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Abstract

With the increase of daily human-computer-interactions and humans being highly
emotional beings, came the research field of affective computing. More precisely, the
need to incorporate emotions and emotion recognition into computer systems.
Humans often express their emotions to other humans through body language, namely
facial expressions, gestures and posture. Those can be deliberately influenced and to
avoid this, physiological signals can be used for emotion recognition. They are regulated
by the autonomous nervous system and influenced by emotions. This includes the
electrical activity of the brain, heart and skin, as well as the skin temperature and
respiration patterns, among others.
Building systems that realize autonomous emotion recognition is a regularly studied
topic and keeping an overview is difficult.
An emotion recognition system usually consists of data acquisition, data processing and
the assignment of emotion classes to the measured signals. Therefore, the foundation
of emotion recognition systems includes the creation of data sets, the methods to
extract and select features from the collected physiological signals and the classification
algorithms.
This thesis offers an explanation of the commonly used physiological signals, data sets
and data processing methods, as well as an overview of some frequently used classifiers.
However, the main objective is to provide an examination of topics that are currently
being worked on. For this purpose, this thesis analyzes and reviews twenty-five studies
published in the years 2018 to 2022 to report important findings or limitations and to
highlight topics that are worth exploring further.
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Kurzfassung

Mit den vermehrten täglichen Interaktionen zwischen Mensch und Computer und dem
Umstand, dass der Mensch ein sehr emotionales Wesen ist, entstand das Forschungsgebiet
Affective Computing. Genauer gesagt, die Notwendigkeit, Emotionen und Emotion-
serkennung in Computersysteme einzubeziehen.
Menschen drücken ihre Emotionen gegenüber Anderen oft durch Körpersprache, wie
Mimik, Gestik und Körperhaltung, aus. Diese können absichtlich beeinflusst werden und
um dies zu vermeiden können physiologische Signale zur Emotionserkennung verwendet
werden. Diese werden durch das autonome Nervensystem reguliert und von Emotionen
beeinflusst. Dazu gehören unter anderem die elektrische Aktivität des Gehirns, des
Herzens und der Haut, sowie die Hauttemperatur und der Rhythmus der Atmung.
Die Erstellung von Systemen zur autonomen Emotionserkennung ist ein regelmäßig
untersuchtes Thema und es ist schwer den Überblick zu behalten.
Ein Emotionserkennungssystem besteht in der Regel aus Datenerfassung, Signalverar-
beitung und der Zuordnung von Emotionsklassen zu den gemessenen Signalen. Zu den
Grundlagen von Emotionserkennungssystemen gehören daher die Erstellung von Daten-
sätzen, die Methoden zur Extraktion und Auswahl von Merkmalen aus den erfassten
physiologischen Signalen und die Klassifizierungssalgorithmen.
Diese Thesis bietet eine Erklärung der üblicherweise verwendeten physiologischen Sig-
nale, Datensätze und Datenverarbeitungsmethoden, sowie einen Überblick über einige
häufig verwendete Klassifizierer.
Das Hauptziel ist jedoch eine Auseinandersetzung mit Themen, an denen derzeit gear-
beitet wird. Zu diesem Zweck werden in dieser Thesis fünfundzwanzig Studien, die in
den Jahren 2018 bis 2022 veröffentlicht wurden, analysiert und überprüft, um wichtige
Erkenntnisse oder Einschränkungen aufzuzeigen und Themen hervorzuheben, die es
verdienen, weiter erforscht zu werden.
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1 Introduction

Our daily life revolves more and more around online interactions, from social media to
remotely working from home. This includes interactions with computer systems, ranging
from online shopping websites to digital learning platforms and monitoring systems in
healthcare environments.
At first sight, emotions and emotional intelligence are often seen as a completely inde-
pendent field from such computer systems. Nevertheless, emotions interact with thought
processes. Not necessarily in obvious ways, but emotions are important for intelligent
functioning, according to Picard [1]. Additionally, human-computer-interaction follows
the same principles as human-human-interactions and those rely heavily on the aspect
of emotions [2]. Picard also stated that a computer could potentially appear more
intelligent by recognizing and appropriately adapting to the user’s emotion response
[1]. Therefore, it is deemed beneficial to include the aspect of emotions in adaptive
computer systems that directly interact with humans.
The field of research that was born from this is called Affective Computing [3].

It is crucial to give an adaptive computer system the ability to recognize emotions. This
skill forms the basis to a system that influences its behaviour appropriate to a user’s
emotion.
This leads to the need for automated emotion recognition, which is a subject of interest
in many different fields of research. It involves and draws from various research topics.
Psychology for the background knowledge about emotions and medicine about how
a human body reacts to emotional stimuli. Also included are computer sciences for
the automation of the recognition process and mechatronics for the development of
measurement devices and sensors.

A large part of human communication takes place through body language, namely facial
expressions, gestures and posture. Therefore, people often influence these outward
expressions to convey a certain image of themselves in front of others. Be it to be
perceived as confident and self-assured to get that next promotion or not showing
sadness when watching a movie with friends in order to not be considered weak by
cultural standards.
However, when measuring emotions and emotional responses to stimuli, true and honest
reactions are needed. Since it is not unlikely that people may withhold their initial facial

17



1 Introduction

expression as a reaction to a new or changed situation, it is more reliable to use other
types of emotional responses that are harder to manipulate.
The Autonomous Nervous System regulates various body parameters and is influenced
by emotions [4]. Such parameters are the respiration rate of a person, the electrodermal
activity, along with the skin temperature and electrocardiograms. Additionally, through
electroencephalography brainwaves can also be utilized for the purposes of emotion
recognition. All of these modalities differ in their applicability and are useful for different
affective states.

Systems for physiological signal based emotion recognition are comprised of multiple
steps. Firstly, the physiological signals and the corresponding emotions are measured.
In a commonly used laboratory approach, the emotions are deliberately elicited, using
specific stimuli. In many studies, this step is already covered by the usage of publicly
available data sets. Those measured signals need to be processed before they can be
used for the actual recognition. This consists of feature extraction and feature selection.
Lastly, those selected features are then fed into a classifier. Such classifiers are mostly
machine learning algorithms that are trained to correctly assign an emotion class to the
given features.

Computers are still far away from truly perfect emotion recognition, but progress is
being made every day, presented in many published studies and research to come.

1.1 Motivation

The field of automated emotion recognition is a vast one, with many different specializa-
tions and topics and it has existed for quite a long time now. With many studies being
published every month, it is hard to keep up with all the new discoveries.
This thesis aims to provide a comprehensive overview of the tools usually utilized for
emotion recognition, as well as a review of recent studies. Since it would be quite
impossible to cover all research, this thesis only takes a look at the works in the specific
time frame of the last five years. The focus is on emotion recognition systems based on
physiological signals, instead of facial expressions or speech recognition.
It would be possible to specialize even further, for example, to limit the research to one
modality only, or solely engage in a discussion about sensors or machine learning in
respect to emotion recognition. However, many thesis already exist for this purpose.
Consequently, this work tries to provide a more broad overview of the topics currently
worked on.
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1.2 Objectives

1.2 Objectives

Since the main objective of this thesis is to present an overview of the important research
topics in the last five years, a sample of research studies in this time frame is collected
and their approach to emotion recognition systems is analyzed.
One goal is to explain the procedure of emotion recognition and highlight the typically
used models and methods. These include data sets, emotion models and an examination
of the various physiological signals the systems are based on. Methods for feature
extraction and selection are covered, as well as different machine learning algorithms,
which are tasked with classifying the physiological data in order to recognize emotions
automatically. Furthermore, the thesis discusses the commonness of the different
approaches and emphasize good performing instances.

1.3 Structure

First of all, Chapter 2 provides a summary of related work, i.e. various reviews concern-
ing different topics in the field of emotion recognition.
Chapter 3 takes a look at the foundations of emotion recognition systems, following
the thematic structure of the implementation of an emotion recognition system. The
groundwork is laid with an explanation of emotion models. This is followed by the
many various types of physiological signals and how they can be measured. Afterwards,
methods to elicit emotions and the different ways to evaluate what the test subjects
felt, are covered. Additionally, commonly used data sets are presented. An insight into
feature extraction and selection methods is provided, as well as a selection of often used
classification algorithms. Lastly, two used validation methods are going to be covered.
After the foundations are provided, Chapter 4 explains the methodology used to search,
select and analyze the papers reviewed in this work. The resulting set of papers is
presented in Chapter 5.
Chapter 6 discusses the findings of those papers, as well as similarities, agreements and
differences. This Chapter is split into two parts, the first is following the steps of the
experiment and data collection procedure. The second part covers the findings regarding
the methods in the recognition procedure of the emotion recognition systems.
Lastly, Chapter 7 provides the conclusion and outlook for future work.
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2 Related Work

Many reviews that examine studies about emotion recognition systems investigate not
only physiological signals as modalities for emotion recognition, but rely heavily on
studies working on emotion recognition for facial expressions, speech recognition or
body language.
Mohammed and Hassan surveyed and analyzed studies regarding all of those different
modalities in the context of human-robot-interaction and social robotics [5]. Another
study addressed facial and spoken expressions alongside with physiological signals in
their work and put the focus on studies concerning patients in a clinical environment
[6]. Egger et al. [4] and Chunawale and Bedekar [7] both provided short overviews of
all these modalities as well, alongside a comparison in advantages and limitations.
The subject of e-learning environments is added in a survey by Imani and Montazer
[8]. They discuss different emotion recognition methods, including all previously listed
modalities and which methods are suitable for e-learning environments.
Meanwhile, other reviews concentrate on solely one type of modality. For example,
Ganapathy only looked at emotion recognition using speech [9], as did Koolagudi and
Rao [10]. The latter also put an emphasis on exploring various emotional speech
databases.
Regarding facial emotion recognition, Ko presents an overview of conventional and deep-
learning based approaches [11]. More focus on machine algorithms for this purpose
was provided by Koghai et al. [12]. Additionally, De and Saha also examined studies
concerning emotion recognition systems based on facial expression and compared a
handful of algorithms and their flaws and benefits [13].
The study of Landowska et al.[14] covered a more specialized field. They conducted a
systematic literature review concerning automatic emotion recognition specifically for
children with autism. Studies working with not only physiological signals, but also facial
expressions and speech were included in this review.

