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Abstract: Yttria-stabilized zirconia (YSZ) thin films were deposited using direct current (reactive
and metallic) and radio frequency magnetron sputtering. The effect of the deposition technique and
annealing treatment on the microstructure and crystallinity of the thin films was assessed. Using the
films produced in this work, oxygen gas sensors were built and their performance under vacuum
conditions was evaluated. All the films exhibited a cubic crystalline structure after a post-deposition
thermal treatment, regardless of the sputtering technique. When the annealing treatment surpassed
1000 ◦C, impurities were detected on the thin film surface. The oxygen gas sensors employing
the reactive and oxide-sputtered YSZ thin films displayed a proportional increase in the sensor
current as the oxygen partial pressure was increased in the evaluated pressure range (5 × 10−6

to 2 × 10−3 mbar). The sensors which employed the metallic-deposited YSZ films suffered from
electronic conductivity at low partial pressures.

Keywords: yttria-stabilized zirconia; YSZ; sputtering; oxygen sensor; solid-state electrolyte

1. Introduction

Yttria-stabilized zirconia (YSZ) is widely employed in technical applications such
as thermal barrier coatings [1–3], solid oxide fuel cells (SOFC) [4–7], and oxygen gas
sensors [8,9]. Besides its high thermal and mechanical stability, the ionic conductivity of
YSZ plays a major role in most of its applications. Zirconia-based oxygen gas sensors can
be employed for monitoring the oxygen content in a gas flow or to optimize combustion
processes [8]. With the development of microfabrication technologies in the past decades,
miniaturized sensors with low power consumption, high sensitivity, high durability, and
quick response time have become the focus of today’s research [10]. Therefore, the deposi-
tion of thin films with high ionic conductivity is necessary to meet these requirements.

Different technologies are readily available for the fabrication of YSZ thin films, i.e.,
sol–gel processes [11,12], chemical vapor deposition (CVD) [6,13], and physical vapor
deposition (PVD) [14–16]. Magnetron sputtering is a widespread PVD technology used
to produce uniform thin layers from a few nanometers up to a few micrometers. Even
though high-quality films can be deposited at room temperature, a post-deposition thermal
treatment can enhance the ionic conductivity by improving the crystallinity and density of
the film [3,5,17,18].

In a typical direct current (DC) sputtering deposition, an electrical conducting target
and an inert gas, commonly a metal target and argon, are employed to deposit thin films.
If a mixture of an inert and reactive gas (e.g., oxygen) is employed, then a compound
material is formed (e.g., oxide). This is also known as reactive sputtering. As the amount of
reactive gas is increased, the deposition rate decreases, and the process becomes unstable
due to the formation of a compound material on the target surface commonly referred to as
“target poisoning”. Therefore, substoichiometric oxides are occasionally deposited through
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reactive sputtering due to its lower complexity. During this work, reactive sputtering
refers to the deposition of substoichiometric oxide films. Meanwhile, radio frequency (RF)
sputtering allows the usage of a dielectric material as the target and the deposition of
stoichiometric oxide films is possible. RF sputtering has lower deposition rates and higher
costs in comparison to DC sputtering.

Since the end of the 1970s, oxygen (lambda) sensors based on a zirconia solid-state
electrolyte have been employed to optimize the fuel combustion process on automobiles.
Potentiometric sensors such as the lambda sensor measure a voltage between the analyzed
gas and the reference gas, typically air, in order to calculate the oxygen concentration [19].
The need of a reference gas hinders the usage of potentiometric sensors “in situ” for
vacuum applications. Contrary to the potentiometric principle, amperometric sensors are
able to determine the oxygen concentration of gases without the need of a reference gas.
By intentionally applying a voltage between the electrodes, a current proportional to the
oxygen concentration can be measured [20]. In order to ensure this proportionality, the
sensors need to operate under diffusion-limited conditions [8]. This can be achieved by
using a porous thin film on top of the sensing electrode which acts as a diffusion barrier.

