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Abstract: Plasma technology reaches rapidly increasing efficiency in catalytic applications. One such
application is the splitting reaction of CO2 to oxygen and carbon monoxide. This reaction could be a
cornerstone of power-to-X processes that utilize electricity to produce value-added compounds such
as chemicals and fuels. However, it poses problems in practice due to its highly endothermal nature
and challenging selectivity. In this communication a glow discharge plasma reactor is presented
that achieves high energy efficiency in the CO2 splitting reaction. To achieve this, a magnetic field is
used to increase the discharge volume. Combined with laminar gas flow, this leads to even energy
distribution in the working gas. Thus, the reactor achieves very high energy efficiency of up to
45% while also reaching high CO2 conversion efficiency. These results are briefly explained and
then compared to other plasma technologies. Lastly, cutting edge energy efficiencies of competing
technologies such as CO2 electrolysis are discussed in comparison.

Keywords: plasma catalysis; CO2 splitting; glow discharge; energy efficiency; CO2 electrolysis; CO2
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1. Introduction

Many fields offer solutions for CO2 utilization. Among them are thermochemical
processes, electrolysis [1] and plasma catalysis; the latter has the smallest technology
readiness level (TRL) but also offers a large potential for future improvements [2–4].
Attention is focused mostly on four types of plasma reactors: dielectric barrier discharges
(DBDs) [5], gliding arc (GA) [6,7], atmospheric pressure glow discharges (APGD) [8,9]
and microwave (MW) plasmas [10,11]. Increasing their energy efficiency and conversion
at ambient pressure is the main point of concern. We recently presented reactors using
a direct current APGD, which delivered promising results [12]. To further improve the
previous design, it was scaled and now uses a laminar gas flow instead of a turbulent one.
To be used industrially, a plasma reactor should operate at ambient pressure. However,
this makes it hard to maintain a stable discharge. Two major difficulties are the negative
differential resistance [13] and glow-to-arc transition [14]. A discharge thus tends to form a
narrow, low-resistance arc that can damage the plasma source and is not useful in catalysis.
To suppress these effects, current control strategies or vortex gas flow [14] are often used in
recent studies to disperse the plasma [8]. The reactor setup presented here uses a magnetic
field instead to force the plasma into a large disc-like volume. This approach is viable for
various discharge forms, such as gliding arc plasma reactors [15,16]. A laminar gas flow
can be then used to introduce energy into the working gas as homogeneously as possible.
This communication aims to give an update on the ongoing design process for an improved
plasma reactor for the CO2 splitting reaction.
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2. Materials and Methods

The reactor vessel was a glass tube with an inner diameter of 38 mm. Direct current
formed a discharge between two copper electrodes. One was an axial rod, the other a ring.
CO2 was introduced into the reactor through an injection plate with 22 axial nozzles in
concentric nozzles, arranged in concentric circles. The injector was placed 120 mm above
the plane of the electrodes. An axial magnetic field was provided by permanent magnets
below the electrode assembly, and the field strength was 30 mT on the central axis. A
packed bed made from zirconia balls was placed 2 mm below the discharge plane inside
the ring electrode. It serves to suppress thermal currents in the gas and could also help with
quenching the hot exhaust gas. Zirconia was chosen because it is chemically inert, non-
conductive and can be used to carry catalysts in future experiments. The reactor assembly
is shown in Figure 1. The input gas flow Vin consisted of pure CO2. It was measured by an
analogue rotameter and adjusted using a needle valve. The assembly was calibrated using
a displacement cylinder. The exhaust gas was characterized using non-dispersive infrared
sensors (SmartGas Flow Evo; Heilbronn; Germany); measurements at a flow of Vin =1.4
SLM were confirmed by a gas chromatographer (Trace 1310 Thermo Scientific; Waltham,
MA, USA). The sensors were placed 1 m downstream from the reactor in the exhaust gas
pipe. Power was provided to the electrodes by a custom current-limiting driver circuit. It
delivers direct current for ignition (up to 25 kV) and is sustaining of the discharge (<2 kV).
Mean burn voltage of the discharge and mean current were measured. Mean values are
deemed sufficient here, because a large choke inductor of 1.5 H was placed on the output
of the driver circuit, leading to low current ripple. Voltage ripple was typically around 15%.
The discharge power Pd was calculated from the power supplied to the driver circuit by a
lab power supply and the known driver efficiency. To confirm these values, they can also
be calculated as the product of burn voltage and current. CO2 conversion X is calculated
using Equation (1), while energy efficiency η is calculated by Equation (2). They use the
concentrations of CO and CO2 in the exhaust gas. ∆Hr = 12.6 J SCC−1 (standard cubic
centimeter) is the reaction enthalpy of the CO2 splitting reaction. Measurements of the gas
concentrations were taken after a steady state in exhaust gas concentrations occurred.

