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Abstract

Transferring bioprocesses from lab to industrial scale without loss of performance is

key for the successful implementation of novel production approaches. Because

mixing and mass transfer is usually hampered in large scale, cells experience het-

erogeneities eventually causing deteriorated yields, that is, reduced titers,

productivities, and sugar‐to‐product conversions. Accordingly, reliable and easy‐to‐
implement tools for a priori prediction of large‐scale performance based on dry and

wet‐lab tests are heavily needed. This study makes use of computational fluid dy-

namic simulations of a multiphase multi‐impeller stirred tank in pilot scale. So‐called
lifelines, records of 120,000 Corynebacterium glutamicum cells experiencing fluctu-

ating environmental conditions, were identified and used to properly design wet‐lab
scale‐down (SD) devices. Physical parameters such as power input, gas hold up, k aL ,

and mixing time showed good agreement with experimental measurements. Ana-

lyzing the late fed‐batch cultivation revealed that the complex double gradient of

glucose and oxygen can be translated into a wet‐lab SD setup with only few com-

partments. Most remarkably, the comparison of different mesh sizes outlined that

even the coarsest approach with a mesh density of × #/1.12 10 m5 3 was sufficient to

properly predict physical and biological readouts. Accordingly, the approach offers

the potential for the thorough analysis of realistic industrial case scenarios.
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1 | INTRODUCTION

The transformation of current chemical industry into a sustainable,

circular economy demands the successful implementation of large‐
scale production processes accessing the low‐value, high‐volume

products of tomorrow. Emerging fields are the production of amino

acids and organic acids (Becker & Wittmann, 2012; Morrison &

Lähteenmäki, 2017). Typically, microbial hosts are the most im-

portant production platforms with Corynebacterium glutamicum being

one of the established producers (Leuchtenberger, Huthmacher, &

Drauz, 2005; Takors et al., 2007). Stirred tank reactors, still the

preferred choice of large‐scale production, show reduced power‐per‐
volume ratios with increasing reactor size (Junker, 2004). Conse-

quently, scale‐up from smaller laboratory scales is usually hampered

due to limited mixing and mass transfer, leading to the formation of

substrate and gas gradients. The repeated exposure of cells to these

fluctuating microenvironmental conditions cause unwanted reduc-

tion of productivities, conversion yields, and rising by‐product for-

mations (Bylund, Collet, Enfors, & Larsson, 1998; Enfors et al.,

2001; Garcia‐Ochoa & Gomez, 2009; Hewitt & Nienow, 2007;
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Junne, Klingner, Itzeck, Brand, & Neubauer, 2012; Neubauer

et al., 2013; Schmidt, 2005; Vrábel et al., 2001). Accordingly, tools are

needed to reliably predict large‐scale impacts while studying the

microbial system in lab‐scale. Different wet‐lab scale‐down (SD)

devices have been developed (Käß, Junne, Neubauer, Wiechert, &

Oldiges, 2014; Löffler et al., 2016). Commonly, their design is

motivated by mixing time studies of large tanks that tend to

overestimate the residence time of microbes in stressful zones of the

bioreactor.

On the other hand, computational fluid dynamics (CFD) gain

momentum to provide detailed information on environmental condi-

tions inside a fermenter (Morchain, Gabelle, & Cockx, 2014; Pigou &

Morchain, 2015) since the pioneering studies of Lapin, Schmid, and

Reuss (2006). In the recent years, substrate gradients in industrial

scale fed‐batch production were successfully simulated outlining the

impact of concentration fluctuations on microorganisms by compre-

hensive statistical analysis (Haringa, Deshmukh, Mudde, & Noorman,

2017; Haringa et al., 2016; Kuschel, Siebler, & Takors, 2017). Thereof,

principles of SD design may be derived. Yet, the influence of oxygen as

substrate in CFD simulations is often left aside. Instead, single‐phase
studies are performed assuming saturated dissolved oxygen levels in

the entire bioreactor.

