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Abstract

The problem of ensuring reliable delivery of data over unreliable transmission media is
by no means unexplored. For instance, the Transmission Control Protocol (TCP) is a
protocol designed to ensure reliable in-order delivery of data over an unreliable packet-
oriented network service. However, TCP and similar protocols are most commonly im-
plemented through software within operation systems designed to run on general-purpose
compute hardware. For demanding measurement devices, however, implementations us-
ing custom logic implemented in application-specific integrated circuits (ASICs) or field-
programmable gate arrays (FPGAs) can typically capture and process data at a greater
rate and resolution compared to software systems.

This raises the question: how can measurement data be transferred from such a capture
device to a remote system for storage and further processing, reliably and at a sufficient
data rate? In an effort to answer the aforementioned question, this thesis analyzes preex-
isting mechanisms for reliable data transport over Ethernet and IP networks, as well as
high-bandwidth measurement devices based on the example of a time-to-digital converter
(TDC). Combining this knowledge, it presents HELIX, a network protocol and system
architecture for reliable transmission of data, implemented through FPGAs. HELIX uses
novel concepts and mechanisms to be efficiently implementable within FPGA-based sys-
tems, such as an integration of the transmitter’s memory management architecture with
the transport protocol itself.
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Kurzfassung

Die verlustfreie Übertragung von Daten über ein verlustbehaftetes Übertragungsmedium
ist keineswegs unerforscht. Beispielsweise ist das Transmission Control Protocol (TCP)
ein Protokoll, welches die zuverlässige Zustellung von Daten über einen verlustbehafte-
ten und paketorientierten Netzwerkdienst garantiert, sowie die Reihenfolge übertragener
Daten beibehält. Jedoch werden TCP und verwandte Protokolle herkömmlicherweise in
Software unter Verwendung generischer Hardware implementiert. Um den Anforderungen
anspruchsvoller Messanwendungen gerecht zu werden, ist für diese eine Implementierung
durch spezialisierte Logikschaltungen vorzuziehen, typischerweise realisiert durch feldpro-
grammierbare Logikgatter (FPGAs) oder anwendungsspezifische integrierte Schaltungen
(ASICs).

Dies wirft die folgende Frage auf: Wie können Messdaten, erhoben von solch einem In-
strument, zuverlässig und ausreichend schnell an ein entferntes Computersystem gesendet
werden, um diese dort weiterzuverarbeiten oder zu speichern? Um diese Frage zu beant-
worten, werden im Rahmen dieser Thesis existierende zuverlässige Transportprotokolle
analysiert. Weiterhin werden solch FPGA-basierte Messinstrumente beispielhaft anhand
eines sogenannten Time-to-Digital Converter (TDC) charakterisiert. Basierend darauf ent-
wirft und präsentiert diese Thesis HELIX, ein Protokoll und eine Systemarchitektur zur
zuverlässigen Datenübertragung, welche speziell auf eine effiziente Implementierung in
FPGA-basierten Systemen ausgelegt ist. Dafür verwendet HELIX neuartige Mechanismen
und Konzepte, beispielsweise die Integration und Auslagerung von Teilen der Speicherver-
waltung am Sender in das Netzwerkprotokoll selbst.
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Glossary

bandwidth delay product A network path’s bandwidth delay product results from its
available bandwidth, measured in bits per second, multiplied by the round trip time
(RTT) of this path. As such, it is a measure to describe the amount of unacknowl-
edged data a given network path will hold at any given time. Reliable transport
protocols such as TCP have to transmit and buffer at least one bandwidth delay
product worth of unacknowledged data to make effective use of a given network
path’s bandwidth [1]. 26

bit error ratio For a given transmission, the bit error ratio (BER) describes the ratio of
erroneous bits to the total number of bits received. 9

goodput Goodput is a measure of network performance similar to throughput. However,
whereas throughput describes overall bandwidth utilization, goodput only includes
useful transmitted data. This means that generally, although depending on the con-
text it is used in, goodput does not include overhead incurred through data retrans-
missions or protocol headers [2]. 51, 76

round trip time In networks, the RTT measures the time a given transmission takes to
traverse the path from a source node to a destination node and the traversal time
of a return transmission from the destination node to the source node. Thus it is a
measure of bidirectional transmission delay. Depending on the network architecture,
the path a transmission traverses from the source node to the destination node is
not necessarily identical to the path from the destination node to the source node.
2, 13, 26, 49–52, 57, 68, 70, 71

time jitter Time jitter describes the dispersion of a signal in time or its digital representa-
tion, introduced through physical phenomena, time discriminators, and uncertainties
introduced through measurement processes. An estimation of statistical time jitter is
typically expressed as the root-mean-square deviation (RMSD) of deviations between
sample timestamps from expected timestamps. 22
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1. Introduction

With advances in science and technology come the requirements to measure physical phe-
nomena and acquire measurement data at an ever-increasing rate and precision. This trend
is observable in a variety of settings, such as industrial applications and research projects,
from those in computer vision to quantum computing to particle physics. However, for
any of these applications to work, it is insufficient for measurement and data capture de-
vices to only acquire such data; they must further be transmitted to a remote system and
processed accordingly.

An example of such a measurement device is a time-to-digital converter (TDC). It converts
rising and falling edges in an incoming digital electrical signal into a series of timestamps.
Depending on the application area, such devices must feature a high timestamping accu-
racy as well as a high sustained and burst sample rate. However, these properties directly
translate to an increased output data rate of the device. Furthermore, when observing given
phenomena through a measurement series, it often is crucial not to lose any captured data
points in order to be able to draw valid conclusions about the observed phenomena.

Various networking technologies and protocols exist to transfer captured information from
such a device to a host for storing and further processing. However, the combination
of the Internet Protocol (IP) as a protocol for a packet-oriented data transfer between
networked endpoints, together with Ethernet-based links, proves to be a particularly at-
tractive option: on the one hand, the interoperability of IP overcomes boundaries between
underlying network layers, different device vendors, operating systems, and system ar-
chitectures [3]. On the other hand, the Institute of Electrical and Electronics Engineers
(IEEE)’s 802.3 Ethernet is a widespread network layer protocol, defining a collection of
high-speed and high-distance capable physical transport layers, with specifications reach-
ing 400Gbit/s over at least 500m [4, sec. 8, 124]. The availability of affordable high-speed
Ethernet- and IP-capable hardware, along with IP’s flexibility and interoperability, make
the combination of Ethernet and IP a popular and widespread data exchange mecha-
nism. Furthermore, Ethernet and IP are also prevalent within integrated hardware systems
such as application-specific integrated circuits (ASICs) or field-programmable gate arrays
(FPGAs), with preexisting and open-source hardware description language (HDL) cores
implementing required protocol processing logic, as well as FPGA transceiver hardware
primitives providing certain Ethernet physical layer implementations. Because measure-
ment devices such as TDCs are fundamentally hardware systems implemented through
ASICs or FPGAs, it appears viable to transfer captured measurement data via Ethernet
and IP, without intermediate general-purpose compute systems.
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1. Introduction

Nonetheless, IP and Ethernet cannot alone meet all requirements imposed by such mea-
surement devices. Most importantly, IP does not guarantee data integrity or prevent data
reordering or erasure [3, p. 3]. For applications where in-order, reliable, and unmodified
arrival of transferred data is crucial, additional protocols on top of IP must establish these
characteristics. Perhaps the most prevalent such protocol to guarantee reliable data trans-
mission over IP is the Transmission Control Protocol (TCP) [5; 6, p. 263]. Although TCP
works well for many applications, it has a multitude of issues when mapping it to hardware-
or FPGA-based implementations and when faced with the requirements of measurement
systems such as the ones described above: for instance, it is fundamentally subject to so-
called head-of-line blocking through data structures it enforces at the transmitter. TCP
also introduces significant complexity through its connection management architecture and
extensible nature. A basic presumption of this thesis is that a protocol specifically designed
to be implemented in hardware or FPGA-based systems, and featuring characteristics tar-
geted towards such measurement systems, will differ from established protocols designed
primarily to be efficiently representable through software implementations. Specifically,
such a protocol can employ a simpler connection management architecture utilizing ex-
isting low-performance reliable communication channels to establish connections, reduce
inherent extensibility and variability in the protocol and its implementation, and employ
an efficient memory management architecture tightly integrated with the protocol.

To that end, this thesis presents a novel system architecture and network protocol named
HELIX (Hardware-Enabled Lossless Internet Information eXchange). Similar to estab-
lished technologies such as TCP, it uses an IP transport channel. However, HELIX ex-
plicitly targets requirements identified for hardware- or FPGA-based measurement and
data-capture devices to effectively utilize the underlying data link layer while ensuring
data arrival and integrity, in addition to posing minimal overhead and complexity onto
both the capture device and the receiving host system. In that, HELIX introduces a novel
buffer and memory management architecture specifically designed to work with FPGA
systems. This architecture is tightly integrated with the network protocol, cooperating
to offload parts of the memory management overhead to the network and receiving host.
Furthermore, HELIX benefits from the integration of innovations of TCP, such as round
trip time (RTT) based congestion control mechanisms.
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1. Introduction

In particular, the contributions of this thesis include:

Memory Model for In-transit and Retransmit Data A hardware-optimized model for or-
ganizing data transferred over a network connection. It can distinguish between data
in transit and data known to be lost during transmission. It efficiently implements
all operations required to be usable as a buffer mechanism for a reliable transport
protocol, while imposing certain restrictions on this protocol. It differs from exist-
ing memory models by cooperating with the receiver to optimize certain operations,
specifically in transferring memory addresses along with data, which are sent back
by the receiver to enable efficient processing of selective acknowledgments.

LiteEth 64 bit Data Path Support for a 64 bit data path in the LiteEth FPGA Ethernet
media access control (MAC) core to enable processing 10Gbit/s Ethernet data at
clock frequencies achievable in FPGAs today. This work has been based on preexist-
ing efforts from open source contributions and was implemented in cooperation with
David Sawatzke of the University of Stuttgart. Specific contributions include adapt-
ing the packet header parsing (Depacketizer) and packet header generation (Pack-
etizer) logic to work with variable-width data paths, in addition to other required
changes to the Address Resolution Protocol (ARP) and Wishbone Bus integrations.

LiteEth XGMII Interface Support A 10 Gigabit Media Independent Interface (XGMII)
frontend for the LiteEth FPGA Ethernet MAC core, including an implementation
of the deficit idle count mechanism (compare [4, sec. 4, 46.3.1.4]). This is required to
interface with 10Gbit/s Ethernet physical layer (PHY) transceiver devices responsi-
ble for implementing the Ethernet links’ electrical or optical interfaces and encoding
schemes.

FIFO-based Memory Address Hazard Detection Scheme An algorithm and implemen-
tation to detect hazard conditions in pending memory write operations for pipelined
memory access controllers, based on pending write addresses stored in a first-in
first-out (FIFO) buffer. The developed algorithm has a constant time and space
complexity. In particular, this scheme is useful to detect potentially hazardous ad-
dresses when using multiple ports of the LiteDRAM memory controller.

NetFPGA-SUME Board Definition for LiteX Support of the NetFPGA-SUME FPGA
development board, along with peripherals such as the 10Gbit/s Ethernet Enhanced
Small Form-Factor Pluggable (SFP+) ports, within the LiteX SoC generator frame-
work.

The remainder of this thesis is structured as follows:

First, Chapter 2 establishes some important background knowledge of reliable com-
munication systems, as well as violations of these aspects within IP networks through
phenomena such as packet reordering and packet loss. The chapter continues by giving a
detailed introduction to the mechanisms and concepts established within TCP and related
protocols.
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1. Introduction

Following this, Chapter 3 proceeds to describe the system model, including the target
application area, provided interfaces, and inherent restrictions of these devices.

Based on the background knowledge and system model, Chapter 4 illustrates the problem
at hand.

In an effort to provide solutions for the problem identified, Chapter 5 explores the design
space of viable solutions and presents the developed novel memory model architecture, as
well as other important concepts.

Chapter 6 implements the design elaborated in the previous chapter while documenting
noteworthy challenges during the implementation.

Based on this implementation, Chapter 7 validates that the developed solution is correct
and applicable to the problem at end. It further presents a benchmark outlining the
solution’s performance.

Finally, Chapter 8 concludes this thesis and discusses potential future work.
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2. Background and Related Work

The problem of establishing a reliable data transmission channel based on an unreliable
one is by no means unexplored. Works such as Shannon’s “A Mathematical Theory of
Communication” have established the space of information theory, and with that the
foundations of reliable communication of digital information [7]. Based on this and other
works, different models and algorithms for data encoding, recovery and reliable transmis-
sion of data in general have been established. Because of its ubiquitous nature, IP is a
particularly popular example of a potentially unreliable transmission protocol to serve as a
basis to build mechanisms and protocols for reliable data transmission. This chapter shall
establish a basis to understand the reliability constraints imposed by this thesis’ target
application areas and compare preexisting technologies in this space.

2.1. Communication Channel Reliability

When transmitting data over any given channel, there is a statistical chance for this trans-
mission to be corrupted. Such corruption may happen because of physical (electrical or
optical) noise and interferences with the transmission itself, resulting in a degradation of
the transferred signal over the transmission line, issues with the transmission channel itself,
or through intermediate stations on the end-to-end data path. While mechanisms exist to
reduce the probability of uncorrectable data corruption occurring on a given transmission
channel, in the form of adding controlled redundancy in the transmitted data, fundamen-
tally, any data transmission cannot be guaranteed to traverse the path between sender and
receiver without experiencing data corruption [8, p. 354]. This fundamental truth is ac-
knowledged by standards and protocols such as IEEE 802.3 Ethernet and IP. For instance,
Ethernet requires transmitted frames to be followed by a so-called Frame Check Sequence
in the form of a cyclic redundancy check (CRC) sequence, a mathematical error detection
mechanism [4, Sec 1, 3.2.9; 8, p. 453]. Request for Comments (RFC) 791, describing the
Internet Protocol, states that it “[...] does not provide a reliable communication facility”
[3].

While it is trivial to establish that the correct recovery of data transmission over a noisy
channel is inherently a stochastic process [7, pp. 406–407], a given protocol’s reliability
guarantees over such a channel may describe a broad set of different characteristics. In
order to analyze existing protocols concerning their guarantees, reliability in the context
of communication must be defined further. Spinelli defines reliable data communication as
“[...] the delivery of some set of information packets from a data source to a data sink, in
order, and without any lost, inserted, or duplicated packets” [9, p. 10]. This definition fails
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2. Background and Related Work

to explicitly state that an additional requirement of reliable data communication may
be the unaltered (intact) delivery of information packets. Based on this definition, the
following basic characteristics of a reliable communication method can be established:

• Lossless delivery: Every unit of data sent by the transmitter must eventually be
received by the receiver. There must not be any loss or erasure of information.

• No insertion: The receiver of a transmission must only receive data which was
indeed sent by the transmitter.

• No duplication: The receiver of a transmission must, for every datum transmitted,
only ever receive a single copy of this datum.

• In-order delivery: All units of data sent by the transmitter must arrive at the
receiver in exactly the order in which they were sent.

• Intact / unaltered delivery: All units of data sent by the transmitter must arrive
at the receiver exactly how they were sent. That is, the data received must represent
the same information as the transmitted data.

Fundamentally, a reliable communication channel may be synthesized atop an unreliable
transmission channel, as analyzed by Spinelli [9]. This implies that the design decisions
and the complexity of a protocol augmenting these requirements depend on the inherent
properties of the underlying communication channel, and the desired properties of the
resulting communication channel.

2.2. Reliability of IP Networks

IP (RFC 791) does not guarantee any of the above characteristics to be upheld. While some
characteristics such as no insertion and intact / unaltered delivery are mostly dependent on
the underlying transport protocol(s), others are in direct relation to IP routing protocols
and thus by extension specific to IP. For instance, essentially any link layer transmitting
data through electrical, optical or electromagnetic signals is subject to noise and interfer-
ence over the transmission channel. Ultimately, this noise or interference may degrade the
signal substantially, up to a point where the receiver either cannot decode the channel-
coded signal cm,recv towards a valid codeword cm ∈ M = {(cm0

, . . . , cmn
) ∣ cmi

∈ {0, 1}}
any longer (loss / erasure, if received codeword cm,recv is not from the set of valid code-
words M), or may even decode it towards a different, valid codeword (violating intact and
unaltered delivery, when cm,recv ∈ M , but cm,recv ≠ cm,sent). However, primitive physical
channels are generally less likely to change the order of arrival of information, or to du-
plicate transmitted information; although such phenomena might be physically possible
through pathologic characteristics such as signal reflections [8, p. 9]. Because different re-
liability characterists depend on different aspects of both the physical transmission media
and intermediate nodes in between primitive physical channels, the behavior of larger net-
works consisting not only of a single physical channel, but multiple participating network
nodes and edges, is of interest. Even more so, for a given reliable transport protocol it
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2. Background and Related Work

does not always make sense and it might not always be possible to distinguish individual
violations of reliability when using IP [10]. Instead such a protocol may view IP as an
opaque mechanism to transfer data from one application to another. Hence, reliability
characteristics of IP shall be considered in an end-to-end fashion, from a sending to a
receiving application [10].

With the Internet Protocol being this thesis’ explicit target protocol, and based on the
communication channel reliability characteristics analyzed in the previous section, this
section shall further focus on the fundamental causes and effects of two major violations
of reliable communication in relation to IP: packet reordering and packet loss.

2.2.1. Packet Reordering in IP Networks

In particular, occurences of the symptom of packet reordering in IP networks are inher-
ently dependent of the entire network architecture in question, that is the participating
nodes and paths in between these nodes. Packet reordering, and in particular its conse-
quences for higher-level protocols aiming to eliminate this characteristic, has been subject
of extensive research [11; 12; 13, pp. 109–148; 14]. Of significant discussion is the ques-
tion whether occurences of packet reordering must be seen as an inherit property of IP
networks, or whether packet reordering should rather be considered a pathological phe-
nomenon; and by extension the question whether it must be handled also within smaller,
controlled networks. A basic and valid assumption of these analyses is that reordering of
data within a given IP packet does not have to be considered. This is because IP divides
information into discrete collections of data represented through a byte sequence, so called
packets. If the order of encoded information (bits) changes within such a packet, this is es-
sentially indistinguishable from—and thus for our intents equivalent to—data corruption.
In contrast, when only the order of arrival of otherwise unmodified IP packets changes, all
information is still delivered intact. When using Ethernet, reordering of data within an IP
packet is prevent by the employed Frame Check Sequence [4, Sec 1, 3.2.9].

According to Bennett et al., packet reordering is caused by intermediate network elements
on an end-to-end path through parallelism in network elements. For instance, when a single
logical path is comprised of multiple physical paths, each of these physical paths may be
subject to different queues in the active network elements and thus packets may experience
varying delays through these different paths. When this form of parallelism leads to packets
of the same flow to take different physical paths, with a flow defined as the quintuple of
source IP, destination IP, transport protocol, source port, and destination port, this may
change order of arrival of data within this flow [11]. In addition to parallelism in the links
or during processing within intermediate network devices, factors such as network faults,
improper configuration and faulty software may contribute to packet reordering in the
network [15]. This symptom is not necessarily limited to intermediate network elements:
the receiver’s system and network interface card (NIC) architecture may also introduce
packet reordering as an undesirable consequence of parallelism in packet processing [14].
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2. Background and Related Work

Common among analyses of packet reordering is that they generally strive to determine
how packet reordering affects the Internet at large, through measuring over long, multi-
hop paths [12] or with Internet backbone network equipment [11]. While usage of IP as a
network protocol theoretically allows data to travel over arbitrary paths through the In-
ternet, it is much more likely for measurement data to traverse a limited set of controlled
paths between the measurement device and receiving host. It is expected that a reduced
complexity in the network, along with hardware performing parallel packet forwarding
and processing on a flow-granularity, causes packet reordering to be less prevalent com-
pared to the overall Internet. Nonetheless, given IP does not make any strict guarantees
concerning packet reordering, a protocol providng a reliable communication channel atop
of IP networks must be tolerant of it. In addition to IP packet reordering as a violation
of reliability guarantees, if a transport protocol-issued retransmission of lost packets is
identical to the original transmission of these packets, the reception of such a retrans-
mission can be indistiguishable from unintential packet reordering. However, it must be
assumed that in this case the transport protocol features sufficient mechanisms to handle
such out-of-order arrival of packets; thus these mechanisms shall be described along with
the protocol design, if necessary.

2.2.2. Packet Loss in IP Networks

A different but common phenomenon observed through IP networks is packet loss. It can
be a symptom of many effects caused by the sender, receiver, or transmission channel.
Nonetheless, there are two prevalent classes of issues in IP networks that manifest them-
selves in packets sent by the sender not arriving at the receiver.

As outlined previously, data transmissions using the IP protocol are divided into atomic
units called packets. Mandatory for all IP packets is to start with an IP header, which
has a different layout and inherent properties depending on the version of the IP protocol
in use. Of importance for the phenomenon of packet loss is the inclusion of a checksum
for header data within the fourth version of the IP protocol [3, p. 14]. Furthermore,
underlying transport protocols such as Ethernet may mandate additional checksums over
either partial or entire transmission units. For instance, Ethernet mandates a 32 bit Frame
Check Sequence (32 bit CRC) be appended to every Ethernet frame [4, Sec. 1, 3.2.9].
Such integrated integrity mechanisms allow detecting but not necessarily correcting a
limited number of errors in transmission caused by noise or interference introduced by the
transmitter, receiver, or channel. When such an error is detected and cannot be reliably
corrected, the receiver or intermediate network stations are obliged to discard the network
packet [3, p. 3; 4, Sec. 1, 4.1.2.1.2]. Considering the end-to-end transmission path, this
manifests itself as packet loss.

Packet loss can occur even without data errors introduced by the sender, an intermediate
system, the receiver, or the transmission channel. Fundamentally, the design of IP enables
and encourages multi-hop communication and usage of shared transmission channels for
multiple, independent data flows. Thus intermediate network stations can receive, inspect,
transmute, and finally transmit IP packets to ultimately reach their final destination. This
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process is known as packet switching; for IP it is referred to as routing [16, p. 4]. Because
any physical transmission channel has a limited capacity, when multiple flows’ packets are
destined to be transmitted over a single physical channel, intermediate network stations
may need to hold on to packets whose onward transmission channel is currently occupied
[17, p. 356]. However, any intermediate network station can only enqueue a limited amount
of data and number of packets at any given time. Thus, reaching these limits will ultimately
lead to intermediate network elements discarding packets. This symptom is known as
network congestion, also manifesting as packet loss.

