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Abstract

The open source software ’Opencast’ offers a complete video processing system that includes
all necessary components for recording, processing and distribution of video files like lecture
recordings. In the course of a workflow, the files are encoded according to the requirements using a
modern video compression standard. Typically, the algorithms for this are run on the processor of
a machine, but various hardware accelerators exist that promise more efficient processing. This
work deals with the integration of an acceleration card based on FPGA technology into an Opencast
workflow. For this purpose, appropriate adaptations to an existing workflow as well as suitable
encoding profiles are designed and implemented. An evaluation is then carried out that compares
the FPGA acceleration card with a software-only implementation. Meaningful criteria and metrics
are considered, presented and then applied to test files.

Kurzfassung

Die Open-Source Software ’Opencast’ bietet ein komplettes Videoverarbeitungssystem, welches
alle nötigen Bestandteile zur Aufnahme, Bearbeitung und Verteilung von Videodateien wie
Vorlesungsaufzeichnungen beinhaltet. Im Laufe eines Workflows werden die Dateien passend
zu den Anforderungen mit einem modernen Videokompressionsstandard kodiert. Üblicherweise
werden die Algorithmen hierfür auf dem Prozessor ausgeführt, es existieren jedoch auch diverse
Hardware-Beschleuniger, die eine effizientere Verarbeitung versprechen. Diese Arbeit beschäftigt
sich damit, eine auf FPGA-Technologie basierende Beschleunigungskarte in einen Workflow von
Opencast einzubinden. Hierfür werden entsprechende Anpassungen an einen bestehendenWorkflow
sowie passende Encoding-Profile entworfen und umgesetzt. Anschließend wird eine Evaluation
durchgeführt, die die FPGA-Beschleunigungskarte mit einer reinen Software-Lösung vergleicht.
Es werden sinnvolle Kriterien und Metriken überlegt, vorgestellt und anschließend an Testdateien
angewendet.
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1 Introduction

The global pandemic caused by the coronavirus SARS-CoV-2, also known as COVID-19, changed
how we treated each other in all areas of our lives. This also affected students throughout Germany,
including the University of Stuttgart. Suddenly, lectures were no longer possible on site, prompting
a shift to digital services such as live streams and lecture recordings. In order to give all students the
chance to attend lectures in the best possible way even during this difficult time, it was suggested
by the university’s Digital Teaching Taskforce that appropriate recordings be made available to
students. For this purpose, the task force ’defined interdisciplinary recommendations for online
teaching events’. The Rectorate also ’emphatically supports these recommendations and views
them as an important orientation tool during the current pandemic situation’ [ILIAS20]. These
recommendations and their implementation allowed students to continue with the curriculum as
normal as possible. However, records also provide benefits to students independent of the pandemic,
which is why the system is optimally maintained in a hybrid process: There will be a lecture on site,
of which the recording will be made available afterwards.

In order to realize and implement this project, an appropriate infrastructure is required. In this
context, the Technical Information and Communication Services of the University hosts and provides
the following open-source solutions:

ILIAS. Developed since 1998, it is a learning management system, which offers a wide range of
functions for both, students and lecturers, like Course management, learning modules, tests and
assessments, portfolios, surveys, wikis and blogs [ILIAS-About].

Opencast. First released as ’Opencast Matterhorn’ in 2010, it provides a ’flexible, reliable and
scalable open-source video recording, management and distribution system for academic institutions
[Opencast-About].

The video material is processed by the Opencast servers and, if configured to do so, automatically
uploaded to ILIAS and other distribution channels. It needs to be transcoded as fast as possible
without losing too much of its quality to ensure the availability of resources for the next lecture.
There are several approaches for the transcoding process. We will take a look at the currently
available and widely used solutions that use a computer’s Central Processing Unit (CPU) or a
Graphics Processing Unit (GPU) with hardware encoding circuits to transcode the video files in
Chapter 3. We will also investigate a solution that uses hardware accelerator cards based on Field
Programmable Gate Arrays (FPGAs) technology designed, programmed and optimized for video
transcoding with support for state-of-the-art video compression standards like H.264 and H.265.

In this paper we address how easily the FPGA accelerator card can be integrated into the workflow
of Opencast and how the hardware accelerator compares in terms of performance and quality to the
pure CPU-based solution.
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1 Introduction

Methodology

In order to approach and solve the problem, we need to have a basic understanding of the files
we will be working with in the course of this paper. Therefore, we will first have to analyze how
video files are stored in an efficient way nowadays. We will explicitly look at standards that are
also supported by the chosen FPGA acceleration card. In addition, current software and hardware
solutions for converting video files and their advantages and disadvantages will be discussed.

Furthermore, it is important to get to know Opencast itself and other relevant tools. We will analyze
how Opencast is structured, how to control and customize its operations and how to integrate the
different software and hardware solutions for video conversion.

The integration performed will be based on the environment used and the subsequent evaluation.
The data collected using the FPGA solution will be evaluated using meaningful and suitable criteria
and metrics.

Last but not least, the thesis and its findings are summarized and considerations are made on how to
further improve the implemented solution.

Structure of this paper

• Chapter 2 addresses background information of this work. The technologies and tools used
are described here.

• Chapter 3 will present the current available state-of-art-solutions available for video
transcoding using CPUs or GPUs.

• Chapter 4 shows related work dealing with similar topics.

• Chapter 5 includes the planning process for the Opencast workflow as well as an overview
of the infrastructure and source materials used.

• Chapter 6 gives an overview over the implemented workflows and encoding profiles.

• Chapter 7 contains the evaluation criteria, the gathered data and the evaluation.

• Chapter 8 summarizes the results of the thesis, gives an outlook on the usability of this
solution and presents ways in which it could be further improved.
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2 Background

2.1 Field Programmable Gate Array

As the name implies, a FPGA is an field-programmable integrated circuit with the ability to design
and configure the logic behind it after manufacturing, consisting of an array of logic blocks. Because
algorithms are not processed with instructions as in CPUs, but directly with an interconnection of
logic gates in these logic blocks, a very efficient solution for specific applications is possible.

The most common FPGA architecture consists of three different main modules, as shown in Figure
2.1: An array of Configurable Logic Block (CLB), Input/Output (I/O) Pads and Interconnection
Circuits.

Figure 2.1: Simplified design of a basic FPGA

Each CLB represents a self-contained logic block that receives its input from and outputs to the
routing infrastructure. They consist of one or more logic cells and each of these cells typically
contains a Lookup Table (LUT) and multiple circuits like flip-flops, multiplexers and arithmetic
circuitry to control the function of the logic block. The LUTs are usually denoted as K-LUT where
K input signals can be used. The most common sizes for LUTs are 4 to 6 since they offer a good
trade-off between the area needed and the performance of the logic cell.
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2 Background

I/O Pads offer direct input and output interfaces for the FPGA to communicate with external signals.
These need to be routed to the correct CLBs and are usually grouped in multiple I/O banks for
different voltages and connections. For example, one could implement a group for serial connections
such as PCIe that can achieve speeds of several Gb/s with the help of additional circuitry.

The Interconnection Circuits connects the CLBs and I/O blocks. It consists not only of simple
wires interconnecting all available CLBs, but also of programmable switches. By appropriate
programming, any output of a CLB can be routed to an input of another CLB by using the available
routing channels and switches.

In addition, modern FPGA designs not only use the existing FPGA blocks to implement all
functionality, but offload common functions to an embedded microprocessor, forming a ’system on
a programmable chip’. This reduces the space required on the chip and can greatly increase the
processing speed of various functions.

While one of the biggest advantages of FPGAs is reconfigurability of the function circuitry, the
engineering effort to implement the wanted functions is much higher than in instruction based
circuits. A deep knowledge of hardware description languages and digital system fundamentals is
necessary. Additionally, the overhead for compilation is higher because it doesn’t boil down to a
single instruction set. Above all, the translation between desired circuit and the available resources
of the FPGAs with paths as short as possible plays an important role. It minimizes the latency
between CLBs, therefore decreasing the final run time. Nevertheless, compared to other integrated
circuits, especially Application-specific Integrated Circuits (ASICs), FPGAs offer lower recurring
engineering cost and shorter time-to-market, since after the initial design of the logic, the ’physical
design, layout, fabrication and verification stage can be skipped’ [BB21]. Also, customization of
the logic is easy by reprogramming, whereas with an ASIC the integrated circuit would have to be
replaced.

2.2 Digital Video

A digital video is a sequence of images, called frames, and thus part of the spatial and temporal
domain. Each frame is a still image with a given resolution, measured in the number of pixels along
the width and height. Typical resolutions used today are 1280 x 720 (HD), 1920 x 1080 (FullHD)
or 3840 x 2160 (4K). Each pixel stores a set of information defined by the color space used like
RGB and YCBCR.

The RGB color space describes the ratio between the main colors Red, Blue and Green in each Pixel.
A common amount of information for each of the color channels is 8 bits or 1 byte per channel, for
a total of 24 bits or 3 bytes.

While RGB is intended for an approximately accurate representation of color information, YCBCR
uses a weighted estimation of the individual color channels to match human color perception which
is more sensitive to brightness than colors. To calculate YCBCR from RGB, first each value of RGB
is normalized into the interval [0,1], giving us the values (R’, G’, B’). Y denotes the luminance and
is a weighted sum of these channels.

𝑌 = 𝐾𝑅 ∗ 𝑅′ + 𝐾𝐺 ∗ 𝐺 ′ + 𝐾𝐵 ∗ 𝐵′
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2.2 Digital Video

The actual weights 𝐾𝑅, 𝐾𝐺 , 𝐾𝐵 differ between standards. To give an example, ITU-R BT.601
[BT.601] specifies the tuple (𝐾𝑅, 𝐾𝐺 , 𝐾𝐵) as (0.299, 0.587, 0.114), while ITU-R BT.2020 [BT.2020]
defines it as (0.2627, 0.6780, 0.0593). The weights are based on the importance of the respective
color for the human luminance perception.

Then, the color information for both, the blue-yellow chrominance and the red-green chrominance,
is calculated with the following formulas to achieve the YPBPR representation used for analog
images.

𝑃𝐵 = 1
2 ∗

𝐵′−𝑌 ′

1−𝐾𝐵

𝑃𝑅 = 1
2 ∗

𝑅′−𝑌 ′

1−𝐾𝑅

From there, an offset is added according to the used standard to receive the corresponding digital
YCBCR colors.