Properly considering the additional oxygen impact in stirred tank

reactors (STRs) via a gaseous phase is a challenging task. Fundamental

problems need to be tackled that can be grouped in (a) momentum

balancing mimicked by proper drag force modeling (Bakker & Van den

Akker, 1994; Brucato, Grisafi, & Montante, 1998; Buffo, Vanni,

Renze, & Marchisio, 2016; Ishii & Zuber, 1979; Scargiali, D'Orazio,

Grisafi, & Brucato, 2007; Tomiyama, Kataoka, Zun, & Sakaguchi,

1998), (b) bubble size distribution modeling (Hagesaether, Jakobsen,

& Svendsen, 2002; Haringa et al., 2017; Kumar & Ramkrishna, 1996;

Laakkonen, Moilanen, Alopaeus, & Aittamaa, 2007b), (c) modeling of

bubble breakage and coalescence (Alopaeus, Koskinen, & Keskinen,

1999; Laakkonen, Alopaeus, & Aittamaa, 2006; Luo & Svendsen,

1996; Kálal, Jahoda, & Fort, 2014), and (d) mesh size impacts.

Regarding (d), all models have a strong dependency on the tur-

bulent dissipation rate in common. The Reynolds average

Navier–Stokes (RANS) k–ε model was found to underestimate the

local turbulent quantities both, in single and in multiphase conditions.

In contrast, large eddy simulations are known to allow best predic-

tion quality but are too computationally demanding for large‐scale
multiphase applications (Buffo et al., 2016). As a trade‐off, satisfac-
tory results of total dissipated energy simulation via RANS k–ε

models can be achieved (Kysela, Konfrst, Chara, Sulc, & Jasikova,

2017). However, the prediction of turbulent variables turned out to

be sensitive on the discretization schemes and grid size (Coroneo,

Montante, Paglianti, & Magelli, 2011). Interesting enough, velocity

field or power number Np prediction by torque was less influenced by

either discretisation scheme or grid size. The observation was further

exploited by Laakkonen, Moilanen, Alopaeus, and Aittamaa (2007a)

who predicted turbulent dissipation rates ε to be independent on grid

size but depending on experimental torque measurements. Accord-

ingly, a novel scaling factor was introduced.

This study takes a typical late stage fed‐batch scenario with C.

glutamicum as a model case to investigate (a) the suitability of the

Laakkonen approach for multiphase modeling, (b) the minimum

computational efforts needed to get proper physical and biological

readouts, (c) the expected microbial responses on fluctuating en-

vironmental conditions, and (d) the lessons learned for properly de-

signing wet‐lab SD devices. Model predictions are validated by

experimental data measured in a 300‐L stirred tank bioreactor.

2 | MATERIALS AND METHODS

Measurements were carried out in a 300‐L multi‐impeller stirred

bioreactor, equipped with four baffles and three Rushton turbines.

Details of measurements, geometry, and parameter validation are

given in Supporting Information Material A. The agitation rate was

set to N = 5/s. Air was introduced through a ring sparger with a gas

feed of 0.25 vvm. Experiments were performed in water (ρL = 995.7

kg/m3, ηL = 0.0008 Pa·s, σL = 0.0712N/m) at 30°C and ambient

pressure.

2.1 | Numerical simulations

2.1.1 | Simulation setup

Three different grid sizes of the full 2π domain were adopted. Details

of the meshes and simulation time intervals are given in Supporting

Information Material B. Numerical simulations were conducted with

the commercial software ANSYS Fluent 18.1 using the realizable k–ε

RANS turbulence model and the Eulerian multiphase model including

mixture model for dispersed phase turbulence. The turbulent

Schmidt number was set to 0.2. Bubble size ranged from 0.1 to

16mm, divided in 23 classes according to Hagesaether et al. (2002).

The scaling factor fsc was introduced based on the assumption, that

mixing energy (power calculated from impeller torque Ptorque and

gassed power input Ppneum) converts to turbulent energy and dis-

sipates to heat in the liquid phase ( εP ). Hence local energy dissipation

εlocal was converted according to

ε

=
+

f
P P

P
,sc

pneum torque (1)

ε ε= f .sc sc local
(2)

With Ppneum and εP

( )= ϕP RT
p
p

ln ,pneum G
0 (3)

α ρ εε ∫=P dV ,L L
(4)

and with ϕG as molar flow, αL as liquid volume fraction, R as universal

gas constant, T as temperature, p0 and p as standard and actual
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pressure. For Ptorque, see Supporting Information Material A. Phase

interaction models were mainly based on the recommendations by

Laakkonen et al. (2007a) and implemented via user‐defined function

(UDF). To account for the bubble drag coefficient, the correlation of

Tomiyama for isolated bubbles in slightly contaminated systems

(Tomiyama et al., 1998) was used. As Tomiyama drag closure CD,0 was

obtained for bubbles in quiescent fluids, effective viscosity μeff and

swarm effects were included to consider drag modification under

turbulent conditions (Bakker & Van den Akker, 1994; Brucato

et al., 1998; Ishii & Zuber, 1979)

ρ

η
=

| − |
Re

d u u
,eff

L L G

eff

(5)

η η ρ ε= + C d ,eff L 5 L sc

1
3

4
3

(6)

with C5 as 0.02 proposed by Bakker and Van den Akker (1994).

