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Abstract

Context. With the growing popularity of microservice-based architectures, the need for effective
resilience testing of such architectures occurred. In a preceding case study, we showed that trans-
forming resilience scenarios to formalized scenario-based chaos tests, and executing those is a
feasible way to do so.

Problem. While producing very representative results, chaos testing can require a not insignificant
expenditure of time and stresses the system under test. Simulating such experiments reduces these
problems. Unfortunately, there are currently no simulators available that fulfill the requirements for
simulating such scenarios to an acceptable level.

Objective. Therefore, this thesis examines which simulators are suitable for which types of scenarios.
Furthermore, the most promising of these simulators is extended to support a common scenario
description and other features.

Method. To properly elicit the requirements for such a simulator, stakeholders conduct a requirements
analysis. Existing simulators are searched and evaluated based on these requirements. The simulator
that looks the most promising is then extended. To verify the accuracy of the simulator, the scenarios
from the preceding case study are utilized. They are transposed to models and simulated. The result
data of the simulation is compared to the results of the case study.

Result. This thesis presents five microservice simulators and which scenarios they currently po-
tentially support best in a structured overview. Further, a re-engineering of the MiSim simulator
results in better support of scenario-based chaos experiments and others of the aforementioned
requirements. Conclusion. MiSim 3.0 is evaluated as a simulator that is capable of accurately
simulating scenario-based chaos tests. Specifically, the newly implemented resilience patterns and
chaos injections behave as expected. However, an inaccurate calibration may harm its accuracy.

Conclusion. Previously existing microservice simulators could not simulate all types of scenario-
based chaos experiments. In the context of this thesis MiSim 3.0 is created and evaluated as a
simulator capable of correctly simulating many types of scenario-based chaos tests. In particular,
the newly implemented resilience patterns and chaos injections behave as expected. However,
inaccurate calibration can significantly affect its accuracy.
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Kurzfassung

Kontext. Mit der wachsenden Popularität von Microservice-basierten Architekturen ist der Bedarf an
effektiven Resilienz-Tests für solche Architekturen entstanden. In einer vorangegangenen Fallstudie
haben wir gezeigt, dass die Umwandlung von Resilience-Szenarien in formalisierte szenario-basierte
Chaostests und deren Ausführung ein praktikabler Weg ist, dies zu tun.

Problemstellung. Obwohl Chaostests sehr repräsentative Ergebnisse liefern, erfordern sie einen
nicht unerheblichen Zeitaufwand und belastet zudem das zu testende System. Das Simulieren
solcher Experimente reduziert diese Probleme. Leider gibt es derzeit keine Simulatoren, die die
Anforderungen für die Simulation solcher Szenarien auf einem akzeptablen Niveau erfüllen.

Zielsetzung. Daher wird in dieser Arbeit untersucht, welche Simulatoren für welche Arten von
Szenarien geeignet sind. Darüber hinaus wird der vielversprechendste dieser Simulatoren erweitert,
um eine allgemeine Szenario Beschreibung und andere Resilienz-Features zu unterstützen.

Methode. Um die Anforderungen an einen solchen Simulator richtig zu erheben, wird Anforderungs-
analyse mithilfe von Experten durchgeführt. Bestehende Simulatoren werden auf Basis dieser
Anforderungen gesucht und gewertet. Der Simulator, der am vielversprechendsten erscheint, wird
dann erweitert. Zur Überprüfung der Genauigkeit des Simulators, werden die Szenarien aus der
vorangegangenen Fallstudie herangezogen. Sie werden in Modelle übertragen und simuliert. Die
Ergebnisdaten der Simulation werden mit den Ergebnissen der Fallstudie verglichen.

Ergebnis. Diese Arbeit stellt fünf Microservice-Simulatoren und welche Szenarien sie derzeit poten-
ziell am besten unterstützen vor. Weiterhin wird durch ein re-Engineering des MiSim-Simulators
eine bessere Unterstützung von szenario-basierten Chaos-Experimenten und anderen der oben
genannten Anforderungen erreicht.

Fazit. Bisher existierende Microservice-Simulatoren konnten nicht alle Arten von szenariobasierten
Chaostests simulieren. Im Rahmen dieser Arbeit wird mit MiSim 3.0 ein Simulator erstellt und
evaluiert, der in der Lage ist, viele Arten von szenariobasierte Chaostests korrekt zu simulieren.
Insbesondere die neu implementierten Resilienz-Muster und Chaos-Injektionen verhalten sich wie
erwartet. Allerdings kann eine ungenaue Kalibrierung seine Genauigkeit erheblich beeinträchti-
gen.
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1 Introduction

Today, the resilience of software systems plays a crucial role in their life cycle. Specifically
microservice architectures often appear in this context as they naturally lean towards maintainability
and flexibility [DGL+17]. To test the resilience, usually chaos tests are utilized [Cha18]. The
feasibility and usage of scenario-based chaos experiments was demonstrated in our preceding case
study [KWK+20]. These scenario-based chaos tests and experiments can offer a well-defined and
formal description of a system’s quality requirements. This allows for using these scenarios as
inputs for tools, that quantitatively evaluate a quality requirement, like simulators.

Usually, scenario-based chaos tests are run in production to create realistic experiment results
[Cha18]. However, they can take a not insignificant expenditure of time. Therefore, configuration
optimization and immediate testing of system resilience is not feasible. Parallel or preemptive
simulation of chaos test scenarios reduces these problems, since simulations are usually cheap,
repeatable and do not impact the production system. There are currently many existing simulators
for distributed systems [BBM13; CRRB09; Flo; NGN17]. Most of them support some for of
load testing, but to my knowledge only two of these simulators do support the simulation of some
chaos toolkit like faultloads [BZG17; VDR+20]. None are present when it comes to taking a
scenario-based chaos experiment description as input.

Even tho none of these simulators support scenario-based chaos experiments, they can still be used
to execute some specific types of resilience scenarios. This thesis aims to establish an overview
of existing microservice system simulators and presents which types of scenario-based chaos
experiments they can simulate best. The most promising of these simulators, MiSim [BZG17] then
gets extended to support a scenario-based input format. In the end, this extension should help to
build a common framework for doing quantitative quality attribute software analysis with resilience
scenario-based chaos test, by providing a simulator that executes such tests as inputs.

Before going into detail about the simulators, a list of requirements for a scenario-base simulation
is established by leveraging expert knowledge. Based on these requirements a structured search
reveals five potentially usable simulators. An evaluation of these simulators presents their respective
(dis-)advantages and supported types of resilience scenarios. Lastly, the simulator MiSim is extended
and evaluated on how good it can potentially simulate scenario-based chaos tests. The scenarios
that are picked for the evaluation are selected form a catalog that we previously established during
an industry case study.

The evaluation shows, that MiSim fulfills most of the aforementioned requirements after the re-
engineering. Most notibly, it accepts a common scenario description as input. Also, it is capable of
simulating all common chaos tool kit like faultloads such as delays, chaos monkeys or complex load
behaviors. Additionally, more resilience patterns such as retries and autoscalers have been added.
Besides these improvements, the exact calibration of the architecture model is still an open problem.
The evaluation results show, that specifically varying workloads can are not simulated accurately.
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1 Introduction

Concluding, this thesis gives an overview of existing microservice architecture simulators and
how good they can potentially simulate scenario-based chaos tests. The simulator MiSim gets
re-engineering to be more feature rich and to accepted scenario-based chaos tests as simulation
inputs. It is shown to accurately simulate real world scenarios and resilience patterns.

Thesis Structure

Chapter 2 – Foundations: This chapter contains explanations of the main topics that are relevant
within this theses.

Chapter 3 – Related Work: This chapter introduces websites, papers, books and research projects
that are closely realted to this thesis.

Chapter 4 – Requirements Analysis and Simulator Evaluation: This chapter presents the re-
quirements analysis and analized simulators and the results of the simulator evaluation.

Chapter 5 – Improvement of the MiSim Simulator: This chapter offers and overview of the im-
porvements made during the reengineering of the MiSim simulator.

Chapter 6 – Evaluation: This chapter presents the evaluation results for the improved and extend
simulator.

Chapter 7 – Conclusion and Future Work: This chapter finishes off the thesis by providing an
outlook into potential continuing future work and gives a conclusion and summary of the
thesis.
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2 Foundations

The roots of this thesis lie within five fundamental concepts of software engineering, distributed
systems and simulation. Each of these concepts is dedicated a section with the following order.
Section 2.1 introduces the concept of microserivce architectures, a very loose approach to software
architectures. Section 2.2 explains resilience engineering as a strategy to make an architecture
capable of coping with and preventing failures. Further, the concept of resilience patterns is
introduced. Section 2.3 continues by describing resilience scenarios as an approach to formalize the
resilience requirements of a software system. Section 2.4 then presents chaos engineering as a way
of testing the resilience of a system. Lastly, Section 2.5 give a general overview over discrete-event
simulation and how it is applicable to microservice architectures.

2.1 Microservice Architectures

A microservice architecture is a form of a service orientated architecture (SOA), sometimes labeled
as “SOA done right” [BG20]. It enforces a very loose coupling and high cohesion of services
[New14]. In practice each service should be as independent as possible and only handle one specific
type of tasks or business processes [DGL+17]. This is also where the name “microservice” comes
from [LF14].

This loose coupling allows a microservice architecture to be more flexible, scalable, maintainable
and extendable, than a more monolithic structure [New14]. Especially since the surge in PaaS
providers like Amazon Webservices, Microsoft Azure or Cloud foundry, microservices have become
easy to deploy and manage, due to then naturally leaning towards containerization.

In 2018 DZone conducted a survey on the popularity of microservices [Gle18]. Nearly 50% of the
732 participants answered that their company is using microservices in development or production.
Additional 38.7% of participants said, that their company is at least considering a migration to
microservices. Another survey in early 2020 by the O’Reilly Media, Inc. [LS20] reported that of the
1502 survey respondents, over 76% answered that their company uses microservices in some way or
another. Further, over 88% of these microservice systems are older than a year. Therefore, could be
considered as non-prototype or permanent installment. In both studies the main selected reasons for
moving to microservices were the aforementioned flexibility, scalibility and maintainability (here:
responding quickly to changing requirements). A majority of respondents rated their adoption as at
least mostly successful. The results of these surveys show, that microservices are becoming more
and more present in the industry. This makes development-supporting tools, like microservice
system simulators, significantly more important.

Despite all their advantages, microservices are not the perfect all-in-one solution for any system.
Previous adoptions of this architecture failed or had only minor success. Reasons for this are mainly
their context specific applicability and immature development processes [Vuč20]. Specifically, the
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2 Foundations

extremely loose coupling of services brings some unique challenges. Since microservice architec-
tures change a lot during their run time, they have to be resilient against all sorts of communication
problems and challenges. These can range from detecting and handling bad connections, over
discovering each other reliably, to efficiently managing service resources.

2.2 Resilience Engineering and Patterns

The term resilience can be found in many domains. Hollnagel explains some of the origins of
resilience on his website [Hol16]. Resilience first appeared in the craft of woodwork, where the term
describes the response of different wood types to sudden and severe loads. This was later adopted
to describe all kinds of materials besides wood. In 1973 the first formal definition of Resilience was
introduced by Holling [Hol73] to describe how ecosystems cope with rapid and impacting changes
in the environment without ceasing to exist. Today, there are many definitions for resilience as a lot
of different disciplines, like mechanical engineering, social-technical engineering or psychology
have adopted this concept [Bur19; Fur15; Hol16; MJ09]. Erik Hollnagel refined his definition of
resilience over multiple years and his newest iteration describes “being resilient” as follows:

Definition 2.2.1 (resilience)
A system is resilient if it can adjust its functioning prior to, during, or following events (changes,
disturbances, and opportunities), and thereby sustain required operations under both expected and
unexpected conditions. [Hol16]

Resilience engineering is the activity of strategically modifying the resilience of a system. In the
context of a software this means that a the system being engineered to withstand turbulent and
unexpected conditions [MJ09].

As mentioned in Section 2.1, there common challenges for the resilience of microservice archi-
tectures. Since these are reoccurring problems, template-like solutions to most of these problems
were created over time. One subset of these solutions are resilience patterns [Nyg07]. These are
software-based solutions that aim to make a system more resilient. For example, a Retry pattern
retries failed operations [Res] and a Circuit Breaker forces an alternative fallback behavior during a
failure [JGC17b]. Resilience patterns often have a lot of different configuration options. A simula-
tion of scenario-based chaos experiments can help to efficiently test and find effective configurations
for resilience patterns or in general test their applicability.

As Circuit Breaker, Retrier, Loadbalancer and Autoscaler are the most prominent resilience patterns
that appear in this thesis, they will be presented in detail in the following subsections.

2.2.1 Retry

The retry resilience pattern is one of most established mechanisms that helps to cope with a
communication failure. It utilizes the simple strategy of resending failed requests after a short delay.
To prevent network and queue saturation a retry pattern is usually configured to have a maximum
number of tries per request [MACG20]. This interaction is visualized in Figure 2.1. A variety
of algorithms can be employed to calculate backoff delay before the next try. The most common
implementations for a backoff algorithm are the linear and exponential backoff strategies [Bro19b].
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:RequestSender :Retry :MicroserviceInstance

Request

Request

Failure

Response

Response

[Request succeeded]

[Request failed]

alt

increase retry
delay

alt

loop [until retry limit or successful]

Figure 2.1: General behavior of the Retry pattern [MACG20].