Multiple reviews provide surveys about the foundations of emotion recognition systems
that are solely based on physiological signals. One review that mainly focused on this
was done by Wioleta [15]. Her paper provides a quick overview of signals and sensors,
emotion models and emotion elicitation. She also showcases a few studies and highlights
the amount of participants in each study, the used signal types and devices, stimuli and
recognized emotions, as well as classification methods and their recognition rate.
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Ali et al.[16] start their review with emotion theories and a description of the various
physiological signal types. This is followed by an outline of the implementation steps,
namely emotion elicitation, signal processing and classification. Furthermore, they
present a list of eight related studies and emphasize the importance of generalized
systems.
As previously mentioned, various reviews cover only one specific physiological signal
and analyze studies working purely with this modality. Hasnul et. al documents the
important foundations for emotion recognition systems based on electrocardiography
(ECG) data and examine these in regards to healthcare systems [17]. A review about
electroencephalography (EEG) based emotion recognition and the effect of music on
human emotions was conducted by Hamada et al. [18].

A topic with more coverage is wearable devices. Here, many reviews concern them-
selves with the development of new sensors and measurement devices. For example,
Saganowski et al. analyze and thoroughly critique several studies involving wearable
devices for signal measuring [19]. They point out that none of the reviewed studies
were comprehensive in every research stage. Nonetheless, they deem wearable devices
to be a very promising research direction.
Wijasena et al. also reviewed studies that utilized wearable measurement devices [20].
They argued that such devices are an auspicious way to implement emotion recognition
based on physiological signals in daily life.
A more specialized study was presented by Tzafilkou et al. [21]. They conducted a
systematic literature review and collected studies dealing with the usage of sensors in
mobile devices, especially smartphones, in regards to learning related emotions.
While not purely concerned with specifically wearable sensors, Dzedzickis et al. [22]
provide a thorough overview of different sensors for physiological signals and their
application.

Meanwhile, Calvo and D’Mello examined the topic of emotion recognition from a more
theoretical perspective [23]. They describe different emotion theories and their effect on
the research questions, methods, results and interpretations. They highlight problematic
assumptions and limitations because of this.

A meta-analysis of the field of automated emotion recognition was conducted by Marrero-
Fernández et al. in 2014 [24]. They reveal important topics and leading themes, as
well as investigate in which countries those research is primarily based. They also note
that many reviews about the topic of automated emotion recognition did not follow the
standard of systematic literature reviews. This seems to be a persisting issue, as many
reviews do not specify their methods thoroughly.

Nevertheless, integrative literature reviews about emotion recognition from physiological
signals seem to be very rare. When searching for literature reviews, the majority of
results are unspecified or systematic literature reviews.
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3 Foundations

This chapter provides an initial overview of the foundations of emotion recognition
systems and aims to explain the needed and used concepts and methods.
Firstly, emotions are explained, as well as two different types of emotion models that
are commonly utilized by researchers for their measurements. This is followed by an
examination of the various physiological signals and their properties and purposes.
The elicitation material needed in order to deliberately evoke emotions and the related
physical reactions is discussed together with methods to evaluate the measured emotions.
Additionally, two commonly used data sets are described. Processing of the acquired
data is explained in the sections about feature extraction and selection. Lastly, a few
often used classification methods are discussed.

3.1 Emotions

Emotions themselves are a very subjective thing to most people and laymen may not put
much thought into trying to define exactly what they are apart from some ”feeling”. But
in order to conduct productive research on the topic, scientists had to define emotions.
There are different definitions out there and not all scientists agree on one specific
definition. The definition this thesis uses is from Keltner and Gross: emotions are
”episodic, relatively short-term, biologically-based patterns of perception, experience,
physiology, action, and communication that occur in response to specific physical and
social challenges and opportunities” [25].

Emotions must be distinctly and clearly identifiable in order to ensure unambiguous and
accurate emotion recognition. Otherwise, emotion recognition systems would be prone
to error and their use would not provide the desired and intended benefits.
Therefore, an understanding of the typically used emotion models is needed, which
enable us, researchers and test subjects likewise, to distinguish and label the experienced
emotions, whether they are elicited in a experiment setting or evoked in day-to-day
situations. It is differentiated between a discrete and a continuous emotion model, both
of which are often utilized in research and experiments. In this, both models differ in
their usefulness and applicability, depending on which methods are used. This is covered
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in Section 3.2, when the various physiological signals and what aspect of emotional
responses they express are discussed.

3.1.1 Discrete Emotion Model

A discrete emotion model describes emotions as labels distinct from each other. Defini-
tions for basic emotions are still debated under scientists and change with the progress
of research.
Paul Ekman describes emotions as families of related states, rather than single affective
or psychological states that are shared across cultures and are universally recognized
[26], [27]. Ekman states there exists evidence for seven emotions, namely anger, fear,
surprise, disgust, contempt, sadness and happiness. Although he expects evidence to be
found in the future for more emotions to comply with his proposed characteristics for an
emotion to be basic [26].
Not always are all of these basic emotions used for emotion recognition experiments,
many utilize only a distinction between negative, positive and neutral emotions, like the
commonly used data set SEED does [28].

3.1.2 Continuous Emotion Model

In contrast to the discrete approach, there are also some continuous models that record
emotions in a two or three dimensional space. One such two-dimensional model is the
Circumplex Model of Affect by James A. Russell, presented in 1980 [29]. In this model,
emotions are arranged in the horizontal dimension from displeasure to pleasure and in
the vertical dimension from sleep to arousal.
More commonly, the terms positive or negative valence are used instead of high or low
pleasure.
Emotions are then distributed according to how they fit into this scheme, e.g. happiness
is classified as positive valence and (moderately) high arousal and sadness as low valence
and low arousal as seen in Figure 3.1.

Variations of Russell’s model are often used in research and many physiological signals
relate to either one of those measurements, sometimes even both. Therefore, the data
sets DEAP and MAHNOB use this two dimensional emotion model to attribute the
measured signals to the emotions perceived by their subjects.
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Figure 3.1: Two dimension system based on Russell’s Circumplex Model of Affect [29].

3.2 Physiological Signals

Humans display emotions in many different ways. Especially when communicating
with other people, emotions are a big part of the interaction and are expressed mainly
through body language. Gestures, facial expressions and language - both tone and
manner of expression - are the most important ways in which this emotional information
is communicated to the other person. Accordingly, these external types of expression are
also subject to social and cultural rules and expectations. This quickly leads to people
influencing or manipulating their emotional expressions in order to avoid attracting
negative attention in their environment.
At the same time, emotions do not only play a role in these communicative aspects, but
the physiology of a person is also influenced by emotions. For example, respiration rate
and heart rate increase when one is afraid, or slow down when relaxed.
These physiological signals are not as easily deliberately influenced and are therefore
much more reliable for emotion recognition.
Such emotionally relevant bio-parameters are electroencephalography (EEG), electro-
cardiography (ECG)/heart rate variability (HRV), electromyography electromyography
(EMG), galvanic skin response (GSR)/electrodermal activity (EDA), skin temperature
(SKT) and respiration rate (RSP).
The applicability and usage varies depending on the type of signal.
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3.2.1 Electroencephalography EEG

Electroencephalography is a method of measuring the electrical activity in the human
brain. It consists of electrodes that are placed around the head according to a specific
system. There are different resolutions, with correspondingly more or fewer electrodes.
The international standard for many years was the 10/20 system with 21 electrodes
[30]. This system has been extended to the 10/10 system with 64 channels arranged as
shown in Figure 3.2 [31]. This is used in the SEED and DEAP data sets.

Figure 3.2: Placement of Electrodes in the 10/10 Standard based on [31].

The EEG signal itself is the fluctuation of voltage between a pair of electrodes over time
[32]. The measurements are noise-sensitive and best used in a clinical environment.
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The signals are divided into five different frequency bands: delta, theta, alpha, beta and
gamma.
Delta waves are in the frequency range 0.5 - 4Hz and are usually associated with sleep.
Theta waves range from 4-8 Hz and are mostly observed during relaxation and are
associated with working memory load. Alpha waves are the basic rhythm of an awake
but resting person with closed eyes. They range from 8 to 13 Hz. The frequency range
13 - 30 Hz covers the beta waves. They are observed when the brain is aroused and
engaged in an activity. All frequencies above 30 Hz contain the gamma waves and are
associated with high-level functions and high concentration. They are completely absent
during sleep.
According to Zheng and Lu [28] 12 of these channels are the most effective for emotion
recognition purposes. Those channels are C5, C6, CP5, CP6, FT7, FT8, P7, P8, T7, T8,
TP7 and TP8.
Additionally, to enable two-dimensional valence and arousal measurements, Ramirez et
al. [33] have established two equations with the measurements from four locations in
the prefrontal cortex:

Arousal = βF3 + βF4 + βAF3 + βAF4
αF3 + αF4 + αAF3 + αAF4

V alence = αF3 − αF4

3.2.2 Heart Rate Variability HRV

Alongside the human brain, the heart is another major player in the measurement of
emotions. Originally developed for medical purposes, Electrocardiography (ECG) is
used to determine the electrical activity of the heart and through this the beat-to-beat
temporal variation of the heart rate (HR), called the heart rate variability (HRV), can be
calculated.
This is quite complex with conventional procedures and difficult to apply in everyday
life. Although there are garments with corresponding sensors, the method of photo-
plethysmography (PPG) is easier to use, as often seen in smartwatches [4].
PPG utilizes a light source emitting red or near infra-red light and a photodetector
to measure changes in the reflection by or transmission trough the skin , from which
volumetric variations of blood circulation in the underlying tissue are measured [34].
This is called the blood volume pulse (BVP).
For the transmission technique earlobes and fingertips are most commonly used, while
for the reflection technique the measurement device can be attached to wrists, ankles,
the forehead or torso. From this monitoring of the BVP the heart rate can be determined
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in a non-invasive, mobile and cost effective way. Nonetheless, it must be considered that
HRV is dependent on the position of the body during monitoring [4].
The heart rate is a good indicator of arousal. For example, the heart rate increases
during stress or excitement, but is lower during a relaxed state [35].

