
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Deep Learning in Stream Entity
Resolution

Suhas Devendrakeerti Sangolli

Course of Study: Computer Science

Examiner: Prof. Dr. rer. nat. Melanie Herschel

Supervisor: Leonardo Gazzarri, M.Sc.,
Prof. Dr. rer. nat. Melanie Herschel

Commenced: January 12, 2022

Completed: July 12, 2022

Abstract

Entity Resolution (ER) determines which virtual representations of entities map to the same
real-world entity. Most current ER-related research in big-data scenarios focuses on volume and
variety problems. However, with increased digitization, data is not only generated in bulk but
also in a continuous fashion. So, velocity is also an issue that needs to be addressed in the ER
domain. Another major issue in the deep learning-based ER is data labelling. It is hard to find
pre-labelled data to train the model, and it turns out even more difficult when new data is being
streamed continuously.

In this thesis, we aim to address all the aforementioned issues by developing a deep learning-based
classification function that incorporates continuous streaming entity pairs and classifies them into
match or not-match. The end-to-end system has two main layers; one for training and another for
prediction. In the training layer, we use a pre-trained language model (DistilBERT) as a base and
train it iteratively as newer entity pairs arrive. To train the model, labelled data are obtained through
active learning. The prediction layer makes use of the latest trained model to classify the streaming
entity pairs into match or non-match. Both training and prediction layers function in parallel and
independent of each other.

We evaluate the system proposed in this thesis on several benchmark datasets that vary in size,
skewness and origin-domain. As a evaluation metrics we use F1 score, losses, time and iterations.
Our iterative model performs similar to the non-iterative models by achieving a match class’s f1
score of 0.97 for benchmark datasets.

3

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Research Objectives . 17
1.3 Thesis Structure . 18

2 Preliminaries and Related Work 19
2.1 Entity Resolution . 19
2.2 Entity Resolution Generations . 20
2.3 Entity Resolution methods . 22
2.4 Deep Learning based ER Methods . 25
2.5 Pre-trained Language Model based ER Methods 28
2.6 Incremental and Crowd-sourcing-based ER Methods 31
2.7 Summary of Related Work . 33

3 Architecture Overview 37
3.1 The Prediction Layer . 37
3.2 The Training Layer . 38

4 Concepts and Implementation 41
4.1 Notations and Stream Input . 41
4.2 The Prediction Layer . 42
4.3 The Training Layer . 48

5 Evaluation 59
5.1 Dataset Characteristics . 59
5.2 Goals . 60
5.3 Design . 60
5.4 Performance Evaluation Metrics . 62
5.5 Experimental Setup . 63
5.6 Evaluation Results . 65

6 Conclusion and Future Work 77

Bibliography 79

5

List of Figures

1.1 The virtual representation of real-world entities. 16
1.2 The general framework of ER [GH21]. 16

2.1 The movies ER example [CES15]. 20
2.2 First and Second generation ER workflow [PIP20]. 21
2.3 Third generation ER workflow [PIP20]. 21
2.4 The end-to-end workflow of the fourth generation ER for (a) structured and (b)

semi-structured data [PIP20]. 22
2.5 The architecture of MinoanER in Spark [EPSC19]. 23
2.6 Architecture of the Gradient-Based Matching. 24
2.7 Left: Metadata for desktop resources and Right: Corresponding bayesian network

[INN08]. 25
2.8 Deep Seqence-to-Sequence ER model framework [NHH+19]. 26
2.9 Deep Matcher architecture template for DL solution for EM [MLR+18]. 27
2.10 DeepER framework [ETJ+18]. 28
2.11 Architecture of Schema-Agnostic-ER [TSS20]. 29
2.12 Ditto architecture. (1) Domain Knowledge, (2) Sumarization, and (3) Augmentation

[LLS+20] . 30
2.13 Overview of task-based parallelization ER functionalities [GH21]. 31
2.14 Hybrid Human-Machine workflow [WKFF12]. 32
2.15 User Interface of CrowdER [WKFF12]. 32

3.1 End-to-end architecture of Deep Learning in Stream Entity Resolution. 38

4.1 Entity description extraction technique. 42
4.2 Example of serialization component. 43
4.3 Flask based entity pairs classification. 46
4.4 Active learning process. 50
4.5 Augmentation applied on the entity description 𝑒3. 52
4.6 Components involved in the DistilBERT-based classifier. 55

5.1 Model’s performance for varying skewness of single batch. 66
5.2 Multiple domains . 67
5.3 Model’s performance for varying training data skewness. 69
5.4 Model’s performance for varying training sample size. 70
5.5 Model’s performance for different sampling strategies. 72
5.6 Sequential Domains . 74
5.7 Model’s performance for different percentage of augmented entity pairs in training

sample. 75

7

5.8 Average execution time taken by components. 76

8

List of Tables

2.1 Comparison of Related Work of Entity Resolution. 35

4.1 TF-IDF score of 𝑒3. 45
4.2 TF-IDF score of 𝑒9886. 46

5.1 Characteristics of input datasets. 59
5.2 Different conditions to evaluate the iterative model. 61

9

List of Listings

4.1 MongoDB query to insert classified tuple. 49
4.2 MongoDB query to retrieve entities from CP’s primary collection. 49

11

Acronyms

AL Active Learning. 17

BERT Bidirectional Encoder Representations from Transformer. 16

BN Bayesian Network. 24

BSON Binary JSON. 48

CNN Convolutional Neural Network. 26

CP Candidate Pool. 17

CV Computer Vision. 16

DL Deep Learning. 16

EM Entity Matching. 15

ER Entity Resolution. 15

FFNN Feed Forward Neural Network. 46

GPT-2 Generative Pre-trained Transformer 2. 29

HIT Human Intelligence Task. 31

I/O Input-Output. 47

IDF Inverse Document Frequency. 45

IL Increment Learning. 17

JSON JavaScript Object Notation. 15

LP Label Pool. 17

LSTM Long Short-Term Memory. 28

MQL MongoDB Query Language. 48

NER Named Entity Recognition. 30

NLP Natural Language Processing. 16

PLM Pre-trained Language Model. 16

RNN Recurrent Neural Network. 27

SOTA State-Of-The-Art. 23

SQL Structured Query Language. 48

13

Acronyms

TCP Transmission Control Protocol. 41

TF Term Frequency. 45

TF-IDF Term Frequency with Inverse Document Frequency. 30

14

1 Introduction

In this chapter, we describe the motivation for our study by providing a brief introduction to the
topic of entity resolution and the emergence of deep learning in this domain, which motivated our
research. A set of research objectives for this thesis are also defined with a brief description.

1.1 Motivation

"Data is the new oil", says Clive Humby1. In the big-data era, many corporations, governments,
and scientific institutions rely on vast amounts of data generated from internal and external data
sources. Making choices based on these data requires a centralised data warehouse where all
internal and external data sources are merged and stored. There are various quality issues with the
data integration, such as incompleteness (i.e., partial data), redundancy (i.e., overlapping data),
inconsistency (i.e., conflicting data), or simple incorrectness (i.e., data errors). Entity Resolution
(Entity Resolution (ER)) is a common activity in addressing these quality concerns [CEP+20].

The problem of automatically determining which virtual representations of an entity belongs to the
same real-world entity is ER. Because of multiple schema abstractions, an entity may have distinct
virtual representations across different information systems or even within the same information
system due to data errors. The goal is to determine which entity pairings in virtual representations
correspond to real-world entities. The virtual representation and the real-world entities of the movie
domain are shown in Figure 1.1. The triplet, JavaScript Object Notation (JSON), and tabular data
formats represent the virtual entities. The entities are compared between the different data formats,
thus 𝑒1 is compared to 𝑒4 and 𝑒5. Other entities are compared in a similar fashion. From the entity
descriptions, the 𝑒1 and 𝑒5 represents the real-world movie “Sherlock Holmes”. Similarly, 𝑒3 and
𝑒4 represents the movie “Quick Change”.

Entity Resolution (ER) is often divided into three steps: data pre-processing, entity blocking, and
entity matching [GH21]. The general ER framework is presented in Figure 1.2. Data pre-processing
converts raw input from numerous data sources into a standard format to facilitate subsequent
downstream processing. We progress from highly heterogeneous entity representations that use
many data formats to more homogeneous entity representations. Entity blocking groups entities
based on certain specifications (blocking-key). This stage primarily seeks to reduce the total number
of comparisons required in the Entity Matching Entity Matching (EM). Entity pairs are created
from the same cluster and fed into EM. Different comparison strategies (Non-learning-based,
Learning-based, and others) are used in EM to compare entity pairs and label them as match or
not-match. Our thesis tries to solve the EM problem using learning-based strategies.

1Clive Humby: https://en.wikipedia.org/wiki/Clive_Humby

15

1 Introduction

Figure 1.1: The virtual representation of real-world entities.

Figure 1.2: The general framework of ER [GH21].

According to [DS15][CEP+19], modern ER should deal with the four "V’s of big data"(Volume,
Variety, Velocity, and Veracity). Because entity pairs are delivered as streams in the context of
big data, incremental techniques for ER can be used to address the Volume and Velocity issues.
Blocking approaches for efficient incremental ER are still in their infancy [CEP+19]. Recent work
[GH21] demonstrates that it is possible to execute incremental blocking on extremely unstructured
data such as DBpedia, with millions of entities and hundreds of attributes, while meeting low
latency and high throughput requirements. But there is a requirement for incremental ER based
classification functions that can classify the continuous streaming entity pairs.

Traditional ER approaches identify records via pairwise comparisons, which presume the existence
of a distance function that provides information about the similarity of entity pairs [GM12]. In
dealing with traditional entity resolution throughout the last few decades, rule-based techniques
[LLG14] and hand-crafted heuristics have proven critical. Traditional ER approaches work well
with structured data, but they perform poorly with unstructured and semi-structured data [Moh20].
Learning-based (Machine learning, Deep learning) ER has gained popularity in recent years to
address these difficulties. Some machine learning-based ER algorithms have shown significant
gains in accuracy [LLS+20][MLR+18][MS04][CKLS01].

Deep Learning (DL) has lately been recognized as a crucial component of several domains concerned
with unstructured data, including Computer Vision (CV) and Natural Language Processing (NLP).
Its main benefit over previous approaches is its capacity to learn features rather than depending
on manually built features. Pre-trained Language Models (PLMs) have received a lot of interest
in text processing and NLP in recent years. PLMs are huge neural networks that function on a
pretrain-finetune paradigm, which means that models are first pre-trained on a large text corpus and
then fine-tuned to solve specific downstream tasks. One such cutting-edge PLM is Bidirectional

16

1.2 Research Objectives

Encoder Representations from Transformer (BERT) [DCLT18]. It has been utilized in a variety of
NLP applications, including question answering [RZLL16] and sentiment analysis [SPW+13]. To
fine-tune such PLMs, however, a huge amount of labelled data is required. Even fine-tuned PLMs
become obsolete over time as the complexity and variety of input data supplied into such models
increases. Active Learning (AL) and Increment Learning (IL) are being researched to address these
concerns.

In this thesis, we demonstrate the design and implementation of a DistilBERT-based entity matching
component that can be integrated into an incremental ER system and function effectively on
streaming data. This solution includes a matcher as well as two pools: the Candidate Pool (CP)
and the Label Pool (LP). The input pairs from the entity blocking are classified using matcher
(DistilBERT) and stored in the CP. AL and crowd-sourcing-based ER methods are used in this
thesis to increase model performance. The human oracle retrieves entity pairs from the CP, labels
them as matches or not-matches, and updates the LP using an acquisition function. Following the
update, the system fine-tunes the DistilBERT [SDCW19] model asynchronously using the LP, and
the trained model is updated in the matcher. In this manner, the model is incrementally learned.

These aspects mentioned above of the thesis makes certain research contribution to different
topics. They are segregated into unique research objectives and described in detail in the following
sections.

1.2 Research Objectives

1. To address the problem of entity resolution for streaming entity pairs.
Most of the existing DL-based ER work incorporates only batch data for ER problems.
As part of this research objective, we are going to implement a classification function that
classifies the continuously streaming entity pairs into a match or not-match class. To classify
every input entity pair, the latest trained classification function is used.

2. To explore the concept of continuous iterative training to achieve ER in the case of
continuous streaming entity pairs.
In order to achieve the classification of continuous streaming entity pairs with the latest
classification function, it needs to be trained with the newer dataset, with continuous iterative
learning. So, as a part of this research objective, we investigate different methods that can be
applied the same way or that can be extended to accomplish continuous iterative learning. A
classification function that does not require the entire training data set or data entries of the
same schema is designed and implemented.

3. To explore the role of active learning and crowd-sourcing-based ER in incremental
model training.
Active Learning and Crowd-sourcing-based ER are key aspects of incremental model learning
as they provide true labels of entity pairs for model learning. In this thesis, we explore
different options and implement a suitable method to provide these true labels for incremental
model training.

4. To evaluate the end-to-end streaming entity resolution system developed in this thesis
and analyze its performance.
To assess the performance of the system, it is subjected to different conditions and its

17

1 Introduction

performance is measured based on certain key aspects such as F1 score, Training and Testing
losses, and the number of iterations required for convergence. These conditions involve
variation in the input dataset with respect to sample size, skewness, and domain. Multiple
experiments are run for every condition with the end-to-end system and findings are visualized
to derive meaningful insights.

1.3 Thesis Structure

The rest of this thesis is organized into multiple chapters and their contents are as follows.

Chapter 2 discusses the preliminaries and related work, which covers the existing research on
topics related to or being directly addressed in this thesis. Chapter 3 presents an architectural
overview of the system and provides brief explanation on how the entire system works, starting
from receiving the input entity tuple stream to producing classified output. Chapter 4 explains the
concepts behind implementation of training and prediction layers and describe their implementation
in detail. Challenges faced during the implementation of both the layers and their limitations are
also presented. As part of the evaluation of the developed ER system, Chapter 5 presents design
and findings of the experiments conducted. Results of the experiments are visualized and inferences
of those results are presented. Finally, Chapter 6 concludes this thesis by revisiting the research
objectives and future work is discussed.

18

2 Preliminaries and Related Work

Entity Resolution (ER) is the challenge of translating several entities into a single real-world entity.
This section gives a comprehensive description of entity resolution responsibilities and potential
obstacles. Before proceeding, it is essential to know that the literature also refers to ER as Record
Linkage [FS69], and Entity Matching [KR10] among other terms.

2.1 Entity Resolution

An entity exists as itself, a subject or object, physically or hypothetically1. Entities used to refer to
individuals, such as patients, customers, or taxpayers, but they may now also refer to publications,
citations, customer items, or enterprises. An entity may have distinct virtual representations
across different information systems due to differing schema abstractions or even within the same
information system as a result of data faults. ER, as defined in [CEP+19][Chr][Tal11], is the
challenge of determining which virtual representation of an entity corresponds to the same real-world
entity. In other words, ER is also described as the job of recognising, matching, and merging entries
from several databases that relate to the same entities [ETJ+18]: Consider 𝑇 to be a collection of
entities with 𝑛 tuples and 𝑚 attributes 𝐴1, ..., 𝐴𝑚. It should be noted that these entities might come
from a single database or numerous tables (with aligned attributes). The value of attribute 𝐴𝑖 on
tuple t is denoted by 𝑡 [𝐴𝑖]. Given all distinct tuple pairs (𝑡, 𝑡 ′) from T where 𝑡 ≠ 𝑡 ′, the problem of
ER is to determine which pairs of entity tuples refer to the same real-world entities. These attributes
serve as the entity’s features. These features are utilised to address ER problems [Moh20]. Figure
2.1 is an example of entity resolution as given by [CES15]. This Figure shows movie information
from DBpedia2 and Freebase3 data sources. The entity structure is sufficient to categorise the movie
“Eyes Wide Shut” from DBpedia and Freebase databases. However, in the instance of the director
entity, the entity structure is difficult to categorise; a more relevant entity structure, such as birth
location or birth date, is necessary.

ER is an essential part of many real-world applications. The health department is the earliest area
that has established ER procedures to handle patient data duplication [Chr]. National censuses
collect statistics on population, culture, economics, and environment in their respective countries.
The cost of merging various data sources is reduced using ER approaches [Gil01]. Another use of
ER is in detecting crime and fraud, where it is critical for recognising criminal’s altered or fictional
personal information [BBS05]. Recently, ER approaches have been utilised to compare items from
different sellers in online shopping and E-Commerce [BBS05]. Many firms are shifting away from

1Entity: https://en.wikipedia.org/wiki/Entity
2JedAI dataset: https://github.com/scify/JedAIToolkit/tree/master/data
3Freebase Triples: https://developers.google.com/freebase

19

2 Preliminaries and Related Work

Figure 2.1: The movies ER example [CES15].

multiple data sources to centralised data storage. ER is used to address data integration issues
such as incompleteness (i.e., partial data), redundancy (i.e., overlapping data), inconsistency (i.e.,
conflicting data), and simple incorrectness (i.e., data mistakes) [CEP+20].

2.2 Entity Resolution Generations

As data volumes have increased in recent years, ER has emerged as the primary study field in
computer science, with several ER algorithms established thus far. Papadakis et al. [PIP20]
examine the evolution of ER approaches and the associated problems. These ER generations are
discussed below.

1. Veracity: Inconsistencies and inaccuracies in entities were a challenge that ER methods were
first developed to address. These issues are brought on by machine or human data-entry
limitations [EIV06]. The Figure 2.2 shows the first generation of ER workflow. The entity
descriptions for schema matching are mapped using a mapping function based on the structure,
name, and values [BMR11] [MBR01]. A quadratic time complexity results from the pair-wise
comparison of entities. The blocking technique, which groups entities based on blocking keys
such as hash-based keys [FS69], learning and non-learning-based functions, is developed to
address this issue. By pairing entities from the same group, blocking reduces the complexity
[Chr12]. For example, entity pairs are grouped in the movie domain if the same director
directs both movies. The entity pairs are provided as input to the entity matching step.
Learning-based or non-learning-based approaches [KTR10] are then employed to find the
similarity score between the entity pairs. Based on this similarity score, the entity pairs are
classified into three categories: match, non-match, or unsure [Chr12].