While both described phenomena appear in practice, it is also essential to consider the
likelihood of occurrence and the relation of packet loss to the overall network and link
utilization. For instance, 1000BASE-T (1Gbit/s) Ethernet mandates maintaining a bit
error ratio (BER) of less than or equal to 10

−10 [4, Sec. 3, 40.1.1]. Assuming a max-
imum transmission unit (MTU) of 1500 byte, a full-size Ethernet frame of 1518 byte
therefore has a likelihood of experiencing corruption in any of its data bits of less than
1 × 10

−10 error
bit

⋅ 1518 byte

frame
⋅ 8 bit

byte
≈ 1.2144 × 10

−6 error
frame

, meaning at most one in every
823451 Ethernet frames is corrupted on average, assuming an intact and compliant link.
On the one hand, transmission channel-induced data corruption on a dedicated transmis-
sion medium is typically a random process independent of network or link utilization. On
the other hand, depending on the precise carrier in use, link arbitration schemes such as
carrier-sense multiple access with collision detection (CSMA/CD) can establish a direct
relation of network utilization by other participants to the probablility of experiencing
transmission collisions and thus data corruption [4, Sec. 1, 4.1.2.2]. However, for the pur-
poses of this thesis, all bidirectional links between network elements are assumed to be
dedicated channels, with individual collision domains for each directional link, and having
negligible susceptance to interferences caused by other transmissions and noise sources.
End-to-end packet loss caused by network congestion can be more reliably correlated with
network and link utilization [18]. However, intermediate network elements have evolved to
employ complex queueing models, which makes direct attribution of losses to exceeding
link capacities difficult or impossible.

In practice, on dedicated electrical and optical point-to-point links, packet loss due to cor-
ruption can be assumed to be rare, compared to loss events caused by network congestion
[18]. As this thesis does not target wireless links or bus topologies, where this assumption
is shown to be problematic [19], it appears viable to focus on network congestion being
the primary contributor to packet loss.

2.3. The Transmission Control Protocol

Section 2.1 and Section 2.2 explore the characteristics and theory of reliable communica-
tion, and how symptoms such as packet loss and packet reordering relate to IP. Based on
that knowledge, this and subsequent sections analyze preexisting protocols implementing
a reliable communication channel over the unreliable IP network service, by supplementing
all or a limited subset of the characteristics of reliable communication.

9
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The Transmission Control Protocol (TCP) is a protocol designed to establish a reliable
communication service between applications in a multinetworked environment, such as
provided by IP [20]. Specified through RFC 793 in 1981, it has developed to become the
prevalent protocol for establishing reliable communication channels over IP-based net-
works. Fundamentally, TCP is concerned with imposing connection management and re-
liability mechanisms onto a packet-oriented datagram protocol, in order to compose a
reliable connection-oriented communication channel with a byte-stream interface. Even
though the basic ideas and principles of TCP can be viable for a wide range of underly-
ing protocols, it is designed with the assumption of using IP as its underlying protocol
layer [20, p. 3]. Through the mechanisms described hereafter, TCP aims to establish the
reliable communication characteristics of lossless, intact, in-order delivery without dupli-
cation of transferred data [20, p. 4]. Although not explicitly specified, by nature of its
design TCP provides basic resilience to insertion caused by underlying channel artifacts,
but these protections are insufficient to prevent insertion of arbitrary data through a ma-
licious actor. Since the initial specification through RFC 793, TCP has been modified and
extended through various other RFCs and scientific publications, of which not all have
seen widespread adoption. This thesis considers modern TCP implementations, that is,
ones compliant with the basic protocol specification and supporting common extensions.
The remainder of this section will explore different aspects of TCP, in particular its mech-
anisms to compose a reliable communication facility over the unreliable IP transport.

2.3.1. TCP Connections

In order to provide the concept of a connection atop of a fundamentally packet-switched
architecture as imposed by IP, TCP introduces a connection management architecture [20,
pp. 5, 30–39; 17, pp. 560–565]. A TCP connection is a bidirectional data channel for which
the protocol ensures that the desired aspects of reliable communication are upheld. TCP
endpoints are referred to as sockets, identified by their host IP address and a (unique per
IP) 16 bit numerical service identifier called port. Each connection is established between
two applications running on network hosts, hence connecting two sockets. A single socket
on one host may be connected to multiple sockets on remote hosts, however TCP solely
supports unicast messaging, meaning that each connection involves exactly two sockets,
one socket (source) cannot transmit data to multiple sockets (destinations) in a single
operation [20, p. 5; 17, p. 553]. TCP introduces sophisticated mechanisms for connec-
tion establishment; a detailed figure outlining the various connection states and possible
transitions defined by TCP can be found in Appendix A. Typically, a TCP connection is
established through a passive open or listen request, opening a local socket with an un-
specified foreign socket. The host providing this passive open or listening socket is referred
to as a server. An application wishing to establish a connection with this listening socket,
called client, issues an active open request and specifies the foreign socket address. The
server is informed of this connection request and, if accepted, a connection is established
[20, pp. 11–12, 23; 17, pp. 562–564]. An established connection can be used for bidirectional
(full duplex) data transfer between the two sockets [20, p. 10]. Each socket can request
for the connection to be closed, of which it will inform the respective remote socket. The
connection concept introduced by TCP provides an envelope for the transported byte

10



2. Background and Related Work

streams in either direction and is used by implementations of TCP to manage connection
state and provide the aforementioned guarantees for transferred payload data. This means
that all guarantees with respect to reliable communication established by TCP are funda-
mentally limited to the channel established through a single connection. TCP does not,
for instance, ensure in-order delivery of data between two hosts when transferred through
different connections. While TCP is a bidirectional, full-duplex capable protocol, with a
connection fundamentally comprising two directional data channels, in accordance with
the thesis target application area the remainder of this section will focus on TCP used as
a primarily unidirectional communication mechanism.

To transmit data through a connection between sockets, TCP takes incoming bytes to
transmit (with a byte defined as an 8 bit octet) and splits the byte sequence, dividing it
into chunks of data [20, p. 4]. A TCP header containing metadata and control signals is
prepended to each formed chunk in order to compose TCP segments. The precise offsets of
chunk boundaries within the incoming byte sequence and how much outstanding untrans-
mitted data a socket can accept (buffer) is at the discretion of the TCP implementation
at hand and not necessarily exposed to the sending application [20, p. 4]. Internally, TCP
uses the synthesized segments as an encapsulation mechanism to translate the provided
stream-oriented interface onto a fundamentally packet-oriented interface.

To ensure that data is reliably transferred from sender to receiver, each segment is labeled
with a sequence number, indicating the offset of the first byte within the outgoing data
stream transferred through this segment [20, p. 10]. Segments contain further control
and status messages, such as an acknowledgment number. To account for violations of
reliability in the underlying network layer, such as packet loss, TCP can recover from
loss events by retransmitting data. Acknowledgments are used by the receiver of a TCP
stream to indicate that all data up to but excluding the byte offset indicated through
the acknowledgment number have been received [20, p. 10]; thus TCP’s acknowledgments
are positive acknowledgments. A TCP sender can use information received through such
acknowledgments to retransmit data of which it does not know whether they have been
received by the receiver. TCP segments also serve as a data unit for two mechanisms of
major importance: flow control and congestion control [20, p. 4].

2.3.2. TCP Flow Control

Flow control is a mechanism to limit the amount of data a sender may transmit towards
the receiver, to avoid a fast sender from overwhelming a slow receiver: if the receiver appli-
cation cannot process the sustained incoming data rate in time, this will cause the imple-
mentation’s receive buffers to be incapable of holding further data; requiring a mechanism
to signal the transmitter that new data cannot be accepted. TCP flow control provides a
solution to this issue by introducing the concept of a receive window, illustrated in Fig-
ure 2.1. The receiving end of a TCP connection announces a receive window size to the
transmitter as part of an acknowledgment message, represented through the number of
bytes after the acknowledge sequence number which the receiver is prepared to accept [20,
pp. 15–16, 42]. The receiver is free to announce a different window size with each acknowl-
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Figure 2.1.: TCP receive sliding window illustrated through a sequence of segments trans-
ferred from transmitter to receiver, with a maximum window size of 6 seg-
ments.

edgment [17, pp. 565–566]. The transmitter is obligated to keep track of the transmitted
segments, or at least their sequence number, and must ensure that all transmitted data
beyond the offset indicated through the last received acknowledgment number must not
exceed the announced receive window size. Because this window is specified as a relative
offset of the acknowledge sequence number, it is shifted to include further data if data at
the start of the previous window is acknowledged. Therefore, this mechanism is referred
to as a sliding window.

2.3.3. TCP Congestion Control

Whereas flow control is a mechanism for the receiver to limit the amount of data it
needs to buffer and to control the transmission data rate, congestion control refers to a
collection of mechanisms to avoid exceeding available network resources. As analyzed in
Section 2.2.2, packet loss in IP networks is commonly caused by exceeding the available
bandwidth of a given link among a path of network links. The set of problematic or
limiting links on a given path are referred to as the bottleneck links. If a TCP sender
were to send incoming data as fast as possible, only accounting for the receive window
mandated as part of the flow control mechanism, it is at risk of loosing a significant
number of packets when it exceeds the bottleneck link’s bandwidth limitations. While
TCP provides automatic repeat request (ARQ) mechanisms to schedule retransmissions
of (assumed to be) lost segments, a significant number of lost packets drastically reduces
TCP’s overall efficiency. Congestion control mechanisms aim to control the bandwidth
utilized by a TCP connection, in an effort to minimize loss events while fully utilizing
a fair share of the available end-to-end bandwidth [18]. TCP has been designed with
fairness as a goal, such that multiple TCP connections can share links and retrieve an
approximately equal share of bandwidth over time. In contrast to the fundamental flow
control mechanism illustrated above, congestion control mechanisms were not introduced
with the original specification of TCP within RFC 793, but have been introduced as part
of the 4BSD TCP implementation and described by Jacobson in [18]. In the meantime,
they have been proposed as RFC standards 2001, 2581 and the draft standard RFC 5681.
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In particular, these documents describe four interworking congestion control mechanisms
employed by modern and efficient TCP implementations: slow start, congestion avoidance,
fast retransmit and fast recovery. These mechanisms shall be explained briefly:

Slow start describes an algorithm to gradually increase TCP’s utilized transmission band-
width. If the transmitter were to fully utilize its available link bandwidth at the start
of the connection or on recovery from a loss event, this would likely result in a sig-
nificant number of loss events at the bottleneck links. As a consequence, given the
transmitter will only receive acknowledgments for consecutive segments arrived at
the receiver, the receive sliding window will only partially move forward and requires
retransmissions of lost segments. This behavior will repeat for newly transmitted
segments, if the transmission rate is not throttled.

Jacobson proposes slow start as a solution to this issue [18]. It introduces a con-
gestion window, limiting the amount of unacknowledged data in the network at
any given time. Where the receive window’s purpose is to avoid overwhelming the
receiver, the congestion window is used to overwhelm the network, and specifici-
cally the bottleneck link capacity. In contrast to the receive window, the size of this
window is controlled by the sender. To implement slow start, the size of this conges-
tion window is increased by one segment on arrival of an acknowledgment for new
data. The transmitter uses the minimum of the congestion and receive windows as
a bound on in-transit non-acknowledged data [21]. This algorithm causes TCP to
converge towards the path bandwidth by avoiding excessive loss events preventing
convergence.

Congestion avoidance is used in place of the slow start algorithm once the size of the
congestion window has reached a certain threshold [21]. Whereas TCP slow start
is a mechanism designed to establish reliable data flow over a path with unknown
characteristics, congestion avoidance aims to retain data flow on a link and converge
towards utilizing the maximum available path bandwidth [18].

During congestion avoidance, multiple algorithms exist to increase the congestion
window size. In general, as per RFC 5681, these must not increase the congestion
window size by more than the maximum segment size once per round trip time
(RTT). However, upon detecting a segment loss as determined by the TCP retrans-
mission timer, the congestion window size threshold of when to use congestion avoid-
ance is adjusted to either half of the amount of unacknowledged data in the network
or twice the maximum segment size, whichever is larger. Also, TCP will reset the
congestion window size to one full-sized segment and thus resort back to the slow
start mechanism [21].

Combined, slow start and congestion avoidance cause a TCP connection to probe the
network path’s available bandwidth continuously. With slow start responsible for ex-
ponentially increasing the sender’s congestion window size up to a certain threshold
and congestion avoidance linearly increasing the congestion window size until loss
events occur, TCP manages to achieve sufficient link utilization to approach avail-
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able network resources quickly. At the same time, it avoids exceeding the available
network resources which would cause significant loss events. By having TCP conges-
tion avoidance influence the threshold of switching exponential congestion window
growth to linear growth, it can efficiently recover link utilization towards a known-
safe level in response to loss events in logarithmic time. Given that TCP effectively
implements linear growth of the congestion window during regular operation and
reduces the congestion window size by approximately half of its value in case of
loss events, this mechanism is known as an additive-increase multiplicative-decrease
(AIMD) algorithm [22]. A trace of the congestion window size over time resembles
a sawtooth pattern, probing the available path bandwidth (compare Figure 2.2).

Fast retransmit and fast recovery are cooperative mechanisms between a TCP sender
and receiver to handle certain transmission anomalies more efficiently than they
would be handled using only congestion avoidance and slow start algorithms at the
sender. Specifically, they are designed to efficiently handle network behavior which
manifests as an out-of-order arrival of segments at the TCP receiver. This may either
be a true reordering of data or a loss of an intermediate segment.

Upon receiving an out of order segment, a TCP receiver is obliged under fast re-
transmit to send a duplicate acknowledgment of the last consecutive segment for
each such out of order segment. If the sender receives three identical duplicate ac-
knowledgments, it can assume that at least the subsequent segment has been lost and
should schedule it for immediate retransmission. However, an out-of-order arrival of
a truly reordered packets will—following these rules—also issue a duplicate acknowl-
edgment, even though it is not truly lost. Thus, upon receiving a segment aligned
to the last consecutive segment received and filling in a gap in the sequence space,
the receiver should send an immediate acknowledgment. This allows the sender to,
in many cases, avoid an unecessary retransmission of reordered data [21].

Because a retransmission in response to a loss event announced by the receiver us-
ing duplicate acknowledgments fundamentally indicates that packets after the lost
packets have been successfully received, reverting back to the slow start algorithm
hinders effective use of available bandwidth. Instead, fast recovery is used to govern
transmission of new data until receiving a non-duplicate acknowledgment. During
this phase, TCP sets the congestion window size to the threshold as implemented in
congestion avoidance. However, it furthermore uses the number of duplicate acknowl-
edgments received as an indication of data leaving the network, and thus increments
the congestion window size for each duplication acknowledgment received accord-
ingly [21].

These four mechanisms are essential to TCP being able to effectively utilize available
path bandwidths, while also fairly sharing available bandwidth between different TCP
connections. It has been shown that an additive-increase multiplicative-decrease (AIMD)
scheme converges towards an approximate equal and thus fair utilization of path band-
width, while schemes implementing multiplicative-increase additive-decrease, additive-
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Figure 2.2.: Illustration of the TCP congestion window size over time, outlining usage of
the slow start, congestion avoidance, and fast recovery mechanisms. Without
fast recovery, the packet loss at RTT = 14 would cause a fallback to slow start
again, with an adjusted threshold. Figure taken from Computer Networks by
Tanenbaum and Wetherall [17, p. 579].

increase additive-decrease, or multiplicative-increase multiplicative-decrease will not [22;
17, pp. 537–539].

2.3.4. TCP Selective Acknowledgments

An optional extension to the basic Transmission Control Protocol as specified in RFC
793, RFC 2018 is a proposed standard introducing selective acknowledgments for TCP
[23]. Selective acknowledgments improve over TCP’s acknowledgments, which through
their cumulative nature are necessarily consecutive to the last in-order received segment.
While regular TCP cannot acknowledge received segments which are not consecutive to
the left edge of the receive window, selective acknowledgments allow the receiver to in-
form the sender about precisely which segments have been received, such that only lost
segments must be retransmitted. This is done by acknowledging data in so-called blocks,
described by the TCP sequence number of the left edge (chronologically oldest byte of
the acknowledgment block) and the sequence number immediately following the right edge
(chronologically newest byte) of the block [23].

However, while selective acknowledgments can help to recover packet loss quickly, non-
consecutive received segments still count towards the TCP receive window. Thus TCP
cannot use information about non-sequential received segments to circumvent limits on
data in the network imposed by the receiver and is at risk of throtteling the utilized
bandwidth as a consequence of reaching receive window bounds.
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2.3.5. Potential Issues of TCP

The Transmission Control Protocol has seen widespread use over the Internet. With a
variety of optional extensions, and refinement of some of the core mechanisms and algo-
rithms, it remains the most popular transmission protocol for reliable data communication
over IP networks. Efficient and performant implementations of TCP are integrated into
virtually all general purpose operating systems today. In the recent years, TCP has seen
an even deeper integration into computer systems, through inclusion of special acceler-
ation hardware within the NICs used in both general purpose computers and enterprise
systems. Despite its popularity and tight integration, TCP also has a number of short-
comings depending on the precise requirements and target application area, some of which
are illustrated through this section.

Because TCP has been standardized early in the continuous development and evolution
of the Internet and was consequently used as a vehicle to study and explore various mech-
anisms in order to optimize reliable data transport over packet-switching networks such
as provided through IP, its base specification does not reflect many of these research
outcomes. While any TCP implementation should still be compatible with the base spec-
ification of RFC 793, TCP is extended through various standards or proposed standards,
such as selective acknowledgments as described in RFC 2018. Furthermore, over time al-
ternative algorithms for many of its core mechanisms, such as flow and congestion control,
have been proposed to reflect various network characteristics. This implementation vari-
ety makes it difficult to build TCP implementations that achieve good performance over
connections with other modern implementations.

Since TCP establishes reliable communication channels over fundamentally unreliable
packet transports, without a reliable channel usable to bootstrap connections, it requires
an elaborate scheme for connection management, as outlined in RFC 793 [20, pp. 10–12].
Noteworthy is TCP’s three-way handshake to establish a connection between two sockets
(passive-open socket referred to as server), which uses three messages (client SYN

−−→ server;
server SYN+ACK

−−−−−→ client; client ACK
−−→ server) to establish a connection. Each SYN message syn-

chronizes the initial sequence numbers with the respective remote end [20]. However, in
practice, this exchange of messages also establishes that bidirectional communication is
possible over the underlying path. A detailed figure outlining the possible TCP connection
states and transitions is included as part of Appendix A. Any compliant implementation of
TCP will have to implement this connection establishment and management logic, which
can add a significant amount of complexity depending on the target system’s architec-
ture.

Finally, another significant issue is that of head-of-line blocking, induced by inherent mech-
anisms of TCP. When a sequence of data awaiting transmission is held up by the first
datum, the transmission is said to be experiencing a form of head-of-line blocking. In
computer networks, this phenomenon can occur at multiple layers, commonly when mul-
tiple independent data streams are preventing each other from transmitting data. Popular
examples for this issue are queueing in packet switches, where incoming packets are pro-
cessed in an in-order FIFO queue per incoming interface, or individual HyperText Transfer
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Protocol (HTTP) requests sharing a single TCP connection and thus having to await the
completion of any ongoing request. However, head-of-line blocking can also occur within
a single data stream. For instance, if transmitted data are required to reliably arrive in
order at the receiver, one might implement a so-called stop-and-wait ARQ protocol: for
each transmitted message, the transmitter will wait for an acknowlegdment before sending
the next message. If no acknowledgment is received within a certain time after transmis-
sion, the transmitter will issue a retransmission of the assumed to be lost message. This
protocol can be said to constantly experience head-of-line blocking, as any pending data
has to wait on the first datum in the queue.

TCP’s ARQ mechanism is not employing a stop-and-wait scheme, but generally allows
data to be injected into the network without regard of whether the first datum has been
transmitted successfully. As outlined in Section 2.3.2, TCP flow control is a mechanism
designed to avoid overwhelming the receiver by limiting the amount of unacknowledged
data that can be injected into the network. However, the receive window concept fun-
damentally also introduces the risk of experiencing head-of-line blocking into TCP, as
outlined through Figure 2.1. Whereas the TCP receive window, modeled as a sliding win-
dow, should not severely limit the utilized bandwidth in case of normal operation, in the
face of loss events such a sliding window can limit the bounds of segments injected into
the network until the lost segment has been acknowledged. Depending on the timeliness
of loss event detection and corresponding retransmissions, the receive sliding window may
not move forward for extended periods of time, even when selective acknowledgments as
per RFC 2018 are employed (compare Figure 2.3). Even if the announced receive window
is sufficiently large to never experience this particular issue, because the sender needs to
retain any data starting from the first non-acknowledged segment in local memory, the
receive window is effectively bounded by the minimum of the receive window size and
the available memory at the sender. TCP selective acknowledgments potentially allow
the sender to buffer data using a sparse data structure, holding only non-acknowledged
segments, circumventing this issue while increasing the sender’s logic complexity.

2.4. Alternative Transport Protocols

Apart from TCP, other protocols feature unique reliability constraints and flow control
and congestion control characteristics. This section shall provide a brief overview of such
alternative transport protocols.

2.4.1. Datagram Congestion Control Protocol

The Datagram Congestion Control Protocol (DCCP) is a message-oriented transport pro-
tocol. It has been developed out of the motivation to apply concepts established along
TCP to traffic typically conveyed via User Datagram Protocol (UDP) because of a pref-
erence for timeliness over reliability, such as audio streams, Internet telephony, and online
gaming [24]. UDP is a protocol conveying messages between a sending host and service
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to arrive after segment s1D. Depending on whether the TCP connection uses
selective acknowledgments (SACK), the receiver will emit either such a message
outlining the left and right edge of received segments, or a duplicate acknowl-
edgment (DUP ACK) of the last sequential segment s18 for each non-consecutive
received segment. Note that duplicate acknowledgments cannot indicate how
many segments have been lost, hence the sender may retransmit too few or too
many. The receive window may only move forward once an acknowledgment
for segment s19 has been received.

identifier (port) to a receiving host and port. However, it does not establish the concept of
a connection as defined with TCP and thus does not establish a relationship between any
two messages, and consequently does not implement retransmissions or other mechanisms
ensuring reliability. DCCP aims to supplement these characteristics with the concept of
connections similar to those defined with TCP. It also adds congestion control mechanisms
to ensure fair bandwidth utilization, for instance, when used along with other DCCP or
TCP connections [24].

Based on this description, it can be concluded that DCCP is not of interest to this the-
sis. In fact, DCCP provides virtually no guarantees regarding reliable data transfer while
retaining much of TCP’s complexity, such as an elaborate connection management archi-
tecture.