3.2.3 Galvanic Skin Response GSR

The terms electrodermal activity (EDA), galvanic skin response (GSR) or skin conduc-
tance (SC) all describe the electrical conductivity of the skin. The GSR is influenced
by salts in the sweat. The sweat glands on the palms, fingers and soles of the feet
are particularly noteworthy. Arousal is directly linked to the skin’s conductivity. With
increased arousal, sweat production is stimulated and with more salts in the skin, its
conductivity also increases [22]. However, the GSR lacks relation to valence and there-
fore it is usually used in combination with other physiological signals. The body’s sweat
reaction is regulated by the autonomous nervous system (ANS). This is advantageous
for emotion recognition. Since humans can not actively control the ANS, the GSR can
occur as a reaction to stimulation the subject is unaware of and can not deliberately
inhibit it [36].
To measure the skin conductivity, two sensors are attached to the skin. Ag/AgCl elec-
trodes are used for these sensors and they are best attached to the palm of the hand
[37]. Here, devices are often attached to the fingers and can be incorporated into gloves,
demonstrated in the study by Domínguez-Jiménez et al.[38].

3.2.4 Skin Temperature SKT

Just like the sweat production for the GSR, the skin temperature is also controlled by
the ANS and is therefore beyond conscious control. Thus, his physiological parameter is
also suitable for use in emotion recognition.
The emotional states in relation to stress cause the blood vessels to constrict and this
causes the skin temperature to decrease. Similarly, relaxed emotional states lead to
dilated blood vessels and therefore a higher skin temperature [39].
However, this process takes time and the rather big latency has to be considered for the
utilization. The stimulus for this type of signal is required to persist for a longer duration
and has to evoke intense emotions, unlike to stimuli for EEG signals for instance [22]. To
measure the skin temperature either contact-less thermal imaging with infrared cameras
can be used, or it is measured with sensors directly on the skin. Here, the sensors could
be integrated into a wearable device, like a glove or wristband, as demonstrated in
[40].
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3.2.5 Respiration Rate RSP

The respiratory process is a complex and vital procedure and affects numerous parts
of the human body. Respiration depth and velocity are also affected by emotional
states. According to Zhang et al. [41] deep and fast breathing shows excitement that is
accompanied by happy, angry or fearful emotions. They also state that shallow and fast
breathing show tension, while relaxed people often have deep and slow breathing. The
work also states that the respiration rate roughly doubles during excitement compared
to calm states.
There are numerous different methods to measure changes in the respiration pattern.
The most straight forward method would be simply counting breaths over a duration of
time, using timers or software applications for assistance in the process of counting.
To avoid this manual labor, automatic methods exist. These include the measurement of
the air humidity or the temperature of exhaled breaths, as well as changes in the air
pressure. Furthermore, movement and changes in circumference of the torso, as well
as respiratory sounds can be measured. ECG and PPG can also be utilized to indirectly
measure the respiratory rate [42].
However, breathing is heavily influenced and dependent on the level of body activity
and fatigue. It has to be noted that it can be very easily consciously influenced.

In addition, it is possible to measure the electrical muscle activity with electromyography
(EMG) and thus to measure higher levels of valence through higher muscle tension.
Major limitations of this method are the lack of sensitivity to the emotion intensity and
the fact that muscle movement can be easily influenced by external factors and stimuli,
e.g. changes in light conditions can cause the subject to squint their eyes and therefore
interfere with the measurements.
Another way to measure brain activity is magnetoencephalography (MEG), the measure-
ments of magnetic brain activity produced by the electrical currents in the brain.
It is also possible to measure eye movements with electrooculography (EOG), but this
thesis does not discuss those last two topics. Facial expressions, gestures and body
posture are also modalities that can be used, but they are not considered physiological
signals and therefore are not included in this thesis.
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3 Foundations

3.3 Elicitation and Evaluation Methods

3.3.1 Elicitation Methods

The previous sections discussed what has to be measured, but in order to do so the
desired emotions to measure have to be present. If they are not, they have to be
deliberately elicited. Different methods exist for this purpose.
It is possible to use experienced actors who pretend to feel an emotion, but the goal
of the usage of physiological signals is to avoid fabricated responses and emotional
expressions. Moreover, physiological responses are hard, if not impossible, to willfully
influence. Consequently, using actors is not a feasible approach in this case.
Emotions can be subject-elicited or event-elicited [1]. They are subject-elicited when
related to memories of the subject, while emotions evoked through stimuli independent
from a subject are called event-elicited. The latter is most widely used. For this,
external visual, auditory or audiovisual stimuli are presented to the subject and the
evoked emotions and physiological reactions are recorded. For purely visual stimuli,
pictures are shown to the subjects. The International Affective Picture System (IAPS)
[43] states it offers standardized, emotionally-evocative, internationally accessible,
color photographs that include contents across a wide range of semantic categories.
Meanwhile, the International Affective Digitized Sounds (IADS) database [44] provides
acoustic emotional stimuli. Additionally, a very common approach is to utilize videos as
audiovisual stimuli. For example the MAHNOB-HCI database [45] used segments from
popular movies to elicit emotions in their subjects.
Furthermore, a small study with 10 test participants exists that shows that odors can
influence the elicitation of emotional states positively or negatively [46].

3.3.2 Evaluation Methods

With the required emotions elicited, there is still the need to annotate the recorded
physiological signals with the emotions the subjects experienced during the stimulus.
There are two main approaches to this. Self-reporting and expert-labeling [47].
With self-reporting the subjects themselves report their affective state when exposed
to the presented stimulus. This can be done with questionnaires, either in a textual or
visual way. The SAM[48] is a pictorial assessment technique that measures pleasure,
arousal and dominance over the experienced situation, as seen in Figure 3.3. Most
studies concentrate only on the assessment of arousal and valence.
However, a drawback of self-reporting is the possibility that subjects misunderstand
the questionnaires and report falsely. Alternatively, they could forget to report some
emotions if not reporting immediately when the emotion is felt [47].
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3.3 Elicitation and Evaluation Methods

Figure 3.3: The SAM pictures as presented in [48].

It is also possible to involve experts to examine the data to annotate emotions. This
can be done either by analyzing the measured physiological signals and label those
according to the experts opinion, or by utilizing the facial and bodily expressions of
the subjects. This raises the issue that multiple experts can disagree on perceived
emotions [47]. Additionally, the issue of emotions being influenced by personality, age
and experience, cultural bias, as well as environmental attributes persists with both
approaches to evaluating emotions [17], [4].
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3 Foundations

3.4 Commonly Used Data Sets

It is not always needed to collect a completely new data set for research or the time and
resources to design and conduct new experiments with human test subjects. There are
several different publicly available data sets that capture different signals and assign
them to different emotion models. In the following, a few of the most commonly used
data sets are examined in more detail.

3.4.1 SEED

The SJTU Emotion EEG Dataset (SEED) contains data from 15 subjects, of which 7 are
male and 8 female. Each participant performs the experiment thrice, with an interval of
one week or longer. The goal of the experiments were to elicit emotions described as
positive, negative or neutral. For each emotion 5 film clips with a duration of 4 minutes
each were chosen.
Simultaneously EEG signals and facial expressions of the participants were recorded.
The EEG signals were recorded using a 62-channel electrode cap with a sampling rate
of 1000 Hz. After each clip the participants filled in a questionnaire to assess the felt
emotion and its intensity during the clip. A more detailed description of the data set
and its methods can be found in [49].

3.4.2 DEAP

The Database for Emotion Analysis Using Physiological Signals (DEAP) consists of the EEG
data and peripheral physiological signals of 32 participants, of which 16 are male and
16 female. Additionally, facial expressions of 22 participants were recorded as well.
Each participant was shown 40 music videos with a duration of 60 seconds each. The
EEG signals were recorded at a sampling rate of 512 Hz using 32 electrodes. Peripheral
signals include GSR, skin temperature, blood volume and respiration pattern.
After each video the participants performed a self-assessment of their arousal, valence,
liking, dominance and familiarity of the songs.
A more detailed description of the data set and its methods can be found in [50].
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3.4 Commonly Used Data Sets

Other popular data sets are A dataset for Multimodal research of affect, personality traits,
and mood in Individuals and GrOupS (AMIGOS) [51] which includes two experiments
with short and long elicitation videos, ASCERTAIN [52], DECAF [53] which includes
MEG instead of EEG, DREAMER [54], or MAHNOB-HCI [45]. Table 3.1 shows a compact
overview of some key aspects of these data sets, with ”N” describing the number of
participants and a listing of only physiological modalities.

Name N Stimuli Modalities Emotion
Model

Assessment
Type

AMIGOS 40,
37

16 Videos
(51-150 s),
4 Videos
(14 - 24 min)

EEG, ECG, GSR Discrete,
Continuous

Self,
Expert

ASCERTAIN 58 36 Videos
(51-127 s)

EEG, ECG, GSR Continuous Self

DEAP 32 40 Videos
(60 s)

EEG, ECG, GSR,
RSP, SKT, BVP,
EMG, EOG

Continuous Self

DECAF 30 36 Videos
(51-128 s)

MEG, ECG, EMG,
EOG,

Continuous Self

DREAMER 23 18 Videos
(65 - 393 s)

EEG, ECG Continuous Self

MAHNOB-
HCI

27 20 Videos
(35-117 s)

EEG, ECG, GSR,
RSP, SKT

Discrete,
Continuous

Self

SEED 15 15 Videos
(240 s)

EEG Discrete Self

Table 3.1: Overview of Popular Data Sets.