20

2.2 Entity Resolution Generations

Figure 2.2: First and Second generation ER workflow [PIP20].

2. Volume: The quantity of the input data, which comprises millions and billions of entities, is
the next major hurdle. To overcome this issue, the same first-generation ER methodology is
used. Several approaches, including [KTR12][BDNW12], make extensive use of enormous
parallelisation, such as Map/Reduce [DG08] in blocking and EM.

3. Variety: The third generation ER approaches addresses the issue of variety along with
veracity and volume, i.e., heterogeneity or errors in vast amounts of data. Variety was
produced by a lack of centralised data management, schema, semantics, and the problem of
data noise [CES15][DS15]. Figure 2.3 depicts the third-generation ER process. Schema
clustering aims to partition the large clusters into smaller ones by adopting the attribute
values and blocking keys. This method is used as blocking in attribute clustering [PIP+12]
and meta-blocking with BLAST [SBJ16]. Blocking step is divided into two sub-steps: block
building and block processing. Block building adopts the attribute value and discards the
attribute name to construct blocks. Token blocking [PN11] is the essential block-building
method, which creates the blocks for each token of the attribute value of the entity. This
creates the problem of multiple blocks and, as a result, increases the number of comparisons.
To resolve this issue, the block processing step is adopted. This step consists of calculating
the match likelihood score for each entity pair and deleting the entity pair with the lowest
score. The entity matching step then compares each entity pairs from the final blocks. The
entity matching step is an iterative step in which the match likelihood score is calculated for
initial match entity pairs and then iterates through the neighbours, by updating their scores.
Then the entity pairs are sorted by matching likelihood score, and the pair with the highest
score is labelled as the match. This approach is used in most of the significant entity matching
algorithms such as SiGMA [LPD+13], PARIS [SAS11], and LINDA [BDNW12].

Figure 2.3: Third generation ER workflow [PIP20].

4. Velocity: The fourth-generation ER approach addresses velocity, as well as veracity, volume,
and variety. This is due to the continuous generation of data, which brings unique ER issues,
such as the collected data is not definitive and newly generated data may affect the collected
data. To solve these problem, progressive ER generates relevant outcomes in a pay-as-you-go
manner prior to the completion of ER. The schema-aware [PHN14] and schema-agnostic
[SPPB18] processes are shown in Figures 2.4(a) and 2.4(b). Another approach that minimizes
the expense of changing old findings when new evidence becomes available is incremental ER
[GDS14]. As a incremental ER solution, Gazzarri et al. [GH21] investigate two approaches:

21

2 Preliminaries and Related Work

Figure 2.4: The end-to-end workflow of the fourth generation ER for (a) structured and (b) semi-
structured data [PIP20].

(1) incremental ER, in which a limited data-set updates on a regular basis, keeping complete
ER findings progressively, and (2) streaming ER, in which a potentially endless stream of
entity descriptions is analyzed.

2.3 Entity Resolution methods

Entity Matching (EM) function 𝑀 is a basic ER function that determines each entity pair description
as {𝑚𝑎𝑡𝑐ℎ, 𝑛𝑜𝑡 − 𝑚𝑎𝑡𝑐ℎ}, with 𝑀 (𝑒𝑎, 𝑒𝑏) = 𝑚𝑎𝑡𝑐ℎ indicating that 𝑒𝑎 and 𝑒𝑏 map to the same
real-world entity, and 𝑀 (𝑒𝑎, 𝑒𝑏) = 𝑛𝑜𝑡−𝑚𝑎𝑡𝑐ℎ indicating that 𝑒𝑎 and 𝑒𝑏 map to separate real-world
entities. 𝑀 is described as a similarity function 𝑠𝑖𝑚, which measures how similar two entity
descriptions are based on certain comparison methods. This 𝑠𝑖𝑚 function may be made up of
individual functions, such as jaccard similarity4, or a composite one, such as a linear combination
of numerous similarity functions on distinct aspects of descriptions [CEP+20]. A simple similarity
function could be, given a threshold \,

(2.1) 𝑀 (𝑒𝑎, 𝑒𝑏) =
{
𝑡𝑟𝑢𝑒, if 𝑠𝑖𝑚(𝑒𝑎, 𝑒𝑏) ≥ \

𝑓 𝑎𝑙𝑠𝑒, otherwise

It is very hard to find a similarity measure that can completely differentiate all matches from not-
matches using simple pairwise comparisons on the attribute values of two descriptions [CEP+20].
In practice, most of the similarity functions aim to reduce the number of incorrectly categorized
pairs. Different matching functions might be considered depending on the structuredness and
type of comparisons, as well as the availability of known, pre-labelled matching pairs. These are
primarily divided into two categories: non-learning-based and learning-based methods [CEP+20].

4Jaccard Index: https://en.wikipedia.org/wiki/Jaccard_index

22

2.3 Entity Resolution methods

We concentrate more on learning-based existing research in the following sections since we employ
learning-based ER algorithm. We also go through a non-learning based State-Of-The-Art (SOTA)
method.

2.3.1 Non-learning-based ER Method

MinoanER [EPSC19] presents a non-learning-based matching process that is implemented in Spark
[ZCF+10], with the matching process using a certain number of predefined generic, schema-agnostic
matching rules that traverse the blocking graph. This approach takes the disjunctive blocking graph
as input and applies four matching rules: the Name Matching Rule (R1), the Value Matching Rule
(R2), the Rank Aggregation Matching Rule (R3), and the Reciprocity Matching Rule (R4). Figure
2.5 depicts the MinoanER architecture in Spark.

Figure 2.5: The architecture of MinoanER in Spark [EPSC19].

R1 proposes that two candidate entities are matched if and only if their names are identical. The
remaining rules do not apply to any of the candidates that match R1. The R2 assumes that the two
entities match if and only if they have a common token or a large number of rare tokens. It identifies
descriptions that have high-value commonalities. R2-identified matches will not be considered in
the sequel. Where the order of candidates is employed rather than the absolute similarity value,
R3 indicates potential matches for candidates whose value similarity is low but their neighbour
similarity is reasonably high. The R4 tries to clean the matches identified by R1, R2, and R3 and
enhance the accuracy based on the logic that two entities are unlikely to match when one does not
even consider the other to be a possibility for matching. Only if both entity descriptions accept that
they are likely to match.

23

2 Preliminaries and Related Work

2.3.2 Learning-based ER Methods

In the first probabilistic ER model [FS69], the properties of entity representations were employed as
parameters of comparison vectors. Following this, several forms of study were conducted in order
to automate the ER.

Gradient-based matching [RPHP17] presents a supervised gradient-depending learning model
that can alter its structure and parameters based on matching scores from various comparison
functions. It may be used in a wide range of domains to successfully classify data. Figure 2.6
depicts the appropriate ER procedure.

Figure 2.6: Architecture of the Gradient-Based Matching.

The approach considers entities from various sources as inputs, and then fields such as name, address,
and date of birth (DOB) are examined for indexing. The indexing step lowers the data matching
process’s quadratic complexity. The candidate record pairs from the indexed data structures are
compared using specified field comparison functions in the second stage. The second phase divides
the comparison scores into training and testing sets. The model’s performance is evaluated in the
last step.

The gradient-based matching technique uses Soundex [OR18] to sort keys that will aid in grouping
comparable records during the indexing process. It presents two model learning approaches: (1)
using various comparison functions to the same field and (2) applying the same comparison functions
to other fields. This method helps study the structure and determine which fields and comparison
functions to aid in overall categorisation. This system uses the gradient descent back-propogation
algorithm [Žil06] as an optimization technique, combined with sigmoidal activation functions for
the nodes.

The authors of BN-Based ER [INN08] propose a Bayesian Network (BN) based ER that computes
the probability obtained in the information space. The important aspects for determining matches
are the similarity of text values and the connection between participating entities. The problem
formulation incorporates an information space consisting of metadata of entity description. The
metadata and accompanying BN are shown in Figure 2.7. The supporting evidence (probability) for
each item in the information space is calculated using BN in this technique.

24

2.4 Deep Learning based ER Methods

Figure 2.7: Left: Metadata for desktop resources and Right: Corresponding bayesian network
[INN08].

A BN [JN07] is a probabilistic graphical model that describes a set of variables and their conditional
interactions using a directed acyclic graph. The graphs constructed using BN-based ER have the
following nodes. Entity Nodes reflect a match in the network using probabilistic inference based on
the cause-effect connection. By comparing the literals of the entities, the Evidence Node represents
evidence for entity nodes. Direct-Relation Nodes are the result of entity nodes and deductive-relation
nodes, and they depend on the idea that two resources are associated when their descriptions
include the same item. Deductive-Relation Nodes reflect an indirect relationship between two
resources that may be deduced by merging the information of two nodes, either direct-relation or
deductive-relation. These nodes form the BN, which is also utilized to adjust to incremental ER.

The DL-based ER methods are discussed in the next section.

2.4 Deep Learning based ER Methods

Deep learning has recently been embraced by several ER systems owing to its capacity to learn
features rather than depending on manually built features [LBH+15].

DEEP SEQ-to-SEQ ER [NHH+19] introduces a novel entity resolution approach, in which an
align-compare-aggregate neural network is presented, which can learn the representation of a token
and collect matching evidence for precise end-to-end ER decisions. Each entity pair is thought of as
a sequence of tokens, with each token consisting of an attribute and a word as <attribute, word>.

Figure 2.8 depicts the detailed structure, which is made up of numerous layers. Each token is
embedded in low-dimensional vectors in the representation layer so that it may be compared and
aligned in the subsequent levels. Concatenating the word and attribute embeddings yields token
embedding. FastText [BGJM17] is chosen in this work because it handles the out of vocabulary terms
via character-level representation. The alignment layer is used to determine token correspondence.
To calculate the relationship between distinct tokens, an attention method is utilized. An alignment
matrix is built from normalized attention ratings between token representations using neural
attention [BCB14]. The comparison layer’s goal is to provide a succession of matched signals.

25

2 Preliminaries and Related Work

Figure 2.8: Deep Seqence-to-Sequence ER model framework [NHH+19].

A soft-attended representation for each token in one entity is calculated utilizing all tokens in
another entity. To achieve this representation, k-max weighted attention is applied, which maintains
important pieces while rejecting irrelevant pieces. A Convolutional Neural Network (CNN) [Che15]
module is employed in the aggregation layer to aggregate the matching signals from two comparison
matrices produced by both directions of the comparison phase. Convolution and max-pooling are
two successive procedures in this process. Finally, the prediction layer assesses similarity based on
the two feature vectors created in the preceding layer. To get the final similarity measure, these two
vectors are synthesized and then fed through a two-layer fully connected neural network followed
by a softmax classifier. The similarity criterion is set to 0.5; if the prediction exceeds the threshold,
entity pairings are labeled as a match; otherwise, they are labeled as not-match. The findings
reveal that seq2seq performs well on nine common ER benchmarks. This technique outperforms
DeepMatcher [MLR+18] and Magellan [KDD+16] in solving diverse and dirty ER issues by up to
14.5%.

DEEP-MATCHER [MLR+18] is an architectural template for integrating several DL models into
an entity matching problem. Figure 2.9 depicts this template, which is separated into three primary
modules: attribute embedding, attribute similarity representation, and classification. The attribute
embedding module takes a string of words and turns it into two strings of word embedding vectors,
the members of which correspond to d-dimensional embeddings of the words. FastText [BGJM17],
word2vec [MSC+13], and GloVe [PSM14] are some possibilities for attribute embeddings. The
attribute similarity representation module receives these embedded vectors as input. The primary
purpose of this module is to learn a representation that captures the similarity of two embeddings
automatically. This procedure is divided into two parts: attribute summarization, in which the
module applies a summarization function 𝐻 to summarize the information in the input sequence
and attribute comparison, in which the summarized vectors are taken as input and a comparison
function 𝐷 is applied to those summaries to obtain the final similarity representation of the attribute

26

2.4 Deep Learning based ER Methods

values. The classifier module is the last module, which takes the similarity representations as input
and utilizes them as features for a classifier 𝑀 that assesses if the input entity descriptions are match
or not-match.

Figure 2.9: Deep Matcher architecture template for DL solution for EM [MLR+18].

This work also presents a classification of DL solutions for a variety of matching problems, as well
as a design space for these solutions. These solutions are separated into four sections. The SIF: An
aggregate function model that forms the input to the classifier module using aggregate functions,
especially a weighted average motivated by the Smooth Inverse Frequency (SIF) phrase embedding
model [ALM17]. RNN: A Sequence-aware model that employs a bidirectional Recurrent Neural
Network (RNN) [SP97] for attribute summarization. This model is made up of two RNNs: a
forward RNN that processes the input word embedding in normal order, and a backward RNN that
does the same but in reverse order. As a result, the final attribute summary representation is the
concatenation of the bidirectional RNN’s last two outputs. Attention: a sequence alignment model,
that implements attribute summarization and attributes comparison via decomposable attention
[PTDU16]. Hybrid: Sequence-aware with attention model, which forms the input to the classifier
module using a bidirectional RNN with decomposable attention for attribute summarization and a
vector concatenation with an element-wise absolute difference during attribute comparison.

It also divides EM issues into three types: structured EM, textual EM, and unclean EM. According
to the results of the study, DL does not beat existing EM solutions on structured EM, but it may
greatly exceed them on textual and filthy EM.

27

2 Preliminaries and Related Work

DEEPER [ETJ+18] is a large entity resolution system that extracts tuple embeddings from single
word embeddings with high accuracy, efficiency, and usability. It proposes an approach that uses
substantially less labeled data by taking prior knowledge of matched values into account, and it can
capture both syntactic and semantic similarities without the requirement for feature engineering. The

Figure 2.10: DeepER framework [ETJ+18].

DeepER structure is shown in Figure 2.10, which comprises the Embedding lookup, Composition,
Similarity, Dense, and Classification layers. The embedding layer is used to embed tokens into
d-dimensional vectors. These embeddings are integrated into a single vector in the Composition
layer. DeepER generates a distributed representation of tuples (DR) using two methods: a simple
average and a compositional technique. In the first approach, the vector representation for an
attribute value is generated by averaging the appropriate embedded vectors of value tokens. In
the latter, uni- and bi-directional RNNs with Long Short-Term Memory (LSTM) [HS97] hidden
units are used. An LSTM cell has specifically designed gates for storing, changing, or deleting
information, which enables RNNs to learn a broad range of sequential dependencies and exhibit
dynamic temporal behaviour. Bidirectional RNNs [SP97] detect dependencies in both directions,
yielding two different interpretations of the same sequence. As a final representation of the attribute
value, the two vectors from bidirectional RNN are concatenated. The dense layer’s similarity is
used to compare the DRs of the tuple; comparable words are close to one another in their semantic
space. The classification layer classifies tuples as matching or not matching.

2.5 Pre-trained Language Model based ER Methods

Pre-trained language models PLMs, according to [EKR+21], are massive neural networks that
perform a broad range of NLP tasks. They follow a pretrain-finetune paradigm: Pretraining models
on a large text corpus is followed by finetuning on a downstream job.

28

2.5 Pre-trained Language Model based ER Methods

PLMs, such as BERT [DCLT18] and Generative Pre-trained Transformer 2 (GPT-2) [RWC+19], are
DL networks with numerous transformer layers [VSP+17], often 12 or 24, that have been trained in
unsupervised fashion on big corpora such as wikipedia articles. The model is self-trained during
pre-training to perform auxiliary tasks such as missing tokens and next-sentence prediction. After
pre-training, studies [CKLM19][TDP19] reveal that the shallow layers capture lexical meaning
while the deeper levels collect syntactic and semantic information.

Figure 2.11: Architecture of Schema-Agnostic-ER [TSS20].

Schema-agnostic-ER [TSS20] offer a schema-agnostic entity matching method based on PLMs.
The notion of treating tuples in tables for EM, analogous to the sentence pair classification issue in
NLP, supports this research. By employing BERT, it mainly tackles the issue of schema-agnostic
data, i.e., the input does not consist of the same schema for all data points, and this study only gives
a solution in the matching stage of ER.

Schema-agnostic-ER presented a schema-agnostic EM design in Figure 2.11. The candidate
pairings from multiple data sources are examined in the first phase of architecture, and the attributes
and their related values are concatenated to remove attribute boundaries and construct a phrase.
These concatenated entity pairs are then tokenized and pre-processed so that the BERT model can
interpret them. In the pre-processing stage, special tokens such as [𝐶𝐿𝑆] are added to specify the
classification task to BERT, and [𝑆𝐸𝑃] serves as a separator token to indicate the end of a sentence.
These pre-processed tokens of entity pairs are sent into the BERT model, which generates the
entity pairs’ distributed representation (DR). The DR is fed into the feed-forward neural network
and softmax to determine if it is a match or not. According to the testing data, this method beats
DeepMatcher and Magellan by an average of 9% in F1 score.

29

2 Preliminaries and Related Work

DITTO [LLS+20] is another EM approach that employs PLMs. It presents a revolutionary EM
solution based on PLMs like BERT. It alters and recasts EM as a sequence-pair classification issue
in order to use such models with a simplified architecture. Figure 2.12 demonstrates DITTO’s archi-
tecture, which includes multiple serialization and optimization approaches. The serialization stage
transforms the input entity descriptions into ”[𝐶𝑂𝐿]𝑎𝑡𝑡𝑟1 [𝑉𝐴𝐿]𝑣𝑎𝑙1...[𝐶𝑂𝐿]𝑎𝑡𝑡𝑟𝑘 [𝑉𝐴𝐿]𝑣𝑎𝑙𝑘”,
where [𝐶𝑂𝐿] and [𝑉𝐴𝐿] are special tokens used to indicate the beginning of attribute names
and values, respectively. Other serialization strategies include deleting special tokens [𝐶𝑂𝐿]
and [𝑉𝐴𝐿], as well as omitting attribute names that are unnecessary. This strategy is equally
applicable to the heterogeneous schema. The fundamental contribution of the DITTO to EM is
three optimization techniques: Domain Knowledge, Summarization, and Augmentation.