Additionally, swarm effects were accounted for by

α= ( ) ( )C f C Re ,D DG ,0 eff
(7)

α
α α

α
( ) = ⎧

⎨⎩

( − ) ≤

>
f

1 0.8

1 0.8

C

G
G G

G

6 (8)

with C6 to be −1.3 as proposed by Buffo et al. (2016). Bubble break up

and coalescence were implemented as described by Laakkonen et al.

(2007a) replacing the original breakup function by a simple sine func-

tion. The moving reference frame model was applied to account for

agitation. All walls were set to no‐slip boundary conditions for the liquid

and free‐slip conditions for air with one exception—to account for gas

accumulation behind the blades, no‐slip boundary condition was applied

for air in the impeller region. The top surface of the sparger was set to

velocity inlet and the initial bubble diameter was calculated with 10mm

according to the correlation of Gaddis and Vogelpohl (1986). Degassing

boundary condition was applied at the liquid height of the reactor,

which has been increased before simulation according to the experi-

mental gas hold up. The second‐order upwind scheme was used for

spatial discretization of momentum, turbulent kinetic energy, and dis-

sipation rate. All simulations were performed in transient mode and

second‐order implicit formulation until a constant gas hold up was

reached. Radial velocity, turbulent dissipation rate, and mixing time

were compared between the three meshes. Further details on the so-

lution procedure and mixing time determination can be found in Sup-

porting Information Material D and E.

2.1.2 | Inclusion of biological kinetics and regime
assignments

Starting from a constant gas volume fraction, glucose feed, oxygen

mass transfer, and bacterial reaction were included via UDFs. A

source term for glucose was defined in a small region at the fer-

menter top close to the shaft with a feeding rate = /F 560 g hrS ,

assuming a cell concentration of = /c 36.5 g LX CDW . Oxygen mass

transfer was included with the volumetric mass transfer coefficient

k aL according to

= ( − )⁎c
k c c

d

dt
a

O ,L
L O O ,L

2

2 2
(9)

with ⁎cO2
as oxygen saturation concentration calculated by Henry's

law and cO ,L2 as liquid oxygen concentration. A multisubstrate kinetic

suggested by Roels (1983) was used to account for substrate

consumption:

μ μ ⎜ ⎟= ⎛

⎝ + +
⎞

⎠

c
c K

c
c K

min ;max
S

S S

O2

O O2 2

(10)

with μ as growth rate and KS and KO2 as half saturation concentra-

tion. Specific growth parameters of C. glutamicum ATCC13032 were

obtained from previous batch experiments (not published) resulting

in a maximal growth rate of μ = −0.441 hrmax
1, a biomass glucose

yield of = /Y 0.474 g gXS CDW S and a biomass oxygen yield of

= /Y 0.043 g mmolXO CDW O2 2. The KS value for C. glutamicum

= × /−K 3.6 10 g LS
3

S was taken from literature (Lindner, Seibold,

Henrich, Krämer, & Wendisch, 2011). The value for KO2 was taken

from Escherichia coli = × /−K 2 10 mmol LO2
3

O2 because similar cyto-

chrome bd activity has been reported (Kita, Konishi, & Anraku, 1984;

Kusumoto, Sakiyama, Sakamoto, Noguchi, & Sone, 2000). Simulation

ran in transient mode until steady‐state concentrations of glucose

and oxygen were reached. They mirror a so‐called “pseudo steady‐
state” characterized by short‐term stable gradients in turbulent flow

fields. This concentration profile reflects a “snap‐shot” of a late pilot‐
scale fed‐batch scenario. Coupling the reaction to the continuous

liquid phase was assumed, since mixing and mass transfer are an

order of magnitude higher than the reaction. However, the flow field

shows periodically changing behavior. To facilitate comparability

between the three meshes, power input by torque as well as velocity

profiles and turbulent dissipation rate were tracked at several posi-

tions and the simulation was stopped when average values of the

examined parameters were reached. Then, the glucose and oxygen

gradients were classified in specific regimes according to the growth

rate substrate dependency of a single substrate Monod kinetic for

either glucose or oxygen, respectively. If the dimensionless substrate

concentration /c KM M was smaller or equal to 0.5 (corresponding to

/( + ) ≤c c K 0.33M M M ) a linear correlation between μ and cM exists,

referring to a low concentration regime (LS for low glucose or LO2 for

low oxygen). If / >c K 9M M , the growth rate μ reaches 90% of μmax and

the function can be approximated by a function of zero order making

μ independent of a change in substrate concentration (HS and HO2).