In addition, we can save further space by taking advantage of the above-mentioned human perception.
Since luminance is more important than colors, a method named ’chroma subsampling’ is often
used. While the luminance channel is rendered fully, the two color channels are stored in a lower
resolution. Even though we reduce the information available, the video will still look very similar
for the human eye. A subsample scheme is specified in a three-part ratio such as 4:2:0 or 4:4:4 and
refers to a 4 Pixel (Px) wide and 2 Px high region. The first number, usually 4, refers to the width of
the region. The second number indicates the number of different chromatic samples in the first row
and the third number denotes the changes of the chromatic samples between the first and second
row. The third value must be either 0 or the second value. For example for 4:2:0, the luminance
data is stored for every pixel but the color data of the chromatic channels are only stored once every
2x2 pixel block, greatly reducing the total amount of information.

Still, video files contain a lot of data, stored in each pixel. Without proper compression, these
frames can take a lot of storage space on the users devices and increasing the requirements for every
infrastructure around video distribution. To give an very naive estimation of the file size purely
from a video without any compression or encoding, we can use different properties of the video. If
we are assuming that each pixel contains 𝑛 color channels with 𝑚 bytes of information each and
they are all stored independently, the space required for one pixel equals 𝑛 ∗ 𝑚 bytes. Multiplying
this value by the resolution, the frame rate (given in Frames per second (fps)) and the run time, we
get the following formula:

File Size𝑣𝑖𝑑𝑒𝑜 = 𝑡𝑖𝑚𝑒 ∗ 𝑓 𝑟𝑎𝑚𝑒𝑟𝑎𝑡𝑒 ∗ 𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑛 ∗ 𝑚

To give an example, we assume a video file with the resolution of 1280 x 720, 24 fps and three color
channels with 1 byte each. To store 60 seconds, this requires the following amount of space:

File Size𝑣𝑖𝑑𝑒𝑜 = 60𝑠 ∗ 24
𝑓 𝑟𝑎𝑚𝑒𝑠

𝑠
∗ 1280 ∗ 720 ∗ 3 ∗ 1 B

= 3.981.312.000 B ≈ 3.71 GiB
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2 Background

That’s obviously a lot of space required for such a short video and doesn’t even contain more
information like audio signals, but a lot of redundant video material. Thus, compression and video
coding formats were implemented. They reduce information, either lossless and lossy, by removing
redundancies in the same frame as well as in successive frames.

Intra-frame- and inter-frame-prediction are often used to reduce redundant information. Intra-frame
prediction exploits the fact that adjacent pixels often carry similar information and can therefore be
combined. Inter-frame prediction, on the other hand, attempts to detect similarities in blocks of
previous frames and use them to describe pixels in the current frame.

While lossless compression preserves the quality by storing all data needed to reconstruct the
original data after decompression, lossy compression alters the given data while offering a higher
compression rate. The compression algorithm is called ’encoding’ while the decompression
algorithm is called ’decoding’. The conversion from one video coding format into another one is
called ’transcoding’. A ’codec’ is a solution that encodes and decodes media files and can either be
realized as software or hardware.

We will now introduce two video coding formats that are also supported by the accelerator card
used later and therefore considered for this thesis.

2.2.1 H.264

H.264, also known as Advanced Video Coding orMPEG-4 Part 10, is a state-of-the-art video
compression standard. Even though it got first published in 2004, it is still the most common used
format for video material, used by 83% of video developers as of 2021 [Bit21]. Thanks to its
general-purpose design, it supports a wide range of bit rates and video resolutions. For different
target scenarios such as video conferencing or high-resolution video sharing, three profiles were
initially defined (Baseline, Main and Extended), specifying a certain subset of the available features
to produce the most suitable video for each use case. Over the years, extensions with additional
profiles and levels have been implemented and incorporated, with which resolutions up to 8K are
also possible. To give an example of the available functions of different profiles, all of them offer
Context-based Adaptive Variable Length Coding (CAVLC), but only certain profiles offer a flexible
macroblock order (Baseline and Extended) or quantization scaling matrices (profiles of the ’High’
family).

In addition, different levels are defined which give an indication of the required performance of the
decoder and primarily limits the bit rate as well as the resolution and frame rate.

Table 2.1 gives an overview of a selection of certain levels, specifying the maximum image size in
samples and the maximum number of samples per second. With these two data we can calculate a
resolution with typical sizes and the corresponding highest frame rate, given in width x height @
fps.

H.264 is built on a layered structure consisting of two major parts: The Network Abstraction Layer
(NAL) and the Video Coding Layer (VCL). Since H.264 is designed for many different applications
like television broadcasts, internet streaming services or storage on optical or magnetic drives, the
NAL was introduced. It acts as a protocol for the data created by the VCL, making it usable for
file storage and transmission over IP, and future-proofs the codec by allowing easy addition of new
applications.
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2.2 Digital Video

Level Max frame size Max samples Example for high resolution
(samples) per second @ frame rate (fps)

3 414.720 10.368.000 720x576@25.0
3.1 921.600 27.648.000 1280x720@30.0
3.2 1.310.720 55.296.000 1280x1024@42.2
4 2.097.152 62.914.560 2048x1024@30.0

4.1 2.097.152 62.914.560 2048x1024@30.0
4.2 2.228.224 133.693.440 2048x1088@60.0
5 5.652.480 150.994.944 3680x1536@26.7

5.1 9.437.184 251.658.240 4096x2304@26.7
5.2 9.437.184 530.841.600 4096x2304@56.3
6 35.651.584 1.069.547.520 8192x4320@30.2

6.1 35.651.584 2.139.095.040 8192x4320@60.4
6.2 35.651.584 4.278.190.080 8192x4320@120.9

Table 2.1: Overview of a selection of H.264 levels based on [H.264] (Chapter A.3.4)

The VCL takes care of the encoding task. To encode a given video with the H.264 video encoder
(Figure 2.2), each frame of the video is divided into macroblocks. These blocks have a base size of
16 x 16 and can be subdivided into smaller blocks, down to 4 x 4. For each macroblock, the encoder
can chose between intra- and inter-prediction coding mode which makes prediction in the same
frame (intra-prediction with 9 different modes) or previously encoded frames (inter-prediction),
removing several redundancies. Based on these predictions, the blocks are divided into 4 x 4 or
8 x 8 blocks, transformed by an Integer Discrete Cosine Transform (DCT), and then quantized.
Since H.264 uses block-based transformations for both intra- and inter-prediction coding, the final
material could have block artifacts at the boundaries of each macroblock. To overcome this problem,
a deblocking filter is used.

Figure 2.2: Block diagram of H.264 encoder, based on [KTR06]
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2 Background

Additionally, H.264 uses a entropy encoder based on fixed tables of variable length codes, similar to
a Huffman code. Unlike the latter, however, H.264 uses a ’set of codewords based on the probability
distributions of generic videos instead of exact Huffman code for the video sequences’ [KTR06].
Depending on the chosen profile, we can use CAVLC or Context-adaptive Binary Arithmetic Coding
(CABAC) for this.

Figure 2.3: Block diagram of H.264 decoder, based on [KTR06]

Similar, the decoder (Figure 2.3) reverses the entropy encoding, applies inverse quantization and
transformation and a inter-frame- and intra-frame-prediction to generate the video output from the
stored bit stream.

2.2.2 H.265

H.265, also known asHigh Efficiency Video Coding (HEVC) orMPEG-H Part 2, is the successor
of H.264. As demand for high-definition video grew steadily for both local media like Blu-ray
discs and video streaming platforms like Netflix, it became clear that H.264 was a less effective
solution for video files above 1920 x 1080 due to its 16 x 16 macroblocks. Therefore, a video
compression standard based on H.264 was developed with better compression and higher supported
resolutions.

Since it is based on H.264, it shares multiple parts with its predecessor. We still have the
layered design with NAL and VCL and still use both, intra-frame- and inter-frame predictions to
remove redundancies. While the coding process is very similar, H.264 splits the input videos into
macroblocks of 16 x 16 size and H.265 is using a so called Coding Tree Unit with blocks of sizes
16 x 16, 32 x 32 or 64 x 64. Additionally, it uses Integer DCT and Discrete Sine Transform (DST)
with variable block sizes between 4 x4 and 32 x 32. Especially for larger resolutions, the bigger
block size increases the coding efficiency at the expense of higher computation complexity, since
more pixels can be processed at a time. For intra-prediction mode, 33 different modes are available,
24 more than with H.264.

As with H.264, H.265 was originally released with multiple profiles and levels that got expanded
over the years. While the main sample size and frame rate is similar to the ones of H.264, as seen as
in Table 2.1, the maximum available bit rate differs. Two tiers (Main and High) were defined for
each level beyond 4, with the Main tier as a general purpose solution and the High tier primarily for
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demanding applications. Accordingly, the bit rates in the High tier are much higher than in the
Main tier. For example, for the Main and Main 10 profiles at level 5, the Main tier is designed for
25 Mb/s and the High tier for 100 Mb/s.

Despite the advantages that H.265 offers over H.264, it was used by only 49% of all video developers
in 2021 [Bit21]. One reason for this is the increased computational effort required to process the
video files. Another important part is the licensing model around the H.265 standard. This leads to
less decoders being deployed in various environments like mainstream web browsers.

2.3 FFmpeg

FFmpeg is an open-source software package consisting of various libraries and tools for de- and
encoding multimedia data. The core parts of FFmpeg are the command line tool ffmpeg, libavcodec
as a library to decode and encode various audio and video codecs and libavformat as a library with
tools to mux and demux various container formats. For H.264, the open-source library x264 is used
which implements the design of H.264. Similar, for H.265, the library x265 is used. They are both
state-of-the-art codecs available for their corresponding compression standard.

2.3.1 ffmpeg, the command line tool

The general syntax of an ffmpeg command, according to the command line tool, is:

ffmpeg [options] [[infile options] -i infile]... [outfile options] outfile...