Figure 2.12: Ditto architecture. (1) Domain Knowledge, (2) Sumarization, and (3) Augmentation
[LLS+20]

The goal of Domain Knowledge (DK) is to highlight what knowledge is possibly essential for EM.
DITTO offers two kinds of DK: Span Typing and Span Normalization. The span of the token is
regarded as one kind of DK in the former type, where the developer defines a recognizer. The
recognizer accepts a text string as input and returns a list of span start/end positions as well as the
kind of span. It uses the Named Entity Recognition (NER) paradigm to recognize known kinds such
as people, dates, and organizations, and it employs regular expressions to identify particular types
such as ProductID and the last four digits of a phone number. In the input, these new tokens are
substituted. Span Normalization rewrites syntactically distinct but equivalent spans into the same
text in the latter. To do this, the developer provides a set of rewriting rules for spans, such as rounding
all floating-point figures to two decimal places and removing all commas for integers. Because the
BERT model’s input can only include 512 sub-word tokens, the Summarization approach is used
to summarize extraordinarily large strings. It employs a Term Frequency with Inverse Document
Frequency (TF-IDF)-based summarizing approach that maintains non-stop word tokens with high
TF-IDF scores. The input sequence is supplemented by numerous operations in the Augmentation
approach. Some of them are span_del, which will randomly remove the span of tokens of length
at most four without special tokens, span_shuffle, which will sample a span of length at most
four and randomly shuffle the order of its tokens, and attr_del and attr_shuffle, which are similar
operations.

30

2.6 Incremental and Crowd-sourcing-based ER Methods

DITTO studies demonstrate that it increases matching quality greatly and surpasses earlier SOTA
approaches by up to 29% of the F1 score on the benchmark data-set. The three optimization
strategies improve system performance by up to 9.8%.

2.6 Incremental and Crowd-sourcing-based ER Methods

2.6.1 Incremental-based ER Methods

Some big-data operations need the resolution of descriptions that enter in high-velocity streams or
as queries against a known entity collection [CEP+20]. Rather than performing a static, offline
procedure across all available entity descriptions, such applications handle as many entities as
necessary as long as individual descriptions are resolved in near-real-time.

Figure 2.13: Overview of task-based parallelization ER functionalities [GH21].

Task-Based Parallelization ER [GH21] presents task parallelism for ER, which supports incremen-
tal ER, which allows continuous calculation of the solution by streaming results of an intermediate
step of ER as soon as they are calculated. This work focuses on Big-Data processing, namely
data received from diverse Web sources that are very diverse and semi-structured. Figure 2.13
depicts a high-level overview of the framework’s features. The pre-processing stage is similar to the
general framework’s pre-processing step. The pre-processing function depends on each entity’s
representation individually, i.e., the function may be applied to entities independently of other
entities. Token blocking processes each entity description independently to identify which blocks
an entity description belongs to. The block cutting function uses incoming block ids and entity
pairs to progressively expand blocks and emit pairs of entity representation until the block reaches
a predetermined size. Pairwise comparisons are pruned as soon as they are duplicate during the
comparison cleaning stage. This is accomplished by determining if an input entity representation
pair has already been detected and if so, pruning it from processing to the following stages. In the
pairwise comparison stage, a similarity score is produced for each received pair. The classification
stage labels the input entity pairs as matching or not matching. If the pairings match, they are sent
to the clustering stage, where they are added to duplicate clusters.

2.6.2 Crowd-sourcing-based ER Methods

Crowd-sourcing is a science that investigates methods of delegating difficult work, known as
Human Intelligence Tasks (HITs), to humans [CEP+20]. This platform provides a more precise, yet
costly and time-consuming method of bringing people into the process. Crowd-sourcing-based
ER represents that people may increase matching’s efficacy by using contextual knowledge and
common sense.

31

2 Preliminaries and Related Work

CrowdER [WKFF12] presents a hybrid human-machine technique in which computers do a first,
coarse sweep through all data and humans check just the most probable matching pairings. It
creates a heuristic-based method for producing cluster-based HITs and analyses it theoretically
and experimentally using actual data sets and major crowdsourcing platforms. The hybrid human-
machine process is shown in Figure 2.14.

Figure 2.14: Hybrid Human-Machine workflow [WKFF12].

A table of records is initially sent into machine-based ER approaches, which use two strategies:
similarity-based and learning-based. In similarity-based approaches, the entity pairings are sent
into a similarity function, such as jaccard or cosine similarity, which returns the similarity score.
Entity pairs are represented as a feature vectors in learning-based, with each dimension representing
a similarity value of the records on some attribute. To train the classifier, learning-based algorithms
need a training set. CrowdER recommends two HIT generation techniques: pair-based and cluster-
based. The audience verifies several pairs of records as matching or not matching in pair-based HIT
creation. Each HIT shown is made up of two pairs of records. The person must choose either “They
are the same product” or “They are different products” for each pair. Cluster-based HIT creation is
made up of a collection of individual records rather than pairs. The employees are then tasked with
locating all of the duplicates in the cluster. The clusters are generated in such a manner that humans

(a) Pair-based HITs (b) Cluster-based HITs

Figure 2.15: User Interface of CrowdER [WKFF12].

32

2.7 Summary of Related Work

determine the number of clusters and each record belongs to at least one cluster. Goldschmidt et al.
[GHHY96] approximation approach is employed to enhance cluster-based HIT creation. Figure
2.15(a) and Figure 2.15(b) depict the user interfaces for pair-based HIT and cluster-based HITs,
respectively.

2.7 Summary of Related Work

In this chapter, we discussed the generations of ER by studying the paper [PIP20]. This paper helps
to understand the evolution of ER by defining the four generations which address the problems of
big-Data such as veracity, volume, variety, and velocity. The general ER solution design is proposed
for each problem. In this thesis, we resolve the problem of variety and velocity.

A non-learning-based ER [EPSC19] method calculates the similarity between the attribute values us-
ing similarity metrics, and the entity pairs are classified based on the pre-defined rules and thresholds.
However, to define the matching rules and thresholds, this method needs the involvement of domain
experts. These issues are addressed by developing learning-based algorithms [RPHP17][INN08] to
learn the linear functions and thresholds to classify the entity pairs. The learning-based ER methods
adopt a classifier function such as SVM or BN based on handcrafted features from pre-labelled
training entity pairs. However, these methods require feature engineering, and the outputs are not
definable. Learning semantic and syntactic representation of entity descriptions is difficult for
machine learning-based algorithms. As a result, several studies are being conducted on DL-based
ER.

As discussed in Section 2.4, DL-based ER methods have shown promising results in learning
the distributed representation of entity descriptions [NHH+19][MLR+18][ETJ+18]. The Deep
Seq-to-Seq ER [NHH+19] and DeepMatcher [MLR+18] are compare-aggregate-based methods
which consider tokens or phrases of entity descriptions to compare the multiple matching signals.
These signals are then aggregated to decide the entity pair class. On the other side, the DeepER
[ETJ+18] is a representation-based method that learns each entity’s distributed representation, and
then the similarity score is calculated using the representation vectors. The primary problems with
these methods are: require a large training dataset, take more time to train the models from scratch
or to update the existing model, and take more time to predict the class. In this thesis, we adopt the
representation layers and classification layers from these studies. Since our thesis primarily aims to
resolve the problem of velocity and variety, we do not consider the modules used in the above ER
methods.

In Section 2.5, we discussed the pre-trained language model used to resolve the problem of ER.
Since the PLMs are pre-trained on huge language models, these models achieve better results
in representing entity descriptions. The representation vectors are then used to fine tune the
task-specific layers. The papers Schema-agnostic-ER [TSS20] and DITTO [LLS+20] are discussed
in the same section where they use a well-known pre-trained language model called BERT. Our
thesis adopts a similar approach to model fine tuning as Schema-agnostic-ER and DITTO. The
serialisation methodology discussed in Subsection 4.2.2 is adopted from the DITTO.

33

2 Preliminaries and Related Work

We adopt the CrowdER [WKFF12] based approach to get the true labels of entity pairs. This
approach involves a human oracle to annotate the entity pairs. Our thesis system uses the approach
defined in the paper [GH21] to get the continuous stream of entity pairs. This paper adopts
incremental learning for blocking and produces the entity pairs in the stream for classification.

Table 2.1 provides an overview of all the related work. It is categorised on certain broad features that
are important with respect to thesis implementation. In the table, the values of the learning-based
algorithmic foundation represent as follows: ✓ indicates Machine Learning based algorithms, (✓)
indicates Deep Learning-based algorithms, and (✓∗) indicates pre-trained language models. In all
other columns the ✓ represents that, the particular study uses the mentioned features.

34

2.7 Summary of Related Work

Pa
pe

r
Sc

he
m

a
Aw

ar
en

es
s

A
lg

or
ith

m
ic

Fo
un

da
tio

n
In

cr
em

en
ta

l
C

ro
w

s-
So

ur
ci

ng
Sc

he
m

a
Aw

ar
e

Sc
he

m
a

A
gn

os
tic

N
on

-
Le

ar
ni

ng
Le

ar
ni

ng
-

ba
se

d
M

in
oa

nE
R

[E
PS

C
19

]
✓

✓

G
ra

di
en

t-b
as

ed
M

at
ch

in
g

[R
PH

P1
7]

✓
✓

B
N

-b
as

ed
ER

[I
N

N
08

]
✓

✓
✓

D
ee

p
Se

q-
2-

Se
q

ER
[N

H
H

+1
9]

✓
✓

(✓
)

D
ee

p
M

at
ch

er
[M

LR
+1

8]
✓

(✓
)

D
ee

pE
R

[E
TJ

+1
8]

✓
(✓

)
Sc

he
m

a-
A

gn
os

tic
ER

[T
SS

20
]

✓
✓

(✓
*)

D
IT

TO
[L

LS
+2

0]
✓

✓
(✓

*)
Ta

sk
-b

as
ed

pa
ra

lle
liz

at
io

n
ER

[G
H

20
]

✓
✓

✓
✓

C
ro

w
d-

ER
[W

K
FF

12
]

✓
✓

✓

O
ur

Sy
st

em
✓

✓
(✓

*)
✓

✓

Ta
bl

e
2.

1:
C

om
pa

ris
on

of
Re

la
te

d
W

or
k

of
En

tit
y

Re
so

lu
tio

n.

35

3 Architecture Overview

Following a discussion of related work, in this chapter we discuss the end-to-end architecture of
our DistilBERT-based ER system. Figure 3.1 depicts the architecture of our DistilBERT-based ER
system. Initially, we present a high-level description of the first layer, Prediction Layer, where
the trained model is used to forecast the streaming entity pairs. Next we go through a high-level
overview of the second layer, Training Layer, where the DL-based model is trained iteratively. These
two layers are independent of one another; that is, the prediction and training layers conduct their
respective functions in parallel. The only connection between these two layers is 𝑖𝑠_𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑠𝑒𝑛𝑡
flag, which is changed after the first iteration, and the matcher, which is updated with the most recent
model in each iteration. The implementation of end-to-end system is explained in the Chapter 4.

3.1 The Prediction Layer

The prediction layer, seen in the orange box in Figure 3.1, comprises many components, such as
Entity lookup table, Serialization, Cosine similarity function, Matcher, and Candidate pool.

The input stream is generated by the blocking stage of Gazzirri et al. [GH21], which consists of
entity pairs with entity identifiers from both sources and weight indicating the similarity score
determined in the pairwise comparison step. In the following components, the entity pairs are
processed one at a time. The entity lookup table is used to get entity descriptions from JSON
files. The JSON files are searched for entity identifiers from pairs, and the related description is
retrieved.

The entity descriptions are sent as input to serialization, which is adopted from DITTO [LLS+20].
This method converts the input entity descriptions from JSON objects to a sequence of tokens,
compatible to the DistilBERT’s [SDCW19] input. Once the sequence of tokens has been produced,
our system looks for the condition is_model_present, which looks for the fine-tuned DistilBERT-
based classification model. If the model is available, the series is fed to the matcher; otherwise,
to cosine similarity function. This condition is introduced since the fine-tuned model will not be
present at first, i.e., is_model_present is FALSE. We employ the cosine similarity function, which is
an external similarity function. The input stream is fed to the cosine similarity function, which
delivers the similarity score for each entity pair description until the model is fine-tuned for the
initial batch of data in the first iteration.

Once the first batch of data is trained in the first iteration, as described in the training layer, the
fine-tuned model is deployed, and the is_model_present condition is set to TRUE. The input stream
is now fed to the matcher, where the model predicts the class for input entity descriptions and offers
the model’s confidence. These results are sent to the analyst and saved in the CP, which serves as
input to the training layer.

37

3 Architecture Overview

Figure 3.1: End-to-end architecture of Deep Learning in Stream Entity Resolution.

3.2 The Training Layer

The training layer is an iterative layer in which we examine a batch based on the timestamp in each
iteration and then label, augment, and train the model using the data points from this batch. As a
result, our model continues to learn data from incoming stream entity pairs. This layer is shown by
the blue box in Figure 3.1, and it consists primarily of Data labeling, Augmentation, Serialization,
Model training, and Model deployment processes. Below is a summary of all the operations that
correspond to one iteration.

The CP is divided into two collections: primary and secondary. The output of the prediction
layer, i.e., the stream of entity pairs together with predicted class label and confidence, is stored in
the main collection, corresponding to continuous data storage. We employ a time-based sliding
window to sample the batch of data from the continually growing collection. The window’s distance
matches the predetermined time in “minutes”. All data points that appear inside this time frame are
transferred to the secondary collection.

38

3.2 The Training Layer

To get the true labels of the entity pairs, our system uses the AL and Crowd-sourcing-based
approaches. An oracle (e.g., a human annotator) is used in this approach to annotate the entity
pairs. The system obtains a batch with predefined batch size from CP’s secondary collection using
a predefined sampling strategies. We offer four techniques, which are detailed in the next chapter.
An oracle annotates each entity pair one by one. Once the whole batch has been annotated with a
true label, it is saved in the LP.

For the training of the DistilBERT-based model, the labelled entity pairs from LP serve as the
training batch. The system calculates the proportion of match-entity pairs prior to the model training
(in the ER problem, there are more entity pairs that do not match than entity pairs that do match). If
this percentage is less than the predefined percentage threshold of augmented entity pairs, we use
augmentation methods to increase the number of match-entity pairs. Otherwise, the batch is sent
to the serialization phase. To accomplish augmentation, our system uses the NLPAUG [Ma19]
library, which accepts a string as input and returns an augmented string as output. This library
includes augmentation operations such as replacing a word with a synonym or antonym, keyboard
distance error and replacing a character in a word with a special character, and many others. More
information on the augmentation operations used by our system is covered in the following chapter.
After performing the augmentation, the augmented entity pair batch is saved in the augment data
pool.

The same serialization stated in the prediction layer is used in the training layer. The serialization
takes the batch of entity pairs from LP as input and converts the entity descriptions from JSON
objects to a sequence of tokens with special embedded tokens. The system then evaluates the
condition 𝑖𝑠_𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑠𝑒𝑛𝑡, which verifies whether the model is present in the model pool. The
model will not be present during the first iteration, so the first batch is used as input to the model
training phase, but the model will be present from the second iteration; thus, the second batch is
used as input to the model testing step and then to model training.

We are motivated by DITTO [LLS+20], and Schema-agnostic-ER [TSS20] findings, which employ
a pre-trained language model BERT followed by a fully connected layer and a softmax output layer
for binary classification. Hence, in our work we use DistilBERT, which is distilled version of BERT
model. Model training includes processes such as splitting the dataset for training and testing the
model, and monitoring metrics such as F1-score, accuracy, and model errors. After training, the
trained model is saved in the model pool and deployed as a matcher. The flag 𝑖𝑠_𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 is
then set to TRUE. As a result, the input stream of entity pairs is passed to matcher, which predicts
the class label.

The model is evaluated on the input serialized batch beginning with the second iteration, prior to
the model training phase. If the test accuracy falls below a pre-defined threshold, the model training
phase is executed; otherwise, the batch is rejected, and the system carries on to the next iteration.

39

4 Concepts and Implementation

The previous chapter presented an overview of the architecture of this thesis. In this chapter, we
discuss the implementation and the corresponding concepts supporting the implementation of those
components in detail. The flow of this chapter is as follows. First, Section 4.1 describes the notations
used in this chapter and the streaming input data. Section 4.2 discusses the implementation of the
prediction layer, where implementation and concepts of a look-up table, serialisation, and similarity
functions are discussed as subsections. Similarly, Section 4.3 discusses the Training layer, where
implementation and concepts of data labelling, augmentation, model training and testing, and model
deployment are discussed as subsections.

4.1 Notations and Stream Input

As an input, our thesis pipeline considers a stream of candidate tuple 𝑐𝑎𝑏 = ⟨𝑎, 𝑏, 𝑤𝑎𝑏⟩ where
𝑎 ∈ 𝐷𝐴, 𝑏 ∈ 𝐷𝐵 and 𝑤𝑎𝑏 is similarity score. 𝑎 and 𝑏 are identifiers of 𝐷𝐴 and 𝐷𝐵 which
consists of finite entity descriptions (entity pools). An entity description 𝑒 is a set of key-value
pairs 𝑒 = {(𝑎𝑡𝑡𝑟𝑖 , 𝑣𝑎𝑙𝑖)}1≤𝑖≤𝑘 , 𝑎𝑡𝑡𝑟𝑖 is the attribute name, and 𝑣𝑎𝑙𝑖 is the attribute’s value. The
entity pools collect structured and semi-structured data, such as JSON files. These pools contain
heterogeneous data where each entity consists of the same or a different number of attribute-value
pairs. Figure 4.1(a) shows that all three entity descriptions have different attribute-value pairs. We
introduce entity tuples 𝑒𝑎𝑏 = ⟨𝑒𝑎, 𝑒𝑏, 𝑤𝑎𝑏⟩ where 𝑒𝑎 and 𝑒𝑏 are the entity descriptions of identifiers
𝑎 and 𝑏, respectively. The output of our thesis pipeline is a stream of tuple 𝑐𝑚

𝑎𝑏
= ⟨𝑐𝑎𝑏, 𝑙𝑚𝑎𝑏, 𝑐𝑜𝑛 𝑓𝑎𝑏⟩

where 𝑐𝑎𝑏 represents candidate tuple, 𝑙𝑚
𝑎𝑏

∈ {𝑚𝑎𝑡𝑐ℎ, 𝑛𝑜𝑡 − 𝑚𝑎𝑡𝑐ℎ} defines the label predicted by
matching function 𝑀 , and 𝑐𝑜𝑛 𝑓𝑎𝑏 defines the confidence of matching function.