The range in between refers to a transient regime (TS and TO2).

2.1.3 | Particle tracking

The analysis of heterogeneities via cellular lifelines within a bior-

eactor was previously published in various papers (Haringa
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et al., 2017, 2016; Kuschel et al., 2017). The total amount of 120,000

bacteria was introduced as massless Lagrange particles (St<< 1) and

tracked for 260 s for each mesh. Euler and Lagrange average growth

rates were compared to proof for statistical relevance. The discrete

random walk model was enabled. The gradient and flow field were

fixed during particle tracking. The position and the encountered

glucose and oxygen concentrations for each bacterium were re-

corded every 15ms. Further analysis was performed in MATLAB®.

2.1.4 | Statistical evaluation of bacterial lifelines

The further processing of the trajectories included a smoothening

step by applying a moving average filter to remove unrealistic tur-

bulent fluctuations. The filter window was based on the Lagrangian

time scale as recommended by Haringa et al. (2017). Here, a second

filter step to filter out rapid consecutive low‐amplitude crossings is

suggested which was enabled by a median filter. Then, the filtered

trajectories were analyzed according to their regime transitions in-

cluding frequency and duration of residences.

3 | RESULTS AND DISCUSSION

3.1 | Validation of physical parameters for different
grid sizes

Multiphase simulations were performed using three different grid

sizes (Supporting Information Material B). Sufficient mesh granularity

is a critical aspect in CFD simulations especially for the proper es-

timation of the gas–liquid mass transfer. Typically, sensitive flow

variables such as radial velocity and turbulent dissipation rate are

checked for mesh independency. While urad already showed decent

results for Mesh 1, differences between the meshes are significant

for ε (Supporting Information Material D). Accordingly, the scaling

factor for ε was introduced into breakup, coalescence, drag and mass

transfer functions as described in Section 2.1.1. A similar scaling

factor has been reported to show good results in multiphase simu-

lations (Laakkonen et al., 2007a). Noteworthy, the scaling factor was

determined from simulation in our approach. Experimental data were

only required for validation purposes.

Figure 2a shows the flow field, Figure 2b shows the gas volume

distribution, and Figure 2c shows the bubble size distribution of the

simulation with Mesh 3. Clearly, no distinct separation of flow fields

from radial pumping Rushton turbines is visible, but an overlap of

vortices. The merged flow field is the result of the upward moving gas

phase in combination with rather proximate impeller setting. The

first impeller shows a loading regime (see Figure 2b). With the

Froude number / =N D g 0.522 and the Flow number / =Q ND 0.02g
3 ,

no flooding is expected according to critical flow numbers of Ros-

seburg, Fitschen, Wutz, Wucherpfennig, and Schlüter (2018) and

others (Wiedmann, 1983). Own studies outlined the need to consider

the impact of effective viscosity on the estimation of drag force.

Otherwise, bubbles left the impeller discharge streams too early

leading to nonrealistic bubble accumulation close to the blades. The

lower impeller disrupted entering bubbles to 4–5mm (see Figure 2c).

Smallest bubbles of 2–3mm were found in discharge streams of the

middle and the upper Rushton turbine gaining size when they moved

upwards to the liquid surface. Largest bubbles were observed at the

impeller shaft close to the reactor top where coalescing effects are

most dominant. This tendency is in good agreement with the ex-

perimental results by Laakkonen et al. (2007a).

Table 1 summarizes all experimental and simulated data of this

study. The power input by torque is predicted well by the simulation.

