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Basic Notation and Conventions
Numbers, sets, basic things

Notation Explanation
N, N0 N := {1, 2, 3, ...} denotes the set of natural numbers and N0 := N ∪ {0}.

Z,R,C Z, R, C denote the set of integers, real and complex numbers, respectively.

R+, R− R+ := (0,∞) and R− := (−∞, 0).

δab, δ(·) The Kronecker delta is defined as δab = 1 if a = b and δab = 0 otherwise.
This should not be confused with the δ-distribution, which is denoted by
δ(·) (without index). The letter δ is also used to denote (small) positive
numbers.

x,M For x ∈ Cd, d ∈ N, we denote by x ∈ Cd the complex conjugate of x,
while for sets M ⊆ Rd we denote by M the closure of M .

x · y, x2, |x| For x = (xi)di=1, y = (yi)di=1 ∈ Cd, d ∈ N, we define x · y := ∑d
i=1 xiyi,

x2 := x · x and |x| := (x · x)1/2.

Br(x) Open ball of radius r > 0 centered at x ∈ Rd:Br(x) := {y ∈ Rd | |y−x| <r}.

O(·), o(·) Landau symbols (Big-O and little-o notation).

Hilbert spaces and operators
Notation Explanation

L (H1,H2) For two (complex) Hilbert spaces H1, H2 with norms ∥ · ∥i, i = 1, 2,
the space of all bounded linear operators S : H1 → H2 is denoted by
L (H1,H2). This is a Banach space w.r.t. the operator norm ∥S∥ :=
supψ∈H1\{0}∥Sψ∥2/∥ψ∥1. We also write L (H1) := L (H1,H1) for short.

⟨ψ| , |ψ⟩ For a given vector ψ in some Hilbert space, ⟨ψ| and |ψ⟩ denote the bra,
respectively, ket associated with ψ.

ρ(S), σ(S) The resolvent set ρ(S) of a densely defined closed operator S is the set
of all z ∈ C for which S+z :D(S) ⊆ H → H is a bijection. This differs
by a minus sign from the conventional definition. The spectrum σ(S) is
defined as usual, which means that σ(S) is the complement of −ρ(S).

KerS The kernel of a given operator S: KerS := {ψ ∈ D(S) |Sψ = 0}.

RanS The range of a given operator S: RanS := {Sψ |ψ ∈ D(S)}.

S∗ The adjoint of a given densely defined operator S.

ψn ⇀ ψ Weak convergence (of ψn towards ψ).

ψn → ψ Norm convergence (of ψn towards ψ).⊕ Direct sum (of Hilbert spaces).⊗ Tensor product (of Hilbert spaces or operators) or elementary tensor (of
vectors).

∥ · ∥HS Hilbert-Schmidt norm.
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Function spaces and operations on functions
In the following, Ω and M denote given open, respectively, measurable subsets of Rd, d ∈ N.

Notation Explanation
f ↾ M̃ For f : M → C and M̃ ⊆ M , the restriction (f ↾ M̃) : M̃ → C is defined

by (f ↾ M̃)(x) := f(x).

C(M) The space of all bounded and continuous functions f : M → C, equipped
with the uniform norm ∥f∥∞ := supx∈M |f(x)|.

Cn(Ω) For n ∈ N0 ∪ {∞}, Cn(Ω) denotes the space of all n-times continuously
differentiable functions f : Ω → C for which the norm ∥f∥Cn(Ω) :=∑

|α|≤n ∥∂αf∥∞ is finite (thus C0(Ω) = C(Ω)).

C0,s(Ω) The space of all f ∈C(Ω) that are Hölder continuous with exponent s∈ (0, 1]
with the norm ∥f∥C0,s(Ω) := ∥f∥∞ + supx,y∈Ω,x ̸=y |f(x) − f(y)|/|x− y|s.

supp f Suppose that f : M → C extends by zero to a function that is locally
integrable over Rd, and hence it defines a distribution Tf ∈ D′(Rd). Then
the support of f , supp f , is the intersection of M with the support of Tf
(cf. [50, Definition 10.23]). In particular, it follows that f = 0 a.e. in
M \ (supp f), and for f ∈ C(M) this is equivalent to the conventional
definition supp f = {x ∈ M | f(x) ̸= 0} ∩M .

C∞
0 (Rd) The set of all f ∈ C∞(Rd) for which supp f is a compact set in Rd.

C∞
0 (Ω) The set of all f ∈ C∞

0 (Rd) with supp f ⊆ Ω.

Lp(M) The usual Lp-space of all measurable functions f : M → C for which
the norm ∥f∥Lp(M) := (

∫
M |f(x)|p dx)1/p if 1 ≤ p < ∞, or ∥f∥L∞(M) :=

ess supx∈M |f(x)| if p = ∞, is finite (for f : M → Cm, m ≥ 2, the norm
∥f∥Lp(M) is defined analogously). We note that L2(M) is a Hilbert space
with scalar product ⟨f | g⟩ :=

∫
M f(x)g(x) dx. In the case M = Rd we also

write ∥ · ∥Lp , or just ∥ · ∥ if p = 2, instead of ∥ · ∥Lp(Rd).

f̂ For f ∈ L1(Rd) the Fourier transform f̂ : Rd → C is defined as f̂(x) :=
(2π)−d/2 ∫

Rd f(y) exp(−ix·y) dy. By the Plancherel theorem, the linear map
L1 ∩ L2(Rd) ∋ f → f̂ extends to a unitary operator in L2(Rd). We also
write f̂ when the Fourier transform is only taken w.r.t. some coordinates.

Hs(Rd) (s ≥ 0) The usual Sobolev space of order s: the Hilbert space of all f ∈ L2(Rd) for
which the norm ∥f∥Hs := (

∫
Rd(1 + |k|2)s|f̂(k)|2 dk)1/2 is finite.

Hn(Ω) (n ∈ N0) The usual Sobolev space of order n over Ω: The set of all f ∈ L2(Ω) for
which all weak partial derivatives ∂αf , |α| ≤ n, exist and belong to L2(Ω)
becomes a Hilbert space with the norm ∥f∥Hn(Ω) := (∑|α|≤n ∥∂αf∥2

L2(Ω))1/2

(in particular, H0(Ω) = L2(Ω)). We note that for Ω = Rd this norm is
equivalent to the previously defined one.
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Abstract
This thesis is devoted to the approximation of contact interactions by means of short-range
interactions in quantum mechanics. Contact interactions are also called zero-range interactions
or point interactions in the literature, and as these terms already suggest, they describe idealized
interactions that only appear when the particles involved are in direct contact with each other
(i.e. their spatial coordinates coincide exactly). Formally, this corresponds, for example, to the
case where the interaction potential V is replaced by a δ-potential. Contact interactions have
a long tradition in physics, going back to the early days of quantum mechanics, and can be
rigorously described with the help of mathematical methods. The mathematical construction
of a Hamilton operator with non-vanishing contact interactions is a challenging issue and, in
principle, only possible in d ≤ 3 dimensions. While the case of a single particle interacting with
an external “contact potential” has long been well-understood [6], there are still many open
problems in the N -particle case (N ≥ 2). In the case of N ≥ 2 particles in d = 2 dimensions a
physically reasonable Hamiltonian with two-body contact interactions (TMS Hamiltonian) was
first constructed by Dell’Antonio, Figari and Teta [30].

In the first (and major) part of this thesis we mathematically justify well-established models
with contact interactions in d ∈ {1, 2} that are used to describe short-range two-body interac-
tions among N ≥ 2 particles. To this end, we consider a suitable class of Schrödinger operators
Hε, ε > 0, with local rescaled two-body potentials. The rescaling in ε > 0 is chosen so that
in the limit ε → 0 the effective range of the two-body interaction tends to zero while at the
same time the strength of the interaction at the collision planes diverges at a rate that depends
on the dimension d. Our main goal is to prove, irrespective of the underlying symmetry, norm
resolvent convergence of Hε in the limit ε → 0 and to identify the limit operator H with a TMS
Hamiltonian from the literature. Besides the mathematical justification of the underlying phys-
ical model, this also provides an alternative way of constructing the Hamiltonian. In analogy
to the simpler one-particle case [6], a non-trivial renormalization of the coupling constants in
front of the two-body potentials is necessary in d ≥ 2 dimensions. The restriction that d ≤ 2 is
necessary in a certain sense because in d = 3 dimensions two closely related effects, namely the
Efimov effect and the Thomas effect, prohibit the norm resolvent convergence of Hε towards a
“non-trivial” semibounded limit operator. First, we show in d = 1, and later also in d = 2, that
Hε converges, as ε → 0, in the norm resolvent sense to a self-adjoint operator H, and in d = 1
we also obtain an asymptotic estimate for the rate of norm resolvent convergence depending on
a mild decay condition for the two-body potentials. A comparable result in d = 1 was previ-
ously only known for N ≤ 3 particles [10], and in d = 2 we thereby improve a result that was
recently obtained in connection with a certain limit in the stochastic heat equation [46]. From
the norm resolvent convergence Hε → H as ε → 0 it follows almost immediately that H fulfills
the physical minimum requirements of translational invariance, locality and boundedness from
below. In d = 1, H can be constructed directly from a closed, semibounded quadratic form,
which is a small perturbation of the quadratic form of the free operator. We characterize the
domain of H by means of a rigorous version of a well-known jump condition for the derivative
of the wave function. In d = 2, we show that H can be identified with the TMS Hamiltonian.
Both in one and two dimensions, our key to prove norm resolvent convergence is a generalized
Konno-Kuroda formula for the resolvent of Hε.

In the second part of this thesis we examine the weakness of short-range interactions among
identical fermions of equal spin in all dimensions d ≤ 3. In physics, short-range interactions in
ultracold Fermi gases are conveniently entirely neglected, i.e. the Hamiltonian H of the system
is equated with the kinetic energy operator, which is given by the negative Laplacian −∆ in

viii



appropriate units. Formally, the approximation H ≈ −∆ is usually justified as follows: The
Pauli principle implies that the wave function vanishes when the coordinates of two fermions
coincide, and consequently very short-range two-body interactions should be negligible. In the
case of pure contact interactions we give a mathematical justification for the identity H = −∆
in d ≥ 2. In one dimension, however, we give a counterexample that shows that non-vanishing
contact interactions among identical fermions of equal spin do exist. In order to obtain results
for short-range interactions of positive range, we again consider suitable Schrödinger operators
Hε, ε > 0, with rescaled two-body potentials, which are now restricted to the subspace of
antisymmetric functions. Our second major result provides a criterion that specifies when, from
the physical point of view, the approximation Hε ≈ −∆ is reasonable for small enough ε > 0
and we obtain an asymptotic estimate for the approximation error in terms of ε > 0. More
precisely, it follows from our assumptions that Hε converges, as ε → 0, in the norm resolvent
sense to −∆ and we obtain an asymptotic estimate for the rate of norm resolvent convergence.
Moreover, our result is optimal in a certain sense: If one condition is only slightly violated, then
the spectrum of Hε fills the whole real line in the limit ε → 0, which is not compatible with
norm resolvent convergence towards the positive operator −∆.
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Zusammenfassung
Diese Dissertation beschäftigt sich mit der Approximation von Kontaktwechselwirkungen durch
kurzreichweitige Wechselwirkungen in der Quantenmechanik. Kontaktwechselwirkungen wer-
den in der Literatur auch als nullreichweitige Wechselwirkungen oder Punktwechselwirkungen
bezeichnet, und wie diese Bezeichnungen bereits nahelegen, beschreiben sie idealisierte Wech-
selwirkungen, die nur dann in Erscheinung treten, wenn die beteiligten Teilchen in direktem
Kontakt miteinander sind (d.h. ihre Ortskoordinaten sind exakt gleich). Formal entspricht
dies zum Beispiel dem Fall, wo das Wechselwirkungspotential V durch ein δ-Potential ersetzt
wird. Kontaktwechselwirkungen haben eine lange Tradition in der Physik, die bis zu den An-
fängen der Quantenmechanik zurückreicht, und lassen sich rigoros mit Methoden der Mathe-
matik beschreiben. Die mathematische Konstruktion eines Hamilton-Operators mit nichtver-
schwindenden Kontaktwechselwirkungen ist eine anspruchsvolle Angelegenheit und prinzipiell
nur in d ≤ 3 Dimensionen möglich. Während der Fall eines einzelnen Teilchens in einem exter-
nen „Kontaktpotential“ seit langem gut verstanden ist [6], gibt es imN -Teilchenfall (N ≥ 2) noch
viele offene Fragen. Im Fall von N ≥ 2 Teilchen in d = 2 Dimensionen wurde ein physikalisch
sinnvoller Hamiltonian mit Zweiteilchen-Kontaktwechselwirkungen (TMS Hamiltonian) zuerst
von Dell’Antonio, Figari und Teta [30] konstruiert.

Im ersten (und größeren) Teil dieser Dissertation geben wir in d ∈ {1, 2} Dimensionen
eine mathematische Rechtfertigung für bewährte Modelle mit Kontaktwechselwirkungen, die zur
Beschreibung von kurzreichweitigen Zweiteilchen-Wechselwirkungen zwischen N ≥ 2 Teilchen
verwendet werden. Hierzu betrachten wir eine geeignete Klasse von Schrödinger-Operatoren Hε,
ε > 0, mit lokalen reskalierten Zweiteilchen-Potentialen. Die Reskalierung in ε > 0 ist dabei so
gewählt, dass im Limes ε → 0 die effektive Reichweite der Zweiteilchen-Wechselwirkung gegen
Null geht während gleichzeitig die Stärke der Zweiteilchen-Wechselwirkung an den Kollisions-
ebenen mit einer von der Dimension d abhängigen Rate divergiert. Unser Hauptziel ist es, un-
abhängig von der zugrundeliegenden Symmetrie, Normresolventenkonvergenz von Hε im Limes
ε → 0 zu beweisen, und den Grenzoperator H mit einem in der Literatur bereits bekannten TMS
Hamiltonian zu identifizieren. Neben der mathematischen Rechtfertigung des zugrundeliegenden
physikalischen Modells liefert dies auch einen alternativen Weg zur Konstruktion des Hamilto-
nians. In Analogie zum einfacheren Einteilchen-Fall [6] ist dabei in d ≥ 2 Dimensionen eine
nichttriviale Renormalisierung der Kopplungskonstanten vor den Zweiteilchen-Potentialen er-
forderlich. Die Einschränkung d ≤ 2 ist in gewisser Weise notwendig, da in d = 3 Dimensionen
zwei eng miteinander verwandte Effekte, nämlich der Efimov-Effekt und der Thomas-Effekt,
die Normresolventenkonvergenz von Hε gegen einen „nichttrivialen“, nach unten beschränkten
Grenzoperator verbieten. Zunächst zeigen wir in d = 1 und später auch in d = 2, dass Hε für
ε → 0 im Normresolventensinn gegen einen selbstadjungierten Operator H konvergiert, wobei
wir in d = 1 zusätzlich eine asymptotische Abschätzung für die Rate der Normresolventenkonver-
genz in Abhängigkeit einer milden Abfallbedingung an die Zweiteilchen-Potentiale bekommen.
Ein vergleichbares Resultat in d = 1 war vorher nur für N ≤ 3 Teilchen bekannt [10], und in
d = 2 verbessern wir damit ein Resultat, das kürzlich im Zusammenhang mit einem gewissen
Limes in der stochastischen Wärmeleitungsgleichung erzielt wurde [46]. Aus der Normresol-
ventenkonvergenz Hε → H für ε → 0 folgt fast unmittelbar, dass H den physikalischen Min-
destanforderungen der Translationsinvarianz, Lokalität und Beschränktheit nach unten genügt.
In d = 1 kann H direkt mittels einer abgeschlossenen, nach unten beschränkten quadratischen
Form konstruiert werden, die eine kleine Störung der quadratischen Form des freien Operators
ist. Den Definitionsbereich von H charakterisieren wir mittels einer rigorosen Version einer
wohlbekannten Sprungbedingung für die Ableitung der Wellenfunktion. In d = 2 zeigen wir,
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dass H mit dem TMS Hamiltonian identifiziert werden kann. Sowohl in einer als auch in zwei Di-
mensionen ist unser Schlüssel zum Beweis von Normresolventenkonvergenz eine verallgemeinerte
Konno-Kuroda-Formel für die Resolvente von Hε.

Im zweiten Teil dieser Arbeit untersuchen wir die Schwäche von kurzreichweitigen Wechsel-
wirkungen zwischen identischen Fermionen gleichen Spins in allen Dimensionen d ≤ 3. In der
Physik werden kurzreichweitige Wechselwirkungen in ultrakalten Fermigasen meist komplett
vernachlässigt, d.h. der Hamiltonian H des Systems wird mit dem Operator der kinetischen En-
ergie gleichgesetzt, welcher in geeigneten Einheiten durch den negativen Laplace-Operator −∆
gegeben ist. Formal wird die Approximation H ≈ −∆ üblicherweise folgendermaßen gerecht-
fertigt: Das Pauli-Prinzip impliziert, dass die Wellenfunktion verschwindet sobald die Koordi-
naten zweier Fermionen übereinstimmen, und folglich sollten sehr kurzreichweitige Zweiteilchen-
Wechselwirkungen dann vernachlässigbar sein. Im Falle reiner Kontaktwechselwirkungen geben
wir in d ≥ 2 eine mathematische Begründung für die Identität H = −∆. In einer Dimension
zeigen wir dagegen mithilfe eines Gegenbeispiels, dass dann auch nichtverschwindende Kontakt-
wechselwirkungen zwischen identischen Fermionen mit gleichem Spin existieren. Um auch Aus-
sagen über kurzreichweitige Wechselwirkungen mit positiver Reichweite treffen zu können, be-
trachten wir wieder geeignete Schrödinger-Operatoren Hε, ε > 0, mit reskalierten Zweiteilchen-
Potentialen, die nun auf den Unterraum der antisymmetrischen Funktionen eingeschränkt sind.
Unser zweites Hauptresultat liefert ein Kriterium dafür, wann die Approximation Hε ≈ −∆
für hinreichend kleine ε > 0 physikalisch sinnvoll ist und wir erhalten eine asymptotische Ab-
schätzung für den Approximationsfehler in Abhängigkeit von ε > 0. Genauer folgt aus unseren
Annahmen, dass Hε für ε → 0 im Normresolventensinn gegen −∆ konvergiert und wir bekom-
men eine asymptotische Abschätzung für die Rate der Normresolventenkonvergenz. Darüber
hinaus ist unser Resultat in gewisser Weise optimal: Wenn eine Bedingung nur minimal verletzt
ist, dann füllt das Spektrum von Hε im Limes ε → 0 die ganze reelle Gerade aus, was nicht mit
der Normresolventenkonvergenz gegen den positiven Operator −∆ vereinbar ist.
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1 Introduction
Contact interactions, which are also known as zero-range interactions or point interactions, have
been studied extensively in the literature, both in mathematics and physics. Due to the huge
amount of literature, we can not cover all aspects of contact interactions in this introduction
and we emphasize that the list of given references is also selective. First, we briefly discuss
the simplest case of a single particle that interacts with an external “contact potential” located
at the origin, which has long been well-understood and which is analyzed in great detail in
the monograph [6]. Afterwards, in Section 1.2, we turn to the much less understood case of
N -particle Hamiltonians with contact interactions. The main intention of Sections 1.1 and 1.2
is to put the new results that are presented in Section 1.3 into a broader perspective.

1.1 Contact interactions in the one-particle case
The interaction of a non-relativistic, spinless quantum particle with an external δ-potential
located at 0 ∈ Rd, d ∈ N, can be described formally by the operator

−∆ + αδ(·), α ∈ R, (1.1)

where, for the sake of simplicity, we have chosen m = 1 for the mass and ℏ =
√

2 for the
reduced Planck constant, so that the kinetic energy operator is given by the negative Laplacian
−∆. The parameter α ∈ R determines the sign and the strength of the interaction. If, in
d = 1 dimension, one replaces the interaction potential αδ(·) by a whole chain of external δ-
potentials α∑y∈Z δ( · − y), α > 0, then one obtains the model that has been investigated by
Kronig and Penney in 1931 in order to describe the movement of a non-relativistic electron
through a stationary crystal lattice [29]. Historically, the Kronig–Penney model was the first
influential model of quantum mechanics, where short-range interactions are modelled by idealized
interactions of zero range, and today it has become a standard model in solid-state physics due
to its simplicity and explicit solvability. A few years after Kronig and Penney, Bethe and Peierls
[14] and Thomas [78] considered operators of the type (1.1) in d = 3 dimensions to describe the
short-range interactions among a proton and a neutron in the deuteron (after separation of the
center of mass motion). Moreover, the work of Thomas motivated many further investigations on
the model of three particles interacting via two-body contact interactions, which are described
in more detail in Section 1.2.2, below.

However, from the mathematical point of view, the expression (1.1) is ill-defined because a
δ-distribution does not define an operator in L2(Rd). The rigorous definition of an operator of
the type (1.1) in d = 3 dimensions goes back to Berezin and Faddeev [13], who have constructed
all self-adjoint extensions of the densely defined symmetric operator

h0 = −∆ ↾ C∞
0 (Rd \ {0}) (1.2)

with the help of Krein’s theory of self-adjoint extensions. Apart from the point x = 0, such
self-adjoint extensions agree with the free operator −∆, and hence they describe an idealized
interaction of zero range that is localized at x = 0. This explains why these interactions
are called contact interactions, zero-range interactions or point interactions in the literature.
Moreover, the so-called Fermi pseudopotentials, which have been introduced by Enrico Fermi
in the context of his investigation of the neutron movement through hydrogen substances [35],
were later also identified as contact interactions in d ≤ 3 dimensions [45]. It is known that the
deficiency indices n± := dim Ker(h∗

0 ∓ i) are given by n+ = n− = 2 if d = 1, n+ = n− = 1 if
d ∈ {2, 3} and n+ = n− = 0 if d ≥ 4 [6]. By von Neumann’s theory of self-adjoint extensions
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(see, e.g., [69, Chapter X.1]), this means that non-trivial self-adjoint extensions only exist in
d ≤ 3 dimensions, while h0 is essentially self-adjoint in d ≥ 4 and hence the only self-adjoint
extension is the Friedrichs extension −∆ : H2(Rd) → L2(Rd). More precisely, there exists a
four-parameter family of self-adjoint extensions in d = 1 (apart from δ-interactions, the so-
called δ′-interactions are also notable), while in d ∈ {2, 3} there is only a one-parameter family
of self-adjoint extensions [6]. In d ∈ {2, 3} all contact interactions are attractive, while there also
exist repulsive contact interactions in d = 1 [6]. A rigorous and particularly simple construction
of attractive contact interactions in d ≤ 3 uses a regularization in momentum space that is
obtained by introducing an ultraviolet cutoff. That is, one considers a sequence of operators of
the form hn = −∆ − gn |δn⟩ ⟨δn|, n ∈ N, where δn ∈ L2(Rd) is defined by δ̂n(p) := (2π)−d/2 if
|p| ≤ n and δ̂n(p) := 0 if |p| > n. In particular, this implies that φ(0) = limn→∞ ⟨δn |φ⟩ for all
φ ∈ C∞

0 (Rd). The coupling constant gn > 0 is chosen in such a way that hn has exactly one
simple eigenvalue EB < 0 (the binding energy), which does not depend on n ∈ N. Then one
can show that the sequence hn, n ∈ N, has a limit in the norm resolvent sense that describes an
attractive contact interaction at x = 0 [44, 54].

Since the main subject of this thesis is the approximation of contact interactions by means
of Schrödinger operators with local short-range potentials (especially in the N -particle case,
N ≥ 2), we describe this alternative and very natural approach in more detail in Section 1.1.1,
below. Thereby, we already introduce methods and notation that are generalized in the more
challenging N -particle case. In the literature this approach is discussed, e.g., in [7] (d = 1),
[5] (d = 2), [4, 8, 19] (d = 3), as well as in [6] in all dimensions d ≤ 3. For a treatment with
methods of non-standard analysis we refer to the references in the introduction of [6]. The most
important properties of the so defined contact interactions are summarized in Section 1.1.2.

1.1.1 Approximation by Schrödinger operators with short-range potentials

In the Hilbert space L2(Rd), d ≤ 3, we consider Schrödinger operators of the form

hε := −∆ + gεVε, ε > 0, (1.3)

where Vε(x) := ε−dV (x/ε) for a fixed potential V : Rd → R and gε ∈ R plays the role of a
coupling constant. For simplicity, we assume that V ∈ L1 ∩ L2(Rd) has compact support. In
particular, this implies that hε defines a self-adjoint operator on D(hε) = H2(Rd). For hε to
have a limit in the norm resolvent sense as ε → 0, a dimension-dependent renormalization of gε
is necessary. To explain this, we first note that the unitary rescaling Uε ∈ L (L2(Rd)), ε > 0,
with (Uεψ)(x) := εd/2ψ(εx) allows us to rewrite hε as

hε = ε−2U∗
ε (−∆ + gεε

2−dV )Uε. (1.4)

As norm resolvent convergence implies the convergence of the associated spectra (cf. Proposition
2.3, below), a negative eigenvalue EB < 0 can only arise in the limit ε → 0 if −∆ + gεε

2−dV has
an eigenvalue E(ε) that behaves asymptotically, as ε → 0, like E(ε) = ε2EB + o(ε2). It is well-
known in the spectral theory of Schrödinger operators what this means for gε and V [48, 74]. In
the simplest case d = 1, it follows from [74, Theorem 2.5] that such an eigenvalue λ1(ε) exists if
and only if g = limε→0 gε exists and α := g

∫
V (x) dx < 0. The resulting binding energy is then

EB = −α2/4 < 0. If d = 2 and
∫
V (x) dx ̸= 0, then it follows from [74, Theorem 3.4] that for the

existence of such an eigenvalue E(ε) it is necessary that, as ε → 0, 1/gε = a ln(ε)+o(| ln(ε)|) with
a =

∫
V (x) dx/(2π) ̸= 0. However, the more profound analysis in [5] shows that the resulting

eigenvalue essentially depends on the next order O(1), which means that we have to assume,
more precisely, that 1/gε = a ln(ε)+b+o(1) as ε → 0, where a =

∫
V (x) dx/(2π) ̸= 0 and b ∈ R.

Without restriction, we may also assume that a > 0 because hε depends on the product gεV

2



only. In the remaining case d = 3, the existence of the desired eigenvalue E(ε) is the result of a
zero-energy resonance of −∆ + V combined with the asymptotics gε = ε+ bε2 + o(ε2) for some
b < 0 [6, 48]. In summary, the asymptotics of gε is determined by

gε =


g + o(1) if d = 1,
(a ln(ε) + b+ o(1))−1 if d = 2,
ε+ bε2 + o(ε2) if d = 3,

(ε → 0) (1.5)

where a =
∫
V (x) dx/(2π) > 0 and b, g ∈ R (the choices α = g

∫
V (x) dx > 0 in d = 1,

respectively, b ≥ 0 in d = 3 lead to contact interactions with empty discrete spectrum [6]).
While we may simply choose gε = g = const. for d = 1, Eq. (1.5) shows that a non-trivial
renormalization of gε is required for d ∈ {2, 3}. Assuming that (1.5) holds, it is well-known that
hε converges, as ε → 0, in the norm resolvent sense to a self-adjoint operator that defines a
contact interaction at the origin [6]. In the following, we sketch the proof for d ∈ {1, 2} because
this serves as a good preparation for the more sophisticated N -particle case that is described
in Section 1.3. The proof for d = 3 is similar, though some additional notation and results
concerning the zero-energy resonance of −∆ + V are needed [4, 6, 8].

Let d ≤ 2 and let u, v ∈ L2(Rd) be given by

v(r) := |V (r)|1/2,

u(r) := J |V (r)|1/2, J := sgn(V ),

so that V = vu. Then, on H2(Rd),

gεVε = gεε
−dU∗

ε vuUε = A∗
εBε,

where
Aε = v ε−d/2Uε, (1.6)
Bε = gεu ε

−d/2Uε = gεJAε (1.7)

are densely defined and closed on D(Aε) = D(Bε) := {ψ ∈ L2(Rd) | vUεψ ∈ L2(Rd)}. This
allows us to rewrite hε as

hε = −∆ +A∗
εBε,

where both A∗
εBε = gεVε and A∗

εAε = |Vε| are infinitesimally (−∆)-bounded since V ∈ L2(Rd)
(see, e.g., [77, Theorem 10.2 and Lemma 6.22]). By Theorem B.1 in the appendix, this means
that a point∗ z ∈ ρ(−∆) = C \ (−∞, 0] belongs to ρ(hε) if and only if the bounded operator

1 + gεϕε(z) := 1 +Bε(−∆ + z)−1A∗
ε ∈ L (L2(Rd)) (1.8)

is invertible. Moreover, for z ∈ ρ(−∆) ∩ ρ(hε), the resolvent (hε + z)−1 can be expressed by the
Konno-Kuroda formula (see also [49])

(hε + z)−1 = (−∆ + z)−1 −
(
Aε(−∆ + z)−1

)∗
(1 + gεϕε(z))−1Bε(−∆ + z)−1. (1.9)

We are going to show that the right side of Eq. (1.9) has a limit as ε → 0, provided that
z ∈ C is chosen suitably. With the help of appropriate Sobolev estimates, it is not hard to show
that for all z ∈ C \ (−∞, 0],

Aε(−∆ + z)−1 → |v⟩ ⟨Gdz | (ε → 0) (1.10)
∗Note our convention concerning the resolvent set ρ(S) of a densely defined closed operator S. That is, ρ(S)

is the set of all z ∈ C for which S + z : D(S) ⊆ H → H is a bijection, which differs by a minus sign from the
conventional definition. The spectrum σ(S) is defined as usual, and thus σ(S) = C \ (−ρ(S)).
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in L (L2(Rd)), where

Gdz(x) = (2π)−d
∫
Rd

exp(ip · x)
p2 + z

dp

denotes the Green’s function of −∆ + z : H2(Rd) → L2(Rd) (for details we refer to Lemmas 3.8
(d = 1) and 4.3 (d = 2), below). To prove convergence of (1 + gεϕε(z))−1, a careful distinction
between the cases d = 1 and d = 2 is necessary. However, regardless of the space dimension
d ≤ 2, Eqs. (1.6)-(1.8) imply that ϕε(z) is a Hilbert-Schmidt operator with integral kernel

ϕε(z, x, x′) := u(x)Gdz(ε(x− x′)) v(x′). (1.11)

That is, (ϕε(z)ψ)(x) =
∫
ϕε(z, x, x′)ψ(x′) dx′ for all ψ ∈ L2(Rd).

For d = 1, it is well-known that

G1
z(x) = i

2k exp(ik|x|), z ∈ C \ (−∞, 0], (1.12)

where k = k(z) ∈ C is uniquely determined by k2 = −z and Im(k) > 0. Now, a direct
computation (see [6, Chapter I.3.2]) shows that

ϕε(z) → ϕ(z) := i

2k |u⟩ ⟨v| (ε → 0) (1.13)

w.r.t. Hilbert-Schmidt norm, and hence in L (L2(R)). Moreover, (1 + gϕ(z))−1 exists if and
only if α := g

∫
V (x) dx satisfies either α ≥ 0 or α < 0 and z ̸= α2/4. If this is the case, then

(1 + gϕ(z))−1 = 1 − ig

2k + iα
|u⟩ ⟨v| . (1.14)

Combining (1.9), (1.10), (1.13) and (1.14), it follows that for all z ∈ C \ (−∞, 0], z ̸= α2/4,

(hε + z)−1 → (−∆ + z)−1 − 2kα
2k + iα

|G1
z⟩ ⟨G1

z| = (h(α) + z)−1 (ε → 0), (1.15)

where the right-hand side agrees with the resolvent (h(α) + z)−1 of the self-adjoint operator
h(α) = −∆α,0 from [6, Chapter I, Theorem 3.1.1]. This shows that hε converges, as ε → 0, in the
norm resolvent sense to a well-known Hamiltonian h(α) that defines a δ-interaction of strength
α = g

∫
V (x) dx at the origin. We remark that the case α = ∞ in [6, Chapter I, Theorem 3.1.1]

corresponds to a Hamiltonian h(∞) := −∆∞,0 that realizes a Dirichlet boundary condition at
x = 0. That is, it is given by the Dirichlet Laplacian on (−∞, 0) ∪ (0,∞). As this operator does
not arise as a resolvent limit of the Schrödinger operators studied here, it will not be considered
in the following.

In d = 2 dimensions, establishing convergence of gε(1 + gεϕε(z))−1 is more subtle due to the
non-trivial renormalization of the coupling constant gε and the fact that only a series expansion
of the Green’s function G2

z is known. We only state the result here and we refer to Section 4.4.1
and [6, Chapter I.5] for details. In the notation of [6, Chapter I.5] our operator gεϕε(z) agrees
with the operator Bε(k), where −k2 = z, Im(k) > 0, λ1 = 1/a and λ2 = −b/a2. Hence, it
follows from [6, Eq. (5.61), p. 104]∗ that, for all z ∈ C \ (−∞, 0], z ̸= 4 exp(−4πα− 2γ),

gε (1 + gεϕε(z))−1 → −2π
[
ln
(
k

2i

)
+ γ + 2πα

]−1 |u⟩ ⟨v|
⟨u | v⟩2 (ε → 0), (1.16)

∗There is a typo in [6, Eq. (5.61), p. 104]: The term in braces is to be inverted.
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where γ ≈ 0.5772 denotes the Euler–Mascheroni constant, and

α := ⟨v |Lu⟩
2π ⟨u | v⟩2 − b

⟨u | v⟩
(1.17)

with the Hilbert-Schmidt operator L ∈ L (L2(R2)) that is defined in terms of the kernel

u(x) ln(|x− x′|) v(x′), x ̸= x′.

From (1.7), (1.9), (1.10) and (1.16) it follows that, as ε → 0, (hε + z)−1 → (h(α) + z)−1 for all
z ∈ C \ (−∞, 0], z ̸= 4 exp(−4πα− 2γ), where

(h(α) + z)−1 = (−∆ + z)−1 + 2π
ln (−ik/2) + γ + 2πα |G2

z⟩⟨G2
z| (1.18)

agrees with the resolvent of the self-adjoint operator h(α) = −∆α,0 from [6, Chapter I, Theorem
5.2]. This shows that hε converges, as ε → 0, in the norm resolvent sense to a well-known
Hamiltonian h(α) that defines an attractive contact interaction at the origin. We emphasize
that the asymptotics from (1.5) with a =

∫
V (x) dx/(2π) ̸= 0 is essential in d = 2 dimensions:

If
∫
V (x) dx = 0 or a ̸=

∫
V (x) dx/(2π), then the limit operator (provided it exists) is just the

Friedrichs extension −∆ ↾ H2(R2), which corresponds to the case α = ∞ in [6].
In d = 3 dimensions the situation is quite similar: By [6, Chapter I, Theorem 1.1.1], the

operator h0 = −∆ ↾ C∞
0 (R3 \ {0}) has a one-parameter family of self-adjoint extensions h(α) =

−∆α,0, α ∈ (−∞,∞], where α = ∞ corresponds to the Friedrichs extension −∆ ↾ H2(R3), and
[6, Chapter I, Theorem 1.2.5] shows that all these extensions h(α) arise as resolvent limits of
suitable Schrödinger operators hε, ε > 0.

1.1.2 Summary of characteristic properties

In the previous section we have introduced a one-parameter family h(α), α ∈ (−∞,∞], of self-
adjoint extensions of −∆ ↾ C∞

0 (Rd \ {0}) in all dimensions d ≤ 3. The operator h(α) describes
an external contact interaction located at the origin whose sign and strength is determined by
the parameter α. The essential spectrum of h(α) agrees with the non-negative half-axis [0,∞),
and in the case of an attractive interaction there is, in addition, one simple eigenvalue EB < 0
[6], which we refer to as the binding energy.

In d = 1 dimension h(α), α ∈ R, can be viewed as a rigorous version of −∆ +αδ(·). That is,
h(α) is the self-adjoint operator that is associated with the closed semibounded quadratic form

qα(ψ) := ∥ψ′∥2 + α|ψ(0)|2, ψ ∈ D(qα) = H1(R). (1.19)

Note that the right-hand side is well-defined because the embedding H1(R) ↪→ C(R) exists and
is continuous. The repulsive and attractive δ-interactions correspond to the choices α > 0 and
α < 0, respectively, while the choice α = 0 just leads to the negative Laplacian −∆ ↾ H2(R).
In the attractive case α < 0, the binding energy is given by EB = −α2/4 [6]. For d ∈ {2, 3}, a
direct interpretation of h(α), α ∈ R, as an operator of the type −∆ + αδ(·) is not possible, and
a suitable renormalization of α is indispensable [6]. This stems from the fact that a δ-potential
is not a small perturbation, in the form sense, of −∆ in d ≥ 2. In particular, functions from
H1(Rd), d ≥ 2, can have singularities and hence they do not embed into C(Rd). As already
explained in the previous section, all contact interactions in d ∈ {2, 3} are attractive. In d = 2,
the binding energy EB = −4 exp(−4πα− 2γ) is the only (simple) eigenvalue of h(α), α ∈ R [6].
In d = 3, α < 0 corresponds to the case where the binding energy EB = −(4πα)2 is the only
(simple) eigenvalue of h(α), while h(α) has no discrete spectrum for α ≥ 0 [6].
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The characteristic property of h(α), α ∈ R, in all dimensions d ≤ 3 is that the resolvent can
be expressed by a Krein formula of the form

(h(α) + z)−1 = (−∆ + z)−1 + C(z, α, d) |Gdz⟩ ⟨Gdz | , z ∈ ρ(h(α)), (1.20)

where the constant C(z, α, d) ∈ C is explicitly given by (1.15), respectively, (1.18) if d ≤ 2,
and for d = 3 it follows from [6, Chapter I, Theorem 1.1.2] that C(z, α, d) = (α − ik/(4π))−1.
From (1.20) we obtain the following characterization of the domain and the action of h(α):
Each ψ ∈ D(h(α)) can be written as ψ = (h(α) + z)−1φ for some φ ∈ L2(Rd), and with
ψ0 := (−∆ + z)−1φ ∈ H2(Rd) and ⟨Gdz |φ⟩ = ψ0(0) (this is well-defined because the embedding
H2(Rd) ↪→ C(Rd) exists for d ≤ 3, see, e.g., [69, Theorem IX.24]) it follows from (1.20) that

ψ = ψ0 + C(z, α, d)ψ0(0)Gdz , ψ0 ∈ H2(Rd), z ∈ ρ(h(α)) (1.21)

and
(h(α) + z)ψ = (−∆ + z)ψ0. (1.22)

Conversely, it is not hard to show that Eq. (1.21) defines an element ψ ∈ D(H) for any given
ψ0 ∈ H2(Rd). Thus, Eqs. (1.21) and (1.22) determine the domain and the action of h(α).
Moreover, Eq. (1.22) also shows that ψ0 ∈ H2(Rd) is uniquely determined by ψ ∈ D(h(α))
and z ∈ ρ(h(α)). For ψ ∈ C∞

0 (Rd \ {0}), we may choose ψ0 = ψ in Eq. (1.21), which yields
that ψ ∈ D(h(α)) and h(α)ψ = −∆ψ. This confirms that h(α) is a self-adjoint extension of
−∆ ↾ C∞

0 (Rd \ {0}). Moreover, in d = 1, one can derive from (1.21) the well-known jump
condition ψ′(0+) − ψ′(0−) = αψ(0) for the derivative of the wave function, where ψ′(0±) :=
limx→0± ψ

′(x). This is, in particular in physics, the common characterization of the domain of
the operator −∆+αδ(·). More precisely, a direct computation using C(z, α, 1) = −2kα/(2k+iα)
and the explicit formula (1.12) for G1

z leads to the following alternative description of the domain
of h(α) (for details we refer to [6, Chapter I, Theorem 3.1.1]):

D(h(α)) =
{
ψ ∈ H1(R) ∩H2(R \ {0}) |ψ′(0+) − ψ′(0−) = αψ(0)

}
. (1.23)

Here, the left-hand and right-hand limits are to be understood in terms of suitable trace opera-
tors. For d ∈ {2, 3}, Eq. (1.21) shows that functions ψ ∈ D(h(α)), α ̸= 0, with ψ0(0) ̸= 0 have a
singularity at x = 0 that comes from the singularity of Gdz at x = 0. More precisely, as |x| → 0,

ψ(x) = C(z, α, d)ψ0(0) ·


(2π)−1

(
− ln |x| − 1

aα

)
+ o(1) if d = 2,

(4π)−1
( 1

|x|
− 1
aα

)
+ o(1) if d = 3,

(1.24)

where aα := −(2πα)−1 if d = 2 and aα := −(4πα)−1 if d = 3 agrees with the s-wave scattering
length of the operator h(α). For a comprehensive discussion of the scattering properties of h(α)
in all dimensions d ≤ 3 we refer to [6].

1.2 Contact interactions in the N-particle case (N ≥ 2)
In this section we summarize results and facts about contact interactions in the N -particle case.
To this end, we consider N ≥ 2 non-relativistic, spinless quantum particles in d ≤ 3 dimensions.

1.2.1 The mathematical point of view

By an N -particle Hamiltonian with contact interactions we understand any self-adjoint extension
of the densely defined symmetric operator

N∑
i=1

(−∆xi/mi) ↾ C∞
0 (RdN \ Γ) (1.25)
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in the Hilbert space

H := L2
(
RdN ,d(x1, . . . , xN )

)
, (1.26)

where ∆xi := ∑d
k=1 ∂

2
xi,k

denotes the Laplacian w.r.t. xi = (xi,k)dk=1, mi > 0 denotes the mass
of the ith particle and

Γ :=
⋃

1≤i<j≤N
Γ(i,j) (1.27)

denotes the union of all two-particle collision planes

Γ(i,j) :=
{
x = (x1, ..., xN ) ∈ RdN

∣∣∣xi = xj
}
, 1 ≤ i < j ≤ N. (1.28)

The idea behind this definition is that the Hamiltonian should agree with the free operator unless
some of the particles are in direct contact with each other, i.e. xi = xj for some 1 ≤ i < j ≤ N .
We note that the trivial extension is the kinetic energy operator

H0 =
N∑
i=1

(−∆xi/mi) (1.29)

that is self-adjoint on D(H0) = H2(RdN ). In fact, it follows from [75, Theorem 3.2] and our
assumption N ≥ 2 and d ≤ 3 that the operator from (1.25) has the deficiency indices n+ =
n− = +∞, so von Neumann’s theory of self-adjoint extensions guarantees the existence of a
huge family of self-adjoint extensions that depends on infinitely many parameters. A crucial
example of such a self-adjoint extension would be a rigorous version of the formal operator

H(α) = H0 +
∑

(i,j)∈I
α(i,j)δ(xj − xi), (1.30)

where I is the set of all pairs (i, j) with 1 ≤ i < j ≤ N , which we denote by Greek letters σ, ν, ...
in the sequel, and the component ασ ∈ R of the vector α := (ασ)σ∈I determines the sign and
the strength of the two-body interaction among the particles in the pair σ.

A family of N -particle Hamiltonians with contact interactions, which involves operators of
the type (1.30), can be constructed rigorously within the framework of Posilicano’s theory. This
theory was developed, inter alia, in [21, 65, 66, 67, 68] and it is closely related to von Neumann’s
theory of self-adjoint extensions and the theory of boundary triples [66, 67]. To apply Posilicano’s
theory, we have to introduce some auxiliary spaces and operators first.

Let X := ⊕
σ∈I Xσ, where

Xσ := L2
(
Rd(N−1),d (R, x1, ...x̂i...x̂j ..., xN )

)
, σ = (i, j) ∈ I (1.31)

can be identified with the Hilbert space of all square-integrable functions over Γσ after intro-
ducing the relative and center of mass coordinates

r = rσ := xj − xi, R = Rσ := mixi +mjxj
mi +mj

, σ = (i, j) ∈ I. (1.32)

The hat, as in x̂i, indicates omission of that variable. Furthermore, let the unbounded operator
T : D(T ) ⊆ H → X be defined by Tψ := (Tσψ)σ∈I , where, for ψ ∈ C∞

0 (RdN ), the trace
operators Tσ : D(Tσ) ⊆ H → Xσ are defined by

(Tσψ)(R, x1, ...x̂i...x̂j ..., xN ) := ψ(x1, . . . , xN )
∣∣
xi=xj=R, σ = (i, j). (1.33)
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A rigorous definition of the trace operators Tσ is given in Section 2.2, below. However, indepen-
dent of the space dimension d ≤ 3, all trace operators Tσ, σ ∈ I, and hence T , are H0-bounded.
This means that∗

G(z) := TR0(z) ∈ L (H ,X), z ∈ ρ(H0)

defines a bounded operator, where R0(z) := (H0 + z)−1 for short. The operator G(z) is closely
related to the Green’s function Gz,m, m = (m1, ...,mN ), of H0 + z (see, e.g., Eq. (4.72),
below) and the letter G serves to remind us of this connection. From (1.33) it follows that
Tψ = 0 for all ψ ∈ C∞

0 (RdN \ Γ) because ψ vanishes in a neighborhood of all collision planes
Γσ. In particular, this means that any self-adjoint extension of H0 ↾ KerT is also a self-adjoint
extension of H0 ↾ C∞

0 (RdN \ Γ). To construct such self-adjoint extensions, we are going to apply
[68, Theorem 2.2]. For this purpose, we fix λ ∈ (0,∞) and in analogy to [68] we introduce the
bounded operators

M(z) := (z − λ)G(z)G(λ)∗ ∈ L (X), z ∈ ρ(H0).

Now, let Θ : D(Θ) ⊆ X → X be an arbitrary self-adjoint operator, let Θ(z) := Θ + M(z) for
z ∈ ρ(H0), and suppose that Θ(z) is invertible for some z ∈ ρ(H0), i.e.

ZΘ := {z ∈ ρ(H0) | 0 ∈ ρ(Θ(z))} ≠ ∅.

Then [68, Theorem 2.2]† shows that

(HΘ + z)−1 := R0(z) +G(z)∗Θ(z)−1G(z), z ∈ ρ(H0) ∩ ρ(HΘ) (1.34)

defines the resolvent of a self-adjoint operator HΘ in H and that ρ(H0) ∩ ρ(HΘ) = ZΘ. The
resolvent formula (1.34) can be interpreted as a generalization of the usual Krein formula that
relates the resolvents of two self-adjoint extensions of a given symmetric operator [65], and it
is the characteristic resolvent formula for N -particle Hamiltonians with contact interactions. In
analogy to the one-particle case described in Section 1.1.2, Eq. (1.34) leads to the following
characterization of the domain and the action of HΘ (see also [68, Theorem 2.2]): A vector
ψ ∈ H belongs to D(HΘ) if and only if for some (and hence all) z ∈ ρ(H0) ∩ ρ(HΘ) there exist
ψ0 ∈ H2(RdN ) and w ∈ D(Θ) such that

ψ = ψ0 +G(z)∗w (1.35)

and
Tψ0 = Θ(z)w. (1.36)

If this is the case, then

(HΘ + z)ψ = (H0 + z)ψ0, (1.37)

and the vectors ψ0 ∈ H2(RdN ) and w ∈ D(Θ) are uniquely determined by ψ ∈ D(HΘ) and
z ∈ ρ(H0) ∩ ρ(HΘ)‡.

If T : H2(RdN ) → X were even surjective, then all self-adjoint extensions of H0 ↾ KerT
could be characterized in a similar fashion with the help of [67, Theorem 3.1], which provides

∗In the notation of [21, 65, 66, 67, 68] the operators G(z), respectively, Gz correspond to (T (−H0 + z)−1)∗,
which differs from our convention.

†By Lemma 2.13, below, and the subsequent remark, KerG(λ)∗ = {0} and RanG(λ)∗ ∩ H2(RdN ) = {0}, so
the hypotheses of [68, Theorem 2.2] are satisfied.

‡The proof of [68, Theorem 2.2] even shows that w ∈ D(Θ) only depends on ψ ∈ D(HΘ), but not on
z ∈ ρ(H0) ∩ ρ(HΘ).
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a one-to-one correspondence to von Neumann’s theory of self-adjoint extensions. Although T

is not surjective with the above choice of X, it is, in principle, possible to modify X and T

appropriately and to characterize all self-adjoint extensions of H0 ↾ C∞
0 (RdN \ Γ). One way to

do this is described in the introduction of [67]. However, we shall see in the next section that
only specific choices of the self-adjoint operator Θ : D(Θ) ⊆ X → X lead to physically reasonable
extensions. For such choices of Θ, one then has to verify that Θ(z) = Θ + M(z) is invertible
for at least one z ∈ ρ(H0). In general, finding a physically reasonable choice of Θ and proving
invertibility of Θ(z) is a challenging task. This explains why historically mostly older methods
(e.g. suitably chosen quadratic forms, introducing appropriate boundary conditions on Γ, or
defining the Hamiltonian as a limit of certain regularized Hamiltonians, to name only a few of
them) are still common methods to define physically reasonable contact interactions.

1.2.2 The physical point of view

From the physical point of view, only those self-adjoint extensions H of H0 ↾ C∞
0 (RdN \ Γ) that

meet certain minimum requirements are reasonable [30, 58, 59]. In particular, this involves

(i) H is bounded from below. That is, H ≥ −C for some constant C > 0.

(ii) H is translation-invariant. That is, H commutes with the strongly continuous unitary
group of operators Ttot,h ∈ L (H ), h ∈ Rd, defined by

(Ttot,hψ)(x1, x2, ..., xN ) := ψ(x1 + h, x2 + h, ..., xN + h).

More precisely, this means that D(H) ⊆ D(HTtot,h) and Ttot,hHψ = HTtot,hψ for all
ψ ∈ D(H) and h ∈ Rd.∗

(iii) H is local. That is, if ψ ∈ D(H) vanishes a.e. in some non-empty open set U ⊆ RdN , then
also Hψ = 0 a.e. in U .

Property (ii) is motivated by the fact that, due to the absence of an external potential, a
translation of the whole system should not affect its physical behavior. Moreover, this implies
that H commutes with every component of the total momentum operator Ptot in the sense of [71,
Theorem VIII.13]. Note that after passing to Fourier space, Ptot simply acts by multiplication
with Ptot(p1, ..., pN ) := ∑N

i=1 pi, where pi ∈ Rd is conjugated to xi ∈ Rd. Property (iii) is
motivated by the fact that H agrees with the local operator H0 on the set C∞

0 (RdN \ Γ), which
is dense in H . Indeed, one can show that every self-adjoint extension of H0 ↾ C∞

0 (RdN \ Γ)
satisfies Property (iii) (see, e.g., Lemma C.2 in the appendix of [6]). From a historical point
of view, Property (i), which guarantees the stability of the considered system, has caused the
greatest difficulties and confusion. This is due to the so-called Thomas effect in d = 3 dimensions
that we are going to explain in the following.

To describe two-body contact interactions among N = 3 identical spinless particles in d = 3
dimensions, Ter Martirosyan and Skornyakov assumed that the boundary condition that had
been derived by Bethe and Peierls for N = 2 [14] (after separation of the center of mass motion
this is essentially Eq. (1.24)) remains valid in all two-particle subsystems [55]. This leads to a
boundary condition at Γ, which is now known as the TMS boundary condition (or simply TMS
condition). One version of the TMS condition demands that every wave function in the domain
of the Hamiltonian has the following asymptotic behavior for each pair σ = (i, j) ∈ I:

ψ(x1, ..., xN ) =
(

1
|xi − xj |

− 1
aα,σ

)
ξσ(x1, ...x̂j ..., xN ) + o(1) (|xi − xj | → 0),

∗In fact, the Hamiltonians considered in this thesis even satisfy the stronger operator identity Ttot,hH =
HTtot,h for each h ∈ Rd (see Propositions 3.17 and 4.16, below).
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where ξσ ∈ L2(R3(N−1)) can be interpreted as a function on the collision plane Γσ and aα,σ
agrees with the scattering length in the (i, j)-channel [56]. A few years later the model of Ter
Martirosyan and Skornyakov was further analyzed by Minlos and Faddeev [58, 59], where a one-
parameter family of self-adjoint extensions of the symmetric (but not self-adjoint) TMS Hamil-
tonian was constructed. However, it turned out that each of these extensions has a sequence of
negative eigenvalues En, n ∈ N, that diverges exponentially to −∞ as n → ∞ [27, 58, 59]. Today,
this phenomenon is known as the Thomas effect (or Thomas collapse) since Thomas has already
encountered this effect in 1935 in the context of his formal calculation of the neutron-proton
interaction in tritium [78]. Since then, the Thomas effect has been discussed extensively in the
literature, both in mathematics and physics, but the construction of a semibounded Hamiltonian
describing contact interactions among N = 3 particles in d = 3 dimensions remained an open
problem for a long time. However, a regularized version of the TMS Hamiltonian for N = 3
bosons in d = 3 dimensions that is self-adjoint and bounded from below has recently been con-
structed in [11], see also [36] for some historical remarks. The Thomas effect, which comes from
the extremely strong attractive forces when all three particles are very close to each other, could
be compensated in [11] by introducing an effective three-body interaction.