There exist far more data sets, with some being more specialized, e.g. Odor–Video
Physiological Signal Database (OVPD) [46], which incorporates odor stiumli into the
emotion eliciation process, or RCEA-360VR [55], a database employing watching videos
in a 360° virtual reality environment as their chosen stimulus. But those are up until
now not often utilized by other studies.
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3 Foundations

3.5 Feature Extraction and Selection Methods

Algorithms process numerical input. Therefore, raw physiological signals have to be be
transformed into numerical features, while preserving the information of the original
data.

Features can be grouped into multiple different categories. Time-domain features,
frequency-domain features, time-frequency-domain features and non-linear features.
Time domain refers to the analysis of signals in respect to time, frequency domain states
how a signal is distributed over different frequencies and time-frequency domain serves
to analyze a signal in both dimensions simultaneously. Nonlinear features characterize
chaotic behaviour or regularity in series of data. Prominent examples are Approximate
Entropy or Sample Entropy, the Lyapunov Exponent and Hurst Exponent, amongst
others.

Features that can be manually calculated, like the mean, median, maximum and mini-
mum, or standard deviation of a signal or function, can be summarized under the term
statistical features.

3.5.1 Fourier Transform

The Fourier transform analyzes signals in both time and frequency domain and decom-
poses a function into sines and cosines of different frequencies and amplitudes. The
Fast Fourier Transform (FFT) is an algorithm to calculate the discrete Fourier transform.
There exist multiple variations of the Fourier transform. For example, the Short-Time
Fast Fourier Transform (STFT) uses a time window that is moved over the signal and the
discrete Fourier transform is calculated for this specific frame. Another example is the
Fractal Fast Fourier Transform (FrFT). This is a generalization of the ordinary Fourier
transform and can be interpreted as the rotation of a signal in the time–frequency plane
[56].

3.5.2 Wavelet Transform

The wavelet transform is a time-frequency analysis method as well. It allows to decom-
pose a signal into a series of wavelet coefficients at different scales. This is sometimes
favourable, especially for EEG signals, compared to the Fourier transform, since it
captures global frequency information and EEG signals consist of short intervals of
characteristic oscillation. A distinction is made between Discrete Wavelet Transform
(DWT) and Continuous Wavelet Transform (CWT).
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3.6 Classification Methods

DWT uses a finite set of wavelets, while CWT considers every possible wavelet over
a range of scales. A more detailed explanation of wavelet transform generally, but
especially for EEG signals can be found in [57].

After the process of feature extraction it is possible to end up with up to a few hundred
different features. Using all of them would result in very long computing times and
often not all features necessarily contain information important for emotion recognition.
Therefore, it is beneficial to use strategies of feature selection to reduce the amount of
features into an efficient set.

3.5.3 Principle Component Analysis PCA

Principal Component Analysis (PCA) is one commonly used technique for feature selec-
tion. It is used to reduce the dimensionality of data sets with minimal information loss.
New uncorrelated variables are being created, the principal components, which succes-
sively maximize variance [58]. Then, PCA projects data onto those lower dimensions
and selects which set of dimensions contain the best summary of the data set [59].

Of course there exist many other methods and strategies for feature extraction or
selection, but these are a few predominantly used ones.

3.6 Classification Methods

The final step needed to calculate emotions from physiological signals, is the classifica-
tion. For this purpose, classification models are trained to identify emotions based on
the physiological data provided.
A distinction is made between supervised and unsupervised algorithms. Supervised
means that the algorithm is trained with pairs of input and output data, while the
unsupervised algorithms are trained with unlabeled data.
There are many different algorithms that are suitable for this task, e.g. Linear Dis-
criminant Analysis (LDA), Long Short-Term Memory (LSTM), Linear Regression (LR),
Decision Tree (DT) and Random Forest (RF), which is formed by combining decision
trees. They all vary in their performance, but only the ones most commonly used in the
reviewed papers are discussed below.
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3 Foundations

3.6.1 Support Vector Machine SVM

A Support Vector Machine (SVM) is a supervised model that uses hyperplanes to separate
data into classes. A hyperplanes dimensionality is always lower by 1 than the amount of
different features used for the classification. The data points closest to the hyperplane
are the support vectors, they control the position of the hyperplane. The objective is to
find a hyperplane with the maximum distance between the support vectors of different
classes, thus ensuring better generalizability of the classifier.

Figure 3.4: Example of a Hyperplane with Maximized Margin.

Figure 3.4 shows an example how such a hyperplane in a two dimensional space would
look like without any training errors. It has to be considered that allowing training errors
not only reduces the complexity of the resulting function, but also avoids overfitting
[60]. This means the classification fits perfectly for training data, but when testing data
is added it will not be classified correctly.

3.6.2 K-Nearest Neighbor KNN

The K-Nearest Neighbor (KNN) classifier is supervised as well and uses euclidean
distances between test samples and training samples. For a test sample the k nearest
training samples are determined. The classifier then sets the predicted class of the
testing sample to be most frequent class of those nearest neighbors [61].
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3.6 Classification Methods

3.6.3 Naive Bayes NB

The Naive Bayes (NB) classifier is a probabilistic approach and works particularly well
with data sets containing many different features [62]. It is based on Bayes Rule, for
which the probability that a tuple of features X = {x1, x2, ..., xn} belongs to the class C

is p(C|X) = p(X|C)p(C)
p(X) . It is assumed that all features contribute independently to

the probability of a tuple X belonging to class C. This is usually a false assumption, but
works surprisingly well [63].

3.6.4 Convolutional Neural Network CNN

Convolutional Neural Network (CNN) classifiers are prominently used for image recog-
nition and are comprised of interconnected computational nodes, called neurons, that
self optimize through learning [64]. They are compromised of five layers, namely the
input layer, convolutional layers, pooling layers, fully-connected layers and output layer.
The convolutional layer uses filter kernels on the input data to generate feature maps,
while the pooling layer serves to reduce the spatial resolution of those feature maps,
while maintaining important information throughout. The fully-connected layers per-
form the classification [65].
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3 Foundations

3.7 Validation Methods

In order to confirm that the results of the recognition process are correct, validation
methods are used. Two very often used strategies are cross validation methods. For this
the data is split into training and validation data, whereby both sets must cross over
successively so that all data is validated.

3.7.1 k-Fold Cross Validation

One basic form of cross validation is k-fold cross validation. The data is separated into k

equally sized sets. For k iterations the model gets k − 1 alternating sets of training data
in order to validate a different set in each iteration. In most reviewed papers k is set to
10.

3.7.2 Leave-One-Subject-Out Cross Validation

Leave-One-Subject-Out cross-validation (LOSOCV) is a special case of k-fold cross
validation where k is set as the number of samples in the whole data set. This way all
samples expect for one are used for training the classifier and the data of the remaining
one test subject is used for validation. This is not feasible when working with very large
data sets.

More information on cross validation can be found in [66].
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4 Methodology

Torraco stated that the literature is the data of an integrative literature review [67]. And
all data has to be collected and processed.
Google Scholar was chosen as the search engine for the whole research. At first keywords
for the search were layed out. To get an overview of the topic of emotion recognition
using physiological signals, "emotion recognition" and "physiological signals" were the
initial search terms. Furthermore, to set the basic requirements of the search these were
always used as the two main keywords.
The goal of this review is to provide an insight of the research work in emotion recog-
nition based on physiological signals in the past five years, with an emphasis on the
last two years. It would go beyond the scope of this work to review all research that
has ever been there. Consequently, this restriction serves to limit the results to a more
manageable amount and to highlight recent findings. Therefore the search results were
limited to only entries published in a time frame from 2018 to (June) 2022.
To narrow the results further down and get more specific entries, search terms consider-
ing the different signal types were each added to those two main keywords, e.g. ”EEG”,
”GSR”, ”ECG”, ”HRV”, ”respiration”, ”skin temperature” or ”multimodal”.
Alternatively, in order to put an emphasis on the aspect of ”mobile”, ”online” and ”remote”
options and developments, those keywords were included separately.
In addition, the search term "machine learning" was also used.
For the inital overview of the topic entries with the word ”review” or ”survey” in their title
were preferred. Those provided the basis of a large part of the foundations chapter of this
thesis. Table 4.1 shows a list of reviews used for general information and familiarization
with the topic.
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4 Methodology

Authors Year Topic
Calvo and D’Mello
[23]

2010 Examination of emotion theories from multiple areas,
describing how researchers have incorporated psycho-
logical theories of emotion and how these theories affect
research questions, methods, results, and their interpre-
tations

Egger at al. [4] 2019 Overview of methods to recognize emotions and compar-
ison of their applicability based on existing studies

Imani and Mon-
tazer [8]

2019 Review of different emotion theories, discussion of vari-
ous emotions recognition methods, as well as their ad-
vantages and disadvantages for utilizing in e-learning
systems

Chunawale and
Bedekar [7]

2020 Survey of emotion recognition using physiological signals
and their advantages and disadvantages

J. Zhang et al.
[68]

2020 Review of emotion recognition methods based on multi-
channel EEG signals and multi-modal physiological sig-
nals, different feature extraction, feature reduction, and
ML classifier design methods

Dzedzickis et al.
[22]

2020 Analysis of sensors and physiological signals for auto-
mated emotion recognition

Hasnul et al. [17] 2021 ECG-based emotion recognition systems: observations
of data collection, pre-processing, feature extraction,
feature selection and dimensionality reduction, classifi-
cation, and validation, analysis of the benefit of emotion
recognition systems towards healthcare systems

Mejbri et al. [69] 2021 Systematic literature review of 27 papers, regarding the
usage and efficiency of affective computing in e-learning

Table 4.1: List of Reviews used for Familiarization.