2.4.2. QUIC

QUIC (originally an acronym for Quick UDP Internet Connections) is a general-purpose
reliable transport protocol. It is similar to TCP in that it establishes a reliable transport
service based on a fundamentally unreliable packet-oriented network protocol such as UDP
over IP. However, QUIC attempts to improve over TCP, for instance, by embedding and
mandating use of cryptographic protocols for encrypted and authenticated data transfer
[5]. An additional explicit goal of QUIC is to eliminate head-of-line blocking as experienced
in applications utilizing TCP.
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However, it is important to distinguish between head-of-line blocking at multiple layers in
the network, as explained previously. QUIC embeds the concept of streams, representing
ordered sequences of bytes. Streams can be either bidirectional, meaning both endpoints
can exchange data through a stream, or unidirectional, meaning a stream represents a
directed transmission of a sequence of bytes from sender to transmitter. A single QUIC
connection between two endpoints can contain multiple QUIC streams, where reliability
guarantees, flow control, and congestion control are applied on a connection granularity
[5]. This architecture is designed to circumvent the head-of-line blocking experienced, for
instance, in HTTP: when a single connection is used to transfer multiple units of data (e.g.,
files or HTTP requests), for TCP, this means that a single loss event could potentially
block the entire connection. However, by making the transport protocol aware of multiple
independent data transfers, QUIC can effectively limit such head-of-line blocking to a
single stream [5]. QUIC does not solve issues regarding head-of-line blocking in case of
loss events within the data of a single stream.

Thus, while QUIC has many advantages over TCP as a transport protocol for its target
applications, such as an underlying transport protocol for HTTP, it is not suitable to
solve the issue of head-of-line blocking within a single stream of data. Furthermore, its
additional complexity through mandated confidentiality and integrity protection and the
streams concept make it infeasible as a transport protocol for this thesis.

2.4.3. Stream Control Transmission Protocol

The Stream Control Transmission Protocol (SCTP), specified through RFC 4960, is de-
signed to address multiple issues it identifies within TCP. Especially relevant in the context
of this thesis is that it recognizes that TCP only provides a reliable and in-order com-
munication channel. Whereas some applications require both of these properties to be
upheld, others only require either reliable or in-order delivery of data [25, p. 5]. Thus,
SCTP specifies a transmission protocol capable of reliable and optionally in-order data
delivery over an unreliable packet-oriented network protocol, such as IP. With the partial
reliability extension of RFC 3758, reliable delivery can be optional on a protocol-chunk
granularity [26]. Furthermore, it uses and adapts congestion control mechanisms specified
for TCP through RFC 2581 [25, pp. 93–94].

In theory, the ability to ensure reliable unordered delivery on the transport protocol layer is
ideal for this thesis. Such a mechanism can eliminate head-of-line blocking at the transport
protocol layer, as the receiver does not have to wait for incoming data to be reassembled
into an in-order data stream to provide it to the user application. The application can
then further buffer this data using fast primary or secondary storage devices before re-
assembling it into an in-order stream. However, SCTP does not provide any information
about the intended ordering of unordered transmissions (having an arbitrary stream se-
quence number) [25, pp. 88–89]. The protocol may reorder unordered transmissions as a
consequence of retransmissions.
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Furthermore, SCTP still retains the concept of a receive window for a flow control mech-
anism. Even unordered transmissions must respect this receive window [25, pp. 75–77].
Thus, SCTP generally retains the head-of-line blocking issues identified with TCP, al-
though transport protocol reported receive buffer limitations are assumed to be rare given
reordered transmissions of unordered messages do not prevent the receiver from handing
off data to the application.

SCTP is also a rather complex protocol to implement. For these reasons, it does not appear
to be a feasible protocol for this thesis. It does, however, establish valuable concepts for
the problem of reliable transmission of measurement data.
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The primary goal of this thesis is to design and evaluate system concepts specifically to
transfer (stream) measurement data from a capturing device to a remote endpoint. This
includes a survey of existing protocols suitable for this application and, depending on the
results of this analysis, implementation and evaluation of a customized system architecture
and protocol.

However, the target objectives such an architecture and protocol try to achieve and to
which they are ultimately assessed can be vastly different depending on the precise ap-
plication area. For instance, to transfer video or audio streams, it may be tolerable to
occasionally lose or corrupt data fragments, as long as the overall quality of the transmis-
sion does not degrade substantially. In contrast, for text documents, this is most likely
unacceptable. Thus, to enable comparing such an architecture and protocol to preexisting
solutions as described in Chapter 2, engineer a new or modified solution, and finally eval-
uate its performance to the objectives set, it is essential to analyze and clearly state the
assumptions and requirements this protocol must adhere to.

Given the vast space of potential application areas even within this thesis’ explicit target
of especially embedded measurement and data capturing devices, it seems reasonable to
derive the requirements from a preexisting target device in hopes to generalize them to
a reasonably large subspace of these applications. For the purposes of this thesis, this
device will be a streaming time-to-digital converter. Such a device is useful in a large
space of research areas and industrial settings, such as quantum research, fluorescence
lifetime imaging, and light detection and ranging (LIDAR). Furthermore, it has interesting
properties regarding the characteristics of its output data stream and the requirements
imposed by the measurement applications utilizing this data, which will be discussed
below.

3.1. Streaming Time-to-Digital Converters

Fundamentally, a time-to-digital converter (TDC) is an instrument to measure time inter-
vals between two or more physical events. Conceptually these devices can be compared to
an automatic stopwatch, triggered by electrical input signals. These devices convert a time
interval T = t2 − t1, described through electrical impulses at time t1 and time t2 at the
inputs, into a corresponding digital representation. Hardware TDC devices may feature
multiple channels to simultaneously capture time intervals on multiple pulse streams or

21



3. System Model

Detector 
(e.g., Single 

Photon Detector)D
ev

ic
e Time-to-Digital 

Converter
Processing 

Host

δt0 δt2δt1 δt TDEV etc.
R

ep
re

- 
se

nt
at

io
n

Figure 3.1.: Data representations within the Time Tagger measurement architecture. A
detector outputs an electrical impulse, for which the Time Tagger captures
the time differences between rising and falling edges. The attached computer
performs further calculations on this data.

correlate impulses between different channels. Furthermore, these devices can integrate an
advanced electrical frontend, for instance, to discretize an analog electrical input into a
digital impulse based on a set trigger level [27].

A significant characteristic of TDC devices is their dead time, the smallest amount of
time between the end of one measurement and the start of the subsequent measurement
[27]. This parameter ultimately determines, depending on the application requirements,
whether a device is limited to performing ”one-shot” measurements or capable of operating
on a continuous stream of input stimuli. Whereas devices with a comparatively large dead
time are constrained to capturing within the bounds of a single measurement, potentially
consisting of multiple time intervals, devices that feature a short dead time interval can
be architected as ”streaming” TDCs: instead of solely providing a limited number of time
intervals in reference to a single start event ta, such devices can continuously output time
intervals between two subsequent events ∆te = te− te−1, or as an offset to a joint timebase
te = t − tref.

The TDC devices considered for the requirement analysis of this thesis constitute a family
of streaming time-to-digital converters, with a significant part of their acquisition logic
implemented within an FPGA. These devices can measure time intervals with a time
jitter down to 4 ps over multiple input channels. Instead of correlating captured events
directly, they assign a so-called time tag to the discretized detected impulses in reference
to a shared timebase [28]. Thus, the output of these devices is a stream of time tags con-
sisting of information about the captured event channel, the type of edge detected (rising
or falling edge in the electrical signal), and a timestamp encoded as an offset between this
event and the device-maintained timebase. They also emit certain status signals describ-
ing events within this data stream, such as reference timebase increments. A remote host
is used to process this data further, either as soon as the data arrives or working on a
recorded version of the data. Thus the TDCs are used purely as a data acquisition device.
Figure 3.1 illustrates this processing architecture, outlining the different representations
produced by the capture device (electrical impulses), TDC device (time difference mea-
surements), and processing host (e.g., average time differences, time deviations, or other
custom measurements).
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3.2. Data Source Stream Characterization

The previously described family of TDCs allows deriving distinct characteristics describ-
ing the nature and behavior of the output data stream. Specifically, the device-internal
interface width and maximum data rate, average and burst data rate, burst behavior, and
additional interface characteristics as well as exposed metadata are of interest.

Fundamentally, the FPGA-internal interface of the TDC core is a streaming interface: the
producer provides a data bus and a valid signal to indicate that a datum is present on the
data bus. The producer expects the consumer to always be able to read and accept a datum
on the bus. Each datum transmitted over the bus contains either a single measurement
(time tag) or other status signals reported by the device. Thus, status and event signals
are opaque within the data stream and do not require additional interfaces. However,
the transferred status and event signals can be tightly coupled to the measurement data:
for instance, an increment in the reference timebase directly relates to the previous and
subsequent measurements and influences later interpretation of these data. This coupling
ultimately mandates total ordering of the individual bus transactions to be maintained for
the entire data transmission, even if the conveyed timestamps could otherwise reconstruct
the ordering of individual measurements. An additional requirement to be inferred from
this interface characteristic is that of losslessness. As a missing (erased) status or event
signal can drastically impact the interpretation of measurement data, erasure of any such
datum is unacceptable, in addition to any completeness requirements imposed by the
individual application areas.

The provided data bus exposes a 32 bit-wide interface clocked at up to 750MHz, resulting
in a maximum theoretical data rate of 24Gbit/s. This interface represents the combined
time tag stream of all device channels. The TDC core employed in these devices can achieve
this data rate in practice; there are no statistical guarantees regarding idle cycles where
the bus does not hold a valid datum. Thus, to retain the usefulness of the TDC devices,
the consumer of this interface must tolerate this data rate at least for short periods. For
instance, when n channels produce a time tag simultaneously, the consumer must be ca-
pable of accepting at least n subsequent cycles of time tags to avoid disadvantaging any
input channel’s transmission channel imposed dead time over another’s. Demanding mea-
surement applications may utilize the entire available bandwidth of the TDC core. Thus
any transmission protocol implementation should, within reasonable bounds, temporarily
tolerate such data rates even if they exceed the available external link bandwidth.

In the event that the data processing pipeline within the TDC device can no longer keep
up with the current data rate and data loss is inevitable if the data source continues
producing data at that rate, the TDC core can be informed of this situation. The core will
then halt the acquisition of new data in an effort to transfer as many valid measurements
within the core to the remote host, before finally reporting this overflow condition. A
transmission protocol implementation must thus predict such a condition and still be able
to accept the remaining valid measurements contained within the core.
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Figure 3.2.: Illustration of the reliable transmission protocol’s system context based on a
TDC device.

Figure 3.2 provides an illustration of this system context. The class of devices outlined
within Section 3.1 features interesting properties concerning their architecture, data stream
characteristics, and application areas. Nonetheless, these devices are not alone in facing the
problem of transporting captured measurement data to an end host, with strict require-
ments for the imposed data rate and data stream reliability. Furthermore, the analysis of
this section concludes that these devices feature a rather generic interface, which can also
apply to different applications. Related classes of measurement devices such as ADCs or
networked oscilloscopes, or even application domains such as video capturing systems, are
suspected to have a very similar set of requirements and interfaces.

3.3. Target System Architecture

Apart from the measurement application and the provided interfaces, it is also essential
to consider the larger system context in which the aforementioned issues shall be solved.
Specifically, for this thesis, the developed solution must be implemented within hardware
systems such as FPGAs or ASICs. While being practical platforms for developing mea-
surement devices such as the ones described above, these systems bring their own sets of
unique challenges, particularly when integrating into computer networks and interoperat-
ing with general-purpose computers. This section will thus present some of these unique
challenges to better understand the design space and the problem at hand.

3.3.1. Hardware Ethernet and IP Interfaces

To properly analyze preexisting transport protocols for their applicability to the target
application area and construct transport protocols efficiently representable within a target
system, it is crucial to consider their compatibility with the fundamental interfaces any
such protocol must integrate. For the intents and purposes of this thesis, the transport pro-
tocol has to be integrated with the target system’s interfaces for data acquisition, Ethernet
& IP communication, and a volatile memory device for any required data buffering.
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Hardware-based interfaces for data communication are typically considerably different in
their basic architecture compared to software-controlled interfaces of general purposes
computers. Transmission and reception of network packets within software systems gen-
erally utilize copies of entire packets within the system’s main memory, written to or read
from this memory through the NIC. In contrast, hardware or FPGA-based systems more
commonly utilize stream-based interfaces to process data: in such systems, data is trans-
ferred and processed through fixed signal paths, n bit at a time, at a fixed rate (clock
frequency). So-called pipeline stages divide these paths, where each stage employs regis-
ters to hold input data for the duration of a clock cycle, providing it as input signals to
combinational logic determining output signals, which in turn are connected to the inputs
of registers of the subsequent pipeline stage. The input clock frequency of stream-based
and pipelined processing stages determine the data processing rate; in theory, they can
be clocked at a rate sufficient to process incoming or synthesize outgoing data as fast as
it arrives or must be sent over the transmission channel. This can eliminate the need to
buffer entire packets prior to transmission or processing and thus reduces the implemen-
tation’s memory requirements. Furthermore, a pipelined architecture allows implemented
logic of the individual stages to be fully utilized in every clock cycle as new data enters
the pipelined processing architecture. This is in contrast to a general-purpose processor,
for which one generally cannot make any strict timing guarantees concerning the number
of cycles to process incoming or outgoing packets. Thus it requires incoming and outgo-
ing packets to be resident or assembled in memory. However, performing random-access
reads and permutations of packet data in a general-purpose processor system enables the
implementation of elaborate logic, which would not be possible in an unbuffered stream-
based architecture. Finally, depending on the data source or sink, stalling the processed
data stream might not be possible; in this case, each pipeline stage must take a constant
maximum processing time (n cycles) for its entire logic, regardless of the processed data.

The LiteEth FPGA MAC and IP core’s architecture is based on two pipelined data streams
per physical interface for receive and transmit paths. The MAC core integrates with the
Ethernet physical layer (PHY) via a Media Independent Interface (MII) such as the 10
Gigabit Media Independent Interface (XGMII). The core’s receive side consumes proto-
col headers and collects contained information to selectively connect the decapsulated
(depacketized) data stream onward to further processing stages. This architecture works
because Ethernet frames and IP packets contain all information required to determine the
next processing stage within their header section, preceding any payload data. Because the
receiver cannot control the rate at which data arrives, all pipeline stages must accept new
data every clock cycle; they cannot stall the reception unless incoming data is buffered suf-
ficiently. Analog to the receive side, packet transmission stages utilize metadata provided
by the data source to synthesize appropriate protocol headers, followed by payload data
accepted from the source. Once a transmission begins, sources must provide valid data in
each clock cycle for the remainder of the packet, as the unbuffered pipeline architecture
will transmit any data immediately through the outgoing interface.

While it is possible to utilize buffers for outgoing and incoming packet data to perform
arbitrary multi-cycle operations on the transmit or received data, the requirement of allo-
cating sufficiently large buffers means that an unbuffered pipelined streaming architecture
is strongly preferable wherever feasible. Furthermore, processing data as fast as it arrives
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or is transmitted (at line rate), guaranteed for an unbuffered non-stalling stream process-
ing pipeline, is preferred over multi-cycle operations requiring parallelism in the processing
logic to saturate available link bandwidths. TCP’s non-interleaved sequential data transfer
characteristics, with a header preceding each segment’s data, map well to such an archi-
tecture. Nonetheless, TCP’s multitude of optional extensions and variable-length header
make encapsulation and decapsulation of TCP segments non-trivial. Generally, extensible
protocols and ones with a more complex data structure and encoding will require more
logic to implement in a streaming architecture.

3.3.2. Pending and Retransmit Data Buffers

While the storage architecture within general purposes computers generally features some
main memory for volatile storage, accessible to software through a unified address space,
purpose-designed hardware platforms and FPGAs alike do not have such a fixed memory
architecture. Instead, they provide more direct control over the memory primitives avail-
able within the system [29]. The storage architecture, along with particular attributes such
as storage size, power consumption, random-access capability and performance penalties,
interface data width, and access latency, can be essential in choosing an appropriate stor-
age medium and influence the feasibility and complexity of transport protocol implemen-
tations.

Fundamentally, FPGAs offer different types of integrated memory and can interface with
external memory devices. Internally, FPGAs can utilize flip-flop registers as a form of dis-
tributed memory across the logic fabric referred to as distributed random access memory
(RAM), allowing writes synchronous to a clock signal, with a latency of one cycle, and
asynchronous access to stored data. Furthermore, block RAMs are larger, dedicated arrays
of flip-flop memory cells that allow synchronous read and write access to stored data, with
an access latency ranging from one to two cycles depending on the target platform. While
such on-chip static random access memory (SRAM) based memory cells have low access
latencies, they are generally less dense, more expensive, and have significant power con-
sumption; it is common for hardware or FPGA systems to utilize dynamic random access
memory (DRAM) for volatile bulk data storage. However, DRAM memories commonly
require complex logic to interface with and have significant and varying access latency,
depending on the data access pattern.

To establish a reliable communication channel over one which does not meet the criterion of
losslessness, all transmitted but not yet acknowledged data must be stored at the sender
for potential retransmission. Assuming reasonable network path characteristics for this
thesis’ target application area of a 10Gbit/s link with ≤ 5ms RTT latency up to the
receiving application, this results in a bandwidth delay product of up to 51.2Mbit, which
needs to be stored by the sender if the link bandwidth is to be fully utilized, excluding any
untransmitted data. While reasonably modern and large FPGAs may collectively feature
sufficient block RAM and distributed RAM to accommodate this data, utilizing such
amounts of SRAM is expensive and would occupy valuable resources, preventing usage
by other logic implemented on the FPGA. Thus using DRAM to buffer transmitted data
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is preferential for this thesis. The increased latency and controller complexity of DRAM
needs to be considered in the protocol design, for instance, by reducing the amount of
blocking read and write operations required.

Another essential aspect to consider in the design of transport protocols, depending on and
influencing the choice of buffer memory, is that of memory layout, particularly address and
data (word) widths. Because of address width requirements and interface complexity and
efficiency, it is generally infeasible to have bit-addressable memory devices. Instead, data is
accessed in words of n = 2

m
bit, m ∈ N0. When memory is accessed from logic running at

a low clock frequency it may be provided with an interface aggregating multiple memory
words to saturate available memory bandwidth. Thus, utilizing the entire available memory
bandwidth from a synchronous logic domain (clock domain) C constraints the effective
memory word width to be a function of the maximum of the memory’s physical (interface-
determined) word width N and M = ⌈ B

fC
/N⌉ ⋅ N , B being the memory bandwidth and

fC the clock domain’s frequency. Depending on data alignment and the given transport
protocol’s fundamental word size, this can directly impact the processing logic complexity,
as further outlined below.

3.3.3. Hardware Limitations

To design a protocol that is efficiently representable through FPGAs or ASICs, various
other characteristics and limitations can be considered. While the previous sections fo-
cused on specific aspects of given protocol implementations, the following will outline
some general limitations of hardware platforms and their influence on the protocol design
space.

Especially in complex combinational logic circuits implemented within FPGAs, the time
it takes for inputs to fully propagate through logic elements and provide stable output
signals can be of concern. For instance, processing a 10Gbit/s data stream one bit at
a time would require a clock frequency of 10GHz, requiring all combinational logic to
fully propagate within 100 ps. Modern FPGA platforms can support clock frequencies of
approximately 800MHz for low complexity logic. Because handling protocols such as IP
generally requires relatively complex logic, it is common to process such data streams
n = 2

m
bit, m ∈ N0 at a time, which reduces clock frequency requirements by a factor of

n. For instance, 10Gbit/s Ethernet can be processed at 64 bit/cycle, requiring the logic
to run at 156.25MHz. However, as a consequence, depending on the protocol specifics,
this may require more complex logic to process incoming or outgoing data: for instance, a
byte-aligned protocol header may be located at an arbitrary byte offset within a 64 bit bus
word. If these implementation-specific constraints are known ahead of time, appropriate
alignment of protocol headers and transmission protocol words can help to reduce the
protocol’s implementation complexity. Otherwise, unaligned access to protocol data needs
to be implemented.
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4. Problem Statement

Chapter 2 establishes essential background knowledge to understand the problem of pro-
viding a reliable communication channel using a fundamentally unreliable packet trans-
port, such as the IP protocol. It further describes TCP as an example of a protocol
providing a reliable transport service using IP. It discusses many important aspects such
as automatic repeat requests (ARQs), congestion control, and flow control.

However, considering the system model as illustrated in Chapter 3, there are many poten-
tial issues in using TCP or other transport protocols for reliable transmission of measure-
ment data. This is especially true for an implementation operating at the target data rate
of 10Gbit/s and for one implemented through logic synthesized for hardware (FPGA or
ASIC) devices. These problems include bounds on the implementation complexity and tim-
ing characteristics, TCP’s extensible nature and variable-length header, and its complex
connection management architecture. However, most prevalent is the problem of head-of-
line blocking, inherently caused by the flow control mechanism and the data structures
TCP expects to be maintained at the transmitter. All of these issues are in contrast to a
hardware implementation of such a reliable transmission protocol, making efficient use of
available resources.

Therefore, this thesis will analyze different aspects of reliable transmission protocols and
devise concepts and algorithms suitable for efficient implementation within the systems
described throughout the system model. Specifically, this thesis will design a memory
management architecture to maintain pending, in-transit, and to be retransmit data at the
transmitter efficiently. Based on this component, a network protocol for efficient transfer
and reliable in-order delivery of measurement data shall be designed.

To validate the designed system concepts, a proof-of-concept implementation of the mem-
ory management architecture and developed network protocol shall be provided. This
proof-of-concept implementation can be used to determine whether the developed system
concepts are correct, applicable the problem at hand, as well as adhering to the perfor-
mance requirements as illustrated in Chapter 3.
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Based on the related work and the system model elaborated in Chapter 2 and Chapter 3,
and following the problem statement of Chapter 4, this chapter will discuss key design as-
pects of the system architecture and transport protocol composing HELIX. The particular
design of HELIX is based on and influenced by many of the restrictions and requirements of
the target application domain, hardware constraints, and other aspects elaborated within
the system model. Furthermore, HELIX utilizes many concepts and underlying techniques
as analyzed in the related work outlined in Chapter 2. Nonetheless, the exact composition
of preexisting concepts and techniques, together with novel design approaches, are key to
designing a formal transport protocol and system architecture that is correct, efficient,
and applicable to the target application domain.

This chapter will thus focus on developing and discussing individual components influenc-
ing the overall design of HELIX, such as the in-transit and retransmit data management
architecture, integration of congestion and flow control mechanisms, and receiver host
behavior. Finally, these components are combined to provide a coherent model of the
developed transport protocol.

