
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Standards-based Modeling and
Generation of Platform-specific

Function-as-a-Service Deployment
Packages

Tolunay Yüksel

Course of Study: Informatik

Examiner: Prof. Dr. Dr. h.c. Frank Leymann

Supervisor: Vladimir Yussupov, M.Sc.,
Dr. rer. nat. Uwe Breitenbücher

Commenced: December 1, 2021

Completed: June 1, 2022

Abstract

Due to continuously rising popularity, cloud and serverless computing became important buzzwords,
causing many companies to consider transferring their systems to cloud-native architectures. With
it the novel cloud service offering Function-as-a-Service (FaaS) plays an integral role in creating
serverless architectures with the help of functions used as building blocks. However, making
yourself dependent on just one cloud provider can lead to vendor lock-in problems. For this reason,
it is important to diversify cloud providers and make serverless applications portable. This process
requires developers in-depth technical expertise across many different cloud platforms, therefore
making it error-prone and very tedious. This thesis elaborated a concept, which enables developers,
lacking of this specific know-how, to model provider-agnostic workflow models of FaaS functions
based on BPMN, which are used to generate provider-specific deployment packages. Additionally,
the prototype BPMN2FaaS was implemented based on this concept, which is able to generate
FaaS functions in the programming language Python and deployment packages supported by the
platforms AWS Lambda and Microsoft Azure Functions.

Kurzfassung

Aufgrund stetig steigender Popularität wurden aus den Begriffen Cloud und Serverless Computing
wichtige Schlagwörter, die viele Firmen dazu veranlassen, ihre Systeme in Cloud-native Architek-
turen zu überführen. Dabei spielt das neuartige Cloud Service Angebot Function-as-a-Service (FaaS)
eine wesentliche Rolle, wodurch serverlose Architekturen mithilfe von Funktionen als Bausteine
entstehen können. Sich dabei jedoch nur von einem Cloud-Anbieter abhängig zu machen kann zu
Problemen des Vendor Lock-ins führen. Aus diesem Grund ist es wichtig die Cloud-Anbieter zu di-
versifizieren und Portabilität für serverlose Applikationen zu gewährleisten. Dieser Prozess erfordert
Entwicklern jedoch technische Expertise über viele verschiedene Cloud-Plattformen hinweg und ist
somit fehleranfällig und sehr mühsam. In dieser Arbeit wurde ein Konzept erarbeitet, wodurch
Entwicklern, ohne dieses spezifische Know-how, ermöglicht wird, Cloud-Anbieter agnostische
Arbeitsabläufe von FaaS Funktionen basierend auf BPMN zu modellieren, welche zum Generieren
von platform-spezifischen Bereitstellungspaketen verwendet werden. Basierend auf diesem Konzept
wurde zusätzlich der Prototyp BPMN2FaaS implementiert, welches FaaS Funktionen in der Pro-
grammiersprache Python und von den Plattformen AWS Lambda und Microsoft Azure Functions
unterstützte Bereitstellungspaketen generiert.

3

Contents

1 Introduction 15

2 Background 17
2.1 Cloud Computing . 17
2.2 Function-as-a-Service (FaaS) . 19
2.3 BPMN . 21

3 Concept 27
3.1 Step 1: Develop Functional Business Code Modules 29
3.2 Step 2: Create Generic Workflow Model . 31
3.3 Step 3: Extend Model with Properties & Integrate Business Functions 34
3.4 Step 4: Add Provider-specific Service Endpoints 41
3.5 Step 5: Generate Provider-specific FaaS Function 43
3.6 Step 6: Build Deployment Packages . 45

4 Implementation 47
4.1 Architecture . 47
4.2 Technologies . 47
4.3 Modeler . 49
4.4 Generator (Core) . 53
4.5 Plugins . 54

5 Related Work 63
5.1 Serverless Portability . 63
5.2 Graphical Workflow Modeling and Model-driven Code Generation 65

6 Conclusion and Outlook 67
6.1 Limitations . 67
6.2 Future Work . 67

Bibliography 71

5

List of Figures

2.1 Distribution of management in SPI model compared to traditional IT [Sou10] . . 19
2.2 Traditional Client-Server architecture . 20
2.3 Serverless architecture . 21
2.4 Example Business Process Diagram . 22
2.5 Core Flow Object Elements . 22
2.6 BPMN Event types (from [Cam21]) . 23
2.7 BPMN Activity types . 24
2.8 BPMN Activities with markers for execution behaviour 24
2.9 BPMN Pool with two Lanes . 25
2.10 BPMN Artifacts . 26
2.11 BPMN Connecting Objects . 26

3.1 Method for standards-based modeling and generation of platform-specific FaaS
deployment packages . 28

3.2 Flowchart for handling orders in a online shop 28
3.3 Example on how to split/join workflows using Gateways 33
3.4 BPMN diagram modeling the online shop process 33
3.5 Procedure of creating provider-agnostic service calls 36
3.6 Example schema of a document store using DynamoDB (from [BS17]) 36
3.7 UML diagram of azure.functions.QueueMessage class [Mic22d] 39
3.8 BPMN diagram enhanced with properties . 42
3.9 Platform-specific FaaS code example (Python) 44

4.1 Architecture of BPMN2FaaS . 48
4.2 Communication between Modeler and Generator 48
4.3 Creating a new diagram in BPMN2FaaS . 50
4.4 Properties Panel for Start Events . 52
4.5 UML class diagram of FaaSFunction. 55
4.6 UML class diagram of BPMN classes used by the plugins. 57

5.1 SEAPORT method [YBKL20] . 64

7

List of Tables

3.1 Terminology . 27
3.2 General BPMN Element Properties . 34
3.3 Start Event Properties . 35
3.4 Task Properties (with Data Store) . 37
3.5 XOR/Exclusive Gateway Properties . 37

9

List of Listings

3.1 Platform-agnostic FaaS code example (Python) 29
3.2 Code-smell snippet of a functional business code module (Python) 30
3.3 Correct example of a functional business code module (Python) 30
3.4 Example Amazon SQS notification event [Ama22d] 38
3.5 CloudEvent schema of an object storage event 40
3.6 Resolution of batched events into single events (Python) 41
3.7 Service call example for Azure Blob Storage (Python) 42
3.8 Example resource descriptor . 43
3.9 Deployment Package Structure for AWS Lambda 45
3.10 Deployment Package Structure for Azure Functions 46
4.1 Input package structure for business code modules and dependencies 49
4.2 Meta-Model definition for Start Events using moddle 51
4.3 Accessing moddle properties and binding it with HTML elements (JavaScript) . . 51
4.4 XML representation of an Start Event with its properties 51
4.5 Extraction of BPMN diagram represented as XML 55
4.6 FaaS Function template for AWS (Python + Jinja) 58
4.7 FaaS Function template for Azure (Python + Jinja) 58
4.8 Template for introducing Indentation (Jinja) . 58
4.9 Business Function template (Jinja) . 59
4.10 for-loop template (Jinja) . 59
4.11 send_message template for AWS (Jinja) . 59
4.12 send_message template for Azure (Jinja) . 59
4.13 Template for Timer Trigger Events in AWS (Jinja) 60
4.14 Template for End Events (Jinja) . 60
4.15 Template for if-statements (Jinja) . 61
4.16 Template for simulated switch-statements (Jinja) 61

11

Acronyms

API Application Programming Interface. 20

ARN Amazon Resource Name. 43

AWS Amazon Web Services. 15

BPD Business Process Diagram. 21

BPMN Business Process Model and Notation. 15

CLI Command Line Interface. 63

CNCF Cloud Native Computing Foundation. 39

CRUD Created/Read/Update/Delete. 35

DAG Directed Acyclic Graph. 65

DOM Document Object Model. 52

DSL Domain-specific Language. 65

EC2 Elastic Compute Cloud. 66

FaaS Function-as-a-Service. 15

FIFO First in, first out. 34

GCF Google Cloud Functions. 64

GUI Graphical User Interface. 27

HTML Hypertext Markup Language. 50

HTTP Hypertext Transfer Protocol. 20

IaaS Infrastructure-as-a-Service. 18

JSON JavaScript Object Notation. 38

NIST National Institute of Standards and Technology. 17

PaaS Platform-as-a-Service. 18

PubSub Publish/Subsribe. 34

REST Representational State Transfer. 66

S3 Simple Storage Service. 20

SaaS Software-as-a-Service. 18

13

Acronyms

SDK Software Development Kit. 15

SEAPORT SErverless Applications PORtability assessmenT. 63

SQS Simple Queue Service. 38

SVG Scalable Vector Graphic. 47

UML Unified Modeling Language. 38

URI Uniform Resource Identifier. 27

URL Uniform Resource Locator. 59

XML Extensible Markup Language. 39

14

1 Introduction

Nowadays cloud computing [MG11] gains more and more popularity, due to giving up responsibilities
for infrastructure and scaling configuration management from developers to cloud providers, leading
to its novel paradigm serverless computing also getting increasing attention. With serverless
computing cloud providers take over the most responsibilities compared to other cloud offerings,
aiming to help developers solely focus on developing their applications. The biggest part in
developing serverless applications is Function-as-a-Service (FaaS), which allows developers to
divide their monolithic applications to multiple smaller function components and use them as
building blocks to design composed architectures. Cloud platforms like Amazon Web Services
(AWS) Lambda or Microsoft Azure Functions offer developers to deploy their functions and bind
them with numerous other service of their repertoire, e.g. storage or messaging services. This
enables FaaS functions to interact with other services or get invoked by reacting to different types
of events, e.g. react to uploaded files or respond to new messages.

However, creating such FaaS functions requires much technical expertise not only about the target
FaaS platform, but also about every other service it is interacting with. Moreover, developers with
in-depth knowledge might still be affect by the disadvantages coming from vendor lock-in [OST14].
Issues with vendor lock-in can be compromised by diversifying cloud providers and deploying
on different FaaS platforms. Unfortunately, most FaaS functions are not portable to different
platforms, because e.g. using provider-specific Software Development Kits (SDKs). Therefore,
developers are forced to deal with gaining additional expertise across multiple clouds. This process
takes additional time and costs and might lead to having a serverless application, which becomes
error-prone. Today’s scientist already research on solutions, trying to tone down vendor lock-in
issues by developing concepts, which make cloud applications more portable. Although enabling
FaaS portability is a crucial step to make whole serverless application fully portable, there is a
significant research gap when it comes to portability on the level of FaaS functions.

This thesis presents a concept and its first prototype BPMN2FaaS, which helps developers without
provider-specific knowledge across multiple cloud providers, mainly focusing on AWS Lambda
or Microsoft Azure Functions, to generate FaaS deployment packages supported by the chosen
target platform. First, Business Process Model and Notation (BPMN) [Whi04] with some extended
properties is used to create a canonical, provider-agnostic representation of FaaS functions. This
way developers have to gain less knowledge about multiple cloud providers. Afterwards, this
model is used to generate a FaaS function and store it in a deployment package accordingly to the
requirements of the target platform.

The structure of this work proceeds as follows: In Chapter 2 fundamental concepts of cloud
computing, FaaS and BPMN are explained to provide background information needed thought
this thesis. Additionally, a set of important terminologies are introduced for this work to avoid
misunderstandings. Chapter 3 presents a multi-step method realizing the concept of generating
platform-specific FaaS deployment packages out of BPMN workflow models. Each step is described

15

1 Introduction

in detail and accompanied by an example. Screenshots of the prototype BPMN2FaaS together with
architectural and technical details about its implementation are provided in Chapter 4. Chapter 5
presents related work in the field of serverless portability and model-driven code generation. The
last chapter concludes this work by giving a brief summary of the outcomes and providing an
outlook for future work.

16

2 Background

2.1 Cloud Computing

In recent years, a new computing paradigm called Cloud Computing emerged. Its popularity
reached such heights, which led more and more companies to adapt their systems to this new
technology. Cloud Computing is a computation model, which provides on-demand availability of a
pool of virtualized computer resources like storage, messaging systems, computing power and many
more. Additionally, developers are aided with several tools in managing, provisioning, monitoring,
versioning and creating highly scalable (elastic) and distributed applications in an automated manner.
Giving up such responsibilities reliefs developers and enables them to focus more on their product
itself. Moreover, developers can save costs by avoiding buying new servers, licences and paying for
new employees whenever they want to scale out and having to sell them afterwards when scaling
back in, because the payment model of clouds usually relies on pay-as-you-go and is therefore more
flexible. [AFG+10]

To this day there are many definitions of Cloud Computing existing, but the definition of the National
Institute of Standards and Technology (NIST) by Peter Mell and Timothy Grance in September 2011
[MG11] is the most common one. The computation model in this definition is composed of five
essential characteristics, three service models and four deployment models and goes as follows:

Definition 2.1.1 (Essential Characteristics of Cloud Computing [MG11])
On-demand self-service. A consumer can unilaterally provision computing capabilities, such as

server time and network storage, as needed automatically without requiring human interaction
with each service provider.

Broad network access. Capabilities are available over the network and accessed through standard
mechanisms that promote use by heterogeneous thin or thick client platforms (e.g., mobile
phones, tablets, laptops, and workstations).

Resource pooling. The provider’s computing resources are pooled to serve multiple consumers
using a multi-tenant model, with different physical and virtual resources dynamically assigned
and reassigned according to consumer demand. There is a sense of location independence
in that the customer generally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a higher level of abstraction (e.g.,
country, state, or data center). Examples of resources include storage, processing, memory,
and network bandwidth.

Rapid elasticity. Capabilities can be elastically provisioned and released, in some cases automati-
cally, to scale rapidly outward and inward commensurate with demand. To the consumer, the
capabilities available for provisioning often appear to be unlimited and can be appropriated
in any quantity at any time.

17

2 Background

Measured service. Cloud systems automatically control and optimize resource use by leveraging
a metering capability at some level of abstraction appropriate to the type of service (e.g.,
storage, processing, bandwidth, and active user accounts). Resource usage can be monitored,
controlled, and reported, providing transparency for both the provider and consumer of the
utilized service.

Definition 2.1.2 (Service Models [MG11])
Software-as-a-Service (SaaS). The capability provided to the consumer is to use the provider’s

applications running on a cloud infrastructure. The applications are accessible from various
client devices through either a thin client interface, such as a web browser (e.g., web-based
email), or a program interface. The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user specific application
configuration settings.

Platform-as-a-Service (PaaS). The capability provided to the consumer is to deploy onto the
cloud infrastructure consumer-created or acquired applications created using programming
languages, libraries, services, and tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure including network, servers, operating
systems, or storage, but has control over the deployed applications and possibly configuration
settings for the application-hosting environment.

