
Theory of yellow and green excitons in cuprous
oxide with emphasis on correction terms and

external fields

Von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Patric Sebastian Rommel
aus Kirchheim unter Teck

Hauptberichter: Prof. Dr. Jörg Main
Mitberichterin: Prof. Dr. Maria Daghofer

Tag der mündlichen Prüfung: 12. Juli 2022
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Inhaltsangabe

Kupferoxydul spielt eine zentrale Rolle in der Geschichte der Exzitonphysik, unter Ande-
rem da es der erste Halbleiter ist, in welchem Exzitonen experimentell entdeckt worden
sind. Exzitonen, die aus einem Elektron aus seinem niedrigsten Leitungsband und einem
Loch aus seinem höchsten Valenzband bestehen, gehören zur gelben Exzitonserie. Vor
Kurzem haben optische Absorptionsexperimente diese Serie bis zu einer Hauptquanten-
zahl von n = 25 verfolgt [T. Kazimierczuk et al., Nature 514, 343 (2014)]. Das eröff-
net die Möglichkeit neuartiger Anwendungen, welche die speziellen Eigenschaften hoch
angeregter Rydbergsystem ausnutzen, zum Beispiel im Bereich der Quanteninformati-
onsverarbeitung. Für deren Umsetzung ist ein gründliches Verständnis der Eigenschaf-
ten von Exzitonen notwendig. In dieser Doktorarbeit streben wir an, das theoretische
Wissen um die gelbe und grüne Serie in Kupferoxydul voranzubringen. Wir verwenden
numerische Simulation und analytische Methoden zur detaillierten Untersuchung der
Austauschwechselwirkung der S Zustände, der Feinstrukturaufspaltung der D Zustände,
von Spektren in äußeren magnetischen Feldern in Faraday und Voigt Konfiguration, von
Frequenzverdopplung in verbotenen Richtungen, und der Autoionisationsspektren in äu-
ßeren elektrischen und parallelen elektrischen und magnetischen Feldern. Für Letzteres
wenden wir die Methode der komplexen Koordinatenrotation an, welche wir weiterhin
dazu benutzen, um die grünen Exzitonresonanzen im gelben Kontinuum zu berechnen.
Wir präsentieren Absorptionsspektren für Übergänge aus dem Grundzustand des Kris-
talls und für Interserienübergänge aus der gelben in die grüne Serie.
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Abstract

Cuprous oxide has played a central role in the history of exciton physics, being the semi-
conductor where excitons were first experimentally discovered. Excitons formed from an
electron in its lowest conduction band and a hole from its the highest valence band belong
to the yellow exciton series. Recently, optical absorption experiments have followed this
series up to principal quantum number n = 25 [T. Kazimierczuk et al., Nature 514, 343
(2014)]. This opens up possibilities for novel applications using the particular attributes
of highly excited Rydberg system, for example in quantum information processing. For
this, the properties of the excitons have to be understood thoroughly. In this thesis, we
aim to advance the theoretical knowledge of the yellow and green exciton series in cuprous
oxide. We use numerical simulation and analytical methods to investigate in detail the
exchange splitting of the S states, the fine structure splitting of the D excitons, spectra
in external magnetic fields in Faraday and Voigt configuration, second harmonic gener-
ation in forbidden directions, and autoionizing spectra in external electric and parallel
magnetic and electric fields. For the latter, we apply the complex-coordinate-rotation
method, which we then further use to calculate the green exciton resonances lying in
the yellow continuum. We present absorption spectra for transitions from the crystal
ground state and for interseries transitions from the yellow to the green series.
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1 Introduction

When an electron in a semiconductor or insulator is lifted from a valence band into
a conduction band, a positively charged hole is left behind. The negatively charged
electron and the hole can then interact via the Coulomb force, forming a composite
quasiparticle called an exciton. This conception of an excitation in condensed matter
systems involving an electron-hole pair was first developed in the 1930s [1–5]. Twenty
years later, excitons were experimentally discovered by Hayashi [6, 7] and by Gross [8, 9].

One differentiates between Frenkel and Wannier-Mott excitons [10, 11]. The former are
characterized by large binding energies of the order of 1 eV and small distances between
electron and hole, leading in effect to a localized excitation at a given lattice point.
Wannier excitons on the other hand are more weakly bound with binding energies up
to three orders of magnitude smaller than in Frenkel excitons, resulting in a much more
delocalized system covering many unit cells of the solid. They can therefore typically be
modeled quite well as a hydrogenlike system with modified material parameters. The
research field of excitons covers a wide range of subjects, ranging from biexcitons [12–16],
trions [17], polyexcitons [18], bound exciton complexes [19] over polariton lasers [20–23]
and excitons in reduced dimensionality [24] to possible realizations of Bose-Einstein
condensates [25–29]. In this thesis, we will treat Wannier excitons, more specifically
excitons in the semiconductor cuprous oxide.

In 2014, Kazimierczuk et al. performed a seminal study of the yellow exciton series
in cuprous oxide, observing absorption lines with principal quantum numbers up to
n = 25 [30], and creating the basis for a large number of further experimental and
theoretical inquiries [31–40]. This was a major stepping stone for the field of excitonic
Rydberg systems.

Hydrogenlike systems with high principal quantum numbers like Rydberg atoms and
Rydberg excitons are of great experimental and theoretical interest. Due to typical scal-
ing laws in Rydberg systems, Rydberg atoms have a large dipole moment, giving them
great sensitivity to external fields [41]. Recently, a lot of research has been done seeking
to exploit their special properties [42], for example for usage in quantum information
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1. Introduction

processing applications. Their strong mutual interactions open up many possibilities for
the implementation of quantum logical gates [43–46]. A central feature of many propos-
als is the so called Rydberg blockade effect, which prevents the excitation of multiple
Rydberg atoms, if they are too close to each other. In Ref. [30], signs for a Rydberg
blockade in the yellow excitons were found, and the possibility of a excitonic Rydberg
blockade lead to proposals for the enhancement of optical nonlinearities [47, 48] and
construction of single-photon sources [49, 50]. In general, Rydberg excitons prove to be
a promising research field for applications known from atomic Rydberg systems.

Cuprous oxide is the material where excitons were first experimentally observed, and
generally has a central role in excitonic research. Its large binding energy of about
86 meV [34] leads to well-separated lines for different principal quantum numbers, aiding
in the observation of detailed features of the spectrum.

In the 1950s and 60s, experimental work by Nikitine [51, 52], Gross [9, 53, 54],
Ueta [55], and McLean [56] helped to refine the Wannier model [57, 58]. More and
more corrections to the description [11, 24, 59, 60] were developed over time.

The Wannier description typically assumes a band structure with a single conduc-
tion band and a single valence band. In cuprous oxide, the uppermost valence bands
are degenerate, necessitating an approach going beyond this condition. The appropri-
ate framework was devised by Luttinger and Kohn [61], leading to the Suzuki-Hensel
Hamiltonian [62], which was first developed for Germanium. In this thesis, we will use a
model of excitons in cuprous oxide which is based on the application of this framework
to cuprous oxide.

In Chapter 2, we begin by laying out the theoretical framework describing the yellow
and green exciton series in cuprous oxide. We will use the Suzuki-Hensel Hamiltonian
for modeling the valence band structure. We then give an overview of the central-cell
corrections, which are additional terms that become important for small electron-hole
distances. They mainly affect the even parity states, like the S and D excitons. We
discuss how external fields can be added to the description. Since an electric field can
lead to autoionization, we then present the method of complex-coordinate rotation for
the modeling of resonances with finite lifetimes. Afterwards, we outline our approach
of numerical diagonalization of the Hamiltonian, and how energies and spectra can be
obtained from it.

The exchange interaction forms a part of the central-cell corrections. It leads to a
characteristic splitting between spin-singlet and spin-triplet S states. A straightforward
application of this to the yellow exciton series would lead to the expectation that the
optically accessible ortho-excitons are lifted to higher energies than the spin-flip forbid-
den para-excitons, also called dark excitons. Recently, experimental investigations into
the dark exciton series confirmed that this expectation is contradicted for the case of the
yellow 2S exciton [63], a result predicted by earlier numerical calculations [38]. In Chap-
ter 3, we investigate this effect in detail. We show how the coupling to the green exciton
series is responsible for the reversed positions of the 2S ortho-para pair. By varying the
strength of the spin-orbit coupling in our numerical calculation, we reveal an avoided
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crossing between the 2S yellow orthoexciton and one of the green 1S excitons, showing
that the influence of the green exciton series is responsible for the reversed positions of
the 2S ortho-para pair. We additionally present results on the scaling behavior of the
exchange splitting as a function of the principal quantum number and investigate the
difference in size of the splitting in the yellow and green 1S states.

The exchange interaction plays an important part in the understanding of the fine
structure observed in the yellow exciton series. It affects all states with a nonvanishing
wave function at zero electron-hole separation. Since the cubic symmetry of the crystal
leads to a mixing of angular momenta with the same parity, the exchange interaction
causes a splitting not only of the S states, but also of the D states. In fact, an especially
strong splitting is experimentally observed for a certain D exciton with symmetry Γ+

5 ,
lifting it to the highest energy in a given multiplet with the same principal quantum
number. The calculations in Ref. [38] point to the influence of the mixing with the
green 1S state as a possible explanation. In Chapter 4, we take a close look at the fine
structure of the D excitons of the yellow exciton series in cuprous oxide. We compare
numerical and experimental data, allowing us to improve upon previous assignments of
quantum numbers. Our study shows that the level-repulsion effect from the green 1S
state plays a crucial role in causing the observed level structure.

The difference between the exciton and an atomic system manifests itself not only in
the fine structure splitting in the field free case, but also in the interaction with external
magnetic fields. We distinguish between two experimental configurations: the Faraday
geometry, where the magnetic field is applied in parallel to the exciting laser, and the
Voigt geometry, where it is applied orthogonally. In Chapter 5 we present experimental
and numerical data showing that the spectra of magnetoexcitons differ depending on
the configuration. We mainly attribute this to the appearance of an additional effective
electric field due to the magneto-Stark effect in the Voigt geometry. This constitutes
a significant difference to atomic spectra, where the magneto-Stark effect is suppressed
due to the much larger total mass.

Second harmonic generation (SHG) is a process where two incoming photons are
coherently combined to one outgoing photon with the doubled energy. This process was
recently experimentally probed for the yellow series in cuprous oxide [64]. The associated
selection rules in systems with cubic symmetry forbid SHG processes along certain axes
of the crystal. Application of external fields can reduce the symmetry, breaking these
selection rules. In Chapter 6, we present simulated SHG spectra in forbidden directions,
comparing numerical data with experimental results and exploring the mechanisms by
which the selection rules are lifted.

F. Schweiner et al. presented a complete theoretical description of the yellow excitons
in cuprous oxide subjected to an external magnetic field [65]. In Chapter 7, we present
results which extend this description by the additional application of an external electric
field. The investigated electric fields are significantly larger than the effective electric field
due to the magneto-Stark effect in the previous chapters, and we thus enter the regime
where autoionization takes place. The description of the excitons as bound states thus
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1. Introduction

becomes inadequate, and we instead need to conceptualize them as quasibound resonance
states with finite lifetime. To properly treat them, we augment our numerical method
by the complex-coordinate-rotation method. We investigate the effect of different field
strengths on the complex energies and oscillator strengths of the autoionizing resonances.

Most studies of bulk excitons in cuprous oxide focus on the yellow excitons, which form
when an electron is lifted from the uppermost valence band to the lowest conduction
band. If an electron is instead lifted from the second-highest valence bands, a green
exciton is created. Most green exciton states lie energetically within the continuum of
the yellow series. Since the band structure terms of the Hamiltonian lead to a coupling
of the yellow and green lines, the latter are thus quasibound resonances with a finite
lifetime. For their study in Chapter 8, we therefore also use the complex-coordinate-
rotation method. We present absorption spectra and explore scaling laws of the binding
energy, linewidth, etc. as a function of the principal quantum number.

Recently, Krüger et al. investigated interseries transitions between the yellow and
green exciton series in a hydrogenlike model [66]. In Chapter 9, we extend these cal-
culations by the inclusion of the complex valence band structure. We present dipole
interseries transition spectra for different polarization combinations of the pump and
probe laser. To this end, we use the results on the green excitons obtained in Chapter 8
and modify the calculation scheme of absorption spectra of transitions starting from the
crystal ground state used in the previous chapters, to now handle the case of interseries
transitions instead.

We finally conclude with a summary and outlook in Chapter 10.
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2 Theoretical background

In this chapter, we outline the general theory of excitons in cuprous oxide, which will
provide the foundation of the investigations presented afterwards. We begin with a
short introduction of the semiconductor cuprous oxide. We then present our model
Hamiltonian for the description of the yellow and green exciton series. We discuss the
transformation to center-of-mass coordinates, the application of external fields, and the
use of the complex-coordinate-rotation method for the calculation of resonances. We
finish by stating our method of numerical diagonalization and calculation of spectra.

2.1

Cuprous oxide and the octahedral

group

Cuprous oxide or copper(I) oxide is a red-coloured crystal material with chemical formula
Cu2O. We show a picture of a natural crystal and a cut slab in Fig. 2.1 on the left.
The copper and oxygen cores are arranged in a cubical lattice structure as depicted
in Fig. 2.1 on the right. It is a direct semiconductor with a band structure at the Γ-
point as presented on the left-hand side of Fig. 2.2. If an external excitation lifts an
electron from one of the valence bands across the band gap Eg ≈ 2.17 eV into one of the
conduction bands, the resulting electron-hole pair interacts via the Coulomb interaction
and forms a bound or quasibound system called an exciton. In the simplest cases, these
quasiparticles are well-described by a hydrogenlike model.

The properties of the excitons differ depending on the involved bands, leading to
different exciton series as marked in Fig. 2.2. Most research focuses on the yellow series
with the electron in the lowest Γ+

6 conduction band and the hole in the highest Γ+
7

valence band. Due to the material parameters of cuprous oxide, especially the effective
masses of electron me and hole mh and the dielectric constant ε (see Table A.1), the
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2. Theoretical background

Cu

O

Figure 2.1.: Top left : Natural Cu2O crystal. Adapted from [30]. Bottom left : Cu2O
crystal slab. Adapted from [67]. Right : Crystal lattice structure of cuprous
oxide, made up of a face-centered cubic lattice of copper cores and a body-
centered cubic lattice of oxygen cores, with a lattice constant given by
ag ≈ 0.43 nm [68]. Taken from [69].

exciton Rydberg energy of the yellow series is approximately ERyd ≈ 90 meV [30], leading
to an easily observable Rydberg series in absorption spectra even up to high principal
quantum numbers. Corrections to the hydrogenlike description manifest themselves as
an additional fine-structure splitting [33].

When the electron is in the same Γ+
6 conduction band, but the hole is instead in the

second uppermost Γ+
8 valence bands, the exciton belongs to the green series. The yellow

and green series are separated by the spin-orbit splitting ∆ ≈ 130 meV and the spectral
lines associated with them are thus energetically arranged as shown in Fig. 2.2 on the
right.

In this thesis, we will focus mostly on the yellow excitons in Chapters 3 - 7. But even
there, the interaction between the two series will play an important role. We show results
concerning the green series specifically in Chapter 8 and 9. As suggested by Fig. 2.2,
additional series like the blue and violet series exist, but they are not further discussed
in this work.

The crystal environment leads to several effects playing a role in exciton physics, for
example by modifying the dielectric constant and the effective masses. Scattering pro-
cesses, most prominently with phonons, lead to a broadening of lines beyond those given
by radiative decay [70–74]. Another important effect is the reduction of the symme-
try to the crystal point group. The hydrogen atom has the symmetry O(4) with the
conservation of the Runge-Lenz vector, leading to the degeneracy of all levels with the
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2.1. Cuprous oxide and the octahedral group
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Figure 2.2.: Left: Band structure of cuprous oxide near the band gap. The lowest Γ+
6

conduction band is formed from Cu 4S orbitals, the highest Γ+
7 and Γ+

8

valence bands from Cu 3D orbitals [30]. Figure taken from Ref. [30]. Right:
Schematic of the energetic placement of yellow and green exciton states.
The two series are split by the energy ∆. Most of the green lines lie inside
the yellow continuum, except for the 1S states. They are thus quasibound
resonances, as we will discuss in Chapter 8.

same principal quantum number n. Corrections invariant under rotations will generally
reduce the symmetry group to O(3), splitting the n-multiplets into levels with the same
angular momentum. In a group theoretical context, these degenerate levels can be un-
derstood as invariant subspaces of the symmetry group operations. For example, states
with vanishing angular momentum, i.e., S states, remain completely invariant under ro-
tations, whereas P states transform like the functions x, y, and z. This classification into
invariant subspaces with different transformation behaviors is the classification of states
according to the irreducible representations of the symmetry group. For the rotational
group O(3), the division of states into irreducible representations is simply given by the
assignment of the angular momentum quantum number L [75]. In our notation, D±L is
the representation belonging to angular momentum L, where + or − additionally gives
the behavior under the parity operation. For the consideration of spins and half-integer
angular momenta, the symmetry group has to be extended to the special unitary group
SU(2).

In cuprous oxide, the point group is the octahedral group Oh [30]. For the exciton
states, the total angular momentum Ft is thus not conserved and the Ft-multiplets
split. The splitting pattern is given by the reduction of the irreducible representations
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2. Theoretical background

of the full rotation group to those of Oh. This reduction is presented in Table 2.1.
The irreducible representations are denoted by Γ±i ; more details on their properties
can be found in Ref. [76]. With the information given in the table, we can for example
deduce that multiplets with total angular momentum Ft = 1 remain degenerate, whereas
multiplets with total angular momentum Ft = 2 will in general split into two levels, one
with irreducible representation Γ±3 and one with Γ±5 . This kind of symmetry-associated
splitting is the reason for the fine-structure splitting of the F states observed in Ref. [33].
This kind of analysis using group theoretical methods [77] will play a central role in our
investigation of exciton systems in the crystal environment with reduced symmetry.

One thing to keep in mind in the context of the level splitting and mixing due to the
crystal environment is the fact that in cuprous oxide, the parity remains a good quantum
number. Basic properties of exciton states can often be tied directly or indirectly to the
parity. For example, only odd-parity states can be excited in one-photon dipole experi-
ments, while quadrupole and two-photon absorption only affects the even-parity states.
Still, the more nuanced understanding using the irreducible representations gives valu-
able additional information. To illustrate, not all odd-parity states are dipole-allowed,
but only those of symmetry Γ−4 .

Building a Hamiltonian for the description of the spectrum which includes these details
requires going beyond a simple hydrogenlike model. The situation of electron and hole
in the semiconductor lattice structure has to be properly taken account for. In the next
section, we introduce the Hamiltonian used in the rest of the thesis, which fulfills this
condition. We will see that the reduced cubic symmetry is introduced into the model by
the complex valence band structure via the kinetic energy of the hole.

Table 2.1.: Reduction of the irreducible representations of the spherical group to the
irreducible representations of the octahedral group [76].

integer angular momentum half-integer angular momentum
D±0 Γ±1 D±1/2 Γ±6
D±1 Γ±4 D±3/2 Γ±8
D±2 Γ±3 + Γ±5 D±5/2 Γ±7 + Γ±8
D±3 Γ±2 + Γ±4 + Γ±5 D±7/2 Γ±6 + Γ±7 + Γ±8
D±4 Γ±1 + Γ±3 + Γ±4 + Γ±5 D±9/2 Γ±6 + 2Γ±8
D±5 Γ±3 + 2Γ±4 + Γ±5 D±11/2 Γ±6 + Γ±7 + 2Γ±8
D±6 Γ±1 + Γ±2 + Γ±3 + Γ±4 + 2Γ±5 D±13/2 Γ±6 + 2Γ±7 + 2Γ±8
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2.2. Hamiltonian including the complex valence band structure

2.2

Hamiltonian including the complex

valence band structure

We are working in the general framework in which excitons are described as hydrogenlike
excitations of the crystal, where an electron is lifted from one of the valence bands to the
conduction band, leaving behind a hole. To properly treat the effects of the cubically-
symmetric band structure, we need to find an appropriate Hamiltonian description for
the kinetic energies of the electron and hole in the warped bands.

The irreducible representations marking the bands in Fig. 2.2 denote the transforma-
tion behavior of the electron Bloch functions at the Γ point when the spin is included.
For the lowest conduction band, the given representation is Γ+

6 . This result from the
combination of the transformation behavior of the 4S orbital, Γ+

1 , and of the electron
spin, Γ+

6 [76]. Due to the spin degree of freedom, the conduction band is twofold degen-
erate.

The situation is more complicated for the highest valence bands. Here, the 3D orbitals
split into Γ+

3 and Γ+
5 (see Table 2.1). The latter is then split by the spin-orbit coupling

into the uppermost Γ+
7 valence band and the Γ+

8 band below it [34]. The Bloch functions
in coordinate space belonging to these bands transform like the functions yz, zx and xy
of Γ+

5 . Let ψyz, ψxz and ψxy denote the corresponding Bloch functions. We first form
the linear combinations

ψ+1 = −(ψyz + iψxz)/
√

2 , ψ0 = ψxy , ψ−1 = (ψyz − iψxz)/
√

2 . (2.1)

In the three-dimensional Hilbert space spanned by these three functions, we introduce an
operator Iz such that the Izψi = iψi for i = +1, 0,−1, i.e. an operator whose eigenvalues
are just the assigned labels. These eigenvalues are in many ways analogous to the
eigenvalues of the z-component of an angular momentum of unity. We can complete the
set by constructing operators Ix and Iy to form the quasispin vector I. This quasispin
effectively acts like an additional spin degree of freedom, keeping in mind that the
eigenfunctions belong to Γ+

5 and not Γ+
4 . On top of this, the hole also has the usual

hole spin Sh. Combined this leads to a sixfold degeneracy, which is in turn lifted by the
spin-orbit coupling, resulting in the twofold degenerate Γ+

7 and the fourfold degenerate
Γ+

8 bands as depicted in Fig. 2.2.
In cuprous oxide, the Γ+

6 conduction band is very well approximated by a parabola.
Because of this, the electron kinetic energy is only altered by the introduction of a
modified effective electron mass me. The kinetic energy of the hole, on the other hand,
receives nontrivial corrections. The proper framework for the treatment of degenerate
valence bands as discussed here was developed by Luttinger and Kohn [61]. They used
a perturbation theoretical approach for removing the interband coupling terms from the
description of the kinetic energy. This results in an effective Hamiltonian living only in
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2. Theoretical background

the low-dimensional space of the bands of interest. The mixing with the other bands is
included by a renormalization of the coupling terms between the studied bands. Taking
into account the symmetry of the crystal, the relatively simple Suzuki-Hensel Hamilton
operator [62] remains, with only a small number of free parameters. These are called
the Luttinger parameters. For cuprous oxide, they can be determined by fitting the
Suzuki-Hensel Hamiltonian to spin-DFT calculations [34, 78]. The model for the kinetic
energy of the hole used in this thesis is this Suzuki-Hensel Hamiltonian with the fitted
parameters.

In the following sections, we introduce the basic theoretical description on which the
rest of the thesis is based. We begin by presenting the Hamiltonian for excitons in
cuprous oxide, which gives the band structure corrections to the simple hydrogenlike
description. In addition, central-cell corrections are required for a detailed analysis of
the even parity states and especially the ortho and para S states. Further details of
derivations can be found in the literature [11, 35, 38, 60, 69, 79, 80].

The yellow and green exciton series in cuprous oxide belong to the Γ+
7 and Γ+

8 valence
band, respectively. A unified description of both series can be obtained by using the
Hamiltonian [35]

H = Eg +He(pe) +Hh(ph) + V (re − rh) + VCCC(r) . (2.2)

Here Eg is the band gap between the uppermost Γ+
7 valence band and the lowermost Γ+

6

conduction band. The kinetic energies of electron and hole are given by

He(pe) =
p2

e

2me

, (2.3)

Hh(ph) = HSO +
1

2~2m0

{~2(γ1 + 4γ2)p2
h + 2(η1 + 2η2)p2

h(I ·Sh)

− 6γ2(p2
h1I

2
1 + c.p.)− 12η2(p2

h1I1Sh1 + c.p.)− 12γ3({ph1, ph2}{I1, I2}+ c.p.)

− 12η3({ph1, ph2}(I1Sh2 + I2Sh1) + c.p.)} . (2.4)

We use the electron mass in the crystal me and in vacuum m0, the Luttinger parameters
γi, ηi, the spin Sh and quasispin Ii of the hole, and the momenta pe and ph of the
electron and hole, respectively. The indices i = 1, 2, 3 for the momenta, positions,
quasispin and hole spin denote the Cartesian x, y, and z-components, “c.p.” denotes
cyclic permutation. The spin-orbit coupling term reads

HSO =
2

3
∆

(
1 +

1

~2
I ·Sh

)
. (2.5)

It is diagonal in the effective hole spin J = I + Sh, leading to the yellow (J = 1/2)
and green (J = 3/2) series. The band structure and energetic arrangement of the yellow
and green lines are depicted in Fig. 2.2. The focus of this work is mainly on the yellow
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2.3. Central-cell corrections

excitons. As we will see in Chapters 3 and 4 a detailed study of the two series must take
into account their mutual coupling by several parts of the Hamiltonian, most prominently
the cubic band structure terms and the exchange interaction. We directly investigate
the green excitons in Chapter 8; and in Chapter 9 we look at dipole transitions between
the yellow and green series.

Electron and hole interact via the screened Coulomb potential

V (re − rh) = − e2

4πε0ε|re − rh|
, (2.6)

with the positions of the electron re and hole rh and the dielectric constant ε = εs1 in
the low-frequency regime.

The material parameters used in our calculations are listed in Table A.1 in Ap-
pendix A.

2.3 Central-cell corrections

The central-cell corrections are additional terms in the exciton Hamiltonian necessary for
the correct modelling of excitons with small spatial extensions. This primarily concerns
the states with principal quantum number n ≤ 2.

2.3.1 Corrections to the dielectric constant

The electron and hole forming an exciton interact via the Coulomb interaction due to
their opposite charges. This interaction is modified by the crystal environment, leading
to the screened dielectric constant εs when the relative motion between electron and hole
is slow as compared to the motion of the ionic cores of the crystal. For small principal
quantum numbers, this condition is not fulfilled and the dielectric constant needs to be
modified. If the motion of the electron and hole is much faster than the ionic cores, the
electronic dielectric constant εb has to be used instead. The transition between these
regimes takes place at the frequency of a given optical phonon branch, which controls
the relevant motion of the crystal cores. In cuprous oxide, there are two relevant LO
branches affecting the excitons of the yellow and green series. For a correct description,
we need to model the behavior of the dielectric constant in the transition regions.

The basic potential resulting from the Fröhlich interaction with one phonon branch
was derived and discussed by Haken [81–83]. Schweiner et al. [38] propose the following
phenomenological generalization for two phonon branches,

V H(r) = − e2

4πε0r

[
1

εs1

+
1

2ε∗1

(
e−r/ρh1 + e−r/ρe1

)
+

1

2ε∗2

(
e−r/ρh2 + e−r/ρe2

)]
.
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2. Theoretical background

The polaron radii

ρe/hi =

√
~

2me/hωLOi

(2.7)

are determined by the effective masses of the electron me and hole mh, whereas the
values of ε∗i are given by

1

ε∗i
=

1

εbi
− 1

εsi
. (2.8)

Here, i = 1, 2 denotes the two relevant LO phonon branches with the associated energies
~ωLOi. A more refined approach for the modelling of the dielectric constant in the
transition regime is given by the Pollmann-Büttner potential [84]. The phenomenological
extension to the case of two branches is given by

V PB(r) = − e2

4πε0r

[
1

εs1

+
1

ε∗1

(
mh

mh −me

e−r/ρh1 − me

mh −me

e−r/ρe1

)
(2.9)

+
1

ε∗2

(
mh

mh −me

e−r/ρh2 − me

mh −me

e−r/ρe2

)]
.

For small exciton extensions, the momentum dependence of the dielectric constant
has to be accounted for. As outlined in [38] based on Ref. [85], this can be incorporated
by a contact potential of the form

Vd = −V0Vucδ(r) . (2.10)

Here, Vuc = a3
g denotes the volume of the unit cell. In Ref. [38], the value of V0 is

used as a fit parameter to account for additional small deviations between theory and
experiment.

2.3.2 Exchange interaction

The exchange interaction is given in Ref. [38] and reads

Hexch = J0

(
1

4
− 1

~2
Se ·Sh

)
Vucδ(r) = J0

(
1− 1

2~2
S2

)
Vucδ(r) , (2.11)

where we use the total spin S = Se + Sh in the last part of the equation. It leads to a
splitting of states with S admixture depending on the relative alignment of the electron
and hole spin. We discuss it in detail in Chapter 3.

With these abbreviations and depending on the choice between the Haken and the
Pollmann-Büttner potential, the central-cell corrections can thus be written as

V
H/PB

CCC = V H/PB + Vd +Hexch . (2.12)

Most of the time, we will be using the simpler expression given by the Haken potential.
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2.4. Application of external electric and magnetic fields

2.4

Application of external electric and

magnetic fields

In many circumstances, the addition of external fields can be a valuable experimental
tool for the modification and extraction of additional information from the spectrum.
External fields reduce the symmetry of the system, lift selection rules and thus make
additional lines visible. A prominent example of this is the electric field breaking the
parity symmetry, and thus allowing for a mixture of the dipole-allowed odd-parity P
states with the even parity states, like S and D states. To introduce an external electric
field F into our description of the system, we add the term [11]

HF = −eF · (re − rh) (2.13)

to the Hamiltonian (2.2).

The addition of an external magnetic field leads to more complicated expressions in
the Hamiltonian. We perform the minimal coupling pe → pe + eA(re) and ph →
ph − eA(rh) with the vector potential for a homogeneous field A(re,h) = (B × re,h) /2.
When considering a field with magnitude B along a particular direction, we can rearrange
the resulting Hamiltonian as

H(B) = H(B = 0) + eBH1 + (eB)2H2 (2.14)

The lengthy expressions forH1 andH2 in center-of-mass coordinates using the irreducible
tensor formalism can be found in Ref. [65] for external magnetic fields pointed along the
[001], [110], and [111] axes.

On top of these, we have to include the interaction of the spins and the magnetic
field [65, 86]

HB = µB [gcSe + (3κ+ gs/2) I − gsSh] ·B/~ , (2.15)

with the Bohr magneton µB, the g-factor of the electron gc and the hole gs ≈ 2, and the
fourth Luttinger parameter κ.

2.5 Center-of-mass transformation

The Hamiltonian (2.2) only depends on the coordinate difference re− rh and not on the
coordinates of electron and hole individually. Because of this, the system has a transla-
tion symmetry and thus, the center-of-mass momentum is a good quantum number. We
can exploit this to simplify our description by introducing center-of-mass coordinates,
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2. Theoretical background

using the following transformation [87, 88], which depends on a parameter α,

r = re − rh , R = αre + (1− α)rh ,

k = (1− α)ph − αpe , K = pe + ph . (2.16)

This means that we have to perform the following substitutions in the Hamiltonian (2.2),

rh = R− αr , re = R+ (1− α)r ,

ph = k + αK , pe = −k + (1− α)K . (2.17)

In general α and 1− α = γ can also be tensor-valued. In Ref. [89], this transformation
is used with α = me/(me +mh), leading to

r = re − rh , R =
mhrh +mere

mh +me

,

P = ~K +
e

2
B × r = pe + ph , p =

mhpe −meph

mh +me

. (2.18)

Here mh is the hole mass, r denotes the relative coordinate and R the position of the
center of mass. The corresponding momenta are given by p and P . The pseudomomen-
tum K is a constant of motion related to the center-of-mass momentum [88]. Unless
stated otherwise, we assume vanishing center-of-mass pseudomomentum K = 0.

In a hydrogenlike system without the band structure terms, this transformation leads
to a Hamiltonian where the center-of-mass motion is not coupled to the relative motion.
In our system, the resulting Hamiltonian has the form

H(α = me/(me +mh)) = H0 + ~KH1 + ~2K2H2 , (2.19)

where the expressions for H0, H1 and H2 can be found in Ref. [89] for various directions
of K.

In general, polariton effects have to be considered when the center of mass momentum
K is nonzero. The experimental results in Refs. [90–92] on the other hand show, that the
polariton effects for the 1S state are of the order of 10µeV and thus small in comparison
with the effects considered in this work. Furthermore, a recent discussion by Stolz
et al. [74] concluded that polariton effects should only be observable in transmission
experiments for n ≥ 28. Hence, we will not include them in our discussion.

