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Abstract: Lie detection is considered a concern for everyone in their day-to-day life, given its impact
on human interactions. Thus, people normally pay attention to both what their interlocutors are
saying and to their visual appearance, including the face, to find any signs that indicate whether
or not the person is telling the truth. While automatic lie detection may help us to understand
these lying characteristics, current systems are still fairly limited, partly due to lack of adequate
datasets to evaluate their performance in realistic scenarios. In this work, we collect an annotated
dataset of facial images, comprising both 2D and 3D information of several participants during a
card game that encourages players to lie. Using our collected dataset, we evaluate several types of
machine learning-based lie detectors in terms of their generalization, in person-specific and cross-
application experiments. We first extract both handcrafted and deep learning-based features as
relevant visual inputs, then pass them into multiple types of classifier to predict respective lie/non-lie
labels. Subsequently, we use several metrics to judge the models’ accuracy based on the models
predictions and ground truth. In our experiment, we show that models based on deep learning
achieve the highest accuracy, reaching up to 57% for the generalization task and 63% when applied
to detect the lie to a single participant. We further highlight the limitation of the deep learning-based
lie detector when dealing with cross-application lie detection tasks. Finally, this analysis along
the proposed datasets would potentially be useful not only from the perspective of computational
systems perspective (e.g., improving current automatic lie prediction accuracy), but also for other
relevant application fields, such as health practitioners in general medical counselings, education in
academic settings or finance in the banking sector, where close inspections and understandings of
the actual intentions of individuals can be very important.

Keywords: lie detection; machine learning; affective computing

1. Introduction

It is considered hard for humans to detect when someone is lying. Ekman [1] highlights
five reasons to explain why it is so difficult for us: (1) during most of human history, there
were smaller societies in which liars would have had more chances of being caught with
worse consequences than nowadays; (2) children are not taught how to detect lies since
even their parents want to hide some things from them; (3) people prefer to trust in what
they are told; (4) people prefer not to know the real truth; and (5) people are taught to
be polite and not steal information that is not given. However, it has been argued that it is
possible for someone to learn how to detect lies in another person given sufficient feedback
(e.g., that 50% of the time, that person is lying) and focusing on micro-expressions [1,2].

Building from the above, the detection of deceptive behavior using facial analysis
has been proved feasible using macro- and, especially, micro-expressions [3–5]. However,
micro-expressions are difficult to capture at standard frame rates and, given that humans
can learn how to spot them to perform lie detection, the same training might be used by
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liars to learn how to hide them. Thus, there has been interest in detecting facial patterns of
deceptive behavior that might not be visible to the naked eye, such as the heat signature of
the periorbital [6] or perinasal region [7] in thermal imagery, which cannot be perceived by
human vision.

One of the crucial aspects to appropriately address lie-detection research is the avail-
ability of adequate datasets, which is one fundamental element of open innovation in
accelerating current research, as opposed to closed or private datasets, which characterizes
the opposite counterpart (closed innovation) [8]. Regardless of current progress, however,
the acquisition of training and, especially, evaluation material for lie detection is still rather
a challenging task, particularly regarding the necessity to gather ground truth, namely, to
know whether a person is lying or not. The main difficulty arises because such knowledge
is not useful if the scenario is naively simulated (e.g., it is not sufficient to instruct a person
to simply tell a lie). Research on high-stakes lies suggests that deceptive behavior can
depend heavily on the potential consequences for the liar [9]. Thus, researchers have
attempted to create artificial setups that can convincingly reproduce situations where two
factors converge: (1) there is a potential for truthful deceptive behavior; (2) we know when
a lie takes place and when the recorded subjects are telling the truth. Most attempts so far
have focused on interview scenarios in which the participants are instructed to lie [6,7,10],
although it is hard to simulate a realistic setting for genuine deceptive behavior. Alter-
natively, some researchers have worked in collaboration with police departments, with
the benefit of a scenario that, in many cases, is 100% realistic, as it is based on interviews
of criminal suspects. However, the problem in this setting is the ground truth: it is not
possible to rely on legal decision making [11], and even the validity of confessions has been
questioned [12].

In contrast, in this paper, we explore an alternative scenario where participants are
recorded while playing a competitive game in which convincingly lying to the opponent(s)
produces an advantage. On one hand, participants are intrinsically motivated to lie
convincingly. Importantly, given the knowledge of the game rules, we can accurately
determine whether a given behavior is honest or deceptive. The use of card games can also
benefit from the occurrence of unexpected events that produce genuine surprise situations
for the potential liar, which has been highlighted as beneficial for lie detection scenarios [9].

Thus, the goals of this paper are twofold. Firstly, we present an annotated dataset, the
Game Lie Dataset (GLD), based on frontal facial recordings of 19 participants who try their
best to fool their opponents in the liar card game. Secondly, we depart from the dominating
trend of lie detection based on micro-expressions and investigate whether a lie can be
detected by analyzing solely the facial patterns contained on single images as input to
cutting-edge machine learning [13–15] and deep learning [16–19] facial analysis algorithms.