The general forumla for a linear backoff is described by Equation (2.1). It uses the parameters shift
B, base delay 1 and the number of previous tries (#tries) to calculate the delay in between tries
3=4GC . Equation (2.2) displays a similar formula for the exponential backoff. It takes an additional
parameter 6 that determines the growth rate of the backoff. Both of these implementations are
capped by a maximum delay 3max to prevent infinite retry delays [Bro19b].

(2.1) 3=4GC = min(3max, B + 1 · #tries)

(2.2) 3=4GC = min(3max, B + 1 · 6#tries)

Both of these formulas are pure deterministic approaches. Whilst these algorithms usually yield
acceptable results, they have a inherited disadvantage compared to randomized approaches. Requests
that fail at a similar time will also be retried to a similar time. Therefore, load spikes can emerge
and collisions would repeat. This is specifically the case if a connection fails only for a short period
of time. To handle this inconvenience randomized wrappers or functions can be utilized. The
slight non-deterministic delaying of messages is known as “Jitter” or “jittering”. This technique is
generally used to smooth out the load curve of a system [Bro19b]. Brooker [Bro15] distinguishes
between three types of jittering retries. Equation (2.3) shows an implementation of a “Full Jitter”
wrapper. This method takes the output of a linear or exponential backoff algorithm and returns a
random value between 0 and the original deterministic value. An “Equal Jitter” implementation is
displayed by Equation (2.4). This version of a non-deterministic algorithm produces more stable
results than a “Full Jitter”, since only one half of the next delay is randomized. Both the “Full”
and “Equal” Jitter can be based on a linear or exponential strategy providing the 3=4GC argument
based on the previous tries. Lastly Brooker [Bro15] also presents the “Decorrelated Jitter”, which
is represented in Equation (2.5). This implementation returns a base delay for its first iteration and
then continues to use a random value between the base and the previous delay times a constant
= ∈ R>1. The later determines the asymptotic growth rate of the function.
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(2.3) 3=4GC = random(0, 3=4GC )

(2.4) 3=4GC =
3=4GC

2
+ random(0,

3=4GC

2
)

(2.5) 3=4GC = min(3max, random(1, 3=4GC · =))

Which of these implementations works best is always down to the types of workloads. In general,
exponential backoffs are prioritized over linear ones to give less priority to already failed requests
[Bro19b]. In any case, jittering is strongly recommended [Ani21; Bro19a].

2.2.2 Circuit Breaker

A circuit breaker pattern is another technique to increase a systems resilience [JGC17a]. Circuit
breakers monitor the connection between two services. Mendonca et al. [MACG20] describe the
general circuit breaker behavior as the following. If enough requests of a connection fail, so that a
failure threshold is reached, the circuit breaker opens. In the open state a circuit breaker blocks the
client from sending new requests and lets them immediate fail. This coheres to the fail-fast principle
[Sho04]. After a while, the circuit breaker goes into a half-open state. In this state it lets through
a small amount of messages (usually only one) to check whether the connection is still bad. In
case the requests are successful the circuit breaker closes again. Otherwise, it returns into its open
state. This behavior is visualized as a sequence diagram in Figure 2.2. A practical circuit breaker
implementation can take over additional responsibilities [JGC17b]. E.g. a Hystrix-based circuit
breaker also takes care of caching, limiting the number of concurrent requests, activating fallback
behavior and has to handle timeouts [JGC17a]. All these properties allow a service to react quickly
to other service’s failures and to automatically and passively check for the connection status.

2.2.3 Loadbalancer

In modern distributed system, services are designed to have multiple instances. This raises the
problem of fairly distributing messages between them. A bad distribution can lead to unused or
overused instances and potential SLO violations. Therefore, good and efficient load balancing
is one of the key disciplines of a distributed system. It should ensure fairness and performance
when it comes to distributing requests or processes. Over time, many approaches to load balancing
have emerged [NLL18; SSS08; YKXY19]. When looking at architectural properties, it can be
distinguished between a client-side and server-side load balancers [CCY99]. Sometimes these are
also called “Instance-/Service-oriented” [NLL18] or “(de-)centralized” [KS18].

When using server-side load balancing, the clients send all requests to a central load balancer
node, that has the knowledge of all existing instances. This node then decides where the request
should be sent. This has the advantage, that all message can be scanned when passing and that the
back end structure is hidden from the client [Sha20]. In the client-side style, a public registry of
instances is held within the network. The client has to query it periodically before requests can
be send. Based on the list the client itself has to choose a target instance, without knowing the
decisions of other clients. This removes the central load balancer as a single point of failure and can
potentially speed up communication as there is one less jump a request has to make [Sha20]. Niu
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:RequestSender :CircuitBreaker :MicroserviceInstance

Request
Request

Error

Response
Response

[Request succeeded]

[Request failed]

Error

[failure threshold reached]

open, 
start sleep window

OPEN

HALF-OPEN

Request

Error

Request
Request

alt

alt

[Request successful]

[Request failed]

Answer
Answer

close

Error
Error

open

sleep window elapsed

open half way

alt

alt

alt

CLOSED

Figure 2.2: General behavior of the Circuit Breaker pattern [MACG20].
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Figure 2.3: Amount of concurrent Steam users from April 22nd to April 28th in 2021 (relative to
UTC+0) [DB21].

et al. [NLL18] also present microservice-orientated load balancing, where every service is assigned
its own designated load balancing node. This structure combines the advantages and disadvantages
of the aforementioned techniques.

2.2.4 Autoscaler

Software systems that provide services often have very varying workloads [ZQL+16]. A public
and practical example for this would be the amount of concurrent Steam users. Steam is one the
worlds the largest platform for distributing and managing video game libraries and used primarily
in Europe and America [Val21]. Figure 2.3 displays the typical, periodic course of the number
of concurrent logged-in users. Even tho the trend stays roughly consistent, the amount of active
users can vary by ten million within a day. One solution to cope with such varying and partially
unpredictable workloads is to scale a system’s capacity relative to the current experienced workload.
This can be done horizontally (spawning new servers/instances) or vertically (increasing resources of
nodes. Since microservice architectures are specifically designed to scale by duplicating instances,
horizontal techniques are strongly preferred with this architectural style. However, it is also possible
to scale a service vertically by providing more resources (e.g. CPU Cores, RAM) to an active
instances.

Autoscaling approaches this solution with different options. For periodic workload variations,
like the one in Figure 2.3, a periodic scaling strategy can be applied, that automatically scales
the system at a specific time. Other popular techniques include trend-based scaling [YF14] or
machine-learning-based scaling [PAP+18]. In the end, each strategy tries to optimize the utilization
of the current system, to prevent performance problems or the overconsumption of resources.

8



2.3 Software Scenarios

2.3 Software Scenarios

Scenarios in the context of software engineering are used when describing the behavior of a system
in specific situations [BCK03]. They are derived from the requirements of a software and can
be part of its specification. Scenarios do not contain detailed information regarding architecture
or business logic. Rather, they are a short description of how a system should react to an event
whilst being in a specific state. The idea behind scenarios is to improve vague QoS requirements by
looking at specific impact situations and capturing their context [KABC96]. Resilience scenarios
are a specific kind of scenarios that focus on resilience requirements.

Figure 2.4 shows the structure of a scenario. Six different concepts are part of a scenario:

Stimulation Source: The stimulation source is an entity that interacts with the system.

Stimulus: The Stimulus describes the event or message that is sent by the stimulation
source and received by the Artifact.

Artifact: An Artifact is the part of the software architecture that is stimulated by the
Stimulus and therefore the one which has to react to it.

Environment: The Environment symbolizes the situation or state in which the software is in.

Response: How the Artifact handles the incoming Stimulus is described in the Response.
However, intermediate steps are often neglected and only the overall reaction
is described.

Response Measure: To use scenarios as a verification method they have to be testable. For this the
Response Measure provides a quantifiable behavior description of how the
system should behave during the respective scenario.

Figure 2.5 shows an example instance for a resilience scenario. The system is in a “normal operation”
environment. A heartbeat monitor is the stimulus source. It detects that a server is unresponsive
and sends a “server unresponsive” message. The artifact is represented by a process that receives
and accepts this message. There are two expected responses. (1) An operator should be informed
and (2) the process should go back to normal operation. The response measure for this case is the
downtime, which is expected to be zero.

2.4 Chaos Engineering

Definition 2.4.1
Chaos Engineering is the discipline of experimenting on a system in order to build confidence in
the system’s capability to withstand turbulent conditions in production. [Cha18]

Chaos engineering, sometimes called chaos testing [RA20; Sma21], plays its part in testing the
resilience of a software system. As Definition 2.4.1 describes, it introduces turbulent conditions,
which are more informally called chaos, into a system to see how it behaves under unpredictable,
uncommon or extreme conditions. This is done to assess the capabilities of the system in terms of
its resilience. Additionally, it is usually applied in a production environment to enforce the idea of
building for failure [Cha18].
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Artifact

Environment Response
Response
Measure

Stimulus

Stimulation 
Source

Figure 2.4: General structure of a scenario consisting out of Stimulation
Source, Stimulus, Artifact, Environment, Response and Re-
sponse Measure [BCK03].

Artifact:
Process

Environment:
 Normal Operation

Response:
 Inform Operator
 Continue to Operate

Response Measure:
 No Downtime

Source:
Heartbeat Monitor

Stimulus:
 Server unresponsive

Figure 2.5: Example instance of an availability scenario [BCK03].

Figure 2.6: The learning loop of chaos engineering [Blo20]

The process of running a chaos experiment always has similar stages. Figure 2.6 demonstrates
its typical learning loop. It starts of with describing the steady-state of a system. A steady-state
describes the target or “normal” status. It should be quantifiable and representative for the healthiness
of the system. This is done by defining regular value ranges for specific system or business metrics.
Netflix for example use stream starts per second as one of their major metrics to see whether their
system is healthy [BBR+16]. A more abstract example could be the body temperature of a human.
In that case, the steady-state could be defined by the value range of 37 ± 0.5 °C [RHB+17]. Once
the steady-state behavior is defined, the actual testing begins. First, a quantifiable hypothesis is
established that describes how the system should behave under the subsequent test. Then the tests
are executed. They can consist out of various disruptions such as instance failures, latency injections
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or traffic limiting. During the execution, data of the system is collected to verify the hypothesis.
Afterwards it can be evaluated whether the hypothesis held and how confident a developer can be in
the behavior of the system in its current state [BBR+16; RHB+17].

2.5 Discrete-Event System Simulation

In the context of digital systems, almost all interactions are inherently discrete due to their reliance on
binary units (bits). Therefore, a simulation of such a system naturally leans towards a discrete-event
simulation (DES) [BCNN10]. This can be seen in practice when looking at existing software system
or queueing network simulators [BBM13; BZG17; nsn21; ZGD19].

When using a DES engine, such as DESMO-J [PL99], the state changes of the simulated system are
represented as events. Each event is scheduled at specific target simulation time. Usually, some
immediate initial events (target time = 0) kick off the simulation. Then, events themselves can
modify the systems’ state and schedule other events during the simulation. All events are held in a
priority queue, sorted by their target time and scheduling priority. When simulating, the engine
dequeues the next event and advances the simulation clock to its target time. Then the event gets
executed. The simulation ends, when no events are present in the event queue or a certain simulation
time is reached. The simulation clock can not go backwards, therefore events can not be scheduled
before the current simulation time.

Like other simulation approaches, such as model solving, DES has some distinct advantages
when it comes to simulating software systems [BCNN10]. Most notably is, that simulations are
cheap. Running multiple system configurations through simulations is way more cost-efficient than
repeatedly configuring and deploying a whole system. “What-if” scenarios can also be answered
quickly without disrupting a production or development system. Further, the advancement of the
simulation time can be manipulated to observe the systems behavior in slow motion.

Unfortunately, creating a simulation model can be challenging. It requires in-detail information
about the system and a not negligible amount of time. Similarly simulation results can be difficult to
interpret, since there might be faults in the model or unexpected randomness. Banks et al. [BCNN10]
go further into details about these advantages and disadvantages and argue when DES is applicable.
However, as previously established in the beginning of this section, this is not a concern within this
thesis since DES is well applicable to software systems.
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3 Related Work

The following sections present research topics and projects that relate closely to this work. First,
Section 3.1 gives an overview of simulators that are used for distributed systems. Then, Section 3.2
takes a look at software scenarios and chaos engineering. Section 3.3 presents research projects
that relate closely to this project.