Apache Kafka1 is a distributed system consisting of servers and clients communicating via a
high-performance Transmission Control Protocol (TCP) network protocol. It consists mainly of
four components: Events, Topics, Producer, and Subscriber. Events are similar to messages which
consist of primarily the key, data as value, timestamp, and optional metadata. These events are
generated by the producer and sent to a topic, similar to a file system that stores and maintains
the related events. The consumer subscribes to the topics to consume the events in the stream.
Apache-Kafka is fault-tolerant, scalable, high-throughput, and independence between consumer
and producer motivated us to use this in our thesis to consume the candidate tuples. In our thesis,
we adopt apache-kafka to produce and consume the continuously streaming candidate tuples.
The system subscribes to the specified topic and the corresponding events (candidate tuples) are
consumed as input to our system. The configuration of Kafka is pre-defined in the configuration file
of our system.

1Apache-Kafka Introduction: https://kafka.apache.org/intro

41

4 Concepts and Implementation

4.2 The Prediction Layer

The prediction layer comprises components such as an entity look-up table, serialization, classifica-
tion functions, and candidate pool. The streaming candidate tuples obtained from the apache-kafka
are input to these components. The detailed implementations of these components are discussed in
the subsequent subsections.

4.2.1 Entity Lookup Table

The first component of the prediction layer is the entity lookup table which is used to retrieve the
entity descriptions 𝑒 from entity pool 𝐷. This component takes entity identifiers 𝑎 and 𝑏 as input
and outputs the entity tuple 𝑒𝑎𝑏, where it consists of corresponding identifier’s entity descriptions
(𝑒𝑎, 𝑒𝑏) and similarity score (𝑤𝑎𝑏).

(a) List of entity descriptions in 𝐷𝐴 (b) Entity description extraction.

Figure 4.1: Entity description extraction technique.

In this component, we implement the entity pools 𝐷𝐴 and 𝐷𝐵 as the list of dictionaries. Each
entity’s attribute-value pairs are mapped as a dictionary along with identifiers. Figure 4.1(a)
shows an example of entity descriptions from the entity pool consisting IMDB dataset. Once the
component receives the candidate tuple 𝑐𝑎𝑏, it retrieves the identifiers, searches through the list
of dictionaries and returns the entity description along with the identifier. An entity tuple 𝑒𝑎𝑏 is
formed using these returned entity descriptions along with a similarity score (𝑤𝑎𝑏) representing the
component’s output. Figure 4.1(b) depicts the example of retrieval of entity description 𝑒. In this
example, 𝐷𝐴 refers to IMDB data source, and 𝐷𝐵 refers to DBPedia data source. The candidate
tuple 𝑐𝑎𝑏 consists of 3 and 9886 identifiers and the corresponding entity descriptions are shown.

42

4.2 The Prediction Layer

4.2.2 Serialization

A pre-trained language model such as DistilBERT [DCLT18] takes a sequence of tokens as input,
i.e., text. A key challenge is to transform the attribute-value pairs of entities into a sequence
of tokens. We adopt the serialization method from DITTO [LLS+20]. DITTO serializes the
entity descriptions as follows: for each entity description consisting of attribute-value pairs, i.e.,
𝑒 = {(𝑎𝑡𝑡𝑟𝑖 , 𝑣𝑎𝑙𝑖)}1≤𝑖≤𝑘 , it introduces a serialize function such that,

𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑒) ::= [𝐶𝑂𝐿] 𝑎𝑡𝑡𝑟1 [𝑉𝐴𝐿] 𝑣𝑎𝑙𝑢𝑒1, . . . , [𝐶𝑂𝐿] 𝑎𝑡𝑡𝑟𝑘 [𝑉𝐴𝐿]𝑣𝑎𝑙𝑢𝑒𝑘

where [𝐶𝑂𝐿] and [𝑉𝐴𝐿] are unique tokens indicating that following tokens are attribute names
and attribute values respectively. To serialize an entity tuple (𝑒𝑎, 𝑒𝑏), DITTO proposes serialize
function below,

𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑒) ::= [𝐶𝐿𝑆] 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑒𝑎) [𝑆𝐸𝑃] 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑒𝑏) [𝑆𝐸𝑃]

where [𝑆𝐸𝑃] is the unique token that separates the two sequences and [𝐶𝐿𝑆] is the unique token
required for DistilBERT to encode the sequence pair into a 768-dimensional vector that will be fed
into the fully connected layers for classification.

Figure 4.2: Example of serialization component.

43

4 Concepts and Implementation

Our thesis applies two changes to the DITTO’s serialize methods: (1) It discards the identifier
from the entity description, and (2) It appends the similarity score 𝑤𝑎𝑏 as a weight attribute at the
end, i.e. [𝐶𝑂𝐿] weight [𝑉𝐴𝐿] 𝑤𝑎𝑏. Figure 4.2 shows the example of the serialisation approach.
The example includes a pair of entity descriptions 𝑒3 and 𝑒9886 from IMDB and DBPedia data
sources respectively, where the number of attribute-value pairs varies. At first, the entity description
serialize function is applied. The series is appended with similarity score 𝑤𝑎𝑏, and at last, the entity
pair serialize function is applied, including the unique token [𝐶𝐿𝑆] and [𝑆𝐸𝑃]. The output of the
serialisation component is input to the classification functions.

There are several methods for serializing entity descriptions in order for pre-trained language models
to approach the input as sequence classification. For example, instead of concatenating the attribute
names, concatenate just the attribute value as a series of tokens. This may be used when attribute
names aren’t relevant for classification or when the object only has one attribute. An extensive
research on these serialization methods is left for future work.

4.2.3 Classification Functions

The layer’s next component is the Classification functions, which is used to classify the input entity
pairs as match or not-match, as well as the calculation of confidence of the associated class. This
component includes the cosine similarity function as well as the DistilBERT-based matcher. This
component accepts serialized entities 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑒𝑎, 𝑒𝑏) as input and outputs a labelled tuple 𝑐𝑚

𝑎𝑏
.

Before delving further into these functions, let’s look at another component that comes before
classification functions.

Before the classification layer, we add a flag 𝑖𝑠_𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 that checks whether the model is
present in the model pool; if it is, the flag is set to TRUE; otherwise, it is FALSE. Until the training
layer completes an iteration and trains the DistilBERT-based classification model for the first batch,
the flag is set to FALSE. Once the model is trained and stored in the model pool, the flag is always
set to TRUE. The processes that occur in the training layer are detailed in the next section. If the
flag is set to TRUE, the incoming stream of serialized entities are routed to the matcher function;
otherwise, the stream is routed to the cosine similarity function.

Our thesis adopts two classification functions: (1) Cosine similarity function and (2) DistilBERT-
based matcher. These two functions are discussed in detail below,

1. Cosine similarity function: This function computes the similarity among entity pairs by
comparing the similarity between two vectors in an inner product space. It is calculated by
taking the cosine of the angle between two vectors and determining if two vectors are heading
in the same general direction. Because this function accepts vectors as input, we use TF-IDF
vectorization, as mentioned below.

The cosine similarity function accepts serialized entity descriptions as input and splits
the input with regard to a special token [𝑆𝐸𝑃] to separate the two descriptions. The
attribute and its values are concatenated after special tokens such as [𝐶𝑂𝐿] and [𝑉𝐴𝐿] are
removed. Following that, we use the TF-IDF algorithms [Joa96] to vectorize these two entity
descriptions.

44

4.2 The Prediction Layer

The Bag of Words (BoW) model underpins Term Frequency-Inverse Document Frequency
(TF-IDF), which provides insights into the less important words in a document (entity
description). The relevance of words is quite important in the text-similarity computation.
The frequency of words (w) in a document (d) is measured by term frequency (Term Frequency
(TF)). The TF definition is provided in the equation 4.1. Because the corpus documents are of
various lengths, the denominator term in the equation is used to normalize. The first stage is
to create a lexicon of unique terms and determine the TF for each text. TF will be higher for
words that occur often in a text and lower for unusual ones. Because TF does not assess the
value of a word, Inverse Document Frequency (IDF) is the measure of its importance. Each
word in corpus D is given a weightage by IDF depending on its frequency. The equation 4.2
is used to define the IDF . A document’s TF-IDF vector may be determined by multiplying
the TF and IDF values, as illustrated in the equation 4.3.

(4.1) 𝑇𝐹 (𝑤, 𝑑) = 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜 𝑓 𝑤 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

(4.2) 𝐼𝐷𝐹 (𝑤, 𝐷) = ln(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 (𝑁) 𝑖𝑛 𝑐𝑜𝑟 𝑝𝑢𝑠 𝐷

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤
)

(4.3) 𝑇𝐹𝐼𝐷𝐹 (𝑤, 𝑑, 𝐷) = 𝑇𝐹 (𝑤, 𝑑) ∗ 𝐼𝐷𝐹 (𝑤, 𝐷)

Cosine similarity function [TJ13] is similarity function that is used to compare the documents.
The equation 4.4 represents the definition of cosine function. In our work, the TF-IDF vector
of 𝑒𝑎 and 𝑒𝑏 are represented as ®𝑥 and ®𝑦 in the equation 4.4.

(4.4) 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) = ®𝑥 · ®𝑦
∥®𝑥∥ ∥®𝑥∥ =

∑𝑛
𝑖=1 𝑥𝑖 × 𝑦𝑖√︃∑𝑛

𝑖=1 𝑥
2
𝑖
×
√︃∑𝑛

𝑖=1 𝑦
2
𝑖

where ∥®𝑥∥ is the euclidean norm of vector 𝑥 = (𝑥1, . . . , 𝑥𝑛), defined as the length of the
vector. Table 4.1 and 4.2 represents the example of TF-IDF vectors of entities 𝑒3 and 𝑟9886
respectively. These vectors are considered as ®𝑥 and ®𝑦 in the equation 4.4 to calculate the
cosine similarity. The 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑒3, 𝑒9886) = 0.36. The labelled tuple 𝑐𝑚

𝑎𝑏
consists this

score as confidence and label as None, then the tuple is stored in the CP.

words title zeb vs paprika writer al gabriel
TF-IDF 1.41 1.41 1.41 1.0 1.0 1.0 1.0

Table 4.1: TF-IDF score of 𝑒3.

45

4 Concepts and Implementation

words title zeb vs paprika director name ceder ralph
TF-IDF 1.41 1.41 1.41 1.41 1.0 1.0 1.0 1.0

Table 4.2: TF-IDF score of 𝑒9886.

2. Matcher: Another classification function that we investigate in our study is the DistilBERT-
based model (Matcher). The fine-tuned PLM is followed by task-specific layers in the matcher.
The input sequence of tokens is encoded into machine-readable vectors using the fine-tuned
DistilBERT model (fine-tuning of the DistilBERT model is explained in Subsection 4.3.4)
and then the task-specific layers are used for classification. The input series contains a special
token [𝐶𝐿𝑆] that indicates the classification task for the DistilBERT model, as explained in
the serialization subsection. The 768-dimensional vector for each token represents the model’s
output. Out of all these vectors, we consider the vector corresponding to a special token
[𝐶𝐿𝑆], because this vector comprises distributed representation of input entity descriptions.

The task-specific layers use the [𝐶𝐿𝑆] token’s 768-dimensional encoded vector as input.
Because ER is a classification task, we use a fully connected Feed Forward Neural Network
(FFNN) and a softmax layer for bianry classification. These layers’ weights are learned via
supervised training (explained in Subsection 4.3.4). The class of entity pairs is predicted
using these weights. The process of entity pair classification is shown in the Figure 4.3.

Figure 4.3: Flask based entity pairs classification.

The FLASK2 framework is used to classify the streaming entity pairs. This framework is
used to deploy the trained model. The predict function in the flask application employs a
pre-trained model to categorize the input entity pairs. The streaming entity pairs are provided
to the application through a request function. Using the predict function, the program predicts

2Flask: https://flask.palletsprojects.com/en/2.1.x/

46

4.2 The Prediction Layer

the relevant class and calculates confidence. As an application response, the class and
confidence are returned. A novel model deployment algorithm is presented to deploy the
trained model (discussed in detail in Subsection 4.3.5). This approach combines two flask
apps and a common variable to predict the class of streaming entity pairs without disrupting
the stream, and the most recently updated model is used as a classifier. The flask_num
variable contains an integer number (Zero, One, or Two) that indicates which flask application
is active at the time. Zero value of flask_num indicates that no flask application is running
hence the stream uses a cosine similarity function, one indicates the first flask application
(flask_app1) is using the updated model hence, the stream uses flask_app1, and two indicates
the second flask application (flask_app2) is running, hence the stream uses the flask_app2.

The similarity functions discussed in Subsection 4.2.3 produces a similarity score in the form of
confidence. The cosine similarity function returns a confidence score for entity pairings but does not
predict a class label. The DistilBERT-based classification function predicts the class and calculates
the confidence of entity pairs. In the labelled tuple 𝑐𝑚

𝑎𝑏
, the predicted class and confidence are

entered. The labelled tuple is subsequently saved in the CP, which is fed into the training layer.

This completes the implementation of the prediction layer. During the implementation of compo-
nents, mainly we encountered a couple of challenges which are listed below.

1. The look-up table was first developed using MongoDB. Two distinct collections in MongoDB
are used to contain the entity descriptions from two separate data sources. The relevant
entity description was looked up for each pair of constantly streaming entities. This required
Input-Output (I/O) operations with respect to MongoDB for each entity pair, which prolonged
the prediction layer’s processing time. We implemented in-memory dictionaries to address
this issue. The dictionaries are used to keep the entity descriptions from the two sources in
the main memory. As a result, each entity pair’s processing time is reduced. The drawback
of this method is that the in-memory dictionaries cannot be utilized if the size of the entity
descriptions exceeds the system’s main memory size.

2. Using the learned classification function, continuously streaming entity pairs are categorized
and then stored in the Candidate Pool. The next section, which makes use of MongoDB,
provides an explanation of how the candidate pool is implemented. For each continuously
streaming pair of classified entity pairs, similar to the prior challenge, the MongoDB insert
operation is invoked. As a result of this procedure, there are more I/O operations, which
increases storage time. This problem is addressed with the use of main memory and storing
the multiple entity pairs at once. We use a list with a predetermined size. The list contains
all continuously streaming pairs of classified entities. Once the list is full, we store it in
MongoDB using the multiple data insert method. As a result, there are fewer I/O operations
overall, improving storage time. The drawback of this strategy is identical to the drawback of
the look-up table. The main memory’s available free space imposes a restriction on the list’s
predetermined size.

47

4 Concepts and Implementation

4.3 The Training Layer

We reviewed the implementation of the prediction layer in the previous section, where the output
labelled entity pair is stored in the CP. In this part, we will go through how to implement the
following layer, the training layer, which is an iterative layer. This layer aims to iteratively train the
model in order to keep it up to date with incoming stream data. As an output, this layer produces an
updated model for each iteration.

The pipeline of the training layer includes components such as Sampling strategies for retrieving
sample data for labelling, Data labelling entails a human oracle annotating the entity pair with true
labels, Augmentation to handle the issue of class imbalance, Model training and testing, and Model
deployment to classify the incoming entity pairs. In each iteration, these components are processed
sequentially. The implementation of these components is discussed in the following subsections.

4.3.1 Candidate Pool

The CP is a storage component which stores the continuous stream of labelled tuples and acts as
input to the training layer. We introduce two collections in the CP: Primary and Secondary. Primary
collection continuously stores the streaming labelled tuples where each tuple is stored as a JSON
object. The batch of data is selected from the continuously populating primary collection and stored
in the secondary collection. This batch from the population is selected based on the moving time
window. The time window is pre-defined in the configuration file which is defined in “minutes”.
The system time is used as the window start time in the first iteration, and the window end time
is determined by adding the window time to the system time. The secondary collection is filled
with all the data points whose timestamp occur between these start and end timings. The preceding
iteration’s end-time serves as the start time for the next iteration. The window’s start and end times
are then determined in the same way for subsequent iterations.

Because the incoming entity descriptions contain a heterogeneous schema, we required storage that
could manage this kind of data. As a result, we chose MongoDB3. MongoDB is an open-source
NoSQL database. The structured, semi-structured, and unstructured data can be stored in this. It
can handle non-relational queries because it maintains a non-relational, document-oriented data
model. MongoDB is very adaptable, allowing to aggregate and store many kinds of data. It employs
the Binary JSON (BSON) document storage format, a binary JSON variant that can hold more data
types. MongoDB stores each data as a document in a collection. Collections are like a table in a
relational database which stores similar kinds of documents. Documents are made up of key-value
pairs, which are the fundamental unit of data in MongoDB. The structure of the document can be
modified by updating or adding the key-value pairs. As a unique identifier, documents may establish
a primary key, and values can be any data type, including other documents, arrays, and arrays of
documents. MongoDB uses MongoDB Query Language (MQL) to interact with the database,
which functions similarly to Structured Query Language (SQL).

We use the PyMongo library which is a driver that interacts with MongoDB from python. Some
of the important queries used in the systems are to insert and find the documents. The first query
4.1 shows the insertion of a labelled tuple. The second query 4.2 retrieves all the documents

3MongoDB: https://www.mongodb.com/what-is-mongodb

48

4.3 The Training Layer

Listing 4.1 MongoDB query to insert classified tuple.

db.primary_collection.insert({

_id: "3|9886|4.0",

entity_a: {

"profile_id": "Match19260",

"starring": "Arthur Stanley Jefferson",

"writer": "Al Giebler",

"title": "Zeb vs. Paprika",

},

entity_b: {

"director name": "Ceder, Ralph",

"actor name": "O'Brien, John B.",

"year": "1924",

"profile_id": "Match19260",

"genre": "Comedy",

"title": "Zeb vs. Paprika (1924)",

},

label_m: null,

confidence: 0.36

});

Listing 4.2 MongoDB query to retrieve entities from CP’s primary collection.

db.primary_collection.find({

timestamp: {

'$gt': 1655570533,

'$lte': 1655570653

}

});

present between 18-06-2022 18:43:00 and 18-06-2022 20:43:00. The numbers represent the unix
timestamp. These retrieved documents are stored in the secondary collection.