Using our collected dataset and several automatic lie detection models, we perform
lie detection experiments under three different settings: (1) generalization test to evaluate
the performance on unseen subjects; (2) person-specific test to evaluate the possibility to
learn how a given participant would lie; and (3) cross-application test to evaluate how the
models generalize to a different acquisition setup. Thus, the overall contributions of this
work can be summarized as follows:

1. We present the GLD dataset, a novel dataset which contains colored facial data as
well as ground truth (lie/true) annotations, captured during a competitive card game
in which participants are rewarded for their ability to lie convincingly.

2. We also present quantitative comparisons results of several machine learning (ML)
and deep learning (DL) models tested on the newly captured dataset.

3. We provide several experiments that outline the current limitations of facial-based lie
detection when dealing with several different lie tasks.

The combination of our novel lie-detection dataset with the respective evaluations of
current ML and DL methods are expected to benefit research in automatic lie detection sys-
tems, and can also be relevant for several targeted real-life tasks, where the understanding
of generalized (in daily settings) lie intentions is important, such as the following:
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1. Health practitioners/psychiatrists for general counseling: understanding whether
people lie or not is important to improve their conditions, e.g., drug addictions.

2. Educator: to know whether students might be lying or not during a test or experiment.
3. Credit in the finance sector: to know if the prospective client is lying about their

background and the past.

The rest of this paper is organized as follows: in Section 2, we provide an overview of
the related work, both regarding previous lie-detection methods and current lie detection
task datasets. In Section 3, we explain the characteristics of our collected dataset alongside
the recording pipeline. In Section 4, we describe several ML- and DL-based techniques
used to evaluate our dataset along with the associated evaluation metrics. In Section 5, we
present our experimental results divided into generalized, person-specific and cross-task
lie detection settings. Finally, in Section 6, we provide our conclusions.

2. Related Work

Different approaches and techniques have been applied for the lie detection task,
with physiological cues being widely and commonly used. The most popular one is the
polygraph, commonly known as a lie detection machine. Other approaches have used brain
activity in order to detect deception by utilizing different neuro-imaging methods, such as
fMRI [10,20–22]. For example, Markowitsch [22] compared brain scans from volunteers in a
lie-detection experiment in which some participants were asked to lie and others had to tell
the truth. It was found that when people were telling the truth, the brain region associated
with sureness was activated, while in the case of lies, the area associated with mental
imagination was activated. Similarly, the brain’s hemoglobin signals (fNIRS) or electrical
activity (EEG) can be measured to define physiological features for lie detection [23–26].

The main drawback of the above techniques, however, is their invasive and expensive
nature, due to the need for special instruments to allow data collections. This has led to
the emergence of less obtrusive approaches involving verbal and non-verbal cues. Several
studies focused on utilizing thermal imaging to perform the deception detection task since
skin temperature has been shown to significantly rise when subjects are lying [7,27]. Fur-
thermore, speech was also explored [28,29], e.g., by extracting features based on transcripts,
part of speech (PoS) tags, or acoustic analysis (Mel-frequency cepstral coefficients).

The use of several modalities for lie detection was also investigated to see its impact
in improving detection algorithms. In [30–32], both verbal and non-verbal features were
utilized. The verbal features were extracted from linguistic features in transcriptions,
while non-verbal ones consisted of binary features containing information about facial and
hands gestures. In addition, Soldner et al. [32] introduced dialogue features, consisting of
interaction cues. Other multi-modal approaches combined the previously mention verbal
and non-verbal features together with micro-expressions [3–5], thermal imaging [33], or
spatio-temporal features extracted from 3D CNNs [34,35].

In the last decade, there has been a growing interest in the use of facial images
to perform lie detection, often based on micro-expressions [3–5,13,15] or facial action
units [14], achieving the current state-of-the-art accuracy. Table 1 below shows an overview
of the major related works outlined in this section.
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Table 1. Overviews of major related works for lie detection tasks.

No Task/Objective Modality(ies)

1. Lie detection using comparative imaging [22] Neuroimaging
2. Brain region-based frequency analysis for lie detection [23–25] Brain’s hemoglobin signals
3. Fuzzy-based reasoning framework for lie detection [26] Brains electrical activity (EEG)
4. Deceptive classifications for specific topic descriptions [33] Thermal imaging, sounds and physiology data
5. Lie detection at airport settings [27] Skin conductivity
6. Multilingual deception detection [28] Speech (acoustics)
7. Real-life and trial data deception detection [30,31] Transcriptions and gestures
8. Multi-modal, ML and human-based lie detection on video [32] Interaction cues
9. Automatic deception detection frameworks [3,4] (Non-)Verbal and micro-expression
10. Multi-modal deep learning-based lie detector [34,35] Spatio-temporal features

Existing Lie Detection Datasets

The availability of public datasets to address a certain task (i.e., in this case, lie
detection) is important to stimulate and accelerate the progress of solving the respective
problem. In a way, this approach is an instance of open innovation, while it has been shown
to benefit wider correspondence (including universities and companies) and as such,
improve its direct impact [8] in comparison to privately developed and kept datasets (i.e.,
to be characterized as closed innovation). Despite there existing several works performing
lie detection tasks, just a few datasets are published. In the literature, there are only two
existing multi-modal, audio-visual datasets that are specifically constructed for the purpose
of lie detection tasks: a multi-modal dataset based on the Box-of-Lies® TV game [32] and a
multi-modal dataset using real-life Trial-Data [31].

