires that the energy supply system model be extended to include 

additional energy carriers and energy conversion technologies. 

Another goal of the development is that the methodology can be applied to use cases in 

different companies and across different manufacturing sectors. Looking at the 

“comprehensiveness” category and its subcategories “transferability”, this underlines 

the requirement for rapid model implementation and adaptation. The individuality of 

companies and their manufacturing systems, as well as the dynamics of future technology 

developments, also require a methodology that employs a modular and expandable 

model architecture.  

In the pursuit of good model accuracy and verifiability, the methodology aims to use a 

model architecture based on information sources readily available in the industrial 

environment (e.g., from the electronic nameplate, technical documentation, or temporal 

measurements). This includes the objective of assembling a multi-peripheral factory model 

from individual submodels and identical parameter settings in order to improve the 

verifiability of individual components within complex models. With regard to the 

subcategory “precision”, the listed objectives reinforce and strengthen the requirements 

in terms of implementation time, adaptation effort, modularity, accuracy, and verifiability. 

Designated “usefulness or effectiveness”, the subcategory summarizes all objectives 

and requirements that are intended to strengthen the practical relevance and applicability 

of the developed methodology in industry practice.  

The first objective is to assist the practitioner in the selection of improvement measures. 

This objective is addressed by the requirement to develop a set of standardized 

improvement measures for different categories and project focus areas (e.g., energy 

efficiency, energy flexibility, use of renewable energy sources, etc.). Decision-makers need 

a methodology that provides robust and statistically relevant solutions with a good trade-

off between model accuracy, modeling effort, and simulation time. This is an additional 

requirement to allow efficient experimentation with the simulation model. Another 

objective is to provide simulation results in a way that can be easily accessed by all parties 

involved in a planning process (general managers, production engineers, architects, 

specialist planners, etc.). This requires that both the decision-making process (e.g., 

selection of the design parameters) and the presentation of results are supported with 

graphical methods.  

The methodology aims to overcome trial-and-error approaches while experimenting with 

a multi-peripheral factory model. The subcategory “generalizability” summarizes the 

objectives and requirements introduced to improve the systematics of model evaluation. 

The first objective is to support the screening (selection and combination) of improvement 

measures, also taking into account their individual design parameters. The second 
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objective is to enable the simultaneous evaluation of combined improvement measures in 

order to identify interdependencies and tradeoffs (mitigating and reinforcing effects) 

between individual measures. The third objective is to assist in the development of 

conceptual designs for energy supply systems that represent a near-optimal configuration 

of individual system components and corresponding parameter settings with respect to 

extended performance metrics. These goals highlight the importance of developing 

efficient and statistically sound ways to systematically experiment with complex simulation 

models while guiding users to near-optimal solutions. It also adds the requirement to 

prioritize parameters that are of practical relevance to decision-makers and can be actively 

influenced (e.g., the installed capacity of the chiller unit or the tank size of a cooling 

reservoir.) 

The subcategory “integrability” is composed of goals and requirements that relate to 

the concept of digital factories. Related to this subcategory, the presented work intends 

to advance the use of measurement data within multi-peripheral factory models. This is 

mainly to improve the verifiability of the simulation model and to strengthen the credibility 

of the simulation results obtained.  

All requirements are summarized in Table 4-1. 

Table 4-1 Summary of requirements for the factory simulation model and assessment procedure 

 Factory simulation model   Assessment procedure 

1. Comprehensive representation of energy consumption 
characteristics 

 1. Extended performance metrics 

2. Modular and extensible model architecture  
2. Efficient way of experimenting  

with simulation models 

3. Fast model implementation and adaptation  
3. Statistically sound way of experimenting  

with simulation models 

4. Fast model execution  4. Improved use of measurement data 

5. Flexible model coupling  5. Practical relevance of the selected parameters 

6. Good verifiability of the model  
6. Graphical support of the decision-making process 

and presentation of results 

7. High model accuracy   
 
 

8. Extended energy supply system model   
 
 

4.2 Research Scope and Limitations 

The proposed methodology aims to provide decision support during the modernization 

planning of manufacturing systems, with the objective of improving its energy-related 

performance metrics. However, there are some aspects that limit the scope of the present 

work. These are presented below.  
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Based on the factory life cycle phase proposed by Dombrowski and Ernst (2014, p. 338), 

the methodology focuses on conceptual designs during general planning rather than 

technical design specifications during detailed planning (ref. Figure 4-1). 

 

 

Figure 4-1 Phases of factory life cycle addressed by the methodology (own representation based on 
Dombrowski and Ernst 2014, p. 338) 

This research extends existing performance metrics; however, it is not intended to weigh 

and balance different energy-related performance metrics. This work does not present a 

hierarchy of the extended performance metrics, nor does it intend to classify their 

importance in the context of performance metrics for holistic manufacturing systems.  

The model in this thesis intends to cover different peripheries of a manufacturing system, 

from processes, machines, and auxiliary equipment to technical building and energy 

supply systems. The modeling approach does not include the product level and does not 

consider levels outside the perimeters of the factory site. 

Another limitation of this research is the focus on discrete parts manufacturing. The 

methodology presented does not intend to take into account the energy demand 

characteristics and specificities of process engineering plants. 

The lack of measurement data from consistent energy metering setups is still a major 

challenge in the verification of complex multi-peripheral factory models. This is especially 

true for heterogeneous manufacturing environments in existing factories. Within the 

scope of this work and considering the practical constraints, the aim is to verify only single 

submodels of the multi-peripheral factory model.  

There are no specific requirements for the previous knowledge of the users of this 

method. However, background knowledge in the field of modeling and simulation, as 

well as statistics, enables an adequate interpretation of the informative value derived from 

simulation results. 

Considering various performance criteria, this research aims to advance solutions on how 

to efficiently explore the design space of complex factory simulation models in the search 

for an optimized system design. However, it is not the intention of this research to employ 

optimization algorithms (e.g., genetic algorithms, evolutionary strategies, simulated 

annealing, etc.). 
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With the concept of a digital factory in mind, this work aims to significantly improve the 

connection between the real world and its virtual representation through the increased 

use of measurement data. However, no attention is paid to evolving the factory simulation 

model to automatically adapt to the latest changes and events within the real factory 

environment. Since the focus is on planning and not on operation optimization, it is also 

not intended to actively trigger events or control equipment installations in the factory 

environments based on the findings from the factory simulation model. 

4.3 Summary 

Chapter 4 specifies the requirement for the development of the methodology. All 

requirements are derived from the different requirement categories, namely suitability, 

completeness, inclusiveness, and comprehensiveness. Two main fields of action were 

identified in the requirements. First, the development of the factory simulation model, 

and second, the improvement of existing assessment procedures with a focus on 

enhanced performance metrics and efficient ways to experiment with complex simulation 

models. A total of eight requirements were specified for the factory simulation model and 

six for the assessment procedure. Finally, Section 4.2 narrows the scope of the 

development goals.  
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5 Simulation-Based Assessment of Energy Use in Factories 

In this chapter, a methodology for a step-by-step assessment of energy use in factories 

using simulation modeling is proposed. Section 5.1 outlines the methodology, while 

Sections 5.2 to 5.4 detail the development and application of the assessment procedure 

and the factory simulation model. 

5.1 Outline of Methodology 

The methodology starts by introducing extended energy-related performance metrics for 

factory systems (ref. Section 5.2). Section 5.3 presents the assessment procedure and 

deals with the selection and allocation of improvement measures to individual peripheries 

of a factory. The assessment procedure also includes a new approach for the joint 

evaluation of improvement measures using design of simulation experiments. To improve 

transparency and facilitate decision-making, this is further complemented by a new 

approach for visualizing and evaluating intermediate and final simulation results. The 

simulation experiments are applied to the factory simulation model developed in Section 

5.4. The model covers several peripheries of a factory, including machines, process chain, 

auxiliary equipment, building , technical building systems, and energy supply system. 

 

 

Figure 5-1 Outline of the methodology 
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5.2 Development of Extended Energy Performance Metrics 

This section presents the performance metrics which focus on energy as a resource (ref. 

Figure 5-2). Unlike existing metrics, which assess the combination of energy demand, 

energy costs, and CO2 emissions, the non-energy benefits are added. To improve factories 

in terms of the above metrics, three categories of measures are identified. These are 

energy efficiency and energy flexibility measures, and measures to improve the use of 

renewable energy sources. The portfolio of measures within these categories is set out in 

Subsection 5.3.1. 

 

 

Figure 5-2 Summary of performance metrics including categories for improvement measures 

The individual performance metrics are determined according to Equations (5-1), (5-2), 

(5-3), and (5-4). Considering an observation period of one year, the final energy demand 

𝐸𝑓𝑖𝑛𝑎𝑙,𝑖 of a factory within the boundaries of its factory premises is the difference between 

energy demand 𝐸𝑑𝑒𝑚,𝑖 from the grid and energy supply 𝐸𝑠𝑢𝑝,𝑖 to grid plus the energy 

sourced from renewables on-site 𝐸𝑜𝑛−𝑠𝑖𝑡𝑒,𝑖. All final energy carriers i have to be considered. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 = ∑ ∫ (𝑃𝑑𝑒𝑚,𝑖(𝑡) − 𝑃𝑠𝑢𝑝,𝑖(𝑡) + 𝑃𝑜𝑛−𝑠𝑖𝑡𝑒,𝑖(𝑡))
𝑖

𝑑𝑡  (5-1) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 = ∑ 𝐸𝑓𝑖𝑛𝑎𝑙,𝑖
𝑖

= ∑ 𝐸𝑑𝑒𝑚,𝑖
𝑖

− ∑ 𝐸𝑠𝑢𝑝,𝑖
𝑖

+ ∑ 𝐸𝑜𝑛−𝑠𝑖𝑡𝑒,𝑖
𝑖

 (5-2) 

  

𝑃𝑑𝑒𝑚,𝑖/𝑃𝑠𝑢𝑝,𝑖   Power demand/supply of final energy carrier i from/to grid 

𝐸𝑑𝑒𝑚,𝑖/𝐸𝑠𝑢𝑝,𝑖 Annual energy demand/supply of final energy carrier I from/to grid 

𝐸𝑜𝑛−𝑠𝑖𝑡𝑒,𝑖 Annual final energy i sourced from renewables on-site 

𝐸𝑓𝑖𝑛𝑎𝑙,𝑖 Annual demand of final energy for all energy carriers i 
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The energy costs are quantified according to Equation (5-3). The factor 𝑐𝑝𝑢𝑟/𝑠𝑎𝑙,𝑖(𝑡) takes 

into account the time-dependent energy prices for individual energy carriers. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡𝑠 = ∑ ∫ 𝑃𝑑𝑒𝑚,𝑖 (𝑡) ∙ 𝑐𝑝𝑢𝑟,𝑖(𝑡)
𝑖

∙ 𝑑𝑡 − ∑ ∫ 𝑃𝑠𝑢𝑝,𝑖(𝑡) ∙ 𝑐𝑠𝑎𝑙,𝑖(𝑡)
𝑖

∙ 𝑑𝑡 (5-3) 

  

𝑐𝑝𝑢𝑟/𝑠𝑎𝑙,𝑖 
Purchase costs and sales revenue for final energy 
carrier i 

 

 

The energy-related CO2 emissions of the factory within the boundaries of the factory site 

are quantified according to Equation (5-4). 𝑓𝑖 represents the emission factors for each 

individual energy carrier i. 

 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = ∑ 𝑓𝑖 ∙ ∫(𝑃𝑑𝑒𝑚,𝑖(𝑡) − 𝑃𝑠𝑢𝑝,𝑖(𝑡))
𝑖

∙ 𝑑𝑡 (5-4) 

  

𝑓𝑖  Emission factor for final energy carrier i  

 

Non-energy benefits include additional criteria that can be used to assess the impact of 

individual improvement measures in more detail. The selection shown in Figure 5-3 

summarizes six additional criteria derived from the review presented in Subsection 2.2.3. 

 

 

Figure 5-3 Summary of non-energy benefits 

In the following, the six categories for non-energy benefits are presented and illustrated 

by examples. The examples intend to demonstrate that, aside from reducing energy 

demand, costs, and emissions, individual improvement measures usually have an impact 

on more than one non-energy benefit at the same time. The selection of non-energy 

benefits is considered during an energy assessment, and the associated method of 

quantification differs for different companies and use cases. With reference to the 

application of the method in Chapter 6, the author refrains from proposing individual 

quantification methods in this section.  
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Improved occupational safety 

Example:  Retrofitting an air-conditioning system reduces energy requirements and 

stabilizes ambient temperature and humidity in the working 

environment. It also improves air quality and reduces discomfort caused 

by cold drafts. Ultimately, retrofitting the air-conditioning system reduces 

sick days. 

Benefits: Improved occupational safety, improved product quality 

Improved product quality 

Example:  Changing the light fixtures reduces energy consumption and improves 

the lighting quality in terms of brightness and contrast. It also reduces 

reflections and shadowing, ultimately allowing workers to complete their 

tasks with a higher standard of quality. The new lighting system also 

alleviates the need for cleaning and maintenance. 

Benefit: Improved product quality, reduced maintenance costs, improved 

occupational safety 

Reduced production waste 

Example:  The change from convection-based to infrared-based drying reduces 

energy requirement and leads to more homogenous temperature 

distribution so that more products are dried according to the quality 

requirements, and fewer products are declared production waste 

Benefit: Reduced production waste, reduced costs for disposal 

Improved capacity utilization 

Example:  The installation of an additional air compressor unit shifts the operating 

point toward a more energy-efficient level. In addition, the new system 

setup reduces the risk of production downtime caused by a system 

malfunction without redundancy 

Benefit: Improved capacity utilization, improved security of supply 

Improved security of supply 

Example:  The installation of an emergency power generator and/or an electrical 

energy storage system increases the capability of the on-site power 

infrastructure to absorb peak loads and consequently reduce energy 

costs. The new system components can also improve the safety and 

quality of the power supply by increasing the system’s ability to withstand 

power outages and blackouts. In addition, an improvement in the power 

supply quality can also have positive side effects on the equipment 

operation and thus on product quality. 

Benefit: Improved capacity utilization, improved product quality, reduced 

production waste 
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Reduced maintenance costs 

Example:  Replacing a hydraulic press with its electrically driven counterpart reduces 

the energy required to operate the machine tool. In addition, 

maintenance costs are reduced as no regular maintenance intervals are 

required for the hydraulic system.  

Benefit: Reduced maintenance costs 

 

It is important to note that the positive side-effects of implementing energy-related 

improvement measures can also be countered by negative ones. Thus, the 

implementation of measures may ultimately increase system complexity and make the 

system more susceptible to errors and failures. However, the assessment of complexity in 

energy-related factory infrastructure and the development of risk mitigation strategies 

related to diverse improvement measures are not addressed in this work. Furthermore, it 

is important to note that improvement measures are usually triggered by the goal of 

improving non-energy benefits (such as occupational safety, product quality, etc.) rather 

than by energy-related performance metrics. In fact, improving non-energy benefits may 

ultimately have a positive impact on energy-related performance metrics, rather than the 

other way around. 

In the context of this work, energy efficiency, energy flexibility, and the use of renewable 

energy sources are individual categories of measures to improve energy use in a factory. 

However, the extent of their implementation can also be evaluated on the basis of the 

following additional key figures. At the factory level, energy efficiency is defined as the 

ratio between the annual demand of useful energy required for the operation of 

machines, auxiliary equipment and buildings, and the final energy demand supplied from 

the grid (ref. Equation 5-5). This energy efficiency metric takes into account all energy 

carriers. While generally being in line with the energy efficiency definitions presented in 

2.2.1, this definition varies in such that it relates energy values only and does not combine 

monetary and energy values such as, for example, Equation (2-7). Equation (5-5) can be 

interpreted as the efficiency of energy conversion within a factory system.  

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
∑ 𝐸𝑢𝑠𝑒𝑓𝑢𝑙,𝑖𝑖

∑ 𝐸𝑓𝑖𝑛𝑎𝑙,𝑖𝑖

 (5-5) 

  

𝐸𝑢𝑠𝑒𝑓𝑢𝑙,𝑖   Annual demand of useful energy for all energy carriers i  

𝐸𝑓𝑖𝑛𝑎𝑙,𝑖 Annual demand of final energy for all energy carriers i  

 

In this work, energy flexibility is defined as the sum of energy stored (𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑗) and 

withdrawn (𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑗) from the different energy storage systems (ESS) j used on the factory 

site, divided by the annual final energy demand of the factory (Equation 5-6). With 
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reference Equation (2-8), the energy stored and withdrawn from the storage systems are 

composed of 𝑛 individual flexibilities, each with a specific flexible load and duration. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑗𝑗 + ∑ 𝐸𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑛,𝑗𝑗

∑ 𝐸𝑓𝑖𝑛𝑎𝑙,𝑖𝑖

 (5-6) 

   

𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑗  Annual amount of energy stored in all ESS j  

𝐸𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑛,𝑗 Annual amount of energy withdrawn from all ESS j  

𝐸𝑓𝑖𝑛𝑎𝑙,𝑖 Annual demand of final energy for all energy carriers i  

 

The key figure used to assess the renewable energy share on-site is shown in 

Equation (5-7). It is also quantified for a period of one year as the ratio between the 

amount of energy sourced from different on-site renewable energy sources k and the final 

energy demand of the factory system for the same period. 

 

𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠ℎ𝑎𝑟𝑒 =
∑ 𝐸𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒,𝑘𝑘

∑ 𝐸𝑓𝑖𝑛𝑎𝑙,𝑖𝑖

 (5-7) 

  

𝐸𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒,𝑘   
Annual amount of energy generated from different on-site 
renewable energy sources k 

 

𝐸𝑓𝑖𝑛𝑎𝑙,𝑖 Annual final energy demand for all energy carriers i  

5.3 Development of Assessment Procedure 

5.3.1 Selection of improvement measures 

Identifying measures to improve energy use in a factory requires a common understanding 

of where improvement measures should be implemented. For this reason, the peripheral 

factory model introduced in Subsection 2.1.2 was extended and adapted to the energy 

context. Table 5-1 summarizes the architectural perspective on factories based on the 

categories of site, building, and zones, with the manufacturing perspective considering 

all the technical equipment necessary to service each manufacturing process and to 

operate the surrounding factory buildings. 

At the core of a factory operation are the individual manufacturing processes that are 

carried out within machines or other manufacturing equipment. Some processes (P) 

require the feeding of media (e.g., cooling lubricant) or the extraction of process residuals 

(e.g., dust or swarf). These functions are usually implemented by auxiliary equipment that 
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is either located in a decentralized manner (1), close to the process, or in a centralized 

manner (4), supplying multiple processes. The same differentiation applies to the 

architecture of technical building systems within buildings, which can also be positioned 

either centrally (5), supplying multiple zones with heating, cooling, and ventilation, or 

decentrally (2) with individual equipment supplying the individual zones with their specific 

heating, cooling, and ventilation requirements. 

Table 5-1 Extended peripheral factory model 

Manufacturing perspective Architectural perspective 

P – Process 

Z
o

n
e

 

   

1 – Decentralized auxiliary equipment    

2 – Decentralized technical building systems    

3 – Decentral distribution systems 

B
u

il
d

in
g

 

   

4 – Centralized auxiliary equipment    

5 – Centralized technical building systems    

6 – Building envelope    

7 – Central distribution systems 

S
it

e
 

   

8 – Central power house for auxiliary equipment    

9 – Central power house for technical building systems    

10 – On-site renewables    

G – Grid (link to local/trans-regional energy system)     

 

Periphery (6) refers to the building envelope of a factory. In addition to the passive 

components that are relevant to energy use, such as the insulation, the building envelope 

can include several active functions, such as the control and shading of openings, 

including natural lighting and ventilation. In addition, the surface of the building envelope 

offers the possibility of integrating equipment for the use of renewable energies such as 

building-integrated photovoltaic systems. Central (7) and decentralized (3) distribution 

systems refer to technical equipment for the distribution of media between generation 

and consumption. Representatives of this category are, for example, pumps and vans and 

are found in cooling, heating, or steam networks. Peripheries (8) and (9) denote 

powerhouses that host auxiliary equipment and technical building systems. This 

centralized system design is generally used for large industrial sites that consist of several 

individual buildings and multiple processes. For example, compressed air can be supplied 
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from a central powerhouse for auxiliary equipment and provided to all individual buildings 

on the industrial site. Another example is the steam generation in boilers to supply process 

heat or the space heating demands in the individual buildings of the industrial site. 

Periphery (10) denotes equipment used on-site for the generation of energy from 

renewable sources such as  sun, wind, water, or geothermal energy. This includes, for 

example, photovoltaic systems, wind turbines, hydroelectric power stations, or boreholes 

for geothermal probes. Figure 5-4 illustrates the extended peripheral factory model. 

 

 

Figure 5-4 Extended peripheral factory model representing peripheries P through G 

Categories of energy efficiency measures 

Measures to increase energy efficiency are intended to reduce the energy demand within 

a factory. There exist three general fields of action to improve energy efficiency, which 

can be divided into planning, controlling, retrofitting or installing. The first relates to 

general strategic or organizational decisions, e.g., introducing an appropriate 

management framework for energy-related issues, negotiating terms and conditions for 

energy supply, or introducing a strategy to reduce the carbon footprint of the energy 

supply system at a factory site. Controlling, retrofitting or installing are operational 

domains and require a bottom-up understanding of the technical aspects of the 

underlying manufacturing processes and the surrounding environmental conditions of a 

factory. The improved control of energy flows and energy use focuses on the adjustment 

of equipment setups and on the (re-)configuration of the individual or higher-level control 

of all technical equipment installed in the various peripheries of a factory system. Although 

analysis and adaptation can be very time-consuming, the control customization is 

Building

9 – Central power house for TBS

10 – On-site renewables

G – Grid

Site

8 – Central power house for aux. Equipment

Zone

Building envelope – 6

Centralized TBS – 5

7 – Centralized distribution system

Centralized aux. equipment – 4

Decentralized distribution system – 3

Decentralized TBS – 2

Decentralized aux. equipment – 1

Process – P

+ - +
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generally considered very cost-effective because it involves software updates rather than 

the purchase of new equipment. One example is the use of machine control that switches 

off components in standby mode, thus reducing energy consumption during idle periods. 

Retrofitting existing technologies or installing new ones is the third option for streamlining 

the use of energy in a factory. Retrofitting an existing refrigeration system with new, more 

energy-efficient system components is one example. The installation of a heat recovery 

system in the compressed air supply is another. To assist users in evaluating energy 

efficiency measures in a factory environment, Figure 5-5 presents nine categories for 

energy efficiency measures. 

 

 

Figure 5-5 Categories of measures to improve energy efficiency (adapted from Steinhilper et al. 2017) 

The subcategories respect the networked nature of a factory environment and allow for 

different combinations. In the following, each category is described by an example. 

 

Eliminate 

Description: Eliminate energy waste, including inefficient modes of operation or 

oversized system components  

Example:  Eliminate energy waste in a machine tool through improved utilization 

rates (e.g., reduced idle-times) and/or improved machine control (e.g., 

energy-saving mode, switching to standby mode)  

Effect: Reduced energy demand for the operation of machines and equipment  

Adapt 

Description: Adapt energy supply to demand  

Eliminate

Synchronize

Cascade

Adapt

Substitute

Centralize

Decentralize Zone

Recover
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Example:  Adapt the setpoints for temperature, humidity, and ventilation rate to 

the required indoor climate conditions 

Effect: Reduced energy requirements for heating, cooling, and ventilation 

Substitute 

Description: Substitute inefficient energy supply technologies by efficient alternatives 

Example:  Replace the cooling supply from a compression refrigeration system with 

a free-cooling system 

Effect: Reduced energy requirement for the cooling supply 

Cascade 

Description: Cascade energy supply for efficient operation at the operating point  

Example:  Cascade the setup of the pump station in a cooling circuit to ensure the 

energy-efficient supply of coolant (quantity and pressure) for different 

operating points (e.g., base load and peak load)  

Effect: Reduce the energy required to operate machinery and equipment 

Centralize 

Description: Centralize energy supply to avoid energy waste 

Example:  Centralize individual process cooling for machine tools and/or the 

respective cooling lubricant systems to avoid heat emissions to the 

manufacturing environment  

Effect: Reduced energy requirements for air-conditioning, heating, and cooling 

Decentralize 

Description: Decentralized energy supply to avoid energy waste 

Example:  Decentralize compressed air supply 

Effect: Reduced energy requirements for compressed air supply due to the 

elimination of hydraulic and leakage losses in widely branched piping 

systems 

Recover 

Description:  Recovering useful energy through networked systems 

Example: Recovery of waste heat from ventilation systems, process cooling, or 

compressed air supply, and reuse in heating applications (e.g., through 

the using of heat exchangers and/or heat pumps) 

Effect: Reduced energy demand for heating due to reused waste heat 

Synchronize 

Description: Synchronize energy demand with energy availability 
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Example:  Synchronize the energy requirements for process cooling or compressed 

air system with the availability of energy from renewable sources (e.g., 

from photovoltaic systems) 

Effect: Reduced peak energy demand for electricity 

Zone 

Description: Zone manufacturing environments according to their environmental 

requirements 

Example:  Zone processing areas with high emissions (e.g., heat, oil mist) and 

corresponding ventilation requirements of assembly areas with narrow 

requirements for particle load, temperature, and humidity range 

Effect: Reduced energy requirements for air-conditioning, heating, and cooling 

 

Categories of energy flexibility measures 

Measures to improve the energy flexibility of a factory should increase the responsiveness 

of a factory system to energy availability and market prices and thus reduce energy costs. 