4.3.2 Data Labelling

Data Labeling is the next step in the pipeline. This component seeks to overcome the issue of the huge
annotated data set being required to train the model. The component obtains labelled tuples from
CP and annotates them with true labels in our work. The true labelled tuples are the component’s
output. Human involvement with the system is expensive and time-consuming, but it is more precise
in the ER [WKFF12]. To annotate the entity pairings, we use crowd-sourcing-based ER [WKFF12]
and AL [Set09], where each entity pair is displayed to a human oracle and requested to annotate
the data. The annotated data, which consists of oracle labelled tuples 𝑐𝑜

𝑎𝑏
= ⟨𝑐𝑎𝑏, 𝑙𝑚𝑎𝑏, 𝑐𝑜𝑛 𝑓𝑎𝑏⟩,

is stored in the LP, where the annotated tuple 𝑙𝑜
𝑎𝑏

substitutes the predicted label 𝑙𝑚
𝑎𝑏

in a labelled
tuple. In Section 2.6.2, we went through the crowd-sourcing-based ER in-depth and in the next
paragraph we discuss AL in detail. The concepts and implementation of data labeling are also
discussed below.

49

4 Concepts and Implementation

Active Learning (AL) is a kind of machine learning in which a learning algorithm interacts with
a person to classify new data points with intended outcomes. It is employed in cases where the
unlabelled data set is vast and the supervised model’s accuracy may be improved by prioritizing
annotation. The Figure 4.4 depicts the general phases involved in AL. The first phase, Active Query
Selection, involves manually labelling a sub-sample of the unlabelled data. The next phase is for a
human oracle to annotate each data point. A human oracle is represented by the brain in the Figure
4.4. The supervised model is trained using the labelled data set, and then it is used to predict the
class for each streaming data set. This iteration continues to improve the accuracy of the model
over time.

Figure 4.4: Active learning process4.

We leverage the weight 𝑤𝑎𝑏 of the entity pairs and the confidence of the model’s prediction to add
four strategies as active query selection in our pipeline. The sub-sample data set is retrieved from
CP’s secondary pool using these strategies. The strategies are applied to the secondary pool, and
then a sub-sample of the pre-defined number of data points 𝑁 is obtained. The following are the
sub-sampling strategies:

• Strategy 0 (Default): The labelled entity tuples 𝑐𝑚
𝑎𝑏

are sorted in decreasing order based on
the entity pair’s weight 𝑤𝑎𝑏 and model confidence confab in this technique. The sub-sample
of size 𝑁 is then obtained for labelling from the population of CP’s secondary collection.

• Strategy 1: The labelled entity tuples 𝑐𝑚
𝑎𝑏

are sorted in decreasing order depending on
the model’s confidence in this technique. The first 𝑁 data points from the CP’s secondary
collection are then extracted and labelled.

• Strategy 2: This technique involves sorting the labelled entity tuples 𝑐𝑚
𝑎𝑏

in decreasing order
depending on the model’s confidence, and then collecting the first 𝑁

2 and final 𝑁
2 data points

as a sub-sample for data labelling.

• Strategy 3: The labelled entity tuples 𝑐𝑚
𝑎𝑏

are sorted in decreasing order depending on the
model’s confidence in this technique. The data set in CP’s secondary collection is divided
into three bins depending on tuple order: High, Medium, and Low bins. Consider the sorted

4What is Active Learning?: https://deepai.org/machine-learning-glossary-and-terms/active-learning

50

4.3 The Training Layer

secondary pool with a population (𝑛). First, 𝑛
3 data points are categorized as high confidence

bin, next 𝑛
3 data points are categorized as medium confidence bin, and finally, the remaining

data points are categorized as low confidence bin. The user picks the appropriate number of
data points from each bin for labelling, which adds up to 𝑁 , after pre-defining the percentage
selection for each bin.

The recovered sub-sample is annotated by a human oracle. In our workflow, each data point is given
to a person who is then requested to annotate the data. The annotated data point is then placed
in the LP as a true labelled tuple 𝑐𝑜

𝑎𝑏
. We created a script that annotates the entity pairings for

the sake of our experiment. The entity pairs and true labels were included in the data set we used
for our research. The MongoDB database Ground-Truth collection stores these true labels. In a
loop, the entity pair identifiers 𝑎 and 𝑏 are picked from the sub-sample, and then the ground-truth
collection is searched for these identifiers. If the identifiers are present in the collection, the entity
pairs are marked as 𝑀𝑎𝑡𝑐ℎ; otherwise, they are marked as 𝑁𝑜𝑡 − 𝑀𝑎𝑡𝑐ℎ. In the labelled tuple,
the oracle annotated label 𝑙𝑜

𝑎𝑏
is changed, and 𝑐𝑜

𝑎𝑏
represents the new tuple. The LP, which is also

implemented by the MongoDB database’s collection, then stores this tuple.

4.3.3 Augmentation

Before we go into the augmentation, we will have a look at another flag called 𝑖𝑠_𝑑𝑎𝑡𝑎_𝑠𝑘𝑒𝑤𝑒𝑑,
which is checked before the augmentation is performed. The percentage of match entity pairs
is determined once the true labelled tuples 𝑐𝑜

𝑎𝑏
are stored in the LP. This is accomplished by

computing the percentage of labelled tuples 𝑐𝑜
𝑎𝑏

with true label 𝑙𝑜
𝑎𝑏

as one. If this percentage is less
than the pre-defined augmentation percentage (aug_perc), the data set is skewed, and the flag is set
to 𝑇𝑅𝑈𝐸; otherwise, the flag is set to 𝐹𝐴𝐿𝑆𝐸 . The augmentation procedure is performed to the
data set if the flag is 𝑇𝑅𝑈𝐸 . Otherwise, the data set is sent to the serialization stage.

The augmentation component comes next in the pipeline. This component takes a sub-sample of
labelled tuples 𝑐𝑜

𝑎𝑏
as input and returns a sub-sample of labelled tuples with augmented data points

as output. This component is designed to address the issue of an unbalanced data set. It is an
unbalanced data set if the data set is biased towards one class. Primarily, there are three approaches
to resolving this problem; oversampling where the number of smaller class data points is increased,
undersampling where the number of data points is decreased, and augmentation where the errors in
the data set are added manually.

By integrating all three methodologies described above, this thesis presents a novel strategy to deal
with the issue of unbalanced data sets. This method is described in detail below:

• From the sub-sample of LP, the total number of match and non-match entity pairs is
determined.

• The match entity pairs are over sampled by applying augmentation to each match entity pair,
where the number of match entity pairs is doubled.

• The match entity pairs are again over sampled by duplicating one entity description as another
entity, i.e., consider a tuple ⟨𝑒3, 𝑒9886, 1, 0.36⟩ from a sub-sample of a labelled tuple 𝑐𝑜

𝑎𝑏
,

once the one entity is duplicated as another, the tuple looks like ⟨𝑒3, 𝑒3, 1, 𝑛𝑢𝑙𝑙⟩. The
augmentation is applied to the duplicate tuple. Only the entity pairs from the not-match class
are considered for this approach.

51

4 Concepts and Implementation

• We determine the total number of augmented match-entity pairs only after performing all
of the aforementioned stages, and then under-sample those number of pairs from not-match
entity pairs.

Figure 4.5: Augmentation applied on the entity description 𝑒3.

We are using the NLPAUG [Ma19] open-source python package for the augmentation. It employs
augmentation on both a character and a word level. Our thesis adopts word and character level
augmentation which involves the key-board error, random error, synonym change, and spelling
mistake operations. These operations are applied on both attribute names and values. We loop over
each entity’s key-value pairs, i.e., the attribute name and value. We have given the user the choice
of selecting all operations or individual operations, word-level or character-level or both levels, and
attribute name or attribute value or both for entity descriptions in our work. Before we execute our
system, these parameters serve as configurations. The four primary augmentation operations listed
are discussed in detail below,

• Synonym Change: This is a word-level operation where synonyms replace the words in the
string. Consider the example in Figure 4.5, where the entity description 𝑒3 is shown before
and after applying the augmentation. The words “starring” and “title” were replaced with
synonyms “acting” and “name”, respectively.

• Spelling Mistake: This is a word-level operation where randomly misspelled words replace
the existing words. Considering the same Figure, the word “writer” is misspelled to “wretir”.

• Key-Board error: This is a character-level process that considers the characters of words for
augmentation and substitutes randomly chosen characters with other characters depending on
keyboard distance. Figure 4.5 shows the word "Giebler"being replaced with "Giwbierüsing

52

4.3 The Training Layer

randomly picked characters. We can see that the letters e and w are next to each other in this
example. Likewise, the letters l and i. Errors from the QWERTY keyboard are taken into
account by our system.

• Random error: This is the character-level procedure in which key-board mistakes, special
characters, and letter case changes are used to replace the word’s characters. Consider again
the same Figure, in the word “Stanley,” the letter case is altered for the letter ‘S’, the character
‘y’ is converted to the number ‘5’, and the unique character ‘$’ is added. As a result, the
word “Stanley” became “stan$le5”. In the same way, the term “paprika” has been augmented
to “papRiks”.

The augmented entity pairs and non-augmented entity pairs are placed in the augment data pool
once all of these actions have been applied to the entity descriptions 𝑒. The augment pool is
implemented using the MongoDB database. The augment pool’s entity pairs are used as input for
the following component, serialisation.

4.3.4 Model Fine-tuning

The concept and implementation of our work’s key component, fine-tuning model, is discussed in
this section. The main aim of this component is to train the model over iterations. The components
takes serialized tokens as input and produces a trained model as output. The trained model is then
used in the model deployment component which is discussed in the next subsection.

Two components that are before the model training are serialisation and the 𝑖𝑠_𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑠𝑒𝑛𝑡
flag. Serialization is implemented in the same way as explained in Subsection 4.2.2, where it is used
to convert input entity descriptions from key-value pairs to a sequence of tokens. The condition
𝑖𝑠_𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 checks whether the trained model in the model pool is present. The input data
is passed to model testing if the model is present, otherwise to model training.

In our work, we employ the DistilBERT language model followed by a task specific layers as a
model. DistilBERT is distilled version of BERT [DCLT18]. Since entity resolution is a classification
task, we use FFNN and a binary softmax layers as a task specific layer. The series of tokens are
embedded to machine-readable vector by DistilBERT model and then these vectors are trained
on FFNN and softmax layers. Below we discuss concepts and implementation of these layers in
detail.

Bidirectional Encoder Representations from Transformers (BERT)

BERT [DCLT18] is an universal language model that is pre-trained over large text corpora such as
wikipedia articles. Bidirectional Encoder Representations from Transformers (BERT) is a term that
describes the importance of bidirectional learning. The transformer encoder stack in the BERT
model is learned during the pre-training. There are multiple versions of BERT, some of them are,
BERT-Base (12 layers), BERT-Large (24 layers), and DistilBERT (6 layers). The series of token
embedded with special tokens is provided as input to this model, where the number of tokens are
limited to 512. Then, it produces a 768-dimensional embedded vector for each token. The output

53

4 Concepts and Implementation

vector of token [𝐶𝐿𝑆] comprises the distributed representation of the input tokens. This vector
is produced using the layers of encoders present in the BERT model. The pre-training procedure
involves two tasks which are listed below,

• Token Masking: This task involves the bidirectional model training, i.e., the model is trained
from both left to write and right to left of the input. In order to achieve the bidirectional training,
15% of input tokens are masked and then predict the masked tokens. The corresponding final
vectors of masked tokens are fed to a softmax layer over the vocabulary.

• Next sentence prediction: This task aims to tackle the problem of understanding the
relationship between sentences. This task is used in the natural language inference and
question answering. In order to understand the relationship between the sentences, the model
is fed two sentences and asked to predict if the second sentence follows the first sentence.

DistilBERT

DistilBERT [SDCW19] is distilled version of BERT, which makes it lighter, cheaper, faster and
smaller. Distillation is a approach that is used to compress the large model (teacher) into a small
model (student). DistilBERT uses a knowledge distillation (compression technique where the
student is trained to imitate the behaviour of teacher) to reduce the model size to solve the problem of
exponentially increasing transformer models cost. The toke type embedding and the pooler (used for
next sentence prediction in BERT) layers are removed to reduce the model size by a factor of 2. The
DistilBERT-based classifier architecture is shown in the Figure 4.6. The DistilBERT paper shows
that the model achieves 97% of BERT model’s performance with 40% reduced size. DistilBERT
introduces a triple loss to pre-train the model viz, masked language modeling, distillation, and
cosine embedding losses. The masked language modeling loss is explained above. In the distillation
loss, the DistilBERT is trained on the BERT model’s soft target probabilities. At last in the cosine
embedding loss is used to align the directions of the DistilBERT and BERT hidden state vectors.
This pre-trained model can be used for multiple tasks such as sentence pair classification, single
sentence classification, question answering, and single sentence tagging.

In our thesis, we aim at solving the problem of classifying the streaming entity pairs. This requires
a faster classifier to avoid the problem of bottleneck in prediction of entity pairs. According to
the authors of DistilBERT, the model is 60% smaller and faster which makes it an appropriate
embedding model compared to BERT, GPT-2, and Bidirectional-LSTM. We use the sentence pair
classification task of DistilBERT as an entity pair classification.

To classify the entity pairs, a task-specific layers are added after the final layer of DistilBERT. In our
work, we add a fully connected FFNN and a softmax output layer for binary classification. Since
the output of last layer of DistilBERT model is a 768-dimensional vector, the size of the FFNN
is 768. As an optimisation function, we employ AdamW [LH17], which decreases the loss and
updates the parameters while model training phase. AdamW is a stochastic optimisation approach
that decouples the weight decay function from the gradient update and is based on Adam [KB14].

54

4.3 The Training Layer

Figure 4.6: Components involved in the DistilBERT-based classifier.

Model Training

A trained model is not available in the model pool in the first iteration. As a result, the flag
is_model_present is set to FALSE. Model training step receives the serialized data set and divides it
into training, testing, and validation data sets (we adopt hyper-parameter from DITTO [LLS+20]
except epochs and batch size). The training data set is used to train the model, the validation data
set is used to determine the threshold for categorizing data points as 𝑀𝑎𝑡𝑐ℎ or 𝑁𝑜𝑡 − 𝑚𝑎𝑡𝑐ℎ, and
the test data set is used to predict the labels on the trained model. If the model’s validation f1-score
is larger than the previous epoch’s validation f1-score, the model is saved in each epoch of model
training. The model and optimizer’s state_dict (a state_dict is a model object that contains learnable
parameter and hyper-parameter information) is stored in a model.pt file. In addition to state_dict,
the model.pt saves the best validation f1-score, best test f1-score, and probability threshold in each
iteration. The model.pt is used in the model deployment as a matcher.

Model Testing

The flag is_model_present is always set to TRUE starting with the second iteration. As a result,
the serialized data set is fed to model testing. Model testing retrieves the stored model (model.pt)
from the model storage, as well as the state_dict and other parameters from the model.pt file.
The preceding iteration’s state_dict and probability threshold are used to test the model, and the
appropriate test loss is computed. The data set is deleted if the loss is less than the pre-defined
threshold, and the next cycle begins. Otherwise, if the loss exceeds a certain threshold, the
model must be retrained using the fresh data set. Hence, the previously saved model’s state_dict,
optimizer’s state_dict, and probability threshold are retrieved from the model.pt. These parameters

55

4 Concepts and Implementation

are used to train the model as before. To identify the streaming entity pairs, the updated model
(model.pt) is saved in the model storage and deployed via flask. In the next section, we’ll explore
the implementation of model deployment.

4.3.5 Model Deployment

After the model has been trained, it needs to be deployed in a location to make it accessible to input
data and obtain predictions. In this work, the FLASK5 framework is used to deploy the model on
the local host. FLASK is a python-based web application framework. It enables end-users to label
entity pairs by interacting with the trained model. The entity pairs are sent to the flask application by
the end-user as a request. The application uses the data and responses back with the corresponding
entity pair’s class.

We provide a flask-based model deployment approach that does not interrupt the classification of
streaming entity pairs in this thesis. Below is a description of the algorithm. Prior to that, we’ll go
through the parameters and functions that were utilized to create this algorithm.

Two flask applications (flask_app1 and flask_app2) are considered to deploy the trained model. Each
flask app has a predict function that use the trained model stored in the flask app storage (storage1or
storage2). The predict function accepts an entity pair as an input and returns the predicted class
as an output. We have built shell scripts that execute the commands as background processes to
start and terminate each flask application. To keep track of which program is running at any given
time, a shared variable (flask_num) is employed. Because the trained model is not there at the start,
storage1 and storage2 are empty. Flask_num, a shared variable, is set to zero.

The method is broken down into several phases, which are detailed below,

• Step1: The model is trained and saved at the model pool in the first iteration, as mentioned in
the previous subsection. After that, the saved model is replicated to storage1 and storage2.
The model is used in both flask apps to predict entity pairs. The start shell scripts for both
apps, which operate as background processes, are then executed. The shared variable is then
changed to one.

• Step2: The model is trained and saved in the model pool in the following iteration, as
mentioned in the previous subsection. The stop shell script is used to terminate flask_app2.
The model is then moved to storage2 and the shell script is used to start flask_app2. The
flask_num variable is then set to two, and the streaming entity pairs are categorised using the
new model.

• Step3: The trained model is saved in the model storage again in the following iteration.
Because the input stream is now categorized by flask_app2, flask app1 is now terminated
using the stop shell script. The stored model is replicated to storage1. The start shell script is
then used to start flask_app1. The variable flask_num is now set to one, indicating that the
model has been updated.

• Step4: Step2 and Step3 will alternatively continue in the following iterations.