3.1 Simulation of Microservice and Cloud Architectures

The simulation of cloud environments and distributed systems has become a public topic among
researchers. Within the recent years many simulators have been developed in this domain (e.g. see
[Cis21; CRRB09; GVGB17; KBK12; MWW12; NGN17; Pac18]). Simulators that concentrate on
simulating microservice architectures are also very present and mostly do have their own specialized
focus. For example, `qsim [ZGD19] focuses on the simulation of microservice interactions and
message traces. DRACeo [VDR+20] approaches a deployment and scaling analysis. Otherwise,
MiSim [BZG17] concentrates on simulating software resilience failures. However, none of these
simulators are designed to fully support scenario-based chaos experiments. Specifically chaos
toolkit-like faultloads, such as delays or workload injections are usually not simulated by any
simulator. However, in this thesis MiSim will be re-engineered to better support such features and
allow for a stable simulation of scenario-based chaos tests.

3.2 Scenario-based Resilience Testing

As explained in Section 2.3, Scenarios are a way to describe expected system behavior under certain
conditions. The inaugural work presenting scenarios was “Scenario-Based Analysis of Software
Architecture” by Kazman et al. Later, the practices around the usage of scenarios were structured
and improved [BCK03; KKC00]. In this paper, I focus on the usage of resilience scenarios, which
are scenarios that concentrate on resilience metrics. One possibility to explicitly let such scenarios
occur in a system are chaos experiments.

In our preceding industrial case study [KWK+20] we showed, that using resilience scenarios to
create chaos test is a feasible way to verify a systems’ resilience. When comparing the structure
of scenarios and chaos tests, similarities can be observed. For example the hypothesis of a chaos
test and the response measure both describe the expected behavior of the system with business
metrics. Also, a combination of Stimulus, Environment and Artifact describe what load the system
is expecting during a scenario. In the case of chaos experiments this directly done by the defined
system disruptions. Additionally, using scenario based architecture analysis [KKC00] can help with
the definition of the steady-state of a system. Each environment is linked to at least one metric.
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Figure 3.1: General process of transposing resilience scenarios to chaos tests. In the case of Kesim
et al. [KWK+20], the different loads were then designed as CTK experiments and
LIMBO [KHK14a] load profiles.

Based on this, combining the knowledge of the different possible environments with their respective
response measure metrics can provide a good overview over which metrics are actually important
in the system [KWK+20]. The general process of transposing resilience scenarios to chaos tests is
also visualized in Figure 3.1.

Since the scenarios that were elicited during the case study are realistic, they offer the opportunity
to be reused in the evaluation part of this thesis.

3.3 Preceding and Ongoing Research Projects

There are four other preceding and ongoing projects that also revolve around similar topics as this
thesis.

First of, Beck et al. [BZG17] created the simulator MiSim, which is extended in the context of this
work. Since its creation, this simulator had another iteration to support a Hystrix circuit breaker
[Bec18].

Parallel to this thesis, Zorn [Zor21] is working on a project to aid with the extraction of scenario
specifications from architecture descriptions.

Additionally, a students research project [HB21] is looking into creating structured and formal
scenario descriptions for common incidents using the ATAM.

In general the results of this thesis will be integrated in the Cambio-Project1.

1https://github.com/Cambio-Project
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4 Requirements Analysis and Simulator
Evaluation

To find simulators that are suitable for the approach of simulating scenario-based chaos experiments
a list of requirements has to be established. Section 4.1 describes how these requirements were
elicited and Section 4.2 presents the results of the requirements analysis.

4.1 Requirements Elicitation

There are many techniques to establish the requirements for a software system, e.g. prototyping,
interviews or experiments [LL13]. All techniques result in the analysis of a specific state of the
system (i.e. current state or target state). Since there is no prioritized simulator it was decided to
create a requirements specification for the target state and evaluate existing simulators based on
this.

To establish the requirements a group of three senior researches, that are experts in the field of
scenario-based software resilience analysis, held a brainstorming session. This type of session was
chosen, since they already had an understanding of how the requirements should look like from
previous experiences. The session resulted in a list of 12 requirements. Over the course of the
following weeks and during the search for existing simulators these requirements were slightly
updated and finalized. To ensure the correctness the stakeholders were closely involved in this
process. The actual results will be presented in the following section.

4.2 List of Requirements

The following list describes the requirements that resulted from the requirements elicitation session
described in Section 4.1. The participants came to the conclusion, that the simulator ...

R1 must use discrete event simulation.
R2 must provide a headless mode for automation purposes.
R3 must be a lightweight solution (e.g. a single executable with easy to install dependencies).
R4 must enable parallel running of multiple simulations.
R5 must provide the following output metrics:

R5.1 Response Times
R5.2 Error Rates
R5.3 Throughput
R5.4 Queue lengths
R5.5 Execution/Message Traces
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R6 must provide the metrics in a raw and unprocessed form (e.g. text based output).
R7 must support an architectural description that is used and supported by other tools.
R8 must support the faultloads and injections described by the case study scenarios.
R9 must support ChaosToolKit-like faultloads and injections.
R10 must support LIMBO-based workload descriptions.
R11 must support the simulation of the following techniques:

R11.1 Microservice Instance auto-Restarting
R11.2 Auto Scaling
R11.3 Load Balancing
R11.4 the following Resilience Patterns

• Retry
• Circuit Breaker
• Rate Limiter
• Caching

R12 should provide compatibility with the following tools:
R12.1 Cambio-Project Scenario Description1

R12.2 Resirio [Zor21]
R12.3 TransVis [Bec21]

In the context of this thesis the simulator must also be able to simulate the following evaluation
subjects:

• Scenarios of the preceding case study [KWK+20]
• Benchmark systems like TeaStore [KES+18] or TrainTicket [ZPX+18] (see also [RPT19])

4.3 Evaluating Microservice Simulators

First Section 4.3.1 describes the processes of how simulator candidates were found and selected.
Then, Section 4.3.2 to Section 4.3.7 present the candidates in more detail. Section 4.3.8 presents
how good these simulators fulfill the requirements, that were established in Section 4.2. Concluding,
Section 4.3.9 explains which simulators lean towards which type of scenario and why MiSim was
considered most suitable to support scenario-based chaos experiments.

4.3.1 Selecting the Simulators

A structured search was conducted to find microservice simulators that potential fulfill the elicited
requirements. Most notably, using Google Scholar the search term “Simulator AND (Microservice
OR Microservices)” lead to the finding of DRACeo [VDR+20], `qsim [ZGD19] and MiSim [Bec18].
The latter two, where also the most relevant results when using the same search term in CORE2.
However, in CORE DRACeo did not appear within the first 50 most relevant results. Using the
same search term in a normal Google search reveals two further candidates: MuSim [Flo] and an

1https://github.com/Cambio-Project/ScenarioDescriptor
2https://core.ac.uk/

16

https://github.com/Cambio-Project/ScenarioDescriptor
https://core.ac.uk/


4.3 Evaluating Microservice Simulators

unnamed simulator [Kur]. Both of these are quite similar, using Docker3 containers to simulate a
microservice system. However, the unnamed simulator does seem to be rather unfinished at the point
of writing. It does only contain some Groovy code and incomplete documentation files. Therefore,
this simulator was not considered during this work. Other related search terms like “Microservice
Simulation” or “simulator for distributed systems” resulted into similar results or no relevant new
findings.

Lastly, since the University of Stuttgart is closely related to the Palladio framework4, I was also
aware of the simulators SimuLizar [BBM13] and Slingshot [KB20]. Since, these simulators are
also suitable to simulate a distributed system, they were also taken into consideration.

4.3.2 MiSim

MiSim [BZG17] is a microservice simulator that was developed by a team of students of the
University of Stuttgart and targeted a simulation of microservices. Specifically, this tool was created
to support the simulation of resilience mechanisms and chaos injections as part of the ORCAS
project [HADP18]. In its original version 1.0 it had a rudimentary implementation of the circuit
breaker pattern and the ability to simulate chaos-monkeys [BZG17]. Later, the circuit breaker
implementation got reworked to resemble a Hystrix circuit breaker [JGC17b] for version 2.0 by
Beck [Bec18]. Beck also provides an architecture extraction tool which can create an architecture
input model for the simulator based on Jaeger5 or Zipkin6 traces.

MiSim is written in Java and contained within a single .jar file. It utilizes DES, based upon the
DESMO-J[PL99] framework. A simulation requires two JSON files. The first one is an architecture
description and the second one an experiment definition. Due to its lightweight nature the number
of parallel simulations is not restricted by the simulator.

On the side of recorded metrics MiSim provides the raw output of its simulated response times,
instance counts, CPU utilization and circuit breaker statistics.

Unfortunately, all resources are only simulated based on a single capacity value of a microservice,
therefore they cannot be accurately described or simulated. Further network delay is not considered
during the simulation.

4.3.3 SimuLizar

SimuLizar is the main simulator of the Palladio Component Model (PCM) [Sei21]. It was first
presented in 2013 and is used to analyze the behavior of adaptive system models [BBM13]. It
uses a model-driven DES and supports a variety of adaptation techniques, such as load balancing
or scaling. As a part of the PCM, system models require five stages of modeling, reaching from
basic component modeling over allocation assignments to usage cases. This makes these models

3https://www.docker.com/
4https://www.palladio-simulator.com/
5https://www.jaegertracing.io/
6https://www.zipkin.io/
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comparably complex but also very detailed, allowing for a accurate simulation. Workload scenarios
are a part of usage definition of a model [BLB13] and can be defined as open or closed workloads
[LE15] and as LIMBO models [BBC+17; KHK14a].

Both the PCM and SimuLizar are extensions of the eclipse platform7 or IDE. Therefore, they require
this platform to execute simulations. Although, steps have been made towards the automation of
this process [Mer11; RSW+20], a respective add-on is still in the incubation state [Str15].

SimuLizar is well documented, has a elaborate suite of tutorials [BBS] and is extendable by a hand
full of other add-ons [Str15].

4.3.4 Slingshot

Slingshot [KB20] is another simulator for the PCM. Its aim is to create a simulator with a very
extensible architecture using a DES. Like SimuLizar it has the property of heavily relying on the
Eclipse platform and can utilize very detailed system models. At the point of writing, Slingshot is
still in the development phase and only supports core system behaviors. Due to its early stage, there
is also little to no documentation and its architecture is still potentially a subject to change.

Slingshot shows potential, but in its current state is not capable of simulating chaos scenarios.
Hence, it was not considered further and does not appear in Table 4.1.

4.3.5 `qSim

`qsim [ZGD19] is a discrete-event simulator that focuses strongly on the communication between
microservices. As such it offers sophisticated tools to define the properties of a microservice deploy-
ment, inter-microservice connections and request paths. Further, it can distinguish between physical
servers allowing for detailed deployment models. `qsim supports basic linear and exponentially
growing load functions. When it comes to output statistics a secondary python script is required
to collect the simulators output stream. `qsim collects response time latencies and scheduling
distribution stats. Except for load balancing, it does not consider any resilience mechanisms of an
architecture.

Like, MiSim it compiles into a single executable and uses JSON-based inputs. A single simulation
requires five files that have varying degrees of complexity and readability. Unfortunately, there is no
official tool that supports the generation of architectures. During their validation of `qsim Zhang
et al. [ZGD19] used hard coded Python scripts to generate the testing architectures.

Lastly, there is a lack of proper documentation. Neither does a manual exist, nor is the source code
sufficiently documented. Occasionally, there are single line comments that circumscribe small
sections of the code, but large parts are undocumented. Additionally, there are a lot commented out
regions and unused “printf() debugging” statements.

7https://www.eclipse.org/
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4.3.6 MuSim

MuSim [Flo] is a tool developed by Florio as part of this PhD thesis [Flo17] to observe the commu-
nication between microservices. There is no publication about the simulator itself. It does not rely
on discrete-event simulation or model solving. Rather, MuSim provides a generic implementation
of a service that can be deployed e.g. as a Docker container. Each instance of the service can be
configured to have dependencies to other instances and a certain amount of workload. Workloads
are actual synthetic mathematical calculations. MuSim has an integrated service discovery that
requires an etcd 8 server and can output its recorded metrics to an influxdb 9.

4.3.7 DRACeo

DRACeo [VDR+20] simulates complex microservice networks with a focus on QoS requirements.
It is only available as desktop application with a graphical user interface (GUI).

Similar to `qsim, DRACeo can distinguish between physical devices. Each device can be assigned
a concrete amount of CPU, RAM, hard drive speed, and battery size. This allows the simulation
of small devices, such as phones or laptops. Devices can host multiple microservices and are
connected via different types of connections (e.g. Ethernet or 4G) with varying connection speeds.
Microservices consume a configurable amount of the resources of its hosting device. As DRACeo
focuses on the analysis of the efficiency of dynamically deployed architectures it allows microservices
to duplicate, move between devices, (re)start, stop, and die. All these activities can be automatically
scheduled or manually triggered. Regarding the observation of QoS DRACeo calculates a QoS
value based on the current resource usage of a microservice or device. Additionally, the energy
consumption of all devices can be observed.

DRACeo currently only comes as a graphical application without a command line interface or server
like function. Meaning, architecture configurations can only be loaded (or saved) via the GUI.
Therefore, automation is currently not possible. Further, the simulator goes through an intellectual
property registration processes which means, it is available at all at the time of writing.