5.1. In-transit and Retransmit Data Management Architecture

As concluded based on the findings of Section 2.1, it is vital for any implementation of
a reliable communication channel as defined for this thesis to store all transmitted but
not yet acknowledged data, given that intact arrival at the receiver is not guaranteed.
The explorations of TCP and other protocols within Chapter 2 have shown that the
methods and structures used to store this data can be closely related to the overall trans-
port protocol, specifically the feasibility and complexity of advanced mechanisms such as
selective acknowledgments, and flow control and congestion control. Even more so, any
restrictions in memory size, random-access capabilities, access granularity and latencies,
and other aspects considered within Section 3.3.2 may significantly limit the design space
of such mechanisms, especially when considering the implementation complexity involved
in overcoming memory restrictions. For example, a non random-access capable memory
device storing in-transit data is in fundamental conflict with an efficient implementation
of selective data retransmissions. With the explicit goal of eliminating any head-of-line
blocking caused by the transmission protocol, the mechanisms holding data presumed to
be in-transit and data presumed to be lost and thus having to be retransmit are crucial
to the design of such a protocol. This section will illustrate issues in unifying the techni-
cal challenges presented in Section 3.3 with data management architectures demanded by
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Figure 5.1.: Circular buffer representing outstanding and transmitted bytes in a TCP data
stream. The fixed-length contiguous memory region logically wraps around
from the last to the first index. The HEAD and TAIL pointers indicate the
contiguous and potentially wrapping region of valid data in the buffer; the
TRANSMITTED pointer divides this region into a section of bytes injected into
the network and a range of outstanding, to be transmitted data.

TCP and restrictions imposed by this thesis. It develops and presents an architecture for
managing in-transit and retransmit data, designed to integrate with DRAM interfaces in
hardware, avoiding head-of-line blocking, but exposing certain restrictions that ultimately
make it incompatible with preexisting transport protocols.

5.1.1. Non-sparse Circular Buffers

A conceptually intuitive and straightforward way to represent any untransmitted, in-
transit, and to be retransmit data, mapping particularly well to the requirements and lim-
itations of TCP, is a queue represented through a circular buffer. In such a data structure,
data is written sequentially in memory, with the end of the (virtually) contiguous memory
region wrapping around to the start of the memory region. In such a memory structure,
the start and end of the contiguous region containing valid data are typically indicated
through two pointers, pointing to the start (head) and end (tail) offsets of this region,
respectively, in addition to a Boolean flag tracking—depending on the implementation—
whether the buffer is empty or full. In the case of TCP, a third pointer would separate
this memory region into a first part containing transmitted but not acknowledged data
and a second part containing untransmitted data. Figure 5.1 shows an illustration of such
a data structure. Of importance for data structures tracking in-network data is the trans-
port protocol’s basic word size: for instance, TCP works on a byte granularity and can
transmit frames containing one or more bytes. Thus, any data structure buffering TCP
data needs to keep track of transmitted data on a byte granularity as well.

Such a circular buffer queue is trivial to represent in both software-based implementations
and hardware or FPGA logic designs. When using an additional variable to store the head
element’s byte offset in the overall data stream, and thus being able to calculate every
buffer element’s TCP sequence number based on this variable and the offset from the
head element, this data structure is sufficient to model a TCP stream’s payload data at
the transmitter, following the base TCP specification of RFC 793. Furthermore, when not
accounting for any unused space in the circular buffer contiguous memory region allocation,
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it has a remarkably low memory overhead, given that it can utilize the entire buffer
allocation for payload data without any additional metadata or alignment constraints.

In addition to that, it is possible to implement an efficient selective retransmission mech-
anism using such a data structure. Because a receiver issuing selective acknowledgments
indicates the sequence number offsets of a data region to acknowledge, combined with
the sequence number offset of the circular buffer’s head element, an implementation can
use this information to directly index into the buffer at known offsets and retransmit any
unacknowledged data in front of the acknowledged data. However, the issue of head-of-line
blocking at the transmitter remains: without introducing of more complex management
data and logic, potentially unbounded in size and complexity, such a sequential data struc-
ture cannot arbitrarily reuse memory occupied by selectively acknowledged data for new,
outstanding, and to be transmit data.

The Linux kernel’s TCP implementation uses a variation of this data structure. In order
to avoid copying payload data throughout the kernel’s network stack, it uses a circular
buffer of pointers to chunks of data, so-called sk_buff data structures, allocated elsewhere
in memory. This additional layer of indirection over such a unified data structure enables
the kernel to effectively achieve a TCP transmission queue representation equivalent to
the circular buffer presented here, but chunking data into TCP segments prior to enqueu-
ing them in the circular transmission buffer. Consequently, to schedule transmission of
any given segment, the implementation simply removes this pointer from the queue and
provides it to the IP layer without copying any proper payload data [30]. However, in
hardware systems employing a pipelined streaming architecture, such an additional layer
of indirection can actually increase logic complexity and access latency. Nonetheless, if
dynamic reordering of elements in a queue is required, operating on pointers to mem-
ory regions can be favorable compared to relocating payload data in memory. Finally,
such a data structure—given it is no longer contained in a single, consecutive memory
allocation—introduces the additional challenge of allocation of chunks in memory along
with memory fragmentation and related issues.

5.1.2. Sparse Buffer Data Structures

Fundamentally, to avoid the aforementioned issue of head-of-line blocking caused by the
data structure representing pending and in-network data at the transmitter, a sparse data
structure representing only unacknowledged data of the transport protocol’s data stream
is required. Such a data structure must be able to reclaim and reuse memory occupied by
acknowledged data within a data series and track or handle such gaps in a series without
imposing excessive overhead in memory usage and logic complexity. Additionally, any se-
lective acknowledgments received must be handled efficiently, implying that locating data
to be retransmitted and reclaiming memory containing acknowledged data must be oper-
ations with reasonable logic complexity, timing bounds, and limited memory bandwidth
utilization.

31



5. Design

The circular buffer queue structure described in the previous section is based on an array:
the ordering of individual data composing a transport stream’s data series is encoded in
the index of data stored in the buffer. While such a structure is efficient at accessing data
at known or calculated offsets, with a complexity of O(1), it does not offer an efficient
mechanism to represent gaps in a data series and allow this memory to be repurposed
for new out-of-sequence data. Removing k consecutive elements out of j elements of an
array-based circular buffer at index i ∈ [0; j) requires min(i, j − i − k) elements to be
moved in order to retain a consecutive sequence of elements, where each move consists of
a read and write operation, and hence generally has linear complexity O(n) [31].

A layer of indirection in the transmit queue, such as employed by Linux for TCP and
described in the previous section, can reduce the amount of data to be moved: for a
circular buffer queue of chunks (e.g., sk_buffs) of data, if data removed from the queue
align with the boundaries of their respective chunk containers, it is sufficient to remove
these chunk pointers from the circular buffer, without relocating any actual payload data.
This reduces the amount of read and write operations required to retain a consecutive
sequence of pointers to chunks by a factor of n = avg(datum/chunk).

Linked lists are data structures that, in contrast to array-based data structures, support
efficient O(1) insertion or removal of elements at the head, tail, or in between elements,
provided that the required pointers for these operations are available [31]. In contrast to
array-based data structures, offsets of elements generally cannot be used to index into
linked list data structures. Instead, locating a particular element requires traversal from a
known element (e.g., the list’s head element) and thus is an operation of linear complexity
O(n). Because linked list nodes are not necessarily located consecutively in memory, they
also require allocation mechanisms and must handle memory fragmentation.

An issue shared by both sparse data structures presented above is the mapping of trans-
port protocol stream offsets, used throughout the transport protocol to reference specific
data or ranges of data (e.g., TCP sequence numbers), and the location in memory where
these data are stored. For example, when pointers to acknowledged data chunks in an
indirect circular buffer queue have been removed, the logical index of a given segment
in the transport protocol stream does not necessarily correspond with the index of the
chunk containing the segment’s data any longer. Instead, each queue entry would have to
indicate the stream offset it represents, and locating the desired elements would require
a binary search operation of O(log n) complexity. For a linked list without prior knowl-
edge about the node’s location in memory, both sparse and non-sparse lists require a linear
search of O(n). Thus, even though chunk removal operations without relocation of payload
data are possible with these data structures, locating data based on a transport protocol
stream offset is fundamentally less efficient compared to a non-sparse direct circular buffer
queue.

Given that selective retransmissions inherently require indexing into buffered data based
on transport protocol stream offsets, a modification to the indirect circular buffer queue
model can allow data to be located with O(1) complexity: if the array-based circular buffer,
containing pointers to chunks of data, is not modified to retain a consecutive sequence
of elements, but instead each pointer can be marked as invalid, the mapping between
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circular buffer indices and data chunks does not change when gaps are introduced in the
retained data and memory occupied by acknowledged chunks is reclaimed. However, even
if this first mapping does not change, such a data structure does not necessarily allow
a direct translation of transport protocol stream offsets to memory locations: only if the
data chunks are of the same size (all containing n data words), a word index iw can
be translated to a memory address aw as aw = M[⌊(iw − o)/n⌋] + (iw mod n), with o
being the current head element offset in the range of transport protocol stream indices
and M the array-based circular buffer queue mapping to data chunks. This additional
restriction of every chunk containing n data words may conflict with timely delivery of
data: to ensure efficient removal operations on either indirect circular buffer queues or
linked lists, the size of chunks or list nodes respectively should correlate with the size
of segments transmitted. This is because loss or reordering events during transmission
fundamentally affect entire packets, and removal operations in either data structure are
efficient if and only if to be removed data ranges align with the boundaries of chunks or list
nodes. Consequently, before a given fixed-size segment can be transferred from transmitter
to receiver, sufficient data must be collected for its transmission. While timely delivery is
not an explicit requirement for this thesis, it must still be possible to transfer data even
if the total number of words to transmit is not evenly divisible by the number of words in
a segment, given that the data source cannot be influenced to adhere to this requirement
by the transport protocol.

5.1.3. Linked Fragmented Buffer

The previous section’s exploration of potential in-memory representations of pending, in-
transit, and to be retransmit data appears to suggest that there is a fundamental tradeoff
between the ability to efficiently access data at known offsets in a data series (such as
provided in TCP through sequence numbers), the ability to transmit segments of vary-
ing lengths, and the capability of such data structures to reclaim memory occupied by
acknowledged data ranges efficiently. Nevertheless, up to this point, only self-contained
data structures were considered, and how such data structures would be capable of oper-
ating based on information provided by existing transport protocols such as TCP. These
structures are inherently transparent to remote hosts, meaning that the receiver has no
information about how data is managed in the transmitter’s memory. This implies that
the transmitter must translate the protocol-provided information, such as sequence num-
bers, into internal memory locations. With this thesis’ basic presumption of being able to
provide an efficient transport protocol purpose-built for hardware and FPGA platforms,
it appears viable to explore data structures influencing the protocol design and inherently
cooperating with the receiving host to overcome limitations as explored previously.

To that end, this thesis proposes a so-called linked fragmented buffer as a data structure
and set of mechanisms to model pending, in-transit, and to be retransmitted data of a
transport protocol. This memory model is based on a singly linked list with specific prop-
erties, making accesses into and manipulations of the list’s structure as required by the
transport protocol possible with bounded logic and timing complexity. At the same time,
this memory model imposes certain restrictions and assumptions on the employed trans-

33



5. Design

port protocol and requires the cooperation of the receiving host to ensure correct operation
concerning the formal transmission model by the sender. This section first elaborates on
the ideas and mechanisms of the linked fragmented buffer and the aforementioned limita-
tions. After the fundamental concepts of this memory model have been established, the
section continues by describing the implementation of individual operations required for
reliable transport protocols. Finally, it discusses some further questions and challenges in
relation to implementing the developed data structure on an FPGA platform and other
mechanisms employed to ensure a reliable integration with transport protocols.

5.1.3.1. Development of the Data Structure

Fundamentally, a data structure modeling the transport protocol’s data stream must have
the following properties and support the following operations, respectively:

• It must be able to hold data placed on the underlying transmission channel (in-
transit) and data awaiting transmission (pending).

• To accept new incoming data, the data structure must be capable of appending new
data to the end of the pending data series.

• It must support efficient transitioning of the pending data series’ head element to
the in-transit state to reflect transmissions over the underlying transport medium.

• Data known or suspected to be lost during transmission requires eventual retrans-
mission. Thus, the data structure must support marking ranges of data as lost and
allow an implementation to retrieve these data and schedule them for retransmission.

• It should provide mechanisms to retrieve metadata of the oldest non-acknowledged
data chunk to enable the integration of automatic repeat request (ARQ) mechanisms.
For example, an ARQ mechanism might utilize the original transmission timestamp
of a given data chunk to determine whether retransmission is necessary.

The most straightforward approach to using a singly linked list for modeling in-transit
and pending data of a reliable transport protocol data stream is to use a word-addressable
memory region and retain a pointer to the first inserted (list head) element (node) in the
chain. By having each list node contain metadata about whether there is a successor node
and the address of the successor node, as well as some payload data, retaining a pointer
to the first node enables reaching all other nodes in the chain. To distinguish in-transit
from pending data, a second pointer to the first pending node is retained as well. This
basic structure already introduces an inherent restriction: to avoid manipulating any list
node’s payload data while transitioning a given node from the pending to in-transit state,
any pending node’s payload data length must align with the transport protocol’s segment
lengths. Thus, this data structure requires the stream-based data sink to be mapped onto
a discrete, packet-based structure not just when data is transferred over the underlying
packet-based communication channel but as soon as it is enqueued and scheduled for future
transmission.

Such a structure is in itself rather inefficient for appending new pending data: the insertion
of new data requires traversal of the entire list, starting from the pointer to the first pending
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Figure 5.2.: Abstract representation of a linked list data structure maintaining list nodes
holding transport stream payload data. Labels of nodes are monotonically in-
creasing at insertion in the primary (in-transit / pending) list. This figure,
in particular, shows how ranges of list nodes can be moved to a second, re-
transmit list through a constant number of pointer modifications, and with
constant complexity O(1), assuming all required pointers are known before-
hand. Dashed arrows indicate pointer references to be removed; gray arrows
indicate new pointer values.

node, an operation having linear O(n) complexity. This can be reduced to a constant-time
O(1) operation if the last node’s pointer is stored in addition to the start pointers of the
in-transit and pending segments. Other operations are generally efficiently implementable,
such as transitioning a node from the pending to the in-transit state. For this operation,
the pending segment’s start pointer has to be updated to reflect the current pending
segment’s head node successor, which requires a single memory read operation of O(1).

As stated above, the segmented linked list data structure presented here must further be
able to mark ranges of data as being lost and allow a surrounding transport protocol to
retrieve this data for eventual retransmission. To avoid head-of-line blocking, this mech-
anism must fundamentally work with selectively acknowledged sections of data; hence
multiple distinct ranges in the data might be marked as lost at any given time. Because
of the previously set requirement that payload data of list nodes correlate to segments
of the transport protocol, and loss or reordering events fundamentally affect only entire
network packets, it can be assumed that lost data ranges on a list node granularity. A
viable approach to implement the concept of lost data could be to introduce an addi-
tional metadata attribute per list node, reflecting this marking. However, to locate such
lost-marked list nodes for eventual retransmission requires a linear O(n) search through
the in-transit nodes segment of the linked list structure. A better strategy appears to be
utilizing the fact that removing and appending a series of nodes in a singly linked list are
operations of O(1): without actually relocating any list nodes or payload data in memory,
by manipulation of a constant number of list pointers alone, a series of lost list nodes can
be removed from the in-transit list and appended to a second retransmit list. This process
is further illustrated in Figure 5.2. Maintaining a second, independent list structure of lost
and to be retransmit nodes ensures that locating data for retransmission is a constant
time operation, as thehead-pointer of the retransmit list always references the oldest lost
node.

Still, as shown in Section 5.1.2, a linked list data structure does not solve the issue of map-
ping transport protocol stream offsets to the location of data stored in memory. Even if all
list nodes were to have the same payload length, because of the non-contiguous allocation
nature of a linked list and the list’s structure being maintained through pointers located in
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list nodes, resolving a stream offset to a memory address fundamentally requires a linear
search of O(n) over the list nodes from a given starting node. Furthermore, the mechanism
to separate lost from in-transit nodes in constant time, as presented above, also requires
prior knowledge of the respective list nodes’ addresses to be transitioned to the retransmit
list, as well as knowledge of the predecessor node’s address. Such an efficient mapping,
however, is an essential requirement for effective processing of selective acknowledgments
reported by the receiver: in contrast to cumulative acknowledgments such as employed
by TCP as specified through RFC 793, selective acknowledgments—at their core—can
acknowledge ranges of data which are not necessarily consecutive to the transmitter’s in-
transit head data element, with the acknowledgment range bounds (left and right edge of
the acknowledgment) represented by offsets within the transport protocol’s data stream
(e.g., TCP sequence numbers). Thus, as self-contained data structures, singly-linked lists
appear to be subpar representations for in-transit and pending data of a reliable transport
protocol compared to array-based data structures.

However, when considering the integration of specific inherent properties of the list struc-
ture with the transport protocol itself, expensive linear searches over the list in response
to selective acknowledgments can be avoided entirely. Enabling this mechanism is the
fact that, in contrast to array-based data structures, changing the structure of a linked
list, maintained through pointer-relations in each list nodes’ metadata, does not require
relocation of any list nodes in memory. This property implies that reclaiming memory
occupied by acknowledged list nodes by removing these nodes from the in-transit linked
list is possible without affecting the memory locations of unacknowledged, in-transit list
nodes. Because (i) selective acknowledgments are acknowledging ranges of data that ar-
rived intact at the receiver, (ii) the memory location of buffered data at the transmitter
can be determined before transmission of this data, and (iii) the fact that this memory
location does not change when modifying the in-transit list, it is feasible to attach the
memory address of a given segment’s transmitter-maintained copy of data to outgoing
transport protocol segments during transmission. By having the receiver report the mem-
ory addresses of the leftmost and rightmost segments of a selective acknowledgment back
to the transmitter, the transmitter can utilize these addresses for the transformation of
its linked list memory structures directly, without performing any linear search operations
on the memory.

Because removal of elements in a singly linked list requires knowledge of the preceding
element’s pointer, in addition to pointers of the leftmost and rightmost acknowledged
list elements as described above, this pointer must be provided within acknowledgments
as well. However, this poses an issue with selective acknowledgments: when selectively
acknowledging a non-consecutive segment, the receiver does not know of the preceding
segment’s memory location at the transmitter. To circumvent this issue, the pointer to
the respective preceding element is included along with every transmitted segment, such
that the receiver always has sufficient information to issue selective acknowledgments for
arbitrary ranges of received segments.

This basic singly linked list data structure, along with any restrictions and transport
protocol interactions elaborated in this section, appears to be a viable representation for
buffering a reliable transport protocol’s pending, in-transit, and retransmit data, given the
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Control data:

In-transit Data Head: 1C00h Retransmit Data Head: 0800h
Pending Data Head: 0400h Retransmit Data Tail: 0C00h
Pending Data Tail: 1000h Retransmit Chunks: 2
In-transit / Pending Chunks: 2 / 2 Next Free Chunk: 1400h

DRAM memory layout:

Chunk #08 metadata <data> Chunk #09 metadata <data>

Chunk #02 metadata <data> Chunk #03 metadata <data>

Chunk #10 metadata <data> Free Chunk

Free Chunk Chunk #07 metadata <data>

0000h

0800h

1000h

1800h

Figure 5.3.: Depiction of the in-memory layout of a linked fragmented buffer and required
control data maintained in device-internal registers. Solid arrows indicate
pointer relations established in memory; dashed arrows indicate invalidated
pointer relations through the control data.

specific requirements imposed by this thesis. Figure 5.3 further outlines the structure of
the linked fragmented buffer through a concrete example showing how different list nodes
(chunks) and their pointer relations, in conjunction with control data registers, compose
the pending / in-transit and the retransmit linked lists. The particular example of Fig-
ure 5.3 uses fixed-size chunks of 1024 data words. Each chunk is assigned a monotonically
increasing identification number upon insertion. Pointer relations maintained within the
chunks themselves, combined with control data registers, compose two disconnected linked
lists: in this example, the pending and in-transit list spans from chunk #07 to chunk #10,
with the pending data head pointer separating the list into an in-transit segment and a
pending segment, starting at and including chunk #09. The retransmit linked list spans
from chunk #02 to #03. This linked list has been split from the in-transit / pending list
without rewriting or relocating the chunks in memory. Hence chunk #03 still contains
a pointer to address 1000h; however this pointer is invalidated through the retransmit
data tail control register. Section 5.4 will further integrate this in-memory structure into
a transmission protocol, outlining exchanged messages and control data.
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5.1.3.2. Linked Fragmented Buffer Operations

Based on the optimized data structure as described in the previous section and Figure 5.3,
the operations on this data structure as required by interactions with the transport pro-
tocol shall be elaborated:

Insertion of pending data First and foremost, it must be possible to insert new pending
data into the transport protocol buffer. Inserting new data into the pending and in-
transit linked list involves appending a new node, referred to as a chunk, to the tail of
this list. Given that the tail pointer of this list is maintained within the control data
registers, the next-chunk pointer of this tail element can be rewritten to point to the
inserted element directly. An issue not solved as part of this data structure’s design,
and depending on the precise memory layout and chunk sizes chosen for this data
structure, is that of memory allocation of inserted list nodes. Strategies for memory
allocation are further discussed within Section 5.1.3.4. Assuming sufficient space
has been allocated, inserting a new chunk into the list involves writing a header to
retain the linked-list structure and writing the chunk’s payload data. As discussed in
Section 5.1.3.1, the amount of data written must not exceed the transport protocol’s
maximum segment size, as chunks in the linked fragmented buffer structure should
correspond to segments of the transport protocol to support efficient acknowledgment
operations.

Transmission of pending data To transmit the pending list’s head chunk and thus tran-
sition it to the in-transit list segment, the payload data of this chunk must be pro-
vided to the transport protocol implementation. This chunk’s data can be accessed
by dereferencing the maintained pending list head pointer. In addition to the chunk’s
payload data, the linked fragmented buffer must further provide all information along
with the payload data that it ultimately requires to be sent back as part of acknowl-
edgments (e.g., the address of the current chunk being read back). Furthermore, the
linked fragmented buffer implementation should keep track of the address of the
previous transmitted chunk, as this address must be included in every segment’s
transmission as well, for the reasons presented in Section 5.1.3.1.

In-transit head peeking The linked fragmented buffer must further support a mechanism
called head peeking: if the buffer contains chunks in its pending and in-transit list,
specific metadata of the head chunks must be made accessible to the transport proto-
col. This is required to allow ARQ mechanisms to estimate whether retransmission
of a chunk is required. An ARQ mechanism could, for instance, use the insertion
timestamp of a chunk to estimate whether retransmission is required.

This mechanism can be implemented by monitoring the in-transit head pointer and
reading the respective chunk’s header if this pointer changes. Providing metadata
of the in-transit head chunk is vital, as the insertion and transmission operations
guarantee data to be stored chronologically in the in-transit list, with respect to
both the insertion and transmission time. Thus, the ARQ mechanism is supplied
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with information about the chunk awaiting acknowledgment for the longest period
of time.

Processing of acknowledgments In response to received segments, receivers will send ac-
knowledgments covering one or more consecutive segments. Based on these acknowl-
edgments, the transmitter can reclaim memory occupied by acknowledged data and
decide whether other data should be retransmitted.

