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Abstract: In order to inductively charge electric vehicles, which are based on a low-voltage drive
train, high currents have to be overcome. This work describes a simulative approach to charge
48 V-based electric vehicles wirelessly with high power. A system was designed on the basis of
various boundary conditions and validated by simulation. In order to increase the transmittable
power, the system was investigated for an extendable approach and was examined for modularity. In
particular, the influences of the secondary coils on each other must be taken into account. Finally, the
entire system was evaluated by physical and electrical simulation.

Keywords: wireless power transfer; inductive charging; parallel coils; coil decoupling; battery charging

1. Introduction

Contactless energy transfer became a deeply researched and investigated topic in the
past. Some of the applications are already well known and standardized [1,2]. In particular,
charging of cell phones should be mentioned, which is already at an advanced state of
development due to the Qi standard [3]. However, not only has much progress been made
in the field of consumer electronics, but due to the rising number of electric vehicles, also
vehicle charging procedures are becoming more relevant. Especially inductive charging
of electric vehicles is an ever-growing division of wireless power transfer [4]. Wireless
power transfer (WPT) is one of the most comfortable and promising charging approaches
for battery electric vehicles. WPT is well known for its flexibility and comfort while
charging [5,6]. It also offers a simple charging possibility for the fast-growing research area
of autonomous driving and autonomous parking [7].

The feasibility of inductive energy transfer to electric vehicles has been demonstrated
in recent years by numerous prototype setups and research projects. So far, different power
classes in the range of 3.7 kW to 11 kW are targeted in the consumer market, as shown
in Table 1 [8]. Some of these systems were realized with overall efficiencies of >90% [9].
Inductive charging is already described in a large number of national and international
standards. One example is SAE J2954 [10]. These standards describe the overall system and
issues relating to inductive charging. Among other things, interoperability, electromagnetic
compatibility, and safety during the charging process are already considered.

The current SAE standard is designed for secondary side battery voltages of 280–420 V.
However, due to the fewer safety requirements to comply with, low-voltage electric vehicles
are increasingly being considered. Currently, there are no wireless power transfer systems
with acceptable power delivery for low-voltage electric vehicles available, since very high
currents have to be overcome.

A modular extendable 48 V approach is described in the following paper. Since battery
capacities vary from car to car, a modular approach would provide good customization
possibilities. Furthermore, a modular approach solves the inconvenience of very high
currents resulting from an increase of the power transfer. As a compensation topology,
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an LCC-compensated network, consisting of a series inductance and a parallel, as well
as a series capacitor, is used on both sides. An operating frequency of 85 kHz is used as
suggested in the SAE J2954.

Table 1. Power classes as they are mentioned in the current SAE standard J2954 for wireless power
transfer [8].

Power Class Maximum Power Development Level

WPT1 3.7 kW Already defined
WPT2 7.7 kW Already defined
WPT3 11 kW Already defined
WPT4 22 kW Under consideration
WPT5 60 kW Under consideration

2. Basics of LCC-Compensation Topologies

This section describes the electrical components used and the type of compensation
with the resulting system behavior. In the past, series-compensated systems were primarily
used for electric vehicles [11]. However, more and more LCC-compensated systems are
being used because they have some decisive advantages such as increased degrees of
freedom in the design [12]. The approach presented in this paper was based on an LCC
compensation topology for the transmitter, as well as the receiver side.

A system overview of the basic transmission procedure is shown in Figure 1. The
calculations were performed for a single transmitter and receiver pad. On the primary side,
the system consists of a full-bridge inverter, a compensation network, and a transmission
coil. On the secondary side, the same compensation topology was used. The receiver
consists of a receiving coil, the compensation network, and a full-bridge rectifier. L1 and L2
represent the self-inductance of the primary and secondary coil. The series compensation
inductances on both sides are displayed as L1g and L2g. C1g and C2g denote the primary
and secondary parallel compensation capacitor, whereas the serial compensation capacitor
on the primary, as well as the secondary side is represented by C1s and C2s.

L1g

C1g

L2g

C2g

C1s C2s

L1 L2

M

U1DC U2DC

LCC-Compensation LCC-Compensation

Figure 1. Schematic electrical circuit diagram of the wireless power transfer system.

The secondary side was designed for a protective low-voltage system with a 48 V
DC-link voltage. On the primary side, a 300 V DC-link voltage was assumed.