Infile and Outfile are used to define the input and output media file on the file system. For ’options’,
an overview of important flags and options used with ffmpeg and the H.264 and H.265 libraries is
listed here:

• -c followed by a string is used to set the codec to be used. This can be done for both, audio
and video signals, by specifying it in the call (-c:a for audio codec and -c:v for video codec)

• -b sets the target bit rate. Similar to flag ’c’, it can be called for both audio and video streams
separately by using -b:a and -b:v

• -r specifies the frame rate and can be used to change it to another value. Alternatively, -fps
can be used in the context of the chosen video encoder

• -s similar to -r, it defines the frame size. Alternatively, -vf scale=w,h can be used in the
context of the chosen video encoder as an filter operation

• -profile determines the used profile like ’Main’ or ’High’

• -level sets the level and thus the maximum resolution and frame rate

• -pix_fmt specifies the color space used for the process
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2.4 Opencast

Opencast offers a ’scalable video-capture, -management, and -distribution system for academic
institutions’ [Opencast-About] built on Java. It provides a complete video processing system based
on the subsystems ’media ingestion’, ’media processing’ and ’media distribution’ and offers multiple
interfaces for users and administrators to communicate with the system, mainly an web interface and
an API based on REST. In these interfaces, users can schedule recordings and even execute them
directly in the web interface, provided that the appropriate hardware is connected to the system.
Multiple streams are supported for each event, like a live recording of the presenter as well as a
recording of the computer screen used by the presenter. After the recording, the video and metadata
are packaged into ’Media Packages’ and then used in the workflow system.

The core function of Opencast is the video processing system. Workflows determine exactly which
available means are used to process a media. Multiple workflows can run in parallel, provided that
enough resources are available on a node, and mapping of individual jobs to specific nodes is also
possible. For example, video encoding could be outsourced to a machine with acceleration cards,
while metadata processing could be handled on a general purpose server. Data for this processing
system can be provided through REST APIs, the web interface or, if a suitable workflow is provided
for a so-called ’inbox’, by scanning the contents of a specific directory.

For the end user consuming the processed videos, several distribution channels as well as a built-in
web player are available.

An Opencast setup may contain one or more nodes on different hardware, which also carry a
different subset of the available functions. For example, there may be one node for the administration
interface and multiple nodes for the workers. For a productive setup, at least two servers are
recommended to reduce the load of the main system during a job by offloading processing workflows
to a worker node.

According to Goyanes, González, Sanchez Bermudez, and Docampo, the ’Opencast core configures
a complex workflow composed of 22 individual operations that can be grouped into [...] 9 functional
the blocks’ [GGSD17] seen in Figure 2.4.

Figure 2.4: Standard Opencast Workflow, based on [GGSD17]
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2.4.1 Workflows

Workflows in Opencast are written in Extensible Markup Language (XML) and define exactly which
operations are performed in what order. The basic structure of a workflow can be seen in Listing
2.1. As part of the definition, the namespace to be used is ’http://workflow.opencastproject.org’ to
prevent name collisions with other XML documents.

<definition xmlns="http://workflow.opencastproject.org">

<!-- Description of Workflow -->

<id>example-workflow</id>

<title>Example Workflow</title>

<tags>

</tags>

<description>

An example workflow to give an overview of the XML file used

</description>

<!-- Operations -->

<operations>

<operation>

...

</operation>

...

</operations>

</definition>

Listing 2.1: Structure of an Opencast workflow

Then, XML tags define the internal id, a title, optional tags and a description. The id is used by
Opencast as a unique identifier for the workflow and tags can control where the defined workflow
may be used. The title and description are only shown in the user interface.

The main part of a workflow are the operations used. An installation of Opencast brings many
operations with it, like ’inspect’ or ’encode’. Multiple configuration keys are available for each
operation to allow developers to set up and control the operation. An example for the ’encode’
operation can be seen in Listing 2.2. Each operation is using an id to denote the predefined operation
control flow and the available configuration keys. After that the properties of the operation are
set.

<operation

id="encode">

<configurations>

<configuration key="source-flavor">*/prepared</configuration>

<configuration key="target-flavor">*/delivery</configuration>

<configuration key="target-tags">engage-download, engage-streaming</configuration>

<configuration key="encoding-profile">sample-profile</configuration>

</configurations>

</operation>

Listing 2.2: Structure of a workflow operation using the example of an ’encode’ operation
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2.4.2 Encoding Profiles

Unlike the workflows themselves which use XML, an encoding profile is just a set of key-value
pairs of the following pattern, stored in a file with the extension .properties:

profile.<name>.<property> = <value>

For each profile exists a set of properties that should always be specified:

• .name is a description for the encoding profile

• .input defines the type of the source material

• .output defines the type of the target format and has the same available options as .input

• .suffix specifies the extension appended to the file

• .mimetype declares the media type of the file content

• .ffmpeg.command specifies the command line options for FFmpeg, which in the end control
the options of the encoder

Examples of valid types for .input and .output include, but are not limited to, audio, visual, stream
or image.

A media type is an identifier for files transmitted over the internet and is represented by a type
and a subtype, separated by a ’/’. For the allowed types named above for .input and .output, the
relevant media types are audio, video or image, while for the subtype the container format is used.
An example of this is video/mp4.
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3.1 Transcoding with the CPU of a machine

Each encoding and decoding algorithm can be implemented in high level languages. The often
used encoders, x264 and x265, are software implementations for H.264 and H.265. Depending on
the profile, they offer high quality encodes at the expense of computational time.

The performance of a software transcode depends on different metrics. These metrics include, but
are not limited to encoder settings, algorithm implementation, instructions per cycle, instruction
set architecture, core frequency, single-core performance (based on frequency and instructions
per cycle), core count (if the implementation uses multi-threading), transfer speed for storage and
memory and the operating system.

3.2 Transcoding with accelerator hardware

Several ASICs are available for audio and video encoding. They allow the host system to offload
processing from the CPU to a different chip, and thus freeing up resources for other purposes. Here
we will discuss a selection of available and widely used ASICs from various vendors. They can be
designed for encoding, decoding, or both.

3.2.1 Quick Sync Video (QSV)

Starting with ’Sandy Bridge’ in 2011, Intel has integrated Intel QSV into the processor dies of the
Intel Core series. It supports both encoding and decoding for various video codecs. H.264 can be
used since ’Sandy Bridge’ while H.265 is available since ’Skylake’.

Even though it is part of the processor, it is separate hardware and thus offloads encoding and
decoding work, just like with additional acceleration hardware added to the system like GPUs. Intel
processors add a hardware codec called MFX. A scheme for this can be seen in Figure 3.1.

MFX has hardware that can handle decoding entirely. For the video encoding process, Intel uses a
hybrid software (’ENC’) and hardware (’PAK’) approach. ’ENC’ uses a programmable execution
unit array on the integrated GPU and takes care of rate control, motion estimation, intra estimation
and mode decision. This allows for ’algorithm tuning and feature additions’. Then, ’PAK’ uses the
MFX hardware and handles motion compensation, intra-frame prediction, forward quantization,
pixel reconstruction and entropy coding. To increase the throughput, both ’ENC’ and ’PAC’ can
run on different frames at the same time [Jia11].
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Figure 3.1:MFX in Intel Sandy Bridge, based on [Jia11]

3.2.2 Nvidia Encoder and Nvidia Decoder

Nvidia includes dedicated hardware for decoding (called NVDEC) and encoding (called NVENC)
on their graphics cards. NVDEC is included since the ’Fermi’ generation, released 2010, and
supports a lot of different codecs used nowadays. In 2012, NVENC was included as part of their
GPUs as well. Only H.264 was implemented initially, but H.265 encoding was supported in later
iterations [PY16].

Since both NVDEC and NVENC are a dedicated parts of Nvidia’s GPUs, the computational cores
themselves are not used for encoding or decoding. This is very practical for live streamers. Since
the recorded material is processed via NVENC, the GPU resources can be used by other active
applications.

3.2.3 AMD Video Coding Engine (VCE) and Unified Video Decoder (UVD)

Similar to Nvidia, AMD included UVD ASICs since 2007 and VCE ASICs since 2011 in most of
their GPUs, fully implementing the H.264 video codec and later on, H.265.

Since 2018, there is an official successor called ’Video Core Next’, which combines the encoding
and decoding functions of VCE and UVD in one ASIC on the GPU die, similar to Intel’s QSV.
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3.2.4 Advantages and disadvantages of using acceleration hardware

Patait and Young analyzed and presented the ratio between quality and performance in [PY16] for
x264, QSV and NVENC. While quality is calculated and presented with Peak Signal-to-Noise Ratio
(PSNR), which we will discuss further in Chapter 7, performance is measured in fps. It represents
the number of frames that can be processed per second by the used solution.

As we can see in Figure 3.2, there is a slow and medium preset for each implementation. Going
from slow to medium increases performance at the expense of quality. While the x264 software
encoder delivers the highest quality, the performance is comparatively low. In contrast, Intel offers
high performance with QSV, but lower quality with both presets. Nvidia’s solution offers a good
compromise and outperforms the other two solutions in terms of performance. The quality is lower
than x264, but still comparable.

Figure 3.2: Quality vs Performance of NVENC, QSV and x264, from [PY16]

It is evident that the hardware solutions place more emphasis on performance than quality. Thus, a
qualitative software encoder like x264 will deliver the best quality while compromising speed. In
addition, hardware codecs usually don’t implement all, but only a subset of the functionality of
software codecs.
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4 Related Work

There are several papers about efficient designs and implementations of the encoding process on
FPGAs for both H.264 and H.265. While they have no direct relation to the integration of an
FPGA-based accelerator card in Opencast, they deal with the codec implementation and performance
benefits.

Atitallah et al. published a FPGA design for inter- and intra-prediction mode, an integer transform
algorithm and a quantization algorithm based on H.264 that achieves performance good enough for
real-time enoding [ALM11].

Kalali and Hamzaoglu implemented a H.265 intra prediction algorithm with High-Level Synthesis
on a Xilinx FPGA. It can achieve 35 fps with a resolution of 1920x1080 [KH16]. Azgin et al.
optimized an existing H.265 intra prediction algorithm on FPGA and achieved 55 fps at 1920x1080
in the worst case while reducing power consumption compared to a reference FPGA implementation,
making it a viable solution ’in portable consumer electronics products that require a real-time
HEVC encoder’ [AMKH18].

Sjövall et al. presented ’a hardware-accelerated Kvazaar HEVC intra encoder for 4K real-time video
coding at up to 120 fps’ [SVV+18]. They achieved a speedup factor of 6.8 compared to the pure
software implementation.