Especially, Mesh 3 shows less than 2.8% deviation from experimental

measurements. The power number ρ= /N P N DP
3 5 of 10.88 for the

entire systems is rather low compared to expected NP of 5 per Rushton

turbine in distinct turbulent flows (here ≈ ×Re 2.5 105) (Rushton,

Costich, & Everett, 1950). However, such high NP are only obtained for

multi‐impeller systems with complete parallel flow. By contrast, Figure 2

clearly depicts the nondistinct character of the flow field in agreement

with Chunmei, Jian, Xinhong, and Zhengming (2008) and Xueming,

Xiaoling, and Yulin (2008) which is further supported by the low velocity

ratio of the middle stirrer (Supporting Information Material D). Taking

an additional reduction of power number due to the gas phase into

account, Armenante and Chang (1998) found similar non‐gassed power

numbers for a comparable reactor configuration. Experimental (3.6%)

and simulated (3.2%) gas hold up are in fair comparison, considering the

experimental noise. The simulated gas hold up of 2.4% from Laakkonen

et al. (2007a) is smaller than the gas hold up presented here. Although

the authors chose a higher agitation rate, one instead of three Rushton

turbines was used. Therefore, smaller power input and gas hold up can

be expected. Highly accurate prediction of k aL values was achieved.

Even the coarse Mesh 1 still reached good prediction quality of 92.8%.

We qualify the very good prediction quality of k aL as a mirror of the

well suitability of the Laakkonen approach. Because fSC scales the tur-

bulent energy dissipation proportionally, small differences in the pre-

diction precision between the meshes may exist due to the nonlinear

character of k aL , breakage and drag function. Gas hold up is further-

more directly dependent on the velocity profile which is predicted

slightly different by Mesh 3 (Supporting Information Material D).

Following the approach of Vasconcelos, Alves, and Barata (1995)

and choosing the geometric similarity as 100, the mixing time is esti-

mated as τ95 =15.9 s fairly agreeing with the experimental findings.

Alternately, the mixing time was simulated by adjusting the Schmidt

number ScT from 0.7 to 0.2. Whereas this is a common choice for single‐
phase studies (Delafosse et al., 2014; Haringa et al., 2016; Montante,

Moštěk, Jahoda, & Magelli, 2005), the improvement is less incisive for

multiphase simulations where the upwards motion of the gas breaks the

mass‐exchange barrier of the inter impeller zone (Haringa et al., 2017).

Considering the experimental standard deviation of mixing experiments

all meshes allow satisfactory prediction quality.

Because the bubble diameter was not experimentally measured,

comparison is performed with measured Sauter mean diameters of

about 1.2–4.1 mm from Laakkonen et al. (2007a) testing similar

settings. Accordingly, fair agreement is observed.
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Summarizing, simulated values fit the experimental data very

well. Even for Mesh 1, deviations are acceptable.

3.2 | Pseudo‐stationary double gradients

Pseudo‐stationary double gradients of the late fed‐batch scenario

were obtained by embedding reactions into the continuous phase

containing the media. Estimating the time needed to shift a culture to

substrate depletion (τ = /( ) =K q c 0.38 sS Sdep ,max X ) reveals that τdep

is more than an order of magnitude smaller than mixing

(τ = ±15.2 4 s95 ) and circulation time (τ = ±2.9 0.75 scirc ). Accord-

ingly, the formation of substrate gradients is likely to occur. Figure 3

shows that spatial distributions of growth are fairly similar for each

simulation (average μ = 0.0335 hr−1) irrespective of the mesh quality

used. Highest growth rates were reached proximate to the top im-

peller whereas cell growth was strongly limited in the rest of the

reactor. Figure 4a,b elucidates the reasons for the growth distribu-

tion highlighting glucose and oxygen gradients exemplarily of Mesh 3.

Small differences between the meshes in the overall physical para-

meters like k aL or τ95 contributed to slight differences in the gradient

formation. High glucose (HS) concentrations only occur next to the

feed port, surrounded by a transition zone ( )TS , whereas the flow

fields of the three Rushton turbines is glucose‐limited (LS). Interest-

ingly, the opposite scenario attunes for oxygen showing high oxygen

concentrations (HO2) in the bulk ranging from the reactor bottom to

the top impeller (see Figure 4b). The overlay of glucose and oxygen

gradients leads to a scenario as shown in Figure 4c, the assignment of

low oxygen levels at the top (LO2), low glucose levels in the Rushton

mixing zone (LS) and a lean section of mid‐level concentrations (T)

located between LO2 and LS. It is exactly in T where highest growth

rates occur. Interesting enough, T only accounts for <5% of the of the

total volume according to Mesh 3. Notably, Meshes 1 and 2 provide

similar prediction with 3.7% and 3.3%, respectively.