Götsch et al. deposited YSZ thin films with 3 to 40 mol.% yttria (Y2O3) concentrations
through dc ion beam sputtering [21]. The films with an yttria concentration from 8 to
20 mol.% exhibited a cubic crystal structure. Rusli et al. demonstrated that the crystalline
structure and morphology of rf-sputtered 8 mol.% yttria-stabilized zirconia (8YSZ) thin films
can be tailored through a post-deposition annealing treatment from 380 to 600 ◦C [22,23].
Smeacetto et al. reported to have deposited 8YSZ thin films of 100 and 200 nm thickness
with high ionic conductivity through rf-sputtering for SOFC’s purposes [24].

In this work, DC (reactive and metallic) and RF (oxide) sputtering techniques were
used to deposit yttria-stabilized zirconia (YSZ) thin films. The effect of a post-deposition
thermal treatment from 600 to 1200 ◦C on the crystal structure, morphology, and elemental
composition of the thin films was evaluated. Finally, the YSZ thin films were used as a
solid-state electrolyte in amperometric oxygen gas sensors fabricated by means of a lift-off
photolithography process. The gas sensing performance for low oxygen partial pressures
under vacuum conditions was investigated using a self-built testing chamber and data
acquisition program at the Institute of Space Systems (IRS) of the University of Stuttgart.

2. Materials and Methods

In this work, 100 nm thin films of yttria-stabilized zirconia (YSZ) were deposited using
DC and RF magnetron sputtering at the Fraunhofer Institute for Solar Energy Systems in
Freiburg, Germany. Both DC deposition processes, reactive and metallic, were conducted
in a custom-made sputtering machine (Interpane E&B, Lauenförde, Germany) using a
80:20 at.% Zr:Y metallic alloy target (99.99% purity) from Sindlhauser Materials. The
RF depositions were carried out in an FHR.Star.100-TetraCo sputtering machine (FHR
Anlagenbau, Ottendorf-Okrilla, Germany), using a 90:10 mol.% ZrO2:Y2O3 oxide target
(99.95% purity). The thin films were sputtered using argon as sputtering gas at a sputtering
pressure of about 1.3 × 10−3 mbar and a base vacuum pressure of 1 × 10−5 mbar. For
the reactive-sputtered films, an additional oxygen flow was employed. The deposition
parameters are shown in Table 1.

Table 1. Sputtering deposition parameters.

Power Source Mode
Sputtering

Power Density
(w/cm2)

Ar Flow (sscm) O2 Flow (sscm)

direct current metallic 1.27 58 0
direct current reactive 2.08 58 15

radio frequency oxide 5.09 28 0
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The YSZ thin films were then employed as a solid-state electrolyte for fabricating
amperometric oxygen sensors. The sensors produced in this work were manufactured
completely using thin films deposited via magnetron sputtering. The electrode and the mi-
croheater were deposited by (metallic) DC sputtering and their corresponding barrier layers
using reactive DC sputtering. Polycrystalline aluminum oxide substrates from Kyocera
(model: A493, purity: 99.6%) were used for the sensor fabrication and characterization of
the thin films. The thin film patterns were achieved by a lift-off photolithography process
using the negative photoresists AZ nLoF 2035 and 2070 (MicroChemicals, Ulm, Germany)
and an EVG mask aligner model 6200 MA (EV Group, Sankt Florian am Inn, Austria).

A schematical setup of the YSZ-based O2-sensor is illustrated in Figure 1. The dimen-
sions of a single sensor were 3.5 × 0.5 × 23 mm (width × depth × height). The electrolyte
was sputtered and annealed before the deposition of the additional layers. To improve the
adhesion between the platinum layers and the Al2O3 substrate, a 10 nm platinum oxide
adhesion layer was used between the electrode or the heater and the substrate. Likewise, a
barrier layer was deposited on top of both platinum films (electrode and microheater) to
avoid the rapid agglomeration of the films and to guarantee the diffusion-limited principle
of the amperometric sensor. The YSZ films were deposited only under and above the
interdigitated working electrode to avoid short circuits and signal distortion during the
sensor operation.
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Figure 1. Schematic sensor setup and film thickness, adapted from [25].