4.3.8 Evaluation Results

Table 4.1 shows how the simulators (except for Slingshot) stack up against the requirements presented
in Section 4.2. To achieve these results the simulators where analyzed on multiple levels. Most
of the information is drawn form the respective research papers, or by looking through the source
code and documentation. However, in the case of DRACeo and while gathering information about
Slingshot I additionally contacted the authors to fill in missing gaps.

In general the simulators share commonalities between them, e.g. all simulators use DES with
the exception of MuSim. Most of them can be considered ’lightweight’. This means that they
are single executable and do not need additional dependencies or frameworks. When it comes to
output metrics, response times are automatically collected by all simulators. However, no simulator

8https://etcd.io/
9https://www.influxdata.com/products/influxdb/
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SimuLizar DRACeo MiSim `qsim MuSim
R1 Uses DES Y Y Y Y N
R2 Headless Mode N N Y Y N
R3 Lightweight N N Y Y N
R4 Parallel Runs N N Y Y Y
R5 Output Metrics

R5.1 Response Times Y Y Y Y Y
R5.2 Error Rates N N N N N
R5.3 Throughput Y N N Y N
R5.4 Queue lengths Y N Y Y N
R5.5 Execution Traces N N Y N N

R6 Raw Output Y Y Y N N
R7 Common Architecture Desc. Y N ∼ 2 N Y3

R8 Case Study System Loads N ∼ 4 ∼ 4 N N
R9 CTK faultloads N ∼ 4 ∼ 4 N N
R10 LIMBO support Y1 N N N Y3

R11 Resilience Features
R11.1 Self-healing (restart) N Y N N Y3

R11.2 Auto Scaling Y1 Y N N Y3

R11.3 Load Balancing Y1 Y N Y Y
R11.4 Retry Y1 N N N N
R11.5 Circuit Breaker N N Y N N
R11.6 Rate Limiter Y1 N Y N N
R11.7 Caching Y1 N N N N

R12 Compatibility
R12.1 Cambio Scenarios N N N N N
R12.2 Resirio N N ∼ N N
R12.3 TransVis N N ∼ N N

1 Supported as part of the Palladio Component Model (PCM).
2 Architectural description is supported by tools and extractable from Jaeger and Zipkin traces.
3 Supported due to the usage of a PaaS.
4 Supports instance/service/device killing.

Table 4.1: Results of the evaluation of existing simulators with respect to the requirements specifi-
cation.
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Simulator Strength Weakness

SimuLizar Detailed system descriptions and usage
profiles.

Requires heavyweight Eclipse platform

DRACeo Detailed system descriptions, advanced
deployment manipulation techniques

Currently not available for further exam-
ination. Only uses a GUI.

MiSim Simulation of resilience patterns and
CTK faultloads.

Architecture description is more on the
abstract side.

`qsim Complex system descriptions, accurate
tail latency predictions

Only static architectures, bad Documen-
tation. Unusual report system.

MuSim Represents an actual system. Not a DES-simulator.

Table 4.2: Overview of the advantages and disadvantages of the simulators.

supports the output of error rates. Service and instances failures can be simulated by two of the
simulators (i.e. DRACeo and MiSim). Otherwise, none of the other simulators has support for
faultloads. Resilience features are present in all simulators. SimuLizar supports by far the most (5),
then DRACeo (3) and MiSim (2). Both `qsim and MuSim support only load balancing by themselves.
Only MiSim does have some compatibility with our existing tools, since they use similar architecture
descriptions.

4.3.9 Scenario Simulation Suitability

Looking at the evaluation results from Section 4.3.8 it becomes clear that none of the simulators
completely fulfill the requirements set in Section 4.2. However, each of the simulators has its
weaknesses and strengths, therefore leaning towards specific types of scenarios. These strengths
and weaknesses are presented in Table 4.2.

Going through this list, both SimuLizar and DRACeo allow for detailed system models. It is currently
not clear, what loads DRACeo supports, but the PCM (and therefore SimuLizar) can apply complex
load models, e.g. LIMBO model [KHK14a]. Unfortunately, both these simulators require a GUI
or other frameworks to run. Additionally, for now, DRACeo simulations can not be automated.
MiSim is specifically designed to simulate CTK-like faultloads. Also it is very lightweight. On
the other side, architecture descriptions of MiSim are not as detailed as the ones used by other
simulators. Similar to DRACeo and SimuLizar, `qsim allows for more complex system descriptions
and accurately predicts tail latencies. Unlike the previously presented simulators, it is not able to
change the architecture of the system during a simulation run. Lastly, MuSim is a non-DES-based
simulator. This means, that the simulation of a scenario involves more work, since a whole actual
system has to be set up. However, simulation results can be more accurate, as natural effects that
might not be modeled in DES simulators (such as operating-level scheduling) actually impact the
simulation.

From these strengths, weaknesses and the other previously in Section 4.3 introduced properties of
the simulators, the resilience scenario types that are suitable for the respective simulator can be
derived. As a compact overview these are listed in Table 4.3.
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Simulator Suitable Resilience Scenario Types

SimuLizar Scenarios with complex load behavior or self-adaption.
DRACeo Scaling and Deployment Scenarios
MiSim Failure Scenarios
`qsim Load balancing and path-based routing
MuSim Prototyping and behavior checks of a given PaaS.

Table 4.3: Suitability of Scenario types per Simulator

First off, SimuLizar obviously is currently the best choice of simulator, when a systems’ development
process is already revolving around the PCM. It can simulate many resilience features and has many
plugins for other kinds of simulations. Since it does not support failure loads, it is most suited to
run scenarios with complex load behavior or self-adaption scenarios. Modeling an existing large
system for the PCM can be quite complex, due to the many involved architectural views. There are
approaches that could automate architecture extraction for PCM (e.g. [BHK11; LBG+15; VHK15]),
but the official documentation site on this topic is deprecated and was last updated in early 2016
[Lan].

Similarly to SimuLizar, DRACeo would be used best to simulate self-adaption or deployment
scenarios. It was developed specifically for this purpose. But, since it also supports the killing of
devices and services it can also be used for chaos experiments. However, as the simulator does not
support resilience patterns (such as circuit breakers), systems that use these patterns for resilience
cannot be simulated accurately.

MiSim is the only simulator that supports both, faultloads and resilience patterns. Therefore,
resilience scenarios in which parts of the software system fail and others need to cope with them,
are most suitable for MiSim. However, in its current state of Version 2.0 it does only use simplistic
load profiles.

`qsim does support static architectures, load balancing and detailed path definitions. Hence, it is
best used to analyze load balancing scenarios. One property that stands out about `qsim is that it
allows the system to be loaded with huge workloads (e.g. > 50 kQps), which might not be possible
with other simulators.

Lastly, MuSim represents a different simulation approach. As such it can be used to build an actual
system prototype and test out the systems’ behavior as well as its respective PaaS.

The choice of which simulator is suitable for an extension was quickly narrowed down. MuSim is
not a DES simulator and very reliant on specific technologies (i.e. Docker and etcd). Therefore, it
is not flexible and relatively slow to set up. It does not bring tools to hence it was not considered
further. Slingshot is also not relevant, since it is currently in an unfinished state. DRACeo is also not
available at the time of writing, since it goes through an intellectual property validation processes.
SimuLizar requires an Eclipse execution environment, therefore cannot be considered as lightweight
as the requirements request. Lastly, the choice between `qsim and MiSim is determined by the
existence of resilience and faultload mechanisms within MiSim. Since the simulator extension
is required to add further resilience and chaos mechanisms, the choice naturally falls in favor of
MiSim.
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As presented in Section 4.3.2 and Table 4.1, the MiSim simulator in Version 2.0 already provides
basic features to simulate chaos experiments, but lacks the ability to represent specific properties of
microservice systems such as retry patterns, default network latency or service scaling. Further, a
closer look at its source code reveals that it is partial poorly structured. Specifically, it is missing
extensibility, separation of concerns and has some redundant code. In the context of this thesis the
MiSim simulator is re-engineered to Version 3.0, improving the aforementioned downsides and
adding new features. Section 5.1 presents the architecture MiSim 2.0 and the critic on it detail.
Section 5.2 follows up with an explanation of the new simulation structure and how it will improve
on the current state of the simulator.

5.1 Architecture Evaluation

This section goes into detail about the structure of the architecture of MiSim 2.0 in Section 5.1.1
and the downsides of it in Section 5.1.2.

5.1.1 The Architecture of MiSim 2.0

The original architecture of MiSim 1.0 and 2.0 is focused on a single class, i.e. the StartEvent class.
It takes care of most of the feature interactions of the simulator. Specifically, it assigns requests to
services, creates dependencies, chooses which CPU should handle a request and also watches over
the different resilience patterns. Since this is all done inside the activation method of the StartEvent,
there are many possible execution paths and up to six layers of code nesting. As a whole the part
of the architecture that is responsible for the simulation of a system can be best described by a
sequence diagram, since most of its code lies within a couple of classes. The sequence diagram
displayed in Figure 5.1 is extracted from the source code of MiSim 2.0 and follows the data and
control flow around a single exemplary StartEvent.

Before the actual simulation starts, the MainModel instantiates all objects. Then once the simulation
has started, a Generator creates a StartEvent. It is scheduled immediately by the simulation.
The event first collects details, mainly from the MainModel object and partially from the target
Microservice object. It then checks whether the circuit that relates to the current request is open. If
yes, it is noted in the circuit breaker statistics and triggers a StopEvent. This finalizes the request as
if it would be completed successfully. If the circuit was closed, the StartEvent has to differentiate
between two cases. In the first case, the request has no dependencies and is submitted directly to its
handling CPU as a Thread object. In the second case, when there are dependencies, the StartEvent

creates a DependencyNode object for each dependency, containing the relationship information.
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Then, it schedules a new StartEvent for each dependency, which represent the requesting for
dependencies. Each dependency can have a probability value that determine how likely it is required
for the request to complete. All dependencies are collected in parallel. Once a request is submitted
to a CPU object as a thread it is fixed quantum round-robin scheduled until its completion. In the
interest of readability, this is shown only very simplistically in Figure 5.1. Upon completion a
StopEvent is created and immediate scheduled. This event then checks the DependencyNode object of
the respective request and if its parent does not have any uncompleted dependencies it is submitted
to its original target CPU. Otherwise, the StopEvent collects the statistics for the current request.

When it comes to the general execution path of the MiSim program, the MainModel class needs to
be analyzed. It is the entry point for the program. As such it parses the command line arguments,
system architecture and experiment structure. Both, the architecture and the experiment information
are loaded by a parser object respectively. These parser objects fill some static fields with the
extracted data and then get discarded immediately. Some static data then gets copied over into
the MainModel. The actual starting of the experiment, report collection and the initializing of the
simulated objects, like Microservices or Generators is also done within the MainModel.

5.1.2 Critic on MiSim 2.0

The architecture of MiSim 2.0 does have a shortcoming when it comes to the separation of concerns.
As mentioned in Section 5.1.1 there are at best three classes that take care of all main simulation
steps with very nested code, i.e. StartEvent, StopEvent and CPU. All of these can be considered
God objects that utilize lasagna code, which are known software anti-patterns [TI14]. Most of the
other existing classes are only data classes without any specific functionality. They only encapsulate
raw data, rather than actually working with their data and modifying it on their own. In the interest
of maintainability and extensibility it does make sense to split these classes into multiple ones
and to extract reappearing patterns. Further, since a lot of different strategies can be applied when
its comes to microserivce architectures, it would make sense to utilize the strategy architectural
pattern.

This point of critic also carries over to the MainModel. It also takes care of responsibilities that could
be divided up into multiple classes. Further, the MainModel and input parser provide static data
that is created by the initiation of an object. This relation does not make sense, since the purpose
of static data and objects is to be mostly independent of other objects. To solve this problem a
singleton pattern could be utilized. These singletons would then encapsulate the static data that is
currently public within the parsers.

Due to the god object property and high cohesion of the existing classes it would be hard to add
further functionalities without further worsening the existing problems. Therefore, extensibility of
MiSim 2.0 can be considered bad.

When it comes to simulation features there is one missing core feature. This feature is the simulation
of network delay. Network communication is one of the key aspects to consider when deciding for
a microservice architecture. As microservices are very loosely coupled and only fulfill a single
business function, they usually communicate heavily back and forth. Therefore, the impact of com-
munication needs to be considered when evaluating the performance of a microservice architecture.
Further, the target of the simulator is to investigate the resilience of a microservice system. Many
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patterns that try to increase the resilience are based on monitoring network communication, e.g.
circuit breaker or retry [Lup17]. An accurate simulation of these should only be possible in the
context of an accurate network simulation.

Following that, there is another point to be made regarding the same type of patterns. The simulator
does not distinguish between failed and successful messages. However, some of such resilience
patterns need this information to work properly. Additionally, this would be relevant when evaluating
the resilience of a system via success rates. Lastly, I want to touch on the CPU implementation. It
uses a round-robin scheduler with a hard-coded fixed quantum. This type of scheduling does not
try to optimize turnaround time, response time, context switching or the average waiting time of
processes [SGG05]. More importantly, since the operation demands and service capacities can
differ by up to 15 orders of magnitude in between simulations, a fixed quantum is not suitable for
every architecture.