2.6 Resonances and complex energies

In textbook Hermitian quantum mechanics, the Hamiltonian, being a Hermitian operator
is diagonalized to obtain the real energy eigenvalues. The associated square-integrable
eigenstates represent bound states with infinite lifetimes. Together with the continuum
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Bound state

⇒ Infinite Lifetime

V
(r

)

r

-1/r

Resonance Can tunnel into the unbound region

⇒ Finite Lifetime

r

-1/r - F⋅r

Figure 2.3.: The application of an external electric field can transform bound states into
resonant states with finite lifetimes. As illustrated for the example of the
Coulomb potential, this can be understood as a modification of the potential
allowing the system to tunnel into the unbound region.

part of the spectrum, this formalism can in principle be used to handle all kinds of
bound systems and scattering problems. Nevertheless, its most immediate application is
to closed systems, where bound states have infinite lifetimes and it is less suited to the
handling of metastable systems, like for example unstable particles subject to radioactive
decay. For the latter’s description, we instead move away from the Hermitian formalism.

Metastable states, or resonant states, have a finite decay rate Γ. We introduce a
complex energy E− i~Γ/2. Plugging this into the time evolution of the state, we obtain

|ψ(t)〉 = exp

[
− i

~

(
E − i~

Γ

2

)
t

]
|ψ(0)〉 . (2.20)

For the modulus-square of the amplitude, this results in

|ψ(t)|2 = 〈ψ(t)|ψ(t)〉 = exp (−Γt) |ψ(0)|2 . (2.21)

We thus see that the probability of finding the system in the metastable state decays
exponentially with the decay rate Γ, as intended.

Since the introduced energies E− i~Γ/2 are complex, they cannot be calculated as the
eigenvalues of a Hermitian Hamiltonian in a straightforward way. But they can be the
eigenvalues of a non-Hermitian operator. When discussing quasibound resonances, we
use the complex-coordinate-rotation method to modify the Hamiltonian of the system,
making it non-Hermitian. We then calculate the resonant states and associated complex
energies by diagonalizing the rotated Hamiltonian. This also allows for the calculation
of absorption spectra. Due to the finite imaginary part of the energy and the complex
oscillator strengths, resonances in general appear as asymmetric Lorentz profiles instead
of sharp delta peaks. Scattering processes with phonons are the most prominent cause
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Figure 2.4.: Scheme of the complex-coordinate-rotation method. Resonances in the com-
plex energy plane are hidden in Hermitian quantum mechanics but can be
revealed by the complex-coordinate-rotation method. States representing
the continuum are rotated into the complex plane by the angle 2θ around
the respective threshold. Adapted from Ref. [93].

of line broadening for the exitons in cuprous oxide. The appropriate theory was devel-
oped in the 1950s and 60s by Toyozawa [70–72] and was recently used to calculate the
linewidths to reasonable agreement with experiment [73, 74]. In our discussion of exci-
tons, we will not focus on these effects. In this work, we instead encounter resonances
mostly in two contexts. Firstly, resonant states appear in the spectrum when an external
electric field is applied, as depicted in Fig. 2.3. Secondly, the green exciton states lie
above the band gap of the yellow series and are coupled to the yellow continuum. Hence,
they form quasi-bound resonances rather than bound states, even without considering
external fields and the coupling to the phonons.

2.7 Complex-coordinate-rotation method

To compute the complex eigenenergies, we perform the complex-coordinate rotation
r → reiθ [94–96]. It is important to note that, under the complex-coordinate rotation,
the Hamiltonian (2.2) becomes a non-Hermitian operator, and thus allows for complex-
valued eigenenergies, as schematically illustrated in Fig. 2.4. Continuum states are
rotated into the lower complex energy plane, revealing the resonances, which are hidden
in a Hermitian eigenvalue problem. If the rotation angle θ is chosen appropriately, the
resonance states become square integrable.

In the Hermitian formalism, the wave functions ψ associated with resonances are not
normalizable and thus are not part of the Hilbert space. They fulfill the Schrödinger
equation

Hψ = Eψ (2.22)

with a complex energy E. We introduce the complex scaling operation Sθ with

Sθψ(r) = ψ(reiθ) . (2.23)
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2.8. Numerical diagonalization

Note that formally the operator Sθ can be applied to a state |ψ〉 in arbitrary representa-
tion, however, Eq. (2.23) is only valid in coordinate representation as used throughout
this work. For sufficiently large θ, Sθψ becomes square integrable [94]. The rotated
Schrödinger equation is given by

SθHS
−1
θ Sθψ = ESθψ . (2.24)

We thus want to find eigenvalues and normalizable eigenfunctions of the rotated Hamil-
tonian

H ′ = SθHS
−1
θ . (2.25)

The energies of the bound states are unaffected by the rotation, whereas the continuum is
rotated into the lower complex plane by the angle 2θ and the positions of the quasibound
resonance states are revealed. For sufficiently large angles, these are independent of the
value of θ. Expressing Sθψ in a basis {φi}, we obtain

Sθ|ψ〉 =
∑
i

ci|φi〉 (2.26)

and ∑
i

〈S−1
θ φj|H|S−1

θ φi〉ci = E
∑
i

〈S−1
θ φj|S−1

θ φi〉ci . (2.27)

The solution can thus be obtained by using the rotated basis set {|S−1
θ φi〉} with the

unchanged Hamiltonian H.

2.8 Numerical diagonalization

In this section, we outline the numerical procedure for the calculation of eigenvalues and
eigenstates used in this thesis. Using a complete basis set, we transform the Schrödinger
equation into a generalized eigenvalue problem, which is then solved numerically.

2.8.1 Generalized eigenvalue problem

To numerically calculate the eigenvalues and eigenstates of the exciton problem, we first
express the stationary Schrödinger equation in a complete basis. For the orbital angular
part, we utilize the spherical harmonics with quantum numbers L and M . Additional
quantum numbers have to be introduced to treat the quasispin I as well as the electron
and hole spins Se and Sh. For our basis, we first couple the hole spin and the quasispin
to the effective hole spin J = I + Sh. Next we introduce the angular momentum
F = J + L and finally add the electron spin Se to get the total angular momentum
Ft = F + Se. Note that the basis functions belonging to the quasispin I transform
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according to the irreducible representation Γ+
5 in Cu2O instead of the usual Γ+

4 for a spin
of unity. However, since Γ+

5 = Γ+
4 ⊗Γ+

2 , we can perform the standard coupling of angular
momenta and, to obtain the appropriate symmetry of the total state, multiply with Γ+

2

at the end. For the radial part we use the Coulomb-Sturmian functions [35, 97, 98]

UN,L = NN,L,α

(
2r

α

)L
e−

r
αL2L+1

N

(
2r

α

)
(2.28)

with the associated Laguerre polynomials Lmn (x) and a normalization factor NN,L,α.
Here, N is the radial instead of the principal quantum number. The parameter α can in
principle be freely chosen, but influences the convergence of the matrix diagonalization.
It can also be used for the implementation of the complex scaling operation, allowing for
the calculation of complex resonance states. To this end, a complex-valued α = |α|eiθ

is chosen, resulting in the complex rotation with angle θ. In total we thus get the basis
states

|Π〉 = |N, L; (I, Sh) , J ; F, Se;Ft, MFt〉 , (2.29)

where we use Π = {N, L; (I, Sh) , J ; F, Se;Ft, MFt} as an abbreviation for the set
of used quantum numbers. This basis has the advantage of being complete without
the inclusion of the hydrogen continuum, but it is not orthogonal with respect to the
standard scalar product.

Following Refs. [35, 65], we express the Hamiltonian in spherical tensor notation. We
will investigate spectra with B ‖ [001], [110] and [111]. In each case, we will choose
the quantization axis to be along the magnetic field and perform an according rotation
on the Hamiltonian. The expressions obtained for the Hamilton operator are found in
Ref. [65]. Using the ansatz

|Ψ〉 =
∑

Π

cΠ |Π〉 (2.30)

for the exciton wave function |Ψ〉, the Schrödinger equation gets the form of a generalized
eigenvalue problem,

Hc = EMc , (2.31)

with the Hamiltonian matrix H and the overlap matrix M . To obtain finite matri-
ces and vectors, we introduce cut-offs to the quantum numbers N + L + 1 ≤ nmax

and F ≤ Fmax. These parameters, together with |α| and, if the complex rotation is
performed, the rotation angle θ have to be chosen appropriately to ensure properly con-
verged results. Good convergence is reached when variations of the parameters do not
lead to significant changes in the calculated spectra. The solution is obtained by using a
suitable LAPACK or ARPACK routine [99, 100] and we thus get the eigenvalues E and
the vector of coefficients c in the basis expression (2.30). When delta-terms are included
in the Hamiltonian, we first diagonalize it without them. We then set up a second eigen-
value problem including the delta terms using only the converged eigenstates obtained
in the first diagonalization.
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2.8.2 Oscillator strengths

The extraction of the dipole oscillator strengths is performed analogously to the calcu-
lation presented in Ref. [65]. If the quantization axis is chosen along the [001]-axis, we
obtain them as follows. For the relative dipole oscillator strengths we use

frel,D ∼
∣∣∣∣limr→0

∂

∂r
〈πi|Ψ (r)〉

∣∣∣∣2 (2.32)

for light linearly polarized in x-, y-, or z-direction. The states |πi〉 are given by

|πx〉 =
i√
2

[|2, −1〉D + |2, 1〉D] , (2.33a)

|πx〉 =
1√
2

[|2, −1〉D − |2, 1〉D] , (2.33b)

|πz〉 =
i√
2

[|2, −2〉D − |2, 2〉D] , (2.33c)

where |Ft, MFt〉D is an abbreviation [65] for

|(Se, Sh) S, I; I + S, L; Ft, MFt〉
= |(1/2, 1/2) 0, 1; 1, 1; Ft, MFt〉 . (2.34)

In this state, the electron and hole spin Se and Sh are coupled to the total spin S. This
is combined first with the quasispin I and then with the orbital angular momentum
L to obtain the total angular momentum Ft. MFt is the projection onto the axis of
quantization.

Similarly, for the relative quadrupole oscillator strength, we calculate the overlaps

frel,Q ∼
∣∣∣lim
r→0

〈
πQi

∣∣∣Ψ (r)
〉∣∣∣2 (2.35)

with the states [89]:

|πQyz〉 =
1√
2

(|1,−1〉Q − |1, 1〉Q) ,

|πQxz〉 =
i√
2

(|1,−1〉Q + |1, 1〉Q) ,

|πQxy〉 = |1, 0〉Q , (2.36)

with the different abbreviation

|Ft,MFt〉Q = |S, I; I + S, L; Ft, MFt〉
= |0, 1; 1, 0; 1, MFt〉 . (2.37)
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We give the formulas for other quantization axes in Sec. 6.1.
Generally, only exciton states with irreducible representation Γ−4 can couple to the

dipole operator, and only those can therefore be accessed in one-photon absorption
experiments in dipole approximation. In cuprous oxide, these are predominantly the
odd-parity P excitons; due to the mixing of angular momentum F states receive a dipole
oscillator strength as well. Similar reasoning holds for the quadrupole transitions, which
primarily affect Γ+

5 S excitons with even parity, and D excitons due to admixtures. A
comprehensive list of yellow exciton states in cuprous oxide with assigned irreducible
representations up to principal quantum number n = 5 is given in Ref. [38]. We present
similar data for the green series in Appendix B.
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3 The exchange interaction
in the yellow series

In this chapter, we investigate the exchange interaction of the yellow excitons in cuprous
oxide, which was introduced in Chapter 2 as one of the central-cell corrections necessary
for the accurate description of the even-parity states. By varying the material parameters
in the numerical calculations, we can interpret experimental findings and understand
their origin in the complex band structure and central-cell corrections. In particular, we
discuss the experimental observation of the reversal of the ortho- and paraexciton for the
2S yellow exciton, and explain this phenomenon by an avoided crossing with the green
1S orthoexciton in a detailed numerical analysis. Furthermore, we discuss the exchange
splitting as a function of the principal quantum number n and its deviation from the
n−3 behavior expected from a hydrogenlike model. We also explain why the observed
exchange splitting of the green 1S exciton is more than twice the splitting of the yellow
1S state. The results of this chapter are the subject of Ref. [101].

The yellow exciton series in cuprous oxide has been shown to closely match a hydro-
genlike system in many respects [30]. Still, there are a number of characteristic effects
of the complex band structure. For example, a fine structure splitting between P and
F states can be observed [102]. In the case of small radii, additional central-cell cor-
rections to the valence band Hamiltonian have to be added to achieve a satisfactory
description [38]. Due to the cubic symmetry of the crystal, the angular momentum is
not a good quantum number anymore, and thus the S states with small extension are
also coupled to other angular momenta, such as the D states. This is especially impor-
tant when considering the green 1S state, which lies in between the yellow spectrum.
Because of this coupling, the central-cell corrections also affect the energetically higher
lying states of the yellow series.

The exchange interaction, which is part of the central-cell corrections, causes a charac-
teristic splitting between states depending on the relative alignment of the electron and
hole spins, i.e., between the spin-singlet and spin-triplet states. The spin-triplet dark
exciton states have been proposed for use in quantum computational applications and
for the possible realization of a Bose-Einstein condensate [103–105]. The dark paraexci-
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ton series in cuprous oxide is not accessible by electric dipole and quadrupole absorption
experiments, because the paraexcitons have no spin-singlet component and are therefore
spin-flip forbidden to all orders in electric transitions. This selection rule can be cir-
cumvented using stress [106] or by application of an external magnetic field which leads
to a mixing between spin-singlet and triplet states [107, 108]. The experimental group
of M. Bayer at TU Dortmund University used magnetic-field-induced Second Harmonic
Generation (SHG) spectroscopy for the measurements of the paraexcitons, extrapolating
their magnetic-field dependent energies to zero field strength.

A naive treatment of the exchange interaction leads to the expectation that the or-
thoexciton is shifted to higher energies than the paraexciton, a result in line with Hund’s
rule. Numerical calculations have shown that this expectation is contradicted in the case
of the yellow 2S exciton state in cuprous oxide [38]. This has now been confirmed in
experiments by Farenbruch et al. [63]. They explain this by appealing to the influence
of the green 1S state. In this chapter, we discuss and confirm this explanation in greater
detail, using the possibility of changing the material parameters in the numerical sim-
ulations to study the spectrum in experimentally inaccessible ways. Going beyond the
discussion in Ref. [63], we present the precise mechanism responsible for the reversed
energies of the 2S ortho- and paraexcitons. We then study the exchange splitting as a
function of the principal quantum number n. Based on a hydrogenlike calculation, the
splitting is expected to decrease with n−3. For the yellow excitons in cuprous oxide,
there are deviations from this. We numerically investigate the origin of these deviations.
We finally study why the exchange splitting of the green 1S state is more than twice the
exchange splitting of the yellow 1S state. To the best of our knowledge, this represents
the first detailed discussion of these features of the dark exciton series in cuprous oxide.

We outline the theoretical and experimental background of the presented data in
Secs. 3.1 and 3.2. We then discuss the reversal between the 2S ortho- and paraexcitons
in Sec. 3.3, the exchange splitting as a function of the principal quantum number in
Sec. 3.4 and the splitting of the yellow 1S state versus the green 1S state in Sec. 3.5.

3.1 The exchange interaction

We study the yellow series with the addition of the green 1S state as described by the
field-free Hamiltonian (2.2),

H = Eg +He(pe) +Hh(ph) + V (re − rh) + V H
CCC(r) , (3.1)

with the central-cell corrections using the Haken potential. Our emphasis will be on the
exchange interaction,

Hexch = J0

(
1− 1

2~2
S2

)
Vucδ(r) , (3.2)
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3.1. The exchange interaction

E

S = 1

S = 0

J = 1/2

J = 3/2

Ft = 2

Ft = 1

Ft = 0

Ft = 1

(∆/J0)Cu2O∆/J0 = 0 ∆/J0 →∞

Figure 3.1.: Level scheme of S states as a function of the ratio between the exchange
interaction strength J0 and the spin-orbit coupling ∆. For L = 0, the total
angular momentum Ft can be obtained by either coupling the quasispin of
the hole I with the total spin S = Se +Sh or by coupling the electron spin
Se with the effective hole spin J = I + Sh. According to Eq. (2.11), the
S = 0 singlet states are lifted above the S = 1 triplet states for vanishing
spin-orbit coupling ∆. For ∆/J0 → ∞, the splitting between the green
J = 3/2 and yellow J = 1/2 states predominates. For general values in
between, the levels split according to the total angular momentum Ft. As
discussed in Sec. 3.5 with reference to the matrix element (3.5), for both the
green and yellow S states, the Ft = 1 states are lifted above the Ft = 2 and
Ft = 0 states, respectively.

which is part of the central-cell corrections V H
CCC(r). We first take a closer look at the

exchange interaction (2.11) in the following.

We first note, that only L = 0 states are affected due to the presence of the δ term. From
Eq. (3.2) it is clear, that the effect is a lifting of the states with S = 0 over the states
with S = 1. When taking into account the quasispin I in the crystal, S is not a good
quantum number anymore, and we additionally need to consider the spin-orbit coupling
given in Eq. (2.5). In Fig. 3.1 we show the level scheme of the S states caused by the
competition between the exchange interaction and the spin-orbit coupling as a function
of the ratio ∆/J0. Note that for the yellow J = 1/2 states only the threefold degenerate
Ft = 1 orthoexcitons have an S = 0 component and are therefore dipole allowed. Here,
Ft = J + Se = I + S is the total angular momentum. While the singlet state S = 0 is
lifted above the triplet state S = 1, it is the threefold degenerate Ft = 1 state which is
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3. The exchange interaction in the yellow series

lifted above the non-degenerate Ft = 0 state, when only considering the yellow J = 1/2
states.

We want to perform a quick calculation to understand the behavior of the exchange
interaction in a simplified model. This will allow us to investigate the impact of the
correction terms, i.e., the band structure and central-cell corrections, by comparing our
findings here with the results of the exact numerical calculation further below. Evalu-
ating the integral for the matrix elements of the exchange interaction (2.11) with wave
functions ψ1 and ψ2 over the δ term leads to a proportionality to ψ∗1(0)ψ2(0). In a
hydrogenlike model we choose the S states ψ1 = ψ2 = ψn,L=0,M=0. This yields

〈n , L = 0 ,M = 0|Hexch|n , L = 0 ,M = 0〉 = J0

(
1− 1

2~2
S2

)
Vuc

(
1

πnaB

)3

, (3.3)

with the Bohr radius aB. The relative energetic placement of multiplet states affected
by the exchange interaction does not depend on the principal quantum number n in the
hydrogenlike model, but only the strength of the splitting, since n affects only an overall
factor. As will be shown in Sec. 3.3, this does not hold in the case of the yellow excitons
in cuprous oxide, where ortho- and paraexcitons are reversed for n = 2. For the other
principal quantum numbers, the order of states is as shown in Fig. 3.1. Additionally,
the splitting decreases with n−3 as a function of the principal quantum number in the
simplified model. The situation is more complicated for the yellow exciton series in
cuprous oxide, which will be more thoroughly discussed in the following. To this end, we
use numerical results obtained by diagonalizing the Hamiltonian as described in Sec. 2.8
and compare with experimental data obtained by Farenbruch et al. [101].

3.2 Source of experimental data

The presented experimental data was obtained by the research group of M. Bayer at the
TU Dortmund. To experimentally observe the dark excitons, the method in Ref. [109]
was modified by additionally applying a magnetic field to optically activate the paraex-
citons, leading to an orthoexciton admixture. The resulting paraexciton energy position
as a function of the magnetic field strength is well approximated by a parabola. This
makes it possible to extrapolate the observed energies to vanishing field strength.

The presented data was obtained in SHG experiments, using 200 fs laser pulses with
a spectral width of 10 meV. The sample was cooled down to 1.4 K. Further details are
given in Ref. [109].
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3.2. Source of experimental data
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Figure 3.2.: Experimental SHG spectrum of the yellow 2S ortho- and paraexcitons. The
wave vectorK is parallel to the [111] axis and the magnetic field is applied in
Voigt geometry along the [112] direction. The polarizations of the incoming
and outgoing light are parallel to the magnetic field. We show a contour plot
of the second derivative of the SHG intensity in gray scale. The positions of
the ortho- and paraexcitons extracted by a Gaussian fit to the SHG inten-
sity are marked with orange dots. Using a quadratic fit (red dashed line),
we can extrapolate the energy of the paraexciton to E2S,para

B=0 T = 2.13897 eV
at vanishing magnetic field. An analogous fit to the orthoexciton energies
yields an energy E2S,ortho

B=0 T = 2.13771 eV at vanishing magnetic field. The top
and bottom panels show the SHG intensity and its second derivative at a
magnetic field B = 10 T and B = 0 T, respectively.
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3. The exchange interaction in the yellow series

3.3

Reversal of yellow 2S ortho- and

paraexcitons

In this section, we first briefly recapitulate the experimental observation of the posi-
tions of the yellow 2S ortho- and paraexcitons, presenting additional data not shown in
Ref. [63]. Note that we assign the labels green and yellow, as well as the principal and
angular quantum numbers in accordance with the assignments given in Ref. [38]. We
then present the underlying mechanisms. Since the paraexciton is spin-flip forbidden
in electrical dipole and quadrupole transition experiments, a magnetic field was used
to make them experimentally accessible. It is possible to include this magnetic field in
the Hamiltonian introduced in Sec. 2.2, see for example Refs. [65, 110, 111]. Here, we
extrapolate the experimental values to vanishing magnetic field and analyze those in the
numerical calculations. We therefore do not consider the magnetic field in the theory.

In the central panel of Fig 3.2, we show a contour plot of the second derivatives of
the SHG spectra of the 2S excitons. The corresponding SHG intensity measured at a
magnetic field of 10 T and 0 T are presented in the top and bottom panel respectively.
Spectra are measured with a resolution of 80µeV from 0 T to 10 T in steps of 0.25 T in
order to demonstrate the spectral shift of the 2S para- and orthoexciton in a magnetic
field. The wave vector is directed along the SHG-allowed [111] axis and the magnetic field
is applied orthogonally to this in the [112] direction. The polarization of the incoming
and outgoing light is parallel to the magnetic field, i.e. Ein ‖ Eout ‖ [112]. This
leads to a nonvanishing SHG signal of the paraexciton as discussed in Ref. [112]. It is
much weaker than the intensity of the orthoexciton and only faintly becomes visible at
about 5 T. We therefore extrapolate the position of the paraexciton to zero magnetic
field, using a quadratic fit. We obtain E2S,para

B=0 T = 2.13897 eV for the paraexciton and
E2S,ortho
B=0 T = 2.13771 eV for the orthoexciton. We can therefore experimentally confirm

one of the curious features of the yellow paraexciton series in cuprous oxide predicted by
Schweiner et al. in Ref. [38], viz. the observation that the 2S paraexciton is located at
a higher energy than the 2S orthoexciton. This shows that the experimentally observed
behavior of the yellow excitons here is qualitatively different from the hydrogenlike model
in this respect. Farenbruch et al. identify the origin of this reversal in the influence of
the green 1S exciton [63]. In the following, we want to corroborate this with a detailed
numerical analysis.

In Fig. 3.3(a) we show the exchange splitting for the yellow 2S state as a function of
the parameter J0, with the green states removed from the spectrum. For this calculation,
we only used states with J = 1/2 in the basis. We see that in this case, the exchange
interaction lifts the orthoexciton above the paraexciton as predicted. This confirms that
the mixing with the 1S green orthoexciton is responsible for the surprising reversal,
because without the green state, the reversal is absent.
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3.3. Reversal of yellow 2S ortho- and paraexcitons
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Figure 3.3.: (a) Splitting of the yellow 2S ortho- and paraexciton as a function of the
strength of the exchange interaction J0 when only the yellow J = 1/2 basis
states are used for the diagonalization. In this case we observe that the
orthoexciton is lifted above the paraexciton as expected. The exchange
interaction is fully switched on for J0 = 0.792 eV [38]. This shows that the
exchange of the positions of the para- and orthoexciton has to originate in
the influence of the green states. In (b), we show the responsible avoided
crossing in the spectrum near the yellow 2S orthoexciton state as a function
of the spin-orbit coupling ∆. We added lines to help guide the eyes. The
green admixture FJ=3/2 to the states is indicated by the color bar. The
horizontal line at ∆ = 0.131 eV marks the actual value of ∆ in cuprous
oxide. The avoided crossing between the yellow 2S orthoexciton and the Γ+

5

green 1S state is marked in red. We point out that the green Γ+
3 and Γ+

4

states are degenerate in our model calculations, but show a small splitting
in the experiment. This splitting is compatible with the cubic symmetry of
the crystal, but the effect is not captured by our Hamiltonian.
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3. The exchange interaction in the yellow series

For a better understanding, we calculate the positions of the yellow 2S and green
1S states as a function of the spin-orbit coupling, revealing an avoided crossing. In
Fig. 3.3(b) we show this avoided crossing between the yellow 2S and the green 1S or-
thoexciton. The green admixture of the states given by the expectation value

FJ=3/2 = 〈ψ|PJ=3/2|ψ〉 , (3.4)

of the projection operator onto the J = 3/2 Hilbert space for the exciton state ψ is
indicated by the color bar. Using this green J = 3/2 fraction we can identify the green
states coming from the left-hand side and follow them through the crossing. This avoided
crossing was already noted in Ref. [38], but the implications for the relative placement of
the 2S para- and orthoexcitons was not discussed. We can see that the avoided crossing
leads to the yellow 2S orthoexciton being placed below the 2S paraexciton for the actual
value of the spin-orbit coupling ∆ = 0.131 eV. For higher values at ∆ ≈ 0.15 eV, the
ortho and paraexcitons cross each other again, when the influence of the green Γ+

5 1S
state is small enough. This further confirms and elucidates the influence of the mixing
between the yellow and green series and its importance for a detailed understanding of
the yellow excitons.

3.4

Dependence of the exchange splitting

on the principal quantum number

Since the removal of the mixing with the green 1S state restores the expected placement
of ortho- and paraexcitons also in the case of the yellow 2S state, it is a natural question
whether the exchange splitting decreases with the third power of the principal quantum
number n−3 as in the hydrogenlike model, Eq. (3.3). In this section we want to investigate
the exchange splitting of the yellow S excitons as a function of n. To remove the influence
of the green 1S states, we only use the basis states with J = 1/2 belonging to the yellow
series for the calculations here. In Fig. 3.4(a) we compare the numerical data for the full
basis extracted from Table III in Ref. [38] with the exchange splitting if the influence
of the green states is removed. We additionally show the actual experimental values
for reference. A fit of the form ∆Eexch(n) = AnB reveals an exponent B = −3.34 still
differing from the expected B = −3 in the hydrogenlike model.

We identify two factors that explain this discrepancy. On the one hand, the Haken
potential modifies the dielectric constant for small radii. This leads to a change in the
effective Bohr radius and thus to a change in the value of the wave function at the origin.
This disproportionally affects small quantum numbers, and thus changes the dependency
of the splitting on n. On the other hand, the exchange interaction is not diagonal in
the principal quantum number, i.e., the 2S state also influences the 1S state and so on.
Going back to Eq. (2.11), we see that the matrix elements do not necessarily vanish if
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3.4. Dependence of the exchange splitting on the principal quantum number
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Figure 3.4.: Exchange splitting of the yellow excitons as a function of the principal quan-
tum number n. To remove the influence of the green 1S exciton, only basis
states with J = 1/2 were used. (a) Comparison of exchange splitting with
(brown diamonds) and without (red circles) the influence of the green 1S
state. Unmodified numerical data were taken from Ref. [38]. We addi-
tionally show the experimental values (green triangles) for reference. The
blue squares show the splittings if the green state is included but the level
repulsion between the green and yellow states due to the δ terms in the
central-cell corrections is removed. (b) Exchange splitting as a function of n
for modified material parameters, again with only the yellow J = 1/2 basis
states. We show data where we removed the influence of the Haken potential
(blue triangles), data where we diagonalized the exchange interaction only in
the degenerate S spaces, neglecting the coupling between different principal
quantum numbers (green circles) and data where we combined the previous
two conditions (red squares). The fits show that only the combination of
all modifications leads to the decrease with the third power of the principal
quantum number expected from the hydrogenlike model.

the principal quantum numbers of the coupled states differ. This also leads to a small
but significant deviation from the n−3 behavior.

We illustrate the effects of the different factors in Fig. 3.4(b). We find that only if
both of the factors discussed above are corrected for does the n−3 behavior from the
hydrogenlike model emerge again.

Interestingly, the removal of the green 1S state also has a significant effect on the
absolute size of the splitting between ortho and paraexcitons in the range of principal
quantum numbers shown, as can be seen in Fig. 3.4. The most important effect ac-
counting for this is the level repulsion caused by the exchange interaction and Vd matrix
elements between the green orthoexciton and the yellow Γ+

5 states. The green Γ+
5 exciton

repels the yellow Γ+
5 states, but the green Γ+

4 and Γ+
3 states leave the yellow paraexci-

tons of symmetry Γ+
2 unaffected. For yellow states energetically higher than the green
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3. The exchange interaction in the yellow series

1S state, this increases the splitting, whereas for those lower, it decreases it. The blue
squares in Fig. 3.4 (a) show the splittings of the yellow excitons when this repulsion is
removed. The resulting splittings in the yellow exciton series are far smaller than the
experimental values for n ≥ 4 and more in line with the values when the green 1S state is
removed completely, as can be seen by comparison with the red circles. For the yellow 1S
state, the effect is reversed and the removal of the level repulsion increases the splitting
instead.

3.5

Splitting of yellow 1S state vs green

1S state

We conclude this chapter by investigating the difference in the strength between the
exchange splitting of the green 1S state as compared to the yellow 1S state. We want
to explain why the splitting of the green states is more than double that of the yellow
states.

Diagonalizing the yellow series alone without the green J = 3/2 basis states, we find
that the splitting of the yellow 1S excitons is approximately 7.02 meV, which is even
smaller than with the full basis. Diagonalizing the green states alone, the splitting of
the green 1S excitons is approximately 27.07 meV. The discrepancy can therefore not be
explained by the mutual level shifts between the green 1S state and the yellow spectrum.

We again find that there are two factors which actually explain this difference. The
first factor is the fact that the eigenvalues of the operator Se ·Sh differ between the
J = 1/2 and J = 3/2 Hilbert space. According to the appendix of Ref. [38], the matrix
elements in the basis (2.29) are given by

M = 〈Π′ |Se ·Sh δ (r)|Π〉 = δL′0δL0δFtF ′tδMFtM
′
Ft

3

2π
(−1)Ft+F ′+F+J+J ′ (3.5)

× [(2F + 1) (2F ′ + 1) (2J + 1) (2J ′ + 1)]
1
2

×
{
F ′ F 1
1
2

1
2

Ft

}{
F F ′ 1
J ′ J 0

}{
1
2

J ′ 1
J 1

2
1

}
.

Fixing either J = J ′ = 1/2 or J = J ′ = 3/2, the operator is already diagonal in the
given basis. We can evaluate the matrix elements for the yellow and green series and
L = L′ = 0. For J = J ′ = 1/2, we calculate M = 1/4π with Ft = 0 and M = −1/12π
with Ft = 1. For J = J ′ = 3/2 it is M = 1/4π when Ft = 2 and M = −5/12π when
Ft = 1. Note that the exchange interaction (2.11) contains this operator with reversed
sign. The exchange interaction therefore lifts the Ft = 1 states above the others in both
the yellow and green series as depicted in Fig. 3.1. We thus find that the splitting in the

42



3.5. Splitting of yellow 1S state vs green 1S state

Table 3.1.: Energies of the lowest yellow and green 1S excitons for different choices of
the parameters in the central-cell corrections with the exchange interaction
removed. For the yellow values, we only diagonalized the J = 1/2 Hilbert
space, and for the green values only the J = 3/2 Hilbert space. For the gap
energies we used Egap,yellow = 2.17208 eV and Egap,green = 2.30308 eV.

series Vd V H E1S [eV] ERyd [meV]
yellow on on 2.059 112.8
yellow on off 2.076 95.9
yellow off off 2.086 86.1
green on on 2.153 150.5
green on off 2.179 124.1
green off off 2.198 105.3

eigenvalues for J = 3/2 is ∆Mgreen = 2/3π and consequently exactly double the splitting
for J = 1/2, which is ∆Myellow = 1/3π.