The crystallinity of the films was characterized using grazing incidence X-ray diffrac-
tion (GIXD) in a Philips X’Pert MRD system (Malvern Panalytical, Malvern, England)
equipped with a CuKα X-ray source. The characterization of the microstructure and chemi-
cal composition was examined using a scanning electron microscope (SEM) model FE-SEM
S-4700 (Hitachi, Tokyo, Japan) and a Dimension Edge Atomic Force Microscope (AFM)
(Bruker, Billerica, MA, USA). The elemental composition was analyzed through X-ray
photoelectron spectroscopy (XPS) using a PHI Quantera II (Physical Electronics, Chanhas-
sen, MN, USA). The film thickness was measured using a Dektak 6M profilometer (Veeco
Instruments, New York, NY, USA). These characterization techniques were employed on
plain YSZ thin films sputtered on pristine alumina substrates, without any further thin
films or microstructures.

Due to the potential application of the sensors in space systems and in industrial
vacuum coating processes, the characterization was performed under vacuum conditions.
The developed oxygen gas sensor prototypes were investigated in a custom-made system
shown in Figure 2. The sensors were mounted on a holder made of PEEK polymer,
where the sensor is strained using two screws and contacted with gold-coated wires. The
PEEK polymer is reported to be thermally stable up to 575 ◦C [26]. No sign of thermal
decomposition during the sensor operation was observed. The data acquisition and sensor
operation were accomplished through a home-made electronic system. The test chamber
was evacuated to a base pressure of ca. 1 × 10−7 mbar using the combination of a rotary and
a turbomolecular pump models DUO10M/TMU521YP (Pfeiffer Vacuum, Asslar, Germany).
The total pressure inside the chamber was measured using a wide-range vacuum gauge
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model ATMION (JEVATEC, Jena, Germany). Gas flow rates were regulated by a mass flow
controller model MF1 Compact (MKS Instruments, Andover, MA, USA). For the sensor
characterization presented in this work, after achieving the base pressure of 1 × 10−7 mbar
in the chamber, a flow of synthetic gas (20% O2, 80% N2) was used to achieve the desired
total pressure. The oxygen partial pressure (pO2) was set to be 20% of the total pressure.
The sensor current was recorded while varying the oxygen partial pressure every 5 min in
a cyclic manner for a total of ca. 45 h. A cycle consisted of 9 increasing and 9 decreasing
steps from 5 × 10−6 to 2 × 10−3 mbar. During the characterization, the sensors were heated
to ca. 600 ◦C using the platinum resistance microheater on the back side. The operation of
the microheater is described in [25]. This temperature was chosen as a trade-off between
the YSZ ionic conductivity and the platinum stability.
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Figure 2. (a) Schematic diagram of the vacuum chamber for sensor characterization; (b) sensor
mounted on the PEEK-adapter and contacted with the gold-coated wires.

3. Results and Discussion
3.1. Crystallinity

The YSZ thin films were deposited at room temperature followed by an annealing
process in air for 4 h in a furnace at temperatures ranging from 600 to 1200 ◦C. The
X-ray diffraction of the YSZ films as deposited and after annealing are shown in Figure 3.
In Figure 3a,b, the metallic and reactive-sputtered films are amorphous after deposition,
only peaks corresponding to the Al2O3 substrate can be observed, and no reflections belong-
ing to the cubic zirconia phase were identified. In Figure 3c, the cubic phase can be observed
in the rf-sputtered films directly after deposition. After the heat treatment at 600 ◦C, all
films displayed the desired cubic phase regardless of the deposition technique. The cubic
phase was identified using the PDF Card No. 01-082-1246 from the ICDD Database. No
other crystal phase was identified, even after high temperature post-deposition treatment.