In the presence of symmetry restrictions, especially antisymmetry, the impact of the Thomas
effect can be weaker or even negligible. For example, in the case of the Fermi polaron model,
which describes contact interactions among a gas of N ≥ 1 identical fermions of mass one and a
different particle of mass m > 0 (often called impurity), the TMS Hamiltonian has self-adjoint
extensions that are bounded from below, provided that m > m∗ for some critical mass m∗ > 0
[24, 60]. Moreover, m∗ is even independent of N ≥ 1 [60]. A similar result also applies in the
case of a (2+2)-system consisting of two identical fermions that interact via contact interactions
with two fermions of a different species [57, 61].

The stability problem discussed above does not occur in d ≤ 2 dimensions. In the simplest
case d = 1, two-body δ-interactions are small perturbations in the form sense of the free operator
H0. This means that a rigorous version of the formal operator H(α) from Eq. (1.30) can
be constructed by means of a closed semibounded quadratic form (for details, see Section 3.2,
below). The resolvent of this self-adjoint operator H(α) can be expressed by a generalized Krein
formula of the form (1.34) (see Theorem 3.1, below), and hence Eqs. (1.35) - (1.37) characterize
the domain and the action of H(α). In analogy to (1.23), the following jump condition at Γ
provides an alternative characterization of the wave functions ψ ∈ D(H(α)):(

∂j
mj

− ∂i
mi

)
ψ|xj=xi+ −

(
∂j
mj

− ∂i
mi

)
ψ|xj=xi− = ασψ|xi=xj , σ = (i, j) ∈ I, (1.38)

where the left-hand and right-hand limits and equating the particle positions xi and xj are to
be understood in terms of suitable trace operators in Sobolev spaces (for details, we refer to
Proposition 3.16, below). A related model that is very common in physics is the Lieb-Liniger
model [52, 51], which describes a one-dimensional Bose gas in a box [0, l], l > 0, that interacts
by repulsive δ-interactions of strength 2c > 0. The δ-interactions are implemented by the jump
condition (1.38) with mi = 1, i = 1, ..., N , and ασ = 2c, σ ∈ I, and periodic boundary conditions
are imposed at the boundary points 0 and l. The Lieb-Liniger model is soluble in the sense that
the Hamiltonian has a complete orthonormal system of eigenfunctions, which can be computed
via the Bethe ansatz by solving a set of transcendental equations [32]. This allows for the explicit
calculation of many physically relevant quantities, e.g. in thermodynamics [81]. Moreover, it
is shown in [73] that the Lieb-Liniger model can be considered as a scaling limit of a dilute 3d
Bose gas that interacts via repulsive two-body potentials. In this limit the scattering length of
the interaction potential and the radius of the cylindrical trap tend to zero simultaneously.

In d = 2, a Hamiltonian Hβ describing non-trivial contact interactions among an arbitrary
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number N ≥ 2 of particles was first constructed by Dell’Antonio, Figari and Teta in terms of an
appropriate closed and semibounded quadratic form Fβ [30]. They do not need any symmetry
restrictions (i.e. the underlying Hilbert space is L2(R2N )) and for simplicity they choose mi = 1,
i = 1, ..., N , in our setting. The component βσ ∈ R of the vector β in Hβ determines the strength
of the contact interaction among the particles of the pair σ ∈ I. Moreover, Hβ satisfies our
minimum requirements (i) − (iii) and its resolvent can be expressed by a generalized Krein
formula of the form (1.34) (see [30, Eqs. (5.12) and (5.13)]). This allows for characterizing
the domain and the action of Hβ in the spirit of Eqs. (1.35) - (1.37) (cf. [30, Eqs. (5.3) and
(5.4)]). It is pointed out in [30] that this characterization of D(Hβ) can be interpreted as a
two-dimensional generalization of the TMS boundary condition. Therefore, we refer to Hβ as
the TMS Hamiltonian in the following. Beyond that, Hβ is the limit, in the strong resolvent
sense, of a suitable sequence of regularized Hamiltonians, where the regularization is achieved
by introducing an ultraviolet cutoff in Fourier space (see [30, Remark 4.4]). Similar results for
N ≥ 2 bosons are derived in [31] in the language of second quantization.

To conclude this section, we briefly discuss some recent developments in physics that have
contributed to the fact that contact interactions are of topical interest in many areas of physics.
In particular, we put emphasis on the field of ultra-cold quantum gases. The characteristic
feature of such gases is that the effective range of the two-body interaction is much smaller than
the thermal wavelength of the particles, which results in a universal behavior where the detailed
form of the two-body interaction becomes irrelevant and only a few low-energy parameters (e.g.
the scattering length) are sufficient to describe the interaction [18, 36]. Such a universal behavior
can be observed, for example, during the BCS-BEC crossover in ultra-cold Fermi gases [82]. The
BCS-BEC crossover describes the transition between a system of weakly bound pairs of fermions
within the framework of the Bardeen-Cooper-Schrieffer (BCS) theory to a Bose Einstein con-
densate (BEC) consisting of tightly bound bosonic molecules. The middle of this crossover is
described by the so-called unitary limit, where the scattering length of the two-body interaction
becomes infinite, while at the same time the effective range of the interaction potential tends
to zero [82]. In mathematical terms, such a limit defines a contact interaction. The BCS-BEC
crossover has even been realized experimentally with the help of Feshbach resonances [25], which
allow for a fine-tuning of the two-body scattering length [72, 83]. This experimental and theoret-
ical progress has laid the foundation for various new applications of contact interactions. Today,
contact interactions are useful, and in fact indispensable, tools in many areas of contemporary
physics, from solid-state physics to atomic and nuclear physics, and even in string theory [38].

1.3 New results
This thesis is devoted to the approximation of contact interactions among N ≥ 2 particles in
d ≤ 3 dimensions by means of Schrödinger operators with local rescaled two-body potentials.
The results presented in this section are based on the following three publications:

(1) M. Griesemer, M. Hofacker, and U. Linden. From Short-Range to Contact Interactions in
the 1d Bose Gas. Math. Phys. Anal. Geom., 23(2):Paper No. 19, 28, 2020.

(2) M. Griesemer and M. Hofacker. From Short-Range to Contact Interactions in Two-
dimensional Many-Body Quantum Systems. Ann. Henri Poincaré, 23(8):2769–2818, 2022.

(3) M. Griesemer and M. Hofacker. On the Weakness of Short-Range Interactions in Fermi
Gases. arXiv:2201.04362 [math-ph], 2022.

Our focus lies on the case d ≤ 2, where we show that the Hamiltonians described in Section 1.2.2
are limits, in the norm resolvent sense, of suitably rescaled Schrödinger operators. This is the
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main result of Sections 3 (d= 1) and 4 (d= 2). Finally, in Section 5, we analyze and quantify
the weakness of short-range interactions among equal spin fermions in all dimensions d ≤ 3.

1.3.1 From short-range to contact interactions in the N-particle case (N ≥ 2)

In particular in physics, contact interactions are often used to model real short-range interac-
tions whose details are very complicated or even unknown. For example, this was the motivation
of Bethe and Peierls to approximate the two-body potential describing the short-range interac-
tions among a proton and a neutron in the deuteron by an idealized interaction of zero range
[14]. From the mathematical point of view, such an idealization is also favorable because we
already know from Section 1.2 that Hamiltonians with contact interactions have many desir-
able properties: few relevant parameters (e.g. the scattering lengths, which, in the attractive
case, are directly related to the binding energy), a simple characterization of the domain and
the action of the Hamiltonian, an explicit Krein-like formula for the resolvent, and from this
further physically relevant quantities, such as spectra and scattering quantities, can either be
derived explicitly or with the help of numerical methods. Therefore, it would be very beneficial
if one could consider contact interactions as limits of suitably rescaled local short-range inter-
actions. For this purpose, we consider short-range interactions among N ≥ 2 non-relativistic
spinless quantum particles in d ≤ 3 dimensions, which are described, in suitable units, by the
rescaled Schrödinger operators Hε, ε > 0, from Equation (1.39), below. Our goal is to prove
norm resolvent convergence of Hε in the limit ε → 0 and to identify the limit operator with a
Hamiltonian describing contact interactions. Because of the symmetry independent choice of
coordinates, this implies norm resolvent convergence in arbitrary symmetry regimes (e.g. in the
symmetric and antisymmetric subspace of L2(RdN ) and in every conceivable composed system)
by simply projecting the resolvents onto the respective subspace of L2(RdN ). Compared with
the weaker strong resolvent convergence, norm resolvent convergence has stronger consequences
for the convergence of the associated spectra and unitary groups (see Section 2.1). For example,
norm resolvent convergence Hε → H as ε → 0 implies the convergence of the associated spectra
in the sense that λ ∈ σ(H) if and only if there exists a sequence λε ∈ σ(Hε) with limε→0 λε = λ,
while strong resolvent convergence only implies a weaker result.

We now start motivating our main results, whereby we introduce all required spaces and
operators. In the Hilbert space H from (1.26) we consider Schrödinger operators of the form

Hε := H0 +
∑

σ=(i,j)∈I
gε,σ Vσ,ε(xj − xi), ε > 0, (1.39)

where H0 is given by (1.29), gε,σ ∈ R denotes a coupling constant depending on ε > 0 and σ,
and, by some abuse of notation, the multiplication operator Vσ,ε(xj − xi) is defined in terms of

Vσ,ε(r) := ε−d Vσ(r/ε), ε > 0, (1.40)

for some fixed potential Vσ : Rd → R satisfying Vσ(−r) = Vσ(r) a.e. We further assume that
Vσ ∈ L1 ∩ L2(Rd), which implies that Hε is self-adjoint on D(Hε) = D(H0) = H2(RdN ) (see,
e.g., [77, Theorem 11.1]). In analogy to the one-particle case described in Section 1.1.1, the
two-body interaction among the particles in the pair σ has, at best, a vanishing limit as ε → 0
unless gε,σ has an asymptotic behavior of the form

gε,σ =


gσ + o(1) if d = 1,(
µσ(aσ ln(ε) + bσ) + o(1)

)−1
if d = 2,

(µσ)−1(ε+ bσε
2) + o(ε2) if d = 3,

(ε → 0) (1.41)

12



where aσ, bσ, gσ ∈ R, aσ > 0, and µσ := mimj/(mi +mj) denotes the reduced mass of the pair
σ = (i, j). The prefactor (µσ)−1, which we have introduced in d ∈ {2, 3} dimensions, will allow
us to compare our results directly with their counterparts known from the one-particle case [6].
In d = 1, however, we absorb this prefactor in the constant gσ for simplicity.

In d = 3 dimensions there is a close connection between the Thomas effect and the Efi-
mov effect, which has important consequences for the approximation of contact interactions by
means of Schrödinger operators [2, 9, 18]. The Efimov effect describes the phenomenon that a
Hamiltonian describing short-range two-body interactions among three particles has an infinite
number of negative eigenvalues in the center of mass frame if the Hamiltonians of all two-body
subsystems have no negative eigenvalues and at least two of them have a zero-energy resonance.
This effect was predicted by Efimov [33] and later it has been proved rigorously under various
additional assumptions of technical nature (the first rigorous proof was given in [80] but we also
refer to [76]). We now consider N ≥ 3 particles in d = 3 dimensions and we assume that Hε

defined by Eqs. (1.39)-(1.41) converges, as ε → 0, in the norm resolvent sense to a self-adjoint
operator H. Then, as elaborated in Appendix C, the Efimov effect leads to the following di-
chotomy: Either the limit operator H is unbounded from below (that is, the Thomas effect
occurs) or H is trivial in the sense that each three-body subsystem contains at least one particle
that does not interact with the other two particles. This means that further restrictions or mod-
ifications in the above setting are inevitable if one demands that the limit operator is bounded
from below. This shall not be further investigated in the course of this thesis, and instead we
now formulate our main results in the cases d = 1 and d = 2, where we are neither confronted
with the Thomas effect nor with the Efimov effect.

Let d ≤ 2 and let Hε, ε > 0, be defined by Eqs. (1.39)-(1.41) for some Vσ ∈ L1 ∩ L2(Rd)
with Vσ(r) = Vσ(−r) a.e. In the case d = 2, we further assume that (the importance of these
assumptions shall be discussed below):

(As) There exists some s > 0 such that, for all σ ∈ I,
∫

|r|2s|Vσ(r)| dr < ∞.

(Ag) For all σ ∈ I, the asymptotics of gε,σ is given by Eq. (1.41) with aσ ≥ 1
2π

∫
Vσ(r) dr.

Then our main results Theorem 3.1 (d = 1) and Theorem 4.1 (d = 2) show that Hε converges,
as ε → 0, in the norm resolvent sense to a self-adjoint semibounded operator H that describes
contact interactions among N particles. If d = 1 and, in addition, |gε,σ − gσ| = O(εs) as ε → 0
and

∫
|r|2s|Vσ(r)| dr < ∞ for some s ∈ (0, 1) and all σ ∈ I, then the rate of norm resolvent

convergence is at least as good as O(εs). More precisely, this means that z ∈ ρ(H) implies that
z ∈ ρ(Hε) for small enough ε > 0 and

∥(H + z)−1 − (Hε + z)−1∥ = O(εs) (ε → 0).

For N = 2 particles this problem reduces to the well-understood one-particle case [6] after
removing the center of mass motion, but for N > 2 this is a non-trivial and fairly challenging
problem, and except of publications (1) and (2) only few comparable results have been available
so far. For N = 3 particles in d = 1 dimension such a result was first established in [10]. However,
the proof in [10] relies on Faddeev’s equations, which have no natural generalization for N > 3.
The first result for arbitrary N ≥ 2 in d = 1 was derived in publication (1) in the special case
of a Bose gas. In this thesis we generalize and enlarge the results and methods from (1), which
are essentially based on the analysis of integral operators and their kernels. In d = 2 the weaker
result that Hε has a limit in the strong resolvent sense as ε → 0 was shown quite recently in
[46] for an arbitrary number N ≥ 2 of identical particles, provided that all two-body potentials
Vσ belong to a specific class of compactly supported smooth functions. The interesting point,
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however, is that this problem is studied in [46] in a completely different context, namely the
investigation of a certain limit in the two-dimensional stochastic heat equation. In publication
(2), where Theorem 4.1 and most of the other results from Section 4 were first published, the
result from [46] has been improved to norm resolvent convergence for the large class of two-body
potentials Vσ introduced above with general masses mi > 0, i = 1, ..., N .

After this short digression into the literature, we now continue describing the results of this
thesis. The norm resolvent convergence Hε → H as ε → 0 implies that H has the Properties
(i) − (iii) from Section 1.2.2 (see Propositions 3.17 (d = 1) and 4.16 (d = 2), below). In
accordance with Eq. (1.34), the resolvent of H is given by a Krein-like formula of the form

(H + z)−1 = R0(z) +G(z)∗Θ(z)−1G(z), z ∈ ρ(H0) ∩ ρ(H), (1.42)

with the only difference that only the pairs from a certain subset J ⊆ I contribute to the
auxiliary Hilbert space X := ⊕

σ∈J Xσ, and hence to H. This means that G(z) ∈ L (H ,X),
z ∈ ρ(H0), has the components G(z)σ = TσR0(z) ∈ L (H ,Xσ), σ ∈ J , and Θ(z), z ∈ ρ(H0), is
an operator defined in X that has a bounded inverse if and only if z ∈ ρ(H0) ∩ ρ(H). For d = 1,
Θ(z) defines a bounded operator in L (X), while for d = 2 the operator Θ(z) is unbounded with
domain D ⊆ X independent of z ∈ ρ(H0).

As explained at the end of Section 1.2.2, we expect that the limit operator H only depends
on the particular choices of the interaction potentials gε,σVσ,ε via a few low-energy parameters.
Indeed, for d = 1, H is the self-adjoint operator that is associated with the closed semibounded
quadratic form q (with C = 0) from Eq. (3.7), below, which only depends on gε,σVσ,ε via
ασ = limε→0

∫
gε,σVσ,ε(r) dr = gσ

∫
Vσ(r) dr. The parameter ασ determines the strength of the

δ-interaction among the particles of the pair σ and H can be viewed as a rigorous version of the
formal operator H(α) from Eq. (1.30). In particular, this means that J = {σ ∈ I |ασ ̸= 0} and
that the domain of H can be characterized by a rigorous version of the jump condition from
Eq. (1.38) (see Proposition 3.16, below). For d = 2, the subset J ⊆ I is the set of all pairs
σ ∈ I for which the asymptotic expansion (1.41) holds with aσ =

∫
Vσ(r) dr/(2π) > 0. Similarly

to the case d = 1, the limit operator H only depends on the particular choices of gε,σVσ,ε via
certain parameters βσ ∈ R, σ ∈ J (see Eqs. (4.52)-(4.54), below). Here, the assumption (As)
is needed to ensure that the integral operator Lσ, which is the analog of the operator L from
Section 1.1.1, is a Hilbert-Schmidt operator (in fact, such a condition is already needed in the
one-particle case [6]). We are going to identify H with the TMS Hamiltonian Hβ, β = (βσ)σ∈J ,
from [30]. To this end, we compute the quadratic form of H explicitly in Section 4.6, below.

In the remainder of this section, we explain our strategy for proving Theorems 3.1 and 4.1.
Regardless of the space dimension d ∈ {1, 2}, our starting point for proving norm resolvent
convergence of Hε is the new expression (1.51), below, for Hε, which allows us to express the
resolvent of Hε by the generalized Konno-Kuroda formula from Eq. (1.53), below. For later
convenience, we now derive Eqs. (1.51) and (1.53) rigorously, and afterwards we sketch the
extensive proofs of Theorems 3.1 and 4.1 that are given in Sections 3 and 4, respectively.

Let the auxiliary Hilbert space X̃ be given by

X̃ :=
⊕
σ∈I

X̃σ, (1.43)

where the integration variables r and R in

X̃σ := L2
(
RdN , d (r,R, x1, ...x̂i...x̂j ..., xN )

)
, σ = (i, j) (1.44)

correspond to the relative and center of mass coordinates from Eq. (1.32). This change of
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coordinates is implemented unitarily by the operator K(i,j) : H → X̃(i,j) with(
K(i,j)ψ

)
(r,R, x1, ...x̂i...x̂j ..., xN )

:= ψ

(
x1, ..., xi−1, R− mjr

mi +mj
, xi+1, ..., xj−1, R+ mir

mi +mj
, xj+1, ..., xN

)
. (1.45)

The adjoint thereof is the operator K ∗
(i,j) : X̃(i,j) → H with

(
K ∗

(i,j)ψ
)
(x1, ..., xN ) = ψ

(
xj − xi,

mixi +mjxj
mi +mj

, x1, ...x̂i...x̂j ..., xN

)
. (1.46)

Furthermore, let Uε ∈ L (L2(Rd)) denote the unitary rescaling from Section 1.1.1, which we also
consider as an operator in L (X̃σ) by setting

(Uεψ) (r,X) := εd/2 ψ(εr,X), X = (R, x1, ...x̂i...x̂j ..., xN ), σ = (i, j) ∈ I, (1.47)

and let

vσ(r) := |Vσ(r)|1/2,

uσ(r) := Jσ|Vσ(r)|1/2, Jσ := sgn(Vσ),

so that Vσ = uσvσ. In terms of the above operators, we now introduce for ε > 0 the new
operators Aε,σ, Bε,σ : D(Aε,σ) ⊆ H → X̃σ with

Aε,σ := (vσ ⊗ 1) ε−d/2UεKσ, (1.48)
Bε,σ := (uσ ⊗ 1) ε−d/2UεKσ = JσAε,σ, (1.49)

where the domain D(Aε,σ) is determined by the domain of the multiplication operator vσ ⊗ 1.
Since our assumption that Vσ ∈ L1(Rd) implies that uσ, vσ ∈ L2(Rd), it follows that Aε,σ and
Bε,σ are densely defined and closed on D(Aε,σ) ⊃ H2(RdN ). These new operators allow us to
rewrite the two-body interaction as

Vσ,ε(xj − xi)ψ = K ∗
σ (Vσ,ε ⊗ 1)Kσψ = (Aε,σ)∗Bε,σψ, ψ ∈ H2(RdN ), (1.50)

which means that the Definition (1.39) of Hε is equivalent to

Hε = H0 +
∑
σ∈I

gε,σ(Aε,σ)∗Bε,σ, ε > 0. (1.51)

From (1.50) and from our assumption that Vσ ∈ L2(Rd) it follows that both (Aε,σ)∗Bε,σ and
(Aε,σ)∗Aε,σ = |Vσ,ε(xj − xi)| are infinitesimally H0-bounded (see, e.g., [77, Theorem 11.1]), so
the hypotheses of Corollary B.2 are satisfied. This means that

ϕε(z)σν := Bε,σR0(z)(Aε,ν)∗ ∈ L (X̃ν , X̃σ), z ∈ ρ(H0), σ, ν ∈ I (1.52)

defines the components of a bounded operator ϕε(z) ∈ L (X̃). Moreover, with gε ∈ L (X̃) defined
by (gε)σν := gε,σδσν , σ, ν ∈ I, it follows that 1 + gεϕε(z) ∈ L (X̃) has a bounded inverse if and
only if z ∈ ρ(Hε) ∩ ρ(H0). If this is the case, then

(Hε + z)−1 = R0(z) −
∑
σ,ν∈I

(Aε,σR0(z))∗
[
(1 + gεϕε(z))−1

]
σν
gε,νBε,νR0(z). (1.53)

We refer to Eq. (1.53) as a generalized Konno-Kuroda formula. This is our key to prove norm
resolvent convergence of Hε in d ∈ {1, 2}. For sufficiently large z0 > 0, we are going to show
that 1 + gεϕε(z) is invertible for all z ∈ (z0,∞) and all small enough ε > 0, which implies
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that z ∈ ρ(Hε) ∩ ρ(H0), where (Hε + z)−1 is explicitly given by Eq. (1.53). We shall then
show that both (1+gεϕε(z))−1gε and Aε,σR0(z) (and hence also Bε,νR0(z) = JνAε,νR0(z)) have
suitable limits as ε → 0. In view of Eq. (1.53), this means that R(z) := limε→0(Hε + z)−1

exists for all z ∈ (z0,∞), and after having integrated out the contributions of the two-body
potentials Vσ, we shall see that R(z) agrees with the right-hand side of Eq. (1.42) for a suitable
operator Θ(z). The next step is then to show that R(z) defines the resolvent of a self-adjoint
semibounded operator H. To this end, we proceed differently depending on the space dimension
d. In d = 1 we are going to use the fact that strong resolvent convergence is equivalent to strong
and weak Γ-convergence of the associated closed and semibounded quadratic forms. Before we
prove norm convergence (Hε + z)−1 → R(z) as ε → 0, this allows us to prove strong resolvent
convergence Hε → H as ε → 0, where H denotes the self-adjoint operator that is associated
with the quadratic form q from Eq. (3.7). Altogether, this means that R(z) = (H + z)−1 for
all z ∈ (z0,∞) and that Hε → H in the norm resolvent sense as ε → 0. In d = 2 a standard
result (see, e.g., [31, Theorem 5]) allows us to show that there exists a self-adjoint semibounded
operator H such that R(z) = (H + z)−1 for all z ∈ (z0,∞). In fact, we shall see in Section
4.6 that H agrees with the TMS Hamiltonian Hβ for suitable β [30]. This proves Theorems 3.1
and 4.1 for z ∈ (z0,∞) and to conclude the proofs, it remains to show that Θ(z) allows for an
analytic continuation to all z ∈ ρ(H0)∩ρ(H) ⊆ C and that the resolvent formula (1.42) remains
valid for all z ∈ ρ(H0) ∩ ρ(H). The latter is achieved by verifying that the extended operators
Θ(z) satisfy the hypotheses of [21, Theorem 2.19].

In the remainder of this section we explain our strategy for proving convergence, as ε → 0,
of (1 + gεϕε(z))−1gε and Aε,σR0(z) in more detail. From the Definition (1.48) of Aε,σ, it follows
that proving convergence of Aε,σR0(z) is effectively only a one-particle problem, namely proving
convergence of vσε−d/2Uε in L (H2(Rd), L2(Rd)). Using the regularity of the H2(Rd)-functions,
it is not hard to show that the latter is true in all dimensions d ≤ 3, though the rate of
convergence depends on the dimension and the decay of |Vσ(r)| as |r| → ∞. The hard part,
which is even non-trivial in the one-particle case, is proving convergence of (1 + gεϕε(z))−1gε.

In d = 1 we first give a simplified proof that is based on the fact that even the operators
Aε,σR0(z)1/2, z > 0, have suitable limits as ε → 0 (which is not true for d ≥ 2). In view of the
Definition (1.52) of ϕε(z)σν with Bε,σ = JσAε,σ, this implies that ϕ(z) = limε→0 ϕε(z) exists in
L (X̃). Since we shall also prove that ∥ϕε(z)σν∥ ≤ C(σ, ν)/

√
z for some constant C(σ, ν) > 0 that

is independent of ε, z > 0 and, by assumption, g = limε→0 gε exists, it follows that (1 +gϕ(z))−1

exists and that (1 + gεϕε(z))−1gε → (1 + gϕ(z))−1g as ε → 0, provided that z > 0 is large
enough. However, this short and simplified proof comes at the expense of the convergence rate.
To improve the rate of convergence, we are going to use that all components ϕε(z)σν define
integral operators whose kernels can be computed explicitly in terms of the Green’s function
GNz of −∆ + z : H2(RN ) → L2(RN ). We carefully distinguish between the three cases, where
the pairs σ and ν have two, one or no common particle, respectively. In each case we pass to
Fourier space in an appropriate subset of the coordinates, which allows us to greatly reduce the
dimension of the problem. In the end, the good properties of the respective Green’s function
allow us to prove the desired rate of convergence.

In d = 2 dimensions we are confronted with many additional difficulties when proving norm
convergence of (1 + gεϕε(z))−1gε, which makes the proof difficult and somewhat technical. First
of all, it follows from the asymptotic expansion (1.41) with aσ > 0 that gε is invertible for all
sufficiently small ε > 0. This means that the convergence of (1+gεϕε(z))−1gε in the limit ε → 0
is equivalent to the convergence of the inverse of the operator Λε(z) := (gε)−1 + ϕε(z) ∈ L (X̃)
in the limit ε → 0. We then decompose Λε(z) into its diagonal and off-diagonal parts:

Λε(z) = Λε(z)diag + Λε(z)off.
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We are going to show that both (Λε(z)diag)−1 and (Λε(z)diag)−1Λε(z)off have suitable limits as
ε → 0, provided that z > 0 is large enough. This, in turn, implies that

(1 + gεϕε(z))−1gε = Λε(z)−1 = [1 + (Λε(z)diag)−1Λε(z)off]−1(Λε(z)diag)−1 (1.54)

has a suitable limit as ε → 0. To prove convergence of (Λε(z)σσ)−1, and hence of (Λε(z)diag)−1,
we pass to Fourier space in all coordinates except of the relative coordinate r. We shall see
that Λε(z)σσ acts pointwise in the conjugate variables P σ ∈ R2N−2 by an operator that is very
similar to the operator (gε)−1 + ϕε(z) from the one-particle case. In analogy to Section 1.1.1,
a careful analysis shows that the divergence of (gε,σ)−1 in the limit ε → 0 is to be chosen in
such a way that a divergent part in ϕε(z)σσ is compensated. The additional difficulty that
arises in the N -particle case is that all estimates have to be uniform in P σ ∈ R2N−2 in order
to obtain norm convergence of (Λε(z)σσ)−1. In the end, a lemma that essentially goes back to
Barry Simon allows us to introduce an ultraviolet cutoff in P σ and to reduce the problem to
the well understood one-particle case. Thereby, it turns out that the above assumption (Ag)
is indispensable: If (Ag) is not satisfied for some pair σ, then one may expect strong resolvent
convergence of Hε at best. To prove convergence of the off-diagonal parts ϕε(z)σν , σ ̸= ν, we
introduce a suitable space cutoff depending on the respective pairs σ and ν that eliminates
certain singular contributions to ϕε(z)σν . This provides us with the regularity to proceed in a
similar way as in the simpler case d = 1. The uniform boundedness in ε, z > 0 of the operator
norm ∥Λε(z)off∥ in combination with the regularizing properties of (Λε(z)diag)−1 eventually allow
us to remove all cutoffs again when proving convergence of (Λε(z)diag)−1Λε(z)off. In the end,
we shall see that Λε(z)−1 exists for sufficiently large z > 0 and sufficiently small ε > 0 and,
in the limit ε → 0, it converges to an operator that has exactly the right form so that, upon
integrating out the contributions of the two-body potentials Vσ, the desired Krein-like formula
(1.42) arises.

1.3.2 Weakness of short-range interactions in Fermi gases

In the physics literature it is a common practice that short-range interactions among equal spin
fermions in ultracold quantum gases are neglected, while at the same time the interaction among
particles of opposite spin is modelled by contact interactions [23, 37, 63]. For example, in the
case of the Fermi polaron model only the contact interactions among the N fermions and the
impurity particle are present in the Hamiltonian, while the interaction among the N fermions is
completely neglected [43, 63]. The common justification for this simplification is as follows: The
Pauli principle forces the wave function to be antisymmetric w.r.t. permutations of the spatial
coordinates of the spin-aligned fermions, that is

ψ(x1, ...xi...xj ..., xN ) = −ψ(x1, ...xj ...xi..., xN ), 1 ≤ i < j ≤ N, (1.55)

where the coordinates of the other particles have been omitted for brevity. This implies that
ψ(x1, ..., xN ) = 0 if xi = xj for some pair (i, j), which suggests that short-range interactions
among equal spin fermions are very weak and, in particular, that zero-range interactions (con-
tact interactions) vanish entirely. An alternative justification for neglecting such short-range
interactions is that s-wave scattering should be suppressed by the Pauli principle [63].

In Section 5 we are going to justify this simplification mathematically. For this purpose, we
consider N ≥ 2 identical spinless fermions with mass one in d ≥ 1 dimensions, which means that
the underlying Hilbert space is the fermionic subspace

Hf :=
N∧
i=1

L2(Rd, dxi) (1.56)
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of L2(RdN ) that contains all functions ψ that satisfy (1.55) almost everywhere. In appropriate
units the kinetic energy operator of the system is given by H0 = −∆ ↾ H2(RdN ) ∩ Hf.

Our first result, Theorem 5.1, shows that contact interactions among equal spin fermions
are indeed impossible in d ≥ 2 dimensions. To this end, we prove that C∞

0 (RdN \ Γ) ∩ Hf is
dense in H2(RdN )∩Hf w.r.t. the norm of H2. This implies that −∆ is essentially self-adjoint on
C∞

0 (RdN \Γ)∩Hf (with H0 being the only self-adjoint extension), and hence contact interactions,
as introduced in Section 1.2.1, vanish on the fermionic subspace Hf for d ≥ 2. However, this is
not true for d = 1. This manifests in the existence of δ′-interactions in d = 1, which, in contrast
to δ-interactions, only vanish when the derivative (and not the wave function itsself) vanishes
at the origin [6].

As elaborated in the previous section, contact interactions in d ≤ 3 can be viewed as ide-
alizations of short-range interactions that arise in a suitable zero-range limit. To estimate the
weakness of short-range interactions in fully spin-polarized Fermi gases, we again consider the
family of Schrödinger operators Hε, ε > 0, from Eq. (1.39), which we now restrict to Hf. More
precisely, we choose gε,σ = gε > 0 and Vσ = V for all pairs σ ∈ I, where the measurable function
V : Rd → R satisfies V (r) = V (−r) a.e. Then,

Hε = −∆ + gε

N∑
i,j=1
i<j

Vε(xj − xi), ε > 0, (1.57)

where Vε(r) = ε−dV (r/ε). To ensure that Hε defines a self-adjoint operator on D(Hε) =D(H0) =
H2(RdN ) ∩ Hf, further assumptions on V are needed. Obviously, V ∈ L2(Rd), d ≤ 3, would be
sufficient. However, the antisymmetry of the wave function combined with the Hölder continuity
of the H2(Rd)-functions allow us to relax this assumption slightly (see Lemma 5.2).

Assuming d ≤ 2, V ∈ L1 ∩ L2(Rd), some further decay of V in the case d = 2, and that
gε satisfies (1.41), Theorems 3.1 and 4.1 show that Hε → H0 in the norm resolvent sense as
ε → 0. Although this only works for this special choice of gε and only in d ≤ 2 dimensions, we
shall see that the norm resolvent convergence Hε → H0 remains valid for a much larger class of
short-range interactions. For d ≥ 2, the weaker strong resolvent convergence Hε → H0 as ε → 0
can be easily derived from our previous result that C∞

0 (RdN \ Γ) ∩ Hf is dense in H2(RdN ) ∩ Hf
for a large class of two-body potentials gεVε (see Proposition 5.4). However, our major focus
lies on proving norm resolvent convergence, which has stronger consequences for the associated
spectra and unitary groups. For d ≤ 3, this is achieved by Theorem 5.6, which we are going to
explain in the following.

For the sake of this introduction, we suppose, for simplicity, that V ∈ L1 ∩ L2(Rd), V (r) =
V (−r) a.e., CV := ess supr∈Rd |r|2|V (r)| < ∞, and that gε > 0 satisfies

lim sup
ε→0

gεε
2−d <

d2

CVN
, (1.58)

although Theorem 5.6 holds for a larger class of two-body potentials gεVε. In the case d = 1
we further suppose that

∫
|V (r)||r|2s dr < ∞ for some s > 1/2. Then Theorem 5.6 shows

that Hε → H0 in the norm resolvent sense as ε → 0. Our estimate for the rate of resolvent
convergence depends on gε and, to some extent, on the decay of |V (r)| as |r| → ∞. When this
decay is sufficient, then the space dimension d, or, more precisely, the highest Hölder exponent
s > 0 for which the Sobolev embedding H2(Rd) ↪→ C0,s(Rd) exists, becomes the limiting factor.

Although the condition (1.58) can be further relaxed, we shall see that there exists some
critical value λmax = λmax(d,N, V ) ≥ 0 such that lim supε→0 gεε

2−d < λmax is sufficient for norm
resolvent convergence Hε → H0, while one may expect strong resolvent convergence Hε → H0
at best if lim supε→0 gεε

2−d > λmax. For the special choice (1.41) of gε, the condition (1.58) is
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automatically satisfied for d ≤ 2, while for d = 3 this is only possible if N ≥ 2 is small enough.
Therefore, it is even more remarkable that this choice of gε conspires with the regularity of
H2(Rd)-functions in such a way that for all z ∈ C \ (−∞, 0],

∥(Hε + z)−1 − (H0 + z)−1∥ = O(ε2) (ε → 0)

independent of the space dimension d ∈ {1, 2, 3}, provided that V has sufficient decay and that
N ≥ 2 is small enough if d = 3. In contrast to that, we shall see that for suitably chosen V

the Hamiltonian H̃ε that is defined by the right side of Eq. (1.57) in the enlarged Hilbert space
L2(RdN ) has a significantly different behavior, even in d = 3 dimensions.

Another choice of gε, which is consistent with (1.58) as well, is the one where gεε2−d is a
positive constant smaller than d2/(CVN). In this case, a rescaling shows that H̃ε is unitarily
equivalent to ε−2H̃ε=1. Hence, if d ≤ 2 and V ≤ 0, V ̸= 0, has sufficient decay, then it follows
from [74, Theorems 2.5 and 3.4] that the two-body binding energy diverges to −∞ in the limit
ε → 0, which amounts to a combined short-range and strong interaction limit. However, by
Theorem 5.6, the restriction Hε = H̃ε ↾ Hf converges in the norm resolvent sense to H0.

1.4 Outline
In Section 2 we collect basic results and definitions that are needed in the course of this thesis.
Results concerning strong and norm resolvent convergence are summarized in Section 2.1. In
particular, we demonstrate to what extent norm resolvent convergence has stronger consequences
for the convergence of the associated spectra and unitary groups than the weaker strong resolvent
convergence. In Section 2.2 we give the rigorous definition of the trace operators Tσ that have
been introduced in Eq. (1.33) and we establish basic properties of these trace operators that are
needed in the sequel. In addition, we introduce two versions T+

σ and T−
σ of these trace operators

that are needed in Section 3.6 in order to formulate a mathematically rigorous version of the
jump condition from Eq. (1.38).

Section 3 is devoted to the analysis of short-range interactions and contact interactions in
d = 1. The main result is Theorem 3.1, where Hamiltonians describing contact interactions
among N ≥ 2 particles are shown to arise as limits, in the norm resolvent sense, of Schrödinger
operators with suitably rescaled two-body potentials. The major part of this section is devoted
to both proving Theorem 3.1 and optimizing the rate of norm resolvent convergence. In the last
part of this section we show that the limit operator H from Theorem 3.1 describes physically
reasonable contact interactions, i.e. it is bounded from below, local and translation-invariant.
Moreover, the domain and the action of H are characterized by means of a rigorous version of
the jump condition from Eq. (1.38).

Section 4 is devoted to the analysis of short-range interactions and contact interactions in
d = 2. The main result is Theorem 4.1, which can be viewed as the two-dimensional analog of
Theorem 3.1. The major part of this section is concerned with preparing the proof of Theorem
4.1, which is given in Section 4.5. Moreover, we show that our limit operator H describes
physically reasonable contact interactions, and our estimates yield an explicit lower bound for
the spectrum. In the last part of this section, we compute the quadratic form of H explicitly,
which allows us to identify H with the TMS Hamiltonian of Dell’Antonio, Figari and Teta [30].

Finally, in Section 5, the weakness of short-range interactions among equal spin fermions is
analyzed and quantified. First, we show that contact interactions among equal spin fermions are
indeed impossible in d ≥ 2, while this is not true in d = 1. Our second main result reveals that
fully spin-polarized Fermi gases in d ≤ 2 with short-range interactions - the spin-up-spin-down
interaction strength being fixed - are asymptotically free in the limit of zero-range interaction.
This remains true in d= 3 for suitable two-body potentials V and N ≥ 2 small, depending on V .
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2 Preliminaries and basic results
2.1 Strong and norm resolvent convergence
In many situations, where one has to deal with unbounded operators, convergence in the resol-
vent sense is the appropriate concept of convergence. There are two important types of resolvent
convergence: strong resolvent convergence and norm resolvent convergence. In this section, we
collect basic results concerning these types of convergence in an arbitrary separable complex
Hilbert space H .

Definition 2.1. Let H and Hε, ε > 0, be a family of self-adjoint operators in H . Then we say
that Hε converges, as ε → 0, in the norm resolvent sense to H if ∥(Hε + z)−1 − (H + z)−1∥ → 0
in L (H ) for some ε0 > 0 and some z ∈

⋂
ε∈(0,ε0) ρ(Hε) ∩ρ(H). Strong resolvent convergence is

defined analogously, where the norm convergence is replaced by the weaker strong convergence.
That is, for all ψ ∈ H , (Hε + z)−1ψ → (H + z)−1ψ as ε → 0.

A first consequence of strong, respectively, norm resolvent convergence is stated in Proposi-
tion 2.2, below. For the proof, we refer to [71, Theorem VIII.20] and [77, Theorem 6.31].

Proposition 2.2. Let H and Hε, ε > 0, be self-adjoint operators in H , let ε0 > 0 and let
Σ = ⋃

ε∈(0,ε0) σ(Hε) ∪ σ(H).

(i) If Hε → H in the strong resolvent sense as ε → 0 and f : Σ → C is a bounded and
continuous function, then, for all ψ ∈ H , f(Hε)ψ → f(H)ψ as ε → 0.

(ii) If Hε → H in the norm resolvent sense as ε → 0 and f : Σ → C is a bounded and
continuous function satisfying limx→−∞ f(x) = limx→+∞ f(x), then ∥f(Hε) − f(H)∥ → 0
as ε → 0.

Remark. The operators f(H), f(Hε) ∈ L (H ) are defined by the spectral theorem, see, e.g.,
[71, Theorem VIII.5].

In quantum mechanics, the spectra of H and Hε are of particular interest. By Proposition
2.3, below, norm resolvent convergence is superior to the weaker strong resolvent convergence
with regard to the spectral consequences. For the proof, we refer to [71, Theorems VIII.23 and
VIII.24] and [77, Theorem 6.38].

Proposition 2.3. Let H and Hε, ε > 0, be self-adjoint operators in H .

(i) If Hε → H in the strong resolvent sense as ε → 0, then σ(H) ⊆ limε→0 σ(Hε) in the sense
that for each λ ∈ σ(H) there exists a sequence λε ∈ σ(Hε), ε > 0, with limε→0 λε = λ.

(ii) If Hε → H in the norm resolvent sense as ε → 0, then σ(H) = limε→0 σ(Hε) in the sense
that λ ∈ σ(H) if and only if there exists a sequence λε ∈ σ(Hε), ε > 0, with limε→0 λε = λ.

From Propositions 2.2 and 2.3 we obtain the following corollary:

Corollary 2.4. If Hε → H in the strong resolvent sense as ε → 0, then (Hε + z)−1ψ →
(H + z)−1ψ for all ψ ∈ H and all z from the interior of

⋂
ε∈(0,ε0) ρ(Hε) ∩ ρ(H). If Hε → H

in the norm resolvent sense as ε → 0, then z ∈ ρ(H) implies that z ∈ ρ(Hε) for ε > 0 small
enough and ∥(Hε + z)−1 − (H + z)−1∥ → 0 as ε → 0.
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It is well-known that strong resolvent convergence is equivalent to the strong convergence
of the associated strongly continuous unitary groups. That is, Hε → H in the strong resolvent
sense as ε → 0 if and only if, for all t ∈ R and all ψ ∈ H , exp(−iHεt)ψ → exp(−iHt)ψ as
ε → 0, see, e.g., [71, Theorem VIII.21]. Indeed, one can even show that this convergence is
uniform on compact time intervals, see [71, Problem 21, p. 314]. In the case of norm resolvent
convergence, the following proposition further improves this result to norm convergence modulo
the resolvent of the limit operator:

Proposition 2.5. Let H and Hε, ε > 0, be a family of self-adjoint operators in H and suppose
that Hε → H in the norm resolvent sense as ε → 0. Then, for any T > 0,

lim
ε→0

sup
t∈[−T,T ]

∥∥∥[exp(−iHt) − exp(−iHεt)] (H + i)−1
∥∥∥ = 0. (2.1)

Proof. We start with the estimate∥∥∥[exp(−iHt) − exp(−iHεt)] (H + i)−1
∥∥∥ ≤

∥∥∥exp(−iHt)(H + i)−1 − exp(−iHεt)(Hε + i)−1
∥∥∥

+
∥∥∥exp(−iHεt)

[
(Hε + i)−1 − (H + i)−1

]∥∥∥ . (2.2)

The second summand on the right side of (2.2) is bounded by
∥∥(Hε + i)−1 − (H + i)−1∥∥, which

is independent of t ∈ R and vanishes as ε → 0. Hence, to prove (2.1), it remains to show that

lim
ε→0

sup
t∈[−T,T ]

∥ft(H) − ft(Hε)∥ = 0, (2.3)

where ft(x) := exp(−ixt)/(x+ i) for short. For fixed t ∈ R, it follows from Proposition 2.2 that
∥ft(H) − ft(Hε)∥ → 0 as ε → 0. To prove that this convergence is uniform in t ∈ [−T, T ], let
δ > 0 be given. Let −T = t0 < t1 < ... < tn = T be a partition of [−T, T ] with |tk+1 − tk| < δ/3
for k = 0, ..., n− 1. Then we choose ε0 > 0 so small that, for all k = 0, ..., n and all ε ∈ (0, ε0),
∥ftk(H) − ftk(Hε)∥ < δ/3. For given t ∈ [−T, T ], we now choose tk so that t ∈ [tk, tk+1) (for
t = T we choose tk = tn = T ). Then, using that for all x ∈ R,

|ft(x) − ftk(x)| = 1
|x+ i|

∣∣∣∣∣
∫ t

tk

ix exp(−isx) ds
∣∣∣∣∣ ≤ |t− tk|,

we obtain the Lipschitz property ∥ft(A)−ftk(A)∥ ≤ ∥ft−ftk∥L∞ ≤ |t−tk| < δ/3 forA ∈ {H,Hε}.
Hence, it follows that, for all ε ∈ (0, ε0),

∥ft(H) − ft(Hε)∥ ≤ ∥ft(H) − ftk(H)∥ + ∥ftk(H) − ftk(Hε)∥ + ∥ftk(Hε) − ft(Hε)∥
< δ/3 + δ/3 + δ/3 = δ.

As t ∈ [−T, T ] was arbitrarily chosen, this proves (2.3), and hence (2.1).

In the case of norm resolvent convergence, the following lemma, which is a variant of [28,
Lemma 2.6.1], shows that even the rate of resolvent convergence is independent of the particular
choice of z ∈ ρ(H):

Lemma 2.6. Suppose that Hε, ε > 0, are self-adjoint on a common domain D(Hε) = D ⊆ H

and that Hε → H in the norm resolvent sense as ε → 0. For z ∈ ρ(Hε) ∩ ρ(H), let Rε(z) :=
(Hε + z)−1 and R(z) := (H + z)−1. Then z, z0 ∈ ρ(H) implies that z, z0 ∈ ρ(Hε) ∩ ρ(H) for
small enough ε > 0 and, for some constant Cz ≥ 0,

∥Rε(z) −R(z)∥ ≤ (1 + |z − z0|Cz)2∥Rε(z0) −R(z0)∥.
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Proof. Let z, z0 ∈ ρ(H) be given. Then it follows from Proposition 2.3 that z, z0 ∈ ρ(Hε)∩ρ(H)
for all ε ∈ (0, ε0) and Cz := supε∈(0,ε0) ∥Rε(z)∥ < ∞, provided that ε0 > 0 is small enough. Let
ε, δ ∈ (0, ε0). Then, by the first resolvent identity,

Rε(z) = Rε(z0)Sε(z, z0) = Sε(z, z0)Rε(z0), (2.4)

where Sε(z, z0) = 1+(z0 −z)Rε(z) has the norm bound ∥Sε(z, z0)∥ ≤ 1+ |z−z0|Cz. The second
resolvent identity Rε(z) −Rδ(z) = Rε(z)(Hδ −Hε)Rδ(z) and (2.4) imply that

Rε(z) −Rδ(z) = Sε(z, z0)
(
Rε(z0) −Rδ(z0)

)
Sδ(z, z0).

After taking norms of both sides and the limit δ → 0, the desired estimate follows.

A variant of Lemma 2.6, where the constant Cz is explicitly given, is the following lemma:

Lemma 2.7. Let H and H0 be self-adjoint on a common domain D(H) = D(H0) ⊆ H and let
R(z) := (H+z)−1 and R0(z) := (H0+z)−1 for z ∈ ρ(H)∩ρ(H0). Then, for all z ∈ ρ(H)∩ρ(H0)
and all w ∈ C \ R,

∥R(w) −R0(w)∥ ≤
(

1 + |w − z|
| Im(w)|

)2
∥R(z) −R0(z)∥.

Proof. Using that ∥R0(w)∥ ≤ | Im(w)|−1 and ∥R(w)∥ ≤ | Im(w)|−1, the estimates from the proof
of Lemma 2.6 can be easily adapted to the present case.

We conclude this section with an alternative characterization of strong resolvent convergence,
namely weak and strong Γ-convergence of the associated quadratic forms, see Proposition 2.9,
below. For a comprehensive overview of Γ-convergence in real Hilbert spaces, we refer to the
monograph [26]. In [12] some of the key results are extended to the complex case. To define
Γ-convergence, it is convenient to extend all quadratic forms to H :

Definition 2.8. Let q ≥ 0 and qε ≥ 0, ε > 0, be densely defined and closed quadratic forms,
which are extended to the whole Hilbert space H by setting q(ψ) := +∞ if ψ ∈ H \ D(q) and
qε(ψ) := +∞ if ψ ∈ H \D(qε). Then we say that qε strongly Γ-converges to q as ε → 0 if the
following two conditions are satisfied:

(i) If ψε → ψ strongly in H as ε → 0, then

q(ψ) ≤ lim inf
ε→0

qε(ψε). (2.5)

(ii) For every ψ ∈ H there exists a sequence ψε ∈ H , ε > 0, with ψε → ψ as ε → 0 and

q(ψ) = lim
ε→0

qε(ψε). (2.6)

Weak Γ-convergence qε → q in the limit ε → 0 is defined analogously, where the strong conver-
gence in (i) and (ii) is replaced by the weak convergence ψε ⇀ ψ as ε → 0.

The analog of the following result in real Hilbert spaces is proved in [26, Theorem 13.6], and
in [12, Theorem 1] the proof is then adapted to the complex case.

Proposition 2.9. Let q ≥ 0 and qε ≥ 0, ε > 0, be densely defined closed quadratic forms in H

and let H and Hε denote the self-adjoint operators that are associated with q and qε, respectively.
Then, as ε → 0, Hε → H in the strong resolvent sense if and only if qε → q in the sense of
strong and weak Γ-convergence.
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2.2 Trace operators
In this section we define all trace operators that appear in this thesis and we prove the properties
that are needed in the sequel.

Let d ∈ N, N ≥ 2 and σ ∈ I. Our first goal is to define a suitable unbounded trace operator
Tσ that assigns to functions from the Hilbert space H defined by Eq. (1.26) an appropriate
trace on the collision plane Γσ from Eq. (1.28). For ψ ∈ C∞

0 (RdN ) ⊆ H , we define

(Tσψ)(R, x1, ...x̂i...x̂j ..., xN ) := ψ(x1, . . . , xN )
∣∣
xi=xj=R, σ = (i, j), (2.7)

which means that Tσψ defines a vector in the (N − 1)-particle Hilbert space

Xσ := L2
(
Rd(N−1),d (R, x1, ...x̂i...x̂j ..., xN )

)
, σ = (i, j). (2.8)

We interpret (2.7) in the following way: Tσ equates the positions of the ith and the jth particle,
which then agree with their common center of mass coordinate R. However, for later purposes,
we need to define Tσ on a larger space of functions. To this end, we note that the Definition
(1.45) of Kσ implies that Tσψ = τKσψ for all ψ ∈ C∞

0 (RdN ), where

(τψ) (R, x3, ..., xN ) := ψ(r,R, x3, ..., xN )|r=0. (2.9)

It is well-known that τ extends to a bounded operator from Hs(RdN ) to Hs−d/2(Rd(N−1)) for
any s ∈ (d/2,∞) and, for the convenience of the reader, we prove this in Lemma 2.10, below.
For this purpose, we define in accordance with (2.9),

τ̂ψ(P ) := 1
(2π)d/2

∫
Rd

ψ̂(p, P ) dp, (2.10)

p and P being conjugate to r and (R, x3, ..., xN ), respectively, on the domain

D(τ) =
{
ψ ∈ L2(RdN )

∣∣∣∣∣
∫ (∫

|ψ̂(p, P )| dp
)2

dP < ∞
}
. (2.11)

It is easy to verify that D(τ) is a linear subspace of L2(RdN ) and, for ψ ∈ D(τ), (2.10) defines
a vector τψ ∈ L2(Rd(N−1)). The trace operator Tσ : D(Tσ) ⊆ H → Xσ is then defined by

Tσ := τKσ, (2.12)

which implies that the domain D(Tσ) = K ∗
σ D(τ) ⊆ H depends on the pair σ. Indeed, in

the case d = 2, we shall see in Section 4 that defining Tσ simply on the σ-independent domain⋃
s∈(1,∞)H

s(R2N ) would not be sufficient for our purposes.