These calculations account for part of the difference between the yellow and green
splitting. A factor of approximately 1.93 between the green and yellow splitting remains
to be explained. Because of the δ term, the exchange splitting is proportional to |ψ(0)|2,
which in turn is proportional to the inverse third power of the Bohr radius a−3

B . Since
the Bohr radius is proportional to the reduced mass µ, it follows that |ψ(0)|2 ∼ µ3. This
seems to be the reason for the factor 1.93, as explained in the following. The reduced
mass is proportional to the Rydberg energy in a hydrogenlike system. To approximate
the latter, we calculated the binding energy of the yellow and green 1S states while
varying the exact form of the potential. The results are listed in Table 3.1. Based on
these data, we can estimate the ratio of the reduced masses of the green and yellow 1S
states with the ratio of the binding energies. Since the latter are not only affected by
the Coulomb interaction, but also by the additional terms V H and Vd in Eq. (2.12), we
need to correct for those. Using the values where the central-cell corrections are removed
completely, we get(

µgreen

µyellow

)3

≈
(
Egreen

Ryd

Eyellow
Ryd

)3

≈
(

105.3 meV

86.1 meV

)3

≈ 1.223 ≈ 1.82 . (3.6)

This is in good agreement with the factor of 1.93. The explanation for the different
strengths of the exchange splitting in the yellow and green 1S exciton states therefore
is on the one hand the factor two due to the operator Se ·Sh for J = 1/2 and J = 3/2
and on the other hand the difference in the reduced mass µ for the yellow and green 1S
exciton.
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4
Analysis of the fine
structure of the D-exciton
shell

In Chapter 3, we saw how the interplay between the yellow and green series can lead
to unexpected effects, like reversing the order of the ortho-para pairs. In this chapter,
we investigate another feature of the yellow exciton spectrum at the intersection of the
exchange splitting and the yellow-green interaction. High resolution spectroscopy of
the yellow D excitons in cuprous oxide reveal a pronounced splitting with one state
being pushed above all other states of a given n-multiplet. This can be understood in
the context of the reduced symmetry in the crystal environment and a strong mixing
with the 1S exciton of the green series, as the theory developed by Schweiner et al.
in Ref. [38] and the numerical calculations presented therein indicate. Here, we give
a detailed analysis of the splitting of the yellow D excitons on the basis of theoretical
considerations and experimental data, leading to a deeper understanding of the origin
of the green admixtures to the yellow states as well as a revision of the assignment
of approximate quantum numbers given in earlier studies such as by Uihlein et al. in
Ref. [60]. The presented results have been published in Ref. [113]. In this chapter, we
will first present the experimentally observed features of the fine structure we want to
study in Sec. 4.1. We discuss the influence of the different terms of the Hamiltonian on
the level splitting in Sec. 4.2, before analyzing the influence of the coupling to the green
series in detail in Sec. 4.3. In Sec. 4.4, we extend the understanding of the energetic
positions of the D excitons gained in the earlier sections to higher principal quantum
numbers.
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4. Analysis of the fine structure of the D-exciton shell

Figure 4.1.: Contour plots of second derivatives of experimental transmission spectra
for the n = 3 exciton (a) and the n = 4 exciton (b) with an applied electric
field. The corresponding spectrum without applied field is shown on the left,
with the associated angular momenta labels in blue for even parity states
and red for odd parity states. Numerically calculated energies are marked
in cyan together with the associated irreducible representations, which are
shifted by -237 µeV for the n = 3 spectrum and -218 µeV for the n = 4
spectrum. Taken from Ref. [113].

4.1

Experimentally observed structure of

the n-multiplets

We begin by presenting the experimentally observed fine structure splitting for n = 3
and n = 4 in Fig. 4.1, the even parity states being made accessible by applying an
external electric field. This leads to a mixing with the OPA allowed P and F states. The
experimental data is shown as gray scale, with the numerically calculated positions of
excitons superimposed. The latter are shifted as described in the caption. The resulting
assignment of states differs from the one given in Ref. [38]. The experimental data was
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4.2. Separating the Hamiltonian according to symmetry

obtained by M. Bayer’s experimental group at TU Dortmund University [113].
The numerical calculation (cf. also Table 4.1) predicts five different D exciton levels,

three of which are almost degenerate. The experiment reveals such a structure, with the
three lowest levels remaining unresolved. In both multiplets n = 3 and n = 4 we observe
a striking splitting between the D states with the representations (Γ+

3 ,Γ+
4 ) and Γ+

5 . This
splitting is of the same type as the ortho-para splitting of S states, which is why we
will use the same nomenclature as in the latter case, and refer to the (Γ+

3 ,Γ+
4 ) states as

parastates and to the Γ+
5 states as orthostates. The magnitude of the splitting of the

D states is comparable to the case of the S states, notwithstanding that the exchange
splitting scales with the S admixture. To explain this surprising feature, we need to take
a close look at the spectral structure of the yellow and green excitons in connection with
the different terms of the Hamiltonian. The admixture of the green 1S state turns out
to be central to a thorough understanding of the D exciton fine structure.

4.2

Separating the Hamiltonian according

to symmetry

We want to understand how the observed fine-structure of the excitons follows from the
terms of the Hamiltonian with increasingly reduced symmetry. The discussed separation
of terms is closely reflected in the presentation in Fig. 4.2. The Hamiltonian (2.2) can
be rewritten as in Refs. [35, 38],

H = Eg +
γ′1p

2

2m0

− e2

4πε0εr
+HSO +Hd + VCCC , (4.1)

with the relative momentum p of electron and hole. The parameter γ′1 determines the
reduced mass of the system m0/γ

′
1, where m0 is the electron mass in vacuum. The

band gap energy Eg is needed to lift the electron from the Γ+
7 valence band to the Γ+

6

conduction band. The parabolic kinetic energy term together with the screened Coulomb
interaction with dielectric constant ε and the spin orbit interaction term HSO form the
hydrogenlike part of the Hamiltonian,

HHyd = Eg +
γ′1p

2

2m0

− e2

4πε0εr
+HSO . (4.2)

The resulting spectrum consists of two independent hydrogenlike exciton series, i.e., the
yellow and green series, which are characterized by the effective hole spin J = 1/2 and
J = 3/2 respectively.

This simple picture is modified by the influence of the Hd terms originating from the
nonparabolicity of the valence bands and the central-cell corrections VCCC, which describe
corrections for small electron-hole separations. The Hd terms can be separated into a
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4. Analysis of the fine structure of the D-exciton shell

Table 4.1.: Numerically calculated exciton energies of the yellow n = 3 and n = 4 states
for the different contributions to the Hamiltonian as discussed in relation to
Eq. (4.1). We use the Haken potential, all values are in eV. We additionally
show the values for the green 1S excitons. In the first column, we give
the principal quantum number and angular momentum of the states, which
we supplement by the associated irreducible representation in the second
column. In the third column, we give the value of the angular momentum F
according to the dominant contribution as presented in the last four columns.
The seventh column shows the calculated green admixture.

state energy [eV] green F [%]
nL Γ±i F HHyd + Hs

d + Hε +Hc
d +Hexch adm. [%] 1/2 3/2 5/2 7/2

1Sg Γ+
3 ,Γ

+
4 3/2 2.187237 2.118795 2.118795

1Sg Γ+
5 3/2 2.187237 2.118795 2.154169

3S Γ+
2 1/2 2.161730 2.159587 2.159587 0.5 99.5 0.0 0.0 0.5

3S Γ+
5 1/2 2.161730 2.159587 2.160714 4.2 71.7 5.1 22.5 0.6

3D Γ+
3 ,Γ

+
4 3/2 2.162462 2.162121 2.162121 0.3 0.0 96.6 3.1 0.1

3D Γ+
5 3/2 2.162462 2.162121 2.162150 0.3 0.2 96.1 3.5 0.0

3D Γ+
1 ,Γ

+
4 5/2 2.162485 2.162170 2.162170 0.3 0.0 0.0 99.8 0.1

3D Γ+
3 ,Γ

+
4 5/2 2.162485 2.162332 2.162332 0.4 0.0 3.4 96.5 0.0

3D Γ+
5 5/2 2.162485 2.162332 2.163286 7.0 19.1 8.4 72.0 0.4

3P Γ−8 3/2 2.162361 2.161156 2.161156 1.0 0.0 98.9 0.7 0.1
3P Γ−7 1/2 2.162353 2.161388 2.161388 0.7 99.3 0.0 0.0 0.1

4S Γ+
2 1/2 2.166379 2.165461 2.165461 0.2 99.8 0.0 0.0 0.2

4S Γ+
5 1/2 2.166379 2.165461 2.165834 1.4 80.1 2.5 17.0 0.3

4D Γ+
3 ,Γ

+
4 3/2 2.166668 2.166460 2.166460 0.2 0.0 96.0 3.8 0.0

4D Γ+
5 3/2 2.166668 2.166460 2.166478 0.2 0.3 96.7 2.8 0.0

4D Γ+
1 ,Γ

+
4 5/2 2.166684 2.168491 2.166490 0.2 0.0 0.0 99.9 0.1

4D Γ+
3 ,Γ

+
4 5/2 2.166684 2.166584 2.166584 0.2 0.0 4.0 96.0 0.0

4D Γ+
5 5/2 2.166684 2.166584 2.166991 3.0 17.4 4.3 78.0 0.2

4P Γ−8 3/2 2.166633 2.166046 2.166046 0.5 0.0 99.4 0.4 0.1
4P Γ−7 1/2 2.166630 2.166154 2.166154 0.3 99.5 0.0 0.0 0.2
4F Γ−7 7/2 2.166696 2.166560 2.166560 0.1 0.2 0.0 0.0 99.8
4F Γ−8 7/2 2.166696 2.166570 2.166570 0.1 0.0 0.1 45.9 54.0
4F Γ−8 5/2 2.166696 2.166594 2.166594 0.1 0.0 0.0 54.0 45.9
4F Γ−6 7/2 2.166696 2.166598 2.166598 0.1 0.0 0.0 48.1 51.9
4F Γ−6 5/2 2.166696 2.166628 2.166628 0.1 0.0 0.0 51.9 48.1

48



4.2. Separating the Hamiltonian according to symmetry

spherical and a cubic part, Hd = Hs
d +Hc

d. Similarly, the central-cell corrections consist
of two parts, namely corrections to the dielectric constant for small excitons, that is
primarily the Haken or Pollman-Büttner potential, and the exchange interaction, which
leads to a characteristic splitting between ortho- and parastates, VCCC = Hε +Hexch.

The spherically symmetric description of the excitons is obtained by supplementing
Eq. (4.2) with the spherical band structure term and the modifications to the dielectric
constant,

H = HHyd +Hs
d +Hε . (4.3)

For this Hamiltonian, the sum of angular momenta F = L+J remains a good quantum
number. Accordingly, the states are labeled by LF in this approximation. Note that the
quantum number F for this angular momentum is not to be confused with the notation
for states with L = 3 envelope, which we call F states. Which of these is meant follows
from the context.

In the left column of Figure 4.2, we show the splitting for the spherical part of the
Hamiltonian. Since the system is spherically symmetric but not hydrogenlike, the an-
gular momentum F is a good quantum number, but the states belonging to the same
principal quantum number are not necessarily degenerate. Nevertheless, states belong-
ing to the same L are almost degenerate and we can use a quantum defect model, i.e.,
E = −ERyd/(n − δL)2 with the L-dependent quantum defect δL. The behavior of the
quantum defects was investigated in Ref. [34].

Next, we consider the cubic Hc
d term, that reduces the spherical symmetry of the

Hamiltonian to the cubic symmetry Oh and only the irreducible representations Γ±i
remain as exact labels of the states, leading to a further splitting. The resulting level
structure is depicted in the middle column of Figure 4.2. Due to the cubic contribution,
the order of P states is flipped according to their total angular momenta F . The optically
inactive P1/2 state is shifted above the optically active P3/2. On the other hand, the
order of even parity states by increasing F from lower to higher energies is conserved.
Note, the description given in Uihlein et al. [60] resulted in a reversed order of D5/2

and D3/2 excitons with the D3/2 being the highest state. In their model, the parameter
controlling the strength of the spherical valance band term has the value µ = 0.47, while
the cubic terms are neglected, δ = 0. As discussed in Ref. [35], a fit of the material
parameters to band structure calculations [34, 78] instead leads to the values µ = 0.0586
and δ = −0.404. The discussion in this chapter is based on the latter values. We thus
find that the contribution of the cubic terms to the splitting of states is much more
pronounced than indicated in Ref. [60], while the spherical Hs

d term is less important.
Accordingly, the assignment of the angular quantum number F has to be changed in the
case of the D states, compared to Ref. [60]. We will discuss this in greater detail below.

Finally, the exchange interaction is added. It requires the additional consideration of
the electron spin. Therefore, the magnetic quantum number of the electron MSe ceases
to be a good quantum number. The total angular momentum of the exciton Ft = F +Se

now characterizes the states as an approximate quantum number. The resulting splitting
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Figure 4.2.: Schematic illustration of the level splitting pattern of the n = 3 (a) and
n = 4 (b) multiplets, first for the spherical part of the Hamiltonian HHyd +
Hs

d+Hε (left column), then adding the cubic band structure term Hc
d (middle

column) and finally including the exchange interaction Hexch for the full
Hamiltonian (right column). Odd parity and even parity states of the yellow
series are depicted in red and blue color respectively. In the lower part,
we additionally show the green 1S states in green. The presented level
ordering is based on the numerical values in Table 4.1 and a comparison
with experiment data as shown in Figure 4.1. Taken from Ref. [113].

pattern is shown in the right column for n = 3 and n = 4 respectively in Fig. 4.2.

4.3 Coupling to the green series

Central to the understanding of the behavior of the yellow D exciton lines is the ad-
mixture of the green 1S state. It can be understood now by analyzing the total angular
momentum F without electron spin of the involved states. As mentioned above, an ear-
lier analysis was given in Ref. [60], where the strong mixing of the energetically highest
D exciton with the green 1S exciton compared to all other states within a multiplet was
related to the spherical band structure terms. For excitons of the green series, one finds
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4.3. Coupling to the green series

Figure 4.3.: Second derivative of experimental transmission spectra as a function of
the applied external field for the n = 6 exciton states. For reference, the
left side shows a spectrum at vanishing field. Red labels denote odd parity
states, blue labels even parity states. The application of the electric field re-
veals that the D5/2(Γ+

5 ) orthoexciton lies energetically above the H excitons.
Taken from Ref. [113].

J = 3/2 and in particular F = 3/2 for the green 1S3/2 exciton. Since the spherical terms
preserve F , the D3/2 excitons are the only candidates that are mixed with the green
1S3/2 exciton already by the spherical part of the Hamiltonian (Eq. (4.3)), explaining
their large amount of green content in the description given in Ref. [60]. Accordingly, the
D5/2 excitons have a lower content of green 1S3/2 in that model and the level repulsion
between the green 1S3/2 state and the D3/2 states then lifts the latter above the D5/2

states.
However, as indicated in the discussion of the Hamiltonian further above, the actual

material parameters of Cu2O lead to a much weaker spherical Hs
d term [35] and a much

more important cubic Hc
d term as assumed in Ref. [60]. We can understand how this

changes the picture as explained in the following. Let Π′ denote the quantum numbers
of the green 1S3/2 state, such as L′ = 0, J ′ = 3/2 and F ′ = 3/2 and Π the quantum
numbers of a state from the yellow series such as L, J = 1/2 and F . The matrix
elements belonging to the dominant cubic Hd term were presented in Ref. [35]. The
derived expression depends upon a certain Wigner 9j-symbol [75] as follows,

〈
Π′
∣∣∣[P (2) × I(2)

](4)

q

∣∣∣Π〉 = AΠ′,Π,q


L′ L 2
J ′ J 2
F ′ F 4

 , (4.4)
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Figure 4.4.: Exciton energies for n = 6 states numerically calculated using the Haken
potential. The admixture of green 1S is indicated by the color. We observe
that the D5/2(Γ+

5 ) exciton is shifted to a higher energy than the H excitons.

where AΠ′,Π,q is an abbreviation for the part of the formula we are not interested in for our
discussion. The parameter q controls the behavior under rotations, and is not important
here. The angular momenta and spins appearing in the 9j-symbols must fulfill certain
selection rules, otherwise the matrix element vanishes. One of the conditions is that the
angular momenta in each row satisfy the triangular inequalities of angular momentum
coupling. From the second row we can thus deduce that the matrix element vanishes for
J ′ = J = 1/2. The effect of the cubic terms on the yellow series thus crucially depends
upon the coupling to the green series. The green 1S state has L′ = 0 and F ′ = 3/2.
From the first and third row, we can then conclude that it can only directly be coupled
to states with L = 2 and F ≥ 5/2, i.e. to the D5/2 excitons. For any other yellow state,
and in particular for the D3/2 states, the matrix element vanishes. As a consequence,
the level repulsion from the green 1S caused by the cubic terms most strongly affects
the D5/2 lines, lifting them above the D3/2 lines. This is also consistent with the Γ+

1/4

D5/2 exciton staying energetically very close to the D3/2 lines, since it cannot be repelled
by the green states of different irreducible representation. This understanding of the
energetic order of the states with different F values is corroborated by the numerically
calculated F admixtures presented in Table 4.1, which are calculated analogously to the
green admixtures.

4.4

Extension to principal quantum

number n ≥ 6

In the final section of this chapter, we want to generalize the findings of the preceding
section to higher principal quantum numbers. In particular, we show that even for n = 6
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Figure 4.5.: (a) Splitting between the D5/2 ortho- and paraexcitons as a function of the
principal quantum number. (b) Splitting between the D5/2(Γ+

5 ) orthostate
and the dipole-allowed P3/2 exciton as a function of the principal quantum
number. Red crosses mark experimental data, numerical data calculated
with the Haken potential is marked as black squares, numerical data calcu-
lated with the Pollmann-Büttner potential is marked as black circles. We
additionally show a n−3 fit to the experimental data in yellow.

the ortho D state is still the highest state of the multiplet. We present data showing the
n−3 scaling behavior of the exchange splitting of the D excitons. Since the others terms
in the Hamiltonian causing the fine structure also scale as n−3, we thus expect that the
split off Γ+

5 D exciton is the highest state even for large n.
In Fig. 4.3 we show experimental data of the n = 6 multiplet as a contour plot,

similar to Fig. 4.1. We observe that the D5/2(Γ+
5 ) states lie above the H states. This is

corroborated by the numerical exciton positions presented in Fig. 4.4, which show the
same behavior. The color scale used underlines the close connection between the level
shifts and the green admixture.

To generalize this finding to higher quantum numbers we investigate the scaling law
of the exchange splitting of the D5/2 state in Fig. 4.5. We compare experimental data
with numerical calculations, the latter using either the Haken or the Pollmann-Büttner
potential. We first of all find that the Haken potential more faithfully reproduces the
ortho-para-splitting of the D5/2 state as shown on the left side, whereas the Pollmann-
Büttner potential gives a more accurate estimate of the splitting between the ortho D5/2

state and the dipole-active P3/2 exciton as shown on the right side. We additionally
performed a n−3 fit to the experimental data, which is in good agreement with the
observations. We can thus extrapolate with reasonable certainty that the ortho D5/2

exciton has the highest energy in all n-multiplets even for high n. This concludes our
study of the fine structure of the D excitons and their interaction with the green series.

In this chapter and in Chapter 3 before it, we studied features of the yellow exciton
series going beyond the hydrogenlike model in the field-free case. We saw how the
interaction with the green series leads to interesting effects. In Chapter 5, we will study
the application of an external magnetic field. The response of the excitonic system to
the field is also significantly altered as compared to an atomic system.
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5 Magneto-Stark effect of
yellow excitons

In the previous chapters, we studied the yellow exciton series without external fields.
Now we introduce a magnetic field into the description. As will be discussed in Sec. 5.1,
this leads to the distinction between the Faraday and Voigt configuration. Here, we
investigate and compare experimental and numerical excitonic spectra of the yellow
series in cuprous oxide Cu2O in the Voigt configuration and thus partially extend the
results from Schweiner et al. [65], who only considered the Faraday configuration. The
main difference between the configurations is given by an additional effective electric field
in the Voigt configuration, caused by the motion of the exciton through the magnetic
field. This magneto-Stark effect was already postulated by Gross et al. and Thomas et
al. in 1961 [114, 115]. Group theoretical considerations show that the field most of all
significantly increases the number of allowed lines by decreasing the symmetry of the
system. Our conclusion is supported by both the experimental and numerical data. This
represents a significant departure from the situation known in atomic physics, where the
difference between the experimental geometries is strongly suppressed due to the higher
masses. This study is published in Ref. [110].

Electric and magnetic fields aid in the investigation of quantum mechanical systems
by introducing characteristic modifications of energy spectra, breaking symmetries and
lifting selection rules. For example, the symmetry of the hydrogen atom is reduced from
spherical to cylindrical [116–118] by the application of an external field. Excitons, being
bound states between negatively charged electrons and positively charged holes, can for
many purposes be modelled with a hydrogenlike description[11, 119]. Recent experi-
mental investigations [30, 33, 120] uncovered deviations stemming from the reduction of
the spherical symmetry to the discrete cubic symmetry, which arises from the complex
valence band structure [34, 35, 65, 121]. The reduced symmetry leads to an observable
fine structure splitting, since the mixing with the dipole allowed P states makes the F
and H excitons visible.

But even when disregarding the reduced symmetry in the crystal environment, the
changed material parameters of the exciton in comparison to the hydrogen atom lead
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5. Magneto-Stark effect of yellow excitons

to a change of the relative mass and the mass of the center-of-mass motion, the latter
being a lot smaller for the exciton. Because of this, it has a much more pronounced
center-of-mass motion when experimentally excited by a photon. The associated mo-
mentum vector therefore potentially breaks the isotropy of the system. When applying
an external field, we thus have to distinguish between the Faraday and Voigt configura-
tion. In the former, the field is applied along the optical axis of the exciting laser, in the
latter it is applied orthogonally. We here present experimental and numerical spectra
demonstrating a difference between these two geometries for an external magnetic field
in the case of excitons in cuprous oxide. We trace the difference to the magneto-Stark
effect [114, 115, 122]: The charges moving in the magnetic field experience a Lorentz
force analogous to the effect of an effective electric field (5.1)

FMSE =
~
M

(K ×B) , (5.1)

where M is the exciton center-of-mass, K is the exciton wavevector and B the magnetic
field. The effect of this term depends on the relative orientation of K and B and thus on
the experimental geometry. This constitutes a difference between excitons and atoms,
since for atoms, no such difference is expected due to the more strongly suppressed
center-of-mass motion. The magneto-Stark effect was introduced theoretically already
in the 1960s [114, 115, 122, 123] but there have only been few clear demonstrations [124]
of it.

We first give some theoretical and experimental preliminaries in Secs. 5.1 and 5.2
before comparing our simulated spectra with experimental data in Sec. 5.3.

5.1

Faraday and Voigt configuration,

magneto-Stark effect

In the following, we will differentiate between two different relative orientations of the
magnetic field to the optical axis of the incoming laser beam. In the Faraday configura-
tion, both axes are aligned to be parallel, whereas in the Voigt configuration, they are
orthogonal to each other. Generally, the exciting laser will transfer a finite momentum
~K onto the exciton. This center of mass momentum would have to be added in the
terms for the kinetic energies. Even without a magnetic field, this leads to quite com-
plicated formulas (cf. the expressions for the Hamiltonian in the supplemental material
of Ref. [89]) which are further complicated by the minimal substitution. Since the effect
of many of the arising terms is presumably negligible due to the smallness of K, we
simplify the problem and only consider the leading term [36, 118]

HMSE =
~e
M

(K ×B) · r (5.2)
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which we add to our Hamiltonian (2.2) in our numerical calculations. This is the well-
known motional Stark effect term of the hydrogen atom. This term has the same form
as an effective external electric field (5.1) perpendicular to the plane spanned by the
wavevector K and the magnetic field vector B. The significance of this term evidently
depends on the used configuration.

For the Faraday configuration, the effective electrical field (5.1) vanishes. A previous
investigation of Schweiner et al. [65] was thus conducted under the approximation of
vanishing center-of-mass momentum. They report a complicated splitting pattern where
the magnetic field lifts all degeneracies. For a magnetic field oriented along one of the
high symmetry axes of the crystal, the symmetry of the exciton is reduced from Oh to
C4h. Still, some selection rules remain, and not all lines become dipole-allowed. Parity
remains a good quantum number and since only states with an admixture of P states
have nonvanishing oscillator strengths, only states with odd values of L contribute to
the exciton spectrum.

In the Voigt configuration on the other hand, the excitons have a nonvanishing mo-
mentum perpendicular to the magnetic field and the magneto-Stark term has to be
considered. For our calculations, we therefore include an electric field, the size of which
is given by the wavevector K0 = 2.79 × 107 1

m
of the incident light and the magnetic

field. This value is obtained by the condition, that the exciting laser has the appropriate
energy to create an exciton in the energy range we consider,

~cK0√
εb2

= Eg −
ERyd

n2
(5.3)

for n = 5 and with εb2 = 6.46 [125] and ERyd = 86 meV [34]. Note that we here use
the dielectric constant εb2 = 6.46 in the high frequency limit to describe the refractive
index of the incident light. Since the total mass M of the exciton is about three orders
of magnitude smaller than for a hydrogen atom, this term will have a significant effect
on the spectra, even more so if we consider that the region of high fields is shifted to
much lower values for the exciton [65]. The term (5.2) breaks the inversion symmetry
and parity ceases to be a good quantum number. While in the Faraday configuration
only the dipole-allowed exciton states of odd angular momentum have been important,
now also the states with even angular momentum need to be considered. Hence, we need
to include the terms for the central-cell corrections with the Haken potential as given in
Refs. [38, 89] in our treatment of the Voigt geometry to correctly take the coupling to
the low lying S states into account.

5.2 Source of experimental data

The experimental data was obtained by M. Bayers experimental group at the TU Dort-
mund University.
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5. Magneto-Stark effect of yellow excitons

Three different Cu2O crystal slabs were investigated experimentally, with the crystal
surface normal to the [001], [110] and [111] directions respectively. The samples were
cooled to a temperature of 1.4 K. Using a superconducting split coil magnet, magnetic
fields up to 7 T could be applied either in the Faraday configuration or in the Voigt
configuration.

For the absorption measurement, a white light source was filtered with a double
monochromator to the range of energies of interest. The exciting light was linearly
polarized. After being transmitted, the light was again filtered by a second double
monochromator and then detected using a liquid-nitrogen cooled charge coupled device
camera with a resolution of approximately 10µeV.

5.3

Comparison of experimental and

numerical data

The left of Figure 5.1 shows experimental spectra for n = 4 to n = 7 in Voigt con-
figuration with polarization orthogonal and parallel to the magnetic field respectively.
The spectra for the two cases show clear differences due to the different selection rules
for different polarizations. We will show in Sec. 5.3.1 that all lines in principle become
dipole allowed and can be excited by exactly one of the two polarizations shown here.

For the comparison between the Faraday and Voigt configuration we show in Fig. 5.1
on the right experimental spectra taken (c) in Voigt configuration and (d) in Faraday
configuration with polarization orthogonal to the magnetic field respectively. The po-
larizations are chosen in such a way that the same selection rules would apply to both
spectra in Fig. 5.1 without the magneto-Stark field on the right. Thus, the differences
between them must be due to the different geometries. S lines are visible for both con-
figurations. This can be attributed to quadrupole-allowed transitions in the case of the
Faraday configuration [65]. For the Voigt configuration, these lines quickly fade away.
This is a sign that the additional mixing from the electric field transfers quadrupole
oscillator strength away from the S excitons. This effect is not reproduced in the numer-
ical spectra since we only extracted dipole oscillator strengths. In general, the effective
electric field lifts selection rules, revealing additional lines not visible in the Faraday
configuration. This can for example clearly be seen for the n = 5 states.

In Fig. 5.2 we show a comparison between experimental and numerically obtained line
positions for n = 4 and n = 5. To improve the presentation of areas with many densely
lying lines that individually have very low oscillator strengths, numerical spectra are
convoluted using a Gaussian function with a constant width of 13.6 µeV. This value
is of the same order of magnitude as the width of the sharpest lines visible in the
experiment. While the position of the P and F lines is reproduced very well, noticeable
disagreement is observed for the S lines and also the faint 4D line visible in Fig. 5.2 on the
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Figure 5.1.: Left : Experimental transmission spectra in arbitrary units for n = 4 to
n = 7 taken in Voigt configuration for polarization (a) parallel [100] and
(b) orthogonal [010] to the magnetic field. Right : Second derivative of
experimental transmission spectra for n = 4 to n = 7 taken in (c) Voigt
configuration and (d) Faraday configuration with polarization orthogonal
[010] to the magnetic field. Data for the Faraday configuration were obtained
by combining σ+- and σ−-polarized spectra from Ref. [65] in an appropriate
linear combination. We use the second derivative for better visibility of weak
lines. Experimental data taken from Ref. [110].

right. Since our model is not explicitly constructed on a lattice [126], we have to include
the central-cell corrections as an approximation into our Hamiltonian. As the central-
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5. Magneto-Stark effect of yellow excitons

Figure 5.2.: Left : Comparison between numerical and experimental line positions for the
Voigt configuration with light polarized orthogonally [010] to the magnetic
field. (a) Numerical data in grayscale with read out experimental line posi-
tions (blue triangles) and (b) experimental data using the second derivative
to enhance visibility of weak lines. Right : Same as on the left, but with
light polarized parallely [100] to the magnetic field. We increase the visibil-
ity of the experimental 4D line by using a different filter width and higher
contrast. Note that the resolution of the numerical data is not uniform for
all field strengths. Experimental data taken from Ref. [110].

cell corrections influence the even parity states much more strongly than the odd parity
states, the error involved in this is more pronounced for the former than for the latter. A
similar effect can also be seen in the tables in Ref. [38]. To make additional comparison
involving the oscillator strengths possible we also present in Fig. 5.3 (a) data with light
linearly polarized orthogonally [010] to the magnetic field in Faraday configuration taken
from Ref. [65] and in (b) and (c) spectra in the Voigt configuration with light polarized
orthogonally [010] and parallely [100] to the magnetic field axis, respectively, for the
principal quantum numbers n = 4 and n = 5. The experimental absorption coefficients
do not fall to zero far away from the peaks due to phonon background. We lowered
the values with a constant shift to counteract this effect. Note that we investigate a
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5.3. Comparison of experimental and numerical data

Figure 5.3.: Numerical and experimental spectra of the n = 4 and n = 5 excitons in
an external magnetic field B ‖ [100]. (a) Faraday configuration with light
polarized along the [010] direction. Data were obtained by combining σ+-
and σ−-polarized spectra from Ref. [65] in an appropriate linear combination.
(b) and (c) Voigt configuration with a wavevector aligned with the [001]
direction and the light polarized (b) orthogonally [010] and (c) parallely [100]
to the magnetic field. Numerically calculated relative oscillator strengths are
shown in grayscale. Experimentally measured absorption coefficients α are
superimposed for a few selected values of B (blue solid lines). Note that the
resolution of the numerical data is not uniform. We point out the theoretical
visibility of S and D excitons as marked in (c).
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5. Magneto-Stark effect of yellow excitons

parameter region where the effects of quantum chaos as discussed in Ref. [102] are not
important.

In general, a good agreement between the experimental and numerical data sets is
obtained. In the Voigt configuration in Figs. 5.2 and 5.3, a rich splitting is observed,
especially of the F states of the n = 5 excitons. We see that light polarized orthogonally
to the magnetic field probes complementary lines to the ones excited by light polarized
in the direction of the field, a result that will also follow from our discussion below.

The experiment can not resolve the multiplicity of lines observed in the numerical
simulation. This is because of the linewidths induced by the interaction with phonons
and by radiative decay, which are not included in our theoretical description.

5.3.1 Influence of the magneto-Stark effect

We conclude this chapter by discussing the effects of the additional effective electric
field on the line spectra in a group theoretical context. As we will see in the following
derivations, the most pronounced effect is a significant increase in the number of dipole-
allowed lines due to the decreased symmetry with the electric field. Panels (a) and
(b) in Fig. 5.3 show this quite clearly, especially for the large number of additional F
lines and also G lines for n = 5 in the Voigt configuration. This is most obvious for
the theoretical spectra, but can also distinctly be seen in the experiment for n = 5.
Note that without the magneto-Stark effect the same selection rules would apply to the
spectra in (a) and (b), but not in (c). In contrast to the Faraday configuration [65], we
can not limit ourselves to the states with odd values for L, owing to the mixture of the
even and odd series in the electric field. We discuss the case of a magnetic field aligned
in [001] direction and will disregard the influence of the central-cell corrections in this
discussion.