Infrastructure-as-a-Service (IaaS). The capability provided to the consumer is to provision pro-
cessing, storage, networks, and other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying cloud infrastructure
but has control over operating systems, storage, and deployed applications; and possibly
limited control of select networking components (e.g., host firewalls).

As a generic term the three service models defined in Definition 2.1.2 are also called SPI model
[Cas18]. Figure 2.1 illustrates a comparison of the responsibility of management between the SPI
model and traditional IT.

Definition 2.1.3 (Deployment Models [MG11])
Private cloud. The cloud infrastructure is provisioned for exclusive use by a single organization

comprising multiple consumers (e.g., business units). It may be owned, managed, and
operated by the organization, a third party, or some combination of them, and it may exist on
or off premises.

Community cloud. The cloud infrastructure is provisioned for exclusive use by a specific com-
munity of consumers from organizations that have shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It may be owned, managed, and
operated by one or more of the organizations in the community, a third party, or some
combination of them, and it may exist on or off premises.

Public cloud. The cloud infrastructure is provisioned for open use by the general public. It may be
owned, managed, and operated by a business, academic, or government organization, or
some combination of them. It exists on the premises of the cloud provider.

18

2.2 Function-as-a-Service (FaaS)

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Network

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Network

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Network

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Network

Managed by developer Managed by provider

Infrastucture Platform Software
(as a Service) (as a Service) (as a Service)

Traditional IT

Figure 2.1: Distribution of management in SPI model compared to traditional IT [Sou10]

Hybrid cloud. The cloud infrastructure is a composition of two or more distinct cloud infrastructures
(private, community, or public) that remain unique entities, but are bound together by
standardized or proprietary technology that enables data and application portability (e.g.,
cloud bursting for load balancing between clouds).

2.2 Function-as-a-Service (FaaS)

Another popular and even newer computing paradigm offered by cloud providers is serverless
computing. It allows developers to develop and deploy applications efficiently and minimizes
responsibilities to manage any underlying infrastructures or platforms. With serverless computing
developers are able to neglect all the overhead of monitoring, provisioning, scaling and managing
the infrastructure by making the cloud service providers responsible for it. This way they can solely
focus on their own business logic. [TEPN20]

As a part of serverless computing FaaS has been created to provide developers the ability to
decompose and deploy traditional applications as serverless applications consisting of stateless
function modules and defined triggers for executing them. Such functions are executed in response

19

2 Background

to Hypertext Transfer Protocol (HTTP) requests or events occurring in cloud services of the FaaS
platform [JCBG21]. The most popular FaaS platforms are AWS Lambda1, Azure Functions2,
Google Cloud Functions3 and IBM Cloud Functions (based on Apache OpenWhisk)4.

Monitoring and handling those events can also be done with IaaS or PaaS by implementing (i) a
monitoring component to detect events, (ii) a routing component to put events into the right queues
for enabling asynchronous processing and (iii) a handler process to execute the business code on
incoming events. However, this procedure can lead to potential downsides like

• the necessity of deploying whole software stacks (using IaaS),

• implementing functionality for monitoring events,

• the need to have the monitoring component to run all the time and

• handling varying workload and therefore scalability manually.

This drawbacks become even more painful, when a full stack needs to be deployed for only a
limited number of lines of code for handling the event. Additionally, hosting and managing the
three components drives the complexity and costs into unnecessary heights for a comparably small
task. This is exactly where the cost model of the FaaS technology comes into play, which offers
developers to save money, because the price is determined by the combination of pay-per-use and
the duration of the execution time.

Figure 2.2 shows an architecture of a traditional client-server application. Front-end, back-end and
database can be either managed manually or with the help of a cloud using the three service models
defined in Definition 2.1.2 on page 18. Depending on the chosen service models, developers can
save resources for managerial tasks. Moreover, scaling out each of those 3 components increases
the management immensely.

Client Server Database

Figure 2.2: Traditional Client-Server architecture

In contrast to the traditional designing of a client-server architecture, Figure 2.3 demonstrates an
exemplary serverless architecture deployed in AWS. A bucket managed by Amazon Simple Storage
Service (S3) hosts the front-end code returned to the client. The API Gateway together with the
deployed Lambda functions represent the back-end from Figure 2.2 in a decomposed and stateless
way. With Amazon API Gateway it is possible to create fully managed Application Programming
Interfaces (APIs), which can invoke the respective Lambda function depending on the called path.
During their runtime Lambda functions can invoke further functions and interact with other cloud

1https://aws.amazon.com/lambda/
2https://azure.microsoft.com/services/functions/
3https://cloud.google.com/
4https://cloud.ibm.com/functions/

20

https://aws.amazon.com/lambda/
https://azure.microsoft.com/services/functions/
https://cloud.google.com/
https://cloud.ibm.com/functions/

2.3 BPMN

services like the key-value database DynamoDB. In this architecture every component is managed
by the cloud. Developers only need to set the architecture up once. After that the amount of
management becomes minimal and they can solely focus on the development of their business code
deployed in AWS Lambda.

ClientAmazon S3
Amazon API

Gateway

AWS Lambda

Amazon
DynamoDB

Figure 2.3: Serverless architecture

Fundamentally different than application hosting with IaaS or Platform-as-a-Service (PaaS) clouds,
with serverless computing, applications decomposed by multiple FaaS functions can be deployed as
code modules [LRC+18], also called deployment packages. The deployment model varies for each
target platform and deployment automation tool used like AWS CloudFormation, Terraform5 or
Serverless Framework6 [YBKL20]. Such models can be classified either as imperative, where a set
of operations defines how the deployment process has the be executed, or as descriptive, where the
targeted state of each component is defined.

2.3 BPMN

The BPMN specification was released to the public by IBM-employee Stephen A. White in May
2004. It quickly became the leading standard for creating Business Process Diagrams (BPDs). BPDs,
often also called BPMN diagrams, use a flowcharting technique to creating graphical representation
of business processes and workflow models. A set of graphical elements enable easy development
and readability for users from any fields. [Whi04]

Figure 2.4 illustrates an example BPD, which models business processes invoked whenever customers
order trips. The diagram is divided into 3 Sub-processes to demonstrate which Tasks are assigned
to travelers, travel agencies and airlines and how those 3 instances interact with each other.

The following subsections demonstrate the various types of BPMN elements based on the definition
described in the official article of BPMN in [Whi04]. The subsections are structured accordingly to
the categorization of those elements.

5https://www.terraform.io/
6https://www.serverless.com/

21

https://www.terraform.io/
https://www.serverless.com/

2 Background
Tr

av
el

er
A

irl
in

e
Tr

av
el

 A
ge

nc
y

Plan trip Submit trip
order

Select
airline

Order
tickets

Issue
itinerary

Create
itinerary

Quote
price

Make
reservation

Confirm
order

Issue
eTicket

Retrieve
price

Traveler
reference

Request price

Figure 2.4: Example Business Process Diagram

2.3.1 Flow Objects

Events

Events model happenings, which can occur during a business process. The circles shown in
Figure 2.5a represent the three classes of Events: Start, Intermediate and End Events. While Start
Events always initiate processes, End Events indicate the completion of a process. Intermediate
Events happen between Start and End Events. They can be either catching or throwing events.
Moreover, they can be marked as interrupting or non-interrupting, declaring whether Tasks throwing
this event will be interrupted or not during processing. To further specify what type of event is
used, additional symbols can be used, which are listed in Figure 2.6. For example, Timer Events
are used to indicate, that this Event is either occurring periodically or at a predefined time.

(a) Events (Start, Intermediate,
End)

(b) Activity (Task)
(c) Gateways (Exclusive,

Inclusive, Parallel, Complex,
Event-based)

Figure 2.5: Core Flow Object Elements

22

2.3 BPMN

Figure 2.6: BPMN Event types (from [Cam21])

23

2 Background

Activities

Rounded-corner rectangles are used to describe activities, which represent the actions performed
during a business process. Figure 2.5b on page 22 shows a default single unit of work, which is also
called a Task. For modeling purposes BPMN also supports Sub-processes. They allow users to
nest their processes. Sub-processes can either be collapsed or hidden. In their collapsed state the
BPMN elements inside a Sub-process can be seen, whereas hidden they can only be distinguished
from Tasks by a small plus sign in the bottom center of the shape. Same as Events, Activities also
have types to further specify what kind of work is done by them. All available Activity types are
illustrated in Figure 2.7. In addition to that it is also possible to define the execution behaviour of
Activities. Figure 2.8 shows three markers, which can exists in combination with Activity types.
Activities can be marked as loops, which suggests that the work done by this activity repeats
multiple times according to some condition or even unbounded. Three vertical or horizontal bars
represent activities, that can be decomposed into multiple instances, which either run in parallel or
sequentially.

send receive user

manual business rule service

script

Figure 2.7: BPMN Activity types

loop
parallel

multi instance
sequential

multi instance

Figure 2.8: BPMN Activities with markers for execution behaviour

24

2.3 BPMN

Gateways

Gateways are diamond shaped and used to split or join the workflow. Figure 2.5c shows the
different types of Gateways, which indicate the types of behaviour on how paths are split or joined.
Depending on that, the workflow follows the direction of either one, all or a subset of the paths.

2.3.2 Swimlanes

BPMN supports the concept of modeling multiple workflows and separating activities into visually
by using Swimlanes. For that Pools are used as graphical containers to divide a set of activities from
other Pools. They often represent a Participant running the process inside of the Pool. Figure 2.9
illustrates a Pool with two Lanes, which represent sub-processes executed by the Participant of its
Pool.

P
oo

l

La
ne

 1
La

ne
 2

Figure 2.9: BPMN Pool with two Lanes

2.3.3 Artifacts

Artifacts are used to extend BPMN and provide additional context. The basic structure modeled
in the business process is not affected by the use of Artifacts. Therefore an arbitrary number of
Artifacts can be introduced to provide more details about the execution of the process. To refine the
concept of providing additional details, modelers are allowed to create custom types of Artifacts.
But the specification of BPMN only pre-defines the following three types of artifacts:

Data

Figure 2.10a shows a Data Object and a Data Store. Such Data Artifacts can be used to model
data sources or storage, for example files or databases, to represent the required inputs or produced
outputs of activities.

Group

Groups are rounded corner rectangles like Tasks, but drawn with a dashed line. They are used to
group Tasks similarly like Pools, but without influencing execution semantics by separating the
workflow from another. Its purpose is solely for visual documentation or analysis purposes.

25

2 Background

Annotation

Annotations are text blocks, which are displayed in BPMN diagrams to provide readers additional
information about BPMN elements.

(a) Data Object and Data
Store

(b) Group

Text Annotation to
provide additional
information

(c) Annotation

Figure 2.10: BPMN Artifacts

2.3.4 Connecting Objects

Sequence Flow

Sequence Flows are solid line arrows as illustrated in Figure 2.11a and used to connect activities.
Their direction represents the execution order of activities.

Message Flow

With the ability of separating multiple workflows by using Pool, there is also the need to model the
concept of messaging between Tasks of different Participants. For this purpose Message Flows are
used, which are dashed line arrows starting with a small circle and ending with open arrowhead
as demonstrated in Figure 2.11b. The direction represents the flow of the message between the
sending and receiving Task.

Association

Figure 2.11c shows that Associations are dotted line arrows with a line arrowhead. Associations
are used to connect Artifacts with flow object. In combination with Activities, associated Artifacts
can be used to represent inputs and outputs.

(a) Sequence Flow (b) Message Flow (c) Association

Figure 2.11: BPMN Connecting Objects

26

3 Concept

This chapter elaborates how platform-specific FaaS deployment packages can be generated using
workflow models specified using the well-known standard for modeling business processes, namely
BPMN [Whi04]. Firstly, a method is presented, which offers an overview of the concept. The
following sections dive into detail for each step defined in the method. To avoid misunderstandings,
Table 3.1 introduces the following terminologies used throughout this thesis:

Term Meaning
FaaS function FaaS function (platform-agnostic or -specific) as described in

Section 2.2
Business code function Code provided by the user, which only contains functions
Service call Invocation of a method, which interacts with cloud services
Task/Operation BPMN element bound to either a Business Function or a Service

Call

Table 3.1: Terminology

As the title of this thesis implies, the method depicted in Figure 3.1 consists on 2 main phases: (i)
Standards-based modeling by creating provider-agnostic code and BPMN Workflow models and (ii)
generation of provider-specific FaaS code contained inside of deployment packages.

First, users provide an input package containing their custom business code modules, leaving out
any kind of provider-specific service calls (e.g. from boto3 or Azure SDK). Further information on
how to write functional business code is detailed in the next Section 3.1. Additionally, this input
package contains files listing all dependencies needed to implement the business code modules.

In Step 2 and 3 a graphical BPMN Modeling Tool is used to provide user an intuitive way to create
a generic BPMN-based workflow model. A subset of BPMN elements represent various control
flow elements and function calls, which are extended by properties in Step 3. Additionally, business
code functions and service calls are bound to BPMN Task elements. The resulting BPMN model
together with its properties and the business code modules, provided by developers in Step 1, form
a canonical and provider-agnostic model of the desired FaaS function.

Depending on the chosen target platform and its services, additional provider-specific properties like
connection strings or Uniform Resource Identifiers (URIs) might be required. To strictly separate
these properties from the provider-agnostic model, the BPMN Modeling Tool needs to save them in
a Resource Descriptor and present them in the Graphical User Interface (GUI) as provider-specific
properties.

27

3 Concept

A Deployment Package Builder component collects the input package, BPMN workflow model
and Resource Description File in Step 5 to transform them into a provider-specific FaaS function.
Mappers map provider-agnostic service-calls into provider-specific ones depending on the chosen
target platform and service type.

Finally, in Step 6 the deployment package is generated. The structure of the package can be build
according to the target FaaS platform of cloud providers or third-party deployment automation tools
like Serverless Framework or Terraform.

Many changes and additions are still made in the landscape of Cloud Computing. Therefore it is
important to choose a suitable architecture for the Generator to be easily extensible and maintainable
for the future.

Figure 3.1: Method for standards-based modeling and generation of platform-specific FaaS deploy-
ment packages

Throughout this chapter the flowchart illustrated in Figure 3.2 is used as an example to explain
each step of the method. It describes a process for handling orders in an online shop. This process
receives events from a queue containing orders from customers. First, items are extracted from the
message body of the incoming event, to process them separately. In the next step an inventory is
retrieved from an object storage to check whether the received items are available. Depending on
the current state of the inventory, either a positive or negative response is generated and sent to
respective queues for further processing.