Lemma 2.10. For all s ∈ (d/2,∞), Hs(RdN ) ⊆ D(τ) and τ : Hs(RdN ) → Hs−d/2(Rd(N−1)) is
a bounded operator.

Proof. For ψ ∈ Hs(RdN ), we have by the Cauchy-Schwarz inequality,( ∫
|ψ̂(p, P )| dp

)2

≤
∫

|ψ̂(p, P )|2(1 + |p|2 + |P |2)s dp ·
∫

(1 + |p|2 + |P |2)−s dp, (2.13)

where ∫
(1 + |p|2 + |P |2)−s dp = C(d, s) (1 + |P |2)d/2−s, (2.14)

and C(d, s) < ∞ because s > d/2. From (2.13), (2.14) and (1 + |P |2)d/2−s ≤ 1 it follows that
ψ ∈ D(τ), and hence with τψ defined by (2.10), ∥τψ∥Hs−d/2 ≤ (2π)−d/2C(d, s)1/2∥ψ∥Hs .

23



The Definition (2.12) of Tσ, the fact that Kσ defines a bounded operator in Hs(RdN ) for all
s ∈ N0, and Lemma 2.10 imply the following corollary:

Corollary 2.11. Suppose that d, s ∈ N, d/2 < s and σ ∈ I. Then Hs(RdN ) ⊆ D(Tσ) and
Tσ : Hs(RdN ) → Xσ defines a bounded operator.

In terms of Tσ, we now define a one-parameter family of bounded operators in d ≤ 3:

Proposition 2.12. Let d ≤ 3, z ∈ ρ(H0) and σ ∈ I. Then G(z)σ := TσR0(z) defines a bounded
operator in L (H ,Xσ) that has the following properties:

(i) For all w, z ∈ ρ(H0),

G(z)σ = G(w)σ + (w − z)G(z)σR0(w)
= G(w)σ + (w − z)G(w)σR0(z).

(ii) For all φ ∈ Xσ, (H0 + z)G(z)∗
σφ = 0 in RdN \ Γσ in the sense of distributions.

(iii) If d = 1, then G(z)∗
σ : Xσ → H1(RN ) defines a bounded operator.

Proof. Since R0(z) : H → H2(RdN ) is bounded and, by Corollary 2.11, Tσ : H2(RdN ) → Xσ
also defines a bounded operator for d ≤ 3, it follows that G(z)σ = TσR0(z) defines a bounded
operator in L (H ,Xσ). Now (i) is a direct consequence of the first resolvent identity

R0(z) = R0(w) + (w − z)R0(z)R0(w)
= R0(w) + (w − z)R0(w)R0(z), z, w ∈ ρ(H0). (2.15)

To prove (ii), let ψ ∈ C∞
0 (RdN \ Γσ) and observe that

⟨(H0 + z)ψ |G(z)∗
σφ⟩ = ⟨G(z)σ(H0 + z)ψ |φ⟩ = ⟨Tσψ |φ⟩ = 0

because Tσψ = 0 by (2.7). This proves (ii), so it only remains to prove (iii), where d = 1 is fixed.
For z = 1, this follows from the identity G(1)∗

σ = R0(1)1/2(TσR0(1)1/2)∗ because, by Corollary
2.11, Tσ : H1(RN ) → Xσ defines a bounded operator and hence TσR0(1)1/2 ∈ L (H ,Xσ). For
general z ∈ ρ(H0), it follows from property (i) that

G(z)∗
σ = G(1)∗

σ + (1 − z)R0(1)G(z)∗
σ,

and hence G(z)∗
σ : Xσ → H1(RN ) also defines a bounded operator.

In Section 1.2.1 we have used [68, Theorem 2.2]. This is justified by the following lemma
and the subsequent remark:

Lemma 2.13. Let d, s ∈ N, s > d/2, let J be a non-empty subset of I, and let X = ⊕
σ∈J Xσ.

Then Tψ := (Tσψ)σ∈J defines a bounded operator T ∈ L (Hs(RdN ),X). Moreover, KerT
contains the set C∞

0 (RdN \ Γ), which is dense in H , and RanT is dense in X.

Remark. For d ≤ 3, it follows from Lemma 2.13 that T ∈ L (H2(RdN ),X), and hence, for all
z ∈ ρ(H0), G(z) := TR0(z) ∈ L (H ,X). An alternative description of G(z) is given by G(z)ψ =
(G(z)σψ)σ∈J , where the operatorsG(z)σ, σ ∈ J , were introduced in Proposition 2.12. Moreover,
Lemma 2.13 and [68, Lemma 2.5] imply that KerG(z)∗ = {0} and RanG(z)∗ ∩H2(RdN ) = {0},
so G(z)∗ satisfies the hypotheses of [68, Theorem 2.2]∗.

∗In the notation of [68] the operator Gz corresponds to the adjoint (T (−H0 + z)−1)∗.
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Proof. The fact that T defines a bounded operator in L (Hs(RdN ),X) follows from Corollary
2.11. Moreover, for σ ∈ J and ψ ∈ C∞

0 (RdN \Γ), it follows immediately from (2.7) that Tσψ = 0
because ψ = 0 on Γ. Therefore, C∞

0 (RdN \ Γ) ⊆ KerT . As Γ is a closed set of measure zero in
RdN , it is well-known that C∞

0 (RdN \ Γ) is dense in H (see, e.g., [77, Theorem 0.40]). Thus it
only remains to show that RanT is dense in X. For this purpose, let Γ̃σ, σ = (i, j) ∈ J , denote
the set of all (R, x1, ...x̂i...x̂j ..., xN ) ∈ Rd(N−1) with at least two common entries, i.e. xk = R or
xk = xl for some k ̸= l. Then, as above, C∞

0 (Rd(N−1) \ Γ̃σ) is dense in Xσ, so it suffices to show
that for any given w = (wσ)σ∈J ∈ X with wσ ∈ C∞

0 (Rd(N−1) \ Γ̃σ) there exists ψ ∈ C∞
0 (RdN )

with Tψ = w. To this end, let δ := minσ∈J dist(Γ̃σ, suppwσ) > 0 and let χ ∈ C∞
0 (Rd) be a

function with χ(0) = 1 and χ(x) = 0 if |x| ≥ 1. Then we define ψ ∈ C∞
0 (RdN ) by

ψ(x1, ..., xN ) :=
∑

ν=(k,l)∈J
wν

(
xk + xl

2 , x1, ...x̂k...x̂l..., xN

)
χ

(
xl − xk

δ

)
.

Now, using the Definition (2.7) of Tσψ, it is straightforward to verify that, for all σ ∈ J ,
Tσψ = wσ, and hence Tψ = w. This concludes the proof.

So far we have only considered trace operators for functions that are defined on the whole
space RdN . However, in Section 3.6, below, where d = 1 is fixed, we also have to assign a suitable
trace on Γσ to functions that have jumps at Γ = ⋃

ν∈I Γν . As RN \ Γσ is not connected, such a
trace is, in general, not unique and depends on the direction from which Γσ is approached. As
illustrated in Figure 2.1, RN \ Γσ is the disjoint union of the two open half-spaces Ω+

σ and Ω−
σ

defined by

Ω±
σ :=

{
(x1, ..., xN ) ∈ RN | ± (xj − xi) > 0

}
, σ = (i, j). (2.16)

x1

x2

Ω+
(1,2)

Ω−
(1,2)

Γ(1,2)

Figure 2.1: The open half-spaces Ω+
(1,2) and Ω−

(1,2) for N = 2.

In Proposition 2.14 below, we assign to Ω+
σ \ Γ and Ω−

σ \ Γ suitable trace operators T+
σ and

T−
σ , respectively. The remark after Proposition 2.14 shows that these new trace operators agree

with Tσ on H1(RN ).

Proposition 2.14. Let σ = (i, j) ∈ I and let D±
σ denote the set of all ψ ∈ C∞(Ω±

σ \ Γ) that
extend to a function in C(Ω±

σ \
⋃
ν ̸=σ Γν) and for which suppψ is a compact set in RN . Then,

for ψ ∈ D±
σ , the limit

(T±
σ ψ)(R, x1, ...x̂i...x̂j ..., xN ) := lim

xj→R±
ψ(x1, ...xi−1, R, xi+1..., xj , ..., xN ) (2.17)

exists for almost all (R, x1, ...x̂i...x̂j ..., xN ) ∈ RN−1 and defines a vector T±
σ ψ ∈ Xσ. The set D±

σ

is dense in H1(Ω±
σ \ Γ), and T±

σ ↾ D±
σ defined by (2.17) uniquely extends to a bounded operator

T±
σ : H1(Ω±

σ \ Γ) → Xσ. Furthermore, for all ψ ∈ H1(Ω±
σ \ Γ) and all φ ∈ C∞

0 (RN ),

T±
σ (ψφ) = (T±

σ ψ)(Tσφ). (2.18)
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Remark. By Corollary 2.11, Tσ : H1(RN ) → Xσ defines a bounded operator. For ψ ∈ C∞
0 (RN ), a

comparison of (2.7) and (2.17) shows that Tσψ = T±
σ (ψ ↾ (Ω±

σ \Γ)), which, by an approximation
argument, remains valid for general ψ ∈ H1(RN ).

Proof. Since ψ ∈ D±
σ extends to a bounded and continuous function on Ω±

σ \
⋃
ν ̸=σ Γν and

Γσ ⊆ Ω±
σ , the limit on the right-hand side of Eq. (2.17) exists for all (R, x1, ...x̂i...x̂j ..., xN ) ∈

RN−1 \ Γ̃σ, where Γ̃σ ⊆ RN−1 is defined as in the proof of Lemma 2.13. As Γ̃σ has measure
zero in RN−1 and suppψ is compact, it is clear that the limit T±

σ ψ defines a square-integrable
function in Xσ. This proves the first part.

In the remainder of this proof, we assume, for the sake of notational simplicity, that σ =
(1, N) and we only consider the (+)-case, the (−)-case being similar. We are going to show that
D+
σ is dense in H1(Ω+

σ \ Γ). To this end, we first observe that Ω+
σ \ Γ is the disjoint union, over

all permutations π of {1, ..., N} that satisfy π−1(1) < π−1(N), of the open sets

Ωπ :=
{

(x1, ..., xN ) ∈ RN
∣∣xπ(1) < xπ(2) < ... < xπ(N)

}
. (2.19)

As each Ωπ is an open and connected set whose boundary is of class C (cf. [50, Definition 9.57]),
the restriction to Ωπ of functions in C∞

0 (RN ) is dense in H1(Ωπ) (see, e.g., [50, Theorem 11.35]).
Now, let ψ ∈ H1(Ω+

σ \ Γ) be fixed. Then, using that (ψ ↾ Ωπ) ∈ H1(Ωπ) for any permutation π

with π−1(1) < π−1(N), we may choose sequences ψπ,n ∈ C∞
0 (RN ), n ∈ N, so that, in the limit

n → ∞, (ψπ,n ↾ Ωπ) → (ψ ↾ Ωπ) in the norm of H1(Ωπ). We now define a sequence ψn ∈ D+
σ ,

n ∈ N, by ψn(x) := ψπ,n(x) iff x ∈ Ωπ. Then it follows that, as n → ∞, ψn → ψ in the norm of
H1(Ω+

σ \ Γ). This proves that D+
σ is dense in H1(Ω+

σ \ Γ).
We claim, and prove below, that there exists a constant C(N) > 0 such that, for all ψ ∈ D+

σ ,

∥T+
σ ψ∥2 ≤ C(N)∥ψ∥2

H1(Ω+
σ \Γ). (2.20)

As D+
σ is dense in H1(Ω+

σ \ Γ), a standard argument then shows that (2.17) uniquely defines a
bounded operator T+

σ : H1(Ω+
σ \ Γ) → Xσ. Furthermore, for ψ ∈ D+

σ , the identity (2.18) follows
immediately from (2.17) because ψφ ∈ D+

σ for all φ ∈ C∞
0 (RN ). An approximation argument

then establishes (2.18) for general ψ ∈ H1(Ω+
σ \ Γ).

It remains to prove (2.20). To this end, we introduce for any permutation π satisfying
π−1(1) < π−1(N) the open set Oπ that is the interior of the closed set{

(R, x2, ..., xN−1) ∈ RN−1 ∣∣ (R, x2, ..., xN−1, R) ∈ Ωπ

}
.

Then it follows from the Definition (2.19) of Ωπ that Oπ = ∅ unless π ∈ S(σ), where S(σ) denotes
the set of all permutations π that satisfy π−1(N) = π−1(1) + 1. Since Γσ ⊆ Ω+

σ = ⋃
π Ωπ, it

is now immediate from the definition of Oπ that RN−1 = ⋃
π Oπ = ⋃

π∈S(σ)Oπ. From this we
conclude that, for all ψ ∈ D+

σ ,

∥T+
σ ψ∥2 =

∑
π∈S(σ)

∥T+
σ ψ∥2

L2(Oπ).

Hence, to prove (2.20), it suffices to show that for each π ∈ S(σ) there exists a constant Cπ,N > 0
such that, for all ψ ∈ D+

σ , ∥T+
σ ψ∥2

L2(Oπ) ≤ Cπ,N∥ψ∥2
H1(Ωπ). As Ωπ is an open set whose boundary

is even uniformly Lipschitz continuous (cf. [50, Definition 13.11]), this follows from a standard
result (see [50, Theorem 18.40]). However, for the convenience of the reader, we give a short
proof here.

Let π ∈ S(σ) be fixed. Then we define a vector h = (hi)Ni=1 ∈ RN by hi := 0 if π−1(i) ≤
π−1(1) and hi := 1 otherwise (in particular h1 = 0 and hN = 1). By construction, it follows that,
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for all (R, x2, ..., xN−1) ∈ Oπ and all t > 0, xt := (R, x2, ..., xN−1, R) + th ∈ Ωπ. Furthermore,
the fundamental theorem of calculus shows that, for all ψ ∈ D+

σ and all (R, x2, ..., xN−1) ∈ Oπ,∣∣∣(T+
σ ψ)(R, x2, ..., xN−1)

∣∣∣2 =
∣∣∣∣∫ ∞

0
∂t(|ψ(xt)|2) dt

∣∣∣∣ ≤ 2N
∫ ∞

0
|ψ(xt)||∇ψ(xt)| dt.

Integrating over Oπ, we conclude that

∥T+
σ ψ∥2

L2(Oπ) ≤ 2N
∫
Oπ

d(R, x2, ..., xN−1)
∫ ∞

0
dt |ψ(xt)||∇ψ(xt)|

= 2N
∫

Ωπ

dx |ψ(x)||∇ψ(x)| ≤ 2N∥ψ∥2
H1(Ωπ),

where the second line was obtained from the substitution xt → x = (x1, x2, ..., xN−1, xN ), and
afterwards the Cauchy-Schwarz inequality was applied. This completes the proof of (2.20).

In analogy to (2.12), an alternative description of the trace operators T±
σ can be obtained as

follows. First, we note that Eq. (1.45) defines an isomorphism Kσ : H1(Ω±
σ ) → H1(R± ×RN−1),

where R+ := (0,∞) and R− := (−∞, 0), and that we may restrict T±
σ to bounded operators

T±
σ : H1(Ω±

σ ) → Xσ by setting T±
σ ψ := T±

σ (ψ ↾ (Ω±
σ \ Γ)). Then, for ψ ∈ C∞

0 (RN ), (2.17) is
equivalent to T±

σ (ψ ↾ Ω±
σ ) = τ±φ, where φ = Kσ(ψ ↾ Ω±

σ ) ∈ H1(R± × RN−1) and

(τ±φ)(R, x3, ..., xN ) := lim
r→0±

φ(r,R, x3, ..., xN ). (2.21)

Now, using that the restriction to Ω±
σ of functions in C∞

0 (RN ) is dense in H1(Ω±
σ ) (see, e.g.,

[50, Theorem 11.35]), an approximation argument shows that τ± extend to bounded operators
τ± : H1(R± × RN−1) → L2(RN−1) and that

T±
σ ψ = τ±Kσψ, ψ ∈ H1(Ω±

σ ), σ ∈ I. (2.22)
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3 From short-range to contact interactions
in d = 1 dimension

This section is devoted to the approximation of contact interactions among N ≥ 2 particles
in d = 1 space dimension by means of Schrödinger operators with suitably rescaled two-body
potentials, the main result being Theorem 3.1, below. Thereby we generalize and enlarge the
results from reference [41]. Throughout this section we work in the general framework of Section
1.3.1, where, if not stated otherwise, we assume that d = 1.

3.1 Main result and outline
We consider short-range interactions among N ≥ 2 particles in d = 1 dimension in the Hilbert
space H defined by Eq. (1.26). Recall from Eqs. (1.29), (1.39) and (1.40) that we assume that
these short-range interactions can be described by Schrödinger operators of the form

Hε = H0 +
∑

σ=(i,j)∈I
gε,σ Vσ,ε(xj − xi), ε > 0, (3.1)

where

H0 =
N∑
i=1

(−∆xi/mi) (3.2)

denotes the kinetic energy operator, gε,σ ∈ R plays the role of a coupling constant and, for a
given real-valued potential Vσ ∈ L1 ∩ L2(R) with Vσ(−r) = Vσ(r) a.e.,

Vσ,ε(r) = ε−1 Vσ(r/ε), σ ∈ I, ε > 0. (3.3)

In particular, Hε is self-adjoint on D(Hε) = D(H0) = H2(RN ). As explained in Section 1.3.1,
our goal is to prove norm resolvent convergence of Hε in the limit ε → 0 and to identify the
limit operator with a physically reasonable Hamiltonian describing contact interactions. Under
the assumption that all coupling constants have suitable limits gσ = limε→0 gε,σ ∈ R (cf. Eq.
(1.41)), Theorem 3.1, below, shows that Hε converges, as ε → 0, in the norm resolvent sense
to a self-adjoint semibounded operator H. The quadratic form of H is explicitly given by Eq.
(3.7), below, where the parameters ασ := gσ

∫
Vσ(r) dr, σ ∈ I, determine the strength of the

resulting δ-interaction among the particles of the pair σ. If ασ = 0, then the pair σ does not
contribute to H. Let J denote the set of all pairs σ ∈ I with ασ ̸= 0.

r

ε = 0.1
ε = 0.2
ε = 0.35
ε = 0.5

Figure 3.1: A Dirac sequence Vσ,ε for some
values of ε > 0.

From a heuristic point of view, the result from
Theorem 3.1 is quite natural: from the Definition
(3.3) of Vσ,ε and from limε→0 gε,σ = gσ, it follows
that for all φ ∈ C∞

0 (R),

⟨gε,σVσ,ε |φ⟩ → ασφ(0) = ασ ⟨δ |φ⟩ (ε → 0),

where ασ = gσ
∫
Vσ(r) dr. This means that the

two-body potential gε,σVσ,ε converges, as ε → 0,
in the sense of distributions to a δ-distribution
of strength ασ. In particular, if Vσ ≥ 0 and∫
Vσ(r) dr = 1, then Vσ,ε defines a Dirac sequence

in ε > 0 (see Figure 3.1).
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Besides establishing norm resolvent convergence Hε → H as ε → 0 and estimating the rate
of resolvent convergence, Theorem 3.1 also yields a Krein-like formula for the resolvent of H in
terms of the trace operators Tσ from Section 2.2, see Eq. (3.6). We now define all operators
appearing in Eq. (3.6). By Corollary 2.11, Tσ : H1(RN ) → Xσ defines a bounded operator,
where Xσ is defined by Eq. (2.8), and hence G(z)σ = TσR0(z) ∈ L (H ,Xσ) for z ∈ ρ(H0),
where R0(z) = (H0 +z)−1 for short. This means that G(z)ψ := (G(z)σψ)σ∈J defines a bounded
operator in L (H ,X) for any z ∈ ρ(H0), where the auxiliary Hilbert space

X :=
⊕
σ∈J

Xσ (3.4)

only contains contributions from pairs σ ∈ J . It remains to define the operator Θ(z) from Eq.
(3.6). By Property (iii) in Proposition 2.12, G(z)∗

ν : Xν → H1(RN ) defines a bounded operator
for any z ∈ ρ(H0), so it follows that TσG(z)∗

ν , σ, ν ∈ I, define bounded operators in L (Xν ,Xσ).
This means that

Θ(z)σν := −(ασ)−1δσν − TσG(z)∗
ν ∈ L (Xν ,Xσ), z ∈ ρ(H0), σ, ν ∈ J , (3.5)

define the components of a bounded operator Θ(z) ∈ L (X). After these preparations, we now
state the main result of this section:

Theorem 3.1. Let d = 1, N ≥ 2, and suppose, for all σ ∈ I, that Vσ ∈ L1 ∩ L2(R), Vσ(−r) =
Vσ(r) a.e. and that the limit gσ = limε→0 gε,σ exists. Let Hε be defined by Eqs. (3.1)-(3.3). Then,
as ε → 0, Hε converges in the norm resolvent sense to the self-adjoint semibounded operator H
that is associated with the closed and semibounded quadratic form q from Eq. (3.7), where C = 0
and ασ = gσ

∫
Vσ(r) dr. If z ∈ ρ(H0) ∩ ρ(H), then Θ(z) ∈ L (X) has a bounded inverse and

(H + z)−1 = R0(z) +G(z)∗Θ(z)−1G(z). (3.6)

If, in addition,
∫

|r|2s|Vσ(r)| dr < ∞ and |gε,σ − gσ| = O(εs) as ε → 0, where s ∈ (0, 1/2] is
independent of the particular choice of σ ∈ I, then z ∈ ρ(H) implies that z ∈ ρ(Hε) ∩ ρ(H) for
small enough ε > 0 and ∥(H + z)−1 − (Hε + z)−1∥ = O(εs) as ε → 0.

Remarks.

(i) For N = 3 particles and gε,σ = 1, Theorem 3.1 was first established in [10]. However, the
proof in [10] relies on Faddeev’s equations, which have no natural generalization to the
case N > 3. The first result for an arbitrary number N ≥ 2 of particles was derived in
[41] in the case of a Bose gas. Theorem 3.1 generalizes the result from [41] to arbitrary
symmetry regimes and general masses mi > 0, i = 1, ..., N .

(ii) In Proposition 3.12, below, the restriction s ∈ (0, 1/2] that limits the rate of resolvent
convergence, namely ∥(H + z)−1 − (Hε + z)−1∥ = O(εs), is improved to s ∈ (0, 1). In the
case N = 3, gε,σ = 1 and

∫
|r|2|Vσ(r)| dr < ∞ for all σ ∈ I, this improved rate of resolvent

convergence, O(εs) for any s < 1, agrees with the one established in [10]. However, if for
some σ ∈ I and some s ∈ (0, 1),

∫
|r|2s|Vσ(r)| dr = ∞, then [10] still asserts a higher rate

of resolvent convergence. This might be a relict of the Konno-Kuroda formula that is the
starting point of our proof.

The outline of this section is as follows: The proof of Theorem 3.1 is given in Section 3.4.
In Section 3.2 we first establish strong resolvent convergence Hε → H as ε → 0, which is
easier to obtain than norm resolvent convergence due to its equivalence with strong and weak Γ-
convergence of the associated quadratic forms. As explained in Section 1.3.1, our proof of norm
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resolvent convergence Hε → H as ε → 0 then relies on the generalized Konno-Kuroda formula
(1.53) for (Hε + z)−1. More precisely, we are going to show that for sufficiently large z > 0 all
contributions to the right side of Eq. (1.53) have suitable limits as ε → 0. All required estimates
and auxiliary results are derived in Section 3.3, which serves as a preparation for the subsequent
proof of Theorem 3.1. However, the simplicity of this proof is gained at the expense of the rate
of resolvent convergence, which is then improved in Section 3.5. Finally, the domain and the
action of the limit operator H from Theorem 3.1 are characterized in Section 3.6, where we shall
also see that H is a local and translation-invariant self-adjoint extension of H0 ↾ C∞

0 (RN \ Γ).

3.2 Γ-Convergence
The goal of this section is to define the operators Hε, ε > 0, and H from Theorem 3.1 by
appropriate closed semibounded quadratic forms qε and q, respectively, on H1(RN ) (see Eqs.
(3.8) and (3.7), below), and to show that qε → q as ε → 0 in the sense of weak and strong
Γ-convergence. This implies Corollary 3.6, below, which is the main result of this section and
which will allow us in Section 3.4 to conclude that the right-hand side of Eq. (3.6) defines
the resolvent of the self-adjoint operator H that is associated with the quadratic form q. All
results of this section are valid under the assumption that, for all σ ∈ I, Vσ ∈ L1(R) satisfies
Vσ(−r) = Vσ(r) a.e., the assumption that Vσ ∈ L2(R) is not needed here.

As in Theorem 3.1, let gσ = limε→0 gε,σ and ασ = gσ
∫
Vσ(r) dr for σ ∈ I. Let q and qε,

ε > 0, denote the quadratic forms on H1(RN ) defined by

q(ψ) :=
N∑
i=1

∥∂iψ∥2

mi
+
∑
σ∈I

ασ∥Tσψ∥2 + C∥ψ∥2, (3.7)

qε(ψ) :=
N∑
i=1

∥∂iψ∥2

mi
+

∑
σ=(i,j)∈I

gε,σ

∫
Vσ,ε(xj − xi)|ψ(x)|2 dx + C∥ψ∥2, (3.8)

where x = (x1, ..., xN ) ∈ RN , C ∈ R and the trace operator Tσ is defined by Eq. (2.12), so
Corollary 2.11 shows that Tσ : H1(RN ) → Xσ defines a bounded operator. By Corollary 3.4,
below, the quadratic forms q and qε are bounded from below and closed. More precisely, by
choosing C ≥ 0 large enough, we may assume that q ≥ 0 and qε ≥ 0 for all small enough ε > 0.

The main ingredients of this section are the following two inequalities:

Proposition 3.2. For all ψ ∈ H1(RN ),

sup
r∈R

∫
RN−1

|ψ(r, x)|2 dx ≤ ∥∂rψ∥∥ψ∥, (3.9)

sup
r∈R\{0}

1
|r|1/2

∣∣∣∣∣∣∣
∫

RN−1

|ψ(r, x)|2 − |ψ(0, x)|2 dx

∣∣∣∣∣∣∣ ≤ 2∥∂rψ∥3/2∥ψ∥1/2. (3.10)

The trace ψ(r, · ) ∈ L2(RN−1), r ∈ R, on the left sides of (3.9) and (3.10) is defined by
ψ(r, · ) := τψr, where τ : H1(RN ) → L2(RN−1) denotes the trace operator from Eq. (2.10)
and ψr(x1, x2, ..., xN ) := ψ(x1 + r, x2, ..., xN ).

Proof. First, we observe that ∥ψr∥H1 = ∥ψ∥H1 for all r ∈ R and, by Lemma 2.10, the trace
operator τ : H1(RN ) → L2(RN−1) defines a bounded operator. Hence, since C∞

0 (RN ) is dense
in H1(RN ), it suffices to prove (3.9) and (3.10) for ψ ∈ C∞

0 (RN ) only (for general ψ ∈ H1(RN )
an approximation argument then yields (3.9) and (3.10)).
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To this end, let ψ ∈ C∞
0 (RN ) be fixed. Then we apply to φ(r) :=

∫
RN−1 |ψ(r, x)|2 dx the

elementary Sobolev inequalities

|φ(r)| ≤ 1
2

∫
R

|φ′(s)| ds, (3.11)

|φ(r) − φ(0)| =
∣∣∣∣∫ r

0
φ′(s) ds

∣∣∣∣ ≤ |r|1/2∥φ′∥. (3.12)

For fixed r ∈ R, it follows from (3.11) and from the Cauchy-Schwarz inequality that∫
RN−1

|ψ(r, x)|2 dx = |φ(r)| ≤ 1
2

∫
R

|φ′(s)| ds ≤
∫
R

∫
RN−1

|(∂rψ)(s, x)||ψ(s, x)| dx ds ≤ ∥∂rψ∥∥ψ∥,

which proves (3.9) for ψ ∈ C∞
0 (RN ), and hence for all ψ ∈ H1(RN ). To prove (3.10) for

ψ ∈ C∞
0 (RN ), we apply (3.12) to the above function φ. We find that, for all r ∈ R \ {0},

|φ(r) − φ(0)|
|r|1/2 ≤ ∥φ′∥ ≤ 2

(∫
R

( ∫
RN−1

|(∂rψ)(s, x)||ψ(s, x)| dx
)2

ds
)1/2

≤ 2
(∫

R

( ∫
RN−1

|(∂rψ)(s, x)|2 dx
)( ∫

RN−1

|ψ(s, x)|2 dx
)

ds
)1/2

≤ 2∥∂rψ∥3/2∥ψ∥1/2,

where the Cauchy-Schwarz inequality was used for the second line, and the second factor in the
second line was then estimated using (3.9). This establishes (3.10) for ψ ∈ C∞

0 (RN ), and hence
for all ψ ∈ H1(RN ).

The next lemma and the subsequent corollary serve as a preparation for the proof of Propo-
sition 3.5, below.

Lemma 3.3. For all δ > 0, there exists Kδ > 0 such that for all ψ ∈ H1(RN ) and all σ ∈ I,

∥Tσψ∥ ≤ δ∥∇ψ∥ +Kδ∥ψ∥, (3.13)∣∣∣∣∣∣∣
∫
RN

Vσ(xj − xi)|ψ(x)|2 dx

∣∣∣∣∣∣∣ ≤ ∥Vσ∥L1∥∇ψ∥∥ψ∥. (3.14)

Proof. Since Tσ : H1(RN ) → Xσ defines a bounded operator, there exists a constant K > 0 such
that for all ψ ∈ H1(RN ) and all σ ∈ I, ∥Tσψ∥ ≤ K(∥∇ψ∥ + ∥ψ∥). Now, let ψλ(x) := λN/2ψ(λx)
for λ > 0 and observe that ∥ψλ∥ = ∥ψ∥, ∥∇ψλ∥ = λ∥∇ψ∥ and ∥Tσψλ∥ = λ1/2∥Tσψ∥. Hence,
it follows from ∥Tσψλ∥ ≤ K(∥∇ψλ∥ + ∥ψλ∥) that, for all λ > 0, ψ ∈ H1(RN ) and σ ∈ I,
∥Tσψ∥ ≤ K(λ1/2∥∇ψ∥ + λ−1/2∥ψ∥), which proves (3.13).

To prove (3.14) for σ = (i, j), we set

ψ̃(r,R, x′) := ψ

(
x1, ..., xi−1, R− r

2 , xi+1, ..., xj−1, R+ r

2 , xj+1, ..., xN

)
, (3.15)

where x′ := (x1, ...x̂i...x̂j ..., xN ) for short. Then,∣∣∣∣∣∣∣
∫
RN

Vσ(xj − xi)|ψ(x)|2 dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
RN

Vσ(r)|ψ̃(r,R, x′)|2 d(r,R, x′)

∣∣∣∣∣∣∣
≤ ∥Vσ∥L1 sup

r∈R

∫
RN−1

|ψ̃(r,R, x′)|2 d(R, x′). (3.16)

To estimate the right side of (3.16), we apply (3.9) to ψ̃ ∈ H1(RN ) and then we use that
∥ψ̃∥ = ∥ψ∥ and ∥∂rψ̃∥ ≤ ∥∇ψ∥. This yields (3.14).
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Lemma 3.3 and ∥Vσ,ε∥L1 = ∥Vσ∥L1 imply the following corollary:

Corollary 3.4. Under the hypotheses of Proposition 3.5, below, for every a > 0 there exists
b > 0 such that for all small enough ε > 0 and all ψ ∈ H1(RN ),

(1 − a)
N∑
i=1

∥∂iψ∥2

mi
− b∥ψ∥2 ≤ qε(ψ) ≤ (1 + a)

N∑
i=1

∥∂iψ∥2

mi
+ b∥ψ∥2,

and a similar estimate holds for q in place of qε.

Proposition 3.5. Suppose, for all σ ∈ I, that Vσ ∈ L1(R) satisfies Vσ(−r) = Vσ(r) a.e. and
that gσ = limε→0 gε,σ exists. Let q and qε, ε > 0, be defined on H1(RN ) by Eqs. (3.7) and (3.8),
respectively, where ασ = gσ

∫
Vσ(r) dr, and let q(ψ) = qε(ψ) := +∞ for ψ ∈ L2(RN )\H1(RN ).

Then, as ε → 0, qε → q in the sense of weak and strong Γ-convergence.

Proof. We have to verify the conditions (i) and (ii) in Definition 2.8 and their analogs, where
the strong convergence ψε → ψ is replaced by the weak convergence ψε ⇀ ψ as ε → 0. Due to
the fact that all form domains are equal, it suffices to show that, for all ψ ∈ H1(RN ),

q(ψ) = lim
ε→0

qε(ψ) (3.17)

and, for all ψε, ψ ∈ L2(RN ),

ψε ⇀ ψ (ε → 0) ⇒ q(ψ) ≤ lim inf
ε→0

qε(ψε). (3.18)

We begin with the proof of (3.17). If ψ ∈ C∞
0 (RN ), then it is a fairly straightforward application

of Lebesgue dominated convergence to show that (3.17) holds. Now, let ψ ∈ H1(RN ) and let
ψn ∈ C∞

0 (RN ), n ∈ N, be a sequence with ψn → ψ in H1(RN ) as n → ∞. Then, on the one
hand,

|q(ψ) − q(ψn)| → 0, (n → ∞) (3.19)

because q is continuous w.r.t. its form norm, which is equivalent to the norm of H1(RN ) by
Corollary 3.4. On the other hand,

|qε(ψ) − qε(ψn)| → 0, (n → ∞) (3.20)

uniformly in ε ∈ (0, ε0) for some ε0 > 0. This also follows from Corollary 3.4, which shows that
the interaction is uniformly H1-bounded in ε ∈ (0, ε0). Due to (3.19) and (3.20), the validity of
(3.17) extends from C∞

0 (RN ) to H1(RN ).
Now, we turn to the proof of (3.18). Let ψ,ψε ∈ L2(RN ) and suppose that, as ε → 0,

ψε ⇀ ψ in L2(RN ). To prove (3.18), we may assume that lim infε→0 qε(ψε) < ∞ without
loss of generality. We choose a zero sequence εn > 0, n ∈ N, so that lim infε→0 qε(ψε) =
limn→∞ qεn(ψεn). Then it follows from Corollary 3.4 that ∥ψεn∥H1 is uniformly bounded in
n ∈ N. Therefore, after passing to a subsequence, we may assume that ψεn ⇀ ψ̃ in H1(RN ) as
n → ∞. Since ψεn ⇀ ψ in L2(RN ), it follows that ψ = ψ̃ ∈ H1(RN ).

From the weak lower semicontinuity of positive quadratic forms we know that

q(ψ) ≤ lim inf
n→∞

q(ψεn).

On the right-hand side we may replace q(ψεn) by qεn(ψεn) if we can show that

sup
0̸=φ∈H1(RN )

|qε(φ) − q(φ)|
∥φ∥2

H1
→ 0, (ε → 0). (3.21)
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To prove this, we first assume that all Vσ have compact support and we note that

|qε(φ) − q(φ)| ≤
∑
σ∈I

∣∣∣∣∫ gε,σVσ,ε(xj − xi)|φ(x)|2 dx− αε,σ∥Tσφ∥2
∣∣∣∣+ o(1) · ∥φ∥2

H1 , (3.22)

where αε,σ := gε,σ
∫
Vσ(r) dr, and the remainder o(1) vanishes in the limit ε → 0 because

αε,σ → ασ. Now, let σ = (i, j) be fixed and let φ̃ := Kσφ, where Kσ is defined by Eq. (1.45).
Then the contribution of the pair σ to (3.22) has the bound∣∣∣∣gε,σ ∫ Vσ,ε(r)|φ̃(r,R, x′)|2 dr dR dx′ − αε,σ

∫
|φ̃(0, R, x′)|2 dR dx′

∣∣∣∣
=
∣∣∣∣gε,σ ∫ dr Vσ(r)

∫ (
|φ̃(εr,R, x′)|2 − |φ̃(0, R, x′)|2

)
dR dx′

∣∣∣∣
≤ 2Cσ|gε,σ|ε1/2

∫
|Vσ(r)||r|1/2 dr · ∥φ∥2

H1 ,

where the last line was obtained from (3.10) in combination with the estimate ∥φ̃∥2
H1 ≤ Cσ∥φ∥2

H1

for some constant Cσ > 0 that is independent of φ ∈ H1(RN ). It follows that (3.21) is true in
the case where all Vσ have compact support, so the proposition is established in this case.

It remains to prove (3.21) in the case of general Vσ ∈ L1(R). To this end, we define for σ ∈ I
and k ∈ N the cutoff potential

V k
σ (r) :=

Vσ(r) if |r| ≤ k

0 if |r| > k
(3.23)

and we set αkσ := gσ
∫
V k
σ (r) dr. Then we define quadratic forms qk and qkε like q and qε with

ασ and Vσ replaced by αkσ and V k
σ , respectively. The constant C in the defining expressions for

q and qε is left unchanged. Since V k
σ has compact support, we know from the above proof that

(3.21) holds for V k
σ . That is, for each k ∈ N,

sup
0 ̸=φ∈H1(RN )

|qkε (φ) − qk(φ)|
∥φ∥2

H1
→ 0, (ε → 0). (3.24)

From Lemma 3.3 and from the fact that ∥Vσ,ε − V k
σ,ε∥L1 = ∥Vσ − V k

σ ∥L1 we also know that

|qε(φ) − qkε (φ)| + |qk(φ) − q(φ)| ≤ const.
∑
σ∈I

∥Vσ − V k
σ ∥L1∥φ∥2

H1 (3.25)

uniformly in ε ∈ (0, ε0) for some ε0 > 0. Choosing first k large, then ε small, we see that (3.24)
and (3.25) combined imply (3.21) for general Vσ ∈ L1(R).

In view of Proposition 2.9, Proposition 3.5 has the following corollary:

Corollary 3.6. Under the hypotheses of Proposition 3.5, let Hε, ε > 0, and H denote the
self-adjoint operators that are associated with the closed semibounded quadratic forms qε and q,
respectively, where C = 0. Then Hε → H in the strong resolvent sense as ε → 0.

3.3 Preparation of the proof of Theorem 3.1
This section serves as a preparation for the next one, where the proof of Theorem 3.1 is given.
As in the previous section, all results of this section are valid under the assumption that, for all
σ ∈ I, Vσ ∈ L1(R) satisfies Vσ(−r) = Vσ(r) a.e., the assumption that Vσ ∈ L2(R) is still not
needed.
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We are going to prove estimates and convergence results for the contributions Aε,σR0(z),
Bε,σR0(z) and ϕε(z) to the Konno-Kuroda formula (1.53). Recall from Eqs. (1.48), (1.49) and
(1.52) that, for z ∈ (0,∞) and σ, ν ∈ I,

Aε,σ = (vσ ⊗ 1) ε−1/2UεKσ, (3.26)
Bε,σ = (uσ ⊗ 1) ε−1/2UεKσ = JσAε,σ, (3.27)

ϕε(z)σν = Bε,σR0(z)(Aε,ν)∗ ∈ L (X̃ν , X̃σ), (3.28)

where Jσ denotes multiplication with sgn(Vσ), vσ = |Vσ|1/2, uσ = Jσvσ, and the unitary oper-
ators Kσ ∈ L (H , X̃σ) and Uε ∈ L (X̃σ) are defined by (1.45) and (1.47), respectively. The
first result of this section is Proposition 3.7, below, which estimates the norm of ϕε(z)σν . In
particular, the estimate (3.29) shows that ∥ϕε(z)σν∥ vanishes uniformly in ε > 0 as z → ∞.

Proposition 3.7. Let σ, ν ∈ I and suppose that Vσ, Vν ∈ L1(R). Then, for all ε, z > 0,

∥ϕε(z)σν∥ ≤ (µσµν)1/4

z1/2 ∥Vσ∥1/2
L1 ∥Vν∥1/2

L1 . (3.29)

Proof. We claim, and prove below, that Aε,σR0(z)1/2 ∈ L (H , X̃σ) and

∥Aε,σR0(z)1/2∥ ≤
(
µσ
z

)1/4
∥Vσ∥1/2

L1 . (3.30)

Since all assumptions are symmetric in σ and ν, a similar estimate also holds for ∥Aε,νR0(z)1/2∥.
This means that Eq. (3.28) can be rewritten as

ϕε(z)σν = JσAε,σR0(z)1/2
(
Aε,νR0(z)1/2

)∗
, (3.31)

and (3.29) then follows by taking norms of both sides.
It remains to prove (3.30) for given σ = (i, j) and all ε, z > 0. To this end, we first consider

ψ ∈ H1(RN ). Then it follows from the Definition (3.26) of Aε,σ that R0(z)1/2ψ ∈ H2(RN ) ⊆
D(Aε,σ) and ∥∥∥Aε,σR0(z)1/2ψ

∥∥∥2
=
∫

dr dX |Vσ(r)|
∣∣∣(KσR0(z)1/2ψ

)
(εr,X)

∣∣∣2
≤ ∥Vσ∥L1 · sup

r∈R

∫
RN−1

dX
∣∣∣(KσR0(z)1/2ψ

)
(r,X)

∣∣∣2
≤ ∥Vσ∥L1∥∂rKσR0(z)1/2ψ∥∥KσR0(z)1/2ψ∥, (3.32)

where X := (R, x1, ...x̂i...x̂j ..., xN ) for short and the estimate from (3.9) was used for the last
line. Next, it follows from the Definition (1.45) of Kσ that, in the sense of operators,

K ∗
σ

(
−∂2

r

µσ

)
Kσ ≤ (H0 + z), z > 0,

and hence ∥∂rKσR0(z)1/2ψ∥ ≤ µ
1/2
σ ∥ψ∥. Using this together with ∥KσR0(z)1/2ψ∥ ≤ ∥ψ∥/z1/2

to estimate the right side of (3.32), we obtain that, for all ψ ∈ H1(RN ),

∥Aε,σR0(z)1/2ψ∥ ≤
(
µσ
z

)1/4
∥Vσ∥1/2

L1 ∥ψ∥.

Since H1(RN ) is dense in H , we conclude that Aε,σR0(z)1/2 defines an operator in L (H , X̃σ)
that satisfies the desired norm estimate (3.30). This concludes the proof.
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For the rest of this section, we are concerned with proving convergence, as ε → 0, of Aε,σR0(z)
and ϕε(z)σν , the main results being Corollary 3.9 and Proposition 3.10, below. In view of (3.26),
proving convergence of Aε,σ is a problem in L2(R), which we solve in the next lemma. For a
given pair σ ∈ I, let V = Vσ, v = vσ and let the rank-one operator |v⟩ ⟨δ| : H1(R) → L2(R) be
defined by

|v⟩ ⟨δ|ψ := ψ(0)v, ψ ∈ H1(R),

where ψ(0) := (2π)−1/2 ∫ ψ̂(p) dp (note that ψ̂ ∈ L1(R)). Then the following holds:

Lemma 3.8. For n ∈ {1, 2}, V ∈ L1(R) and v = |V |1/2,

vε−1/2Uε → |v⟩ ⟨δ| (ε → 0)

in the norm of L (Hn(R), L2(R)). If, in addition,
∫

|r|2s |V (r)| dr < ∞ for some s ∈ (0, n/2],
then the rate of convergence is at least as good as O(εs).

Proof. We first assume that
∫

|r|2s |V (r)| dr < ∞ for some s ∈ (0, n/2]. As the Sobolev embed-
ding Hn(R) ↪→ C0,s(R) exists and is continuous for s ∈ (0, n/2] (see, e.g., [50, Theorems 12.48
and 12.55]), there exists a constant cs,n > 0 such that, for all ψ ∈ Hn(R) and almost all r ∈ R,

|v(r)| |ψ(εr) − ψ(0)| ≤ |v(r)| cs,n|εr|s∥ψ∥Hn .

This implies that, for all ψ ∈ Hn(R),

∥(vε−1/2Uε − |v⟩ ⟨δ|)ψ∥ ≤ cs,nε
s
(∫

|r|2s |V (r)| dr
)1/2

∥ψ∥Hn ,

which proves the lemma under the assumption that
∫

|r|2s |V (r)| dr < ∞ for some s ∈ (0, n/2].
For general V ∈ L1(R), we introduce for k > 0 the cutoff potential

V k(r) :=

V (r) if |r| ≤ k

0 if |r| > k
(3.33)

and we set vk(r) := |V k(r)|1/2. Then it follows that
∫

|r|2s|V k(r)| dr < ∞ for all k > 0, so the
above estimates show that, for all k > 0 and as ε → 0, vkε−1/2Uε → |vk⟩ ⟨δ| in the norm of
L (Hn(R), L2(R)). Now, vε−1/2Uε → |v⟩ ⟨δ| in the norm of L (Hn(R), L2(R)) follows from a
simple δ/3-argument because, for all ψ ∈ Hn(R),

∥(v − vk)ε−1/2Uεψ∥ ≤ ∥v − vk∥∥ψ∥L∞ ≤ ∥V − V k∥1/2
L1 ∥ψ∥H1 ,

which vanishes uniformly in ε > 0 as k → ∞, and a similar estimate holds for ∥ |v − vk⟩ ⟨δ| ∥.

Lemma 3.8 implies the following convergence result:

Corollary 3.9. Let n ∈ {1, 2}, z > 0, σ ∈ I and suppose that Vσ ∈ L1(R). Then, as ε → 0,

Aε,σR0(z)n/2 → AσR0(z)n/2

in L (H , X̃σ), where Aσ ∈ L (Hn(RN ), X̃σ) is defined by

Aσψ = vσ ⊗ (Tσψ). (3.34)

If, in addition,
∫

|r|2s |Vσ(r)| dr < ∞ for some s ∈ (0, n/2], then
∥∥∥(Aε,σ −Aσ)R0(z)n/2

∥∥∥ = O(εs)
as ε → 0.
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Proof. By Corollary 2.11, Tσ : Hn(RN ) → Xσ defines a bounded operator, so it is clear that
(3.34) defines an operator Aσ ∈ L (Hn(RN ), X̃σ). Moreover, inserting the Definition (2.12) of
Tσ, it follows that, for all ψ ∈ Hn(RN ), Aσψ = vσ ⊗ (τKσψ) = (|vσ⟩ ⟨δ| ⊗ 1)Kσψ, where τ
is defined by Eq. (2.10). Comparing this with the Definition (3.26) of Aε,σ, we see that the
corollary follows from Lemma 3.8 because Kσ defines a bounded operator in L (Hn(RN )) and
R0(z)n/2 ∈ L (H , Hn(RN )).

We conclude this section with the proof that ϕε(z) has a suitable limit as ε → 0:

Proposition 3.10. Let z > 0, σ, ν ∈ I and suppose that Vσ, Vν ∈ L1(R). Then the limit

ϕ(z)σν = lim
ε→0

ϕε(z)σν (3.35)

exists in L (X̃ν , X̃σ), and

ϕ(z)σν = |uσ⟩ ⟨vν | ⊗ (TσG(z)∗
ν) (3.36)

with TσG(z)∗
ν ∈ L (Xν ,Xσ). If, in addition,

∫
|r|2s(|Vσ(r)|+|Vν(r)|) dr <∞ for some s ∈ (0, 1/2],

then ∥ϕε(z)σν − ϕ(z)σν∥ = O(εs) as ε → 0.

Proof. From Eq. (3.31) and Corollary 3.9 it follows that limε→0 ϕε(z)σν exists in L (X̃ν , X̃σ),
where the limit operator is explicitly given by

ϕ(z)σν = JσAσR0(z)1/2
(
AνR0(z)1/2

)∗
= JσAσ (AνR0(z))∗ . (3.37)

If, in addition,
∫

|r|2s(|Vσ(r)| + |Vν(r)|) dr < ∞ for some s ∈ (0, 1/2], then Corollary 3.9 also
shows that the rate of convergence is at least as good as O(εs), so it only remains to show that
the limit operator ϕ(z)σν from Eq. (3.37) agrees with the right side of Eq. (3.36). To this end,
we first observe that Eq. (3.34) implies that, for all ψ ∈ H ,

AνR0(z)ψ = vν ⊗ (G(z)νψ),

where G(z)ν = TνR0(z) ∈ L (H ,Xν). The adjoint thereof is the operator

(AνR0(z))∗ = G(z)∗
ν ⟨vν | ∈ L (X̃ν ,H ), (3.38)

where ⟨vν | ∈ L (X̃ν ,Xν) denotes the adjoint of the operator |vν⟩ ∈ L (Xν , X̃ν) that is defined by
|vν⟩ψ := vν ⊗ψ. Inserting the identity (3.38) and the Definition (3.34) of Aσ on the right side of
Eq. (3.37), it is straightforward to verify that the right sides of Eqs. (3.37) and (3.36) coincide.
The fact that TσG(z)∗

ν defines a bounded operator in L (Xν ,Xσ) follows from Property (iii) in
Proposition 2.12 and from Corollary 2.11.

3.4 Proof of Theorem 3.1
Proof of Theorem 3.1. Recall from Eqs. (1.52), (1.53) and the sentence in between that for any
z ∈ (0,∞) ⊆ ρ(H0) we have that z ∈ ρ(Hε) ∩ ρ(H0) if and only if 1 + gεϕε(z) is invertible in
L (X̃), and then (Hε + z)−1 is given by the Konno-Kuroda formula

(Hε + z)−1 = R0(z) −
∑
σ,ν∈I

(Aε,σR0(z))∗
[
(1 + gεϕε(z))−1

]
σν
gε,νJνAε,νR0(z). (3.39)

First, we are going to show that 1 + gεϕε(z) is invertible for z > 0 large enough and ε > 0 small
enough and that limε→0 (1 + gεϕε(z))−1 exists in L (X̃). From Proposition 3.7 we know that

∥ϕε(z)∥ ≤ N(N − 1)
2 max

σ,ν∈I
∥ϕε(z)σν∥ ≤ const.√

z
, z > 0 (3.40)
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uniformly in ε > 0. By assumption, gσ = limε→0 gε,σ ∈ R exists for all σ ∈ I, and hence
limε→0 gε = g in L (X̃), where g is defined in terms of the components gσν := gσδσν , σ, ν ∈ I.
Consequently, it follows from (3.40) that there exist ε0 > 0 and z0 > 0 such that, for all ε ∈ (0, ε0)
and all z ∈ (z0,∞), ∥gεϕε(z)∥ ≤ 1/2 and thus (1 + gεϕε(z))−1 exists. Moreover, Proposition
3.10 shows that limε→0 gεϕε(z) = gϕ(z) in L (X̃), where ϕ(z) ∈ L (X̃) is defined in terms of the
components ϕ(z)σν ∈ L (X̃ν , X̃σ), σ, ν ∈ I. We conclude that (1 + gϕ(z))−1 exists and

lim
ε→0

(1 + gεϕε(z))−1 = (1 + gϕ(z))−1, z > z0. (3.41)

Since we also know from Corollary 3.9 that limε→0Aε,σR0(z) = AσR0(z) in L (H , X̃σ) for all
σ ∈ I and all z > 0, (3.41) now allows us to take the limit ε → 0 on the right side of (3.39). We
find that, for all z ∈ (z0,∞), limε→0(Hε + z)−1 = R(z) in L (H ), where

R(z) := R0(z) −
∑
σ,ν∈I

(AσR0(z))∗
[
(1 + gϕ(z))−1

]
σν
gνJνAνR0(z). (3.42)

However, as we already know from Corollary 3.6 that Hε → H in the strong resolvent sense
as ε → 0, it follows that R(z) = (H + z)−1 for all z ∈ (z0,∞) and that Hε → H in the norm
resolvent sense as ε → 0. If, in addition,

∫
|r|2s |Vσ(r)| dr < ∞ for some s ∈ (0, 1/2] and all

σ ∈ I, then Corollary 3.9 and Proposition 3.10 also yield an estimate for the rate of convergence:

∥Aε,σR0(z) −AσR0(z)∥ = O(εs), (3.43)
∥ϕε(z) − ϕ(z)∥ = O(εs). (3.44)

Hence, if |gε,σ − gσ| = O(εs) for all σ ∈ I, then the above proof shows that, for each z ∈ (z0,∞),
∥(Hε + z)−1 − (H + z)−1∥ = O(εs) as ε → 0. For general z ∈ ρ(H), Lemma 2.6 now reveals that
z ∈ ρ(Hε) ∩ ρ(H) for small enough ε > 0 and ∥(Hε + z)−1 − (H + z)−1∥ = O(εs) as ε → 0.