The grain size of the YSZ thin films was calculated using the Scherrer equation
described in [27]:

Dmean =
Kλ

βcosθ
(1)

where K is the crystallite shape factor (in this work K = 0.94), λ is the X-ray wavelength, β
is the full width at half maximum (FWHM) of the (111) reflection located at approximately
2θ = 30◦, and θ is the diffraction angle. The results are summarized in Table 2. The
grain size of the DC-metallic and RF-oxide sputtered films increased considerably from
approximately 11–13 to 29–32 nm as the annealing temperature was raised from 600 to
1200 ◦C. Meanwhile, the grain size of the DC-reactive sputtered YSZ films did not change
significantly after the heat treatment, i.e., from 27 to 29 nm. After annealing at 1200 ◦C, the
grain sizes of the three different sputtering variations are approximately the same.
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Table 2. Calculated grain size in nm using the Scherrer equation and the (111) reflection.

600 ◦C 800 ◦C 1000 ◦C 1200 ◦C

DC-metallic 11 13 26 32
DC-reactive 27 26 29 29

RF-oxide 13 18 27 29

3.2. Thin Film Morphology

In Figure 4, the SEM images of the sputtered films after the annealing treatment
at 600 and 1200 ◦C are shown. At 600 ◦C, only the large grains of the polycrystalline
alumina substrate can be observed. The DC-metallic and DC-reactive YSZ films were
subsequently oxidized after deposition by the thermal treatment from their original metallic
and substoichiometric oxide condition. In Figure 4a, the DC-metallic film is the only sample
with macroscopic cracks after annealing, probably caused by the large volume change and
thermal stresses during oxidation. Voids are visible in all samples, especially at the grain
boundaries of the substrate.

The surface roughness was analyzed through AFM measurements, and some results
are shown in Figure 5. The high surface roughness (Ra = 0.05–0.08 µm, according to
the supplier) of the substrate (Figure 5a) hinders a quantitative analysis of the surface
roughness evolution as the annealing temperature is raised.
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In agreement with the XRD results, it can be noticed from Figures 4 and 5 that at
1000 ◦C a significant grain growth occurs leading to the formation of small YSZ particles on
top of the large Al2O3-substrate grains. After annealing at 1200 ◦C, grain growth continues,
and highly crystalline YSZ films are formed. Nevertheless, the effect of the polycrystalline
substrate on the microstructure and grain growth of the YSZ films cannot be neglected.

3.3. Elemental Analysis

The migration of material impurities is a main concern when annealing at high
temperatures. The diffusion of impurities to the surface or into the grain boundaries of
the YSZ can deteriorate the ion conductivity of the thin films [28,29]. Likewise, several
authors report the segregation of yttria to the film surface [30,31]. Therefore, the RF-oxide
deposited samples were analyzed using XPS with depth-profiling to determine the yttria
content throughout the thin films and to account for possible impurities.

The XPS surface composition of selected YSZ thin films are summarized in Table 3.
The yttria content in mol.% is calculated using the procedure described by Götsch et al. [21].
The yttria content of the films differ depending on the sputtering technique. The surface
composition of all films deviated from the desired 10 Y2O3 mol.%. Since the DC-sputtered
samples are not fully oxidized after deposition, the surface compositions after annealing at
600 ◦C were taken as a reference when calculating the Y2O3 content. The samples sputtered
with a metallic target (DC-metallic and DC-reactive) presented a higher yttria content than
expected, 11.7 and 16.1 at.%, respectively. The yttria surface enrichment could be due to
the high mobility of the metallic yttrium atoms during the oxidation process. Additionally,
silver cross-contamination (0.3 at.%) was measured in the DC-metallic sample.

Table 3. XPS surface survey of selected YSZ thin films. The concentration is expressed in at.%, unless
otherwise stated.