Both the Box-of-Lies and Trial-Data include 40 labels for each gesture that a participant
shows and the whole transcripts for all videos. The difference between them lies in the
interactions: in the Trial data, there is only a single speaker per video, and lies are judged
from the information of this single speaker. In contrast, in the Box-of-Lies® data, the lies are
identified from the interaction between two people while playing a game, with emphasis
on their dialogue context. Thus, the Box-of-Lies® dataset also contains annotations on
participants feedback, in addition to veracity tags for each statement made. Further details
of these two datasets can be seen in Table 2.

Table 2. Existing lie detection dataset.

Dataset
Subjects Videos

Year
Total M F Age Range Total Utterances Deceptive Truthful Duration

Box-of-Lies [32] 26 6 20 No Information 25 1049 862 187 144 min. 2019
Trial-Data [31] 56 35 21 16–60 121 121 61 60 None 2016

Even though previous datasets provided a way to analyze the respective lying char-
acteristics, there still exist some limitations: the first one is that the interactions between
participants are fairly limited, which are usually constrained to one-to-one lying settings.
Furthermore, the facial areas are usually taken in extremely different settings and poses,
which may hinder the model learning [36,37]. In this work, we present a novel dataset
that involves more interactions between participants during lying, along with multiple
different tasks altogether. We also record our data in a controlled environment to reduce
the variability of irrelevant image characteristics, such as lighting and extreme poses, thus
allowing for more precise machine learning-based modeling, capitalizing on extracted
features that are inherently more relevant to achieve high level of predictions (i.e., in this
case, lie detection) [38,39].
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3. Game Lie Dataset

In order to establish an appropriate scenario to perform the lie actions, we opt to use a
card game called “The Liar” due to the unique characteristics of this game that incentivize
the participants to lie well in order to win the game. Furthermore, its simplicity and
easy-to-learn aspect allow for more efficient data collection. The winner of this game is the
first participant to run out of cards.

Specifically, the game consists of dealing all cards among three or more players. In
theory, players must throw as many cards as they want as long as all of them have the
same number. However, cards are turned face down, and thus, players can lie on the
number in the cards. The game round starts when a player throws some cards and then
the player on the right decides whether to believe the previous player or not. If the next
player believes the previous player, he/she has to throw some cards, stating that they have
the same number as the ones already thrown. If, on the contrary, the next player does not
believe the previous player, the thrown cards are checked. Finally, if the previous player
was telling the truth, the current player has to take the cards; otherwise, the previous player
takes the cards back. Thus, all players are encouraged to perform the lies well in order to
quickly reduce as many cards as possible.

These interactions between several players, along with the incentive to lie, enable us
to observe the certain gestures that people exhibit in performing the lies. Furthermore, the
interactions between players also allow us to include the dynamic as time progress. The
general workflow used to record this game is shown in Figure 1 which we explain in the
following sections.

Figure 1. Data processing workflow diagram.

3.1. Materials

We used the following materials to perform the data collection: a deck of cards for the
game scenario, an RGB color camera for face recording, a video camera for card recording
and a pair of lamps to improve the light conditions. Specifically, we operated two Intel
RealSense Cameras D415 For faces recording with a frame rate of 30 fps for the RGB images.
For game cards recording, two video cameras Mi Action Camera 4K by Xiaomi were used.
The overall table setup for the data recording can be seen in Figure 2.

3.2. Participants

We recorded a total of 19 participants: 8 male and 11 female. The participants were
mixed graduates and undergraduates from different universities and from diverse study
areas (background). The age range of the participants was between 21 years and 26 years
old, and they expressed themselves in Spanish and Catalan throughout the data collections
and interactions. Lastly, we gained explicit consent from all participants to use and analyze
the recorded facial images for research purposes.
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Figure 2. The example of the place setup for data acquisition.

3.3. Data Collection

We performed the data collection in a total of eight sessions, including the number
of participants assigned to the different groups. These groups varied between 3 and
6 participants and several rounds of game playing were performed in every session. Fur-
thermore, two participants were recorded at a time in each round. The scenario was set
such that each camera was able to record a single face from the front and the other video
cameras were located next to the recorded players’ hands in order to record their cards.
This allowed us to listen to the players’ statements and determine whether they were lying,
according to the cards in the recording, which was crucial during the annotation process.