The measures can be applied to various peripheries, such as machinery, auxiliary 

equipment, technical building systems, and other energy supply systems. The evaluation 

of energy flexibility measures is divided into four categories depending on their ability to 

interrupt equipment operation (e.g., to start or stop a machine), to change (e.g., switch 

between different energy carriers), to regulate (e.g., reduce or increase the power 

consumption of a process),  or to store (e.g., store or release excess power). In the 

following, all categories are described and illustrated by a practical example (ref. Figure 

5-6). 

 

 

Figure 5-6 Categories of measures to improve energy flexibility (based on Weeber et al. 2017, p. 436) 

Interrupt  

Description: Capability to interrupt and resume power supply 

Example: Suspend the operation and power supply from a combined heat and 

power (CHP) unit in times of low energy prices and high energy 

availability in the local grid 

Switch  

Description: Capability to switch between different energy carriers 

Interrupt Regulate StoreSwitch
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Example:  Switching the power supply of curing furnaces between gas and 

electricity depending on availability and energy prices for gas and 

electricity. Another example is the conversion of the power supply to 

cover the heating demand by a gas boiler, a combined heat and power 

(CHP) unit, geothermal probes, or resistance heating installed in a hot 

water storage tank.  

Regulate  

Description: Capability to regulate the power demand 

Example:  Regulate (increase/decrease) the power supply to an air-conditioning 

system as long as the conditions (e.g., temperature and humidity) in the 

factory environment are within the required ranges. 

Store  

Description: Capability to store and withdraw excess energy supply 

Example:  Store electricity, compressed air, cold and hot water in existing or new 

storage capacities for times of surplus or shortage of energy availability, 

e.g., from on-site renewable energies, or for times of low and high 

energy prices on the market. 

 

The described examples of measures to increase energy flexibility in a factory environment 

are shown in Figure 5-7. 

 

 

Figure 5-7 Performance metrics for energy flexibility in factories (based on Weeber et al. 2017, p. 437) 

Categories of renewable energy sources 

Following the implementation of various energy-saving measures, the use of renewable 

energy sources aims to reduce the CO2 emissions associated with the remaining energy 

requirements of a factory or production site. Unlike energy efficiency and flexibility 

measures, the focus of on-site renewable energy use is not on reducing the energy 

demand but on increasing the share of energy demand that can be met by climate-friendly 
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energy sources. Figure 5-8 introduces five categories for renewable energy sources, 

namely solar, wind, water, biomass, and geothermal. The individual categories are 

presented below, including practical examples of their use on a factory site. 

 

 

Figure 5-8 Categories of renewable energy sources that can be used in factories 

Solar 

Description: Technical system for the conversion of solar radiation into electrical or 

thermal energy 

Example: Rooftop installation of a photovoltaic system 

Wind 

Description: Technical system for converting the kinetic energy of air movement (e.g., 

wind) into electrical energy 

Example: Wind turbine installed on the factory site 

Water 

Description: Technical system for converting the kinetic energy of water into electrical 

energy 

Example: Water turbine installed in a nearby river course 

Biomass 

Description: Technical system for the conversion of biomass (solids or liquids) into 

thermal energy 

Example: Woodchip or wood pellet-fired boiler 

Geothermal 

Description: Technical system for obtaining thermal energy from geothermal sources 

Example: Earth probe drilling and use in a heat pump system 

 

In the context of this work, the focus is on measures that improve the use of renewable 

energy sources based on a site-optimized selection and a demand-oriented operation of 

respective technical installations for the use of renewable energy sources in the perimeters 

of a production site. Of course, the geographic location of the factory, as well as the local 

weather conditions, limit the availability of these sources. This applies in particular to solar, 

BiomassWind GeothermalSolar Water
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wind, hydro, and geothermal energy. Biomass, both in the form of solids or liquids, usually 

requires external suppliers. In general, the additional land use must be taken into account 

if the compensation of a factory’s energy demand is associated with additional land use. 

Although not the primary focus of the methodology presented, the reader should be 

aware that factories can become an integral part of local energy infrastructures, including 

cross-sectional energy networks. This includes the possibility of drawing energy from local 

energy distribution networks or nearby industry clusters and connecting the factory to 

decentralized energy supply infrastructures (e.g., hydroelectric or wind power farms). 

 

Allocation and combination of measures 

The matrix shown in Figure 5-9 illustrates how to summarize the identified measures 

according to the three fields of action (planning, controlling, retrofitting, or installing) and 

the periphery of a factory. It provides information on how many measures have been 

identified and where in the factory environment they can be assigned to. The measures 

collected by companies with an energy management system can be a good source for an 

initial pool of measures.  

 

 

Figure 5-9 Matrix of measures assigned to the fields of action and the different peripheries of a factory 

Using the nomenclatures introduced in Subsection 2.2.1 – Figure 2-8, it is also possible to 

graphically represent energy losses and corresponding energy efficiency countermeasures 

along the path of energy use within a factory. Therefore, the equipment that is responsible 

for energy demand is divided into four types: equipment used for the storage, distribution, 
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conversion, and delivery of energy. Furthermore, a number is assigned to the equipment 

in order to allocate the equipment to the periphery where the equipment is installed. An 

example of this graphical representation can be found in Figure 5-10. 

 

 

Figure 5-10 Example of the path of energy use within a factory (graphical representation) 

5.3.2 Planing and design of simulation experiments 

Figure 5-11 outlines the step-by-step process developed to evaluate different 

combinations of energy-related improvements in factory systems. Depending on the 

number of available measures, the project team, including company and third-party 

experts, first performs a pre-screening. Experts are selected based on their ability to 

provide the know-how relevant to the specific investigation, which in the present case is 

the energy assessment (Bogner and Menz 2009, p. 55). In order to allow a successful 

exploration of opportunities for future improvements, one selection criterion is the 

person's bottom-up knowledge and long-term experience with the factory’s 

manufacturing processes, machines, and technical infrastructure, their energy demand 

characteristics, interconnections, past modifications, and implemented retrofits. Given the 

typical organizational structure of a manufacturing company, valuable knowledge carriers 

include production managers, shift supervisors, quality managers, technical directors, and 

maintenance staff. If established as functions by the company, further experts include 

energy and environmental officers. A valuable outside perspective can be provided by 

third-party experts, including, for example, lean management and energy consultants. 

Furthermore, the selection of experts needs to consider hierarchies and power structures 

within the individual company. This is to ensure that individual interests do not lead to 
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the exclusion of the most beneficial measures. Nevertheless, the selection needs to include 

management staff in order to ensure high-level support and to facilitate the roll-out and 

implementation of the selected measures. The use of expert knowledge generally makes 

it possible to focus on the most relevant measures while reducing the simulation effort. 

Criteria for the preselection of measures can be different for individual companies. 

Examples include company priorities, expected saving potentials, or potential trade-offs 

between measures. Supporting methods for the preselection include a multi-criteria 

decision analysis (MCDA) with criteria weighting based, for example, on an analytical 

hierarchy process (AHP) (Wang et al. 2009, pp. 2266-2276, Saaty 2008, p. 85 ff.). 

Following the DoE terminology, measures are referred to as factors, and their individual 

design characteristics are referred to as factor levels. The factor levels generally represent 

a technical specification, which is easily available and best characterizes the energy-related 

behavior of the improvement measure (e.g., insulation thickness, storage capacity, 

installed cooling capacity, etc.). The next step is to specify the design space based on the 

pool of preselected measures. In a series of iterative steps, factor levels, experimental 

design, and measures are defined and adjusted until a suitable fit is achieved between the 

number of improvement measures, factor levels, and the available experimental designs. 

 

 

Figure 5-11 Flow chart describing the step-by-step planning and design of the simulation experiments  
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After adjusting the experimental design to the number of measures considered, the 

simulation experiments are conducted to screen the design space for the most effective 

measures. After completion of the number of simulation runs specified in the 

experimental design, the main effects of all factors and for each factor level are evaluated 

in relation to the performance metrics. Based on the visualization of the main effects in a 

main effects plot and the ranking of the individual simulation results, the project team is 

asked to prioritize, weigh trade-offs between performance metrics and finally select a 

factor level for each factor. Along with the analytic method, the importance of the expert 

group is emphasized because of their ability to evaluate trade-offs between individual 

performance metrics and the long-term strategic direction of their company. Company 

strategies can include addressing the growing importance of carbon pricing schemes and 

the facilitated access to energy flexibility markets. Finally, the selected factor levels are 

processed in a final simulation run. This serves to quantify the performance improvements. 

Referring to the overview on experimental designs in Subsections 2.4.2 and 2.4.3, the use 

of orthogonal array-based matrix designs and their application within the developed 

methodology is presented in more detail. Table 5-2 shows how improvement measures 

can be translated into factors and their individual design parameters into factor levels. 

Using an orthogonal L18 array as an example, eight measures represented by the Factors 

A-H can be analyzed simultaneously. In this example, the design parameters for a Factor 

A can be specified on two levels (x A1, x A2) and for Factors B through H on three levels 

(e.g., x B1, x B2, x B3).  

Table 5-2 Example of factors and factor levels for an orthogonal L18 array 

  
1st level 2nd level 3rd level 

Fa
ct

o
rs

 (
N

) 

A x A1 x A2 
 

B x B1 x B2 x B3 

C x C1 x C2 x C3 

D x D1 x D2 x D3 

E x E1 x E2 x E3 

F x F1 x F2 x F3 

G x G1 x G2 x G3 

H x H1 x H2 x H3 

 

Furthermore, orthogonal arrays can be used for the evaluation of four parameters with 

three levels (L9), 11 parameters with two levels (L12), three parameters with two levels, and 

12 parameters with three levels (L36). For an even broader overview, see Table 

2-7.Preserving orthogonality, the eight factors of the example in Table 5-2 are combined 

so that for each pair of columns, each pair of factor level combinations occurs exactly the 

same number of times per row. For the example at hand, this results in a total of 18 

factor-level combinations (ref. Table 5-3). In contrast, the number of round-robin trials for 

the same number of factors in a full factorial design would be 21 x 37 = 4374. 



5 Simulation-Based Assessment of Energy Use in Factories 95 

 

 

Table 5-3 L18  orthogonal array 

  
 

Factors  Energy performance metrics (f n) 

 L18 A B C D E F G H 
Energy 

demand 
Energy 
costs 

CO2 
emissions 

… 
Non-energy 

benefits 

S
im

u
la

ti
o

n
 r

u
n
s 

s1 1 1 1 1 1 1 1 1 f ED,s1 f EC,s1 f CO2,s1 … f NE,s1 

s2 1 1 2 2 2 2 2 2 f ED,s2 f EC,s2 f CO2,s2 … f NE,s2 

s3 1 1 3 3 3 3 3 3 f ED,s3 f EC,s3 f CO2,s3 … f NE,s3 

s4 1 2 1 1 2 2 3 3 f ED,s4 f EC,s4 f CO2,s4 … f NE,s4 

s5 1 2 2 2 3 3 1 1 f ED,s5 f EC,s5 f CO2,s5 … f NE,s5 

s6 1 2 3 3 1 1 2 2 f ED,s6 f EC,s6 f CO2,s6 … f NE,s6 

s7 1 3 1 2 1 3 2 3 f ED,s7 f EC,s7 f CO2,s7 … f NE,s7 

s8 1 3 2 3 2 1 3 1 f ED,s8 f EC,s8 f CO2,s8 … f NE,s8 

s9 1 3 3 1 3 2 1 2 f ED,s9 f EC,s9 f CO2,s9 … f NE,s9 

s10 2 1 1 3 3 2 2 1 f ED,s10 f EC,s10 f CO2,s10 … f NE,s10 

s11 2 1 2 1 1 3 3 2 f ED,s11 f EC,s11 f CO2,s11 … f NE,s11 

s12 2 1 3 2 2 1 1 3 f ED,s12 f EC,s12 f CO2,s12 … f NE,s12 

s13 2 2 1 2 3 1 3 2 f ED,s13 f EC,s13 f CO2,s13 … f NE,s13 

s14 2 2 2 3 1 2 1 3 f ED,s14 f EC,s14 f CO2,s14 … f NE,s14 

s15 2 2 3 1 2 3 2 1 f ED,s15 f EC,s15 f CO2,s15 … f NE,s15 

s16 2 3 1 3 2 3 1 2 f ED,s16 f EC,s16 f CO2,s16 … f NE,s16 

s17 2 3 2 1 3 1 2 3 f ED,s17 f EC,s17 f CO2,s17 … f NE,s17 

s18 2 3 3 2 1 2 3 1 f ED,s18 f EC,s18 f CO2,s18 … f NE,s18 

 

From the simulation runs (𝑠), the results for each performance metric (𝑓𝑛) can be 

quantified. The average effect 𝑓 𝑛,𝑁 of each design parameter (𝑁) (factor level) on different 

energy performance metrics (𝑛) can be evaluated for all individual measures (factors). For 

example, the average effect of Factor C at Factor Level Two on the energy demand (𝐸𝐷) 

can be calculated according to Equation (5-8) as the average effect of the results from the 

simulation runs s2, s5, s8, s11, s14, s17. 

 

𝑓 𝐸𝐷,𝐶2 =
𝑓 𝑛,𝑠2 + 𝑓 𝑛,𝑠5 + 𝑓 𝑛,𝑠8 + 𝑓 𝑛,𝑠11 + 𝑓 𝑛,𝑠14 + 𝑓 𝑛,𝑠17

6
 (5-8) 

  

𝑓 𝑛,𝑁𝑥   
Average effect of factor N at factor level x on performance 
metrics n 

 

𝑛 Individual performance metric  

 

Within the scope of the developed methodology, intermediate results are presented using 

various visualization techniques. These are presented in the following subsection. 
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5.3.3 Visualization and evaluation of simulation results 

Various types of visualization are used to present intermediate and final results in order 

to actively support the user of the methodology in decision-making. With reference to the 

flowchart in Figure 5-11, a thorough evaluation of the main effects is crucial to arrive at 

near-optimal solutions. Figure 5-12 shows the five visualization techniques used in the 

evaluation of the simulation results. The main effects plot (A) is used to illustrate the 

average effect and trend the design characteristic (factor level) of an improvement 

measure (factor) has on different performance metrics. Main effects plots are also used 

to identify the measures that achieve the highest relative improvements and the highest 

performing factor levels (highlighted by white squares) with respect to individual 

performance metrics. Multi-dimensional plots (B) are used to visualize how each factor 

level combination performs in the simulation runs with respect to multiple performance 

metrics. This is used to identify trade-offs between individual simulation runs and the best 

factor-level combinations with respect to multiple performance metrics. C shows how the 

ranking of all simulation runs is visualized, starting with the worst performance on the left 

and ending with the best performance on the right. Again, all performance metrics are 

considered. D is the excerpt from C showing only the performance of worst (w), median 

(m), best (b), and selected (s) factor level combinations. “Selected" refers to the factor 

level combination chosen by the project team. Finally, pie charts (E) are used to illustrate 

the relative improvements per performance metric. 

 

 

Figure 5-12 Visualization techniques used in the evaluation and presentation of the simulation results. 
(A) main effects plots; (B) multi-dimensional plot, (C) ranking of simulation results per 
performance metric, (D) worst (w), median (m), best (b), and selected (s) simulation results 
per performance metric; (E) pie chart showing relative improvements per performance 
metric, energy costs (EC), energy demand (ED), CO2 emissions (CO2), renewable energy 
share (RE), and energy flexibility (EF) 
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These pie charts are often referred to as Coxcomb, polar area charts, or Nightingale Rose 

Diagrams. Each wedge of the pie chart is measured from the center of the chart. The 

median performance (baseline) is referenced by the black edges of the outer circle. Either 

green or red wedges mark improvements or deteriorations within each dimension of the 

performance metrics. 

5.4 Development of a Factory Simulation Model 

This section presents the development of the factory simulation model. Figure 5-13 

outlines the different peripheries of the factory represented in the model, its submodels 

and interconnections. The submodels are specified in Subsections 5.4.1, 5.4.2, and 5.4.3. 

Subsection 5.4.4 concludes the model development and specifies how the factory model 

is implemented, coupled, and verified. The general model condition is that during each 

time step power demand and supply are balanced for each carrier of useful energy (e.g., 

electricity, compressed air, warm/cold media etc.) (ref. Equation 5-9) 

 

∑ 𝑃𝑑𝑒𝑚𝑎𝑛𝑑,𝑖 (𝑡)
𝑖

1
= ∑ 𝑃𝑠𝑢𝑝𝑝𝑙𝑦,𝑗 (𝑡)

𝑗

1
  𝑎𝑛𝑑  ∑ �̇�𝑑𝑒𝑚𝑎𝑛𝑑,𝑖 (𝑡)

𝑖

1
= ∑ �̇�𝑠𝑢𝑝𝑝𝑙𝑦,𝑗 (𝑡)

𝑗

1
 (5-9) 

 

 

Figure 5-13 Overview of the factory simulation model, submodels and interconnections   
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5.4.1 Machine, process chain, and auxiliary equipment model 

 

Machine model 

Machines and other energy-consuming equipment perform a variety of manufacturing 

processes. On individual machines (M1 – Mn), either single or multiple processes (Pn.1 – Pn.m) 

are executed, which convert useful energy as input energy resources (IER.n.1 – IER.n.i) into 

useful energy services (ref. Figure 5-14). These energy services are capable of performing 

value-added and non-value-added tasks while changing their state or condition. Energy 

conversion in machines produces output energy resources (OER.n.1 – OER.n.j) with different 

qualities and varying reusability. Output energy resources with limited reusability are 

commonly designated as “energy losses” or “waste of energy”. A concrete example is 

heat emissions caused by friction losses. Due to their influence on heating, ventilation, 

and cooling demand, these output energy resources need to be given special 

consideration in the proposed factory building model. A model to account for heat 

emissions from machinery is proposed in the next paragraph. 

 

 

Figure 5-14 Framework for process and machine model 

The power demand 𝑃𝑀1 (𝑡) is characterized for all machines M1 to Mn by temporal or 

continuous power measurements that take into account each input of useful energy (IER.n.1 

to IER.n.i) supplied to the machine (ref. Equation 5-10). The average power demand of all 

individual energy resources is either assigned to different operating states, as described in 

Subsection 2.2.3, or specified in look-up tables for different batch sets. 

 

𝑃𝑀1 (𝑡) = ∑ 𝑃𝐼𝑀1.𝑖
(𝑡)

𝑖

1
 (5-10) 

 

Heat emissions from machine operation 

The demand-oriented design and efficient operations of technical building systems in 

factories require a detailed representation of the production processes within the plant. 

Compared to other non-residential buildings, information on internal heat gains is crucial 
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to improve the accuracy of simulation results for industrial buildings (Katunsky et al. 2013, 

p. 143). 

Among the main parameters linking technical building systems to the manufacturing 

process in terms of energy use are the heat emissions from the process. 

For example, most (75-95%) of the electrical energy demand of a machine tool is 

dissipated as heat to the factory environment. This heat dissipation is caused by friction 

and power losses in mechanical and electrical components. Only small amounts of energy 

are transferred and stored in the workpiece. (Bleicher et al. 2014, p. 443) 

Simple approaches do not consider specific operating times of machinery and equipment 

but look at the sum of process and miscellaneous gains divided by the square meter size 

of the floor area of the zone in which the equipment is operated. For example, Moynihan 

and Triantafillu consider an average value of 60 W/m² for heat dissipation to the 

manufacturing environment (Moynihan and Triantafillu 2012, p. 76). 

The VDI standard 3082 suggests the consideration of surface thermal loads between 50 

– 250 W/m² for machining processes. Depending on the design and location of the 

cooling system (centralized or decentralized), 30 – 70% of these heat emissions are 

dissipated by the cooling lubricant and the swarf. For cold and warm forming processes, 

it is recommended to consider surface-related values between 100 – 300 W/m² or 15% 

– 20% of the installed power of the machine as heat gains from machine operation. (VDI 

3802, p. 27 f.) 

Table 5-4 shows the guideline of a machine tool manufacturer for the approximate 

determination of the internal heat gains from the operation of machine tools under 

consideration of different operating states. 

Table 5-4 Guideline for heat dissipation from machine operations as % of the installed load (Deckel 
Maho Seebach GmbH 2014, p. 35) 

State of machine Example Heat dissipation as % of installed load 

Machine standby Main switch turned on 5% 

Machine ready Ready for operation 10% 

Machine operation Temporary max. load 20% 

 

In summary, there is a wide variety of recommendations on how to account for heat gains 

from manufacturing processes. However, there is a lack of precise methods to represent 

the thermal properties of machines, such as inertia and the resulting heat gains, in a time-

discrete manner. The specification of heat emissions by higher temporal resolutions aims 

at an improved simulation accuracy. 

Given the limitations of existing approaches, Schlüter et al. proposed a nodal model to 

characterize the heat emissions from manufacturing processes. The model simplifies the 

complex geometry of a machine tool by representing different parts as heat-emitting basic 
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geometries (e.g., spheres or cylinders) with different layers. The heat transfer between the 

inner layers, the outermost layer, and the environment is described based on energy-, 

power- and mass balances. The differential equations connecting the different layers are 

solved by numerical methods. The model was validated for an injection modeling machine 

at constant operating conditions. (Schlüter et al. 2011, Schäfer et al. 2012, Martin et al. 

2012, p. 103 ff.).  

The presented modeling approach requires an informed user experience to choose the 

right structure of nodes, layers, and parameters. Therefore, the effort for model setup, 

tuning, and adoption is high. Moreover, the verification of the individual model 

representations of a machine is difficult to realize in practice.Taking into account an 

appropriate relationship between modeling effort and model accuracy, two different 

model representations for heat emissions from manufacturing operations are proposed. 

The first case represents a structure suitable for machine tools connected to auxiliary 

equipment and is used to support either one or more machines simultaneously (ref. Figure 

5-15). The model assumes that the electrical power consumption of a manufacturing 

process is dissipated as heat to the ambient zone of the factory building. Equation (5-11) 

describes the heat emissions �̇�𝐻𝐸 from the operation of a machine as a function of its 

electrical power 𝑃𝑒𝑙.  demand. Furthermore, Schönemann suggests the use of an efficiency 

factor 𝜂 (0 < 𝜂 < 1) to quantify heat emissions relative to its electricity demand 

(Schönemann 2017, p. 85). The term �̇�𝐴𝐸 is added to represent auxiliary equipment used 

to either cool (-) or heat (+) the machine.  