Specifically, in accordance with the findings of Section 2.2.1 and Section 2.2.2, this
section shall describe a particular strategy to handle possibly non-consecutive se-
lective acknowledgments in the linked fragmented buffer data structure. Because
the transmitter fundamentally transmits all incoming data in-order, except for re-
transmissions, a selective acknowledgment not acknowledging the transceiver’s head
in-transit element indicates that some form of loss or reordering must have occurred
on the round-trip path from transmitter to receiver. With the presumption of packet
reordering being less prevalent in networks utilized by this thesis target application
domains (low-complexity networks without dynamic routing and limited parallelism
in switching of packets of a single flow), for the intents and purposes of this data
structure, it may be assumed that any non-consecutive acknowledgment indicates
packet loss. Nonetheless, in accordance with the analysis of Section 2.2.1, it is im-
portant for any reliable transport protocol to be tolerant to packet reordering; while
treating any reordering event as packet loss may lead to substantial performance
impacts, it fundamentally still guarantees reliable delivery of every data segment at
the receiver eventually.

Based on this assumption, a strategy to handle acknowledgments for the linked
fragmented buffer can be defined; the following text refers to Figure 5.4 for a visual
representation of how acknowledgments are processed with respect to the linked
list data structures in memory: an acknowledgment must contain pointers to the
leftmost (oldest, E) and rightmost (newest, G) chunk to be acknowledged, as well
as the leftmost chunk’s predecessor D. Furthermore, the acknowledged chunks must
be entirely contained in the in-transit list. If the acknowledgment is consecutive,
meaning that the leftmost chunk corresponds to the current in-transit list head chunk
C, the rightmost chunk’s header must be read to extract its next chunk pointer, which
is then used as the new in-transit head chunk pointer ( 1 ). This concludes handling
consecutive acknowledgments. If the acknowledgment is instead non-consecutive, this
implies that any chunk of the in-transit list before the acknowledgment’s leftmost
chunk should be assumed to be lost and thus must be transferred to the retransmit
list. Thus, the following operations are required: to append one or more chunks of
the in-transit list to the retransmit list, the retransmit list tail chunk’s next chunk
pointer must be set to the current in-transit head chunk address ( 2 ). Furthermore,
the retransmit list’s tail pointer must be set to the address of the acknowledgment’s
leftmost chunk’s predecessor address, supplied as part of the acknowledgment ( 3 ).
As shown in Figure 5.3, an invalidation of the leftmost chunk’s predecessor’s next
chunk pointer (D’s next chunk pointer), pointing to the acknowledgment’s leftmost
chunk E, is not required, given the retransmit list bounds are enforced through the
head and tail control data registers (enforcing the list bounds A to D) instead. With

39



5. Design

HEAD
PENDING

TAIL

IN-TRANSIT
HEAD

HEAD
RETRANSMIT

TAIL

A B

C D E F G H I J

Acknowledgment
(E–G, predecessor: D)

1

2

3

Figure 5.4.: Illustration of steps required to process an acknowledgment. In this particular
example, chunks E to F are acknowledged, to which the acknowledgment pro-
vides pointers, in addition to a pointer of the leftmost acknowledged chunk’s
predecessor D. Dashed lines indicate pointer relations to be removed, gray lines
indicate new pointer values after the acknowledgment.

the chunks preceding the acknowledgment region attached to the retransmit list, the
remaining step is to remove the acknowledged chunks from the in-transit list in an
identical fashion as outlined for consecutive acknowledgments above ( 1 ).

The strategy presented above does not solve two major remaining issues: while it
manages to modify the structures of both the in-transit and retransmit lists to prop-
erly represent the acknowledgment and retain internal consistency and boundedness
of both lists, because linked lists are not consecutive in memory, these mechanisms
do not provide sufficient data to update the count of elements in the in-transit, pend-
ing and retransmit lists respectively. Furthermore, this strategy does not invalidate
any acknowledged chunks, required to reclaim memory occupied by them. A solu-
tion for these issues will be discussed in Section 5.1.3.4. Nonetheless, this strategy
enables processing acknowledgments over an arbitrary amount of data (chunks) with
a constant number of operations, satisfying the requirements imposed on this data
structure.

Retransmission of data To account for packet loss on the transmission channel, the trans-
mitter must retransmit data, either in response to messages indicating that data has
likely been lost in transit (i.e., non-consecutive selective acknowledgments), or be-
cause the employed ARQ mechanism has determined that data has likely not arrived
at the receiver.

Given the strategy to interpret and process acknowledgments as presented above,
data which is presumed to be lost based on information communicated through
acknowledgments is moved from the in-transit to the retransmit list. Thus, locating
data scheduled to be retransmit via this mechanism is trivial: if the retransmit list
contains at least one chunk, the first to-be retransmit chunk will be located at the
address stored in the retransmit head pointer control data register.

When instead the employed ARQ mechanism determines that retransmission of a
given chunk is required, based on information provided through the head peeking
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mechanism introduced above, the in-transit head chunk needs to be read back. Ana-
log to the case above, the in-transit head pointer contains the address of the chunk
to read from memory.

In either case, the chunk having been read back should be removed from the respec-
tive list. This is because each chunk in the buffer is corresponding to one pending,
in-transit or presumed-lost transmission. While a retransmission might itself be lost
and require yet another retransmission, this should for all intents and purposes be
treated as yet another new transmission. Thus, any transmission consists of a read
operation, as well as an insert operation. Removing the read chunk from the respec-
tive list involves setting the list’s head pointer to the next chunk address stored as
part of the chunk’s header and decrementing the count of chunks stored in that list.

5.1.3.3. Ephemeral IDs

For the transport protocol to guarantee reliable transmission of all data from the sender
to the receiver, and for the sender to validate that a consecutive stream of data has
been received without any gaps, every segment of the transport protocol can be tagged
with a monotonically increasing identification number (ID). Such IDs thus serve a similar
purpose compared to TCP sequence numbers. Because of the fundamental assumption that
transport protocol segments correspond to chunks maintained in the linked fragmented
buffer data structure, this ID can be stored in the chunk metadata section.

However, the linked fragmented buffer memory model itself does not require such an ID,
as outlined through the operations described in the previous section. This is because this
data structure is fundamentally agnostic over how the transport protocol handles retrans-
missions and reassembly of data, it merely provides mechanisms to retain and track single
transmissions and handle acknowledgments or ARQ-issued retransmissions accordigly. To
the linked fragmented buffer, a retransmission of a given segment is indistinguishable from
the first transmission of a segment. Thus, a given segment’s transport protocol assigned
ID can be treated as an opaque metadata attribute by the data structure.

Nonetheless, the linked fragmented buffer as presented up to this point still has two major
deficiencies as outlined under Section 5.1.3.2: first, it cannot, in response to an acknowl-
edgment, efficiently determine how many chunks the acknowledgment references, as well
as how many chunks in front of the acknowledged list segment will be transferred from
the in-transit to the retransmit list. These values are required to update the respective
counters, which are used within various internal mechanisms of the data structure and
provided to the transport protocol, for instance to influence decisions about automatic
retransmissions or transmission rate limiting. Second, reading back chunks from the re-
transmit or in-transit list and acknowledging chunks shall remove the respective chunks
from the linked fragmented buffer memory. However, no efficient mechanism for reclaiming
the memory occupied by this data is defined yet. Specifically, a primitive mechanism to in-
validate chunks by writing into memory for each acknowledged chunk shall be avoided, to
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maintain the constant time acknowledgment processing characteristic of the data structure
as documented above.

In an effort to solve both of these remaining issues, the concept of ephemeral IDs is intro-
duced: where a transport protocol may utilize IDs as an alternative to stream offsets such
as TCP sequence numbers, fundamentally used to refer to the transferred payload data
stream, ephemeral IDs are in reference to individual transmissions or retransmissions of
data segments. Thus, a retransmission of a given data segment retains the same transport
protocol segment ID as the original transmission, but corresponds to a different ephemeral
ID. As consequence, in reference to IP packet reordering as dicussed in Section 2.2.1, a
packet containing a retransmission of a given segment will not be identical to the segment’s
original transmission; this enables retransmissions to be distinguished from out-of-order
arrival through packet reordering. While segment IDs are provided upon chunk insertion
to the linked fragmented buffer by the transport protocol implementation, ephemeral IDs
are generated by the linked fragmented buffer implementation for every inserted chunk in
a monotonically increasing fashion.

Such ephemeral IDs can, for instance, be utilized to determine the number of elements
between any two chunks in the in-transit list. This is possible because of three basic invari-
ants enforced by the individual operations described above: (i) ephemeral IDs are assigned
in a monotonically increasing fashion to every inserted chunk which is appended to the
in-transit list, (ii) reading back a chunk in response to an ARQ operation removes the
in-transit list’s tail element, and (iii) both consecutive and non-consecutive acknowledg-
ments remove all acknowledged chunks and all chunks left of the acknowledgment from the
in-transit list. Thus, all chunks contained in the in-transit list are guaranteed to always
compose a fully consecutive, monotonically increasing list of ephemeral IDs. Based on this
property, the number of chunks n between and including any two chunks A and B contained
in the in-transit list can be computed as n = ∣ephid(B) − ephid(A)∣+1. Hence, in response
to an acknowledgment, the linked fragmented buffer is able to determine the ephemeral
IDs of the in-transit list head H, the acknowledgment’s leftmost chunk X and rightmost
chunk Y . Based on this information, the number of elements added to the retransmit list
n can be computed as n = ephid(X) − ephid(H). Furthermore, the number of elements
removed from the in-transit list m is computed as m = n+ ephid(Y )− ephid(X)+ 1. This
information is sufficient to maintain an accurate count of chunks contained in both the
in-transit and retransmit lists using a constant number of operations.

In addition to determining the number of chunks between any two chunks in the in-transit
list, ephemeral IDs can serve other purposes as well. For instance, a basic requirement
for acknowledgments is that all acknowledged chunks must be entirely contained in the
in-transit list. But because acknowledgments are to be handled in constant time, and to
validate reachability of the acknowledgment’s leftmost chunk pointer from the in-transit
list head pointer, as well as reachability of the acknowledgment’s rightmost chunk pointer
from the leftmost chunk pointer would require a search operation in O(n), this invariant
cannot be asserted in practice. However, with the introduction of an ephemeral ID asso-
ciated with each chunk, this invariant can be validated through operations in O(1): the
linked fragmented buffer can access the acknowledgment-provided pointers to retrieve the
ephemeral IDs for the leftmost L and rightmost R acknowledged chunks, as well as the
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ephemeral IDs for the in-transit head H and T chunks through the control data maintained
pointers. Based on this information, if ephid(H) ≤ ephid(L) ≤ ephid(R) ≤ ephid(T ), all
acknowledged chunks must be contained in the in-transit list. This has practical impli-
cations for maintaining consistency of the linked list data structure: without any such
validations, a duplicate, out-of-order or maliciously crafted acknowledgment could sup-
ply arbitrary pointers in memory which are not in reference to chunks contained in the
in-transit list and thus incorrectly manipulate the data structure, potentially violating
invariants required by subsequent operations and causing data loss and denial of service
as a consequence. The ephemeral IDs of chunks can further be attached to segment trans-
missions and required to be sent back as part of received acknowledgments. This avoids
dereferencing pointers L and R received as part of an acknowledgment to recover their
ephemeral IDs, an operation which can incur a high latency depending on the type of
memory used. Still, the received ephemeral IDs can be used to assert that all chunks of
the acknowledgment are contained in the in-transit list, providing sufficient protection
against inconsistencies due to duplicated or out-of-order acknowledgments. It should be
noted that such receiver-provided pointers and ephemeral ID could lead to maliciously
crafted acknowledgments causing inconsistencies in the list structure; however, a detailed
security analysis is outside of the scope of this thesis.

A further advantage of the ephemeral ID concept as introduced above is the ability to
invalidate chunks in memory, without performing any write operations. Because the linked
fragmented buffer implementation maintains pointers to the in-transit and retransmit list
head and tail chunks respectively, and can thus determine the ephemeral IDs associated
with these chunks, it is able to determine whether a given chunk in memory may still
be referenced by either of the two lists: on the one hand, all chunks in the in-transit list
are guaranteed to compose a gapless monotonically increasing series of ephemeral IDs,
hence the linked fragmented buffer can determine with certainty whether a chunk with
a given ephemeral ID must be contained in this list. On the other hand, the sequence of
ephemeral IDs composed by chunks of the retransmit list is strictly increasing, but not
necessarily gapless and monotonically increasing. Thus, the head and tail element of the
retransmit list provide lower and upper bounds of the ephemeral ID space for elements
contained in this list. Nonetheless, if for a chunk X, with in-transit list head IH and tail
IT , and retransmit list head RH and tail RT holds (ephid(X) < ephid(RH)∨ ephid(X) >
ephid(RT )) ∧ ephid(X) < ephid(IH), the chunk is not contained in either list and its
memory can be reclaimed. Note that ephid(X) ≤ ephid(IT ) must always hold, therefore
no test is required for the case where X would be outside of the bounds of the in-transit list
by having an ephemeral ID higher than that of the list’s tail element. How this mechanism
integrates with the memory allocation algorithm of the linked fragmented buffer is covered
under Section 5.1.3.4.

5.1.3.4. Memory Fragmentation and Chunk Allocation

With all fundamental operations of the linked fragmented buffer covered, and the in-
troduction of the ephemeral IDs concept to improve the implementation’s efficiency and
enforce certain invariants, the major remaining issue is that of memory allocation. Given
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that a linked list is fundamentally a data structure composed of multiple, non-contiguous
allocations in memory, this is not a trival problem to solve.

Memory allocators for general purpose heap storage have been subject to extensive research
[32; 33]. As defined by Wilson et al., a memory allocator is an algorithm designed to keep
track of which parts in memory already contain an allocation and which parts are free.
Generally, an allocator cannot know in which order applications release certain granted
allocations, creating holes in memory (referred to as external fragmentation). This is in
contrast to internal fragmentation, occurring when assinged allocations are larger than
requested. The two primary goals for a memory allocation scheme are to allocate memory
as compact as possible (minimizing both external and internal fragmentation), with as
little time cost (complexity) as possible. While many different allocation schemes exists,
the design space of memory allocators are further limited by restrictions imposed by the
allocator’s user (application), in this case being the linked fragmented buffer mechanisms
and data structures. For instance, the linked fragmented buffer’s inherent list-based data
structures require any existing allocations to not be relocated, as this would invalidate
pointers to these allocations and by extension destroy the linked list structure. Futhermore,
the allocator shall operate on a chunk granularity; it cannot allocate or free partial chunks
as each chunk must be a contiguous memory allocation. While these restrictions are shared
with the analysis of memory allocators by Wilson et al., the linked fragmented buffer also
enables an unusual optimization for allocators: given that each allocation is guaranteed to
start with a header of a known layout, the memory allocator may examine the data stored
in any given allocation and may utilize this data to draw conclusions about whether a
given memory location is currently occupied.

Generally, allocators over memory utilize some data structure to keep track of existing
allocations, and to help find new sufficiently large memory regions. These data structures
may either be stored within the managed memory region itself (for instance with free list
or indexing tree allocators) or in a separate region (such as with bitmapped allocators;
compare [32, pp. 42–61]). Another observation is that many allocators analyzed by Wilson
et al. are optimized to allocate regions approximate to some fixed sizes, which allows the al-
location mechanism to avoid expensive searches through memory through general-purpose
allocation mechanisms and use efficient lookaside data structures of available memory re-
gions fitting the desired allocation [32, p. 41]. Such practices are interesting, because of the
fundamental assumption that chunks of the linked fragmented buffer are corresponding to
transport protocol segments, and such segments typically have an upper bound on their
size: for example, because segments need to be transferred over the underlying packet
oriented network layer, it makes sense to derive the maximum transport protocol segment
size from (a multiple of) the maximum IP packet size.

In general, the employed allocator for chunks maintained within the linked fragmented
buffer can have a significant performance impact, as a chunk allocation is required for
every insertion operation. At the same time, the core ideas and mechanisms of the linked
fragmented buffer are independent of the allocation scheme used, as long as the invariants
documented above are upheld. Thus this section shall present a simple allocation scheme,
inspired by concepts of existing allocators as analyzed by Wilson et al., and optimized for
specific operations. Further statistical and empirical analyses are required to choose an
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allocation scheme best fit for the developed data structure, taking real-world measurements
into account.

The allocation scheme developed for this thesis works as follows: all chunk allocations
stored in the linked fragmented buffer are of a fixed, maximum size of nc = 2

mc words, mc ∈

N0, including the chunk header. Each chunk header starts with a 1 bit valid field indicating
whether it is a valid allocation, and further contains the chunk’s ephemeral ID, the payload
data length (excluding the header), and the pointer to the next chunk, along with other
metadata. By enforcing chunks to be of a fixed size (ncwords), the set of addresses uniquely
identifying any chunk in a memory region M of nm = 2

mm words, mm ∈ N0 and nm ≥ nc,
is C = {i ∈ N0 ∣ 0 ≤ i <

nm

nc
} with ∣C∣ =

nm

nc
. The valid field can be used to further

define the set of potentially allocated chunks Ca = {c ∈ C ∣ M[c ⋅ nc] = 1} and thus
the set of guaranteed free chunks Cf = C \ Ca. Given the observation of the previous
section that the bounds defined through the in-transit and retransmit list head and tail
ephemeral IDs can be used to further invalidate some chunks in memory which still have
their valid flag asserted, the set of allocated chunks can be reduced by Ce = {c ∈ Ca ∣
¬ (ephid(RH) ≤ ephid(M[c ⋅ nc]) ≤ ephid(RT )) ∧ ephid(M[c ⋅ nc]) < ephid(IH)} to the
complement Cae = Ca \ Ce, and the set of free chunks be extended as Cfe = Cf ∪ Ce.

In practice, this means that the linked fragmented buffer has a drastically reduced number
of locations where a chunk could start in memory, compared to the number of words in
memory (∣C∣ ≪ nm). Each of these start addresses contains a marker whether this chunk
is currently allocated, and is further annotated by metadata (ephemeral ID) which, in
some cases, can deem a given location in memory invalid without deasserting the valid
marker through a write operation. The allocator’s goal is to allocate a chunk c out of the
set of available memory locations Cfe as quickly as possible. Without any additional data
structure keeping track of the addresses contained in Cfe, the most efficient method to
search for a c ∈ Cfe is to search for the first ctest ∈ C for which ctest ∈ Cfe is satisfied. Such
a linear search has a worst-case complexity in O(n), but is generally more efficient if ∣Cfe∣
is maximized; in fact, if ∣Cfe∣ = ∣C∣, every ctest satisfies the aforementioned condition.
Given that ∣Cfe∣ = ∣C∣− ∣Cae∣, this implies that the set of allocated and non-reclaimable
chunks Cae should contain as few elements as possible, with a lower bound set by the set
of chunks required to be maintained by the transport protocol Cr composed of chunks in
the in-transit and retransmit list.

To implement this scheme, the following operations are required: to initialize the linked
fragmented buffer data structure, for every address c ∈ C, the first bit of this word contains
the valid flag and thus must be deasserted. When a chunk shall be inserted, starting from
the last chunk’s address or 0, the implementation searches for the next address ctest ∈ C
for which either of the two conditions hold:

• the valid-flag is deasserted, or

• the chunk’s ephemeral ID is not contained within the bounds of the retransmit list’s
head and tail ephemeral IDs and it is lower than the in-transit list’s head ephemeral
ID.
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If such a chunk is found, it can be allocated by asserting its valid marker assigning the next
available ephemeral ID (current in-transit tail’s ephemeral ID + 1) to it. The inflight list’s
tail pointer should be set to its address when the memory has been filled with data. The
singly linked list structure must be retained, either by updating the next chunk pointer
header value of the previous inflight list’s tail, or by searching for such a free memory
location before writing the predecessor’s header (look-ahead allocation).

When chunks are appended to the retransmit list in response to an acknowledgment as de-
scribed under Section 5.1.3.2, and the retransmit list already contains at least one chunk,
this append operation may span the list’s head and tail ephemeral IDs over some chunks
which are still marked as valid in memory, but are not contained in the in-transit or re-
transmit list. Thus, the linked fragmented buffer implementation may optionally deassert
the valid marker of chunks starting at the successor of the previous retransmit tail ele-
ment, until arriving at the first free chunk as defined above. With this operation, Cae is
guaranteed to be equal to Cr and thus the data structure only retains data required by the
transport protocol. Without this operation, the data structure might retain allocations for
more data than required (Cae ⊇ Cr), but eventually these chunks are freed automatically
by removing elements from the retransmit list and thus increasing the retransmit list’s
head ephemeral ID.

This allocation algorithm presented here is fundamentally based on a linear search over
memory to find an appropriate allocation, thus it is an algorithm in O(n). However,
through integration with other concepts of the linked fragmented buffer, it enables ef-
ficient reclaiming of allocated memory in the average case, without requiring memory
accesses to invalidate old data in many cases. This allocation scheme only supports al-
locating fixed-size chunks. In cases of low load on the system, to ensure timely delivery
of data, a chunk’s payload data may only partially fill such fixed-size allocations, leading
to internal fragmentation. However, when the system is under high load, generally the
linked fragmented buffer should be able to collect sufficient payload data to fill a given
chunk allocation before transmission of this chunk or segment respectively, reducing inter-
nal fragmentation. This observation can be considered analog to the small-packet problem
identified by Nagle in RFC 896 [34]; Nagle’s algorithm will be discussed in the context of
the developed protocol within Section 5.4. Furthermore, the allocator may cause subse-
quent elements to be non-cosecutive in memory (as indicated by fragmented in the name of
this data structure). However, on a random access memory such as DRAM, the linked-list
next chunk pointers enable accessing a given chunk’s successor in O(1).

Finally, in accordance with the data structure, its operations, and the memory allocation
scheme established, Figure 5.5 shows the in-memory layout of chunks stored in the linked
fragmented buffer.
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…optional padding

Subsequent chunk 2000h

Figure 5.5.: In-memory layout of chunks maintained through the linked fragmented buffer
structure. Each chunk contains a header and payload section. The header is
a compact (bit-packed) representation of required fields and additional meta-
data. To efficiently rewrite the next chunk pointer field, it imposes certain
alignment consraints on its start offset and the start offset of the subsequent
field. n bit data words are aligned to n bit.

5.2. Flow Control and Congestion Control

With an appropriate memory management architecture defined, supporting all required
fundamental operations of a reliable transport protocol such as TCP, and efficiently repre-
sentable within FPGA systems, it is important to further design the surrounding transport
protocol. While the presented memory model certainly is a key component of the overall
transport protocol design and a major distiguishing characteristic from existing transport
protocols, other mechanisms such as flow control and congestion control, as well as ARQ
algorithms and the receiver implementation may be of equal importance to the protocol’s
overall performance. This section discusses to what degree flow control and congestion
control mechanisms, such as implemented in TCP, are required in the context of this
thesis’ system model, and how they can be integrated with the linked fragmented buffer
design.