3.4. Data Annotation and Pre-Processing

We began our data annotation and pre-processing task by synchronizing our recorded
videos of face and corresponding cards. This was done in order to determine if the
corresponding player was lying. These synchronized videos were subsequently annotated
with ELAN software to create comment stamps in a selected space of time. Together with
these annotations, we were able to find the statements corresponding to the proper frames.
Finally, we extracted the facial area using [40], using relevant RGB frames, and cropped
them to be saved as an image in the final collected dataset, as well as a point-cloud file.

3.5. Dataset Contents

We created a structured folder (the exact structure can be seen in Figure A1 in the
Appendix A) to ease future data loading and understanding during dissemination, with
all recorded data stored to a root folder named Game Lies Dataset. Both images and 3D
objects were named, following a convention, as follows: 1_2.PNG or 3_4.PLY. The first
number (1 and 3 in the example) corresponds to the number of the statement, and the
second number (2 and 4) is the corresponding statement frame. In this instance, the PNG
example corresponds to the second frame of the first statement made by the participant in
the recording.

In the end, our collected Game Lies Dataset or GLD contains data from 26 recordings
with 18 different faces and a total number of frames of 15,566 of which 6476 correspond to
lies (41.6%) and 9090 to true (58.4%). These frames correspond to a total of 417 statements,
170 of which are lies (40.8%) and 247 are true (59.2%). Hence on average, each lie statement
has 38 frames, and true statements consist of about 37 frames.

The examples of the recorded participants can be seen in Figure 3. Notice that in
several examples, the overall facial expressions are relatively similar, so it could be a
challenging task for any visual-based lie detection algorithm. Thus, using these data, we
can expect to perform an appropriate test for the effectiveness of the current machine
learning-based lie detection approaches, which we detail in the next sections.
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Figure 3. The example of pairs of recording facial area of several participants when telling the truth
(top) or lies (bottom).

4. Methodology

We use our recorded GLD datasets to evaluate both classical machine learning ap-
proaches and deep learning techniques for this specific lie detection task. In this context,
we use the facial area as main modality, with the lie labels obtained following our protocol
explained on our dataset collections.

4.1. Classical Machine Learning

We use three different handcrafted features that are extracted from RGB facial images:
local binary patterns (LBP), histogram of oriented gradients (HOG) and scale-invariant
feature transform (SIFT).

1. We follow the approach of [41] to use LBP to model the facial area. Specifically, each
image is divided into blocks, where LBP is independently computed and results in
a LBP histogram. The histograms from all images’ blocks are then concatenated to
form the final descriptor. We also vary the number of (P) used to compute the final
descriptor along with the number of blocks to see their impacts. We use the parameter
values of P of 8, 12 and 16, with the number of blocks of 1 × 1, 2 × 2, 4 × 4 and
8 × 8. For technical implementation, we use Scikit-image library [42] to extract LBP
descriptors given the image input.

2. Given the overall facial area, we calculate the HOG histogram, using fixed number
of 8 bins, with different number of cells and blocks to test how their impact affects
classification performance. We use 1 × 1 and 2 × 2 HOG cell sizes, and partition
the images into 8 × 8 and 16 × 16 pixel sizes. We also use Scikit-image ([42]) for
technical implementation.

3. We calculated the SIFT features by performing the centroids k-clustering that involves
the computation of K-means for all SIFT keypoints. Specifically, the K-means algo-
rithm is performed by splitting a set of N samples of X onto K separated clusters of C
whereby each of instance is explained by the mean µj of the samples in the cluster.

This is done by minimizing the inertia criterion of ∑n
i=0 minµj∈C

(∥∥xi − µj
∥∥2

)
, with n

as the total input samples. In this case, we create histograms with different K bins
values (100, 300, 500 and 800) for each key point in an image [43] to further evaluate
how the histogram length and BoW size impact the classification. We use [44,45] for
the technical implementation.

Using these handcrafted features, we then employ three classifiers to predict the lie
label (all implementations are based on Scikit-learn library [45]): support vector machine
(SVM), AdaBoost, and linear discriminant analysis (LDA). Specifically, given the input
features xi ∈ R, i = 1, . . . , n and a vector y containing the binary label of −1 (non lie)
and 1 (lie) thus y ∈ {1,−1}n, the SVM is optimized by finding the normal vector w ∈ R,
the kernel φ (which can be linear or non-linear), and the bias b ∈ R that results in the
prediction of sign

(
wTφ(x) + b

)
to be correct throughout the majority of samples. This

process is formulated in Equation (1) below:
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min
w,b,ζ

1
2

wTw + C
n

∑
i=1

ζi

subject to yi

(
wTφ(xi) + b

)
≥ 1− ζi

ζi ≥ 0, i = 1, . . . , n

(1)

where ζi is the distance from the evaluated features to the decision hyperplane and C is a
penalty term that controls the amount of samples allowed to cross the learned boundary (to
the region that corresponds to the opposite class). These operations maximize the margin
by minimizing ‖w‖2 = wTw, while including a penalty when a sample is misclassified or
within the margin from the boundary.