When it came to the core part of the research non-review studies were preferred. Many
reviews either cover a broad subject in a more or less shallow way, or are very specific in
one regard, but not all topics are covered equally. Therefore, it was considered a better
way to directly identify which topics and approaches are actively pursued currently.
Additionally, it allowed to precisely control the currentness of the collected and reviewed
studies and experiments.
To select entries matching the desired themes, the titles and the two lines of highlighted
content presented by Google Scholar were checked and excluded when the title suggested
it was a review or survey. All entries were in english, so there was no need to actively
exclude any search results based on the language.
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The next step was to read the abstract to decide if the study was clearly associated with
emotion recognition and only or at least primarily based physiological signals. If the
abstract suggested otherwise or stated that the paper was a review, it was excluded.
This way 25 papers were collected. The biggest challenge concerning this process
was to find papers that were open access or, if they were locked behind a paywall,
accessible through the University of Stuttgart’s subscription from that publisher. This
was challenging especially with the publisher Elsevier, since many of the papers were
not included in the subscription. Nevertheless, six studies published with Elsevier could
be retrieved through Sci-Hub. The complete distribution can be found in Table 4.2.

Publisher Number of Papers
IEEE 11

Elsevier 6
MDPI 2

Springer Nature 6
Total 25

Table 4.2: List of Publishers and the Number of Reviewed Papers and Reviews.

Those papers then were analyzed by reading their conclusion and skimming their method-
ology and results chapters for relevant information. This information was gathered in a
table, listing the author, the year the paper was published and under which publisher, as
well as the country of the institution the authors are associated with. For information
regarding their used data, the data set or respectively the number of participants when
the authors gathered their own data was included in the results table, as well as the
stimuli used to elicit emotions, the measured signal types and type of emotion model
used. Additionally, the used feature extraction and feature selection methods, along
with the classifier algorithms and their best achieved accuracy were added, as well as
the chosen method of validation. The last column was filled with the particular focus of
the study and their to be highlighted findings.
This structure was inspired by the tabular presentations of other reviews, which had a
similar structure, e.g. [69],[17], [22]. Furthermore, this structure was conceived as a
detailed and informative overview, which makes it possible to precisely list and retrieve
individual key information. Similarly, noting the individual focus points and results for
each paper helps facilitate the synthesis that forms the core aspect of an integrative
literature review.
This table was then reprocessed into the tables containing meta information like pub-
lisher, publishing year and associated countries, listed in this chapter, as well as the
results table in Chapter 5. Here, the last column containing the focus and findings was
omitted, since those entries form the core content of Chapter 6.
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Country Number of Papers
Australia 2
Austria 3
Brazil 1
Chile 1
China 6

Colombia 2
Germany 3

India 4
Iran 3

Ireland 1
Lithuania 1
Malaysia 1
Norway 1

Netherlands 2
Pakistan 1
Portugal 1

Saudi Arabia 1
Taiwan 1
Tunisia 1
Turkey 2

UK 1
USA 2

Table 4.3: List of Countries Associated to Authors.

The documentation of associated countries showed that the topic of emotion recognition
using physiological signals is one important to many different countries and cultures
all over the world. Table 4.3 shows the various countries associated with the collected
studies and reviews. Here, the numbers do not add up to a total of twenty-five studies
and eight reviews, since some papers were written by authors associated with differing
countries or even multiple countries.
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Year Number of Papers
2018 3
2019 3
2020 10
2021 7
2022 2
Total 25

Table 4.4: Overview of the Years the Selected Papers were Published.

The distribution of the years the papers were published is shown in Table 4.4. It should
be mentioned that only papers were included that were not only published since 2018,
but were also submitted for review at least in 2018.
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5 Results

The collected and analyzed papers are presented in Table 5.1, Table 5.2 and Table 5.3.
Listed are the author, year of publishing, the used data set and methods, as well as the
best achieved classification accuracy and validation methods.
In cases where the paper did not state the used methods or algorithms, the cell sates
”N/A”. The classifier that achieved the highest accuracy is highlighted in bold letters. All
methods are listed with their abbreviations to save space.

A wide variety of publicly available data sets and modalities was used, as well as many
different feature extraction methods and classifiers. To get an overview how often
those were used, Tables 5.4, 5.5, 5.6 and 5.7 list the differing sets, modalities, feature
extraction methods and classifier sorted in descending order by frequency of use.

Table 5.6 and Table 5.7 only list algorithms that were used multiple times to stay more
concise.

Regarding the emotion models, continuous models with the dimensions of arousal and
valence are employed a total of nineteen times [70], [71], [72], [39], [73] [74], [75],
[76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [40]. Discrete emotion models
are applied ten times [86], [70], [71], [38], [87], [88], [78], [89], [90], [91]. The
studies either used distinctly labeled emotions [86], [71] [38], [88], [90] or a system
of positive, negative [70], [91] and often neutral labelled emotions as well [87], [78],
[89].

Almost half of all studies did not specify a method to validate their results. The two
validation methods k-fold cross validation and LOSOCV were used equally often, both
eight times respectively.
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Author Data Set Stimuli Signaltype Emotion Model Feature extraction Feature Selection Classification Accuracy Validation

Acevedo et al.
[86]

own (25
participants)

University
Exams

GSR,
Electronic Nose
to measure gas
emitted from skin

Stress N/A N/A LDA, KNN, SVM 96% (Electronic Nose)
100% (GSR)

5-fold cross
validation

Alakus et al. [70] GAMEEMO Video Games EEG Valence & Arousal,
Positive, Negative

DWT N/A SVM, KNN,
Multi-Layer Perceptron-
neural Network (MLPNN)

82% (F4, MLPNN, V/A)
87% (AF4, MLPNN, pos/neg)

10-fold cross
validation

Ali et al.[71] MAHNOB-
HCI,
own (6
participants)

Video Clips EDA, ECG, SKT Arousal & Valence
6 universal
emotions

Statistical Features N/A Cellular Neural Network,
KNN, NB, SVM,
Artificial Neural Network
(ANN)

89.38% (same environment)
71.05% (differing
environment)

N/A

Awais et al. [72] CASE Video Clips RSP, GSR, ECG,
EMG, SKT, BVP

Arousal & Valence N/A N/A LSTM based N/A N/A

Ayata et al.[39] DEAP Music Videos SKT, RSP, BVP Arousal & Valence Statistical Features Minimum Redun-
dancy Maximum
Relevance (mRMR)

RF, SVM, LR &
subsequent decision level
fusion

73.08% (Arousal)
72.18% (Valence)

LOSOCV

Balic et al. [73] DEAP Music Videos EEG Arousal & Valence FFT PCA, mRMR,
Particle Swarm Opti-
mization (PSO),
Cuckoo Search (CS),
Grey Wolf Optimizer
(GWO)

Bidirectional LSTM mRMR, 11 hours:
92.74% (Arousal),
92.36% (Valence)
CS, 15 hours:
93.33% (Arousal),
93.67% (Valence)

N/A

Doma, Piruz [74] DEAP Music Videos EEG Arousal & Valence Statistical Features PCA LDA, SVM, KNN,
NB, LR, DT

70.41% (Valence, KNN)
73.75% (Arousal, SVM)

N/A

Domínguez-
Jiménez et al.
[38]

own (37
participants)

Video Clips HR (PPG), GSR Amusement, Neu-
tral, Sadness

STFT Random Forest
Recursive Feature
Elimination,
Stepwise
Regression,
Genetic Algorithms

SVM, NB, DT, LDA, SLDA,
Multinomial Regression
(MN),
Extreme Gradient Boost
(XGBTREE),
Boosted Logistic Regres-
sion (BLR),
Lasso and Elastic-Net Gen-
eralized Linear Models
(GLM-NET),
Bagging Trees (TBAG)

96% Amusement,
86% Neutral,
91% Sadness

10-fold cross
validation

Garg, Verma [75] DEAP Music Videos EEG Arousal & Valence CWT N/A CNN (GoogleNet) 92.19% (Valence)
61.23 % (Arousal)

N/A

Gupta et al. [87] SEED, DEAP Video Clips,
Music Videos

EEG Pos/Neutral/Neg,
Arousal & Valence

Flexible Analytic
Wavelet Transfom &
Information Potential
Estimator

N/A RF, SVM 90.48% (pos/neu/neg)
71.43% (V/A)

10-fold cross
validation

He et al. [76] DREAMER,
AMIGOS

Video Clips ECG Arousal & Valence Statistical Features covered by domain
adaptation

unsupervised domain
adaptation (UDA) with
online data adaptation
(ODA)

72% (Valence, DREAMER)
71% (Arousal, DREAMER)
71% (Valence, AMIGOS)
72% (Arousal, AMIGOS)

LOSOCV

Table 5.1: Tabular Overview of all Reviewed Papers.
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Lutze, Waldhör
[88]

own (2
participants)

Watching
Soccer
Games

HR Stress N/A N/A N/A N/A N/A

Panahi et al. [77] ASCERTAIN Video Clips GSR, ECG Arousal & Valence FrFT Wilcoxon signed
rank test

SVM 78.32% (Valence, ECG)
76.83% (Arousal, ECG)

10-fold cross
validation

Pandey, Seeja
[78]

SEED, DEAP Video Clips,
Music Videos

EEG Pos/Neutral/Neg,
Valence (& Arousal)

CWT N/A CNN 61.5% (DEAP, Valence),
58.5% (DEAP, Arousal)
54.0% (cross database, Va-
lence)

N/A

Sepúlveda et al.
[79]

AMIGOS Video Clips ECG Arousal & Valence Statistical Features,
Wavelet Scattering Al-
gorithm

PCA LDA, DT, NB, KNN, SVM,
Ensemble Bagged Tree

89.3% (Valence)
89.1% (Arousal)
95.3% (two dimensional)

10-fold cross
validation,
LOSOCV

Sharma et al.
[80]