We consider the reduction of the irreducible representations D̃±F of the full rotation
group in the presence of the crystal as well as the magnetic and effective electric field,
where F = J + L = (I + Sh) + L is the angular momentum without the electron spin.
Here, the quasispin I and hole spin Sh are first coupled to the effective hole spin J and
then combined with the orbital angular momentum L to form F . With this information
we will be able to deduce the splitting of the lines due to the reduced symmetry [127].
Additionally we can compare the resulting irreducible representations with those that
the dipole operator belongs to. This will tell us which lines are dipole-allowed and which
are not. Note that the symmetry of the quasispin I in Oh is given by Γ+

5 = Γ+
4 ⊗Γ+

2 [65]
and therefore all irreducible representations have to be multiplied by Γ+

2 in comparison
with the case of an ordinary spin. Keeping this in mind, we have [76]

L = 0 :

D̃+
1
2

= D+
1
2

⊗ Γ+
2 = Γ+

6 ⊗ Γ+
2 = Γ+

7 , (5.4a)
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L = 1 :

D̃−1
2

= D−1
2

⊗ Γ+
2 = Γ−6 ⊗ Γ+

2 = Γ−7 , (5.4b)

D̃−3
2

= D−3
2

⊗ Γ+
2 = Γ−8 ⊗ Γ+

2 = Γ−8 , (5.4c)

L = 2 :

D̃+
3
2

= D+
3
2

⊗ Γ+
2 = Γ+

8 ⊗ Γ+
2 = Γ+

8 , (5.4d)

D̃+
5
2

= D+
5
2

⊗ Γ+
2 =

(
Γ+

7 ⊕ Γ+
8

)
⊗ Γ+

2 = Γ+
6 ⊕ Γ+

8 , (5.4e)

L = 3 :

D̃−5
2

= D−5
2

⊗ Γ+
2 =

(
Γ−7 ⊕ Γ−8

)
⊗ Γ+

2 = Γ−6 ⊕ Γ−8 , (5.4f)

D̃−7
2

= D−7
2

⊗ Γ+
2 =

(
Γ−6 ⊕ Γ−7 ⊕ Γ−8

)
⊗ Γ+

2 = Γ−7 ⊕ Γ−6 ⊕ Γ−8 , (5.4g)

L = 4 :

D̃+
7
2

= D+
7
2

⊗ Γ+
2 =

(
Γ+

6 ⊕ Γ+
7 ⊕ Γ+

8

)
⊗ Γ+

2 = Γ+
7 ⊕ Γ+

6 ⊕ Γ+
8 , (5.4h)

D̃+
9
2

= D+
9
2

⊗ Γ+
2 =

(
Γ+

6 ⊕ Γ+
8 ⊕ Γ+

8

)
⊗ Γ+

2 = Γ+
7 ⊕ Γ+

8 ⊕ Γ+
8 . (5.4i)

We still need to include the spin of the electron which transforms according to Γ+
6 .

For vanishing magnetic field strengths, the representations belonging to an irreducible
representation without the spin are degenerate. Those will be written in brackets. The
reduction [76] will only be specified for even parity, since the odd case only changes the
sign. We obtain

D̃+
1
2

⊗ Γ+
6 = (Γ+

2 ⊕ Γ+
5 ), (5.5a)

D̃+
3
2

⊗ Γ+
6 = (Γ+

3 ⊕ Γ+
4 ⊕ Γ+

5 ), (5.5b)

D̃+
5
2

⊗ Γ+
6 = (Γ+

1 ⊕ Γ+
4 )⊕ (Γ+

3 ⊕ Γ+
4 ⊕ Γ+

5 ), (5.5c)
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5. Magneto-Stark effect of yellow excitons

D̃+
7
2

⊗ Γ+
6 = (Γ+

2 ⊕ Γ+
5 )⊕ (Γ+

1 ⊕ Γ+
4 )⊕ (Γ+

3 ⊕ Γ+
4 ⊕ Γ+

5 ), (5.5d)

D̃+
9
2

⊗ Γ+
6 = (Γ+

2 ⊕ Γ+
5 )⊕ (Γ+

3 ⊕ Γ+
4 ⊕ Γ+

5 )⊕ (Γ+
3 ⊕ Γ+

4 ⊕ Γ+
5 ). (5.5e)

Γ+
1 and Γ+

2 are one-dimensional, Γ+
3 is two-dimensional, and Γ+

4 and Γ+
5 are three-

dimensional. So without the field, we have for example fourfold degenerate S states
and P states that are split into one fourfold and one eightfold degenerate line. If the
magnetic field is switched on, the electric field becomes nonvanishing too. The symme-
try is reduced from Oh to CS [76]. All representations of CS are one-dimensional, so all
degeneracies will be lifted, just as in the case with only a magnetic field. But in contrast
to the Faraday configuration, the symmetry is lowered even further, leading to a greater
mixture of the states. In fact, all lines become dipole-allowed. To see this, we have
to consider the reduction of the irreducible representations of Oh in CS [76, 127]. The
relevant expressions are

Γ+
1 → Γ1, Γ−1 → Γ2,

Γ+
2 → Γ1, Γ−2 → Γ2,

Γ+
3 → Γ1 ⊕ Γ1, Γ−3 → Γ2 ⊕ Γ2,

Γ+
4 → Γ1 ⊕ Γ2 ⊕ Γ2, Γ−4 → Γ2 ⊕ Γ1 ⊕ Γ1,

Γ+
5 → Γ1 ⊕ Γ2 ⊕ Γ2, Γ−5 → Γ2 ⊕ Γ1 ⊕ Γ1.

The dipole operator belongs to Γ−4 in Oh [76] and its reduction therefore includes all
appearing representations. Thus, all 4n2 lines receive nonvanishing oscillator strength,
the only limitation being given by the polarization of the incident light, i.e., a given
state can either be excited by radiation polarized in the z-direction (Γ2) or by radiation
polarized in the x-y-plane (Γ1).

In this chapter, we introduced the magneto-Stark effect and the associated effective
electric field. In Chapter 6, this will also play an important role in the process of second
harmonic generation along forbidden directions in a magnetic field.
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Second harmonic
generation in magnetic
fields

The application of external fields can reduce the symmetry of a system, leading to novel
selection rules as explored in Chapter 5. Here, we will see how this affects the theory
of Second Harmonic Generation (SHG). Recently SHG for the yellow exciton series in
cuprous oxide has been demonstrated [64]. Assuming perfect Oh symmetry, SHG is
forbidden along certain high-symmetry axes. Perturbations can break this symmetry
and forbidden transitions may become allowed. We investigate theoretically the effect
of external magnetic fields on the yellow exciton lines of cuprous oxide. We identify two
mechanisms by which an applied magnetic field can induce a second harmonic signal in
a forbidden direction. First of all, a magnetic field by itself generally lifts the selection
rules. In the Voigt configuration, an additional magneto-Stark electric field appears.
This also induces certain SHG processes differing from those induced by the magnetic
field alone. Complementary to the manuscript by A. Farenbruch et al. [109], we perform
a full numerical diagonalization of the exciton Hamiltonian including the complex valence
band structure. Numerical results are compared with experimental data. Essential parts
of this chapter are published in Ref. [111].

Due to the influence of the crystal symmetry and complex valence band structure,
the exciton spectrum shows typical deviations from a hydrogen spectrum leading to an
observable splitting and mixing between P and different F states [33]. Additionally, the
symmetry of the bands also significantly affects the selection rules for different optical
processes [30, 35, 65] such as one-photon and two-photon excitation.

After the first theoretical treatment of two-photon processes in 1931 [128], and their
first experimental demonstration in the optical range in 1963 [129], nonlinear optical
techniques have established themselves as useful methods for the study of electronic
properties of solids [130, 131]. They complement linear tools due to different selection
rules [132]. For example, in one-photon absorption spectroscopy in cuprous oxide the
odd exciton states are excited, whereas in two-photon excitation, it is the even parity
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states.
One example of a nonlinear optical process is Second Harmonic Generation (SHG). In

SHG, two incoming photons are combined into one outgoing photon of double energy.
Recently, Mund et al. have demonstrated SHG for the yellow exciton series in cuprous
oxide [64]. Here, the spectrum consists mainly of the even parity excitons.

The symmetry induced selection rules determine which exciton states can participate
in SHG processes. Additional limitations concerning the polarization and direction of
the incoming and outgoing light exist. One important limitation is the existence of
forbidden directions in the crystal, where SHG is not allowed due to symmetry reasons.
There is a number of ways in which a SHG signal can nevertheless be induced along such
a direction [133–137]. In general, a perturbation can break the crystal symmetry and lift
this selection rule. One possibility of such a perturbation is strain in the crystal. Even
without the application of an external strain, SHG has been observed for the yellow
1S orthoexciton in forbidden directions due to residual strain in the sample [138]. The
excitons with higher principal quantum numbers remain forbidden, since the energetic
splitting due to the strain does not exceed their linewidths and the selection rule thus
is not lifted for them [138].

To observe the higher exciton states, a different method is required. Here, we investi-
gate the application of an external magnetic field. For a discussion of the resulting SHG
spectra, we have to differentiate the two experimental geometries as in Chapter 5. In
Faraday configuration, the magnetic field is applied parallel to the wave vector of the
incident light, whereas in Voigt configuration the two are perpendicular to each other. In
the latter case, an additional term behaving like an effective electric field orthogonal to
both the wave vector and the magnetic field appears, breaking the inversion symmetry
of the crystal. This leads to a mixing of odd and even parity excitons [110] and thus to
additional features in the SHG spectra. In Faraday configuration this effective electric
field is absent.

The induced SHG spectra significantly depend on the choice of polarization of the
incoming and outgoing light. In particular, these dependencies differ among the mecha-
nisms inducing SHG and can therefore be used for their differentiation.

We focus on the diagonalization of the complete exciton Hamiltonian including the
valence band structure and on the detailed comparison of numerical and experimental
data for certain fixed choices of polarization in this chapter. The polarization dependen-
cies of the SHG spectra in general are investigated more thoroughly in the manuscript
by Farenbruch et al. [109], where SHG intensities are treated as a function of the linear
polarization angles of incoming and outgoing light for certain fixed peaks. Additional
mechanisms for the production of SHG light beyond those in the present chapter are
considered as well.

In Sec. 6.1 we show how our calculated eigenvalues and eigenvectors can be used to
simulate Second Harmonic Generation spectra and derive the selection rules in Sec. 6.2.
We describe the experimental setup for SHG in Sec. 6.3. In 6.4, the numerical results
are shown and compared with experimental spectra.
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|g〉

|i〉

|f〉

ω

ω

2ω

Figure 6.1.: Scheme of a Second Harmonic Generation process. The ground state of the
crystal is denoted by |g〉, the resonantly stimulated exciton state by |f〉, and
the virtual intermediate state by |i〉.

6.1 Second Harmonic Generation

Second Harmonic Generation is a process where two incoming photons are coherently
transformed into one outgoing photon of doubled frequency as illustrated in Fig. 6.1. A
given exciton state can only contribute to the SHG spectrum, if it is both two-photon
and one-photon allowed. In the field-free case, only even exciton states can be excited
in two-photon transition processes. Since these are dipole forbidden, SHG can only be
obtained by the addition of a quadrupole emission process. There are two conditions
that determine the selection rules for these processes: For the dominant contribution,
the envelope wave function has to be nonvanishing at the origin [89, 132], which requires
an L = 0 component, and the exciton state has to have an admixture of vanishing total
spin S = Se + Sh = 0, since a spin flip is forbidden here. Only the Γ+

5 excitons of even
parity fulfill both conditions. This can be seen by considering the resulting set of angular
momenta. With L = 0, S = 0 and I = 1, the rotational behavior for the exciton states
is determined by the quasi-spin I, which, as stated above, transforms according to Γ+

5 .
We see that in the tensor product [76]

Γ−4 ⊗ Γ−4 = Γ+
1 ⊕ Γ+

3 ⊕ Γ+
4 ⊕ Γ+

5 (6.1)

belonging to both the two-photon (Γ−4 for each incoming photon) and quadrupole oper-
ator (Γ−4 for both the outgoing photon and the K vector), only the Γ+

5 term contributes
in leading order.
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6.1.1 Calculation of SHG intensities

To simulate the SHG intensity spectra for a given polarization of the outgoing light Eout,

I(2ω) =

∣∣∣∣∣∑
i

Ei(2ω)Eout
i

∣∣∣∣∣
2

(6.2)

with
Ei(2ω) ∼

∑
j,k

χ
(2)
ijkEj(ω)Ek(ω) , (6.3)

we need to calculate the corresponding nonlinear susceptibilities

χ
(2)
f,lmn ∼

∑
i

〈g|V Q
l |f〉〈f |V D

m |i〉〈i|V D
n |g〉

(Ef − 2~ω − iΓf )(Ei − ~ω)
. (6.4)

Here, D and Q mark terms belonging to the excitation by two dipole steps and to the
quadrupole emission process, respectively. The states involved are denoted by |g〉 for
the ground state of the crystal, |f〉 for the resonantly excited exciton state, and |i〉 for
the virtual intermediate states. The conditions of vanishing total spin (admixture of
S = 0) and nonvanishing wave function at the origin (admixture of L = 0) imply that
the strength of both processes is given by the overlaps with the following states with
irreducible representation Γ+

5 [89]:

|πQyz〉 =
1√
2

(|1,−1〉Q − |1, 1〉Q) ,

|πQxz〉 =
i√
2

(|1,−1〉Q + |1, 1〉Q) ,

|πQxy〉 = |1, 0〉Q , (6.5)

with

|Ft,MFt〉Q = |S, I; I + S, L; Ft, MFt〉
= |0, 1; 1, 0; 1, MFt〉 . (6.6)

In Eq. (6.5), the quantization axis is chosen to be along the [001] direction. If [110] is
chosen to be the z- and quantization axis, we instead have

|πQyz〉 =
i

2
|1,−1〉[110]

Q +
i

2
|1, 1〉[110]

Q +
1√
2
|1, 0〉[110]

Q ,

|πQxz〉 = − i

2
|1,−1〉[110]

Q − i

2
|1, 1〉[110]

Q +
1√
2
|1, 0〉[110]

Q ,

|πQxy〉 =
1√
2
|1,−1〉[110]

Q − 1√
2
|1, 1〉[110]

Q . (6.7)
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For the case of the quantization axis being parallel to the [111] direction, we obtain

|πQyz〉 =

(
1

2
√

3
− i

2

)
|1,−1〉[111]

Q +

(
1

2
√

3
+

i

2

)
|1, 1〉[111]

Q +
1√
3
|1, 0〉[111]

Q ,

|πQxz〉 =

(
1

2
√

3
+

i

2

)
|1,−1〉[111]

Q −
(

1

2
√

3
− i

2

)
|1, 1〉[111]

Q +
1√
3
|1, 0〉[111]

Q ,

|πQxy〉 = − 1√
3
|1,−1〉[111]

Q +
1√
3
|1, 1〉[111]

Q . (6.8)

For the two-photon excitation, we have to consider the coupling of Γ−4 ⊗ Γ−4 → Γ+
5 for

the two polarization vectors of the incoming light. Here, we only consider the case of
two identical incoming photons with polarization Ein =

(
Ein

1 , Ein
2 , Ein

3

)
. The coupling

coefficients as given in [76] imply that the transition amplitudes for two-photon absorp-
tion with two dipole steps OTPDD can then by calculated using the symmetrical cross
product

OTPDD ∼ Ein ⊗Ein =
1√
2

Ein
2 E

in
3 + Ein

3 E
in
2

Ein
3 E

in
1 + Ein

1 E
in
3

Ein
1 E

in
2 + Ein

2 E
in
1

 , (6.9)

where the components give the amplitude for the excitation of a state transforming as
yz for e1, as xz for e2 and as xy for e3. We see that, for example, light polarized along
the [110] direction will produce exciton states transforming according to the basis vector
xy of Γ+

5 .
For the quadrupole emission process, we similarly have to consider the coupling of

the polarization vector Eout of the outgoing light, determined by the analyzer in the
experiment, and the wave vector K,

OQ ∼K ⊗ Eout =
1√
2

K2E
out
3 + Eout

3 K2

K3E
out
1 + Eout

1 K3

K1E
out
2 + Eout

2 K1

 . (6.10)

Analogously to the case of two-photon excitation, we can, for example, conclude that
light polarized along the [001] direction with a wave vector parallel to [100] can only be
emitted by exciton states transforming as xz.

6.1.2 Dipole emission process

In Voigt configuration, considered in some of the spectra here, an effective electric field
arises. This electric field breaks the inversion symmetry of the crystal and mixes states
of different parity. This will also make certain SHG processes involving a dipole emission
step allowed. Similarly to the case of the two-photon excitation and quadrupole emission
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processes, the strength of these dipole emission processes are given by the overlaps with
the three states of symmetry Γ−4 as derived in Refs. [35, 65, 89]:∣∣πDx 〉 =

i√
2

(|2,−1〉D + |2, 1〉D) ,∣∣πDy 〉 =
1√
2

(|2,−1〉D − |2, 1〉D) ,∣∣πDz 〉 =
i√
2

(|2,−2〉D − |2, 2〉D) , (6.11)

with

|Ft,MFt〉D = |S, I; I + S, L; Ft, MFt〉
= |0, 1; 1, 1; Ft, MFt〉 . (6.12)

Again, Eq. (6.11) gives the result with quantization axis along [001]. For [110], we get∣∣πDx 〉 = − i

2
|2,−2〉[110]

D +
1

2
|2,−1〉[110]

D − 1

2
|2, 1〉[110]

D +
i

2
|2, 2〉[110]

D ,∣∣πDy 〉 =
i

2
|2,−2〉[110]

D +
1

2
|2,−1〉[110]

D − 1

2
|2, 1〉[110]

D − i

2
|2, 2〉[110]

D ,∣∣πDz 〉 = − 1√
8
|2,−2〉[110]

D +

√
3

2
|2, 0〉[110]

D +
1√
8
|2, 2〉[110]

D , (6.13)

and for the [111] direction∣∣πDx 〉 =

(
1√
18
− i

6

)
|2,−2〉[111]

D +

(
1

6
+

i√
12

)
|2,−1〉[111]

D

−
(

1

6
+

i√
12

)
|2, 1〉[111]

D +

(
1√
18

+
i

6

)
|2, 2〉[111]

D +
1

3
|2, 0〉[111]

D ,

∣∣πDy 〉 =

(
1

6
− i√

12

)
|2, 1〉[111]

D +

(
1√
18
− i

6

)
|2, 2〉[111]

D

+

(
1

6
− i√

12

)
|2,−1〉[111]

D +

(
1√
18

+
i

6

)
|2,−2〉[111]

D +
1

3
|2, 0〉[111]

D ,∣∣πDz 〉 =
1√
3
|2, 0〉[111]

D +
1

3
|2, 1〉[111]

D − 2√
18
|2, 2〉[111]

D

− 2√
18
|2,−2〉[111]

D − 1

3
|2,−1〉[111]

D . (6.14)

6.1.3 Linewidths

In addition to the transition matrix elements discussed above, the nonlinear suscep-
tibilities (6.4) also depend on the linewidths of the involved exciton states Γf . The
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homogeneous linewidths of the involved states are for the most part unknown. Ad-
ditionally, the strong mixing of states makes accurate assignments of states difficult.
Various attempts to incorporate the linewidths in a more detailed way did not lead to
results in better agreement with experiment than the simple assumption of a constant
linewidth of Γ = 150µeV for all states. This linewidth also approximately reproduces
the widths of the dominant S and D states, as visible in Figs. 6.2 and 6.3. We will thus
use this simple approach for our numerical calculations.

6.1.4 Relative strength of dipole and quadrupole emission pro-
cesses

In spectra where both quadrupole and dipole emission processes play a role, their rel-
ative oscillator strengths have to be considered. According to Ref. [89], the combined
transition matrix elements for both processes is given by

M ∼ lim
r→0

[
− i
(
M̃∗

v + M̃∗
c

) ∂

∂r
〈TDout|Ψ〉+

(
−(1− α)M̃∗

v + αM̃∗
c

) K√
6
〈TQout|Ψ〉

]
, (6.15)

with the exciton wave function |Ψ〉. The parameter α relates to the chosen center-of-
mass transformation (2.18) by α = me/(me + mh)= 0.63. The states |TDout〉 and |TQout〉
are related to the states in Eqs. (6.5) and (6.11) via

|TDout〉 =
∑

i∈{x,y,z}

Eout
i |πDi 〉 , (6.16)

|TQout〉 =
∑

v∈{yz,xz,xy}

√
2(Eout ⊗ K̂)v|πQv 〉 , (6.17)

with the normalized wave vector K̂. We see that the correct calculation of the SHG
intensities requires the values for the constants M̃∗

v and M̃∗
c . These are independent of

the exciton state and the magnetic field. We rescale and rewrite Eq. (6.15) as

M ∼ lim
r→0

[
− iA

∂

∂r
〈TDout|Ψ〉+

K√
6
〈TQout|Ψ〉

]
, (6.18)

where

A =
M̃∗

v + M̃∗
c

−(1− α)M̃∗
v + αM̃∗

c

. (6.19)

A now parametrizes the relative contribution of dipole and quadrupole emission pro-
cesses, i.e., for |A| → ∞ the spectrum is only determined by dipole processes, whereas
for A → 0, they play no role. In Fig. 6.2 we show a comparison of experimental and
numerical spectra for a particular strength of the magnetic field B = 6 T. Since the SHG
spectrum is sensitive to the relative contributions of the quadrupole and dipole emission
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Figure 6.2.: Comparison of experimental (black) and numerical (color palette) SHG spec-
tra in arbitrary units with Ein,2 ‖ [110], Eout,2 ‖ [001] for different values
of A as defined in Eq. (6.19). The wave vector points along the [110] axis
and the magnetic field is applied in Voigt geometry in [110] direction and
has a strength of B = 6 T. The main features shown belong to princi-
pal quantum numbers n = 3 and n = 4. The color encodes the value of
A, which parametrizes the relative strength of dipole emission processes to
quadrupole ones. We show the comparison for (a) negative and (b) positive
values of A.

processes, we can use this comparison to estimate the value of A. Reasonable agreement
is achieved for A = 0.4, see Fig. 6.3, and we will choose this value for A for our further
calculations. This allows us to estimate the ratio of M̃∗

c to M̃∗
v . Using Eq. (6.19), we

find
M̃∗

c

M̃∗
v

= −(1− α)A+ 1

1− αA ≈ −1.5 . (6.20)

Note that this result can only be taken as a rough estimate. We chose the value of A
mainly on the basis of the agreement with the 3S and 3D states and the n = 4 manifold.
Still, the accordance between experiment and theory is not perfect, especially for the lines
between the 3S and 3D states, which are not reproduced very well in the simulations.
Presumably, this is due to the simplified treatment of the linewidths. We also see that
the feature around the 3S states comes out too strong. This is also observed in some
of the following spectra. Two remarks are important here. First of all, the linewidth
of the 3P state is around 500µeV [30] and thus considerably larger than the value used
here. Broader lines generally have weaker SHG intensities, exceptions may be caused
by interference between different states. The second remark concerns the line positions
of the even exciton states being influenced by the central-cell corrections. Since the
central-cell corrections are only an approximation, the positions of the even excitons are
not reproduced as faithfully as the positions of the odd states. Instead, the numerical
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Figure 6.3.: Same as Fig. 6.2 but with a fixed value of A = 0.4. With this value, the
numerical spectrum matches the experimental spectrum reasonably well.
Choosing a higher value for A leads to the 3S peak being excessively high,
whereas a lower value results in a too weak n = 4 manifold. For further
discussion, see text.

S and D excitons are shifted to slightly higher energies as compared to experiment, an
effect also observed in Refs. [38, 110] and in previous chapters. The reduced energetic
distance between the S and P states probably leads to a stronger mixing and thus, for
SHG with a dipole emission step, to an overestimated intensity. The reverse will hold
for the D states.

6.2 Discussion of selection rules

Second Harmonic Generation is principally forbidden in inversion symmetric crystals
such as Cu2O. To see this, we consider the SHG amplitude Ei(2ω) given in Eq. (6.3).
The application of the inversion operation switches the signs of the amplitudes E, but
leaves the susceptibility χ invariant due to the symmetry of the crystal. It follows that
the amplitudes Ei(2ω) vanish unless the inversion symmetry is broken.
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6. Second harmonic generation in magnetic fields

6.2.1 Quadrupole and electric-field induced dipole emission

A two-photon absorption process can only excite even parity states. For two incom-
ing photons with identical polarization Ein, the corresponding two-photon absorption
amplitudes are given by the symmetrical cross product (6.9),

OTPDD ∼ Ein ⊗Ein . (6.21)

The stimulated excitons transform according to Γ+
5 . Due to their parity, they cannot

emit photons in a dipole process. For SHG to become possible, a perturbation has
to break the inversion symmetry. In the field-free case, this is accomplished by the
wave vector K, allowing for quadrupole emission processes. For a given polarization
of outgoing SHG light Eout, the associated quadrupole transition amplitudes transform
like the symmetrical cross product (6.10),

OQ ∼K ⊗Eout . (6.22)

Combining both steps, the wave-vector induced SHG amplitude MK is proportional to

MK(Ein,Eout,K) ∼ (Ein ⊗Ein) · (K ⊗Eout) . (6.23)

A different way to break the inversion symmetry is to apply an external electric field.
This causes the Γ+

5 excitons to gain an admixture of dipole-allowed Γ−4 states. This
makes a dipole emission step possible. The first order transition amplitude for a dipole
emission process from the Γ+

5 exciton state ψ5+
i to the ground state of the crystal |g〉 is

then given by

OFD,i ∼
∑
j,k,l

Eout
l Fj

〈ψ5+
i |V Fj |ψ4−

k 〉〈ψ4−
k |V D

l |g〉
Ek − ~ωout

. (6.24)

Here, V D
l is the term of the dipole operator belonging to the component of the polariza-

tion of the outgoing light Eout
l and transforms according to Γ−4 , as does the perturbation

V Fj belonging to the component Fj of the electric field. The projection operator

P 4− =
∑
k

|ψ4−
k 〉〈ψ4−

k |
Ek − ~ωout

(6.25)

transforms according to the irreducible representation Γ+
1 . For a nonvanishing contribu-

tion, the total matrix element for a given term in the sum over j and l has to transform
as Γ+

1 . Since the ground state |g〉 belongs to Γ+
1 , this can only happen if the com-

plete operator between bra 〈ψ5+
i | and ket |g〉 transforms as Γ+

5 . The matrix element is
thus proportional to the group theoretical coupling coefficients belonging to the product
Γ−4 ⊗ Γ−4 → Γ+

5 , which give the symmetrical cross product of the outgoing polarization
Eout with the electric field F ,

OFD ∼ F ⊗Eout . (6.26)
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6.2. Discussion of selection rules

Taking the two-photon absorption step into account, the electric-field induced SHG
amplitude MF is given by

MF(Ein,Eout,F) ∼ (Ein ⊗Ein) · (F ⊗Eout) . (6.27)

Comparing formulas (6.23) and (6.27), we see the close analogy between the wave vector
K and the electric field F in inducing an SHG signal.

6.2.2 Separating magneto-Stark effect and Zeeman effect in for-
bidden directions

Second Harmonic Generation induced by the finite wave vector K is not always possible.
If K is directed along an axis with a C2 symmetry, an argument analogous to the one for
the inversion symmetry above shows that the SHG signal vanishes. Group theoretically,
the two-photon absorption process can only excite longitudinal states belonging to the
irreducible representation Γ1 in C2. Only transversal states of symmetry Γ2 can emit a
photon. The crystal has a C2 symmetry for rotations around the [001] and [110] axis
and their equivalents. SHG is thus forbidden along those directions.

The direction investigated in this chapter is given by K ‖ [110]. To produce a SHG
signal, the C2 symmetry has to be broken and states belonging to Γ1 and Γ2 have to be
coupled to each other. To this end, we consider the application of an external magnetic
field. In Faraday configuration, the C2 symmetry remains. It is therefore necessary to
apply the field in Voigt configuration. We choose B ‖ [110]. In this case, in addition to
the magnetic field the magneto-Stark electric field has to be treated as well. According to
Eq. (5.1) it is directed along F ‖ [001]. Both the magnetic field and the electric field each
induce a contribution to the SHG signal. The magnetic field breaks the C2 symmetry
and produces exciton eigenstates containing Γ1 and Γ2 admixtures as necessary. The
emission step still results from a quadrupole process and can therefore be described
using Eq. (6.22). For the electric field, the description given in Sec. 6.2.1 is valid and
Eq. (6.27) can be used if the Zeeman splitting is weak.

Evaluating these formulas in the given configuration reveals that the quadrupole emis-
sion induced by the Zeeman effect and the dipole emission induced by the magneto-Stark
effect have orthogonal polarizations to each other. Orienting the analyzer according to
Eout,1 ‖ [110], only electric-field induced dipole processes are possible. By contrast, for
Eout,2 ‖ [001] only quadrupole emission is observable. This allows for the possibility of
separating Zeeman-induced SHG from magneto-Stark-induced SHG. Combining Eout,1

with Ein,1 ‖ [11
√

2], a SHG signal caused only by the electric field can be observed.
To accomplish the same for the Zeeman effect, we need to understand the effect of the
magnetic field in greater detail.
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6. Second harmonic generation in magnetic fields

6.2.3 Symmetry reduction by the magnetic field

A magnetic field reduces the symmetry of the system and leads to a mixing of previously
uncoupled states. The principal effect relevant for SHG production is the coupling of
states in the degenerate spaces belonging to the irreducible representation Γ+

5 and the
consequent lifting of their degeneracy. As the magnetic field is of even parity, SHG is
only produced by the combination of a two-photon excitation with a quadrupole emission
process involving these states. Using Eqs. (6.9) and (6.10), a sum of basis vectors
transforming like the Γ+

5 states ψ5+
yz , ψ5+

xz and ψ5+
xy can be assigned to the two-photon

and quadrupole amplitudes for a given pair of polarizations of the incoming and outgoing
light. An exciton state can generally be excited in a two-photon absorption process if
it has a nonzero overlap with the resulting vector for the two-photon amplitudes. It
can emit in a quadrupole step if it has a nonzero overlap with the resulting vector for
the quadrupole amplitudes. SHG is thus possible if the admixture by the magnetic field
produces exciton states fulfilling both conditions.

To apply these rules in specific cases, we first need to understand the effect of the
magnetic field on the exciton states. To this end we will use a perturbation theoretical
approach, considering the mixture of the Γ+

5 states to leading order in B. We have to
consider the lifting of the degeneracy through the magnetic field, leading to mixtures
of zeroth order when the splitting is larger than the linewidths of the states. Using the
coupling coefficients in Ref. [76], we see that we have to diagonalize the following matrix
with the identification e1 = ψ5+

yz , e2 = ψ5+
xz , e3 = ψ5+

xy , B = (B,B, 0),

HB ∼
1√
2

 0 −Bz By

Bz 0 −Bx

−By Bx 0

 =
1√
2

 0 0 B
0 0 −B
−B B 0

 . (6.28)

The eigenvectors are

ψ5+
0 =

1√
2

1
1
0

 , ψ5+
±1 =

1

2

 −1
1

∓i
√

2

 , (6.29)

where the states can be classified according to a magnetic quantum number as given
in the subscript of ψ with quantization axis along the [110] direction. Note that the
resulting eigenstates couple longitudinal and transversal polarizations. They therefore
allow for a SHG signal for arbitrary nonvanishing magnetic field strength if the polar-
izations are chosen correctly. In fact, these states can of course already be used in the
degenerate case without a magnetic field. The reason why a significant SHG signal is
only visible for sufficiently high fields lies in the linewidths of the states. To the degree
that the different lines overlap, destructive interference prevents the production of SHG
light. Physical intuition for this behavior can be gained by understanding the behavior
of the Γ+

5 excitons as damped oscillations in the crystal,

ξi(t) = ξie
−γteiωit , (6.30)
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6.2. Discussion of selection rules

with i = 0,±1 denoting the oscillation modes belonging to the states ψ5+
i with frequen-

cies ωi = Ei/~ and

ξ0 =
1√
2

1
1
0

 , ξ±1 =
1

2

 −1
1

∓i
√

2

 . (6.31)

The damping γ is proportional to the linewidths of the states. The femtosecond pulse
stimulates an initial amplitude according to

ξ(t = 0) ∼ Ein ⊗Ein . (6.32)

After the stimulation, the oscillatory modes evolve as given in Eq. (6.30). At every time
t, the excitonic oscillation is connected to a macroscopic polarization P via

P (t) ∼K ⊗ ξ(t) , (6.33)

which will finally produce the observed SHG light at the boundary of the crystal ac-
cording to I(t) ∼ |Eout ·P (t)|2. In the configuration considered here, the mode ξ0 does
not produce a macroscopic polarization in the crystal, since K ⊗ ξ0 = 0. The other two
modes are associated with a circular polarization,

P±1(t) ∼K ⊗ ξ±1(t) = ± i

2
e−γteiω±1t

 1
−1

∓i
√

2

 . (6.34)

Because both modes can only be stimulated through their xy parts, they are excited
with the same amplitude but differing sign. The total polarization Ptotal(t) is therefore
linear with a polarization plane normal to the [110] direction. The polarization vector
rotates in this plane with the beat frequency ωB = (ω+1 − ω−1)/2 determined by the
difference of the individual frequencies belonging to the oscillatory modes,

Ptotal(t) ∼ e−γtei
ω+1−ω−1

2
t

 cos(ωBt)
− cos(ωBt)√

2 sin(ωBt)

 . (6.35)

Directly after the stimulation by the femtosecond pulse, the polarization points along
the longitudinal direction [110] and no SHG is possible. A SHG signal is produced
to the degree that the polarization vector is rotated into the transversal [001] or [001]
direction and the emitted photons are therefore polarized along the z axis. This process
is determined by the competition between the Zeeman-induced beat frequency ωB and
the damping γ. The integrated intensity and therefore the total number of detected
photons is proportional to∫

I(t)dt ∼
∫ ∞

0

∣∣Eout
z e−γt sin(ωBt)

∣∣2 dt ∼ |E
out
z |2ω2

B

γ(ω2
B + γ2)

. (6.36)
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6. Second harmonic generation in magnetic fields

Since ωB ∼ B for small field strengths, the number of photons detected is to leading
order quadratic in B.