U1DC = 300 V, U2DC = 48 V (1)

For the transfer system’s technical design, only the fundamental wave was considered.
Therefore, the effective AC voltage on each side was calculated as follows [13,14]:

Ux = UxDC ·
2
√

2
π

, x ∈ {1, 2} (2)

U1 =
2
√

2
π
· 300 V = 270 V, U2 =

2
√

2
π
· 48 V = 43.2 V (3)

The WPT system was designed for 4 kW per pad. Some first magnetic simulations
showed a coupling factor k of 0.23 for a 41 cm × 40 cm receiver coil size and a 15 cm
coil distance in the z-direction. For this case, a single-turn wire loop in the secondary
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coil resulted in 1.3 µH self-inductance. L1g and L2g were determined to be 0.35-times
the respective air coil inductance L1 and L2. From this, the primary air coil value was
derived [15].

P =
k
√

L1L2U1U2

ωdL1gL2g
(4)

L1 =
k2U1

2U2
2

L2P2ωd
2α1

2α22 = 85.1 µH (5)

In order to achieve efficient transmission behavior, the compensation networks on
both sides must be designed individually by one resonant condition of the LCC topologies.
To operate in a resonance state, the remaining LCC compensation circuit values were
calculated as follows [16]:

C1s =
1

ωd
2(L1 − L1g)

= 63.4 nF

C2s =
1

ωd
2(L2 − L2g)

= 4.15 µF
(6)

C1g =
1

ωd
2L1g

= 117 nF

C2g =
1

ωd
2L2g

= 7.7 µF
(7)

The resulting values to describe the system on an electrical basis are displayed in
Table 2. These values were used in this paper to simulate the designed systems.

Table 2. System values based on the calculations.

Parameter Design Value

U1 270 V
U2 43.2 V
P 4 kW
k 0.23
fd 85 kHz
L1 85.1 µH
L2 1.3 µH
α1 0.35
α2 0.35
C1s 63.4 nF
C2s 4.15 µF
C1g 117 nF
C2g 7.7 µF

3. Simulation

In this section, a magnetic and electric simulation based on the calculated values
of Table 2 is performed. In Section 3.1, a simple transmission with only one transmitter
and receiver as shown in Figure 2 is considered. The coupling factor, which has to be
determined depending on the position, was examined. Subsequently, the transmitted
power was considered in an electrical simulation. To increase the transmitted power, in
Section 3.2, three identical transmitter and receiver coils are arranged next to each other
and examined for the coupling factors and power transmission.
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3.1. Single-Coil Power Transfer

To determine the coupling factors between a transmitting and a receiving coil, a
simulation based on the fenite elements method (FEM) was performed. The simulation
was performed in COMSOL Multiphysics, and the “magnetic fields” environment was
used. An investigation into the lateral misalignment was carried out for a coil distance of
15 cm. As a result, different coupling factors were expected for different positions. The
coupling factors were determined at intervals of 5 cm in both the x- and y-direction. Thus,
a grid filled with coupling factors was obtained, which could later be used to simulate the
transmission powers. The geometrical setup is shown in Figure 2. The dimensions are
given in Table 3. On the primary side, there is a coil with a winding window of 10 cm. The
secondary side consists of a secondary coil with multiple ferrite tiles placed above it. The
last component is an aluminum shielding plate placed above the ferrite, representing the
underbody of an electric car.

d

b a

c

ef

Figure 2. 3D view of the modeled system. An explanation of the shown parameters (a–f) is given in
Table 3.

Table 3. Dimensions of the charging system.

Description Value [cm]

Primary side effective coil length (a) 50
Primary side effective coil width (b) 40
Secondary side effective coil length (c) 41
Secondary side effective coil width (d) 40
Effective coil distance (z-direction) 15
Ferrite piece width (e) 20
Ferrite piece length (f) 6.83
Ferrite piece distance (x,y) 8.2, 32
Effective ferrite→ coil distance 1.5
Effective shielding→ ferrite distance 1

Figure 3a shows the resulting coupling factors based on the receiving coil position.
The further the secondary coil moved away from the center of the primary coil, the lower
the coupling factor between the coils became. Due to the smaller width of the primary
coil in the y-direction, the coupling factor decreased faster by displacing in the y-direction
rather than x-direction. The resulting coupling factors were transferred to an electrical
simulation to evaluate the system behavior. Figure 3b shows the power transmitted to
the secondary coil. By using the LCC compensation, the power decreased as the coupling
between the coils became smaller. The maximum power however was smaller than the
power calculated in the system design from Section 2. This can be explained by the fact
that only the fundamental wave and no harmonics were considered in the calculation.
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Figure 3. Coupling factor and transferred power depending on the position of the secondary coil relative to the primary coil.