It remains to show that the expression (3.42) for R(z) agrees with the right side of Eq. (3.6)
and that Eq. (3.6) defines the resolvent (H + z)−1 for all z ∈ ρ(H0) ∩ ρ(H). To this end, we
first integrate out the two-body potentials Vσ in R(z). In view of Eq. (3.36), 1 + gϕ(z) can be
rewritten as

1 + gϕ(z) = 1 + g [W ◦ S(z)] , (3.45)

where W and S(z) are defined in terms of the components Wσν := |uσ⟩ ⟨vν | ∈ L (L2(R)) and
S(z)σν := TσG(z)∗

ν ∈ L (Xν ,Xσ), respectively, for σ, ν ∈ I. In Eq. (3.45), the operator product
Y ◦Z is defined by (Y ◦Z)σν := Yσν ⊗Zσν , a notation inspired by the Hadamard-Schur product
of matrices. Now, using Eq. (3.45) and

Wση gηWην = αηWσν , σ, η, ν ∈ I,

where αη = gη
∫
Vη(r) dr, it is straightforward to check that

(1 + gϕ(z))−1 = 1 − g
(
W ◦

[
S(z)(1 + αS(z))−1

])
, (3.46)

where α is a matrix operator with entries ασν := ασδσν , σ, ν ∈ I. Indeed, (1 + αS(z))−1 exists
for large enough z > 0: Eq. (3.36), ϕ(z)σν = limε→0 ϕε(z)σν and Proposition 3.7 imply that

∥S(z)σν∥∥Vσ∥1/2
L1 ∥Vν∥1/2

L1 = ∥ϕ(z)σν∥ ≤ (µσµν)1/4

z1/2 ∥Vσ∥1/2
L1 ∥Vν∥1/2

L1 , σ, ν ∈ I,

and hence, as we may assume that Vσ ̸= 0 ̸= Vν without loss of generality, αS(z) → 0 as z → ∞.
Moreover, Eq. (3.34) shows thatAσR0(z)ψ = vσ⊗(G(z)σψ) withG(z)σ = TσR0(z) ∈ L (H ,Xσ)
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and, similarly, JνAνR0(z)ψ = uν ⊗ (G(z)νψ). Inserting this together with (3.46) in (3.42) and
using that gσ ⟨vσ |uσ⟩ = ασ, we find that

R(z) = R0(z) +
∑
σ,ν∈I

G(z)∗
σ

(
−ασδσν + ασ

[
S(z)(1 + αS(z))−1

]
σν
αν
)
G(z)ν

= R0(z) +
∑
σ,ν∈J

G(z)∗
σ

[
−α+ αS(z)(1 + αS(z))−1α

]
σν
G(z)ν , (3.47)

where, from the first to the second line, the summation was restricted to the subset J ⊆ I, which
contains all σ ∈ I with ασ ̸= 0. Now, observe that on the subspace X = ⊕

σ∈J Xσ ⊆
⊕

σ∈I Xσ,

−α+ αS(z)(1 + αS(z))−1α = −(1 + αS(z))−1α = Θ(z)−1,

where Θ(z) ∈ L (X) was introduced in Eq. (3.5) for general z ∈ ρ(H0) = C \ (−∞, 0], that is

Θ(z)σν = −(ασ)−1δσν − TσG(z)∗
ν ∈ L (Xν ,Xσ), z ∈ ρ(H0), σ, ν ∈ J . (3.48)

In view of Eq. (3.47), this means that R(z) = (H + z)−1 agrees with the right side of Eq. (3.6)
for all z ∈ (z0,∞), where (recall) G(z) ∈ L (H ,X) is given by G(z)ψ = (G(z)σψ)σ∈J .

To show that Eq. (3.6) defines (H + z)−1 for all z ∈ ρ(H) ∩ ρ(H0), it suffices to verify the
hypotheses of [21, Theorems 2.4 and 2.19]. To this end, we first observe that G(z) = TR0(z),
z ∈ ρ(H0), where the trace T : H1(RN ) → X is defined by Tψ := (Tσψ)σ∈J . The trace T defines
the operator τ in the notation of [21] and, by Lemma 2.13, KerT is dense in H . Therefore, it
only remains to check that Θ(z), z ∈ ρ(H0), satisfies the hypotheses of [21, Theorems 2.4 and
2.19]. This follows from Proposition 3.11, below, so the proof of Theorem 3.1 is complete. □

Proposition 3.11. Let ∅ ≠ J ⊆ I, let ασ ∈ R \ {0} for all σ ∈ J , and let w, z ∈ ρ(H0). Then
Eq. (3.48) defines an operator Θ(z) ∈ L (X) that has the following properties:

(i) Θ(z)∗ = Θ(z).

(ii) Θ(z) = Θ(w) + (z − w)G(z)G(w)∗.

(iii) 0 ∈ ρ(Θ(z)) for some z ∈ ρ(H0).

Proof. Property (iii) has already been verified in the proof of Theorem 3.1. By the Definition
(3.48) of Θ(z) and by G(z)ψ = (G(z)σψ)σ∈J , Property (ii) is equivalent to

−TσG(z)∗
ν = −TσG(w)∗

ν + (z − w)G(z)σG(w)∗
ν , σ, ν ∈ J . (3.49)

From Proposition 2.12 (i) we know that G(z)ν = G(w)ν + (w − z)G(w)νR0(z), and hence

G(z)∗
ν = G(w)∗

ν + (w − z)R0(z)G(w)∗
ν , w, z ∈ ρ(H0), ν ∈ J ,

which yields Eq. (3.49) after applying −Tσ to both sides. This proves Property (ii).
To prove Property (i) for z ∈ (0,∞), we first observe that Corollary 2.11 implies that

TνR0(z)1/2 ∈ L (H ,Xν) for all ν ∈ J , and hence

TσG(z)∗
ν = TσR0(z)1/2

(
TνR0(z)1/2

)∗
= (TνG(z)∗

σ)∗ .

This means that Θ(z) is self-adjoint for z ∈ (0,∞). For general z ∈ ρ(H0), (ii) now implies that

Θ(z) = Θ(1) + (z − 1)G(z)G(1)∗ = [Θ(1) + (z − 1)G(1)G(z)∗]∗

= [Θ(1) + (z − 1)G(z)G(1)∗]∗ = Θ(z)∗.
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3.5 Improving the rate of resolvent convergence in Theorem 3.1
The goal of this section is to improve the rate of resolvent convergence in Theorem 3.1, which
is limited to O(εs) with s ∈ (0, 1/2]. More precisely, we are going to prove the following:

Proposition 3.12. Let the hypotheses of Theorem 3.1 be satisfied and suppose that the additional
assumptions that

∫
|r|2s|Vσ(r)| dr < ∞ and |gε,σ − gσ| = O(εs) as ε → 0 are satisfied for some

s ∈ (0, 1) that is independent of the particular choice of σ ∈ I. Then z ∈ ρ(H) implies that
z ∈ ρ(Hε) ∩ ρ(H) for small enough ε > 0 and ∥(H + z)−1 − (Hε + z)−1∥ = O(εs) as ε → 0.

To prove Proposition 3.12, we have to show that the estimates (3.43) and (3.44) from the
proof of Theorem 3.1 are still valid for general s ∈ (0, 1), provided that

∫
|r|2s|Vσ(r)| dr < ∞

for all σ ∈ I. In the case of (3.43), this follows immediately from Corollary 3.9. However, in
the case of (3.44), our previous estimates are only valid for s ∈ (0, 1/2], so we need more refined
estimates for ∥ϕε(z) − ϕ(z)∥.

In Sections 3.5.1 and 3.5.2, below, we shall see that all components ϕε(z)σν , σ, ν ∈ I, define
integral operators whose kernels can be explicitly computed in terms of the Green’s function of
H0 + z. This is independent of the space dimension d ∈ {1, 2}, and in d = 1 this will be the
key that allows us to prove the desired rate of convergence in Propositions 3.13, 3.14 and 3.15,
below. However, these integral kernels also play a major role in our analysis of ϕε(z)σν in d = 2
dimensions, see Sections 4.4.1 and 4.4.2, below. Hence, for the sake of later reference, we are
going to compute these integral kernels in all dimensions d ∈ {1, 2} simultaneously.

Let d ∈ {1, 2} and ε, z > 0 be given and assume, for all pairs σ ∈ I, that Vσ ∈ L1 ∩ L2(Rd)
satisfies Vσ(r) = Vσ(−r) a.e. Recall from Eq. (1.52) that the components of ϕε(z) ∈ L (X̃) are
given by ϕε(z)σν = Bε,σR0(z)(Aε,ν)∗ ∈ L (X̃ν , X̃σ), σ, ν ∈ I. Inserting the Definitions (1.48)
and (1.49) of Aε,ν and Bε,σ, respectively, leads to the explicit expression

ϕε(z)σν = ε−d (uσ ⊗ 1)UεKσR0(z)K ∗
ν U

∗
ε (vν ⊗ 1), σ, ν ∈ I. (3.50)

In Section 3.5.1, below, we first consider the diagonal contributions ϕε(z)σσ, and Section 3.5.2 is
then devoted to the off-diagonal contributions ϕε(z)σν , σ ̸= ν. Finally, the proof of Proposition
3.12 is given at the end of Section 3.5.2.

3.5.1 The diagonal contributions ϕε(z)σσ

Let d ∈ {1, 2} and ε, z > 0 be given. As the particular choice of the pair σ ∈ I is immaterial for
the analysis of ϕε(z)σσ, we may assume that σ = (1, 2) without restriction, and we drop the index
(1, 2) in the following: V = V(1,2) ∈ L1 ∩L2(Rd), v = v(1,2), µ = µ(1,2), ϕε(z) = ϕε(z)(1,2)(1,2) etc.
In particular, this means that ϕε(z) is used as a shorthand notation for the (1, 2)(1, 2)-component
of the operator ϕε(z) ∈ L (X̃).

With this said, we now compute the integral kernel of ϕε(z) in terms of the Green’s function
Gdλ, λ > 0, of −∆+λ : H2(Rd) → L2(Rd). First, we note that the Definition (1.45) of K = K(1,2)
implies that

K R0(z) = (H̃0 + z)−1K , z > 0, (3.51)

where H̃0 is the free Hamiltonian H0 expressed in the relative and center of mass coordinates of
the pair (1, 2). That is

H̃0 = −∆r

µ
− ∆R

m1 +m2
+

N∑
i=3

(
−∆xi

mi

)
. (3.52)
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Now, starting from Eq. (3.50), the identities (3.51) and K K ∗ = 1 (K is unitary) show that

ϕε(z) = ε−d (u⊗ 1)Uε(H̃0 + z)−1U∗
ε (v ⊗ 1).

Hence, after a Fourier transform in (R, x3, ..., xN ), ϕε(z) acts pointwise in the conjugate variable
P = (P, p3, ..., pN ) by the operator

ϕε(z, P ) = ε−dµuUε (−∆r + µ(Q+ z))−1 U∗
ε v ∈ L (L2(Rd)), (3.53)

where

Q := P 2

m1 +m2
+

N∑
i=3

p2
i

mi
. (3.54)

From Eq. (3.53) we conclude that ϕε(z, P ) defines an integral operator in L (L2(Rd)), where
after the scaling r′/ε → r′ the associated integral kernel is given by

Kε(r, r′, z, P ) := µu(r) Gdµ(Q+z)
(
ε(r − r′)

)
v(r′). (3.55)

This means that, for all ψ ∈ L2(Rd), (ϕε(z, P )ψ)(r) =
∫
Kε(r, r′, z, P )ψ(r′) dr′.

In the remainder of this section, we now restrict ourselves to the case d = 1, where the
Green’s function is explicitly given by

G1
λ(x) = exp(−

√
λ |x|)

2
√
λ

, λ > 0. (3.56)

Due to the facts that u, v ∈ L2(R) and G1
λ ∈ L∞(R), we see that ϕε(z, P ) is a Hilbert-Schmidt

operator and we expect, and prove below, that limε→0 ϕε(z) = ϕ0(z), where ϕ0(z, P ) is defined
in terms of the integral kernel

K0(r, r′, z, P ) = 1
2

√
µ

Q+ z
u(r)v(r′). (3.57)

Proposition 3.13. Let d = 1, σ = (1, 2), z > 0 and suppose that V ∈ L1(R) satisfies∫
|r|2s |V (r)| dr < ∞ for some s ∈ (0, 1]. Then ∥ϕε(z) − ϕ0(z)∥ = O(εs) as ε → 0.

Proof. From Eqs. (3.55)-(3.57) it follows that for fixed ε, z > 0 and P ∈ RN−1 the integral
kernel of ϕε(z, P ) − ϕ0(z, P ) is given by

µu(r)
(
G1
µ(Q+z)

(
ε(r − r′)

)
−G1

µ(Q+z)(0)
)
v(r′). (3.58)

With the help of the elementary inequality | exp(−x) − 1| ≤ xs, valid for all x ≥ 0, and the
explicit formula (3.56) for G1

λ we estimate

∣∣∣G1
µ(Q+z)

(
ε(r − r′)

)
−G1

µ(Q+z)(0)
∣∣∣2 ≤ ε2s

4 (µ(Q+ z))s−1 |r − r′|2s

≤ ε2s

2 (µz)s−1(|r|2s + |r′|2s). (3.59)

Using this to estimate the Hilbert-Schmidt norm of ϕε(z, P ) − ϕ0(z, P ), we find that

∥ϕε(z, P ) − ϕ0(z, P )∥2
HS ≤ ε2sµ1+szs−1∥V ∥L1

∫
|r|2s |V (r)| dr, (3.60)

which proves the proposition because the right side is independent of P and the operator norm
is bounded from above by the Hilbert-Schmidt norm (cf. [71, Theorem VI.22 (d)]).
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3.5.2 The off-diagonal contributions ϕε(z)σν, σ ̸= ν, and proof of Proposition 3.12

We now show that the off-diagonal contributions ϕε(z)σν , σ ̸= ν, define integral operators whose
kernels can be expressed in terms of the Green’s function Gz,m of H0 + z that is defined by Eq.
(3.61), below. As explained at the beginning of Section 3.5, we compute these integral kernels
in all dimensions d ∈ {1, 2} simultaneously and, without loss of generality, we may assume that
σ = (1, 2) and ν = (k, l) ̸= (1, 2).

Let ε, z > 0 be fixed and let Gz,m denote the Green’s function of H0 + z, where the vector
m := (m1, ...,mN ) collects the masses of the N particles. By a simple scaling argument,

Gz,m(x1, ..., xN ) =
(
N∏
i=1

m
d/2
i

)
GdNz (√m1x1, ...,

√
mNxN ), (3.61)

where GdNz denotes the usual Green’s function of −∆ + z : H2(RdN ) → L2(RdN ) (we refer
to Appendix A for details concerning GdNz ). Now, with K(1,2), K ∗

(k,l) and Uε defined by Eqs.
(1.45), (1.46) and (1.47), respectively, we find that Eq. (3.50) defines an integral operator, and
for ψ ∈ X̃(k,l),(
ϕε(z)(1,2)(k,l) ψ

)
(r,R, x3, ..., xN )

= ε−du(1,2)(r)
∫

dx′
1 · · · dx′

N Gz,m

(
R− εm2r

m1 +m2
− x′

1, R+ εm1r

m1 +m2
− x′

2, x3 − x′
3, ..., xN − x′

N

)
· v(k,l)

(
x′
l − x′

k

ε

)
ψ

(
x′
l − x′

k

ε
,
mkx

′
k +mlx

′
l

mk +ml
, x′

1, ...x̂
′
k...x̂

′
l..., x

′
N

)
= u(1,2)(r)

∫
dx′

1 · · · dx′
N dr′ dR′ Gz,m

(
R− εc21r − x′

1, R+ εc12r − x′
2, x3 − x′

3, ..., xN − x′
N

)
· v(k,l)

(
r′) ψ(r′, R′, x′

1, ...x̂
′
k...x̂

′
l..., x

′
N

)
δ
(
x′
k −R′ + εclkr

′) δ(x′
l −R′ − εcklr

′), (3.62)

where

cij := mi

mi +mj
, i, j = 1, ..., N. (3.63)

The second equation of (3.62) was obtained by the substitution

r′ := x′
l − x′

k

ε
, R′ := mkx

′
k +mlx

′
l

mk +ml
,

and two more integrations were introduced that are compensated by δ-distributions. In the
following, we distinguish between two cases: In the first case σ = (1, 2) and ν = (k, l) have one
particle in common, so k ∈ {1, 2} and l ≥ 3, and in the second case σ and ν are composed of
distinct particles, which means that 3 ≤ k < l ≤ N .

Let us first consider the case σ = (1, 2) and ν = (1, l) for some l ≥ 3. Then it follows from
Eq. (3.62) that, after the evaluation of the δ-distributions in x′

1 and x′
l, the operator ϕε(z)σν

simply acts by convolution in (x3, ...x̂l..., xN ). Consequently, it follows from the explicit formula
(3.61) for Gz,m and from Lemma A.1 (vi) that ϕε(z)σν acts pointwise in the conjugate variables
p1l := (p3, ...p̂l..., pN ) by the integral operator ϕε(z, p1l)σν that has the kernel

(m1m2ml)d/2 uσ(r)G3d
z+Qν

(Xε,σν) vν
(
r′) , σ = (1, 2), ν = (1, l), l ≥ 3, (3.64)

where

Xε,(1,2)(1,l) :=


√
m1(R−R′ − ε(c21r − cl1r

′))
√
m2(R− x′

2 + εc12r)√
ml(xl −R′ − εc1lr

′)

 ∈ R3d (3.65)
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and

Q(k,l) :=
N∑
n=3
n̸=k,l

p2
n

mn
, 1 ≤ k < l ≤ N. (3.66)

Similar considerations for σ = (1, 2) and ν = (2, l) with l ≥ 3 show that ϕε(z)σν acts pointwise
in p2l := (p3, ...p̂l..., pN ) by the integral operator ϕε(z, p2l)σν with kernel

(m1m2ml)d/2 uσ(r)G3d
z+Qν

(Xε,σν) vν
(
r′) , σ = (1, 2), ν = (2, l), l ≥ 3, (3.67)

where

Xε,(1,2)(2,l) :=


√
m1(R− x′

1 − εc21r)√
m2(R−R′ + ε(c12r + cl2r

′))
√
ml(xl −R′ − εc2lr

′)

 ∈ R3d. (3.68)

By inspection, the integral kernels defined by (3.64) and (3.67) only differ by the permutations
x′

1 ↔ x′
2, m1 ↔ m2, v(1,l) ↔ v(2,l) and the reflection r → −r, which allows us to analyze them

simultaneously.
So far we have considered all operators that occur in the case of N ≤ 3 particles. Let now

N > 3 and let σ and ν be composed of distinct particles, i.e. σ = (1, 2) and ν = (k, l) with
3 ≤ k < l ≤ N . Then, after the evaluation of the δ-distributions in x′

k and x′
l, it follows from Eq.

(3.62) that ϕε(z)σν acts by convolution in (x3, ...x̂k...x̂l..., xN ). Hence, ϕε(z)σν acts pointwise in
the conjugate variables p

kl
:= (p3, ...p̂k...p̂l...,pN) by the integral operator ϕε(z, pkl)σν with kernel

(m1m2mkml)d/2 uσ(r)G4d
z+Qν

(Xε,σν) vν
(
r′) , σ = (1, 2), ν = (k, l), 3 ≤ k < l ≤ N, (3.69)

where

Xε,(1,2)(k,l) :=


√
m1(R− x′

1 − εc21r)√
m2(R− x′

2 + εc12r)√
mk(xk −R′ + εclkr

′)
√
ml(xl −R′ − εcklr

′)

 ∈ R4d. (3.70)

Now, we have computed the integral kernel of ϕε(z)σν for all combinations of d ∈ {1, 2},
ε, z > 0, σ = (1, 2) and ν = (k, l) ̸= (1, 2). In the rest of this section, we now restrict ourselves
to the case d = 1, and we define, a priori, new operators ϕ0(z)σν by the corresponding integral
kernels with ε = 0. Thus we expect that ϕε(z)σν → ϕ0(z)σν as ε → 0, which we confirm in
Propositions 3.14 and 3.15, below. Since we know from Proposition 3.10 that ϕε(z)σν → ϕ(z)σν
as ε → 0, it is then clear that ϕ0(z)σν = ϕ(z)σν , where ϕ(z)σν has been introduced in Eq.
(3.36). The essential point, however, is that Propositions 3.14 and 3.15 yield the desired rate of
convergence that is needed for the proof of Proposition 3.12.

Proposition 3.14. Let d = 1, z > 0, σ = (1, 2), ν = (k, l) with k ∈ {1, 2} and l ≥ 3, and
suppose that Vσ, Vν ∈ L1(R) satisfy

∫
|r|2s(|Vσ(r)| + |Vν(r)|) dr < ∞ for some s ∈ (0, 1). Then

∥ϕε(z)σν − ϕ0(z)σν∥ = O(εs) as ε → 0.

Proof. As explained above, the operators ϕε(z)(1,2)(1,l) and ϕε(z)(1,2)(2,l) coincide up to the uni-
tary reflection r → −r (and some obvious changes of indices that are immaterial for the estimates
below). Hence, it suffices to consider the case ν = (1, l) with l ≥ 3 only. Then ϕε(z)σν −ϕ0(z)σν
acts pointwise in p1l by the integral operator with kernel

uσ(r)
(
G3
z+Qν ,m (Xε) −G3

z+Qν ,m (X0)
)
vν(r′), (3.71)
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where we have introduced the shorthand notations

G3
λ,m(x1, x2, xl) := (m1m2ml)1/2G3

λ(√m1x1,
√
m2x2,

√
mlxl), λ > 0, (3.72)

and

Xε :=

R−R′ − ε(c21r − cl1r
′)

R− x′
2 + εc12r

xl −R′ − εc1lr
′

 ∈ R3, ε ≥ 0.

To estimate the norm of ϕε(z)σν − ϕ0(z)σν , we first note that our assumptions on Vσ and Vν
imply that Is(Vσ) < ∞ and Is(Vν) < ∞, where

Is(V ) :=
∫

(1 + |r|2s) |V (r)| dr. (3.73)

Now, using the Cauchy-Schwarz inequality in the r′-integration, we find that, for all ψ ∈ L2(R3),∥∥∥(ϕε(z, p1l)σν − ϕ0(z, p1l)σν
)
ψ
∥∥∥2

=
∫

dr |Vσ(r)|
∫

dR dxl
∣∣∣∣∫ dr′ vν(r′)

∫
dR′ dx′

2
(
G3
z+Qν ,m(Xε) −G3

z+Qν ,m(X0)
)
ψ(X ′)

∣∣∣∣2
≤ Is(Vν)

∫
drdr′ |Vσ(r)|

1 + |r′|2s
∫

dRdxl
∣∣∣∣∫ dR′ dx′

2
(
G3
z+Qν ,m(Xε) −G3

z+Qν ,m(X0)
)
ψ(X ′)

∣∣∣∣2, (3.74)

where X ′ := (r′, R′, x′
2) for brevity.

For a further estimate of (3.74), we consider for fixed r, r′ ∈ R, Qν ≥ 0 and ε > 0 the integral
operator Br,r′,Qν ,ε : L2 (R2,d(R, x2)

)
→ L2 (R2, d(R, xl)

)
that is defined in terms of the kernel

G3
z+Qν ,m

(Xε) −G3
z+Qν ,m

(X0). We are going to estimate ∥Br,r′,Qν ,ε∥ with the help of the Schur
test. To this end, we first introduce the intermediate point

Xε,0 :=

 R−R′ − ε(c21r − cl1r
′)

R− x′
2

xl −R′

 ∈ R3, ε > 0.

Now, using (3.72) and the properties of the Green’s function G3
λ from Appendix A, we estimate

sup
R,xl∈R

(∫
dR′ dx′

2

∣∣∣G3
z+Qν ,m(Xε) −G3

z+Qν ,m(X0)
∣∣∣)

≤ sup
R,xl∈R

(∫
dR′ dx′

2

∣∣∣G3
z,m(Xε) −G3

z,m(Xε,0)
∣∣∣)+ sup

R,xl∈R

(∫
dR′ dx′

2

∣∣∣G3
z,m(Xε,0) −G3

z,m(X0)
∣∣∣)

≤ sup
R,xl∈R

(∫
dR′ dx′

2

∣∣∣G3
z,m

(
0, R− x′

2 + εc12r, xl −R′ − εc1lr
′)−G3

z,m

(
0, R− x′

2, xl −R′)∣∣∣)
+ sup
R,xl∈R

(∫
dR′ dx′

2

∣∣∣G3
z,m

(
R−R′ − ε(c21r − cl1r

′), R− x′
2, 0
)

−G3
z,m

(
R−R′, R− x′

2, 0
)∣∣∣)

=
∫

dR′ dx′
2

∣∣∣G3
z,m

(
0, x′

2 + εc12r,R
′ − εc1lr

′)−G3
z,m

(
0, x′

2, R
′)∣∣∣

+
∫

dR′ dx′
2

∣∣∣G3
z,m

(
R′ − ε(c21r − cl1r

′), x′
2, 0
)

−G3
z,m

(
R′, x′

2, 0
)∣∣∣

≤ (√m1 +√
ml) sup

|y|≤c(|r|+|r′|)

 ∫
R2

∣∣∣G3
z(x+ εy, 0) −G3

z(x, 0)
∣∣∣ dx

, c = max
i,j

(√mjcij), (3.75)

where the first inequality used the fact that, by the estimate (A.4) from Lemma A.2, the in-
tegrand in the first line attains its maximum for Qν = 0, the second inequality made use of
the estimate (A.5) from Lemma A.2, the subsequent equality was obtained by substituting
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R−x′
2 → x′

2, xl−R′ → R′ in the first and R−R′ → R′, R−x′
2 → x′

2 in the second integral, and
the last inequality simply used the Definition (3.72) of G3

z,m and a scaling in R′ and x′
2. From

(3.75) and a similar estimate with the roles of (R, xl) and (R′, x′
2) interchanged, we conclude

with the help of the Schur test that Br,r′,Qν ,ε defines a bounded operator with

∥Br,r′,Qν ,ε∥ ≤ (√m1 + √
m2 + √

ml) sup
|y|≤c(|r|+|r′|)

 ∫
R2

∣∣∣G3
z(x+ εy, 0) −G3

z(x, 0)
∣∣∣ dx

 . (3.76)

From (3.76) and from Lemma A.3 it follows that ∥Br,r′,Qν ,ε∥2 ≤ Cε2s(|r|2s + |r′|2s) for some
constant C = C(s, z,m1, ...,mN ) > 0 that does not depend on r, r′, Qν and ε. Using this to
estimate the right side of (3.74), we see that∥∥∥(ϕε(z, p1l)σν − ϕ0(z, p1l)σν

)
ψ
∥∥∥2

≤ Is(Vν)
∫

dr dr′ |Vσ(r)|
1 + |r′|2s

∥∥Br,r′,Qν ,εψ(r′, · )
∥∥2

≤ Cε2sIs(Vσ)Is(Vν) ∥ψ∥2.

As the right side is independent of p1l, this proves that ∥ϕε(z)σν−ϕ0(z)σν∥ = O(εs) as ε → 0.

Proposition 3.15. Let d = 1, z > 0, σ = (1, 2), ν = (k, l) with 3 ≤ k < l ≤ N , and
suppose that Vσ, Vν ∈ L1(R) satisfy

∫
|r|2s(|Vσ(r)| + |Vν(r)|) dr < ∞ for some s ∈ (0, 1). Then

∥ϕε(z)σν − ϕ0(z)σν∥ = O(εs) as ε → 0.

Proof. From (3.69) and (3.70) we know that ϕε(z)σν − ϕ0(z)σν acts pointwise in p
kl

by the
integral operator with kernel

uσ(r)
(
G4
z+Qν ,m (Xε) −G4

z+Qν ,m (X0)
)
vν(r′), (3.77)

where we have introduced the shorthand notations

G4
λ,m(x1, x2, xk, xl) := (m1m2mkml)1/2G4

λ(√m1x1,
√
m2x2,

√
mkxk,

√
mlxl), λ > 0, (3.78)

and

Xε :=


R− x′

1 − εc21r

R− x′
2 + εc12r

xk −R′ + εclkr
′

xl −R′ − εcklr
′

 ∈ R4, ε ≥ 0.

To estimate the norm of ϕε(z)σν −ϕ0(z)σν , we start our estimates similarly to (3.74). Using the
Cauchy-Schwarz inequality in the r′-integration, we find that, for all ψ ∈ L2(R4),∥∥∥(ϕε(z, pkl)σν − ϕ0(z, p

kl
)σν
)
ψ
∥∥∥2

≤ Is(Vν)
∫

drdr′ |Vσ(r)|
1 + |r′|2s

∫
dRdxk dxl

∣∣∣∣∫ dR′ dx′
1 dx′

2
(
G4
z+Qν ,m(Xε) −G4

z+Qν ,m(X0)
)
ψ(X ′)

∣∣∣∣2
= Is(Vν)

∫
dr dr′ |Vσ(r)|

1 + |r′|2s
∥∥Fr,r′,Qν ,εψ(r′, · )

∥∥2
, (3.79)

where X ′ := (r′, R′, x′
1, x

′
2) for short and for fixed r, r′ ∈ R, Qν ≥ 0 and ε > 0 the integral

operator Fr,r′,Qν ,ε : L2 (R3,d(R, x1, x2)
)

→ L2 (R3,d(R, xk, xl)
)

is defined in terms of the kernel
G4
z+Qν ,m

(Xε)−G4
z+Qν ,m

(X0). To show that Fr,r′,Qν ,ε defines a bounded operator and to estimate
∥Fr,r′,Qν ,ε∥, we are going to apply the Schur test again. Let

Xε,0 :=


R− x′

1
R− x′

2
xk −R′

xl −R′ − εcklr
′

 ∈ R4, ε > 0.
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Then, similarly to (3.75), we find

sup
R,xk,xl∈R

(∫
dR′ dx′

1 dx′
2

∣∣∣G4
z+Qν ,m(Xε) −G4

z+Qν ,m(X0)
∣∣∣)

≤ sup
R,xk,xl∈R

(∫
dR′ dx′

1 dx′
2

∣∣∣G4
z,m(Xε) −G4

z,m(Xε,0)
∣∣∣)

+ sup
R,xk,xl∈R

(∫
dR′ dx′

1 dx′
2

∣∣∣G4
z,m(Xε,0) −G4

z,m(X0)
∣∣∣)

≤
∫

dR′ dx′
1 dx′

2

∣∣∣G4
z,m

(
x′

1 − εc21r, x
′
2 + εc12r, R

′ + εclkr
′, 0
)

−G4
z,m

(
x′

1, x
′
2, R

′, 0
)∣∣∣

+
∫

dR′ dx′
1 dx′

2

∣∣∣G4
z,m

(
x′

1, x
′
2, 0, R′ − εcklr

′)−G4
z,m

(
x′

1, x
′
2, 0, R′)∣∣∣

≤ (√mk+√
ml) sup

|y|≤2c(|r|+|r′|)

 ∫
R3

∣∣∣G4
z(x+ εy, 0) −G4

z(x, 0)
∣∣∣ dx

, c = max
i,j

(√mjcij), (3.80)

where the second inequality first used the estimate (A.5) from Lemma A.2, and afterwards the
substitutions R−x′

1 → x′
1, R−x′

2 → x′
2 , xk−R′ → R′ in the first and R−x′

1 → x′
1, R−x′

2 → x′
2,

xl −R′ → R′ in the second integral were carried out. By the Schur test and by Lemma A.3, the
estimate (3.80) and a similar estimate with the roles of (R, xk, xl) and (R′, x′

1, x
′
2) interchanged

imply that ∥Fr,r′,Qν ,ε∥2 ≤ Cε2s(|r|2s + |r′|2s) for some constant C = C(s, z,m1, ...,mN ) > 0.
Using this to estimate the right side of (3.79), it follows that∥∥∥(ϕε(z, pkl)σν − ϕ0(z, p

kl
)σν
)
ψ
∥∥∥2

≤ Cε2sIs(Vσ)Is(Vν) ∥ψ∥2,

where Is(Vσ) and Is(Vν) are defined by Eq. (3.73). As the right side is independent of p
kl

, this
proves that ∥ϕε(z)σν − ϕ0(z)σν∥ = O(εs) as ε → 0.

Proof of Proposition 3.12. Suppose that for some given s ∈ (0, 1) and all σ ∈ I, |gε,σ − gσ| =
O(εs) as ε → 0 and

∫
(1 + |r|2s)|Vσ(r)| dr < ∞. Then, for fixed z > 0, Corollary 3.9 shows

that ∥Aε,σR0(z) −AσR0(z)∥ = O(εs) as ε → 0, and from Propositions 3.13, 3.14, 3.15 and their
analogs for pairs σ ̸= (1, 2), it follows that

∥ϕε(z) − ϕ0(z)∥ = O(εs) (ε → 0),

where ϕ0(z) ∈ L (X̃) is defined in terms of the components ϕ0(z)σν , σ, ν ∈ I. Since we know from
Proposition 3.10 that ϕε(z) → ϕ(z) as ε → 0, it follows that ϕ0(z) = ϕ(z) and ∥ϕε(z) − ϕ(z)∥ =
O(εs) as ε → 0. This means that the estimates (3.43) and (3.44) are valid, and hence the
proof of Theorem 3.1 still works for general s ∈ (0, 1). We conclude that z ∈ ρ(H) implies that
z ∈ ρ(Hε) ∩ ρ(H) for small enough ε > 0 and ∥(H + z)−1 − (Hε + z)−1∥ = O(εs) as ε → 0.

3.6 Domain and action of the Hamiltonian
In this section we derive an explicit description of the domain and the action of the Hamiltonian
H from Theorem 3.1, see Proposition 3.16, below. Furthermore, we show that H is a local and
translation-invariant self-adjoint extension of H0 ↾ C∞

0 (RN \Γ) (see Remark (i) after Proposition
3.16 and Proposition 3.17, below), so the physical requirements (i)− (iii) from Section 1.2.2 are
satisfied. In addition, we draw some conclusions concerning the spectrum of H.

Recall from Eq. (1.38) that in one space dimension a two-body δ-interaction of strength
ασ ∈ R, supported on the collision plane Γσ, can be characterized by the following jump condition
for the derivative of the wave function:(

∂j
mj

− ∂i
mi

)
ψ|xj=xi+ −

(
∂j
mj

− ∂i
mi

)
ψ|xj=xi− = ασψ|xi=xj , σ = (i, j) ∈ I. (3.81)
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However, the jump condition (3.81) only makes sense on a formal level because it involves the
evaluation of functions that are only defined almost everywhere in RN on the hyper plane Γσ
that has measure zero in RN . To obtain a rigorous version of (3.81), these evaluations on Γσ
have to be defined in the sense of appropriate trace operators in Sobolev spaces. For N = 3
particles this is achieved by [10, Theorem 2]. For the sake of completeness, we establish a similar
result for general N ≥ 2 in Proposition 3.16, below, and we also give an explicit description of
all required trace operators. To this end, we define for functions ψ that belong to H1(O) for
some open set O ⊃ Ω+

σ \ Γ the trace T+
σ ψ := T+

σ (ψ ↾ (Ω+
σ \ Γ)), where the trace operator

T+
σ : H1(Ω+

σ \ Γ) → Xσ on the right side has been introduced in Proposition 2.14. For open sets
O ⊃ Ω−

σ \ Γ and ψ ∈ H1(O), we define analogously T−
σ ψ := T−

σ (ψ ↾ (Ω−
σ \ Γ)).

Proposition 3.16. Under the hypotheses of Theorem 3.1, D(H) is the set of all functions
ψ ∈ H1(RN ) ∩H2(RN \ Γ) ⊆ H that satisfy, for all σ ∈ I,

(T+
σ − T−

σ )∂σψ = ασTσψ, (3.82)

where, for σ = (i, j), ∂σ := ∂j/mj − ∂i/mi. If ψ ∈ D(H), then, in the sense of distributions,

Hψ = H0ψ in RN \ Γ. (3.83)

Remarks.

(i) For ψ ∈ H2(RN ), the left side of Eq. (3.82) vanishes for all σ ∈ I because, by the
remark after Proposition (2.14), T+

σ ∂σψ = Tσ∂σψ = T−
σ ∂σψ. This means that a function

ψ ∈ H2(RN ) belongs to D(H) if and only if ψ ∈ KerTσ for all σ ∈ J , and then Hψ = H0ψ.
In particular, since C∞

0 (RN \ Γ) ⊆ KerTσ for all σ ∈ J , this shows that H is a self-adjoint
extension of H0 ↾ C∞

0 (RN \ Γ).

(ii) The identity (3.83) allows us to compute Hψ explicitly for any given ψ ∈ D(H).

The proof of Proposition 3.16 is given at the end of this section. Before we start preparing
the proof, we state and prove the following:

Proposition 3.17. The Hamiltonian H from Theorem 3.1 is local in the following sense: If
ψ ∈ D(H) and ψ = 0 a.e. in some non-empty open set U ⊆ RN , then Hψ = 0 a.e. in U .
Moreover, the operator identity HTtot,h = Ttot,hH holds for all h ∈ R, where Ttot,h ∈ L (H ) is
given by

(Ttot,hψ)(x1, x2, ..., xN ) = ψ(x1 + h, x2 + h, ..., xN + h).

Remark. The first part of Proposition 3.17 agrees with Property (iii) from Section 1.2.2 and
the second part is a stronger version of Property (ii) from Section 1.2.2.

Proof. For the first part, it suffices to consider open sets U ⊆ RN \ Γ because Γ is a closed
set of measure zero in RN . Then Hψ = 0 a.e. in U follows immediately from Eq. (3.83)
since H0 is a local operator. For the second part, we first observe that the Definition (3.1)
of Hε implies that, for all ε > 0, HεTtot,h = Ttot,hHε. This is equivalent to, for all ε > 0,
Ttot,h(Hε + i)−1 = (Hε + i)−1Ttot,h in L (H ). Using Theorem 3.1 to take the limit ε → 0, we
obtain that Ttot,h(H + i)−1 = (H + i)−1Ttot,h, which is equivalent to HTtot,h = Ttot,hH.

The translation invariance of Hε, ε > 0, implies that σ(Hε) = σess(Hε) = [Σε,∞) for
some Σε ≤ 0. Hence, if Hε → H in the norm resolvent sense as ε → 0, then, with the help of
Proposition 2.3, it is straightforward to verify that Σ = limε→0 Σε exists and that σ(H) = [Σ,∞).
In the special case of an attractive Bose gas with mi = 1, i = 1, ..., N , and ασ = α, σ ∈ I,
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for some fixed α < 0, the exact value of Σ and the ground state are explicitly known, see
[22] and the references therein. After removing the center of mass motion, the symmetric and
translation-invariant ground state of the system is given by

ψN,α(x1, ..., xN ) = CN exp
(
α

4
∑

1≤i<j≤N
|xj − xi|

)
, (3.84)

where CN > 0 denotes an appropriate normalization factor and the corresponding ground state
energy is given by Σ = −α2N(N2 − 1)/48. Due to the purely attractive interaction, such a
system collapses, for large N , to an interval whose length is of order (|α|N)−1 and the binding
energy per particle diverges like −(αN)2 as N → ∞ [22]. We shall not discuss the spectral
properties of H further, and instead we will be concerned with the proof of Proposition 3.16 in
the remainder of this section.

As in the previous sections, let T : H1(RN ) → X and G(z) : H → X, z ∈ ρ(H0), be
defined in terms of the components Tσ and G(z)σ, respectively, for σ ∈ J . Then the following
proposition, which is essentially due to [42, Proposition 4.4], gives an abstract, operator theoretic
characterization of D(H):

Proposition 3.18. Under the hypotheses of Theorem 3.1, a vector ψ ∈ H belongs to D(H)
if and only if the following holds: For some (and hence all) z ∈ ρ(H0) ∩ ρ(H) there exist
ψ0 ∈ H2(RN ) and w ∈ X such that

ψ = ψ0 +G(z)∗w (3.85)

and
Tψ0 = Θ(z)w. (3.86)

The vectors ψ0 and w are uniquely determined by ψ ∈ D(H) and z ∈ ρ(H0) ∩ ρ(H), and

(H + z)ψ = (H0 + z)ψ0. (3.87)

Proof. From Theorem 3.1 we know that Θ(z) ∈ L (X) has a bounded inverse for z ∈ ρ(H0)∩ρ(H).
Suppose ψ ∈ D(H) and z ∈ ρ(H0) ∩ ρ(H). Let φ := (H + z)ψ, ψ0 := R0(z)φ ∈ H2(RN ),

and w := Θ(z)−1Tψ0, so that (3.86) is trivially satisfied. Moreover, using (3.6) and G(z)φ =
TR0(z)φ = Tψ0, (3.85) follows from

ψ = (H + z)−1φ = R0(z)φ+G(z)∗Θ(z)−1G(z)φ
= ψ0 +G(z)∗w.

Conversely, if (3.85) and (3.86) hold for some z ∈ ρ(H0) ∩ ρ(H), let φ := (H0 + z)ψ0. Then
Tψ0 = G(z)φ and thus w = Θ(z)−1Tψ0 = Θ(z)−1G(z)φ. Hence, by (3.85) and (3.6),

ψ = ψ0 +G(z)∗w = R0(z)φ+G(z)∗Θ(z)−1G(z)φ
= (H + z)−1φ ∈ D(H),

and from this it follows that (H+z)ψ = φ = (H0 +z)ψ0. In particular, ψ0 = (H0 +z)−1(H+z)ψ
is uniquely determined by ψ ∈ D(H) and z ∈ ρ(H0)∩ρ(H), and since Θ(z) is invertible, it follows
from (3.86) that w is unique as well.

The result from Proposition 3.18 is difficult to apply in concrete calculations since it is not
clear how to compute the vectors ψ0 ∈ H2(RN ) and w ∈ X for a given ψ ∈ D(H). This is
clarified by the following proposition:
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Proposition 3.19. Suppose that ψ ∈ D(H) and z ∈ ρ(H0) ∩ ρ(H). Then ψ ∈ H1(RN ) and the
vectors w = (wσ)σ∈J ∈ X and ψ0 ∈ H2(RN ) from Proposition 3.18 are explicitly given by

wσ = −ασTσψ ∈ H1/2(RN−1), σ ∈ J , (3.88)
ψ0 = ψ +

∑
ν∈J

ανG(z)∗
νTνψ. (3.89)

Proof. Let w = (wσ)σ∈J ∈ X and ψ0 ∈ H2(RN ) denote the vectors from Proposition 3.18. From
Proposition 2.12 (iii) we know that G(z)∗

νwν ∈ H1(RN ) for all ν ∈ J , so it follows from (3.85)
that ψ ∈ H1(RN ). Now, using first (3.85) and then the identity TσG(z)∗

ν = −(ασ)−1δσν−Θ(z)σν ,
σ, ν ∈ J , from (3.5) in combination with (3.86), we conclude that

Tσψ = Tσψ0 +
∑
ν∈J

TσG(z)∗
νwν = −(ασ)−1wσ, σ ∈ J . (3.90)

This means that wσ = −ασTσψ, where, by Eq. (2.12), Tσψ = τKσψ ∈ H1/2(RN−1) because Kσ

leaves the space H1(RN ) invariant and, by Lemma 2.10, τ : H1(RN ) → H1/2(RN−1) defines a
bounded operator. This proves (3.88) and (3.89) is now immediate from (3.85).

Before we turn to the proof of Proposition 3.16, we need some preparation for the computa-
tion of (T+

σ −T−
σ )∂σψ, σ ∈ I. To this end, we want to use the decomposition (3.85) of ψ ∈ D(H)

for fixed z ∈ (0,∞) ∩ ρ(H). We will see that the contribution of ψ0 ∈ H2(RN ) vanishes, so it
remains to consider the contributions of the vectors G(z)∗

νwν .

Lemma 3.20. Let z ∈ (0,∞) and ν ∈ I be given and suppose that wν ∈ Xν ∩ H1/2(RN−1).
Then G(z)∗

νwν ∈ H1(RN ) ∩H2(RN \ Γ) and, for all σ ∈ I,

(T+
σ − T−

σ )∂σG(z)∗
νwν = −δσνwν . (3.91)

Remark. H1(RN ) ∩H2(RN \ Γ) is the set of all φ ∈ H1(RN ) for which the restriction φ ↾ RN \ Γ
belongs to H2(RN \ Γ).

Proof. Without restriction, we may assume that ν = (1, 2). From Proposition 2.12 (iii) we
already know that G(z)∗

νwν ∈ H1(RN ). To show that G(z)∗
νwν ↾ RN \ Γ belongs to H2(RN \ Γ),

it suffices to prove the stronger result thatG(z)∗
νwν ↾ RN\Γν belongs toH2(RN\Γν). To this end,

we note that Eq. (1.45) defines an isomorphism Kν : H2(RN \Γν) → H2((R\{0})×RN−1), so it
suffices to show that KνG(z)∗

νwν defines a function in H2((R \ {0}) ×RN−1). We now derive an
explicit expression for KνG(z)∗

νwν in Fourier space. First, we observe that the identities (2.12),
(3.51) and KνK ∗

ν = 1 imply that

KνG(z)∗
ν = Kν(τKνR0(z))∗ = (τ(H̃0 + z)−1)∗, (3.92)

where H̃0 is defined by Eq. (3.52). Now, with p and P = (P, p3, ..., pN ) being conjugate to r

and (R, x3, ..., xN ), respectively, and Q ≥ 0 defined by Eq. (3.54), we find that, for all φ ∈ X̃ν ,〈
φ
∣∣∣ (τ(H̃0 + z)−1

)∗
wν
〉

=
〈
τ(H̃0 + z)−1φ

∣∣∣wν〉
= µν√

2π

∫
dP dp

(
p2 + µν(Q+ z)

)−1
φ̂(p, P ) ŵν(P ). (3.93)

From (3.92) and (3.93) we conclude that

̂(KνG(z)∗
νwν)(p, P ) = µν√

2π

(
p2 + µν(Q+ z)

)−1
ŵν(P ), (3.94)
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and after applying the inverse Fourier transform in r, it follows from Lemma A.1 (ii) together
with the explicit formula (3.56) for the Green’s function G1

z, z > 0, that

̂(KνG(z)∗
νwν)(r, P ) =

√
µν

2
√
Q+ z

exp
(

−|r|
√
µν(Q+ z)

)
ŵν(P ). (3.95)

Using the explicit expressions (3.94) and (3.95), it is now straightforward to verify that all (weak)
partial derivatives ∂βKνG(z)∗

νwν , |β| ≤ 2, exist in (R\{0})×RN−1 and define square-integrable
functions. We demonstrate this in the case of the partial derivative ∂r∂xi , i ∈ {3, ..., N}:∫

dP dp |p|2|pi|2| ̂(KνG(z)∗
νwν)(p, P )|2 ≤ µ2

ν

2π

∫
dP

(∫
dp
(
p2 + µν(Q+ z)

)−1
)

|pi|2|ŵν(P )|2

= µ
3/2
ν

2

∫
dP |pi|2|ŵν(P )|2

(Q+ z)1/2

≤ (miµ
3
ν)1/2

2

∫
dP |pi||ŵν(P )|2 < ∞,

where the last line was obtained from the estimate |pi| ≤ (mi(Q+ z))1/2 and the integral in the
last line is finite because wν ∈ H1/2(RN−1) by assumption. Using similar estimates for the other
partial derivatives (for ∂2

r one should use (3.95) instead of (3.94)), we conclude that KνG(z)∗
νwν

defines a function in H2((R \ {0}) × RN−1). This means that G(z)∗
νwν ↾ RN \ Γν belongs to

H2(RN \ Γν), and hence G(z)∗
νwν ∈ H1(RN ) ∩H2(RN \ Γ).

It remains to prove Eq. (3.91), and to this end we first assume that σ = (1, 2) = ν. Then
the identity (2.22) for T+

ν ↾ H1(Ω+
ν ) and the Definition (1.45) of Kν imply that on H2(Ω+

ν ),
T+
ν ∂ν = τ+Kν∂ν = (µν)−1τ+∂rKν . Since we already know that G(z)∗

νwν ↾ RN \ Γν belongs to
H2(RN \ Γν), it follows that (G(z)∗

νwν ↾ Ω+
ν ) ∈ H2(Ω+

ν ) and

T+
ν ∂νG(z)∗

νwν = (µν)−1τ+∂rKνG(z)∗
νwν .

To evaluate the trace operator τ+ on the right side, we use (3.95) to conclude that, for all r > 0,

∥ − wν/2 − (µν)−1(∂rKνG(z)∗
νwν)(r, · )∥2 = 1

4

∫
dP

∣∣∣∣1 − exp
(

−r
√
µν(Q+ z)

)∣∣∣∣2 |ŵν(P )|2,

where the right side vanishes as r → 0+ by the Lebesgue dominated convergence theorem.
This implies that T+

ν ∂νG(z)∗
νwν = −wν/2. Similarly, T−

ν ∂νG(z)∗
νwν = wν/2, so Eq. (3.91) is

established for σ = ν.
To prove Eq. (3.91) for given σ ̸= ν = (1, 2), we set ψ := ∂σG(z)∗

νwν and we note that
ψ ↾ RN \ Γν belongs to H1(RN \ Γν) because G(z)∗

νwν ↾ RN \ Γν belongs to H2(RN \ Γν). This
implies that φψ ∈ H1(RN ) for all φ ∈ C∞

0 (RN \ Γν), so the identity (2.18) and the remark after
Proposition 2.14 show that

(Tσφ)(T+
σ ψ) = T+

σ (φψ) = Tσ(φψ) = T−
σ (φψ) = (Tσφ)(T−

σ ψ). (3.96)

Comparing both sides, we conclude that T+
σ ψ = T−

σ ψ in the interior of supp(Tσφ). Next, we
note that Γσ ∩ Γν is a hyperplane of codimension one in Γσ, and it is not hard to show that for
almost all y ∈ RN−1 there exists a function φ ∈ C∞

0 (RN \ Γν) such that Tσφ does not vanish in
some neighborhood of y. In view of Eq. (3.96), this means that T+

σ ψ = T−
σ ψ a.e. in RN−1, and

hence Eq. (3.91) also holds for σ ̸= ν.

Proof of Proposition 3.16. Suppose first that ψ ∈ D(H), so we have to verify that ψ ∈ H1(RN )∩
H2(RN \ Γ) and that Eq. (3.82) holds for all σ ∈ I. To this end, let z ∈ (0,∞) ∩ ρ(H) be fixed.
Then we know from Proposition 3.19 that

ψ = ψ0 +
∑
ν∈J

G(z)∗
νwν , (3.97)
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where wν = −ανTνψ ∈ H1/2(RN−1), ν ∈ J , and ψ0 ∈ H2(RN ). Hence, Lemma 3.20 shows that
G(z)∗

νwν ∈ H1(RN ) ∩H2(RN \ Γ), ν ∈ J , so Eq. (3.97) implies that ψ ∈ H1(RN ) ∩H2(RN \ Γ).
To prove Eq. (3.82) for all σ ∈ I, we again use the decomposition (3.97). In view of Lemma
3.20, we find that

(T+
σ − T−

σ )∂σψ = (T+
σ − T−

σ )∂σψ0 −
∑
ν∈J

δσνwν =

−wσ if σ ∈ J
0 if σ ∈ I \ J ,

(3.98)

where we have used that T+
σ ∂σψ0 = Tσ∂σψ0 = T−

σ ∂σψ0 because ∂σψ0 ∈ H1(RN ) (see the remark
after Proposition 2.14). Now, the identity wσ = −ασTσψ if σ ∈ J and the fact that ασ = 0 if
σ ∈ I \ J show that the right-hand sides of Eqs. (3.98) and (3.82) coincide, so Eq. (3.82) is
established for all σ ∈ I. To prove Eq. (3.83), we recall from Propositions 3.18 and 2.12 that
(H + z)ψ = (H0 + z)ψ0 and, in the sense of distributions, (H0 + z)G(z)∗

νwν = 0 in RN \ Γν .
Hence, Eq. (3.97) implies that, in the sense of distributions, (H+z)ψ = (H0 +z)ψ0 = (H0 +z)ψ
in RN \ Γ, which proves Eq. (3.83).