 

 

Figure 5-15 Case 1: Machine tool with attached auxiliary equipment 

�̇�𝐻𝐸,𝑀𝑛
(𝑡) = 𝑃𝑒𝑙., 𝑀𝑛 (𝑡) ∙ (1 − 𝜂) + �̇�𝐴𝐸,𝑀𝑛

(𝑡) (5-11) 

 

The second case is suitable for the representation of heat emissions from thermal 

processes (e.g., hardening or curing furnaces), which are operated either continuously or 

in batches. Since process temperatures are the main operating parameters and generally 

show good data availability, they can be used to simulate heat emissions using a substitute 

thermodynamic model of the process.  

machine nmachine 2machine 1

…

auxiliary equipment
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Figure 5-16 Case 2: Substitute thermodynamic model for the representation of heat emissions from 
thermal processes 

With additional information on the machine geometries and material characteristics, the 

energy balance at the machine surface can be represented by Equation (5-12), where the 

heat emission �̇�𝐻𝐸 is equal to the amount of heat dissipated by the process taking place 

within the machine core �̇�𝑐𝑜𝑛𝑑. and the amount of heat supplied (+) or dissipated (-) by 

auxiliary equipment �̇�𝐴𝐸, minus the amount of heat �̇�𝑠𝑢𝑟𝑓. causing the change in machine 

surface temperature 𝑇𝑠𝑢𝑟𝑓.. The heat given off by the surface of the machine body to the 

factory environment �̇�𝐻𝐸 can be further described as the sum of convection �̇�𝑐𝑜𝑛𝑣. and 

radiation �̇�𝑟𝑎𝑑. (ref. Equations (5-13), (5-14) and the heat absorbed by the machine surface 

�̇�𝑠𝑢𝑟𝑓 as a function of its mass, heat capacity, and incremental change in surface 

temperature (Equation 5-15). The temperature gradient between the process 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 and 

surface temperature 𝑇𝑠𝑢𝑟𝑓. divided by the thermal resistance 𝑅𝑠ℎ𝑒𝑙𝑙 is referred to as 

conduction (ref. Equation 5-16). 

 

�̇�𝐻𝐸(𝑡) = �̇�𝑐𝑜𝑛𝑑.(𝑡) + �̇�𝐴𝐸(𝑡) − �̇�𝑠𝑢𝑟𝑓.(𝑡) (5-12) 

�̇�𝐻𝐸(𝑡) = �̇�𝑐𝑜𝑛𝑣.(𝑡) + �̇�𝑟𝑎𝑑(𝑡) (5-13) 

�̇�𝐻𝐸(𝑡) = 𝛼 ∙ 𝐴𝑠𝑢𝑟𝑓 ∙ (𝑇𝑠𝑢𝑟𝑓.(𝑡) − 𝑇𝑒𝑛𝑣.) + 휀 ∙ 𝜎 ∙ 𝐴𝑠𝑢𝑟𝑓 ∙ (𝑇𝑠𝑢𝑟𝑓.(𝑡)4 − 𝑇𝑒𝑛𝑣.
4) (5-14) 

  

�̇�𝑠𝑢𝑟𝑓.(𝑡) = 𝑚𝑠 ∙ 𝑐𝑝,𝑠𝑢𝑟𝑓. ∙
𝑑𝑇𝑠𝑢𝑟𝑓.(𝑡)

𝑑𝑡
 (5-15) 

�̇�𝑐𝑜𝑛𝑑.(𝑡) =
𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑡) − 𝑇𝑠𝑢𝑟𝑓.(𝑡)

𝑅𝑠ℎ𝑒𝑙𝑙

 (5-16) 

 

It is assumed that the material-specific parameters 𝑐𝑝 (heat capacity), 𝛼 (convective heat 

transfer factor) and the 휀 (emission factor) are constant and homogenous without 

temperature dependence on 𝑇𝑠𝑢𝑟𝑓.. Furthermore, the model is simplified by assuming that 

the temperature of the surrounding zone 𝑇𝑒𝑛𝑣. is constant. 

The differential equation derived from using Equation (5-12) with Equations (5-14), (5-15), 

and (5-16) can be approximated by Equation (5-17) and solved for different time steps ∆𝑡. 

substitute thermodynamic modeloven process
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𝑇𝑠𝑢𝑟𝑓.(𝑡 + ∆𝑡) = 𝑇𝑠𝑢𝑟𝑓.(𝑡) +
𝑑𝑇𝑠𝑢𝑟𝑓.(𝑡)

𝑑𝑡
∙ ∆𝑡 (5-17) 

 

The individual sources of heat emissions from machine operation are assigned to the 

respective zones within the factory building model. Due to the effects of thermal inertia 

and to improve simulation performance, heat emissions are implemented as one-hour 

averages. The feasibility of using lower temporal resolutions for certain energetic 

observations has already been recognized by Bleicher et al. (2014, p. 443). The example 

presented in Figure 5-17 shows the resulting heat emissions from a model representation 

of a furnace process. 

 

 

Figure 5-17 Example of heat emissions from a furnace process 

Process chain model 

According to VDI 2221 , a process chain refers to an arrangement of various successive 

manufacturing steps. A process chain can also be understood as a controlled sequence of 

individual processes “with the objective of transforming certain items from an input state 

into a conformable output state” (Henjes 2014, p. 976). In a factory setup, the individual 

processes are usually carried out by a certain number of machines and/or manual labor, 

which are linked together in a process chain by manual or automated logistics operations. 

A process chain model is characterized by a set of general (e.g., customer demand, shift 

calendar, number of products variants, respective batch sizes) and process- or machine-

specific (e.g., process, setup, and cycle time) information.  

The specifics of production planning and scheduling, including machine availability and 

the product mix processed by each machine, are capture by both enterprise resource 

planning systems (ERP) and manufacturing executing systems (MES). The information 

available in these systems can be used to parameterize the process chain model. The value 

stream method presented in 2.2.2 also offers a standardized way to gather the 

information required to characterize the process chain within the factory model. Figure 

5-18 outlines a process chain model which processes a material flow across a specific 

number of machines and buffers. Each machine performs a defined number of processes.  
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Figure 5-18 Framework for process chain model 

Auxiliary equipment model 

Auxiliary equipment includes technical installations to supply the manufacturing processes 

with further resources, in particular process media. Their operation results in an additional 

energy requirement. Examples include compressed air and vacuum, process cooling and 

heating as well as all types of process gases. In addition to supplying resources that are 

used directly in the process, auxiliary equipment also includes installations that enable the 

proper functioning of process-related machinery and equipment. An example of such a 

support function is the supply of compressed air to the airlock of a machine tool, which 

prevents dirt and dust from entering the inside of the spindle.  

Auxiliary equipment either provides individual resources to multiple machines at different 

conditions (e.g., volume flow, pressure level, temperature) or individual resources to 

singular machines with uniform conditions (ref. Figure 5-19). 

Depending on the quantitative and qualitative requirements, auxiliary equipment is 

installed either centrally (e.g., in a powerhouse) or decentralized (e.g., close to the process 

and machine). Apart from these considerations, the location and the auxiliary equipment 

installations at a production site are influenced by the boundary conditions and 

constraints imposed by the factory building and its historical development.  

Within the factory simulation, the energy demand of auxiliary equipment is represented 

by a black-box model. This model sets the quantity of the resource supplied (e.g., m³ of 

compressed air) in relation to the power requirement for the operation of the auxiliary 

equipment (e.g., kW electric load for compressor operation). The model may evolve in 

accuracy depending on data availability and measurement effort. Figure 5-20 illustrates a 

step-by-step procedure to developing model accuracy according to data availability and 

measurement effort. 
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Figure 5-19 Framework for auxiliary equipment model 

In the first step, a physical model (1) is fitted by available information from equipment 

manufacturer data sheets (2). In a subsequent step, two-dimensional regression models 

(3) and n-dimensional look-up tables (4) are implied into the model, based on one-time 

measurements conducted in the field. 

 

 

Figure 5-20 Step-by-step procedure to evolve model accuracy 

If continuous measurement data are available (e.g., from a process monitoring system), 

the model may include an adaptive look-up table (5) to represent changing operating 

conditions. In this way, the system response of a physical asset can be matched with its 

model representation, thus increasing model accuracy. 
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This general modeling approach is further illustrated with representative auxiliary 

equipment used in a factory environment and described in the next paragraph.  

 

Model of a compressed air system 

A compressed air system, including the components for conversion, storage, distribution, 

and delivery, is shown in Figure 5-21. The power requirement of an air compressor can 

be described by a physical (thermodynamic) model and expressed by the mass flow �̇� 

multiplied by the specific compression work required to compress one m³ of air 

(Equation 5-18). 

 

𝑃𝐶𝐴𝑆(𝑡) = �̇�(𝑡) ∙ 𝑤𝑇,1→2(𝑡) (5-18) 

 

 

Figure 5-21 Auxiliary equipment model (example of a compressed air system) 

In order to specify the compression work, it is necessary to establish the energy balance 

for the air compressor according to the first law of thermodynamics for open systems 

(Equation 5-19). Depending on the system boundaries, the change in kinetic energy in a 

gaseous fluid is insignificant and can be neglected. Due to its low dead weight, this also 

applies to the change in potential energy. (Langeheinecke et al. 2017, p. 89)  

 

𝛥ℎ1→2 + 𝑒𝑘𝑖𝑛.  1→2 + 𝑒𝑝𝑜𝑡.  1→2 = 𝑞1→2 + 𝑤𝑇,1→2 (5-19) 

 

A thermodynamic transformation at isothermal conditions assumes that there is no 

temperature change (∆𝑇 = 0) and that all the heat generated by the work 𝑤𝑇,1→2 is 

completely dissipated as heat −𝑞1→2 by the environment. This can be realized if the 

thermodynamic transformation is carried out very slowly. A thermodynamic 
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transformation at adiabatic conditions represents the other extreme case. In this scenario, 

there is no heat exchange with the environment (−𝑞1→2 = 0), which can only be realized 

if the thermodynamic transformation is carried out very quickly. Since there are no friction 

losses, the adiabatic process is reversible and is referred to as isentropic. Isothermal and 

isentropic processes represent ideal cases that cannot be realized in technical applications. 

A thermodynamic transformation at polytrophic conditions best represents the physical 

behavior of a compressor. In this case, heat is exchanged with the environment during 

the compression work. Equation (5-19) is therefore reduced to Equation (5-20). The 

difference in model behavior considering isothermal, polytropic, or isotropic assumptions 

is illustrated in Figure 5-22. 

 

𝑤𝑇,1→2.𝑝𝑜𝑙𝑦 = 𝛥ℎ1→2 − 𝑞1→2 (5-20) 

 

The value of 𝑤𝑇,1→2 can be calculated considering the general gas equation under ideal 

gas conditions and the relation of the specific gas constant, the polytropic coefficient, and 

the specific heat capacities (Hering et al. 2016, pp. 179-185). Together with 

Equation (5-18) and the Poisson equation, the power for compression can be described 

according to Equation (2-21).  

 

𝑃𝐶𝐴𝑆(𝑡) =
𝑛

(𝑛 − 1)
∙ 𝑝1 ∙ �̇�1(𝑡) ∙ [(

𝑝2(𝑡)

𝑝1

)

𝑛−1
𝑛

− 1] (5-21) 

 

For more details on physical models for compressed air systems, see also Pohl et al. (2012, 

p. 738 f.) and Thiede (2012, pp. 108-114). 

 

   

Figure 5-22 Power demand of compressed air systems considering volume flow and pressure rise at 
isothermal, polytrophic, and isentropic conditions 
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In order to further develop the physical model, measuring points for pressure, 

temperature, humidity, and volume flow are further given in Figure 5-21. According to 

ISO 1217, these measurement points can be used to characterize the compressed air 

system and relate its electrical energy demand to the compressed air flow provided 

(ISO 1217 , ISO 1217 AMD 1 ). Compared to a physical modeling approach, 

measurement-based black-box models can provide a more realistic representation of the 

energy consumption characteristics of a compressed air system. Based on the 

measurement setup, the model can also include the effects of subcomponents such as 

filters and coolers. Equation (5-22) summarizes the relevant measurement point for a 

black-box model, includes the humidity ratio 𝑥1 and 𝑥1, the actual mass of water vapor 

present in moist supply, and return air. The results can be implemented in a model using 

look-up table (LUT). 

 

𝑃𝐶𝐴𝑆 = 𝐿𝑈𝑇(𝑝1 , 𝑝2, 𝑇1, 𝑇2, 𝑥1, 𝑥2, �̇�1) 
(5-22) 

 

Model of a process cooling system 

To meet the cooling demand of a process within a factory, a cooling system is required. 

A cooling system generally consists of technical components for the conversion, storage, 

distribution, and delivery (ref. Figure 5-23). The heart of a cooling system setup is a 

refrigeration unit or chiller. Its respective energy balance is described in Equation (5-23). 

A medium with the flow rate �̇�𝐸 and the heat capacity 𝑐𝑝,𝐸 that requires cooling from 𝑇𝐸,𝑖𝑛 

to 𝑇𝐸,𝑜𝑢𝑡 exchanges the heat flow �̇�𝑃𝐶𝑆 through a heat exchanger and evaporates the 

refrigerant (e.g., R410A) inside the chiller by dissipating the heat �̇�𝐸 (ref. Equation 5-24). 

 

 

Figure 5-23 Model of auxiliary equipment (example of a process cooling system with free cooling) 

Electrical power 𝑃𝑐𝑜𝑚𝑝.,𝑒𝑙. is required to compress the evaporated refrigerant with the mass 

flow �̇�𝐶 to higher pressures. In the next step, the refrigerant at higher pressure is passed 

through a second air- or water-cooled heat exchanger. While exchanging the heat flow 

�̇�𝑐 with a heat sink (e.g., air or water-glycol-mixtures), the refrigerant with the heat 
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capacity 𝑐𝑝,𝐶 condenses (ref. Equation 5-25). An expansion valve closes the 

thermodynamic circuit while reducing pressure and temperature of the refrigerant. 

 

�̇�𝐸 + 𝑃𝑐𝑜𝑚𝑝.,𝑒𝑙. + �̇�𝑐 = 0 (5-23) 

�̇�𝑃𝐶𝑆 = �̇�𝐸 = �̇�𝐸 ∙ 𝑐𝑝,𝐸 ∙ (𝑇𝐸,𝑜𝑢𝑡 − 𝑇𝐸,𝑖𝑛) (5-24) 

�̇�𝑐 = �̇�𝑐 ∙ 𝑐𝑝,𝐶 ∙ (𝑇𝑐,𝑜𝑢𝑡 − 𝑇𝑐,𝑖𝑛) (5-25) 

 

The Energy Efficiency Ratio (EER) of a cooling system describes the ratio between the 

available cooling power and the electrical power demand of the cooling system 

(Equation 5-26). Based on measurement campaigns conducted in the field, the EER can 

be quantified for specific cooling system configurations and ambient conditions. To 

improve the model accuracy, EER can also be implemented in the cooling system model 

as a look-up table (LUT). Depending on whether the condenser is air- or water-cooled, 

the look-up table relates the measured values for �̇�𝑃𝐶𝑆 = 𝑓(�̇�𝐸 , 𝑇𝐸,𝑜𝑢𝑡, 𝑇𝐸,𝑖𝑛), 𝑃𝑐𝑜𝑚𝑝.,𝑒𝑙. and 

the inlet temperature 𝑇𝑐,𝑖𝑛 of air or water (ref. Figure 5-24 A). 

 

𝐸𝐸𝑅 =
�̇�𝑃𝐶𝑆

𝑃𝑐𝑜𝑚𝑝.,𝑒𝑙.

  =  𝐿𝑈𝑇(�̇�𝑃𝐶𝑆, 𝑃𝑐𝑜𝑚𝑝.,𝑒𝑙., 𝑇𝑐,𝑖𝑛)  (5-26) 

 

Free cooling is an important measure for reducing the energy demand of cooling systems 

in general and process cooling systems in particular. A free cooling system uses the 

temperature difference between supply temperature 𝑇𝐸,𝑜𝑢𝑡 and ambient temperature. This 

is especially true for factories that operate manufacturing processes with constant cooling 

requirements and that are located in temperate or cold climates. Figure 5-24 B shows the 

example of a cooling system design with free cooling and supply temperature requirement 

of 16 °C. The figure shows that at a temperature difference of 10 °C or outdoor 

temperatures below 6 °C, respectively, free cooling can cover 100 % of the cooling 

demand. With the annual temperature distribution (green curve), free cooling can cover 

the entire cooling demand 45 % of the time. For 85% of the time, it can at least partially 

help reduce the cooling demand provided by the cooling system.  

Further details on the part-load performance of air-cooled chillers can be found in Yu and 

Chan (2007, p. 3824 f.). For more information on modeling cooling systems, including 

storage and free cooling, see Puls et al. (2015, p. 168 f.) and Puls et al. (2019, p. 1873 

ff.). 
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Figure 5-24 (A) Characteristic efficiency of a chiller at partial load for different outdoor temperatures 
and utilization rates of maximum cooling power (Mitsubishi 2020); (B) Example of available 
free cooling capacity as a function of outdoor temperature (supply temperature 16 °C, 
cooling demand covered 100% by free cooling at outdoor temperatures below 6 °C) 

5.4.2 Model of the factory building and technical building systems 

 

Model of a factory building 

The factory building model describes the characteristics of the building envelope, 

including walls, roofs, and floors. All parts of the envelope are described in terms of 

geometry and material composition. Furthermore, the number and dimensions of all 

openings, windows, doors, leakages, and thermal bridges are characterized. The factory 

building model further specifies how the interior spaces are divided into zones and how 

these zones are composed and interconnected. Each individual zone includes information 

on temperature, humidity, and ventilation requirements. In addition, the equipment 

installations for lighting, heating, ventilation, and air-conditioning are defined and 

assigned to each zone. All building zones take into account internal heat gains from 

equipment operation and staff occupancy. Heat emissions from machinery and auxiliary 

equipment are quantified according to the models developed in Subsection 5.4.1. The 

factory building model also takes into account the thermal inertia caused by the mass and 

material composition of the building envelope and equipment installations. Also included 

are submodels describing manual and automated control strategies for shading devices 

and window openings designed to prevent excessive heating and take advantage of 

natural lighting and ventilation.  

Figure 5-25 illustrates the different energy flows within a factory building, including heat 

gains and losses from radiation (�̇�𝑟𝑎𝑑.), convection (�̇�𝑐𝑜𝑛.), and conduction (�̇�𝑐𝑜𝑛𝑑.), heat 

dissipation from internal heat sources (�̇�𝐻𝐸) and the heating and cooling controlled by 

heating, ventilation, and air-conditioning systems (�̇�𝐻𝑉𝐴𝐶.). Furthermore, ventilation 

(�̇�𝑣𝑒𝑛𝑡.), transmission (�̇�𝑡𝑟𝑎𝑛𝑠.), and leakage losses (�̇�𝑙𝑒𝑎𝑘.) are taken into account. Assuming 

stationary conditions (∑ �̇�𝑖𝑛,𝑗𝑗 = ∑ �̇�𝑜𝑢𝑡,𝑘𝑗 ), the factory building model must satisfy the 

energy balance equation given in Equation (5-27) to maintain the indoor environment at 

a constant level (
𝑑𝐸𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

𝑑𝑡
= 0). The heat exchange within the individual building zones 
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consists of the heat transfer between the building and the surrounding environment, the 

heat emissions �̇�𝐻𝐸 from the activities of the employees �̇�𝐻𝐸,𝐸, the lighting �̇�𝐻𝐸,𝐿, and the 

operation of machines �̇�𝐻𝐸,𝑀 and auxiliary equipment �̇�𝐻𝐸,𝐴𝐸 as well as the heating and 

cooling by technical building systems (Equations 5-28) and 5-29). 

 

 

Figure 5-25 Building model (M = machinery; AE = auxiliary equipment) 

 

Equation (5-30) adds heat exchange as a result of mass transfer through openings �̇�𝑜𝑝𝑒𝑛., 

leakages �̇�𝑙𝑒𝑎𝑘., and ventilation systems �̇�𝑣𝑒𝑛𝑡.. 

 

𝑑𝐸𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

𝑑𝑡
= ∑ ∑ �̇�𝑖(𝑡)

𝑖

𝑛

𝑍1
+ ∑ ∑ �̇�𝑖𝑛,𝑗(𝑡) ∙

𝑗
ℎ𝑗(𝑡)

𝑛

𝑍1
− ∑ ∑ �̇�𝑜𝑢𝑡,𝑘(𝑡) ∙

𝑘
ℎ𝑘(𝑡)

𝑛

𝑍1
= 0 (5-27) 

∑ ∑ �̇�𝑖(𝑡)
𝑖

𝑛

𝑍1
= �̇�𝑐𝑜𝑛𝑑.(𝑡) + �̇�𝑟𝑎𝑑.(𝑡) + �̇�𝑐𝑜𝑛𝑣.(𝑡) + �̇�𝐻𝐸(𝑡) + �̇�𝐻𝑉𝐴𝐶(𝑡)  (5-28) 

�̇�𝐻𝐸(𝑡) = �̇�𝐻𝐸,𝐸(𝑡) + �̇�𝐻𝐸,𝐿(𝑡) + �̇�𝐻𝐸,𝑀(𝑡) + �̇�𝐻𝐸,𝐴𝐸(𝑡) (5-29) 

∑ ∑ �̇�𝑖𝑛,𝑗 ∙
𝑗

(ℎ𝑗 − ℎ𝑘)
𝑛

𝑍1
= �̇�𝑜𝑝𝑒𝑛.(𝑡) + �̇�𝑙𝑒𝑎𝑘.(𝑡) + �̇�𝑣𝑒𝑛𝑡.(𝑡) (5-30) 

 

There is a wide range of software tools available to help engineers assess the energy 

demand and comfort performance of buildings. These tools usually come from the 

research fields of architecture and civil engineering. Depending on the particular 

application and the availability of information, these software tools allow the description 

of physical phenomena at different levels of detail. The models are based on either a 

white-box, black-box, or combined gray-box modeling approach (Amara et al. 2015, pp. 

98-101). Apart from the energy consumption of a building, modern building simulation 

software can be used to define gradients and distribution of pressure, humidity, and 

temperature within individual building zones. In general, numerical methods are used to 

solve the differential equations describing the physical behavior (heat flux, heat transfer, 

and heat storage) of a building (Wetter 2009, pp. 144-146). 

Zone nZone 1 Zone 2

shadingopening
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Among the tested and commercially available software tools for energy analysis of 

buildings are EnergyPlus, TRNSYS, and IDA ICE. Detailed comparisons between the 

different software tools can be found in Crawley et al. (2008, p. 666 ff.) and Jarić et al. 

(2013, p. 107 ff.). 

 

Technical building systems model 

According to DIN EN ISO 16484-2, technical building systems comprise the technical 

equipment distributed in the infrastructure of a building. This includes installations for 

electricity, gas, heating, water, and communication systems (DIN EN ISO 164842, p. 14). 

In addition to this definition, the presented factory simulation model further distinguishes 

between technical systems of the building infrastructure, auxiliary equipment used for the 

supply of manufacturing processes, and energy supply systems for the handling and 

transformation of the final energy demand between the grid and intermediate energy 

carriers. Considering the building infrastructure, the detailed representation of heating, 

ventilation, and air-conditioning (HVAC) systems is crucial for an accurate representation 

of the building behavior in the model in terms of energy consumption (Kramer et al. 2017, 

p. 287 f., Shin and Haberl 2019, p. 9 f.). HVAC systems that incorporate the four 

functions, heating, cooling, humidifying, and de-humidifying, are commonly referred to 

as ‘full air-conditioning systems’. If only a selected number of functions are installed, the 

systems are referred to as ‘partial air-conditioning systems’ (Wiendahl et al. 2015, p. 294). 

 

 

Figure 5-26 Heating, ventilation, and air-conditioning system (HVAC) (own representation based on 
Wiendahl et al. 2015, p. 294, with symbols according to Siemens 1999) 

Figure 5-26 shows an example setup for a centralized HVAC system. When the louvers 

(1) are open in this setup, outside air is filtered (2) and passes through a heat recovery 

unit (3) to either preheat or precool the incoming air using the temperature and humidity 

difference between return airflow and outside air conditions. Heat recovery units generally 

use a cross-flow or rotary heat exchanger. The proportion of fresh air and recirculated air 

can be adjusted in the mixing chamber (4). The supplied air is then passed through a series 
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of preheating (5), silencing (6), cooling (7), humidifying (8), and reheating (10) units to 

adjust the supply air to the desired conditions. Before reaching the respective building 

zone(s), the ventilation section, consisting of a fan (11), a silencer and filter, applies the 

required pressure difference to compensate for the pressure losses in the distribution 

system (e.g., ventilation pipes and openings). In addition to the described system setup, 

there are many variations. In decentralized setups, for example, preconditioned air from 

a central ventilation system is used, while heating, cooling, and (de-)humidification are 

implemented decentrally (Wiendahl et al. 2015, p. 294). Modular system setups increase 

flexibility. For example, if manufacturing activities change or if different ambient air 

conditions are required in different parts of the factory building, the system can be taken 

over or partially switched off, while the rest of the building can continue to be air-

conditioned as required in an energy-efficient manner.  