The preceding discussion reveals that only an incoming polarization exciting Γ+
5 states

transforming according to xy can produce SHG light. Returning to our goal of separating
Zeeman and magneto-Stark effect, we can combine Eout,2 ‖ [001] with Ein,2 ‖ [110]
to generate a SHG signal induced by the Zeeman effect alone.

6.2.4 Additional consideration of the Γ−4 states

The preceding discussion only took the Γ+
5 states into account. We now want to consider

the role of the dipole-active Γ−4 excitons. To become SHG-allowed, they have to be
mixed with the Γ+

5 states. This can only happen if the inversion symmetry is broken.
The magnetic field alone can therefore not induce a SHG signal mediated by odd parity
states. For this, we have to turn our attention to the magneto-Stark effect. Since the
Γ−4 states can emit photons in a dipole process, the two-photon absorption has to be
modified here to make SHG allowed. The two-photon absorption transition amplitude
for a Γ−4 state ψ4−

j due to the presence of the electric field is given by

O
F ,Γ−4
TPDD,j ∼

∑
i,k,l

(Ein ⊗Ein)iFl ×
〈g|V DD

i |ψ5+
k 〉〈ψ5+

k |V Fl |ψ4−
j 〉

Ek − 2~ωin

. (6.37)

The relevant components of the two-photon operator V DD
i transforming as Γ+

5 are given
by

V DD
i =

∑
j,k

|εijk|√
2

∑
l

V D
j |l〉〈l|V D

k

El − ~ωin

, (6.38)

with the Levi-Cevita symbol εijk, the dipole operators V D
j,k for the individual steps and

the virtual intermediate states |l〉. The components of the perturbation belonging to the
electric field V Fl behave as Γ−4 . The projection operator

P 5+ =
∑
k

|ψ4−
k 〉〈ψ4−

k |
Ek − ~ωout

(6.39)

again transforms according to Γ+
1 . The matrix elements are thus also proportional to the

same coupling coefficients as in the discussion of the Γ+
5 states. The modified two-photon

absorption amplitude is therefore given by

O
F ,Γ−4
TPDD = F̂ ⊗ (Ein ⊗Ein) . (6.40)
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6.2. Discussion of selection rules

The Γ−4 states emit SHG radiation by a dipole step. The SHG transition amplitude is
thus proportional to

M
Γ−4
F (Ein,Eout,F) ∼ OTPDD,F ·OD

= (F̂ ⊗ (Ein ⊗Ein)) ·Eout

= (Ein ⊗Ein) · (F̂ ⊗Eout) , (6.41)

and we get the same formula as for the Γ+
5 states. Our conclusions regarding the polariza-

tion dependencies of the Zeeman-induced and magneto-Stark-induced SHG amplitudes
thus remain unchanged by the additional consideration of the Γ−4 excitons. In particular,
it remains the case that with the combination of polarizations given by Ein,1 ‖ [11

√
2]

and Eout,1 ‖ [110] only SHG induced by the magneto-Stark effect is visible and with the
combination of polarizations given by Ein,2 ‖ [110] and Eout,2 ‖ [001] only SHG induced
by the Zeeman effect is visible.

These combinations of polarizations for the incoming and outgoing light allow for the
separation of the Zeeman and magneto-Stark effect to the degree that the approxima-
tions made in the preceding discussion are valid. In the first configuration with Ein,1

and Eout,1, quadrupole emission is forbidden entirely. Restricting our treatment to the
dominant contributions, only the electric-field induced mixture of Γ−4 and Γ+

5 excitons
can produce any SHG signal at all, even for strong fields. For the second configuration
with Ein,2 and Eout,2, only weaker statements are possible. The electric-field induced
SHG vanishes only if the Zeeman splitting between the states is small. Still, if the en-
ergetic distance of a SHG-active Γ+

5 multiplet to the dipole-active Γ−4 states is large,
the contribution of dipole emission processes remains minor. This effect can be seen in
Fig. 6.2, where the second combination of polarizations is used. The high energy 3D
line shows an especially small influence of the electric field, its intensity being almost
unaffected by variations in the strength of dipole emission processes. This is probably
explained by its high energetic distance to the 3P lines and other odd parity states as
stated above.
Apart from allowing for the separation of Zeeman and magneto-Stark effect, the formulas
for the SHG amplitudes derived in this section can be used for the detailed discussion of
the polarization dependencies of the SHG signal. Since MF(Ein,Eout,F) and the ampli-
tude induced by the magnetic field are different functions of the polarizations, the effects
can be distinguished experimentally. Complementary to the discussion here, this is done
in the manuscript by A. Farenbruch et al. [109], where the polarization dependencies for
SHG processes other than the ones considered here are studied as well.
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6. Second harmonic generation in magnetic fields

6.3 Source of experimental data

The experiment was carried out by the experimental group under M. Bayer at the TU
Dortmund University. The experimental set-up is described in Ref. [109]. It allows
for the application of magnetic fields with strengths up to 10 T in Faraday and Voigt
configuration to the sample, which was cooled down to 1.4 K. Using half-wave plates,
the linear polarization of the incoming laser light and of the outgoing SHG light can be
varied independently. Excitons were excited by a femtosecond laser pulse (200 fs, spectral
width of 10 meV) with a frequency-doubled intensity profile centered on 2.164 eV and
a FWHM of 14 meV, cf. Ref. [64]. To take its influence into account for the numerical
calculations, we convolute the numerically obtained spectrum with a Gaussian function
with the appropriate parameters.

6.4 Presentation of spectra

In Fig. 6.4, both experimental and numerical spectra with the polarizations discussed in
Sec. 6.2 are shown. A general agreement between experiment and numerical spectra is
observed. Some discrepancies remain: For both spectra, the numerical features in the
region of the 3S states are too strong. This is probably due to the central-cell corrections
as explained at the end of Sec. 6.1.4.

In general, the SHG spectrum is determined by a combination of the Zeeman and
magneto-Stark effect. In Fig. 6.5, we show additional examples of magnetic-field-induced
SHG spectra in a forbidden direction. The used combination of polarizer and analyzer in
Fig. 6.5 (a) produces a spectrum that is a product of both the Zeeman and magneto-Stark
effect in full generality, whereas Fig. 6.5 (b) shows another spectrum entirely produced
through the MSE, since K ⊗Eout = 0 in this case. Here too, in both cases reasonable
agreement between experiment and numerical simulation is achieved. In the numerical
data in Fig. 6.5 (a), a strong feature appears for E ≈ 2.162 eV, B ≈ 8− 10 T that is not
seen in the experiment. The two remarks from the end of section 6.1.4 apply here: The
inaccuracies in the central-cell corrections and the linewidths lead to an overestimated
SHG intensity. Fig. 6.5 (b) on the other hand shows generally good agreement.

In Fig. 6.6, we show pictures of SHG along the allowed direction [111]. Some agreement
is observed, but there are also significant differences. Most evidently, the D excitons are
stronger than the S excitons in the numerical data, but in the experiment the reverse is
the case. A possible explanation is to be found in the treatment of the center-of-mass
motion. Due to the inversion symmetry of cuprous oxide, the SHG signal in the field-
free case can be thought of as being induced by the finite wave vector K. For B 6= 0,
this will give an additional contribution to the spectrum that requires a more careful
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Zeeman configuration
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Figure 6.4.: Experimental SHG spectra in arbitrary units with (a) Ein,1 ‖
[
11
√

2
]
,

Eout,1 ‖ [110] and (b) Ein,2 ‖ [110], Eout,2 ‖ [001]. The wave vector points
along the [110] axis and the magnetic field is applied in [110] direction. The
spectra on the left hand side are mediated through the magneto-Stark effect
and the spectra on the right are mediated by the Zeeman effect. The main
features visible belong to excitons with principal quantum numbers n = 3
and n = 4. The corresponding numerically calculated spectra (see Eq. (6.2))
are shown in (c) and (d). Experimental data taken from Ref. [111].

consideration of the center-of-mass motion than the one used here. For SHG in forbidden
directions, the center-of-mass motion by itself does not induce a SHG signal, and thus
our treatment is sufficient in that case. As expected, the Voigt configuration as seen in
Fig. 6.6 (b) shows more features compared to the Faraday configuration in Fig. 6.6 (a)
due to the additional mixing caused by the electric field.
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Figure 6.5.: Experimental SHG spectra (blue lines) with B || [001], K || [110] and (a)

Ein || [11
√

2], Eout || [11
√

2] and (b) Ein || [110], Eout || [110]. The cor-
responding numerically simulated spectra (grayscale) have been shifted by
−0.5 meV to allow for a better comparison. The main visible features be-
long to excitons with principal quantum numbers n = 3 and 4. The feature
visible at E ≈ 2.162 eV, B ≈ 8 − 10 T in the numerical spectrum in panel
(a) has an intensity exceeding the color palette scale and is most likely due
to some numerical artifact. Experimental data taken from Ref. [111].

(a)

2.160 2.164 2.168 2.172

SHG Energy [eV]

 0

 2

 4

 6

 8

 10

 12

M
ag

n
et

ic
 F

ie
ld

 [
T

]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

3S 3D 4S 4D

(a)

2.160 2.164 2.168 2.172

SHG Energy [eV]

 0

 2

 4

 6

 8

 10

 12

M
ag

n
et

ic
 F

ie
ld

 [
T

]

3S 3D 4S 4D

(b)

2.160 2.164 2.168 2.172

SHG Energy [eV]

 0

 2

 4

 6

 8

 10

 12

M
ag

n
et

ic
 F

ie
ld

 [
T

]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

3S 3D 4S 4D

E
in

 || [11
–
2]

E
out

 || [11
–
2]

I

(b)

2.160 2.164 2.168 2.172

SHG Energy [eV]

 0

 2

 4

 6

 8

 10

 12

M
ag

n
et

ic
 F

ie
ld

 [
T

]

3S 3D 4S 4D

E
in

 || [11
–
2]

E
out

 || [11
–
2]

I

Figure 6.6.: Experimental spectra (blue lines) with K ‖ [111], Ein ‖ Eout ‖ [112] in
(a) Faraday configuration with B ‖ [111] and (b) Voigt configuration with
B ‖ [110]. The corresponding numerically simulated spectra (shifted by
−0.5 meV) are shown in grayscale. The main features visible belong to
excitons with principal quantum numbers n = 3 and 4. Note that the 3D
line in panel (a) exceeds the upper limit of the gray scale. Experimental
data taken from Ref. [111].
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7
Rydberg excitons in
electric and magnetic
fields

In Chapters 5 and 6, we studied the application of an external magnetic field. In the
Voigt configuration, this led to an additional effective electric field over the magneto-
Stark effect. The resulting electric field strengths were quite small. By contrast, we
now want to explore field strengths in the regime where autoionization takes place. To
this end, we need to extend our numerical approach to include the complex-coordinate-
rotation method. In Refs. [65, 111], absorption and second-harmonic generation spectra
of magnetoexcitons in cuprous oxide have been calculated numerically and compared
with experimental data. We thus want to extend these results to external electric fields
and parallel electric and magnetic fields. The spectra calculated in this chapter have
been published in Ref. [93].

Taking proper account of the complex valence band structure allowed Schweiner et
al. to calculate the spectra of excitons and magnetoexcitons [35, 65], achieving excellent
agreement with experimental data. In Chapter 5, we presented spectra extending this
approach to the Voigt configuration and discussed the effect of the perpendicular orien-
tation of exciton momentum and magnetic field in the framework of the magneto-Stark
effect. Due to the weakness of the induced electric field, the line positions are only very
weakly affected. The more prominent consequence is a reshuffling of oscillator strength
to a greater number of lines due to the reduced symmetry and associated mixing of
states.

In this chapter, we want to discuss the application of an external electric field to
the spectra, which leads to the dissociation of excitons as investigated by Heckötter et
al. [139]. They observed similar behavior as known from the Stark effect in atoms, with
stronger dissociation for higher principal quantum numbers n, but weaker dissociation
for higher energies within a multiplet of fixed n. In Ref. [139], the results were compared
to calculations with a simplified model.

Here, we want to go beyond these calculations and include the valence band terms into
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7. Rydberg excitons in electric and magnetic fields

the description, which is required for the proper treatment of the crystal environment
with cubic symmetry. For the calculation of the autoionization resonances, we use the
complex scaling method [94–96] as introduced in Sec. 2.7, which has also already been
applied to the calculation of resonances of the hydrogen atom in external fields [140–143].
We calculate the appearance of resonance states in the absorption spectra in Faraday
configuration as a function of the applied fields strengths, first for an applied electric
field and then for parallel electric and magnetic fields. The solution of the Schrödinger
equation in a complete basis additionally allows for the calculation of relative oscillator
strengths.

We first present the theoretical model used in this chapter in section 7.1 before pre-
senting results in section 7.2.

7.1

Application of an external electric

field

In this chapter, we use the Hamiltonian (2.2) including external fields as described in
Sec. 2.4. We neglect the central-cell corrections because we are interested in exciton
states with high principal quantum numbers, which are less affected by them. It reads,

H = Eg +He(p+ eA(r)) +Hh(−p+ eA(r)) + V (r) +HB + VF (r) , (7.1)

where the magnetic field is added in the same way as in previous chapters. The electric
field F is added in the term

VF (r) = −eF · r . (7.2)

In comparison to Chapters 5 and 6, the electric field here is strong enough to cause
autoionization. We thus use the complex-coordinate-rotation method as described in
Sec. 2.7 to treat the resulting resonances.

The resulting Hamiltonian is diagonalized as outlined in Sec. 2.8. With the calculated
eigenstates we can obtain the oscillator strengths for circularly polarized light using

frel ∼
(

lim
r→0

∂

∂r
〈σ±z |Ψ(r)〉

)2

(7.3)

with ∣∣σ+
z

〉
= |2,−1〉D,

∣∣σ−z 〉 = −|2, 1〉D. (7.4)

We use the abbreviation

|Ft,MFt〉D = |(Se, Sh)S, I; I + S, L; Ft, MFt〉
= |(1/2, 1/2) 0, 1; 1, 1; Ft, MFt〉 . (7.5)
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7.2. Discussion of spectra

We can then calculate the absorption spectrum using [144]

f(E) = − 1

π
Im
∑
j

f
(j)
rel

E − Ej
(7.6)

with the energy E and the complex energies Ej of the resonances.

7.2 Discussion of spectra

We present the investigated resonances in the complex energy plane and the resulting
absorption spectra for circularly polarized light. We only show resonances and removed
the bound states from the spectra, which otherwise would appear as delta-like peaks.
Note that we only include the linewidths caused by the ionizing effect of the electric
field, the broadening caused by the interaction with phonons is not included.

We begin with excitons in an external electric field and afterwards in parallel electric
and magnetic fields.

7.2.1 Electric fields in [001] direction

In Figs. 7.1 and 7.2 we show the complex resonances and absorption spectrum for excitons
in an external electric field along the [001] axis with field strengths F = 7200 V/m and
F = 9000 V/m, respectively. We can see that the spectra for σ+ and σ− polarized light
are identical.

We first discuss the spectrum at F = 7200 V/m, Fig. 7.1, which includes resonances
with principal quantum numbers in the range of n = 8 to n = 15. Since the linewidth and
lifetime are inversely related, long-lived resonances manifest as thin peaks. As known
from the hydrogen atom in electric field, the linewidths increase with increasing principal
quantum number n, but within each n-multiplet the linewidth decreases with the energy,
although the different multiplets already strongly overlap at this field strength, so this
is hard to verify in our spectra.

We can compare the spectrum with the situation when the electric field is increased
to F = 9000 V/m, as shown in Fig. 7.2. As expected, additional long-lived resonances
appear at lower energies and the linewidths of the resonances are increased in general.

This point is underlined in Fig. 7.3, where multiple spectra with different electric fields
ranging from F = 3400 V/m to F = 21600 V/m are shown. Note again, that only the
resonances are shown, meaning that there are additional bound states which are not
depicted, mostly at lower energies.

The figure helps illustrate the effects of increasing the electric field strength. Most
evidently, the range where resonances are found increases from bottom to the top. Owing
to the lowering of the potential barrier (cf. Fig. 2.3), additional bound states become
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Figure 7.1.: Lower panel : Resonances in the complex energy plane with an applied elec-
tric field F = 7200 V/m in [001] direction. The color shows the absolute
value |frel| of the relative oscillator strength for σ± polarized light. Upper
panel : Corresponding simulated absorption spectrum. Light with σ+ and
σ− polarization leads to coincident spectra. Taken from Ref. [93]. Lower
panel: Resonances in tResonances in the complex energy plane with an
applied electric field
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Figure 7.2.: Same as figure 7.1 but with F = 9000 V/m. Taken from Ref. [93].

resonances at lower energies. Additionally, the Stark effect leads to a fan-like splitting of
states which contributes to this observation. The lowering of the potential barrier also
shifts the resonances down in the complex plane, leading to a broadening.

Note that we could not yet assign any quantum numbers, even approximate, to our

86



7.2. Discussion of spectra

 2.167  2.168  2.169  2.17  2.171  2.172  2.173

f(
E

)

E in eV

21600 V/m
19800 V/m
18000 V/m
16200 V/m
14400 V/m
12600 V/m
10800 V/m

9000 V/m
7200 V/m
5400 V/m
3600 V/m

Figure 7.3.: Resonance spectra for σ± polarized light as a function of the electric field.
The electric field is orientated in the [001] direction and varies from F =
3600 V/m (bottom) to F = 21600 V/m (top). Taken from Ref. [93].

calculated resonances, since doing so would have required a much smaller stepsize when
increasing the field strength, which was beyond our numerical capabilities.

7.2.2 Parallel electric and magnetic fields

The calculation of resonances in an external electric field as in section 7.2.1 is an impor-
tant test case for the application of the complex-coordinate-rotation method. Now we
want to go beyond this and additionally apply a magnetic field, also in [001] direction.
We thus have the situation of parallel electric and magnetic fields.

In Figs. 7.4 and 7.5 we present resonances and absorption spectra for σ− polarized and
σ+ polarized light respectively. The electric field strength is F = 7200 V/m as in Fig. 7.1,
but here we add a magnetic field B = 0.5 T. This leads to an additional reduction of the
symmetry of the system, completely lifting the degeneracy of the spectrum. Because of
this, the spectra for the different polarizations differ now, in contrast to Figs. 7.1 and 7.2.
As known from Ref. [65], σ− polarized and σ+ polarized light excites different excitons
in a magnetic field parallel to [001]. Using our coupling scheme, we can deduce that
states with large admixtures of L = 1, Ft = 2, MFt = −1 respond to σ+ polarized light
and states with large admixtures of L = 1, Ft = 2, MFt = +1 respond to σ− polarized
light. Again, we are unable to assign quantum numbers to the calculated states.
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Figure 7.4.: Complex resonance positions and corresponding spectrum for parallel elec-
tric and magnetic field along [001] direction with F = 7200 V/m and
B = 0.5 T. The light is σ− polarized. Taken from Ref. [93]. lower panel:
Resonances in tResonances in the complex energy plane with an applied
electric field
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Figure 7.5.: Same as figure 7.4 but with σ+ polarized light. Taken from Ref. [93].

Excitons in parallel fields form a non-Hermitian system with two controllable external
parameters. This opens up the possibility for the observation of exceptional points. Feld-
maier et al. theoretically investigated this prospect in a hydrogenlike model, observing
that the required field strengths are much more experimentally accessible than in the
hydrogen atom [145]. Our results thus provide an important stepping stone towards the
study of exceptional points in excitons of the yellow series under the full consideration of
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7.2. Discussion of spectra

the band structure and additional corrections. This will help advance the experimental
search for exceptional points in Rydberg systems.

In Chapter 8, we will look at another application of the complex-coordinate-rotation
method, the green exciton series. On the basis of this, we can then go on to calculate
interseries transitions between the yellow and green series in Chapter 9.
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8 The green exciton series
in cuprous oxide

In Chapter 7 we needed to introduce resonances with complex energies in order to take
autoionization in the presence of an external electric field into account. We here nu-
merically investigate the states of the green exciton series in cuprous oxide. Considering
the coupling to the yellow series and especially to the yellow continuum, the green ex-
citons are also quasibound resonances with a finite lifetime which cannot conveniently
be described with Hermitian operators. To calculate their positions and linewidths, we
thus use the method of complex-coordinate rotation again, leading to a non-Hermitian
complex eigenvalue problem as well. We first investigate the odd parity states, finding
that the behavior of the dominant P states is very well approximated by a modified Ryd-
berg formula using a negative quantum defect. The corresponding linewidths induced
by the coupling to the yellow continuum decrease with the third power of the principal
quantum number. We published these results in Ref. [146].

We then extend the calculations by the inclusion of the central-cell corrections and
present the even parity green states, completing the calculation of the green resonances.
We investigate several features of the even-parity spectrum, including the linewidths,
two-photon absorption strengths and exchange splittings of the most prominent S states.

In an idealized model, excitons can be described as bound states between electrons
and holes. In general, a range of mechanisms make scattering possible and induce a
finite linewidth. The excitons become quasibound states or resonances. In case of the
yellow excitons, the most prominent process is the scattering with phonons [73, 74].
Bound states can also become resonances by application of an external electric field,
which allows for tunneling processes into the unbound region [93, 139].

In cuprous oxide, the excitons constituted by electrons in the lowest conduction Γ+
6

band and holes in the highest Γ+
7 valence band are part of the yellow exciton series.

An electron can also be lifted from the Γ+
8 valence band into the Γ+

6 conduction band,
forming a green exciton [51, 147, 148]. Since the energy of the Γ+

8 valence band is lowered
by an amount ∆ in comparison to the uppermost Γ+

7 valence band, all green excitons,
except for the even parity 1S states investigated in [38, 60], lie within the energy range
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8. The green exciton series in cuprous oxide

of the yellow continuum. Yellow and green states are coupled by the valence band
structure [35, 86], and the green states with principal quantum numbers n ≥ 2 are
therefore resonances instead of truly bound states.

An efficient numerical method for the computation of the bound states of Cu2O in-
cluding the impact of the valence band structure (but ignoring the phonon coupling) is
the diagonalization of the Hamiltonian using a complete basis set [35, 38]. The method
can be applied to obtain the bound states of the yellow exciton series at energies below
the gap energy Eg = 2.17208 eV and the green 1S excitons, which are the only bound
states of the green exciton series. However, the Hermitian eigenvalue problem does not
allow for the computation of unbound resonance states.

Recent work by Krüger and Scheel has focused on the interseries transitions such as
between the yellow and green excitons [66], which we will discuss in Chapter 9. A better
understanding of the unbound resonances of the green series is a valuable prerequisite for
this. A convenient description of these resonance states is achieved by the introduction of
a complex energy, where the imaginary part is related to the linewidth of the quasibound
state. These complex energies can be calculated by way of the complex-coordinate-
rotation method [94–96] as presented in Sec. 2.7, where a complex scaling operation is
performed to expose the resonance positions in the complex plane. In this chapter we
again augment the numerical algorithm introduced in Refs. [35, 38] for the computation
of bound excitons by application of the complex-coordinate rotation. This rotation turns
the Hermitian eigenvalue problem into a non-Hermitian system, and thus allows for the
computation of the complex resonance energies of the green excitons. To this end, we
first recall the associated theory in Sec. 8.1. We present our numerical results on the odd
and even parity states in Secs. 8.2 and 8.3, respectively, and discuss their implications.

8.1 The green excitons

To study the green excitons, we can use the theoretical description given by the Hamil-
tonian (2.2), since it provides a unified model of the yellow and green series,

H = Eg +He(pe) +Hh(ph) + V (re − rh) + VCCC . (8.1)

At first, we only study the odd-parity excitons in this chapter and hence leave out the
central-cell corrections, adding them back in for the calculation of the even-parity states.
The crucial difference between the yellow and green series arises from the spin-orbit
coupling

HSO =
2

3
∆

(
1 +

1

~2
I ·Sh

)
, (8.2)

which is part of the hole kinetic energy Hh(ph). It can be diagonalized by introducing
the effective hole spin J = I + Sh. We thus obtain a splitting between states with
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Eg

∆

Yellow series Green series

ny = 2

ny = 1

ngr = 1

Crystal ground state

Figure 8.1.: Scheme of the relative energetic arrangements of the yellow and green exciton
series. All green excitons except for the 1S state are located inside of the
yellow continuum. The valence band structure couples these states to the
continuum, making them resonances rather than bound states. The arrows
indicate transitions from the crystal ground states into the two exciton series.
Here, we will study transitions like those indicated by the arrows going to
the right side, i.e., to the green series.

J = 1/2 and J = 3/2. The former belong to the yellow series and the latter to the
green series. The expression (8.2) is set up in such a way that the yellow J = 1/2
states remain unaffected, while the green J = 3/2 states are lifted by the energy ∆.
This leads to the situation depicted in Fig. 8.1. Since the green exciton states above
the yellow threshold are coupled to the yellow continuum, they are not bound states but
quasibound resonances. For this reason, we have to use the complex-coordinate-rotation
method as outlined in Sec. 2.7 and used in the previous Chapter 7.

For the calculation of the even-parity series, we also need to take into account the
central-cell corrections. The matrix elements for the Haken potential, given in Appendix
D of Ref. [38], requires the evaluation of a sum of alternating terms with large absolute
values. To study resonance states, we additionally need to perform the complex rotation.
Implementing the central-cell conditions under these conditions is the step which allows
us to go beyond Ref. [146] and calculate the green even parity states.

One-photon transition spectra Using the eigenfunctions obtained from the solution
of the resulting generalized eigenvalue problem (2.27), we are able to simulate absorption
spectra for the yellow and green series. The absorption coefficients for the odd-parity
states are calculated with the formula [93]

σ(E = ~ωph) ∼= Im
∑

f

f f
rel

Ef − E
, (8.3)
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where Ej are the complex energies of the resonance states and

frel ∼
(

lim
r→0

∂

∂r

〈
σ±z
∣∣Ψ(r)

〉)2

(8.4)

is the complex generalization of the relative oscillator strength. The overlaps with the
states

|σ+
z 〉 = |2,−1〉D, |σ−z 〉 = −|2, 1〉D, (8.5)

determine the spectrum for σ+ and σ− polarized light. Here, we use the abbreviation

|Ft,MFt〉D = |(Se, Sh)S, I; I + S, L; Ft, MFt〉
= |(1/2, 1/2) 0, 1; 1, 1; Ft, MFt〉 , (8.6)

to denote the states with a coupling scheme differing from the one in the basis states.

Two-photon transition spectra In the yellow and green series in cuprous oxide, one-
photon dipole transitions can only excite odd parity states. Since we are also interested
in even parity excitons here, we additionally study two-photon absorption processes [132]
in the following.

For the calculation of the two-photon oscillator strengths, we first have to consider the
tensor product of irreducible representations Γ−4 ⊗Γ−4 = Γ+

1 ⊕Γ+
3 ⊕Γ+

4 ⊕Γ+
5 resulting from

the combination of the two dipole operators belonging to the two photons. As discussed
in greater detail for example in Ref. [111], only the term with irreducible representation
Γ+

5 contributes to leading order. In the following, we only consider processes where the
two-photon operator transforms according to this representation. Only states of the
same symmetry Γ+

5 can then be excited. It is thus useful to get an overview of the
relevant states and their irreducible representations in Sec. 8.3.1.

For a detailed numerical calculation of the relative two-photon oscillator strengths, we
use the formula given in Ref. [38],

fTP
rel ∼ lim

r→0
T

〈
1, M ′

Ft

∣∣Ψ (r)
〉 〈

Ψ (r)
∣∣1, M ′

Ft

〉
T
, (8.7)

where |Ψ〉 is the wave function. |Ft, MFt〉T is an abbreviation for

|Ft, MFt〉T = |(Se, Sh) S, I; I + S, L; Ft, MFt〉
= |(1/2, 1/2) 0, 1; 1, 0; Ft, MFt〉 , (8.8)

where the coupling scheme of the spins and angular momenta differs from the one intro-
duced before.

Using the oscillator strengths (8.7), we can calculate the photoabsorption spectra. The
calculation of asymmetric Lorentz peaks as discussed in Refs. [93, 96, 144] in the case
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of one-photon absorption can be understood as an application of the optical theorem
of scattering theory [149], which relates the extinction cross section to the amplitude
for scattering in the forward direction. Adopting analogous reasoning for the case of
two-photon scattering, we obtain

σTP(E = 2~ωph) ∼= Im
∑

f

fTP,f
rel

Ef − 2~ωph

, (8.9)

where we additionally assumed that the laser frequency is approximately constant over
the investigated spectral range. The frequency of the incoming photon is denoted by
ωph. The summed terms (8.7) can be understood as the amplitudes for the excitation
of the resonance states f, followed by the relaxation back to the ground state with the
emission of the outgoing photon pair in the same direction, i.e. forward scattering. For
vanishing linewidths, Eq. (8.9) reduces to delta peaks.

8.2

The spectrum of odd-parity green

excitons

The results for both the yellow and green exciton series are presented in Fig. 8.2. In
the computations we have used the basis set (2.29) with N + L < 50, |α| = 63, and
θ = 0.14 and restricted ourselves to the odd states, as only those contribute to the
absorption coefficient of one-photon transitions. In the lower part of Fig. 8.2 we show
the resonance positions of the yellow and green exciton series in the complex energy
plane. Clearly visible are the bound states of the yellow exciton series at energies below
the gap energy Eg and the resonances of the green exciton series at energies below the
band edge Eg + ∆. Above the band edges energies are bundled along straight lines and
rotated into the complex plane. The rotation angle is nearly given by 2θ as is expected for
complex rotated continuum states [94–96]. Note that the numerical resonance positions
are already rotated into the lower complex energy plane at energies slightly below the
band edges. This is a numerical artifact due to the finite size of the basis set.

The upper part of Fig. 8.2 presents the corresponding absorption spectrum obtained
with Eq. (8.3). Since we do not include the effects of phonons in our model, the yellow
exciton states here are bound states with infinite lifetimes. To avoid δ function type ab-
sorption peaks we have simulated the interaction with phonons by manually introducing
the finite linewidths

γn = 9 meV(n2 − 1)/n5 (8.10)

with an effective principal quantum number

n =
√
ERyd/(Eg − E) + δP (8.11)
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Figure 8.2.: Spectrum and resonance positions in the complex plane for the yellow and
green exciton series of Cu2O. Note that only the odd parity states are
included. The color bar shows the absolute value of the relative oscilla-
tor strength |frel|. As coupling with phonons is not considered here, the
linewidths of the yellow exciton states in the upper panel were put in by
hand, as explained in the text. The vertical lines mark the respective band
gaps. Due to the finite basis, the numerical resonance positions are already
rotated into the lower complex plane at a slightly lower energies. The ab-
sorption coefficient is given in arbitrary units and with an arbitrary shift of
the base line.

derived from the approximate Rydberg formula [30, 74] with ERyd = 92 meV and δP =
0.23.

The green exciton states, however, are true resonances even apart from phonons, since
they are coupled to the yellow continuum by the valence band structure. The linewidths
visible in the upper part of Fig. 8.2 are solely due to this effect. The continuum states of
both the yellow and green excitons provide for a square root function shaped background
starting at energies above the respective band edges.

We now want to discuss the classification and symmetries of resonances of the green
exciton series. The green excitons are defined by the condition J = 3/2. Additionally, we
have to consider the angular momentum L. The electron spin plays no role for the odd
states and remains a good quantum number. Thus, for the P states we have F = 1/2,
3/2, and 5/2. Reducing the symmetry to the octahedral group Oh, the irreducible
representations are Γ−6 , Γ−8 , and Γ−7 ⊕Γ−8 , respectively [76]. We have to take into account,
however, that the quasispin I transforms according to Γ+

5 instead of Γ+
4 . Since Γ+

5 =

96



8.2. The spectrum of odd-parity green excitons

Γ+
4 ⊗Γ+

2 , this can be done by performing the coupling of angular momenta as usual, but
multiplying by Γ+

2 in the end. For the P states, we thus have the representations Γ−6 ,
Γ−8 , Γ−7 , and Γ−8 . Note that the degeneracy of these states is doubled due to the electron
spin. Since half-integer angular momenta only have the above mentioned irreducible
representations in Oh [76], all states considered in this work can be classified according
to them. Of those, only Γ−6 and Γ−8 states are dipole active, because only those contain Γ−4
when multiplied with the electron spin symmetry Γ+

6 [76]. Additional consideration of the
degree of degeneracy then allows for the unique assignment of irreducible representations
to the odd exciton states as given in Appendix B.