Conversely, suppose that ψ ∈ H1(RN ) ∩H2(RN \ Γ) satisfies (3.82) for all σ ∈ I. Then we
have to show that ψ ∈ D(H). Let z ∈ (0,∞) ∩ ρ(H) be fixed and, in accordance with Eqs.
(3.88) and (3.89), let wσ := −ασTσψ ∈ Xσ ∩H1/2(RN−1), σ ∈ I, and ψ0 := ψ−

∑
ν∈J G(z)∗

νwν .
We are going to show that ψ0 ∈ H2(RN ) and that the conditions (3.85) and (3.86) are satisfied,
so Proposition 3.18 then shows that ψ ∈ D(H). (3.85) is obvious from the definition of ψ0 and,
moreover, it follows that ψ0 ∈ H1(RN ) ∩ H2(RN \ Γ) because ψ ∈ H1(RN ) ∩ H2(RN \ Γ) by
assumption and, by Lemma 3.20, G(z)∗

νwν ∈ H1(RN )∩H2(RN \Γ), ν ∈ J . Now, the definitions
of wσ and ψ0 imply that

Tσψ0 = −(ασ)−1wσ −
∑
ν∈J

TσG(z)∗
νwν = (Θ(z)w)σ, σ ∈ J ,

where the second equality used the Definition (3.5) of Θ(z). This proves (3.86), so it only remains
to show that ψ0 ∈ H2(RN ). For this purpose, we first observe that RN \ Γ is the disjoint union
of the sets Ωπ that have been introduced in Eq. (2.19), where π runs through all permutations
of {1, ..., N}. Recall from the proof of Proposition 2.14 that each Ωπ is an open and connected
set whose boundary is of class C, so it follows from [50, Theorem 11.35] that the restriction to
Ωπ of functions in C∞

0 (RN ) is dense in H2(Ωπ). Hence, for any permutation π we may choose a
sequence ψπ,n ∈ C∞

0 (RN ), n ∈ N, that converges, as n → ∞, to ψ0 ↾ Ωπ in the norm of H2(Ωπ).
We now define a sequence ψn ∈ H2(RN \ Γ) ∩ C∞(RN \ Γ), n ∈ N, by ψn(x) := ψπ,n(x) iff
x ∈ Ωπ, and it follows that, as n → ∞, ψn → ψ0 in the norm of H2(RN \ Γ). Moreover, we
define H ′

0η := ∑N
i=1(−∂2

i η)/mi ∈ L2(RN \ Γ) for η ∈ D(H ′
0) = H2(RN \ Γ). Then a version of

Green’s second identity shows that, for all φ ∈ C∞
0 (RN ) and all n ∈ N,∫

RN \Γ

φ(x)(H ′
0ψn)(x) − (H0φ)(x)ψn(x) dx

=
∑
σ∈I

(〈
Tσφ

∣∣∣ (T+
σ − T−

σ )∂σψn
〉

−
〈
Tσ∂σφ

∣∣∣ (T+
σ − T−

σ )ψn
〉)
.

Taking the limit n → ∞, we arrive at∫
RN \Γ

φ(x)(H ′
0ψ0)(x) − (H0φ)(x)ψ0(x) dx =

∑
σ∈I

〈
Tσφ

∣∣∣ (T+
σ − T−

σ )∂σψ0
〉
, (3.99)

where we used that T+
σ ψ0 = Tσψ0 = T−

σ ψ0 because ψ0 ∈ H1(RN ) (see the remark after Propo-
sition 2.14). Next, we use our assumption that ψ ∈ H1(RN ) ∩H2(RN \ Γ) satisfies (3.82) for all
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σ ∈ I in combination with Lemma 3.20 to conclude that, for all σ ∈ I,

(T+
σ − T−

σ )∂σψ0 = (T+
σ − T−

σ )∂σψ −
∑
ν∈J

(T+
σ − T−

σ )∂σG(z)∗
νwν

= ασTσψ + wσ = 0.

Inserting this in (3.99), we obtain that, for all φ ∈ C∞
0 (RN ), ⟨H0φ |ψ0⟩ = ⟨φ |H ′

0ψ0⟩, where
⟨· | ·⟩ denotes the scalar product of L2(RN ) and H ′

0ψ0 ∈ L2(RN \ Γ) is extended by zero to a
function in L2(RN ). From this we conclude that ψ0 ∈ H2(RN ) and that H0ψ0 = H ′

0ψ0, which
completes the proof of Proposition 3.16.
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4 From short-range to contact interactions
in d = 2 dimensions

This section is devoted to the proof of the two-dimensional analog of Theorem 3.1, see Theorem
4.1, below. Moreover, we show that the limit operator H from Theorem 4.1 agrees with the
TMS Hamiltonian of Dell’Antonio, Figari and Teta [30]. This section is based on reference [39].

4.1 Main result and outline
Unlike the simpler case d = 1, a δ-interaction is not a small perturbation, in the form sense, of
the free operator −∆ : H2(Rd) → L2(Rd) in d ≥ 2 dimensions. Accordingly, the analog of the
quadratic form q from Eq. (3.7) is not bounded from below and closed on H1(RdN ) for d ≥ 2 and
N ≥ 2. This already follows from the fact that the trace operators Tσ : D(Tσ) → Xσ in Corollary
2.11 do not define bounded operators on H1(RdN ) if d ≥ 2. Therefore, the standard method from
Section 3.2, which has allowed us to construct N -body Hamiltonians with non-trivial two-body
contact interactions in d = 1, fails in d ≥ 2. In d = 2 dimensions, a local, translation-invariant
and semibounded N -body Hamiltonian with non-trivial two-body contact interactions was first
constructed by Dell’Antonio, Figari and Teta in 1994 [30]. Their starting point is a suitable
regularized quadratic form, where the regularization is achieved by introducing an ultraviolet
cutoff in Fourier space. As the cutoff is removed, this regularized quadratic form converges, in
the sense of strong and weak Γ-convergence, to a closed and semibounded quadratic form, which
is denoted by Fβ in [30]. The self-adjoint operator Hβ that is associated with Fβ then describes
non-trivial two-body contact interactions among N ≥ 2 particles. The component βσ ∈ R of
the vector β in Hβ determines the strength of the contact interaction among the particles of the
respective pair σ ∈ I. The resolvent of Hβ can be expressed by a Krein-like formula (see [30,
Eqs. (5.12) and (5.13)]), and the domain and the action of Hβ can be characterized explicitly
(see [30, Eqs. (5.3) and (5.4)]). It is pointed out in [30] that this characterization of D(Hβ)
generalizes the condition derived by Ter Martirosyan and Skornyakov in the case N = 3, d = 3
[55], which was further analyzed in [58, 59]. Therefore, we refer to Hβ as the TMS Hamiltonian.

The goal of this section is to show that Hβ is the limit, in the norm resolvent sense, of
suitably rescaled Schrödinger operators Hε, ε > 0. Recall from Eqs. (1.39), (1.40) and (1.29)
that in d = 2 dimensions we consider Schrödinger operators of the form

Hε = H0 +
∑

σ=(i,j)∈I
gε,σ Vσ,ε(xj − xi), ε > 0, (4.1)

where

H0 =
N∑
i=1

(−∆xi/mi) (4.2)

denotes the kinetic energy operator, gε,σ ∈ R is a coupling constant and

Vσ,ε(r) = ε−2 Vσ(r/ε), σ ∈ I, ε > 0, (4.3)

for some fixed real-valued potential Vσ ∈ L1 ∩ L2(R2) with Vσ(−r) = Vσ(r) a.e. In particular,
Hε is self-adjoint on D(Hε) = D(H0) = H2(R2N ). Recall from Eq. (1.41) that for Hε to have a
non-trivial limit as ε → 0, the coupling constants gε,σ must have an asymptotic behavior of the
form

1
gε,σ

= µσ
(
aσ ln(ε) + bσ

)
+ o(1) (ε → 0), (4.4)
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where aσ, bσ ∈ R, aσ > 0 and the reduced mass µσ of the pair σ has been factored out. We
further assume that all two-body potentials Vσ satisfy

∫
|r|2s |Vσ(r)| dr < ∞ for some s > 0 that

is independent of the particular choice of σ, and that the coefficient aσ > 0 in Eq. (4.4) satisfies

aσ ≥ 1
2π

∫
Vσ(r) dr. (4.5)

While in the one-particle case a condition of the type (4.5) is not needed [6], this condition is
necessary for N ≥ 2: if (4.5) is not satisfied for some pair σ, then one may expect strong resolvent
convergence of Hε at best. To see this, we consider a two-particle subsystem with pair potential
Vσ and reduced mass µσ = 1. If 0 < aσ < (2π)−1 ∫ Vσ(r) dr and (gε,σ)−1 = aσ ln(ε) + bσ,
then the Hamiltonian in the center of mass frame has a negative eigenvalue running towards
−∞ as ε → 0. This follows from a rescaling in ε > 0 in combination with [74, Theorem 3.4].
Due to the HVZ theorem (see, e.g., [70, Theorem XIII.17]) and the center of mass motion,
the Hamiltonian Hε then has essential spectrum filling the entire real axis in the limit ε → 0.
In view of Proposition 2.3, this is not compatible with norm resolvent convergence towards a
semibounded Hamiltonian. If equality holds in (4.5), then, in analogy to the one-particle case
described in Section 1.1.1, we shall see that the two-body potential Vσ gives rise to a non-trivial
contact interaction whose strength is determined by the parameter bσ. In the case of inequality
there is no contribution from Vσ. We use J ⊆ I to denote the subset of pairs for which equality
holds in (4.5).

Under the above hypotheses, Theorem 4.1, below, asserts norm resolvent convergence of Hε

in the limit ε → 0. Moreover, Eq. (4.8) yields a Krein-like formula for the resolvent of the
limit operator H, which is our analog of [30, Eqs. (5.12) and (5.13)]. Before we state this result
in detail, we introduce all required spaces and operators. Let the auxiliary Hilbert space X be
defined by

X :=
⊕
σ∈J

Xσ, (4.6)

where Xσ has been introduced in Eq. (2.8). For z ∈ ρ(H0), let R0(z) = (H0 +z)−1 for short and
let G(z) ∈ L (H ,X) be defined in terms of the components G(z)σ = TσR0(z) ∈ L (H ,Xσ),
σ ∈ J , that have been introduced in Proposition 2.12. An alternative description of G(z) is
given by G(z) = TR0(z), where T ∈ L (H2(R2N ),X) is defined as in Lemma 2.13. It remains
to define the unbounded operator matrix Θ(z) : D ⊆ X → X, z ∈ ρ(H0), in Eq. (4.8). The
off-diagonal contributions are given by

Θ(z)σν := −TσG(z)∗
ν , z ∈ ρ(H0), σ, ν ∈ J , σ ̸= ν, (4.7)

where the trace operator Tσ : D(Tσ) ⊆ H → Xσ is defined by Eq. (2.12) on its maximal,
σ-dependent domain D(Tσ) = K ∗

σ D(τ). Here, K ∗
σ , τ and D(τ) are given by Eqs. (1.46), (2.10)

and (2.11), respectively. We will see that RanG(z)∗
ν ⊆ D(Tσ) and that Θ(z)σν defines a bounded

operator in L (Xν ,Xσ) for σ ̸= ν. The diagonal parts Θ(z)σσ, σ ∈ J , are unbounded operators
that are explicitly given by Eqs. (4.51)-(4.54), below, where ln(·) denotes the principal branch
of the logarithm. With these preparations at hand, we now state the main result of this section:

Theorem 4.1. Let d = 2, N ≥ 2 and suppose, for all σ ∈ I, that Vσ ∈ L1 ∩ L2(R2), Vσ(−r) =
Vσ(r) a.e. and that there exists some s > 0 such that

∫
|r|2s |Vσ(r)| dr < ∞. Let Hε, ε > 0,

be defined by Eqs. (4.1)-(4.5). Then, as ε → 0, Hε converges in the norm resolvent sense to a
self-adjoint semibounded operator H. For z ∈ ρ(H0) ∩ ρ(H), the resolvent of H is given by

(H + z)−1 = R0(z) +G(z)∗Θ(z)−1G(z), (4.8)

where Θ(z) : D ⊆ X → X is a densely defined and invertible operator, whose domain D is
independent of z.
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Remark. Theorem 4.1 shows that 0 ∈ ρ(Θ(z)) for all z ∈ ρ(H0) ∩ ρ(H). In fact, it follows from
[21, Theorem 2.19] combined with the properties of Θ(·) from Proposition 4.14, below, that

ρ(H0) ∩ ρ(H) = {z ∈ ρ(H0) | 0 ∈ ρ(Θ(z))}.

This is closely related to the variational principle that has been used to prove stability of the
Fermi polaron in two [42, 54] and in three dimensions [60], and in our setting this allows us to
derive an explicit lower bound for σ(H) in Proposition 4.15, below.

The main novelty in Theorem 4.1, compared to previous results of similar type, is that
convergence is established in norm resolvent sense. We know from Proposition 2.3 that norm
resolvent convergence implies convergence of the spectra, while this is not true for the weaker
strong resolvent convergence. In the present case, where σ(Hε) = [Σε,∞) for some Σε ≤ 0,
the norm resolvent convergence Hε → H as ε → 0 implies that Σ = limε→0 Σε exists and
that σ(H) = [Σ,∞). Recently, in a study of the 2d stochastic heat equation, Gu, Quastel
and Tsai have derived a result very similar to Theorem 4.1 for N identical particles [46]. In
[46] the two-body potentials are compactly supported smooth functions and convergence in
strong resolvent sense is established. In the case of bosons, Gu et al. give a formula for the
resolvent that is similar to Eq. (4.8). As already indicated at the beginning of this section, TMS
Hamiltonians in d = 2, like H in Theorem 4.1, have also been described as resolvent limits of N -
body Hamiltonians, where the regularized two-body contact interaction is an integral operator,
rather than a potential, and the regularization is achieved by an ultraviolet cutoff [30, 31, 43] or
a reversed heat flow [34]. In these cases the convergence is easier to establish than in the case
studied here. Nevertheless, all previous approximation results of this kind in d = 2 with N ≥ 2
particles establish strong resolvent convergence only.

Following the line of argument from the proof of Proposition 3.18, the resolvent formula from
Eq. (4.8) implies the following characterization of the domain and the action of our Hamiltonian:

Corollary 4.2. Under the hypotheses of Theorem 4.1, a vector ψ ∈ H belongs to D(H) if and
only if the following holds: For some (and hence all) z ∈ ρ(H0)∩ρ(H) there exist ψ0 ∈ H2(R2N )
and w ∈ D such that

ψ = ψ0 +G(z)∗w (4.9)
and

Tψ0 = Θ(z)w. (4.10)
The vectors ψ0 and w are uniquely determined by ψ ∈ D(H) and z ∈ ρ(H0) ∩ ρ(H), and

(H + z)ψ = (H0 + z)ψ0. (4.11)

The conditions (4.9) and (4.10) can be considered as an abstract, operator theoretic version
of the TMS condition [30, 42] and Corollary 4.2 is our analog of [30, Eqs. (5.3) and (5.4)].
For ψ ∈ KerT , (4.9) and (4.10) are satisfied with ψ0 = ψ ∈ H2(R2N ) and w = 0, and since
C∞

0 (R2N \ Γ) ⊆ KerT by Lemma 2.13, this also shows that H is a self-adjoint extension of
H0 ↾ C∞

0 (R2N \Γ). Moreover, by Proposition 4.16, below, H is a local operator that is invariant
under all Euclidean isometries of R2. In particular, this confirms that H is an N -particle
Hamiltonian with contact interactions that has the Properties (i) − (iii) from Section 1.2.2.

The outline of this section is as follows: The auxiliary operators that are needed for the
proof of Theorem 4.1 are introduced in Section 4.2, where the strategy of the proof is also
briefly sketched. Sections 4.3 and 4.4 provide all preparations needed for the proof of Theorem
4.1, which is given in Section 4.5. In addition, a lower bound for σ(H) and Proposition 4.16 are
established in Section 4.5. Finally, in Section 4.6, we explicitly compute the quadratic form of
H and we show that it agrees, in the case where all masses are equal to one, with the quadratic
form of the TMS Hamiltonian Hβ for suitable β [30].
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4.2 Auxiliary operators and strategy of the proof
In this section we define the most important auxiliary operators that are needed for the proof
of Theorem 4.1 and we explain our general strategy.

The proof of Theorem 4.1 is based on the generalized Konno-Kuroda formula (1.53) for
the resolvent of Hε. In d = 2 dimensions the logarithmic divergence of (gε,σ)−1 in the limit
ε → 0, which is prescribed by Eq. (4.4), is indispensable for the convergence of the contributions
[(1 + gεϕε(z))−1]σν gε,ν . Recall from the sentence between Eqs. (1.52) and (1.53) that gε ∈ L (X̃)
is given by the diagonal matrix with entries (gε)σν = gε,σδσν , σ, ν ∈ I, where X̃ denotes the
auxiliary Hilbert space from Eqs. (1.43) and (1.44). We now rewrite the Konno-Kuroda formula
in such a way that the dependence on (gε,σ)−1 becomes more evident. Since Eq. (4.4) with
aσ > 0 implies that gε,σ < 0 for small enough ε > 0, we may assume, without loss of generality,
that gε,σ ̸= 0, and hence that (gε)−1 ∈ L (X̃) exists. Then the identity[

(1 + gεϕε(z))−1
]
σν
gε,ν =

[(
(gε)−1 + ϕε(z)

)−1
]
σν
, ε > 0, σ, ν ∈ I

allows us to rewrite the Konno-Kuroda formula (1.53) in the form

(Hε+z)−1 = R0(z) −
∑
σ,ν∈I

(Aε,σR0(z))∗
[
Λε(z)−1

]
σν
Bε,νR0(z), z ∈ ρ(Hε)∩ρ(H0), (4.12)

where the bounded operator Λε(z) ∈ L (X̃) is defined in terms of the components

Λε(z)σν := (gε,σ)−1δσν + ϕε(z)σν ∈ L (X̃ν , X̃σ), z ∈ ρ(H0), σ, ν ∈ I, (4.13)

and Λε(z) is invertible if and only if z ∈ ρ(Hε) ∩ ρ(H0).
To prove norm resolvent convergence of Hε in the limit ε → 0, we prove that all contributions

to the right side of Eq. (4.12) have suitable limits as ε → 0. In Section 4.3 we prove that

lim
ε→0

Aε,σR0(z) = AσR0(z), z ∈ ρ(H0), σ ∈ I (4.14)

in L (H , X̃σ), where

AσR0(z)ψ = vσ ⊗ (G(z)σψ), ψ ∈ H . (4.15)

This also implies that Bε,νR0(z) → JνAνR0(z) as ε → 0.
The hard part, which is even non-trivial in the one-particle case, is the convergence of the

middle part Λε(z)−1. Our analysis is based on the decomposition

Λε(z) = Λε(z)diag + Λε(z)off

into diagonal and off-diagonal parts of the operator matrix from Eq. (4.13). In Section 4.4
we show that both (Λε(z)diag)−1 and (Λε(z)diag)−1Λε(z)off have limits as ε → 0, provided that
z > 0 is large enough. The diagonal parts ϕε(z)σσ contain a divergent contribution that must
be canceled by the logarithmic divergence of (gε,σ)−1 in the limit ε → 0. It turns out that
((gε,σ)−1 + ϕε(z)σσ)−1 has a vanishing limit unless σ ∈ J , i.e.

∫
Vσ(r) dr = 2πaσ. In the end,

we arrive at

lim
ε→0

[
Λε(z)−1

]
σν

=

− |uσ⟩ ⟨vν |
⟨uσ | vσ⟩ ⟨uν | vν⟩

⊗ (Θ(z)−1)σν if σ, ν ∈ J

0 else
(4.16)

for large enough z > 0, where Θ(z) is a densely defined and invertible operator in X. Combining
(4.16) with (4.14) and (4.15), it follows that the expression on the right-hand side of Eq. (4.12)
has the limit from Eq. (4.8). In analogy to the one-dimensional case, a standard argument then
shows that Eq. (4.8) defines the resolvent of a self-adjoint operator H for all z ∈ ρ(H0) ∩ ρ(H).
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4.3 The limit of Aε,σR0(z)
In this section we prove in d = 2 that the operators Aε,σR0(z) ∈ L (H , X̃σ), z ∈ ρ(H0), have
suitable limits as ε → 0. Although the proofs of Lemma 4.3 and Corollary 4.4, below, are very
similar to their one-dimensional counterparts from Section 3.3, we recall some of the identities
and estimates needed for the proof.

Recall from Eq. (1.48) that

Aε,σ = (vσ ⊗ 1)ε−1UεKσ, ε > 0, σ ∈ I, (4.17)

where Uε and Kσ are defined by Eqs. (1.47) and (1.45), respectively. This means that proving
convergence of Aε,σ reduces to a problem in L2(R2), which we solve in the next lemma. For a
given pair σ ∈ I, let V = Vσ, v = vσ and let |v⟩ ⟨δ| : H2(R2) → L2(R2) denote the rank-one
operator defined by

|v⟩ ⟨δ|ψ := ψ(0)v, ψ ∈ H2(R2),

where ψ(0) := (2π)−1 ∫ ψ̂(p) dp (note that ψ̂ ∈ L1(R2)). Then the following holds:

Lemma 4.3. If V ∈ L1(R2) and v = |V |1/2, then

vε−1Uε → |v⟩ ⟨δ| (ε → 0)

in the norm of L (H2(R2), L2(R2)). If, in addition,
∫

|r|2s |V (r)| dr < ∞ for some s ∈ (0, 1),
then the rate of convergence is at least as good as O(εs).

Proof. It is well-known that the Sobolev embedding H2(R2) ↪→ C0,s(R2) exists and is continuous
for s ∈ (0, 1) (see, e.g., [50, Theorem 12.55]). Hence, for any s ∈ (0, 1) there exists cs > 0 such
that, for all ψ ∈ H2(R2) and almost all r ∈ R2,

|v(r)| |ψ(εr) − ψ(0)| ≤ |v(r)| cs|εr|s∥ψ∥H2 .

Squaring and integrating both sides proves the lemma in the case of
∫

|r|2s |V (r)| dr < ∞. For
general V ∈ L1(R2), a δ/3-argument, which is very similar to the one from the proof of Lemma
3.8, then proves the lemma.

Observe that the coordinate transformation Kσ from Eq. (1.45) defines a bounded operator
in H2(R2N ). Hence, the Definitions (2.12) and (2.10) of Tσ and τ , respectively, imply that
vσ ⊗ (Tσψ) = (|vσ⟩ ⟨δ| ⊗ 1)Kσψ for all ψ ∈ H2(R2N ). Comparing this with the Definition
(4.17) of Aε,σ, we see that Lemma 4.3 implies that limε→0Aε,σ = Aσ in L (H2(R2N ), X̃σ), where
Aσψ := vσ ⊗ (Tσψ) for ψ ∈ H2(R2N ). If, in addition,

∫
|r|2s |Vσ(r)| dr < ∞ for some s ∈ (0, 1),

then the rate of convergence is at least as good as O(εs). This proves the following corollary:

Corollary 4.4. Let z ∈ ρ(H0), σ ∈ I and suppose that Vσ ∈ L1(R2). Then, as ε → 0,

Aε,σR0(z) → AσR0(z)

in L (H , X̃σ), where

AσR0(z)ψ = vσ ⊗ (G(z)σψ), ψ ∈ H , (4.18)

and G(z)σ = TσR0(z) ∈ L (H ,Xσ). If, in addition,
∫

|r|2s |Vσ(r)| dr < ∞ for some s ∈ (0, 1),
then ∥(Aε,σ −Aσ)R0(z)∥ = O(εs) as ε → 0.
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4.4 Convergence of Λε(z)−1

The goal of this section is to show that the limit limε→0 Λε(z)−1 exists for all large enough z > 0,
provided that, for all σ ∈ I, Vσ ∈ L1 ∩ L2(R2) and

∫
|r|2s |Vσ(r)| dr < ∞ for some s > 0. As

explained at the end of Section 4.2, our proof is based on a decomposition of Λε(z) into diagonal
and off-diagonal parts that we now define.

Recall from Eq. (4.13) that, for given ε, z > 0, the operator matrix Λε(z) ∈ L (X̃) has the
components

Λε(z)σν = (gε,σ)−1δσν + ϕε(z)σν , σ, ν ∈ I,

where, by Eq. (1.52),

ϕε(z)σν = Bε,σR0(z)(Aε,ν)∗ ∈ L (X̃ν , X̃σ). (4.19)

Using the Definitions (1.48) and (1.49) of Aε,ν and Bε,σ, respectively, leads to the explicit formula

ϕε(z)σν = ε−2 (uσ ⊗ 1)UεKσR0(z)K ∗
ν U

∗
ε (vν ⊗ 1). (4.20)

We shall see that for fixed z > 0 the norm of the off-diagonal parts ϕε(z)σν , σ ̸= ν, is uniformly
bounded in ε > 0, whereas the asymptotics of the coupling constant gε,σ from Eq. (4.4) cancels
the singular part in the diagonal contributions ϕε(z)σσ if and only if aσ =

∫
Vσ(r) dr/(2π) > 0.

Therefore, we write the operator matrix Λε(z) in the form

Λε(z) = Λε(z)diag + Λε(z)off, (4.21)

where the diagonal part Λε(z)diag and the off-diagonal part Λε(z)off are defined in terms of the
components Λε(z)σσ and Λε(z)σν , σ ̸= ν, respectively. That is

(Λε(z)diag)σν =
(
(gε,σ)−1 + ϕε(z)σσ

)
δσν , σ, ν ∈ I, (4.22)

and

(Λε(z)off)σν = ϕε(z)σν(1 − δσν), σ, ν ∈ I. (4.23)

Section 4.4.1 is devoted to Λε(z)diag and Section 4.4.2 is devoted to Λε(z)off.

4.4.1 The limit of (Λε(z)diag)−1

We first show that Λε(z)diag is invertible for small enough ε > 0 and large enough z > 0
and then we compute the limit limε→0 (Λε(z)diag)−1. This can be done for each component
Λε(z)σσ = (gε,σ)−1 +ϕε(z)σσ separately and without loss of generality we may choose σ = (1, 2).
As in Section 3.5.1, we now drop the index σ for brevity: V = V(1,2), v = v(1,2), µ = µ(1,2),
gε = gε,(1,2), ϕε(z) = ϕε(z)(1,2)(1,2) etc. In particular, this means that gε and ϕε(z) are used as
shorthand notations for the (1, 2)(1, 2)-components of the corresponding operators in L (X̃).

First, we recall from Eqs. (3.53) and (3.54) that in d = 2 dimensions ϕε(z) acts pointwise in
P = (P, p3, ..., pN ) by the operator

ϕε(z, P ) = ε−2µuUε(−∆r + µ(Q+ z))−1U∗
ε v

= µu (−∆r + ε2µ(Q+ z))−1 v ∈ L (L2(R2)), (4.24)

where

Q = P 2

m1 +m2
+

N∑
i=3

p2
i

mi
(4.25)
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and the scaling properties of the Laplace operator w.r.t. the unitary scaling Uε have been used
to obtain the second line of Eq. (4.24). As the resolvent in Eq. (4.24) is divergent in the limit
ε → 0, the first step in the analysis of limε→0(Λε(z)diag)−1 is to study the asymptotic behavior
of ϕε(z, P ) for small ε > 0. A similar but less specific version of the following lemma can be
found in [74, Proposition 3.2].

Lemma 4.5. Suppose that V ∈ L1 ∩ L2(R2) satisfies
∫

|r|2s |V (r)| dr < ∞ for some s ∈ (0, 2).
Then there exists a constant C = C(s, V ) > 0 such that

∀α > 0 :
∥∥∥u (−∆ + α)−1 v + (2π)−1 [(ln (√α/2)+ γ

)
|u⟩⟨v| + L

]∥∥∥
HS

≤ Cαs/2, (4.26)

∀α ≥ 1 :
∥∥∥u (−∆ + α)−1 v

∥∥∥
HS

≤ C, (4.27)

where ∥ · ∥HS denotes the Hilbert-Schmidt norm in L2(R2), γ is the Euler–Mascheroni constant
and L is a Hilbert-Schmidt operator in L2(R2) that is defined in terms of the kernel

u(r) ln(|r − r′|) v(r′), r ̸= r′.

Proof. First, we observe that u(−∆ + α)−1v, α > 0, has the integral kernel

u(r)Gα(r − r′) v(r′), (4.28)

where Gα = G2
α denotes the Green’s function of −∆ + α : H2(R2) → L2(R2). By [6, Equation

(5.15), p. 99], we have the explicit description

Gα(x) = G1(
√
αx) = i

4H
(1)
0 (i

√
α|x|), 0 ̸= x ∈ R2, (4.29)

where H
(1)
0 (·) denotes the Hankel function of first kind and order zero. The asymptotics of

H
(1)
0 (iy) for small y > 0 is well-known (see, e.g., [1, Chapter 9.1]):

iH
(1)
0 (iy) = −2π−1 (ln (y/2) + γ) +O(y2| ln y|) (y → 0). (4.30)

As G1 is smooth in R2 \ {0} and exponentially decaying as |x| → ∞ (see Lemma A.4), we
conclude from (4.29) and (4.30) that for some constant λ = λ(s) > 0,∣∣∣G1(x) + (2π)−1 (ln (|x|/2) + γ)

∣∣∣ ≤ λ|x|s, x ∈ R2 \ {0}. (4.31)

Using again Eq. (4.29), it follows that∣∣∣Gα(x) + (2π)−1 (ln (√α|x|/2
)

+ γ
)∣∣∣ ≤ λαs/2|x|s

uniformly in α > 0 and x ∈ R2 \ {0}. Therefore, the estimate (4.26) follows from∥∥∥u (−∆ + α)−1 v + (2π)−1 [(ln (√α/2)+ γ
)
|u⟩⟨v| + L

]∥∥∥2

HS

=
∫

dr dr′ |u(r)|2
∣∣∣Gα(r − r′) + (2π)−1 [ln (√α|r − r′|/2

)
+ γ

]∣∣∣2 |v(r′)|2

≤ λ2αs
∫

dr dr′ |V (r)|
∣∣r − r′∣∣2s |V (r′)|

≤ 22s+1λ2αs∥V ∥L1

∫
|r|2s|V (r)| dr,

where the elementary inequality (a+b)2s ≤ 22s(a2s+b2s), a, b ≥ 0, was used for the last inequality.
To show that L indeed defines a Hilbert-Schmidt operator, we note that ∥L∥2

HS = I1 + I2, where

I1 =
∫

|r|≤1

dr (ln |r|)2
∫

dr′ |V (r + r′)||V (r′)| ≤ 2π∥V ∥2
∫ 1

0
t (ln t)2 dt < ∞
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by the Cauchy-Schwarz inequality, and

I2 =
∫

|r|≥1

dr (ln |r|)2
∫

dr′ |V (r + r′)||V (r′)|

≤ sup
t≥1

(
t−2s(ln t)2

) ∫
dr dr′ |r|2s|V (r + r′)||V (r′)|

= sup
t≥1

(
t−2s(ln t)2

) ∫
dr dr′ |r − r′|2s|V (r)||V (r′)|

≤ 22s+1 sup
t≥1

(
t−2s(ln t)2

)
∥V ∥L1

∫
|r|2s |V (r)| dr < ∞.

It remains to prove (4.27). By Lemma A.1 (v), the function α → Gα(x) is strictly monoton-
ically decreasing in α > 0 for fixed x ∈ R2 \ {0}. Therefore, the Cauchy-Schwarz inequality and
the fact that G1 ∈ L2(R2) (cf. Lemma A.1 (iv)) yield the estimate∥∥∥u (−∆ + α)−1 v

∥∥∥2

HS
≤
∫

dr dr′ |V (r)|
∣∣G1(r − r′)

∣∣2 |V (r′)| ≤ ∥V ∥2∥G1∥2, α ≥ 1,

where the right-hand side is finite and independent of α.

In Lemma 4.6, below, we show that (gε)−1 + ϕε(z) is invertible for large enough z > 0 and
small enough ε > 0. It is here, where the asymptotics of gε from Eq. (4.4), namely

1
gε

= µ (a ln(ε) + b) + o(1) (ε → 0) (4.32)

for some a > 0, plays a crucial role.

Lemma 4.6. Let the hypotheses of Lemma 4.5 be satisfied and suppose that (4.32) holds for
some a, b ∈ R, a > 0. Then there exist ε0 > 0 and z0 ≥ µ−1 such that (gε)−1 + ϕε(z, P ) is
invertible for all P ∈ R2(N−1), z ∈ (z0,∞) and ε ∈ (0, ε0). Moreover,∥∥∥∥∥

( 1
gε

+ ϕε(z, P )
)−1

∥∥∥∥∥ ≤ C̃

| ln ε|−1 if
∫
V (r) dr/(2π) < a,

max
{
| ln ε|−1, ln(µ(Q+ z))−1} if

∫
V (r) dr/(2π) = a,

(4.33)

where the constant C̃ > 0 is independent of P ∈ R2(N−1), z ∈ (z0,∞) and ε ∈ (0, ε0).

Proof. Let C > 0 denote the constant from Lemma 4.5. In view of (4.32), there exists ε0 ∈ (0, 1)
such that, for all ε ∈ (0, ε0), |gεµC| ≤ 1/2 and |gε| ≤ λ| ln ε|−1, where the constant λ > 0 is
independent of ε.

If αε := ε2µ(Q+ z) ≥ 1, then it follows from (4.24) and (4.27) that

∥gεϕε(z, P )∥ ≤ |gε|µ
∥∥∥u (−∆ + αε)−1 v

∥∥∥ ≤ |gεµC| ≤ 1
2 .

Hence, (gε)−1 + ϕε(z, P ) is invertible and, for all ε ∈ (0, ε0),∥∥∥∥∥
( 1
gε

+ ϕε(z, P )
)−1

∥∥∥∥∥ =
∥∥∥gε (1 + gεϕε(z, P ))−1

∥∥∥ ≤ 2λ| ln ε|−1.

This establishes (4.33) in the case of αε ≥ 1.
In all the following, αε = ε2µ(Q+ z) < 1. Then it follows from (4.24) and (4.26) that

ϕε(z, P ) = − µ

4π ln(αε) |u⟩ ⟨v| +O(1), (4.34)
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where the norm of the operator O(1) is uniformly bounded in P ∈ R2(N−1), z > 0 and ε > 0 as
long as αε < 1. To compute the inverse of (gε)−1 + ϕε(z, P ), we apply the identity (cf. [6, Eq.
(1.3.47), p. 33])

(1 + S + β |η̃⟩ ⟨η|)−1= (1 + S)−1 − (1 + S)−1 |η̃⟩ ⟨η| (1 + S)−1

β−1 + ⟨η | (1 + S)−1η̃⟩
, (4.35)

which is valid under the assumption that β ∈ C, η̃, η ∈ H, S, (1 + S)−1 ∈ L (H) and β−1 +〈
η
∣∣ (1 + S)−1η̃

〉
̸= 0 in some separable Hilbert space H. This identity (with S = 0) and the fact

that |gε| = O(| ln ε|−1) yield( 1
gε

− µ

4π ln(αε) |u⟩ ⟨v|
)−1

= gε

(
1 − gεµ

4π ln(αε) |u⟩ ⟨v|
)−1

= − g2
ε

f(P , z, ε) |u⟩ ⟨v| +O(| ln ε|−1), (4.36)

provided that

f(P , z, ε) := − 4π
µ ln(αε)

+ gε

∫
V (r) dr ̸= 0.

To derive a lower bound for f(P , z, ε), we consider the two cases
∫
V (r) dr/(2π) < a and∫

V (r) dr/(2π) = a separately. In both cases we assume z ∈ (z0,∞) and ε ∈ (0, ε0) for some
z0 ≥ µ−1 and ε0 ∈ (0, 1), which we will fix below. This implies that µ(Q+ z) > 1 and hence

0 < − ln(αε) ≤ 2| ln ε|. (4.37)

If
∫
V (r) dr/(2π) < a, then we use (4.32) and (4.37) to derive the lower bound

f(P , z, ε) ≥ (µ| ln ε|)−1
(

2π − 1
a

∫
V (r) dr

)
+O((ln ε)−2) (ε → 0). (4.38)

Hence, there exists ε0 ∈ (0, 1) such that f(P , z, ε) > 0 for all P ∈ R2(N−1), z ∈ (µ−1,∞) and
ε ∈ (0, ε0) with αε < 1. Inserting (4.38) in (4.36) and using g2

ε = O((ln ε)−2) shows that∥∥∥∥∥
( 1
gε

− µ

4π ln(αε) |u⟩ ⟨v|
)−1

∥∥∥∥∥ = O(| ln ε|−1) (ε → 0).

In view of (4.34), this proves (4.33) for
∫
V (r) dr/(2π) < a and αε < 1.

If
∫
V (r) dr/(2π) = a, then we again use (4.32) and (4.37) to derive a more refined version

of (4.38):

| ln ε|2|f(P , z, ε)| = | ln ε|2
| lnαε|

∣∣∣∣4πµ−1 − gε ln(αε)
∫
V (r) dr

∣∣∣∣
≥ | ln ε|

2µ

∣∣∣∣4π − gεµ ln(αε)
∫
V (r) dr

∣∣∣∣
= | ln ε|

2µ

∣∣∣∣4π −
∫
V (r) dr
a ln(ε)

(
2 ln(ε) + ln(µ(Q+ z))

)
+O

( | lnαε|
(ln ε)2

)∣∣∣∣
= πµ−1 ln(µ(Q+ z)) +O(1), (4.39)

where for sufficiently small ε0 ∈ (0, 1) the remainder O(1) is uniformly bounded in P ∈ R2(N−1),
z ∈ (µ−1,∞) and ε ∈ (0, ε0) as long as αε < 1. By choosing z0 ≥ µ−1 large enough, we conclude
from (4.39) that |f(P , z, ε)| ≥ π ln(µ(Q+z))/(2µ(ln ε)2) > 0 for all P , z ∈ (z0,∞) and ε ∈ (0, ε0)
satisfying αε < 1. With the help of this bound, the desired estimate for the operator norm of(
(gε)−1 + ϕε(z, P )

)−1 can be obtained similarly to the case
∫
V (r) dr/(2π) < a.
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An immediate consequence of Lemma 4.6 is that (gε)−1 + ϕε(z) is invertible for all large
enough z > 0 and small enough ε > 0. Yet, we shall see that the limit of the inverse operator
essentially depends on the leading order of the coupling constant gε or, more precisely, on a.
If
∫
V (r) dr/(2π) < a, then it follows from (4.33) that limε→0

(
(gε)−1 + ϕε(z)

)−1 vanishes for
z > z0, while for

∫
V (r) dr/(2π) = a this limit will turn out to be non-trivial. To prove this, we

first note that Eq. (4.24) implies that gεϕε(z, P ) is an integral operator with kernel

gεµ u(r)Gµ(Q+z)(ε(r − r′)) v(r′),

where Gµ(Q+z)(ε(r − r′)) = Gε2µ(Q+z)(r − r′). Comparing this with Eq. (1.11), which defines
the integral kernel of gεϕε(z) in the one-particle case, we see that both integral kernels coincide
up to the substitution z → µ(Q + z) because the respective coupling constants gε differ by a
factor of µ. In the one-particle case the limit of ((gε)−1 +ϕε(z))−1 is given by (1.16) and (1.17),
and hence we expect that

lim
ε→0

( 1
gε

+ ϕε(z)
)−1

= − |u⟩ ⟨v|
⟨u | v⟩2 ⊗D(z)−1, (4.40)

where D(z) is an unbounded operator, which, after passing to Fourier space, acts as the multi-
plication operator

D(z, P ) := µ

2π

(
ln
(√

µ(Q+ z)
2

)
+ γ + 2πα

)
, (4.41)

α := ⟨v |Lu⟩
2π ⟨u | v⟩2 − b

⟨u | v⟩
. (4.42)

Here, γ denotes the Euler–Mascheroni constant and L is the Hilbert-Schmidt operator defined
in Lemma 4.5. We now give a rigorous proof of (4.40):

Proposition 4.7. Let the hypotheses of Lemma 4.5 be satisfied and suppose that the asymptotics
of gε is given by (4.32) with a =

∫
V (r) dr/(2π) > 0 and b ∈ R. Then D(z) is invertible and

(4.40) holds true for all large enough z > 0.

Proof. Clearly, D(z) is invertible if ln
(√
µz/2

)
+γ+2πα > 0, i.e. z > z1 := 4µ−1 exp(−4πα−2γ).

Let ε0, z0 > 0 be chosen as in Lemma 4.6 and, for the rest of the proof, let z > max(z0, z1) be
fixed. Then (4.40) is equivalent to

lim
ε→0

sup
P

∥∥∥∥∥
( 1
gε

+ ϕε(z, P )
)−1

+D(z, P )−1 |u⟩ ⟨v|
⟨u | v⟩2

∥∥∥∥∥ = 0 (4.43)

with ∥ · ∥ denoting the operator norm in L (L2(R2)). The idea of the following proof is that
the norm of both operators vanishes as |P | → ∞, while for |P | ≤ const. the estimates from
the one-particle case still work. To make this more explicit, we fix δ > 0. Then it follows from
Lemma 4.6 and Eq. (4.41) that∥∥∥∥∥

( 1
gε

+ ϕε(z, P )
)−1

∥∥∥∥∥+
∥∥∥∥∥D(z, P )−1 |u⟩ ⟨v|

⟨u | v⟩2

∥∥∥∥∥ < δ,

provided that ε > 0 is sufficiently small and |P |, and hence Q, are sufficiently large. To prove
(4.43), it thus suffices to show that for any K > 0 there exists εK > 0 such that for all ε ∈ (0, εK),

sup
P :Q≤K

∥∥∥∥∥
( 1
gε

+ ϕε(z, P )
)−1

+D(z, P )−1 |u⟩ ⟨v|
⟨u | v⟩2

∥∥∥∥∥ < δ. (4.44)
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Let K > 0 be fixed. Then (4.24) and (4.26) imply that, for some constant C = C(s, V ) > 0,∥∥∥∥ϕε(z, P ) + µ

2π

[(
ln
(
ε

2

√
µ(Q+ z)

)
+ γ

)
|u⟩⟨v| + L

]∥∥∥∥
HS

≤ Cµ1+s/2(K + z)s/2εs

uniformly in P with Q = Q(P ) ≤ K. Combining this with the asymptotic behavior of gε in the
limit ε → 0 (see Eq. (4.32)), we see that

gεϕε(z, P )

= − 1
2πa |u⟩⟨v| − 1

2πa ln(ε)

[{
ln
(√

µ(Q+ z)
2

)
+γ− b

a

}
|u⟩⟨v| + L

]
+ o

(
| ln ε|−1

)
(4.45)

is valid in Hilbert-Schmidt norm uniformly in P with Q = Q(P ) ≤ K. As the right side coincides
with the expansion of Bε(k) with k = i

√
µ(Q+ z), λ1 = 1/a and λ2 = −b/a2 in the one-particle

case (see [6, Eq. (5.56), p. 103]), the proof of (4.44) now follows the line of argument from that
case. For the convenience of the reader, we spell out the details in the following.

To start with, we derive from (4.45) the equation( 1
gε

+ ϕε(z, P )
)−1

= gε
(
1 + β(Q) |u⟩ ⟨v| + Sε

)−1
, (4.46)

where
β(Q) := − 1

2πa

(
1 + β̃(Q)

ln(ε)

)
,

β̃(Q) := ln
(√

µ(Q+ z)
2

)
+ γ− b

a
,

Sε := − 1
2πa ln(ε) L+ o

(
| ln ε|−1

)
.

The expansion of Sε holds uniformly in P with Q = Q(P ) ≤ K. To obtain an expression for the
inverse on the right side of Eq. (4.46), we now apply the identity (4.35). This yields that

(
1 + β(Q) |u⟩ ⟨v| + Sε

)−1
= (1 + Sε)−1 − (1 + Sε)−1 |u⟩ ⟨v| (1 + Sε)−1

β(Q)−1 + ⟨v | (1 + Sε)−1u⟩
(4.47)

as operators in L (L2(R2)). By the definitions of β(Q) and Sε, and by 2πa = ⟨u | v⟩,

β(Q)−1 = − ⟨u | v⟩
(

1 − β̃(Q)
ln(ε)

)
+O

(
(ln ε)−2

)
, Q ≤ K, (4.48)

and 〈
v
∣∣∣ (1 + Sε)−1u

〉
= ⟨u | v⟩ + ⟨v |Lu⟩

2πa ln(ε) + o
(
| ln ε|−1

)
, (4.49)

where ∥Sε∥ = O(| ln ε|−1) was used. Note that the sum of (4.48) and (4.49) is of order | ln ε|−1

because ⟨u | v⟩ cancels. It follows that the second summand in Eq. (4.47) is of order | ln ε|. Hence,
we may ignore the first summand, (1 + Sε)−1, in Eq. (4.47) and we may replace the numerator
in the second summand by |u⟩ ⟨v|. It follows that, uniformly in P with Q = Q(P ) ≤ K,

(
1 +β(Q) |u⟩⟨v| +Sε

)−1
= − ln(ε)

⟨u | v⟩

[
ln
(√

µ(Q+ z)
2

)
+γ + 2πα

]−1
|u⟩⟨v| + o (|ln ε|)

with α defined by Eq. (4.42). Hence, it follows from (4.46) and from the asymptotics of gε with
a = ⟨u | v⟩ /(2π) that (4.44) with D(z, P ) defined by (4.41) holds true for all sufficiently small
ε > 0. This concludes the proof.
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For later convenience, we now collect the conclusions of this section. To this end, we need
to reinstall the index σ, which we dropped at the beginning of this section. Let σ ∈ I be a fixed
pair. If Vσ ∈ L1 ∩L2(R2) and

∫
|r|2s |Vσ(r)| dr < ∞ for some s > 0, then the analogs of Lemma

4.6 and Proposition 4.7 show that Λε(z)σσ = (gε,σ)−1 + ϕε(z)σσ is invertible for all sufficiently
small ε > 0 and sufficiently large z > 0 and

lim
ε→0

(Λε(z)σσ)−1 =


0 if

∫
Vσ(r) dr/(2π) < aσ,

− |uσ⟩ ⟨vσ|
⟨uσ | vσ⟩2 ⊗ (Θ(z)σσ)−1 if

∫
Vσ(r) dr/(2π) = aσ,

(4.50)

where Θ(z)σσ is a densely defined and invertible operator in Xσ. For σ = (1, 2), Θ(z)σσ = D(z)
with D(z) defined by Eqs. (4.41) and (4.42). For general pairs σ = (i, j), the operator Θ(z)σσ
acts pointwise in P σ = (P, p1, ...p̂i...p̂j ..., pN ) by multiplication with

Θ(z, P σ)σσ = µσ
4π

ln
(
z + P 2

mi +mj
+

N∑
n=1
n̸=i,j

p2
n

mn

)
+ βσ

π

 , σ = (i, j), (4.51)

where

βσ = 2π (ln(√µσ/2) + γ + 2πασ) , (4.52)

ασ = ⟨vσ |Lσuσ⟩
2π ⟨uσ | vσ⟩2 − bσ

⟨uσ | vσ⟩
, (4.53)

with the Hilbert-Schmidt operator Lσ that has the integral kernel

uσ(r) ln(|r − r′|) vσ(r′), r ̸= r′. (4.54)

4.4.2 Analysis of Λε(z)off

If N > 2, then Λε(z) has an off-diagonal part Λε(z)off defined by Eq. (4.23). We will see in this
section that the norm ∥Λε(z)off∥ is uniformly bounded in ε > 0 and z > 0 and that a regularized
version of Λε(z)off has a limit as ε → 0. These results allow us in Section 4.4.3 to prove existence
of limε→0 Λε(z)−1 for sufficiently large z > 0. With this goal in mind, the results of this section
are formulated for z > 0 only, although most of them are still valid in a slightly modified form
for general z ∈ ρ(H0).

4.4.2.1 Uniform boundedness of ∥Λε(z)off∥ in ε > 0 and z > 0

Recall from Eq. (4.23) that the non-vanishing components of Λε(z)off, ε, z > 0, are given by

(Λε(z)off)σν = ϕε(z)σν , σ, ν ∈ I, σ ̸= ν. (4.55)

We prove in this section, among other things, that for σ ̸= ν the norm ∥ϕε(z)σν∥ is uniformly
bounded in ε > 0 and z > 0, the main result being Proposition 4.8, below. The presence of the
distinct coordinate transformations Kσ and Kν in the Definition (4.20) of ϕε(z)σν makes the
proof very technical and somewhat tedious. Since the tools used in this proof are not needed
anymore in the sequel, it is possible and advisable to take Proposition 4.8 for granted and to
skip the proof at first reading.
With this said, we now start developing the tools for proving Proposition 4.8. As the choice of
the pair σ is immaterial for our estimates, we can assume that σ = (1, 2) and ν = (k, l) ̸= (1, 2)
without restriction. In this case the integral kernel of the integral operator ϕε(z)σν has been
computed at the beginning of Section 3.5.2, and to prove Proposition 4.8 we are going to estimate
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all these integral kernels with the help of the Schur test. To this end, we first recall the required
integral kernels for given ε, z > 0 and d = 2. Recall from the sentence including Eqs. (3.64)-
(3.66) that for ν = (1, l), l ≥ 3, the operator ϕε(z)σν acts pointwise in p1l = (p3, ...p̂l..., pN ) by
the integral operator ϕε(z, p1l)σν that has the kernel

m1m2ml uσ(r)G6
z+Qν

(Xε,σν) vν
(
r′) , σ = (1, 2), ν = (1, l), l ≥ 3. (4.56)

Here, G6
z ∈ L1(R6) denotes the Green’s function of −∆ + z : H2(R6) → L2(R6),

Q(k,l) =
N∑
n=3
n ̸=k,l

p2
n

mn
, (k, l) ∈ I, (4.57)

and

Xε,(1,2)(1,l) =


√
m1(R−R′ − ε(c21r − cl1r

′))
√
m2(R− x′

2 + εc12r)√
ml(xl −R′ − εc1lr

′)

 ∈ R6, (4.58)

where the constants cij = mi/(mi + mj), 1 ≤ i < j ≤ N , were introduced in Eq. (3.63).
Moreover, Eqs. (3.67) and (3.68) and the subsequent sentence show that, up to the permutations
x′

1 ↔ x′
2, m1 ↔ m2, v(1,l) ↔ v(2,l) and the reflection r → −r, the integral operators ϕε(z)σν

with ν = (1, l) and ν = (2, l), respectively, have the same kernels. If N > 3, then it remains to
consider the case 3 ≤ k < l ≤ N , where σ = (1, 2) and ν = (k, l) have no common particle. In
this case it follows from the sentence including Eqs. (3.69) and (3.70) that ϕε(z)σν acts pointwise
in p

kl
= (p3, ...p̂k...p̂l..., pN ) by the integral operator ϕε(z, pkl)σν with kernel

m1m2mkml uσ(r)G8
z+Qν

(Xε,σν) vν
(
r′) , σ = (1, 2), ν = (k, l), 3 ≤ k < l ≤ N, (4.59)

where

Xε,(1,2)(k,l) =


√
m1(R− x′

1 − εc21r)√
m2(R− x′

2 + εc12r)√
mk(xk −R′ + εclkr

′)
√
ml(xl −R′ − εcklr

′)

 ∈ R8. (4.60)

Besides estimating the norm of ϕε(z)σν , we shall also estimate the error caused by cutting
off the potential outside some ball of radius h > 0 in Proposition 4.8. This, in turn, will reduce
the proof of our convergence result (see Proposition 4.12) to the case of compactly supported
potentials. For a given pair ν ∈ I and h > 0, let

V h
ν (x) :=

Vν(x) if |x| ≤ h

0 if |x| > h

and let ϕhε (z)σν denote the operator ϕε(z)σν , where the potentials Vσ and Vν are replaced by V h
σ

and V h
ν , respectively. This means that the kernel of ϕhε (z)σν emerges from the kernel of ϕε(z)σν

by replacing uσ and vν with uhσ := sgn(Vσ)|V h
σ |1/2 and vhν := |V h

ν |1/2, respectively.