As discussed in Section 2.3.2, TCP flow control is a mechanism to avoid overwhelming a
slow receiver by a fast sender. Such a mechanism makes sense in the TCP model: funda-
mentally, it is concerned with providing reliable and in-order delivery of a byte stream over
a packet-oriented network, with no assumptions made of the participating host’s architec-
ture, processing capabilities and available memory. Because TCP is a protocol designed to
provide a communication channel independent of the data transported over this channel,
it cannot make any assumptions regarding the involved host’s relative available compute
and memory resources. This is in stark contrast to the assumptions of this thesis: con-
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sidering the system model of Chapter 3 and problem statement of Chapter 4, it can be
assumed that the transmitting device is an embedded and specialized measurement device
(e.g., a time-to-digital converter). It is further known that the transmitting device will
facilitate a hardware implementation of the designed protocol, which should be capable
of transmission rates approximating the available link bandwidth, but has only limited
memory resources available to cache pending transmission and retransmission data. Fur-
thermore, the data source internal to this device, such as the TDC FPGA core, cannot
be reasonably rate-limited. When consolidating all of these prepositions with the funda-
mental requirement of guaranteeing lossless transmission with eventual in-order arrival of
this data, it becomes apparent that this scenario cannot account for insufficient buffering
resources at the receiver. This argument is in line with eliminating sources of head-of-line
blocking from the developed protocol: given that the developed linked fragmented buffer
data structure is no longer subject to head-of-line blocking because of fundamental con-
straints within the data structure, such as with non-sparse circular buffers, introducing
a flow control mechansim as employed by TCP would still effectively introduce a source
of head-of-line blocking and thus rescind these advantages. Thus, for the purposes of this
thesis, the receiving host must be assumed to have sufficient memory available to buffer
any incoming and potentially out-of-order segments until they can be processed further.
Under different circumstances, specifically if the data source at the transmitter were to
provide mechanisms to limit its output data rate, it may make sense to consider flow
control mechanisms governed by the receiver.

While flow control implemented through receiver feedback does not appear practical given
this thesis’ presumptions, some form of congestion control in response to congestion in-
dicators in the network is required. Whereas the receiver must be able to buffer any
out-of-order transmissions and can be dimensioned appropriately, the intermediate net-
work is more unpredictable. Even in small, controlled laboratory networks utilizing few
(< 10) intermediate network stations, the available end-to-end bandwidth heavily depends
on the link speeds, employed network structure, switch or router architectures, and can
vary based on route changes or simultaneous transmissions of other network participants.
Many of these factors can be out of the control of the network user. Naturally, if the
available network bandwidth is insufficient to transmit incoming measurement data over
prolonged periods of time, and the transmitter is unable to buffer more incoming data,
data loss can be unavoidable.

The fundamental purpose of congestion control is, as the name suggests, to avoid con-
gestion at the bottleneck network link(s), which would result in excessive loss events for
this and other network flows. This implies that, to take full advantage of the end-to-end
path’s bandwidth, any such algorithm must either know the exact share of bandwidth it
may utilize on a given path, or receive feedback from which it can approximately derive
its allowed share of bandwidth. TCP’s congestion control mechanisms, as described in
Section 2.3.3, form a type of loss-based congestion control. They utilize losses as implicit
feedback of the network indicating congestion on some link(s) [17, p. 572]. Based on this
information, TCP maintains a window keeping track of the amount of data it may inject
into the network at any given time, without causing excessive loss events as a consequence
of overwhelming the bottleneck link. As outlined in Section 2.3.3 and illustrated in Fig-
ure 2.2, TCP utilizes slow start and congestion avoidance mechanisms to, in response to
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loss events, recover effective link utilization in logarithmic time and continue to probe link
bandwidth limitations linearly.

However, such loss-based congestion control schemes suffer from an inherent issue: given
they are in response to loss events, they only limit the utilized bandwidth when congestion
already occured on a path. Using base TCP of RFC 793 as an example, it would first have
to recover this loss event before additional data could be transferred. Even if selective re-
transmissions are supported, reverting back to the slow start congestion control algorithm
severely reduces overall utilized bandwidth. In case the congestion event has only caused
losses of a few select number of segments, and selective acknowledgments are employed,
fast retransmit and fast recovery can help maintain a sustained effective utilization of link
bandwidth.

Yet, there is another indication of congestion available to the transmitter, which is not
in response to loss events: the round trip time (RTT) from transmitting a given segment
to receiving its acknowledgment. Assuming a fixed path over some network links, where
each link has a constant propagation time, the propagation delay of packets over this
path can only change because of intermediate network stations. If the behavior of these
intermediate network stations with respect to their imposed delay on packet transmissions
is known, an end-to-end measurement of the packet propagation delay can provide limited
and cumulative information about the state of intermediate network stations. As explained
by Tanenbaum and Wetherall, intermediate stations in packet-switched networks such as
IP generally utilize a store-and-forward scheme to pass data from one link to another. In
contrast to circuit-switched networks, packet-switched links do not usually assign fixed
(time, frequency, etc.) slots for transmissions of a given circuit, but rather packets are
placed on a given link one at a time following a set of rules. If multiple packets destined
for a single destination link arrive at a packet switching node simultaneously, these packets
will be held in memory at this node and sent over the target link eventually, according to
some scheduling discipline [17, p. 356]. Such a scheduling discipline should avoid reordering
packets of a single flow (as defined in Section 2.2.1), as this would manifest as packet
reordering at the receiver. It is this property of packets being delayed due to buffering
in case of the link being busy, along with a FIFO queueing discipline for packets part of
a single flow, which enables using the overall propagation delay as an indicator for the
amount of queued packets on the end-to-end link. Given sufficiently large (deep) queues in
the intermediate network elements, transport protocols can utilize this metric to predict
congestion loss before it happens. Figure 5.6 shows a measurement of the observed RTT
(blue) and packet loss (red) as a function of the link utilization, performed within a
deterministic ns-3 simulation. The simulated topology contains two hosts, each connected
to a router with a 1Gbit/s link. The two routers are connected with a 50Mbit/s link.
As soon as this bottleneck link bandwidth is exceeded, packets are buffered within a
router, increasing the observed latency. One the packet buffers are full, packet loss occurs.
Thus, for any congestion control scheme to avoid such loss events while converging to
the available link bandwidth, increases in the transmission rate should be approximately
inversely proportional to the observed end-to-end propagation delay.

Transport Informed by MEasurement of LatencY (TIMELY), as described by Mittal et
al., is such a congestion control mechanism utilizing measurements of the observed RTT
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Figure 5.6.: Observed network path RTT and loss events as a function of link utilization.
Data obtained using a deterministic ns-3 simulation with two hosts connected
to two routers, in turn connected with a 50Mbit/s bottleneck link. x-axis
shows simulation time in nanoseconds.

to estimate network congestion [35]. By controlling the transmission rate based on the
observed propagation delay, it is a rate control approach to congestion control. TIMELY
is especially interesting in the context of this work, as it deliberately does not target only
TCP, but reliable transport protocols in general. Furthermore, TIMELY makes a basic
assumption easily met in the context of this thesis’ system architecture: to acquire a very
precise estimate of the RTT, which is especially important for low-latency (microseconds to
tens of milliseconds) connections found in datacenter networks or laboratory networks (as
targeted within this thesis), this mechanism mandates packet transmission and reception
timestamps to be acquired within the NIC itself. Given that this thesis is targeting FPGA
platforms implementing the Ethernet MAC in reprogrammable logic, such timestamping
logic can be supplemented. In fact, for the LiteEth Ethernet MAC, the author of this
thesis has already integrated this functionality. TIMELY also mandates that the receiver
is either able to timestamp incoming and outgoing packets and supply information about
the time between reception of a segment and transmission of its acknowledgment, or the
NIC can issue acknowledgments for segments in hardware. The latter, while possible for
TCP, is highly unlikely for a custom network protocol. Fortunately, many NICs feature
packet timestamping capabilities for arbitrary packets already, in an effort to support the
Precision Time Protocol (PTP) of IEEE 1588. If this feature is not supported, timestamps
have to be acquired in software instead, with a corresponding decrease in accuracy [35,
pp. 537–538].

Given the amount of prior research in this field, the applicability of congestion control
algorithms to the concepts of HELIX, and especially the compatibility with the developed
linked fragmented buffer memory architecture, it appears reasonable to reuse preexisting
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congestion control algorithms such as TIMELY. By combining feedback through (missing /
non-consecutive) acknowledgments along with an estimation of the path RTT as inputs to
the congestion control algorithm, and using the number of chunks in the in-transit list as an
indicator of the current network load, TIMELY appears to integrate well with the overall
target architecture of this thesis. The output of the congestion control mechanism can
then be used to limit the transmission rate of individual network packets. A mechanism
to estimate the current RTT is required independent of the congestion control scheme
for implementation of an ARQ mechanism; its implementation is further described in
Section 6.3.1.

5.3. Receiver Model and Architecture

Before the design of the elaborated protocol can be presented in its entirety, it is important
to also consider the architecture of a receiver implementation, compliant and cooperating
with the presented memory model and congestion control mechanism. Specifically mecha-
nisms for reassembly of incoming packets into an in-order stream of data words, as well as
formation and eventual transmission of acknowledgments are important to build a coherent
and formally sound protocol.

As required by the linked fragmented buffer design, each segment arriving at the receiver
will contain one or more payload words, along with certain metadata. Some of this meta-
data is mandated by the linked fragmented buffer, whereas other metadata is determined
by the surrounding transport protocol. Specifically, as elaborated within Section 5.1.3.2,
the linked fragmented buffer requires each segment to be annotated with the ephemeral ID
and address of the transmitter’s copy of this data in memory (the corresponding chunk),
as well as the preceding chunk’s address in memory. Nonetheless, this metadata is in-
sufficient for the receiver to reassemble the received data into a gapless, in-order stream
of data words. This is because, as discussed previously, the ephemeral IDs refer to in-
dividual transmissions of data; hence retransmissions of a given segment are annotated
with an ephemeral ID different from the initial transmission. Thus, the transport protocol
must further provide a strictly monotonically increasing ID for segments, persistent across
retransmissions.

The receiver must utilize these data to both provide the gapless, in-order data stream as re-
quired, and form acknowledgments respectively. We shall consider these issues separately,
focusing on generation of acknowledgments first. In theory, acknowleding incoming data is
a trivial operation: it is sufficient to simply acknowledge one received segment at a time,
using only metadata provided along the received segment. However, this has two major
disadvantages: first and foremost, while the linked fragmented buffer data structure is able
to process acknowledgments in constant time, each acknowledgment still incurs transfor-
mations of the linked list structures maintained at the transmitter, with a bounded number
of memory operations, and as such still has a performance impact. Furthermore, gener-
ating an acknowledgment message for every received segment imposes additional load on
the receiver and network, and can thus potentially decrease the achieved goodput on the
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connection [36, pp. 96–97; 37]. For this reason, RFC 1122 introduces and RFC 5681 further
specifies delayed acknowledgments: through this mechanism acknowledgments, given their
cumulative nature, can be delayed for up to 500ms, allowing to acknowledge a number
of consecutive segments through a single message, where for TCP an acknowledgment
should be sent at least for every second full-size segment [36; 21]. This mechanism is com-
patible with the selective acknowledgment structure imposed by the linked fragmented
buffer, by being able to specify a range of segments through the leftmost and rightmost
segment of that range respectively. Delayed acknowledgments fundamentally delay the
time until memory occupied through buffered chunks corresponding to unacknowledged
segments at the transmitter can be reclaimed. Furthermore, insertion of additional delays
makes RTT-based congestion control algorithms less effective, given their estimate of the
network-imposed end-to-end delay may be significantly skewed. Thus, a good balance be-
tween system and network load caused by acknowledgments and timely acknowledgment
of data is required. Going further, Allman continues in the argument against delayed
acknowledgments, finding that this mechanism may even reduce goodput compared to im-
midate acknowledgments of all segments [37]. Empirical studies are required to determine
the best strategy given the developed protocol, as well as the transmitter implementation’s
performance impact of processing acknowledgment messages.

That said, this thesis proposes a strategy for receiver implementations to generate ac-
knowledgments: the receiver shall maintain a data structure containing the following in-
formation:

• valid: whether the data contained in this data structure is valid
• left_pred_addr: the pending acknowledgment’s predecessor chunk address
• left_addr: the pending acknowledgment’s left chunk address
• left_ephid: the pending acknowledgment’s left chunk ephemeral ID
• right_addr: the pending acknowledgment’s right chunk address
• right_ephid: the pending acknowledgment’s right chunk ephemeral ID
• rx_time: the time of reception of the left chunk’s segment

Upon reception of a segment, the receiver shall adhere to the following strategy:

1. If valid is asserted, go to 2, otherwise continue with 4.
2. If the received segment’s ephemeral ID is equal to right_ephid + 1 (meaning that

the current pending acknowledgment can be extended to include this segment), go
to 3, else continue at 5.

3. Set right_ephid to the ephemeral ID of the received segment. Set right_addr to
the address of the received segment. This concludes handling of the received segment.

4. Store the received segment’s ephemeral ID in left_ephid and right_ephid. Store
the received segment’s address in left_addr and right_addr. Store the reception
timestamp in rx_time and set a pending acknowledgment timer to invoke step 5
after rx_time+ δ, where δ is the maximum delay acknowledgments may experience
at the receiver. Assert valid.

5. Form an acknowledgment from the pending data and send it. Deassert valid. Disable
any pending acknowledgment timer. If this is in response to receiving a segment and
not in response to the acknowledgment timer expiring, go to 4.
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This strategy aggregates selective acknowledgments for consecutive segments over a time
window δ, which can then be efficiently processed in constant time at the transmitter,
reducing the acknowledgment-induced overhead. However, out-of-order delivery of seg-
ments, potentially indicating loss events in the network, cause the receiver to immediately
issue a selective acknowledgment. As such, this mechanism provides a reasonable balance
between minimizing acknowledgment overhead at the transmitter, receiver, and on the
network, while reparing loss conditions in a busy stream quickly. Only when loss events
occur on a stream which are not immediately followed with subsequent transmitted pack-
ets will ARQ-issued transmissions be delayed. However, if loss events are not immediately
followed by subsequent packets, this indicates that the transmitter is not particularly busy,
and thus it should have sufficient buffer capacity to handle these cases.

Lastly, the mechanism to reassemble an in-order, gapless data stream at the receiver is
to be described. While a conceptually simple mechanism, this thesis shall propose appro-
priate data structures to allow for efficient stream reassembly at the receiver: to avoid
reallocation and relocation of payload data while processing acknowledgments, received
segments should be stored in volatile memory once upon reception, with all other data
structures operating on pointers to locations in memory. This is not unlike Linux’s sk_buff
data structures as documented in Section 5.1.1. To ultimately reconstruct an in-order data
stream, the receiver should insert received segment’s payload data pointers into a FIFO
queue, if and only if the segment to be inserted is consecutive to the previous inserted
segment. For any out-of-order segments received, this thesis proposes to insert them into
a hash table, indexed by their transport protocol ID. Furthermore, the implementation
should retain the value of the next expected in-sequence ID. Then, the mechanism to han-
dle incoming segments works as follows: check whether the received segment’s transport
protocol ID matches the next expected ID. If it does, insert it into the in-order queue of
received segments. Furthermore, increment the ID by 1 and try to remove the element with
this index from the hash table, inserting it into the in-order queue. Repeat this process
until the hash table does not contain an element with the given ID.

5.4. The HELIX Protocol

Finally, based on the developments of the previous sections, the resulting HELIX protocol
can be described in its entirety. This section will present the developed network protocol
structure, including its on-wire format, reiterate the required message exchanges, and
present other details not yet discussed.

HELIX is largely agnostic over its underlying network protocol. While this thesis has
performed its analyses largely based on the combination of Ethernet and IP, every protocol
providing similar characteristics can potentially be used to transfer HELIX messages.
The most interesting alternative to using IP directly is to use UDP over IP as a carrier
for exchanged messages. While UDP features additional checksums for data integrity,
it does not generally supplement any reliability guarantees. However, it features a 16 bit
service identifier (port number), such as the one TCP provides. This enables differentiating
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individual HELIX connections between the same pair of hosts, and has native support
within virtually every general-purpose operating system.

The two basic types of HELIX messages exchanged between hosts are data transmissions
and acknowledgments. In contrast to TCP, given that HELIX only supports unidirectional
payload data flow, it does not combine these two types of messages into a single transmis-
sion unit. To be able to distinguish between these message types, every HELIX message
should start with a common header. Indicating the wrapped message (submessage) type
at the start of the packet allows efficient decapsulation with pipelined stream processing
architectures, as shown in Section 3.3.1. Furthermore, the header starts with a magic se-
quence of HLX, encoded using the American Standard Code for Information Interchange
(ASCII) into 3 octets, useful to identify invalid UDP datagrams. Finally, HELIX is by
design a parametrizable protocol: implementation constants such as the data word width,
chunk size, memory region length and ephemeral ID width are not specified as part of the
protocol, but depend on the individual hardware or FPGA implementation of it. Because
a serialization format dynamically encapsulating these parameters would be inefficient, the
HELIX network protocol on-wire format depends on these constants to be known ahead
of time, with the network encoding being determined through a deterministic set of rules,
based on these parameters. Given that the encoding and parsing of messages is fundamen-
tally dependent on these parameters, it is important to ensure that the HELIX transmitter
and receiver are in sync. For this reason, the common HELIX message header contains a
4 byte parameter digest sequence, which can be used to validate that transmitter and re-
ceiver use identical parameters. To retain the usefulness of this value, the message header
is, up to and including this sequence, fundamentally not dependent on these parameters.
Figure 5.7 shows the structure of this common header. The 4 byte parameter digest is de-
termined by encoding the well-defined set of parameters (as shown in Figure 5.8) using the
JavaScript Object Notation Canonicalization Scheme (JCS) as defined in RFC 8785 [38].
The Secure Hash Algorithm 2 with 256 bit output (SHA-256) is used to derive a digest
from the resulting encoded string. The first 4 octets of this digest as HELIX’s parameter
digest value. All fields shall be encoded as big endian (network byte order).

0 8 16 24

H L X Protocol
Version

Submes-
sage ID

HELIX Parameter Digest

Submessage Header and Payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 5.7.: On-wire format of every HELIX message. The common HELIX message
header encodes the magic byte sequence HLX, the protocol version, submessage
type, and the 32 bit parameter digest.
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{
"_parameters_version": 0, Version number incremented on every change to this inter-

change format.
"max_chunk_len": 8160, Maximum payload length of a segment / chunk in memory

(in bytes).
"chunk_addr_width": 16, Width of the address of a given chunk in memory (in bit).
"chunk_id_width": 48, Width of the transport protocol chunk ID field (in bit).
"ephemeral_id_width": 64, Width of the linked fragmented buffer ephemeral ID field

(in bit).
"chunk_tx_part_field_width": 4, If a given segment is to be split over multiple packets of

the underlying network protocol, this field specifies the
width of the part field of transported messages (in bit). If
max_chunk_len and the HELIX message headers fit within
a single packet, this field is set to 0.

"word_length": 32 Width of a data word (in bit).
}

Figure 5.8.: Example of a HELIX parameter specification shared between the transmit-
ter and receiver implementation. The information contained within this data
structure is sufficient to determine the on-wire layout for all HELIX mes-
sages. The HELIX parameter digest is determined by encoding this JSON
object through JCS, hashing it with SHA-256, taking the first four octects of
the resulting hash.

Whereas all fields in the common HELIX message header are aligned to 8 bit, with the
32 bit HELIX parameter digest aligned to 32 bit, such alignment would be inefficient to
maintain for the HELIX payload data submessage type. For this submessage, being as-
signed the submessage ID 0, and succeeding after the common HELIX message header,
the header field widths are defined through the individual protocol parameters respec-
tively. Based on the example presented in Figure 5.8, Figure 5.9 shows the payload data
submessage header layout derived from these parameters. Given that fields are no longer
aligned on a byte boundary, they are to be encoded sequentially from most to least sig-
nificant bit. However, appropriate padding is inserted to align the subsequent data words,
which are required to have a bit-width being a power of two, with at least 8 bit; these data
words are aligned on a 8 bit boundary for efficient processing at the receiver. To reduce the
relative overhead of chunk headers stored in the linked fragmented buffer, the maximum
chunk payload length and HELIX headers may exceed the underlying network protocol’s
maximum transmission unit (payload data length). For this reason, it is possible to split
a single segment, corresponding to a single chunk, into multiple parts. In this case, the
part field contains a counter incremented for every transferred part of such a segment.
The combination of ephemeral ID and part field allows the receiver to reassemble split
segments. For simplicity the receiver may assume that parts are not reordered in the net-
work; this implies that reordering or corruption of any part of a segment transmission is
equivalent to a loss of the entire segment.
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Figure 5.9.: On-wire encoding of a HELIX payload data submessage (submessage ID 0),
following the parameter specification of Figure 5.8.

Analog to the HELIX payload data submessage layout, acknowledgment submessages (ID
1) contain a compact packed representation of the following fields, in the specified order:
the address of the chunk preceding the leftmost chunk of the acknowledgment range, the
address of the acknowledgment’s leftmost chunk, the ephemeral ID of the leftmost chunk,
the address of the rightmost chunk, and the ephemeral ID of the rightmost chunk. The
message may be padded with arbitrary data to comply with any alignment constraints
imposed by the underlying network protocol.

One aspect which the described design does not cover is that of connection establishment
and management. As presented within Section 2.3 and Appendix A, TCP employs an
elaborate connection establishment and management scheme to be able to use an unre-
liable packet-oriented network layer as a basis to establish a reliable connection-oriented
communication channel. Considering the target application domains of this thesis, and
the complexity involved in an architecture such as the one used by TCP, it makes sense
to use established technologies to solve this issue. In particular, the developed protocol
is not suitable to establish a bidirectional control connection for the measurement data
receiver to communicate with the data acquisition device. Such a connection is assumed
to be required in most cases. Given its reduced performance requirements, this connection
can be implemented on an external microcontroller, or a processor synthesized within the
device’s FPGA itself. The software running on this processor can then use established
protocols such as TCP to establish a reliable communication channel, over which the re-
quired messages for connection establishment and management of HELIX are exchanged.
Specifically, it can be used to inform the sender of the receiver’s IP address and the port
HELIX data stream.

To automatically retransmit lost segments, HELIX has the inherent notion of lost segments
based on selective acknowledgment feedback. These segments can be transmitted as soon
as the congestion control mechanism allows. However, for data still presumed to be in-
transit and in cases of a lack of acknowledgments, a different mechanism to retransmit data
has to be employed. This problem has already been solved in TCP through the concept of
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a retransmission timeout (RTO) [20, p. 41]. This mechanism requires an estimate of the
path RTT, which is maintained for the congestion control mechanism anyways.