In addition to the HVAC system setup, the system controls have a major impact on energy 

consumption and indoor air quality. Therefore, a thorough representation of the control 

strategy in the factory simulation model is required.  

In the system setup shown in Figure 5-26, the control unit (13) compares the temperature 

and humidity measured in the zone or the return airflow with the temperature and 

humidity present in the thermostat and hygrostat of the control unit. If the temperature 

and humidity deviate from the preset values, the valves supplying the heating or cooling 

coils and/or the (de)humidifiers are controlled accordingly. If a heat recovery unit is part 

of the HVAC system setup, the control unit can adjust the speed of the rotary heat 

exchanger to change the degree of heat recovery. The proportion of recirculated air 

increases proportionally to the decrease in outside air temperature. The minimum fresh 

air supply is preset. In addition to heat recovery and air recirculation, there are other ways 

to improve energy efficiency through individual control strategies. These are, for example, 

predictive control functions that take into account external factors such as changing 

weather conditions or changes in internal gains (Oldewurtel et al. 2012, p. 16).  

The VDI 3802 Part 1 standard generally distinguishes between four different types of air-

conditioning project frameworks: (1) construction in a new hall, (2) the modernization of 

air-conditioning in an existing hall, (3) the conversion of an air-conditioning system due 

to changed loads, and (4) the retrofitting an air-conditioning system in an existing facility 

(VDI 3802, p. 10). The requirements for collection, supply, and exhaust airflow 

requirements in factories must be designed in accordance with the occupational exposure 

limits for substances summarized in the standard. Empirical values for area-related supply 

airflows are summarized in Table 5-5.  

In addition, the standard also recommends the use of laboratory tests and CFD simulations 

to improve the accuracy of the design results (VDI 3802, pp. 57, 70). Besides, the room 

temperature, humidity, CO2 concentrations, and airflow must comply with the 

occupational health and safety standards according to BGI 7003, ASR A3.5, ASR A3.6, 

and DIN EN 16798 (DGUV 2010, BAuA 2010, BAuA 2012, DIN EN 16798-3 ).  
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Table 5-5 Empirical values for area-related supply airflows (extract from VDI 3802, p. 71, DIN 18599-
10, p. 55) 

State of machine Area-related supply airflows [m³/(h·m³)] 

Foundry 50 – 200 

Mechanical manufacturing 20 – 75 

Forming 20 – 50 

Assembly 20 – 30 

Table 5-6 gives examples of values for minimum air temperatures in working spaces, 

which are specified according to work intensities. Also, the maximum air temperatures 

should not exceed +26 °C (BAuA 2010, p. 4). 

Table 5-6 Minimum air temperature in workspaces (BAuA 2010, p. 4) 

Predominant posture Work intensity 

 Light Moderate heavy 

Sitting 20 °C 19 °C - 

Standing, walking 19 °C 17 °C 12 °C 

 

Climate zones and weather data 

The location of the factory building has a major influence on the design of the technical 

building systems and its energy consumption. In addition, the location defines the types 

and quantities of renewable energy sources that can be used on-site.  

According to the Köppen-Geiger climate classification, the world climate can be divided 

into five different zones, tropical (mega-thermal) climates, arid and semiarid climates, 

temperate (mesothermal) climates, continental (microthermal) climates, polar and alpine 

(montane) climates (Rubel and Kottek 2010, p. 136 f. and Beck et al. 2018, p. 3). Each 

climate zone and local weather condition presents unique possibilities and constraints for 

the designs of a factory's energy system. Therefore they require a corresponding 

representation in the factory simulation model. 

Historical time series and hourly weather data on temperature, humidity, global radiation, 

precipitation, and wind speed are available from various institutional organizations and 

commercial providers, including Deutscher Wetterdienst (DWD), ASHRAE, and Meteotest 

(DWD 2020, ASHRAE 2020, Meteotest AG 2020). An example time series for the Munich 

site is shown in Figure 5-27. 
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Figure 5-27 Example weather data time series with temperature, relative humidity, global radiation, 
and wind speed (hourly values for Munich obtained from Meteonorm 7) 

 

Validation of the factory building and technical building systems model 

Before the simulation experiments are carried out, the building model must be validated. 

In general, the quality of a model representation from a real-world system is verified by 

comparing simulation results with measured data taken from the field. For example, the 

energy consumption of the modeled factory can be compared to the measured energy 

consumption of the real-world factory. Another example is the comparison between 

simulated indoor temperature and measured indoor temperature. Depending on the 

application scenario and modeling objective, other parameters can also be used. 

Two different statistical performance metrics and corresponding acceptance criteria for 

model calibration are reported in the literature: Mean Bias Error (MBE) (Equation 5-31) 

and Coefficient of Root Mean Square Error (CVRMSE) (Equation 5-32). Further guidance 

on building energy simulation and model calibration can be found in Coakley et al. (2014). 

 

𝑀𝐵𝐸 [%] =
∑ (𝑚𝑖 − 𝑠𝑖)

𝑁𝑝

𝑖=1

∑ (𝑚𝑖)
𝑁𝑝

𝑖=1

 (5-31) 

 

MBE is a dimensionless bias measure that calculates the average deviation between 

measured in simulated values. A low MBE indicates a small deviation between the values 

derived from the model and the measured values. 

Here 𝑚𝑖 and 𝑠𝑖 represent measured and simulated values for each model instance 𝑖. 𝑁𝑝 is 

the number of data points between interval 𝑝. For monthly values, 𝑁𝑝 is equal to 12 and 

for hourly values, 𝑁𝑝 is equal to 8760. 

MBE is a good measure to evaluate the overall bias of the model, but the positive bias 

compensates for negative bias. This is called the cancellation effect and requires an 

additional measure to quantify the model error. CVRMSE does not suffer from the 

cancellation effect and allows the assessment of the model fit between measured and 

simulated data. The CVRMSE is obtained by dividing the root mean square error (RMSE) 

by the average value of all measurement values �̅�.  
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𝐶𝑉𝑅𝑀𝑆𝐸 [%] =
𝑅𝑀𝑆𝐸

�̅�
=

√(∑ (𝑚𝑖 − 𝑠𝑖)
2𝑁𝑝

𝑖=1
) / 𝑁𝑝

�̅�
 

(5-32) 

 

The RMSE indicates the variability between measured and simulated data. For the RMSE 

values, the difference between each pair of measured 𝑚𝑖 and simulated 𝑠𝑖 values are 

squared, and the sum of all squares within the interval 𝑝 is divided by the respective 

number of data points 𝑁𝑝 of the same interval.  

After calculating the deviation and variability between modeled and measured data, the 

quality of the simulation results must meet the acceptance criteria specified in standards 

(ref. Table 5-7). For example, ASHRAE Guideline 14 and the U.S. Department of Energy 

define the most stringent requirement for the monthly evaluation. When considering 

hourly values, the Energy Valuation Organization allows a maximum MBE of 5% and a 

CVRMSE of 20%. 

Table 5-7 Acceptance criteria for calibration of models (Coakley et al. 2014, p. 126) 

Standard/guideline Monthly criteria (%) 

𝑵 = 𝟏𝟐 

Hourly criteria (%) 

𝑵 = 𝟖𝟕𝟔𝟎 

MBE CV RMSE MBE CV RMSE 

ASHRAE Guideline 14 (2002) 5 15 10 30 

Efficiency Valuation Organization (2002) 20 - 5 20 

U.S. Department of Energy (2015) 5 15 10 30 

 

If the initial model calibration does not meet the defined acceptance criteria, refinements 

must be considered. Based on the findings of Lam and Hui (1996, p. 36), Table 5-8 

provides an overview of different building model components and their influence on 

model accuracy. Further measures to refine the simulation models can be achieved by 

adjusting air exchange rates and thermal storage masses (Schramek and Recknagel 2011, 

p. 591). 

Table 5-8 Building model components and their influence on model accuracy 

Model component Influence on model accuracy 

Heating, ventilation, and air-conditioning (HVAC) setpoints high 

Occupant density, lighting and equipment load high 

Building envelope specifications medium 
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5.4.3 Energy supply system models 

It is noted that the conceptual synthesis of an energy supply system model is responsible 

for determining much of the total costs of the system (Voll et al. 2015, p. 447). In order 

to arrive at a demand-oriented design that takes into account both the specifics of the 

underlying manufacturing processes and the specifics of the factory location, additional 

submodels are introduced (ref. Figure 5-28). These models are used to describe the 

consumption characteristics of the energy supply system.  

 

 

Figure 5-28 Overview of components in a typical energy supply system for industry 

The energy supply system model represents the interaction of auxiliary equipment, 

technical building systems, and other installations used to meet the required energy 
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demand (e.g., renewable energy systems). It further takes into account the connection to 

both electricity and gas grids but also represents other local grid infrastructures. It also 

sets energy price tariffs, including the remuneration schemes for the feed-in of energy 

from renewable sources and demand-side management. 

Figure 5-28 shows the energy supply system model with its submodels and 

interconnections. The figure shows the different subcategories, namely technical building 

systems, including equipment installations for space heating and cooling, auxiliary 

equipment for the provision of process-related energy demand, including compressed air, 

process heating, and cooling as well as installations for the production of energy from 

on-site renewable sources. When considering the energy path with storage, distribution, 

conversion, and delivery, a special focus is put on the different energy storage submodels. 

 

Models of the space heating and cooling systems 

A wide range of technical systems can provide the space heating requirements, including 

boilers, heat pumps, and combined heat and power (CHP) systems. Depending on the 

specific demand characteristics, the design of the supply system may include different 

technologies. Figure 5-29 A shows an example of a load duration curve. Three supply 

technologies are also indicated with their respective operating ranges. In this setup, a 

combined heat and power plant (CHP) with flexible operating ranges is used to provide 

the baseload heating demand. A heat pump (HP) is used for intermediate loads. Finally, a 

combination of boiler and heating storage is used to cover peak loads. 

 

 

Figure 5-29 A: Example of a load duration curve for heating demand; B: Example of the characteristic 
relationship between heat source, heat flow, and COP for high-temperature heat pumps 
with delta T = 40 K (Rieberer et al. 2015, p. 88) 

The electrical and thermal efficiency of CHP plants is between 25-35% and 55-65%, 

respectively, while the overall efficiency is approximately 85% (Schramek and Recknagel 

2011, p. 782). Equation (5-33) relates the electrical and thermal power obtained from a 

CHP plant to the efficiencies 𝜂𝑒𝑙𝑒𝑐𝑡𝑟./𝑡ℎ𝑒𝑟𝑚., the fuel demand �̇�𝑓𝑢𝑒𝑙, and the calorific value 

𝐻𝑖 of the fuel. The maximum installed heating capacity of a CHP plant is usually chosen 

to be 50% of the peak heating demand (Schramek and Recknagel 2011, p. 784). 

Boiler

HP

CHP

60 °C
80 °C

100 °C

40 °C20 °C

0 2000 4000 6000 8000

0%

20%

40%

60%

80%

100%

hours of a year [h]

h
e
a
t 

d
e
m

a
n

d
 [

%
]

to 

storage

from 

storage

from 

storage

control

range

-20 0 20 40 60

0

5

10

15

20

 temperature of heat flow

temperature of heat source [°C]

C
O

P
 [

-]

A B



118 5.4 Development of a Factory Simulation Model 

 

 

 

𝑃𝐶𝐻𝑃,𝑒𝑙𝑒𝑐𝑡𝑟.(𝑡) + �̇�𝐶𝐻𝑃,𝑡ℎ𝑒𝑟𝑚.(𝑡) = (𝜂𝑒𝑙𝑒𝑐𝑡𝑟. + 𝜂𝑡ℎ𝑒𝑟𝑚.) ∙ �̇�𝑓𝑢𝑒𝑙(𝑡) ∙ 𝐻𝑖  (5-33) 

 

Figure 5-29 B shows the individual performance characteristics of a heat pump, expressed 

by the coefficient of performance (COP) and depending on the heat source and the flow 

temperature. The COP puts the electrical power requirement of a heat pump in relation 

to the thermal power provided. In general, high temperature differences between the 

heat source and flow lead to lower COP values. Based on Schramek and Recknagel (2011, 

p. 720), the COP of a heat pump is described by Equation (5-34). With this relationship in 

Equation (5-35), the heat supply from a heat pump can be calculated with �̇�0, the power 

capacity of the evaporator, 𝜂𝑐𝑜𝑚𝑝. the efficiency of compression, and 𝑃𝑐𝑜𝑚𝑝. the power 

demand of the compressor.  

 

𝐶𝑂𝑃𝐻𝑃(𝑡) =
�̇�0(𝑡) + 𝜂𝑐𝑜𝑚𝑝. ∙ 𝑃𝑐𝑜𝑚𝑝.(𝑡)

𝑃𝑐𝑜𝑚𝑝.(𝑡)
 (5-34) 

�̇�𝐻𝑃(𝑡) = �̇�0(𝑡) + 𝜂𝑐𝑜𝑚𝑝. ∙ 𝑃𝑐𝑜𝑚𝑝.(𝑡) = �̇�0(𝑡) ∙ (1 +
𝜂𝑐𝑜𝑚𝑝.

𝐶𝑂𝑃𝐻𝑃(𝑡) − 𝜂𝑐𝑜𝑚𝑝.

) (5-35) 

 

The boiler model is described in Equation (5-36) and takes into account the efficiency 𝜂𝐵 

of the boiler operation, the fuel demand �̇�𝑓𝑢𝑒𝑙, and its heating value 𝐻𝑖. The lower heating 

value 𝐻𝑖 represents the usable heat within a certain fuel quantity. Unlike the higher 

heating values 𝐻𝑠, the enthalpy stored in the vapor of the combustion products is not 

taken into account here. 

 

�̇�𝐵(𝑡) = 𝜂𝐵 ∙ �̇�𝑓𝑢𝑒𝑙(𝑡) ∙ 𝐻𝑖  (5-36) 

 

The model used to characterize the energy demand for space cooling is identical to the 

model presented in Subsection 5.4.1 to describe the energy demand for process cooling. 

Therefore, no further description of space cooling is given in this section. 

 

Energy storage system models 

Three types of energy storage systems are considered in the energy supply system model, 

namely thermal, compressed air, and electrical energy storage systems. Table 5-9 gives an 

overview of the parameters used in the model. 
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The energy storage capacity of a thermal energy storage system can be described 

according to Equation (5-37), where 𝑚𝑠𝑡𝑜𝑟𝑎𝑔𝑒 is the mass in the storage system, 𝑐𝑝 the 

heat capacity for the storage medium (e.g., air, water, thermal oil), and (𝑇(𝑡) − 𝑇𝑚𝑖𝑛.) is 

the difference between the current and the minimum permissible temperatures in the 

storage system. The charging and discharging capacity of a thermal energy storage system 

is limited by the mass flow of the heat transfer medium, the difference between the 

temperature of the heat transfer medium and the current temperature in the storage 

tank, and the size of the heat exchanger surface. Within the model, these parameters are 

set according to the manufacturer’s specifications and supplemented by a term 

representing the losses of the system (Equation 5-38). The boundary conditions include 

the footprint or the space required for installing the system 𝑉𝑇𝐸𝑆.𝑚𝑎𝑥. and the maximum 

and minimum permissible temperatures 𝑇𝑇𝐸𝑆.𝑚𝑎𝑥. / 𝑇𝑇𝐸𝑆.𝑚𝑖𝑛. in the storage system.  

Table 5-9 Overview of energy storage systems and their parameters 

 Thermodynamic Electrochemical 

     

 Thermal 
energy storage  

Compressed air 
energy storage  

Electrical 
energy storage 

     

Symbol 

    

 heat cold   

Storage capacity 𝑄𝑇𝐸𝑆  𝑈𝐶𝐴𝐸𝑆  𝑊𝐸𝐸𝑆 

Maximum charge  �̇�𝑇𝐸𝑆.𝑖𝑛.𝑚𝑎𝑥. �̇�𝐶𝐴𝐸𝑆.𝑖𝑛.𝑛𝑜𝑚.𝑚𝑎𝑥. 𝑃𝐸𝐸𝑆.𝑖𝑛.𝑚𝑎𝑥. 

Minimum discharge �̇�𝑇𝐸𝑆.𝑜𝑢𝑡.𝑚𝑖𝑛. �̇�𝐶𝐴𝐸𝑆.𝑜𝑢𝑡.𝑛𝑜𝑚.𝑚𝑖𝑛. 𝑃𝐸𝐸𝑆.𝑜𝑢𝑡.𝑚𝑖𝑛. 

    

Boundary conditions 
𝑉𝑇𝐸𝑆.𝑚𝑎𝑥. 𝑉𝐶𝐴𝐸𝑆.𝑚𝑎𝑥. 𝑉𝐸𝐸𝑆.𝑚𝑎𝑥. 

𝑇𝑇𝐸𝑆.𝑚𝑎𝑥. / 𝑇𝑇𝐸𝑆.𝑚𝑖𝑛. 𝑝𝐶𝐴𝐸𝑆.𝑚𝑎𝑥. / 𝑝𝐶𝐴𝐸𝑆.𝑚𝑖𝑛. 𝑊𝐸𝐸𝑆.𝑚𝑎𝑥. / 𝑊𝐸𝐸𝑆.𝑚𝑖𝑛. 

 

𝑄𝑇𝐸𝑆(𝑡) = 𝑚𝑇𝐸𝑆 ∙ 𝑐𝑝 ∙ (𝑇𝑇𝐸𝑆(𝑡) − 𝑇𝑇𝐸𝑆.𝑚𝑖𝑛.) (5-37) 

𝑑𝑄𝑇𝐸𝑆(𝑡)

𝑑𝑡
= �̇�𝑇𝐸𝑆.𝑖𝑛(𝑡) − �̇�𝑇𝐸𝑆.𝑜𝑢𝑡(𝑡) − �̇�𝑇𝐸𝑆.𝑙𝑜𝑠𝑠(𝑡) 

(5-38) 

 

Unlike incompressible storage media such as water, air can be used to store energy 

through compression. According to the ideal gas law, the compressed air energy storage 

is modeled as a system with isothermal behavior (Equation 5-39). The assumption of 

isothermal behavior is only valid if the change of state during compression and expansion 

is sufficiently slow and the heat dissipation sufficiently quickly. Compressed air systems 

use aftercoolers to reduce the air temperature after compression (ref. Figure 5-21). The 
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charging and discharging is described by the mass flow of compressed air injected and 

withdrawn from the storage system according to Equations (5-40) and (5-41). The 

maximum charging �̇�𝐶𝐴𝐸𝑆.𝑖𝑛.𝑛𝑜𝑚𝑖𝑛𝑎𝑙.𝑚𝑎𝑥. and discharging volume flow �̇�𝐶𝐴𝐸𝑆.𝑜𝑢𝑡.𝑛𝑜𝑚𝑖𝑛𝑎𝑙.𝑚𝑎𝑥., 

as well as upper and lower pressure limits 𝑝𝐶𝐴𝐸𝑆.𝑚𝑖𝑛. and 𝑝𝐶𝐴𝐸𝑆.𝑚𝑎𝑥., are set as parameters 

within the air compressor model. Taking conservation of mass into account, the 

relationship between the volume flow at nominal conditions and after compression can 

be described by the mass balance according to Equation (5-42). Assuming isothermal 

conditions, the energy contained in a compressed air storage system is described by 

Equation (5-43). 

 

𝑝(𝑡) ∙ 𝑉𝑐𝑜𝑛𝑠𝑡. = 𝑚𝐶𝐴𝐸𝑆(𝑡) ∙ 𝑅𝑎𝑖𝑟 ∙ 𝑇𝐶𝐴𝐸𝑆  (5-39) 

𝑚𝐶𝐴𝐸𝑆(𝑡) = 𝑚𝐶𝐴𝐸𝑆.0 + ∫ �̇�𝑖𝑛 𝑑𝑡 − ∫ �̇�𝑜𝑢𝑡  𝑑𝑡 (5-40) 

𝑚𝐶𝐴𝐸𝑆(𝑡) = 𝑚𝐶𝐴𝐸𝑆.0 + 𝜌𝑎𝑖𝑟.𝑖𝑛 ∙ ∫ �̇�𝐶𝐴𝐸𝑆.𝑖𝑛(𝑡) 𝑑𝑡 − 𝜌𝑎𝑖𝑟.𝑜𝑢𝑡 ∙ ∫ �̇�𝐶𝐴𝐸𝑆.𝑜𝑢𝑡(𝑡) 𝑑𝑡 (5-41) 

�̇�𝐶𝐴𝐸𝑆.𝑖𝑛/𝑜𝑢𝑡 = 𝑐𝑜𝑛𝑠𝑡. ⇒  𝜌𝑎𝑖𝑟.𝑖𝑛/𝑜𝑢𝑡 ∙  �̇�𝐶𝐴𝐸𝑆.𝑖𝑛/𝑜𝑢𝑡(𝑡) = 𝜌𝑎𝑖𝑟.𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ �̇�𝑖𝑛/𝑜𝑢𝑡.𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑡) (5-42) 

𝑈𝐶𝐴𝐸𝑆(𝑡) = 𝑚𝐶𝐴𝐸𝑆(𝑡) ∙ 𝑐𝑉 ∙ 𝑇𝐶𝐴𝐸𝑆 (5-43) 

 

The use of compressed air for energy storage only makes sense if there is a corresponding 

demand for heat, the byproduct of air compression. Depending on the desired storage 

pressure, gradual compression with intermediate cooling is required, which further 

increases the total energy required to store compressed air. Combining a compressed air 

energy storage system with a thermal energy storage system is another way to increase 

the cycle efficiency of this type of energy storage system. In this case, the heat generated 

during air compression is stored and returned to the compressed air during expansion.  

The electrical energy storage systems model considers the maximum charging and 

discharging rates 𝑃𝐸𝐸𝑆.𝑚𝑎𝑥. and 𝑃𝐸𝐸𝑆.𝑚𝑖𝑛. as well as the maximum and minimum storage 

capacities 𝑊𝐸𝐸𝑆.𝑚𝑖𝑛. and 𝑊𝐸𝐸𝑆.𝑚𝑖𝑛.. Injection and withdrawal from the electrical energy 

storage are described according to Equations (5-44) and (5-45). The current energy 

content 𝑊𝐸𝐸𝑆 is given in Equation (5-46). 

 

𝑑𝑊𝐸𝐸𝑆,𝑖𝑛

𝑑𝑡
= 𝜂𝑖𝑛 ∙ 𝑃𝐸𝐸𝑆.𝑖𝑛(𝑡)    𝑤𝑖𝑡ℎ    𝑃𝐸𝐸𝑆.𝑖𝑛 <   𝑃𝐸𝐸𝑆.𝑖𝑛,𝑚𝑎𝑥.  (5-44) 

𝑑𝑊𝐸𝐸𝑆,𝑜𝑢𝑡

𝑑𝑡
= 𝜂𝑜𝑢𝑡 ∙ 𝑃𝐸𝐸𝑆.𝑜𝑢𝑡(𝑡)     𝑤𝑖𝑡ℎ    𝑃𝐸𝐸𝑆.𝑜𝑢𝑡 <   𝑃𝐸𝐸𝑆.𝑜𝑢𝑡,𝑚𝑎𝑥.  (5-45) 

𝑊𝐸𝐸𝑆 = 𝑊𝐸𝐸𝑆,0 + 𝜂𝑖𝑛 ∙ ∫ 𝑃𝐸𝐸𝑆.𝑖𝑛(𝑡) ∙ 𝑑𝑡 − 𝜂𝑜𝑢𝑡 ∙ ∫ 𝑃𝐸𝐸𝑆.𝑜𝑢𝑡(𝑡) ∙ 𝑑𝑡    

 

             𝑤𝑖𝑡ℎ    𝑊𝐸𝐸𝑆,𝑚𝑖𝑛. <  𝑊𝐸𝐸𝑆 <  𝑊𝐸𝐸𝑆,𝑚𝑎𝑥.  

(5-46) 
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The initial storage capacity for each energy carrier is defined based on its desired peak 

balancing capability. The specific values can be obtained from a load duration curve that 

takes into account a one-year measurement period (ref. Figure 5-29). The derived 

dimensions of the storage systems are checked for their feasibility by comparing storage 

volume and footprint with the technical characteristics of storage systems available on the 

market.  

 

Renewable energy system models 

To improve solar yield and reduce shading losses, the panels of a photovoltaic system are 

usually installed in an inclined position with spacing between each row of panels. 