Proposition 4.8. For all pairs σ = (i, j), ν = (k, l) with σ ̸= ν the norm of the operator ϕε(z)σν
is uniformly bounded in ε > 0 and z > 0, provided that Vσ, Vν ∈ L1(R2). Explicitly, it holds that

∥ϕε(z)σν∥ ≤ C(σ, ν) ∥Vσ∥1/2
L1 ∥Vν∥1/2

L1 , (4.61)

where C(σ, ν) := (4
√

2)−1mimjmkml/min(mi,mj ,mk,ml)3. Furthermore, for all h > 0,

∥ϕε(z)σν − ϕhε (z)σν∥ ≤ C(σ, ν)
(
∥Vσ∥L1∥Vν∥L1 − ∥V h

σ ∥L1∥V h
ν ∥L1

)1/2
. (4.62)
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Proof. Without loss of generality, we may assume that σ = (1, 2) and then we have to establish
(4.61) and (4.62) for all pairs ν ̸= (1, 2). We first consider the case ν = (1, l), l ≥ 3.

The proofs of (4.61) and (4.62) are similar: It follows from (4.56) that in both cases we have
to estimate the norm of an operator that, for fixed p1l, is given by a kernel of the form

m1m2mlW (r, r′)G6
z+Q (Xε) ,

where Xε := Xε,(1,2)(1,l) and Q := Q(1,l) for short. Explicitly, we have W (r, r′) = uσ(r)vν(r′) in
the case of (4.61) and W (r, r′) = uσ(r) vν(r′) − uhσ(r) vhν (r′) in the case of (4.62). Therefore, we
only demonstrate the desired estimate in the case of (4.61).

For ψ ∈ L2(R2 × R2 × R2), the Cauchy-Schwarz inequality in the r′-integration yields

(m1m2ml)−2∥ϕε(z, p1l)σνψ∥2

=
∫

dr dR dxl
∣∣∣∣∫ dr′ dR′ dx′

2 W (r, r′)G6
z+Q(Xε)ψ(r′, R′, x′

2)
∣∣∣∣2

=
∫

dr dR dxl
∣∣∣∣∫ dr′W (r, r′)

∫
dR′ dx′

2 G
6
z+Q(Xε)ψ(r′, R′, x′

2)
∣∣∣∣2

≤
∫

dr dR dxl
{∫

dr′W (r, r′)2
}∫

dr′
∣∣∣∣∫ dR′ dx′

2 G
6
z+Q(Xε)ψ(r′, R′, x′

2)
∣∣∣∣2

≤
{∫

dr dr′W (r, r′)2
}

· sup
r∈R2

(∫
dr′ dR dxl

∣∣∣∣∫ dR′ dx′
2 G

6
z+Q(Xε)ψ(r′, R′, x′

2)
∣∣∣∣2
)
, (4.63)

where ∫
dr dr′ W (r, r′)2 = ∥Vσ∥L1∥Vν∥L1 . (4.64)

For a further estimate of (4.63), we fix r ∈ R2. Then triangle inequality and the sequence of
substitutions R′ + ε(c21r − cl1r

′) → R′, xl + εc21r − εr′ → xl, x′
2 − εc12r → x′

2 in the first step
and the monotonicity of the Green’s function w.r.t. z and m1,m2,ml (see Lemma A.1 (v)) in
the second step yield that∫

dr′ dR dxl
∣∣∣∣∫ dR′ dx′

2G
6
z+Q (Xε) ψ(r′, R′, x′

2)
∣∣∣∣2

≤
∫

dr′ dR dxl
(∫

dR′ dx′
2G

6
z+Q

(√
m1(R−R′),√m2(R− x′

2),√ml(xl −R′)
)
ψ̃(r′,R′,x′

2)
)2

≤
∫

dr′
∥∥∥F1ψ̃(r′, · )

∥∥∥2
, (4.65)

where ψ̃ ∈ L2(R2 × R2 × R2) is given by

ψ̃(r′, R′, x′
2) :=

∣∣ψ (r′, R′ − ε(c21r − cl1r
′), x′

2 + εc12r
)∣∣

and F1 : L2 (R2 × R2, d (R, x2)
)

→ L2 (R2 × R2,d (R, xl)
)

is defined by the integral kernel

G6
z

(√
m(R−R′),

√
m(R− x′

2),
√
m(xl −R′)

)
, m = min(m1,m2,ml).

By Lemma A.5, F1 is bounded with ∥F1∥ ≤ (4
√

2m2)−1. Using this together with the fact that
∥ψ∥ = ∥ψ̃∥, we obtain from (4.65) that∫

dr′ dR dxl
∣∣∣∣∫ dR′ dx′

2G
6
z+Q (Xε) ψ(r′, R′, x′

2)
∣∣∣∣2 ≤ (32 min(m1,m2,ml)4)−1∥ψ∥2, (4.66)

where the right-hand side is independent of r ∈ R2 and p1l ∈ R2N−6. Hence, (4.61) for σ = (1, 2)
and ν = (1, l) now follows by combining (4.63), (4.64) and (4.66).
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As already mentioned above, the norm estimate (4.62) can be obtained in almost the same
manner, with the only difference that W (r, r′) = uσ(r) vν(r′) − uhσ(r) vhν (r′) in this case. Then
Eq. (4.64) has to be replaced by the identity∫

dr dr′ W (r, r′)2 = ∥Vσ∥L1∥Vν∥L1 − ∥V h
σ ∥L1∥V h

ν ∥L1 ,

which, in turn, is a consequence of the identities uσ ·uhσ = |V h
σ | and vν ·vhν = |V h

ν |. This completes
the proof of (4.61) and (4.62) for σ = (1, 2) and ν = (1, l), l ≥ 3.

The above proof also works in the case σ = (1, 2) and ν = (2, l), l ≥ 3, because the integral
kernels of ϕε(z)σν with ν = (1, l) and ν = (2, l), respectively, only differ by the permutations
x′

1 ↔ x′
2, m1 ↔ m2, v(1,l) ↔ v(2,l) and the unitary reflection r → −r.

It remains to consider the case N > 3, σ = (1, 2) and ν = (k, l) with 3 ≤ k < l ≤ N , where
ϕε(z)σν acts pointwise in p

kl
= (p3, ...p̂k...p̂l..., pN ) by the integral operator ϕε(z, pkl)σν that is

defined in terms of the kernel from Eq. (4.59). In this case the above estimates have to be
slightly adjusted. The role of the integral operator F1 is now played by the integral operator
F2 ∈ L

(
L2(R2 × R2 × R2)

)
from Lemma A.5. As the bounds for ∥F1∥ and for ∥F2∥ in Lemma

A.5 differ by a factor of m−1, while there is one mass factor more in front of the Green’s function
for ν = (k, l), 3 ≤ k < l ≤ N , than for ν = (1, l), l ≥ 3, we again obtain (4.61) and (4.62) with
C(σ, ν) given in the statement of the proposition.

4.4.2.2 The off-diagonal limit operators

This section is a preparation for the next one, where we shall be concerned with the convergence,
as ε → 0, of

ϕε(z)σν = Bε,σR0(z)(Aε,ν)∗, z > 0, σ ̸= ν. (4.67)

From Corollary 4.4 it follows that for all z > 0,

R0(z)(Aε,ν)∗ → (AνR0(z))∗ = G(z)∗
ν ⟨vν | (ε → 0) (4.68)

in L (X̃ν ,H ), and

Bε,σ = JσAε,σ → |uσ⟩Tσ (ε → 0) (4.69)

in L (H2(R2N ), X̃σ). Here, |uσ⟩ : Xσ → X̃σ is defined by |uσ⟩ψ = uσ ⊗ ψ and ⟨vν | : X̃ν → Xν is
the adjoint of |vν⟩. The formal composition of the limits in (4.68) and (4.69) is the operator

− |uσ⟩ ⟨vν | ⊗ Θ(z)σν

with

Θ(z)σν = −TσG(z)∗
ν , z > 0, σ ̸= ν. (4.70)

In the remainder of this section, we show that (4.70) defines an element Θ(z)σν ∈ L (Xν ,Xσ).
As we shall see below, this requires that the trace operator Tσ from Eq. (2.12) is defined on its
maximal, σ-dependent domain D(Tσ) = K ∗

σ D(τ), where D(τ) is given by Eq. (2.11). We begin
by computing representations of Tσ and G(z)∗

ν in Fourier space. Using the Definitions (2.12),
(2.10) and (1.45) of Tσ, τ and Kσ, respectively, we find for σ = (i, j) and ψ ∈ D(Tσ) that

(T̂(i,j)ψ) (P, p1, ...p̂i...p̂j ..., pN ) = 1
2π

∫
dp K̂(i,j)ψ (p, P, p1, ...p̂i...p̂j ..., pN )

= 1
2π

∫
dp ψ̂

(
p1, ..., pi−1,

miP

mi +mj
− p, pi+1, ..., pj−1,

mjP

mi +mj
+ p, pj+1, ..., pN

)
. (4.71)
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To compute the Fourier transform of G(z)∗
νw for z > 0, ν = (k, l) and w ∈ Xν , we use G(z)ν =

TνR0(z) in combination with Eq. (4.71) and the substitution

P := pk + pl, p := mkpl −mlpk
mk +ml

.

After a straightforward computation, we find that ⟨w |G(z)νψ⟩ = ⟨G(z)∗
νw |ψ⟩ for all ψ ∈ H ,

where

̂(G(z)∗
νw) (p1, ..., pN ) = 1

2π

(
z +

N∑
n=1

p2
n

mn

)−1

· ŵ (pk + pl, p1, ...p̂k...p̂l..., pN ) . (4.72)

We now come to the main result of this section:

Proposition 4.9. Let σ = (i, j) ̸= (k, l) = ν and z > 0. Then Θ(z)σν = −TσG(z)∗
ν defines a

bounded operator in L (Xν ,Xσ) and ∥Θ(z)σν∥ ≤ max(mi,mj ,mk,ml)/4.

In the proof of Proposition 4.9 we need the following result taken from [30, Lemma 3.1]. For
the convenience of the reader, we give a short proof with a worse constant here.

Lemma 4.10. For all f, g ∈ L2(R2),∫ |f(x)||g(x′)|
|x|2 + |x′|2

dx dx′ ≤ π2∥f∥∥g∥. (4.73)

Proof. Let K denote the integral operator in L2(R2) that is defined by the kernel K(x, x′) =
(|x|2 + |x′|2)−1. Using the Schur test with h(x) = |x|−1, it is straightforward to verify that K
defines a bounded operator and that

∥K∥ ≤ ess sup
x′∈R2

|x′|
∫
R2

1
|x|2 + |x′|2

1
|x|

dx

 = π2.

Hence, ⟨ | f | ,K | g | ⟩ ≤ π2∥f∥∥g∥, which establishes (4.73).

Proof of Proposition 4.9. Without loss of generality, we may assume that σ = (1, 2). Moreover,
it suffices to consider the two cases ν = (1, 3) and ν = (3, 4) corresponding to pairs with one
common particle and no common particle, respectively (all other cases can be traced back to
one of these cases by renaming some variables and masses).

To show that RanG(z)∗
ν ⊆ D(Tσ) or, equivalently, that Ran KσG(z)∗

ν ⊆ D(τ), we have to
verify that, for all w ∈ Xν ,

φ̂(P, p3, ..., pN ) := 1
2π

∫
dp
∣∣∣∣Ĝ(z)∗

νw

(
m1P

m1 +m2
− p,

m2P

m1 +m2
+ p, p3, ..., pN

)∣∣∣∣
defines an L2-function. To this end, by the Riesz lemma, it suffices to show that∫

dP dp3 · · · dpN |(ψ̂φ̂)(P, p3, ..., pN )| ≤ const. · ∥ψ∥

for all ψ ∈ X(1,2). The substitution

P := p1 + p2, p := m1p2 −m2p1
m1 +m2

and the identity (4.72) for G(z)∗
νw, ν = (k, l), show that∫

dP dp3 · · · dpN |ψ̂(P, p3, ..., pN )||φ̂(P, p3, ..., pN )|

= 1
2π

∫
dp1 · · · dpN |ψ̂(p1 + p2, p3, ..., pN )|

∣∣∣Ĝ(z)∗
νw(p1, ..., pN )

∣∣∣
≤ max(m2,ml)

4π2

∫
dp1 · · · dpN

|ψ̂(p1 + p2, p3, ..., pN )||ŵ (pk + pl, p1, ...p̂k...p̂l..., pN )|
p2

2 + p2
l

. (4.74)
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For ν = (k, l) = (1, 3), let p := (p4, ..., pN ) and let

f(p3, p) :=
(∫

dp1 |ψ̂(p1, p3, p)|2
)1/2

,

g(p2, p) :=
(∫

dp1 |ŵ(p1, p2, p)|2
)1/2

.

Then f(·, p), g(·, p) ∈ L2(R2) for almost all p ∈ R2N−6. Hence, after applying the Cauchy-
Schwarz inequality in the p1-integration, it follows from Lemma 4.10 that

∫
dp dp2 dp3 dp1

|ψ̂(p1 + p2, p3, p)||ŵ(p1 + p3, p2, p)|
p2

2 + p2
3

≤
∫

dpdp2 dp3
|f(p3, p)||g(p2, p)|

p2
2 + p2

3
≤ π2∥ψ∥∥w∥. (4.75)

For ν = (k, l) = (3, 4), we set p := (p5, ..., pN ) and

f(p4, p) :=
(∫

dp1 dp3 |ψ̂(p1, p3, p4, p)|2
)1/2

,

g(p2, p) :=
(∫

dp1 dp3 |ŵ(p3, p1, p2, p)|2
)1/2

.

Using the Cauchy-Schwarz inequality in the (p1, p3)-integration and Lemma 4.10, we estimate

∫
dp dp2 dp4 dp1 dp3

|ψ̂(p1 + p2, p3, p4, p)||ŵ(p3 + p4, p1, p2, p)|
p2

2 + p2
4

≤
∫

dp dp2 dp4
|f(p4, p)||g(p2, p)|

p2
2 + p2

4
≤ π2∥ψ∥∥w∥. (4.76)

From (4.74), (4.75) and (4.76) it follows that φ̂ ∈ L2(R2N−2) and hence RanG(z)∗
ν ⊆ D(Tσ).

Moreover, using that φ̂ ≥ | ̂TσG(z)∗
νw| a.e., the above estimates imply that for all ψ ∈ X(1,2),

|⟨ψ |TσG(z)∗
νw⟩| ≤ max(m1,m2,m3,m4)

4 ∥ψ∥∥w∥.

Therefore, Θ(z)σν = −TσG(z)∗
ν is a bounded operator, whose norm satisfies the desired estimate.

4.4.2.3 Cutoff functions and convergence

The goal of this section is to prove Proposition 4.12 on the convergence, as ε → 0, of ϕε(z)σν ,
σ ̸= ν, with a suitable space cutoff χσν,c defined below. In the analysis of limε→0 Λε(z)−1 in
Section 4.4.3 this cutoff will be removed again.

We begin by motivating the cutoff: By (4.69), limε→0Bε,σ exists in L (H2(R2N ), X̃σ). Here,
the Sobolev index 2 could be reduced to 1 + δ for some δ > 0 but not further because of
the presence of the trace operator Tσ = τKσ in (4.69) (cf. Lemma 2.10). Moreover, by (4.68),
limε→0R0(z)(Aε,ν)∗ exists in L (X̃ν ,H ), or perhaps in L (X̃ν , H1−δ(R2N )), which is not enough
to prove that ϕε(z)σν given by Eq. (4.67) has a limit as ε → 0. The space cutoff to be introduced
below removes the singularity due to T ∗

ν . More explicitly, for ν = (1, 2), it follows from Eq. (4.20)
and the identity R0(z)K ∗

ν = K ∗
ν (H̃0 + z)−1, where

H̃0 = − ∆r

µ(1,2)
− ∆R

m1 +m2
+

N∑
i=3

(
−∆xi

mi

)
, (4.77)
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that existence of limε→0(H̃0+z)−1ε−1U∗
ε (vν⊗1) in L (L2(R2N ), H2(R2N )) would imply existence

of limε→0 ϕε(z)σν in L (X̃ν , X̃σ). Let v = v(1,2) and R̃0(z) = (H̃0 + z)−1, z > 0, for short. Then
a straightforward computation shows that R̃0(z)ε−1U∗

ε (v ⊗ 1) has the integral kernel

Gz,m̃
(
r − εr′, R−R′, x3 − x′

3, ..., xN − x′
N

)
v(r′),

where m̃ := (µ(1,2),m1 + m2,m3, ...,mN ) and Gz,m̃ is the Green’s function of H̃0 + z, which
is defined by Eq. (3.61). Hence, if v has compact support and |r| ≥ c > 0 is enforced by a
space cutoff χc, then, for sufficiently small ε > 0, the singularity of Gz,m̃ at the origin is avoided
and, by Lemma A.4, this means that the above integral kernel defines a smooth function in
(r,R, x3, ..., xN ).

Let χ ∈ C∞(R) be a function with 0 ≤ χ(x) ≤ 1, χ(x) = 0 for x ≤ 1 and χ(x) = 1 for x ≥ 2
(see Figure 4.1), and let χc(r) := χ(|r|/c) for r ∈ R2 and c > 0.

x1 2

1

Figure 4.1: The cutoff function χ

Then we have the following result:

Lemma 4.11. Assume that v = v(1,2) ∈ L2(R2) has compact support supp(v) ⊆ Bh(0) for some
h > 0 and let c, z > 0. Then, for all n ∈ N0, the limit

lim
ε→0

(χc ⊗ 1)R̃0(z)ε−1U∗
ε (v ⊗ 1) = (χc ⊗ 1)K(1,2)G(z)∗

(1,2) ⟨v|

exists in L (L2(R2N ), Hn(R2N )).

Proof. Clearly, the lemma will follow if we show that

lim
ε→0

(∂αχc)R̃0(z)ε−1U∗
ε (v ⊗ 1) = (∂αχc)K G(z)∗ ⟨v| in L (L2(R2N ), Hn(R2N )) (4.78)

for all n ∈ N0 and all multi-indices α ∈ N2
0, where K = K(1,2), G(z) = G(z)(1,2) and ∂αχc =

(∂αχc) ⊗ 1 for short. Using R̃0(z) = K R0(z)K ∗ in combination with the adjoint of (4.17) and
(4.68), it follows that

lim
ε→0

R̃0(z)ε−1U∗
ε (v ⊗ 1) = K G(z)∗ ⟨v| in L (L2(R2N )),

so (4.78) holds for n = 0.
We now proceed by induction and assume that (4.78) holds for some n ∈ N0 and all α ∈ N2

0.
To show that (4.78) also holds for n+ 1, we are going to use that

ηR̃0(z) = R̃0(z)
[
H̃0, η

]
R̃0(z) + R̃0(z)η, η = ∂αχc, (4.79)

where [·, ·] denotes the commutator and

lim
ε→0

R̃0(z)η ε−1U∗
ε (v ⊗ 1) = 0 in L (L2(R2N ), Hn+1(R2N )) (4.80)
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because η U∗
ε (v ⊗ 1) = 0 for εh < c. Let Dk : H1(R2) → L2(R2) denote the differential operator

Dkφ := ∂kφ for k ∈ {1, 2}. From the Definition (4.77) of H̃0 and from ∆r = D1D1 + D2D2 it
follows that

µ
[
H̃0, η

]
= [−∆r, η] = −

2∑
k=1

(Dk(∂kη) + (∂kη)Dk) = (∆rη) − 2
2∑

k=1
Dk(∂kη), (4.81)

where µ = µ(1,2) is a reduced mass. Equations (4.79) and (4.81) imply that

ηR̃0(z) = R̃0(z)η + µ−1R̃0(z)(∆rη)R̃0(z) − 2µ−1
2∑

k=1
DkR̃0(z)(∂kη)R̃0(z). (4.82)

After multiplying (4.82) with ε−1U∗
ε (v⊗1) from the right, we get from (4.80) combined with the

induction hypothesis and the fact that R̃0(z) and DkR̃0(z) belong to L (Hn(R2N ), Hn+1(R2N ))
that limε→0 ηR̃0(z)ε−1U∗

ε (v ⊗ 1) exists in L (L2(R2N ), Hn+1(R2N )). Furthermore, the limit
operator has to be the same as in (4.78) because convergence in L (L2(R2N ), Hn+1(R2N )) implies
convergence in L (L2(R2N ), Hn(R2N )). Hence, (4.78) holds with n + 1 in place of n and the
proof is complete.

With the help of Lemma 4.11 we can now prove convergence of the regularized operators
(1 ⊗ χσν,c)ϕε(z)σν for pairs σ = (i, j) ̸= (k, l) = ν and a cutoff function χσν,c defined by

χ(i,j)(k,l),c (R, x1, ...x̂i...x̂j ..., xN ) :=


χc (xl −R) if k ∈ {i, j}, l /∈ {i, j},
χc (xk −R) if k /∈ {i, j}, l ∈ {i, j},
χc (xl − xk) if k, l /∈ {i, j}.

(4.83)

Proposition 4.12. Let c, z > 0, σ, ν ∈ I, σ ̸= ν, and assume that Vσ, Vν ∈ L1(R2). Then

lim
ε→0

(1 ⊗ χσν,c)ϕε(z)σν = (1 ⊗ χσν,c)ϕ(z)σν (4.84)

in L (X̃ν , X̃σ), where

ϕ(z)σν := − |uσ⟩ ⟨vν | ⊗ Θ(z)σν (4.85)

and Θ(z)σν = −TσG(z)∗
ν ∈ L (Xν ,Xσ).

Proof. Assume, for the moment, that for all h > 0,

lim
ε→0

(1 ⊗ χσν,c)ϕhε (z)σν = (1 ⊗ χσν,c)ϕh(z)σν , (4.86)

where ϕhε (z)σν was introduced in Section 4.4.2.1 and ϕh(z)σν := − |uhσ⟩ ⟨vhν |⊗Θ(z)σν . By Propo-
sition 4.9, Θ(z)σν = −TσG(z)∗

ν defines an operator in L (Xν ,Xσ) with ∥Θ(z)σν∥ ≤ C̃(σ, ν), so
the definitions of ϕ(z)σν and ϕh(z)σν imply that

∥ϕ(z)σν − ϕh(z)σν∥ ≤
∥∥∥|uσ⟩ ⟨vν | − |uhσ⟩ ⟨vhν |

∥∥∥ ∥Θ(z)σν∥

≤ C̃(σ, ν)
(
∥Vσ∥L1∥Vν∥L1 − ∥V h

σ ∥L1∥V h
ν ∥L1

)1/2
, (4.87)

which is the equivalent of (4.62) for ε = 0. Now, the general case of (4.84), where uσ and vν
do not have compact support, follows from (4.62), (4.86) and (4.87) by a simple δ/3-argument
because ∥V h

σ ∥L1∥V h
ν ∥L1 → ∥Vσ∥L1∥Vν∥L1 as h → ∞.

It remains to prove (4.86). As the choice of the pair ν is immaterial for the following
estimates, it suffices to consider the case ν = (1, 2) ̸= (i, j) = σ only. Moreover, we may assume
that supp(uσ) ∪ supp(vν) ⊆ Bh(0), i.e. uhσ = uσ and vhν = vν . Then Eq. (4.20) becomes

ϕhε (z)σν = ε−2 (uσ ⊗ 1)UεKσR0(z)K ∗
ν U

∗
ε (vν ⊗ 1). (4.88)
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From the Definition (1.49) of Bε,σ and from (4.69) it follows that

lim
ε→0

ε−1 (uσ ⊗ 1)UεKσ = lim
ε→0

Bε,σ = |uσ⟩Tσ in L (H2(R2N ), X̃σ). (4.89)

Next, defining

χν,c(x1, ..., xN ) := χc(x2 − x1), ν = (1, 2),

the identities R0(z)K ∗
ν = K ∗

ν R̃0(z), χν,cK ∗
ν = K ∗

ν (χc ⊗ 1) and Lemma 4.11 imply that

lim
ε→0

χν,cR0(z)K ∗
ν ε

−1U∗
ε (vν ⊗ 1) = χν,cG(z)∗

ν ⟨vν | in L (X̃ν , Hn(R2N )) (4.90)

for all n ∈ N0. From (4.89) and (4.90) we conclude that

lim
ε→0

ε−2 (uσ ⊗ 1)UεKσχν,cR0(z)K ∗
ν U

∗
ε (vν ⊗ 1) = |uσ⟩Tσχν,cG(z)∗

ν ⟨vν | (4.91)

in L (X̃ν , X̃σ). To complete the proof of (4.86), we have to move the cutoff to the left on
both sides of (4.91). We start by considering the limit operators. For given ψ ∈ X̃ν , let
ψ̃ := G(z)∗

ν ⟨vν |ψ. Then (4.90) shows that χν,cψ̃ ∈ Hn(R2N ) for all n ∈ N, so it follows from
a standard Sobolev embedding theorem (see, e.g., [53, Theorem 8.8]) that χν,cψ̃ ∈ C∞(R2N ).
In particular, this implies that χν,cψ̃ ∈ D(Tσ), where Tσ(χν,cψ̃) is explicitly given by Eq. (2.7).
Now, a direct calculation, using the defining relations for χν,c and χσν,c, shows that

Tσ(χν,cψ̃) = χσν,cTσψ̃,

where, by Proposition 4.9, ψ̃ = G(z)∗
ν ⟨vν |ψ ∈ D(Tσ). Therefore,

|uσ⟩Tσ
(
χν,cG(z)∗

ν ⟨vν |ψ
)

= |uσ⟩χσν,cTσψ̃ = −
(

|uσ⟩ ⟨vν | ⊗ [χσν,cΘ(z)σν ]
)
ψ,

so the limit operator in (4.91) agrees with the desired limit operator in (4.86).
It remains to show that the left side of (4.91) agrees with the left side of (4.86), where ϕhε (z)σν
is given by Eq. (4.88). For σ = (i, j) with 3 ≤ i < j ≤ N , this follows immediately from
UεKσχν,c = (1 ⊗ χσν,c)UεKσ. For σ = (1, j) with j ≥ 3, it holds, by some abuse of notation,

UεKσχν,c = χc

(
x2 −R+ εmjr

m1 +mj

)
UεKσ. (4.92)

For the purpose of computing the limit in (4.91), the right side of (4.92) may be replaced by
χc(x2 − R)UεKσ because χc is Lipschitz, uσ has compact support and, by Proposition 4.8,
∥ϕhε (z)σν∥ is uniformly bounded in ε > 0. Again, (4.86) follows. The remaining case σ = (2, j)
with j ≥ 3 is treated similarly.

4.4.3 Convergence of Λε(z)−1

In Sections 4.4.1 and 4.4.2.3 we have seen that (Λε(z)diag)−1 and a regularized version of Λε(z)off
have limits as ε → 0. This will now allow us to prove invertibility of Λε(z) for small enough
ε > 0 and large enough z > 0, and existence of limε→0 Λε(z)−1. We claim that

lim
ε→0

[
Λε(z)−1

]
σν

=

− |uσ⟩ ⟨vν |
⟨uσ | vσ⟩ ⟨uν | vν⟩

⊗
[
Θ(z)−1]

σν if σ, ν ∈ J ,

0 else,
(4.93)

where Θ(z) = (Θ(z)σν)σ,ν∈J is invertible in the reduced Hilbert space X from Eq. (4.6).
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To prove (4.93), we need to introduce some auxiliary operators. Let Π : X̃ → L2 (R2, dr
)
⊗X

denote the matrix operator defined by

Πσν :=

δσν if σ, ν ∈ J
0 if σ ∈ J , ν ∈ I\J

and let U = (Uσν)σ,ν∈J , where Uσν ∈ L (L2(R2)) is given by

Uσν := |uσ⟩ ⟨vν |
⟨uσ | vσ⟩ ⟨uν | vν⟩

.

Let Θ(z)diag and Θ(z)off denote the operators in X defined in terms of the components Θ(z)σσ
and Θ(z)σν , σ ̸= ν, that we have introduced in Sections 4.4.1 and 4.4.2.2, respectively, and let

Θ(z) := Θ(z)diag + Θ(z)off, z > 0.

Proposition 4.9 shows that Θ(z)off ∈ L (X), while, by Eq. (4.51), Θ(z)diag is an unbounded
operator. With the help of Π and U , Equation (4.50) can now be written as

lim
ε→0

(Λε(z)diag)−1 = −Π∗
(
U ◦ (Θ(z)diag)−1

)
Π (4.94)

for large enough z > 0. Here, as in Section 3.4, the operator product Y ◦ Z is defined by
(Y ◦ Z)σν = Yσν ⊗ Zσν . The following proposition proves (4.93) in these new notations:

Proposition 4.13. Under the hypotheses of Theorem 4.1, there exist ε0, z0 > 0 such that
Λε(z)−1 ∈ L (X̃) exists for all ε ∈ (0, ε0) and z ∈ (z0,∞), and

lim
ε→0

Λε(z)−1 = −Π∗
(
U ◦ Θ(z)−1

)
Π, (4.95)

where Θ(z) is a closed and invertible operator defined in X.

Proof. Recall from Eqs. (4.21)-(4.23) that Λε(z) = Λε(z)diag + Λε(z)off, where Λε(z)diag and
Λε(z)off is the diagonal and off-diagonal part of the operator matrix Λε(z) = ((gε,σ)−1δσν +
ϕε(z)σν)σ,ν∈I , respectively. The Definition (4.23) of Λε(z)off and Proposition 4.8 imply that
∥Λε(z)off∥ ≤ Coff < ∞ uniformly in ε, z > 0. Moreover, Lemma 4.6 (and the analog for pairs
σ ̸= (1, 2)) shows that Λε(z)diag is invertible and ∥(Λε(z)diag)−1∥ ≤ (2Coff)−1, provided that
z > z0 and ε ∈ (0, ε0) for sufficiently large z0 > 0 and sufficiently small ε0 > 0. We conclude
that Λε(z) is invertible and

Λε(z)−1 =
(
1 + (Λε(z)diag)−1Λε(z)off

)−1
(Λε(z)diag)−1, z > z0, ε ∈ (0, ε0). (4.96)

Next, we claim that limε→0(Λε(z)diag)−1Λε(z)off exists for large enough z > 0, which, by
(4.22) and (4.23), is equivalent to the assertion that limε→0((gε,σ)−1 + ϕε(z)σσ)−1ϕε(z)σν exists
for all pairs σ, ν ∈ I, σ ̸= ν. Without loss of generality, we may assume that σ = (1, 2) ̸= (k, l) = ν

and in the following we use the shorthand notation of Section 4.4.1, which means that the index
σ is dropped in the diagonal contributions: ϕε(z) := ϕε(z)σσ, V := Vσ, gε := gε,σ, a := aσ etc.
If
∫
V (r) dr/(2π) < a, then it follows from Lemma 4.6 and from Proposition 4.8 that for large

enough z > 0,

lim
ε→0

( 1
gε

+ ϕε(z)
)−1

ϕε(z)σν = 0, ν ̸= (1, 2).

If
∫
V (r) dr/(2π) = a, then it is more subtle to prove existence of the desired limit. We claim

that, for all large enough z > 0,

lim
ε→0

( 1
gε

+ ϕε(z)
)−1

ϕε(z)σν = −
(

|u⟩ ⟨v|
⟨u | v⟩2 ⊗D(z)−1

)
ϕ(z)σν , ν ̸= (1, 2), (4.97)
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where D(z, P ) is defined by Eqs. (4.41) and (4.42) and ϕ(z)σν ∈ L (X̃ν , X̃σ) is defined by Eq.
(4.85). To prove this, we first show that large momenta may be neglected: As in Section 4.4.1, let
P = (P, p3, ..., pN ) be conjugate to (R, x3, ..., xN ) and let ηK , K > 0, denote multiplication with
the characteristic function of the ball {P ∈ R2N−2 | |P | ≤ K} in Fourier space. Now, observe that
the Definition (4.25) of Q implies that Q ≥ λ|P |2 with λ := 1/max(m1 +m2,m3, ...,mN ) > 0,
so for fixed δ > 0 and z > z0 Lemma 4.6 and Proposition 4.8 show that∥∥∥∥∥

( 1
gε

+ ϕε(z)
)−1

(1 ⊗ (1 − ηK))ϕε(z)σν
∥∥∥∥∥

≤ C̃ max
{

| ln ε|−1, ln(µ(z + λK2))−1
}
C(σ, ν) ∥Vσ∥1/2

L1 ∥Vν∥1/2
L1 < δ/3, (4.98)

provided that K > 0 is large enough and ε > 0 is small enough. Using that

lim
ε→0

( 1
gε

+ ϕε(z)
)−1

= − |u⟩ ⟨v|
⟨u | v⟩2 ⊗D(z)−1 (4.99)

by Proposition 4.7, a similar estimate also shows that∥∥∥∥∥
(

|u⟩ ⟨v|
⟨u | v⟩2 ⊗D(z)−1

)
(1 ⊗ (1 − ηK))ϕ(z)σν

∥∥∥∥∥ < δ/3 (4.100)

for large enough K > 0. In view of (4.98) and (4.100), it is clear that (4.97) will follow when
we show that

lim
ε→0

( 1
gε

+ ϕε(z)
)−1

(1 ⊗ ηK)ϕε(z)σν = −
(

|u⟩ ⟨v|
⟨u | v⟩2 ⊗D(z)−1

)
(1 ⊗ ηK)ϕ(z)σν (4.101)

for any fixed K > 0, ν ̸= (1, 2) and large enough z > 0. To further simplify (4.101), we
decompose

ηK = ηK χσν,c + ηK (1 − χσν,c), c > 0, (4.102)

where χσν,c is defined by Eq. (4.83). Furthermore, for ν = (k, l) ̸= (1, 2) = σ we set

γσν(R, x3, ..., xN ) :=

|R− xl|1/2 if k ∈ {1, 2}, l ≥ 3,
|xk − xl|1/2 if 3 ≤ k < l ≤ N,

and we note that the definition of χσν,c implies that

∥ηK(1 − χσν,c)∥ = ∥(1 − χσν,c)ηK∥ ≤ ∥(1 − χσν,c)γσν∥
∥∥∥(γσν)−1(−∆′ + 1)−1(−∆′ + 1)ηK

∥∥∥
≤ (2c)1/2

∥∥∥(γσν)−1(−∆′ + 1)−1
∥∥∥ (K2 + 1), (4.103)

where

−∆′ := −∆R +
N∑
i=3

(−∆xi).

As | · |−1/2 ∈ L2(R2) + L∞(R2), a standard result (see, e.g., [77, Theorem 11.1]) shows that∥∥(γσν)−1(−∆′ + 1)−1∥∥ < ∞, so the right side of (4.103) vanishes as c → 0. Hence, with the help
of (4.102) and another δ/3-argument, we see that the proof of (4.101) can be reduced to the
assertion that for any fixed c,K > 0, ν ̸= (1, 2) and large enough z > 0,

lim
ε→0

( 1
gε

+ ϕε(z)
)−1

(1 ⊗ (ηKχσν,c))ϕε(z)σν = −
(

|u⟩⟨v|
⟨u | v⟩2 ⊗D(z)−1

)
(1 ⊗ (ηKχσν,c))ϕ(z)σν .
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However, this is immediate from (4.99) and Proposition 4.12, so (4.101) and thus (4.97) are
established after all.

Since the choice σ = (1, 2) in the analysis above was immaterial, we conclude that for all
pairs σ, ν ∈ I, σ ̸= ν, and large enough z > 0,

lim
ε→0

(
(gε,σ)−1 + ϕε(z)σσ

)−1
ϕε(z)σν =


−
(

|uσ⟩ ⟨vσ|
⟨uσ | vσ⟩2 ⊗ (Θ(z)σσ)−1

)
ϕ(z)σν if σ ∈ J ,

0 else.
(4.104)

Let the operator Λ(z)off ∈ L (X̃) be defined by (Λ(z)off)σν := ϕ(z)σν(1 − δσν), σ, ν ∈ I. Then,
in the notation of (4.94), (4.104) takes the form

lim
ε→0

(Λε(z)diag)−1Λε(z)off = −Π∗
[
U ◦ (Θ(z)diag)−1

]
Π Λ(z)off =: L(z). (4.105)

From (4.96), (4.94) and (4.105) it follows that

lim
ε→0

Λε(z)−1 = − (1 + L(z))−1 Π∗
(
U ◦ (Θ(z)diag)−1

)
Π, (4.106)

provided that z ∈ (z0,∞) with z0 > 0 large enough.
To simplify the right side of (4.106), we first note that the inverse (1+L(z))−1 is only needed

on Ran Π∗, which, in view of (4.105), is left invariant by L(z). Explicitly, we have that

(1 + L(z))−1 Π∗ = Π∗
(
1 −

[
U ◦ (Θ(z)diag)−1

]
Π Λ(z)offΠ∗

)−1
. (4.107)

Secondly, by Proposition 4.12, we have the factorization property

(Λ(z)off)σν = ϕ(z)σν = − |uσ⟩ ⟨vν | ⊗ Θ(z)σν , σ ̸= ν, (4.108)

where Θ(z)σν ∈ L (Xν ,Xσ). From (4.108) it follows that[
U ◦ (Θ(z)diag)−1

]
Π Λ(z)offΠ∗ = −Ũ ◦

[
(Θ(z)diag)−1Θ(z)off

]
, (4.109)

where the components of Ũ = (Ũσν)σ,ν∈J are defined by

Ũσν := |uσ⟩⟨vν |
⟨uσ | vσ⟩

and the identity Ũσν = Uση |uη⟩⟨vν | was used. Furthermore, a direct computation, using the
identity (Ũ ◦ Y )(Ũ ◦ Z) = (Ũ ◦ (Y Z)) for Y, Z ∈ L (X), shows that on Ran Π,(

1 + Ũ ◦
[
(Θ(z)diag)−1Θ(z)off

])−1
= 1 − Ũ ◦

[
Θ(z)−1Θ(z)off

]
. (4.110)

Indeed, Θ(z)−1 = [1 + (Θ(z)diag)−1Θ(z)off]−1(Θ(z)diag)−1 exists for large enough z > 0 because
the Definition (4.51) of Θ(z, P σ)σσ implies that limz→∞(Θ(z)diag)−1 = 0 and, by Proposition
4.9, ∥Θ(z)σν∥, σ ̸= ν, and hence ∥Θ(z)off∥ are uniformly bounded in z > 0. Now, (4.106)
combined with (4.107), (4.109) and (4.110) yield

lim
ε→0

Λε(z)−1 = −Π∗
(
1 + Ũ ◦

[
(Θ(z)diag)−1Θ(z)off

])−1 (
U ◦ (Θ(z)diag)−1

)
Π

= −Π∗
(
1 − Ũ ◦

[
Θ(z)−1Θ(z)off

]) (
U ◦ (Θ(z)diag)−1

)
Π

= −Π∗
(
U ◦

[
(Θ(z)diag)−1 − Θ(z)−1Θ(z)off(Θ(z)diag)−1

])
Π

= −Π∗
(
U ◦ Θ(z)−1

)
Π,

where the last equation follows from the second resolvent identity and the second to last equation
used ŨσηUην = Uσν .
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4.5 Proof of Theorem 4.1 and properties of the Hamiltonian
Proof of Theorem 4.1. Recall from Section 4.2 that a point z ∈ ρ(H0) belongs to ρ(Hε) ∩ ρ(H0)
if and only if Λε(z) is invertible in X̃, and in this case (Hε + z)−1 can be expressed by the
generalized Konno-Kuroda formula

(Hε + z)−1 = R0(z) −
∑
σ,ν∈I

(Aε,σR0(z))∗
[
Λε(z)−1

]
σν
JνAε,νR0(z). (4.111)

In virtue of Proposition 4.13, there exist ε0, z0 > 0 such that Λε(z) is invertible for all z ∈ (z0,∞)
and ε ∈ (0, ε0). This implies that (z0,∞) ⊆ ρ(Hε) ∩ ρ(H0) for ε ∈ (0, ε0) and (Hε + z)−1 is
given by Eq. (4.111). Moreover, Proposition 4.13 also shows that limε→0 Λε(z)−1 exists for all
z ∈ (z0,∞) and, by the componentwise version (4.93) of (4.95),

lim
ε→0

[
Λε(z)−1

]
σν

=

− |uσ⟩ ⟨vν |
⟨uσ | vσ⟩ ⟨uν | vν⟩

⊗
[
Θ(z)−1]

σν if σ, ν ∈ J ,

0 else,

where Θ(z) is a closed and invertible operator in the reduced Hilbert space X from Eq. (4.6).
Since Jν = sgn(Vν) is bounded and since, by Corollary 4.4, limε→0Aε,νR0(z) = AνR0(z) for all
ν ∈ I and z > 0, we conclude that we can take the limit ε → 0 on the right side of Eq. (4.111).
We find that limε→0(Hε + z)−1 = R(z) for all z ∈ (z0,∞), where

R(z) := R0(z) +
∑
σ,ν∈J

(AσR0(z))∗
( |uσ⟩ ⟨vν |

⟨uσ | vσ⟩ ⟨uν | vν⟩
⊗
[
Θ(z)−1

]
σν

)
JνAνR0(z). (4.112)

Expression (4.112) can be simplified as follows: By Corollary 4.4, we have that AσR0(z)ψ =
vσ ⊗ (G(z)σψ) with G(z)σ ∈ L (H ,Xσ) and, similarly, JνAνR0(z)ψ = uν ⊗ (G(z)νψ). Hence,
(4.112) takes the form

R(z) = R0(z) +
∑
σ,ν∈J

G(z)∗
σ

[
Θ(z)−1

]
σν
G(z)ν = R0(z) +G(z)∗ Θ(z)−1G(z), (4.113)

where G(z) ∈ L (H ,X) is given by G(z)ψ = (G(z)σψ)σ∈J . This expression for R(z) agrees
with the right side of Eq. (4.8). Moreover, it also shows that R(z) only depends on Vσ, σ ∈ J ,
via the parameter βσ that is defined by Eqs. (4.52)-(4.54).

To prove Theorem 4.1 for z ∈ (z0,∞), it remains to show that R(z) indeed defines the
resolvent (H + z)−1 of a self-adjoint operator H. This follows from the Trotter-Kato theorem
(see, e.g., [31, Theorem 5] and [71, Theorem VIII.22]∗), provided that we can show that RanR(z)
is dense in H . Let T : H2(R2N ) → X be defined as in Lemma 2.13, i.e. Tψ = (Tσψ)σ∈J . Let
φ ∈ (RanR(z))⊥ and observe that for any ψ ∈ KerT (4.113) and G(z) = TR0(z) imply that

0 = ⟨φ |R(z)(H0 + z)ψ⟩ = ⟨φ |ψ⟩ +
〈
φ
∣∣∣G(z)∗ Θ(z)−1 Tψ

〉
= ⟨φ |ψ⟩ .

By Lemma 2.13, KerT is dense in H , so it follows that φ = 0. This shows that RanR(z) is
dense in H , and hence, by the Trotter-Kato theorem, there exists a self-adjoint operator H such
that R(z) = (H + z)−1 for all z ∈ (z0,∞). We conclude that Hε → H in the norm resolvent
sense as ε → 0, which completes the proof of Theorem 4.1 for z ∈ (z0,∞).

To prove Theorem 4.1 for all z ∈ ρ(H) ∩ ρ(H0) ⊆ C, it suffices to verify the hypotheses of
[21, Theorem 2.19]. To this end, we first need to define Θ(z) for all z ∈ ρ(H0) = C \ (−∞, 0].
For the diagonal parts Θ(z)σσ, this is achieved by (4.51) with ln(·) denoting the principal branch

∗In [71] existence of limε→0(Hε + z)−1 in two points z with ± Im(z) > 0 is assumed, but the proof can be
adapted to the case where the limit exists for all z from a non-empty open interval I ⊆ R.
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of the logarithm. To define the off-diagonal parts for z ∈ ρ(H0), we use Θ(z)σν := −TσG(z)∗
ν ,

σ ̸= ν, which agrees with (4.70) for z > 0, but, a priori, may be an unbounded operator for
other values of z ∈ ρ(H0). From Proposition 2.12 (i) it follows that

G(z)∗
ν = G(w)∗

ν + (w − z)R0(z)G(w)∗
ν , z, w ∈ ρ(H0). (4.114)

Choosing w ∈ (0,∞), we know from Proposition 4.9 that RanG(w)∗
ν ⊆ D(Tσ) and that TσG(w)∗

ν

is bounded. Likewise, TσR0(z) is a bounded operator and hence, by Eq. (4.114), Θ(z)σν =
−TσG(z)∗

ν is a bounded operator in L (Xν ,Xσ) for all z ∈ ρ(H0). Furthermore, Eq. (4.114) now
implies that

Θ(z)σν = Θ(w)σν + (z − w)G(z)σG(w)∗
ν , σ ̸= ν, z, w ∈ ρ(H0). (4.115)

By Proposition 4.14, below, the extended operator Θ(z) satisfies the hypotheses of [21, Theorem
2.19], so the proof of Theorem 4.1 is complete.

Proposition 4.14. Let w, z ∈ ρ(H0). Then the operator Θ(z) has the following properties:

(i) Θ(z)∗ = Θ(z).

(ii) Θ(z) = Θ(w) + (z − w)G(z)G(w)∗.

(iii) 0 ∈ ρ(Θ(z)) for some z ∈ ρ(H0).

Remark. Property (ii) implies that D = D(Θ(z)) is independent of z ∈ ρ(H0).

Proof. Property (iii) has already been verified in Proposition 4.13. To prove Property (ii), we
first recall from the proof of Theorem 4.1 that Θ(z) and G(z) have the components Θ(z)σν ,
σ, ν ∈ J , and G(z)σ, σ ∈ J , respectively. Hence, we have to verify that

Θ(z)σν = Θ(w)σν + (z − w)G(z)σG(w)∗
ν , σ, ν ∈ J . (4.116)

For σ ̸= ν, this has been shown in Eq. (4.115). In the case σ = ν, we assume σ = (1, 2) = ν for
notational simplicity. The Definition (2.12) of Tσ and KσR0(z) = (H̃0 + z)−1Kσ, where H̃0 is
defined by Eq. (4.77), imply that

G(z)σG(w)∗
σ = τKσR0(z) (τKσR0(w))∗ = τ(H̃0 + z)−1

(
τ(H̃0 + w)−1

)∗
.

Using now the Definition (2.10) of τ together with a Fourier transform in (R, x3, ..., xN ), we find
that (z − w)G(z)σG(w)∗

σ acts pointwise in P σ = (P, p3, ..., pN ) by multiplication with

z − w

4π2

∫
R2

(
p2

µσ
+Q+ z

)−1(
p2

µσ
+Q+ w

)−1

dp = µσ
4π [ln(z +Q) − ln(w +Q)] ,

where Q ≥ 0 is defined by Eq. (4.25). Now, (4.116) for σ = ν = (1, 2) follows from the Definition
(4.51) of Θ(z, P σ)σσ.

To prove Property (i), we use the fact that Θ(z) does not depend on the particular choices
of Vσ, aσ and bσ as long as the set J and the parameters βσ remain unchanged. For σ ∈ J
we choose Vσ > 0, aσ =

∫
Vσ(r) dr/(2π) and bσ to solve (4.52) and (4.53) for the given values

of βσ. For σ ∈ I \ J we choose Vσ = 0. Moreover, we fix z0 > 0 so that (4.95) holds for all
z ∈ (z0,∞). Then uσ = vσ for all pairs σ ∈ I and hence Eqs. (4.13) and (4.20) show that Λε(z)
is self-adjoint for all ε > 0 and all z ∈ (z0,∞). Now, it follows from (4.95), or more directly
from (4.93), that Θ(z)−1 is self-adjoint, too. Therefore, Θ(z) is self-adjoint for z ∈ (z0,∞), and
Property (i) for general z ∈ ρ(H0) now follows from Property (ii) by choosing w ∈ (z0,∞).
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Our results on Θ(z) imply the following lower bound for σ(H) (see also [30, 31]).

Proposition 4.15. Let H denote the Hamiltonian from Theorem 4.1. Then, with NJ := |J |,
µ− := minσ∈J µσ, β− := minσ∈J βσ and m := maxi=1,...,N mi, it holds that

Σ = inf σ(H) ≥ − exp
(
πm

µ− (NJ − 1) − β−

π

)
. (4.117)

Proof. Without restriction, we can assume that NJ ≥ 1 because for H = H0 the lower bound
from (4.117) is obvious. From [21, Theorem 2.19] and from Proposition 4.14 we know that
a point z ∈ ρ(H0) belongs to ρ(H) if and only if Θ(z) is invertible in X. Since Θ(z) is self-
adjoint for z > 0, it suffices to show that Θ(z) is bounded from below by a positive constant for
z > z0 := exp(πm(NJ − 1)/µ− −β−/π). To this end, we use the Definition (4.51) of Θ(z, P σ)σσ
and for σ ̸= ν we use the bound ∥Θ(z)σν∥ ≤ m/4 from Proposition 4.9. Let z ∈ (z0,∞) and
observe that ln(z) + β−/π > 0, so we conclude that, for all w = (wσ)σ∈J ∈ D(Θ(z)),

⟨w | Θ(z)w⟩ =
∑
σ∈J

⟨wσ | Θ(z)σσwσ⟩ +
∑
σ,ν∈J
σ ̸=ν

⟨wσ | Θ(z)σνwν⟩

≥ µ−

4π

(
ln(z) + β−

π

) ∑
σ∈J

∥wσ∥2 − m

4
∑
σ,ν∈J
σ ̸=ν

∥wσ∥∥wν∥

≥ µ−

4π

(
ln(z) + β−

π

)
∥w∥2 − m

8
∑
σ,ν∈J
σ ̸=ν

(∥wσ∥2 + ∥wν∥2)

=
[
µ−

4π

(
ln(z) + β−

π

)
− m

4 (NJ − 1)
]

∥w∥2.

The expression in brackets is positive for z > z0 = exp(πm(NJ − 1)/µ− − β−/π), which proves
(4.117).

We conclude this section with the proof that H satisfies a stronger version of the Properties
(i) − (iii) from Section 1.2.2:

Proposition 4.16. The Hamiltonian H from Theorem 4.1 is local in the following sense: If
ψ ∈ D(H) and ψ = 0 a.e. in some non-empty open set U ⊆ R2N , then Hψ = 0 a.e. in U .
Moreover, H is invariant under all Euclidean isometries of R2. That is, for any orthogonal
matrix O ∈ R2×2 and any h ∈ R2, HT (O, h)tot = T (O, h)totH, where T (O, h)tot ∈ L (H ) is
given by

(T (O, h)totψ)(x1, x2, ..., xN ) := ψ(Ox1 + h,Ox2 + h, ..., OxN + h).

Proof. The first part follows from Lemma C.2 in the appendix of [6], but for the convenience of
the reader we spell out the details here. First, we suppose that U ⊆ R2N \ Γ and we recall from
Section 4.1 that Corollary 4.2 implies that H is a self-adjoint extension of H0 ↾ C∞

0 (R2N \ Γ).
Therefore, all φ ∈ C∞

0 (U) belong to C∞
0 (R2N \ Γ) ⊆ D(H) and

⟨Hψ |φ⟩ = ⟨ψ |H0φ⟩ = 0

because supp(ψ) ∩ supp(φ) = ∅. This implies that Hψ = 0 a.e. in U . If U ∩ Γ ̸= ∅, then we
apply the above argument to the open set U \ Γ. It follows that Hψ = 0 a.e. in U \ Γ and hence
Hψ = 0 a.e. in U because Γ is a set of measure zero in R2N .