Sample C O Al Si Ag Zr Y Y2O3
(mol.%)

DC-reactive_600 19.9 54.9 0 0 0 20.0 5.3 11.7
DC-metallic_600 22.6 52.7 0 0 0.3 17.7 6.8 16.1

RF-oxide_as-sputtered 26.1 51.0 0 0 0 19.2 3.7 8.8
RF-oxide_600 22.4 52.9 0 0 0 20.7 3.9 8.6
RF-oxide_800 38.9 42.0 0 0 0 15.5 3.0 8.8
RF-oxide_1000 21.9 53.9 1.1 1.8 0 17.6 3.4 8.8
RF-oxide_1200 19.4 54.8 1.7 4.4 0 16.4 3.3 9.1

On the contrary, the RF-oxide samples deposited from a fully ceramic target displayed
a lower but constant yttria surface content, ranging from 8.6 to 9.1 mol.%, despite the heat
treatment.

The diffusion of aluminum and silicon to the surface was first detected after annealing
the samples at 1000 ◦C. By increasing the annealing temperature to 1200 ◦C, the surface
diffusion of impurities became more pronounced, reaching a concentration of 1.7 at.% Al
and 4.4 at.% Si. In Figure 6, the XPS surface survey spectrum of the rf-sputtered YSZ films
before the thermal treatment is shown. The XPS depth-profiling of the RF-sputtered sample
after post-annealing at 1200 ◦C is also shown in Figure 6. Aluminum and silicon atoms
were only detected close to the surface, less than 8 nm depth. After etching for 10 min, the
alumina substrate is reached.
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3.4. Oxygen Sensors

The YSZ films produced by the three different sputtering techniques (DC-metallic,
DC-reactive, and RF-oxide) were then used as a solid-state electrolyte in amperometric
oxygen sensors and compared according to their oxygen sensing properties. The sensor
performances were evaluated by the respective characteristic curves shown in Figure 7.
The characteristic curves display the measured current during the increasing pO2 steps of
the cyclic test described previously. The current or signal of the RE_600 and RF_600 sensors
increased proportionally with the pO2 throughout the measured range. The current of the
ME_600 sensor at pO2 < 2 × 10−4 mbar did not increase significantly. This phenomenon
persisted even after annealing at 1200 ◦C. The lack of sensitivity of the metallic-sputtered
sensors could be related to the yttria surface segregation. As stated by Park et al., the
yttrium-rich surface obtained after annealing at high temperatures can result in a higher
oxygen incorporation barrier and the reduction of the concentration of mobile oxide ion
vacancies at the surface [32]. This could be crucial at low partial pressures, where few
oxygen molecules reach the sensing electrode. Electronic conduction in the metallic-
sputtered YSZ electrolyte could be another possible cause for the low sensitivity at low
oxygen partial pressures as suggested by Sridhar [33]. The electronic conductivity could
be enhanced by the presence of silver impurities, as found by the XPS analysis. The
degradation of the platinum electrode and its effect on the sensor current was not assessed
and is out of the scope this work.

An additional parameter to evaluate the sensor performance is the response time.
In this work, the response time is defined as the time a sensor needs to achieve 90% of
its steady-state current for a defined pO2 . The sensor was considered to be in a steady
state during the last 30 s of a pO2 increasing step. The response time shown in Figure 8
corresponds to the second cycle and to a pO2 of 1 × 10−4 mbar. Even though the sensors
using the DC-reactive and RF-oxide sputtered thin films exhibited similar characteristic
curves, the RF-oxide sensors displayed the shortest response time. While the response
time of the DC-reactive and RF-oxide sensors deteriorate after annealing above 800 ◦C, the
DC-metallic sensors response time improved after thermal annealing at 1000 ◦C. At this
temperature, the largest increase in grain growth occurs as it can be seen in Table 2. This
was also confirmed by the AFM grain growth evolution shown in Figure 5. An increase in
grain size could lead to fewer grain boundaries, where the ionic conductivity can be lower
compared to the bulk [32].
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Figure 7. Characteristic curves of the sensors manufactured using the YSZ thin films as solid-state
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reactive; and (c,f) RF-oxide. The Y-axes are presented in logarithmic scale. The current drift over the
time is represented by the (blue) color scale.
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As illustrated by the results which are depicted in Figures 7 and 8, the thermal anneal-
ing process at high temperatures (<1000 ◦C) was detrimental for the sensor performance
in most of the cases. Specifically, the response time became slower at low oxygen partial
pressures, while a current loss after each cycle was observed in the characteristic curves of
the reactive and RF-sputtered films. The surface diffusion of aluminum and silicon atoms
on the electrolyte films measured by XPS could explain this. As reported in literature, the
segregation of yttrium or impurities to the surface or to the grain boundaries can create
a space charge layer (SCL) in which positive charges are accumulated and the oxygen
vacancies in the adjacent layers are depleted [34–37]. Thus, the formation of space charge
layers hinders the flow of oxygen ions from grain to grain [38]. This charge build-up can
become relevant at low pO2 , where few oxygen ions flow across the electrolyte.