5.2 The Architecture of MiSim 3.0

The inspection of the original architecture in Sections 5.1.1 and 5.1.2 revealed that it lacks a
separation of concerns and extensibility. Further, some used concepts are not applicable to the use
case of the simulator and a lot of the code needs refactoring. Therefore, a re-engineering of the
code took place, to allow a feature richer simulation and a easier extension in the future. In general,
a more object orientated approach was chosen. This decision was based on the clear responsibility
structure that a simulation of microservice architecture provides. To name a few: user request
generators should be sending and monitoring messages, microservices should handle and inform
about their instances and microservice instances should be able to decide themselves, how to handle
incoming requests. Further, requests should have an actual sending process, that can be interrupted,
timeout or fail otherwise. The later provides a clear entry point for all network related resilience
mechanics or fault loads.

In part of this thesis, Section 5.2.1 gives a general view over the life cycle of a request and how the
central classes interact. Then Sections 5.2.2 and 5.2.3 explain how the requests can move through
the system during the simulation. Section 5.2.4 goes into detail about the supported resilience
pattern and how they were implemented. Lastly, Section 5.2.5 lists some minor improvements that
developed naturally during the modifications.

5.2.1 General Architecture Overview

Figure 5.2 shows the new object orientated structure of the simulator and an overview of the
responsibilities of the most important classes and components. Two subprocess nodes are used to
simplify this graph. Those are not actual components of the architecture. The life cycle of requests,
as described by the red path, take place as the following process.

After a request is created by a Generator, a RequestSendingProcess is started. This process first
asks the respective target Microservice object for an instance that should handle the request. The
Microservice object then utilizes its LoadBalancer to find a suitable target instance. Once an instance
is picked, the RequestSendingProcess submits the request to it. Based on the configured network
latency of an operation the arrival at the instance will be appropriately delayed. The instance
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Figure 5.2: General structure and responsibilities of MiSim 3.0

then goes about executing its RequestHandlingProcess, i.e. creating and sending child requests to
complete dependencies or scheduling the requests’ process on its CPU. Once all dependencies of the
root request are collected and it is processed, an answer gets send back to the Generator.

When looking at the architecture with a more static view, the Microservice class acts as a central
reference point. It can be used to manage MicroserviceInstances and to look up their current
status. Each Microserivce owns a LoadBalancer that takes care of instance selection by employing a
LoadBalancingStrategy via a strategy pattern. This ensures flexibility and extensibility [Gea02]. The
AutoScaler and CPU are structured similarly. Experiment events like ChaosMonkeys or NetworkDelays
can interact with a Microserivce object to modify the underlying instances.
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Figure 5.3: Visualization of the RequestHandlingProcess

5.2.2 Request Handling Process

The RequestHandlingProcess describes the algorithm executed by a MicroserviceInstance upon
the arrival of a request. It is visualized in Figure 5.3. In this graph components are annotated with
the request they are handling or transporting to increase comprehensibility. Further, the graph omits
the handling of timeouts or canceled messages in the interest of readability. Before going into detail
about the process it is necessary to establish the three currently existing types of requests.

• Request is the base type for all requests. It is an abstract class that represents an en-
tity that can be send and monitored during a RequestSendingProcess and handled by a
RequestHandlingProcess. All other request types extend this class.

• UserRequests represent root requests that are directly send by the user. In the simulation all
Generators exclusively create UserRequests. They implicitly do not have a parent Request
object.

• InternalRequests represent the requests that are created to satisfy the dependencies of other
Requests. They contain additional information for which dependency they were created.

• RequestAnswers are a wrapper for a Request to represent the sending of an answer. They exist
to simulate the actual sending process of an answer with an object orientated approach.
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A RequestHandlingProcess always starts off with a RequestSender (i.e. a Generator or
MicroserviceInstance) creating a Request object and sending it via a RequestSendingProcess

to a MicroserviceInstance. Upon receiving this root request, the MicroserviceInstance can handle
it in four different ways, depending on the requests’ type and status. For this the following rules
apply.

First, if the request is a RequestAnswer then it will be unwrapped and the dependency of its parent
request will be marked as completed. If in doing so all dependencies of a request are completed, it
will be resubmitted to its handling instance.

Secondly, if the request has uncompleted dependencies, InternalRequests will be created and
send to the respective microserivces to handle. In the interest of readability, Figure 5.3 shows the
handling process of InternalRequests only simplified.

Thirdly, if all dependencies of the request are complete, but it has open calculations left, it will
be submitted to the CPU. The CPU then simulates the computation time of a request and fires a
CalculationEndEvent upon completion. This event resubmits the request at its handling instance.

Lastly, in any other case the request is considered completed. Therefore, the handling instance
wraps the original Request in a RequestAnswer and sends it back to the RequestSender.

The structure of this handling process enforces the interaction with a request during all its possible
states. Combined with the concept of resubmitting the request at every state, this allows for an easy
extension or modification of this process, by adding further states or types of Requests. Regarding
the separation of concerns, each MicroserviceInstance object now has full control of how it can
handle the request, which was not the case in MiSim 2.0.

5.2.3 Request Sending Process

The simulated sending process is described in Figure 5.4. Like in the RequestHandlingProcess that
is described in Section 5.2.2 a RequestSender object is the first to interact. Before the actual sending
process starts, this sender can register IRequestUpdateListeners. These listeners will be notified
about status updates of all send requests. As examples the CircuitBreaker and RetryManger pattern
can be seen in the graph. This relation is explained in more detail in Figure 5.6.

When triggering the sending of a request, the RequestSender schedules an immediate
NetworkRequestSendEvent. Upon execution of this event the following checks are done. First,
if the request is a RequestAnswer wrapping a UserRequest, the later will be immediately considered
completed and arrived at its target. Secondly, if the traveling request is a UserRequest, an immediate
NetworkRequestReceivedEvent will be scheduled. This has the effect, that the request arrives in-
stantly at its handling microservice instance without considering network latency. In both cases this
is not simulated, because the simulator does not consider the latency between a user and the system.
If none of the previous checks were true, the default network latency will be calculated based on the
properties of the connection. A NetworkDelay injection can take effect here, adding extra delay to
the connection. This delay can be a fixed value or a Gaussian distribution. Once the network latency
is finalized, a NetworkRequestReceiveEvent is scheduled to be executed with the appropriate delay.
NetworkRequestReceiveEvents submit the traveling requests at the target instance upon execution. If
anything interrupts the sending process, e.g. no instance is available or the RequestSender dies, a
NetworkRequestCanceledEvent is immediately scheduled. It represents the failure of that request.
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Figure 5.4: Visualization of the RequestSendingProcess

The RequestSender collects all updates and notifications about each of its send requests. Upon
receiving an update it tries to notify all IRequestUpdateListeners that were previously registered.
Each of these listeners can give itself a priority. Listeners with a higher priority will be notified first.
However, these notifications are consumable. This means, that a Listener can prevent all subsequent
Listeners from receiving an update. This is utilized for example in the relation between a circuit
breaker and a retry pattern (s. Section 5.2.4). The code structure behind this interaction is also
present in Figure 5.6.
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5.2.4 Implemented Resilience Patterns

MiSim 3.0 supports the simulation of a hand full of resilience patterns, i.e. Circuit Breaker, Retry,
Autoscaling and Load Balancing. Each pattern is configurable in the architecture description. Whilst
a Hystrix-based Circuit Breaker implementation is already present [Bec18], the others had to be
added during the expansion. The following subsections describe the aforementioned patterns and
which thoughts and decisions went into their implementation.

Retry Implmentation

When using a retry pattern in MiSim 3.0, it simulates a full jittered exponential backoff implemen-
tation. Jittering can be turned off by demand. The other types of retries that were presented in
Section 2.2.1 were also considered, but this choice was made based on the results of Brookers’
simulations [Bro15]. They revealed that a “Full Jitter” implementation potentially performs better
than an “Equal Jitter” and roughly equal to a “Decorrelated Jitter”. Furthermore a “Full Jitter”
implementation allows an easy fallback to a exponential backoff, in case no jittering is required.
This is specifically the case for the scenarios used for the evaulation of the simulator in Chapter 6.
On the architectural side, retries are currently attached on an instance level. This means, that all
outgoing requests of an instance will be monitored by the retry pattern. All parameters of the pattern
can be configured via the architecture definition.

Circuit Breaker Implementation

The circuit breaker implementation of MiSim 3.0 is Hystrix-based. Since MiSim currently does not
simulate the content of messages, it does not implement the aforementioned caching. Furthermore,
instead of limiting concurrent requests via a thread pool the circuit breaker can limit the amount of
concurrent connection between an instance and a service. Fallback strategies are also not supported
for now. Like the retry pattern, that was presented in Section 5.2.4, the circuit breaker is instance-
owned. Each connection from an instance to a service is assigned a circuit breaker and monitored
separately. The configuration of a circuit breaker is done via the architecture definition.

Relation between Retry and Circuit Breaker

Both the retry and the circuit breaker pattern are interfering with and monitoring network com-
munications. Therefore, their interaction has to be defined. Two of the most popular resilience
frameworks, i.e. Hystrix and resilience4J, embed the retry within the circuit breaker pattern [Igo20;
Lup17]. This interaction is visualized by Figure 5.5. The most important property of this interaction
is the ability of the retry pattern to conceal the failing of requests until the retry limit is reached.
One disadvantage of this implementation is, that the circuit breaker does not immediately open upon
a failure. Rather, all retries have to be exhausted first. Therefore, its fail-fast property is somewhat
limited. Also, the implementation of the half-open state needs to compensate for a (potentially
infinite) retry.
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Figure 5.5: Relation between Retry and Circuit Breaker [Lup17].

In MiSim this interaction is realized with a consumable-event system. Once, a retry notices a failed
request it consumes the failure event, if the retry threshold is not reached. Otherwise, the retry
ignores the failure and the event falls through to the circuit breaker. This allows both patterns to be
completely independent.

Loadbalancer

Section 2.2.3 presented the different styles of load balancers. MiSim 3.0’s implementation comes
closest to the service-oriented approach, that is explained by Niu et al. [NLL18]. Specifically, a
target instance is chosen when the sending process starts. Neither does the client know of a server
list, nor is there a central load balancing node. Rather, microservices act as meta entity that are
able to choose the next receiving instance by themselves. Unlike a practical implementation of
the service-orientated load balancer, there is no specific load balancing node that is part of the
network.

The microservices can employ different load balancing algorithm each. MiSim 3.0 supports a
randomized and a deterministic load balancing strategy. The randomized approach simulates a
highest random weight equal-cost multi-path routing [Hop00]. Each time a request should be routed
to an instance, one is picked at random from the available ones. The deterministic approach uses a
QoS-orientated method, that always sends requests to the least busy instance. How busy an instance
is, is directly determined by its current relative workload demand d. It represents the ratio between
left over calculation demand and the processing capacity per simulation time unit (STU). This is
implemented as the formula given in Equations (5.1) and (5.2). The argmin function is defined to
return the first argument that produces a minimal value of the examined function. instance.#threads
represents the number of threads of the current instance. A round-robin-based approach [Idz10]
will be added in the future.
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(5.1) d8=BC0=24 =
(8=BC0=24.remainingActiveDemand + 8=BC0=24.remainingQueuedDemand)

instance.#threads ∗ instance.perThreadCapacity

(5.2) instancenext = arg min
8∈RunningInstances

(d8)

Autoscaling

MiSim 3.0 implements a QoS and efficiency orientated horizontal scaling approach [NCCA14]. The
autoscaler periodically checks all instances of a service for their current relative CPU utilization.
This utilization value is calculated, as described in Equation (5.1) and can therefore exceed 100%,
if the services experiences more load than it can handle in one STU In case the utilization of any
CPU is above a certain threshold another instance will be spawned. Similarly, if it is below a
set downscaling threshold the instance with the lowest current utilization will be asked to shut
down. The autoscaler also prevents a service from downscaling within a set duration after the last
upscaling-event to prevent premature downscaling during a workload ramp up. Currently, this
implementation concentrates on horizontal scaling, but in the future it would also be possible to
easily add vertical scaling techniques.

Extensible Class Structure of the Resilience Patterns

The class structure around the patterns was designed to support further implementations. Figure 5.6
shows an excerpt of this structure. The Pattern class is a base class that allows extending objects to
fill their @FromJSON-annotated fields1 with the configuration defined in the architecture description.
This field initialization is automatically triggered once the Pattern-owing entity (i.e. a Microservice

or MicroserviceInstance object) is created. Networkpatterns are a specific type of pattern, that
monitor the network communication of a MicroserviceInstance. As such they will be automatically
registered as IRequestUpdateListeners at their owning instance, as shown by Figure 5.6. This class
structure ensure extensible, however, adding new patterns still requires a small code modification in
the PatternData class to ensure the previously mentioned parsing automation.

5.2.5 Other Improvements

The focus of the modification of MiSim was mainly on improving its ability to simulate network
behavior and further resilience patterns. However, additional general improvements were made,
which will be presented in the following subsections.