For the second part we again use that Θ(z), and hence H, do not depend on the particular
choices of Vσ, aσ and bσ as long as the set J and the parameters βσ remain unchanged. Hence, by
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adjusting bσ accordingly, we may choose Vσ(r) = exp(−|r|) and aσ =
∫
Vσ(r) dr/(2π) for σ ∈ J .

For σ ∈ I \ J we choose Vσ(r) = 0. Then it is immediate from the Definition (4.1) of Hε, ε > 0,
that HεT (O, h)tot = T (O, h)totHε. It follows that T (O, h)tot(Hε + i)−1 = (Hε + i)−1T (O, h)tot,
and in the limit ε → 0 we arrive at T (O, h)tot(H + i)−1 = (H + i)−1T (O, h)tot. This proves the
second part of the proposition.

4.6 The quadratic form of the Hamiltonian
In this section we determine the quadratic form of the Hamiltonian H from Theorem 4.1 and we
show, in the case of N particles of mass one, that it agrees with a quadratic form Fβ introduced in
[30]. This proves that H agrees with the TMS Hamiltonian Hβ defined by [30, Eqs. (5.3)-(5.4)].

We start by deriving an explicit formula for the quadratic form of H restricted to D(H):

Lemma 4.17. Let H denote the Hamiltonian from Theorem 4.1 and let z ∈ ρ(H0) ∩ ρ(H).
Then, for any ψ ∈ D(H), it holds that

⟨ψ |Hψ⟩ = ⟨ψ −G(z)∗w | (H0 + z)(ψ −G(z)∗w)⟩ + ⟨w | Θ(z)w⟩ − z∥ψ∥2, (4.118)

where w = (wσ)σ∈J ∈ D(Θ(z)) is uniquely determined by (4.9) and (4.10).

Proof. By Eq. (4.11), we have that (H + z)ψ = (H0 + z)ψ0, which yields

⟨ψ | (H + z)ψ⟩ = ⟨ψ | (H0 + z)ψ0⟩
= ⟨ψ −G(z)∗w | (H0 + z)ψ0⟩ + ⟨w |G(z)(H0 + z)ψ0⟩ . (4.119)

By the definition of G(z) and by (4.10), G(z)(H0 + z)ψ0 = Tψ0 = Θ(z)w, so it follows from
(4.9) and (4.119) that

⟨ψ | (H + z)ψ⟩ = ⟨ψ −G(z)∗w | (H0 + z) (ψ −G(z)∗w)⟩ + ⟨w | Θ(z)w⟩ ,

which proves (4.118).

Since H is self-adjoint, the quadratic form from Lemma 4.17 is closable and we are now
going to determine an explicit description of its closure. From Eq. (4.51), it follows that
Θ(z)σσ ≥ c1 ln(z) + c2 in operator sense, where c1 > 0 and c2 ∈ R depend on the pair σ ∈ J but
not on z ∈ (0,∞). Combining this with the fact that, by Proposition 4.9, ∥Θ(z)off∥ is uniformly
bounded in z ∈ (0,∞), we see that Θ(z) ≥ c > 0 for sufficiently large z ∈ ρ(H) ∩ (0,∞). For
such z, we introduce a quadratic form q with domain

D(q) :=
{
ψ ∈ H

∣∣∣ ∃w ∈ D(Θ(z)1/2) : ψ −G(z)∗w ∈ H1(R2N )
}

by

q(ψ) := ∥(H0 + z)1/2(ψ −G(z)∗w)∥2 + ∥Θ(z)1/2w∥2 − z∥ψ∥2, (4.120)

which agrees with the right side of (4.118) if ψ ∈ D(H) ⊆ D(q). In virtue of the following
lemma, which is our analog of [30, Lemma 3.2], it is clear that w = wψ is uniquely determined
by ψ ∈ D(q) and, in particular, that q is well-defined:

Lemma 4.18. If z > 0 is so large that Θ(z) ≥ c > 0 and w = (wσ)σ∈J ∈ D(Θ(z)1/2) \ {0},
then G(z)∗w /∈ H1(R2N ).
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Proof. Recall from the sentence including Eq. (4.113) thatG(z) ∈ L (H ,X) is given byG(z)ψ =
(G(z)σψ)σ∈J with G(z)σ = TσR0(z) ∈ L (H ,Xσ). Hence, for all w = (wσ)σ∈J ∈ X,

G(z)∗w =
∑
σ∈J

G(z)∗
σwσ, (4.121)

where, by Eq. (4.72) for σ = (i, j),

( ̂G(z)∗
σwσ) (p1, ..., pN ) = 1

2π

(
z +

N∑
n=1

p2
n

mn

)−1

· ŵσ (pi + pj , p1, ...p̂i...p̂j ..., pN ) . (4.122)

Now, assume that w ∈ D(Θ(z)1/2) \ {0} satisfies G(z)∗w ∈ H1(R2N ). To show that this
leads to a contradiction, we first observe that for all h > 0,〈

(H0 + z)1/2G(z)∗w
∣∣∣ (H0 + z)1/2G(z)∗w

〉
≥ (2π)−2

∫
dp1 · · · dpN

∑
σ=(i,j)∈J

(
|ŵσ(pi + pj , p1, ...p̂i...p̂j ..., pN )|2

z +∑N
n=1 p

2
n/mn

χ[0,2h]

(
N∑
n=1

p2
n

mn

)

−
∑

ν=(k,l)∈J
ν ̸=σ

|ŵσ(pi + pj , p1, ...p̂i...p̂j ..., pN )| |ŵν(pk + pl, p1, ...p̂k...p̂l..., pN )|
z +∑N

n=1 p
2
n/mn

)
, (4.123)

where χ[0,2h] denotes the characteristic function of the interval [0, 2h]. For σ = (1, 2) and
ν = (k, l) ∈ {(1, 3), (3, 4)}, it follows from (4.75) and (4.76) that∫

dp1 · · · dpN
|ŵσ(p1 + p2, p3, ..., pN )| |ŵν(pk + pl, p1, ...p̂k...p̂l..., pN )|

z +∑N
n=1 p

2
n/mn

≤ π2 max(m2,ml)∥wσ∥∥wν∥ < ∞.

Using similar estimates for the other pairs σ, ν ∈ J , σ ̸= ν, we find that all summands in
the last line of (4.123) define integrable functions. We now show that the integral over the
diagonal contributions to (4.123) diverges as h → ∞. Since w ̸= 0, there exists a pair σ ∈ J
with ∥wσ∥ > 0 and without restriction we may assume that σ = (1, 2). With the help of the
substitution

P := p1 + p2, p := m1p2 −m2p1
m1 +m2

,

we find that the integral over the (1, 2)-contribution has the lower bound

∫
dp1 · · · dpN χ[0,2h]

(
N∑
n=1

p2
n

mn

)
|ŵσ(p1 + p2, p3, ..., pN )|2

z +∑N
n=1 p

2
n/mn

≥
∫

dP χ[0,h](Q) |ŵσ(P )|2
∫

dpχ[0,h](p2/µ)
(
z + p2

µ
+Q

)−1

= πµ

∫
dP χ[0,h](Q) |ŵσ(P )|2 (ln(z + h+Q) − ln(z +Q))

≥ µ(π ln(h) + βσ)
∫
χ[0,h](Q) |ŵσ(P )|2 dP − 4π2

∫
χ[0,h](Q) |ŵσ(P )|2 Θ(z, P )σσ dP , (4.124)

where P = (P, p3, ..., pN ), µ = µ(1,2) is a reduced mass, Q ≥ 0 is defined by Eq. (4.25), and
Θ(z, P )σσ is defined by Eq. (4.51). Since w ∈ D(Θ(z)1/2) by assumption, it follows that in the
limit h → ∞, the second term in the last line of (4.124) converges to 4π2∥(Θ(z)σσ)1/2wσ∥2 < ∞,
while the first term diverges to ∞. From this we conclude that the right side of (4.123) diverges
to ∞ in the limit h → ∞, which contradicts our assumption that G(z)∗w ∈ H1(R2N ).
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It is obvious from (4.120) that q is bounded from below and a standard argument also shows
that q is closed. Hence, there exists a unique self-adjoint operator Hq associated with q. We are
going to show that Hq = H. Let ψ ∈ D(Hq) be fixed. Then the definitions of q and Hq imply
that, for all φ ∈ D(q),

⟨(Hq + z)ψ |φ⟩ =
〈
(H0 + z)1/2(ψ −G(z)∗wψ)

∣∣∣ (H0 + z)1/2(φ−G(z)∗wφ)
〉

+
〈
Θ(z)1/2wψ

∣∣∣Θ(z)1/2wφ
〉
. (4.125)

Choosing wφ = 0, we see that each φ ∈ H1(R2N ) belongs to D(q), and hence, for φ ∈ H1(R2N ),
Eq. (4.125) becomes

⟨(Hq + z)ψ |φ⟩ =
〈
(H0 + z)1/2(ψ −G(z)∗wψ)

∣∣∣ (H0 + z)1/2φ
〉
. (4.126)

This equation implies that ψ0 := ψ −G(z)∗wψ ∈ D(H0), and that

(Hq + z)ψ = (H0 + z)ψ0. (4.127)

We have thus verified condition (4.9) of Corollary 4.2. It remains to check condition (4.10).
Given w ∈ D(Θ(z)1/2), we choose φ := G(z)∗w, so that φ − G(z)∗w = 0 ∈ H1(R2N ) and

hence φ ∈ D(q). From Eqs. (4.125) and (4.127), we now see that, for all w ∈ D(Θ(z)1/2),〈
Θ(z)1/2wψ

∣∣∣Θ(z)1/2w
〉

= ⟨(Hq + z)ψ |φ⟩

= ⟨(H0 + z)ψ0 |G(z)∗w⟩
= ⟨G(z)(H0 + z)ψ0 |w⟩ = ⟨Tψ0 |w⟩ .

This equation implies that wψ ∈ D(Θ(z)) and that Θ(z)wψ = Tψ0, which is condition (4.10).
Corollary 4.2 now shows that ψ ∈ D(H) and, in view of Eq. (4.127), that Hq ⊆ H. From the
self-adjointness of Hq and H, we conclude that Hq = H.

In the case of mi = 1 for i = 1, ..., N , we are going to show that q agrees with a quadratic
form introduced in [30, Eqs. (2.13)-(2.16)]. For given β = (βσ)σ∈J , the quadratic form in [30]
is denoted by Fβ and, in our notation, it is defined by

Fβ(ψ) := ∥∇(ψ −G2N
z ∗ ξψ)∥2 + z∥ψ −G2N

z ∗ ξψ∥2 + Φz,1
β (ξψ) + Φz,2(ξψ) − z∥ψ∥2 (4.128)

on the domain

D(Fβ) =
{
ψ ∈ H

∣∣∣ ∃ξψ ∈ D(Φz,1
β ) : ψ −G2N

z ∗ ξψ ∈ H1(R2N )
}
.

The right side of (4.128) is independent of the particular choice of z ∈ (0,∞) and ξψ = (ξσ)σ∈J
is a collection of “charges” ξσ ∈ L2(R2(N−1)), which are uniquely determined by ψ ∈ D(Fβ). For
σ = (i, j), ξσ may be interpreted as a function on the hyperplane xi = xj and the convolution
G2N
z ∗ ξψ is to be understood in the sense that (see the proof of [30, Lemma 3.2 (a)])

̂G2N
z ∗ ξψ(p1, ..., pN ) =

∑
σ=(i,j)∈J

(
z +

N∑
n=1

p2
n

)−1

· ξ̂σ
(
p1, ..., pi−1,

pi + pj√
2

, pi+1, ...p̂j ..., pN

)
. (4.129)

Moreover, by [30, Theorem 3.3], Fβ is bounded from below and closed on D(Fβ).
Assuming that mi = 1, i = 1, ..., N , and that z ∈ ρ(H)∩(0,∞) is so large that Θ(z) ≥ c > 0,

we now write the various contributions to the right side of (4.120) in a form that will allow us
to compare them to their counterparts in (4.128). We first infer from Eqs. (4.121), (4.122) and
(4.129) that

G(z)∗w = G2N
z ∗ ξ, w = (wσ)σ∈J , ξ = (ξσ)σ∈J , (4.130)
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where ξσ agrees with wσ up to a permutation of the arguments and rescaling:

ξσ(x1, ...x̂j ..., xN ) = 1
4π wσ

(
xi√

2
, x1, ...x̂i...x̂j ..., xN

)
, σ = (i, j), (4.131)

which, after Fourier transform, is equivalent to

ξ̂σ(p1, ...p̂j ..., pN ) = 1
2π ŵσ

(√
2pi, p1, ...p̂i...p̂j ..., pN

)
, σ = (i, j). (4.132)

Conversely, given ξσ ∈ L2(R2(N−1)) for all σ ∈ J , the identity (4.131) uniquely determines
w = (wσ)σ∈J ∈ X and again (4.130) holds true. In particular, it follows that

∥(H0 + z)1/2(ψ −G(z)∗w)∥2 = ∥∇(ψ −G2N
z ∗ ξ)∥2 + z∥ψ −G2N

z ∗ ξ∥2,

provided that ψ−G(z)∗w ∈ H1(R2N ). The third and the fourth terms in (4.128) correspond to
the diagonal and off-diagonal contributions, respectively, in

∥Θ(z)1/2w∥2 =
∑
σ∈J

∥(Θ(z)σσ)1/2wσ∥2 +
∑
σ,ν∈J
σ ̸=ν

⟨wσ | Θ(z)σνwν⟩ .

We begin with the diagonal ones. The operator Θ(z)σσ, σ = (i, j), acts pointwise in P σ =
(P, p1, ...p̂i...p̂j ..., pN ) by multiplication with Θ(z, P σ)σσ defined by Eq. (4.51). For a given
vector w = (wσ)σ∈J ∈ D(Θ(z)1/2), it follows that∑

σ∈J
∥(Θ(z)σσ)1/2wσ∥2 =

∑
σ∈J

∫
dP σ Θ(z, P σ)σσ |ŵσ (P σ)|2 ,

which agrees with Φz,1
β (ξ) defined by [30, Eq. (2.15)], where β = (βσ)σ∈J and ξ ∈ D(Φz,1

β )
are given by Eqs. (4.52)-(4.54) and (4.132), respectively. Conversely, given ξ ∈ D(Φz,1

β ), a
straightforward computation shows that Eq. (4.132) defines some w ∈ D(Θ(z)1/2) and that
Φz,1
β (ξ) = ∑

σ∈J ∥(Θ(z)σσ)1/2wσ∥2. In particular, we see that w ∈ D(Θ(z)1/2) if and only if Eq.
(4.132) defines a vector ξ ∈ D(Φz,1

β ), and hence, using Eq. (4.130), it follows that D(q) = D(Fβ).
It remains to examine the contributions of the off-diagonal operators Θ(z)σν ∈ L (Xν ,Xσ). Here,
the key is the identity (cf. Eq. (4.70))

Θ(z)σν = −TσG(z)∗
ν , σ ̸= ν. (4.133)

Recall from Eq. (4.71) that for σ = (i, j) and ψ ∈ D(Tσ),

(T̂σψ) (P, p1, ...p̂i...p̂j ..., pN )

= 1
2π

∫
dp ψ̂

(
p1, ..., pi−1,

P

2 − p, pi+1, ..., pj−1,
P

2 + p, pj+1, ..., pN

)
. (4.134)

Now, using first Eqs. (4.133), (4.134) and the substitution

P := pi + pj , p := pj − pi
2 ,

and inserting the identity (4.122) for G(z)∗
νwν thereafter, we obtain that∑

σ,ν∈J
σ ̸=ν

⟨wσ | Θ(z)σνwν⟩

= −
∑
σ,ν∈J
σ ̸=ν

∫
dp1 · · · dpN

ŵσ (pi + pj , p1, ...p̂i...p̂j ..., pN ) ŵν (pk + pl, p1, ...p̂k...p̂l..., pN )
4π2(z +∑N

n=1 p
2
n)

,

where the sum runs over all σ = (i, j) ̸= (k, l) = ν in J . In view of Eq. (4.132), this coincides
with the expression for Φz,2(ξ) from [30, Eq. (2.16)]. This completes the proof that q = Fβ.
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5 Weakness of short-range interactions in
Fermi gases

In this section we analyze and quantify the weakness of short-range interactions among identical
spinless fermions, the main results being Theorems 5.1 and 5.6. This is based on reference [40].

5.1 Main results
As explained in Section 1.3.2, short-range interactions among equal spin fermions in ultracold
quantum gases are usually neglected, while at the same time the interaction among particles of
opposite spin is modeled by contact interactions. In the physics literature this is often justified by
arguing that the Pauli principle forces the wave function to be antisymmetric w.r.t. permutations
of the fermion positions, which, in particular, implies that the wave function vanishes when the
positions of two fermions coincide. The goal of this section is to justify this simplification
mathematically and, in the case of interactions of very small but positive range, to derive an
(asymptotic) estimate for the approximation error. To this end, we consider an ultracold Fermi
gas consisting of N ≥ 2 identical spinless fermions in d ≥ 1 dimensions. The underlying Hilbert
space is the fermionic subspace

Hf =
N∧
i=1

L2(Rd, dxi) (5.1)

of L2(RdN ) that contains all antisymmetric functions ψ, that is

ψ(x1, ...xi...xj ..., xN ) = −ψ(x1, ...xj ...xi..., xN ), 1 ≤ i < j ≤ N.

In appropriate units (ℏ =
√

2 and mi = 1 for 1, ..., N), we may assume that the kinetic energy
operator of the system is given by H0 = −∆ on D(H0) = H2(RdN ) ∩ Hf. For d ≥ 2, it follows
from Theorem 5.1, below, that −∆ is essentially self-adjoint on C∞

0 (RdN \ Γ) ∩ Hf, where Γ
denotes the union of the collision planes defined by Eqs. (1.27) and (1.28). This means that H0
is the only self-adjoint extension and it proves that two-body contact interactions, as introduced
in Section 1.2.1, are suppressed on the fermionic subspace Hf if d ≥ 2.

Theorem 5.1. If d ≥ 2 and N ≥ 2, then C∞
0 (RdN \ Γ) ∩ Hf is dense in H2(RdN ) ∩ Hf with

respect to the norm of H2. This means that

H2
0 (RdN \ Γ) ∩ Hf = H2(RdN ) ∩ Hf, (5.2)

and it implies that −∆ ↾ C∞
0 (RdN \ Γ) ∩ Hf is essentially self-adjoint in Hf.

Remarks.

(i) The main point of Theorem 5.1 is that elements of C∞
0 (RdN \Γ) vanish in an entire neigh-

borhood of Γ. Elements of C∞
0 (RdN ) ∩ Hf vanish on Γ too. But the weaker statement

that C∞
0 (RdN ) ∩ Hf is dense in H2(RdN ) ∩ Hf is true for all d ≥ 1, which easily follows

from the fact that C∞
0 (RdN ) is dense in H2(RdN ) (see, e.g., [50, Theorem 11.35]).

(ii) In d = 1 dimension the assertion of Theorem 5.1 is wrong. This manifests in the existence
of δ′-interactions, which only vanish when the derivative (and not the wave function itsself)
vanishes at the origin (see [6, Chapter I.4] for details). To see this, we consider a sequence
ψn ∈ C∞

0 (RN \ Γ), n ∈ N, with ψn → ψ in the norm of H2(RN ). Then ∂1ψn → ∂1ψ in
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the norm of H1(RN ). Since, by Corollary 2.11, the trace operators Tσ : H1(RN ) → Xσ are
continuous and since, clearly, Tσ∂1ψn = 0, it follows that

Tσ∂1ψ = 0, σ ∈ I. (5.3)

We now give an example of a wave function ψ ∈ H2(RN ) ∩ Hf without Property (5.3),
which proves that C∞

0 (RN \ Γ) ∩ Hf is not dense in H2(RN ) ∩ Hf. Let x = (x1, ..., xN )
and let

ψ(x) := e−|x|2 ∏
1≤i<j≤N

(xj − xi).

Apart from the Gaussian, this is a Vandermonde determinant, so ψ is antisymmetric. On
the hyperplane Γ(1,2) we have

− ∂ψ

∂x1
(x)
∣∣∣
x1=x2

= e−|x|2 ·
∏

1≤i<j≤N
(i,j)̸=(1,2)

(xj − xi),

which shows that T(1,2)∂1ψ ̸= 0.

So far, we know that contact interactions among identical fermions of equal spin vanish
in d ≥ 2, while this is not true in d = 1 due to the existence of non-trivial δ′-interactions
(but δ-interactions vanish either way). From the previous sections we also know that (at least
some) physically reasonable contact interactions in d ≤ 3 can be considered as limits ε → 0
of suitable short-range two-body potentials gεVε, ε > 0. This suggests the following question:
When can such short-range interactions be considered as weak on the fermionic subspace Hf
(in the sense that they vanish, in an appropriate sense, as ε → 0) and, moreover, how large
is the approximation error in terms of ε > 0? To address this question, we again consider the
Schrödinger operators Hε, ε > 0, from Eq. (1.39). To ensure that Hε leaves the space Hf
invariant, we assume that mi = 1 for i = 1, ..., N , Vσ = V for all σ ∈ I, where V : Rd → R is a
fixed potential satisfying V (r) = V (−r) a.e., and gε,σ = gε > 0 for all σ ∈ I. Then

Hε = −∆ + gε
∑

1≤i<j≤N
Vε(xj − xi), ε > 0, (5.4)

where Vε(r) = ε−d V (r/ε). For Hε to define a self-adjoint operator on D(Hε) = D(H0), further
assumptions on V are needed. Clearly, the assumption V ∈ L2(Rd), d ≤ 3, would be sufficient.
However, the antisymmetry of the wave function and the fact that the Sobolev embedding
H2(Rd) ↪→ C0,s(Rd) exists and is continuous for all s ∈ Id, where I1 = (0, 1], I2 = (0, 1) and
I3 = [0, 1/2] (see, e.g., [50, Theorem 12.55]), allow us to weaken the assumption V ∈ L2(Rd) a
bit. To this end, let L2

odd(Rd) denote the subspace of L2(Rd) that contains all odd functions ψ
(that is ψ(−r) = −ψ(r) a.e.). Then we have the following criterion for the self-adjointness of Hε:

Lemma 5.2. If d ≤ 3 and V : Rd → R is a measurable function that satisfies V (r) = V (−r) a.e.
and

∫
min(1, |r|2s)|V (r)|2 dr < ∞ for some s ∈ Id∪{0}, then V is infinitesimally (−∆)-bounded

in L2
odd(Rd). This, in turn, implies that

∑
i<j |Vε(xj − xi)| and hence

∑
i<j Vε(xj − xi) are

infinitesimally H0-bounded for all ε > 0 and, in particular, that Eq. (5.4) defines a self-adjoint
operator Hε on D(Hε) = D(H0).

Remark. The assumption on V in Lemma 5.2 essentially means that V defines an L2-function
outside every neighborhood of the origin and |V (r)| = O(|r|−α) as r → 0, where α < 3/2 if
d = 1 and α < 2 if d ∈ {2, 3}.

As explained above, a heuristic argument suggests that the approximation Hε ≈ H0 is rea-
sonable for small ε > 0. Our goal is to justify this approximation mathematically by estimating
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the approximation error with regard to quantities that are of particular interest in physics. In
particular, we consider spectra, expectation values, resolvents and unitary groups.

For expectation values we use the many-particle Hardy inequality for fermions from [47,
Theorem 2.8]: For all d ≥ 1, N ≥ 2 and ψ ∈ H1(RdN ) ∩ Hf,

∑
1≤i<j≤N

∫
RdN

|ψ(x1, ..., xN )|2
|xi − xj |2

dx1 · · · dxN ≤ N

d2 ∥∇ψ∥2. (5.5)

This implies the following result on the convergence of expectation values:

Proposition 5.3. Let d ≤ 3 and let V : Rd → R be a measurable function that satisfies
V (r) = V (−r) a.e. and CV := ess supr∈Rd |r|2|V (r)| < ∞. Suppose that Eq. (5.4) defines a
self-adjoint operator Hε on D(Hε) = D(H0) for all ε > 0. Then, for all ε > 0 and ψ ∈ D(H0),

|⟨ψ |Hεψ⟩ − ⟨ψ |H0ψ⟩| ≤ gεε
2−dCVNd

−2 ∥∇ψ∥2. (5.6)

If λ0 := lim supε→0 gεε
2−d = 0, then it follows from (5.6) and the variational principle that

inf σ(Hε) → inf σ(H0) = 0 as ε → 0. To obtain more profound results, we recall from Section 2.1
that strong or norm resolvent convergence, respectively, implies convergence, in an appropriate
sense, of the associated spectra and unitary groups. The following proposition establishes strong
resolvent convergence Hε → H0 as ε → 0 under rather weak assumptions on V and gε.

Proposition 5.4. Let d ≥ 2 and let V : Rd → R be a measurable function that satisfies
V (r) = V (−r) a.e. and

∫
|r|≥r0

|r|2s|V (r)|2 dr < ∞ for some r0 > 0 and some s ≥ 0. Suppose
that gε > 0 satisfies lim supε→0 gε ε

s−d/2 < ∞ and that Eq. (5.4) defines a self-adjoint operator
Hε on D(Hε) = D(H0) for all ε > 0. Then Hε → H0 in the strong resolvent sense as ε → 0.

Remark. Proposition 5.4 is only formulated for d ≥ 2 since the proof is based on Theorem 5.1.
However, a similar result in d = 1 follows from Theorem 5.6, below.

As explained in Section 2.1, norm resolvent convergence has stronger consequences for the
convergence of the associated spectra and unitary groups than the weaker strong resolvent
convergence. For d ≤ 2, norm resolvent convergence Hε → H0 as ε → 0 is an immediate
consequence of Theorems 3.1 and 4.1. Indeed, for ψ ∈ C∞

0 (RdN ) ∩Hf, it follows from Definition
(2.7) of Tσψ and the antisymmetry of ψ that Tσψ = 0 and, by an approximation argument,
this extends to all ψ ∈ D(H0) because Tσ : H2(RdN ) → Xσ is continuous. Hence, G(z)σ =
Tσ(−∆ + z)−1 vanishes on Hf, so Theorems 3.1 and 4.1 show that Hε → H0 in the norm
resolvent sense as ε → 0. However, Theorems 3.1 and 4.1 prescribe the asymptotics of gε way
too much as we shall see now.

Let d ≤ 3 and let Utot,ε ∈ L (Hf), ε > 0, denote the unitary rescaling

(Utot,εψ)(x1, ..., xN ) := εdN/2ψ(εx1, ..., εxN ). (5.7)

Then a straightforward computation shows that

Utot,εHε(Utot,ε)∗ = ε−2
(

− ∆ + gεε
2−d

N∑
i,j=1
i<j

V (xj − xi)
)
. (5.8)

This means that ε2Hε is unitarily equivalent to Hscal
λ=λε

, where

Hscal
λ := −∆ + λ

N∑
i,j=1
i<j

V (xj − xi) (5.9)
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is self-adjoint on D(Hscal
λ ) = D(H0) and λε = gεε

2−d. In view of Lemma 5.2, Hscal
λ satisfies the

hypotheses of Lemma 5.5, below, and accordingly we now define

λmax := sup
{
λ ≥ 0

∣∣∣Hscal
λ ≥ 0

}
∈ [0,∞]. (5.10)

The following is well-known in a generic setting:

Lemma 5.5. Let A be self-adjoint and let B be symmetric in some (complex) Hilbert space and
suppose that σ(A) = [0,∞) and that B is infinitesimally A-bounded. Then f(λ) := inf σ(A+λB)
defines a concave (and hence continuous) function f : [0,∞) → R. In particular, with λmax :=
sup {λ ≥ 0 | f(λ) ≥ 0} ∈ [0,∞], it holds

(i) f(λ) ≥ 0 for all λ ∈ [0, λmax], λ < ∞.

(ii) If λmax < ∞, then λmax < λ < λ′ implies that f(λ′) < f(λ) < 0 = f(λmax).

Proof. By the Kato-Rellich theorem (see, e.g., [69, Theorem X.12]), A+ λB is self-adjoint and
bounded from below on D(A+ λB) = D(A) for all λ ∈ [0,∞). In particular, f is well-defined,
and by the variational principle,

f(λ) = inf
ψ∈D(A)\{0}

⟨ψ | (A+ λB)ψ⟩
∥ψ∥2 .

Since A + λB depends linearly on λ, this implies that f is concave and hence continuous. It
remains to prove (i) and (ii). By the definition of λmax, there exists a sequence λn ∈ [0, λmax],
n ∈ N, with λn < ∞, f(λn) ≥ 0 and λn → λmax as n → ∞. This implies that f(λ) ≥ 0 for
all λ ∈ [0, λn] because f is concave and f(0) = 0 by assumption. Since f is continuous and
λn → λmax as n → ∞, this proves (i). In particular, if λmax < ∞, then f(λmax) = 0 because
f(λmax) ≥ 0 by (i) and, clearly, f(λ) < 0 for all λ ∈ (λmax,∞). (ii) is now immediate from the
concavity of f .

Obviously, V ≥ 0 implies that λmax = ∞. If V is not purely repulsive, then some decay of
V is needed to ensure that λmax > 0. For example, if

CV− := ess sup
r∈Rd

|r|2 max(−V (r), 0) < ∞ (5.11)

and CV− ̸= 0, then it follows from the fermionic Hardy inequality (5.5) that

λmax ≥ d2/(CV−N) > 0. (5.12)

If λmax ∈ (0,∞) and λ0 = lim supε→0 gεε
2−d > λmax, then Eq. (5.8) and Lemma 5.5 imply that

a subsequence of inf σ(Hε), ε > 0, diverges like −ε−2 to −∞. Since the translational invariance
of Hε implies that σ(Hε) = [inf σ(Hε),∞), the spectrum then fills the whole real line in the limit
ε → 0, which is not compatible with norm resolvent convergence to the positive operator H0 (cf.
Proposition 2.3). We conclude that norm resolvent convergence is only possible for λ0 ≤ λmax,
and in the case of strict inequality the following theorem asserts norm resolvent convergence
Hε → H0 as ε → 0 under some additional decay conditions on V .

Theorem 5.6. Let d ≤ 3 and assume that V ∈ L1(Rd), V (r) = V (−r) a.e. and that V is
infinitesimally (−∆)-bounded in L2

odd(Rd). Suppose that gε > 0, λ0 = lim supε→0 gεε
2−d < λmax

and that (at least) one of the following three cases occurs: (a) V ≥ 0, (b) V ≤ 0 and λmax > 0 or
(c) ess supr∈Rd |r|2|V (r)| < ∞. Then Hε ≥ 0 for ε > 0 small enough, and for all z ∈ C\(−∞, 0],

∥(Hε + z)−1 − (H0 + z)−1∥ = o(gε), (ε → 0). (5.13)

Moreover, the following is true:
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(i) If
∫

|r|2s|V (r)| dr < ∞ for some s ∈ Id, then

∥(Hε + z)−1 − (H0 + z)−1∥ = O(gεε2s) (ε → 0). (5.14)

(ii) If d = 2 and
∫

|r|2| ln |r|||V (r)| dr < ∞, then

∥(Hε + z)−1 − (H0 + z)−1∥ = O(gεε2| ln ε|) (ε → 0). (5.15)

Remarks.

(i) If lim supε→0 gε < ∞ or
∫

|r|2s|V (r)| dr < ∞ for some s ∈ Id and limε→0 gεε2s = 0, then
Theorem 5.6 implies that Hε → H0 in the norm resolvent sense as ε → 0.

(ii) As explained above, the condition λ0 < λmax is necessary: If λ0 > λmax, then one can
expect strong resolvent convergence at best. Indeed, if d ≥ 2, λ0 < ∞ and V decays
sufficiently fast as |r| → ∞, then Proposition 5.4 yields strong resolvent convergence
Hε → H0 as ε → 0.

As the regime where non-trivial contact interactions arise in the limit ε → 0 is of particular
interest, we state the estimates resulting from Theorem 5.6 for such choices of gε separately in
Corollary 5.7, below. While in d ≤ 2 this asymptotics of gε (see Eq. (1.41)) implies immediately
that λ0 = lim supε→0 gεε

2−d = 0, a positive value of λ0 is the result in d = 3. Therefore, for
d = 3 it depends heavily on V and N whether the condition λ0 < λmax is satisfied or not. This
shall be discussed in more detail in Section 5.5, below, where we shall see that, for appropriate
gε and V , the operator H̃ε defined by the right side of Eq. (5.4) on the enlarged Hilbert space
L2(R3N ) behaves essentially different than its restriction Hε = H̃ε ↾ Hf, which converges in the
norm resolvent sense to H0, provided that N is small enough. Either way, it is interesting to note
that this asymptotics of gε results in the same rate of resolvent convergence in all dimensions
d ≤ 3:

Corollary 5.7. Suppose that the hypotheses of Theorem 5.6 are satisfied and that

gε =


O(1) if d = 1,
O(| ln ε|−1) if d = 2,
O(ε) if d = 3.

(ε → 0)

Then, for all z ∈ C \ (−∞, 0],

∥(Hε + z)−1 − (H0 + z)−1∥ = O(ε2) (ε → 0),

provided that d ∈ {1, 3} and
∫

|r|(5−d)/2|V (r)| dr < ∞ or d = 2 and
∫

|r|2| ln |r|||V (r)| dr < ∞.

The outline of this section is as follows: The proof of Theorem 5.1 is given in Section 5.2, the
proofs of Lemma 5.2 and Proposition 5.4 are given in Section 5.3 and the proof of Theorem 5.6
is given in Section 5.4. Finally, in Section 5.5, we put Theorem 5.6 into a broader perspective.

5.2 Proof of Theorem 5.1
The proof of Theorem 5.1 is based on the following two lemmas, Lemma 5.8 being its heart.

Lemma 5.8. If d ≥ 2, then there exists a sequence un ∈ C∞
0 (Rd), n ∈ N, with 0 ≤ un(x) ≤ 1,

un(x) = 1 if |x| ≤ 1/n and, as n → ∞, diam(suppun) := sup{|x− y| |x, y ∈ suppun} → 0 and∫
|∇un(x)|2 dx → 0, (5.16)∫

|x|2|∆un(x)|2 dx → 0. (5.17)
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Proof. In the case d ≥ 3 we may choose any function u ∈ C∞
0 (Rd) with 0 ≤ u(x) ≤ 1 and

u(x) = 1 if |x| ≤ 1. Then un(x) := u(nx) has the desired properties because the substitution
y = nx shows that, in the limit n → ∞,∫

|∇un(x)|2 dx = n2−d
∫

|∇u(y)|2 dy → 0,∫
|x|2|∆un(x)|2 dx = n2−d

∫
|y|2|∆u(y)|2 dy → 0.

In the remaining case d = 2 we first choose u1 = u2 = f , where f ∈ C∞
0 (R2), 0 ≤ f(x) ≤ 1 and

f(x) = 1 if |x| ≤ 1. For n ≥ 3 (and hence ln(lnn) > 0) we define un(0) := 1 and

un(x) := g

( ln(n|x|)
ln(lnn)

)
, x ̸= 0,

where g ∈ C∞(R) denotes a fixed function with 0 ≤ g(s) ≤ 1, g(s) = 1 if s ≤ 0, and g(s) = 0 if
s ≥ 1. Then un(x) = 1 if |x| ≤ 1/n, un(x) = 0 if |x| ≥ (lnn)/n, and hence un ∈ C∞

0 (R2) and
diam(suppun) → 0 as n → ∞. Next, the substitution s = ln(nr)/ ln(lnn) yields

1
2π

∫
|∇un(x)|2 dx = 1

(ln(lnn))2

∫ (lnn)/n

1/n
g′
( ln(nr)

ln(lnn)

)2 dr
r

= 1
ln(lnn)

∫ 1

0
g′(s)2 ds,

which vanishes in the limit n → ∞. Furthermore, using that on radially symmetric functions

|x|2∆ =
(
r
∂

∂r

)2
,

we find that

1
2π

∫
|x|2|∆un(x)|2 dx =

∫ (lnn)/n

1/n

∣∣∣∣∣
(
r
∂

∂r

)2
g

( ln(nr)
ln(lnn)

)∣∣∣∣∣
2 dr
r

= 1
(ln(lnn))4

∫ (lnn)/n

1/n
g′′
( ln(nr)

ln(lnn)

)2 dr
r

= 1
(ln(lnn))3

∫ 1

0
g′′(s)2 ds,

which also vanishes in the limit n → ∞. This concludes the proof.

Lemma 5.9. Let d ≥ 2 and let ψ ∈ C∞
0 (RdN ) with ψ = 0 on Γ. Then, for each pair σ ∈ I and

for each ε > 0, there exists ψε ∈ C∞
0 (RdN \ Γσ) with ψε = 0 on Γ, suppψε ⊆ suppψ and

∥(−∆ + 1)(ψ − ψε)∥ < ε.

Proof. Without restriction, we may assume that σ = (1, 2). Let ψ ∈ C∞
0 (RdN ) with ψ = 0 on Γ

and let

ψn(x1, . . . , xN ) := ψ(x1, . . . , xN ) · (1 − un(x1 − x2)), n ∈ N,

where un is given by Lemma 5.8. Then suppψn ⊆ suppψ, ψn = 0 = ψ on Γ and the properties
of un imply that ψn ∈ C∞

0 (RdN \Γσ). Therefore, it suffices to show that ∥(−∆+1)(ψ−ψn)∥ → 0
as n → ∞. In the following un also denotes the function (x1, . . . , xN ) 7→ un(x1 − x2). Then
ψ − ψn = ψun, and hence

∥(−∆ + 1)(ψ − ψn)∥ ≤ ∥∆(ψun)∥ + ∥ψun∥.
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Clearly, ∥ψun∥ → 0 as n → ∞ by Lebesgue dominated convergence because |ψun| ≤ |ψ| and
ψun → 0 pointwise as n → ∞. To estimate the first term ∥∆(ψun)∥, we introduce the relative
and center of mass coordinates

r := x2 − x1, R := x1 + x2
2 . (5.18)

Then
∆ = 2∆r + 1

2∆R + ∆x′ , (5.19)

where x′ := (x3, . . . , xN ). Since un depends on r only, it follows that

∆(ψun) = 2∆r(ψun) + 1
2(∆Rψ)un + (∆x′ψ)un,

where the first term equals

2∆r(ψun) = 2(∆rψ)un + 4(∇rψ) · (∇run) + 2ψ∆run.

By Lebesgue dominated convergence, as explained above, (∆rψ)un, (∆Rψ)un and (∆x′ψ)un
have vanishing L2-norm in the limit n → ∞. Hence, it remains to show that, as n → ∞,
∥(∇rψ) · (∇run)∥ → 0 and ∥ψ∆run∥ → 0. For ∥(∇rψ) · (∇run)∥ this follows from

∥(∇rψ) · (∇run)∥2 ≤
∫

|∇rψ(r,R, x′)|2|∇un(r)|2 dr dR dx′

≤ sup
r∈Rd

∫
|∇rψ(r,R, x′)|2 dR dx′ · ∥∇un∥2

because, by Lemma 5.8, ∥∇un∥ → 0 as n → ∞. For ∥ψ∆run∥ we use that ψ = 0 on Γ implies
that ψ(0, R, x′) = 0, and hence

ψ(r,R, x′) =
∫ 1

0
(∇rψ)(tr, R, x′) · r dt.

It follows that∫
dr dRdx′ |(ψ∆run)(r,R, x′)|2 ≤

∫
dr dR dx′

(∫ 1

0
|∇rψ(tr, R, x′)|2 dt

)
|r|2|∆un(r)|2

≤ C

∫
|r|2|∆un(r)|2 dr,

where
C := sup

r∈Rd

∫
dR dx′

∫ 1

0
|∇rψ(tr, R, x′)|2 dt < ∞

and, by Lemma 5.8,
∫

|r|2|∆un(r)|2 dr → 0 as n → ∞. This shows that ∥ψ∆run∥ → 0 as
n → ∞, so the proof is complete.

Proof of Theorem 5.1. For given ψ ∈ H2(RdN ) ∩ Hf and ε > 0 it suffices to find a function
φε ∈ C∞

0 (RdN \ Γ) with ∥(−∆ + 1)(ψ − φε)∥ < ε. Then ψε := Pfφε, where Pf ∈ L (L2(RdN ))
denotes the orthogonal projection onto the subspace Hf ⊆ L2(RdN ), defines an element in
C∞

0 (RdN \ Γ) ∩ Hf and, as ε → 0, ψε → ψ w.r.t. the norm of H2(RdN ) because

∥(−∆ + 1)(ψ − ψε)∥ = ∥Pf (−∆ + 1)(ψ − φε)∥ ≤ ∥(−∆ + 1)(ψ − φε)∥ < ε.

To construct φε, we may assume that ψ belongs to C∞
0 (RdN ) ∩ Hf, which is dense in

H2(RdN ) ∩ Hf, and we use Lemma 5.9 repeatedly. That is, we use σ(1), ..., σ(n) to denote
the n = N(N − 1)/2 pairs in I, and we define Ω0 := RdN and

Ωk := RdN \
k⋃
j=1

Γσ(j), k = 1, . . . , n.

Then we set η0 := ψ and we construct smooth functions ηk, k = 1, ..., n, recursively with ηk = 0
on Γ, supp(ηk) ⊆ supp(ηk−1) ∩ Ωk and ∥ηk − ηk−1∥ < ε/n. This is achieved with the help of
Lemma 5.9. The function φε := ηn has the desired properties.
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5.3 Proofs of Lemma 5.2 and Proposition 5.4
Proof of Lemma 5.2. For the first part, it suffices to show that for given δ > 0 there exists
C(δ) > 0 so that ψ ∈ H2(Rd) ∩ L2

odd(Rd) implies that V ψ ∈ L2(Rd) with

∥V ψ∥2 ≤ δ2∥∆ψ∥2 + C(δ)2∥ψ∥2. (5.20)

If the hypotheses of Lemma 5.2 are satisfied with s = 0, then V ∈ L2(Rd) and hence (5.20)
follows from a standard result (see, e.g., [77, Theorem 11.1]). In the remaining case where∫

min(1, |r|2s)|V (r)|2 dr < ∞ for some s ∈ Id, the Sobolev embedding H2(Rd) ↪→ C0,s(Rd) exists
and is continuous, so it follows that, for some constant cs > 0 and all ψ ∈ H2(Rd) ∩ L2

odd(Rd),

|ψ(r)| = |ψ(r) − ψ(0)| ≤ cs|r|s(∥∆ψ∥2 + ∥ψ∥2)1/2, r ∈ Rd, (5.21)

where we used that ψ(0) = 0 since ψ defines a continuous odd function. Now, let the cutoff
potential V k, k > 0, be defined as in Eq. (3.33). Then (5.21) implies that V kψ ∈ L2(Rd) and

∥V kψ∥2 ≤ c2
s(∥∆ψ∥2 + ∥ψ∥2)

∫
|r|≤k

|r|2s|V (r)|2 dr,

where the integral on the right side vanishes as k → 0. Hence, by choosing k > 0 small enough,
we obtain that, for all ψ ∈ H2(Rd) ∩ L2

odd(Rd),

∥V kψ∥2 ≤ δ2

2
(
∥∆ψ∥2 + ∥ψ∥2

)
. (5.22)

Furthermore, since V − V k ∈ L2(Rd), there exists a constant C(δ, k) > 0 such that, for all
ψ ∈ H2(Rd) ∩ L2

odd(Rd),

∥(V − V k)ψ∥2 ≤ δ2

2 ∥∆ψ∥2 + C(δ, k)2∥ψ∥2. (5.23)

Adding (5.22) and (5.23) yields (5.20), which proves the first part of the lemma.
For the second part we use that C∞

0 (RdN ) ∩ Hf is dense in D(H0) = H2(RdN ) ∩ Hf w.r.t.
the H2-norm, and that for all φ ∈ C∞

0 (RdN ) ∩ Hf,∫
|Vε(x2 − x1)φ(x)|2 dx =

∫
|Vε(xj − xi)φ(x)|2 dx, 1 ≤ i < j ≤ N,

where x = (x1, ..., xN ) ∈ RdN . Therefore, to show that ∑i<j |Vε(xj − xi)| is infinitesimally
H0-bounded for each ε > 0, it suffices to show that (5.20) implies that for all ε > 0 and all
φ ∈ C∞

0 (RdN ) ∩ Hf,(∫
|Vε(x2 − x1)φ(x)|2 dx

)1/2
≤ c1(ε)δ∥H0φ∥ + c2(ε)C(δ)∥φ∥ (5.24)

for some constants c1(ε), c2(ε) > 0 that are independent of δ > 0. In particular, it then follows
that ∑i<j Vε(xj −xi) is infinitesimally H0-bounded, so Hε is self-adjoint on D(Hε) = D(H0) by
the Kato-Rellich theorem.

To prove (5.24), we introduce the relative and center of mass coordinates from (5.18), so the
wave function φ in the new coordinates is given by φ̃(r,R, x′) := φ(R − r/2, R + r/2, x′) with
x′ = (x3, ..., xN ), and afterwards we substitute r/ε → r. We find that for all φ ∈ C∞

0 (RdN )∩Hf,∫
|Vε(x2 − x1)φ(x)|2 dx = ε−d

∫
dR dx′

∫
dr |V (r)|2|φ̃(εr,R, x′)|2

≤ ε4−2dδ2∥∆rφ̃∥2 + ε−2dC(δ)2∥φ̃∥2,

where the second line was obtained from (5.20) and φ̃(−r,R, x′) = −φ̃(r,R, x′). Now, observe
that the definition of φ̃ implies that ∥φ̃∥ = ∥φ∥ and, by Eq. (5.19), ∥∆rφ̃∥ ≤ ∥H0φ∥/2, so (5.24)
is established with c1(ε) = ε2−d/2 and c2(ε) = ε−d. This concludes the proof.
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Proof of Proposition 5.4. In view of ∥(Hε + i)−1∥ = 1 = ∥R0(i)∥, where R0(i) = (H0 + i)−1 for
short, it suffices to prove that, as ε → 0, (Hε + i)−1ψ → R0(i)ψ for ψ from a dense subset of
Hf. By Theorem 5.1, the set of all ψ = (H0 + i)φ with φ ∈ C∞

0 (RdN \ Γ) ∩ Hf is dense in Hf,
and for such ψ,

∥(Hε + i)−1ψ −R0(i)ψ∥ =
∥∥∥∥(Hε + i)−1

(
gε
∑
i<j

Vε(xj − xi)
)
R0(i)ψ

∥∥∥∥
≤ gε

∑
i<j

∥Vε(xj − xi)φ∥ = gεN(N − 1)
2 ∥Vε(x2 − x1)φ∥, (5.25)

where the last equality used the antisymmetry of φ. For a further estimate of (5.25), we
again introduce the relative and center of mass coordinates from (5.18), so φ is then given by
φ̃(r,R, x′) = φ(R− r/2, R+ r/2, x′). Like φ, φ̃ is a compactly supported smooth function, and
hence supp φ̃ ⊆ Rd ×BN−1 for some ball BN−1 ⊆ Rd(N−1). It follows that for any c > 0,

∥Vε(x2 − x1)φ∥2 = ε−d
∫

BN−1

dR dx′
∫

|r|≤c

dr |V (r)|2
∣∣φ̃(εr,R, x′)

∣∣2
+ ε−d

∫
BN−1

dR dx′
∫

|r|>c

dr |V (r)|2
∣∣φ̃(εr,R, x′)

∣∣2 . (5.26)

Since φ ∈ C∞
0 (RdN \ Γ) ∩ Hf and thus φ̃(r,R, x′) = 0 for r < dist(suppφ,Γ), the first summand

vanishes for ε < c−1 dist(suppφ,Γ) and, with the given value of s ≥ 0,∣∣φ̃(r,R, x′)
∣∣2 ≤ C(φ̃, s)2|r|2s, (R, x′) ∈ Rd(N−1)

for some constant C(φ̃, s) > 0. Hence, it follows from (5.26) that for all ε < c−1 dist(suppφ,Γ),

gε∥Vε(x2 − x1)φ∥ ≤ C(φ̃, s)gεεs−d/2
(

|BN−1|
∫

|r|>c

|r|2s |V (r)|2 dr
)1/2

,

where the integral on the right side vanishes as c → ∞ because
∫

|r|≥r0
|r|2s|V (r)|2 dr < ∞ by

assumption. Since lim supε→0 gε ε
s−d/2 < ∞ by assumption, by choosing first c > r0 large and

then ε > 0 small, we see that limε→0 gε∥Vε(x2 − x1)φ∥ = 0. In view of (5.25), this means that
(Hε + i)−1ψ → R0(i)ψ as ε → 0 and the proof is complete.

5.4 Proof of Theorem 5.6
We first note that our assumptions on V and Lemma 5.2 imply that Hε is self-adjoint on
D(Hε) = D(H0) for all ε > 0. The proof of Theorem 5.6 is based on the new expression (5.32),
below, for Hε that allows us to express the resolvent by the Konno-Kuroda formula (5.34). To
derive Eq. (5.32), we first need to introduce some auxiliary spaces and operators.

Let

Xf := L2
odd(Rd,dr) ⊗ L2(Rd, dR) ⊗

N∧
i=3

L2(Rd,dxi), (5.27)

where the integration variables r and R in (5.27) correspond to the relative and center of mass
coordinates of the fermion positions x1 and x2 (see Eq. (5.18)). This change of coordinates is
implemented by the isometric operator K : Hf → Xf with

(
K ψ

)
(r,R, x3, ..., xN ) := ψ

(
R− r

2 , R+ r

2 , x3, ..., xN

)
. (5.28)
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It follows that for all φ,ψ ∈ D(H0),∑
i<j

∫
φ(x)Vε(xj − xi)ψ(x) dx = (N − 1)N

2

∫
φ(x)Vε(x2 − x1)ψ(x) dx

= (N − 1)N
2

∫
(K φ)(r,R, x′)Vε(r) (K ψ)(r,R, x′) dr dR dx′,

where the antisymmetry of φ and ψ was used in the first line. This means that∑
i<j

Vε(xj − xi)ψ = (N − 1)N
2 K ∗(Vε ⊗ 1)K ψ, ψ ∈ D(H0). (5.29)

Next, let the unitary rescaling Uε ∈ L (L2(Rd)), ε > 0, be extended to L (Xf) via

(Uεψ) (r,R, x′) := εd/2 ψ(εr,R, x′),

and let
v(r) := |V (r)|1/2,

u(r) := J |V (r)|1/2, J := sgn(V ),

so that V = uv. Note that u, v ∈ L2(Rd) because V ∈ L1(Rd) by assumption. In terms of the
above operators, we now define for ε > 0 the new operators Aε, Bε : D(Aε) ⊆ Hf → Xf, where

Aε :=

√
(N − 1)N

2 (v ⊗ 1) ε−d/2UεK , (5.30)

Bε := gεJAε = gε

√
(N − 1)N

2 (u⊗ 1) ε−d/2UεK . (5.31)

The domain D(Aε) is determined by the domain of the multiplication operator v⊗1, so it follows
that Aε and Bε are densely defined and closed on D(Aε) ⊇ D(H0). In view of Eq. (5.29), these
new operators allow us to express the Schrödinger operator Hε from Eq. (5.4) in the form

Hε = −∆ +A∗
εBε. (5.32)

This means that A∗
εBε is a sum of two-body potentials, and similarly,

A∗
εAεψ =

∑
i<j

|Vε(xj − xi)|ψ, ψ ∈ D(H0). (5.33)

In particular, it follows from Lemma 5.2 that both A∗
εBε and A∗

εAε are infinitesimally H0-
bounded, so the hypotheses of Theorem B.1 are satisfied. This means that

ϕε(z) = BεR0(z)A∗
ε, z ∈ ρ(H0)

defines a bounded operator in L (Xf) and that 1 + ϕε(z) has a bounded inverse if and only if
z ∈ ρ(Hε) ∩ ρ(H0). If z ∈ ρ(Hε) ∩ ρ(H0), then

(Hε + z)−1 = R0(z) − (AεR0(z))∗(1 + ϕε(z))−1BεR0(z). (5.34)

Taking for granted Lemmas 5.10 and 5.12, below, we now give the proof of Theorem 5.6:

Proof of Theorem 5.6. Lemma 5.12 shows that (0,∞) ⊆ ρ(Hε) for all sufficiently small ε > 0,
which means that (Hε+ z)−1 is given by Eq. (5.34) for all z > 0. For fixed z > 0, it follows that

∥(Hε + z)−1 −R0(z)∥ ≤ gε∥AεR0(z)∥2∥(1 + ϕε(z))−1∥, (5.35)

where we used that Bε = gεJAε. Depending on the decay of V , Lemmas 5.10 and 5.12 yield
an asymptotic estimate for the right side of (5.35) that proves Theorem 5.6 for z ∈ (0,∞). For
general z ∈ ρ(H0) = C \ (−∞, 0], Lemma 2.7 now proves Theorem 5.6.
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Lemma 5.10. If d ≤ 3, z > 0 and V ∈ L1(Rd) satisfies V (r) = V (−r) a.e., then AεR0(z) → 0
as ε → 0 in L (Hf,Xf). Furthermore, the following is true:

(i) If
∫

|r|2s |V (r)| dr < ∞ for some s ∈ Id, then ∥AεR0(z)∥ = O(εs) as ε → 0.