Quaschning and Hanitsch (1998, p. 3 f.) consider representative utilization rates of 50 % 

for a given roof size and for panels with angles of inclination between 10° and 30° 

degrees. 

In general and with reference to Wagner (2015, p. 135), the yield 𝑃𝑃𝑉(𝑡) of the 

photovoltaic system at each time step can be calculated according to Equation (5-47). In 

this equation 𝑃𝑝𝑒𝑎𝑘 represents the installed peak power of the photovoltaic system, 𝐺(𝑡) 

the temporally resolved global radiation data on an inclined surface data for a specific 

factory location, 𝑃𝑅0 is the performance ratio that relates the actual and the theoretical 

power outputs of the photovoltaic system. Additional losses i within the system setup 

(e.g., inverter loses, loses due to the coverage of the panel surface, etc.) can be 

represented through multiplication with ∏ 𝜂𝑖𝑖 . 𝐸0 represents the irradiation data under 

standard test conditions (STC) according to DIN EN IEC 60904-3 (2020).  

 

𝑃𝑃𝑉(𝑡) =
𝑃𝑝𝑒𝑎𝑘 ∙ 𝐺(𝑡) ∙ 𝑃𝑅𝑜 ∙ ∏ 𝜂𝑖𝑖

𝐸0

  (5-47) 

 

Although north-south orientation generates higher maximum power outputs, the use of 

dual-tilt east-west orientated arrays with low tilt angles (generally between 5° - 10°) 

increases the packing density for a given roof size. This can increase maximum energy 

yield and decrease power peaks around midday. Taking into account the individual 

characteristics of a factory site, a more even distribution of energy generation from a 

photovoltaic system can be beneficial to improve self-consumption and energy flexibility.  

Figure 5-30 shows the power and energy yield for different tilt-angels and panel 

orientations for an exemplary site in southern Germany. Although north-south oriented 

systems with an inclination of 30° achieve the highest power and energy yields for a given 

number of installed panels, the packing density can increase for east-west oriented setups, 

which in turn allows more energy to be generated throughout the year. 

Today, photovoltaic systems are the most common source of renewable energy on a 

factory site. Nevertheless, other forms of energy supply with wind, water, biomass, or 
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geothermal heat as an energy source can also be considered as part of the energy supply 

system model. 

 

 

Figure 5-30 Power (exemplary day in July) and energy (per month) yield at different orientations and 
tilt angles. (* increased packing density by 30%) (own calculation based on hourly 
irradiation data for Munich taken from Meteonorm 7) 

5.4.4 Model implementation, coupling, and validation 

 

Implementation 

The hierarchy of the factory simulation model is shown in Figure 5-31, along with the 

corresponding software tools used in the implementation. The process, machine, and 

respective process chain models are realized in the modeling and simulation environment 

of Tecnomatix Plant Simulation 14. Following a value stream approach, demand and 

supply for all input and output energy resources for each energy-consuming equipment 

(e.g., machines) are specified individually. Based on measurements in the field, the energy 

requirements of each machine are determined either for different operating states or 

individual batches using look-up tables. Tecnomatix Plant Simulation 14 is based on the 

principles of discrete event simulation presented in Subsection 2.3.2. This allows the 

software to map the characteristic workflows and operating procedures in a 

manufacturing environment. The output of the process chain model is a number of 

individual time series that quantifies the energy demand for different energy resources 

according to a user-defined temporal resolution. 

In this work, the modeling and simulation of the factory building and the associated 

technical building systems are carried out using EQUA IDA ICE 4.8. 

There are several different software tools for assessing the energy performance of 

buildings. A comparative review of several existing building energy performance 

simulations (BEPS) was conducted by Crawley et al. (2008, p. 662 ff.). IDA ICE was 

selected for its good validation, superior simulation performance, user-friendly graphical 

interface, and its wide application in industrial use cases (Kropf and Zweifel 2001, p. 1, 

Nageler et al. 2018, p. 53). 
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Figure 5-31 Outline of the factory simulation model 

IDA ICE offers three user interfaces with the respective level of detail. The wizard level is 

designed to guide the user through all the modeling steps required to define a building 

in terms of its energy demand behavior. The standard level allows for the implementation 

of detailed multi-zone and advanced heating, cooling, and air-conditioning (HVAC) 

systems. The extended level allows the user to change the individual equations, variables, 

and parameters of the underlying mathematical models. (Sahlin et al. 2004, p. 950) As 

part of recent software improvements, programming interfaces to Python, Matlab, Excel, 

C++, and Java have been developed as well as an import function for Building Information 

Models (BIM) (EQUA 2020). IDA ICE implies an equation-based modeling approach using 

both the Neutral Model Format (NMF) and Modelica simulation languages (Crawley et al. 

2008, p. 665). The software is composed of various submodels for flow networks, control 

principles, and dynamics, long- and short-wave radiation, convection, solid-state heat 

transfer, and thermal storage (Sahlin et al. 2004, p. 952). Detailed and simplified zone 

models are available for both in-depth analyses of individual models and for the runtime-

optimized execution of simulation experiments with numerous variants. The flow network 

satisfies mass balance equations and takes into account supply and exhaust airflows from 

air-handling units. Airflows through openings and leaks are also implemented based on 

pressure-loss equations. (Hilliaho et al. 2015, p. 113) 

Simulation in IDA ICE is performed by simultaneously solving a system of differential-

algebraic equations (DAE) with a variable time step solver. These differential equations are 

generated from the equation-based submodels in the last paragraph. (Wetter 2005, p. 

1086). 
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The output of simulations performed in IDA ICE represents the energy demand for the 

operation of the building and its technical building systems. In addition, non-energy 

benefits such as comfort criteria can also be quantified. 

The energy supply system model, which also contains the auxiliary equipment, is built up 

in the modeling and simulation environment of TOP-Energy 2.10. TOP-Energy is a 

software developed to support the analysis and optimization of energy supply systems 

considering the prevailing conditions and restrictions in energy consulting projects. These 

include limited data availability and tight time schedules as well as budget restriction on 

project implementation (Augenstein et al. 2004, pp. 4, 7, Augenstein et al. 2005, p. 5). 

The software provides a graphical editor with which the network-like structure of an 

energy supply system, consisting of nodes (equipment installations) and edges 

(distribution systems), can be implemented. In addition, a library of various predefined 

models for energy conversion units is available to facilitate rapid build-up and 

parameterization of the energy supply system model. In TOP-Energy, the energy supply 

system is composed of individual component models using a system of algebraic 

equations. These equations describe the mass and energy flow within the network. They 

also propagate constant parameters through the system (Augenstein et al. 2005, p. 5). 

The Process Modeling Language (PML), which originated in Modelica, is used to specify 

stationary and/or quasi-stationary nonlinear models (Kirschbaum et al. 2008, p. 3). The 

mass flow and energy balances are solved for each time step using a combination of 

Mixed Integer Linear Programming (MILP) and evolutionary algorithm (Augenstein et al. 

2005, p. 6). The continuous decision variables represent flow rates, equipment sizing, etc. 

The discrete decision variables model the (non-)existence and on/off status of the energy-

consuming equipment within the energy supply system (Voll et al. 2015, p. 447). TOP-

Energy operates within the boundary conditions of the energy market, environmental 

conditions (e.g., local climate and ambient weather conditions), and the demand profiles 

of energy end-users quantified in the process chain, building, and technical building 

systems model (Augenstein et al. 2005, p. 3). The output of the energy supply system 

simulation presents results on the total energy demand, cost, and CO2 emissions of the 

factory operation considering individual energy supply system designs. 

 

Coupling 

The different simulation environments are coupled offline. The exchange of data is shown 

in Figure 5-32 and takes place in a total of five steps. First, the process chain model is 

simulated for one year. Second, the results from the simulation of the process chain 

simulation are transferred to the building and the associated technical building system 

model. Third, the energy demand of the building and the associated technical building 

system model is assessed, taking into account both heat emissions from the process chain 

model and the site-specific weather data from the Meteonorm 7 database. Fourth, the 

results from the process chain, building, and technical building systems models are 

transferred as input data to the energy supply system model. Last, the auxiliary equipment 

and energy supply system model is simulated to quantify the impact of the different 
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system setups and configurations on the total energy demand and cost of factory 

operation. 

 

 

Figure 5-32 Outline of the coupling between the proprietary simulation environments 

In general, a simulation period of one year is chosen in order to be able to take into 

account the seasonal fluctuations in energy demand. However, the analysis of user-

defined and time-limited periods of a full year is possible. The temporal resolution used in 

the simulation is variable, with time steps usually ranging from one second to one hour. 

While resolutions of one second or one minute are common for process chain simulations, 

building and energy supply system simulations usually work with intervals of 15 minutes 

or one hour. This is to improve the numerical stability of the simulation and reduce the 

computing time (Bleicher et al. 2014, p. 443). When data with higher resolution is 

transferred and processed within a simulation environment that uses lower resolution, the 

simulation data is compressed using a moving average. 

Measurement data from the field are used to characterize the resource requirements of 

the underlying manufacturing process as well as to parametrize the various submodels. 

 

Validation 

With reference to 2.3.2 and the taxonomy introduced by Balci (1998b, pp. 354-379), 

different techniques are applied to validate the behavior accuracy of the individual 

submodels of the factory simulation model. Dynamic testing techniques and more 

specifically, special input testing based on boundary values or extreme input values are 

used to test the machine and process chain model. As presented in Subsection 5.4.2, 

statistical techniques using Mean Bias Error (MBE) and Coefficient of Root Mean Square 
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Error (CVRMSE) are used to validate the building and technical building system model by 

relating model outputs and measurement values. Wherever the availability of 

measurement data allows, visualization techniques are used to compare graphs of 

measurement data with the graphs of respective simulation results. Assertion checking is 

used to compare whether certain common-sense assumptions of the modeler hold true 

and can be represented in the simulation results after model execution.  

Table 5-10 presents an overview of the applied techniques with reference to the individual 

submodels. Apart from the examples provided in Table 5-10, individual use cases require 

individual validation strategies depending on the availability of measurement data and 

accessible measurement points.  

Table 5-10 Verification and validation techniques used for the individual submodels 

Submodel Validation technique Testing (examples) 

Machine model – case 1 visualization 
the graph of the simulation results is 

compared to graphs of  
the measured data 

Machine model – case 2 statistical technique 
CVRMSE between measured and 

simulated machine surface temperature 

Process chain model assertion checking 
e.g., processing 10 orders results in 10 

times the energy demand for the 
process chain operation 

Auxiliary equipment model – compressed air system 
special input testing – 
extrem input testing 

for p1 = p2 ⇒ V0 is zero 

Auxiliary equipment model – process cooling system 
special input testing – 
extrem input testing 

for EER=1 t ⇒ Q̇PCS = Pcomp.,el. 

Factory building and technical building systems model statistical technique 
CVRMSE between measured and 

simulated indoor temperature 

Models of space heating and cooling system statistical technique 

regression analysis between power 
demand of cooling/heating and outside 

temperature for both measured and 
simulated values 

Energy storage system models 
special input testing – 

boundary values 
No energy storage is possible if energy 

storage capacity is set to zero 

Renewable energy system model 
special input testing – 

boundary values 
energy from a photovoltaic system is 

zero if the collector surface is set to zero 

5.5 Summary 

Chapter 5 documents the development of a new methodology that aims to extend the 

scope of existing factory simulation models while also increasing the comprehensiveness 

and generalizability of the associated assessment procedures. 

Section 5.1 outlines the methodology, which consists of three main elements, namely the 

extended energy performance metrics, the assessment procedure, and the factory 

simulation model. Section 5.2 addresses the extension of existing energy-related 

performance metrics that summarize energy demand, energy costs, CO2 emissions with 
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non-energy benefits. The non-energy benefits are divided into six categories: improved 

occupational safety, improved product quality, reduced production waste, improved 

capacity utilization, improved security of supply, and reduced maintenance costs. 

Section 5.3 describes an extension of the peripheral factory model that merges the 

manufacturing and architectural perspective on factory systems. The new model includes 

a total of twelve peripheries, from processes (P) (inner periphery) to grid (G) (outer 

periphery). The aim is to improve transparency and facilitate the identification and 

categorization of improvement measures in complex manufacturing systems. It then 

specifies the different categories of improvement measures, including energy efficiency, 

energy flexibility, and measures to improve the use of renewable energy sources. Each 

category is formally introduced and illustrated by practical examples. The improvement 

measures are further classified according to their focus (planning, controlling, 

retrofitting/installing) and with reference to the different peripheries of a factory system. 

The subsection concludes with a graphical representation called the “path of energy use”. 

The general assessment procedure is indicated in the flow chart in Figure 5-11. It involves 

a step-by-step process for selecting and jointly evaluating improvement measures within 

a factory simulation model using a combination of expert knowledge together with a 

Design of Simulation Experiments (DoSE) approach. The DoSE included in the procedure 

model is based on an orthogonal array-based matrix design. A selection of visualization 

techniques to support the decision-making processes along the assessment procedure 

concludes Section 5.3. 

Section 5.4 contains a detailed description of the individual submodels and their 

relationships within the overall factory simulation model. Subsection 5.4.1 presents the 

machine, process chain, and auxiliary equipment models. This includes submodels for the 

consideration of heat emissions from machine operation and specific auxiliary equipment 

models for compressed air and process cooling systems. Subsection 5.4.2 specifies the 

factory building model and its technical building systems, before Subsection 5.4.3 outlines 

the energy supply system models (including those for space heating and cooling systems, 

energy storage, and renewable energy systems). Subsection 5.4.4 describes the 

implementation of the factory simulation model by coupling the software environments 

Tecnomatix Plant Simulation 14, EQUA IDA ICE 4.8, and TOP-Energy 2.10 and concludes 

by outlining the different techniques used to verify and validate individual submodels of 

the factory simulation model. 

 

 

 

 

 

 

  



128 6.1 Analysis of the Initial Situation and Definition of Objectives 

 

 

6 Application of the Methodology 

The methodology proposed in Chapter 5 was applied to a case study conducted in the 

aerospace composite industry. Within the case study, all steps of the methodology were 

carried out to test both its validity and transferability. 

6.1 Analysis of the Initial Situation and Definition of Objectives 

In the manufacture of aerospace composites, semi-finished products, namely pre-

impregnated woven fabrics (prepregs) made from carbon fiber reinforced plastics (CFRP) 

and activated resin (epoxy and hardener), are processed using a combination of semi-

automated and manual processes. Due to the specific material properties (high strength, 

low weight), the manufactured parts are used within various aerospace applications to 

improve the fuel efficiency or the productivity delivered per unit of fuel consumption 

(Hileman et al. 2008, p. 2 f.). The manufactured products are characterized by high-quality 

requirements, while the manufacturing process chain has only limited possibilities for 

automation. Furthermore, the individual manufacturing processes require high amounts 

of energy, which are either fed directly into the process or are taken from auxiliary 

equipment (e.g., compressed air systems, vacuum systems, and process cooling). 

The overview presented in Figure 6-1 summarizes the value stream within aerospace 

composite manufacturing. First, prepreg plies are cut and trimmed with an automatic 

knife cutter according to the geometric requirements. Alternatively, the individual layers 

of a product can be preassembled automatically using a tape-laying machine. Tape-laying 

machines can automatically preassemble different layers of pre-impregnated tapes which 

come at standardized widths. This process enables layers with local reinforcements or 

individual fiber orientations according to the mechanical requirements of the designed 

composite component. 

 

Figure 6-1 Value stream in the manufacture of composite parts in the aerospace industry (extract)  
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After the plies are cut, they are placed into molds that define the geometric properties of 

the composite part. After the plies are placed, the structure is wrapped in a vacuum bag, 

and a vacuum is applied to stabilize the structure and prevent air pockets. The assembly 

is then transferred to a workstation that uses radiant heaters to activate the reaction of 

the activated resin. This step is performed to pre-cure the composite part, identify possible 

manufacturing defects, and add further stability to the structure. Pre-curing is followed 

by curing in an autoclave. The autoclaves are loaded with several parts that require 

identical curing conditions. During autoclave operation, temperature, pressure, heating 

and cooling ramps, as well as holding times, can be controlled.  

After curing in the autoclave, the composite part is demolded and the mold cleaned. 

Curing is followed by finishing, including milling and sanding operations, which are 

performed on CNC-based (Computerized Numerical Control) machine tools. These 

processes are used to remove protrusions and excess resin and to functionalize the 

geometric properties of the composite part. 

Curing and the associated manufacturing process steps, as well as the conditioning of the 

factory building, dominate the energy demand in the production of composite parts. Due 

to their low energy demand and the fact that the finishing operations are located in 

another factory building, their energy demand is not considered in this case study. Figure 

6-2 characterizes the factory layout, including the building geometry, the positioning of 

the auxiliary equipment, and its connection to the autoclave process and the technical 

building systems. 

 

 

Figure 6-2 Factory layout of a manufacturer of composite aerospace parts including auxilary 
equipment and technical building systems 
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Several processes in the manufacture of composite parts require the use of air in a 

conditioned form. This includes vacuum, compressed air, and nitrogen.  

A vacuum is used during the cutting of plies and laying of the tapes, during the 

preparation of the molds, and during the various curing processes. In the present case 

study, vacuum is generated both centrally (feeding into a vacuum grid) and decentrally 

(at the process or as part of the manufacturing equipment) by using vacuum pumps. 

Compressed air is supplied to the factory in general and the autoclave process in 

particular. Pressure levels vary between 8 and 16 bars, and the demand is met by a 

number of compressors with different flow capacities and installed power. In many 

autoclave applications, the vessel is pressurized with nitrogen instead of air. Therefore, 

the compressed air system setup is further complemented with air compressors specified 

for nitrogen conditioning. The absence of air and the use of inert media reduce the risk 

of fire when processing composite parts in high-pressure and high-temperature 

environments. The corresponding equipment setup includes primary compressors, a 

nitrogen plant, booster compressors, and storage tanks. The booster compressor raises 

the pressure level of nitrogen to 17-22 bar. The high pressure differences between tank 

and autoclave allow high pressurization rates of up to 2 bar/min. Nitrogen storage tanks 

are usually sized to deliver 2.5 times the storage volume of the autoclave at operating 

pressure. (Upadhya et al. 2011, p. 5). 

The operation of an autoclave also requires the use of auxiliary equipment for process 

cooling. Autoclaves must be connected to a process cooling system in order to cool the 

autoclave van and to realize cycle time-optimized cooling ramps at the end of a curing 

cycle. 

Material properties of the material to be processed, occupational safety regulations and 

product quality requirements demand that the climatic conditions in the factory 

(temperature and humidity) are kept within narrow limits. In the present case, the 

technical building systems consist of heating, ventilation, and air-conditioning (HVAC) 

units.  

The objective of conducting an energy assessment at an existing site of a composite parts 

manufacturer was twofold. The first objective was to identify various energy-related 

improvement measures in the different peripheries of the factory system and to quantify 

their combined potential for reducing energy demand, cost, and emissions. Non-energy 

benefits were also considered in the quantification. 

Based on the derived energy-saving potential, the second objective was to design an 

adequate energy supply system for the production site, taking into account different 

design principles, technology options, and the integration of on-site renewable energies. 

The simulation-based approach was chosen to complement measurement data and 

enable an efficient and safe evaluation of combined energy-related improvement 

measures. The simulation-based evaluation strategy considers a multi-criteria planning 
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environment and recognizes interdependencies and potential trade-offs between 

individual improvement measures. 

The evaluation results should be used to derive the best combination of energy-related 

improvement measures and an energy system design that reflects customer-specific 

planning preferences, including non-energy benefits. Focusing on optimized use of energy 

resources, the application of the developed methodology was proposed to support 

decision-making during the optimization of the manufacturing system in order to mitigate 

investment risks, avoid unnecessary operating costs and associated CO2 emissions. 

6.2 Selection of Improvement Measures 

The selection of improvement measures was based on the findings from a review of 

existing documentation, on-site visits, an inspection of the technical facilities, and 

subsequent workshops with the company's responsible persons and experts. 

In order to support transparency and help the project team in the selection process, a 

graphical representation of the main energy flows inside the factory building was created 

according to the terminology presented in Subsection 5.3.1 – Figure 5-10. In this 

representation, the energy-consuming equipment, including its connections, is assigned 

to different peripheries according to the classification presented in Subsection 5.3.1 – 

Table 5-1. Improvement measures are also assigned to the respective equipment and 

periphery. The individual measures are presented and explained in detail in Section 6.4. 

 

 

Figure 6-3 Graphical representation of energy use within an aerospace composite parts 
manufacturing factory, including selected improvement measures 
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6.3 Application of the Factory Simulation Model 

In this section, the application of the factory simulation model is demonstrated. The model 

used to characterize the behavior of the case study factory in terms of energy demand 

was based on, and verified against, data from extensive measurement campaigns 

conducted at the aerospace composite parts manufacturer’s site. In accordance with the 

principles of model-building presented in Section 5.4, the factory simulation model was 

built starting with the machine model of the autoclave process. Subsequently, the 

machine model was transferred to the process chain model, which represents the 

characteristics of production planning and scheduling in the factory under consideration. 

As a preliminary result, the process-specific energy demand could be determined for a 

period of one year, taking into account various input and output energy resources 

(electrical energy, compressed air, process cooling, heat emissions, etc.). Next, auxiliary 

equipment models were defined for the compressed air system and the process cooling 

system to represent the behavior of installed equipment. Subsequently, the factory 

building and the technical building systems were modeled and connected to the process 

chain model. It was possible to take into account the effects of the building envelope, the 

climatic conditions on the factory site, and the effects of the process chain-related heat 

emissions on the factory environment. By linking the different models, it was possible to 

derive a characteristic energy demand for the operation of the process chain, the auxiliary 

equipment, and the factory building. The energy demand was given for the individual 

energy resources, namely electricity, compressed air, process cooling, space heating, and 

space cooling. Last, the energy supply system model was set up to evaluate different 

energy supply system designs.  

 

Machine model 

The energy characteristics of the autoclave process were derived from batch protocols 

(time duration of the curing program, operating temperature, and operating pressure) 

and power measurements (electrical energy demand) performed in the field (ref. Figure 

6-4). In order to take into account the varying operating conditions and different batch 

programs within the autoclave model, a measurement period of two weeks was chosen. 

 

Figure 6-4 Measurement of electrical power consumption and operating temperature for Autoclave 2 
(one week extract) 
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Subsequently, individual autoclave models and production programs were implemented 

for Autoclaves 1 to 4. The heat emissions of the autoclaves were modeled individually 

based on the technical specifications of Autoclaves 1 to 4 and according to the 

thermodynamic substitute model presented in Subsection 5.4.1, Equation (5-12), and 

following. Due to lack of accessibility, it was not possible to measure the compressed air 

flow rate and process cooling requirements individually for the different autoclaves. 

Therefore, the compressed air flow rate and the process cooling requirement were also 

derived from the thermodynamic substitute model and specified for the different 

autoclaves and batch protocols.  

Figure 6-5 shows the combined results of measurement and simulation using the example 

of Autoclave 2. The top portion of Figure 6-5 (A) characterizes an individual curing cycle 

that begins at 6:00 pm and lasts until 7:00 am. The temperature is raised to 135 °C within 

one hour. After holding this temperature for about five hours, the temperature is further 

increased to 180 °C and held for another four and a half hours.  

 

 

 

Figure 6-5 Autoclave 2 measurement and batch protocol data – electrical power demand, 
temperature, and pressure (A); Model representation of Autoclave 2 – electrical power 
demand (B), compressed air (C), heat emission (D), and process cooling (E) 
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The dashed curve shows the pressure curve inside the autoclave. In this particular batch 

protocol, the pressure is increased to seven bars after the autoclave has reached its first 

temperature plateau at 135 °C. The pressure is then kept constant for the entire duration 

of the curing cycle. The temperature is lowered before the pressure release from the 

autoclave is initiated. The process cooling system connected to the autoclave actively cools 

the system and supports the ramp-down of the system. Once the ambient temperature 

has been reached, the autoclave can be opened and the part removed from the autoclave. 

The results for the different input and output energy resources are shown in the lower 

part of Figure 6-5 (B-E). With the available pressure and temperature measurements, it 

was possible to model the airflow (C) and process cooling demand (E) based on the ideal 

gas law. A snapshot of the autoclaves 1-4 is shown in Figure 6-6. 