In addition to H.264 and H.265, other video compression methods and their implementations are
discussed. The authors Chen and Singh performed an efficient real-time implementation of ’fractal
video compression’ with OpenCL and showed how it can be optimized for different platforms. They
then ran the kernel on CPU, GPU and FPGA to get a comparison in terms of performance and
’demonstrate that the core computation implemented on the FPGA through OpenCL is 3× faster
than a high-end GPU and 114× faster than a multi-core CPU, with significant power advantages’
[CS13].
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5 Considerations for the implementation and the
used environment

5.1 Opencast workflows

To be able to compare results, we need to write several comparable encoding profiles and use
them in similar workflows. Some of the profiles will only use the CPU of the machine while the
others will use the FPGA acceleration card. The most important part of this workflow design
will be finding and assembling the FFmpeg commands for the encoding profiles. We have to find
commands for both H.264 and H.265.

While we can have a direct impact on the servers of self-hosted services, we cannot guarantee that
every student will have access to high-speed Internet and powerful hardware. For this reason, it is
also important that the final processed video files are available in several different resolutions to
allow for smooth playback on all devices. A workflow should automatically transcode and scale a
source video to different target resolutions. That material can then be used for adaptive streaming,
which selects the appropriate resolution based on the users infrastructure.

5.2 Environment with FPGA accelerator card

FPGA acceleration cards for efficient video encoding can be implemented in suitable systems on-site
or with cloud providers. We will use the latter for our environment. This gives us less control
over the hardware, but allows us to quickly test the environment available with the cloud provider.
For long-term integration into an existing server structure, on-site solutions are preferable, as it’s
independent of an external provider and the hardware is always accessible.

5.2.1 Amazon Web Services (AWS) Elastic Compute Cloud (EC2)

In 2002, Amazon began making the AWS platform available to the public. At that time, it was
primarily intended as a ’platform for creating innovative web solutions and services designed
specifically for developers and web site owners’ [AWS02]. Over the next years, the company evolved
from a web service provider to a cloud computing provider. In March 2006, Amazon S3 was made
available, providing a ’simple storage service that offers software developers a highly scalable,
reliable, and low-latency data storage infrastructure at very low costs’ [AWS06]. In August of the
same year, the limited beta of EC2 was released, providing customers with virtual servers for as
little as 10 cents/hour [Bar06]. This provided a scalable and low-cost alternative to on-site hardware,
which quickly attracted many interested customers. Just a year later, AWS introduced ’multiple
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compute instance types for Amazon EC2 customers’ that were ’up to eight times as powerful as
those previously available’. Moreover, it was no longer a limited beta, but was made available to all
developers that same year [AWS07].

Since then, EC2 has continued to evolve, providing users and developers worldwide with a variety
of different instance types, so that the best possible service can be provided for any purpose. There
are general purpose instances, compute optimized instances for applications that benefit from high
performance processors, memory optimized instances for applications that process large amounts of
data, accelerated computing instances that use hardware accelerators or co-processors to compute
various functions more efficiently, and memory optimized instances for high read and write speeds
to local storage [AWSEC2].

To evaluate the effectiveness of FPGA acceleration cards, we will use AWS EC2 instances of type
’VT1’, which offers up to eight Xilinx Alveo U30 Data Center Accelerator Cards.

5.2.2 EC2 VT1 Instances

While instances of type ’VT1’ are advertised for real-time transcoding for live streaming, we can
also use them for Opencast.

Each instance is virtualized on a host with 2nd Generation Intel Xeon Scalable Processors (Cascade
Lake P-8259CL). According to the specifications, a single CPU of this type offers 24 cores and 48
threads with a clock speed of 2.5 GHz and a turbo frequency of 3.5 GHz. As shown in Table 5.1,
the number of virtual processor (vCPU) cores and number of accelerator cards available depends
on instance size. Additionally, the available memory and the network bandwidth scales with size,
but even the smallest instance offers 24 GiB of memory as well as 3.125 Gb/s network bandwidth.
This ensures that the transcoding processes are not hindered by available memory or network
bandwidth.

We will choose the smallest available instance type ’vt1.3xlarge’, since one accelerator card is
sufficient for our tests.

Instance Size vt1.3xlarge vt1.6xlarge vt1.24xlarge
U30 Accelerator Cards 1 2 8
vCPU cores 12 24 96
Memory (GiB) 24 48 192
Network Bandwidth (Gb/s) 3.125 6.25 25
EBS Bandwidth (Gb/s) Up to 4.75 4.75 19
1080p60 Streams 8 16 64
2160p60 Streams 2 4 16

Table 5.1: Features of VT1 instances
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Xilinx Alveo U30 Data Center Accelerator Card

Instances of type ’VT1’ contain one or more Alveo U30 accelerator cards. Each U30 offers a PCIe
x8 interface, which is split into two sets of four lanes that allows for direct communication with the
two ’XCU30’ FPGAs on the cards, as seen in Figure 5.1.

Figure 5.1: U30 Block Diagram from [DS970]

The FPGA ’XCU30’, also known as ’XCZU7EV’, is part of the ’Zynq UltraScale+ Multiprocessor
System on a Chip (MPSoC): EV’ family. According to the data sheet ([DS890] and [DS891]), each
FPGA contains a Quad Core ARM Cortex-A53 as an Application Processing Unit and a Dual Core
ARM Cortex-R5F as Real-Time Processing Unit, connected to 4 GiB of DDR4 memory. It offers
28800 CLBs. Each CLB contains 8 6-LUT and 16 flip-flops, 36 Kb block RAM, 288 Kb UltraRAM
and DSP slices for faster arithmetic functions.

As part of the programmable logic, each XCU30 is equipped with a video encoder/decoder called
Video Codec Unit (VCU), that can be addressed by both the ARM processors and the programmed
CLBs. It offers simultaneous encoding and decoding through separate cores and supports H.264 up
to ’High’ profile level 5.2 as well as H.265 up to ’Main’ or ’Main 10’ profile level 5.1 (High tier).
For the sample rates, it supports 4:2:0 and 4:2:2 chroma sampling.

Drivers and the manufacturer’s toolkit are required to use the accelerator card. Xilinx offers the
’Xilinx Video SDK’ which contains the necessary tools to interface with the card. They also provide
a precompiled version of FFmpeg with the codecs needed to use the FPGA. The tools can be
manually installed on an EC2 instance or an image provided by Xilinx called ’AMD-Xilinx Video
SDK AMI for VT1 Instances’ can be used. This image contains everything necessary to use the
FPGA directly without further tinkering.

For licensing reasons, the included FFmpeg version does not include codecs and plugins that
are available in the publicly distributed version. To use libraries such as x264 or x265, one can
recompile FFmpeg with the Xilinx libraries.
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5.3 Source material for the evaluation step

To evaluate the effectiveness of the solution, we are going to use a computer-animated short film
with the title ’Big Buck Bunny’. This video file was made with Blender, a ’free and open source 3D
creation suite’ [Blender-About] and is publicly released under the Creative Commons Attribution
3.0 license. Although it is an animated short film and not a lecture recording, the choice of this
source file offers the following advantages for this work:

Length

While lecture recordings are typically 90 minutes long, the short film is only 10 minutes long. This
means that there are far fewer frames to compute, and we’ll receive results faster. Since we are
mainly interested in the ratio of the different conversion rates, it is still suitable for the comparison.

Multiple available resolutions

The selected video material is available in different resolutions and frame rates. This gives us the
opportunity to collect more data by also making a comparison between different source resolutions
transcoded to different target resolutions. An overview of relevant information about the video files
can be found in Table 5.2. The bit rate only accounts for the video data, not the audio data.

We also have to differentiate between the original released files with 24 fps and the newer high
definition releases with 30 or 60 fps. The latter differ not only in file size and profile, but also in the
playback length. For the original release, the average and maximum bit rate matches since it uses
constant bit rates, while the high definition releases use variable bit rates.

Width Height Frame Rate Avg. Bit rate Max. Bit rate File Size Codec
Px Px fps kb/s Mb/s MiB Profile@Level
854 480 24 2.900 2.900 238 AVC Main@3
1280 720 24 5.147 5.147 397 AVC Main@3.1
1920 1080 24 9.283 9.283 692 AVC Main@4.1
1920 1080 30 3.000 16.7 263 AVC High@4.1
1920 1080 60 4.000 19.7 339 AVC High@4.2
3840 2160 30 7.500 37.8 604 AVC High@5.1
3840 2160 60 8.000 35.1 642 AVC High@5.1
4000 2250 60 10.000 46.1 793 AVC High@5.1

Table 5.2: Available 2D video files of Big Buck Bunny

In the rest of this document, we will name the video material in an abbreviated form corresponding
to the pattern <height>p without the frame rate and <height>p<fps> with the frame rate. The p in
the abbreviation stands for the ’progressive’ scan mode, in which the images are rendered fully.
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Width Height Short Form
3840 2160 2160p
1920 1080 1080p
1280 720 720p
854 480 480p
852 480 480p

Table 5.3: Short form of video resolutions and frame rates

In the last rows of Table 5.3, we use 480p for both 854x480 and 852x480 resolutions. While the
source material comes with a width of 854, Section 6.1.3 mentions a filter requiring a height and
width divisible by four, so 480p is used for both resolutions.
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6.1 Encoding Profiles

6.1.1 FFmpeg

We specify different encoding profiles for a selection of target resolutions. Each has a corresponding
FFmpeg command. This section is intended to give an overview of the various encoding profiles.

To evaluate hardware and software implementations of H.264 and H.265, we have to use four
different but comparable FFmpeg commands for each target resolution.

ffmpeg -i <infile> -c:a copy \

-c:v (libx264|libx265|mpsoc_vcu_h264|mpsoc_vcu_hevc) \

-profile:v (high|main) -level (40|51) -pix_fmt (yuv420p|nv12) \

-s:v (854x480|1280x720|1920x1080|3840x2160) \

-b:v (1500|2500|4000|7000)k <outfile>

Listing 6.1: Pattern for FFmpeg commands

As Listing 6.1 shows, variables change depending on the target resolution and codec used.

• -c:a copy The embedded audio stream is copied directly without conversion to minimize the
impact during evaluation. If desired, one could also change the quality and size of the audio
stream by specifying a codec and quality settings.

• -c:v (libx264|libx265|mpsoc_vcu_h264|mpsoc_vcu_hevc). This specifies the codec used
for conversion. libx264 and libx265 are software codecs while mpsoc_vcu_h264 and
mpsoc_vcu_hevc are the hardware codecs.

• -profile:v (high|main) For H.264 we use the ’High’ profile and for H.265 the ’Main’ profile.