As for the AdaBoost method, we first form the decision tree that recursively splits
the feature space such that samples with the targeted labels are grouped together. Thus
letting the input at node m be defined as Qm with Nm samples, then each candidate split
θ = (j, tm) containing the feature j and threshold tm partitions the data into Qleft

m (θ) and
Qright

m (θ) subsets as shown in Equation (2):

Qle f t
m (θ) =

{
(x, y) | xj <= tm

}
Qright

m (θ) = Qm\Qle f t
m (θ)

(2)

subsequently, multiple instances of this decision tree are fit into selected subsets of the
training data (where incorrect grouping tends to occur), thus adjusting to more difficult
cases [46].

The last classifier of LDA is constructed by deriving the generic probabilistic model
that defines conditional distribution of the data P(x|ŷ = y) for both of class y. Bayes’
rule then is used to obtain the prediction of each sample x with multi-variate Gaussian
distribution. These processes are described on the formula in Equation (3):

P(x | ŷ = y) =
1

(2π)d/2
∣∣Σy

∣∣1/2 exp
(
−1

2
(
x− µy

)tΣ−1
y

(
x− µy

))
(3)

where we assume that each class has a similar covariance matrix Σy = Σ for all y, and(
x− µy

)tΣ−1(x− µy
)

corresponds to the Mahalanobis distance between the sample x and
the mean µy. Given this probability density, we evaluate all posterior probability and
selecting the class k which yields the maximum value. Finally, the overall pipelines of the
classical ML-based models outlined in this section are summarized in Figure 4.

Figure 4. The examples of the pipeline of the classical machine learning for lie detection task. It
starts with the input image (A), then the LBP, HOG and SIFT pattern are calculated (B). Subsequently,
the histograms of associated pattern are calculated (C) to be used for several classifiers (D) for lie
detection (E).
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4.2. Deep Learning

For the deep learning-based approach, we perform transfer learning by means of
the embedded features from VGG-Very-Deep-16 CNN [47]. Specifically, we feed the
cropped facial to the pre-trained VGG model, and store the embedded features. Using
these embedded features, we then train the similar classifiers as explained in previous
sections to obtain the baseline results.

To enable a fully trained deep learning model, we then use the CNN features as an
input to the fully connected neural networks consisting of two hidden layers with 256 and
128 units, respectively, and an output layer. Both hidden layers use the rectified linear unit
(ReLU) as the activation function, whereas the output unit uses the sigmoid activation
function that classifies True (lies) and False (not lies) samples. The model is compiled
with the Adam optimizer with a learning rate of 0.001 and uses the binary cross-entropy
loss. We utilize Keras library [48] for concrete implementation. Finally, Figure 5 shows the
overview of these processes.

Figure 5. The examples of the deep learning-based lie detection model. It commences with an input
image (A) that is used to calculate the VGG features (B). The VGG features are then used by both
classical classifiers and fully connected layers (C) for lie detection (D).

4.3. Comparison Metrics

We use both the Accuracy (ACC) and F1-score to judge the quality of the lie estimations
of all evaluated approaches. To calculate these metrics, we need to first produce the
TP (True Positive), FP (False Positive), TN (True Negative), and FN (False Negative) by
comparing the predictions with ground truth. Then, we calculate the accuracy as shown in
Equation (4) below:

Accuracy =
TP + TF

TP + TF + FP + FN
(4)

Whereas to calculate F1 score, we additionally need to compute the precision and
recall as shown in Equations (5) and (6), respectively:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Finally, the F1-score is calculated using the formula as shown in Equation (7):

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(7)

5. Experiments

We perform three different experiments for the lie detection tasks: generalization
test, person-specific test, and cross lie detection test. The first experiment evaluates the
generalization capacity of the trained lie detector (cf. Section 4) to predict the lie status of
the never-seen-before participant (i.e., not used for training).

The second test assesses the full potential of the lie detector when dealing with a
unique participant (i.e., customized to a person). This is motivated by the recent report
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from [49] suggesting that the personal lying expressions may not be universal. Furthermore,
the feel and willingness to perform the lying action itself may also differ per person; while
someone can feel displeased when lying, other people could enjoy it [50]. Thus, by building
and testing a specialized model for each participant, we can see the theoretical limit of our
proposed lie detector.

Finally, the real-life test demonstrates the potential real-life use of the lie detector to
deal with different kinds of lying conditions and with limited data. This test consists of
taking the model with the best performance for both of the previous experiments, and
assessing their performance with real-time lie detection (from different tasks).

5.1. Generalized Models

This section evaluates several ML and DL models on the general lie task setting using
several metrics defined on the methodology section.

5.1.1. Experiment Settings

We used our recorded GLD dataset to perform the experiments by splitting the avail-
able recording following five-fold cross validations schemes. We extracted relevant features
from both handcrafted and VGG features, using the corresponding split. Then, we used
them to train all classifiers (SVM, LDA and FC). Finally, we tested it using the associated
test split, and measured the performance using the defined metrics (cf. Section 4.3).