X =
cCO,out

cCO,out + cCO2,out
(1)

η =
X ∆Hr

.
Vin

Pel
(2)
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3. Results

The achieved CO2 conversion X and energy efficiency η for different discharge power
Pd and gas flow rates Vin is shown in Figure 2. The highest conversion X was achieved at
a discharge power of Pd = 165 W. The best energy efficiency η that was achieved is 45%
at the highest gas flow rate of 1.25 SLM. The effectiveness of the magnetic field could be
determined visibly: the discharge rotates quickly, so it gives the appearance of a disk to
the naked eye. This leads to very homogeneous energy input into the gas. Quantizing the
influence of the magnetic field will be the subject of future experiments.
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Figure 2. Performance of the reactor at different gas flow rates Vin and discharge power Pd. In (a),
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4. Discussion
4.1. Performance of the Reactor

Conversion depends strongly on discharge power Pd. One reason is that higher power
equals higher specific energy input. Additionally, the properties of the plasma, such as
temperature, electron density and reduced electric field, can also be expected to change
with the discharge power. In this reactor the rotation of the discharge filament accelerates
at higher discharge powers. This can also be expected to have a positive influence on
the conversion, since the gas will be swept more efficiently by the plasma. However, the
conversion does not increase with power indefinitely. At the highest discharge power of
Pd = 192W, conversion reduces. One reason could be the heating of the packed bed. This
heating reduces the quenching rate, which increases the rate of the recombination reaction,
thus again forming CO2 [11]. Energy efficiency seems to mainly depend on gas flow rate
but also decreases at high discharge powers.

4.2. Comparison to Other Technologies

The results achieved compare well to other plasma-based systems, as shown in
Figure 3a. They were selected based on performance from a broader range of systems previ-
ously reviewed [17], considering more recent work. Gliding arcs provide high efficiency at
ambient pressure; a vortex is often used to increase the discharge volume [6,7]. Gliding arcs
also obtain good results without vortex flow [18]. Glow discharges can also benefit from
vortex gas flow [8]. Increasing their stability is possible by operation in non-self-sustaining
mode [9]. DBDs that moderate efficiency and conversion could be boosted by using a
burst mode, where high power density is applied intermittently [5]. Microwave plasmas
reach the most promising results to date [10]. However, these were obtained at very low
pressures, and at ambient pressures even after utilizing precise quenching, efficiency is
lower, yet still impressive [11]. The highest efficiencies reported in literature were achieved
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at a very low pressure by radio frequency excitation at a pressure of just 40 Pa [19]. A
common theme in the results seems to be that a homogeneous energy input into the gas
results in good performance. Vortex gas flow as used in [6–8] can distribute energy well but
is ultimately a chaotic process that will not lead to even energy distribution. In contrast, the
combination of laminar flow and a disk-like discharge can distribute energy very evenly.
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In (b) the results are compared to high temperature electrolysis (HT-el.), low temperature electrolysis (LT-el.) and reverse
water gas shift (RWGS).

In the following, a quantitative assessment of different CO2 conversion technologies
regarding energy efficiency η is given. The comparison has no claim for completeness and
focuses only on the actual conversion step of CO2 to CO; influences on a systemic level or
scaling effects are not included here. This approach allows a comparison of vastly different
technologies but is not intended as a ranking given that each technology has its own
ideal configuration in which the full potential can be realized. Figure 3b shows calculated
energy efficiencies drawn from recent publications (see Appendix A for the calculation).
The technologies included are low temperature, gas-phase CO2 electrolysis [20], high
temperature CO2 electrolysis in a solid oxide electrolysis cell [21], a thermochemical
approach (Reverse Water Gas Shift, RWGS) [22] and the plasma approach reported in
this work. The energy efficiencies given in Figure 3b show that each technology has the
potential to enable a reasonable application. This is reasoned on the basis that systemic
effects of the individual application have the potential to outweigh the differences inherent
to the energy efficiency of the CO2 conversion.

5. Conclusions

The presented glow discharge plasma reactor achieves a competitive CO2 conversion
of 27% and energy efficiency of 42%. This is a respectable performance since the process was
running at ambient pressure. We attribute this good performance to the efficient sweeping
of the gas by the discharge due to the magnetic field. In general, the energy efficiency
of plasma-based systems is gaining ground compared to competing technologies such as
electrolysis and thermochemical approaches. Focus thus shifts to scalability, lifespan and,
most importantly, integration. After all, none of the presented technologies manage to
produce pure product gases; their separation is a major task for which few technologies
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are available. The integration of electrochemical oxygen pumps or separation membranes
into plasma reactor systems will be a future focus. Our results illustrate that plasma
technology can play an important role in CO2 utilization, which is a cornerstone of a
fossil-free economy.
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Appendix A

The energy efficiency of electrolysis is calculated considering electrical Eel and thermal
energy Eth input following Equation (A1). Thermal energy is calculated by using the heat
capacity cp and temperature difference from ambient ∆T. Electrical energy is calculated
using the Faradaic efficiency ηF, cell voltage Ucell at a current density of 200 mA cm−2,
electron number z and the Faraday constant F.

η =
Euse

Eth + Eel
=

∆H0
r

cp∆T + UcellηFE zF
(A1)

For the thermochemical approach, energy input is the sum of thermal energy used
for gas heating and utilized hydrogen. Hydrogen was weighed as an energy expense of
EH2 = 350 kJ mol−1.
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