(ii) If d = 2 and
∫

|r|2| ln |r|||V (r)| dr < ∞, then ∥AεR0(z)∥ = O(ε| ln ε|1/2) as ε → 0.

Proof. From Eqs. (5.28) and (5.19), it follows that ∥(−2∆r + z)K (H0 + z)−1∥ ≤ 1. Hence,
Definition (5.30) of Aε implies that ∥AεR0(z)∥ ≤

√
N(N − 1)/2∥vε−d/2Uε(−2∆ + z)−1∥odd,

where ∥ · ∥odd denotes the operator norm in L2
odd(Rd). Now, recall from the proof of Lemma 5.2

that the Sobolev embedding H2(Rd) ↪→ C0,s(Rd) exists and is continuous for all s ∈ Id. This
means that for some constant cs > 0 and all ψ ∈ H2(Rd) ∩ L2

odd(Rd),∣∣∣(ε−d/2Uεψ)(r)
∣∣∣ = |ψ(εr) − ψ(0)| ≤ cs|εr|s∥ψ∥H2 , r ∈ Rd. (5.36)

If
∫

|r|2s |V (r)| dr < ∞, then it follows that

∥vε−d/2Uε(−2∆ + z)−1∥odd ≤ C(s, z)εs
(∫

|r|2s |V (r)| dr
)1/2

(5.37)

for some constant C(s, z) > 0. This proves (i), and a similar estimate, where (5.36) is replaced
by the improved Sobolev estimate from Lemma 5.11, below, also proves (ii).

It remains to show that AεR0(z) → 0 as ε → 0 for general V ∈ L1(Rd). To this end,
we again consider the cutoff potential V k, k > 0, from the proof of Lemma 5.2 and we set
vk(r) := |V k(r)|1/2. Then (5.37) holds for vk in place of v because

∫
|r|2s|V k(r)| dr < ∞ for all

s > 0. Moreover, using that the Sobolev embedding H2(Rd) ↪→ L∞(Rd) exists and is continuous,
we find that, for all φ ∈ L2

odd(Rd),

∥(v − vk)ε−d/2Uε(−2∆ + z)−1φ∥ ≤ ∥v − vk∥∥(−2∆ + z)−1φ∥L∞

≤ C(z)∥V − V k∥1/2
L1 ∥φ∥.

This implies that ∥(v − vk)ε−d/2Uε(−2∆ + z)−1∥odd → 0 as k → ∞ uniformly in ε > 0, and a
simple δ/2-argument now shows that ∥vε−d/2Uε(−2∆+z)−1∥odd → 0 as ε → 0, which concludes
the proof.

The next lemma shows that the usual Sobolev embedding H2(R2) ↪→ C0,s(R2), s ∈ (0, 1),
can be slightly improved. This has been used in part (ii) of the previous lemma.

Lemma 5.11. For all ψ ∈ H2(R2) and all x, y ∈ R2, y ̸= 0, we have

|ψ(x+ y) − ψ(x)| ≤ 1
2
√
π

|y| (2 + | ln |y||)1/2
(
∥∆ψ∥2 + ∥∇ψ∥2

)1/2
.

Remark. In fact, our proof yields a slightly better factor than (2 + | ln |y||)1/2.

Proof. We first note that ψ ∈ H2(R2) implies that ψ̂ ∈ L1(R2), and hence for all x ∈ R2,

ψ(x) = 1
2π

∫
R2

ψ̂(p) exp(ip · x) dp.

Therefore, by the Cauchy-Schwarz inequality,

2π |ψ(x+ y) − ψ(x)|
|y|

≤
∫
R2

| exp(ip · y) − 1|
|y|

|ψ̂(p)| dp ≤ I(y)1/2
(
∥∆ψ∥2 + ∥∇ψ∥2

)1/2
, (5.38)
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where

I(y) :=
∫
R2

| exp(ip · y) − 1|2

|y|2(|p|4 + |p|2) dp.

To estimate the integral I(y), we may assume that y = (|y|, 0) because I(y) is invariant under
rotations. Then, after the substitution q = (q1, q2) := p|y|, we find that for any Q > 0,

I(y) =
∫
R2

| exp(iq1) − 1|2

|q|4 + |y|2|q|2
dq ≤

∫
|q|≤Q

q2
1

|q|4 + |y|2|q|2
dq +

∫
|q|>Q

4
|q|4

dq, (5.39)

where the first and the second integral on the right side were obtained from | exp(iq1) − 1| ≤ |q1|
and | exp(iq1) − 1| ≤ 2, respectively. Both integrals can be computed explicitly. For the first one
we obtain∫

|q|≤Q

q2
1

|q|4 + |y|2|q|2
dq = 1

2

∫
|q|≤Q

1
|q|2 + |y|2

dq

= π

2 ln
(

1 + Q2

|y|2

)
≤ π

(
| ln |y|| + | lnQ| + 1

2 ln 2
)
, (5.40)

where the inequality used ln(1 + t) ≤ | ln t| + ln 2, valid for all t > 0. The second integral on the
right side of (5.39) equals 4π/Q2, so it follows from (5.39) and (5.40) that for any Q > 0,

I(y) ≤ π

(
| ln |y|| + | lnQ| + 1

2 ln 2
)

+ 4π
Q2 .

The optimal value of Q is Q = 2
√

2, which yields I(y) ≤ π(| ln |y|| + c) with c = 1
2 + ln 4 < 2.

Using this to estimate the right side of (5.38), the desired estimate follows.

Lemma 5.12. If the hypotheses of Theorem 5.6 are satisfied and ε > 0 is small enough, then
(0,∞) ⊆ ρ(Hε), and hence (1 + ϕε(z))−1 exists for all z ∈ (0,∞). Moreover, for all z ∈ (0,∞),

lim sup
ε→0

∥(1 + ϕε(z))−1∥ < ∞.

Proof. We claim, and prove below, that in each case (a), (b) and (c) from the statement of
Theorem 5.6 there exist constants C = C(d,N, V, λ0), ε0 = ε0(d,N, V, λ0) > 0 such that for all
ε ∈ (0, ε0) and all ψ ∈ D(Hε) = D(H0),

gε
∑
i<j

∫
RdN

|Vε(xj − xi)||ψ(x)|2 dx ≤ C ⟨ψ |Hεψ⟩ . (5.41)

Since gε > 0 by assumption, (5.41) shows that Hε ≥ 0 and hence (0,∞) ⊆ ρ(Hε) for all
ε ∈ (0, ε0). By Theorem B.1, this means that (1 + ϕε(z))−1 exists for all z ∈ (0,∞) and

(1 + ϕε(z))−1 = 1 − gε JAε(Hε + z)−1A∗
ε. (5.42)

To estimate the norm of (1 + ϕε(z))−1, we first note that (5.33) and (5.41) imply that for all
ε ∈ (0, ε0), z ∈ (0,∞) and ψ ∈ D(H0),

gε∥Aεψ∥2 ≤ C∥(Hε + z)1/2ψ∥2. (5.43)

Using that D(Hε) = D(H0) is dense in D(H1/2
ε ) w.r.t. the graph norm of H1/2

ε and that Aε
is closed, an approximation argument shows that D(H1/2

ε ) ⊆ D(Aε) and that (5.43) is valid
for all ψ ∈ D(H1/2

ε ). We conclude that Aε(Hε + z)−1/2 defines a bounded operator and that
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gε∥Aε(Hε + z)−1/2∥2 ≤ C for all ε ∈ (0, ε0) and z ∈ (0,∞). Using this to estimate the norm of
the right side of Eq. (5.42), we find that for all z ∈ (0,∞),

lim sup
ε→0

∥(1 + ϕε(z))−1∥ ≤ 1 + C, (5.44)

which proves the lemma given the validity of (5.41).
It remains to prove (5.41) in all cases (a), (b) and (c). In the case of (a), where V ≥ 0, (5.41)

with C = 1 is immediate from the definition of Hε. In the other cases, the scaling x → εx shows
that (5.41) is equivalent to the assertion that, for all ε ∈ (0, ε0) and all ψ ∈ D(H0),

λε
∑
i<j

∫
RdN

|V (xj − xi)||ψ(x)|2 dx ≤ C ⟨ψ|Hscal
λε

ψ⟩ , (5.45)

where Hscal
λε

is defined by (5.9) with λ = λε = gεε
2−d. From Lemma 5.5 we know that Hscal

λ ≥ 0
for all λ ∈ [0, λmax], λ < ∞. In the case of (b), where V ≤ 0 and λmax > 0 by assumption,
we now choose C > 0 so large that (1 + 1/C)λ0 < λmax (here we use the assumption λ0 =
lim supε→0 λε < λmax) and we choose ε0 > 0 so small that (1 + 1/C)λε < λmax for all ε ∈ (0, ε0).
Then (5.45) follows immediately. Finally, in the remaining case (c), where V does not necessarily
have a definite sign but CV = ess supr∈Rd |r|2|V (r)| ∈ (0,∞), we first conclude from (5.12) that
λmax ≥ d2/(CVN) > 0. Let η ∈ (λ0, λmax) be fixed, let δ ∈ (0, 1 − λ0/η) be fixed, and let ε0 > 0
be so small that 1 − λε/η ≥ δ for all ε ∈ (0, ε0). Then, on the one hand, it follows that for all
ε ∈ (0, ε0) and all ψ ∈ D(H0),

δ∥∇ψ∥2 ≤
(

1 − λε
η

)
∥∇ψ∥2 ≤

〈
ψ
∣∣∣Hscal

λε
ψ
〉
, (5.46)

where the second inequality used the Definition (5.9) of Hscal
λε

together with Hscal
η ≥ 0 (because

η < λmax). On the other hand, the fermionic Hardy inequality (5.5) yields for all ψ ∈ D(H0),

∑
i<j

∫
RdN

|V (xj − xi)||ψ(x)|2 dx ≤ CVN

d2 ∥∇ψ∥2. (5.47)

Combining (5.46) and (5.47) proves (5.45) for any particular choice of C > λ0CVN/(d2δ). This
completes the proof of Lemma 5.12, so Theorem 5.6 is established after all.

5.5 Examples and discussion
To compare Theorem 5.6 with our previous results from Sections 3 and 4 and to show that the
antisymmetry of the wave function is indispensable for Theorem 5.6, we now consider Hε as the
restriction

Hε = H̃ε ↾ Hf,

where H̃ε denotes the Schrödinger operator defined by expression (5.4) on the enlarged Hilbert
space H from Eq. (1.26). We shall give choices for gε and V , where H̃ε has a limit describing
non-trivial contact interactions, or even no limit at all, while Hε converges in the norm resolvent
sense to the free operator H0.

For d ≤ 2, we choose, for simplicity, a two-body potential V ∈ C∞
0 (Rd) with V (r) = V (−r)

a.e. and
∫
V (r) dr = −1. Moreover, similarly to Eq. (1.41), we choosegε = g if d = 1,

2/gε = (2π)−1| ln ε| + b if d = 2,
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for some g, b ∈ R, g > 0. Then λ0 = lim supε→0 gεε
2−d = 0 and it follows from (5.12) that

λmax > 0. On the one hand, this means that the hypotheses of Theorem 5.6 are satisfied and
hence Hε → H0 in the norm resolvent sense as ε → 0. On the other hand, it follows from
Theorems 3.1 and 4.1, respectively, that H̃ε → H̃ in the norm resolvent sense as ε → 0, where
H̃ describes non-trivial contact interactions among N particles. That is, H̃ is a self-adjoint
extension of −∆ ↾ C∞

0 (RdN \ Γ) that is distinct from the free Laplacian.
In d = 3 dimensions this is more complicated. In this case we choose, in accordance with

Eq. (1.41),
gε = 2(ε+ bε2) (5.48)

for some b ∈ R, which yields λ0 = lim supε→0 gεε
−1 = 2. Comparing this with the lower bound

λmax ≥ 9/(CV−N) (5.49)

from (5.12), this suggests that the condition λ0 < λmax is only satisfied if both V and N are
“sufficiently small”. For this reason, the dependence on N is exhibited in the notation in the
following: We write HN,ε and H̃N,ε for Hε and H̃ε, respectively. To construct an appropriate
two-body potential, we first consider the case N = 2 and we introduce the relative and center
of mass coordinates from Eq. (5.18). Then,

H̃2,ε = hε ⊗ 1 + 1 ⊗ (−∆R/2), (5.50)

where the one-particle operator
hε = −2∆r + gεVε

is self-adjoint on D(hε) = H2(R3), provided that V ∈ L2(R3). The prefactor 2 in the Definition
(5.48) of gε allows us to compare hε directly with the operator from [6, Chapter I, Eq. (1.2.11)].
Thus, we know from [6, Chapter I, Theorem 1.2.5.] that hε converges, as ε → 0, in the norm
resolvent sense to −2∆ ↾ H2(R3) unless

h := −∆ + V

has a zero-energy resonance. We claim that an appropriate potential with a zero-energy reso-
nance is given by

V (r) :=


− 2

|r|
+ 1 if |r| ≤ 1,

0 if |r| > 1.

To see this, we first observe that V ∈ L1 ∩L2(R3), so the integral operator uG0v that is defined
in terms of the kernel

(uG0v)(x, x′) := u(x)v(x′)
4π|x− x′|

is a Hilbert-Schmidt operator [6]. Now, it is straightforward to verify that (uG0v)φ = −φ, where
φ ∈ L2(R3) is given by

φ(r) :=


( 2

|r|
− 1

)1/2
exp(−|r|) if |r| ≤ 1,

0 if |r| > 1.

In analogy to [6, Chapter I, Eq. (1.2.25)] we now define

ψ(r) := (G0vφ)(r) =


exp(−|r|) if |r| ≤ 1,

1
e|r|

if |r| > 1.
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Then it follows from [6, Chapter I, Lemma 1.2.3] that ψ ∈ L2
loc(R3) and (−∆ + V )ψ = 0 in the

distributional sense, but, clearly, ψ /∈ L2(R3). This proves that h = −∆ + V has a zero-energy
resonance in the sense of [6]. Furthermore, one can verify that h has no discrete spectrum in
(−∞, 0], which, in particular, implies that h ≥ 0.

Now, on the one hand, it follows immediately from the definition of V that −|r|−2 ≤ V (r) ≤ 0
and hence CV− = CV = ess supr∈R3 |r|2|V (r)| ≤ 1. Thus, for N ≤ 4, it follows from (5.49) that
λ0 = 2 < λmax and hence, by Theorem 5.6, HN,ε → H0 in the norm resolvent sense as ε → 0.
On the other hand, concerning H̃N,ε, we can say the following:

Proposition 5.13. With the above notations, in the case d = 3 we have

(i) For N = 2, H̃2,ε → H̃2 in the norm resolvent sense as ε → 0, where H̃2 is a non-trivial
self-adjoint extension of −∆ ↾ C∞

0 (R6 \ Γ).

(ii) For each N ≥ 3 there exists a constant CN < 0 such that

σ(H̃N,ε) = [CNε−2,∞),

provided that b = 0 in (5.48).

Remark. Proposition 5.13 and the above considerations for d ≤ 2 show that the antisymmetry
of the wave function is indispensable for Theorem 5.6 in all dimensions d ≤ 3: The analog of
Theorem 5.6 in L2(RdN ) is wrong.

Proof. To prove (i), we use that the one-particle operator h = −∆ + V has a zero-energy
resonance but no discrete spectrum in (−∞, 0]. This means that case II of [6, Chapter I, Theorem
1.2.5] applies to hε, and it follows that hε → h(α) in the norm resolvent sense as ε → 0, where
h(α) = −2∆α,0 is a self-adjoint extension of −2∆ ↾ C∞

0 (R3 \ {0}) that is distinct from the free
Laplacian. From [6, Chapter I, Theorem 1.3.1] it now follows that h(α) ≥ −C, hε ≥ −C, and
hence, by (5.50), H̃2,ε ≥ −C for some constant C > 0 that is independent of ε ∈ (0, 1). To prove
norm resolvent convergence of H̃2,ε, we now pass to Fourier space in R and we note that H̃2,ε
acts pointwise in the conjugate variable P by the operator H̃2,ε(P ) = hε + P 2/2. Therefore, it
suffices to show that, uniformly in z ≥ C + 1, ∥(hε + z)−1 − (h(α) + z)−1∥ → 0 as ε → 0. To
this end, let δ ∈ (0, 1) be fixed. Then z > C + 2δ−1 and ε < 1 imply that ∥(hε + z)−1∥ < δ/2
and ∥(h(α) + z)−1∥ < δ/2, and hence

∥(hε + z)−1 − (h(α) + z)−1∥ < δ. (5.51)

For z, w ∈ [C + 1, C + 2δ−1] we use that

∥(hε + z)−1 − (hε + w)−1∥ = |z − w|∥(hε + z)−1(hε + w)−1∥ ≤ |z − w|,

and a similar estimate for h(α) in place of hε. Hence, it suffices to consider finitely many points
z1 = C + 1 < z2 < ... < zn = C + 2δ−1 with |zi+1 − zi| < δ/3 and to choose ε0 > 0 so small that
∥(hε + zi)−1 − (h(α) + zi)−1∥ < δ/3 for all ε ∈ (0, ε0) and i = 1, ..., n. Then (5.51) is true for all
z ∈ [C + 1, C + 2δ−1] and all ε ∈ (0, ε0), and hence ∥(hε + z)−1 − (h(α) + z)−1∥ → 0 as ε → 0
uniformly in z ≥ C + 1. This implies that H̃2,ε → H̃2 in the norm resolvent sense as ε → 0,
where H̃2 is the closure of the operator h(α)⊗1+1⊗(−∆R/2) defined on D(h(α))⊗H2(R3). By
construction, H̃2 is a self-adjoint extension of −∆ ↾ C∞

0 (R6 \ Γ), so the proof of (i) is complete.
To prove (ii), we first note that, similarly to Eq. (5.8), b = 0 implies that H̃N,ε is unitarily

equivalent to ε−2H̃N,ε=1. In the case N = 3 the zero-energy resonance of h = −∆ + V and the
fact that h ≥ 0 lead to the Efimov effect. For our particular choice of V , this follows, e.g., from
[62, Theorem 1.1]. This means that H̃3,ε=1 with the center of mass motion removed has infinitely
many negative eigenvalues and, in particular, that C3 := inf σ(H̃3,ε=1) < 0. For general N ≥ 3,
CN := inf σ(H̃N,ε=1) ≤ C3 now follows from the HVZ theorem, which proves (ii).
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Open problems and related works
Some of our results give rise to new questions that have not (or only partially) been answered
in the course of this thesis. We collect such problems and suggestions for future research here:

• In the one-particle case the convergence, as ε → 0, of the Schrödinger operators hε =
−∆ + gεVε from Section 1.1.1 towards the respective Hamiltonian h(α), α ∈ (−∞,∞],
defining a contact interaction at x = 0 also holds w.r.t. quantities that are fundamental
in scattering theory. This involves, for example, convergence of the associated on-shell
scattering amplitudes, on shell scattering operators, and hence of the associated scattering
lengths in the limit ε → 0 [6]. See also [17, 64] (d = 1), [15, 16] (d = 2) and [3, 4] (d = 3)
for a more comprehensive discussion of low-energy scattering and similar results, as well
as [20] for general results relating (strong) resolvent convergence to (strong) continuity of
wave and scattering operators.

• If d = 1 and
∫
Vσ(r) dr = 0 for some pair σ, then ασ = gσ

∫
Vσ(r) dr = 0 by Theorem 3.1

and the pair σ has a vanishing contribution to the limit operator H. In the one-particle
case this is not true anymore if the coupling constant gε has a certain divergence as ε → 0
even if V ∈ C∞

0 (R) obeys
∫
V (r) dr = 0 but V ̸= 0 (see [79, Theorem 4]). If gε = ε−1/2,

then hε = −∆ + gεVε converges in the norm resolvent sense to the operator h(α) from
Section 1.1.1, which defines a contact interaction of strength α =

∫
dx dy V (x)|x−y|V (y)/2

at the origin. If gε = ε−λ for some λ ∈ (1/2, 1), then hε → h(∞) in the norm resolvent
sense as ε → 0, where h(∞) is given by the Dirichlet Laplacian on (−∞, 0) ∪ (0,∞). We
expect that similar results also hold for N ≥ 2 particles and that our proof of Theorem
3.1 can be largely adjusted to these cases.

• As explained in Section 4.1, the norm resolvent convergence Hε → H established by our
two-dimensional main result Theorem 4.1 can only be valid under the assumption that
the leading coefficient aσ > 0 in Eq. (4.4) is not smaller than (2π)−1 ∫ Vσ(r) dr for all
pairs σ ∈ I. In the one-particle case, the analog of this condition is not necessary: Then,
by [6, Chapter I, Theorem 5.5], one still has norm resolvent convergence towards the
negative Laplacian −∆. Hence, it would be interesting to know whether strong resolvent
convergence Hε → H as ε → 0 still holds in the case where 0 < aσ < (2π)−1 ∫ Vσ(r) dr for
some pairs σ.

• The Fermi polaron model describes two-body contact interactions among N ≥ 1 identical
fermions and a particle of different type (called impurity). It has been shown in [42, 54] that
the Hamiltonian of the 2d Fermi polaron has an N -independent lower bound, provided that
the ratio m of the impurity mass and the fermion mass is larger than 1.225, and it has been
conjectured that this remains true for arbitrary m > 0. In view of Theorem 4.1, it would
be sufficient to show that Hε ≥ −C(m) for some constant C(m) > 0 that is independent
of ε ∈ (0, ε0) and N ≥ 1, where Hε, ε > 0, are suitably rescaled Schrödinger operators
that are defined as in Eqs. (4.1)-(4.5) in the respective subspace of L2. This provides
a new approach to the problem, since the Hamiltonian has so far only been constructed
as a strong resolvent limit of operators, where the regularized two-body interaction is an
integral operator rather than a potential.

• As explained in Section 1.2.2, the Thomas effect that arises for N = 3 particles in d = 3
dimensions is much weaker or even absent in the presence of some fermionic antisymmetry.
Indeed, it has been recently shown that the Hamiltonian of the 3d Fermi polaron is bounded
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from below if m > m∗ for some critical mass ratio m∗ > 0 [24, 60]. A similar result also
holds for a (2 + 2)-system of two identical fermions that interact via two-body contact
interactions with two fermions of a different species [57, 61]. Therefore, it is a natural
and physically relevant question to ask whether these Hamiltonians in d = 3 can be also
obtained as norm resolvent limits of suitably rescaled Schrödinger operators Hε, ε > 0.

In view of the one-particle case described in [6, Chapter I.1.2], we expect that a suitable
ansatz for Hε is given by Eqs. (1.39)-(1.41), where the two-body potentials Vσ with a non-
vanishing contribution in the limit ε → 0 must have a zero-energy resonance. Making use
of the antisymmetry, the resolvent of Hε can then be expressed by a simplified version of
the generalized Konno-Kuroda formula from Eq. (4.12). This allows one to transfer the
methods of this thesis. Proving convergence, as ε → 0, of the inverse Λε(z)−1 will be the
key point of the analysis, where the zero-energy resonances of the two-body potentials, the
antisymmetry of the wave function, and the assumption m > m∗ on the mass ratio will
play a crucial role. Here, the methods and results from [24, 60] and [57, 61], respectively,
may be helpful.
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Appendix

A Properties of the Green’s function
This section collects facts and estimates on the Green’s function of −∆ + z : H2(Rd) → L2(Rd).

For d ∈ N and z ∈ C with Re(z) > 0, let the function Gdz : Rd → C be defined by

Gdz(x) :=
∫ ∞

0
(4πt)−d/2 exp

(
−x2

4t − zt

)
dt. (A.1)

Notice that Gdz has a singularity at x = 0 unless d = 1. The following lemma identifies Gdz as
the Green’s function of −∆ + z : H2(Rd) → L2(Rd) and establishes its well-known properties.

Lemma A.1. Let d ∈ N and z ∈ C with Re(z) > 0. Then Gdz defined by (A.1) has the following
properties:

(i) Gdz ∈ L1(Rd) and ∥Gdz∥L1 ≤ Re(z)−1.

(ii) The Fourier transform of Gdz is given by Ĝdz(p) = (2π)−d/2(p2 + z)−1.

(iii) Gdz is the Green’s function of −∆ + z. That is (−∆ + z)−1f = Gdz ∗ f for all f ∈ L2(Rd),
where the convolution Gdz ∗ f is defined by (Gdz ∗ f)(x) :=

∫
Gdz(x− y)f(y) dy.

(iv) Gdz ∈ L2(Rd) if and only if d ≤ 3.

(v) Gdz is spherically symmetric, i.e. Gdz(x) only depends on |x|. For z ∈ (0,∞), Gdz(x) is
positive and strictly monotonically decreasing both as a function of |x| and z.

(vi) Let d1, d2 ∈ N with d1 + d2 = d and let x = (x1, x2) ∈ Rd1 ×Rd2. If x1 ̸= 0 or d1 = 1, then
Gdz(x1, ·) ∈ L1(Rd2) and the Fourier transform is

Ĝdz(x1, p2) = (2π)−d2/2 Gd1
z+p2

2
(x1). (A.2)

In particular, this means that ∫
Rd2

Gdz(x1, x2) dx2 = Gd1
z (x1). (A.3)

Proof. Applying first Tonelli’s theorem to change the order of integration and using the substi-
tution x̃ = x/

√
4t afterwards, we see that∫

Rd

|Gdz(x)| dx ≤
∫ ∞

0
dt
∫
Rd

dx (4πt)−d/2 exp
(

−x2

4t − Re(z)t
)

= π−d/2
∫ ∞

0
dt
∫
Rd

dx̃ exp
(
−x̃2 − Re(z)t

)
= Re(z)−1,

which proves (i). This, in turn, allows us to compute the Fourier transform Ĝdz with the help of
Fubini’s theorem and the substitution x̃ = x/

√
2t:

Ĝdz(p) = (2π)−d/2
∫
Rd

dx
∫ ∞

0
dt (4πt)−d/2 exp

(
−x2

4t − zt− ip · x
)

= (2π)−d
∫ ∞

0
dt
∫
Rd

dx̃ exp
(

− x̃2

2 − zt− i
√

2tp · x̃
)

= (2π)−d/2
∫ ∞

0
dt exp

(
−(p2 + z)t

)
= (2π)−d/2(p2 + z)−1,
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where the third line was obtained from the fact that x 7→ exp
(
−x2/2

)
is the fixed point of

the Fourier transform. This proves (ii) and the proof of (vi) is similar: It is straightforward
to verify that the assumption that x1 ̸= 0 or d1 = 1 ensures that Gdz(x1, ·) ∈ L1(Rd2) and
that Fubini’s theorem allows us to change the order of the x2-integration and the t-integration
in the computation of Ĝdz(x1, ·) (see also Lemma A.4, below). Hence, upon the substitution
x̃2 = x2/

√
2t, (vi) follows from

Ĝdz(x1, p2) = (2π)−d2/2
∫

Rd2

dx2

∫ ∞

0
dt (4πt)−d/2 exp

(
−x2

1 + x2
2

4t − zt− ip2 · x2

)

= (2π)−d2/2
∫ ∞

0
dt (4πt)−d1/2 exp

(
−x2

1
4t − zt

)
(2π)−d2/2

∫
Rd2

dx̃2 exp
(

− x̃2
2

2 − i
√

2tp2 · x̃2

)

= (2π)−d2/2
∫ ∞

0
dt (4πt)−d1/2 exp

(
−x2

1
4t − (z + p2

2)t
)

= (2π)−d2/2 Gd1
z+p2

2
(x1).

Finally, (iv) is a direct consequence of (ii) and (v) is immediate from (A.1).

The following lemma allows us to estimate differences of integral operators depending on Gdz :

Lemma A.2. Let d ∈ N and z ∈ C with Re(z) > 0. Then for all x, x̃ ∈ Rd and all Q ≥ 0,∣∣∣Gdz+Q(x) −Gdz+Q(x̃)
∣∣∣ ≤

∣∣∣GdRe(z)(x) −GdRe(z)(x̃)
∣∣∣ . (A.4)

Similarly, if d = d1 + d2 for some d1, d2 ∈ N, then for all x1, y1 ∈ Rd1 and all x2 ∈ Rd2,∣∣∣Gdz(x1, x2) −Gdz(y1, x2)
∣∣∣ ≤

∣∣∣GdRe(z)(x1, 0) −GdRe(z)(y1, 0)
∣∣∣ . (A.5)

Proof. To prove (A.5) we may assume, without loss of generality, that |x1| ≤ |y1|. Then,∣∣∣Gdz(x1, x2) −Gdz(y1, x2)
∣∣∣ =

∣∣∣∣∫ ∞

0
dt (4πt)−d/2

(
exp

(
−x2

1
4t

)
− exp

(
−y2

1
4t

))
exp

(
−x2

2
4t − zt

)∣∣∣∣
≤
∫ ∞

0
dt (4πt)−d/2

(
exp

(
−x2

1
4t

)
− exp

(
−y2

1
4t

))
exp (− Re(z)t)

=
∣∣∣GdRe(z)(x1, 0) −GdRe(z)(y1, 0)

∣∣∣ .
The proof of (A.4) is very similar and therefore omitted.

Lemma A.3. Let d ≥ 2, s ∈ (0, 1) and z ∈ C with Re(z) > 0. Then, for some constant
C(s, z) > 0 and all y ∈ Rd−1,∫

Rd−1

dx
∣∣∣Gdz(x+ y, 0) −Gdz(x, 0)

∣∣∣ ≤ C(s, z)|y|s. (A.6)

Proof. Since Gdz(·, 0) ∈ L1(Rd−1) by Lemma A.1 (vi), the left side of (A.6) is bounded, uniformly
in y ∈ Rd−1. So it remains to prove (A.6) for |y| ≤ 1, and to this end it suffices to show that
there exists a constant C(z) > 0 such that, for all y ∈ Rd−1 \ {0},∫

Rd−1

dx
∣∣∣Gdz(x+ y, 0) −Gdz(x, 0)

∣∣∣ ≤ C(z)(1 + |ln |y||) |y|. (A.7)

Using the integral representation (A.1) for Gdz and making the substitution x/
√

4t → x, we find∫
Rd−1

dx
∣∣∣Gdz(x+ y, 0) −Gdz(x, 0)

∣∣∣ ≤
∫ ∞

0
dt e−λt

2πd/2t1/2

∫
Rd−1

dx
∣∣∣∣∣exp

(
−
(
x+ y√

4t

)2
)

− exp
(
−x2

)∣∣∣∣∣ ,
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where λ = Re(z). By applications of triangle inequality and the fundamental theorem of calculus,
respectively, ∫

Rd−1

dx
∣∣∣∣∣exp

(
−
(
x+ y√

4t

)2
)

− exp
(
−x2

)∣∣∣∣∣ ≤ C min
(

1, |y|√
t

)
.

Since ∫ ∞

0
dt e

−λt

t1/2 min
(

1, |y|√
t

)
≤

∫ |y|2

0
t−1/2 dt+ |y|

∫ ∞

|y|2

e−λt

t
dt

≤ 2|y| + |y|
(
λ−1 + 2 ln |y|

)
,

the desired estimate follows.

For z ∈ (0,∞) and d ≥ 2, it follows from (A.1) that Gdz(x) → ∞ as |x| → 0. However, the
next lemma shows that, apart from x = 0, Gdz is surprisingly regular:

Lemma A.4. Let d ∈ N and z ∈ C with Re(z) > 0. Then Gdz belongs to C∞(Rd \ {0}) and, for
any multi-index α ∈ Nd0, ∂αGdz is exponentially decaying as |x| → ∞.

Proof. We claim, and prove below, that for all c > 0, k ∈ R, l ≥ 0 and λ ∈ (0,
√

Re(z)),

sup
|x|≥c

(∫ ∞

0
tk|x|l exp

(
−x2

4t − Re(z)t+ λ|x|
)

dt
)
< ∞. (A.8)

This allows us to change the order of differentiation and integration in (A.1). We find that, for
all x ∈ Rd \ {0}, ∂αGdz(x) is a sum of terms of the form

∫ ∞

0
(4πt)−d/2 xα

′

(2t)n exp
(

−x2

4t − zt

)
dt,

where 0 ≤ n ≤ |α| and α′ ∈ Nd0 is a multi-index with |α′| ≤ |α|. In view of (A.8), all of these
terms are exponentially decaying as |x| → ∞, which proves the lemma.

It remains to prove (A.8) for given c > 0, k ∈ R, l ≥ 0 and λ ∈ (0,
√

Re(z)). To this end, we
first choose δ > 0 so small that λ ≤ (1 − δ)

√
Re(z). Then the estimate

exp
(

−x2

4t − Re(z)t+ λ|x|
)

≤ exp
(

−x2

4t − Re(z)t+ (1 − δ)
√

Re(z)|x|
)

= exp
(

−(1 − δ)
(

|x|
2
√
t

−
√

Re(z)t
)2

− δ

(
x2

4t + Re(z)t
))

≤ exp
(

−δx2

4t − δRe(z)t
)

holds for all t > 0 and all x ∈ Rd. With Cl,δ := sups≥0
(
sl/2 exp (−δs)

)
< ∞, it follows that

sup
|x|≥c

(∫ ∞

0
tk|x|l exp

(
−x2

4t − Re(z)t+ λ|x|
)

dt
)

≤ 8l/2 sup
|x|≥c

(∫ ∞

0
tk+l/2

(
x2

8t

)l/2
exp

(
−δx2

8t − δc2

8t − δRe(z)t
)

dt
)

≤ 8l/2Cl,δ

∫ ∞

0
tk+l/2 exp

(
−δc2

8t − δRe(z)t
)

dt,

where the last integral is finite because the term exp
(
−δc2/(8t)

)
cancels a possible divergence

at t = 0. This proves (A.8) and hence the lemma.
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In the proof of Proposition 4.8 two integral operators F1 and F2 depending on Gdz were
introduced. We conclude this section with the bypassed proof of their boundedness:

Lemma A.5. Let z,m ∈ (0,∞). Then the integral operator F1 : L2(R2 × R2) → L2(R2 × R2)
that is defined in terms of the kernel

K1(x, y, x′, y′) := G6
z

(√
m(x− x′),

√
m(x− y′),

√
m(y − x′)

)
is bounded with ∥F1∥ ≤ (4

√
2m2)−1. Similarly, the kernel

K2(x, y, w, x′, y′, w′) := G8
z

(√
m(x− y′),

√
m(x− w′),

√
m(y − x′),

√
m(w − x′)

)
defines an integral operator F2 ∈ L (L2(R2 × R2 × R2)) with ∥F2∥ ≤ (4

√
2m3)−1.

Proof. Observe that the kernels K1 and K2 are both symmetric. The bounds for ∥F1∥ and ∥F2∥
are based on the Schur test. In the case of F1, a general version of the Schur test shows that F1
is a bounded operator with

∥F1∥ ≤ ess sup
x,y∈R2

(
h(x, y)−1

∫
dx′ dy′ h(x′, y′)K1(x, y, x′, y′)

)
, (A.9)

provided that the right side is finite for some measurable test function h : R2 × R2 → (0,∞).
We choose the test function h(x, y) := |x− y|−1, so after a scaling we may assume that m = 1.
To evaluate the right side of (A.9), we insert the integral representation (A.1) of G6

z and we
substitute x− y′ → y′. This results in the identity

ess sup
x,y∈R2

(
|x− y|

∫
dx′ dy′ |x′ − y′|−1G6

z

(
x− x′, x− y′, y − x′))

= ess sup
x,y∈R2

(
|x− y|

∫
dx′

∫ ∞

0
dt (4πt)−3 exp

(
− 1

4t

[
(x− x′)2 + (y − x′)2

])
·
∫

dy′ |y′ + x′ − x|−1 exp
(

−|y′|2

4t − zt

))
. (A.10)

Using a rearrangement inequality (see [53, Theorem 3.4]), we see that the last integral has the
bound ∫

dy′ |y′ + x′ − x|−1 exp
(

−|y′|2

4t − zt

)
≤
∫

dy′ |y′|−1 exp
(

−|y′|2

4t

)
= 2π

∫ ∞

0
dr exp

(
−r2

4t

)
=

√
4π3t. (A.11)

For the remaining integral in (A.10), we use (x−x′)2 + (y−x′)2 = 1
2
(
(2x′ − x− y)2 + (x− y)2)

together with the substitution 2x′ − x− y → 2x′. This yields that

π ess sup
x,y∈R2

(
|x− y|

∫
dx′

∫ ∞

0
dt (4πt)−5/2 exp

(
− 1

4t

[
(x− x′)2 + (y − x′)2

]))
= π ess sup

x,y∈R2

(
|x− y|

∫ ∞

0
dt
∫

dx′ (4πt)−5/2 exp
(

−|x′|2

2t − (x− y)2

8t

))
= (16

√
π)−1 ess sup

x,y∈R2

(
|x− y|

∫ ∞

0
dt t−3/2 exp

(
−(x− y)2

8t

))
= (4

√
2π)−1

∫ ∞

0
dt t−3/2 exp

(
−t−1

)
, (A.12)

where the essential supremum was canceled by the scaling t → (x − y)2t/8. The last integral
can be explicitly computed with the help of the substitution t̃ = t−1. We find that∫ ∞

0
t−3/2 exp

(
−t−1

)
dt =

∫ ∞

0
t̃−1/2 exp

(
−t̃
)

dt̃ = Γ(1/2) =
√
π, (A.13)
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where Γ(·) denotes the gamma function. Using (A.11), (A.12) and (A.13) to bound the right
side of (A.10), the Schur test reveals that F1 is bounded with ∥F1∥ ≤ (4

√
2)−1 (for m = 1).

The proof for the operator F2 is similar, but for the convenience of the reader we provide
the details here. First, the Schur test with the test function h(y, w) = |y − w|−1 yields

∥F2∥ ≤ ess sup
x,y,w∈R2

(
|y − w|

∫
dx′ dy′ dw′ |y′ − w′|−1K2(x, y, w, x′, y′, w′)

)
,

provided that the right side is finite. After a scaling, we may again assume that m = 1. Then
the integral representation (A.1) of G8

z combined with the substitution x− y′ → y′ leads to

∥F2∥ ≤ ess sup
x,y,w∈R2

(
|y − w|

∫
dx′ dw′

∫ ∞

0
dt (4πt)−4 exp

(
− 1

4t

[
(x− w′)2 + (y − x′)2 + (w − x′)2

])
·
∫

dy′ |x− y′ − w′|−1 exp
(

−|y′|2

4t − zt

))
. (A.14)

Similarly to (A.11), a rearrangement inequality shows that∫
dy′ |x− y′ − w′|−1 exp

(
−|y′|2

4t − zt

)
≤

√
4π3t. (A.15)

In the remaining integral, we use the identity (y−x′)2+(w−x′)2 = 1
2
(
(2x′ − w − y)2 + (y − w)2)

in combination with the substitutions 2x′ − w − y → 2x′ and x− w′ → w′. We find that

π ess sup
x,y,w∈R2

(
|y − w|

∫
dx′ dw′

∫ ∞

0
dt (4πt)−7/2 exp

(
− 1

4t

[
(x− w′)2 + (y − x′)2 + (w − x′)2

]))
= π ess sup

x,y,w∈R2

(
|y − w|

∫ ∞

0
dt
∫

dx′ dw′ (4πt)−7/2 exp
(

− 1
4t

(
|w′|2 + 2|x′|2

)
− (y − w)2

8t

))
= (16

√
π)−1 ess sup

y,w∈R2

(
|y − w|

∫ ∞

0
dt t−3/2 exp

(
−(y − w)2

8t

))
= (4

√
2π)−1

∫ ∞

0
dt t−3/2 exp

(
−t−1

)
, (A.16)

where the essential supremum was canceled by the scaling t → (y − w)2t/8. By (A.13), the
last integral is equal to

√
π, so the desired estimate for ∥F2∥ follows from (A.14), (A.15) and

(A.16).
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B Konno-Kuroda formula
In this section we sketch the proof of the Konno-Kuroda resolvent identity, see [49, Eq. (2.3)],
for operators of the type (B.1), below. The main difference between Theorem B.1, below, and
[49] is that we do not assume that ϕ(z) defined by Eq. (B.2) extends to a compact operator for
some (and hence all) z ∈ ρ(H0).

Let H and X̃ be arbitrary complex Hilbert spaces, let H0 ≥ 0 be a self-adjoint operator
in H and let A : D(A) ⊆ H → X̃ be densely defined and closed with D(A) ⊇ D(H0). Let
J ∈ L (X̃) be self-adjoint and let B = JA. Suppose that BD(H0) ⊆ D(A∗) and that A∗A and
A∗B are H0-bounded with relative bound less than one. Then

H = H0 +A∗B (B.1)

is self-adjoint on D(H0) by the Kato-Rellich theorem (see [69, Theorem X.12]). For z ∈ ρ(H0),
let R0(z) := (H0 + z)−1 and let ϕ(z) : D(A∗) ⊆ X̃ → X̃ be defined by

ϕ(z) := BR0(z)A∗. (B.2)

Note that D(A∗) ⊆ X̃ is dense because A is closed. The resolvent (H + z)−1 and the operator
ϕ(z) are related by the following theorem:

Theorem B.1. Let the above hypotheses be satisfied and let z ∈ ρ(H0). Then ϕ(z) defines a
bounded operator. The operator 1 + ϕ(z) is invertible if and only if z ∈ ρ(H0) ∩ ρ(H), and then

(H + z)−1 = R0(z) −R0(z)A∗(1 + ϕ(z))−1BR0(z), (B.3)
(1 + ϕ(z))−1 = 1 −B(H + z)−1A∗. (B.4)

Remark. Note that (1 + ϕ(z))−1 leaves D(A∗) invariant. This follows from (B.4) and from the
assumption BD(H0) ⊆ D(A∗).

Proof.

Step 1. AR0(z)1/2 is bounded for z > 0, and A(H + z)−1/2 is bounded for z > 0 large enough.

As A∗A is H0-bounded with relative bound less than one, the Kato-Rellich theorem shows
that H0 −A∗A is bounded from below. This implies that, for all ψ ∈ D(H0) and all z > 0,

∥Aψ∥2 ≤ ∥(H0 + z)1/2ψ∥2 + C∥ψ∥2

for some constant C > 0. Since D(H0) is dense in D(H1/2
0 ) w.r.t. the graph norm of H1/2

0
(see e.g. [71, Chapter VIII.6]) and A is closed, this bound extends to all ψ ∈ D(H1/2

0 ) by an
approximation argument. In particular, D(A) ⊇ D(H1/2

0 ) and the first statement of Step 1
follows. The second statement is a consequence of the first and the fact that H and H0 have
equivalent form norms (in particular, the form domain of H agrees with D(H1/2

0 )).

Step 2. If z ∈ ρ(H0), then ϕ(z) is a bounded operator, and if z ∈ ρ(H), then

S(z) := B(H + z)−1A∗

is a bounded operator too.
This easily follows from Step 1 and from the first resolvent identity.

Step 3. If z ∈ ρ(H0) ∩ ρ(H), then 1 + ϕ(z) is invertible and 1 − S(z) = (1 + ϕ(z))−1.
Both ϕ(z) and S(z) leave D(A∗) invariant and on this subspace, by straightforward compu-

tations using the second resolvent identity, (1 + ϕ(z))(1 − S(z)) = 1 = (1 − S(z))(1 + ϕ(z)).
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Step 4. If z ∈ ρ(H0) and 1 + ϕ(z) is invertible, then z ∈ ρ(H), (1 + ϕ(z))−1 leaves D(A∗)
invariant and (B.3) holds.

By Step 3, (1+ϕ(i))−1 = 1−S(i), which leaves D(A∗) invariant. Now suppose that z ∈ ρ(H0)
and that 1 + ϕ(z) has a bounded inverse. Then

(1 + ϕ(z))−1 = (1 + ϕ(i))−1 + (1 + ϕ(i))−1(ϕ(i) − ϕ(z))(1 + ϕ(z))−1

= (1 + ϕ(i))−1 + (z − i)(1 + ϕ(i))−1BR0(i)(AR0(z̄))∗(1 + ϕ(z))−1.

Since BR0(i) : H → D(A∗), it follows that (1 + ϕ(z))−1 leaves D(A∗) invariant as well, and

R(z) := R0(z) −R0(z)A∗(1 + ϕ(z))−1BR0(z)

is well-defined. Now it is a matter of straightforward computations to show that (H+z)R(z) = 1
on H and that R(z)(H + z) = 1 on D(H).

Suppose that X̃ = ⊕I
i=1 X̃i, where I ∈ N and X̃i are complex Hilbert spaces for i = 1, ..., I.

Then we consider operators of the more general form

H = H0 +
I∑
i=1

giA
∗
i JiAi, (B.5)

where gi ∈ R, Ai : D(Ai) ⊆ H → X̃i are densely defined and closed with D(Ai) ⊇ D(H0) and
Ji = J∗

i ∈ L (X̃i) for i = 1, ..., I. Suppose that JiAiD(H0) ⊆ D(A∗
i ) and that A∗

iAi and A∗
i JiAi

are infinitesimally H0-bounded for i = 1, ..., I. Then H is self-adjoint on D(H0) and we observe
that operators of the form (B.5) can be reduced to the form (B.1), where A : D(A) ⊆ H → X̃

is the closure of the operator A0 : D(H0) → X̃ defined by A0ψ := (Aiψ)Ii=1 and J ∈ L (X̃) is
defined by J(ψi)Ii=1 := (giJiψi)Ii=1. Hence, Theorem B.1 implies the following corollary:

Corollary B.2. Let the above hypotheses be satisfied and let z ∈ ρ(H0). Then

ϕ(z)ij := JiAiR0(z)A∗
j , i, j = 1, ..., N

defines a bounded operator ϕ(z) = (ϕ(z)ij)Ii,j=1 ∈ L (X̃). Moreover, with the matrix operator
g ∈ L (X̃) defined by gij := giδij, i, j = 1, ..., I, it follows that 1 + gϕ(z) is invertible if and only
if z ∈ ρ(H0) ∩ ρ(H). If this is the case, then

(H + z)−1 = R0(z) −
I∑

i,j=1
(AiR0(z))∗

[
(1 + gϕ(z))−1

]
ij
gjJjAjR0(z),

(1 + gϕ(z))−1 =
(
δij − giJiAi(H + z)−1A∗

j

)I
i,j=1

.
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C Connection between the Efimov effect and
the Thomas effect

We consider the Schrödinger operator Hε, ε > 0, from Eqs. (1.39)-(1.41) for N ≥ 3 particles in
d = 3 dimensions. That is

Hε =
N∑
i=1

(−∆xi/mi) +
∑

σ=(i,j)∈I
gε,σ Vσ,ε(xj − xi), ε > 0, (C.1)

where Vσ,ε(r) = ε−3Vσ(r/ε) for some fixed real-valued potential Vσ ∈ L1 ∩ L2(R3) with Vσ(r) =
Vσ(−r) a.e., and the asymptotics of gε,σ ∈ R is determined by

gε,σ = (µσ)−1(ε+ bσε
2) + o(ε2) (ε → 0) (C.2)

for some constant bσ ∈ R. Thus Hε is self-adjoint on D(Hε) = H2(R3N ) and the translation
invariance of Hε implies that σ(Hε) = [Σε,∞) for some Σε ≤ 0. The asymptotics of gε,σ is
chosen so that the one-particle operators hσ,ε := −(µσ)−1∆ + gε,σVσ,ε with D(hσ,ε) = H2(R3)
converge, as ε → 0, in the norm resolvent sense to a self-adjoint operator −(µσ)−1∆α that
defines a non-trivial contact interaction at the origin, provided that hσ = −∆ + Vσ has a zero-
energy resonance (cf. [6, Chapter I, Theorem 1.2.5]). Since hσ,ε is nothing but the two-body
Hamiltonian

−∆xi/mi − ∆xj/mj + gε,σVσ,ε(xj − xi), σ = (i, j) (C.3)

with the center of mass motion removed, we thus expect that Hε defines a non-trivial contact
interaction among the ith and the jth particle in the limit ε → 0.

Let us now assume that Hε converges, as ε → 0, in the norm resolvent sense to a self-
adjoint operator H. We further suppose that there exist two pairs σ1, σ2 ∈ I with exactly
one common particle so that hσ1 and hσ2 both have a zero-energy resonance (and hence the
associated two-body Hamiltonians have a non-trivial limit as ε → 0). Without restriction, we
may thereby assume that σ1 = (1, 2) and σ2 = (1, 3). We are going to show that σ(Hε) then
fills the whole real line (−∞,∞) in the limit ε → 0, which, in view of Proposition 2.3, implies
that σ(H) = (−∞,∞). This is the Thomas effect. For this purpose, we consider the unitary
rescaling Utot,ε ∈ L (L2(R3N )), ε > 0, defined by (Utot,εψ)(x1, ..., xN ) := ε3N/2ψ(εx1, ..., εxN ).
Then a straightforward computation shows that

Utot,εHε(Utot,ε)∗ = ε−2
(

N∑
i=1

(−∆xi/mi) +
∑

σ=(i,j)∈I
ε−1gε,σVσ(xj − xi)

)
.

Since limε→0 ε−1gε,σ = (µσ)−1 by (C.2), we conclude that limε→0 ε2Σε = inf σ(Hscal), where

Hscal :=
N∑
i=1

(−∆xi/mi) +
∑

σ=(i,j)∈I
(µσ)−1 Vσ(xj − xi). (C.4)

Hence, to show that σ(Hε) = [Σε,∞) fills the whole real line in the limit ε → 0, we only have
to show that inf σ(Hscal) < 0. On the one hand, if hσ has a negative eigenvalue for some pair
σ ∈ I, then inf σ(Hscal) < 0 by the HVZ theorem (see e.g. [70, Theorem XIII.17]). On the other
hand, if hσ ≥ 0 for all σ ∈ I, then the zero-energy resonances of h(1,2) and h(1,3) entail that the
Hamiltonian Hscal for N = 3 with the center of mass motion removed has an infinite number
of negative eigenvalues. This is the Efimov effect. For general N ≥ 3, it again follows from the
HVZ theorem that inf σ(Hscal) < 0, so the Thomas effect is inevitable. However, we emphasize
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that a rigorous proof of the Efimov effect requires further technical assumptions on the two-body
potentials Vσ (see, e.g., [80, Theorems 5 and 5’] and [76, Theorem 5.1]). For example, if h(2,3)
also has a zero-energy resonance, then [76, Theorem 5.1] shows that it is sufficient to assume
that, for all 1 ≤ i < j ≤ 3, |V(i,j)(r)| ≤ C(1 + |r|)−ρ for some ρ > 2 and some constant C > 0.

In summary, this means that either the limit operator H is trivial in the sense that each
three-body subsystem contains at least one particle that does not interact with the other two
particles or, as an immediate consequence of the Efimov effect, H is unbounded from below and
the Thomas effect occurs.
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