In Table 8.1 and in Fig. 8.3 on the left the resonance positions of the dominant P states
are presented. We extract the band gap, Rydberg constant and quantum defect using a fit
of the form E(n) = Eg,green−Egr

Ryd/(n−δ)2. As expected, the fitted continuum threshold

Efit
g,green = 2.30302 eV shows excellent agreement with the band gap of the green excitons

Eg + ∆ = 2.30308 eV. For the Rydberg constant we obtain Egr
Ryd = 150.4 meV, which

is in good agreement with literature [60, 147, 150, 151]. In previous theoretical work by
Schöne et al. [150], the quantum defect of the green exciton series was investigated using
a simplified treatment of the valence band dispersion neglecting the coupling of the green
resonances to the yellow continuum, yielding negative quantum defects, which for the P
states are in reasonable agreement with our result of δ = −0.112. In Fig. 8.3 we also
present a fit without using a quantum defect. Detailed comparison shows that this fit is
slightly less accurate, especially for low principal quantum numbers. This motivates the

Table 8.1.: Numerically determined resonance positions of some of the lowest P states
belonging to the irreducible representation Γ−6 . The selected states produce
the dominant peak of each n-manifold in the absorption spectrum.

State ReE [eV] ImE [meV] Re frel Im frel

2P 2.26887 -3.01965 4.2998 5.8604
3P 2.28765 -0.90691 1.1603 1.8982
4P 2.29423 -0.38575 0.5028 0.8270
5P 2.29731 -0.19095 0.2571 0.4496
6P 2.29901 -0.10700 0.1337 0.2630
7P 2.30005 -0.06821 0.1416 0.1579
8P 2.30072 -0.04328 0.0519 0.1085
9P 2.30120 -0.03314 0.0438 0.0730

10P 2.30154 -0.02334 0.0302 0.0550
11P 2.30180 -0.01733 0.0268 0.0387
12P 2.30199 -0.01459 0.0198 0.0322
13P 2.30215 -0.01012 0.0168 0.0223
14P 2.30227 -0.00903 0.0118 0.0212
15P 2.30237 -0.00742 0.0105 0.0165

97



8. The green exciton series in cuprous oxide

 2.27

 2.28

 2.29

 2.3

 2  4  6  8  10  12  14

Determined by fitting: 

Eg,green = 2.30302 ± 0.00001 eV

R = 150.4 ± 1.4 meV

δ = -0.112 ± 0.016

E
 [

eV
]

n

 0.01

 0.1

 1

 10

 2  4  8  16

Determined by fitting: 

γ0 = 47.7 ± 0.5 meV

γ 
[m

eV
]

n

Figure 8.3.: Left: Numerically determined energies of the lowest dominant P states. The
band gap energy Eg,green, Rydberg constant R, and quantum defect δ are
determined by a fit (green solid line). For comparison, the dashed yellow
line shows a fit without quantum defect (see text). Right: The numerically
determined yellow-continuum induced linewidths of the dominant green P
states. A fit using the function γn = γ0n

−3 is in good agreement with the
numerical data.

validity of the quantum-defect corrected Rydberg formula also for the dominant P states
of the green exciton series. A more complete version of Table 8.1 is given in Appendix B,
where we assign quantum numbers to all odd parity states.

The green exciton series has already been experimentally investigated in Ref. [9]. At
temperature T = 4.2 K Gross found E2P = 2.266 eV, E3P = 2.287 eV, E4P = 2.294 eV
and E5P = 2.298 eV, which agrees with the numerical energies given in Table 8.1 to
within approximately 1 - 2 meV.

The behavior of the linewidths of the green excitons induced by the coupling to the
yellow continuum as a function of the principal quantum number is shown on the right
in Fig. 8.3. A function of the form γn = γ0n

−3 provides a good fit to the numerically
determined values. We obtain γ0 = 47.7 meV, which means that the yellow-continuum
induced linewidths of the dominant green P states are large compared to the phonon-
coupling induced linewidths of the yellow excitons given in Eq. (8.10). Assuming that
the phonon-coupling leads to similar linewidths for both the yellow and green excitons,
the widths of the green excitons shown in Fig. 8.2 would only slightly increase when
taking phonon-coupling into account, however, a more detailed theory of the phonons
or precise state-of-the-art experimental data are necessary to clarify this point.

8.3

The spectrum of even-parity green

excitons

In this section, we now want to extend our results to the case of the even-parity states,
like the S and D states. We start by exploring the general level-structure of the even-
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parity multiplets.

8.3.1 Classification of the even parity states of the green series

We want to understand the structure of the even green exciton spectrum and identify
the involved irreducible representations. We begin by discussing the situation in the
hydrogenlike model without the central-cell corrections and especially the exchange in-
teraction. In this case the electron spin Se does not appear in the Hamiltonian and
F = J + L is a good quantum number, taking half-integer values. In a model with
spherical symmetry O(3), the states of the spectrum can then be classified according to
F and its z-component MF .

Introducing the band-structure term reduces the symmetry to the cubic group Oh.
Even parity states with a half-integer spin can only have three irreducible representations,
which are Γ+

6 , Γ+
7 , and Γ+

8 [76].
Finally adding in the central-cell corrections and especially the exchange interaction,

we have to consider the product representations of Γ+
6 , Γ+

7 , and Γ+
8 with the representa-

tion Γ+
6 of the electron. They are given by [76]:

Γ+
6 ⊗ Γ+

6 = (Γ+
1 ⊕ Γ+

4 )

Γ+
7 ⊗ Γ+

6 = (Γ+
2 ⊕ Γ+

5 ) (8.12)

Γ+
8 ⊗ Γ+

6 = (Γ+
3 ⊕ Γ+

4 )⊕ Γ+
5 .

The exchange interaction only acts upon states with an S admixture. Representations
in brackets thus remain approximately degenerate as explained in the following. For
the green series the S states have L = 0 and J = 3/2, leading to F = 3/2 and thus
to the representation Γ+

8 . The exchange interaction then causes a splitting between
the threefold-degenerate Γ+

5 subspace and the fivefold-degenerate Γ+
3 ⊕ Γ+

4 subspace,
lifting the former above the latter. States with small S admixtures effectively retain
their eightfold-degeneracy. Since only Γ+

8 states can have a green S admixture, the
Γ+

6 ⊗ Γ+
6 = Γ+

1 ⊕ Γ+
4 and Γ+

7 ⊗ Γ+
6 = Γ+

2 ⊕ Γ+
5 spaces remain approximately fourfold

degenerate; they additionally can have no significant two-photon oscillator strengths.
They can, on the other hand, couple to yellow S states. The yellow admixtures are
quite small for large parts of the spectrum, as we will see further below, so this does not
change the previous conclusions by much.

Let DF denote the irreducible representation of Oh belonging to the angular momen-
tum F . With those, the irreducible representations of the lowest even parity states of
the green series are as follows:

S states (L = 0) : D3/2 ⊗ Γ+
2 → Γ+

8 ,

D states (L = 2) : (D1/2 ⊕ · · · ⊕ D7/2)⊗ Γ+
2 → 2Γ+

6 ⊕ 2Γ+
7 ⊕ 3Γ+

8 ,

G states (L = 4) : (D1/2 ⊕ · · · ⊕ D11/2)⊗ Γ+
2 → 3Γ+

6 ⊕ 4Γ+
7 ⊕ 7Γ+

8 .
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Figure 8.4.: Resonance positions of the green even exciton series in the complex plane
and the corresponding spectrum when taking the central-cell corrections into
account. The color bar gives the relative two-photon oscillator strength in
arbitrary units.

The multiplication by Γ+
2 is necessary because the quasispin states transform according

to Γ+
5 = Γ+

4 ⊗ Γ+
2 . This allows us to perform the usual coupling of angular momenta

and only multiplying by Γ+
2 in the end. Equations (8.12) can then be used to deduce

the level structure.

8.3.2 Two-photon absorption spectra of green excitons

We first of all show the numerically simulated even exciton spectrum with the influence
of the central-cell corrections in Fig. 8.4. We can see that the spectrum is dominated
by a series of states with especially strong two-photon absorption and large linewidths.
Since the strength of two-photon absorption processes is determined by the admixture
of L = 0 to the envelope function of the excitons, it is reasonable to conclude that those
are indeed S states. We confirm this by calculating the admixture of different angular
momenta to the obtained states in Appendix B. The corresponding complex energies as
a function of the principal quantum number are listed in Table 8.2. More data on the
resonances and their quantum numbers, including all even parity states up to the 6S
exciton is given in Table B.2.
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Figure 8.5.: Left: Real parts of the energies of the two-photon active green S excitons as
a function of the principal quantum number. We perform a fit to obtain the
gap energy Egap, Rydberg energy ERyd and quantum defect δS once over the
whole range of n (solid green line) and once for n ≥ 3 (dashed blue line).
The fitted values are given in the text. Right: Linewidths γ of the green S
excitons as a function of the principal quantum number n. We perform a fit
to obtain the parameters γ0 and a in γ = γ0n

a.

The left-hand side of Fig. 8.5 shows the numerically determined energies of the domi-
nant green S states as a function of the principal quantum number. We perform a fit of
the form

E(n) = Egap −
ERyd

(n− δS)2
. (8.13)

Table 8.2.: Numerically determined energies and relative oscillator strengths for the dom-
inant S peaks in the spectrum. We additionally list the exchange splittings
in the last column.

n ReE [eV] ImE [meV] Re frel [a.u.] Im frel [a.u.] ∆Ex [meV]
2 2.26745 -7.210 2.413 -1.279 10.90
3 2.28716 -2.429 0.762 -0.537 2.60
4 2.29387 -1.170 0.355 -0.296 1.04
5 2.29710 -0.621 0.187 -0.165 0.49
6 2.29886 -0.366 0.108 -0.103 0.27
7 2.29994 -0.224 0.068 -0.064 0.15
8 2.30063 -0.142 0.041 -0.050 0.10
9 2.30112 -0.114 0.033 -0.036 0.07
10 2.30148 -0.080 0.022 -0.026 0.05
11 2.30174 -0.062 0.018 -0.021 0.03
12 2.30195 -0.047 0.014 -0.015 0.02
13 2.30211 -0.037 0.011 -0.012 0.02
14 2.30224 -0.032 0.009 -0.010 0.01
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Figure 8.6.: Left: Two-photon oscillator strengths dTP for polarization E1 ‖ E2 ‖ [110]
of two-photon active green S excitons as a function of the principal quantum
number. We perform a fit for n ≥ 6 to obtain the exponent k in the formula
d = d0n

k for large quantum numbers. Right: Exchange splitting of the green
S excitons as a function of the principal quantum number. We perform a fit
to obtain the parameters ∆Ex

0 and b in ∆Ex = ∆Ex
0 nb.

The fitted gap energy Egap = 2.30293±0.00003 eV approximately agrees with the sum of
the yellow gap energy and the spin-orbit coupling Eg +∆ = 2.30308 eV. For the Rydberg
energy of the green 1S series, we obtain ERyd = 146 ± 2 meV and the quantum defect
δS = −0.03 ± 0.01. These values significantly deviate from the values obtained for the
green P excitons in Ref. [146] and from the quantum defects calculated in Ref. [150]. A
plausible explanation for this is the influence of the central-cell corrections, which mostly
affect states of small radii. To account for this, we repeat the fit over the restricted range
of principal quantum numbers n ≥ 3. We obtain values En≥3

gap = 2.30302 ± 0.00001 eV,

En≥3
Ryd = 157± 1 meV and δn≥3 = −0.15± 0.01. The quantum defect is more in line with

the values obtained by Schöne et al. in Ref. [150].
We investigate the linewidths γ = −2 ImE of the prominent even S excitons and their

behavior as a function of n. On the right-hand side in Fig. 8.5 we present the numerically
determined values in a log-log-plot. We fit a function of the form

γ(n) = γ0n
a (8.14)

to the data. We obtain γ0 = 113 meV and a = −2.84. There is a significant devia-
tion from a decrease with the third power of the principal quantum number n−3. The
parameter γ0 is significantly greater than the value determined for the green P states
γP0 = 47.7 meV in Ref. [146].

In Fig. 8.6 on the left, we show the relative two-photon oscillator strength of the
strongest S states as a function of the principal quantum number n. Our fit of the form

d(n) = d0n
k (8.15)

reveals that the oscillator strength decreases with the third power of n for large principal
quantum numbers. The same behavior has been experimentally observed for the P states
in the yellow series [30].
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8.3. The spectrum of even-parity green excitons

8.3.3 Exchange splitting of the even exciton states

In Chapter 3, we investigated various features of the exchange splitting in the yellow
series. We can augment this discussion here with the values of the exchange splittings for
the green states with n ≥ 2 given in the last column in Table 8.2. We additionally plot
the exchange splitting as a function of the principal quantum number n in Fig. 8.6 on
the right and perform a fit of the form ∆Ex = ∆Ex

0 nb. The results are ∆Ex
0 = 129.4 meV

and b = −3.5. Extrapolating this to n = 1 leads to a significantly stronger splitting
than experimentally observed [63], indicating that the behavior of the higher-lying green
resonances differs from the behavior of the bound n = 1 state in this respect. According
to our calculation, the coupling to the yellow continuum plays an important role here.
A quick diagonalization of the Hamiltonian in the reduced Hilbert space of states with
J = 3/2 for example leads to a splitting of the green 2S states of ∆E ≈ 2.8 meV, which
is much more in line with the result for n = 1. Some further numerical calculations show
that the increased splitting for the resonances with n ≥ 2 is already present in degenerate
perturbation theory, showing that it is not primarily due to mutual level shifts caused by
the exchange interaction between different principal quantum numbers or between the
green and yellow series in general. Rather, our calculations indicate that the coupling
to the yellow series and the complex rotation actually lead to an amplification of the
wave function at the origin for the involved green S states, causing a stronger exchange
interaction.

Table 8.2 shows no case of a reversal of ortho- and paraexciton as the one discussed
in Chapter 3 for the yellow states.

With this, we conclude the chapter on the calculation of the green exciton resonances
and their general discussion. We implemented the complex-coordinate-rotation method
to calculate the complex energies of states lying in the yellow continuum and simulated
spectra of optical transitions from the crystal ground state. In Chapter 9, we use the
insights obtained here as a basis for the investigation of interseries transitions between
the yellow and green series.
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9
Interseries dipole
transitions from yellow to
green excitons

After having introduced the series of green exciton resonances in cuprous oxide in Chap-
ter 8, we now want to study interseries dipole transitions between the yellow and green
exciton series including the complex valence band structure. To this end, we extend pre-
vious studies of the spectrum of complex green exciton resonances presented in Chapter 8
to optical transitions between different exciton states in addition to transitions from the
crystal ground state. This allows us to augment previous calculations on interseries
transitions using a hydrogenlike model [66] by a more comprehensive treatment of the
valence band structure. The analytical and numerical results discussed in this chapter
are published in Ref. [152].

Cuprous oxide offers a wide variety of possibilities of probing exciton physics and
studying the influence of band structure effects. This is underlined by the fact that
excitons were first observed in cuprous oxide [8, 9], and that resonances with principal
quantum number of up to n = 25 have been experimentally detected [30]. Most of the
work in the literature focuses on the yellow series, which is formed by electrons in the
lowest Γ+

6 conduction band and holes in the uppermost Γ+
7 valence band [33, 35, 153].

The green excitons, on the other hand, are formed by holes in the Γ+
8 valence band [51,

147, 148]. For principal quantum numbers n ≥ 2, they are located at energies above the
band gap of the yellow excitons, and couple to the yellow continuum states. Thus, even
without taking phonon coupling into account, the green excitons above the yellow band
gap are no longer bound states with infinite lifetimes, but quasibound resonances with
finite lifetimes. We calculated the locations of the green exciton resonances [146] using
the complex-scaling method [93, 94] in Chapter 8.

Motivated by the aim to identify promising experimentally accessible dipole transi-
tions for the coherent manipulation of Rydberg excitons [154, 155] and the generation
of giant optical nonlinearities [156], interseries transitions between the yellow and green,
respectively yellow and blue, exciton series have been investigated using a hydrogenlike
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Eg

∆

Yellow series Green series

ny = 2

ny = 1

Crystal ground state

Figure 9.1.: We investigate dipole transitions from the yellow to the green series, here
illustrated with the case of transitions from the yellow n = 2 excitons to
some of the green resonances inside the yellow continuum.

model for the exciton interaction [66]. The interseries transitions, i.e., those between
different exciton series, provide for more accessible interrogation wavelengths than tran-
sitions within a single exciton series, and thus offer a distinct advantage. Thus, while
transition wavelengths between adjacent Rydberg states within the same series scale as
n3 and quickly approach the millimeter range, the wavelength limit for interseries tran-
sitions is set by the energy gap between bands, which are typically in the near- to mid
IR. Here, we investigate interseries dipole transitions between the yellow and green exci-
ton series, while taking into account the complex structure of the valence band [35, 86]
as well as central-cell corrections [11, 38, 60, 79, 80]. As our focus is not on optical
transitions where the exciton is created from the crystal ground state, but rather on
transitions between different exciton states, this requires extensive modifications of the
scheme for calculating the oscillator strengths.

The chapter is organized as follows. First, we derive the dipole transition matrix ele-
ments in Sec. 9.1 using the calculated eigenvalues and eigenvectors, and then, in Sec. 9.3,
we present and discuss our results on interseries dipole transitions and absorption spec-
tra.
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9.1

Dipole transitions between excitonic

states

In the following, we investigate dipole transitions between different exciton states as
illustrated in Fig. 9.1, which is in contrast to earlier work that focused mostly on tran-
sitions from the crystal ground state [35, 38, 146]. The central quantity describing the
transition from an initial exciton state |Ψi〉 to the final exciton state |Ψf〉 is the transition
matrix element

Mfi = 〈Ψf |êA ·π|Ψi〉 (9.1)

of the single-photon transition operator, with the polarization direction êA of the vector
potential associated with the photon field

A(x) = A0eiκ ·x ≈ A0 = A0êA (9.2)

in dipole approximation, where we assume that the momentum ~κ of the photon is much
smaller than the relative momentum of exciton and hole. The operator

π = m0v = m0
∂x

∂t
=

im0

~
[H,x] (9.3)

denotes the kinetic momentum operator in a crystal with spin-orbit interaction, and
appears during the minimal-substitution procedure. Note that it differs from the quasi-
momentum p associated with the Bloch eigenfunctions of the band Hamiltonian H. The
position operator x also has to be distinguished from the coordinates re and rh that
arise from the lattice positions in the continuum description of the crystal.

For the interseries transitions discussed in this chapter, |Ψi〉 is mostly a bound yellow
exciton state and |Ψf〉 is an unbound green exciton resonance. It is therefore sufficient to
consider the matrix elements in a basis, e.g., with the basis states (2.29); the transition
amplitudes for the eigenstates can then be obtained by forming appropriate superposi-
tions,

Mfi =
∑
Π′,Π

cf
Π′c

i
Π〈Π′|êA ·π|Π〉 . (9.4)

Note that the coefficients for the left (bra vector) basis states are not complex conjugated,
since they would be real valued without the complex-coordinate rotation.

9.1.1 Operator identity between kinetic momentum and deriva-
tives of the band Hamiltonian

We will now derive an operator identity between the kinetic momentum π and the
derivatives of the band Hamiltonian H(p) with respect to the momenta. For that,
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we consider arbitrary single exciton states, which are effective two-particle states of an
electron with spin Se,z = σe in the conduction band (c) and a hole with effective hole spin
Jh,z = σh in the valence band (v). An excitonic state with center-of-mass momentum P
can then be written as∣∣Ψc,v

τ,P

〉
=
∑
p

φτ,P (p) a†c,σe,p+αeP
b†v,σh,−p+αhP

|Ψ0〉 (9.5)

where we use the shorthand notation τ = {N,L,M, σe, σh} for the additional quantum
numbers of the exciton. The operators a†c,σ,q (b†v,σ,q) are electron (hole) creation operator
and |Ψ0〉 is the crystal ground state. The center-of-mass transformation leads to the
coefficients αe and αh, with αe + αh = 1. We have chosen the same coefficients for all
states.

Dipole approximation

Consequent to the dipole approximation, the center-of-mass momentum P of the exciton
vanishes and the exciton state can be written as

|Ψc,v
τ 〉 =

∑
p

φτ (p) a†c,σe,p b
†
v,σh,−p |Ψ0〉 . (9.6)

In the one-exciton Hilbert space spanned by the states (9.6), we express the single-
photon transition operator in second quantization. Using the dipole approximation, we
obtain

eA0π

m0

=
eA0

m0

∑
ν,ν′

∑
σe,σ′e

∑
q

〈ν, σe, q|π|ν ′, σ′e, q〉 a†ν,σe,q aν′,σ′e,q

+
eA0

m0

∑
ξ,ξ′

∑
σh,σ

′
h

∑
q

〈ξ, σh, q|π|ξ′, σ′h, q〉 b†ξ,σh,q
bξ′,σ′h,q (9.7)

with the vector potential A0 according to Eq. (9.2), the conduction band indices ν, ν ′,
the valence band indices ξ, ξ′ and the corresponding substates (spins) σe/h. We use the
radiation gauge and ignore the diamagnetic term, as it only has an appreciable influence
for very high field strengths of the incoming electromagnetic wave. Calculation of a
matrix element like eA0〈Ψc,v

τ |π|Ψc′,v′

τ ′ 〉/m0, leads to four cases, which we consider in the
following.

(i) Intraseries transitions: Here, we have {c, σe} = {c′, σ′e} and {v, σh} = {v′, σ′h}.
With the fermionic anti-commutation rules for the creation and annihilation operators,
we obtain

〈Ψc,v
τ |π|Ψc,v

τ ′ 〉 =
∑
p

φτ ′(p)φ†τ (p)× (〈c, σe,p|π|c, σe,p〉+ 〈v, σh,−p|π|v, σh,−p〉) .

(9.8)
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(ii) Hole-driven interseries transitions: In this case, we have {c, σe} = {c′, σ′e} but
{v, σh} 6= {v′, σ′h}. Here, we calculate〈

Ψc,v
τ |π|Ψc,v′

τ ′

〉
=
∑
p

φτ ′(p)φ†τ (p) 〈v, σh,−p|π|v′, σ′h,−p〉. (9.9)

(iii) Electron-driven interseries transitions: Here, we have {c, σe} 6= {c′, σ′e} but
{v, σh} = {v′, σ′h}. In this case, we arrive at〈

Ψc,v
τ |π|Ψc′,v

τ ′

〉
=
∑
p

φτ ′(p)φ†τ (p) 〈c, σe,p|π|c′, σ′e,p〉. (9.10)

(iv) Two-particle transitions: In this case, one has {c, σe} 6= {c′, σ′e} and {v, σh} 6=
{v′, σ′h}. We will not discuss this case, since it is forbidden in single-photon transitions.

Transitions from the yellow to the green series in Cu2O are predominantly driven by
a transition of the hole from the Γ+

7 to the Γ+
8 valence band, that is, they are mostly

hole-driven.

Bloch matrix elements

We can use the relation |n, σ,p〉 = e
i
~pr |un,σ,p〉 between the Bloch states and the lattice

periodic functions |un,σ,p〉 to rewrite the interband matrix elements,

〈n, σ,p|π|n′, σ′,p〉 = 〈un,σ,p|π|un′,σ′ ,p〉+ p δnn′ δσ σ′ . (9.11)

We denote the bands by n, n′ and the associated spins by σ, σ′.
The Hamiltonian acting in the space of the lattice periodic functions is the p ·π-

Hamiltonian (In the literature, it is often also known as the k ·π-Hamiltonian with
k = p/~)

Hp ·π = H0 +Hp , (9.12)

with

H0 = −~2∇2

2m0

+ V (x)− i~2

4m2
0c

2
(σ ×∇V (x)) · ∇ ,

Hp =
p

m0

·π +
p2

2m0

. (9.13)

Here, H0 denotes the Hamiltonian at the Γ-point, which is determined by the lattice
periodic potential V (x). σ is an abbreviation for the vector of Pauli matrices.
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We obtain the relation

π = m0v = m0
∂Hp ·π
∂p

− p , (9.14)

and consequently arrive at

〈n, σ,p|π|n′, σ′,p〉 = m0

〈
un,σ,p

∣∣∣∣∂Hp ·π∂p

∣∣∣∣un′,σ′ ,p〉 . (9.15)

The perturbation theoretical analysis of Eq. (9.15) was performed in Ref. [66] up to
first order in p, resulting in

〈n, σ,p|π|n′, σ′,p〉 = m0

〈
un,σ, 0

∣∣∣∣∂Hp ·π∂p

∣∣∣∣un′,σ′ , 0〉 . (9.16)

The p ·π Hamiltonian Hp ·π describes the p-dependent band dispersion in the crystal.
In our system, this is identified with the kinetic energies of the electron in the conduction
band Hc and hole in the valence band Hv respectively. Using the kinetic part of the
Hamiltonian (2.2),

T (p) = Hc(p)−Hv(p) =
γ′1

2m0

p2 +Hb(p) , (9.17)

we can summarize all three cases in Eqs. (9.8)-(9.10) via〈
Ψc,v
τ |π|Ψc,v′

τ ′

〉
= m0

∑
p

φ†τ (p)φτ ′(p) 〈c, σe, v, σh |∂pT (p)| c, σ′e, v′, σ′h〉

= m0

∫
d3r ψ†τ (r) 〈c, σe, v, σh |∂pT (p)| c, σ′e, v′, σ′h〉︸ ︷︷ ︸

O(p)

ψτ ′(r), (9.18)

where the matrix element is evaluated in the twelve-dimensional basis of electron-hole
spin-states |c, σe, v, σh〉. In the second line, we use the real-space envelope function

ψτ (r) of the state |Ψc,v′

τ ′ 〉 to express the integral in real space. These states span the
same Hilbert space as the basis states (2.29).

Noting that only the kinetic energy terms in the Hamiltonian (2.2) contain the relative
momentum operator p, we obtain the identity

π = m0
∂

∂p
H(p) (9.19)

valid for the one-exciton states considered in this chapter. Equation (9.19) is an operator
identity in the one-exciton Hilbert space spanned, e.g., by the basis (2.29), and is valid
for vanishing center-of-mass momentum P and relative momentum p much smaller than
the extent of the Brillouin zone.
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9.1. Dipole transitions between excitonic states

9.1.2 Numerical evaluation of the matrix elements 〈Π′|πz|Π〉
The computation of the dipole transition matrix elements Mfi in Eq. (9.4) requires one
to evaluate the matrix elements 〈Π′|π|Π〉 of the operator (9.19) in the basis (2.29).

From Eq. (9.19) we obtain

π

m0

=
∂

∂p
H(p) =

γ′1p

m0

+
∂Hb(p)

∂p
. (9.20)

We focus on the component πz for light polarized along the z-axis.
We first derive the matrix elements for pz in the basis (2.29). In the formalism of

irreducible tensors, pz is given by

pz = P
(1)
0 . (9.21)

In the supplemental material of Ref. [89], Eq. (14) provides the matrix elements for the
operator

P
(1)
0

(
I(1) ·S(1)

h

)
, (9.22)

which we can use here. Using the identity

I(1) ·S(1)
h =

1

2
(J2 − I2 − S2

h) =
2J(2J + 2)− 11

8
, (9.23)

we can calculate the matrix element for pz using

〈Π′|P (1)
0 |Π〉 =

8

2J(2J + 2)− 11

〈
Π′
∣∣∣P (1)

0

(
I(1) ·S(1)

h

)∣∣∣Π〉 . (9.24)

Here, |Π〉 and |Π′〉 denote basis states as given in Eq. (2.29).
The more difficult part is to evaluate the second term in Eq. (9.20). Instead of deriving

the expression in detail here, we connect this problem to terms already calculated in
Ref. [89]. They consider the Hamiltonian (2.2) in center-of-mass coordinates with a
nonvanishing center-of-mass momentum P = ~K parallel to a given axis. Here, we
are interested in the case P ‖ [001] related to the derivative with respect to pz. This
means that we can set P = Pez in the following. Following Ref. [89], we expand the
Hamiltonian in powers of P as

H(p,P ) = H0 + P H1 + P 2H2 . (9.25)

The center-of-mass transformation (2.18) is chosen in such a way that terms linear in
P vanish without the corrections from the valence band. This means that the term H1

arises solely from the kinetic energy Hh of the hole. More explicitly, we can write

Hh(ph = −p+ αhP ) =
p2

2mh

+Hb(p)− αhP

mh

pz + P H1 +O(P 2) , (9.26)
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9. Interseries dipole transitions from yellow to green excitons

where αh = mh/(mh +me) is determined by the center-of-mass transformation. We first
differentiate both sides with respect to P = Pz and evaluate at P = 0,

αh
∂Hh

∂ph,z

(ph = −p) = −αh
∂Hh

∂pz
(−p) = − αh

mh

pz +H1 . (9.27)

On the other hand, first setting P = 0 and differentiating with respect to pz leads to

∂Hh

∂pz
(−p) =

pz
mh

+
∂Hb(p)

∂pz
. (9.28)

Comparing these results, we obtain the identity

∂Hb

∂pz
(p) = − 1

αh

H1 = −meγ
′
1

m0

H1 . (9.29)

Inserted into Eq. (9.20), we finally find

πz = γ′1 (pz −meH1) , (9.30)

with [89]

H1 = − 1

2~2me

{
2

√
5

3
µ′
[
P (1) × I(2)

](1)

0
+ 4

√
2

5
δ′
[
P (1) × I(2)

](3)

0

}
(9.31)

− 3η1

γ′1~2me

{
2

3
P

(1)
0

(
I(1) ·S(1)

h

)
+ 2

√
5

3
ν
[
P (1) ×D(2)

](1)

0
+ 4

√
2

5
τ
[
P (1) ×D(2)

](3)

0

}
,

using the abbreviations

D
(2)
k =

[
I(1) × S(1)

h

](2)

k
(9.32)

and

µ′ =
6γ3 + 4γ2

5γ′1
, δ′ =

γ3 − γ2

γ′1
, ν =

6η3 + 4η2

5η1

, τ =
η3 − η2

η1

. (9.33)

All relevant matrix elements can be found in Ref. [89].

9.2

Non-Hermitian generalized eigenvalue

problem

We first diagonalize the Hamiltonian (2.2) excluding the singular Dirac delta-terms Vd
and Hexch of the central-cell corrections with the Haken potential (2.12). From the high-
dimensional matrices, we are only interested in a small window of eigenstates. For this
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9.3. Numerically calculated interseries transition strengths

aim an iterative method is implemented (e.g. in the ARPACK package [100]) that allows
for the calculation of eigenvalues and eigenvectors near a controllable predetermined
energy, which is numerically more efficient than a direct diagonalization.

After this, we set up a second eigenvalue problem where we include the delta-terms
with only the converged eigenstates from the first diagonalization. For this, we diago-
nalize the entire resulting low-dimensional eigenvalue problem using a direct LAPACK
method [99].

Having calculated the complex resonance energies and the associated eigenstates, we
can use Eq. (9.19) and the corresponding matrix elements derived in Sec. 9.1 to simulate
interseries dipole transition spectra.

9.3

Numerically calculated interseries

transition strengths

In the following, we present our results for the dipole transition probabilities for two
cases of interseries transitions. As parity is an exact quantum number, we separately
discuss transitions first from odd parity to even parity states, and then from even parity
to odd parity states. We choose a coordinate system where the x, y, and z axes are
parallel to [100], [010], and [001] directions, respectively.

9.3.1 Interseries absorption spectra

The transition matrix elements Mfi can be used to calculate interseries absorption spec-
tra. The photoabsorption cross section σi from the initial state |Ψi〉 at the spectral
position E = ~ωph is given by [93, 144]

σi(ωph) =
4πα~
m2

0ωph

Im
∑

f

MfiMif

Ef − Ei − ~ωph

, (9.34)

with the fine-structure constant α and ~ωph ≈ Ef −Ei. Note that in general, Mfi 6= M∗
if

for complex rotated states, and thus the numerator in Eq. (9.34) does not simplify to
|Mfi|2.

To avoid extremely narrow peaks for certain states, we phenomenologically model
an additional linewidth caused by the coupling to phonons in the crystal. In a simpli-
fied model, the phonon-induced linewidth has a power-law dependency on the principal
quantum number n as [30, 70]

γphn(n) = γphn
0 n−3 . (9.35)

We estimate the parameter γphn
0 = 56.4 meV and assign to each resonance an effective

quantum number neff based on the real part of its energy as outlined in the following
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9. Interseries dipole transitions from yellow to green excitons

Sec. 9.3.2. The resulting linewidth shifts the imaginary part of the complex energy
according to Ef → Ef − iγphn/2.