5.1.2. Experiment Results of Classical Machine Learning

Table 3 shows the five-fold cross validations accuracy and F1-score from LBP descrip-
tors combined with several classifiers (SVM, AdaBoost and LDA). We can see that the
best results were obtained with the use of Adaboost, reaching 52.6% accuracy and a 52
F1-score (indicated with bold face in respective table), which is better than those of using
other classifiers, such as SVM and LDA. Furthermore, in general, we notice that the use
of 12 points of neighboring (i.e., P = 12), and dividing the image with 2 × 2 grid values
produce the best results. This suggests that modest values of parameters are advantageous
to improve the lie estimates.

Table 3. Accuracy and F1-score for SVM, AdaBoost and LDA for LBP descriptors depending on the
number of points (P) and grid size. Note that the bold face numbers indicate the optimum values on
respective metric.

LBP
SVM AdaBoost LDA

ACC F1 ACC F1 ACC F1

1 × 1 Grid − P = 8 48.8 46.4 48.8 48.6 47.8 45.2
2 × 2 Grid − P = 8 50 46 50.2 49.6 50.2 47.4
4 × 4 Grid − P = 8 49.2 47 49.8 48.8 49.4 47.4
8 × 8 Grid − P = 8 48.4 47.2 50.6 50.4 48.6 47.4

1 × 1 Grid − P = 12 49 47 49.2 48.8 50.4 49.6
2 × 2 Grid − P = 12 50.4 47.4 52.6 52 51.6 49.8
4 × 4 Grid − P = 12 50.4 49 49.4 48.8 50.4 49.6
8 × 8 Grid − P = 12 50.4 49.4 49.8 49.4 50.2 49.6

1 × 1 Grid − P = 16 49.4 47.4 50.2 49.6 49.2 48.2
2 × 2 Grid − P = 16 50.6 48.2 51.2 50.8 50.8 49.2
4 × 4 Grid − P = 16 50.2 46.8 48 47.4 49.6 48.4
8 × 8 Grid − P = 16 49.4 48.2 50 49.4 49 48.4

AVG 49.7 47.5 49.9 49.5 49.7 48.3



Future Internet 2022, 14, 2 11 of 18

We can see the results of HOG descriptor on the Table 4, that is obtained using similar
five-cross validation settings. We can see a similar pattern with the results from LBP,
where using the 8 × 8 grid size with the modest value of 2 × 2 block cells to compute the
histogram produces better results. Furthermore, we note that the best accuracy is achieved
by AdaBoost, achieving the accuracy 53% and 52.8 F1-score, respectively.

Table 4. Accuracy and F1 for SVM, AdaBoost and LDA for HOG descriptors depending on cells’ size
(8×8, and 16×16) and the blocks’ size (1×1, and 2×2). Note that the bold face numbers indicate the
optimum values on respective metric.

HOG
SVM AdaBoost LDA

ACC F1 ACC F1 ACC F1

8 × 8 Grid − 1 × 1 Cells 50.4 50.2 50.2 50 49.6 49.4
8 × 8 Grid − 2×2 Cells 51.2 51 53 52.8 51 51

16 × 16 Grid − 1 × 1 Cells 52 50.4 49 49 48.8 48.8
16 × 16 Grid − 2 × 2 Cells 51 49.8 51.4 51.2 48.6 48.6

AVG 51.15 50.35 51.4 51.2 48.6 48.6

Finally, the results obtained for SIFT descriptors can be seen in Table 5 with the varying
number of the bag of words (BoW∼K). Here, we found that in general, the use of a K value
of 800 is beneficial. Furthermore, using AdaBoost classifier achieves the maximum results
with an accuracy of 53% and a F1 value of 52.2.

Figure 6 shows the examples of TP, FP, TN and FN of each best performer of the
classical machine learning models. Notice that the facial expressions are quite similar
across the examples, with slight changes happening in the mouth area in the case of both
being correctly classified as lies (TP and FN). However, on the failed recognition (FP and
FN), the facial area is mostly neutral, which may thus confuse the proposed methods in
their predictions.

Figure 6. Images examples of correctly and incorrectly classified samples for using handcrafted
based features.
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Table 5. Accuracy and F1 for SVM, AdaBoost and LDA for SIFT descriptors depending on the bag of
words size (K). Note that the bold face numbers indicate the optimum values on respective metric.