• -level (40|51) sets the level of the codec. While we could omit this value and let FFmpeg
select a fitting level, we set it to specify a consistent level. Target files up to 1080p30 are
covered by level 4, while resolutions over 1080p30 and up to 2160p30 require at least level
5.1.

• -pix_fmt (yuv420p|nv12) sets the pixel format. yuv420p is for software codecs, while nv12 is
for hardware accelerators. Both are based on YCBCR and use chroma subsampling with a
ratio of 4:2:0.

• -s:v (854x480|1280x720|1920x1080|3840x2160) specifies the target resolution.

• -b:v (1500|2500|4000|7000)k sets the target bit rate based on the resolution, respectively.
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To achieve a specific target quality or file size, one would use Constant Rate Factor (CRF) or
Variable Bit Rate (VBR) with an n-pass encoding. CRF is not supported by the VCU on the FPGA
and VBR would require multiple passes for better results, greatly increasing the encoding time.

Therefore, Constant Bit Rate (CBR) is used for the evaluation. The encoder finds a quality for each
frame with which the specified bit rate can be achieved. This does, however, provide a disadvantage.
There can be fluctuations in quality depending on the complexity of the current frame. Since we are
primarily interested in a direct performance comparison between the different codecs at comparable
settings, this problem is negligible and can be addressed in further work.

6.1.2 Naming scheme

As stated in Section 2.4.2, each profile is a set of key-value pairs of the pattern
profile.<name>.<property> = <value>. To distinguish between our profiles, we define
<standard>-<type>-<quality> as the naming scheme for <name> with the options listed in Ta-
ble 6.1.

Component Options Description
<standard> h264, h265 video compression standard (H.264 / H.265)
<type> cpu, fpga software or hardware implementation
<quality> 480p, 720p, 1080p, target resolution

2160p, multlow, multhigh or multi-transcoding

Table 6.1: Options defined for our naming scheme of encoding profiles

6.1.3 Encoding profile implementation

The following listings are examples of encoding profiles for single transcodes. Each example uses a
different codec and transcodes to a resolution of 1080p. The information provided in Section 6.1.1
is used for specifying these examples and all other profiles.

profile.h264-cpu-1080p.name = h264 1080p encoding on cpu

profile.h264-cpu-1080p.input = visual

profile.h264-cpu-1080p.output = visual

profile.h264-cpu-1080p.suffix = -x264-1080p.mp4

profile.h264-cpu-1080p.mimetype = video/mp4

profile.h264-cpu-1080p.ffmpeg.command = -i #{in.video.path} -c:a copy \

-c:v libx264 -profile:v high -level 40 -pix_fmt yuv420p -s:v 1920x1080 \

-b:v 4000k #{out.dir}/#{out.name}#{out.suffix}

Listing 6.2: Encoding profile for 1080p with libx264
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profile.h265-cpu-1080p.name = h265 1080p encoding on cpu

profile.h265-cpu-1080p.input = visual

profile.h265-cpu-1080p.output = visual

profile.h265-cpu-1080p.suffix = -x265-1080p.mp4

profile.h265-cpu-1080p.mimetype = video/mp4

profile.h265-cpu-1080p.ffmpeg.command = -i #{in.video.path} -c:a copy \

-c:v libx265 -profile:v main -level 40 -pix_fmt yuv420p -s:v 1920x1080 \

-b:v 4000k #{out.dir}/#{out.name}#{out.suffix}

Listing 6.3: Encoding profile for 1080p with libx265

profile.h264-fpga-1080p.name = h264 1080p encoding on fpga

profile.h264-fpga-1080p.input = visual

profile.h264-fpga-1080p.output = visual

profile.h264-fpga-1080p.suffix = -vcu-h264-1080p.mp4

profile.h264-fpga-1080p.mimetype = video/mp4

profile.h264-fpga-1080p.ffmpeg.command = -i #{in.video.path} -c:a copy \

-c:v mpsoc_vcu_h264 -profile:v high -level 40 -pix_fmt nv12 -s:v 1920x1080 \

-b:v 4000k #{out.dir}/#{out.name}#{out.suffix}

Listing 6.4: Encoding profile for 1080p with mpsoc_vcu_h264

profile.h265-fpga-1080p.name = h265 1080p encoding on fpga

profile.h265-fpga-1080p.input = visual

profile.h265-fpga-1080p.output = visual

profile.h265-fpga-1080p.suffix = -vcu-h265-1080p.mp4

profile.h265-fpga-1080p.mimetype = video/mp4

profile.h265-fpga-1080p.ffmpeg.command = -i #{in.video.path} -c:a copy \

-c:v mpsoc_vcu_hevc -profile:v main -level 40 -pix_fmt nv12 -s:v 1920x1080 \

-b:v 4000k #{out.dir}/#{out.name}#{out.suffix}

Listing 6.5: Encoding profile for 1080p with mpsoc_vcu_hevc

In addition to encoding to a single output file, FFmpeg allows the creation of multiple output files
with different options. Listing 6.6 provides an example.

profile.h264-cpu-multlow.name = multiple h264 encodings to 1080p, 720p and 480p on cpu

profile.h264-cpu-multlow.input = visual

profile.h264-cpu-multlow.output = visual

profile.h264-cpu-multlow.suffix.1080p = -1080p.mp4

profile.h264-cpu-multlow.suffix.720p = -720p.mp4

profile.h264-cpu-multlow.suffix.480p = -480p.mp4

profile.h264-cpu-multlow.mimetype = video/mp4

profile.h264-cpu-multlow.ffmpeg.command = -i #{in.video.path} \

-c:a copy -c:v libx264 -profile:v high -level 40 -pix_fmt yuv420p -s:v 1920x1080 \

-b:v 4000k #{out.dir}/#{out.name}#{out.suffix.1080p} \

-c:a copy -c:v libx264 -profile:v high -level 40 -pix_fmt yuv420p -s:v 1280x720 \

-b:v 2500k #{out.dir}/#{out.name}#{out.suffix.720p} \

-c:a copy -c:v libx264 -profile:v high -level 40 -pix_fmt yuv420p -s:v 854x480 \

-b:v 1500k #{out.dir}/#{out.name}#{out.suffix.480p}

Listing 6.6: Encoding profile for multi-transcoding to 1080p, 720p and 480p with libx264
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With the U30 acceleration card, we also have the option of simultaneous scaling to different
output resolutions using a multiscale filter. However, as shown in Table 7.3, the benchmark tests
demonstrated that there is no noticeable difference for total time (rtime). Listing 6.7 shows an
example profile that uses the multiscale filter. It specifies multiscale filtering from H.264-encoded
material to H.264-encoded material with target resolutions of 1080p, 720p, and 480p. As mentioned
earlier, a width of 852 pixels is used for 480p to make the pixel length divisible by 4.

profile.h264-fpga-multlow.ffmpeg.command = -c:v mpsoc_vcu_h264 -i <infile> \

-filter_complex "multiscale_xma=outputs=3: \

out_1_width=1920: out_1_height=1080: out_1_rate=full: \

out_2_width=1280: out_2_height=720: out_2_rate=full: \

out_3_width=852: out_3_height=480: out_3_rate=full [a][b][c]" \

-map "[a]" -c:a copy -c:v mpsoc_vcu_h264 -profile:v high -level 40 \

-b:v 4000k -f mp4 #{out.dir}/#{out.name}#{out.suffix.1080p} \

-map "[b]" -c:a copy -c:v mpsoc_vcu_h264 -profile:v high -level 40 \

-b:v 2500k -f mp4 #{out.dir}/#{out.name}#{out.suffix.720p} \

-map "[c]" -c:a copy -c:v mpsoc_vcu_h264 -profile:v high -level 40 \

-b:v 1500k -f mp4 #{out.dir}/#{out.name}#{out.suffix.480p}

Listing 6.7: FFmpeg command formulti-transcoding to 1080p, 720p and 480pwith amultiscale
filter

6.2 Workflows

For our implementation, we modified the fast testing workflow shipped with Opencast to fit our
needs. We add a configuration panel that allows the user to specify the target resolution and codec
for encoding in the web interface. For each radio button field, we specify a name (grpRes and
grpEnc) to limit the user to a single choice in each group.

<configuration_panel>

<![CDATA[

<div id="workflow-configuration">

<fieldset>

<legend>Video Quality</legend>

<ul>

<li>

<input id="flagRes480p" name="grpRes"

type="radio" class="configField" value="true" />

<label for="flagRes480p">480p</label>

</li>

<li>

<input id="flagRes720p" name="grpRes"

type="radio" class="configField" value="true" />

<label for="flagRes720p">720p</label>

</li>

<li>

<input id="flagRes1080p" name="grpRes"

type="radio" class="configField" value="true" checked="checked" />

<label for="flagRes1080p">1080p</label>

</li>
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<li>

<input id="flagRes2160p" name="grpRes"

type="radio" class="configField" value="true" />

<label for="flagRes2160p">2160p</label>

</li>

<li>

<input id="flagResMultLow" name="grpRes"

type="radio" class="configField" value="true" />

<label for="flagResMult">Multi-Transcoding to 1080p, 720p and 480p</label>

</li>

<li>

<input id="flagResMultHigh" name="grpRes"

type="radio" class="configField" value="true" />

<label for="flagResMultHigh">Multi-Transcoding to 2160p and 1080p</label>

</li>

</ul>

</fieldset>

<fieldset>

<legend>Encoder</legend>

<ul>

<li>

<input id="flagEncH264-cpu" name="grpEnc"

type="radio" class="configField" value="true" checked="checked" />

<label for="flagEncH264-sw">libx264</label>

</li>

<li>

<input id="flagEncH265-cpu" name="grpEnc"

type="radio" class="configField" value="true" />

<label for="flagEncH265-sw">libx265</label>

</li>

<li>

<input id="flagEncH264-fpga" name="grpEnc"

type="radio" class="configField" value="true" />

<label for="flagEncH264-fpga">mpsoc_vcu_h264</label>

</li>

<li>

<input id="flagEncH265-fpga" name="grpEnc"

type="radio" class="configField" value="true" />

<label for="flagEncH265-fpga">mpsoc_vcu_hevc</label>

</li>

</ul>

</fieldset>

</div>

]]>

</configuration_panel>

Listing 6.8: Configuration Panel Implementation

The implemented configuration panel visible in the web interface is presented in Figure 6.1. Before
the workflow is processed, the corresponding values can also be found in the summary (Figure
6.2).
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Figure 6.1:Web Interface Configuration Panel Figure 6.2:Web Interface Flags

To avoid problems when using other interfaces than the web interface, like the REST API, default
values are set for each option.