3.2. Parallel Power Transfer with Multiple Coils

To increase the transmitted power, three transmitting and receiving coils were con-
nected in parallel. Figure 4 shows the geometrical structure. The structures shown in
Figure 2 was placed next to each other three times with an x-displacement of 50 cm to
obtain overlapping winding areas. The overlapping primary coils were driven in phase so
that a large virtual coil was generated. This resulted in only a slightly varying resulting
coupling factor kres for an x-displacement of the secondary elements, as shown in Figure 4.

Coil 2

Coil 1

Coil 3

Coil 4

Coil 5

Coil 6

0 20 40

0

0.1

0.2

X displacement [cm]

Coupling factor k

k14
k24
kres

Figure 4. (Left) The 3D view of the modeled parallel system. (Right) Coupling factors of the primary
Coil 1 and the primary Coil 2 to the first secondary Coil 4. In yellow, the resulting coupling factor
kres is shown.

The result of the physical simulation was a coupling factor matrix, which represents
the coupling of the individual coils to each other. Each one of these six coils had a coupling
factor to the other five coils. By these results, an electrical simulation can be built using a
model of the coupled coils. A schematic diagram of the electrical simulation is shown in
Figure 5. Each primary and secondary coil has its own compensation network, inverter,
and rectifier. An input DC voltage of 300 V supplies the inverters. The generated square
wave signal in combination with the LCC compensation provides a sinusoidal current in
the coils, which are responsible for the energy transfer. As mentioned before, the field
from each coil couples into all the other five coils and generates the induced voltages. The
resulting currents on the secondary side are drawn from the individual coils in combination
with the capacitors and rectifiers and feed a battery, which is represented by a DC voltage
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sink. If the secondary sides are too close too each other, the coupling effects become visible.
Therefore, the individual receivers have to be decoupled.

U1DC U2DC L1 M12 . . .
M12 L2 . . .
. . . . . . . . .



Inverter Compensation Compensation Rectifier

Coupled coils

Figure 5. Schematic overview of the electrical circuit and the coupling factor matrix.

3.2.1. Decoupling of the Secondary Coils

Figure 6 shows the entire setup from a side view. The distance d describes the edge-to-
edge distance between the conductors of the secondary coils.

Figure 6. Side view of the assembled overall system.

According to the initial electrical simulations, small distances d between the individual
secondary sides had a negative effect on the power distribution in the secondary elements.
If the distance d increased later, the secondary elements effectively became shorter in
order not to give up the central positioning above the primary elements. The two extreme
scenarios considered with a distance of 0 cm and 6 cm are shown in Figure 7. The coupling
between the adjacent secondary Coils 4 and 5, as well as between Coils 5 and 6 is shown
in Figure 8. When the coils were placed directly next to each other without any spacing,
significantly more power was drawn from the center Coil 5. The two adjacent elements
couple to the middle unit through the fields they generate by themselves. This is shown
in Figure 9. To counteract the resulting behavior, the coils should be decoupled over an
increasing distance between the coils. A uniform transmission power was only achieved
by a distance d greater than 3.5 cm, as shown in Figure 9.

Disctance d = 0 cm

Disctance d = 6 cm

Figure 7. Side view of the two scenarios with the lowest and the highest value of d (0 cm and 6 cm).
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Figure 8. Coupling factors k45 between Coils 4 and 5, as well as k56 between Coils 5 and 6.
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Figure 9. Maximum transmitted power to the individual secondary coils dependent on the distance
between them.

To continue the system simulation, a distance d of 6 cm was used to safely decouple
the receivers. Due to the decoupling of the receivers, a position-based simulation can be
performed to investigate the system behavior during the relocation of the receivers.

3.2.2. Electrical Simulation of the System

The results of the simulation are shown in Figure 10. It is shown that the transferable
power in all receiver coils decreased slightly compared to the single-transmitter–receiver
system shown in Figure 2. Multiple primary coils had a slightly negative impact on the
transferable power. This can be explained by the joint coupling of the primary coils into a
single secondary coil. Subsequently, the behavior of the system in the case of displacement
in the x-, as well as the y-direction was considered. The transferred power decreased with
an increasing y-offset of all secondary coils relative to the primary elements. If all three
secondary elements were shifted equally in the x-direction, the power in Coils 4 and 5
changed only slightly. In Coil 6, however, the power decreased as it moved out of the field
of Coil 3.