SIFT
SVM AdaBoost LDA

ACC F1 ACC F1 ACC F1

K = 100 50 49.6 50.2 49.8 50.2 49.6
K = 300 49.6 49 50 49.6 49 48.4
K = 500 51.8 51 53 52.2 50 49.6
K = 800 52.2 51.6 52.6 51.4 51.6 49.4

AVG 51.1 50.3 51.3 50.8 49.83 49.35

5.1.3. Experiment Results of Deep Learning

We present the results of the use of CNN features with both classical classifiers (LDA,
Adaboost, SVM) and neural network based classifier of FC on the Table 6. We can see that
results from the use of classical classifiers are quite similar to the results from previous
sections, which are modest, suggesting its limitations. Furthermore, we found that using
SVM leads to erroneous values (e.g., the lie values are predicted as one class, i.e., no
change), thus producing the Na value. However, upon the use of the FC-based classifier,
the results are improved, reaching 57.4% accuracy and a 58.3 F1 value, respectively. We
need to also note that in one fold, the VGG + FC models were able to reach 62.76% accuracy
and 64.34 F1 value, separately, as shown in Table 7. This indicates the compatibility and
superiority of the deep learning based model for these lie detection tasks.

Table 6. Accuracy and F1 achieved using VGG features. Note that the bold face numbers indicate the
optimum values on respective metric.

Models ACC F1

VGG + SVM Na Na
VGG + LDA 52 50.2
VGG + AdaBoost 52.6 51.6
VGG + FC 57.4 58.3

Table 7. Accuracy and F1 achieved with VGG + FC on all five folds. Note that the bold face numbers
indicate the optimum values on respective metric.

Fold ACC F1

1 58 56.74
2 56.46 48.72
3 54.52 58.33
4 62.76 63.79
5 55.49 64.34

AVG 57.44 58.38

We show in Figure 7 the visual examples of the TP, FP, TN and FN cases of the deep
feature-based lie detector. We can observe that in general, there is more variety in the facial
expressions compared to the examples from the classical machine learning-based detector
across examples. We also see that in the case of failure (FP and FN), the expressions are
also more visible compared to neutral. However, there also seems to be similarity in that
in the case of the correctly classified label (TP and TN), the visual changes happen in the
mouth area in this example. This variety of expressions suggests the expressiveness of the
VGG features, which may be helpful to more accurately classify the lie compared to the
hand-crafted based descriptor.
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Figure 7. Images examples of correctly and incorrectly classified samples with deep learning
based features.

5.1.4. Overall Comparisons

We can see the overall comparisons of the best performers for all evaluated models in
Table 8. Overall, we can see that the classical machine learning technique for lie detection
yields quite modest results (close to 50% accuracy). In other hand, the deep learning
based model produces more accurate estimates, achieving the best accuracy so far in this
dataset of 57.4% and 58.3 F1 accuracy. Indeed our produced results are quite comparable
with the other relevant works for lie detection. Such as the reports from [32], where the
classical machine learning-based approach was used (i.e., random forest) and [31] where
real humans are employed. Given the current results, we can concur that the general
lie-detection task is quite challenging (even also in comparison with real human ability)
and the use of the various ML/DL based models provides further insights on how much
the current automatic lie detection approach can handle. In the next section, we show how
our predictions can be improved by targeting each specific individual separately to learn
his/her personal unique characteristics when attempting to lie.

Table 8. Highest accuracy and F1 obtained for each descriptor. Note that the bold face numbers
indicate the optimum values on respective metric.

Methods Configurations ACC F1

LBP P = 12, 2 × 2 grid 52.6 52
HOG 8 × 8 cells, 2 × 2 blocks 53 52.8
SIFT + AdaBoost K = 500 53 52.2
VGG + FC 256, 128 and 1 Neuron(s) 57.44 58.38

5.2. Person Specific Models

This section evaluates the highest accuracy limit achieved by the best performing
models from the previous section when dealing with specific lying characteristics of
each participant.

5.2.1. Experiment Settings

In this experiment, we use the best performer model from previous comparisons
(i.e., VGG + FC) for individual-based lie detection. We do this by training the model on an
equal number of frames for each participant, and testing it on the other frames’ counterparts.
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5.2.2. Experiment Results

Table 9 summarizes the obtained test accuracy for all participants, with column
“ALL” containing the mean of the achieved results. Here, we can observe that the overall
prediction accuracy is higher, with an average accuracy of 65% and F1 score of 63.12, and a
maximum accuracy of 97.8% and F1 score of 65.7 in the case of participant 11. This higher
accuracy may indicate the ease of the tasks that the proposed model handles given the
narrow examples and specialized facial expressions that the person projects during lying.
Thus, it further confirms the previously mentioned hypothesis of the unique characteristics
of each person in performing the lying. Therefore, the formation of personal, specialized
models tailored to each individual could be used as an additional step to improve lie
detection in the application domain.

Table 9. Train and test sizes, accuracy and F1 for all participants. Note that the bold face numbers
indicate the optimum values on respective metric.

Metric p1 p2 p3 p4 p5 p6 p7 p8 p9

ACC 46.77 75 45.75 79.88 87.97 56.25 62.25 74.38 24.63
F1 29.79 53.12 30.48 45.65 50 9.01 38.72 51.9 26.44

Metric p10 p11 p12 p13 p14 p15 p16 p17 ALL

ACC 45.38 97.88 93.25 62.88 46.25 51.38 92 46.67 65
F1 13.01 65.75 63.33 51.9 4.38 4.44 59.47 20.89 63.12

5.3. Cross Lie Detection Tasks

In this section, the best-performing models from the two previous sections are inte-
grated into a single real-time detection algorithm and exposed to a different lie task.