9.3.2 Phonon-induced linewidths

In order to use Eq. (9.35), we need to determine the constant γphn
0 . According to

Ref. [147], the FWHM of the green 2P-state at T = 4 K is γ2P = 17.7 meV. In Ref. [146],
the complex-coordinate-rotation method was used to calculate the complex energies of
the odd-parity green excitons, and to determine the linewidths γcont caused by the cou-
pling of the green excitons to the yellow continuum. Here, we update this calculation by
adding the Haken potential to the Hamiltonian, and find γ2P

cont = 9.95 meV for the green
2P state. We can thus estimate the phonon-induced linewidth of the 2P green exciton
as

γphn(n = 2) = γ2P − γ2P
cont ≈ 17.7 meV − 9.95 meV = 7.05 meV (9.36)

leading to

γphn
0 = 8γphn(n = 2) = 8× 7.05 meV = 56.4 meV . (9.37)

We associate to each resonance an effective quantum number neff as a function of the
real part of the resonance energy E,

neff =

√
ERyd

Egap − E
+ δ . (9.38)

The values ERyd = 142 meV, Egap = 2.30292 eV and δ = 0.1 were obtained by a phe-
nomenological fit to the odd-parity green excitons in an updated version of the calcula-
tion in Ref. [146], where we included the Haken potential. Note that these values should
not be taken as the literal Rydberg energy and quantum defect, as the inclusion of the
Haken potential distorts the Rydberg spectrum.

9.3.3 Dipole transitions from odd-parity yellow exciton states to
even-parity green states

Experimentally, the most easily accessible yellow exciton states are the odd-parity Γ−4
P states. As the interseries dipole transition flips the parity, the final states will be
green even-parity states with S and D type envelopes. We now investigate two different
scenarios. In the first, we select for the initial state the yellow P exciton transforming
like the basis state z of the irreducible representation Γ−4 [76]. In the second scenario, we
investigate the yellow P exciton state transforming like the basis state y. In both cases,
the photon polarization is along the z-direction. From the product of the representations
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Figure 9.2.: Spectrum of transitions between odd parity yellow P excitons transforming
like the function z and even parity green states. The transition is mediated
by photons polarized in the z-direction. In the top part of the panels, we
show the spectrum using the linewidths derived from the complex rotation
corrected by Eq. (9.35) to incorporate the influence of the phonons. The un-
corrected complex energy is presented in the bottom part of the panel. The
color additionally shows the real part of the square MfiMif of the interseries
transition matrix element introduced in Eq. (9.1), which is proportional to
the complex generalization of the oscillator strength.

Γ−4 ⊗ Γ−4 = Γ+
1 ⊕ Γ+

3 ⊕ Γ+
4 ⊕ Γ+

5 [76] we can determine which transitions to green states
are allowed in principle.

We begin with the yellow P exciton and the photon both transforming according to the
z-component of the Γ−4 representation. This initial state can itself be excited using a one-
photon absorption process with light polarized along the z-direction. Using the tables
in Ref. [76], we can deduce that the corresponding green states transform according to
Γ+

1 and the ψ3+
1 -component of Γ+

3 . In Fig. 9.2, we show interseries transition spectra in
this configuration. We additionally list the results for a selection of states in Table 9.1.

Using the Rydberg energies of the yellow and green exciton series, we can estimate
which green principal quantum number belongs to states with maximum overlap with a
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9. Interseries dipole transitions from yellow to green excitons

yellow exciton state with given principal quantum number. In the following, we use the
values Ey

Ryd = 86.04 meV [150] and Eg
Ryd = 150.4 meV [146]. The exciton Bohr radii ay

0

and ag
0 are related to the Rydberg energies by

ag
0

ay
0

≈
Ey

Ryd

Eg
Ryd

. (9.39)

From a simple overlap argument, one would expect the transition strengths to be largest
when initial and final state have comparable real-space extensions. As the linear exten-
sion of the excitons scales with the square of the principal quantum number n, we derive
the estimate

ng =

√
Eg

Ryd

Ey
Ryd

ny ≈ 1.32ny , (9.40)

to which the spectra in Figs. 9.2−9.5 fit approximately.

Table 9.1.: Real (R) and imaginary (I) parts of squared transition matrix elements
M2 = MifMfi in units of 10−6 h2 a−2

g for certain selected green exciton states
of energy E = ReEf . The initial odd parity yellow P state of irreducible
representation Γ−4 transforms like z and the light is polarized along the z-
direction.

2P 3P 4P 5P

E [eV] RM2 IM2 RM2 IM2 RM2 IM2 RM2 IM2

2.28468 14.69 -22.26 -1.95 1.03 -0.01 -1.90 0.25 -0.96

2.28583 22.59 -0.60 3.92 -0.12 0.66 -0.03 0.23 -0.01

2.28895 366.60 1.17 15.29 0.41 0.17 0.03 0.00 0.00

2.28949 40.96 0.99 2.17 0.15 0.02 0.01 0.00 0.00

2.29283 2.14 6.86 14.48 -10.68 2.40 -2.31 1.96 -1.02

2.29367 43.45 -0.66 1.61 -0.10 1.25 -0.05 0.47 -0.02

2.29439 181.16 0.69 8.79 0.95 9.52 0.27 0.83 0.05

2.29494 46.04 -0.51 139.46 0.42 26.58 0.50 3.05 0.15

2.29522 0.81 0.08 16.52 0.64 3.87 0.10 0.33 0.03

2.29710 9.92 -0.09 30.54 -0.14 0.02 0.02 1.31 0.06

2.29776 19.31 -0.29 12.41 -0.22 62.81 -0.05 29.01 0.28

2.29845 33.10 0.12 9.33 0.54 21.20 -0.74 8.41 0.56

2.29864 16.40 0.96 1.90 0.06 4.55 -0.42 0.18 0.13

2.29932 10.08 -0.18 6.92 -0.11 2.06 -0.08 25.78 -0.20
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Figure 9.3.: Same as Fig. 9.2, but the initial odd parity yellow P states transform like
the function y.

The resulting transition strengths are of the same order of magnitude as those found
in Ref. [66]. The strongest transition in Table 9.1 is from the 2P yellow exciton to the
exciton state with energy E = 2.28895 eV, which is a 3D state. The matrix elements
become progressively weaker as the principal quantum number of the initial yellow state
increases. At the same time, with increasing principal quantum number of the initial
state, the green states with the highest transition strengths move to higher energies, in
accordance with Eq. (9.40).

Here, as well as in the following discussions, it is also important to remember that the
choice of initial state does not only influence the strength of the transition, but also the
energy gap between the states. This is most evident in the configuration in Sec. 9.3.4,
where the initial state is of even parity, leading to differences in the transition energies
of up to 100 meV.

We now proceed to the scenario that the P exciton transforms according to the Γ−4
function y, meaning that the initial state can be excited using a single-photon absorption
process with light polarized along the y-direction. Here, the corresponding green excitons
transform like the x-component of Γ+

4 and the xz-component of Γ+
5 [76]. In Fig. 9.3 we

show a transition spectrum in this configuration. We additionally list the results for a
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9. Interseries dipole transitions from yellow to green excitons

selection of states in Table 9.2.
The strongest transition in Table 9.2 is from the 2P yellow exciton to the exciton

state with energy E = 2.25655 eV, which is the lowest lying 2S state. Nevertheless, it is
hardly visible in our simulated spectrum in Fig. 9.3 because of its much larger width as
compared to the other states.

As the principal quantum number of the initial yellow state increases, the matrix
elements here also become progressively weaker. The region of green states with the
strongest transition from a given yellow state does not obey Eq. (9.40) as accurately
as in the previous case, lying slightly lower energetically as expected. This could be
related to the different spatial extensions of the addressed green states, in addition to
the generally approximate character of the overlap argument.

9.3.4 Dipole transitions from even-parity yellow states to odd-
parity green states

We finally investigate transitions from yellow even-parity states to green odd-parity
states. The former can be excited using two-photon absorption processes. For these
transitions, we have to consider states with irreducible representations appearing in
the tensor product Γ+

5 ⊗ Γ−4 = Γ−2 ⊕ Γ−3 ⊕ Γ−4 ⊕ Γ−5 . In Fig. 9.4, we show spectra for

Table 9.2.: Same as Table 9.1 but the initial odd parity yellow P states transform like y.

2P 3P 4P 5P

E [eV] RM2 IM2 RM2 IM2 RM2 IM2 RM2 IM2

2.25888 183.94 286.70 -41.69 -8.86 -17.68 -13.36 -8.52 -8.79
2.26748 62.01 149.18 -24.39 -32.28 -5.90 -15.13 -2.25 -7.66
2.28468 -4.28 20.68 96.59 67.28 -2.27 13.87 -3.44 3.74
2.28717 -7.54 6.09 27.25 44.01 -9.00 1.45 -3.88 -1.10
2.28895 91.65 0.29 3.82 0.10 0.04 0.01 0.00 0.00
2.29283 -0.88 4.85 0.58 2.66 32.26 15.41 5.61 7.68
2.29367 116.27 0.92 1.11 -0.05 8.16 -0.20 1.67 -0.03
2.29439 9.88 -0.46 2.44 -0.02 18.64 -1.08 2.40 0.03
2.29439 89.79 2.81 7.50 0.55 19.35 -1.42 2.23 0.04
2.29494 11.51 -0.13 34.86 0.11 6.64 0.12 0.76 0.04
2.29660 -1.69 0.06 -0.61 0.09 0.00 0.02 13.84 -0.29
2.29710 13.48 0.29 38.10 0.36 0.24 0.01 2.25 0.16
2.29776 4.83 -0.07 3.10 -0.06 15.70 -0.01 7.25 0.07
2.29845 11.57 0.83 3.75 0.30 5.00 -0.08 9.90 0.73
2.29845 28.57 1.01 8.52 0.62 15.28 -0.50 11.81 0.46
2.30037 8.13 0.24 2.82 0.30 0.19 -0.13 13.42 -1.77
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Figure 9.4.: Same as Fig. 9.2, but the initial even parity states are S ((a)-(c)) and D (d)
states transforming like the function xy of the irreducible representation Γ+

5 .

Table 9.3.: Same as Table 9.1 but the initial even parity yellow states transforms like xy
of the irreducible representation Γ+

5 . We present data for S states, but also
for the yellow 3D exciton. In the last two columns we show the transition
matrix elements for the initial green 1S exciton state.

1S 2S 3S 3D 1Sg

E [eV] RM2 IM2 RM2 IM2 RM2 IM2 RM2 IM2 RM2 IM2

2.27254 357.68 27.39 91.35 -29.30 17.42 -1.10 0.05 -0.17 264.05 -39.87

2.27879 14.30 4.06 18.45 21.22 62.18 -30.71 171.62 55.63 -27.61 3.08

2.28515 353.85 -22.99 792.55 44.69 52.67 -0.53 219.46 3.91 329.77 27.61

2.28894 64.85 5.36 9.69 4.51 3.15 0.46 83.43 7.20 92.01 -15.48

2.29364 70.54 -3.20 1.52 0.29 1.91 -0.02 0.03 0.02 311.81 7.36

2.29626 60.26 -3.53 29.26 1.19 4.75 -0.22 79.93 0.78 80.30 2.60
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9. Interseries dipole transitions from yellow to green excitons
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Figure 9.5.: Same as Fig. 9.4, but for the initial even parity green 1S Γ+
5 exciton state

transforming as xy.

transitions of this kind. As initial states, we chose excitons transforming according to the
xy-component of the irreducible representation Γ+

5 . In Table 9.3 we list the results for a
selection of states. In Fig. 9.5, we additionally show the special case of the transitions
where the initial state is the green 1S state, which is energetically placed among the
yellow excitons.

The strongest transition in Table 9.3 is from the 2S yellow exciton to the green 2P
exciton state with energy E = 2.28515 eV. This is also the strongest transition we found
among all configurations. This has to be balanced against the fact that the initial state
is of even parity, which makes it inaccessible in one-photon transitions; it can, however,
be excited using two-photon absorption.

We also investigated transitions from the 3D state, see panel (d) in Fig. 9.4. These
seem to be substantially stronger than the transitions from the 3S states, but still weaker
than those from the 1S and 2S excitons. Finally, there are several strong transitions
starting from the green 1S exciton, but they are weaker than those from yellow 1S and
2S states.
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10 Conclusion

After the experimental observation of excitons with principal quantum numbers up to
n = 25 [30], the yellow series in cuprous oxide has been the subject of renewed scientific
interest, with many proposals aiming to exploit the special properties of highly-excited
Rydberg systems for a number of novel applications, such as usage in quantum infor-
mation processing. For successful implementation of these ideas in excitonic Rydberg
systems, a sound theoretical understanding of the exciton and its properties is required
as a basis. This thesis seeks to contribute to this understanding. To that end, we an-
alytically and numerically investigated the yellow and green exciton series in cuprous
oxide.

Experimental investigations into the paraexciton series of yellow excitons in Cu2O
and corresponding exchange splittings reveal a number of ways in which a simple hy-
drogenlike model is insufficient. In Chapter 3, we numerically investigated spectra with
modified material parameters and thus gained experimentally inaccessible insights. We
used this to interpret the experimental findings in Ref. [63] and identified their roots in
the properties of the system. We first investigated the reversal of the yellow 2S para- and
orthoexcitons. Farenbruch et al. [63] identified the mixture with the 1S green orthoex-
citon as the origin of the reversal. We were able to corroborate this explanation with
detailed calculations. We show that the orthoexciton is lifted above the paraexciton if
the influence of the green excitons is removed in the simulation. Varying the spin-orbit
coupling reveals an avoided crossing between the yellow 2S orthoexciton and the green
1S exciton which explains the placement of the orthoexciton below the paraexciton. We
were thus able to show how the coupling of the yellow and green series leads to a be-
havior that qualitatively differs from the hydrogenlike approximation, underscoring its
importance for the understanding of the yellow exciton series. Removing the influence
of the green states, the expected order of states is restored. In this case, does the ex-
change splitting decrease with the third power of the principal quantum number n? Our
calculations show that this is not exactly the case. We identify two reasons for this.
First of all, the Haken potential changes the dielectric constant for small radii, which
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10. Conclusion

influences the wave function at the origin and therefore the splitting. A simplified treat-
ment of the exchange splitting also overlooks the second factor, which is the coupling
between S states of different principal quantum number by the exchange splitting itself.
A systematic analysis shows that these two factors account for the discrepancy from the
n−3 behavior. We conclude by studying the origin of the large difference between the
exchange splittings of the yellow and green 1S states. Farenbruch et al. [63] confirmed
the prediction by Schweiner et al. [38] that the splitting of the green 1S exciton is over
30 meV and therefore about two and a half times the splitting of about 12 meV for the
yellow 1S state. We also identified two reasons to account for this. The first is the differ-
ence in the matrix elements of Se ·Shδ(r) for J = 1/2 and J = 3/2. Since the exchange
splitting depends upon the relative orientation of the electron and hole spins, different
values of the effective hole spin J = I + Sh lead to different strengths of the exchange
splitting. The second is the difference in the reduced masses between the yellow and
green 1S states. The reduced mass of the green 1S state is significantly higher than the
reduced mass of the yellow 1S state as revealed by a detailed analysis of the Rydberg en-
ergy when correcting for the influence of short distance terms in the Hamiltonian. This
leads to a higher value of the wave function at the origin and a corresponding increase
of the exchange splitting.

In Chapter 4 we investigated how the band structure and especially the coupling
between the yellow and green series leads to a lifting of the ordering of states according
to increasing L in the case of the D state with angular momentum F = 5/2. The
underlying mechanism is the level repulsion from the green 1S exciton state, which
as our analysis shows, is strongest for yellow excitons with L = 2 and F = 5/2. This
explains why the D5/2 line, and especially the associated ortho exciton is shifted to higher
energies. We show, using experimental data and numerical calculations, that it becomes
the highest state in the n = 3, n = 4, and also the n = 6 multiplet. We present the n−3

scaling behavior of the energy split-off, which allows us to extrapolate to higher n and
formulate the expectation that the ortho D5/2 exciton is the highest state even in the high
n regime. Our investigation can be useful for the better understanding and interpretation
of impurity-dominated spectra, in particular close to the band gap, see recent studies
by Krüger et al. [157] and Heckötter et al. [158]. The precise comprehension of the D
exciton fine structure and the improved assignment of approximate quantum numbers is
relevant for plasmon scattering rates between excitons of different angular momenta [159]
and intraband transitions driven by microwaves [160].

In Chapter 5 we extended the previous work by Schweiner et al. [65] on the optical
spectra of magnetoexcitons in cuprous oxide to the Voigt configuration and showed that
the nonvanishing exciton momentum perpendicular to the magnetic field leads to the
appearance of an effective magneto-Stark field. Including the valance band structure
and taking into account central-cell corrections as well as the Haken potential allowed us
to produce numerical results in good agreement with experimental absorption spectra.
We observe a significant increase in the number of visible lines in both the experimental
as well as our numerical data as compared to the Faraday configuration. Using group
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theoretical methods, we show that this is related to the magneto-Stark field increasing
the mixing between states. While their positions remain relatively unaffected, the mixing
of states leads to finite oscillator strength of, at least in principle, all lines.

We extended the method developed by Schweiner et al. [35, 38, 65] for the calculation of
absorption spectra of excitons in Cu2O to the simulation of Second Harmonic Generation
intensities in Chapter 6. In Cu2O, SHG is forbidden along axes with a C2 symmetry.
The application of an external magnetic field makes SHG along those directions allowed.
We mainly consider the case of SHG along forbidden axes. We identify two separate
mechanisms by which a magnetic field can induce a SHG signal. First of all, the magnetic
field itself reduces the symmetry and mixes the exciton states in an appropriate way to
produce a nonvanishing SHG intensity. In this case, parity remains a good quantum
number and the emitted photon can only be produced by a quadrupole process. In
the Voigt configuration, the magnetic field induces an additional effective electric field.
This breaks the inversion symmetry and also makes SHG with dipole emission processes
possible. We study spectra where both quadrupole and dipole emission processes play
a role. To this end, we estimate the relative strength of these processes by comparing
suitable numerical and experimental spectra. We compare numerically calculated and
experimental data for various choices of polarizations of the incoming and outgoing light,
direction of the wave vector, and direction of the magnetic field. We find that for certain
configurations, spectra are to leading order entirely induced by the magnetic or by the
electric field. Good agreement between experiment and theory is observed for the most
part, some weaknesses of the numerical method remain. First of all, the treatment of
SHG in allowed directions requires a more careful approach towards the center-of-mass
motion, since in this case, the nonvanishing K vector by itself induces a SHG signal.
To include this properly, the Hamiltonian has to be complemented by additional K-
dependent terms. The SHG intensities associated with specific exciton lines is dependent
on their linewidths. The inclusion of this effect in our model is only rudimentary. A
better treatment is difficult, since it would require the detailed knowledge of the lifetimes
of the exciton states even in the regime of strong mixing. An additional weakness of the
numerical method used here are the central-cell corrections. Due to their inaccuracy,
the positions of the even exciton states are slightly too high energetically. This leads
to a too strong mixing of the S and P states and thus to too strong intensities of these
lines. An improved treatment of the central-cell corrections could solve this problem. In
Ref. [138] it was shown that SHG is sensitive to strain down to levels of ppm. Therefore,
also strain may influence the appearance of the spectra. Still, for the main application
considered in this work, that is, for the investigation of magnetic-field induced SHG
spectra in forbidden directions, we achieve satisfactory results. Improved treatments
of the central-cell corrections and center-of-mass motion in allowed configurations are
necessary in future work.

Starting from the numerical method for the calculation of yellow excitons in cuprous
oxide developed by Schweiner et al. [35, 65], in Chapter 7 we calculated complex exci-
ton resonances in electric and parallel electric and magnetic fields using the complex-
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10. Conclusion

coordinate-rotation method. From the complex energies, we could determine the decay
rates and simulate absorption spectra from circularly polarized light. In the case of
the numerical calculation of magnetoexcitons, detailed comparisons with experimental
data revealed excellent agreement [65]. A similar comparison including the electric field
would thus be an interesting future task. Our calculations also open up the possibility of
studying exceptional points in exciton spectra, which can only appear in non-Hermitian
systems like the one investigated in this chapter. In contrast to the hydrogen atom,
exceptional points in the spectra of excitons in cuprous oxide are expected to appear
already at experimentally accessible field strengths [145], making the system an excellent
candidate for the experimental observation of exceptional points in a Rydberg system.
Nikitine [51] has investigated experimentally the green exciton series in Cu2O and, re-
cently, Krüger and Scheel [66] have focused on the interseries transitions, e.g., between
yellow and green excitons. In this context, a better understanding of the green exci-
ton series is desirable. Since the green series is located inside of the yellow continuum
[147, 148, 151], and the different series couple, the green exciton states are actually res-
onances. The complex-coordinate-rotation method used in Chapter 7 thus is also an
appropriate tool for the investigation of these resonance states.

In Chapter 8, we have computed the resonance positions, linewidths, and relative
oscillator strengths of the green exciton series of cuprous oxide, thereby taking into
account the valence band structure of the crystal and the coupling of the green excitons
to the yellow continuum. For the computations we have used a complete basis set with
Coulomb-Sturmian functions for the radial part of the wave function and the complex-
coordinate-rotation method. For the dominant P states in the absorption spectrum
we have confirmed their hydrogenlike behavior and extracted the Rydberg energy and
quantum defect, which are in good agreement with literature [150]. The linewidths of the
green P states decrease ∼ n−3 with increasing principal quantum number. In Sec. 8.2 we
have compared some resonance positions to the experimental work of Gross [9]. In the
meantime experimental techniques have made substantial progress. A comparison with
new data would thus be desirable. The interesting question is whether giant Rydberg
states of the green exciton series with quantum numbers up to n ≈ 25 and the computed
fine structure splitting can be experimentally observed similar as for the yellow series [30,
33]. We first focused on the odd states. The 1S state of the even green series is bound
and has been computed, including the central-cell corrections, in Ref. [38]. We then
additionally calculated and discussed the green even-parity exciton series. Interseries
transitions are currently investigated [66]. Starting from the present studies, we then
went on to calculate the interseries transition amplitudes between the yellow and green
series in the next chapter, taking the valence band structure into account.

In Chapter 9, we have investigated interseries transitions between the yellow and
green exciton series in the dipole approximation. We extended the calculations for the
yellow-to-green interseries transitions performed in Ref. [66] by including the complex
valence band structure. To properly take into account the associated coupling between
the green exciton states and the yellow continuum, we used the complex-coordinate-
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rotation method for the calculation of the green exciton resonances as described in
Ref. [146]. We considered different choices for the initial state in the spectral range of
the yellow series, concentrating mostly on the odd-parity P states, which are most easily
accessible in one-photon absorption experiments. We distinguished the cases where
the photon that excites the initial exciton is polarized parallel to the photon affecting
the interseries transition from the scenario in which they are orthogonally polarized.
Additionally, we also calculated the probabilities for the transition from the even-parity
yellow states to the odd-parity green states, with the special case where the initial state
is the green 1S exciton. The transition strengths are on the same order of magnitude
in the different configurations, with those starting at an odd-parity yellow exciton being
somewhat weaker than those starting at an even-parity yellow exciton. Of course, the
experimental preparation of the latter is more difficult, as a two-photon excitation is
required. In all cases, increasing the principal quantum number of the initial state
shifts the range of excited green states to higher energies, with an overall weakening of
the transition strengths in most cases. In this work, we use the dipole approximation,
which is valid if the wavelength of the light affecting the interseries transition is much
larger than the extension of the involved excitons. As shown in Ref. [66], this condition
breaks down for transitions between the yellow and green series starting at n & 15
for counter-propagating pump and probe beams. Extending our investigations to this
parameter range thus requires going beyond the dipole approximation. Furthermore,
an extension of our method to cover transitions between states of the yellow and blue
series is relatively straightforward, but requires the implementation of the conduction
band Hamiltonian including the Γ−8 band. Another possible route is to investigate the
influence of an additional external field to fine tune the properties of the transitions.
Finally, one of the aims of our study was to provide theoretical predictions which can
help guide experimental investigations into the interseries transitions. While there has
been some experimental work with respect to intraseries transitions within the yellow
series [161, 162] and with respect to interseries transitions between the yellow and blue
series [163], to the best of our knowledge, there have been no experimental studies into
the yellow-to-green interseries transitions investigated in this chapter yet. A comparison
of our results with future experimental data is thus highly desirable.
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A Material constants

In Table A.1 we list the material parameters of cuprous oxide.

Table A.1.: Material parameters of Cu2O used in the calculations.

Energy gap Eg = 2.17208 eV [30]

Spin-orbit coupling ∆ = 0.131 eV [34]

Effective electron mass me = 0.99m0 [164]

Effective hole mass mh = 0.58m0 [164]

Valence band parameters γ1 = 1.76 [34]

γ2 = 0.7532 [34]

γ3 = −0.3668 [34]

η1 = −0.020 [34]

η2 = −0.0037 [34]

η3 = −0.0337 [34]

Exchange interaction J0 = 0.792 eV [38]

Short distance correction V0 = 0.539 eV [38]

Lattice constant ag = 0.42696 nm [68]

Dielectric constants εs1 = 7.5 [125]

εb1 = εs2 = 7.11 [125]

εb2 = 6.46 [125]

Energy of Γ−4 -LO phonons ~ωLO1 = 18.7 meV [80]

~ωLO2 = 87 meV [80]
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B
Assignment of quantum
numbers for the green
series

In this appendix, we present additional numerical data for the green exciton series,
including an assignment of approximate quantum numbers, group theoretical represen-
tations and degeneracies of states. The assignment of approximate quantum numbers is
a nontrivial task, due to the strong overlap of n and L manifolds. To this end, starting
with the hydrogenlike exciton model, we slowly switch on the band structure and follow
the resonance positions. We also apply projection operators to the eigenstates |ψ〉 to
help with the assignment of quantum numbers.

The Hamiltonian describing odd-parity excitons in cuprous oxide in relative coordi-
nates can be separated into the form (see Refs. [35, 86])

H = Eg +H0 +HSO + λHvb , (B.1)

with the hydrogenlike part

H0 =
γ′1p

2

2m0

− e2

4πε0ε|r|
, (B.2)

using γ′1 = γ1 +m0/me, the spin-orbit coupling term

HSO =
2

3
∆

(
1 +

1

~2
I ·Sh

)
, (B.3)

and additional terms stemming from the complex valence band structure Hvb,

Hvb =
1

2~2m0

{4~2γ2p
2 + 2(η1 + 2η2)p2(I ·Sh)− 6γ2(p2

1I
2
1 + c.p.)− 12η2(p2

1I1Sh1 + c.p.)

− 12γ3({p1, p2}{I1, I2}+ c.p.)− 12η3({p1, p2}(I1Sh2 + I2Sh1) + c.p.)} .
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B. Assignment of quantum numbers for the green series

To make the assignment of states possible, we introduce the parameter λ in Eq. (B.1)
controlling the strength of the band structure. For λ = 0, the excitons are described
in the hydrogen-like model and with λ = 1 the full band structure is switched on. We
now diagonalize the Hamiltonian, while varying λ between zero and one. Following
the resonance states in the resulting E-λ-diagram then allows for the assignment of the
principal quantum number as shown in Figs. B.1 and B.2. Still, the assignment remains
ambiguous due to the existence of various avoided crossings. We additionally calculate
the P state component

pP = |〈L = 1|ψ〉|2 = 〈ψ|PL=1|ψ〉 (B.4)

and the F state component

pF = |〈L = 3|ψ〉|2 = 〈ψ|PL=3|ψ〉 (B.5)

with the corresponding projection operators PL=1 and PL=3, respectively.
In Table B.1 we present the numerical data for all odd parity green resonance states

with energies up to E = 2.299 eV and dominant P states up to n = 15. The table
includes the assignment of the approximate principal quantum number n, orbital angular
momentum L, irreducible representation, degeneracy g, complex resonance energy E,
and the complex relative oscillator strength frel. Furthermore, we provide the values for
pP and pF computed according to Eqs. (B.4) and (B.5) and the yellow admixture

py = |〈J = 1/2|ψ〉|2 = 〈ψ|PJ=1/2|ψ〉 . (B.6)

In Table B.2 we present analogous data for the even series including the central-
cell corrections, listing all even parity states of the green series up to the 6S state
and determine the irreducible representation in the Oh group, additionally listing the
admixtures of various J and L quantum numbers. To assign the principal quantum and
angular quantum number we follow the states from turned off to fully turned on band
structure terms, see Fig. B.2. The assignment is difficult because of various avoided
crossings. Note that, similarly to the oscillator strengths, the admixtures are no longer
positive real numbers.