1https://docs.oracle.com/javase/tutorial/java/annotations/index.html
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Load Intensity Model Request Generator

Version 2.0 of MiSim only supported interval base request generators. These can periodically create a
fixed number of requests to specific endpoint. During the modification of MiSim these were extended
to support start and stop behavior, allowing a more precise usage during specific simulation times.
However, interval based generators are still respectively static and can not comfortably represent the
complex load behavior of real system. Linear or exponential trends and workload curves can only
be accurately realized by utilizing many generators and a Fourier analysis, making an experiment
definition overcomplicated. Therefore, a new type of Generator was created, the LIMBOGenerator. It
supports load intensity models created with LIMBO [KHK14a] which is based on the Descartes
Load Intensity Model [KHK14b], a sophisticated tool for creating load profiles. As this is the same
format of load profiles used in the preceding case study and other correlating projects, the load
profiles of these experiments can be precisely simulated. Additionally, LIMBOGenerators can also be
set to a repeating-mode in which they repeat the current profile indefinitely.

CPU Behavior and Responsibilities

With the restructuring and new separation of concerns, the CPU class was also reworked. In
version 2.0 of MiSim this class was not only involved in scheduling threads, but also took care of
some network behavior. I.e. it took care of the circuit breaker pattern. The new implementation
fully concentrates on accepting and monitoring threads. The original version only supported an
unmodifiable fixed quantum Round-Robin scheduling. As mentioned in Section 5.1.2, this is not

34



5.2 The Architecture of MiSim 3.0

suitable approach. Therefore, the new CPU implementation leverages a CPUProcessScheduler

that can utilize the SARR algorithm that was proposed by Matarneh [Mat09]. Instead of using
a fixed time quantum, this implementation calculates the time slices based on the median of the
remaining burst time of all scheduled processes. Further, additional scheduling strategies were
added. Specifically, the new default scheduling is a 3-Layer MLFQ utilizing SARR queues. To be
more flexible and allow further use cases of the simulator, the ability to simulate FIFO and SPN
scheduling was also implemented (see [SGG05]). Since the CPU utilizes the strategy design-pattern
[Gea02], further scheduling strategies can be added easily.

Report Framework

The original version of MiSim has a very rudimentary statistics framework. It is very static and
utilizes a fixed amount of nested hashmaps. Objects that want to write data into a specific hashmap
had to search it themselves via concatenated method calls. Further, the export of data was not
elegant, containing a lot of redundant code blocks and static identifiers. Therefore, a secondary
report framework was created. It only requires the class or object that wants to report data, to create
a Reporter object, e.g. a MutliDataPointReporter and provide a self-identifying dataset prefix. This
Reporter object can then be used to create datapoints in any dataset and of any type. At the end
of the simulation the data gathered by all Reporters is automatically collected and saved in a raw
csv-format. Additionally, the simulator comes with a set of python scripts that can visualize some
of its output metrics, like response times, instance counts and CPU usage. The dependency graph
that is produced in MiSim 2.0 is also still working and will be reported on every run.

Extensibility

Extensibility was not the focus of the reengineering of MiSim, the focus was rather on creating a stable
and well-working core implementation. However, the new architecture still offers some features
that improve its extensibility, thanks to the use of architectural patterns. The CPU, Loadbalancer and
Autoscaler classes are using the strategy design-pattern [Gea02], therefore new strategies can be
added effortlessly. The definition and importing of new pattern is mostly automatized, as described
by Section 5.2.4. Further types of requests can be added effortlessly (e.g. content-rich requests for
caching) and the RequestHandlingProcess allows the integration of new handling strategies. Lastly,
the aforementioned report framework is also extendable. Both the reporter and exporter of this
framework can be easily switched out or extended, while still keeping compatibility.
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6 Evaluation

The evaluation of the MiSim 3.0 was conducted on several layers. It aims to show that MiSim 3.0
satisfies the requirements that were presented in Section 4.2 sufficiently and that the different
implemented simulation features behave as expected. Besides a static analysis of the simulation
features and behavior, the evaluation utilizes two real world systems to calibrate an architecture
model and run four actual resilience scenarios. These scenarios will then also be simulated and
their result accuracy analyzed.

First, Section 6.1 presents an overview of which requirements the new architectures supports
in comparison to the former version. Then, Section 6.2 presents the findings of a code review
of the usability and architecture of the simulator. In the interest of performance, Section 6.3
explains some of MiSim 3.0 internal behavior and especially what problems can potentially arise
and how they might be fixed. Section 6.4 then shows that the newly implemented features behave as
expected. Specifically, this section looks at the behavior of the implemented patterns. Additionally,
Section 6.5 looks at the general accuracy of the response time simulation with the use of four real
world scenarios.

The version of the simulator that was used for the evaluation is available on Zenodo [Wag].

6.1 Requirements Analysis

In general, most of the requirements that are presented in Section 4.2 are implemented into MiSim 3.0.
An overview of these and a comparison to MiSim 2.0 can be found in Table 6.1.

Most of the requirements were implemented successfully. An exception are the requirements 5.2
and 5.3, that were not implemented as direct outputs. However, these metrics can be calculated
easily by processing the raw output data of the simulation. Furthermore, automatic self-restarting
was not yet implemented. But the usage of a SummonerMonkey can simulate this behavior manually.
Lastly, as previously mentioned in Section 5.2.4, MiSim does not simulate the content of requests.
Therefore, a caching implementation was left for a later extension.

6.2 Code and Usablity Review of MiSim 3.0

In the interest of code quality a code review of MiSim 3.0 was conducted. In total, five senior
researches and a student who previously worked on MiSim took part. The review was structured
into three parts. First the general usability was discussed, then comments on the architectural style
were collected and lastly the correctness of the implemented algorithms was evaluated.
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MiSim 2.0 MiSim 3.0
R1 (uses DES) Y Y
R2 (headless mode) Y Y
R3 (lightweight) Y Y
R4 (parallel runs) Y Y
R5 (output metrics)

R5.1 Response Times Y Y
R5.2 Error Rates N N
R5.3 Throughput N N
R5.4 Queue lengths Y Y
R5.5 Execution Traces Y Y

R6 (raw output) Y Y
R7 (common architecture desc.) ∼ 1 Y
R8 (case study faultloads) ∼ 2 Y
R9 (CTK faultloads) ∼ 2 Y
R10 (LIMBO support) N Y
R11 (resilience features)

R11.1 Self-healing (restart) N N
R11.2 Auto Scaling N Y
R11.3 Load Balancing N Y
R11.4 Retry N Y
R11.5 Circuit Breaker Y Y
R11.6 Rate Limiter Y Y
R11.7 Caching N N

R12 (compatability)
R12.1 Cambio Scenarios N Y
R12.2 [Zor21] ∼ Y
R12.3 TransVis [Bec21] ∼ ∼

1 Architectural description is supported by tools and extractable from Jaeger and Zipkin traces.
2 Supports instance/service/device killing.

Table 6.1: Requirements evaluation comparision of MiSim 2.0 and 3.0.

Most participants had no problems setting up the simulator and running some exemplary and
manually created simulations. However, it was noted that a “Hello World” example would be helpful
and the manual installation of the DESMO-J library can run into troubles. Both these complaints
were fixed after the review.

The general reception of the new architecture was positve. Most participants noted that it is sensible
choice. There was no major critic, but every participant had several minor improvement suggestions.
Some noted, that the documentation could be clearer. Also, the general package structure was
criticized. It was further remarked, that the usage of the strategy pattern could be more elaborate,
e.g. it would also be applicable to the retry and circuit breaker patterns.
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On the algorithmic side no complaints were raised. There was a discussion about the inner workings
of the circuit breaker that resulted in an agreement, that the related classes should be renamed for
clarification.

Since there were no major findings, most of the critiqued parts are scheduled to be fixed in a later
version.

6.3 Performance Evaluation and Problems

The performance of MiSim 3.0 strongly depends on the executed scenario. As it is a DES it can
theoretically perform simulations very fast. In practice, simulations may take only 200 ms but
also can last up to several minutes depending on the amount of scheduled events. Similarly, the
memory usage of the simulation grows with the size of the simulation. However, the size of the
input architecture does only influence the used memory slightly, since only actively interacting parts
of the system are simulated.

Most of the runtime performance costs can be traced back to two concrete sources, (1) data collection
methods and (2) the DESMO-J scheduling engine. (1) often involves searching through one or
multiple lists of data and is most often executed every time the data set changes. This combines
to a performance impact in which over 65% of the total computation time is spent on the data
collection of the MicroserviceInstance class alone. A very noticeable speed-up is gained when the
data collection for this class is disabled. In the future, a more suitable solution to this problem will
be implemented.

(2) is rooted deeper in the simulation engine. When turning off data collection, a flame graph,
as shown in Figure 6.1, reveals that most of the simulation time is spent on modifying the sched-
uler’s EventTree. This tree holds a TreeList containing all scheduled events. DESMO-J keeps
this list sorted (by scheduling time and priority) upon element insertion, based on a binary search.
Therefore, the insertion has a fast run time classification of O(2 log =). However, canceling events
is costly, as this requires the EventTree to linearly search for the respective node (O(=)) [Fou05]
and then to remove it (O(log =)). This effectively makes it more efficient to flag events as can-
celed and checking this flag during their event routine. An example for this can be found in the
NetworkRequestTimeoutEvent class. Unfortunately this strategy can not be applied to all event
cancels. For example, the CPU class does reschedule very often. This process involves the canceling
and insertion within the EventTree. Figure 6.1 shows that around 20% of the total run time is spent
on this.

DESMO-J also has some memory usage impacting properties. By design, it gives a unique name
to every event and entity. To ensure the uniqueness, each name is concatenated with a number
(starting with 1) and both are stored in a look up table named NamingCatalog. If an entity or event
with an equal name is created, the number is incremented. In the case of MiSim 3.0 the naming of
entities (e.g. traveling requests) is based on each other. This means, that every time a dependency
request is created, a new name and a new entry in the NamingCatalog is created. Unfortunately,
the NamingCatalog does not allow the removal of entries. This leads to an accumulation of Strings
that are only used once, for a limited amount of time, but are held in memory forever. For bigger
simulations this NamingCatalog can take up multiple gigabyte of memory and is therefor not very
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{

"type": "retry",

"config": {

"maxTries": 6,

"baseBackoff": 0.1,

"maxBackoff": 2,

"base": 2

}

}

Listing 6.1: Retry configuration during the proof of concept scenario.

memory effective. In a later version of MiSim it is planned to replace the NamingCatalog with a
custom implementation that allows removing. However, since this solution requires reflection, it
might have an impact on run time performance.

6.4 Behavior Analysis of the Implemented Patterns

As the modification of MiSim changed a lot of its original architecture and behavior, it is critical to
determine, whether the new features are working as expected and are sufficiently accurate. First
Section 6.4.1 introduces a small system that gets reused throughout the following tests. Then
Sections 6.4.2 to 6.4.4 will look at the behavior of the circuit breaker and retry respectively.

6.4.1 Proof of Concept System

For the concept proofs a simple architecture consisting out of two services was used. A depending
service offers a public endpoint for load generation and relies on an independent service. A call to
the depending service always triggers a single dependency request to the independent service. This
architecture is shown in Figure 6.2. In the following sections, these services will be decorated with
the different types of resilience features to proof their general behavior correctness. Since there
is only one entry point for the system and only one dependency, the behavior of all patterns is as
isolated as possible.

6.4.2 Retry Pattern

As explained in Section 5.2.4, MiSim 3.0 support a exponential retry strategy. This evaluation looks
at both, the jittered and unjittered variant. Details on these strategies are presented in Section 2.2.1.
For this proof of concept the simple system that is described in Section 6.4.1 is used. The depending
service was equipped with a retry pattern and configured to handle all requests with no computing
time. In the executed scenario, the independent service was forcibly killed with a chaos monkey at
30 STU and restarted at 60 STU with a summoner monkey. This forces the retry to act during the
downtime. The system is constantly loaded with five requests per 0.1 STU, that arrive simultaneously
at the dependent service. The retry pattern was configured described by Listing 6.1.
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 Proof Of Concept System

depending
Service

independent
Service

requires 1:1

Figure 6.2: Architecture of the simple system that is used for the proof of concept testing.
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Figure 6.4: Unjittered retry delay distribution, displayed as a histogram with 0.1 STU bins.
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Figure 6.5: Jittered retry delay distribution, displayed as a histogram with 0.2 STU bins.
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Figure 6.7: Respones time graph of the unjit-
tered Retry.

The property jittering for the Retry was set to false for the unjittered version of the scenario. This
configuration produces the delays displayed in Figure 6.3. The squares show the discrete values that
should be generated by unjittered retry.

Figure 6.4 summarizes the unjitterd delay distribution during the scenario. The histogram clearly
shows that the retry delays are calculated as expected, since the values present in Figure 6.3 are
reappearing. In contrast to this Figure 6.5 shows the histogram of all calculated retry delays of
the jittered retry. The five exponentially distributed groups of delays that are found in Figure 6.4
are clearly visible as steps in the graph. Overall, a good distribution inside the groups can be
observed.