<operation

id="defaults"

description="Applying default values">

<configurations>

<configuration key="flagRes480p">false</configuration>

<configuration key="flagRes720p">false</configuration>

<configuration key="flagRes1080p">true</configuration>

<configuration key="flagRes2160p">false</configuration>

<configuration key="flagResMultLow">false</configuration>

<configuration key="flagResMultHigh">false</configuration>

<configuration key="flagEncH264-cpu">true</configuration>

<configuration key="flagEncH265-cpu">false</configuration>

<configuration key="flagEncH264-fpga">false</configuration>

<configuration key="flagEncH265-fpga">false</configuration>

</configurations>

</operation>

Listing 6.9: Specify default values for user variables

For the encode operations, we use a conditional to control which encoding profile is used. Since
there are six quality and four codec options, we need to specify a total of 24 encode operations to
cover all cases.
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<operation

id="encode"

fail-on-error="true"

if="${flagRes1080p} AND ${flagEncH264-cpu}"

exception-handler-workflow="partial-error"

description="Encoding videos to 1080p mp4 with H.264 (CPU)">

<configurations>

<configuration key="source-flavor">*/source</configuration>

<configuration key="target-flavor">*/preview</configuration>

<configuration key="target-tags">engage-download,engage-streaming</configuration>

<configuration key="encoding-profile">h264-cpu-1080p</configuration>

</configurations>

</operation>

Listing 6.10: Example for encoding operations with conditions

In the workflow operations overview of the web interface, all encoding operations and the selected
profile are visible. Figure 6.3 shows an example of this, limited to the 720p and 1080p qualities.
’Skipped’ is displayed next to the encoding operation if the conditional evaluates to false. Clicking
on ’Details’ displays the start and end time.

Figure 6.3: Sample of the workflow operations overview in the web interface
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7.1 Evaluation criteria

Since the core of an Opencast workflow is the encoding process and thus the FFmpeg commands
used, we will execute the commands based on the pattern mentioned in Section 6.1.1 and compare
the results. We also add the -benchmark ffmpeg flag to retrieve information about the time and
resources used. The rest of the workflow also has a cost, but should take the same amount of time
for both software and hardware solutions and thus has no major effect on the comparisons.

For our evaluation, we will consider the following criteria to compare the software and hardware
solutions:

• Computation time. How fast are the video files transcoded?

• Quality. How does the quality compare with the same settings?

• File size. How big are the processed files in comparison?

The raw data for each criterion can be found in Section 7.5. The following evaluations have been
created with it.

7.2 Selection of source material

For a meaningful comparison, both resolution and number of frames in the processed video should
match the source video in order to remove other factors from the result. We perform the transcoding
operations in Table 7.1 for each of the following cases: Software H.264, accelerator card H.264,
software H.265 and accelerator card H.265. To ensure a certain output quality, we only consider
input videos that are at least 1080p. This is representative of the 1080p30 lecture recordings at the
University of Stuttgart. In addition, all transcodes will output the same frame rate as the input. We
will only create files for which there is source material with the same target resolution and frame
rate.

Since metrics can make frame-to-frame comparisons, we have to pay attention to the files with 24
fps and the files with 30 fps separately, since metrics can make frame-to-frame comparisons.

Optimally, uncompressed reference material would be used for quality comparisons to get an
unadulterated measurement. This is not possible in this case, but since lecture recordings are already
compressed, the source videos are more representative of the use case we’re interested in. For the
evaluation, we will use the video files specified in Table 5.2 as reference material.
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Source Target
Resolution Resolution FPS
1920x1080 854x480 24
1920x1080 1280x720 24
1920x1080 1920x1080 24
3840x2160 1920x1080 30
3840x2160 3840x2160 30

Table 7.1: Selected source material and target resolutions for successive evaluation.

7.3 Interpretation of Data

7.3.1 Time measurements

The first evaluation criterion is the total time used (rtime) to transcode one input file to one or
multiple output files.

Single transcodes
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Figure 7.1: Time measurements for transcoding processes based on Table 7.2

Using the data shown in Figure 7.1, the effects of target resolution and frame rate on computation
time are visible. The larger the target resolution, the greater the time required. The same is true for
frame rate. The results show obvious differences between software and hardware codecs for the
chosen specifications. The FPGA takes on average 45% less time than x264 and 78% less time than
x265. In particular, the high computational requirements of software-implemented H.265 magnify
this difference immensely.
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Both H.264 and H.265 show similar processing times on the FPGA, with H.265 finishing slightly
faster. In contrast, the software implementation of H.265 takes much longer than the software
implementation of H.264. On average, the calculation time increases by 158% when comparing
x264 to x265.

Using the total time, another metric can be calculated to show the performance of the codecs. If we
divide the number of frames of a source video by the processing time, we get a measurement for the
performance in fps. As presented in Figure 7.2, the performance for the hardware codecs is very
close. They also have the highest performance, averaging in at 86% faster compared to x264 and
at 380% faster compared to x265. For the software codecs, x264 operates twice to three times as
fast as x265. On average, we gain a performance boost of 158% by using x264 instead of x265. In
the opposite direction, we lose an average of 60% performance with the use of x265 compared to
x264.
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Figure 7.2: Performance measurements for transcoding processes based on Table 7.2

Multi-transcodes

Looking at the numbers for multiple transcoding, we see a similar effect to the single transcoding
discussed previously. The codecs implemented via FPGA achieve the fastest result, while the
software codecs are slower. Again, x265 is far slower than x264.

Figures 7.3 and 7.4 compare three different times. First, we take the individual times from Figure
7.1 and sum them up. This gives us a reference value that can be compared to the multi-transcoding
solutions presented in Section 6.1.3. Then we ran the appropriate FFmpeg commands as in Listing
6.6 to generate multiple outputs from one input file. Lastly, the integrated multiscale filter was
applied for the FPGA to obtain a comparison between the two multi-transcoding methods.

It is clear in both figures that the time for a multi-transcode roughly equals the sum of the individual
transcoding times. We save some time because the source material only has to be read and decoded
once. Both solutions, the direct command and the use of the multiscale filter, take about the same
time, with the filter being slightly slower.
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Figure 7.3: Time measurements for multi-transcoding processes based on Table 7.3 for 1080p24
source material transcoded to 1080p24, 720p24 and 480p24

libx264 libx265 mpsoc_vcu_h264 mpsoc_vcu_hevc
0

1,000

2,000

3,000

1,
35
8

3,
23
8

65
2

61
6

1,
25
3

3,
08
6

43
9

40
6

44
8

41
1

Codec used for Multi-transcoding from 2160p30 to 2160p30 and 1080p30

Ti
m
e
in
Se
co
nd
s

Sum of single transcoding times Multi-transcode command Multiscale Filter

Figure 7.4: Time measurements for multi-transcoding processes based on Table 7.3 for 2160p30
source material transcoded to 2160p30 and 1080p30

7.3.2 Quality metrics

Several metrics have been created to evaluate the quality of a video compared to a given reference
video. Even if these metrics result in an objectively calculated value, they do not necessarily
correspond to subjective perception, which is why one should not rely on a single algorithm alone.
Here, we will introduce three metrics and then use them to evaluate the quality of the different
codecs.
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Peak Signal-to-Noise Ratio

PSNR calculates the ratio between a maximum signal and unwanted noise that affects the quality.
Intended for still pictures, it can be expanded to videos by calculating the PSNR for each frame and
then averaging them.

The core of PSNR is Mean Square Error (MSE). For a frame of the source video 𝑆 and the reference
video 𝑅 with the same size (Width𝑊 and Height 𝐻), MSE is calculated by summing the squared
difference of the values of each pixel and then averaging the results.

MSE = 1
𝑊∗𝐻 ∗∑𝑊−1

𝑥=0
∑𝐻−1
𝑦=0 [𝑆(𝑥, 𝑦) − 𝑅(𝑥, 𝑦)]2

When handling multiple color channels, MSE is calculated for each channel individually, summed
up and divided by the number of channels. With MSE and the maximum possible value of a pixel
𝑀𝐴𝑋𝐼 , we can calculate the PSNR (in dB) of a frame with the following formula:

PSNR = 10 ∗ log10(
MAX2I
MSE )

Structural Similarity Index Measure

Unlike PSNR, which is based on the MSE between two pictures to give a measurement, Structural
Similarity Index Measure (SSIM) predicts the perceived visual quality of a picture using luminance,
contrast and structure. It’s the product of the three components:

SSIM(𝑆, 𝑅) = 𝑙 (𝑆, 𝑅) ∗ 𝑐(𝑆, 𝑅) ∗ 𝑠(𝑆, 𝑅)

The components are defined with the following:

𝑙 (𝑆, 𝑅) = 2`𝑆`𝑅+𝐶1
`2
𝑆
+`2

𝑅
+𝐶1
, 𝑐(𝑆, 𝑅) = 2𝜎𝑆𝜎𝑅+𝐶2

𝜎2
𝑆
+𝜎2

𝑅
+𝐶2
, 𝑠(𝑆, 𝑅) = 𝜎𝑅𝑆+𝐶3

𝜎𝑆𝜎𝑅+𝐶3

`𝑥 is the average value and 𝜎𝑥 is the standard derivation of an input image x. 𝜎𝑥𝑦 is the covariance
between input images x and y. The positive constants 𝐶1, 𝐶2 and 𝐶3 are used to avoid null
denominators [HZ10].

Similar to PSNR, it is designed for still images and we can expand it to videos in the same manner,
by calculating the average SSIM value of all frames. The result of SSIM is a normalized value
between 0.0 and 1.0, but it is also possible to output a value in dB.
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Video Multi-Method Assessment Fusion

Video Multi-Method Assessment Fusion (VMAF) is a metric developed by Netflix in cooperation
with various universities based on a machine learning model. It is intended to provide a subjective
video quality perception ’focused on quality degradation due to compression and rescaling. VMAF
estimates the perceived quality score by computing scores from multiple quality assessment
algorithms and fusing them using a support vector machine’ [Ras17]. As stated by Rassool in the
same article, it currently uses ’three image fidelity metrics and one temporal signal’ to compute a
meaningful evaluation:

• Detail Loss Measure

• Visual Information Fidelity

• Mean Co-Located Pixel Difference

• Anti-noise Signal-to-Noise Ratio

The calculated VMAF score indicates the quality of the video compared to the reference on a scale
from 0 to 100, where 100 means the best possible quality.