5.3.1. Experiment Settings

We perform two major cross lie tasks in this experiment that consist of card number
uttering and sentence filling. The first test is the simulation of the cards game, where the
subject holding a deck of cards has to take one card and either utter the real number or to
produce a fake number. The second one in the other hand involves the reading of some
sentences with blank spaces that have to be filled by the subject with either real or fake
information at the time of reading each sentence (the example sentences can be found
in the Appendix B). We perform both tests by involving a training participant and two
test subjects. That is, we first train the model using the data from the training participant
when performing both tasks (thus, they are quite comparable to the person-specific task in
Section 5.2, though now in a different task). Subsequently, we use the pre-trained model to
detect the lies from the two test subjects when conducting similar tasks.

To collect the samples, we implement a simple application that integrates different
modules: face tracking and cropping [51], VGG-face 512-dimensional feature prediction [52]
and prediction samples as True (not lie) or False (lie). The example of the proposed program
can be seen in Figure 8. Using this program on the fly, then we can predict a statement
made by the participants. That is, the statement is considered a lie if more than 30% of the
frames are predicted as “lie” by the proposed program.

5.3.2. Experiment Results

Table 10 presents the results obtained from the evaluation for both tasks. As expected,
we can see that the proposed model struggles to correctly predict the true lie label, both
on the training and test sets judged by their low accuracy. Specifically, the best training
accuracy of 52% and F1 score of 54.9 are far lower than those of the person-specific test
(cf. Section 5.2) of 65% and 63.12, respectively. Furthermore, the results of the test predic-
tions are also considerably low, only reaching 43.59 and a F1 score of 38.1. This indicates
the difficulty of this prediction task, considering the different characteristics of the lying
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condition itself in combinations with the personalized ways of people during lying. These
findings would be relevant during applications, especially as a note that differently trained
lie detector models may inherently be better if tailored to the specific cases to which they
are exclusively trained/designed (i.e., to train the model to each specific lying task).

Figure 8. The examples of our proposed program for real-time lie detection.

Table 10. Metric values obtained in real-time evaluation. Note that the bold face numbers indicate
the optimum values on respective metric.

Metric Training Test Subject 1 Test Subject 2

ACC 52 43.59 43.33
Precision 56 26.67 50
Recall 53.85 66.67 41.18
F1 54.9 38.1 45.16

6. Conclusions

In this paper, we presented a comparison of several machine learning-based lie detec-
tion models applied to our newly collected Game Lie Dataset (GLD). We did so by first
collecting the new dataset using several instrumentations and involving 19 participants
during the customized card game to incite the lying conditions. Secondly, we pre-processed
the data in a structured way to allow for easier loading and future dissemination. Lastly, we
cropped the facial area and performed the annotation to complete the dataset productions.

Using our collected dataset, we built classical machine learning models by adopting
three handcrafted based features of LBP, HOG and SIFT that were later used for lie classifi-
cation using classical classifier of SVM, Adaboost and LDA. Furthermore, we included the
deep learning-based feature of VGG to build a fully end-to-end system, involving fully con-
nected layers to be compared with its semi-classical counterparts by using aforementioned
classical classifiers for predictions.

To evaluate the proposed models for lie detection tasks, we performed three main
experiments: generalized tests, person-specific tests, and cross lie detection tests. On the
generalized tests, we found the limitation of classical methods compared to deep learning-
based models based on the higher accuracy reached by the latter. Visual inspections further
revealed more diverse expressions captured by deep learning-based model compared to
the classical approach, suggesting its effectiveness. On the second task, we showed that a
generally higher accuracy was achieved by our model, given its simpler tasks in dealing
only with a specific individual, allowing for more effective learning. This also confirms the
hypothesis of unique facial expressions made by each individual during lying. Then on the
last task, we noticed the difficulty of the models in properly predicting the lie labels, given
the inherent characteristics of the new tasks associated with unique ways of lying.

In the future, we plan to record additional physiological signals to improve the model
estimations and to open more diverse analyses. Lastly, the findings of our work could be
utilized for several potential applications, where the knowledge of one’s true intentions
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(lie detection) on a daily basis are of paramount importance, such as for health counseling,
academic examinations or banking credit scenarios.
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Appendix A. The Structure of Recorded Dataset

Figure A1 below shows an overview of the structured folders of our recorded dataset.

Figure A1. The structured folder of our collected dataset.

Appendix B. Example of the Sentences

1. My name is .
2. I was born on (month), (day), (year).
3. I live in .
4. I have siblings.
5. Right now, I am at .
6. It is (time).
7. My telephone number is .
8. On holidays I am going to .
9. Today I had for lunch.
10. Today I woke up at .
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