3.2.1 | Statistical lifeline analysis

Applying the approach of Haringa et al. (2016) so‐called lifelines were

studied, that is, the fluctuating paths of 120,000 C. glutamicum

massless cells were recorded and analyzed with respect to the re-

gime changes according to Figure 1. Concentration profiles of glu-

cose and oxygen encountered by individual cells were used to

F IGURE 1 Regime transition patterns. L TLO O2 2: Particle starts
and ends in low oxygen regime with a dwelling time in the transition

area. TL TO2 : Reverse event starting in the transition area with
residence in low oxygen regime. L TLO S2 : Particle traverses all regimes
from low oxygen to low glucose. L TLS O2: Reverse movement from low

glucose to low oxygen. TL TS : Circulation from transition over
low glucose back to transition area. L TLS S: Reverse event from low
glucose to transition back to low glucose regime. The second capital

letter always indicates the area in which the residence time τ was
measured [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

F IGURE 2 (a) Flow field, (b) gas volume

distribution, and (c) bubble size distribution of
the simulation with Mesh 3 [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Comparison of simulated parameters and experimental
validation

Setup NP α ( )%G ( )−k a hrL
1 τ ( )−s95

1 ( )d mmb

Mesh 1 9.50 2.7 116 17 3

Mesh 2 11.82 2.6 115 13.9 3

Mesh 3 11.18 3.2 122 13.1 3.4

Exp 10.88 ± 0.11 3.6 ± 0.3 125 ± 4 15.2 ± 4 1.2–4.1

Note: Experimental bubble diameter was taken from Laakkonen et al.

(2007a).
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estimate growth rates applying the Roels multisubstrate kinetic. The

average growth rate (μ = −0.0291 hr 1) was comparable for all me-

shes and is in good agreement with the Eulerian approach

(μ = −0.0335 hr 1). Thereof, the conclusion was drawn that a suffi-

cient number of particles was used. Figure 5d shows an exemplary

lifeline for 25 s. The normalized glucose and oxygen concentrations

are displayed in Figure 5a for 200 s. The profiles are consistent with

the gradient depicted in the previous section. High glucose con-

centrations are coupled to low oxygen concentrations and vice versa.

Only if both substrates are present in moderate concentrations

higher growth rates can be obtained as demonstrated in Figure 5b.

The profiles were translated into regime transitions for further

analysis as illustrated in Figure 5c. Characteristic patterns are

marked in red. TL TS may serve as an example for interpretation:

After 18 s, the bacterial fluctuating path TL TS starts from moderate

glucose and oxygen levels (T), traverses quickly to low glucose

(a) (b) (c)

F IGURE 3 Local distribution of simulated growth rates for (a)

Mesh 1, (b) Mesh 2, and (c) Mesh 3 [Color figure can be viewed at
wileyonlinelibrary.com]

(a) (b) (c)F IGURE 4 Concentration profiles derived
from Mesh 3 of glucose (a) fed from the top and
oxygen (b) introduced by a ring sparger close to
the reactor bottom. Coloration from dark to light

colors indicates high, transient, or low
concentrations. Overlapping both gradients
results in the regimes (c) with low glucose LS,

transient T, and low oxygen LO2 concentrations
[Color figure can be viewed at
wileyonlinelibrary.com]

(a)
(d)

(b)

(c)

F IGURE 5 (a) Profiles of normalized (ˆ = /c c c KM M M) glucose and oxygen concentration and (b) the resulting growth rate of a bacterial lifeline

recorded for 200 s. (c) The profiles were translated to low glucose LS, low oxygen LO2, and a transient regime T. (d) Bacterial lifeline in the
bioreactor for 25 s [Color figure can be viewed at wileyonlinelibrary.com]
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concentrations (LS) where the cells stays for 40 s before cycling back

to moderate glucose and oxygen levels encoded as T. Notably, time τ

code for residence periods of the middle zone (mid‐capital letter)
because transition times are quite short.

Bacterial lifeline patterns were statistically evaluated to obtain

frequency distributions as a function of τ . Finally, six transition

strategies were evaluated and compared for the three meshes. Sta-

tistical readouts comprised the total frequency of the events, average

and maximal residence times (see Table 2). Maximal residence times

correspond to the limit, within which 99% of the values were located.

For example, Figure 6 depicts the regime transition distributions of

Mesh 3. Remarkably long residence times are assessed for the regime

transition TL TS . Some bacteria may linger up to 76 s in the glucose‐
limited zone before moving back to the transition area. However, the

average residence time in LS is about 5.5 s. With ~31% TL TS is the

most frequent regime transition. The following reason may be de-

duced from Figure 3: cells are trapped in the trailing vortices of the

three impellers causing circulation within the low glucose regime.

The second most frequent regime transition is TL TO2 with 26.5%.