 

 

Figure 6-6 Autoclaves 1-4 in the factory environment 

 

Process chain model 

In order to simulate the energy demand for a year-round factory operation, the machine 

models of Autoclaves 1-4 were implemented within the process chain model using look-

up tables. The look-up tables contain the autoclave-specific and batch-specific 

information on heat dissipation to the factory environment as well as the electricity, 

compressed air, and process cooling requirements. The process chain model represents 

the composite manufacturing process, focusing on the autoclave process. The cutting and 

laying of the plies, as well as the procurement, were not considered in this case study. 

The reduction of the modeling effort to the autoclave was justified because curing in the 

autoclave has the greatest influence on the total process-specific energy demand. The 

process chain model was created in Tecnomatix Plant Simulation 14 and takes into 
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account parameters such as the factory’s operating hours (number of shifts, working days, 

and national holidays) as well as variations in the start times for processing each batch in 

the autoclaves (ref. Figure 6-7). 

 

 

Figure 6-7 Process chain model in Tecnomatix Plant Simulation 14 

The results of the process chain model are shown in Figure 6-8. The extract shows which 

different batch protocols were operated on Autoclaves 1 to 4. In the course of a day, two 

individual batches were usually operated on one autoclave. The left side of Figure 6-8 

specifies the individual batch protocols by characteristic temperature profiles. The right-

hand side of Figure 6-8 outlines the operation of Autoclaves 1 to 4 over a period of one 

week, also taking into account statistical variations in the start time of individual batches. 

With regard to the measurement period, no autoclaves were operated on Sundays. The 

right-hand side of Figure 6-8 also shows the individual heat emissions of Autoclaves 1 to 

4 with maximum values reaching approximately 25 kW.  

Figure 6-9 shows the energy demand for the operation of the process chain considering 

a representative period of one week. The four different diagrams in the figure indicate 

the demand characteristics of the different input and output energy resources, namely 

electrical energy (input), compressed air (input), heat emissions (output), and process 

cooling (input). The peak demand shows 530 kW for electrical power, 40 m³/min. for 

compressed air flow rate, 70 kW for heat dissipation, and 1460 kW for process cooling. 

Compressed air and process cooling show the greatest fluctuations in demand. On the 

contrary, the heat emissions from the autoclaves are relatively uniform due to the effects 

of thermal inertia. 
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Figure 6-8 (Left) Temperature batch protocols for Autoclaves 1-4 for (one-day extract); (right) 
Simulation results – individual temperature profiles and heat emissions from Autoclaves 
1 to 4 (one-week extract) 

 

Figure 6-9 Example simulation results of the process chain (one-week extract) – power demand profile 
for electrical power, compressed air, heat dissipation to the factory environment (heat 
emissions from all autoclaves, and process cooling 
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the machine and process chain models and quantified in terms of flow rate, was used to 

determine the electrical power required for the operation of the compressors according 

to the model presented in Subsection 5.4.1. The model is parameterized with the 

information on the electronic nameplate and the information provided by the 

manufacturer of the compressed air equipment. No power measurements could be made 

on the compressed air system on-site. 

The cooling demand derived from the process chain model was verified with the 

measurement concept for fluid-bound energy carriers presented in Subsection 2.2.2. To 

measure the combined process cooling demand for Autoclaves 1 to 4, an ultrasonic 

flowmeter was installed on the central cooling circuit together with temperature sensors 

on the supply and return pipes. The measurement covered two weeks of factory 

operation. 

While they have similar demand characteristics, higher maximum and mean values were 

found. The higher average values can be explained by the cooling requirement for the 

autoclave fans, which was not taken into account in the thermodynamic substitute model 

of the autoclaves. The occurrence of coincident cooling phases explained higher 

maximum values when running the different batch programs for Autoclaves 1 to 4. 

 

Figure 6-10 Measurement of return temperature, volume flow rate (top), and total cooling demand 
(bottom) for Autoclaves 1-4 (one-week extract) 

The process cooling demand derived from the process chain model and checked for 

plausibility by measurements were then used to quantify the electrical energy demand of 

the equipment installations for the process cooling equipment used on-site. The process 

cooling system setup was implemented according to the model presented in 

Subsection 5.4.1 and parameterized using the available technical documentation. 

Both the compressor and process cooling models were implemented in TOP-Energy 2.10 

according to the outline shown in Subsection 5.4.4 Figure 5-31. 

 

Building and technical building systems model 

The energy demand for the operation of the factory building with its technical building 

systems was quantified using the modeling concept presented in Subsection 5.4.2. The 
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and equipment installations, including lighting systems and air-handling units. The 

orientation and wall and roof structure of the building envelope were specified in the 

building model. Openings, including windows, doors, and skylights were considered and 

implemented according to their individual size and orientation. The 3D model of the 

factory realized in EQUA IDA ICE 4.8 is shown in Figure 6-11. In addition, the division of 

the building into different floors and zones (floor plan) was used in the model. 

Furthermore, the number of employees (occupancy) and electrical appliances (e.g., 

computers, monitors, printers) were quantified and assigned to the various building 

zones. Finally, the heat emissions quantified in the process chain model were coupled 

with the building model and considered as heat gains within the respective building zone.  

 

Figure 6-11 Factory building model in EQUA IDA ICE 4.8 

In order to specify the characteristics of the technical building, air exchange rates and 

setpoints for temperature and humidity were defined for each zone of the factory. 

Representative of the air-handling units, two different heating, ventilation, and air-

conditioning systems were implemented, assigned to both the administrative and 

manufacturing areas of the factory. 

The ambient conditions at the factory locations were determined using statistical weather 

data from the Meteonorm 7 database. The datasets include profiles for representative 

one-year periods, including temperatures, global radiation, and wind speed. 

The coupling between the building model, process chain model, and weather data was 

realized according to the procedure presented in Subsection 5.4.4 Figure 5-32. 

Exemplary simulation results of the building and technical building systems models are 

shown in Figure 6-12. The building electricity demand is composed of the demand for 

lighting and ventilation systems but also takes into account other electric appliances. The 

peak electricity demand for the building operation was estimated at 85 kW, with a 

significant contribution due to the operation of the lighting system. The air-handling units 

provide for the space heating and cooling requirements of the different building zones 

and maintain the defined temperature and humidity limits. The peak demand was 

calculated at 235 kW and 865 kW, respectively. 
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Figure 6-12 Exemplary simulation results of building and technical building systems models for a period 
of one year. The electricity demand of building operation (A), consisting of the electrical 
energy demand for lighting, ventilation, and other appliances (B), space heating demand 
(C), and space cooling demand (D) 

The building and technical building system model was verified according to the Mean Bias 

Error (MBE) and Coefficient of Root Mean Square Error (CVRMSE) acceptance criteria 

presented in Subsection 5.4.2 – Table 5-7. The excerpt shown in Figure 6-13 compares 

the simulation values for temperature and relative humidity from EQUA IDA ICE 4.8 with 

measurement data recorded in the production areas A to C. The MBE for relative humidity 

and temperature were calculated to 9% and 5%, respectively. The CVRMSE was 

calculated with 14% and 8%, respectively. Both performance criteria are within the 

suggested ranges, indicating adequate model quality. 

 

Figure 6-13 Comparison between simulation and measurement for temperature and relative humidity 

Figure 6-14 shows the results from the process chain, building, and technical building 

systems models (A, B, C, D). It also includes cooling and compressed air demand (E-F). 
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Figure 6-14 Example simulation results consisting of the electricity demand for the operation of the 
process chain and building (A, B), the demand for space heating and cooling which has to 
be provided by the technical building systems (C, D), and the demand for process cooling 
and compressed air, which has to be provided by the auxiliary equipment (E, F) (one-year 
period) 

In the case study presented, the modeling procedure was able to quantify the energy 

demand of a factory operation in a bottom-up approach. It starts with quantifying the 

energy demand of the manufacturing process and then adds the energy demand for 

operating the factory building and its technical building systems. However, at this stage, 

the model does not capture the characteristics of the energy supply system setup at the 

manufacturer’s site. For this reason, the results of the process chain, building, and 

technical building systems models are further transferred into an energy supply system 

model.  

 

Energy supply system model 

The energy supply system model was implemented according to the modeling procedure 

presented in Subsection 5.4.3 and used to represent the individual and site-specific 

characteristics of all equipment installations used for providing the various energy 
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requirements. In this case study, the implementation of the energy supply system model 

included auxiliary equipment models for compressed air and process cooling systems, as 

well as technical building systems models for space heating and cooling. Furthermore, 

combined heat and power installations and equipment to generate energy from 

renewable sources were considered. This included a cogeneration unit, a photovoltaic 

system, and a geothermal heating system. In addition, various energy storage 

technologies for electricity, heat, cold and compressed air were used. The entire energy 

supply system model was built within the TOP-Energy 2.10 simulation environment. Figure 

6-15 shows a snapshot of an example model configuration. 

 

 

Figure 6-15 Energy supply system model in TOP-Energy 2.10 

The weather data used in the energy supply system model was identical to the weather 

data used in the building and technical building systems models.  

The energy tariffs for electricity and gas considered in the model follow the German 

pricing scheme for industry customers. In addition, a flexible energy tariff was 
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implemented to enable an evaluation of energy flexibility measures according to 

Subsection 5.3.1. The flexible energy tariff used in this case study combined the relative 

energy price fluctuations in 2019 (ref. Figure 6-16 – B) with the average market price for 

electricity and gas in 2019 (ref. Figure 6-16 – A), resulting in a representative flexible 

energy tariff as shown in Figure 6-16 – C. 

 

Figure 6-16 Top row: Electricity; bottom row: Gas; A: Development of energy prices in the industry 
(Bundesnetzagentur 2019, pp. 287 f., 460 f.), B: Representative energy price fluctuations 
around the average price, C: Representative flexible energy tariff for one year 

Further, the energy price specifications implemented in the case study included the tariff 

schemes according to the Renewable Energy Act (EEG) for the on-site operation of CHP 

plants and photovoltaic systems. The Renewable Energy Sources Act (EEG) surcharge 

subsidizes the feed-in of electricity from CHP plants with five ct/kWh (for CHP plants with 

a size of max. 250 kWel) (BAFA 2019). Photovoltaic systems also benefit from subsidized 

feed-in tariffs of approximately eight ct/kWh (Bundesnetzagentur 2020a). Furthermore, 

self-consumption of electricity from CHP plants and photovoltaic systems is charged with 

40% of the current EEG levy of 6.7560 ct/kWh (Bundesnetzagentur 2020b). Additional 

remuneration for energy-intensive companies is not taken into account in the model. 

Individual subcomponents of the energy supply system model were verified if the 

accessibility allowed the temporary installation of a metering system. A major limiting 

factor was the heterogeneity of the technical installations found on-site. The energy 

supply system analyzed in this case study is a complex composition of old and new 

equipment that has grown over many years of factory operation. Nevertheless, 

measurements were carried out to verify the parameter setup of the room cooling and 

ventilation system. Figure 6-17 shows the composite results obtained from six energy 

metering systems during a two-week period in May. The figure correlates outside 
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temperature with the power demand of the air-handling units and the chillers of the space 

cooling systems. Depending on the outside temperature, the power demand varies 

between a minimum of 150 kW and a maximum of 550 kW and shows a linear 

correlation. The results of the simulation show good agreement with the measured data. 

 

Figure 6-17 Correlation between outside temperature and power demand for air-handling units and 
chillers; Comparison between measurements and simulation results (measurements 
10-min. intervals; simulation one-hour intervals) 

As a result of applying the modeling procedure from Section 5.4 to the case study, it was 

possible to represent the current energy demand characteristics of the factory in a 

simulation model.  

Subsequently, the simulation model was used to evaluate different improvement 

measures by generating variants of the model. With the aim of reducing the modeling 

effort and the number of simulation runs required, an approach based on the design of 

simulation experiments was adopted in accordance with the method presented in 

Subsection 5.3.2. 

6.4 Planning and Design of Simulation Experiments 

The energy efficiency measures identified at the building and technical building systems 

levels are summarized in Table 6-1. The measures focused on equipment installations, 

control strategies as well as technical features and design characteristics of the building. 

Within the matrix experiment, the measures are referred to as design parameters or 

factors. The measures implemented only take into account the manufacturing area and 

not the areas where the factory’s administration is located. 

Factor A was chosen to assess the impact of separating Building Zone C from Zones B and 

A using drywall construction. This measure was intended to stabilize the room climatic 

conditions (temperature and humidity) in the manufacturing area and to limit the heat 

emissions of the autoclaves to Building Zone C. It was also expected that the measure 

would reduce the total energy demand for ventilation and space cooling. Factor B 

examined different technical setups for the air-handling unit (AHU) used to air-condition 

the room climate of the manufacturing area. To control room temperature and humidity, 
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AHU Setup 1 uses heating and cooling coils and a steam humidifier. Alternatively, 

humidification in AHU Setup 2 is implemented by an adiabatic evaporative humidifier, 

which also uses an improved control strategy. AHU Setup 3 uses direct evaporation 

cooling on the supply air side, limited by relative humidity and discharge air temperature. 

Furthermore, indirect evaporation cooling on the return side of AHU 3 is limited by the 

ambient temperature. Due to product quality requirements, the temperature and 

humidity setpoints in the assembly area (Zones A and B) must be maintained in narrow 

ranges. However, the curing zone (Zone C) can be operated within less restrictive limits. 

Therefore, Factor C is used to assess the effect of adjusting the setpoints in the zones to 

individual temperature and humidity ranges. 

Table 6-1 Summary of measures at the building and technical building systems levels and design of 
the matrix experiment 

Measures Design parameters/factors  
(Building and TBS) 

Levels 

 L1 L2 L3 

 
A. Constructional separation n/a wall with opening - 

 
B. AHU AHU1 AHU2 AHU3 

 
C. Setpoints (Ø Hd. [%] / T [°C] ) 

Zone A: 25-45/18-24 

Zone B: 25-45/18-24 

Zone C: 25-45/18-24 

Zone A: 25-45/18-24 

Zone B: 25-45/18-24 

Zone C: 25-60/18-24 

Zone A: 25-45/18-24 

Zone B: 25-45/18-24 

Zone C: 20-70/15-27 

 
D. Lighting 

incandescent  
(500 W) 

glow-discharge lamp  
(400 W) 

LED 
(130 W) 

 
E. Windows glazing  1 glaze 2 glazes 3 glazes 

 
F. Insulation 

low 

wall: 80 mm 

roof: 100 mm 

medium 

wall: 100 mm 

roof: 120 mm 

high 

wall: 120 mm 

roof: 150 mm 

 
G. Window shading control n/a 

manual 
control 

sun and schedule 
control 

 
H. Window opening control n/a 

manual 
control 

temperature and schedule 
control 

 

Changes to the lighting systems were addressed in Factor D. While maintaining a 

luminous flux of 7000 lm and the number of lamp sockets, the effect of changing the 

setup of the lighting system between incandescent, glow-discharge, and LED lamps was 

tested. The lamps have a rated wattage per unit of 500 W, 400 W, and 130 W, 

respectively. Factor E evaluated the impact of installing windows with one, two, or three 

glazes. Furthermore, the effect of improved insulation of the roof and the exterior walls 

was tested with Factor F. Factor G was used to assess the energy-saving potentials of 

window shades in conjunction with various manual and automated control strategies. 

Last, Factor H was set to evaluate the effect of natural ventilation and its combination 

with a manual or an automatic opening control strategy for the windows. 
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Due to the number of factors and the respective factor levels, an L18 orthogonal array was 

chosen from Subsection 2.4.2 – Table 2-7. L18 includes one factor with two levels and 

seven factors with three levels each, resulting in 18 simulation runs (ref. Table 8-2). 

After completion of all simulation runs with different factor level combinations, the 

average impact of all factor levels on the selected performance metrics was evaluated 

according to the calculation method presented in Subsection 5.3.2 Equation (5-8).  

The assessment at the building and technical building systems levels was carried out in 

order to improve the performance-metric energy demand. Non-energy benefits related to 

building operations were also considered. In accordance with the categories introduced 

in Subsection 5.3.1, improved occupational safety was assessed using thermal comfort 

indices, namely the predicted percentage of dissatisfied (PPD). The improved product 

quality was quantified by measuring the stability of the indoor climate conditions. PPD 

quantifies the relative number of people dissatisfied with the thermal conditions within a 

building based on their predicted mean vote (PMV). PMV is calculated by an analytic 

equation with information on clothing conditions, metabolic rate, air temperature, relative 

humidity, among others. In our calculation, the metabolic metabolic equivalent of task 

(MET) for the occupants was estimated to be 2 MET, representing activities such as 

movement, walking, lifting heavy loads, or operating machinery. Please refer to DIN EN 

ISO 7730 (p. 8 f.) and Dentel and Dietrich (2013, p. 25 f.) for further information on 

thermal comfort. In the next step, the factor levels with the best average performance 

with respect to the selected performance metrics were used in a final simulation run.  

Based on the assessment results, a second assessment was carried out at the building and 

technical building systems levels. The second assessment focused on improving the design 

of the energy supply system in terms of energy costs, CO2 emissions, use of renewable 

energy, and energy flexibility. Table 6-2 summarizes the 16 preselected measures that 

were evaluated under the energy supply system model. The measures were identified 

during the expert workshop that was held. Each measure was categorized according to 

the portfolio of measures introduced in Subsection 5.3.1. 

Factors A to C were used to describe the design parameters of alternative process cooling 

setups, including the number of individual chillers and their installed capacity (A), the 

availability of free cooling and its capacity (B) as well as the storage size of the cold 

reservoir (C). Factors D and E focused on the design of the compressed air system. Again, 

the effects of cascading the capacity and operation of the compressors were analyzed (D) 

as well as the influence of variation of the size, max. feed-in and withdrawal of equipment 

for compressed air storage (E). Factors F through H were used to evaluate various 

equipment setups for space cooling. The space cooling evaluation scheme used the same 

design parameters used in the process cooling setup evaluation, namely the number of 

equipment installations and capacity as well as free cooling and storage capacity. Factor I 

analyzed different heating technologies (including boilers and heat pumps) and their 

mutual combination.  
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Table 6-2 Summary of the measures at the energy supply system level and design of matrix experiment 

Measures Design parameters/factors 
(energy supply system) 

 Levels Reference  

  L1 L2 L3  

 
A. Cooling (process) 

C 1 100% 75% 50% 

% of peak cooling demand C 2 0% 25% 50% 

Ab(d). C 0% 0% 0% 

 
B. Free cooling (process) FC (C) 0% 100% 150% % of peak cooling demand 

 
C. Cold reservoir (process) 

 5% 10% 15% % of peak cooling demand 

In/out 54 kW 108 kW 162 kW max. feed-in 

out 54 kW 108 kW 162 kW max. withdrawal 

 
D. Compressed air 

CA 1 100% 75% 50% 
% of peak compressed air demand  

CA 2 0% 25% 50% 

 
E. Compressed air storage 

  5% 10% 15% % of peak compressed air demand 

in 204 m³/h 204 m³/h 204 m³/h max. feed-in 

out 204 m³/h 204 m³/h 204 m³/h max. withdrawal 

 
F. Cooling (building) 

C 1 100% 75% 50% 
% of peak cooling demand 

C 2 0% 25% 50% 

 
G. Free cooling (building) FC (A) No yes  % of peak cooling demand 

 
H. Cold reservoir (building) 

 5% 10% 15% % of peak cooling demand 

in 45 kW 90 kW 135 kW max. feed-in 

out 45 kW 90 kW 135 kW max. withdrawal 

  
I. Heating (building) 

B 1 75% 25% 25% 

% of peak heating demand 
B 2 0% 25% 0% 

HP 1 25% 50% 75% 

HP 2 0% 0% 0% 

  
J. HP-Heating source  Air Water Geotherm.  

 
K. Heat recovery 

A-HR  0% 100%  
% of max. recoverable heat 

D-HR 0% 100%  

 
L. Heat reservoir (building) 

 5% 10% 15% % of peak heating demand 

in 12 kW 24 kW 36 kW max. feed-in 

out 12 kW 24 kW 36 kW max. withdrawal 

  
M. Cogeneration CHP 0% 50% 100% % of peak heating demand 

 
N. PV-orientation  N-S E-W   

  
O. Renewables PV 10% 20% 30% tilt angle 

 
P. Electrical energy storage 

 5% 10% 15% % of peak electrical power demand 

in 32 kW 64 kW 96 kW max. feed-in 

out 32 kW 64 kW 96 kW max. withdrawal 
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Factor J varies between the three different heat sources available for heat pump 

technologies: air, water, and geothermal. The heat recovery was evaluated with Factor K 

at two levels. Level one represented an energy supply system setup without heat recovery. 

Level 2 embodies the setup that takes full advantage of all heat recovery opportunities in 

the system, including direct heat recovery from the operation of the air compressors and 

heat recovery at the return flow of the chiller using heat pump technology. Factor L was 

used to assess the influence of different heat storage capacities. The influence of using a 

cogeneration unit was represented by Factor M. Its capacities varied between 0% and 

100% of the maximum space heating demand of the factory. Finally, the use of on-site 

renewable energy sources was evaluated. Factors N to P include the orientation of a 

photovoltaic system (N) and the angle of inclination (O). Factor P concluded the summary 

of measures. It was used to evaluate the impact of an electrical energy storage system on 

the operation performance of the energy supply system. All the storage equipment 

evaluated in this case study was dimensioned using the method presented in Subsection 

5.4.3. The identified measures were assigned to 16 factors. Each factor was evaluated in 

a maximum of three levels. An L36 orthogonal array was selected from Subsection 2.4.2 – 

Table 2-7, which can evaluate 13 factors with three levels and three factors with two 

levels, giving a total of 36 simulation runs. 

6.5 Visualization and Evaluation of Simulation Results 

In this section, the results of the matrix experiments and the corresponding simulation 

runs are presented. 

 

Results of matrix experiment at building and technical building systems levels 

Figure 6-18 shows the factor charts resulting from evaluating the 18 simulation runs of 

the matrix experiment and the factors given according to Table 6-1. The highest average 

effect considering the performance metrics energy demand was achieved by Factor H 

(window opening control) at Level 1. This was followed by Factor D (lighting) at Level 3 

and Factor B (air handling unit) at Level 2. 

 

Figure 6-18 Main effects plot at the building and technical building systems levels 
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The results show that neither manual nor temperature-specific control strategies can help 

to reduce the energy demand of the building operation. Manual control can even have a 

highly counterproductive effect and significantly increase the energy demand of the 

building and its associated heating, ventilation, and air-conditioning system. Not 

surprisingly, changing the lamps in the lighting system from glow-discharge (Factor D 

Level 2) to LED (Factor D Level 3) can reduce the energy demand by 32%. The 20% 

energy-saving potential of the air-handling unit at Factor Level 2 compared to Factor Level 

3 can be explained by the higher energy efficiency of the adiabatic evaporative humidifier 

compared to the steam humidifier. Factors E (window glazing) at Level 2, Factor F 

(insulation) at Level 3, and Factor G (window shading control) at Level 3 show further 

energy-saving potentials, but their average effect is comparatively low. By separating 

Building Zone A from B and C (Factor A), no great effect can be achieved. Adjusting the 

temperature and humidity setpoints (Factor C) also failed to achieve any significant energy 

savings. The explanation is that the transfer of composite parts between zones requires 

frequent opening and closing of gates between zones. This subsequently affects the 

climate in the individual building zones.  

The simulation results were compared with the performance metric for thermal comfort. 

This evaluation showed that Factor C at Level 3 not only had a small effect on improving 

the energy demand but also potentially increased the predicted percentage of dissatisfied 

occupants by about 60%. Factor D at Level 3 was rated as meeting both the goal of 

reducing the energy demand of the factory building and the predicted percentage of 

dissatisfied occupants. Considering the different performance metrics, further trade-offs 

had to be evaluated for Factors B, E, and H. The AHU (B) had the best performance at 

Factor Level 2, while PPD is lowest at Factor Level 1. Energy demand was lowest for 

window glazing (Factor E) at Level 2 with two glazings, while PPD was lowest with three 

glazings. Automatic window opening control (Factor H) performed best in terms of PPD 

at Level 3, while energy demand is lowest at Factor Level 1. 

The relationship between the improvement measures and product quality was evaluated 

in terms of temperature and humidity stability within the manufacturing environment. 

Figure 6-19 shows the variation of humidity and temperature levels in Building Zone B.  