The actual response times results of the scenario are shown in Figures 6.6 and 6.7. These response
time graphs clearly show that the retry patterns is taking effect. In both cases requests are accumulated
during the down phase, due to dependent service retrying them up to five times, whilst other
additional requests arrive. These request do have a higher response time than normal requests and
appear higher on the graphs. Further, these graphs also show that the jittering property of the retry
has its expected effect of distributing retried requests. In Figure 6.7 there are clusters of retries
that arrived roughly at the same time and are therefore retried and executed at the same time. In
contrast to that, Figure 6.6 does show almost no clustering and a higher distribution of jittered
request responses. Since the full jitter cuts the delay of retries on average in half, in comparison to
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Figure 6.10: State graph of the circuit breaker.

the unjittered variance, response times are a bit lower. However, this also has the effect that requests
fail earlier. This also halved the amount of accumulated request at the point of restart from 35
(unjittered) to 16 (jittered). In practice this could be compensated for by doubling the baseBackoff

value of the configuration of the jittered retry.

6.4.3 Circuit Breaker

The proof of concept for the circuit breaker utilizes a similar scenario as Section 6.4.2. In this case
the independent service is also shut down at 30 STU and restarted at 60 STU. The system is under
a load of five simultaneous requests every second. The depending service was decorated with a
circuit breaker pattern that was configured with the configuration shown in Listing 6.2

The system behavior during the scenario as seen by the circuit breaker is best visible in Figure 6.8.
The amount of successful dependency completions raises until the 30 STU mark, then plateaus until
the restart of the service at 60 STU. Meanwhile, the collected amount of failed transactions raises
during the downtime, but does not change otherwise.
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{

"type": "circuitbreaker",

"config": {

"errorThresholdPercentage": 0.8,

"sleepWindow": 1,

"rollingWindow": 23

}

}

Listing 6.2: Circuit breaker configuration during the proof of concept scenario.

{

"type": "autoscale",

"config": {

"lowerBound": 0.2,

"upperBound": 0.9,

"holdTime": 20

}

}

Listing 6.3: Autoscaler configuration during the proof of concept scenario.

Figure 6.9 shows the respective error rates. They are calculated by the common ratio formula, that
is displayed in Equation (6.1). However, since the circuit breaker was configured with a fixed rolling
window size, only the last 23 transactions are considered for this evaluation. Also, shortly after
the error rate surpasses the threshold of 80% the rolling window is cleared, as the circuit breaker
opens.

(6.1) �AA>A'0C4 =
#�08;43)A0=B02C8>=B

#�08;43)A0=B02C8>=B + #(D224BB 5 D;)A0=B02C8>=

Lastly, Figure 6.10 shows how the state of the circuit breaker oscillates between the open and
half-open state during the downtime. As expected, at 33.5 STU the circuit breaker opens shortly
after the independent service was killed and after the error rate surpassed the target threshold. After
the defined sleep window duration, it goes into the half-open state. At this point, a single request
is let through and after observing this request’s failure the circuit breaker goes back into its open
state. Only at the 60 STU mark, the circuit closes again, after requests are successfully completed
again.

6.4.4 AutoScaling

The proof of concept for the autoscaler uses the same simple architecture as before. This time,
the depending service is configured to handle up to two million requests per STU and therefore
only impacts response times minimally. The independent service is configured to handle up to 100
requests per STU per instance. During the scenario, the system is loaded with a linear increasing load
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toscale scenario.

that slowly rises from 0 to 500 simultaneous requests. This load curve is displayed in Figure 6.12.
The autoscaler is enabled for the independent service with the configuration shown in Listing 6.3.
The service starts with a single instance.

This leads to the service incrementing its number of instances whenever the average relative
utilization of all instances is above 90%. Further the service is not allowed to downscale for 20 STU
after the latest upscale event. When the average relative utilization is below 20% the services if
forcibly downscaled one instance at a time. These utilization checks are executed on every passing
STU.

Figure 6.13 shows the respective relative load of all instances during the scenario. Each time this
load exceed the 90% mark a new instance is started. Therefore, the relative utilization is dropping
back down after each spike. This graph also visualizes that the load balancer is working properly, as
the load between instances is almost always distributed evenly.

The evolution of the instance count is shown in Figure 6.11. Similar to Figure 6.13 it shows an
increase in instance each time the utilization surpasses the upscale threshold up to a maximum of
five instances. Since five instances are enough to handle the maximum load, there are only four
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Example System

Jollyday API «Service»
Eureka

«Service»
gateway

«Service»
example-service

«Service»
example-service2

Figure 6.15: Example Architecture that is used for the Evaluation.

upscale events. The fifth and last spike in utilization at 180 STU does not exceed 90% average
relative utilization. Once the load and utilization drop to zero at 180 STU, the autoscaler starts
reducing the amount of instances. In the end, only one instance remains.

Lastly, Figure 6.14 shows how the request response times develop during the scenario. It can be
observed that they never exceed 2 STU. After every upscale event, the response times drop back
below 1 STU. In the end the average response time is 0.569 STU with a standard deviation of 0.313
STU. Configuring the autoscaler more aggressively improves these results. For example, setting the
upperBound to 0.7, lets the service scale to six instances and reduces the average response times to
0.573 ± 0.288 STU.

6.5 Scenario Evaluation

To check the accuracy of the simulation a comparison to a real previously elicited scenario is con-
ducted. First, Section 6.5.1 presents the example system that is used for this evaluation. Section 6.5.2
presents how the simulation was calibrated to match the behavior of the real evaluation system.
Section 6.5.3 presents the evaluated real world scenarios. Sections 6.5.4 to 6.5.7 go into detail about
how accurate MiSim 3.0 simualtes these scenarios.

6.5.1 Evaluated System

Figure 6.15 shows the actual system that is used for the following response time accuracy and
scenario simulation. The system consist of 3 services. A gateway service receives all incoming
requests and distributed them onto the other services. There are five endpoints that are explained
in Table 6.2. The gateway has exactly one instance and is equipped with a retry mechanism. It is
configured with the following configuration:

- name: Retry

args:

retries: 5

statuses: BAD_GATEWAY,SERVICE_UNAVAILABLE

methods: GET, POST, PUT

backoff:

firstBackoff: 200ms

maxBackoff: 2s

factor: 3
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Endpoint Name Description
External_Dependency Triggers a call from example-service to the external Jollydays API.

Results are cached indefinitely.
Internal_Dependency Triggers a call from example-service to example-service2.
Unaffected_Service Directly calls example-service2.

DB_Write Creates an entry in example-service’s H2 database.
DB_Read Queries an entry in example-service’s H2 database.

Table 6.2: Endpoints of the example Architecture.
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Figure 6.16: Load profile that was used for the calibration.

basedOnPreviousValue: false

Listing 6.4: Retry configuration of the example system.

By default, the example-service and example-service2 have two instances. The example-service
is equipped with an in-memory database. As a service discovery mechanism, a eureka service is
utilized.

6.5.2 Calibration

To calibrate the simulation a load test was run against the real system. Using the HTTP Load
Generator [KDK18] the system received a workload that contained multiple types of load curves.
Figure 6.16 shows the exact workload model. During the whole time the workload is in between
500 and 10 requests per second. The model starts of with a cosine wave between 0 and 200 STU
and then transitions into a linear growth and decline between 200 and 300 STU. Then a jump from
10 to 500 requests per second happens and a exponential decline to 40 requests per second at 400
STU follows. Lastly, the load grows exponentially back up to 500 requests per second.

The results of the load generator provide mean response times and the coefficient of variation for
all endpoints. Since MiSim can currently only specify one general network latency, the following
statistics will only look at the average over all five endpoints. Additionally, the calculation time
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Figure 6.17: Comparison of simulated and real response times.

in every service was observed. In any case this duration was usually between 1 and 2 ms. Only
the External_Dependency endpoint has a higher response time of around 30 ms, since it needs
to collect data from an external API. However, this services uses a non-expiring cache and the
possible argument range is rather small. Therefore, the cache is quickly saturated and it can also be
assumed that this service answers immediately. With this information the architecture model for the
simulation can be created. Obviously, the structure that is shown in Figure 6.15 is taken over. No
resilience patterns are applied. The network delay was adjusted to recreate the response values that
are collected during the load test. Lastly, the network latency of 1.6 ± 0.6 ms was calculated based
on the load generator statistics.

Since the HTTP Load Generator evenly distributes the workload over all five endpoints, the simula-
tion experiment defined five LIMBO-Generators that produce one fifth of the original load on every
endpoint.

Figure 6.17 compares the simulated response times to the response times of the real system. On
average the difference between both lines is 0.6 ms, which relates to an average inaccuracy of 10%.
In general, the simulated and real response time curves behave similarly, however the simulation
behaves more consistent than the real system. This is specifically visible during the sinusoidal
curves, where with the workload the deviation in response times also grows. Further, in every run
the real system experiences a reproducible large spike in response times 60 seconds into the test.
Unfortunately, this can not be simulated in the current version of MiSim. However, these results
show that MiSim 3.0 can be calibrated to accurately simulate a microservice architecture.

6.5.3 Scenario Overview

Table 6.3 lists the scenarios that are used for the further evaluation. They are orientated after the
original scenarios we elicited during our preceding case study [KWK+20]. #1 relates to scenario
01 Peak(LinCo)/Ser/Abr of the case study. It describes a case in which the system experiences a
sudden, linear growing load spike due to user requests. Usually the whole system is affected by
this stimulus, as it does not concentrate on a specific use case. If this scenario occurs, the system is
expected to still respond in under one second for 99% of requests within the next 20s.
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ID Source Stimulus Artifact Enviorment Response Resp. Measure

#1 User System
experiences
a linear
workload
spike

All services Normal
business
operation

Request are
answered
correctly
and in time.

Response times
should be lower
or equal than 1
second in 99%
of cases within
20 seconds af-
ter the last load
spike.

#2 User System
experiences
a
exponential
workload
spike

All services Normal
business
operation

Request are
answered
correctly
and in time.

Response times
should be lower
or equal than 1
second in 99%
of cases within
20 seconds af-
ter the last load
spike.

#3 A Service ' ' does not
respond.

Services
that commu-
nicate with
'

Normal
business
operation

Service '

gets
restarted

Downtime
should be below
1 minute.

#4 A Service ' ' responds
with delay.

Services
that commu-
nicate with
�

Normal
business
operation

Restart ' if
it is too
slow.

Response times
should be lower
or equal than 1
second in 99%
of cases over the
last 30s.

Table 6.3: Scenario descriptions that are used for the evaluation.

#2 is very similar to #1 and relates to scenario 02 Peak(ExCo)/Ser/Abr. In this case the workload
spike has an exponentially characteristic. Otherwise, the scenario is identical to #1.

#3 revolves around the failure of a whole service. In the preceding case study this scenario was
named 11 Failure(SerE)/Ser/Ber. Source for the stimulus is a service ' of the system. The stimulus
describes, that the service becomes unresponsive and does not answer to any requests. This effects
all services (and instances) that want to communicate with '. The system is expected to restart at
least one instance of ' during the next minute to handle this scenario.

Lastly, #4 is a delay scenario to demonstrate further capabilities of the simulator. In this case a
service ' is again the source of the scenario. It stimulates the system by always responding with a
delay. Again, all services that want to communicate with ' are affected. The system is expected to
replace or restart ' if it produces too much delay.

All scenarios describe the expected system behavior during normal business operation. This means
that the system is in a steady state before the respective scenario occurs. E.g. all services are running
and all measurable business metrics are within the SLO limits.
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Figure 6.18: Workload curve used for scenario #1.

6.5.4 Scenario #1

As presented in Section 6.5.3 scenario #1 describes the expected system behavior under a linear
rising workload. The specific workload that is used of this scenario was modeled in LIMBO and
is shown in Figure 6.18. It starts off with a steady warm-up phase that also is thought to simulate
the workload the system experiences during normal business operation. In this case it is assumed
to be equivalent to around 20 requests a second. After a minute the workload starts increasing.
Over the period of the next two minutes it evenly rises up to 2200 requests per second, effectively
creating 110 times more load onto the system. After a relatively short period of 20 seconds the
workload drops quickly back down to the base level and the system is given a chance of to reach its
steady state again. There is a slight normalized noise of 1 ± 5 added to the curve, to add a bit of
randomness.

Unfortunately, the results of the simulation are very inaccurate. Figures 6.20 to 6.24 show the results
for each endpoint and that they are not accurately simulated. The general response time calibration
that was explained in Section 6.5.2 creates correctly simulated response times during the initial
steady state and the cool down phase. However, from 100 seconds onward the simulated response
times deviate heavily from the real response times. Whilst the actual system is slowing down under
the load, the simulation is not affected. This hints to a failed calibration or more general major
problem with the configurability of the architecture model under load.

To test this theory, this scenario was run with a small range of architecture models, that represented
the same system, but scaled in terms of capacity and available threads. Neither of the models did
recreate the system behavior that is seen in the aforementioned graphs. Even tho the calibration
shown in Section 6.5.2 produced usable and accurate results, it can be assumed that this calibration
is not usable for environment or use case of the system.
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Figure 6.19: Workload curve used for scenario #1.

6.5.5 Scenario #2

Similar to scenario #1, scenario #2 puts a growing workload onto the system. In this case it grows
exponentially. For the evaluation the workload model, that is displayed in Figure 6.19 is used. It is
very similar to the model of scenario #1, but replaces the linear trend with an exponential one.