Maximum (13.5 s) and average (3 s) residence times are clearly

shorter than in regime TL TS . Notably, all distribution patterns com-

prising T as key residence zone show rapid decays after <1.5 s.

Those regimes host cells less than 0.4 s in T which is in the magnitude

of τdep. In essence, the fast crossings of zone T reflect its small di-

mension and the high fluid velocities at the top impeller.

Using Mesh 3 as reference, Figure 7 depicts deviations of aver-

age regime residence times regarding Meshes 1 and 2. For instance,

results of L TLS S and L TLS O2 differ only about 1% and 7% for Meshes 2

and 1, respectively. Most important, the dominating transitions TL TS

and TL TO2 only differ by max 31% (Mesh 2), with Mesh 1 showing

fairly good agreement of −9.6% and +16% only. This finding is highly

remarkable as it means that biologically meaningful readouts (i.e.,

exposure to limiting regimes) can be predicted well with moderate

computational efforts. Mesh 1 only possesses 1/10 grid size of Mesh

3. In other words, less computation is needed to qualify cellular

performance in large‐scale industrial bioreactors.

3.2.2 | Simplified design of scale‐down devices

For the given model case scenario, the volumetric fraction of mod-

erate substrate supply (T) is less than 5% only. Transitions through

this zone take 1.2 s maximum. Hence, instantaneous metabolic re-

sponses may occur, but the initiation of transcriptional effects ap-

pears rather unlikely. For E. coli, Löffler et al. (2016) observed

massive transcriptional responses after stress exposure periods

>35 s. Still, the initiation of transcriptional response may have hap-

pened causing the propagation of the transcriptional response into

well‐mixed zones of the bioreactor (Nieß, Löffler, Simen, &

Takors, 2017). However, C. glutamicum has already proven its strong

robustness regarding the exposure to large‐scale stress conditions.

Accordingly, the transition zone may be excluded for SD design

leading to a simplified two‐compartment SD device similar to Käß

et al. (2014). As such, the Euler–Lagrangian analysis may be simpli-

fied by lumping related regime changes finally yielding the two‐
compartment readouts L L LS O S2 and L L LO S O2 2. With 3.4 s for the first

and 5.7 s for the latter, longer residence times in glucose‐limited

regimes were found that may expand to maximum residence times of

15 and 80.5 s, respectively.

TABLE 2 Regime transition statistics

Regime transition Frequency (%) τ̄ (s) τmax (s)

L TLS S 10.06 0.36 1.05

TL TS 31.36 5.50 75.66

TL TO2 26.47 2.99 13.47

L TLO O2 2 4.62 0.38 1.23

L TLS O2 15.99 0.20 0.81

L TLO S2 11.50 0.33 1.20

Note: Total frequency, average (τ̄ ), and maximal (τmax) residence time are

listed for each regime transition pattern.

F IGURE 6 Regime transition pattern as
function of the residence time τ . The six possible
patterns are shown as semi‐log plot
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In general, the findings of residence time distributions may be

well used to design wet‐lab scale‐up simulators. Figure 7b illustrates

that the regimes are translated in a multicompartment setup com-

prising two STRs connected by a plug flow reactor (PFR). The PFR

may serve as the realization of the T zone. Key limitations are in-

stalled in the STR as indicated. Each STR requires additional supply of

substrate or oxygen to raise limiting levels. Pumping between PFR

and both STRs follows the mindset of L TLS O2, L TLS S, L TLO S2 , and

L TLO O2 2 traveling paths. Regime assignments and changes may be

controlled by the volume ratios of the different tanks with average

dwelling times set by pumping rates. By deciding on a particular

scale‐up design, experimentalists basically choose the percentage of

frequency changes covered by the experimental setup. For instance,

the showcase of Figure 7c neglects the impact of T for the sake of

simplicity. Noteworthy, the examples of Figure 7b,c mirror the 300‐L
pilot‐scale scenario. Mimicking large‐scale industrial bioreactors

likely requires longer dwelling times and different volume ratios.

3.2.3 | Sensitivity of regime size depending on
biological parameters

Given that kinetic parameters and process conditions differ from

organism to organism their impact on regime size and transitions may

be an important criterion for qualifying the suitability of scale‐up
simulators (such as Figure 7b,c) for studying the impact of liquid

nutrients and oxygen. Results of a sensitivity analysis varying kinetic

and operational parameters are summed in Table 3 and depicted in

Supporting Information Material F exemplarily for one scenario.