Start EndReceive Orders Extract Items
All Items
available?

Send positive
response

Send negative
response

TRUE

FALSE

Figure 3.2: Flowchart for handling orders in a online shop

28

3.1 Step 1: Develop Functional Business Code Modules

3.1 Step 1: Develop Functional Business Code Modules

To generate a FaaS function it is necessary to know, how developers want to process incoming
events. Therefore developers need to provide their own custom code, written in a programming
language, which is supported by the target platform of their choice. Writing FaaS function code
takes in-depth expertise about the FaaS platform and the services it is interacting with. Additionally,
the cloud computing landscape is heterogeneous, which means that developers need to adjust their
knowledge every time, they want to deploy their functions on different platforms to avoid lock-ins
by the cloud providers.

This section demonstrates developers, how to write and structure their custom functional business
code. First, developers need to strictly differentiate between business code and service calls.
Business Code is used to purely implement general purpose logic, which is completely free from
any cloud related code. It excludes any kind of provider-agnostic and -specific service calls.

The purpose of structuring business code as regular functions is to modularize the code and embed
these functions inside the FaaS handler. This can be enabled by importing the provided business
code module and calling the functions inside the FaaS function as shown in Listing 3.1.

Listing 3.1 Platform-agnostic FaaS code example (Python)
1 import businessCodeModule

2

3 def handler(event, context):

4 extract_items = businessCodeModule.extract_items(event['message_body'])

5

6 get_inventory = []

7 for item in extract_items:

8 get_inventory.append(get_object('inventory', 'items/' + item + '.txt'))

9

10 check_inventory = businessCodeModule.check_inventory(get_inventory)

11

12 if check_inventory:

13 send_positive_response = send_message('deliveryQueue', event['message_body'])

14 else:

15 send_negative_response = send_message('abortQueue', event['message_body'])

In the following subsections a correct example of functional business code is described for the
workflow depicted in Figure 3.2, as well as a code-smell [Fow99] explaining how it should not be
done.

3.1.1 Code-Smell

Listing 3.2 illustrates a code smell, which is syntactically and semantically correct. Additionally it
would even run as desired, but it is structured wrongly in regard to the following three reasons:

1. Business code and service calls are mixed up together, instead they must be separated

2. Service calls are platform-specific, instead they must be platform-agnostic

29

3 Concept

3. Service calls are not allowed to be contained in business code modules at all, instead they
should be defined in the BPMN Modeling Tool via GUI

Listing 3.2 Code-smell snippet of a functional business code module (Python)
1 import boto3

2

3 def extract_items(order):

4 return order.split(',')

5

6 def check_inventory(items):

7 client = boto3.client('s3')

8

9 for item in items:

10 inv = client.get_object(

11 Bucket='inventory',

12 Key='items/' + item + '.txt',

13)

14

15 # if inv empty:

16 return false

17

18 return true

19

20 ...

3.1.2 Correct Example

Due to the three problems listed in the previous Section 3.1.1, the lines 1,7 and 10-13 in Listing 3.2
need to be omitted and the functions structured accordingly to the BPMN workflow model in
Figure 3.2, leading to the Listing 3.3 below, which is containing purely general purpose business
logic and is therefore completely provider-agnostic:

Listing 3.3 Correct example of a functional business code module (Python)
1 def extract_items(order):

2 return order.split(',')

3

4 def check_inventory(inventories):

5 for inv in inventories:

6 # if inv empty:

7 return false

8

9 return true

30

3.2 Step 2: Create Generic Workflow Model

3.1.3 Libraries

FaaS allows developers to implement a variety of functionalities. Therefore special libraries, also
called dependencies, might be needed, which are not part of the chosen runtimes standard library
collection. Such libraries need to be added in order to provide the FaaS function a way to access
them. This can be done during deployment, but the process is handled differently by each cloud
provider:

(i) One possibility to add packages for the FaaS function is to add them pre-deployment, where
developers need to manually install them in a separate folder inside their project (e.g. node-modules
in Node.js) and deploy them together with their FaaS function as additional source code. This
process of deploying additional packages is one of the ways supported by AWS Lambda [Ama22c].

(ii) In contrast to AWS, cloud providers like Azure require files like package.json for Node.js or
requirements.txt for Python, where developers can list the dependencies they need together with
their versions. Afterwards, the Functions App in Azure (or any equivalent service of different
cloud providers) is responsible to install them by taking the list of dependencies and install them
automatically during deployment by using the respective package manager, e.g. npm1 for Node.js
or pip2 for Python [Mic22a].

To obtain a provider-agnostic procedure of adding libraries to the FaaS function option (ii) is chosen,
where lists of dependencies are provided by the developers together with their functional business
code modules, because in this step developers are not aware of the target platform yet. The target
platform is chosen using the BPMN Modeling Tool at the end of step 4 of the method depicted in
Figure 3.1. Therefore it makes more sense to install the libraries at a later stage of time (in step 6 or
automatically during deployment managed by the cloud provider) as done in the second option.
Inside the code both standard as well as external libraries or additional modules can be imported,
where ever they are needed.

3.2 Step 2: Create Generic Workflow Model

A provider-agnostic model is needed to have a canonical representation of the FaaS functions
workflow, which then can be transformed into FaaS functions of the chosen platform. One of the
main questions to be answered in this thesis is on how to model FaaS code using BPMN. This
question needs to be answered by decomposing it into the following finer-grained questions:

• Which BPMN elements can be used to model a FaaS function?

• How can incoming events, triggered by provider-specific services, be modeled in a provider-
agnostic way to help developers lacking provider-specific knowledge across multiple clouds?

• How can provider-specific service calls be modeled in a provider-agnostic way?

• How can business code functions, provided in Step 1, be integrated into the model?

1https://www.npmjs.com
2https://pip.pypa.io

31

https://www.npmjs.com
https://pip.pypa.io

3 Concept

This section elaborates the first question on how to represent the workflow of a FaaS function
using BPMN. The remaining questions are solved by additional properties and therefore covered in
Section 3.3. First, a FaaS function needs to be analyzed to determine what needs to be modeled
in BPMN diagrams. Looking into Listing 3.1 on page 29 shows that handler functions consist
of parameters and a body. The body of provider-agnostic handlers are only allowed to hold
business functions and service calls, which can be combined with if- or switch-statements and loops.
Additionally, every FaaS function has a file name. To summarize, the goal is to find suitable BPMN
elements for Step 2 of the method depicted in Figure 3.1 on page 28, which are able to represent
different event types, business functions, service calls, branches, loops and ultimately the name of
the file containing everything.

Start Events

In BPMN every workflow starts with a Start Event. It seems naturally to use Start Event to
describe incoming events from services. Both the default Start Event as well as the Message
Start Event can be used here equally, because incoming events can also be interpreted as incoming
messages from a event queue. All other event types listed in Figure 2.6 on page 23 are not applicable
except for timer events, which suit perfectly for timer triggers.

(Service) Tasks & Data Stores

Business functions and service calls are the actual work, which has to be done during execution of a
FaaS function. Therefore, both have to be modeled using BPMN Tasks. While a default Task is
used for business functions, it is reasonable to represent service calls with Service Tasks. This way
it is ensured, that business functions and service calls can be clearly distinguished in a graphical
way. For both types of Tasks a loop marker indicates, that this Task has to be embedded inside a
loop when it is transformed to code. Additionally, Data Store elements can be used in combination
with Service Tasks to indicate an interaction with a storage or database.

Gateways

Gateways are the only class of elements in BPMN, which allow users to split their workflow.
XOR/Exclusive Gateways are well suited for modeling branches. Whether it is an if- or a switch-
statement can be distinguished by the amount of outgoing connectors, where a Gateway with 2
outgoing connectors represents an if-statement and Gateways with more than two Gateways a
switch-statement. Every use of a splitting Gateway must come with a joining Gateway. This rule
of designing branches in workflows is required to determine their scope. In programming languages
like Java or C# this is indicated syntactically by a pair of braces, whereas in Python by indentation.
Figure 3.3 demonstrates an example on how to design a correct branching of the workflow. One
might come up with the idea to also introduce Parallel Gateways to model concurrently running
threads. But the problem is, that concurrency is not part of the FaaS paradigm in the level of
code. Serverless applications are only able to process workload in parallel by enabling concurrency
settings in the FaaS platform, which allow invocations of handlers in parallel to a maximum number
of instances defined in the settings. This can increase the throughput, but also raise the price
significantly. Therefore Parallel Gateways should not be used in the context of FaaS modeling.

32

3.2 Step 2: Create Generic Workflow Model

Figure 3.3: Example on how to split/join workflows using Gateways

End Events

In case of asynchronous invocations, it is optional to let the function return something, but for
synchronous invocations a requester waits for an response, which makes returning mandatory. Such
scenarios are modeled by using BPMN End Events.

Pools & Lanes

FaaS code is always contained inside of a file. This way it can be separated from other FaaS functions.
BPMN workflows are used to model FaaS code and since they can be placed inside of a Pool of
Lanes, it makes sense to represent files with Lanes. This enables users to strictly separate multi-
ple workflows from each other and therefore allows modeling multiple FaaS modules in one diagram.

Using the introduced set of BPMN elements and their representations, the flowchart illustrated in
Figure 3.2 on page 28 can now be modelled as a BPMN workflow diagram. Figure 3.4 demonstrates
an example, where a Start Event is used to represent the receiving of incoming orders. Tasks,
which needs to interact with other cloud services are marked as Service Tasks, while the remaining
ones are modelled by default BPMN Tasks. A Data Store is introduced to further refine what
category of service is used to retrieve the inventories. Additionally its Service Task is marked with
a loop marker, which indicates multiple executions for each item. Two Gateways are used to split
and join the workflow between them to send messages according to the state of the inventory.

O
rd

er
 H

an
dl

er

Queue

Extract items Get Inventory

Object Storage

Check Inventory

All items
available?

Send positive
response

Send negative
response

true

false

Figure 3.4: BPMN diagram modeling the online shop process

33

3 Concept

3.3 Step 3: Extend Model with Properties & Integrate Business
Functions

Step 3 of the method in Figure 3.1 on page 28 requires users to add properties to their BPMN
diagram created in Step 2. The goal is to model the details of their targeted FaaS function in a
provider-agnostic way, so that also developers without much knowledge about the target platform can
circumvent vendor lock-in and generate FaaS functions tailored for the platform of their choice.

3.3.1 Provider-agnostic Properties

Table 3.2 shows the properties, which are used by all types of BPMN elements. Every element
is uniquely identified by its property id. This property is automatically generated on creation of
the element. Additionally every element can have a name set by the user. If a name is present,
it is also displayed graphically in the diagram. For documentation purposes the documentation
property is introduced to allow users to describe their elements and add additional information. In
the following the properties for all BPMN elements, chosen in Section 3.2, are introduced.

BPMN Element
id

name

documentation

Table 3.2: General BPMN Element Properties

Start Events

BPMN Start Events need the property trigger, which tells the back-end what kind of service is
triggering the incoming event. Therefore a list of trigger types needs to be provided to the users,
from which they can choose. Those trigger types need to be stated by using a provider-agnostic
terminology, due to the possible lack of knowledge about equivalent services from different cloud
providers. In the scope of this thesis, the focus relies on the following set of trigger types:

• Object Storage

• Document Store

• (First in, first out (FIFO)) Queue

• Publish/Subsribe (PubSub) Channel

Whenever a user selects the queue option, an additional Boolean property fifo is needed, which
indicates, whether the event source is a FIFO or default queue. The timer trigger type is not listed
in this list, because timer triggers can simply be defined by using the BPMN timer event type.
Some platforms require deployment packages to carry the information about the schedule, when
timer triggers are fired. Therefore the schedule property is needed for Timer Start Events, where
users have to provide a schedule in cron format. Table 3.3 summarizes all properties used by Start
Events.

34

3.3 Step 3: Extend Model with Properties & Integrate Business Functions

Start Event
Default/Message Timer
trigger schedule

fifo

Table 3.3: Start Event Properties

Tasks

From a programming viewpoint, both default and Service Tasks are substituted with function calls
in code. Thus, both need to have a property, which specifies the function to be executed by the
Task. In the context of a default Task the function is a business function. Therefore the name of its
property is function, whereas the term serviceCall is used for Service Tasks.

Because of the fact, that both types of Tasks are modeling function calls, they also need properties
for arguments. This property can be represented in two ways: Either using a list named arguments
with a dynamic number of entries or defining N arguments with the properties argument1 to
argumentN.

For an improved user experience, a mechanism needs to be provided, which analyzes the provided
functional business code and extracts its function and arguments name. Those function and argument
names are returned to the front-end to provide users the ability to choose their business function
from a list, instead of typing them in, which can lead to unnecessary typos. Arguments are retrieved
from the business code modules to provide users the right amount of inputs and to distinguish
between multiple arguments by their name. Users are able to set the arguments either by selecting
available variables from a list or by typing them in by hand, since arguments can also be defined
directly without variables by using for example string literals like "Hello World!".

Same as the trigger types from the trigger of Start Event, the offered services are stored in the
service property and need to be presented with provider-agnostic terminology. This leads to the
following list of options:

• (FIFO) Queue

• PubSub Channel

Using Service Tasks, developers are only presented a list of service calls, corresponding to the
selected service. Obviously the service calls have to use provider-agnostic terminology as well.
This is done by comparing the parameters of equal service calls from each provider and determining
their similarities. An example of this procedure is illustrated in Figure 3.5, which describes how the
provider-agnostic service call get_object emerges out of the comparison between get_object
from AWS and download_blob from Azure. This example only compares the required parameters
for those functions. Additionally, the same logic needs to be applied to determine the format of
the output. In the scope of this thesis, the focus relies on the most important service calls, e.g.
Created/Read/Update/Delete (CRUD) operations. However, the concepts discussed here can be
extended to enable other types of calls in the future.