Unfortunately, the results of the evaluation of scenario #2, show again, that there might be an
underlying problem with the configurability. Figures 6.25 to 6.29 show that the response times of
the real system behave as expected. They grow exponentially with the rising workload demand and
also fall back down as the workload does. Meanwhile, the simulated response times keep a steady
response time and are not influenced by the workload.
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Figure 6.20: Response times of the External_De-
pendency endpoint during scenario
#1.
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Figure 6.21: Response times of the Internal_De-
pendency endpoint during scenario
#1.
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Figure 6.22: Response times of the DB_READ
endpoint during scenario #1.
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Figure 6.23: Response times of the DB_WRITE
endpoint during scenario #1.
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Figure 6.24: Response times of the Unaf-
fected_Service endpoint during
scenario #1.
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Figure 6.25: Response times of the External_De-
pendency endpoint during scenario
#2.
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Figure 6.26: Response times of the Internal_De-
pendency endpoint during scenario
#2.
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Figure 6.27: Response times of the DB_READ
endpoint during scenario #2.
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Figure 6.28: Response times of the DB_WRITE
endpoint during scenario #2.
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Figure 6.29: Response times of the Unaf-
fected_Service endpoint during
scenario #2.
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6.5.6 Scenario #3

Scenario #3 describes a service failure. For this scenario, the system was loaded with an arrival
rate a constant 1000 requests per seconds. During the scenario the example-service is killed at
the 60s mark. In the real evaluation system it is restarted with both instances 30 seconds later.
But the service is only available after the 125 second mark. This is most likely due to its start
up time (container booting and Spring initialization) and the duration of the registration at the
eureka server. Therefore the simulation restarts the service at 125 seconds into the scenario with a
Summonermonkey.

For this scenario, the success and failure counts are specifically interesting. Therefore, Figure 6.30
compactly displays those. The simulation results are drawn in with dashed lines, whilst the real
results are represented by solid lines. The output data of the HTTP Load Generator does additionally
track dropped messages. These are messages the load generator planned on sending, but their
requirements were not satisfied in time (8s timeout). For unknown reason these get aggregated,
therefore the load generator drops many requests simultaneously.

Specifically during the steady phases, between 0 to 60 and 130 to 150 seconds, the amount of failed
and successful requests are almost identical. During the failure state, between 60 and 125 seconds,
the simulator tracks a constant amount of 800 failed requests per second. Since one of the five
endpoints should be unaffected, the simulation also registers 200 successful requests per second
during the downtime. The load generator reports the dropped requests instead, during this phase.
Once it processed all dropped requests around the 95 seconds mark, the statistics show, that it also
begins to count failed requests. This count evens out around the 110 seconds mark into a stable
rate of 1000 failed requests per second, similar to the simulated results. However, since the load
generator requires all other endpoints to be available before it can request the unaffected endpoint
it also fails all requests. On the restart at 125 seconds its again visible that the calibration of the
system is potentially not on point. The simulated system is able to cope with all (by the the retrier)
aggregated request immediately, whilst the actual system slowly recovers to its normal steady state
over the next 10 seconds. However, This could also be due to typical cold start behavior.

Figures 6.31 to 6.35 display the tracked response times during the scenario. In most cases the
simulated response times match the real ones, with the exception of the restart moment at 125
seconds. Similar to the successful requests count, it becomes apparent that the real system is not
able to handle the aggregated messages immediately. Over the period of the next 10 seconds after
the restart the response times are slightly increased, which is not visibile in the simulated response
times. Similaryl the response times of the actual system are slightly higher than the simulated ones
at the beginning of the scenario.

In conclusion, it can be seen that general behavior during the scenario is closely simulated. The
simulator correctly calculates the response times, shut down behavior and restart behavior. However,
it currently does not support the simulation of cold start behavior, which diminishes the simulation
accuracy immediately after the restart. The count of successful and failed messages behaves as
expected, but differs from the data generated by the load generator, since it creates dependencies
between the endpoints, which MiSim does not.
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Figure 6.30: Amount of successful and failed requests of the real run and simulation during scenario
#3.

6.5.7 Scenario #4

During scenario #4 the a service is answering with a noticeable delay. To produce this effect the
evaluation system was injected with a network delay.

For this I utilized the Pumba chaos testing tool [Led] to manipulate the real evaluation system’s
network. For unknown reasons, the WSL2 Docker engine, that was used in the previous scenarios,
was not able to execute the traffic control (tc) command on the docker containers. Therefore, this
scenario was run on the slower Hyper-V based engine. This results into slightly altered behavior
of the system and slower response times. To compensate for this, the architecture model was
recalibrated.

During the actual execution of scenario #4, the system is loaded with a simplistic load curve. It
creates a workload that rises from 20 to 1000 requests per second over a period of 60 seconds. The
scenario execution injects a network delay into the example-service at 90 seconds. The network
delay is configured to delay messages by 500 ± 200 ms for 1 minute. This delay should be applied
to all incoming and outgoing requests.

Figures 6.36 to 6.40 compare the response time results of the simulation compared with the real
ones. Looking at all graphs simultaneously shows, that the simulation is fairly inaccurate during the
ramp up phase of the workload. This again shows, that MiSim may not accurately simulate load
variations under certain conditions.

Once the workload and system reach a steady state, the simulation of the response times becomes
more accurate. Looking at the delay period between 90 and 150 seconds reveals, that the delay
simulation takes effect, but can be accurate on different levels. For the Internal_Dependency
endpoint, Figure 6.37 shows that delay is accurately simulated. The Unaffected_Service endpoint,
that is represented in Figure 6.40, is also not effected in both, the simulation and the real system.
However, in the real system it its response times are stabilizing at a low point. Whereas in the
simulation, no impact can be observed.

56



6.5 Scenario Evaluation

For the other three endpoints the simulation predicts higher response times than there actually
are. Specifically in the case of the DB_WRITE endpoint the simulated times are nearly doubled,
compared to the real results. This is an expected behavior of the evaluation system, as the added
delay should be 1 s on average. The other database related endpoint DB_READ, that is represented
in Figure 6.38, does also behave similarly unexpected. Its variation of response times is significantly
higher than the one of the other endpoints.
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Figure 6.31: Response times of the External_De-
pendency endpoint during scenario
#3.
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Figure 6.32: Response times of the Internal_De-
pendency endpoint during scenario
#3.
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Figure 6.33: Response times of the DB_READ
endpoint during scenario #3.
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Figure 6.34: Response times of the DB_WRITE
endpoint during scenario #3.
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Figure 6.35: Response times of the Unaf-
fected_Service endpoint during
scenario #3.
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Figure 6.36: Response times of the External_De-
pendency endpoint during scenario
#4.
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Figure 6.37: Response times of the Internal_De-
pendency endpoint during scenario
#4.
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Figure 6.38: Response times of the DB_READ
endpoint during scenario #4.
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Figure 6.39: Response times of the DB_WRITE
endpoint during scenario #4.
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6.6 Discussion of Results

Overall the results of the evaluation are mixed. MiSim 3.0 manages to simulate the newly imple-
mented resilience patterns and workload generator accurately. However, the simulation of the four
actual resilience scenarios lacked accuracy, specifically, when it came to varying workloads. In
scenario #1 and #2 both the linear and exponential workload were not simulated at all, even tho the
previous calibration showed the system correctly reacting to these stimuli. Therefore, it is concluded
that the calibration of the architectural model was not accurately enough possible. Scenario #3
revealed, that the simulation of a failed service yields the expected results. However, the results
of the actual system were slightly divergent since the used HTTP Load Generator monitors and
sends requests slightly different to the system. Nevertheless, the response time results showed that
MiSim is not accurate, when it comes to simulating cold start behavior. Lastly, scenario #4 had very
mixed results. The general behavior of the network delay was seemingly correctly simulated, but
results of the real data partially deviated heavily. Since the endpoint with the worst accuracy are
also related to the database, it may be assumed that the response times of the real system are mainly
influenced by the behavior of its in-memory database. This database-oriented behavior is currently
not supported by MiSim.

In the end, it was shown that MiSim 3.0 is potentially capable of simulating scenario-based resilience
scenarios accurately. But its accuracy strongly depends on the quality of the calibration.

6.7 Threads to Validity

There are several small threads to the validity of these results.

First, the participants of the code review are mostly part of research groups that work on similar
topics. They were already superficially familiar with the MiSim simulator before the code review.
Therefore, the results of the code review could be influenced by a slight confirmation or belief
bias.

Regarding the evaluation, it could be argued that it was only done on small systems and therefore is
lacking representatives. However, I would argue, that components of a microservice architecture
are specifically designed to work in a rather isolated environment. Therefore, concentrating on
the interactions between three or less services should be representative enough to draw general
conclusions about systems’ or patterns’ behavior. Nevertheless, an actual evaluation of a larger
production system is still necessary to examine this assumption.

The results and processed data shown in Section 6.5 are mostly based on only averages and are
missing crucial additional data such as the relative standard deviation or the coefficient of variation.
In the case of the average simulated response times, this was a deliberate choice, since the standard
deviation was always very small (< 0.001 ms) and not visible in the graph at an appropriate scale.
However, the response times of the specific endpoints of the real system, that were created by the
HTTP Load generator, did not contain additional statistical data.

The HTTP Load Generator was run on the same local system as the calibration and evaluation
systems. Other programs also ran parallel on the same machine. Therefore, the performance of the
evaluation system might be slightly worse than they would be in practice. Additionally, the system
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was run as a docker-compose setup which can distorted performance based benchmarks [Tur21]. To
compensate for this, the services were assigned a fixed amount of resources and CPU cores that
are independent of each other. A similar situation occurred with the MiSim simulator itself. It was
also run as isolated as possible on a machine, that also ran other programs and processes, which
might influence its performance. However, since it utilizes DES this should not affect the simulation
results.

Both the calibration and scenario evaluation were presented only based on a singular run, rather
than on multiple averaged runs. This may leaves the consistency of the results open for discussion.
However, during both these phases of the evaluation multiple runs of the experiments and scenarios
were executed that had consisted results.
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7 Conclusion and Future Work

The evaluation of MiSim 3.0 showed that it fullfills its requirements sufficiently, but there are still
open points of improvement. Section 7.1 presents some potential research topics that took shape in
the course of this thesis. At last, Section 7.2 gives a short summary of the thesis.

7.1 Future Work

This thesis leaves open a wide array of potential future works, that can contributed to the simulation
of scenario-based chaos experiments. For example, this thesis concentrated on failure scenarios,
however it would be interesting to see, how good other scenarios (e.g. scaling or deployment
scenarios) can be simulated with the available simulators.

Also, one of the major drawbacks of MiSim that was revealed in this thesis is, that its is hard to
calibrate accurately. In the future, the evaluation of tools for calibration automation (e.g. trace
extraction or configuration exploring) could be a valuable continuation of this thesis.

Even tho MiSim 3.0 fulfills most of the requirements that are presented in Section 4.2, there are still
other potential features that might be interesting for future work. These include:

• Other key resilience and performance concepts like deployment models, caching and rate
limiting injection.

• Support for live hypothesis or SLO checking.

• Simulation of closed workloads.

• Automatic configuration exploration and optimization.

7.2 Conclusion

This thesis presents MiSim 3.0 as a simulator that it is capable of accurately simulating scenario-
based chaos experiments. To achieve this, a list of 12 requirements for such a simulator was created
by a group of subject matter experts.

Based on this, seven potential simulator candidates were found with a structured research. These
included SimuLizar [BBM13], Slingshot [KB20], DRACeo [VDR+20], MiSim [BZG17], `qsim
[ZGD19], MuSim [Flo] and a currently unnamed simulator [Kur]. With the exception of Slingshot
and the unnamed one, these were selected for further examination. An evaluation of the simulators
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with respect to the aforementioned requirements revealed, that none of these simulators were capable
of fully satisfying the needs of the stakeholders. Specifically, none of the simulators was able to
provide sufficient combination of faultload and resilience simulation features.

Of the simulator candidates MiSim was selected as the most suitable simulator to be extended, since it
already supported the simulation of some chaos injections and resilience patterns. Additionally, it is
very light weight and already had some compatibility to existing tools [Bec18]. In the end MiSim was
re-engineered to version 3.0 and now fulfills most of the original requirements. Besides some general
improvements towards the quality of its architecture, it now supports the load balancer, autoscaler
and retry pattern. The simulation of network delay injections is now also possible. Additionally, it
does now also support the simulation of LIMBO [KHK14a] workload model. Furthermore, the
simulator now supports a common scenario description of the Cambio project 1.

An evaluation of the new version showed that it can potentially and accurately simulate a real
scenario-based chaos experiments on microservice architecture with various resilience mechanisms.
All implemented patterns behave as expected during their isolated tests. The calibration process
produced and a seemingly accurate architecture description. However, the accuracy of the simulation
of a systems behavior under a growing workload is very bad. This hinted towards a currently major
underlying problem of an inaccurate architecture model calibration. But, further investigations have
to be done to find an exact cause.

1https://github.com/Cambio-Project/ScenarioDescriptor
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