Doubling the biomass concentrations cX leads to smaller transient

regime T, but to bigger regimes of limited oxygen LO2 and glucose

concentrations LS. For organisms possessing higher specific maximal

substrate consumption rate, the size of LS increased, due to reduced

transient regime, whereas LO2 remains. The opposite scenario occurs

for organisms with higher specific maximal oxygen consumption rate

qO2, leaving LS unaffected but leading to decreased T and increased

LO2. Rising KS adapts regime classification leading to bigger substrate

limitation zone, smaller transient and oxygen limited zones. Higher

KO2 shows no effects on regime size. By doubling the feed the

transient regime spreads toward the second impeller, reducing LS

but leaving LO2 unaffected. Reverse behavior of the regime size

was observed by lowering the respective parameter.

(a)

(b) (c)

F IGURE 7 (a) Comparison of average residence time prediction τ̄ for the three simulated meshes. Deviations of Meshes 1 and 2 compared to
Mesh 3 are displayed. (b and c) Examples of simplified scale‐down devices [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Sensitivity of regime size

Parameter

Influence on regime size

LS T LO2

↑cX ↑ ↓ ↑

qS,max ↑ ↑ ↓ →

↑qO ,max2
→ ↓ ↑

KS ↑ ↑ ↓ ↓

KO2 ↑ → → →

F ↑ ↓ ↑ →

Note: Variation of organism‐specific parameter or operating conditions.
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Summarizing, sensitivity analysis shows that ratios of LS:T:LO2 depend

on biological kinetics and process conditions while structural settings

of two‐phase scale‐up simulators remain. Indeed, the setup well re-

sembles conventional settings. However, the two‐phase CFD simu-

lations give a quantitative estimate about the degree of similarity

with the eyes of the microbes, now.

4 | CONCLUSION

The scaling factor approach (Laakkonen et al., 2007a, 2007b) was

successfully applied for a two‐phase flow Euler–Euler multi‐impeller

pilot‐scale bioreactor simulation. Although, the factor was simply

simulated and not derived from experimental measurements, physi-

cal properties such as power input, gas hold up, k aL value and mixing

time were estimated fairly good compared to experimental tests.

Interesting enough, statistical analysis of lifelines further revealed

that biologically relevant readouts such as regime changes can be

based well on relatively coarse mesh granularity, still giving accurate

residence time distribution of <15% deviation (mostly) compared to

10‐fold finer structured meshes. Consequently, a mesh density of

× #/1.12 10 m5 3 is suggested to be sufficient to reflect the actual

situation within the bioreactor. Likewise, similar grid sizes have been

used in multiphase simulations (Bach et al., 2017; Haringa

et al., 2017). This finding opens the door for large‐scale applications

with least computational effort. Using the scaling factor not only

proper estimations of physical criteria but also biological readouts

such as regime changes are well predictable.

The study showcased the application for C. glutamicum. But

sensitivity analysis showed that design and structure of wet‐lab
scale‐up simulators should be well transferrable to other microbial

kinetics and process conditions. Notably, the approach intrinsically

offers an a priori quantitative assessment predicting how close lab

scale conditions will mimic large‐scale scenarios.
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NOMENCLATURE

CD drag coefficient

CO2 oxygen concentration (mmolo2/L)

cS glucose concentration (gS/L)

cX biomass concentration (gCDW/L)

F feeding rate (gs/hr)

fsc scaling factor

kLa volumetric mass transfer rate (hr−1)

KO2 affinity constant for oxygen (mmolo2/L)

KS affinity constant for glucose (gS/L)

N agitation rate (s−1)

Np power number

P power (W)

p pressure (Pa)

R universal gas constant (J·mol−1·K−1)

Re Reynolds number

ScT turbulent Schmidt number

St Stokes number

T temperature (K)

YXO2 biomass oxygen yield ( / )g mmolCDW O2

YXS biomass substrate yield (gCDW/gS)

ABBREVIATIONS

BSD bubble size distribution

LES large eddy simulation

PBE population balance model

RANS Reynolds average Navier–Stokes

SD scale down

UDF user defined function

GREEK SYMBOLS

α volume fraction

ε turbulent dissipation rate (m2/s3)

ηL media viscosity (Pa·s)

μ growth rate (hr−1)

ρL media density (kg/m3)

σL media surface tension (N/m)

τ95 mixing time (s)

ϕG molar flow (mol/s)

SUBSCRIPTS

* equilibrium concentration

dep depletion

eff effective

G gas

L liquid

max maximal

sc scaled variable
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