5Flask: https://flask.palletsprojects.com/en/2.1.x/

56

4.3 The Training Layer

This algorithm does not provide an optimal solution since both the applications run always. The
optimum solution for this problem would be to stop one application after starting another application.
This solution is not explored in this thesis but could be taken as part of future work.

Implementation of model deployment completes the training layer’s implementation. Below, we list
a couple of the challenges faced during the implementation of components of the training layer.

1. The labelling script sequentially annotates entity pairings in the Data Labelling component.
At first, when the script annotates the data, our system immediately stores the entity pairs.
This increases the I/O operation for MongoDB (LP), as discussed in the challenges of the
prediction layer. Therefore, to resolve this difficulty, we used the same technique that was
utilized to resolve the issue while storing the classified entity pairs in the candidate pool, i.e.,
adopting lists. The limitation of this approach is the same as the limitation for the CP.

2. To deploy the trained model and classify the continually streaming entity pair data, we
initially utilized a single flask application. Following each iteration’s model training, the same
kafka topic that serves as the training layer’s input receives the poison pill. The consumption
of streaming entity pairs is stopped as soon as the training layer receives this pill. The
flask application then updates the training model. The input stream is started upon the
updating of the model in the flask application. As a result, the continuous streaming entity
pair classification has to be interrupted. To solve this issue, we introduced an algorithm
that continuously updates the trained model in the flask without disturbing the continuous
streaming entity pairs. Subsection 4.3.5 provides an explanation of how this algorithm is
implemented.

57

5 Evaluation

This chapter details the experiments that were conducted to evaluate the performance of our end-
to-end DistilBERT-based ER system implemented in this thesis. In the first step of the evaluation
procedure, the characteristics of datasets used for the experiments are discussed. Then we set
evaluation goals. This evaluation is designed to address these goals.

5.1 Dataset Characteristics

The properties of the input dataset are shown in Table 5.1. These datasets were taken from the
JedAI1 dataset library. Many components of ER literature, including Task-based parallelization ER
[69], DeepMatcher [9], and DeepER [19], rely primarily on these. We have taken into consideration
clean-clean ER data sets since the dirty ER does not exhibit heterogeneity. The input entity pairs
for comparison are taken into consideration from two data sources, as stated in Section 3.1. The
third column lists the data sources. The dataset for the Movie include details like actor and director
names and movie titles. The full-text articles and bibliographic literature are described by the
organizations that are a part of the DBLP, ACM, and Google scholar. The largest dataset used in
our experiments is the DBPedia dataset. It includes objects from a variety of domains, including
those for products, citations, and movies.

Information like the author, the paper title, and the publication year is found in the entities of the
dataset DBLP, ACM, and Google Scholar. For DL-based ER problems, this information serves as
input features. From the results of experiments, we can observe that the accuracy of a model is
high since the majority of the features in these databases have the same characteristics. The feature
names for the Movies dataset, however, differ according to the sources (shown in Figure 4.1a). As a
result, in the majority of the experiments, we utilized the Movies dataset to assess our model.

Dataset Domain Source Size
DatasetA DatasetB DatasetA DatasetB

Movies Movies IMDB DBPedia 27614 23181
DBLP-ACM Citations DBLP ACM 2615 2293

DBLP-SCHOLAR Citations DBLP Google Scholar 2615 61352
DBPedia Hybrid DBPedia1 DBPedia2 1.19M 2.16M

Table 5.1: Characteristics of input datasets.

1JedAI Toolkit: https://github.com/scify/JedAIToolkit/tree/master/data

59

5 Evaluation

5.2 Goals

The goals for this study are as listed below. They focus on evaluating our system based on the
number of iterations of training, the data skewness, and the time taken to execute the components.

• To determine the quality of model learning over the number of iterations. The model quality
is defined by the model’s f1-score, train loss, and test loss.

• To determine the number of iterations the model takes to progressively converge to optimum
point. The optimum point is determined by measuring the quality of the model in each
iteration. The model is optimum if the quality of the model is greater than the threshold.

• To determine the performance of each component and overall system by measuring the
execution time taken.

5.3 Design

In order to achieve the goals described in above section, certain hypotheses were defined based on
the research objectives of this thesis, findings from related work, and our understanding of the entity
resolution methods. In this section, we discuss the defined hypothesis and different conditions.

5.3.1 Hypotheses

• H1: The model quality improves over the iterations if the input data is from the same domain.

• H2: The model quality improves over time and takes a smaller number of iterations to
converge to near-optimum performance if the upcoming data set is balanced with respect to
matches and not-matches.

• H3: The model quality improves over iterations for the large training dataset.

• H4: The model quality varies over iterations for multiple sampling strategies to fetch the data
set for labelling.

5.3.2 Conditions

To assess the model’s performance and quality in terms of Data dkewness, Input domain, Training
sample size, and Sampling techniques, nine conditions were developed. All of these conditions
are summarized in Table 5.2. To verify the hypotheses, experiments are conducted under multiple
conditions.

The table demonstrates that different conditions are created by altering the data origin domain,
sample size, data skewness, and sampling techniques. Each of these conditions offers information
to support one or more hypotheses (mentioned in Column two). The next paragraphs describe the
significance of each parameter’s value.

60

5.3 Design

Condition Hypothesis Data origin
Domain

Sample Size Data Skewness Sampling
Strategies

C1 H1, H2 Same Small Medium S3
C2 H1, H3, H4 Same Medium Medium S3
C3 H3 Same Large Medium S3
C4 H2 Same Small Low S3
C5 H2 Same Small High S3
C6 H4 Same Medium Medium S0
C7 H4 Same Medium Medium S1
C8 H4 Same Medium Medium S2
C9 H1 Hybrid Medium Medium S3

Table 5.2: Different conditions to evaluate the iterative model.

An important parameter that identifies the domain to which the entity pairs belong is the data origin
domain. The Same, Hybrid, and Sequence domains comprise this parameter. The term “same
domain” refers to the domain from which the streaming entity pairs were generated, i.e., all entity
pairs belong to the domains of “movies” or “citations”. The term “hybrid domain” denotes the
streaming entity pairings generated randomly from multiple domains, including those for movies,
citations, and products. The sequence domain denotes the entity pairs are successively generated
from the domains of movies and citations.

The following parameter sample size describes the model’s training sample size. As a training
batch, the values small, medium, and large sizes consist of 5000, 10000, and 25000 data points,
respectively. The bias toward a class is represented by the data skewness parameter. The labelled
data in the low and high values includes data points that are 50% and 5% match, respectively, while
the medium value has entity pairs that are 10% and 20% match entity pairs. Sampling strategies
are the final parameter, and they are used to obtain the sub-samples from the candidate pool for
annotation. In Subsection 4.3.2, the details of these strategies are covered.

When the streaming candidate tuples originate from the same or other domains, conditions C1,
C9, and C10 evaluate the model quality. The effect of the input data domain on the model quality
is evaluated by changing the data origin domain while maintaining all other parameters constant.
The affect of training data on model quality and execution time is discovered in conditions C1, C2,
and C3 by altering the sample size while keeping the other parameters constant. Similar to this,
conditions C1, C4, and C5 as well as conditions C6, C7, and C8 are used to assess the impact of
data skewness and sampling techniques on the model quality, respectively. These conditions assist
in generating statistically significant evidence to support hypotheses (H1 to H4).

61

5 Evaluation

5.4 Performance Evaluation Metrics

To evaluate the performance of the developed system, a list of Independent and Dependent variables
are defined. Independent variables are varied throughout the user study, and the effect of these
variations on the dependent variables is measured. This in turn addresses the defined hypothesis and
achieves user study goals. In addition to the independent variables, there are a few more variables
called extraneous variables that are described in a different section.

5.4.1 Independent Variables

Independent variables are the cause for change in the performance of the system. Such causes are
independent of each other and affect the dependent variables. Conditions defined in Subsection 5.2
incorporate most of these independent variables and demonstrate their variations across the tasks.
This section explains them in detail,

1. Datasets: This is the most important independent variable. The datasets we consider for
experiments allow us to evaluate the model for all hypotheses (H1-H4). The details of the
data set used, and their characters are explained in Section 5.1.

2. Sample Size: The sample size variable represents the multiple batch sizes for evaluating the
model quality and system’s execution time (H3).

3. Data Skewness: The values of this parameter indicated the bias towards a class in a labelled
dataset: This variable is used to observe the change in model quality.

4. Sampling Strategies: The variable represents different strategies used in the sub-sampling
of the data to annotate from an oracle. The change in this variable corresponds to a shift in
model quality.

5.4.2 Dependent Variables

Several dependent variables are defined and analysed to measure the effect of independent variables
on the system performance. They are targeted to measure the system’s performance with respect to
the time and accuracy of the DistilBERT-based ER model. In every iteration of model training, we
evaluate the below dependent variables by varying the independent variables.

1. Recall (R): It is the fraction of relevant instances that were predicted. The effect of different
independent variables on this variable is measured in terms of percentage in every iteration.
This variable helps to evaluate the model for all hypotheses.

2. Precision (P): It is the fraction of relevant instances among the predicted instances. Like
recall, this variable is measured in terms of percentage in every iteration with respect to
varying independent variables.

3. F1-Score: It sums up the model’s predictive performance by combining the recall and
precision. The F1-score is defined as 2𝑃𝑅

(𝑃+𝑅) .

62

5.5 Experimental Setup

4. Train Loss: The metric explains how the model fits the training data sets. The cross entropy
loss2 function is used to calculate the loss.

5. Test Loss: The metric explains how the trained model predicts the test data set. Similar to
train loss, the cross entropy loss function is used.

6. Time: CPU and GPU execution time of the end-to-end system and components of the system.

7. Iteration: A complete cycle of the training layer.

5.4.3 Extraneous Variables

Extraneous variables are the ones that have the potential to affect the outcome of the study but are not
being investigated in the evaluation. Below is the list of extraneous variables for this evaluation.

Human Oracle: To annotate the data, we take into account a human oracle. Due to time restrictions,
we used a python script as a replacement of the human oracle in our thesis work. The script
annotates the entity pairs using the ground truth label file from the dataset. The attention and
familiarity of the human oracle are discussed below.

Because the human oracle is skilled at entity resolution, it follows that it is also knowledgeable
about entity descriptions. The entity description’s columns may have special meaning, which the
oracle may be aware of and use this skill to annotate the data. This might result in a lot of perfectly
annotated data. However, an oracle that is unfamiliar with ER may wrongly annotate the entity
pairings. Therefore, we presume that the entity pairs that the oracle annotates are always accurate.

Another significant factor in our research is the human oracle’s level of attention. The attention and
fatigue of the oracle affect the accuracy of the annotation, which may not seem like a big issue. If
the system uses a human oracle, these superfluous factors should be taken into account in future
work.

5.5 Experimental Setup

This section discusses the information required for executing the experiments to evaluate the model.
We describe the parameters, hardware and software used to conduct the experiments.

5.5.1 Parameters

Below, we list the parameters used in our experiments. These parameters can be altered through the
config file. All the model hyperparameters are adopted from DITTO [LLS+20].

1. aug_flag: This parameter controls the augmentation process by setting it to TRUE or FALSE.

2Cross Entropy: https://en.wikipedia.org/wiki/Cross_entropy

63

5 Evaluation

2. th_match_perc: This parameter represents the threshold which determines whether the
augmentation is required for the training data set or not. The augmentation is applied to the
training dataset if the percentage of match entity pairs in the LP falls below the threshold.
This parameter has values of 5% and 10%.

3. th_test_loss: This parameter represents the threshold which decides whether the trained
model’s fine tuning is required. The test loss is calculated for the new iteration’s data set;
if the loss is more than the 5% threshold loss, then the pre-trained model is fine-tuned.
Otherwise, the dataset is discarded. The value of this parameter is 0.05

4. aug_key_val: This parameter defines the key-value level augmentation of entity descriptions.
If the parameter’s value is set to ‘KEY’, then the augmentation is applied to the keys of
entity descriptions. Similarly, ‘VAL’ defines the values of entity descriptions, and ‘BOTH’
determines the augmentation is applied to both keys and values of descriptions.

5. aug_word_type: This parameter represents the augmentation techniques used for entity
descriptions at the word level. The values ‘SYN’, ‘SPL’, and ‘BOTH’ define synonyms and
spelling, respectively.

6. aug_char_type: Like the above parameter, this parameter represents the augmentation
techniques applied to entity descriptions at the character level. The values, ‘SYN’, ‘SPL’, and
‘BOTH’, define synonyms, spelling, and both, respectively.

7. time_window_min: This parameter depicts the time in minutes for moving window as
discussed in the Subsection 4.3.1. All the predicted entity pairs having timestamps within
this window are transferred to a secondary collection from a primary collection of CP.

5.5.2 Experimental Environment

To evaluate our end-to-end DistilBERT based ER model, we adopt a virtual machine. The hardware
configuration is explained in the first subsection, whereas the frameworks and libraries used are
explained in the second subsection.

Machine Configuration

In this thesis, we use the remote machine, which is connected through the secured shell protocol
(SSH)3. The system’s hardware configurations are listed below,

• Operating System: Ubuntu 20.04

• Processor: 2 x AMD EPYC 7763, 2.45GHz, 64 Cores, 128 Threads

• Memory: 1TiB

• Graphics: 4 x NVIDIA A100, 40GB

3Cross Entropy: https://en.wikipedia.org/wiki/Secure_Shell

64

5.6 Evaluation Results

Programming Frameworks

The end-to-end system implementation is done using the python programming language. All the
programming tools, programming language, libraries, databases, and frameworks used in this thesis
are open source. Hence they can be downloaded and used according to the solution requirement for
free. The details of these components are listed below,

• Programming Language: Python (V 3.8.10)

• Programming Tools: PyCharm community edition (V 2022.1.1), Jupyter Notebook (V
6.4.5), Google Colab

• Libraries: Transformers (V 4.19.2), Scikit-learn (V 1.1.0), Numpy (V 1.22.3), Flask (V
2.1.2), NLPAUG (V 1.1.10), PyMongo (4.1.1), Kafka-Python (V 2.0.2)

• Database: MongoDB (V 5.0.7)

• DL Framework: PyTorch (V 1.11.0), Pandas (V 1.4.2)

5.6 Evaluation Results

The evaluation findings are covered in this section. Conclusions about hypotheses are based on the
findings. We first discuss about the evaluation findings for the non-iterative model. The outcomes
for each hypothesis are then discussed. In our last section, we talk about the additional findings in
the context of the accuracy of our model. We use the dependent variable to evaluate how well our
model is working. Each iteration in all the results consists of two cycles. When the model learns
the data flawlessly, the train and test losses are not shown in the visualisation of experiment results.
However, experiments with poor model training and test losses are shown.

5.6.1 Single Training Batch

Our model is assessed in this section using a single training batch. With regard to our model, the
outcomes of this experiment are referred to as SOTA findings. We compare the performance of our
iterative model to the batch-trained non-iterative model.

Experiment Setup

This experiment makes use of the movie dataset. As a training batch, we are using 80000 data
points. Epochs are set to 10, and the batch size is set to 256. The experiment is carried out for
various data skewness (5%, 10%, 20%, and 50%). The other independent variables, such as sample
size and sampling strategies are not taken into account since we are training our model in batch
mode. The match classes F1 score is used to assess the model.

65

5 Evaluation

Figure 5.1: Model’s performance for varying skewness of single batch.

Results

Figure 5.1 shows the epochs on the x-axis and the f1 score of the match class in relation to data
skewness on the y-axis. The Figure demonstrates that given fully balanced data, or data with a
normal distribution, the greatest f1 score obtained is approximately 0.99. However, the f1 score
declines as the data skewness for the not-match class increases. Hence, the model’s behaviour is
referred to as bias. The model tends to bias toward learning the properties of entity descriptions
of not-match data samples. Our model achieves around a 0.96 f1 score even with input data that
contains 5%, match classes. The model produces approximately 0.97 and 0.98 f1 scores for the
datasets with 10% and 20% entity pairs of match class, respectively. Therefore, we evaluate how
well our iterative model performed in relation to these scores.

5.6.2 Hypothesis One

To support the first hypothesis, we evaluate our module in this part, i.e., “The model quality
improves over the iterations if the input data is from the same domain”.

Experiment Setup

We use conditions C2 and C9 as well as all datasets shown in Table 5.2 to perform this experiment.
Movies, DBLP-ACM, and DBLP-SCHOLAR datasets belong to the same domain, while DBPedia
datasets belong to the hybrid domain. While using the same independent variables, such as sample
size, data skewness, and sampling techniques, conditions C2 and C3 differ in the input data domain.
We adopt two different values for the time_window_min parameter along with these independent
variables. Since the datasets DBLP-ACM, DBLP-Scholar, and Movies have a small number of
candidate pairs, the parameter time_window_min is set to five minutes. To assess the model, we
utilize the match class‘s f1 score. Compared to other dataset streams, we take into account large
dataset streams for the DBPedia dataset.

66

5.6 Evaluation Results

(a)

(b)

Figure 5.2: (a) Model’s performance for same domain input. (b) Model’s performance for hybrid
domain input.

Results

The x-axis in both Figures represents cycles, and the y-axis represents the f1 score of the match
class. The f1 scores of the DBLP-Scholars and DBLP-ACM datasets are better than those of the
Movies dataset, as seen in Figure 5.2a. The mode’s f1 score initially ranges between 0.85 and 0.9,
but after cycle ten, the value increases. For the movie dataset, the iterative model gets the maximum
f1 score of 0.96, which is comparable to the f1 scores of the non-iterative model (0.96 and 0.97).

The f1-score of the match class for DBPedia datasets is shown in Figure 5.2b. This dataset includes
different domains. The model gets f1 score of 0.98 during the first cycles. However, after cycle
twenty, when the model came across a dataset from a new domain, the f1 score of the model
varies.