Data collection

To apply the quality metrics and collect the data, FFmpeg is used again. Instead of specifying a
video codec, we pass the comparison and reference video to the appropriate filter, which calculates
the metric for us. Since we are only interested in the result in this step and not in an output file, we
also don’t let FFmpeg generate a file.

We use the following pattern for FFmpeg:

ffmpeg -i <comparison_file> -i <reference_file> \

-lavfi (psnr|ssim|libvmaf) -f null /dev/null

Listing 7.1: Pattern for FFmpeg evaluation command

While the filters for PSNR and SSIM are part of the FFmpeg package available on most distributions,
VMAF must first be installed on the system and FFmpeg must be built with support for libvmaf.

Furthermore, there was a discrepancy in the 480p24 source material. The video file should have a
resolution of 854x480 pixels. The MediaInfo for the file contains these properties:

Width: 853 pixels

Original width: 854 pixels

For comparison purposes, the video footage was scaled to 854x480 again and re-encoded with
libx264 and a CRF of 0, the highest possible target quality. It should therefore be noted that a
distorted result may be obtained for 480p.
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Results

First, we will look at the results of PSNR. From the Figure 7.5, it can be concluded that the best
result is achieved with software codecs, with x265 performing better than x264 at the same fixed
bit rate. H.265 also achieves a better result than H.264 in the FPGA implementation, although the
quality for both FPGA codecs is significantly worse according to the given numbers.
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Figure 7.5: PSNR quality measurement based on Table 7.4

Another interesting factor results from the scaling. Video material that has been transcoded to
the same resolution achieves the best quality measurements, whereas downscaled videos perform
comparatively worse when evaluated against the corresponding lower resolution source material.
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Figure 7.6: PSNR quality loss due to downscaling, based on Table 7.4
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Since the target resolution is lower than the original resolution, information from the source must be
bundled into the target frame size and is therefore partially lost. These scaling calculations may vary
depending on the implementation, which can lead to different pixel values and thus a worse PSNR.
To confirm that the discrepancy in quality was due to downsampling and not the source material,
we ran another test transcoding directly from 720p24 to 720p24 with the same settings. The results
in Figure 7.6 show that the quality is comparable to the 1080p24 to 1080p24 transcoding. This
leads to the conclusion that the PSNR quality metric is not suitable for a direct quality comparison
of downscaled material against material with the same source and target resolution. However, it still
gives us an indication of the quality of the different codecs. This also applies to the other metrics
like SSIM.

The results for the SSIM metric in Figure 7.7 look similar to PSNR. The quality difference between
x264 and x265 is smaller than the difference between the hardware codecs. For the 2160p30 source
video, the transcoded and downscaled 1080p30 video achieves a similar quality to the transcoded
2160p30 video. Again, the H.265-based codecs deliver better results than the H.264 codecs at the
same setting, with the best results coming from the x265 software codec.
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Figure 7.7: SSIM quality measurement based on Tables 7.5 and 7.6

Because VMAF was designed as a measure of subjective perception of video quality, the rating
is different from the other two metrics used. VMAF also rates the worst quality at 480p24 and
720p24 in general, but the values for the same codec at different resolutions are closer together in
Figure 7.8. Like with SSIM, the quality difference between software H.264 and H.265 is much
smaller than the difference between the equivalent hardware codecs. Interestingly, transcoding from
2160p30 to 2160p30 with the hardware-based H.264 codec yields the worst result. It’s even worse
than the hardware-based H.264 transcoding for 480p and 720p. While the other metrics also rated
this comparison low, VMAF delivered the worst rating.
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Figure 7.8: VMAF quality measurement based on Table 7.7

7.3.3 Assumptions on Power Usage

Because we used AWS to implement our solution, we do not have access to the hardware and
cannot make accurate statements about power consumption. Virtualization also means that several
customers can share a server, further reducing the consumption per customer as well.

Nevertheless, we can make assumptions about the power consumption. Assuming that power
consumption increases proportionally to the run time, power consumption estimations should be
derivable from the time evaluation in Section 7.3.1.

In reality, the power consumption of the FPGA codecs will be much lower than with the software
implementations. This is because software codecs perform the reading and processing of the video
file on the CPU, resulting in a high load. With the hardware implementation, the server deals with
reading, decoding and writing, while the most complex part, the encoding, takes place on the FPGA.
If we look at the benchmarks from Tables 7.2 and 7.3 and consider the time the process spends
in user space (utime) and kernel space(stime), the results for the FPGA are much lower than the
software codecs. One can also outsource the decoding to the FPGA as well, however, the results of
Table 7.3 have shown that it has little influence on the total time.

Xilinx specifies a typical power consumption of 18-25 W for the U30 Accelerator Card, while
modern CPUs can easily reach a multiple of that. For the processor in question in our AWS EC2
VT1 instance, Intel quotes a Thermal Design Power (TDP) of 210 W for its P-8259CL. The TDP
is not a measurement for the actual power usage under load, but an indicator for the maximum
heat development of a computer component. Hennessy and Patterson claims that the peak power
consumption is ’often 1.5 times higher’ than the TDP [HP11].
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7.3.4 File size

Thanks to the use of comparable commands with CBR, the file size achieved from different codecs
is almost identical for our evaluation, as seen in Table 7.8. The FPGA-generated video streams
are usually a few MiB smaller, but the impact on the overall file size is small enough to be not
relevant.

With the use of other quality settings, especially CRF, it is likely that there could be different results.
We cannot confirm this, since CRF is not supported by the FPGA.

7.4 Discussion

For the comparison between the software implementation and the FPGA, we established various
criteria and metrics to obtain the above results. To conclude the evaluation, we create a graph
with the collected data to plot encoding profiles based on performance and quality (Figure 7.9).
The performance in FPS is lower than in the reference Figure 3.2 because our evaluation is a real
experiment while the reference states the total performance possible. In addition, it should be noted
that PSNR is worse for downscaled material. Because of this, the individual score regarding quality
can only be compared within appropriate groups, but in these groups, the ratio is comparable in
each case. Nevertheless, our conclusion finds that the FPGA implementation is comparable to GPU
solutions.

Similar to the existing GPU based solutions in Chapter 3, we gain speed by sacrificing quality.
Overall, we found that the used FPGA is far more efficient than the software implementation for
both standards. In addition, while there is a strong discrepancy between the computation times of
H.264 and H.265 in the software implementation, both standards are computed in a similar time
using the FPGA. While the performance of the software codecs also falls below the frame rate of
the target video at higher resolutions, the performance of the hardware codecs was always above the
frame rate. This implies that the FPGA is suitable for real-time transcoding at higher resolutions.

In terms of quality, H.265 achieves higher quality than H.264 with the same target parameters. The
software codecs achieve higher quality overall than the FPGA codecs, which was confirmed by all
quality metrics used. Transcodings with identical source and target resolutions produced the best
quality scores compared to downscaled target video files.

In addition to speed, power consumption is also a significant advantage of an FPGA accelerator
card over a CPU or dedicated GPU. As shown in Section 7.3.3, using the U30 accelerator card
results in a much lower power consumption in comparison to using the processor. Even consumer
processors are often specified with 65 W TDP or more, which is still worse than the typical power
consumption of the U30.

On the other hand, if a GPU is used for transcoding, the total power consumption looks even worse.
It is not uncommon for modern GPUs to consume 150 W or more. Nvidia, for example, specifies a
power consumption of 320 W for an RTX 3080 alone. Thanks to NVENC, the power consumption
of the encoding process does not correspond to full load, but it should not be underestimated.
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Figure 7.9: Performance evaluation of the different codecs based on single encodes and PSNR for
the given target resolutions
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7.5 Raw Data

This section contains the raw data collected during the evaluation step.

7.5.1 Encoding benchmarks

Single Encodes

utime, stime, rtime and maxrss are retrieved with the benchmark flag. Performance is calculated
by dividing the amount of frames (14315 for 1080p24 source material, 19038 for 2160p30 source
material) by the rtime, rounded to two digits after the delimiter.

Codec utime (s) stime (s) rtime (s) maxrss (kB) Performance (fps)
1080p24 to 480p24

libx264 729.725 7.454 94.552 340640 151.40
libx265 1213.939 10.969 284.878 353116 50.26

mpsoc_vcu_h264 134.929 1.513 55.833 155156 256.39
mpsoc_vcu_hevc 134.062 1.750 55.334 155904 258.70

1080p24 to 720p24
libx264 1441.894 13.062 138.124 585904 103.64
libx265 2546.329 21.372 405.365 484132 35.32

mpsoc_vcu_h264 130.669 1.882 74.728 162636 191.56
mpsoc_vcu_hevc 131.916 1.780 73.188 163044 195.59

1080p24 to 1080p24
libx264 2608.220 19.053 249.524 1016084 57.37
libx265 5457.986 27.416 608.212 742712 23.54

mpsoc_vcu_h264 97.870 2.269 158.547 176648 90.29
mpsoc_vcu_hevc 98.481 2.391 153.315 176500 93.37

2160p30 to 1080p30
libx264 4184.173 24.334 382.109 1372368 49.82
libx265 7288.212 35.706 774.817 1099472 24.57

mpsoc_vcu_h264 707.442 3.628 216.419 528820 87.97
mpsoc_vcu_hevc 715.004 3.911 210.844 528544 90.29

2160p30 to 2160p30
libx264 11017.833 52.295 975.683 3530696 19.51
libx265 23007.269 49.904 2462.973 2439336 7.73

mpsoc_vcu_h264 579.131 5.050 435.537 605112 43.71
mpsoc_vcu_hevc 579.017 5.623 405.559 607004 46.94

Table 7.2: Time measurements for single-transcoding processess
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Multiple Encodes

Codec utime (s) stime (s) rtime (s) maxrss (kB) Performance (fps)
Direct Multi-transcode from 1080p24 to 1080p24, 720p24 and 480p24
libx264 4833.889 29.229 416.757 1612368 34.35
libx265 10186.023 51.357 917.484 1233936 15.60

mpsoc_vcu_h264 191.122 4.851 264.700 207136 54.08
mpsoc_vcu_hevc 190.847 4.818 255.810 207712 55.96
Multi-transcode with Multiscale filter from 1080p24 to 1080p24, 720p24 and 480p24
mpsoc_vcu_h264 5.751 6.468 264.770 139636 54.07
mpsoc_vcu_hevc 5.230 6.716 255.969 139900 55.92