Nevertheless, annealing can be beneficial for the ionic conductivity of solid-state
electrolyte films. Sputtered films suffer from compressive stress due to the ballistic nature
of their film growth. As stated by Yeh, thermal annealing in air at 800 ◦C can improve the
ionic conductivity of sputtered YSZ thin films by the relaxation of its residual stress [39].
Similarly, thermal annealing can induce tensile strain, which can enhance the oxygen trans-
port [40]. Therefore, a trade-off between strain relaxation and impurities segregation needs
to be achieved when performing a post-deposition thermal treatment on thin films, such as
yttria-stabilized zirconia, which are to be used as solid-state electrolyte. Understanding the
role of grain boundaries on the ionic transport properties of nanocrystalline materials is of
main interest nowadays as solid-state electrolytes become more relevant in applications
such as batteries and fuel cells [29,41,42].

4. Conclusions

The feasibility of using magnetron sputtering to manufacture thin film sensors was
assessed in this work. Three different sputtering techniques were used to produce YSZ
thin films: DC-metallic, DC-reactive, and RF-oxide. The thin films were then annealed in
air from 600 to 1200 ◦C. As the XRD and AFM measurements revealed, after the annealing
process at 600 ◦C, all samples displayed the cubic zirconia phase. After thermal annealing
above 1000 ◦C, defined grains were observed in the SEM and AFM images. The XPS
measurements confirmed the diffusion of impurities (Al and Si) to the surface of the RF-
sputtered YSZ films after annealing above 1000 ◦C, whereas yttria surface enrichment was
observed in the metallic-sputtered sample after the heat treatment at 600 ◦C.

The YSZ thin films were used to produce amperometric oxygen sensor prototypes for
vacuum applications. Both the DC-reactive and RF-oxide sputtered YSZ films displayed
a high correlation between the sensor current and the analyzed oxygen partial pressures.
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Meanwhile, the metallic-sputtered electrolyte suffered from electronic conduction at low
oxygen partial pressures. In general, the sensors manufactured in this work did not
display a current stagnation or reach a plateau even at higher oxygen partial pressures
(pO2 > 1 × 10−4 mbar). This suggests the presented sensor setup might be also suitable for
higher oxygen partial pressures.

By using reactive sputtering to deposit substoichiometric oxides, a higher deposition
rate and lower costs can be achieved. Yet, an annealing step is needed to achieve fully
oxidized films. Meanwhile, the RF-sputtered fully oxide films exhibited the desired cubic
crystal structure directly after deposition. Additionally, the sensors using these films
as electrolyte displayed the shortest response time. However, RF-sputtering had the
lowest deposition rate between the three techniques assessed in this work. As suggested
in the literature, annealing can be beneficial for the oxygen transport properties of the
YSZ films. Nevertheless, as shown in this article, high temperatures above 1000 ◦C may
have detrimental effects on the ionic conductivity of the YSZ thin film due to the surface
segregation of impurities.
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