67

5 Evaluation

Analysis

Figure 5.2a shows that the f1 scores for the DBLP-Scholar and DBLP-ACM datasets have remained
not constant but comparably stable over the cycles. For both datasets, the model has the highest
f1 score of 0.96. These datasets are made up of citation-representing entities. Both data sources’
entities share attribute names (feature) such as title, author, or publication year. The model
retrieves these common features efficiently. The attribute names (features) in the Movie dataset vary
depending on the data source. For instance, starring is used in the IMDB dataset, while actor name
is used in DBPedia as the attribute name. Along with attribute names, each entity has a different
amount of attribute names and value pairs. As a result, the model learning task is complicated. The
movie dataset’s f1 score varies initially in Figure 5.2a but gradually rises to 0.96 over cycles.

The model underperforms on the DBPedia dataset across cycles, as seen in Figure 5.2b. Entity
pairs from various domains, including movies, citations, and products, make up the DBPedia.
Consequently, the attribute name and values vary for each data point (features). This makes model
learning challenging. Another reason for model’s poor performance might be the entity descriptions
having a series of non-natural language tokens. To examine this hypothesis, we considered the
entity descriptions of DBPedia dataset. These entity descriptions consists of URLs4, which are not
a series of natural language tokens.

This study leads us to the conclusion that hypothesis one is true, i.e., our model performs well for
datasets from the same domain but poorly for datasets from the hybrid domain.

5.6.3 Hypothesis Two

In this section, we evaluate our model to conclude the second hypothesis, i.e., “The model quality
improves over time and takes a smaller number of iterations to converge to near-optimum
performance if the upcoming data set is balanced with respect to matches and not-matches”.

Experiment Setup

This analysis is carried out using the Movies dataset. To transfer the entity tuples from primary
collection to secondary collection in CP, the parameter time_window_min is set to five minutes.
We take into account conditions C1, C4, and C5, since the model performance is assessed for
different data skewness. The strategy and sample size are constant parameters. In these conditions,
the training dataset’s 5% match entity pair correlates to the high skewness. Low skewness in the
training dataset corresponds to 50% match entity pairs, whereas medium skewness is made up of
10% and 20% match entity pairs. The f1 score of match classes is used to assess the model.

4Cross Entropy: https://en.wikipedia.org/wiki/URL

68

5.6 Evaluation Results

Figure 5.3: Model’s performance for varying training data skewness.

Results

The f1 score for the match class of the model across iterations is shown in Figure 5.3. The varying
data skewness is also represented in the Figure. The percentage of match entity pairs taken into
account in the training sample is shown in the graph. The model works well with training samples
that are less skewed (50%) and medium skewed (10% and 20%). The model initially performs
poorly for training datasets with 10% match entity pairs, but finally, in the fifth cycle, it achieves
a close to optimal f1 score. The model achieves the maximum f1 score of 0.97 for this dataset.
Similar to this, with training samples of 50% and 20%, the model achieves a close to optimal f1
score in the third and seventh cycles, respectively. These datasets’ highest f1 scores are 0.99 and
0.98, respectively. The model’s performance is low for highly skewed data. The model’s f1 score
ranges between 0.85 and 0.9 in the early cycles for highly skewed data. However, the model starts
to perform better after the tenth cycle, achieving the maximum f1 score of 0.96. When compared to
the non-iterative model, our iterative model performs quite well. In terms of skewness, iterative
models have the same f1 score as non-iterative models.

Analysis

The iterative model performs at par with the non-iterative model. The data that is less skewed has
an equal number of match and non-match classifications. Both classes’ characteristics are equally
presented in the model. However, the model learns the characteristics of a highly skewed class as
the skewness of the training data towards one class increases, which leads to significant bias in the
model. In the field of machine learning research, this is a well-known issue.

Considering the results shown in Figure 5.3, hypothesis two holds, i.e., the model performs better
for less skewed training samples. However, the model reaches the greatest f1 score for the 90%
skewed dataset (10% match entities) before it does for the 80% skewed dataset (20% match entities).
However, compared to prior iterations, the model improves for data which is 80% skewed.

69

5 Evaluation

5.6.4 Hypothesis Three

The third hypothesis is derived by assessing our model in this section, i.e., “The model quality
improves over iterations for the large training dataset”.

Environment Setup

We use the Movie dataset to conduct this experiment. This hypothesis is tested using the conditions
C1, C2, and C3. By keeping the other variables constant in this experiment, the training sample
size variable is altered. The small, medium, and big numbers, respectively, represent 5000, 10000,
and 25000 data points. The primary collection of CP must have more than 25000 predicted data
points, which must be transferred to the secondary collection, in order to select the large training
sample. Therefore, the parameter time_window_min is set to ten minutes. The model is evaluated
both with and without augmentation for a large training sample size. The f1 score variation over
iterations is used to assess the model.

Figure 5.4: Model’s performance for varying training sample size.

Results

The f1-score of the match class for various training sample sizes is shown on the y-axis in Figure 5.4
along with the cycles on the x-axis. The use of augmentation for a large training sample is indicated
by the label large_with_aug. The model initially outperforms others for the small training sample
size, but throughout the iterations, the performance falls short of the augmented large sample size.
In the second cycle, the model for this sample size obtains the maximum f1 score, while the f1
score declines to its lowest in the final cycle. Similar results are obtained by the model for the
medium sample size. But starting with cycle thirteen, the model performs better for medium sample
size, averaging around a 0.96 f1 score. For a large sample size, the augmentation improves the
model. The analysis portion provides a detailed explanation for this behaviour. In the sixth cycle,
the model’s performance for a large sample size reduces to 0.86 f1 scores. The model works better
and its performance for enhanced large sample size has increased during the same cycle.

70

5.6 Evaluation Results

Analysis

The Figure demonstrates how poorly the model performs in the sixth cycle for a large dataset. The
performance of the model is thought to be caused by the skewness of the data. For this experiment,
the medium skewed data (10% match class) is taken into account. In the sixth iteration, the training
sample may have received extremely skewed data, meaning that fewer than 10% of the sample’s
data points belong to the match target class. This causes the model to learn the features of the
not-match class. To study this behaviour, the augmentation strategy is used on a large sample set.
After utilizing the augmentation, the model’s performance is shown in the Figure. An enhanced
large sample improves the model’s performance. This validated our assumption.

We cannot draw a conclusion for hypothesis three since the model’s performance for enhanced
large and small sample sets is roughly comparable across iterations. Using the augmentation
strategy is one way to enhance the model for a large sample set. This topic will be the subject of
further study.

5.6.5 Hypothesis Four

In this, we discuss the evaluation of our model to conclude hypothesis four, i.e., “The model quality
varies over iterations for multiple sampling strategies that fetch the data set for labelling”.

Experiment Setup

The model is assessed using the Movie dataset. The parameter time_window_min is set to five
minutes. Multiple sampling techniques are used in this experiment to subsample the dataset for
labelling. The data set used to train the model is then annotated by the oracle. The conditions C2,
C6, C7, and C8, are used to assess the model in the thesis, where we offer four sampling strategies
that are described in depth in Section 4.3.2. Strategies three, zero, one, and two are taken into
consideration by the conditions C2, C6, C7, and C8, respectively. Other factors like sample size
and data skewness are set to medium and 90%, respectively. The f1 score was used to assess the
model.

Results

The model’s performance for various strategies is shown in Figure 5.5. In Section 4.3.4, we
mentioned that the model is not trained if the trained model from the previous iteration outperforms
it (the f1 score and test loss are greater than those of the preceding model, or the predetermined
threshold). As a result, from cycle four to cycle thirteen for strategy1, the model’s f1 score is absent
in Figure 5.5. The model initially performs better for strategy0, achieving a roughly 0.97 f1 score.
However, the model’s performance declines to a 0.93 f1 score in the last two rounds. The models’
performance improves across the cycles for the data sample obtained by using strategy0. In the
ninth cycle, the model gets a f1 score of 0.97. For the training sample retrieved using strategy3,
the model exhibits the same behaviour. However, in the eleventh cycle, the model’s performance
decreases to a 0.96 f1 score. For the training sample of strategy2, the model performs badly. The
model varies between iterations, but it reaches the greatest f1 score of 0.96.

71

5 Evaluation

Figure 5.5: Model’s performance for different sampling strategies.

Analysis

In this experiment, we take into account a number of strategies that retrieves sample dataset from
the candidate pool for annotation using various methodologies. In Subsection 4.3.2, specific
explanations of the techniques are provided. Below, we analyze the outcomes from the perspective
of the chosen strategy.

1. Strategy0: There is a good likelihood that samples will have a larger proportion of entity
pairs from the match class since the candidate pool’s data points are ordered according to
similarity score (𝑤𝑎𝑏). The model performs better for a more balanced training sample, as
we have shown in hypothesis two. As a result, the model works better with this tactic.

2. Strategy1: The first 𝑁 entity tuples with the greatest confidence are included in the sample.
The likelihood of categorizing an entity pair is determined by the model confidence. The
model’s confidence in classification increases with increasing likelihood. The similarity score
determined by the cosine similarity function is the confidence value given to each entity tuple
in the first two cycles. The cosine similarity function’s efficiency in model training is shown
in the first two cycles. The confidence is assigned based on the probability determined from
the model after it has been trained. The chance of containing entity tuples of the match class
is lower because the model classifies both classes with better confidence. As a result, the
model has performed badly during the last two cycles.

3. Strategy2: By choosing the entity pairs with the greatest and lowest model confidence, this
technique aims to solve the issue of reduced probability of picking match class’s entity pairs.
The results demonstrate that the model underperforms for strategy2, contradicting its purpose.

4. Strategy3: By randomly generating three bins and choosing a certain number of entity pairs
from each bin, the technique addresses the issue of the match class entity pairs being less
likely to be chosen. The outcome demonstrates that the tactic solves the issue. The training
sample is more evenly distributed with this method, and the model’s performance increases
over iterations.

72

5.6 Evaluation Results

5.6.6 Additional Findings

In this section, we go through the additional experiments that are used to assess the model
performance for sequential input data and data augmentation. Additionally, each part of our model’s
execution time is described.

1. Sequential-domain input data
In this experiment, we aim to study the model’s performance for the input data representing
multiple domains sequentially.

Experiment Setup: The iterative training model is evaluated in this part using input from the
first 𝑁 entity pairs from the citation (DBLP-ACM) domain and the subsequent entity pairs
from the Movies domain. The data skewness is set to medium (10%), the training sample size
is set to small, the sampling strategy is set to the third strategy, and the time_window_min is
set to five minutes. We are not employing the augmentation approach since we are using data
that is moderately skewed. The f1 score, test loss, and train loss are used to assess the model
performance.

Results: The model’s f1-score of match classes is shown in Figure 5.6a. The iterative model
initially performs better. In the third cycle, the model receives the highest f1 score of 1,
but after that, its performance falls by 0.04. The model performs poorly in the ninth cycle,
dropping the f1 score to 0.95. However, the model’s performance improves and achieves an
approximately 1 f1 score. Performance of the model varies between 0.95 and 1.

The training loss and test loss of the model are shown in Figure 5.6b. The Figure shows that
the model’s training loss decreases till cycle eight and then increases. The loss reaches 0.14
(14%) for each cycle. The model’s test loss, however, does not vary as much as its training
loss. In the seventh cycle, the model’s test loss increases to 0.05.

Analysis: The model performs poorly in the eighth cycle across all the Figures. The entity
tuples from the citation domain are the first entities the model runs into. As a result, the model
learns from the citation domain’s characteristics. When the model comes across entity tuples
from the movies domain after the ninth cycle, it attempts to incorporate the new features. As
a result, the model exhibits poor performance in the eighth cycle. Figure 5.6a shows that the
model performs better at transferring information from one domain to another while learning
it. However, we can see in Figure 5.6b that the training error is greater than the test error.
The potential causes of this behaviour might be (1) a large number of complex characteristics
in the training set that need to be learned and (2) non-complex features in the test set that
need to be predicted. Future work would be an in-depth investigation of this.

2. Augmentation of the training dataset
In this experiment, we evaluate our model’s performance for varying augmented entity pairs
in training batch.

Experiment Setup: In this experiment, the percentage of augmented entity pairs in the
training sample is varied while using the movie dataset. The input stream consists of 2.5%
entity pairs belonging to match class. The parameter time_window_min is set to ten minutes.
The independent variables, sample size and sampling strategies are set to medium and third

73

5 Evaluation

(a)

(b)

Figure 5.6: (a) Model’s performance for sequential input domain. (b) Model’s training and test
loss for sequential input domain.

strategy, respectively. The 5% augmentation value indicates the percentage of entity pairs
in training samples of the match class after applying augmentation approaches. The 10%
augmentation is used in a similar way. The f1 score is used to assess the model performance.

Results: The impact of augmentation on the model’s performance is seen in Figure 5.7. The
model performs between 0.85 and 0.9 f1 scores for the training dataset without augmentation.
In the ninth cycle, the model receives its maximum f1 score of 0.91. In contrast, in the
eleventh cycle, the performance declines to its lowest f1 score of 0.85. For the 10% of
augmented entity pairs, the model performs poorly. The model initially earns the greatest f1
score of 1, but after the fifth cycle, it starts to perform poorly. For 5% of augmented entity
pairs, the model performs better. The model performs well in the first few cycles before
deteriorating in the middle cycles and reaching a ninth cycle performance f1 score of 0.87.
The model’s f1 score improves to 0.93 after the ninth cycle, which is better than the model’s
performance for the training data set without augmentation.

74

5.6 Evaluation Results

Figure 5.7: Model’s performance for different percentage of augmented entity pairs in training
sample.

Analysis: Figure 5.7’s representation of the model performance demonstrates how the
augmentation approach for training data enhances the model’s performance up to a saturation
percentage (5%). The model, therefore, exhibits poor performance for a greater proportion
of augmented entity pairings (10%). We use a duplicate entity technique, which is an
augmentation technique covered in Section 4.3.3. The entity pairs utilize identical attribute
names and values as a result of this strategy. Then, these entity pairings are subjected to the
augmentation approaches. The model learns the features that have the same set of attribute
names and values in entity pairs as the number of augmented entity pairs increases. As a
result, the model favours these features. The model functions poorly when classifying the
match class’s continuous streaming entity pairs.

3. Execution time of components
This experiment calculates how long it takes the system and each component to complete
an operation. So, it takes care of the second goal of evaluation. We adopt the experimental
setup used in to test hypothesis three. Each component’s average execution time across the
iterations is taken into account. The unit of measuring the execution time is in “seconds”.

The average execution time for each training layer component is shown in Figure 5.8. For
various training sample sizes, the execution time for strategy application, model storage, and
model deployment remain constant. These parts are connected to the computer system’s
hardware. However, compared to other components, data labelling requires the most time.
The number of entity tuples to annotate grows along with the size of the training sample; as a
result, the annotation process takes longer. The size of the training sample has an impact
on both model training and augmentation. The system execution time is 123.4, 175.12, and
335.39 seconds for small, medium, and high training sample sets, respectively.

The trained model is deployed using the Flask API to classify the streaming entity pairs, as it
was covered in Subsection 4.3.5. An entity pair is predicted by the model in 0.013 seconds.
The prediction layer processes 1000 records in 12.5 seconds at the same time. This duration
is determined by timing the transfer of 1000 records from the lookup table to the candidate
pool.

75

5 Evaluation

Figure 5.8: Average execution time taken by components.

76

6 Conclusion and Future Work

Through the course of this thesis, we mainly studied the incremental ER method that is iteratively
trained on the newer dataset and classifies the continuously streaming entity pairs. Different aspects
of classification function, active learning to annotate the data points, augmentation to resolve the
data imbalance problem, and iterative model training were explored and implemented. In order to
decouple the classification of the continuous streaming entity pairs and train the model iteratively, a
prediction layer and a training layer are designed and implemented. The system was assessed in an
evaluation, and the experiment results are presented.

In order to summarise the work, research objectives are revisited.

1. To address the problem of entity resolution for streaming entity pairs.
A prediction layer for continuous streaming entity pair classification was developed and
implemented. We discussed an effective method of retrieving entity descriptions using
look-up tables as the first component of this layer. The serialization technique, which converts
the input entity description’s attribute name and value pairs into a sequence of tokens, is then
discussed. The classification function, a crucial component of the prediction layer, is finally
described. The prediction layer classifies the continuous streaming entity pairs as match or
not match using all of these elements.

2. To explore the concept of continuous iterative training to achieve ER in the case of
continuous streaming entity pairs.
In connection with a previous study, it was discovered that the transformer-based pre-trained
language model is the most recent and effective way of classifying continuous streaming
entity pairs. It helps in addressing the entity pair heterogeneity issue in continuous streaming.
The features of the most recent input entity pairs are trained to a pre-trained language
model called DistilBERT through iterative learning. In order to convert the text input into
machine-readable vectors, the model leverages previously learned information. The same
vectors are subsequently used to train the task-specific layer. This model is better and does
not need all of the training data at once since it is trained iteratively.

3. To explore the role of active learning and crowd-sourcing-based ER in incremental
model training.
Key components of incremental learning are active learning and crowdsourcing-based ER
techniques because they provide accurate labels for entity pair labels for model learning. In
order to subsample the entity pairs from the population for annotation of entity pairs, we
developed four strategies. As a part of the implementation of the data labelling component,
we discussed the human Oracle-based approach for providing the true labels. Due to time
restrictions, we were unable to use a real human to annotate the data in our thesis. Instead,
we created a script that annotated entity pairs using the ground truth files. These annotated
data sets are offered as training sets for building models.

77

6 Conclusion and Future Work

4. To evaluate the end-to-end streaming entity resolution system developed in this thesis
and analyse its performance
The evaluation of the model’s performance involved varying the independent variables and
observing the change in dependent variables. We introduced nine conditions to evaluate the
model’s performance by varying the input data with respect to domain, size, skewness, and
sampling strategies. The four hypotheses were discussed to analyse the model’s performance.
We conducted several experiments to conclude these hypotheses. From these experiments,
we observed that our iteratively trained model achieves a performance similar to the model
that is trained once with all the training samples.

In conclusion, this thesis demonstrates that the transformer-based pre-trained language models can
be trained iteratively to learn the features of newer data and classify the continuously streaming
entity pairs. Evaluation findings shed light on the performance of the streaming entity resolution
system and the role of different components in reference resolution. The results and challenges
faced during the implementation hints to us at how to make the system better and scope for future
work.