The assignments of quantum numbers in Tables B.1 and B.2 shows that, in contrast
to the yellow series, the fine structure related by the band structure terms is strong
enough to cause multiplets belonging to different principal quantum numbers to overlap
for the green series. This underlines the discussion in Sec. 4.3, where we used the
associated matrix elements to conclude, that the cubic band structure terms affect the
green excitons much more strongly than the yellow excitons.
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Table B.1.: Numerical data for all odd parity green resonance states with energies up
to E = 2.299 eV and dominant P states up to n = 15. Assignment of the
approximate principal quantum number n, orbital angular momentum L,
irreducible representation, degeneracy g, complex resonance energy E, and
the complex relative oscillator strength frel. Furthermore, we provide the
values for pP and pF computed according to Eqs. (B.4) and (B.5) and the
yellow admixture py according to Eq. (B.6). mmmmmmmmmmmmmmmm-
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
State Irrep. g ReE [eV] ImE [meV] Re frel Im frel pP pF py

2P Γ−6 4 2.26887 -3.01965 4.2998 5.8604 0.955 0.043 0.018
2P Γ−8 8 2.27404 -1.19593 0.7471 1.4121 0.879 0.117 0.010
2P Γ−7 4 2.27948 -0.81870 0.0000 0.0000 0.856 0.136 0.017
2P Γ−8 8 2.28559 -0.04207 -0.0177 0.0146 0.857 0.141 0.004
3P Γ−6 4 2.28765 -0.90691 1.1603 1.8982 0.966 0.030 0.009
3P Γ−8 8 2.28944 -0.39764 0.2350 0.4813 0.895 0.099 0.004
3P Γ−7 4 2.29178 -0.26468 0.0000 0.0000 0.875 0.118 0.007
3P Γ−8 8 2.29384 -0.00734 -0.0052 0.0083 0.611 0.379 0.001
4P Γ−6 4 2.29423 -0.38575 0.5028 0.8270 0.941 0.050 0.004
4F Γ−6 4 2.29474 -0.00149 0.0039 -0.0007 0.030 0.833 0.001
4F Γ−8 8 2.29486 -0.04633 -0.0475 0.0259 0.030 0.842 0.002
4P Γ−8 8 2.29502 -0.13785 0.1574 0.1803 0.885 0.110 0.001
4F Γ−8 8 2.29587 -0.00089 -0.0001 0.0001 0.012 0.824 0.001
4P Γ−7 4 2.29625 -0.12115 0.0000 0.0000 0.769 0.222 0.003
4F Γ−8 8 2.29639 -0.00593 -0.0024 0.0131 0.072 0.905 0.001
5P Γ−6 4 2.29731 -0.19095 0.2571 0.4496 0.905 0.091 0.002
4F Γ−6 4 2.29737 -0.00676 0.0004 -0.0169 ∼ 0 0.565 0.000
4P Γ−8 8 2.29751 -0.00784 -0.0061 0.0080 0.461 0.476 0.001
4F Γ−8 8 2.29754 -0.00193 -0.0003 0.0025 0.058 0.550 0.000
5F Γ−6 4 2.29766 -0.00303 0.0092 0.0002 0.095 0.788 0.001
5P Γ−8 8 2.29769 -0.08012 0.0503 0.0934 0.748 0.239 0.001
4F Γ−7 4 2.29782 -0.00014 0.0000 0.0000 0.035 0.622 0.000
5F Γ−8 8 2.29783 -0.01073 0.0158 0.0061 0.313 0.596 0.000
5F Γ−8 8 2.29835 -0.00059 -0.0001 0.0000 0.013 0.835 0.001
4F Γ−7 4 2.29841 -0.01880 0.0000 0.0000 0.035 0.896 0.001
4F Γ−8 8 2.29848 -0.00070 0.0006 0.0009 0.097 0.846 0.000
5P Γ−7 4 2.29851 -0.04862 0.0000 0.0000 0.791 0.175 0.001
5F Γ−8 8 2.29875 -0.00545 -0.0017 0.0127 0.090 0.897 0.001
6P Γ−6 4 2.29901 -0.10700 0.1337 0.2630 0.812 0.164 0.001
7P Γ−6 4 2.30005 -0.06821 0.1416 0.1579 0.671 0.275 0.001
8P Γ−6 4 2.30072 -0.04328 0.0519 0.1085 0.648 0.290 0.001
9P Γ−6 4 2.30120 -0.03314 0.0438 0.0730 0.510 0.368 0.000
10P Γ−6 4 2.30154 -0.02334 0.0302 0.0550 0.509 0.383 0.000
11P Γ−6 4 2.30180 -0.01733 0.0268 0.0387 0.455 0.429 0.000
12P Γ−6 4 2.30199 -0.01459 0.0198 0.0322 0.363 0.418 0.000
13P Γ−6 4 2.30215 -0.01012 0.0168 0.0223 0.404 0.462 0.000
14P Γ−6 4 2.30227 -0.00903 0.0118 0.0212 0.327 0.408 0.000
15P Γ−6 4 2.30237 -0.00742 0.0105 0.0165 0.321 0.474 0.000
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B. Assignment of quantum numbers for the green series
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Figure B.1.: Energies of odd parity green states as a function of the strength of the band
structure. A value of λ = 0 means that the band structure is completely
switched off, whereas a value of λ = 1 signifies that the band structure is
completely switched on. The color palette shows the P state component pP

(top) and F state component pF (bottom) given in Eqs. (B.4) and (B.5),
respectively.
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Table B.2.: Numerical data for the even parity green excitons up to the 6S state. We list
the energy E, degeneracy g, the admixtures of J = 1/2 (py), J = 3/2 (pg),
L = 0 (pS), L = 2 (pD) and L = 4 (pG). We assign a principal and angular
quantum number by following the states as the band structure changes from
fully turned off to fully turned on, see Fig. B.2. For almost all states, this as-
signment agrees with the dominant admixture. mmmmmmmmmmmmmm-
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

g Irreps Re E [eV] Im E [eV] Re py Im py Re pg Im pg Re pS Im pS Re pD Im pD Re pG Im pG

2S 5 Γ+
3 + Γ+

4 2.2565503 -0.0055253 -0.09796 0.11345 1.09796 -0.11345 0.99265 -0.02880 0.04223 -0.05869 -0.03610 0.08601

2S 3 Γ+
5 2.2674550 -0.0072101 -0.07434 0.07290 1.07434 -0.07290 1.00460 -0.03371 0.02083 -0.02301 -0.02586 0.05568

3S 5 Γ+
3 + Γ+

4 2.2845550 -0.0020239 -0.02134 0.01079 1.02134 -0.01079 0.83711 0.05120 0.16842 -0.05820 -0.00639 0.00653

3D 4 Γ+
1 + Γ+

4 2.2858329 -0.0000665 0.00198 -0.00117 0.99802 0.00117 0.00000 0.00000 0.95916 0.00097 0.03700 0.00002

3S 3 Γ+
5 2.2871567 -0.0024291 -0.02634 0.02377 1.02634 -0.02377 0.82189 0.06197 0.18435 -0.07990 -0.00693 0.01721

3D 4 Γ+
1 + Γ+

4 2.2889469 -0.0000346 0.00422 -0.00049 0.99578 0.00049 0.00000 0.00000 0.90231 -0.00006 0.09503 0.00036

3D 5 Γ+
3 + Γ+

4 2.2894876 -0.0000476 0.00328 -0.00082 0.99672 0.00082 0.01039 -0.00209 0.85835 0.00196 0.12761 0.00070

3D 3 Γ+
5 2.2894901 -0.0000471 0.00333 -0.00077 0.99667 0.00077 0.01412 -0.00384 0.85530 0.00338 0.12693 0.00102

3D 4 Γ+
2 + Γ+

5 2.2910256 -0.0000302 0.00320 -0.00053 0.99680 0.00053 0.00004 0.00000 0.83429 0.00002 0.16250 0.00033

4S 5 Γ+
3 + Γ+

4 2.2928264 -0.0009940 -0.00752 0.00237 1.00752 -0.00237 0.54893 0.06816 0.43766 -0.06625 0.01218 -0.00182

4D 4 Γ+
1 + Γ+

4 2.2933128 -0.0000369 0.00108 -0.00064 0.99892 0.00064 0.00000 0.00000 0.95631 0.00052 0.03971 0.00011

3D 5 Γ+
3 + Γ+

4 2.2936683 -0.0000027 0.00087 -0.00004 0.99913 0.00004 0.04179 -0.00130 0.65558 0.00162 0.29874 -0.00030

3D 3 Γ+
5 2.2936683 -0.0000027 0.00087 -0.00004 0.99913 0.00004 0.04180 -0.00148 0.65556 0.00179 0.29874 -0.00029

4S 3 Γ+
5 2.2938698 -0.0011702 -0.01327 0.01189 1.01327 -0.01189 0.53521 0.08417 0.45686 -0.09225 0.00701 0.00766

3D 5 Γ+
3 + Γ+

4 2.2943870 -0.0000079 0.00094 -0.00004 0.99906 0.00004 0.25760 -0.02837 0.69263 0.02868 0.04576 -0.00022

3D 3 Γ+
5 2.2943889 -0.0000105 0.00103 -0.00005 0.99897 0.00005 0.26439 -0.05087 0.68544 0.05168 0.04612 -0.00066

3D 4 Γ+
2 + Γ+

5 2.2945926 -0.0000032 0.00092 -0.00004 0.99908 0.00004 0.00087 -0.00003 0.70486 -0.00006 0.29231 0.00010

4D 4 Γ+
1 + Γ+

4 2.2949444 -0.0000181 0.00223 -0.00024 0.99777 0.00024 0.00000 0.00000 0.91836 0.00011 0.07851 0.00004

4D 5 Γ+
3 + Γ+

4 2.2952197 -0.0000273 0.00186 -0.00043 0.99814 0.00043 0.03483 -0.00696 0.85141 0.00612 0.10978 0.00118

4D 3 Γ+
5 2.2952220 -0.0000268 0.00189 -0.00037 0.99811 0.00037 0.04309 -0.00903 0.84421 0.00785 0.10872 0.00150

4D 4 Γ+
2 + Γ+

5 2.2960014 -0.0000166 0.00174 -0.00028 0.99826 0.00028 0.00002 0.00000 0.84723 0.00024 0.14880 -0.00003

5S 5 Γ+
3 + Γ+

4 2.2966105 -0.0005480 -0.00307 0.00067 1.00307 -0.00067 0.54011 0.00824 0.42295 0.00716 0.03296 -0.01350

5D 4 Γ+
1 + Γ+

4 2.2967678 -0.0000212 0.00060 -0.00036 0.99940 0.00036 0.00000 0.00000 0.94555 0.00033 0.04909 0.00006

4D 3 Γ+
5 2.2971010 -0.0000013 0.00035 -0.00001 0.99965 0.00001 0.02587 0.00672 0.68057 -0.00465 0.28556 -0.00200

4D 5 Γ+
3 + Γ+

4 2.2971012 -0.0000010 0.00034 -0.00001 0.99966 0.00001 0.02393 0.00405 0.68199 -0.00279 0.28606 -0.00120

5S 3 Γ+
5 2.2971032 -0.0006206 -0.00703 0.00633 1.00703 -0.00633 0.55164 0.00667 0.41295 0.01536 0.03159 -0.01919

4D 4 Γ+
2 + Γ+

5 2.2974907 -0.0000005 0.00023 -0.00001 0.99977 0.00001 0.00012 0.00000 0.20836 0.00163 0.69848 -0.00129

5G 5 Γ+
3 + Γ+

4 2.2975237 -0.0000014 0.00028 0.00000 0.99972 0.00000 0.06692 -0.01114 0.05181 0.00244 0.74714 0.00751

5G 3 Γ+
5 2.2975242 -0.0000020 0.00030 0.00001 0.99970 -0.00001 0.06987 -0.01835 0.05027 0.00321 0.74588 0.01308

5G 4 Γ+
2 + Γ+

5 2.2976842 -0.0000012 0.00045 -0.00001 0.99955 0.00001 0.00033 -0.00001 0.49797 -0.00144 0.44615 0.00113

5D 4 Γ+
1 + Γ+

4 2.2977590 -0.0000101 0.00131 -0.00012 0.99869 0.00012 0.00000 0.00000 0.90534 0.00034 0.08852 -0.00023

5D 5 Γ+
3 + Γ+

4 2.2978851 -0.0000178 0.00103 -0.00023 0.99897 0.00023 0.01053 -0.00955 0.81777 0.00908 0.15858 0.00127

5D 3 Γ+
5 2.2978882 -0.0000179 0.00106 -0.00015 0.99894 0.00015 0.01827 -0.01447 0.81374 0.01206 0.15508 0.00301

5G 5 Γ+
3 + Γ+

4 2.2980369 -0.0000006 0.00022 -0.00001 0.99978 0.00001 0.00217 0.00111 0.05378 -0.00381 0.78691 0.00238

5G 3 Γ+
5 2.2980369 -0.0000006 0.00022 -0.00001 0.99978 0.00001 0.00165 0.00103 0.05315 -0.00377 0.78779 0.00242

5G 4 Γ+
1 + Γ+

4 2.2982667 0.0000000 0.00021 0.00000 0.99979 0.00000 0.00000 0.00000 0.01565 -0.00015 0.79725 0.00012

5D 4 Γ+
2 + Γ+

5 2.2983496 -0.0000094 0.00099 -0.00015 0.99901 0.00015 0.00000 0.00001 0.80522 0.00090 0.18938 -0.00075

4D 5 Γ+
3 + Γ+

4 2.2984497 -0.0000049 0.00051 -0.00007 0.99949 0.00007 0.17852 0.03192 0.62609 -0.04748 0.16574 0.01405

4D 3 Γ+
5 2.2984499 -0.0000045 0.00049 -0.00006 0.99951 0.00006 0.17716 0.02271 0.62896 -0.03418 0.16443 0.01037

6S 5 Γ+
3 + Γ+

4 2.2985926 -0.0003231 -0.00152 0.00030 1.00152 -0.00030 0.56706 0.02343 0.35907 0.04724 0.06531 -0.06493

5G 3 Γ+
5 2.2986376 -0.0000024 0.00020 -0.00002 0.99980 0.00002 0.02689 -0.01521 0.25372 0.00619 0.69051 0.00887

5G 5 Γ+
3 + Γ+

4 2.2986385 -0.0000033 0.00023 -0.00001 0.99977 0.00001 0.03236 -0.02517 0.25036 0.00760 0.68836 0.01727

6D 4 Γ+
1 + Γ+

4 2.2986532 -0.0000130 0.00036 -0.00023 0.99964 0.00023 0.00000 0.00000 0.92978 0.00033 0.06210 0.00001

6S 3 Γ+
5 2.2988580 -0.0003660 -0.00417 0.00390 1.00417 -0.00390 0.56238 0.06132 0.35659 0.01778 0.07233 -0.07171
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B. Assignment of quantum numbers for the green series
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Figure B.2.: Energy positions of even parity green states as a function of the strength
of the band structure, allowing for the assignment of n and L quantum
numbers. The color in the top panel shows the real part of the S admix-
ture, and in the bottom panel it shows the real part of the D admixture.
The admixtures were calculated analogously to the admixtures in Fig. B.1.
The strength of the band structure λ plotted on the vertical axis linearly
parametrizes the band structure parameters µ′, δ′, η1, ν and τ analogously
to Eq. (B.1), only with the additional inclusion of the central-cell correc-
tions.
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[131] Dietmar Fröhlich. Two- and Three-Photon Spectroscopy of Solids, pp. 289–326.
Springer US, Boston, MA (1994).

[132] Masaharu Inoue and Yutaka Toyozawa. Two-Photon Absorption and Energy Band
Structure. Journal of the Physical Society of Japan 20, 363–374 (1965).

[133] I. Sänger, D. R. Yakovlev, B. Kaminski, R. V. Pisarev, V. V. Pavlov, and M. Bayer.
Orbital quantization of electronic states in a magnetic field as the origin of second-
harmonic generation in diamagnetic semiconductors. Phys. Rev. B 74, 165208
(2006).

144



Bibliography

[134] I. Sänger, B. Kaminski, D. R. Yakovlev, R. V. Pisarev, M. Bayer, G. Karczewski,
T. Wojtowicz, and J. Kossut. Magnetic-field-induced second-harmonic generation
in the diluted magnetic semiconductors Cd1−xMnxTe. Phys. Rev. B 74, 235217
(2006).

[135] M. Lafrentz, D. Brunne, B. Kaminski, V. V. Pavlov, A. V. Rodina, R. V. Pisarev,
D. R. Yakovlev, A. Bakin, and M. Bayer. Magneto-Stark Effect of Excitons as
the Origin of Second Harmonic Generation in ZnO. Phys. Rev. Lett. 110, 116402
(2013).

[136] M. Lafrentz, D. Brunne, A. V. Rodina, V. V. Pavlov, R. V. Pisarev, D. R. Yakovlev,
A. Bakin, and M. Bayer. Second-harmonic generation spectroscopy of excitons in
ZnO. Phys. Rev. B 88, 235207 (2013).

[137] D. Brunne, M. Lafrentz, V. V. Pavlov, R. V. Pisarev, A. V. Rodina, D. R. Yakovlev,
and M. Bayer. Electric field effect on optical harmonic generation at the exciton
resonances in GaAs. Phys. Rev. B 92, 085202 (2015).

[138] Johannes Mund, Christoph Uihlein, Dietmar Fröhlich, Dmitri R. Yakovlev, and
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Zusammenfassung in
deutscher Sprache

Nach der experimentellen Beobachtung von Exzitonen mit Hauptquantenzahlen bis n =
25 [30], ist die gelbe Serie in Kupferoxydul das Objekt von erneutem wissenschaftlichem
Interesse geworden, mit vielen Vorhaben, die darauf abzielen die besonderen Eigenschaf-
ten hochangeregter Rydbergsysteme für neuartige Anwendungen zu benutzen, zum Bei-
spiel in der Quanteninformationsverarbeitung. Ein gründliches theoretisches Verständnis
des Exzitons und seiner Eigenschaften ist Grundlage für eine erfolgreiche Verwirklichung
dieser Ideen in exzitonischen Rydbergsystemen. Die vorliegende Arbeit soll dazu beitra-
gen dieses Verständnis zu erweitern. Zu diesem Zweck untersuchten wir analytisch und
numerisch die gelbe und grüne Exzitonenserie in Kupferoxydul.

Experimentelle Untersuchungen der Paraexzitonenserie der gelben Exzitonen in Cu2O
und der zugehörigen Austauschaufspaltungen zeigen, dass ein einfaches wasserstoffartiges
Modell in vielerlei Hinsicht unzureichend ist. In Kapitel 3 haben wir Spektren mit modi-
fizierten Materialparametern numerisch untersucht und so experimentell unzugängliche
Erkenntnisse gewonnen. Wir haben dies zur Interpretation der experimentellen Befunde
in Ref. [63] benutzt und identifizierten ihre Wurzeln in den Eigenschaften des Systems.
Wir untersuchten zunächst die Vertauschung des gelben 2S Para- und Orthoexzitons.
Farenbruch et al. [63] identifizierten die Mischung mit dem grünen 1S-Orthoexziton als
den Ursprung der Vertauschung. Wir konnten diese Erklärung mit detaillierten Berech-
nungen bestätigen. Wir zeigen, dass das Orthoexziton über das Paraexziton gehoben
wird, wenn der Einfluss der grünen Exzitonen in der Simulation entfernt wird. Die Va-
riation der Spin-Orbit-Kopplung zeigt eine vermiedene Kreuzung zwischen dem gelben
2S-Orthoexziton und dem grünen 1S-Exziton, was die Platzierung des Orthoexzitons un-
terhalb des Paraexzitons erklärt. Wir konnten somit zeigen, wie die Kopplung der gelben
und grünen Reihe zu einem Verhalten führt, das sich qualitativ von der wasserstoffartigen
Näherung unterscheidet, was ihre Bedeutung für das Verständnis der gelben Exzitonen-
serie unterstreicht. Entfernt man den Einfluss der grünen Zustände, wird die erwartete
Reihenfolge der Zustände wiederhergestellt. Nimmt in diesem Fall die Austauschauf-
spaltung mit der dritten Potenz der Hauptquantenzahl n ab? Unsere Berechnungen
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zeigen, dass dies nicht exakt der Fall ist. Wir identifizieren zwei Gründe dafür. Erstens
ändert das Haken-Potential die Dielektrizitätskonstante für kleine Radien, was die Wel-
lenfunktion am Ursprung und damit die Aufspaltung beeinflusst. Bei einer vereinfachten
Behandlung der Austauschaufspaltung wird auch der zweite Faktor übersehen, nämlich
die Kopplung zwischen S-Zuständen unterschiedlicher Hauptquantenzahl durch die Aus-
tauschaufspaltung selbst. Eine systematische Analyse zeigt, dass diese beiden Faktoren
für die Diskrepanz zum n−3-Verhalten verantwortlich sind. Abschließend untersuchen
wir den Ursprung des großen Unterschieds zwischen den Austauschaufspaltungen der
gelben und grünen 1S Zustände. Farenbruch et al. [63] bestätigten die Vorhersage von
Schweiner et al. [38], dass die Aufspaltung des grünen 1S-Exzitons über 30 meV liegt
und damit etwa das Zweieinhalbfache der Spaltung von etwa 12 meV für den gelben
1S-Zustand ist. Wir haben auch zwei Gründe für diesen Umstand gefunden. Der erste
ist der Unterschied in den Matrixelementen von Se ·Shδ(r) für J = 1/2 und J = 3/2.
Da die Austauschaufspaltung von der relativen Orientierung der Elektronen- und Loch-
spins abhängt, führen unterschiedliche Werte des effektiven Lochspins J = I + Sh zu
unterschiedlichen Stärken der Austauschaufspaltung. Der zweite Grund ist der Unter-
schied in den reduzierten Massen zwischen dem gelben und dem grünen 1S-Zustand.
Die reduzierte Masse des grünen 1S-Zustands ist deutlich höher als die reduzierte Masse
des gelben 1S-Zustands, wie eine detaillierte Analyse der Rydberg-Energie zeigt, wenn
man den Einfluss der Terme, die nur bei kleinen Abständen wichtig sind herausrech-
net. Dies führt zu einem höheren Wert der Wellenfunktion am Ursprung und zu einer
entsprechenden Erhöhung der Austauschaufspaltung.

In Kapitel 4 haben wir untersucht, wie die Bandstruktur und insbesondere die Kopp-
lung zwischen der gelben und grünen Serie im Falle des D-Zustandes mit Drehimpuls
F = 5/2 zu einer Aufhebung der Ordnung der Zustände nach zunehmendem L führt. Der
zugrundeliegende Mechanismus ist die Niveauabstoßung vom grünen 1S-Exzitonzustand,
die, wie unsere Analyse zeigt, für gelbe Exzitonen mit L = 2 und F = 5/2 am stärksten
ist. Dies erklärt, warum die D5/2-Linie, und insbesondere das zugehörige Orthoexziton
zu höheren Energien verschoben ist. Wir zeigen anhand von experimentellen Daten und
numerischen Berechnungen, dass diese Linie der höchste Zustand im n = 3, n = 4 und
auch im n = 6 Multiplett ist. Wir präsentieren das n−3-Skalierungsverhalten der Ener-
gieabspaltung, das es uns erlaubt, zu höheren n zu extrapolieren und formulieren die
Erwartung, dass das Ortho-D5/2-Exziton auch im hohen n-Regime der höchste Zustand
ist. Unsere Untersuchung kann für das bessere Verständnis und die Interpretation von
Fehlstellen-dominierten Spektren nützlich sein, insbesondere in der Nähe der Bandlücke,
siehe die jüngsten Studien von Krüger et al. [157] und Heckötter et al. [158]. Das genaue
Verständnis der D-Exzitonenfeinstruktur und die verbesserte Zuordnung der approxima-
tiven Quantenzahlen ist relevant für die Plasmonenstreuraten zwischen Exzitonen mit
unterschiedlichen Drehimpulsen [159] und durch Mikrowellen getriebene Intrabandüber-
gänge [160].

In Kapitel 5 haben wir die früheren Arbeiten von Schweiner et al. [65] über die opti-
schen Spektren von Magnetoexzitonen in Kupferoxid auf die Voigt-Konfiguration ausge-
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weitet und zeigten, dass der nicht verschwindende Exzitonenimpuls senkrecht zum Ma-
gnetfeld zum Auftreten eines effektiven Magneto-Stark Feldes führt. Unter Einbeziehung
der Valanzbandstruktur und unter Berücksichtigung der Zentralzellen-Korrekturen, so-
wie des Haken-Potentials konnten wir numerische Ergebnisse in guter Übereinstimmung
mit experimentellen Absorptionsspektren berechnen. Wir beobachten eine signifikan-
te Zunahme der Anzahl der sichtbaren Linien im Vergleich zur Faraday-Konfiguration
sowohl in den experimentellen als auch in unseren numerischen Daten. Mit gruppen-
theoretischen Methoden zeigen wir, dass dies damit zusammenhängt, dass das Magneto-
Stark-Feld die Vermischung zwischen den Zuständen erhöht. Während ihre Positionen
relativ unbeeinflusst bleiben, führt die Mischung von Zustände zu einer endlichen Oszil-
latorstärke, zumindest im Prinzip, aller Linien.

Wir haben die von Schweiner et al. entwickelte Methode zur Berechnung von Exziton-
Absorptionsspektren in Cu2O [35, 38, 65] in Kapitel 6 auf die Simulation von Intensitä-
ten der Frequenzverdoppelug (SHG, von engl. second harmonic generation) erweiert. In
Cu2O ist SHG entlang von Achsen mit einer C2-Symmetrie verboten. Durch das Anlegen
eines externen Magnetfeldes wird SHG entlang dieser Richtungen erlaubt. Wir betrach-
ten hauptsächlich den Fall von SHG entlang verbotener Achsen. Wir identifizieren zwei
verschiedene Mechanismen, durch die ein Magnetfeld ein SHG-Signal induzieren kann.
Erstens reduziert das Magnetfeld selbst die Symmetrie und mischt die Exzitonenzustän-
de in geeigneter Weise, um eine nicht verschwindende SHG-Intensität zu erzeugen. In
diesem Fall bleibt die Parität eine gute Quantenzahl und das emittierte Photon kann
nur durch einen Quadrupolprozess erzeugt werden. In der Voigt-Konfiguration induziert
das Magnetfeld ein zusätzliches effektives elektrisches Feld. Dies bricht die Inversions-
symmetrie und ermöglicht auch SHG mit Dipol-Emissionsprozessen. Wir untersuchen
Spektren, bei denen sowohl Quadrupol- als auch Dipol-Emissionsprozesse eine Rolle
spielen. Zu diesem Zweck schätzen wir die relative Stärke dieser Prozesse durch den
Vergleich geeigneter numerischer und experimenteller Spektren ab. Wir vergleichen nu-
merisch berechnete und experimentelle Daten für verschiedene Polarisationen des ein-
und ausgehenden Lichts, Richtungen des Wellenvektors und Richtungen des Magnet-
felds. Wir stellen fest, dass für bestimmte Konfigurationen die Spektren in führender
Ordnung vollständig durch das Magnetfeld oder durch das elektrische Feld induziert
werden. Im Großen und Ganzen ist eine gute Übereinstimmung zwischen Experiment
und Theorie zu beobachten, wobei einige Schwächen der numerischen Methode bestehen
bleiben. Zunächst einmal erfordert die Behandlung von SHG in erlaubten Richtungen
eine umsichtigere Herangehensweise an die Bewegung des Massenschwerpunkts, da in
diesem Fall der nicht verschwindende K-Vektor selbst ein SHG-Signal hervorruft. Um
dies richtig zu berücksichtigen, muss der Hamiltonian durch zusätzliche K-abhängige
Terme ergänzt werden. Die SHG-Intensitäten, die mit bestimmten Exzitonenlinien ver-
bunden sind, hängen von deren Linienbreiten ab. Die Einbeziehung dieses Effekts in
unser Modell ist nur rudimentär. Eine bessere Behandlung ist schwierig, denn sie würde
die detaillierte Kenntnis der Lebensdauern der Exzitonenzustände auch im Regime der
starken Durchmischung erfordern. Eine weitere Schwäche der hier verwendeten numeri-
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schen Methode sind die Zentralzellen-Korrekturen. Aufgrund ihrer Ungenauigkeit sind
die Positionen der geraden Exziton-Zustände energetisch etwas zu hoch. Dies führt zu ei-
ner zu starken Vermischung der S- und P-Zustände und damit zu zu starken Intensitäten
dieser Linien. Für die in dieser Arbeit betrachtete Hauptanwendung, d.h. für die Unter-
suchung von magnetfeldinduzierten SHG-Spektren in verbotenen Richtungen, erzielen
wir dennoch zufriedenstellende Ergebnisse. Verbesserte Behandlungen der Zentralzellen-
Korrekturen und der Bewegung des Massenschwerpunkts in erlaubten Konfigurationen
sind in zukünftigen Arbeiten erforderlich.

Ausgehend von der von Schweiner et al. [35, 65] entwickelten numerischen Methode
zur Berechnung von gelben Exzitonen in Kupferoxid, haben wir in Kapitel 7 komplexe
Exzitonenresonanzen in elektrischen und parallelen elektrischen und magnetischen Fel-
dern unter Verwendung der komplexen Koordinatenrotationsmethode berechnet. Aus
den komplexen Energien konnten wir die Zerfallsraten bestimmen und die Absorptions-
spektren von zirkular polarisiertem Licht simulieren. Im Falle der numerischen Berech-
nung von Magnetoexzitonen ergaben detaillierte Vergleiche mit experimentellen Daten
eine ausgezeichnete Übereinstimmung. Ein ähnlicher Vergleich unter Einbeziehung des
elektrischen Feldes wäre daher eine interessante zukünftige Aufgabe. Unsere Berechnun-
gen eröffnen auch die Möglichkeit exzeptionelle Punkte in Exzitonenspektren zu unter-
suchen, die nur in nicht-hermitschen Systemen wie dem hier untersuchten auftreten kön-
nen. Im Gegensatz zum Wasserstoffatom sind die exzeptionelle Punkte in den Spektren
von Exzitonen in Kupferoxid bereits bei experimentell erreichbaren Feldstärken [145]
zugänglich, was das System zu einem hervorragenden Kandidaten für die experimentel-
le Beobachtung von exzeptionellen Punkten in einem Rydberg-System macht. Nikitine
[51] hat experimentell die grüne Exzitonenreihe in Cu2O experimentell untersucht, und
vor Kurzem haben Krüger und Scheel [66] Interserienübergänge, z.B. zwischen gelben
und grünen Exzitonen, studiert. In diesem Zusammenhang ist ein besseres Verständnis
der grünen Exzitonenserie wünschenswert. Da sich die grüne Serie innerhalb des gelben
Kontinuums befindet [147, 148, 151], und die verschiedenen Serien koppeln, sind die
grünen Exziton-Zustände eigentlich Resonanzen. Die in Kapitel 7 verwendete Metho-
de der komplexen Koordinatenrotation ist daher auch ein geeignetes Werkzeug für die
Untersuchung dieser Resonanzzustände.

In Kapitel 8 haben wir die Resonanzpositionen, Linienbreiten und relativen Oszilla-
torstärken der grünen Exzitonenserie von Kupferoxid berechnet. Dabei haben wir die
Valenzbandstruktur des Kristalls und die Kopplung der grünen Exzitonen mit dem gel-
ben Kontinuum berücksichtigt. Für die Berechnungen haben wir einen vollständigen Ba-
sissatz mit Coulomb-Sturmschen Funktionen für den radialen Teil der Wellenfunktion
und die Methode der komplexen Koordinatenrotation verwendet. Für die dominanten P-
Zustände im Absorptionsspektrum haben wir ihr wasserstoffartiges Verhalten bestätigt
und die Rydberg-Energie und den Quantendefekt extrahiert, welche in guter Überein-
stimmung mit Literaturwerten [150] sind. Die Linienbreiten der grünen P-Zustände ver-
ringern sich gemäß ∼ n−3 mit steigender Hauptquantenzahl. In Abschnitt 8.2 haben wir
einige Resonanzpositionen mit der experimentellen Arbeit von Gross [9] verglichen. In
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der Zwischenzeit haben die experimentellen Techniken erhebliche Fortschritte gemacht.
Ein Vergleich mit neuen Daten wäre daher wünschenswert. Die interessante Frage ist,
ob stark ausgedehnte Rydberg-Zustände der grünen Exzitonenserie mit Quantenzahlen
bis zu n ≈ 25 und die berechnete Feinstrukturaufspaltung ähnlich wie bei der gelben
Serie [30, 33] experimentell beobachtet werden können. Wir haben uns zunächst auf
die ungeraden Zustände konzentriert. Der 1S-Zustand der geraden grünen Serie ist ge-
bunden und wurde einschließlich der Zentralzellen-Korrekturen in Ref. [38] berechnet.
Anschließend haben wir zusätzlich die grüne Exzitonenserie mit gerader Parität berech-
net und diskutiert. Interserienübergänge werden derzeit untersucht [66]. Ausgehend von
den bisherigen Studien konnten wir dann im nächsten Kapitel die Übergangsamplitu-
den zwischen der gelben und der grünen Serie berechnen, wobei die Valenzbandstruktur
berücksichtigt wurde.

In Kapitel 9 haben wir die Interserienübergänge zwischen der gelben und grünen Ex-
zitonenreihen in der Dipolnäherung untersucht. Wir erweiterten die Berechnungen für
die gelb-grünen Interserienübergänge, die in Ref. [66] durchgeführt wurden, durch Ein-
beziehung der komplexen Valenzbandstruktur. Um die damit verbundene Kopplung zwi-
schen den den grünen Exzitonzuständen und dem gelben Kontinuum zu berücksichtigen,
haben wir die komplexe Koordinatenrotationsmethode für die Berechnung der grünen
Exzitonresonanzen wie in Kapitel 8 verwendet. Wir haben verschiedene Möglichkeiten
für den Ausgangszustand im Spektralbereich der gelben Serie, wobei wir uns hauptsäch-
lich auf die P-Zustände mit ungerader Parität konzentrierten, welche in Ein-Photonen-
Absorptionsexperimenten am leichtesten zugänglich sind. Wir unterscheiden den Fall, in
dem das Photon, das das ursprüngliche Exziton anregt, und das Photon, welches den In-
terserienübergang bewirkt, parallel zueinander polarisiert sind, von dem Szenario in dem
die beiden orthogonal polarisiert sind. Zusätzlich haben wir auch die Übergangswahr-
scheinlichkeiten von den gelben Zuständen mit gerader Parität zu den ungeraden grünen
Zuständen berechnet, mit dem zusätzlichen Sonderfall, dass der Anfangszustand das grü-
ne 1S-Exziton ist. Die Übergangsstärken liegen in den verschiedenen Konfigurationen in
der gleichen Größenordnung, wobei die Übergänge, die mit einem gelben Exziton ungera-
der Parität beginnen etwas schwächer sind als diejenigen, die von einem gelben Exziton
mit gerader Parität ausgehen. Natürlich ist die experimentelle Präparation des gelben
Exzitons mit gerader Parität schwieriger, da eine Zwei-Photonen-Anregung erforderlich
ist. In allen Fällen führt die Erhöhung der Hauptquantenzahl des Ausgangszustands da-
zu, dass der Bereich der angeregten grünen Zustände zu höheren Energien verschoben
wird, was in den meisten Fällen mit einer Abschwächung der Übergangsstärken einher-
geht. Wir verwenden die Dipolnäherung, die gültig ist, wenn die Wellenlänge des Lichts,
das den Interserienübergang bewirkt, viel größer ist als die Ausdehnung der beteiligten
Exzitonen. Wie in Ref. [66] gezeigt, bricht diese Bedingung für Übergänge zwischen der
gelben und grünen Serie ab n & 15 für gegenläufige Pump- und Probe-Strahlen zusam-
men. Für die Ausweitung unserer Untersuchungen auf diesen Parameterbereich muss
man also über die Dipolnäherung hinausgehen. Weiterhin ist eine Erweiterung unserer
Methode auf Übergänge zwischen Zuständen der gelben und der blauen Reihe relativ
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einfach, erfordert aber die Implementierung des Leitungsband-Hamiltonians einschließ-
lich der Γ−8 -Bänder. Eine weitere mögliche Route ist die Untersuchung des Einflusses
eines zusätzlichen externen Feldes, mit dem Ziel die Eigenschaften der Übergänge fein
abzustimmen. Eines der Ziele unserer Studie war es schließlich, theoretische Vorhersagen
zu treffen, die bei der experimentellen Untersuchungen der Interserienübergänge helfen
können. Es gibt zwar einige experimentelle Arbeiten zu Intraserien-Übergängen inner-
halb der der gelben Serie [161, 162] und in Bezug auf Übergänge zwischen der gelben
und der blauen Serie [163], aber es gibt unseres Wissens nach noch keine experimentel-
len Studien zu den untersuchten Übergängen von Gelb nach Grün. Ein Vergleich unserer
Ergebnisse mit zukünftigen experimentellen Daten ist daher sehr wünschenswert.
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