 

Figure 6-19 Humidity and temperature variations for matrix experiments s1 to s18 for Building Zone B 
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The boxplot was obtained from running Simulations s1 to s18. As a result, the variation 

of humidity levels was evaluated higher than the variation of temperature levels. Figure 

6-20 shows the percentage of humidity and temperature values outside the predefined 

ranges (ref. Table 6-1). The most important effects are highlighted by gray boxes. The 

figure shows that Factors A, B, D, and H significantly affect the percentage of humidity 

and temperature values outside the predefined ranges. 

Contrary to expert estimates, the separating wall between Building Zones B and C was 

evaluated as detrimental to the stability of indoor climate conditions. AHU Setting 3 was 

evaluated to best support stable indoor climate conditions. 

 

Figure 6-20 Main effects plot for the percentage of humidity and temperature levels outside the 
predefined ranges 

Figure 6-21 shows the ranking of all simulation runs with respect to the different 

performance metrics. When considering energy demand, major improvements can be 

achieved by combining the factor levels in Simulations s17 and s4 (Figure 6-21 A). With 

respect to the PPM, humidity, and temperature limits, the combination of factor levels in 

Simulations s6 (for PPM), s5, and s3 (for the humidity range), as well as s16 and s10 (for 

the temperature ranges), allowed significant performance improvements (Figure 6-21 B, 

C, and D). The simulation result combining the best performing factor levels in terms of 

energy demand is shown in Figure 6-21 by a shaded bar with “energy” marked. 

Considering the various trade-offs that emerged from the main factor plots, the project 

team decided on the following selection of factor levels in the final simulation run (A-L1; 

B-L3; C-L2; D-L3; E-L3; F-L1; G-L3; H-L1). The selection was primarily based on energy 

demand, followed by the stability of temperature and humidity levels and thermal 

comfort. The result of this simulation run is shown as a gray bar in Figure 6-21 and is 

marked with the term “selected”. 

This combination of the “selected” factor levels reduces energy demand by 49% and PPM 

by 17% compared to the median from all simulation runs. At the cost of a 9% increase 

in energy demand, PPM improves by 26%, and the stability of the indoor climate 

conditions improves by 25% for humidity and 121% for temperature. 
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Figure 6-21 Ranking of simulation results according to different performance metrics 

Results of matrix experiment on the energy supply system level 

In this paragraph, the results of the matrix experiment at the energy supply system level 

are presented. Figure 6-22 and Figure 6-23 illustrate the simulation results using a main 

effects plot. Using these mappings, the project team was able to characterize the main 

effects and factor interactions, including their characteristic behavior across the design 

space. These figures were also used to identify main effects and to characterize the 

average impact of all individual factors on the various performance metrics of the energy 

supply system setup. In general, Factors B (free cooling in the process cooling setup), 

D (compressed air system setup), I (heating system setup), M (cogeneration), and 

P (electrical energy storage) were found to have a significant effect on the performance 

metrics, energy demand, energy cost, CO2 emissions, renewable energy share, and energy 

flexibility.  

The following is a discussion of each factor in relation to the various performance metrics. 

A – Process cooling setup 

Though the differences between the design options demonstrated to be minor, a 

combination of baseload and peak load chillers proved to be the most cost, energy-

efficient, and climate-friendly way to provide process cooling (Factor A). Given the 

demand characteristics for process cooling (high peaks, high fluctuations) and the part-

load characteristics of the chiller, a 50% / 50% (Factor Level 3) split of the installed cooling 

capacity between the baseload and peak-load chillers could meet the process cooling 

demand at the most efficient operating point. No significant impacts on energy demand 

and energy flexibility of the energy supply system were identified. 

s9 s1
1

s2 s1
6

s1
3

s1
7

s1 s7 s1
2

s6 s1
8

s4 s1
5

s5 s1
4

se
le

ct

s1
0

s8 s3

e
n

e
rg

y

0

1000

2000

3000

4000

5000

6000

7000

8000

e
n

e
rg

y 
d

e
m

a
n

d
 [

M
W

h
/a

]

- 49%

- 17%

s1
5

s1
2

s1
8

s9 s6

e
n

e
rg

y

s1 s1
1

s3 s4 s1
7

s1
3

s2 s5 s7 s1
4

s1
0

se
le

ct

s8 s1
6

0

10

20

30

40

50

60

P
P
M

 [
%

]

B

result from selected measures

lowest energy consumption

9%
s1

2

s1
4

s1
0

s5 s1
5

s4 s1
3

s1
6

s6 s1
1

s2 s1
8

e
n

e
rg

y

se
le

ct

s3 s1 s9 s8 s7 s1
7

0

20

40

60

80

100

h
u

m
id

it
y 

o
u

ts
id

e
 r

a
n

g
e
 [

%
]

- 38%

- 40%

- 14%

s6 s1
6

s1
1

s2 s1
3

e
n

e
rg

y

s9 s1
4

s1
0

se
le

ct

s1 s8 s3 s8 s4 s1
8

s7 s1
5

s5 s1
7

0

20

40

60

80

100

te
m

p
e
ra

tu
re

 o
u

ts
id

e
 r

a
n

g
e
 [

%
]

A

C D

62%
- 58%

median



6 Application of the Methodology 151 

 

 

B – Free cooling in the process cooling setup 

The use of free cooling (Factor B) within the process cooling setup has been shown to 

reduce energy costs in proportion to the installed free cooling capacity. It performed best 

at Factor Level 3. The energy demand and CO2 emissions showed the same performance 

characteristics. The use of free cooling in the system setup showed no improvement in 

the system setup in terms of its energy flexibility capabilities. 

 

Figure 6-22 Main effects plot (Factors A – H) on energy cost, energy demand, CO2 emissions, and 
energy flexibility (the strongest effects are highlighted by gray boxes, and the numbers 
indicate the order of significance) 

C – Cold reservoir for process cooling 

Increasing the size of the cold reservoir (Factor C) in the process cooling setup together 

with the maximum charging and discharging power has shown that the energy costs can 

be reduced. The highest reduction was found for Factor Level 2. Energy demand and the 

associated CO2 emissions show the same trend. The ability of the setup to absorb 

fluctuating energy demand increases with larger storage sizes. 
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D – Compressed air system setup 

In this case study, the operation of the compressed air system (Factor D) was found to 

have a significant impact on the total energy costs of the factory. It is demonstrated how 

baseload and peak load compressors can be cascaded to achieve the most efficient 

average operating point. The best match between the fluctuating compressed air demand 

required to operate the autoclaves (pressure ramps – high demand, pressure hold – no 

demand) and the efficiency characteristics of the individual compressors (larger 

compressors - higher average efficiency; smaller compressors - lower average efficiency) 

was determined with a 75% / 25% split between the compressor units (Factor Level 2). 

Energy demand, CO2 emissions, and renewables share followed the same performance 

characteristics. For Factor D, only a minor improvement of the system’s energy flexibility 

was found. 

E – Compressed air storage 

In contrast to the other factors, the increase in the capacity of the compressed air storage 

tank in combination with the maximum charging and discharging power (Factor E) 

showed little effect on the evaluated performance metrics. The lowest energy demand 

and highest renewables share were identified for minimum storage capacities (Factor 

Level 1). CO2 emissions and energy flexibility increased proportionally to the tank size and 

were highest at Factor Level 3.  

F – Space cooling setup 

Based on the demand characteristics for space cooling, it was shown that the chiller setup 

(Factor F) operates most economically at Factor Level 2. The combination of a baseload 

and a peak load chiller with a 75% / 25% distribution of the installed cooling capacity 

between the chiller units showed superior performance. Taking into account the CO2 

emissions, the simulation results also recommended covering the cooling demand with 

several chillers and splitting it according to Factor Level 2. Although the advantage is 

minor, the performance in terms of energy demand is also best at Factor Level 2. Again, 

no significant effect on the energy flexibility characteristics was found. 

G - Free cooling in the space cooling setup 

In the space cooling setup, free cooling (Factor G) only needs to be evaluated on two 

levels. As with the process cooling setup, the availability of free cooling proved to be an 

efficient measure for improving the performance of the energy supply system in terms of 

energy cost, energy demand, and CO2 emissions (Factor Level 2).  

However, due to the lower overall demand for space cooling compared to process cooling, 

the average savings potential is lower. The use of free cooling is also limited in the summer 

months due to the small temperature differences between the flow and outdoor 

temperature. However, this is the period of the year with the highest space cooling 

demand. A positive effect of free cooling on energy flexibility could not be quantified in 

this assessment.  
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H - Cold reservoir for space cooling  

With regard to energy costs, energy demand, CO2 emissions, and renewables share, the 

storage size in the space cooling setup (Factor H) performed best at Factor Level 2 for 

medium size and medium charging and discharging capacity. Not surprisingly, the energy 

flexibility within the system setup increases with increasing storage sizes. 

 

Figure 6-23 Main effects plot (factor I – P) on energy cost, energy demand, CO2 emissions, renewable 
energy share, and energy flexibility (the strongest effects are highlighted by gray boxes, 
and the numbers indicate the order of significance) 

I – Space heating setup 

The system setup for space heating (Factor I) showed superior performance at Factor 

Level 3, indicating the use of an electric heat pump in combination with a gas-fired boiler. 

Based on the peak heating demand, a 75% / 25% split between the installed capacity of 

the heat pump and the boiler showed the best results. Again, no significant impact on 

energy flexibility performance could be quantified. 

J – Heating source for heat pump 

Factor J evaluated the use of different heat sources for the heat pump. Sourcing heat 

from geothermal probes (Factor Level 3) was rated best in terms of its potential to reduce 
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energy costs, energy demand, and CO2 emissions. However, due to the low space heating 

demand, the main effects plot indicates generally low impacts on the different 

performance metrics. 

K – Heat recovery 

Heat recovery from the process cooling and compressed air system (Factor K) was 

evaluated to having a positive impact on the overall performance of the energy supply 

system. The assessment showed that heat pump technology can reuse waste heat in the 

space heating system, reducing energy demand, costs, and CO2 emissions. Effects on the 

renewable energy share and the system’s ability to provide energy flexibility are also 

positiv.  

L – Heat reservoir for space heating 

Looking at the dimensioning of the thermal storage in the space heating setup, larger 

tank sizes together with maximum charging and discharging capacities (Factor Level 3) 

show uniformly positive effects on all performance criteria of the system. A major positive 

effect was demonstrated for the performance metrics energy flexibility. 

M – Cogeneration system 

The use of a combined heat and power (CHP) plant (Factor M) reduced the energy costs 

within the given energy supply system. As shown in the main effects plot, as system size 

increases, the cost advantage increases proportionally. The average saving potential is 

highest at Factor Level 3. The cost advantage is due to the low cost of natural gas, the 

guaranteed subsidies for in-house consumption of electricity generated by a CHP plant 

(“CHP Bonus”) as well as guaranteed feed-in tariffs.  

The additional demand for natural gas to operate the CHP plant, while economically 

beneficial, increases the total energy demand and associated CO2 emissions. As space 

heating is the only heat sink where cogenerated heat can be reused, the CHP plant is 

mainly operated for electricity generation. Meanwhile, most of the cogenerated heat is 

dissipated in an emergency cooler. This reduces the overall efficiency of a CHP plant 

operation. The performance of the system in terms of energy flexibility decreases with 

larger CHP plant sizes due to the increasing energy demand for the CHP plant operation. 

Energy flexibility peaks at Factor Level 1.  

 

Finally, the impact of the use of on-site renewable energy and the modification of the 

corresponding design parameters was evaluated. The influence of a photovoltaic system 

on the energy supply system setup was evaluated by varying two different factors, namely 

the orientation and the tilt angle. 

N – Photovoltaic system – Orientation 

Factor N was employed to test the effect of changing the orientation of the photovoltaic 

system. Based on the simulation results, north-south orientation (Factor Level 1) showed 

the highest cost and emission reduction potential. It also has a major impact on the 
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renewable energy share used in the system setup. The orientation of the photovoltaic 

system showed no significant influence on the overall energy demand and the energy 

flexibility potential. 

O – Photovoltaic system – Tilt angle 

Taking into account the specific location of the building and its roof orientation, the 

photovoltaic system showed its best reduction potential in terms of energy costs when 

installed with a tilt angle of 10 degrees (Factor Level 1). 

P – Electrical energy storage system 

The use of an electrical energy storage system with varying charging and discharging 

power has been shown to contribute best to the overall performance of the energy supply 

system at Factor Level 3. In addition to the energy costs, the CO2 emissions are also lowest 

at Factor Level 3. This is mainly due to the fact that the higher storage capacity can 

increase the share of self-consumption from renewable energy sources (e.g., photovoltaic 

system). This results in lower energy surpluses that have to be fed to the grid when the 

electricity demand of the factory is low. Besides, higher charging and discharging rates of 

the electrical energy storage system can also improve the ability of the energy supply 

system setup to absorb peak electricity demands of the factory, further reducing the need 

to source electricity from the grid. 

In summary, the individual performance metrics were most influenced by the following 

four factors and their subsequent order. For energy costs, the most influential factors 

were M, D, B, and P. For energy demand, the order was M, D, B, and I, for CO2 emissions 

D, B, M, and I, for the renewable energy share M, N, I, and D, and for energy flexibility P, 

L, H, M. Conflicting effects between the performance metrics energy cost, energy 

demand, CO2 emissions, and energy flexibility could be identified for the factors C, D and 

H and between energy cost, energy demand, and CO2 emissions for the factor M. In both 

cases the improvement of one performance metrics (e.g., energy flexibility or energy costs) 

leads to deterioration in the other performance metrics (e.g., energy demand or 

CO2 emissions. 

Figure 6-24 A and B show the simulation runs that performed best in terms of each 

performance metric, s23 for energy costs, s19 for energy demand and energy flexibility, 

s24 for CO2 emissions, and s34 for the renewables share.  

Identical to the process for evaluating the measures at the building and technical building 

systems levels, additional simulation runs were carried out with the combination of best 

factor levels with respect to individual performance metrics. Then, the project team 

selected the levels for all factors individually based on the analysis of the main effects 

plots. The result was the ultimate simulation, which was called “select” or “S”. In making 

their decision, they prioritized factor levels that help reduce energy costs, followed by 

factor levels that reduce energy demand and CO2 emissions. Renewables share and 

energy flexibility has been considered whenever it is complementary to the other 

performance metrics or when significant improvements warrant minor trade-offs with the 
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other performance metrics. The selection favored A-L3, B-L3, C-L3, D-L2, E-L3, F-L2, G-

L2, H-L3, I-L3, J-L3, K-L2, L-L3, M-L2, N-L1, O-L1, P-L3). 

 

 

Figure 6-24 3D visualization of the simulation results for (A) – energy cost, energy demand, and CO2 
emissions, (B) – energy cost, energy demand, and renewables share, and (C) – energy cost, 
energy demand, and energy flexibility 

Figure 6-25 shows the results of all simulation runs for various performance metrics. The 

shaded and dashed bars indicate the results of the simulation runs combining the best 

performing factor level in terms of lowest energy costs (“EC”), lowest energy demand 

(“ED”), lowest CO2 emissions (“CO2”), highest renewable energy share (“RE”), and 

highest energy flexibility (“EF”). The black bar shows the simulation result for the 

combination of factor levels chosen by the project team. 
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Figure 6-25 Ranking of simulation results for the different performance metrics 
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Figure 6-26 further specifies the relative improvements for each performance metric 

considering the worst (w), median (m), best (b), and selected (s) results from the simulation 

runs. In the case where the factor levels are chosen to improve individual performance 

metrics, the pie charts in the top row of Figure 6-26 show (from left to right) the relative 

change in performance for all performance metrics compared to median results. The cost-

optimized factor level combination can reduce energy costs by a maximum of 22%. The 

energy demand optimized factor level combination can reduce energy demand by 21% 

compared to median results. The emission-optimized factor level combination has a 

maximum reduction potential of 13%. If the sole aim is to improve the renewables share 

or energy flexibility, the maximum relative improvements are 36% or 58%, respectively. 

For the combination of factor levels chosen by the project team, the pie chart in the 

bottom row illustrates the relative improvements for all performance metrics. Compared 

to the median results of all performance metrics, the annual energy costs could be 

reduced by 10% (~ -31,700 €), the annual energy demand by 7% (~ -285.5 MWh/a), 

CO2 emissions by 11% (~ -134.9 tCO2/a), the renewables share could be increased by 

16% to 21% (≙ +52.3 MWh/a) and energy flexibility by 31% to 18% (≙ +43.0 MWh/a). 

 

 

Figure 6-26 Top: pie-chart showing the relative improvement per performance metric compared to 
median simulation results (EC – energy cost, ED – energy demand, CO2 – CO2 emissions, 
RE – renewables share, EF – energy flexibility). Middle: worst (w), median (m), best (b), and 
selected (s) simulation results per performance metric. Bottom: pie-chart showing relative 
improvement per performance metric for selected factor levels  
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Figure 6-27 summarizes the results from both simulation experiments with a particular 

focus on energy demand and supply. In Figure 6-27 A, the total energy demand of the 

manufacturing system is differentiated into the demands for operation of the process 

chain, building, and technical building systems. Considering different factor level 

combinations, the worst, median, and best results are presented. Assuming that trial-and-

error approaches cannot realize superior performance improvements, the structured 

evaluation using design of simulation experiments was able to achieve a 34% reduction 

in energy demand compared to the median results of all simulation runs. Taking into 

account the factor levels selected, the reduction is still 26%. 

 

Figure 6-27 Summary of results from Simulation Experiment One (A) and Two (B) - (A – focus on energy 
demand reduction, B – focus on energy supply system efficiency) 

Figure 6-27 B illustrates the composition of the energy sources that can be used to supply 

the requirements of the manufacturing system for the case “select”. The sources are 

differentiated into electricity that is retrieved and fed to the grid, gas retrieved from the 

grid, and electricity that is provided on-site from renewable energies. Again, the worst, 

median, and best results for different factor level combinations are outlined and 

contrasted with the selected setup (“select”). Again, the structured evaluation using 

simulation experiments was able to reduce energy demand by 28% when the setup is 

optimized for the lowest energy demand only. For the factor level combination selected 

by the project team, it was still possible to achieve 7% compared to the median result 

from all simulation runs. 

Considering the energy efficiency metrics introduced in Section 5.2, the factory system 

achieves an energy efficiency performance of 106% for the combination of selected 

factor levels. This result is obtained by dividing the useful energy demand required for the 

operation of the process chain, auxiliary equipment, and the technical building systems 

(ref. Figure 6-27 A – “select”) by the final energy demand used to supply these demands 

(ref. Figure 6-27 B – “select”). Efficiencies of more than 100% can be explained by the 

heat pumps and chillers used to meet the heating and cooling demands. These 

technologies can make use of “environmental energy” and have performance factors 

greater than one. 
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6.6 Summary 

The developed methodology was applied to a case study in a factory manufacturing 

composite parts for the aerospace industry. First, the manufacturing system was modeled 

by coupling different software tools. Tecnomatix Plant Simulation 14 was used to model 

machines and their interaction within a process chain. Buildings and technical building 

systems were implemented in the EQUA IDA ICE 4.8 software. Finally, both the auxiliary 

equipment and the energy supply system were modeled in the TOP-Energy 2.10 software 

environment. Various submodels were verified using measurement data obtained during 

visits to the factory site. Together with a group of company and third party experts, several 

improvement measures were preselected and adapted to individual matrix experiments. 

The step-by-step approach of the developed methodology made it possible to evaluate 

several improvement measures simultaneously in terms of different performance metrics. 

A total of two simulation experiments were conducted. The first experiment focused on 

improving the operation of the building and the technical building systems. The evaluation 

included measures to reduce energy demand and improve non-energy benefits in terms 

of occupational safety and product quality. In the present case study, no improvement 

measures at the process chain level were considered. Based on the results of the first 

simulation experiment, the second experiment focused on improving the design of the 

energy supply system with respect to the selected performance metrics – energy costs, 

energy demand, CO2 emissions, and energy flexibility. Main effects plots were used to 

illustrate the effect of various design parameters (factors) on several performance metrics 

and to determine the best settings (levels) for each design parameter. The implementation 

of the selected measures at the building and technical building system level was assessed 

as having the potential to reduce the energy demand of the factory system by 26%, 

compared with the median from all simulation runs. This is the case if median results are 

considered to be the best results that can be obtained in a non-systematic trial-and-error 

procedure. 

Following the procedure proposed by the methodology, it was possible to select and 

combine improvement measures that could reduce the energy demand of the building 

and technical building systems by 38% and the PPM value by 17%, and increase the 

stability of temperature and humidity levels by 40% and 58% compared to the median 

results. 

Based on the improvement of the energy demand side, the supply system setup that best 

meets the remaining energy demands was designed. Using matrix experiments, it was 

possible to improve trial-and-error approaches and outperform median scenarios by 10 % 

(~ -31,700 €) in energy costs, 7% (~ -285.5 MWh/a) in energy demand, and 11% 

(~ -134.9 tCO2/a) in CO2 emissions. In addition, the share of renewable energies on the 

final energy demand of the factory was increased by 16% to 21% (≙ +52.3 MWh/a) and 

the energy flexibility was increased by 31% to 18% (≙ +43.0 MWh/a). 
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7 Evaluation of the Methodology 

Chapter 7 evaluates the developed methodology and compares its performance with 

respect to the requirements identified in Chapter 4 (ref. Section 7.1). Section 7.2 evaluates 

the research contribution and outlines the limitations of the methodology developed 

before Section 7.3 summarizes the evaluation and generalizes the findings related to the 

development and application of the methodology in this thesis. 

7.1 Evaluation of the Requirements 

In this section, the requirements identified in Chapter 4 are evaluated with a view to their 

application in the case study in Chapter 6. First, the requirements for the factory 

simulation model are evaluated.  

Due to the achieved level of detail of the individual submodels, as well as the extensive 

consideration of multiple factory peripheries within the simulation model (ref. 

Section 5.4), full compliance with Requirements 1 and 8 can be confirmed. The offline 

exchange of simulation data enables the flexible use and coupling of different domain-

specific simulation tools. Thus, Requirement 5 (flexible model coupling) can also be 

evaluated as completely fulfilled.  

To enable the adaptation of the factory model to individual use cases and the extension 

of the model in the future, Requirement 2 (modular and expandable model architecture) 

was introduced. Since the submodels of the factory simulation model can all be 

individualized and extended as needed, Requirement 2 is also rated as completely fulfilled. 

In addition to customization, the predefined factory model setup enables the rapid 

implementation of the first version of a factory model. Full compliance with 

Requirement 3 is only limited by the transparency regarding the numerous model 

parameters. As a result, the user has to pay considerable attention when parameterizing 

the model.  

Depending on the simulation duration, the temporal resolution and the number of 

submodels, the execution time for the individual simulation runs varies considerably. To 

overcome this limitation and ensure fast model execution (Requirement 4), the temporal 

resolution of the factory model was customized. While the resolution of seconds or 

minutes can provide valuable insights at the level of processes or machines, this benefit is 

significantly reduced at the energy supply system level. The use of data compression in 

handling data between the different levels of the simulation model was identified as an 

effective way to reduce execution times. In this work, the execution time of each 

simulation model varied between 1-15 min. for the process chain model, 15-60 min. for 

the building and technical building system models, and 15-60 min. for the energy supply 

system model. These figures refer to one simulation run and take into account a 

simulation period of one year. 
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The evaluations of simulation models for complex technical systems (e.g., factories) 

require considerable effort. In this work, the model accuracy of the factory model was 

ensured by evaluating the individual submodels. However, it is expected that future 

metering systems will bring the representation of the real world and the model even closer 

together. This confirms partial compliance with Requirement 6. 

The main application of the factory simulation model is the evaluation of improvement 

measures regarding the use of the resource energy as well as the evaluation of individual 

energy supply system setups. For this purpose, the model accuracy (Requirement 7) and 

resolution proved to be sufficient. Again, using domain-specific simulation tools with a 

considerable history of evaluated submodels ensures the accuracy of the factory 

representation in the simulation model. However, the heterogeneity of existing factory 

environments, together with the limited access to measurement data, still poses a 

challenge to model accuracy. Thus, Requirement 7 is also only partially fulfilled. The 

evaluating of the requirements for the assessment procedure is presented next.  

The assessment procedure developed in this work complements the existing performance 

metrics (Requirement 1) with additional categories related to non-energy benefits, 

renewables share and energy flexibility. Following the methodology presented in this 

work, the user is able to select improvement measures, taking into account their 

performance trade-offs. Future developments will certainly add further performance 

categories to which a factory system must respond. Furthermore, the non-energy benefits 

introduced in this work require additional specification in terms of quantifiability. Hence, 

Requirement 1 is assessed as only partly fulfilled. 