Future Work

The methods used in this thesis for model deployment, augmentation, and classification function
all have certain drawbacks. They are covered in the Chapter 4. This thesis’s design is extremely
adaptable, and other components may be included with ease. We now discuss several possible
directions for future research.

1. The transformer-based pre-trained language model in our design leverages DistilBERT to
encode entity pairs. Other variations of BERT, such as BERT and RoBERTa, might take the
place of this model in the next studies. The research may compare the related results.

2. Similar to the above, different similarity functions such as the Jaccard function can be applied
to enhance the execution time of the prediction layer.

3. In our work, augmentation is applied if the percentage of entity pairs of match class is less
than the threshold (Subsection 4.3.3). It involves the augmentation application if the data
set does not consist of the match class’s entity pairs. In future work, this limitation can be
addressed by discarding such batches.

4. As explained in Subsection 4.3.3, we use a duplicate entity to oversample the entity
pairs of match class. Hence, the model is biased towards the same features in both
entities. This leads to the model’s poor performance in classifying the continuously
streaming entity pairs. In the same section, we discussed different augmentation techniques
such as key-board errors, spelling mistakes, or synonym replacement. NLPAUG library
consists of other augmentation techniques such as contextual word embedding augmentation
(BERT, DistilBERT, or RoBERTa), TF-IDF augmentation, or word embedding augmentation
(word2vec, GloVe, or FastText). The techniques could be addressed in future work.

5. The model’s performance is measured during the evaluation using the nine conditions drafted
from the evaluation metrics. There are more possibilities for the different combinations of
these variables. These combinations could be addressed in future work.

78

Bibliography

[ALM17] S. Arora, Y. Liang, T. Ma. “A simple but tough-to-beat baseline for sentence
embeddings”. In: International conference on learning representations. 2017 (cit. on
p. 27).

[BBS05] M. Bilenko, S. Basil, M. Sahami. “Adaptive product normalization: Using online
learning for record linkage in comparison shopping”. In: Fifth IEEE International
Conference on Data Mining (ICDM’05). IEEE. 2005, 8–pp (cit. on p. 19).

[BCB14] D. Bahdanau, K. Cho, Y. Bengio. “Neural machine translation by jointly learning to
align and translate”. In: arXiv preprint arXiv:1409.0473 (2014) (cit. on p. 25).

[BDNW12] C. Böhm, G. De Melo, F. Naumann, G. Weikum. “LINDA: distributed web-of-data-
scale entity matching”. In: Proceedings of the 21st ACM international conference on
Information and knowledge management. 2012, pp. 2104–2108 (cit. on p. 21).

[BGJM17] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov. “Enriching word vectors with subword
information”. In: Transactions of the association for computational linguistics 5
(2017), pp. 135–146 (cit. on pp. 25, 26).

[BMR11] P. A. Bernstein, J. Madhavan, E. Rahm. “Generic schema matching, ten years later”.
In: Proceedings of the VLDB Endowment 4.11 (2011), pp. 695–701 (cit. on p. 20).

[CEP+19] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, K. Stefanidis. “End-to-end
entity resolution for big data: A survey”. In: arXiv preprint arXiv:1905.06397 (2019)
(cit. on pp. 16, 19).

[CEP+20] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, K. Stefanidis. “An
overview of end-to-end entity resolution for big data”. In: ACM Computing Surveys
(CSUR) 53.6 (2020), pp. 1–42 (cit. on pp. 15, 20, 22, 31).

[CES15] V. Christophides, V. Efthymiou, K. Stefanidis. “Entity resolution in the web of data”.
In: Synthesis Lectures on the Semantic Web 5.3 (2015), pp. 1–122 (cit. on pp. 19–21).

[Che15] Y. Chen. “Convolutional neural network for sentence classification”. MA thesis.
University of Waterloo, 2015 (cit. on p. 26).

[Chr] P. Christen. Data matching: concepts and techniques for record linkage, entity
resolution, and duplicate detection. 2012 (cit. on p. 19).

[Chr12] P. Christen. “The data matching process”. In: Data matching. Springer, 2012, pp. 23–
35 (cit. on p. 20).

[CKLM19] K. Clark, U. Khandelwal, O. Levy, C. D. Manning. “What does bert look at? an
analysis of bert’s attention”. In: arXiv preprint arXiv:1906.04341 (2019) (cit. on
p. 29).

[CKLS01] M. Cochinwala, V. Kurien, G. Lalk, D. Shasha. “Efficient data reconciliation”. In:
Information Sciences 137.1-4 (2001), pp. 1–15 (cit. on p. 16).

79

Bibliography

[DCLT18] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova. “Bert: Pre-training of deep bidirectional
transformers for language understanding”. In: arXiv preprint arXiv:1810.04805 (2018)
(cit. on pp. 17, 29, 43, 53).

[DG08] J. Dean, S. Ghemawat. “MapReduce: simplified data processing on large clusters”.
In: Communications of the ACM 51.1 (2008), pp. 107–113 (cit. on p. 21).

[DS15] X. L. Dong, D. Srivastava. “Big data integration”. In: Synthesis Lectures on Data
Management 7.1 (2015), pp. 1–198 (cit. on pp. 16, 21).

[EIV06] A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios. “Duplicate record detection: A
survey”. In: IEEE Transactions on knowledge and data engineering 19.1 (2006),
pp. 1–16 (cit. on p. 20).

[EKR+21] Y. Elazar, N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schütze, Y. Goldberg.
“Measuring and improving consistency in pretrained language models”. In: Trans-
actions of the Association for Computational Linguistics 9 (2021), pp. 1012–1031
(cit. on p. 28).

[EPSC19] V. Efthymiou, G. Papadakis, K. Stefanidis, V. Christophides. “MinoanER: Schema-
agnostic, non-iterative, massively parallel resolution of web entities”. In: arXiv
preprint arXiv:1905.06170 (2019) (cit. on pp. 23, 33, 35).

[ETJ+18] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, N. Tang. “Distributed rep-
resentations of tuples for entity resolution”. In: Proceedings of the VLDB Endowment
11.11 (2018), pp. 1454–1467 (cit. on pp. 19, 28, 33, 35).

[FS69] I. P. Fellegi, A. B. Sunter. “A theory for record linkage”. In: Journal of the American
Statistical Association 64.328 (1969), pp. 1183–1210 (cit. on pp. 19, 20, 24).

[GDS14] A. Gruenheid, X. L. Dong, D. Srivastava. “Incremental record linkage”. In: Proceed-
ings of the VLDB Endowment 7.9 (2014), pp. 697–708 (cit. on p. 21).

[GH20] L. Gazzarri, M. Herschel. “Towards task-based parallelization for entity resolution”.
In: SICS Software-Intensive Cyber-Physical Systems 35.1 (2020), pp. 31–38 (cit. on
p. 35).

[GH21] L. Gazzarri, M. Herschel. “End-to-end Task Based Parallelization for Entity Res-
olution on Dynamic Data”. In: 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE. 2021, pp. 1248–1259 (cit. on pp. 15, 16, 21, 31, 34, 37).

[GHHY96] O. Goldschmidt, D. S. Hochbaum, C. Hurkens, G. Yu. “Approximation algorithms
for the k-clique covering problem”. In: SIAM Journal on Discrete Mathematics 9.3
(1996), pp. 492–509 (cit. on p. 33).

[Gil01] L. Gill. Methods for automatic record matching and linkage and their use in national
statistics. 25. Office for National Statistics, 2001 (cit. on p. 19).

[GM12] L. Getoor, A. Machanavajjhala. “Entity resolution: theory, practice & open chal-
lenges”. In: Proceedings of the VLDB Endowment 5.12 (2012), pp. 2018–2019 (cit. on
p. 16).

[HS97] S. Hochreiter, J. Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780 (cit. on p. 28).

[INN08] E. Ioannou, C. Niederée, W. Nejdl. “Probabilistic entity linkage for heterogeneous
information spaces”. In: International Conference on Advanced Information Systems
Engineering. Springer. 2008, pp. 556–570 (cit. on pp. 24, 25, 33, 35).

80

Bibliography

[JN07] F. V. Jensen, T. D. Nielsen. Bayesian networks and decision graphs. Vol. 2. Springer,
2007 (cit. on p. 25).

[Joa96] T. Joachims. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text
Categorization. Tech. rep. Carnegie-mellon univ pittsburgh pa dept of computer
science, 1996 (cit. on p. 44).

[KB14] D. P. Kingma, J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014) (cit. on p. 54).

[KDD+16] P. Konda, S. Das, A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi, H. Zhang,
J. Naughton, S. Prasad, et al. “Magellan: toward building entity matching management
systems over data science stacks”. In: Proceedings of the VLDB Endowment 9.13
(2016), pp. 1581–1584 (cit. on p. 26).

[KR10] H. Köpcke, E. Rahm. “Frameworks for entity matching: A comparison”. In: Data &
Knowledge Engineering 69.2 (2010), pp. 197–210 (cit. on p. 19).

[KTR10] H. Köpcke, A. Thor, E. Rahm. “Evaluation of entity resolution approaches on real-
world match problems”. In: Proceedings of the VLDB Endowment 3.1-2 (2010),
pp. 484–493 (cit. on p. 20).

[KTR12] L. Kolb, A. Thor, E. Rahm. “Dedoop: Efficient deduplication with hadoop”. In:
Proceedings of the VLDB Endowment 5.12 (2012), pp. 1878–1881 (cit. on p. 21).

[LBH+15] Y. LeCun, Y. Bengio, G. Hinton, et al. “Deep learning. nature, 521 (7553), 436-444”.
In: Google Scholar Google Scholar Cross Ref Cross Ref (2015) (cit. on p. 25).

[LH17] I. Loshchilov, F. Hutter. “Decoupled weight decay regularization”. In: arXiv preprint
arXiv:1711.05101 (2017) (cit. on p. 54).

[LLG14] L. Li, J. Li, H. Gao. “Rule-based method for entity resolution”. In: IEEE Transactions
on Knowledge and Data Engineering 27.1 (2014), pp. 250–263 (cit. on p. 16).

[LLS+20] Y. Li, J. Li, Y. Suhara, A. Doan, W.-C. Tan. “Deep entity matching with pre-trained
language models”. In: arXiv preprint arXiv:2004.00584 (2020) (cit. on pp. 16, 30,
33, 35, 37, 39, 43, 55, 63).

[LPD+13] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, Z. Ghahramani. “Sigma:
Simple greedy matching for aligning large knowledge bases”. In: Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining. 2013, pp. 572–580 (cit. on p. 21).

[Ma19] E. Ma. NLP Augmentation. https://github.com/makcedward/nlpaug. 2019 (cit. on
pp. 39, 52).

[MBR01] J. Madhavan, P. A. Bernstein, E. Rahm. “Generic schema matching with cupid”. In:
vldb. Vol. 1. Citeseer. 2001, pp. 49–58 (cit. on p. 20).

[MLR+18] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute,
V. Raghavendra. “Deep learning for entity matching: A design space exploration”.
In: Proceedings of the 2018 International Conference on Management of Data. 2018,
pp. 19–34 (cit. on pp. 16, 26, 27, 33, 35).

[Moh20] M. Mohammadkhani. A Comparative Evaluation of Deep Learning based Trans-
formers for Entity Resolution. Tech. rep. 2020 (cit. on pp. 16, 19).

81

Bibliography

[MS04] A. McCallum, C. Sutton. “Piecewise training with parameter independence diagrams:
Comparing globally-and locally-trained linear-chain crfs”. In: NIPS 2004 Workshop
on Learning with Structured Outputs. 2004 (cit. on p. 16).

[MSC+13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean. “Distributed representations
of words and phrases and their compositionality”. In: Advances in neural information
processing systems 26 (2013) (cit. on p. 26).

[NHH+19] H. Nie, X. Han, B. He, L. Sun, B. Chen, W. Zhang, S. Wu, H. Kong. “Deep sequence-
to-sequence entity matching for heterogeneous entity resolution”. In: Proceedings of
the 28th ACM International Conference on Information and Knowledge Management.
2019, pp. 629–638 (cit. on pp. 25, 26, 33, 35).

[OR18] M. Odell, R. Russell. “The soundex coding system”. In: US Patents 1261167 (1918),
p. 9 (cit. on p. 24).

[PHN14] T. Papenbrock, A. Heise, F. Naumann. “Progressive duplicate detection”. In: IEEE
Transactions on knowledge and data engineering 27.5 (2014), pp. 1316–1329 (cit. on
p. 21).

[PIP+12] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, W. Nejdl. “A blocking frame-
work for entity resolution in highly heterogeneous information spaces”. In: IEEE
Transactions on Knowledge and Data Engineering 25.12 (2012), pp. 2665–2682
(cit. on p. 21).

[PIP20] G. Papadakis, E. Ioannou, T. Palpanas. “Entity Resolution: Past, Present and Yet-to-
Come.” In: EDBT. 2020, pp. 647–650 (cit. on pp. 20–22, 33).

[PN11] G. Papadakis, W. Nejdl. “Efficient entity resolution methods for heterogeneous infor-
mation spaces”. In: 2011 IEEE 27th International Conference on Data Engineering
Workshops. IEEE. 2011, pp. 304–307 (cit. on p. 21).

[PSM14] J. Pennington, R. Socher, C. D. Manning. “Glove: Global vectors for word repre-
sentation”. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). 2014, pp. 1532–1543 (cit. on p. 26).

[PTDU16] A. P. Parikh, O. Täckström, D. Das, J. Uszkoreit. “A decomposable attention model
for natural language inference”. In: arXiv preprint arXiv:1606.01933 (2016) (cit. on
p. 27).

[RPHP17] O. F. Reyes-Galaviz, W. Pedrycz, Z. He, N. J. Pizzi. “A supervised gradient-based
learning algorithm for optimized entity resolution”. In: Data & Knowledge Engineer-
ing 112 (2017), pp. 106–129 (cit. on pp. 24, 33, 35).

[RWC+19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. “Language
models are unsupervised multitask learners”. In: OpenAI blog 1.8 (2019), p. 9 (cit. on
p. 29).

[RZLL16] P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang. “Squad: 100,000+ questions for machine
comprehension of text”. In: arXiv preprint arXiv:1606.05250 (2016) (cit. on p. 17).

[SAS11] F. M. Suchanek, S. Abiteboul, P. Senellart. “Paris: Probabilistic alignment of relations,
instances, and schema”. In: arXiv preprint arXiv:1111.7164 (2011) (cit. on p. 21).

[SBJ16] G. Simonini, S. Bergamaschi, H. Jagadish. “BLAST: a loosely schema-aware meta-
blocking approach for entity resolution”. In: Proceedings of the VLDB Endowment
9.12 (2016), pp. 1173–1184 (cit. on p. 21).

82

[SDCW19] V. Sanh, L. Debut, J. Chaumond, T. Wolf. “DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter”. In: arXiv preprint arXiv:1910.01108 (2019)
(cit. on pp. 17, 37, 54).

[Set09] B. Settles. “Active learning literature survey”. In: (2009) (cit. on p. 49).
[SP97] M. Schuster, K. K. Paliwal. “Bidirectional recurrent neural networks”. In: IEEE

transactions on Signal Processing 45.11 (1997), pp. 2673–2681 (cit. on pp. 27, 28).
[SPPB18] G. Simonini, G. Papadakis, T. Palpanas, S. Bergamaschi. “Schema-agnostic progres-

sive entity resolution”. In: IEEE Transactions on Knowledge and Data Engineering
31.6 (2018), pp. 1208–1221 (cit. on p. 21).

[SPW+13] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts.
“Recursive deep models for semantic compositionality over a sentiment treebank”.
In: Proceedings of the 2013 conference on empirical methods in natural language
processing. 2013, pp. 1631–1642 (cit. on p. 17).

[Tal11] J. R. Talburt. Entity resolution and information quality. Elsevier, 2011 (cit. on p. 19).
[TDP19] I. Tenney, D. Das, E. Pavlick. “BERT rediscovers the classical NLP pipeline”. In:

arXiv preprint arXiv:1905.05950 (2019) (cit. on p. 29).
[TJ13] V. Thada, V. Jaglan. “Comparison of jaccard, dice, cosine similarity coefficient to

find best fitness value for web retrieved documents using genetic algorithm”. In:
International Journal of Innovations in Engineering and Technology 2.4 (2013),
pp. 202–205 (cit. on p. 45).

[TSS20] K.-S. Teong, L.-K. Soon, T. T. Su. “Schema-Agnostic Entity Matching Using Pre-
Trained Language Models”. In: Proceedings of the 29th ACM International Conference
on Information & Knowledge Management. 2020, pp. 2241–2244 (cit. on pp. 29, 33,
35, 39).

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017) (cit. on p. 29).

[WKFF12] J. Wang, T. Kraska, M. J. Franklin, J. Feng. “Crowder: Crowdsourcing entity resolu-
tion”. In: arXiv preprint arXiv:1208.1927 (2012) (cit. on pp. 32, 34, 35, 49).

[ZCF+10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica. “Spark: Cluster
computing with working sets”. In: 2nd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 10). 2010 (cit. on p. 23).

[Žil06] A. Žilinskas. Practical mathematical optimization: An introduction to basic opti-
mization theory and classical and new gradient-based algorithms. 2006 (cit. on
p. 24).

All links were last followed on July 8, 2022.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Thesis Structure

	2 Preliminaries and Related Work
	2.1 Entity Resolution
	2.2 Entity Resolution Generations
	2.3 Entity Resolution methods
	2.4 Deep Learning based ER Methods
	2.5 Pre-trained Language Model based ER Methods
	2.6 Incremental and Crowd-sourcing-based ER Methods
	2.7 Summary of Related Work

	3 Architecture Overview
	3.1 The Prediction Layer
	3.2 The Training Layer

	4 Concepts and Implementation
	4.1 Notations and Stream Input
	4.2 The Prediction Layer
	4.3 The Training Layer

	5 Evaluation
	5.1 Dataset Characteristics
	5.2 Goals
	5.3 Design
	5.4 Performance Evaluation Metrics
	5.5 Experimental Setup
	5.6 Evaluation Results

	6 Conclusion and Future Work
	Bibliography