35

3 Concept

1
2
3
4
5

container_client = client.get_container_client(
 container='string'
)
container_client.download_blob(
 blob='string'
)

1
2
3
4
5
6

1
2
3
4

Azure

client = boto3.client('s3')
client.get_object(
 Bucket='string',
 Key='string'
) AWS

get_object(
 container='string',
 file_path='string'
)

Figure 3.5: Procedure of creating provider-agnostic service calls

Again, a Boolean is stored inside an additional fifo property, whenever the queue service is
selected, to declare whether it is a default or FIFO queue. In case of a connection to a Data
Store the list of services for this Service Task is omitted. Instead, another list is provided when
working with the Data Store element. Unfortunately it is not possible to represent document stores
provider-agnosticly. The reason lies in the differences between Amazon’s DynamoDB service and
its Microsoft Azure equivalent Cosmos DB. Figure 3.6 shows the structure of key-value documents
stored in DynamoDB. Items are uniquely identified by a simple primary key defined by the items
partition key. A partition key can be combined with a sort key to form a composite primary key
[BS17]. While partition keys are used in DynamoDB as well as in Cosmos DB to determine where
items are stored, Cosmos DB does not use partition keys as primary key. Instead a id attribute
is used. This leads to two different interpretations of the partition key. Since the partition key is
essential to this service type, it is required to be a part of the provider-agnostic service model. But
being this ambiguous, it is not possible to have a provider-agnostic representation of document stores,
because it can lead to misunderstandings for users, who only know one of those two services.

Figure 3.6: Example schema of a document store using DynamoDB (from [BS17])

36

3.3 Step 3: Extend Model with Properties & Integrate Business Functions

If a Task is marked with a loop marker, user have the decision to pick whether a for- or forEach-loop
should be used. True is stored in the property loopType, in case forEach is the chosen type of
loop. Additionally developers have to provide a loop condition according to the selected loop mode
and programming language. This loop condition is saved either in the property for or forEach,
depending on the activated loop mode.

Task Data Store
Default Service

service service

function serviceCall

fifo fifo

arguments arguments

loopType loopType

for/forEach for/forEach

Table 3.4: Task Properties (with Data Store)

XOR/Exclusive Gateways

Every Exclusive Gateway, used in the BPMN diagram, needs to be differentiated between a
splitting and joining Gateway by their amount of incoming and outgoing connectors. Only splitting
Gateways hold properties, which are listed in Table 3.5. Furthermore, it needs to be determined
whether it represents an if- or switch-statement. This information is held by the property mode. The
condition property is used to provide users the ability to define the condition under which the
workflow is split. Because switch Gateways have multiple branches, users need to assign cases
to every outgoing sequence flow attached to a Gateway, by using the property case, in order to
declare the direction to go depending on the outcome of the condition. This can be omitted for one
branch by declaring it as the default branch using the Boolean property default.

XOR/Exclusive Gateways Sequence Flow
condition case

mode default

Table 3.5: XOR/Exclusive Gateway Properties

End Events

End Events are used to represent outputs of a functions. Users can define what is returned by their
FaaS function by providing a literal in the same programming language used in their functional
business code. This literal is stored in the property return.

37

3 Concept

Lanes

Lanes represent files and the only metadata needed from them are the filenames. Therefore this
BPMN element only holds the property name. This property will be used to name the generated
FaaS function.

3.3.2 Event Schema

The event parameter plays an integral role in event-driven programming and therefore also in the
context of implementing FaaS functions. It holds all the information triggering services have about
their affected object. Events are structured differently for each trigger type and cloud provider. This
means, that they can be objects, JavaScript Object Notations (JSONs) or dictionaries. Additionally
they can hold different properties.

Listing 3.4 shows an example event from Amazon’s Simple Queue Service (SQS) service in form
of a JSON with several properties representing a new message. In contrast to Amazon, Azure
uses object from the QueueMessage class for messages from its equivalent Azure Queue Storage
service. The Unified Modeling Language (UML) diagram in Figure 3.7 lists attributes and methods
of objects from the QueueMessage class.

Listing 3.4 Example Amazon SQS notification event [Ama22d]
1 {

2 "Records": [

3 {

4 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",

5 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",

6 "body": "Test message.",

7 "attributes": {

8 "ApproximateReceiveCount": "1",

9 "SentTimestamp": "1545082649183",

10 "SenderId": "AIDAIENQZJOLO23YVJ4VO",

11 "ApproximateFirstReceiveTimestamp": "1545082649185"

12 },

13 "messageAttributes": {},

14 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",

15 "eventSource": "aws:sqs",

16 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue",

17 "awsRegion": "us-east-2"

18 },

19 {

20 ...

21 }

22]

23 }

Using such platform- and service-specific events requires developers to have knowledge about the
event schema. Therefore the goal of this section is to create a platform-agnostic event schema,
which then can be transformed to a platform- and service-specific events schema. This concept
recommends creating schemes applying to the specification of CloudEvents [Clo22a] for each
service type. This way developers do not need to gain knowledge about the different service-specific

38

3.3 Step 3: Extend Model with Properties & Integrate Business Functions

azure.functions.QueueMessage

+ id
+ body
+ pop_receipt

+ get_body()
+ get_json()

Figure 3.7: UML diagram of azure.functions.QueueMessage class [Mic22d]

event schemes of multiple cloud providers. Moreover, getting familiar with an event schema of one
service type is already enough to understand the schemes of other service types, since they are very
similar to each other.

CloudEvents

Standardized schemes like JSON or Extensible Markup Language (XML) have become an integral
part of the computer science landscape. Their popularity gets many companies to change their
products in a way, where they can support the use of such standards. Due to the large variety of
schemes in the field of event-driven programming a standardization is needed to create a common
structure between all platform- and service-specific events schemes, which are intuitive and can be
quickly understood by every developer.

In May 2018 the Cloud Native Computing Foundation (CNCF) created the CloudEvents specification
with the purpose of creating a common event format to aid in the portability of functions between
cloud providers and the interoperability of processing of event streams. [Clo22b]

The CloudEvents specification defines the schema of all kinds of events with attributes of the three
categories required, optional, and extensions. For those attributes only the following abstract data
types are allowed and must be supported by all implementations: [Clo22b]

• Boolean

• Integer

• String

• Binary

• Absolute URI encoded as String

• URI-reference encoded as String

• Timestamps (with date and time) expression encoded as String

As the name says, required attributes have to be present in every event, while optional attributes are
also predefined by the CloudEvents specification, but only used in some cases, depending on the
context of the event. Those are the required attributes used in every event schema: [Clo22b]

id: String used to uniquely identify events in combination with the source attribute.

39

3 Concept

source: URI-reference of the service or event source triggering the event.

specversion: Version of the Cloudevents specification used in the event schema.

type: Describes the type of action, which triggered the event.

In addition to the mentioned required attributes, every schema will also have a data attribute, which
holds the whole provider- and service-specific event in the schema it is arriving. This way users
with advanced knowledge are also able to access properties of the event, which are not represented
by a provider-agnostic CloudEvents attribute.

The same procedure as demonstrated by Figure 3.5 on page 36 is used to determine further attributes.
Listing 3.5 shows the result, which emerged by comparing the attributes from Listing 3.4 on page
38 with the attributes provided by the QueueMessage class from Figure 3.7 on the preceding page.
Due to the small amount of attributes offered by Azure additional attributes from the context object
are required.

Listing 3.5 CloudEvent schema of an object storage event
1 {

2 "id": "string",

3 "source": "string",

4 "specversion": "string",

5 "type": "string",

6 "datacontenttype": "string",

7 "time": "string",

8 "subject": "string",

9 "data": "object"

10 }

Supporting Event Batches

In the context of FaaS the term batch describes multiple events bundled to one event. This enables
event source mappings to combine a predefined maximal number of events occurred in a predefined
period of time, also called batch window, into a single invocation of the FaaS code. The main
advantage of using batches is to reduce the number of invocations and therefore save resources and
cost. This technique is only used by some providers and service. Listing 3.4 on page 38 shows an
example, where batches are used to trigger the FaaS function with two messages from a SQS queue,
which occurred in a close period of time and therefore not exceeded the batch window property of
the trigger.

To avoid the need of developers to know which services provide batched events and which not, those
events need to be resolved into single events inside the provider-agnostic FaaS function. Therefore
the content of the handler function needs to loop through each event and encapsulating the whole
content of the handler function inside that loop. This needs to be done at code generation time
during step 5 of the method in Figure 3.1 on page 28. Doing this enables developers to model their
FaaS function always by ignoring whether batching is used or not, no matter which cloud or service
is used. A practical example is shown in Listing 3.6, where such a loop is inserted into the handler
function. Inside its body the to_cloudevents_schema function transforms every single event into
the CloudEvents schema and functional business code and service calls are executed afterwards.

40

3.4 Step 4: Add Provider-specific Service Endpoints

Listing 3.6 Resolution of batched events into single events (Python)
1 # ...

2

3 def handler_function(events, context):

4 for event in events:

5 event = to_cloudevents_schema(event)

6 # functional business code and service calls

7 # ...

8

9 def to_cloudevents_schema(event):

10 # transform event into cloudevents schema and return

3.3.3 Online Shop Example

In Step 3 the BPMN elements of the online shop handler illustrated in Figure 3.4 have to be refined
by extending them with the provider-agnostic properties introduced in Section 3.3.1. Figure 3.8
demonstrates all properties needed to model the provider-agnostic workflow of the target FaaS
function. The properties of the Start Event define, that the the service type of event source
triggering this function is a FIFO queue. Next, the function extract_items, provided by the user
via business code module, is bound to the first Task. With the help of provider-agnostic event
schemes based on CloudEvents, developers know, that the message body will be stored in the
message_body attribute of the event, no matter which target platform the resulting FaaS function
will be deployed on. The Data Store declaring to be a object storage sets also implicitly the service
its Service Task is interacting with. According to its loop marker, the Service Task retrieving
inventories for each item of the order is executed multiple times. Its loop condition is defined
by a python literal using the output of the previous Task to iterate over a list of items. Using
terminology, which is provider-agnostic and easy to understand helps developers finding the right
service call to access inventories stored in an object storage. The splitting Gateway uses the Boolean
returned by its previous Task as condition on how to split the workflow. Its mode can be implicitly
determined by the number of incoming and outgoing sequence flows. The case properties of the
outgoing sequence flows have to be set to true message_body false, depending on which direction
of the branching should be followed. Specifying event[’data’] as second argument for the two
messaging sending Service Tasks, forwards the incoming message in its provider-specific structure
to allow other FaaS functions, which might be invoked by this message, to transform this message
back to CloudEvents scheme if needed, implying that the other FaaS function is also generated
following this concept.

3.4 Step 4: Add Provider-specific Service Endpoints

When using service calls, both Amazon’s SDK boto3 as well as the SDK from Microsoft Azure
require developers to bind clients to the desired service entities. In AWS it is sufficient to create a
client to bind to the service by using for example boto3.client(’s3’). Authorization is handled
in the background by roles and permissions granted to the FaaS function. Specific service entities
and objects can simply referenced by their names. However, interacting with a service via clients in
Azure requires developers to use connection strings to uniquely identify the right service entity and
get the needed authorization.

41

3 Concept

O
rd

er
 H

an
dl

er

trigger: queue
fifo: true

function: bcModule.extract_items
arg1: event['message_body']

loopType: false
for: item in event['extract_items']
serviceCall: get_object
arg1: 'Inventory'
arg2: item.name + '.txt'

function: bcModule.check_inventory
arg1: event['get_inventory']

mode: if
condition: event['check_inventory']

service: objectStorage

service: queue
fifo: false
serviceCall: send_message
arg1: 'shipping-queue'
arg2: event['data']

service: queue
fifo: false
serviceCall: send_message
arg1: 'delay-queue'
arg2: event['data']

Extract items Get Inventory Check Inventory
Send positive

response

Send negative
response

Queue

All items
available?

true

false

Figure 3.8: BPMN diagram enhanced with properties

Listing 3.7 demonstrates an example in which line 4 creates an client object for Azure Blob Storage
service using a connection string. In line 11 another client is generated in the context of containers.
This client allows line 14 to access objects stored in the container.

Listing 3.7 Service call example for Azure Blob Storage (Python)
1 # ...

2

3 connection_string = 'myConnectionString'

4 client = BlobServiceClient.from_connection_string(connection_string)

5

6 def handler_function(events, context):

7 for event in events:

8 event = to_cloudevents_schema(event)

9 # ...

10 event['get_inventory'] = []

11 container_client = client.get_container_client("mycontainer")

12 for item in event['extract_items']:

13 event['get_inventory'].append(

14 container_client.download_blob(item.name+'.txt')

15)

16 # ...

17

18 # ...

Connection strings are structured differently for each service type. For Storage Accounts they are
composed out of DefaultEndpointsProtocol, AccountName and AccountKey, which leads to this
example: [Mic22c]

DefaultEndpointsProtocol=https;AccountName=mystorage;AccountKey=<account-key>

42

3.5 Step 5: Generate Provider-specific FaaS Function

In other services DefaultEndpointsProtocol, AccountName can be substituted by a HTTP endpoint.
In AWS the counterpart for this are Amazon Resource Names (ARNs). In contrast to connection
strings in Azure, ARNs are structured according to one of the following three formats: [Ama22a]

arn:partition:service:region:account-id:resource-id
arn:partition:service:region:account-id:resource-type/resource-id
arn:partition:service:region:account-id:resource-type:resource-id

Unfortunately connections strings and ARNs are fundamentally different from each other. Therefore
is it not possible to model this information in a provider-agnostic way. Because of this drawback
resource descriptors are introduced in step 4 of the method. A resource descriptor holds information
about the target platform and all provider-specific endpoints needed for each Service Task in the
BPMN diagram. Storing this data in a JSON ensures, that provider-agnostic and provider-specific
properties are separated from each other. An example resource descriptor is shown in Listing 3.8.

Listing 3.8 Example resource descriptor
1 {

2 "provider": "azure",

3 "endpoints": {

4 "element_id1": "<connection_string1>",

5 "element_id2": "<connection_string2>"

6 }

7 }

3.5 Step 5: Generate Provider-specific FaaS Function

Step 5 of the method depicted in Figure 3.1 on page 28 is about transforming the provider-agnostic
representation of a FaaS function into a provider-specific version of it, implemented in the same
programming language as the provided business code modules. All the information about the
function is divided on multiple BPMN elements. Therefore, it requires a mapping from provider-
agnostic to -specific and a mechanism to put all the peaces together. As a solution this section
introduces a function template, which describes the structure of a FaaS function and allows to
assemble it by injecting code snippets into it, which are generated by the transformation of each
BPMN element occurring in the workflow diagram.

In order to create a template, a FaaS function needs to be decomposed first. Figure 3.9 shows the
provider-specific version of the function demonstrated in Listing 3.1 on page 29 and is targeted for
the AWS platform. Every FaaS function is divided into the sections imports, clients, handler, batch,
tasks and cloudevents. By iterating over all BPMN elements all business code modules, which need
to be imported, are determined. Those imports are injected at the top of the file. The interacted
services are also be determined during this iteration. For every detected service the respective
clients are listed below the imports. The handler section always contains the same line of code as
seen in the example. The only difference that can be made is to use the plural version of the term
event whenever the function is invoked by a trigger. which uses a batched event schema. If that is
the case a for-loop is introduced in the optional batch section.