Finally, the remaining aspect to discuss is Nagle’s algorithm and its interaction with
the concept of delayed acknowledgments. Nagle’s algorithm has been designed to avoid
significant network overhead caused by the transmission of small packets, where packet
headers incur a relatively significant cost compared to the conveyed payload data. Thus,
Nagle proposes the following algorithm: if a packet is full, send it. If a packet is not full,
send it as long as the receiver has acknowledged all previously sent packets [34]. Whereas
HELIX is not primarily concerned with minimizing its network overhead, because each
transmitted segment also corresponds to a fixed-size chunk allocation in memory, it makes
significantly more effective use of its memory resources when full-size packets are sent.
Thus it makes sense to adopt Nagle’s algorithm or a slight variation of it. If this algorithm
is combined with delayed acknowledgments, as outlined previously, it can cause data to
arrive with a significant delay (up to the maximum acknowledgment delay and RTT) if
there is a partial segment to transmit [39]. While this poses an issue for interactive systems
or at the end of transfers, HELIX is designed for bulk data transfer only. Hence such delay
is tolerable in the case of reduced system load.

To conclude the protocol design section, the assumptions with respect to the provided
network and the behavior of HELIX shall be reiterated shortly: HELIX fundamentally
assumes that reordering of packets in the utilized network is not prevalent. While it is
tolerant of seldom reordering events, these events imply a retransmission of at least the
affected data; thus reordering significantly reduces the protocol’s efficiency and causes
data to occupy transmitter memory for longer periods of time. The protocol assumes that
the receiver always has sufficient memory available to buffer any segments as fast as they
are transmitted, even if there are temporarily gaps in the received data stream. Thus, no
flow control mechanism is employed. The protocol features limited resilience to network
congestion by integrating a congestion control mechanism. Nonetheless, if the available
network bandwidth is insufficient to match the data acquisition rate at the transmitter for
prolonged periods of time, data loss may be unavoidable.
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In order to validate the elaborated system concepts and the resulting protocol developed
in Chapter 5, this thesis shall provide a proof of concept implementation of the described
components. Given the problem statement of Chapter 4 and the fundamental presumptions
of this thesis, it is of particular importance for the proof of concept implementation to
validate that the developed solution is both correct and applicable to hardware platforms
(FPGAs) as employed by the target measurement devices. It is most important to provide
proof of concept implementations for the novel components and concepts developed as
part of this thesis, specifically the linked fragmented buffer structure, to support the
claims regarding this data structure’s correctness and applicability to the problem at hand
as well as performance. Thus, this chapter describes the implementations of individual
components developed throughout this thesis to provide the foundation for analyses of
correctness and performance in the subsequent chapter.

6.1. FPGA Implementation Environment

As described in the system model of Chapter 3, the measurement devices this thesis targets
are based on FPGAs. For such an FPGA device to be useful, however, it needs to feature
certain external peripherals such as DRAM modules or Ethernet connectors, as well as
an internal structure into which the implemented logic components can be integrated. As
both of these aspects will be provided by the respective measurement device itself, for the
intents and purposes of this thesis, a preexisting FPGA board integrating the required
peripherals, as well as a free and open-source FPGA system on a chip (SoC) framework
are used.

The FPGA board used for this thesis is the NetFPGA-SUME board [40]. This board
features a Xilinx Virtex-7 690T FPGA, connected to various onboard peripherals. Most
interesting for this thesis are two Small Outline Dual Inline Memory (SO-DIMM) slots,
each holding a 4Gbyte Double Data Rate 3 Synchronous Dynamic Random-Access Mem-
ory (DDR3-SDRAM) module. Furthermore, four 10Gbit/s Ethernet SFP+ interfaces are
connected to the FPGA, allowing it to directly interface with other 10Gbit/s-capable
Ethernet devices via electrical (copper) or optical links.

Furthermore, this thesis uses LiteX as an FPGA logic design framework, providing basic
peripherals and a structure into which the custom logic components can be integrated [41].
For instance, LiteX provides a unified memory bus, integrates processor designs (so-called
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softcores) and contains components implementing basic input/output functionality, such as
a universal asynchronous receiver-transmitter (UART) interface. Finally, LiteX can serve
as a basic portability layer between different FPGA boards, which reduces friction when
adopting the implemented logic designs to different boards or entirely different FPGAs.
More important than the core LiteX project, however, is the larger ecosystem built around
it, as well the Migen HDL used throughout this ecosystem: Migen implements a HDL as
a Python domain-specific language (DSL), by modeling logic circuits through a custom
abstract syntax tree (AST) implemented using objects within the Python programming
language [42; 41]. This hardware description language is particularly useful in the con-
text of this thesis. Because the developed memory model and the transport protocol are
designed to be parametrizable, adapting to various hardware limitations and user-defined
constraints, using Python as a DSL to describe hardware logic means that these param-
eters can be used to perform arbitrary computations and adjust the output accordingly.
Furthermore, it can, while building the logic design, automatically output a parameter
JSON file as shown in Figure 5.8.

As described in Section 3.3 of the system model, and as a logical consequence from the
design established in Chapter 5, the transmitter logic inherently needs to interface with an
Ethernet and IP network stack, as well as some DRAM memory controller. Conveniently,
LiteEth and LiteDRAM are projects of the larger LiteX ecosystem, providing sophisti-
cated implementations of such components respectively. While LiteEth contains much of
the infrastructure required to interface with remote hosts via 100Mbit/s and 1Gbit/s
Ethernet links and the IP and UDP protocols, support for 10Gbit/s Ethernet had to be
implemented as part of this thesis and has been integrated back into the LiteEth project
codebase. Specifically, the pipelined streaming data path used throughout LiteEth had to
be changed from being 8 bit wide, which would require the core to run at a clock frequency
of 10Gbit/s / 8 bit/cycle = 800 ps/cycle = 1.25GHz, which exceeds the timing constraints
of the employed FPGA even for low-complexity logic. Instead, the core is to be run at
64 bit/cycle, allowing to process 10Gbit/s Ethernet at a clock frequency of 156.25MHz.
This change required substantial rearchitecting of the mechanism to encapsulate and de-
capsulate packet headers (Packetizer and Depacketizer components). Furthermore, the
XGMII interface to integrate with 10Gbit/s Ethernet PHYs had to be integrated with the
LiteEth MAC, including appropriate inter-frame gap maintenance and integration of the
deficit idle count mechanism as defined in IEEE standard 802.3 [4, sec. 4, 46.3.1.4].

Given this environment, the individual components to be validated for this thesis can be
implemented as self-contained Migen modules, having access to the required interfaces of
the LiteDRAM memory controller to interface with DDR3-SDRAM memory modules, and
access to the LiteEth core to integrate with the provided UDP socket hardware interface.
This chapter continues by describing the implementation of the linked fragmented buffer
and, based on this component, the implementation of the HELIX protocol.
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6.2. Linked Fragmented Buffer Implementation

The proof-of-concept implementation presented throughout this section is based on a
slightly modified version of the linked fragmented buffer design as presented in Sec-
tion 5.1.3. Specifically, it does not feature a combined in-transit and pending chunk list.
Instead, all chunks inserted into the data structure are immediately contained within the
in-transit list. Hence implementation of the operation of transmission of pending data of
Section 5.1.3.2 is not required. This simplified design does, however, mandate an additional
and separate buffer to hold incoming measurement data until it can be transmitted over
the network and inserted into the linked fragmented buffer, respectively. This simplified
architecture is feasible to validate the correctness of the linked fragmented buffer design
and to evaluate its performance, as extending it towards the design elaborated in Chap-
ter 5 does not introduce additional manipulations of in-memory data. In fact, the design
of Chapter 5 reduces overhead by avoiding copies from the first-stage buffer of incom-
ing measurements into the second-stage linked-fragmented buffer for in-transit data while
necessitating slightly more complex management logic. Hence the implemented module
will have worse or comparable performance to an implementation fully adhering to the
presented design of Chapter 5.

The linked fragmented buffer component will primarily interface with the LiteDRAM mem-
ory controller to read from and write to the attached DRAM memory, respectively. In turn,
it exposes interfaces implementing the operations described throughout Section 5.1.3.2. It
is essential to understand the interfaces provided by LiteDRAM first to devise the logic
required to implement the data structure in its entirety.

6.2.1. DRAM Memory Interfaces

Through its nature, DRAM memory requires complex controller logic to operate. For in-
stance, memory cells need to be refreshed regularly to retain their contents [43, pp. 76, 88–
89]. Furthermore, DRAM memory requires some strict timing constraints to be adhered to
by the controller. LiteDRAM is an implementation of such a DRAM controller, abstract-
ing the complex hardware constraints of the DRAM modules themselves and providing
conceptually simple interfaces for application logic to interface with the memory. Notably,
the provided interface’s data width is largely independent of the DRAM module’s data
width. This is because the DRAM module operates at a different clock frequency than the
application logic. Thus, LiteDRAM will automatically determine the appropriate interface
width to be able to transfer sufficient data to satisfy the available DRAM interface band-
width. For instance, for the NetFPGA-SUME board with MT8KTF51264 DRAM modules
operated at 625MHz, the application logic operating at 156.25MHz is provided with a
512 bit-wide interface for a theoretical memory bandwidth of 10GB/s.

To access the DRAM memory and perform required refresh operations efficiently, Lite-
DRAM features a look ahead interface. Before accepting data to write or providing read
data, LiteDRAM consumes a limited number of commands, indicating the addresses to
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operate on and whether a read or write operation is requested. Thus, it is important to
enqueue multiple operations, and not to wait for a single operation to be completed before
performing the next, in order to utilize the available memory bandwidth efficiently. The
controller additionally features embedded functionality to provide multiple such ports to
the application logic and automatically process requests from any provided ports.

To reduce the complexity of the provided native LiteDRAM ports, where user logic must
maintain commands and write or read data separately, LiteDRAM further provides so-
called DMAWriter and DMAReader modules. The DMAReader can enqueue a limited number
of read-operations, which will then be processed sequentially and transparently by Lite-
DRAM, with the results placed into a FIFO buffer for later processing by the application
logic. The DMAWriter can enqueue a limited number of write-operations, accepting both
the memory address and data to be written in a single cycle. It will then transparently pro-
cess these write operations. While these modules provide simple interfaces to interact with
the DRAM controller from application logic, specifically for the DMAWriter being buffered
means that the time it takes from a write operation being accepted to the write being
committed is generally unknown; this problem will be covered further in Section 6.2.3.

For the remainder of this chapter, we can conclude that the interfaces exposed to the user
application by the DRAM controller are structured as outlined in Table 6.1. For each of
the streaming pipelined interfaces, a bus transaction occurs when the producer asserts
valid with all associated data, and the consumer asserts ready in the same clock cycle.

Read Port Write Port
C → A cmd_ready C → A ready
A → C cmd_valid A → C valid
A → C cmd_address[n] A → C address[n]
A → C res_ready A → C data[m]
C → A res_valid
C → A res_data[m]

Table 6.1.: DRAM controller interfaces using the DMAReader and DMAWriter modules for
reading and writing memory data, respectively. Each signal is either from
DRAM controller C to application logic A or from A to C. The memory ad-
dress is n bit wide, the DRAM controller data word is m bit wide.

6.2.2. Linked Fragmented Buffer Implementation Architecture

Based on these DRAM interfaces, an architecture for the implementation of the linked
fragmented buffer can be developed. While the design developed throughout Section 5.1.3
fundamentally describes a single, coherent data structure and memory model, it makes
sense to divide its implementation into individual components of lower complexity. This
is motivated by the fact that in hardware systems such as FPGAs, all logic is executed
in parallel. Thus, if two operations were to commence simultaneously, updating a single
in-memory location or a control data register such as the in-transit list head pointer may
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Figure 6.1.: Linked fragmented buffer implementation architecture and intergration with
the LiteDRAM memory controller. Each supported operation is implemented
through its own independent module, while central state is managed and or-
chestrated by the central state and arbitration module.

result in an unintended inconsistency in the data structure, not unlike race conditions
with insufficient synchronization in software systems. By implementing each of the indi-
vidual operations as described within Section 5.1.3.2 in its own module, and synchronizing
accesses to shared data through a central arbitration module, maintaining the data struc-
ture’s consistency is a matter of appropriate synchronization of each module’s requests. A
first implementation of this linked fragmented buffer did not define such clear abstractions
and was consequently suffering from severe inconsistencies in the data structure, especially
when different operations were executed simultaneously. Figure 6.1 shows an illustration
of this architecture.

The central arbitration module is responsible for holding the following state in registers
(i.e., device internal SRAM), performing all modifications of it, and orchestrating all ma-
nipulations of the linked-list structures in memory:

• it_head: the in-transit list’s head chunk pointer
• it_head_ephid: the in-transit list’s head chunk ephemeral ID + 1
• it_tail_ephid: the in-transit list’s tail chunk ephemeral ID
• rt_head: the retransmit list’s head chunk pointer
• rt_tail: the retransmit list’s tail chunk pointer
• rt_head_ephid: the retransmit list’s head chunk ephemeral ID + 1
• rt_tail_ephid: the retransmit list’s tail chunk ephemeral ID
• rt_count: the retransmit list chunk count

The central arbitration module does not need to keep track of the in-transit list’s tail
chunk pointer. This is because upon insertion of a chunk, given the fixed size chunk
allocations, the next chunk allocation can already be reserved. Thus the address of the
to-be inserted chunk’s next chunk pointer is known even before its successor is written
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into memory, and it does not need to be manipulated upon insertion of a new chunk.
Furthermore, due to the strictly and monotonically increasing nature of the in-transit
list’s ephemeral IDs, the count of elements within the in-transit list can be calculated
as it_tail_ephid − it_head_ephid. This is not possible for the retransmit list, as the
ephemeral IDs of elements in this list are strictly but not monotonically increasing.

The following operations, implemented through individual modules, each operate directly
on the DRAM memory region. However, before commencing any operation, they must
generally request permission at the central arbitration module. Along with this request,
these modules provide all relevant data describing the requested operation. If this request
is granted, the respective module is obliged to inform the central arbitration module of the
successful or erroneous completion of the announced operation. Using this information, the
central arbitration module is able to ensure that the centrally managed state remains con-
sistent with the in-memory representation of the data structure and can prevent colliding
operations from executing in parallel.

Input and Initialization Following Section 5.1.3.4, to initialize the linked fragmented buffer
structure in memory, the valid flag for every possible chunk start address has to
be asserted. Given that the module responsible for inserting chunks into the data
structure has the required DRAM memory interfaces to write to memory, these
two operations can be combined. The initialization port provided to the user of the
linked fragmented buffer features two signals: an input signal start and an output
signal done. It is sufficient to assert start for a single cycle, which will start the
initialization procedure. The module will assert done for a single cycle when it is
initialized.

The data input interface is more complex. This is because the module needs to
accept payload and metadata. When a chunk is completed, the input interface needs
to provide certain properties of the written chunk for them to be passed on to the
transport protocol, such as the chunk’s ephemeral ID and address in memory. Finally,
the input interface must accept data words of width n bit (e.g., 32 bit). However, the
underlying DRAM interface may be significantly wider, as illustrated in Section 6.2.1.
This implies that, to sustain bursts of incoming data from the data source, the input
interface may need to accept up to c data words in a single cycle, with 1 ≤ c ≤ ⌈ n

N
⌉

for an N bit-wide DRAM interface. In turn, this requires the module to not only
accept an N bit data signal, but furthermore a signal indicating how many valid and
left-aligned data words of n bit this data signal holds.

Peek Head The peek head module performs the duties of in-transit head peeking as de-
scribed in Section 5.1.3.2. Specifically, it observes three signals provided by the cen-
tral arbitration module: the current in-transit list head pointer, the in-transit list
element count, and the retransmit list element count. To provide the employed ARQ
mechanism with accurate information about the oldest unacknowledged chunk in
the buffer, this module invalidates any data previously provided over its interface
as soon as the in-transit list header pointer changes. Subsequently, it issues a read
request for the updated address. Once that read request has been completed, it pro-
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vides metadata such as the chunk’s transport protocol ID, ephemeral ID, and the
insertion timestamp on its interface.

The peek head module must not indicate read header data to be valid when the
in-transit list element count is 0, meaning that the observed head pointer is in-
valid, or when the retransmit list element count is not 0, meaning that there is at
least one known-lost segment to be retransmit before any ARQ retransmissions of
unacknowledged chunks.

Readback The readback module implements the logic required to retrieve data stored in
the linked fragmented buffer, either in response to a retransmission request through
the ARQ mechanism or in order to retransmit known-lost data from the retransmit
list. As such, it provides a simple interface: by observing the central arbitration mod-
ule’s current retransmit list element count, it provides a signal indicating whether a
chunk of the retransmit list is available to read. For the in-transit list, this is already
indicated through the peek head interface.

To request reading back a chunk the provided ready signal should be asserted. In re-
sponse to this signal, the implementation will latch onto a chunk to read back, where
priority is given to chunks contained in the retransmit list. If neither the retransmit
nor the in-transit list contain elements to read, the implementation indicates this
condition by asserting a stall signal. If, in a single clock cycle, ready is asserted
but stall is not, the readback request is accepted. The module will continue to
output up to c times n bit data words per cycle, analog to the input module, and
asserts an end signal on the last data word. In addition to that, after the full chunk
header has been read, it provides the respective header values such as the ephemeral
ID, transport protocol ID and payload data length for a single cycle, in which a
header_valid signal is asserted.

Although this module has a conceptually simple interface, an implementation mak-
ing efficient use of the DRAM interfaces as described in Section 6.2.1 is not trivial. To
utilize the full bandwidth of the DRAM memory and controller, multiple pipelined
read operations must be staged. Each of these staged requests will require multiple
cycles until the requested data is provided (request latency). However, because a
chunk contains its payload length specification in the in-memory header, the exact
number of DRAM words to read can only be determined after the chunk header has
been read. If the implementation were to wait for the header until issuing further
read requests, this would significantly decrease the readback performance. Thus an
efficient readback implementation must opportunistically insert potentially gratu-
itous reads before retrieving the chunk header and keep track of how many reads
have been issued. After the chunk header is read, the number of DRAM words to
be read can be determined. It may happen that the implementation has issued more
read requests than would be required to read all payload data; in this case, the
implementation has to also accept any read data in response to a gratuitous read
operation.
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Acknowledge Finally, the remaining module is the one responsible for processing acknowl-
edgments as per Section 5.1.3.2. It is also the most tightly integrated with the cen-
tral arbitration module, cooperating to transform the maintained list structures and
providing a consistent view of the data structure for other modules while an ac-
knowledgment is being processed.

To start an acknowledgment operation, this module is provided with all data present
in acknowledgment messages, namely the leftmost chunk’s predecessor address, the
leftmost chunk address & ephemeral ID, as well as the rightmost chunk address and
ephemeral ID. This information is also provided to the central arbitration module.
If the acknowledgment is not entirely contained in the in-transit list or its leftmost
chunk is currently being read back, the acknowledgment operation is refused. If the
acknowledgment operation is accepted, the readback module will not be granted
any requested read of the in-transit list head until the acknowledgment has been
processed.

When the central arbitration module grants the request, the acknowledgment module
continues by reading the next chunk pointer field of the rightmost chunk’s header
and provides this to the arbitration module. If the retransmit list is not empty and
the acknowledgment’s leftmost chunk does not coincide with the in-transit list’s head
chunk, chunk(s) left of the acknowledgment need to be appended to the retransmit
list. In this case, the arbitration module will request the readback module to rewrite
the retransmit list’s tail chunk’s next chunk pointer to point to the current in-
transit head element (refer to Figure 5.4 for a visual representation of this process).
Following this step, the central arbitration module modifies its internal state to
represent the acknowledgment accordingly, completing the acknowledgment process.

Finally, the linked fragmented buffer implementation further exposes a statistics interface,
which provides information about the number of chunks in the in-transit and retransmit
list, respectively. If more information about the buffer contents is required, this interface
could be extended to include additional information, such as the average inserted chunk
length or sparseness of the ephemeral ID space in the retransmit list.

6.2.3. FIFO-based Memory Access Hazard Detector

While the architecture and implementation strategy described in the previous section
significantly reduces the linked fragmented buffer implementation complexity, it has an
inherent issue when combining it with the DRAM interfaces described in Section 6.2.1.
Recall that the DRAM interface is pipelined for efficiency reasons, meaning that multiple
operations can be enqueued and pending before their writes or reads are executed, respec-
tively. This can cause severe inconsistencies in practice, for instance, when writing a chunk
and reading it back shortly afterward. When a chunk is inserted, its header DRAM word is
written last to correctly reflect the amount of payload data contained in the chunk. Read-
ing back a chunk from memory, however, reads the header first in order to determine the
number of subsequent DRAM words to read, using a different DRAM port. The readback
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operation will retrieve outdated data if the read is executed while the header write is still
pending. For this reason, a synchronization mechanism between different DRAM ports is
required.

In the context of central processing unit (CPU) design, when some memory is read before a
write has been committed to it in a sequence of pipelined instructions, this is referred to as
a read after write (RAW) data hazard. The hazard conditions of concern for this thesis are
not within a single DRAM port’s enqueued operations, but rather between the enqueued
operations of DRAM ports in conjunction with updates of the central arbitration state.
When a module performs an operation updating values in DRAM and also causing an
update to some central arbitration module registers, the register updates will be executed
before the DRAM writes are committed to memory. These register updates can trigger
different operations executed in parallel. When these parallel operations read memory
pending an uncommitted write, this memory is inconsistent with the central arbitration
registers. To avoid this hazard, it is sufficient to check whether a given address to be read
is already pending a write operation (referred to as a hazardous address), and wait until
all writes affecting this address have been committed. Such a hazard detection scheme,
efficiently implementable within an FPGA and compatible with the access patterns of this
thesis, shall be devised and implemented.

A simple but inefficient implementation of such a hazard detection mechanism is to use a
FIFO queue for addresses pending a write operation, stored in a circular buffer structure.
This structure’s head and tail pointers can be used to determine whether a given address
element is valid. Then, to test if a given address is hazardous, it needs to be compared
with every valid element of the address FIFO. Such a comparison of multiple multi-bit sig-
nals consumes a considerable amount of FPGA resources, with the resource consumption
increasing linearly over both the compared addresses and their bit width. Thus, a more
efficient method of testing for write hazard conditions needs to be developed.