CASE Video Clips ECG, BVP, EMG,
GSR, RSP, SKT

Arousal & Valence Statistical Features N/A N/A N/A N/A

Song et al. [81] MPED Video Clips EEG, RSP,
GSR, ECG

Arousal & Valence Power Spectral Den-
sity (PSD),
Hjorth,
Higher Order Cross-
ings,
STFT,
Hilbert-Huang Trans-
form, FFT,
Attention-LSTM

N/A SVM, KNN,
Deep Belief Network
(DBN),
Spatail-Temporal Recur-
rent Neural Network
(STRNN),
Dynmical Graph Convo-
lutional Neural Network
(DGCNN),
LSTM, A-LSTM

72.93%
(distiguish positive/negative)

N/A

Vijayakumar et
al. [82]

DEAP Music Videos EEG, EMG, GSR,
BVP, RSP, SKT

Arousal & Valence Statistical Features,
Sample entropy,
Hurst exponent,
detrended fluctuation
analysis,
Lyapunov exponent

PCA SVM, KNN, RF, DT, LR,
Gaussian NB (GNB), LDA

64.92% (EOG, SVM, Valence)
63.86% (all without feature
extraction, Arousal)

10-fold cross
validation

Wei et al. [89] SEED Video Clips EEG Pos/Neutral/Neg Dual-Tree Complex
Wavelet Transform
(DT-CWT),
Mean Absolute Value
(MAV),
PSD,
Fractal Dimension
(FD),
Differential Entropy
(DE)

N/A Simple Recurrent Units
for Ensemble Learning
(SRU), KNN, SVM, NB

80.02% (SRU + DE),
83.13% (SRU ensemble)

N/A

Yang et al. [90] own(20
participants)

stimuli
based
on subject
personal
experiences

EEG, ECG, PPG Happiness, Anger,
Sadness, Neutral

STFT,
Statistical Features

N/A CNN 76.94% (EEG)
76.8% (ECG/PPG)

LOSOCV

Yang et al. [91] own (45
participants)

Pictures PPG, EDA, SKT &
behavioural Signals

Positive/Negative Attention-based
LSTM

N/A modality fusion &
decision making

89.24% (Positive)
89.25% (Negative)

LOSOCV

Table 5.2: Tabular Overview of all Reviewed Papers continued.
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Author Data Set Stimuli Signaltype Emotion Model Feature extraction Feature Selection Classification Accuracy Validation

Zhang et al. [83] DEAP, DE-
CAF

Music
Videos,
Movie Clips

EEG, GSR, EMG,
RSP, ECG, MEG

Arousal & Valence Statistical Features N/A SVM, DT, NB,
Feature-level fusion:
SVM-FLF,
AverageMultiple Kernel
Learning (MKL),
SimpleMKL,
EasyMKL,
Fully Connected Network
(FCN)
descision-level fusion:
SVM-DLF,
Regularized Deep Fusion
Kernel Machine (RDFKM)

64.5% (Valence, DEAP)
63.1% (Arousal, DEAP)
71.2% (Valence, DECAF)
57.1% (Arousal, DECAF)

LOSOCV

Zhang et al. [85] CASE,
MERCA,
CEAP-360VR

Video Clips BVP & HR, EDA,
SKT

Arousal & Valence 1D-CNN, Statistical
Features

N/A Deep Multiple Instance
Leaning based Emotion
Recognition Algorithm
(EDMIL)

75.63% (Valence, CASE)
79.73% (Arousal, CASE)

LOSOCV

Zhang et al. [84] CASE,
MERCA,
CEAP-360VR

Video Clips BVP & HR, EDA,
SKT

Arousal & Valence Embedding Network N/A Emotion Recognition
based on Deep Siamese
Network (EmoDSN)

76.04% (Valence)
76.62% (Arousal)
57.62%
(Arousal,Valence,Neutral)

N/A

Zhao et al. [40] own (15
participants)

Video Clips BVP, EDA, SKT Arousal & Valence FFT,
Dynamic Threshold
Difference (DTD),
Butterworth Filter

Information Gain
(IG),
Sequence Forward
Floating Selection
(SFFS),
PCA

SVM, RF, NB,
Neural Network (NN)

75.65% (SFFS/SVM) 10-fold cross
validation,
LOSOCV

Table 5.3: Tabular Overview of all Reviewed Papers continued.

Table 5.4 shows the publicly available data sets that were used in the reviewed studies. By far, the data set most often
used is DEAP, a data set which measured EEG, GSR, skin temperature, blood volume and respiration pattern, as described
in Section 3.4. Seven papers state they conducted their own experiments with participant numbers ranging from 2 to 45
participants [86], [71], [38], [88], [90], [91], [40], and an additional three studies published their data sets, namely
GAMEEMO [70], Continuously Annotated Signals of Emotion (CASE)[80] and Multi-Modal Physiological Emotion Database
(MPED) [81], for other researchers to use.
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Data Set Amount Studies

DEAP 8 [39], [73], [74], [75], [87], [78], [82], [83]
SEED 3 [87], [78], [89]
CASE 3 [72], [84], [85]
AMIGOS 2 [76], [79]
MERCA 2 [84], [85]
CEAP-360VR 2 [84], [85]
DREAMER 1 [76]
MAHNOB-HCI 1 [71]
ASCERTAIN 1 [77]
DECAF 1 [83]

Table 5.4: Overview of How Often each Data Set was Used.

As seen in Table 5.5, the signal types used the most are cardiac signals, i.e. ECG, HRV
and BVP combined, with a total of sixteen papers using those. Three of these papers
used cardiac signals as their only source of physiological data, while the other thirteen
papers used them as part of a multi-modal approach. GSR and EDA combined are used
a total of thirteen times, always part of a multi-modal approach. EEG signals are listed
eleven times, whereby seven papers based their work only on EEG data. SKT is used
nine times, RSP six times, both also only in multi-modal studies. The least often used
are EMG signals in four papers.

Modality Amount Studies

ECG/HRV/BVP 17 [71], [72], [39], [38], [76], [88], [77], [79],
[80], [81], [82], [90], [91], [83], [84], [85],
[40]

GSR/EDA 13 [86], [71], [72], [38], [77], [80], [81], [82],
[91], [83],[84], [85], [40]

EEG 11 [70], [73], [74], [75], [87], [78],
[81], [82],[89], [90], [83]

SKT 9 [71], [72], [39], [80], [82], [91], [84], [85],
[40]

RSP 6 [72], [39], [80], [81], [82], [83]
EMG 4 [72], [80], [82], [83]

Table 5.5: Overview of How Often each Modality was Used.
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5 Results

Feature
Extraction

Amount Studies

Statistical
Features

11 [71], [39], [74], [76], [79], [80], [82], [90],
[83], [84], [85]

FFT 3 [73], [81], [40]
STFT 3 [38], [81], [90]
CWT 2 [75], [78]
PSD 2 [81], [89]
A-LSTM 2 [81], [91]

Table 5.6: Overview of How Often each Feature Extraction Method was Used.

The feature extraction methods that were utilized in the reviewed studies are presented
in Table 5.6. The most often mentioned features were not calculated with any special
algorithms, but just statistical features listed by the researchers.

Table 5.7 lists SVM as the most used classifier by far, followed by KNN and NB. Thirteen
of twenty-five papers applied SVM in their studies and in six it was the best performing
classifier. KNN and NB were both listed eight times. Moreover, many more classifiers
were applied, but each only once.

Classifier Amount Studies

SVM 14 [86], [70], [71], [39], [74], [38], [87], [77],
[81], [79], [82], [89], [83], [40]

KNN 8 [86], [70], [71], [74], [79], [81], [82], [89]
NB 8 [71], [74], [38], [79], [82], [89], [83], [40]
LDA 5 [86], [74], [38], [79], [82]
DT 5 [74], [38], [79], [82], [83]
RF 4 [39], [87], [82], [40]
CNN 3 [75], [78], [90]
LSTM 3 [72], [73], [81]
LR 3 [39], [74], [82]

Table 5.7: Overview of How Often each Classifier was Used.
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6 Discussion

The papers collected and displayed in Chapter 5 cover many different topics in the
field of emotion recognition based on physiological signals. This Chapter takes a look
at the relations between these studies and highlight important findings. Firstly, the
findings regarding various topics in the experiment structure are discussed, ranging from
different data sets and test subject dependencies to signal measurements and wearable
measuring devices. Furthermore, the covered recognition methods and performances
are examined as well.

6.1 Experiment Procedure

6.1.1 New Data Sets and Sample Sizes

Regularly, new data sets are created. Out of the set of reviewed papers, three aimed
to present new unique data sets, namely CASE [80], GAMEEMO [70] and MPED [81].
Sharma et al. [80] demonstrated a novel joystick-based annotation interface in order to
enable subjects to simultaneously report their perceived arousal and valence levels. This
interface generates two dimensional recordings of emotion measurements alongside
with multiple physiological signals. They published their data set for public usage under
the name CASE and for example Zhang et al. utilized it in their studies [84] and [85].
Song et al. [81] collected multi-modal physiological data as well, on which they also
successfully tested an attention based LSTM classifier.
Alakus et al. [70] presented their data set GAMEEMO containing EEG signals, for
which they used video games as the emotion elicitation method. Their subjects played
different videos games for five minutes to invoke emotions, namely boredom, relaxation,
amusement or fear to be precise.
All three of these data sets did not have more than 30 subjects to gather their data
from. This appears to be a pattern that continues through most of the reviewed papers.
Most studies that conducted their own experiments had between fifteen [40] and thirty
[80] participants. More than thirty subjects appeared only in the studies by Domínguez-
Jiménez et al. [38] and Yang et al. [91]. The publicly available data sets with the highest
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number of participants is ASCERTAIN [52] with fifty-eight participants. In contrast, two
studies even had only two [88] and six [71] participants.