43

3 Concept

imports

clients

handler

batch

tasks

cloudevents

Figure 3.9: Platform-specific FaaS code example (Python)

The biggest portion is taken by the tasks section, which contains the whole work done by the
function. After transforming (Service) Tasks and Gateways to code, it is injected into this section
in the order given by the workflow in the BPMN diagram. Both service calls and business functions
might need arguments and can return data which then might be reused again in upcoming service
calls or business functions as parameters. This data needs to be stored in the outermost scope
inside the handler function, where it is accessible as an input for every other function call coming
afterwards. A possible solution is to extend the event parameter, since it is accessible in the whole
handler function. This can be done by storing the outputs in properties labeled with the name or
identifier of the Task.

At the end of the file the CloudEvents transformation function is inserted. The body of this function
depends on the chosen platform and trigger type.

44

3.6 Step 6: Build Deployment Packages

With this knowledge a template can be created, described by the syntax and semantics of template
engines like Jinja3 or the ones offered by Django4 or Express5. The decision on choosing the right
engine, depends on the selected programming language of the Generator, which also depends on
the targeted programming language by the user. Optimally the Generator is written in the same
language as the generated function.

3.6 Step 6: Build Deployment Packages

This sections presents the structures of deployment packages for AWS Lambda and Azure Functions,
which are generated in the last step of the method and returned to the user. Depending on the chosen
runtime deployment packages are structured differently. The following examples are under the
assumption, that Python is the chosen programming language. Furthermore, the only additional
modules needed are the one business code module introduced in Section 3.1.2 on page 30 and the
numpy6 package defined in requirements.txt.

3.6.1 AWS Lambda

Deployment packages in AWS Lambda follow are very easy and straight forwards structure as
illustrated in Listing 3.9. They are simple .zip files containing the FaaS function, the business code
module and the package folder for additional dependencies. Dependencies are added by using
npm by providing the path of the requirements.txt file and the path of the package folder as
destination. [Ama22b]

Listing 3.9 Deployment Package Structure for AWS Lambda
my-deployment-package.zip

| - order_handler.py

| - businessCodeModule.py

| - package/

| | - numpy/

3.6.2 Azure Functions

Azure Functions also uses .zip packages for deployment, but in contrast to AWS Lambda, deployment
packages in Azure Functions are not structured in the point of view of individual FaaS functions,
but of a serverless project as a whole. Listing 3.10 shows a package containing two FaaS functions
in separate folders together with their business code modules. Additionally the following files are
contained: [Mic22b]

3https://jinja.palletsprojects.com/
4https://docs.djangoproject.com/en/4.0/topics/templates/
5https://expressjs.com/de/guide/using-template-engines.html
6https://numpy.org/

45

https://jinja.palletsprojects.com/
https://docs.djangoproject.com/en/4.0/topics/templates/
https://expressjs.com/de/guide/using-template-engines.html
https://numpy.org/

3 Concept

function.json: Holds information about the trigger and binds it to the right parameter in the right
python script.

host.json: Contains settings for all function instances of the project like batch sizes, timeouts or
configurations for the logging service.

local.settings.json: Is used to save configurations for local execution and connection strings. This
file is not published on Azure.

requirements.txt: List of dependencies to be installed by Azure Functions during deployment.

Listing 3.10 Deployment Package Structure for Azure Functions
my-deployment-package.zip

| - order_handler/

| | - __init__.py

| | - function.json

| | - businessCodeModule.py

| - my_second_function/

| | - __init__.py

| | - function.json

| | - businessCodeModule2.py

| - host.json

| - local.settings.json

| - requirements.txt

46

4 Implementation

BPMN2FaaS1 is a prototype, which implements the concept introduced in Chapter 3. In the scope
of this thesis BPMN2FaaS was implemented to generate FaaS functions written in Python for the
two platforms AWS Lambda and Azure Functions. First, this chapter gives an overview about
the components of this prototype and their interactions with each other. Section 4.2 introduces
technologies, which are used by BPMN2FaaS. The last sections of this chapter cover each component
in detail.

4.1 Architecture

The architecture of BPMN2FaaS is depicted in Figure 4.1. It contains of two main components:
Modeler and Generator. The Modeler enables users to upload their functional business code, create a
provider-agnostic BPMN model of their FaaS function, select the target platform and add additional
provider-specific properties. The architecture of the Generator is designed as a core module, which
can be extended by plugins. This way the core module can be easily extended in the future to
support additional platforms. The core module consists of the components Function Extractor
and Plugin Manager. The task of the Function Extractor is to analyze the functional business
code modules and extract information about the provided business functions. The Plugin Manager
checks the existence of plugins and assigns the resources from the Modeler to the corresponding
plugin. Afterwards the plugins are responsible to generate provider-specific deployment packages
containing the targeted FaaS function. At the end the core module returns the deployment package to
the Modeler. Figure 4.1 provides an overview on the architecture of BPMN2FaaS, while Figure 4.2
illustrates the order of interactions taking place between Modeler and Generator.

4.2 Technologies

The Modeler allows users to view and create BPMN diagrams in their browser. This feature is
enabled by the library bpmn-js2, which is build by the team of Camunda3. Moreover, diagrams can
be exported into a XML or Scalable Vector Graphic (SVG) file. The XML export can be used later

1https://github.com/BPMN2FaaS
2https://bpmn.io/toolkit/bpmn-js
3https://camunda.com

47

https://github.com/BPMN2FaaS
https://bpmn.io/toolkit/bpmn-js
https://camunda.com

4 Implementation

Workflow Modelling Layer

Graphical BPMN Modeler Graphical Properties Panel

Persistence Layer

File-based Workspace Templates

API Layer

Provider-specific FaaS Deployment Package Generation Layer

Provider-specific Plugins
FaaS Function Generator

Deployment Package Generator

Function
Extractor

Plugin
Manager

Figure 4.1: Architecture of BPMN2FaaS

Modeler Generator

create model

analyze code

generate package

start download

upload functional business code

return functions and argument names

send model

return package

Figure 4.2: Communication between Modeler and Generator

48

4.3 Modeler

on to import and edit the diagram saved in it. Additionally their bpmn-js-properties-panel4 library
is integrated to provide users the ability to add properties to BPMN elements. The JavaScript task
runner Grunt5 is used to build and run the Modeler.

The core component of the Generator uses the web framework Flask6 to communicate with the
Modeler. Jinja27 is used by the plugins as a template engine to define templates and render them
into FaaS functions.

4.3 Modeler

This section provides detailed information about the implementation of the Modeler and illustrates
its user interface with several screenshots. When starting up the Modeler via the command
grunt auto-build, it automatically opens a tab in the browser with BPMN2FaaS running. First
users are asked to provide a zip file containing their functional business code modules together
with requirements.txt files listing the required dependencies via drag and drop. Listing 4.1
demonstrates the structure of such an input. Users have to store the requirements.txt files
in separate folders. By naming those folders and the Lanes in the BPMN diagram equally, the
Generator is able to assign each requirements.txt with its corresponding Lane. When uploading
a file, the modeler checks its file type. Should it be different than zip, users are asked to repeat the
upload until a zip file is detected.

Listing 4.1 Input package structure for business code modules and dependencies
project.zip

| - function_1/

| | - requirements.txt

| - function_2/

| | - requirements.txt

| - businessCode1.py

| - businessCode2.py

| - businessCode3.py

Next, users are asked whether they want to create a new BPMN diagram or open and edit an already
existing one via drag and drop. Figure 4.3 shows a screenshot of BPMN2FaaS. In the center the
BPMN diagram with its initial elements is illustrated. On the left side a tool palette allows users to
edit their diagram and add BPMN elements to it. The properties panel is displayed on the right
side. Its context is determined by the currently selected BPMN element. In the bottom left corner
buttons are located, which provide users the ability to transform it into a FaaS function or export
their diagram as XML or SVG.

4https://www.npmjs.com/package/bpmn-js-properties-panel
5https://gruntjs.com
6https://flask.palletsprojects.com
7https://jinja.palletsprojects.com

49

https://www.npmjs.com/package/bpmn-js-properties-panel
https://gruntjs.com
https://flask.palletsprojects.com
https://jinja.palletsprojects.com

4 Implementation

Figure 4.3: Creating a new diagram in BPMN2FaaS

4.3.1 Extending BPMN Properties Using Moddle

In bpmn-js all BPMN elements are represented as JSON objects, which hold attributes like position,
size, name, id, BPMN element type, incoming and outgoing connectors, children elements and
a businessObject with additional custom properties. Furthermore, those objects need to be
extended with properties introduced in Section 3.3. The properties panel consist of different types
of Hypertext Markup Language (HTML) elements, which allow users to interact with some of the
properties. Those properties are not only needed by the Generator to generate FaaS functions, but
also by the Modeler itself to check the state of the BPMN element to provide users an interactive
panel by determining, which HTML elements need to be displayed.

moddle8 is a extension for bpmn-js, which allows developers to define meta-models for BPMN
element types. Using a simple JSON structure, additional properties can be defined by declaring
their name, type and whether to be stored as additional XML element or attribute when exporting the
diagram. Properties defined with moddle can be simply accessed in businessObject by using their
names as attributes. Furthermore, the names can be referenced when displaying HTML elements in
the panel to store their data automatically in businessObject.

Listing 4.2 shows the definition of Service Task properties with moddle accordingly to the properties
definied in the concept. In BPMN2FaaS every property defined with moddle is declared to be stored
as XML attribute of the corresponding BPMN element.

With the help of moddle the defined properties can be accessed to check whether the trigger type of
the Service Task exists and if it is of the type queue, as demonstrated in the first line of Listing 4.3.
In case of a queue trigger, a checkbox is added to the properties panel to let the user decide whether
it is a default queue or FIFO. In line 5 the name of the fifo property is provided, to store the state
of the checkbox automatically in the businessObject of the selected BPMN element.

8https://github.com/bpmn-io/moddle

50

https://github.com/bpmn-io/moddle

4.3 Modeler

Listing 4.2 Meta-Model definition for Start Events using moddle
1 {

2 "name": "FaaSStartEvent",

3 "extends": [

4 "bpmn:StartEvent"

5],

6 "properties": [

7 {

8 "name": "schedule",

9 "isAttr": true,

10 "type": "String"

11 },

12 {

13 "name": "trigger",

14 "isAttr": true,

15 "type": "String"

16 },

17 {

18 "name": "fifo",

19 "isAttr": true,

20 "type": "Boolean"

21 }

22]

23 }

Listing 4.3 Accessing moddle properties and binding it with HTML elements (JavaScript)
1 if (element.businessObject.trigger && element.businessObject.trigger === TriggerTypeConstants.queue) {

2 entryFactory.checkbox(translate, {

3 id : 'fifo',

4 label : 'FIFO',

5 modelProperty : 'fifo'

6 });

7 }

Figure 4.4 illustrates the HTML elements used in the properties panel to edit the properties of
Service Tasks. It consists of a grouped select element to choose the right trigger type and the
checkbox created in Listing 4.3. When exporting the diagram, the set of properties with the
demonstrated values are represented in XML as shown in Listing 4.4. Every property defined by
moddle is marked with the tag bpmn2faas. This prefix is also set inside of the moddle JSON. They
can be used as XML namespaces, to distinguish the context of multiple different set of properties.

Listing 4.4 XML representation of an Start Event with its properties
1 <bpmn2:startEvent id="StartEvent_1" bpmn2faas:trigger="queue" bpmn2faas:fifo="true">

2 <bpmn2:outgoing>Flow_0n2io5b</bpmn2:outgoing>

3 </bpmn2:startEvent>

51

4 Implementation

Figure 4.4: Properties Panel for Start Events

4.3.2 Adding HTML Elements to the Properties-Panel Using Factories

The factory module is part of the bpmn-js-properties-panel library and provides developers an
interface for HTML elements like text inputs, checkboxes, select options or toggle switches, which
can be added to the properties panel. Listing 4.3 shows an example on how to create an checkbox.
All HTML elements created by the factory use the modelProperty option to store the state of the
element in the specified attribute of the BPMN element. In addition to the factory provided by
bpmn-js-properties-panel, BPMN2FaaS also uses a custom factory, which extends the original
factory by enhancing HTML elements with additional features to provide a better user experience.
The following presents the motivations behind each new feature and describes briefly how they are
realized.

Grouped Selection

In contrast to standard select options, grouped select options allow to cluster their entries. When
user have to chose an option from a list of services, grouped options can aid the selection by
categorizing similar services under a common generic term. Furthermore, grouped select options
help user to differentiate between two option, which have the same name, but a different context.
Such a scenario could arise if users provide multiple business code modules, which might contain
functions with the same name. In this case functions can be differentiated by creating groups of
functions for each uploaded module.

The factory of bpmn-js-properties-panel uses the domify9 library, which turns HTML strings into
Document Object Model (DOM) elements, to construct the HTML elements. Therefore the grouped
selection is simply implemented by extending the options argument structure to define the entries
inside of groups and by wrapping the options by <optgroup label="myCategory"> for each
group.

9https://www.npmjs.com/package/domify

52

https://www.npmjs.com/package/domify

4.4 Generator (Core)

Default Text

When creating select options, users are initially presented the first option, when the list is still
collapsed, although no option is selected yet. HTML offers a selected attribute for options, to
initially set a predetermined option. A better solution is to provide users with a visual feedback
showing that no option is selected yet. For this case default texts are introduced to the select option
version of the custom factory. Every time the list of options is created, an additional option is
inserted, which has no value and displays a default text like "Choose Service...". With the help
of the attributes disabled and hidden this option can not be selected again and will be hidden
from the list, once another option has been selected. The same feature is also applied to grouped
select options.

OnChange

Every time a user interacts with a HTML element for the first time, the respective property is added
to the selected BPMN elements businessObject by adding an attributed to it. Changing the value
of the property simply results in overwriting the previously created attribute. But properties like
arguments depend on the chosen service call. Changing the serviceCall property leads to already
defined arguments to become invalid. In the worst case the former service call had required more
arguments than the new one. Resetting the arguments after changing the service call does not solve
the problem, because some arguments might be left untouched. This can lead to service calls with
too many arguments. Therefore, a mechanism is needed, which is able to detect changes of the
HTML elements value and cascade deleting operation on attributes, which are dependent on the
changed property. Unfortunately, this feature is not supported by the original factory. Thus, the
custom factory needs to extends its elements with this feature to prevent such scenarios. This is
done by inserting the selected attribute in each HTML element, which invokes events and executes
predefined callback functions, whenever the value of the element changes.