Any hazard detection algorithm must ultimately keep track of addresses subject to pending
write operations. However, when making certain assumptions about the patterns of mem-
ory accesses, the number of comparisons can be reduced to achieve constant timing and
logic complexity. In the following text, wrapping address semantics are assumed, meaning
that an address specification x for an element in memory M with n elements describes the
memory location at the index of the corresponding least residue system element xM ≡ x
(mod n). If accesses are guaranteed to be sequential, a span over the addresses contained
in the FIFO queue can be described through addresses a and b: upon insertion of an ad-
dress x, if a = b, set a = x. In either case, set b = x + 1. When removing an element x, if
x = a, set a to the next element to be removed xnext. Now, for any address x ∈ [a, b), a
write may be pending, while for any address x /∈ [a, b) it can be guaranteed that there is
no write pending. However, this scheme only works when addresses are guaranteed to be
sequential, and no address x ∈ [a, b) is inserted in the FIFO queue. Figure 6.2 provides a
visual representation of this.

For write accesses, because of the memory allocation mechanism outlined in Section 5.1.3.4,
the access pattern induced by the linked fragmented buffer should be sequential on a
chunk granularity. However, when writing a single chunk, its payload data is written to
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Figure 6.2.: Illustration of a simple FIFO queue based hazard detection mechanism. By
tracking insertion and removal of sequential (but wrapping) addresses pending
a write operation in a FIFO queue, a hazardous region based on a start and
end address can be tracked. This scheme does not support insertion of an
address x ∈ [start, end ).

memory before its header, located at the start of the chunk in-memory address, violating
the constraints imposed by the above mechanism. This issue can be circumvented, as any
hazard condition is fundamentally only occurring when accessing header information: for
instance, when writing a chunk, because its header is written last, all payload data are
guaranteed to be committed to memory before the header. Reading a chunk starts with
the header, and thus if it is no longer hazardous, the payload data is also committed. Thus
it is sufficient to track write accesses to headers.

Still, the allocation scheme may cause a write to be issued within the span of potentially
hazardous addresses as defined by the above mechanism. Based on the above algorithm,
this thesis proposes an algorithm to handle these cases gracefully by marking the entire
memory as hazardous, until the count of addresses in the FIFO queue reaches 0. In that,
a fundamental assumption of the presented algorithm is that such writes into the span
of potentially hazardous addresses are exceedingly rare, which holds given the employed
memory allocation scheme. The algorithm requires the following control data to be main-
tained:

• address_count: a counter of addresses pending writes, contained in the observed
FIFO queue (initially 0).

• hazard_start: the start address of the hazardous region (initially 0).
• hazard_end: the end address of the hazardous region (initially 0).
• hazard_all: a Boolean flag whether the entire memory must be treated as hazardous

(initially deasserted).
• delayed_source: the previous address removed from the FIFO queue.

The hazard detection mechanism further observes which addresses enter and leave the
FIFO queue of addresses pending writes. Based on this information and its maintained
state, it implements the following algorithm. When an address leaves the FIFO queue,
perform these operations:

1. Decrement address_count.
2. If delayed_source = hazard_start, set hazard_start to the removed address.
3. If address_count = 0, deassert hazard_all.
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4. Set delayed_source to the removed address.

Furthermore, when an address enters the FIFO queue, perform the following operations:

1. Increment address_count.
2. If hazard_all is asserted, or the inserted address is contained in [hazard_start,

hazard_end), assert hazard_all and set hazard_end to hazard_start.
3. If hazard_all is deasserted, set hazard_end to the inserted address + 1.
4. If address_count is equal to 1 (meaning that it was 0 before inserting the current

address), set hazard_start to the inserted address.

Then, to test whether a given address is potentially hazardous, it is sufficient to perform
the following checks:

1. If address_count = 0, the address is not hazardous.
2. If hazard_all is asserted, the address is potentially hazardous.
3. If the address is in [hazard_start, hazard_end), it is potentially hazardous, other-

wise it is not hazardous.

Note that these tests are independent of the employed FIFO queue depth and multiple of
these tests can be run in parallel, based on the same control data. Thus, this algorithm
appears suitable for the purposes of this thesis.

6.3. HELIX Protocol Implementation

With the linked fragmented buffer as the core component of HELIX implemented, the
remainder of this chapter shall outline the implementation of the surrounding network
protocol. Figure 6.3 illustrates the overall structure of the proposed HELIX hardware
architecture.

Because of time constraints, it was not possible to provide a proof of concept implemen-
tation of the ARQ mechanism responsible for automatic retransmissions, as well as the
TIMELY congestion control algorithm, as part of this thesis. Thus this section will focus
on the implementation of the RTT estimation mechanism. Nonetheless, various parts of
HELIX already work, such as the transmission of segments, generation of acknowledg-
ments and data reassembly at the receiver, processing of acknowledgments and manually
triggered retransmissions.

6.3.1. Round-trip Time and Gradient Estimation

An estimation of the round-trip propagation delay between the sender and receiver is es-
sential for the implementation of an efficient ARQ mechanism and can further be used
by congestion control algorithms such as TIMELY. There are two different strategies to
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responsible for implementing specific parts of the HELIX protocol and their
interactions.
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retrieve an estimate of the current RTT. First, the sender can maintain a mapping of
unique packet identifiers (such as the ephemeral IDs) and the transmission time of the
respective packets. When it receives an acknowledgment concerning this packet identifier,
an estimate of the RTT is given by the difference between the acknowledgment recep-
tion time and packet transmission time. However, because HELIX’s acknowledgments can
cover an entire range of segments (and thus packets), it is important to calculate the
timestamps using the rightmost ephemeral ID supplied as part of the acknowledgment, as
this packet will have resided at the receiver for the least amount of time. A different and
likely more accurate method to measure the RTT, which does not depend on timestamps
maintained at the transmitter, is to include the transmission time t0 with a packet. When
the receiver receives this packet, it can record the reception timestamp t1. The acknowl-
edgment message will then contain the transmission time of the rightmost chunk t0 and
the interval tr = t2 − t1, where t2 is the approximate time this acknowledgment will be
sent at. Upon reception of the acknowledgment, the transmitter can estimate the RTT
as rtt ≈ t3 − t0 − tr, where t3 is the time of reception of the acknowledgment. However,
this requires sender and receiver to agree on a common time resolution, at least for tr.
Furthermore, the sender and receiver may not be syntonized, meaning that their clocks
increment time at a different rate. If this poses to be an issue, a protocol such as PTP
(IEEE 1588) can synchronize transmitter and receiver clocks.

Regardless of which method is used to obtain such RTT measurements, a single mea-
surement can be severely distorted due to network artifacts or scheduling behavior of the
receiving host, specifically if the receiving host is not capable of taking packet reception
and transmission timestamps in the NIC. A particularly simple and efficient method to
correct for such outliers in the data is to use a moving average filter over n RTT samples x
with x =

1
N
∑n−1

i=0 x−i [44]. In an FPGA design, this can be represented using a shift regis-
ter of depth n and an accumulator a. For each new sample, calculate ai = ai−1+x0−x−n.
The RTT is provided through x =

a
n

. If n ∈ {2m ∣ m ∈ N0}, this division can be expressed
as a left-shift operation by log2 n bit.

Congestion control algorithms such as TIMELY utilize the RTT to control the transmission
rate of data. Thus they are not interested in any absolute measurements of the observable
network propagation delay but rather its rate of change (gradient) [35]. The same argument
concerning the precision of a single measurement holds as above; thus, to determine the
RTT’s derivative, the averaged value x can be used as well. To obtain the rate of change
of x over time dx

dt
, for each new sample of xi produced, it shall be approximated by the

average of the difference of the current and previous samples xi − xi−1. The same moving
average filter as described in the previous paragraph can be applied to obtain an average
of this gradient.

This approximation appears to work reasonably well in practice. In an ns-3 based simu-
lation similar to that of Figure 5.6, the developed hardware implementation retrieves the
measured RTT values as observed by the receiver in response to varying degrees of link
utilization. The raw RTT measured within the deterministic simulation (blue plot) has
been mixed with normally distributed random noise, with a mean around µ = 1ms and
a standard deviation σ = 500µs. The output of the moving average filter producing x is
shown in black, following the raw RTT scale (blue). The unit- and dimensionless output
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Figure 6.4.: Estimation of the RTT and its gradient at the receiver, based on explicit
feedback through acknowledgments. This data has been obtained through a
deterministic ns-3 simulation. The blue plot shows the raw RTT observed
at the receiver through acknowledgment feedback. The black plot shows the
RTT estimator’s averaged RTT, based on the raw measurements mixed with
normally distributed random noise, following the blue plot’s scale. The dimen-
sionless estimated gradient based on this average value is shown in purple.

of the averaged gradient of this signal is shown in purple. While both the averaged RTT
measurement as well as its gradient show a delay compared to the raw RTT measurements,
they compensate the introduced noise well and give a good and stable estimation of the
RTT along with its rate of change.
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Given the novelty of many of the concepts introduced in this thesis, it is important to
verify their correctness and applicability to the problem at hand. Furthermore, the devel-
oped concepts should satisfy the performance metrics as required by the defined target
application area of the system model.

Unfortunately, given the time constraints of this thesis, it was not possible to provide
proof-of-concept implementations of some components essential to the operation of the
designed protocol, specifically the ARQ mechanism and congestion control algorithm. For
this reason, end-to-end measurements of the developed solution are not possible. Nonethe-
less, the system aspects for which no implementation exists are based on well-established
concepts and algorithms. Therefore, we focus our performance evaluation on the novel
concepts proposed in this thesis to show that they meet their performance targets and do
not impose an upper bound on HELIX’s performance.

Thus, this chapter will first present methods to test the individual component’s correctness,
emphasizing on testing the linked fragmented buffer. Following this, a benchmark of the
linked fragmented buffer in a worst-case sustained load scenario is demonstrated.

7.1. Verification of Hardware Modules: Methodology

For any designed software or hardware component, it is important to test and verify that
it behaves as expected. There are multiple approaches to validate that some software or
hardware system adheres to a given specification. Fundamental to design verification is that
in order to verify a design, one must devise design approach from the underlying component
specification, different than that of the implementation. If the verification is simply carried
out as a reimplementation of the same algorithms and mechanisms of the implementation,
this does not necessarily verify that the implementation to be tested complies with its
specifications [45]. Verification can be used to uncover both implementation errors, as well
as noncompliance with a formal specification, depending on what information is available
during verification and at what level the verification is carried out. Generally, one can
distinguish between two types of verification methodologies: simulation-based verification
and formal verification. Formal verification validates adherence to a set of formally defined
rules and exhaustively checks whether these rules are upheld. In contrast, simulation-based
verification stimulates a design with certain input data (test vectors) and validates that
produced output data are correct through a so-called test bench [45].
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For the intents and purposes of this thesis, the provided components shall be tested us-
ing a simulation-based verification approach. This is motivated by the high complexity
involved in defining a formal specification for complex components, such as the linked
fragmented buffer. Simulation-based verification can test compliance with a specification,
although without formal verification no definitive statement can be made about whether
a component is fully compliant with such a specification. However, simulation approaches
in which test vectors are generated randomly—according to a set of rules (fuzzing)—can
excercise many conditions implemented in such a component without tedious specification
of the individual test vectors. Despite not being able to make formal guarantees about the
design, fuzzing shall be used to verify the components developed as part of this thesis.

This section illustrates the fuzzing approach based on the devised hazard detection scheme
of Section 6.2.3. Extensive fuzzing-based test benches have been developed for many of
the additional components implemented throughout this thesis, including the LiteEth
Packetizer and Depacketizer components. The Migen HDL provides the required in-
frastructure to implement test benches using arbitrary logic written in the Python pro-
gramming language [42].

A test using randomly generated addresses shall be conducted to validate that the devised
hazard detection algorithm can indeed detect hazardous conditions. For this, the hazard
detection component is instantiated, along with a FIFO queue of addresses, as required
by the component. Per test cycle, with a chance of 50%, a random address is inserted
into the FIFO queue. Furthermore, with a chance of 50% and if the queue contains at
least one element, the tail address is removed from the queue. Then, the implementation
injects random addresses into the linked fragmented buffer test port and observes whether
they are reported as hazardous. If an address is not reported as hazardous although it
is contained in the FIFO queue, the module is not compliant with its specification. To
end the tests eventually, the number of tested cycles is limited. If this number is reached
without any error, the test is deemed successful.

However, the above tests would succeed even if the component were to report every
tested address as hazardous. It must additionally be verified that in the case of sequential
addresses ranging from a to b, any address not contained in the span of [a, b) is non-
hazardous. Thus a second test bench will insert and remove addresses as described above.
However, it ensures addresses are sequential and keeps track of the span of addresses [a, b)
contained in the queue. It does not insert any address x ∈ [a, b). Then, it tests both
addresses xh ∈ [a, b), which must be reported as hazardous, and xnh /∈ [a, b), for which
the module must not report a hazard condition.

With this basic understanding of verifying and especially fuzzing of hardware modules, we
can proceeed to testing the linked fragmented buffer component.
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7.2. Verification of the Linked Fragmented Buffer

A significant difficulty in verifying the correctness of the linked fragmented buffer com-
ponent is that it provides multiple interdependent interfaces, which can all operate in
parallel. Combined with the ability to store data for extended periods, a simple stream of
input and corresponding output vectors is insufficient to model the module’s functional
specification.

Instead, the module shall be modeled as described in Section 5.1.3. However, this abstract
representation should only represent the minimum required information to model the
module’s input and output behavior over time. The data structures employed in this model
need not be efficient if this were to make the model more complex. This is in contrast to
the proper implementation, which is exceedingly complex due to arbitration of operations,
the requirement to interface with the LiteDRAM memory controller, bounds on the logic
and time complexity of implemented operations, and parallelism of the implemented logic
in general. Thus the tests implemented for this module do not verify the correctness of
the end-to-end behavior of HELIX, but the adherence of the linked fragmented buffer
to its specification. As such, it is further evidence (albeit not formally proven) that the
proposed design of Chapter 5 does indeed work given the combination of input-, register-
and DRAM-maintained data.

The central test bench maintained state is:

• intransit_chunks: A list of chunks contained in in-transit lists. Each element con-
tains the respective chunk’s payload data, the transport protocol chunk ID, as well
as the ephemeral ID and chunk address returned upon insertion.

• retransmit_chunks: A list of chunks contained in the retransmit list. It holds the
same type of data as contained in the intransit_chunks.

• sent_chunks: This list represents the list of chunk message and shall emulate a
network transport. Chunks transition through this list in a FIFO fashion. Each ele-
ment contains the transport protocol chunk ID, the ephemeral ID and chunk address
returned upon insertion, as well as the previous chunk address and a transmission
timestamp. This timestamp is used to emulate a network propagation delay.

Based on this central state, multiple test benches are defined. Each of these test benches
executes independently of the others, sharing only the central state as described above. In
contrast to the linked fragmented buffer logic, which by nature of FPGAs runs entirely in
parallel, the test benches are evaluated sequentially per simulated hardware clock cycle,
alleviating many internal synchronization and consistency concerns.

The linked fragmented buffer module is exercised through these test benches in the follow-
ing ways. Note that this is not an exhaustive list of cases tested; the proper test benches
test significantly more invariants.

• The input test bench randomly generates chunks with random payload data and a
random transport protocol ID. It attempts to insert these chunks into the linked
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fragmented buffer. Invariants validated in these tests include checks to ensure that
an insertion operation is not refused unless the ephemeral ID span of the in-transit
and retransmit lists indicate the memory might be entirely occupied. Upon successful
insertion of a chunk, it is placed into the intransit_chunks and sent_chunks queue.

• The peek head test bench verifies that the peek head port indicates valid chunk
metadata if and only if there is at least one chunk in the in-transit list and no chunk
in the retransmit list. If it indicates to present valid metadata, these data are checked
to correspond to the intransit_chunks’s head element.

• The readback test bench tries to read chunks from the buffer opportunistically. If
the linked fragmented buffer indicates a stall condition, it verifies that both in-
transit_chunks and retransmit_chunks must be empty. If reading a chunk suc-
ceeds, it validates that this chunk must be the retransmit list’s head element if
retransmit_chunks is not empty or the in-transit list’s head element otherwise.
The test bench will remove the head element of the appropriate list.

• Finally, the acknowledge test bench observes the sent_chunks state. If a time tδsnt
has passed since the head element has been inserted, it will be removed from this
list and either (randomly) dropped or counted toward the current pending acknowl-
edgment. If no pending acknowledgment exists or this chunk can be appended to a
pending acknowledgment, an acknowledgment may not be produced immediately. If
a pending acknowledgment exists and the current received chunk is non-consecutive
to it, the pending acknowledgment will be provided to the linked fragmented buffer
immediately. Finally, an acknowledgment may only be pending for a time tδack before
it is provided to the linked fragmented buffer. The linked fragmented buffer must
accept this acknowledgment if its chunks are entirely contained in the in-transit list
and refuse it otherwise.

This fuzzing-based test architecture exercises many of the defined list transmutations and
state transitions of the linked fragmented buffer component eventually. The tests are writ-
ten such that they can verify adherence to the abstract model presented in Chapter 5.
In practice, this test architecture helped uncover many implementation inconsistencies,
particularly when performing certain operations in parallel. Furthermore, multiple insuf-
ficiently handled edge cases (such as moving elements to the retransmit list when it is
empty) have been detected. Over the course of multiple days, the current linked frag-
mented buffer module implementation has been tested with over 1.5 million randomized
chunk insertions and acknowledgments or reads, respectively, without detecting an error.
From this, it can be concluded that the current implementation appears to be correct
and compliant with respect to the specification of Chapter 5, at least for the transitions
executed by the test benches as outlined above.

7.3. Linked Fragmented Buffer Load Benchmarks

Although implementations of the ARQ mechanism and congestion control algorithm are
required to make statements about HELIX’s end-to-end performance achievable on the
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available hardware, this section aims to show that the linked fragmented buffer component
does not pose an upper bound to these metrics.

To achieve a worst-case performance benchmark of the developed component, it should be
subjected to an access pattern which incurs the highest cost on its internal bottleneck. In
the case of the linked fragmented buffer, because all ports operate using modules running
in parallel, this internal bottleneck is the shared LiteDRAM-provided memory interface.
The LiteDRAM controller must multiplex all requests of all ports onto a single stream of
operations operating on the physical memory module. Thus, a worst-case access pattern
for this bottleneck component should be the insertion of chunks, followed by a delayed
parallel readback of all inserted chunks. For the HELIX protocol, this would correspond
to loss of an entire sequence of segments, while receiving new incoming data.

The memory bandwidth achieved with LiteDRAM on the NetFPGA-SUME board with
a single 4Gbyte MT8KTF51264 DDR3-SDRAM module, for entirely sequential accesses, is
approximately 7.2GiB/s for writing and 5.6GiB/s for reading data. These figures have
been obtained through the integrated LiteDRAM speed test.

Given the benchmark scenario described above, the linked fragmented buffer component
achieves a goodput data rate of 2.9GiB/s under a sustained read and write load. This
figure is reassuring and suggests that the linked fragmented buffer achieves an acceptable
level of performance on the given hardware platform, especially considering an available
Ethernet link bandwidth of 10Gbit/s.
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Lastly, this chapter reviews the concepts established and work done throughout this thesis.
It further summarizes potential future work to continue the development and evaluation
of the HELIX network protocol and system architecture.

8.1. Conclusion

This thesis gave an extensive overview of what reliability in the context of communication
protocols entails. Based on this knowledge, protocols establishing a reliable communica-
tion channel based on an unreliable packet-oriented data transfer mechanism, such as the
IP protocol, have been examined. Specific emphasis has been placed on analyzing the
TCP protocol, being the most common protocol for reliable data transfer over the inter-
net and thus representative of years of research and development. This analysis outlined
concepts such as automatic repeat requests (ARQs), flow control and congestion control,
and their importance in protocols aiming to efficiently and reliably exchange data over the
internet.

Following the required background knowledge, the system model described the class of de-
vices targeted by this thesis, resource constraints, interface characteristics, and the associ-
ated challenges in establishing a reliable communication mechanism within such hardware
systems. The problem statement formulated the issues identified in applying the concepts
of reliable transmission protocols to the devices considered for this thesis.

With the express goal of developing a reliable communication protocol and associated
system concepts suitable for implementation in an FPGA-based measurement device,
Chapter 5 has explored the design space of data buffering techniques at the transmit-
ter, flow control and congestion control mechanisms and implementation concepts for the
receiving host. The novel linked fragmented buffer in-transit and retransmit data man-
agement architecture is of significant importance to the protocol’s performance, as well
as implementation efficiency and feasibility. It combines knowledge of data structures and
FPGA design constraints with assumptions of the network behavior and concepts estab-
lished through preexisting protocols like TCP into an efficient and coherent architecture to
buffer data at the transmitter. Specifically, integrating aspects of memory management at
the transmitter into the network protocol is an innovative design aspect not yet considered
in other preexisting reliable communication protocols. Based on these considerations, the
design section concludes by presenting the developed protocol, called HELIX.
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Finally, this thesis provides a proof-of-concept implementation of HELIX and the linked
fragmented buffer component to validate their implementation feasibility and correctness
and further perform benchmarks to evaluate their performance. Unfortunately, due to time
constraints, certain mechanisms important to the operation of the HELIX protocol have
not been implemented. This prevents obtaining end-to-end measurements. Nonetheless,
tests and measurements of the linked fragmented buffer component indicate that its de-
veloped implementation is correct, adheres to the developed specification, and does not
impose an upper bound on HELIX’s achievable performance.

8.2. Future Work

While this thesis established essential concepts for the development of reliable commu-
nication protocols for hardware (FPGA) systems, it is by no means complete. First and
foremost, the ARQ mechanism and congestion control algorithm must be implemented to
enable testing and verifying the implementation of HELIX in an end-to-end system.

Such a complete system can then be used to further analyze the developed memory archi-
tecture, network protocol semantics, and other concepts developed throughout this thesis.
With the basic novel ideas behind HELIX and the linked fragmented buffer established,
further research is required to estimate their effectiveness in real-world scenarios.

For instance, the HELIX protocol could utilize interleaved forward error correction (FEC)
codes to mitigate the effect of packet losses in the network. Such an approach has been
shown to be effective in practice [46].

Furthermore, the heap memory allocation scheme presented in Section 5.1.3.4 could be
optimized further through introduction of an additional list based structure, as suggested
by Weinstock and Wulf [33].

Apart from these concrete suggestions, although HELIX is technically incompatible to
TCP as standardized in RFC 793, it shares many similarities, especially with respect to
its network behavior and integration of ARQ and congestion control mechanisms. Thus
it can benefit from much of the research done on TCP to adapt it to certain network
architectures, load scenarios, or to generally improve its efficiency.
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A. Transmission Control Protocol
Connection State Transition Diagram
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Figure A.1.: TCP connection management state machine, maintained at both ends of a
TCP connection. The bold solid transitions are performed by the active-open
(client) endpoint, the bold dashed transitions are executed by the passive-
open (server) endpoint. Bidirectional data transfer can commence when both
client and server are in the established state. Figure taken from Computer
Networks by Tanenbaum and Wetherall [17, p. 564].
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