Requirements 2 and 3 address the need to develop efficient and statistically sound ways 

to experiment with complex simulation models. In this respect, existing trial-and-error 

approaches changing one factor at a time are considered insufficient and efficient. By 

introducing design of simulation experiments, it is possible to analyze factory systems with 

a minimum of individual simulation runs. The simulation results obtained hereby allow 

prioritization of the measures according to their influence on the overall system 

performance. Requirements 2 and 3 are therefore assessed as fulfilled. In terms of 

efficiency, the fulfillment of the requirement is only limited by the time-consuming 

transfer of the parameter levels in the individual models. This currently limits efficiency 

gains but is expected to be resolved by future improvements of the methodology. 

Within the scope of this work, measured data were used wherever possible to evaluate 

the simulation model. However, existing factory environments with fragmented and 

heterogeneous energy metering infrastructures still significantly limit these efforts, leaving 

white spaces of unverifiable submodels within complex factory simulation models. Hence, 

Requirement 4 is only confirmed as partially fulfilled.  

Innumerable parameters characterize complex simulation models. However, only a few 

parameters have the appropriate level of detail that can be used and influenced by 

decision-makers in the early stages of a factory planning process. In this work, the practical 

relevance of the selected parameters (Requirement 5) was ensured by experimental 
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design. The matrix experiments used predominately involve yes or no decisions for the use 

of individual technologies, capacity, and the number of units for equipment installations. 

This information is considered to be available in early design phases while providing a 

sufficient level of detail to be used proactively by decision-makers during the development 

of conceptual designs. Again, the fulfillment is attributed to Requirement 5. 

Finally, Requirement 6 is also assessed as fulfilled by the use of several graphical 

representations to visualize intermediate and final simulation results. For example, main 

effects plots are used to show the average effect of individual factor levels in relation to 

different performance categories. Pie charts are used to illustrate performance 

improvements across all performance categories. Table 7-1 summarizes the evaluation of 

the requirements. Their individual levels of fulfillment are represented with Harvey balls. 

Table 7-1 Evaluation of the requirements for the factory simulation model and assessment procedure 

(degree of fulfillment: not ○, partial ◔◑◕, complete ●) 

 Factory simulation model   Assessment procedure 

● 
1. Comprehensive representation of energy 

consumption characteristics 
 ◕ 1. Extended performance metrics 

● 2. Modular and extensible model architecture  ◕ 
2. Efficient way of experimenting  

with simulation models 

◕ 3. Fast model implementation and adaptation  ● 
3. Statistically sound way of experimenting  

with simulation models 

◑ 4. Fast model execution  ◑ 
4. Improved use of measurement data 

● 5. Flexible model coupling  ● 5. Practical relevance of the selected parameters 

◑ 6. Good verifiability of the model  ● 
6. Graphical support of the decision-making 

process and presentation of results 

◕ 7. High model accuracy    

● 8. Extended energy supply system model    

7.2 Research Contribution and Limitations 

The main contribution of the developed methodology is to promote the use and 

evaluation capabilities of factory simulation models during the planning of a factory 

modernization (e.g., during redesign, revitalization, expansion, renovation, or 

restructuring) with regard to their energy use. In this case, measurements can provide the 

relevant information to parameterize and verify the factory simulation model.  

Embedded in a consistent assessment procedure, the combination of a multi-peripheral 

factory simulation model together with an evaluation process using design of simulation 

experiments, allows to first, reduce the energy demand of the factory system and second 

to design demand-oriented energy supply systems. Hence, the assessment procedure 
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supports the synthesis of energy improvement measures and energy supply system 

designs for factories. It assists in both the selection and combination of appropriate 

improvement measures, energy supply technologies, and associated operational 

strategies. Therefore, it is a beneficial approach that helps identify the components and 

parameters within a factory system that most affect its energy-related performance. The 

developed evaluation process is a further development of trial-and-error approaches, 

which are still predominant in the optimization of energy demand in factories and the 

design of their energy supply infrastructure. It has been shown that the use of matrix 

experiments reduces the number of simulation runs and thus the computational cost of 

analyzing the available design space. The design of simulation experiments also allows the 

identification of interdependencies between parameters and their positive (reinforcing) 

and negative (mitigating) effects with respect to various energy-related performance 

metrics. In summary, the methodology developed represents a good compromise 

between modeling effort, the number of simulation runs required, and model accuracy. 

Therefore, it allows screening for the most effective combination of measures given 

customer preferences and design space constraints. The derived results enable 

prioritization of further design and engineering efforts focused on the detailed design of 

energy-related equipment installations and their operational strategies. 

The support provided by the proposed methodology is limited when it comes to detailing 

conceptual designs, technical specifications, and control strategies. The approach to 

design of simulation experiments presented in this thesis primarily aims to screen the 

design space for parameters that have a dominant effect on the energy-related 

performance metrics of a factory. This also includes identifying significant interactions 

between parameters, both reinforcing and mitigating. Another limitation is that 

simulation studies based on matrix experiments offer limited flexibility when it comes to 

changing the number of parameters (factors) and parameter (factor) levels analyzed. 

Moreover, matrix experiments based on orthogonal arrays are highly fractional factorial 

designs. This limits the analysis to main effects. Omitting higher-order factor interactions 

can lead to misinterpretation of simulation results and requires a lot of experience from 

the user. Although various visualization approaches are implemented in the presented 

approach, considerable expert knowledge is still required to interpret the simulation 

results. Another limitation of this work is the lack of an optimization approach that can 

weigh off different performance metrics against each other and automatically select the 

best combination of measures in search of a global optimum. In this work, optimization 

is limited to the selection of best-performing factor levels from the main effects plots.  

In the spirit of generalization, the methodology developed in this thesis introduces new 

strategies for using complex simulation models in consulting practice. The adaptation of 

the decision parameters to a user-specific level of detail and the effective handling of 

heterogeneous, multiparametric factory simulation models using desing of simulation 

experiments represents another valuable contribution of this work. The extension of the 

peripheral factory model further generalizes the structure of a factory and presents a 

framework that helps to locate energy-consuming equipment and categorize 



7 Evaluation of the Methodology 165 

 

 

improvement measures. This also provides a valuable link between the research fields of 

manufacturing engineering and architecture. If sufficiently verified information on the 

energy demand characteristics of the underlying manufacturing process is available from 

measurements in existing, currently operating factories, the presented methodology can 

also support during the planning of new factories in a greenfield approach.  

7.3 Summary 

With reference to the requirements specified in Chapter 4, Chapter 7 (ref. Section 7.1) 

evaluated the fulfillment based on the application of the developed methodology in the 

case study in Chapter 6. The evaluation is presented both for the requirements on the 

development of the factory simulation model and on the improvement of existing 

assessment procedures. For the factory simulation model, major fulfillment can be 

attributed to Requirements 1, 2, 5, and 8. This is because in this work, existing multi-

peripheral factory models have been extended towards the energy supply system. Also, 

the presented model allows flexible coupling, extension, and adoption to different use 

cases. For the assessment procedure, major fulfillment has been evaluated for 

Requirements 3, 5, and 6. This is because in this work, existing performance metrics have 

been extended towards non-energy benefits. Besides, design of simulation experiments 

has been introduced as a new approach to support experimenting with factory simulation 

models in an efficient and statistically sound way. Section 7.2 evaluates the general 

research contribution of the developed methodology and outlines its limitations.  

Supporting modernization planning with a special focus on energy use and improving the 

planning results by promoting the evaluation capabilities of factory simulation models was 

found to be one major contribution of this work. A limitation of this work is its primary 

focus on conceptional designs and the missing link to support detailed planning of 

technical systems and control strategies for example by using more advanced optimization 

methods. 
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8 Summary and Outlook 

Chapter 8 summarizes the content of this work. The chapter also includes a brief outlook 

on research fields related to the findings and shortcomings of this work that demand 

further research. 

 

Summary 

Chapter 1 motivates this research by providing a general background on environmental 

protection measures that directly or indirectly affect factory design and operation 

requirements. The research question is derived from the shortcomings of simulation-based 

methodologies available for the assessment of energy use in factories. The lack of these 

approaches to shed light on the complex interactions of different improvement measures 

in relation to multiple energy-related performance metrics is translated into the central 

aim of this work. Chapter 1 concludes with an outline of the research design and structure 

of this thesis. Chapter 2 presents the basic principles and theoretical foundations relevant 

to this work. This includes terms and definitions for factory systems, energy use, modeling 

and simulation, and the design of simulation experiments. Chapter 3 provides an overview 

of the state of science relevant to the research question in Chapter 1. Existing simulation-

based methodologies used to assess energy use in factory systems are evaluated with 

respect to the four evaluation criteria (suitability, completeness, inclusiveness, 

comprehensiveness) and their additional sub-criteria (transferability, generalizability, 

precision, usefulness, and integrability). Chapter 3 concludes by refining the research 

question. With reference to the criteria introduced in Chapter 3, Chapter 4 outlines the 

objectives and requirements relevant to the development of a new multi-peripheral 

factory simulation model and its role in the assessment of energy use in factories. Chapter 

5 presents the methodology developed. The methodology consists of two parts, first, the 

development of a procedure model for a step-by-step assessment of energy use in 

factories using extended energy-related performance metrics, and second, the 

development and implementation of the factory simulation model with several 

peripheries. Chapter 6 applies the developed methodology to a case study in the 

aerospace composites industry. By following the steps of the assessment procedure, it is 

possible to make a joint evaluation of various improvement measures from the energy 

efficiency, energy flexibility, and renewable energy category. The evaluations are done in 

a composite manner using the multi-peripheral factory simulation model along with the 

design of simulation experiments. The focus of the evaluation process is twofold. In the 

first experiment, the focus is on reducing the final energy demand of the factory. In the 

second experiment, the focus is on improving the design of the energy supply system with 

respect to the selected performance metrics – energy costs, energy demand, CO2 

emissions, energy flexibility, and renewable energy share. Chapter 7 evaluates the 

developed methodology against the objectives and requirements presented in Chapter 4. 

It also provides a critical overview of the contributions and limitations of this research. 
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Outlook and recommendations for future work 

This study offers several starting points for further research. This section aims to provide 

a brief outlook on the urgent need for further research. 

In order for decision-makers to focus their efforts and companies to prioritize their 

financial resources, it is important to further explore the topic of holistic performance 

metrics for manufacturing systems. This also includes the development of methods that 

allow various performance metrics to be flexibly adjusted, weighted, and balanced. 

Model-based assessments require functions to evaluate the impact of a change in 

priorities and preferences within complex performance metrics. In general, performance 

metrics need to be extended to include other dimensions, including the resilience of the 

manufacturing system and its individual elements (e.g., the energy supply system design). 

The quantifiability of non-energy benefits also needs further elaboration, including 

consideration of the associated model requirements. Moreover, for the use of the 

performance metric “energy efficiency” and its use at the level of an entire manufacturing 

system (ref. Section 6.5), a further specification is required. This includes, for example, a 

distinction between the individual energy carriers and their ability to perform work 

(exergy). 

Expanding the scope of the multi-peripheral factory model is a desirable goal for future 

developments. This includes improving the level of detail within individual peripheries of 

the presented factory model. Here, the implementation of further energy carriers (e.g., 

hydrogen and other synthetic fuels) together with the corresponding system components 

(e.g., electrolyzer, fuel cells) is a requirement for the future. In addition to improving the 

level of detail, adding new peripheries to the factory model is another necessity. At the 

lower end of the peripheral scale, consideration of a product level can specify the 

influence of product design on the energy requirements during manufacturing. At the 

upper end, expansion toward industrial parks and coupling with other sectors 

(households, transportation) offers the possibility to design energy networks in a way that 

optimally matches demand and supply. Grid infrastructures and energy markets can 

represent further model extensions.  

In order to improve the applicability of the presented methodology, it is necessary to 

standardize the presented workflow in terms of software. This is motivated partly to 

encourage the use of the tool by practitioners who do not yet have experience with 

modeling and simulation and partly to reduce error-proneness. The focus is on the 

development of a uniform input mask for all design parameters selected for evaluation in 

the factory simulation model. This includes a workflow that supports model coupling and 

data handling between the different submodels with a graphical user interface.  

Necessary future developments consider the implementation of an automated workflow 

that can select the appropriate design of simulation experiments based on the number of 

design parameters (factors) and parameter levels (factor levels). This workflow also 

includes the automated generation and execution of model variants. The use of 

optimization algorithms within complex, multi-peripheral factory models represents 
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another possible field of action for future research activities. This can extend the screening 

for near-optimal factor settings presented in this work to include demand-based selection, 

stepwise execution, and coupling of optimization algorithms with the simulation model. 

To improve model accuracy and flexibility, the multi-peripheral factory model needs to be 

extended with data-driven modeling approaches. To overcome the limitations of current 

energy metering systems and establish consistent data sources, the author suggests 

investigating the development and implementation of value stream-oriented 

measurement concepts for energy data collection. These measurement concepts aim to 

allocate the total energy demand from all the peripheries of a factory to specific value-

added processes and individually manufactured products. The alignment of the model 

with data interfaces also allows for better adjustment of design parameters and 

verification of submodels. Subsequently, the multi-peripheral factory model can be 

expanded to include additional levels of detail, for example, around the characteristics of 

partial-load operation for machines, auxiliary equipment, and technical building systems. 

To advance the use of factory simulation models in the context of the digital factory, the 

link between the model and the real world must be extended. This includes linking the 

various submodels of complex factory simulation models with data streams from machine 

sensors and value stream-oriented energy metering systems. Based on these data streams, 

the model can be continuously updated and always represent the latest information and 

status of the physical assets represented. The research focus is to strengthen the concept 

of digital twins (the virtual representation of physical assets) to always present an up-to-

date digital representation of the factory using a data-driven factory simulation model 

(ref. Figure 8-1). 

 

 

Figure 8-1 Connecting of factory simulation models to platform-driven services 
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Within this virtual representation, it is possible to compare the effects of different 

improvement measures (e.g., control strategies, retrofits, and equipment installations) 

before applying the results and insights to the real world. This also expands the current 

focus from optimized planning to the optimized and robust operation of factories, taking 

into account different production scenarios and changing environmental conditions. 

Improved data usage, model performance, and accuracy can further extend its use in 

platform-based services environments. Based on the current virtual representation of the 

factory, an expanded service portfolio can support companies in their efforts to achieve 

environmentally friendly, resource-saving, and low-emission manufacturing practices. 

Table 8-1 summarizes the demand for future research and provides an assessment of its 

priority based on the author's experience during the research presented in this work. 

Table 8-1 Summary of future research needs (priority: ∗∗∗ high, ∗∗ medium, ∗ low-priority) 

 Factory simulation model   Assessment procedure 

∗∗∗ 
Expanding the scope of the multi-peripheral 
factory model  ∗∗∗ 

Extending existing manufacturing performance 
metrics  

∗∗∗ Implementing data-driven modeling approaches  ∗∗∗ Use of optimization algorithms 

∗∗∗ 
Extension of multi-peripheral factory models 
toward digital twins  ∗∗ 

Automated selection and execution of 
appropriate design of simulation experiments 

∗∗ Detail and verify individual submodels  ∗∗ 
Development and implementation of value 
stream-oriented energy metering systems 

∗ 
Development of digital platforms and platform  
services  ∗ 

Improve the usability when using complex multi-
peripheral simulation models 
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A1 Detailed simulation results 

Table 8-2 L18 orthogonal array 

  

factors 

  L18 A B C D E F G H 

si
m

u
la

ti
o

n
 r

u
n
s 

s1 1 1 1 1 1 1 1 1 

s2 1 1 2 2 2 2 2 2 

s3 1 1 3 3 3 3 3 3 

s4 1 2 1 1 2 2 3 3 

s5 1 2 2 2 3 3 1 1 

s6 1 2 3 3 1 1 2 2 

s7 1 3 1 2 1 3 2 3 

s8 1 3 2 3 2 1 3 1 

s9 1 3 3 1 3 2 1 2 

s10 2 1 1 3 3 2 2 1 

s11 2 1 2 1 1 3 3 2 

s12 2 1 3 2 2 1 1 3 

s13 2 2 1 2 3 1 3 2 

s14 2 2 2 3 1 2 1 3 

s15 2 2 3 1 2 3 2 1 

s16 2 3 1 3 2 3 1 2 

s17 2 3 2 1 3 1 2 3 

s18 2 3 3 2 1 2 3 1 
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Table 8-3 L18 orthogonal array – results 

 

results energy 
demand 

PPM 
humidity 

outside range 
temperature 
outside range 

  L18 MWh % % % 

si
m

u
la

ti
o

n
 r

u
n
s 

s1 fs1 4702,08 35,57 20,64 1,42 

s2 fs2 7584,81 32,17 39,90 14,93 

s3 fs3 2066,60 34,73 21,37 0,73 

s4 fs4 3036,14 34,08 49,34 0,37 

s5 fs5 2594,43 31,73 49,54 0,11 

s6 fs6 3825,77 39,80 46,52 21,08 

s7 fs7 4145,40 31,42 3,07 0,23 

s8 fs8 2146,75 27,47 12,40 0,90 

s9 fs9 8110,59 51,54 14,58 12,26 

s10 fs10 2209,17 28,94 73,00 3,22 

s11 fs11 7943,01 35,15 40,34 14,98 

s12 fs12 3893,13 59,13 95,86 0,61 

s13 fs13 6919,91 32,48 49,25 14,69 

s14 fs14 2332,54 29,73 76,30 12,20 

s15 fs15 2906,59 59,47 49,39 0,14 

s16 fs16 7021,16 27,01 47,11 15,62 

s17 fs17 4929,77 33,63 2,36 0,05 

s18 fs18 3635,33 57,73 36,37 0,35 

 final  1889,85 36,90 34,34 12,51 

 select  2328,00 28,01 24,14 3,21 

 
  



212 Appendix 

 

 

Table 8-4 L36 orthogonal array 

 

parameters 

  L36 A B C D E F G H I J K L M N O P 

si
m

u
la

ti
o

n
 r

u
n
s 

s1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

s2 2 2 2 1 2 2 2 2 2 2 1 2 1 1 2 2 

s3 3 3 3 1 3 3 3 3 3 3 1 3 1 1 3 3 

s4 2 3 3 1 1 1 1 1 2 2 1 2 2 2 3 3 

s5 3 1 1 1 2 2 2 2 3 3 1 3 2 2 1 1 

s6 1 2 2 1 3 3 3 3 1 1 1 1 2 2 2 2 

s7 3 1 2 1 1 1 2 3 1 2 2 3 1 2 2 3 

s8 1 2 3 1 2 2 3 1 2 3 2 1 1 2 3 1 

s9 2 3 1 1 3 3 1 2 3 1 2 2 1 2 1 2 

s10 2 2 1 1 1 1 3 2 1 3 2 3 2 1 3 2 

s11 3 3 2 1 2 2 1 3 2 1 2 1 2 1 1 3 

s12 1 1 3 1 3 3 2 1 3 2 2 2 2 1 2 1 

s13 1 3 2 2 1 2 3 1 3 2 1 3 1 1 1 2 

s14 2 1 3 2 2 3 1 2 1 3 1 1 1 1 2 3 

s15 3 2 1 2 3 1 2 3 2 1 1 2 1 1 3 1 

s16 3 3 3 2 1 2 3 2 1 1 1 2 2 2 2 1 

s17 1 1 1 2 2 3 1 3 2 2 1 3 2 2 3 2 

s18 2 2 2 2 3 1 2 1 3 3 1 1 2 2 1 3 

s19 1 2 1 2 1 2 1 3 3 3 2 2 1 2 2 3 

s20 2 3 2 2 2 3 2 1 1 1 2 3 1 2 3 1 

s21 3 1 3 2 3 1 3 2 2 2 2 1 1 2 1 2 

s22 2 1 3 2 1 2 2 3 3 1 2 1 2 1 3 2 

s23 3 2 1 2 2 3 3 1 1 2 2 2 2 1 1 3 

s24 1 3 2 2 3 1 1 2 2 3 2 3 2 1 2 1 

s25 3 3 1 3 1 3 2 1 2 3 1 1 1 1 2 2 

s26 1 1 2 3 2 1 3 2 3 1 1 2 1 1 3 3 

s27 2 2 3 3 3 2 1 3 1 2 1 3 1 1 1 1 

s28 1 2 3 3 1 3 2 2 2 1 1 3 2 2 1 3 

s29 2 3 1 3 2 1 3 3 3 2 1 1 2 2 2 1 

s30 3 1 2 3 3 2 1 1 1 3 1 2 2 2 3 2 

s31 2 1 2 3 1 3 3 3 2 3 2 2 1 2 1 1 

s32 3 2 3 3 2 1 1 1 3 1 2 3 1 2 2 2 

s33 1 3 1 3 3 2 2 2 1 2 2 1 1 2 3 3 

s34 3 2 2 3 1 3 1 2 3 2 2 1 2 1 3 1 

s35 1 3 3 3 2 1 2 3 1 3 2 2 2 1 1 2 

s36 2 1 1 3 3 2 3 1 2 1 2 3 2 1 2 3 

 
  



Appendix 213 

 

 

Table 8-5 L36 orthogonal array – results 

 

results energy  
cost 

energy 
demand 

CO2- 
emissions 

renewables 
share 

energy 
flexibility 

  L18 T€/a MWh/a tCO2/a % % 
si

m
u
la

ti
o

n
 r

u
n
s 

s1 fs1 410,69 4225,32 1430,37 18,7% 0,0% 

s2 fs2 328,23 4231,25 1320,79 16,7% 11,9% 

s3 fs3 278,74 4749,71 1322,40 17,2% 16,1% 

s4 fs4 380,97 3875,47 1343,99 17,7% 13,3% 

s5 fs5 360,50 4258,54 1357,12 17,3% 5,1% 

s6 fs6 300,13 4831,87 1383,96 14,6% 10,7% 

s7 fs7 347,77 4309,31 1381,44 16,4% 18,5% 

s8 fs8 318,78 4739,61 1378,71 14,5% 1,1% 

s9 fs9 372,40 3441,44 1239,70 20,5% 14,2% 

s10 fs10 291,58 4728,13 1331,29 17,2% 11,4% 

s11 fs11 348,84 3539,08 1206,41 22,3% 17,9% 

s12 fs12 353,09 4228,56 1327,75 19,2% 5,3% 

s13 fs13 245,83 4287,77 1169,71 18,4% 11,8% 

s14 fs14 342,73 3759,87 1235,31 21,6% 15,8% 

s15 fs15 296,66 3994,81 1179,03 20,4% 5,9% 

s16 fs16 276,72 4510,42 1255,29 15,7% 3,2% 

s17 fs17 365,58 3749,94 1287,56 18,3% 16,3% 

s18 fs18 283,77 3924,92 1183,99 18,8% 13,1% 

s19 fs19 331,89 3218,75 1126,52 22,0% 18,9% 

s20 fs20 304,59 3898,21 1191,61 17,6% 4,8% 

s21 fs21 282,24 4691,77 1319,20 15,7% 12,5% 

s22 fs22 295,83 3989,24 1200,99 20,4% 14,4% 

s23 fs23 245,03 4500,87 1216,95 17,5% 13,7% 

s24 fs24 326,34 3334,39 1104,09 24,4% 9,4% 

s25 fs25 297,99 4030,82 1237,85 17,0% 11,6% 

s26 fs26 282,94 4808,96 1343,48 17,0% 15,8% 

s27 fs27 346,62 3792,06 1230,57 20,8% 10,4% 

s28 fs28 292,78 4048,95 1223,97 18,2% 17,0% 

s29 fs29 289,49 4623,70 1299,21 15,3% 2,8% 

s30 fs30 372,77 3944,63 1337,59 17,4% 14,2% 

s31 fs31 305,95 4647,89 1329,43 15,9% 5,4% 

s32 fs32 353,28 3345,77 1184,95 21,1% 14,6% 

s33 fs33 292,52 3984,55 1220,72 17,2% 14,4% 

s34 fs34 345,62 3311,42 1136,27 24,6% 2,4% 

s35 fs35 283,21 3944,04 1179,00 20,0% 17,3% 

s36 fs36 271,60 4682,63 1298,25 17,4% 14,3% 

 final  238,78 3186,35 1069,91 24,9% 21,3% 

 select  273,57 3727,30 1101,65 21,2% 17,7% 
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A2 Publications by the author 
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