4.4 Generator (Core)

The implementation of the core is entirely written in Python and consists of an API reachable via
HTTP endpoints, the Function Extractor and Plugin Manager. The core serves as back-end of the
Modeler and as intermediary between Modeler and the corresponding plugin. Its task is to extract
the names and arguments of functions provided by business code modules and start the chosen
plugin to generate the respective deployment package. The following sections describe those three
modules in more detail.

4.4.1 HTTP Endpoints

app.py serves as the main module and is therefore the starting point of the core module. Using flask
the core can be started using the command python -m flask run --port 8001. First, the two
routes upload-files and generate are exposed for HTTP PUT methods. The route upload-files
is invoked by the Modeler whenever users provide their input in form of an zip package containing
business code modules and dependencies. Additionally, a session cookie is included in this request,

53

4 Implementation

which is generated by the Modeler every time the browser opens or refreshes the Modeler. This
cookie is later used by the generate route to associate the model with the right files. This is done
by creating a workspace in a temporary folder named after the session cookie. Inside this workspace
the received zip package is extracted and analyzed by the function extractor. The result of this
analysis is sent back to the Modeler as a response.

After finishing the model and clicking on the generate button a request is sent to the generate path,
which includes the XML representation of the provider-agnostic model and the resource descriptor
in form of an JSON, storing the target platform and additional provider-specific properties. Then a
generator from the Generator class, provided by the Plugin Manager, is instantiated with the path
to the right workspace and the target platform. The generator loads the correct plugin and starts it.
When the plugin is finished, a path to the generated deployment package is returned to the core
component to forward the package to the Modeler.

4.4.2 Function Extractor

The goal of the Function Extractor component is to analyze the business code modules and extract
all function names and their arguments. The Function Extractor receives the path of the incoming
zip package as an input. This package is extracted into the same folder. The analysis starts by
iterating over every business code module and storing the module names inside of a JSON. Each
module declared in it consist of functions, which themselves consist of arguments. The standard
library ast is used to create an abstract syntax tree for each module accordingly to the grammar
of Python. Each node in this tree is matched with the FunctionDef class of ast to check if it is
a function. For every function node the name and its arguments are extracted and stored in its
respective module.

4.4.3 Plugin Manager

The Plugin Manager is implemented in core.py. When creating an instance, the needed plugin
is imported dynamically with the help of the library importlib. Every plugin must be named
accordingly to the pattern bpmn2faas_{provider}_plugin_{runtime}, where the runtime is
Python in this case. Additionally, every plugin must provide a Plugin class inside its main.py
and implement the function generate, in order to let the generator import and start every plugin
homogeneously. If the plugin is not present, a ModuleNotFoundError exception is raised and the
operation is aborted.

4.5 Plugins

In the scope of this thesis, two plugins have been implemented, generating deployment packages for
the platforms AWS Lambda and Azure Functions. Every plugin has to be installed in the plugin
folder of the core, in order to be imported. The goal of a plugin is to create deployment packages
by mapping provider-agnostic properties to provider-specific properties and transforming them to
code.

54

4.5 Plugins

FaaSFunction

+ lane: et.Element
+ name: string
+ operations: [Element]
+ services: [string]
+ modules: [string]

+ __init__(lane: et.Element, process: et.Element, endpoints: dict): void
- __get_sequence(): [Element]
- __get_modules(): [str]
+ to_code(): string

Figure 4.5: UML class diagram of FaaSFunction.

First, plugins parse the BPMN diagram, with the help of the xml.etree.ElementTree module,
from XML to an element tree. Elements of this tree (et.Element) can be derived using XPath
expressions. Next, the BPMN Pool needs to be extracted to process its Lanes and transform each
one of them into FaaS functions. Listing 4.5 shows the process section of the xml representation,
which holds all BPMN elements and their properties. The laneSet element represents the Pool,
consisting of its Lanes. Each Lane stores a list of IDs referencing the BPMN elements of its
workflow.

Listing 4.5 Extraction of BPMN diagram represented as XML
1 ...

2 <bpmn2:process id="Process_1" isExecutable="false">

3 <bpmn2:laneSet id="LaneSet_1qthya9">

4 <bpmn2:lane id="Lane_0lzqw52" name="function_1">

5 <bpmn2:flowNodeRef>StartEvent_1</bpmn2:flowNodeRef>

6 <bpmn2:flowNodeRef>Activity_1dpr74l</bpmn2:flowNodeRef>

7 </bpmn2:lane>

8 </bpmn2:laneSet>

9 <bpmn2:startEvent id="StartEvent_1" bpmn2faas:trigger="queue" bpmn2faas:fifo="true">

10 <bpmn2:outgoing>Flow_0n2io5b</bpmn2:outgoing>

11 </bpmn2:startEvent>

12 <bpmn2:task id="Activity_1dpr74l" bpmn2faas:function="module1:hello_world">

13 <bpmn2:incoming>Flow_0n2io5b</bpmn2:incoming>

14 </bpmn2:task>

15 <bpmn2:sequenceFlow id="Flow_0n2io5b" sourceRef="StartEvent_1" targetRef="Activity_1dpr74l" />

16 </bpmn2:process>

17 ...

For each Lane an instance of the class FaaSFunction is created. The class members of FaaSFunction
are listed in Figure 4.5. Instances of this class take the XML objects lane and process as input
to determine the BPMN elements of its Lane and order them accordingly to the workflow.
FaaSFunction uses a Jinja2 template, composed out of multiple smaller templates, to create the
FaaS function. To render the template, this class needs to process each element and transform them
into snippets, which are injected into the template.

55

4 Implementation

The plugins implement classes, which represent the BPMN element types used inside of Lanes
to model workflows. Figure 4.6 illustrates an UML class diagram, which shows the relationships
between the classes. Only the common class members are listed, which are used by both plugins.
The class Element serves as superclass for the subclasses Task, ServiceTask and StartEvent. It
provides fundamental attributes and methods for every BPMN class by inheritance. Every BPMN
class implements the function to_code(), which transforms the BPMN element and its properties
into code snippets using their own templates.

After the generation of the FaaS function is done, the main module retrieves the list of dependencies
and installs them into a folder named package, in case AWS Lambda has been chosen as the target
platform. For Azure this procedure is dismissed, since the platform of Azure Functions itself
handles dependencies during deployment automatically.

4.5.1 BPMN to Code Transformation

This section presents the templates used in both plugins and describes how they are rendered to
a FaaS function by transforming BPMN elements together with their properties to code. Jinja2
templates can be rendered by using the render() function with a dictionary as input, which defines
the data to be injected into a template. In Jinja2 syntax control structures like for-loops appear in
{%...%} statements, while Python expressions are defined in {{...}}. When rendered, variables
and expressions are substituted by the template engine with values of equally named attributes
defined in the input dictionary. In the following listings of this section variables and expressions
will be highlighted in purple.

FaaS Function

Listings 4.6 and 4.7 illustrate the main templates used by each plugin to generate FaaS functions.
While processing each BPMN element, the FaaSFunction class determines a list of modules used
by its Task elements. For each module an import statement is inserted by the template engine.
Similarly, Service Task elements are retrieved to determine their services and transform them
into provider specific terminology. In AWS all clients are created by the boto3 SDK. Additionally
one client per service type is enough, because boto3 created clients on service level. Specific
service instances are specified by service call parameters. Whereas in Azure, clients are directly
bound to specific service instances, leading to one client for each Service Task in the worst case.
Additionally clients are not created directly by the azure SDK, but its submodules. To prevent
importing the whole azure, the FaaSFunction class provides all import statements for each service
type. Moreover different service calls of the same service type might require different clients. For
instance, service calls retrieving a list of all containers in a blob storage require a client on storage
level, whereas service calls retrieving a list of all object contained by a specific container require a
client on container level. Therefore the Azure template defines imports to client classes, instead
of creating them. The clients themselves are created in the body of the handler for each Service
Task.

The goal of each template is to generate FaaS functions as similar as possible to the template FaaS
function provided by each platform. For those reasons in AWS the handler function is named
handler, whereas in azure the handler is named main and its arguments are typed. If (FIFO) Queue

56

4.5 Plugins

bpmn

gateways

startevents

tasks

endevents

Gateway

+ is_splitting : boolean
+ branches : [[Element]]
+ cases : [string]
+ has_default : boolean

- __get_branches(process: et.Element): [[Element]]

StartEvent

+ trigger_type : string

Element

+ xml: et.Element
+ id: string
+ name: string
+ incoming: [et.Element]
+ outgoing: [et.Element]
+ indentation: int

+ __init__(element: et.Element, process: et.Element): void
- __get_incoming_elements(process: et.Element): [et.Element]
- __get_outgoing_elements(process: et.Element): [et.Element]
+ to_code(): string

et: xml.etree.ElementTreeet: xml.etree.ElementTree

Task

+ module : string
+ function : string
+ args : [string]
+ is_loop : boolean
+ loop_condition : string

ServiceTask

+ service : string
+ service_call : string
+ args : [string]
+ is_loop : boolean
+ loop_condition : string

EndEvent

+ return : string

Figure 4.6: UML class diagram of BPMN classes used by the plugins.

57

4 Implementation

Listing 4.6 FaaS Function template for AWS (Python + Jinja)
1 import boto3

2

3 {% for module in data.modules %}import .{{ module[:-3] }}

4 {% endfor %}

5 {% for client in data.clients %}{{ client }}_client = boto3.client('{{ client }}')

6 {% endfor %}

7

8 def handler(event{% if data.is_batch %}s{% endif %}, context):

9 {% if data.is_batch %}for event in events:

10 {% endif %} event = to_cloudevents_schema(event)

11 {% for op in data.operations %}{% include 'indentation.jinja' %}{{ op.to_code() }}

12 {% endfor %}

13

14 {{ data.start_event.to_code() }}

Listing 4.7 FaaS Function template for Azure (Python + Jinja)
1 import logging

2

3 {% for module in data.modules %}import .{{ module[:-3] }}

4 {% endfor %}

5 import azure.functions as func

6 {% for client in data.clients %}{{ client }}

7 {% endfor %}

8

9 def main(event: func.{{ data.input_class }}, context: func.Context):

10 event = to_cloudevents_schema(event)

11 {% for op in data.operations %}{{ op.to_code() }}

12 {% endfor %}

13

14 {{ data.start_event.to_code() }}

or PubSub is the chosen trigger type, in AWS the plural of the term “event” is used to indicate
batched events and a for-loop is introduced to process each event individually. Afterwards in both
templates the function to_cloudevents_schema(event) is inserted to transform the incoming
event to the cloudevents schema. The service type specific definition of this function is placed at
the bottom of the template, which is generated by the Service Task. After the transformation of
the event schema all operations (business functions and service calls) are listed one after another.
Depending on the use of for-loops and if-statements the individual indentation values are increased
and inserted by using the template shown in Listing 4.8.

Listing 4.8 Template for introducing Indentation (Jinja)
1 {% for indent in range(op.indentation) %} {% endfor %}

58

4.5 Plugins

Tasks

Listing 4.9 shows the template to render business functions. It simply inserts modules, functions
and arguments and stores the output in an attribute of the event named after the Tasks name or id if
no name is provided. In case of multiple executions of the business function, a for loop is inserted
by the template in Listing 4.10 and the output is added to a list of output analogously.

Listing 4.9 Business Function template (Jinja)
1 {% if data.is_loop %}event['{{ data.task_name }}'] = []

2 {% include 'loop.jinja' %}

3 event['{{ data.task_name }}'].append({{ data.module }}.{{ data.function }}({{ data.args }}))

4 {% else %}event['{{ data.task_name }}'] = {{ data.module }}.{{ data.function }}({{ data.args }})

5 {% endif %}

Listing 4.10 for-loop template (Jinja)
1 {% if data.is_loop %} for {{ data.loop_condition }}:{% endif %}

Service Tasks

Each supported service call has its own template. Finding the corresponding template and mapping
the service call from provider-agnostic to provider-specific is done implicitly by the filename of
the template. Each template is named after the provider-agnostic service call and contains its
provider-specific code representation. Listing 4.11 and Listing 4.12 show the templates of the
provider-agnostic service call send_message(queue_name, message) for AWS SQS and Azure
Queue Storage respectively. Due to presentation reasons, the templates demonstrated only focus
on the service calls and their clients, but do not display indentations and their combination with
for-loops, which are analogously the same as in Listing 4.9. On Azure’s side the queue client
requires a connection string, access from the resource descriptor, and the queue name. The service
call itself only needs the message to be sent. Whereas in the AWS version, no arguments are needed
to bind to the client, since the arguments of the service call store the target queue and message. Due
to the target queue having to be specified as an Uniform Resource Locator (URL), the service call
get_queue_url has to be executed additionally to transform the queue name into its corresponding
URL.

Listing 4.11 send_message template for AWS (Jinja)
1 queue_url = sqs_client.get_queue_url(QueueName={{ data.args[0] }})

2 event['{{ data.task_name }}'] = sqs_client.send_message(queue_url['QueueUrl'], {{ data.args[1] }})

Listing 4.12 send_message template for Azure (Jinja)
1 queue_client = QueueClient.from_connection_string({{ data.connection_string }}, {{ data.args[0] }})

2 event['{{ data.task_name }}'] = queue_client.send_message({{ data.args[1] }})

59

4 Implementation

Start Events

To support provider-agnostic event schemes, every generated FaaS function has to include the
to_cloudevents_schema function, which translates every kind of object representing the incoming
event with provider-specific schema to a provider-agnostic dictionary applying to the CloudEvents
specification. The mapping is handle the same as for service calls: For each trigger type there
is a service-specific template named after the provider-agnostic terminology of the service type.
Listing 4.13 shows the to_cloudevents_schema function defined for timer triggers in AWS. In
addition to the required attributes mentioned in Section 3.3.2, timer trigger events also have the
attributes datacontenttype, specifying the type of the provider-specific event stored in data, and
time storing a timestamp.