Direct Multi-transcode from 2160p30 to 2160p30 and 1080p30
libx264 14678.454 55.027 1252.868 4386716 15.20
libx265 30180.522 77.513 3086.122 3016584 6.17

mpsoc_vcu_h264 737.500 7.235 438.870 637868 43.38
mpsoc_vcu_hevc 741.064 7.153 405.997 638472 46.89

Multi-transcode with Multiscale filter from 2160p30 to 2160p30 and 1080p30
mpsoc_vcu_h264 6.078 8.014 448.151 399108 42.48
mpsoc_vcu_hevc 6.277 10.011 411.241 653052 46.39

Table 7.3: Time measurements for Multi-transcoding processess
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7.5.2 PSNR

Codec Y U V Avg. Min
1080p24 to 480p24

libx264 37.687553 42.821806 44.841505 38.937732 28.423233
libx265 37.727176 42.811344 44.880770 38.973909 28.260874

mpsoc_vcu_h264 36.555473 42.104468 44.224241 37.853652 27.535665
mpsoc_vcu_hevc 36.971303 42.399126 44.396965 38.252210 27.945212

1080p24 to 720p24
libx264 37.446004 43.513285 45.374139 38.784646 28.288207
libx265 37.606806 43.579765 45.494667 38.938625 28.171831

mpsoc_vcu_h264 36.336872 42.699577 44.670222 37.705784 23.859743
mpsoc_vcu_hevc 36.909342 43.159677 44.989729 38.263537 25.827590

1080p24 to 1080p24
libx264 44.528372 48.620556 49.708389 45.595255 36.018695
libx265 45.371193 49.043310 50.064713 46.368727 37.552717

mpsoc_vcu_h264 39.949648 45.311504 47.069150 41.213480 25.305870
mpsoc_vcu_hevc 41.872720 46.928513 48.238236 43.080705 26.748632

2160p30 to 1080p30
libx264 40.590604 47.579397 48.184075 41.963246 18.779636
libx265 41.095669 47.382357 48.007439 42.404561 18.780208

mpsoc_vcu_h264 37.718625 45.057756 46.314381 39.142575 18.779636
mpsoc_vcu_hevc 38.305434 45.928853 46.789579 39.737525 8.907356

2160p30 to 2160p30
libx264 44.201368 49.210669 50.408853 45.397976 34.792628
libx265 45.968877 49.625499 50.662781 46.965040 35.546271

mpsoc_vcu_h264 38.145638 45.302095 46.965455 39.568604 24.887167
mpsoc_vcu_hevc 40.146732 47.113676 48.395311 41.542630 8.907356

Additional: 720p24 to 720p24
libx264 44.500842 48.706221 49.685480 45.577313 37.094844
libx265 45.220993 48.876444 49.855594 46.212806 37.087479

mpsoc_vcu_h264 39.931105 45.125305 46.740647 41.170014 23.214672
mpsoc_vcu_hevc 41.418636 46.670774 47.916134 42.646466 26.116939

Table 7.4: PSNR quality comparison
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7.5.3 SSIM

Codec Y U V All
1080p24 to 480p24

libx264 0.982298 0.979624 0.983620 0.982073
(17.519835) (16.908834) (17.856859) (17.464893)

libx265 0.983047 0.979709 0.983902 0.982633
(17.707503) (16.927066) (17.932209) (17.602789)

mpsoc_vcu_h264 0.976425 0.975565 0.981170 0.977073
(16.275474) (16.119878) (17.251557) (16.396441)

mpsoc_vcu_hevc 0.978592 0.977390 0.981829 0.978931
(16.694243) (16.456929) (17.406294) (16.763604)

1080p24 to 720p24
libx264 0.980869 0.980304 0.984349 0.981355

(17.182652) (17.056311) (18.054559) (17.294377)
libx265 0.981997 0.980929 0.985069 0.982331

(17.446557) (17.196369) (18.259024) (17.527898)
mpsoc_vcu_h264 0.973374 0.976223 0.981903 0.975271

(15.746948) (16.238479) (17.424027) (16.067847)
mpsoc_vcu_hevc 0.977355 0.978674 0.983030 0.978521

(16.450352) (16.710813) (17.703294) (16.679850)
1080p24 to 1080p24

libx264 0.990193 0.992186 0.992928 0.990981
(20.084506) (21.071272) (21.504734) (20.448356)

libx265 0.990678 0.992630 0.993339 0.991447
(20.304783) (21.325544) (21.764574) (20.678682)

mpsoc_vcu_h264 0.979300 0.985197 0.988466 0.981810
(16.840268) (18.296451) (19.380022) (17.401752)

mpsoc_vcu_hevc 0.984492 0.989259 0.990696 0.986320
(18.094377) (19.689411) (20.313451) (18.639257)

Table 7.5: SSIM quality comparison for material with 24 fps
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Codec Y U V All
2160p30 to 1080p30

libx264 0.986455 0.990322 0.990922 0.987844
(18.682195) (20.142125) (20.419947) (19.152072)

libx265 0.987401 0.989982 0.990712 0.988383
(18.996778) (19.992107) (20.320631) (19.349141)

mpsoc_vcu_h264 0.975129 0.983976 0.986731 0.978537
(16.043122) (17.952284) (18.771539) (16.683169)

mpsoc_vcu_hevc 0.980489 0.986378 0.987867 0.982700
(17.097151) (18.657542) (19.160165) (17.619524)

2160p30 to 2160p30
libx264 0.989465 0.992699 0.993757 0.990719

(19.773755) (21.365911) (22.046214) (20.324280)
libx265 0.991270 0.993080 0.993948 0.992018

(20.589729) (21.598888) (22.180677) (20.978756)
mpsoc_vcu_h264 0.971012 0.985092 0.988782 0.976320

(15.377844) (18.265668) (19.500728) (16.256248)
mpsoc_vcu_hevc 0.982609 0.989056 0.991006 0.985083

(17.596650) (19.608083) (20.460234) (18.263069)

Table 7.6: SSIM quality comparison for material with 30 fps
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7.5.4 VMAF

Codec VMAF Score Codec VMAF Score
1080p24 to 480p24

libx264 93.633924 libx265 93.778391
mpsoc_vcu_h264 92.093309 mpsoc_vcu_hevc 92.839588

1080p24 to 720p24
libx264 91.323754 libx265 91.491407

mpsoc_vcu_h264 89.333610 mpsoc_vcu_hevc 90.612638
1080p24 to 1080p24

libx264 96.707754 libx265 96.963690
mpsoc_vcu_h264 93.296022 mpsoc_vcu_hevc 95.458523

2160p30 to 1080p30
libx264 95.540954 libx265 95.821304

mpsoc_vcu_h264 91.631161 mpsoc_vcu_hevc 94.007749
2160p30 to 2160p30

libx264 95.138342 libx265 96.322726
mpsoc_vcu_h264 85.526580 mpsoc_vcu_hevc 92.513364

Table 7.7: VMAF quality comparison

7.5.5 Video Stream Size

Codec Video Stream Size Codec Video Stream Size
1080p24 to 480p24

libx264 107 MiB (77%) libx265 106 MiB (77%)
mpsoc_vcu_h264 106 MiB (77%) mpsoc_vcu_hevc 105 MiB (77%)

1080p24 to 720p24
libx264 178 MiB (85%) libx265 176 MiB (85%)

mpsoc_vcu_h264 177 MiB (85%) mpsoc_vcu_hevc 176 MiB (85%)
1080p24 to 1080p24

libx264 284 MiB (90%) libx265 284 MiB (90%)
mpsoc_vcu_h264 282 MiB (90%) mpsoc_vcu_hevc 283 MiB (90%)

2160p30 to 1080p30
libx264 302 MiB (92%) libx265 301 MiB (92%)

mpsoc_vcu_h264 296 MiB (92%) mpsoc_vcu_hevc 295 MiB (92%)
2160p30 to 2160p30

libx264 521 MiB (95%) libx265 527 MiB (96%)
mpsoc_vcu_h264 521 MiB (96%) mpsoc_vcu_hevc 509 MiB (95%)

Table 7.8: Video stream size and percentage of total File Size
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8 Conclusion and Outlook

The goal of this work was to find a way to integrate an FPGA-based accelerator card into an Opencast
workflow to enable more efficient transcoding of video source material using current state-of-the-art
video compression standards, and to evaluate this solution by comparing it to a purely CPU-based
workflow using several metrics. Thanks to Xilinx’ efforts, integrating the FPGA accelerator card is
as easy as can be. All one has to do is install the manufacturer’s appropriate drivers and tools, and
then select the implemented video codec. A version of FFmpeg is also provided which already
has the hardware codecs incorporated, making the effort required from the end user as small as
possible.

The evaluation shows that significantly higher performance can be achieved with the FPGA
at comparable settings, especially when using H.265. Furthermore, the power consumption
is comparatively low compared to both, CPU and GPU solutions. Nevertheless, the FPGA
implementation does come with disadvantages. For one, it does not come with the range of
functionality provided by the software solution. Additionally, the software codecs produced higher
quality output than the hardware codecs according to the quality metrics we used.

To achieve even better performance, more research can be performed.

On the video compression standards side, new standards can potentially achieve more efficient
compression. Different approaches, some more common than others, already exist. As a successor
to H.264 and H.265, the H.266 standard, also known as Versatile Video Coding, was published
in 2020. This standard was not yet relevant enough to have a market share worth mentioning in
2021 according to the Bitmovin Video Developer Report [Bit21]. In the same report, the AV1 and
VP9 video standards are also ahead of the curve when it comes to projected use in 2022. Provided
there are efficient hardware implementations, these standards can also be worthwhile solutions for
accelerating video transcoding.

On the other hand, several improvements can bemade to the hardware accelerators. More standards
can be implemented to achieve a greater variety of codecs. Additionally, current implementations
can be further improved by increasing performance, increasing output quality or reducing power
consumption.

For the solution implemented in this work, the quality of the individual encoding profiles can be
further improved by using FFmpeg commands optimized for the individual codecs. While we have
used comparable commands for evaluation here, various options like CRF can be used to maintain a
quality level rather than relying on limiting the bit rate of the software codecs.
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