Overall, those participants were mostly healthy and young adults and of higher education
levels. The only reviewed study that included people with health-risks was [90], which
specifically concentrated on subjects with a high risk for heart diseases.
Pandey and Seeja highlighted that the larger of two used data sets provided better
generalization [78].
It follows that such rather small and homogeneous sample sizes limit the generalizability
of the commonly achieved results. It is therefore important to further expand the
heterogeneity of data samples and to increase the size of data sets. Zhang et al. tried to
actively combat this issue of small sample sizes in their study by providing an algorithm
that can still achieve reasonable results on very small amounts of training data, i.e. data
that contained less than ten samples [84].
However, this does not provide benefits towards the general generalizability.

6.1.2 Elicitation and Evaluation

When trying to elicit emotions for measuring, several approaches exist. The only study
that used solely visual elicitation materials is [91]. All other studies utilized audiovisual
material, being clips either from music videos or movies, or in the case of [70], video
games. Yang et al. did not specify what kind of stimuli they used, only that it was based
on the subjects personal experiences [90].

For the annotation of emotions during the experiments, self assessment is the preferred
method. Out of ten studies that conducted their own experiments ([86], [70], [71],
[38], [88], [80], [81] [90], [91], [40]) seven ([70], [71], [38], [80], [81], [91],
[40]) reported using self-reporting assessment techniques to evaluate the emotions
experienced by their participants. The other three studies ([86], [88], [90]) did not
mention any assessment at all.
While the usage of SAM questionnaires is widely used, the only study that included the
dominance ratings in their classification process was [74]. Additionally, the only used
data set that utilized not only self assessments, but also external annotation is AMIGOS
[51].

6.1.3 Subject Dependencies

Another important factor regarding test subjects and the measured signals is the inter-
and intra-subject discrepancy. This means there exist differences not only between the
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6.1 Experiment Procedure

data gathered from different humans. But day-to-day differences in the measured signals
of one single subject or over multiple hours in one day can be a major issue as well.
He at al. referred to this in their study and proposed a domain adaptation strategy to
overcome this issue [76].
Meanwhile, Wei et al. [89] pointed out that neural patterns were relatively stable
within and across days based on the performance of their proposed system. Inter-subject
discrepancies are also considered in [78], where Pandey and Seeja tried to counter this
problem by testing their approach in a cross database way.
Gupta et al. [87] addressed this topic by looking into EEG channel specifics and which
individual channels provided the best results, with the goal of overcoming inter-subject
difficulties.
A unique approach was presented by Ali et al. [71]. They created a calibration model,
which is used to determine if a new test subject had similar responses to a subject from
the training set. The calibration model identifies the most correlated training subject.
Then the features of the test subject are transformed in such a way that afterwards they
are calibrated from the perspective of the training set. Ali et al. stated that this improved
the overall accuracy performance by more than 13%.

Vijayakumar et al. [82] noted in their work that male subjects achieved a significantly
greater average valence recognition accuracy than female subjects. However, this was
the only entry to contain gender-specific information.

6.1.4 Standardization

Additionally, regarding the experiment procedure, Lutze and Waldöhr [88] used the
Graphical Assessment for RealLife Application-Focused Emotional Datasets (GARAFED)
[47], a tool for standardization of the evaluation of emotion recognition experiments.
This is done by looking into the dimensions of emotion origin, invasiveness, privacy,
experimental days, experimental hours per day and number of subjects in an experiment.
No other reviewed study applied this system for their own works, but it would be a
helpful tool to more easily compare experiment approaches with each other.

6.1.5 Laboratory Settings and Wearable Measuring Devices

The measuring of physiological signals happens mostly in laboratory settings, as is the
case for almost all studies reviewed in this thesis. Exceptions are the studies [84] and
[85] by Zhang et al. and one study by Acevedo et al. [86]. Zhang et al. included a data
set [92] that gathered data from people watching videos on smartphones while outdoors
in both studies ([84] and [85]). Meanwhile, Acevedo et al. [86] conducted their
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experiments in the homes of the participants, due to restrictions during the COVID-19
pandemic.
A large number of the reviewed papers were published after the start of the pandemic in
2020. One could assume more studies would be influenced and relate to the changing
world environment, but only [86] and [72] acknowledged those circumstances.
This also brought forth an increased need for remotely functioning systems and mobile
measuring devices. These are important research topics for the future and for com-
fortable day-to-day application as well. In this context, Awais et al.[72] proposed an
Internet of Things based solution that transfers the measured data to cloud servers for
processing.

Many of the collected studies use portable or wearable measuring devices instead of
typical stationary clinical measuring equipment ([70], [88], [90], [91], [85], [40] [71]
and [38]).
Sepúlveda et al. [79] reported plans for a shirt equipped with ECG electrodes and
Domínguez-Jiménez et al. [38] created a wearable glove to measure PPG and GSR
signals.
Lutze and Waldöhr [88] used a mainstream smartwatch to measure the heart rate of the
test subjects, and concluded that only strong tension situations lead to unambiguous
results. The studies [71], [91], [85] and [40] all utilized the Empatica E4 wristband
with PPG and EDA sensors, as well as sensors for measuring skin temperature.
Zhang et al. [85] also stated that mobile sensors were showing promising results,
although sensors of laboratory quality still achieve higher accuracy ratings. This does
not yet include the difficulties that arise for everyday and mobile measurements. For
example, the influences that movement has on the measurements of respiration and
heart rate.

6.1.6 Uni-Modal vs. Multi-Modal

One way in which the collected studies differ is whether a uni- or multi-modal approach
is used. Using multiple modalities offers a high variety of signals which can complement
each other, while for example EEG signals are quite accurate on their own. The studies
[70], [73], [74], [75], [87], [78], [89] all use solely EEG data, while [76], [88] and
[79] used exclusively cardiac signals.
All other fifteen studies employed multi-modal approaches.
The studies using only ECG or EEG data showed a good performance over all, but
not necessarily better or worse than the multi-modal approaches. EEG signals may be
highly accurate on their own, but they are also more difficult to measure. Therefore,
it is understandable that many studies chose to refrain from using EEG data at all and
instead opted for a multi-modal approach using other physiological signals. One can
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imagine the utilization of more diverse signal types together can improve the accuracy
further. However, it has to be taken in account that the usage of differing types of signals
also means more effort is needed to produce a coherent result.

6.1.7 EEG Channel Selection

As previously mentioned, Gupta et al. [87] examined the performance of different EEG
channels. They reported that the channels FT7, FT8, T7, T8, C5 and TP7 performed
best. These results coincide with a study by Zheng and Lu [28].
Contrary to that, Alakus et al. [70] and Pandey and Seeja [78] reported that frontal
zones achieved the best results in their study. To be precise Alakus et al. [70] identified
AF4 for high arousal and valence, F4 for low arousal and high valence, FC5 for high
arousal and low valence and AF3 for low arousal and valence.
Wei et al. [89] noted that higher frequency bands were more favourable for emotion
recognition. Regarding channel selection, Balic et al. [73] compared different algorithms
for this purpose. They did not specify which channels performed best, instead they
reported that they were able to significantly reduce computing time (from eighteen
hours without channel selection down to eleven hours with channel selection) while
only negligibly decreasing the accuracy. The used methods can be found in the results
tables in Chapter 5.

6.2 Recognition Procedure

6.2.1 Feature Extraction Methods

The different signals in raw form are not really applicable for classification purposes,
so features that provide more distinct information are needed to be calculated from
those raw signals accordingly. Acevedo et al. [86] and Awais et al. [72] both did not
mention any used features or extraction methods at all. Meanwhile, [83], [80], [76],
[74], [39], [71] only specified the usage of statistical features, but not if those features
were extracted with any algorithms.
When mentioned, various forms of the Wavelet Transform or Fourier Transform were the
most commonly applied methods. Garg and Verma [75] and Pandey and Seeja [78] both
created scalograms, a visual representation of a wavelet transfrom in form of an image,
to feed into their CNN classifiers. Therefore, the implementation of CNNs is evident,
since they are primarily used for pattern recognition in images [64].
Zhang et al. [85] stated that "feature extraction using an end-to-end structure can
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improve recognition accuracy compared with manual feature extraction as well as
unsupervised learning feature extraction methods".

6.2.2 Feature Selection Methods

Since physiological signals can provide a great number of different features, it is bene-
ficial to employ strategies to reduce the amount of actually used features for minimiz-
ing computing time and effort. Only nine papers ([39], [73] [74], [38], [76], [77],
[79],[82], [40]) specified the use of any type of such feature selection methods.
Since there exist multiple different approaches for feature selection, [73], [38], [40]
each compared a different set of methods. Balic et al. [73] achieved the best results
with mRMR and CS, while Domínguez-Jiménez et al. [38] reported good results with
Random Forest Recursive Feature Elimination and Genetic Algorithms, but Stepwise
Regression with Forward Selection apparently did not perform well. Furthermore,
Domínguez-Jiménez et al. noted that PPG features were not relevant for the recognition
of amusement or sadness in their study. Zhao et al. [40] noted their best accuracy was
achieved with SFFS, when combined with the SVM classifier.
The most often used feature selection method was PCA, mentioned by five studies ([73],
[74], [79], [82], [40]).

6.2.3 Fusion Methods

When working with bigger sets of data it can also be beneficial to combine this infor-
mation via fusion methods. Six studies ([39], [81], [82], [91], [83], [84]) employed
modality level or decision level fusion methods. The five studies [81], [82], [91], [83]
and [84] utilized modality level fusion to combine feature sets for further processing
in classifiers. All of those studies reported improvements in accuracy compared to
approaches without modality fusion. Two studies, [39] and [91], used decision level
fusion, to combine results provided by their classifiers for a more reliable outcome.