Listing 4.13 Template for Timer Trigger Events in AWS (Jinja)
1 def to_cloudevents_schema(event):

2 return {'id': event['id'],

3 'source': event['source'],

4 'specversion': '1.0',

5 'type': 'com.amazonaws.s3.'+event['detail-type'],

6 'datacontenttype': 'dict',

7 'time': event['time'],

8 'data': event}

End Events

The template shown in Listing 4.14 demonstrates how End Events are represented as code. Due
to Gateways splitting the workflow, a FaaS function could have multiple return statements placed
in different branches. Therefore, the indentation template needs to be included to shift the return
statement dynamically to the right, depending on the nesting provided by the Gateways.

Listing 4.14 Template for End Events (Jinja)
1 {% include 'indentation.jinja' %} return {{ data.return }}

Gateways

Depending on the number of incoming and outgoing connections, first, Gateways have to be
classified either as splitting or joining Gateways. Next, all elements for each branch have to
determined by traversing in all outgoing directions until the corresponding joining Gateway has
been reach. The corresponding joining Gateway is found by increasing a counter each time a
splitting Gateway has been visited and decreasing it for each joining Gateway. The corresponding
joining Gateway is found if counter is zero.

Also depending on the number of outgoing connections is the branch type. If a spitting Gateway
has two outgoing sequence flows it represents an if-statement, in case there are more than two,
it represents a switch-statement. Listing 4.15 shows the template used to render if-statements.
Splitting Gateways are responsible to determine all (Service) Tasks for each branch, which need

60

4.5 Plugins

to be embedded into the body of their if-statement, and transform them into code. Similarly,
Listing 4.16 demonstrates the template used to simulate switch-statements, since Python does not
support switch-statements. While Gateways, which represent if-statement, only have the cases
true or false, switch-statements have different cases for each branch. Additionally, there might
be a default branch, representing all other cases not fulfilling the other ones. For all non default
branches the template generates an elif-block, with the exception for the first if-block, comparing
the condition with the corresponding case. In case on of the outgoing sequence flows has been
marked as default branch, the template adds an additional else-block.

Listing 4.15 Template for if-statements (Jinja)
1 if {{ data.condition }}:

2 {% for op in data.operations[0] %}{% include 'indentation.jinja' %}{{ op.to_code() }}

3 {% endfor %}

4 else:

5 {% for op in data.operations[1] %}{% include 'indentation.jinja' %}{{ op.to_code() }}

6 {% endfor %}

Listing 4.16 Template for simulated switch-statements (Jinja)
1 {% for case in data.cases %}{{ 'if' if loop.first else 'elif' }} {{ data.condition }} == {{ case }}:

2 {% for op in data.operations[loop.index0] %}{% include 'indentation.jinja' %}{{ op.to_code() }}

3 {% endfor %}

4 {% endfor %}{% if data.has_default %}else:

5 {% for op in data.operations[-1] %}{% include 'indentation.jinja' %}{{ op.to_code() }}

6 {% endfor %}{% endif %}

61

5 Related Work

This chapter presents existing projects, which provide solutions to similar problems as faced by this
thesis and points out their similarities and differences. The sections of this chapter cluster those
projects by differentiating them between projects tackling challenges on portability in the context
serverless computing and projects working on model-driven code generation based on workflow
models.

5.1 Serverless Portability

One way to overcome the disadvantages of vendor lock-ins is portability of serverless applications.
The projects described in this section developed concepts, in which serverless applications can be
modeled in a provider-agnostic way. Transforming such a model to representations of different
target platforms helps developers to deploy their applications on clouds of different providers and
thus becoming independent of just one single provider.

Serverless Framework [Ser22] and Terraform [Ter22] are open source deployment automation
tools. Via Command Line Interface (CLI) developers are able to build auto-scaling serverless
applications and deploy them across multiple cloud providers. Same as in this work, both use
declarative deployment modeling to generate provider-specific deployment packages. Their models
also have in common, that they use as many provider-agnostic properties as possible, but also
facing the problems of the heterogeneous landscape of cloud computing, leading to the need of
additional provider-specific properties, similar to the resource descriptor introduced in Section 3.4,
thus making their models also not fully provider-agnostic. Additionally, both tools also use a plugin
architecture, where one plugin for each cloud provider is responsible provider-specific tasks. The
main difference to this work is, that both tools operate on deployment packages at the level of
serverless applications as a whole, whereas this work focuses on deployment packages of FaaS
functions, which is only a subset of possible components in serverless architectures.

SErverless Applications PORtability assessmenT (SEAPORT) is a method developed by Yussupov
et al. [YBKL20], which confronts issues of serverless portability by automatically assessing the
portability of a given serverless application by analyzing its deployment model. In contrast to
this work, SEAPORT does not only support provider-specific deployment models as presented
in Section 3.6, but also third-party model from deployment automation tools like the already
mentioned Serverless Framework and Terraform. The concept of assessing whether and to which
extend a given serverless application is portable to a specified target platform is divided into the
three steps illustrated in Figure 5.1. In the first step a user provides his deployment package, which
also containing code artifacts for FaaS components. Same as in this thesis, SEAPORT only works
with declarative models. In Step 2 the technology-specific deployment model is transformed into
canonical model. By using canonical models, SEAPORT’s concept and the concept introduced in

63

5 Related Work

Chapter 3 benefit both from reduced number of translations from source to target platform. The
last step performs the portability assessment based on the canonical model and the specified target
platform by splitting the task into evaluating the portability of each component defined in the
deployment model (Step 3a) and analyzing the code artifact for potential pitfalls (Step 3b). In Step 3a
SEAPORT classifies the service type of each component provider-agnosticly by creating categories
for related service type with common properties shared between different cloud providers. This is
done for invoked services as well as for service producing events to trigger other components. The
same procedure was applied during this work to find matching properties to create provider-agnostic
event schemes and service calls, as described by Figure 3.5. But in contrast to SEAPORT, where a
similarity score determines the best fitting service alternative of the target cloud provider among
multiple choices, in this work each service type has exactly one alternative. Step 3b analyzes
code artifacts to check whether incompatible service calls are involved. Similar issues were also
discovered during this work, where the problem with AWS DynamoDB and Azure’s Cosmos
DB explained in Section 3.3.1 is just one example of many. Same as Serverless Framework and
Terraform, SEAPORT’s assessment is on the level of serverless applications, whereas this thesis
operates on the finer-grained level of FaaS functions components.

SEAPORT CASE
Model

Retrieve
Deployment

Model
1

Automated step Manual step

Source
Deployment

Package

Code
Artifacts

Transform
Into SEAPORT
CASE Model

2

Evaluate
Model’s

Portability
3a

Analyze
Code Artifacts3b

Generate & Refine
Target Deployment

Boilerplate Code

Evaluated
SEAPORT CASE
Model

Annotated
Code Artifacts

Specify
Target Platform Method

Integration
Point

Figure 5.1: SEAPORT method [YBKL20]

In contrast to BPMN2FaaS following the concept of BPMN-based modeling of FaaS deployment
packages, BPMN2FO [YSBL22] follows the concept of BPMN-based modeling and deployment of
serverless function orchestrations. Also the motivations are similar: BPMN2FO faces the challenges
of heterogeneous function orchestration tools by creating a technology-agnostic modeling approach
for serverless function orchestrations. Shifting the finer-grained view from single FaaS functions to
orchestrations of multiple functions leads to Tasks modeling a whole serverless function instead of
just one operation of it.

In [HMW22] Hartauer et al. made an empirical investigation about the differences of FaaS functions
concerning their implementation, packaging and deployment based on a experiment. First three
hello world FaaS functions with HTTP triggers were implemented for the platforms AWS Lambda,
Azure Functions and Google Cloud Functions (GCF) and compared based on (i) the handler
implementation, (ii) logging capabilities and (iii) access to other services of the respective cloud
provider. Each one of the handlers defines their parameters differently in terms of order and
data. These differences are also considered in the templates demonstrated in Section 4.5.1, where
provider-specific templates are used to render the handler function accordingly and transform
provider-specific event schemes into provider-agnostic event schemes using CloudEvents format.
Both, AWS Lambda and GCF use the default logging functions of each programming language, for
example console.log() in JavaScript, whereas Azure Functions uses context.log() provided

64

5.2 Graphical Workflow Modeling and Model-driven Code Generation

by its second parameter. The concept introduced in this work does not distinguish between the
different logging techniques. Logging statements included in business code modules makes them
invalid, since they are required to be implemented completely in a provider-agnostic manner. The
biggest difference between FaaS functions of different platforms lies in their service calls. Each
platform provides their service calls via custom APIs and SDKs. In this thesis this problem is
faced by introducing custom provider-agnostic service calls for developers lacking provider-specific
expertise and mapping them to their provider-specific representations using templates.

Another project sharing the same motivations as this work, in terms of providing developers with
limited knowledge about FaaS an easier way to develop serverless applications across different
FaaS platforms, is FLY [CDN+20]. FLY is a programming environment for scientific computing
applications on FaaS platforms, consisting of its own Domain-specific Language (DSL), compiler
and deployment tool. Scientific computing involves solving computing-intensive problems, which
requires distributed computational power of paradigms like serverless computing. However, typical
scientific applications do not require general purpose services, e.g. storage. With the help of the
programming language FLY developers are able to implement FLY functions with provider-agnostic
syntax. On one hand, using a DSL tailor-made for scientific computing minimizes the additional
knowledge required by experts on this field to create applications suitable for FaaS platforms, but
on the other hand it introduces severe limitations by not supporting other general purpose cloud
services, thus only covering a very small subset of all possible FaaS functions, which can be
implemented. However, the concept presented in this thesis limits the amount of supported services
only if service alternatives of different cloud providers do not have enough matching properties to
be modeled provider-agnosticly.

5.2 Graphical Workflow Modeling and Model-driven Code Generation

According to [LWSH19] there is a very limited number of FaaS development tools other than CLIs
and SDKs offered by most cloud providers. Due to this reason, this section presents related works
in the field of model-driven code generation based on workflow models.

PHYSICS [KAC+22], being the most relatable one to this work, is a framework, which enables
developers an easier way to create workflow models and FaaS functions for target platforms
supporting OpenWhisk. Instead of using BPMN to model FaaS workflows, PHYSICS uses
Node-RED [Ope22], a low-code programming tool for event-driven applications developed by IBM.
PHYSICS modified Node-RED allowing their users to develop FaaS functions tailor-made for
OpenWhisk. Using Node-RED, PHYSICS is limited to only being able to generate FaaS functions
written in JavaScript, whereas BPMN2FaaS is extendable to support multiple programming
languages, but also additional FaaS platforms in the future. Another difference between PHYSICS
and BPMN2FaaS is that custom business functions can be implemented directly in Node-RED
using a rich text editor. Furthermore, PHYSICS offers predefined code patterns, which can be
used as building blocks when defining the workflow model. It is also possible to save functions as
macros, which allows reuse of frequently used functions. This way developers have to implement
less custom business code.

Pegasus [DVJ+15] is a workflow management system for scientific applications. It allows to create
abstract workflow models and map them to highly scalable and distributed computing infrastructures
like clusters, grids [FK03] or clouds. In contrast to using BPMN, Pegasus uses Directed Acyclic

65

5 Related Work

Graphs (DAGs) to model workflows. Both, third-party graphical workflow composition tools as
well as custom CLIs and APIs provided by Pegasus can be used to generate DAGs. By only focusing
on scientific computing, same as FLY introduced in the precious section, applications managed by
Pegasus do not support interactions with other general purpose cloud services. Therefore, Pegasus
is only able to deploy and execute IaaS offerings as Amazon Elastic Compute Cloud (EC2).

ProcessEngine.io [5Mi19] is a open-source workflow engine for BPMN-based business processes
provided by the team of 5Minds. It uses the same BPMN editor and properties panel. In contrast to
using default Task elements, ProcessEngine.io uses Script Tasks to bind business code. Service
tasks are used to execute either Representational State Transfer (REST) services via endpoints or
programming language-independent external task workers stored in a task storage.

66

6 Conclusion and Outlook

This chapter concludes this work, which presented a multi-step concept for standards-based modeling
and generation of FaaS deployment packages. During the Elaboration of this concept, the focus
mostly laid on AWS and Microsoft Azure. Nonetheless, the concept is extendable for additional
cloud providers offering FaaS platforms and applicable for all programming languages supported
by various cloud platforms. The main contributions of this work are (i) a partially provider-agnostic
workflow model, helping developers with limited knowledge in the field of serverless computing
across different cloud providers and (ii) the transformation of the workflow model into a provider-
specific FaaS deployment package. The workflow model consists of a graphical workflow diagram
based on the widely known modeling standard BPMN, which is enhanced by provider-agnostic
properties and business functions, and a provider-specific resource descriptor specifying service
endpoints. This concept was realized by implementing the prototype BPMN2FaaS, which provides
developers the ability to design workflow models in a BPMN editor and generate deployment
packages for AWS Lambda and Azure Functions supporting the programming language Python. In
the following, this chapter elaborates on limitations of the concept and its implementation faced
during this work. At the end future work is presented to discuss further improvements on this
work.

6.1 Limitations

As already discussed in Section 3.3.1, due to the heterogeneous service offerings in the landscape
of cloud computing, ambiguity and insufficient amount of common properties between service
alternatives of different cloud providers make it impossible to model all service types provider-
agnosticly. Supporting additional cloud platforms might aggravate the process of creating provider-
agnostic service types. Moreover, provider-specific event schemes might not deliver sufficient
attributes to create provider-agnostic schemes according to the specification of CloudEvents. This
problem can be reduced by introducing provider-specific properties, which always comes with the
caveat of requiring additional knowledge from developers.

6.2 Future Work

BPMN2FaaS just being a prototype already implies its unfinished state. Therefore, this section
presents additional features, which can be added in the future to further optimize BPMN2FaaS
and its concept by improving the user experience before and during the development of FaaS
functions.

67

6 Conclusion and Outlook

6.2.1 Documentation & Tutorials

Everything developers can think of working with, e.g. frameworks, libraries and even programming
languages have their own documentations and tutorials providing detailed information on their
use. Introducing provider-agnostic event schemes and service calls developers do not need to gain
provider-specific knowledge for each service type alternative anymore. Nonetheless, developers
still need to learn about provider-agnostic representations, although the goal is to use widely known
terminologies, which need to be easy to understand. Therefore, BPMN2FaaS requires detailed
information about event schemes, service calls, BPMN elements using to model FaaS functions.
Developers should reach such documentations through websites, e.g. GitHub repositories or some
kind of “docs/wiki” pages, but also interactively directly in the editor, e.g. via question mark icons.
Additionally, tutorials can help developers to implement correct business code modules and describe
patterns and anti-patterns for BPMN modeling as recommended in [RPH08].