World Electr. Veh. J. 2021, 12, 172 8 of 10

0 20 40
0

10

20

30

0.5
0.5

11

1.51.5

22

2.52.5

33

X displacement [cm]

Y
di

sp
la

ce
m

en
t[

cm
]

Power Coil 4 [kW]

0 20 40
0

10

20

30

0.5

0.5

1

1

1.5

1.5

2
2

2.5

2.5

X displacement [cm]

Power Coil 5 [kW]

0 20 40
0

10

20

30
0.5

0.5

1
1.52

2.5

X displacement [cm]

Y
di

sp
la

ce
m

en
t[

cm
]→

Power Coil 6 [kW]

0 20 40
0

10

20

30

1

1

2

2

3

3

4

4

5

5

6

6

7
8

X displacement [cm]

Resulting Power [kW]

Figure 10. Power transferred to the three secondary coils dependent on the position relative to the
associated primary side.

4. Discussion

In this work, two inductive power transfer systems were designed and simulatively
examined. The first system consisted only of one transmitter and one receiver coil. Com-
pared to the calculated values, the performance decreased. This was due to the fact that
the calculations were carried out on the basis of a model, which only took the fundamental
wave and no harmonics of the rectangular excitation signal into account. However, the
influences of the third and fifth harmonics were recognizable at the inverter output. Never-
theless, the system showed good energy transfer behavior for charging electric vehicles,
and the power decreased as expected with a lateral offset, as well as the coupling factor.

Ordinary systems, as proposed in the SAE J2954, have a significant advantage in the
maximum transferable power due to the higher voltages on the vehicle side. For 48 V
systems, the current in the coil and rectifier quickly reached very high values. Since high
currents are difficult to handle and the power should be increased further, the system
was expanded on a modular basis. The second system designed and investigated was
a modular expandable system. The system was simulated as shown in Figure 4. The
primary sided single coils must be driven in phase to obtain a homogeneous field over
the complete system length. If this is not the case, the performance would be drastically
reduced. Even if the system was driven in phase, the performance did not exactly triple
when three modules were used. The power decrease was explainable by the cross-coupling
of the primary sides into a single secondary coil. As shown in Figure 10, the individual
power in the pickup coils was reduced compared to the single-coil power transfer system.
However, due to the elongated design, the system had a significantly better offset tolerance
in the x-direction. Not only the the cross-coupling of the primary into the secondary
coils, but also the coupling of the secondary sides into each other caused problems in
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the energy transfer behavior. This was solved by increasing the distance between the
secondary coils and slightly varying the coil size. In future research, the design procedure
can be further investigated in order to include the harmonic influences in the design
criteria. In addition, the influences of the modular system can be further investigated and
mathematically analyzed to calculate the correct transmission powers already at the design
stage. Furthermore, a control approach for the primary side can be designed in order to
obtain an even distribution of the power despite the coupling of the secondary coils to each
other. Additionally, the designed system can be built up to verify the results achieved by
simulation. Especially the measured efficiency under real conditions can be examined, for
example, to determine the usable working area with an efficiency >70%.

5. Conclusions

So far, only inductive power transfer systems for electric vehicles with high battery
voltages have been developed and standardized. In this paper, a new modular inductive
power transmission system for low-voltage electric vehicles was designed and simulatively
validated. A method of designing a single-coil system was shown, and the behavior of one
transmitting coil and one energy-receiving coil was simulated under misalignment. Increas-
ing the power of the single-coil system further resulted in hard-to-handle high currents in
the secondary coil and rectifier. Therefore, the system was extended by further primary
and secondary units. The primary elements were driven in phase to ensure a homogeneous
field distribution over the complete length of the primary coil arrangement. A problem
was discovered in the coupling between the individual secondary sides. If the distance
between the coils was too small, the power was not evenly distributed over the coils. This
was counteracted by a gap between the secondary windings. After the decoupling of the
secondary sides, the system was examined and evaluated for its transmission behavior
with the offset of the receiver coils. It was shown that a parallel and, above all, modularly
expandable approach in simulation is promising to increase the performance.
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