6.2.4 Comparison of Classifiers

Way more focus was put on the comparison of classifiers, with thirteen studies applying
multiple classifiers and comparing them in terms of accuracy [86], [70], [71], [39],
[74], [38], [87], [79], [81], [82], [89], [83], [40]. Alakus et al. stated that the KNN
classifier did not perform well on their denoised data set due to the fact that it is a
algorithm well suited for data with artifacts [70].
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6.2 Recognition Procedure

However, there is no general consensus on which classifier is definitely superior to the
others. The closest would probably be SVM, as five studies identified it as the best
performing classifier when compared with others ([86], [74], [38], [82], [40]). It was
also overall the most used classifier when including the studies that only used one.
Other classifiers that were considered the best performing out of a set of different
algorithms were RF [39] and [87], Cellular Neural Networks [71], KNN [74], MLPNN
[70], Ensemble Bagged Tree [79], Attention-LSTM [81] and SRU [89].
Hereby, Ali et al. reported that emotion recognition is a "highly nonlinear dynamical
system" and "the history of inputs might affect the outputs". They achieved reasonable
results with their proposed classification model based on Cellular Neural Networks and
concluded that it performed better because of the utilization of a memory to consider
the history of inputs [71].

Ten studies employed only one classifier [72], [73], [75], [76], [77], [78], [90], [91],
[84], [85]. Additionally, four studies in total proposed new classifiers [76] [83],[84],
[85]. He et al. [76] combined Unsupervised Domain Adaptation UDA from [93] with
their own online data adaptation approach. Zhang et al. [83] proposed a classifier
called RDFKM, which they compared to other classifiers. It performed best, but also was
the only classifier out of ten that was receiving all modalities available in the used data
sets. Zhang et al. proposed two different new methods, EDMIL and EmoDSN, where
EDMIL combines preprocessing, feature extraction and classification [85], and EmoDSN
"learns the difference between samples instead of building the precise mapping between
samples and emotion labels" [84].

6.2.5 System Performance

The performance of emotion recognition systems is the key point of their success. Almost
all studies measured the performance of their presented system by its accuracy. Balic
et al. were the only ones to also include the computing time in their performance
assessment [73].
The only exception to the performance measuring by accuracy were Awais et al. [72].
They argued that the f-score provides better insight across unbalanced data sets and did
not offer the accuracy ratings their system achieved.

None of the studies arguing with their achieved accuracy ratings reported an value under
50%. Four studies merely achieved accuracy results under 65% ([78], [82], [83], [84]).
Meanwhile, six studies ([86], [73], [38], , [75], [87], [79]) reached results higher than
90%: [86] and [73] for all their results and [87] only for discrete emotions, [38] for
amusement and sadness recognition, and [79] for a two dimensional approach. However,
the ratings for arousal and valence on their own were still very close to 90% accuracy.
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The study by Garg and Verma exceeded this threshold only for valence recognition [75].
Zhang et al. [83] also declared significantly higher accuracy values for valence than
arousal. Contrary to that, all other studies working with the continuous emotion model
achieved very similar results for both dimensions [39], [73], [74], [76], [77], [78],
[79], [85], [84].

Since some papers utilized two different emotion models, comparisons can be made
in this regard. Two studies reported performance for both continuous and discrete
emotion models and reported that their systems performed better for discrete models
than continuous.
In the case of [87] this might be because the data set SEED provided more EEG channels
than DEAP and therefore the algorithms had more information for the discrete model to
work with. Alakus et al. [70] conducted their study only on one data set and produced
the same result. This leads to the conclusion that it is also likely that it is easier to
recognize less dimensions of emotions, i.e. one dimension from positive to negative
compared to two dimensions of arousal and valence or multiple distinct emotion labels.

6.2.6 Validation

The data sets the reviewed studies are working with are rather small. And because the
validation methods k-fold cross validation and LOSOCV are easy to apply when working
with smaller bodies of data, they are often utilized.
As stated in Chapter 5 the validation methods k-fold cross validation ([86], [70], [38],
[87], [77], [79], [82], [40]) and LOSOCV ([39], [76], [79], [90], [91], [83], [85],
[40]) were used equally often, eight times to be precise. Sepúlveda et al. [79] and Zhao
et al. [40] employed both methods. However, this also means that multiple studies
did not report any used validation method at all ([71], [72], [73], [74], [75], [78],
[81], [89], [84]). Sharma et al. [80] created a new data set without classifying their
measurements and Lutze and Waldöhr [88] also did not apply any classification to their
data. Therefore they did not need to validate the results of any classifiers. Nonetheless,
this lack of validation should not be the case in such a large proportion.
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7 Conclusion

7.1 Summary

Emotion recognition is a very broad field of research, even if the focus limited to studies
that concentrate only on systems working with only or mostly physiological signals.
Many studies exist covering different approaches to recurring subjects. Twenty-five of
such studies published in the years 2018 to 2022 were gathered and reviewed in this
work.

The main findings include that many different data sets exist and regularly new ap-
proaches and methods in this context are tested. Particularly worthy of mention is the
data set CASE and the joystick-based annotation interface to simplify simultaneously
annotating emotions, while experiencing stimuli. The most commonly used types of
stimuli were videos and self assessment, prominently in the form of SAM, was always
the chosen approach for emotion annotation.
Differences between subjects and for the same subject at different times are often in-
vestigated issues, as are the channel specific performances for EEG signals. Studies in
laboratory environments seem to be the norm, but in eight studies wearable measure-
ment devices are employed instead of medical grade sensors. Ten out of twenty-five
studies worked with a single physiological modality, while the rest used multi-modal
approaches.
Feature extraction and feature selection are both topics that do not get much in-depth
attention. Feature fusion was mentioned a couple of times and was perceived as benefi-
cial. Contrary to that, comparison of classifiers and the development of new techniques
is very actively worked on. SVM is a regularly good performing classification method,
but other novel approaches showed promising results as well.
To evaluate the success of their system, almost all researchers presented the accuracy
values their systems achieved and validated their results with either k-fold or leave-one-
subject-out cross validation, both of which work very well on little data.
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7.2 Limitations and Future Work

As previously mentioned, a prominent limitation is the lack of large sets of data. The
increase of sample sizes would offer more training data, which is beneficial for the learn-
ing process of classifiers and lead to better generalizability of the results. This can also
be improved by purposefully increasing the diversity of the test subjects, by including
more older people, people with illnesses or disabilities and of different ethnicity and
cultural backgrounds.
It should be a goal for the future to contribute a data set with at least more than 100
participants. This would also help with issues like the inter- and intra-subject discrepan-
cies, due to a opportunity to investigate those. Maybe patterns can be found in a large
set of different subjects, or it would simply be beneficial for the training of classifiers in
consideration of this issue.
Such bigger training data sets may also entail longer and more complex training pro-
cesses. The computing duration for classifiers was mentioned in only one paper [73],
therefore no further conclusions can be drawn in this regard from the reviewed papers.
But this can not be a hindrance, even if it means more effort.
This leads to the next point, the lack of standardization. The study design can be
evaluated with GARAFED and such standardization would enable other researchers to
more easily compare data sets and their creation. This way they can make informed
decisions more quickly. It would also be beneficial if all studies published their collected
data along with their documented results for replicability and transparency, as well as
improve documentation overall, since quite a few papers were excluded in the collection
process of this work due to missing methodologies or descriptions of their process.

The daily applicability of emotion recognition is one prominent issue that requires
further research. Emotions specifically elicited in a laboratory setting are very different
from the complex, most often simultaneously occurring multitude of emotions in daily
life. Those laboratory emotions may be easier to work with, but the more complex real
life emotions ultimately have to be the final goal of research.
Another persisting problem is the main difficulty to measure physiological signals in a
non-clinical environment. Movement has a great influence on many physiological signals,
e.g. heart rate or respiration. Therefore, a system trained in a clinical environment can
not just be transferred to a real life application, since the classifier would misinterpret
the changed signals wrongly.
Also, wearable or mobile sensors are not as precise as sensors of laboratory quality,
but the results are promising [83]. Consequently, the development of non-intrusive
precise wearable sensors is an important objective, from which not only the field of
emotion recognition profits, as well as field studies investigating and considering real
life situations for their measurements.

60



7.2 Limitations and Future Work

Additionally, EEG signals are difficult to measure in daily life. Multi-modal approaches
that omit EEG modalities and instead concentrate on other, more easily measurable,
signal types seem to have a more promising future for application in the wild, so to
speak.
Such multi-modal approaches require more effort to process and for example synchroni-
sation of those multiple signals is very important. But, as is the need for larger data sets,
this is an obstacle that has to be overcome in the future.

Features are a great tool to condense the raw signals into distinct important information
points. Not all researchers mention using features for their systems and if they do, the
extraction of these is not always thoroughly documented. Sensible selection of features
is also a point that provides advantages. When only features that definitely provide
helpful information are fed to the classifier, it can increase the accuracy of the results,
as seen with feature fusion. Using less but more informative features also reduces the
computing time, a metric that is completely neglected in most studies. A faster training
process has to be weighted against the accuracy of a system, but is an important factor
that future commercial applications would consider.

In Chapter 6 it was mentioned that there is no general consensus on a ultimately su-
perior classifier. But, the comparison of classifiers or whole systems is made difficult
by the fact that the various studies utilized different data sets. Those use different
stimuli, employ different measuring devices and use different emotion models for their
annotation process.
Often when employing discrete emotion models, only positive and negative emotions are
distinguished instead of the six basic emotions by Ekman [27]. Since real life emotions
are more complex than just positive and negative it is necessary to use the more complex
approaches and put in the effort to meet the demands.
Additionally, different features and their complexity influence the selection and perfor-
mance of classifiers as well. All these factors play into great differences between the
various emotion recognition systems and complicate attempts to compare them with
each other.
Additionally, accuracy ratings are not as helpful in determining the performance of a
system [72] when using unbalanced data sets so, this has to be considered in future
research. The validation of the results also leaves a lot to be desired when nine papers
are not reporting any validation methods.

To conclude the most important points, it is important to improve the overall doc-
umentation of studies and to provide bigger and more heterogeneous sets of data.
Wearable sensors seem promising and real life environments are necessary to investigate
further.
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