6.2.2 New Project Templates

When creating a new serverless application using the Serverless Framework, developers can choose
from a variety of project templates as starting point for their development, categorized in target
platform and trigger type. This procedure could also refine the process of creating new workflows
with BPMN2FaaS. If developers choose to creating a new diagram, instead of opening an already
existing one, they could be asked what kind of FaaS function they to create in terms of trigger type.
According to the choice, the initial BPMN diagram could already come with the corresponding
predefined Start Event.

6.2.3 Predefined Tasks

Using Node-RED, PHYSICS is able to provide predefined code patterns, which can be embedded
into the workflow diagram. This mechanism improves low-code capabilities by allowing developers
to save time on implementing reoccurring business functions. Therefore, it is a good idea to add
this feature to BPMN2FaaS by offering additional functions when setting the function property of
default Task elements. Although logging is not a service call, but still handled provider-specifically
as stated in [HMW22], this problem can be solved by also offering a provider-agnostic logging
function for default Tasks and mapping it to its provider-specific representation during code
generation.

6.2.4 Rich Editor for Direct Implementations

A much more convenient way of implementing business code modules is using rich editors with
syntax highlighting embedded in the BPMN editor. This way business functions can also be
embedded in the same file as the XML representation of the BPMN diagram. ProcessEngine.io,
presented in Section 5.2, also uses this technique. This enables developers to adapt their code easier
and be more aware about which exact business function is executed by each Task.

68

6.2 Future Work

6.2.5 Additional Support for Services Types, Runtimes and Cloud Providers

Due to the limited scope of this thesis, the amount of supported service types, programming
languages and cloud providers by BPMN2FaaS is restricted. Adding service triggers and service
calls allows developers to create FaaS functions in a bigger spectrum. Portability can be further
increased by generating deployment packages suitable for more target cloud providers. Supporting
additional programming languages allows developers to be more flexible and use libraries, which
might not be supported by other runtimes.

6.2.6 Additional BPMN Queue Artifact

Intuitively developers would attempt to use Data Store elements to model Service Tasks interacting
with services like storage, relational or NoSQL databases. Unfortunately the official specification of
BPMN in [Whi04] does not list a element to model channels representing messaging services like
FIFO or PubSub queues. However, the specification allows extending BPMN with context-based
artifact. Therefore, it is a good idea to offer developers a visual representation of channels.

6.2.7 Validation

Validation of BPMN diagram and its properties is very crucial. So far, no validation techniques were
implemented in BPMN2FaaS, other than enabling package generation only if the target platform has
been set and all Service Tasks state their connection strings (only for Azure Functions). Generating
deployment packages only works under the assumption, that all components are specified correctly.
Therefore, developers need visual feedback, which checks the completeness and correctness of the
properties, before enabling the generation of deployment packages.

69

Bibliography

[5Mi19] 5Minds. 2019. url: https://www.process-engine.io/docs/getting-started/ (cit. on
p. 66).

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, M. Zaharia. “A View of Cloud Computing”. In:
Commun. ACM 53.4 (Apr. 2010), pp. 50–58. issn: 0001-0782. doi: 10.1145/1721654.
1721672. url: https://doi.org/10.1145/1721654.1721672 (cit. on p. 17).

[Ama22a] Amazon Web Services. Amazon Resource Names (ARNs). 2022. url: https://docs.
aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html (cit. on p. 43).

[Ama22b] Amazon Web Services. Deploy Python Lambda functions with .zip file archives. 2022.
url: https://docs.aws.amazon.com/lambda/latest/dg/python-package.html (cit. on
p. 45).

[Ama22c] Amazon Web Services. Updating a function with additional dependencies. 2022. url:
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-package.html#nodejs-

package-dependencies (cit. on p. 31).

[Ama22d] Amazon Web Services. Using Lambda with Amazon SQS. 2022. url: https://docs.
aws.amazon.com/lambda/latest/dg/with-sqs.html (cit. on p. 38).

[BS17] G. Balasubramanian, S. Shriver. Choosing the Right DynamoDB Partition Key. Feb.
2017. url: https://aws.amazon.com/de/blogs/database/choosing-the-right-
dynamodb-partition-key/ (cit. on p. 36).

[Cam21] Camunda. BPMN 2.0 symbols - a complete guide with examples. Oct. 2021. url:
https://camunda.com/bpmn/reference/ (cit. on p. 23).

[Cas18] K. Casey. SPI model. Oct. 2018. url: https://www.techtarget.com/searchcloudcomp
uting/definition/SPI-model (cit. on p. 18).

[CDN+20] G. Cordasco, M. D’Auria, A. Negro, V. Scarano, C. Spagnuolo. “FLY: A Domain-
Specific Language for Scientific Computing on FaaS”. In: Euro-Par 2019: Parallel
Processing Workshops. Ed. by U. Schwardmann, C. Boehme, D. B. Heras, V. Cardellini,
E. Jeannot, A. Salis, C. Schifanella, R. R. Manumachu, D. Schwamborn, L. Ricci,
O. Sangyoon, T. Gruber, L. Antonelli, S. L. Scott. Cham: Springer International
Publishing, 2020, pp. 531–544. isbn: 978-3-030-48340-1 (cit. on p. 65).

[Clo22a] Cloud Native Computing Foundation (CNCF). CloudEvents. 2022. url: https:

//cloudevents.io/ (cit. on p. 38).

[Clo22b] Cloud Native Computing Foundation (CNCF). CloudEvents specification. 2022. url:
https://github.com/cloudevents/spec (cit. on p. 39).

71

https://www.process-engine.io/docs/getting-started/
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-package.html#nodejs-package-dependencies
https://docs.aws.amazon.com/lambda/latest/dg/nodejs-package.html#nodejs-package-dependencies
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://aws.amazon.com/de/blogs/database/choosing-the-right-dynamodb-partition-key/
https://aws.amazon.com/de/blogs/database/choosing-the-right-dynamodb-partition-key/
https://camunda.com/bpmn/reference/
https://www.techtarget.com/searchcloudcomputing/definition/SPI-model
https://www.techtarget.com/searchcloudcomputing/definition/SPI-model
https://cloudevents.io/
https://cloudevents.io/
https://github.com/cloudevents/spec

Bibliography

[DVJ+15] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani,
W. Chen, R. Ferreira da Silva, M. Livny, K. Wenger. “Pegasus, a workflow management
system for science automation”. In: Future Generation Computer Systems 46 (2015),
pp. 17–35. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.2014.10.008.
url: https://www.sciencedirect.com/science/article/pii/S0167739X14002015
(cit. on p. 65).

[FK03] I. Foster, C. Kesselman. The Grid 2: Blueprint for a new computing infrastructure.
Elsevier, 2003 (cit. on p. 65).

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999. isbn: 9788131734667. url: https://books.google.de/books?id=pqBXBltqwBAC
(cit. on p. 29).

[HMW22] R. Hartauer, J. Manner, G. Wirtz. “Cloud Function Lifecycle Considerations for
Portability in Function as a Service”. In: Proceedings of the 12th International
Conference on Cloud Computing and Services Science. 2022, pp. 133–140 (cit. on
pp. 64, 68).

[JCBG21] A. Jindal, M. Chadha, S. Benedict, M. Gerndt. “Estimating the capacities of function-as-
a-service functions”. In: Proceedings of the 14th IEEE/ACM International Conference
on Utility and Cloud Computing Companion. 2021, pp. 1–8 (cit. on p. 20).

[KAC+22] G. Kousiouris, S. Ambroziak, D. Costantino, S. Tsarsitalidis, E. Boutas, A. Mamelli,
T. Stamati. Combining Node-RED and Openwhisk for Pattern-based Development
and Execution of Complex FaaS Workflows. 2022. doi: 10.48550/ARXIV.2202.09683.
url: https://arxiv.org/abs/2202.09683 (cit. on p. 65).

[LRC+18] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, S. Pallickara. “Serverless Computing:
An Investigation of Factors Influencing Microservice Performance”. In: 2018 IEEE
International Conference on Cloud Engineering (IC2E). 2018, pp. 159–169. doi:
10.1109/IC2E.2018.00039 (cit. on p. 21).

[LWSH19] P. Leitner, E. Wittern, J. Spillner, W. Hummer. “A mixed-method empirical study
of Function-as-a-Service software development in industrial practice”. In: Journal
of Systems and Software 149 (2019), pp. 340–359. issn: 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2018.12.013. url: https://www.sciencedirect.com/
science/article/pii/S0164121218302735 (cit. on p. 65).

[MG11] P. Mell, T. Grance. “The NIST definition of cloud computing”. In: Recommendations
of the National Institute of Standards and Technology (Sept. 2011). doi: 10.6028/
nist.sp.800-145 (cit. on pp. 15, 17, 18).

[Mic22a] Microsoft Azure. Azure Functions Python developer guide. 2022. url: https :

//docs.microsoft.com/en-us/azure/azure-functions/functions-reference-

python#folder-structure (cit. on p. 31).
[Mic22b] Microsoft Azure. Azure Functions Python developer guide. 2022. url: https :

//docs.microsoft.com/azure/azure-functions/functions-reference-python (cit. on
p. 45).

[Mic22c] Microsoft Azure. Configure a connection string for an Azure storage account. 2022.
url: https://docs.microsoft.com/en- us/azure/storage/common/storage-

configure-connection-string#configure-a-connection-string-for-an-azure-

storage-account (cit. on p. 42).

72

https://doi.org/https://doi.org/10.1016/j.future.2014.10.008
https://www.sciencedirect.com/science/article/pii/S0167739X14002015
https://books.google.de/books?id=pqBXBltqwBAC
https://doi.org/10.48550/ARXIV.2202.09683
https://arxiv.org/abs/2202.09683
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/https://doi.org/10.1016/j.jss.2018.12.013
https://doi.org/https://doi.org/10.1016/j.jss.2018.12.013
https://www.sciencedirect.com/science/article/pii/S0164121218302735
https://www.sciencedirect.com/science/article/pii/S0164121218302735
https://doi.org/10.6028/nist.sp.800-145
https://doi.org/10.6028/nist.sp.800-145
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python#folder-structure
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python#folder-structure
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python#folder-structure
https://docs.microsoft.com/azure/azure-functions/functions-reference-python
https://docs.microsoft.com/azure/azure-functions/functions-reference-python
https://docs.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string#configure-a-connection-string-for-an-azure-storage-account
https://docs.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string#configure-a-connection-string-for-an-azure-storage-account
https://docs.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string#configure-a-connection-string-for-an-azure-storage-account

[Mic22d] Microsoft Azure. QueueMessage Class. 2022. url: https://docs.microsoft.com/en-
us/python/api/azure-functions/azure.functions.queuemessage?view=azure-

python (cit. on p. 39).

[Ope22] OpenJS Foundation. 2022. url: https://nodered.org/docs/ (cit. on p. 65).

[OST14] J. Opara-Martins, R. Sahandi, F. Tian. “Critical review of vendor lock-in and its
impact on adoption of cloud computing”. In: International Conference on Information
Society (i-Society 2014). IEEE. 2014, pp. 92–97 (cit. on p. 15).

[RPH08] T. Rozman, G. Polancic, R. V. Horvat. “Analysis of most common process modeling
mistakes in BPMN process models”. In: Eur SPI’2007 (2008) (cit. on p. 68).

[Ser22] Serverless. 2022. url: https://www.serverless.com/framework/docs (cit. on p. 63).

[Sou10] D. Soumow. Windows Azure Platform. May 2010. url: https://www.slideshare.
net/soumow/windows-azure-platform-4321694 (cit. on p. 19).

[TEPN20] D. Taibi, N. El Ioini, C. Pahl, J. R. S. Niederkofler. “Serverless cloud computing
(function-as-a-service) patterns: A multivocal literature review”. In: Proceedings
of the 10th International Conference on Cloud Computing and Services Science
(CLOSER’20). 2020 (cit. on p. 19).

[Ter22] Terraform. 2022. url: https://www.terraform.io/language (cit. on p. 63).

[Whi04] S. A. White. “Introduction to BPMN”. In: Ibm Cooperation 2.0 (2004) (cit. on pp. 15,
21, 27, 69).

[YBKL20] V. Yussupov, U. Breitenbücher, A. Kaplan, F. Leymann. “SEAPORT: Assessing the
Portability of Serverless Applications”. In: Proceedings of the 10th International
Conference on Cloud Computing and Services Science (CLOSER 2020). SciTePress,
May 2020, pp. 456–467. isbn: 978-989-758-424-4. doi: 10.5220/0009574104560467
(cit. on pp. 21, 63, 64).

[YSBL22] V. Yussupov, J. Soldani, U. Breitenbücher, F. Leymann. “Standards-based modeling
and deployment of serverless function orchestrations using BPMN and TOSCA”.
In: Software: Practice and Experience 52.6 (2022), pp. 1454–1495. doi: https:
//doi.org/10.1002/spe.3073. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/spe.3073. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3073
(cit. on p. 64).

All links were last followed on May 30, 2022.

https://docs.microsoft.com/en-us/python/api/azure-functions/azure.functions.queuemessage?view=azure-python
https://docs.microsoft.com/en-us/python/api/azure-functions/azure.functions.queuemessage?view=azure-python
https://docs.microsoft.com/en-us/python/api/azure-functions/azure.functions.queuemessage?view=azure-python
https://nodered.org/docs/
https://www.serverless.com/framework/docs
https://www.slideshare.net/soumow/windows-azure-platform-4321694
https://www.slideshare.net/soumow/windows-azure-platform-4321694
https://www.terraform.io/language
https://doi.org/10.5220/0009574104560467
https://doi.org/https://doi.org/10.1002/spe.3073
https://doi.org/https://doi.org/10.1002/spe.3073
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3073
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3073
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3073

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Cloud Computing
	2.2 Function-as-a-Service (FaaS)
	2.3 BPMN

	3 Concept
	3.1 Step 1: Develop Functional Business Code Modules
	3.2 Step 2: Create Generic Workflow Model
	3.3 Step 3: Extend Model with Properties & Integrate Business Functions
	3.4 Step 4: Add Provider-specific Service Endpoints
	3.5 Step 5: Generate Provider-specific FaaS Function
	3.6 Step 6: Build Deployment Packages

	4 Implementation
	4.1 Architecture
	4.2 Technologies
	4.3 Modeler
	4.4 Generator (Core)
	4.5 Plugins

	5 Related Work
	5.1 Serverless Portability
	5.2 Graphical Workflow Modeling and Model-driven Code Generation

	6 Conclusion and Outlook
	6.1 Limitations
	6.2 Future Work

	Bibliography

