
Stochastic Neural Networks:
Components, Analysis, Limitations

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Florian Neugebauer

aus Traunstein, Deutschland

Hauptberichter: Prof. Dr. Ilia Polian

Mitberichter: Prof. Dr. John P. Hayes

Prof. Dr. Weikang Qian

Tag der mündlichen Prüfung: 19. September 2022.

Institut für Technische Informatik der Universität Stuttgart

2022

Contents

Acknowledgments vii

Abstract ix

Zusammenfassung xi

List of Abbreviations xvii

1 Introduction 1

2 SC Background 5

2.1 History of SCNNs and related works . 5

2.2 Basic components and operations . 6

2.2.1 Number representation and basic operations 6

2.2.2 Correlation and SN generation 9

2.2.3 Random number sources in SC 13

2.2.4 Sources of inaccuracy and accuracy estimation 19

2.2.5 Convolutional neural networks and stochastic neural networks . 23

I Components and Error Resilience

3 SCNN Components 35

3.1 NMax: An accurate stochastic maximum function 35

3.1.1 The maximum function in SC . 35

3.1.2 NMax design details . 38

3.1.3 Analysis and evaluation . 41

iii

3.2 SBoNG: An S-box based number generator 45

3.2.1 Challenges of stochastic number generation 45

3.2.2 SBoNG design and evaluation 52

3.2.3 Statistical analysis of SBoNG . 57

4 Error Resilience 65

4.1 Robustness of stochastic circuits . 65

4.1.1 Capture errors and simulation procedure 69

4.1.2 Design of simulated circuits . 71

4.1.3 Gate-level bit flips . 77

4.1.4 Timing error analysis . 84

4.1.5 Summary of SC’s error resilience 94

4.2 Adversarial attacks on SCNNs . 96

4.2.1 Attack algorithms and attack scenarios 97

4.2.2 Evaluation of adversarial attacks on SCNN 102

4.2.3 Interference of randomness with adversarial attacks 106

II Analysis and Limitations

5 Extended Accuracy Management Framework 113

5.1 Sequential circuits without feedback . 114

5.2 Sequential circuits with feedback . 119

6 On the Limitations of SC 123

6.1 On implementable functions in SC . 123

6.2 On types of stochastic circuits and practical limitations 127

6.2.1 Practical limitations of scaled addition 130

7 Conclusion 135

Bibliography 139

A Appendix 147

A.1 Proof of NMax correctness . 147

iv

A.2 Proof that the maximum function is convex 150

A.3 Proof of equation 6.6 . 150

Publications of the Author 153

v

vi

Acknowledgments

I would like to thank Ilia Polian for giving me the opportunity to work on this thesis, and

his great support and supervision over the years in Passau and Stuttgart. I would also like

to thank my advisers John Hayes and Weikang Qian for reviewing this work. My thanks

also go to Mirjam, Lothar and Helmut as well as all my colleagues at the institute for all

of their support. A special thank you to Maël for being the best friend and officemate

throughout the years, both inside and outside of work. I further want to thank Xiaoqing

Wen for hosting me at the Kyushu Institute of Technology for one semester, which was a

great experience. For his help and support during that time as well as his contribution

to this work, I want to thank Stefan Holst. I would also like to thank Ponnanna Kelettira

Muthappa, Junseok Oh and Vivek Vrujlal Vekariya, who worked on various SC-related

projects with me during and after their studies at Stuttgart.

My biggest thanks go to my family and especially my parents. I never had to worry because

I always knew I could count on your help and support in any situation.

Stuttgart, July 2022

Florian Neugebauer

vii

viii

Abstract

Stochastic computing (SC) promises an area and power-efficient alternative to conven-

tional binary implementations of many important arithmetic functions. SC achieves this

by employing a stream-based number format called Stochastic numbers (SNs), which en-

ables bit-sequential computations, in contrast to conventional binary computations that

are performed on entire words at once. An SN encodes a value probabilistically with

equal weight for every bit in the stream. This encoding results in approximate computa-

tions, causing a trade-off between power consumption, area and computation accuracy.

The prime example for efficient computation in SC is multiplication, which can be per-

formed with only a single gate. SC is therefore an attractive alternative to conventional

binary implementations in applications that contain a large number of basic arithmetic

operations and are able to tolerate the approximate nature of SC. The most widely con-

sidered class of applications in this regard is neural networks (NNs), with convolutional

neural networks (CNNs) as the prime target for SC. In recent years, steady advances have

been made in the implementation of SC-based CNNs (SCNNs). At the same time however,

a number of challenges have been identified as well: SCNNs need to handle large amounts

of data, which has to be converted from conventional binary format into SNs. This conver-

sion is hardware intensive and takes up a significant portion of a stochastic circuit’s area,

especially if the SNs have to be generated independently of each other. Furthermore, some

commonly used functions in CNNs, such as max-pooling, have no exact corresponding SC

implementation, which reduces the accuracy of SCNNs.

The first part of this work proposes solutions to these challenges by introducing new

stochastic components: A new stochastic number generator (SNG) that is able to gen-

erate a large number of SNs at the same time and a stochastic maximum circuit that

enables an accurate implementation of max-pooling operations in SCNNs. In addition, the

ix

first part of this work presents a detailed investigation of the behaviour of an SCNN and

its components under timing errors. The error tolerance of SC is often quoted as one of

its advantages, stemming from the fact that any single bit of an SN contributes only very

little to its value. In contrast, bits in conventional binary formats have different weights

and can contribute as much as 50% of a number’s value. SC is therefore a candidate for

extreme low-power systems, as it could potentially tolerate timing errors that appear in

such environments. While the error tolerance of SC image processing systems has been

demonstrated before, a detailed investigation into SCNNs in this regard has been miss-

ing so far. It will be shown that SC is not error tolerant in general, but rather that SC

components behave differently even if they implement the same function, and that error

tolerance of an SC system further depends on the error model.

In the second part of this work, a theoretical analysis into the accuracy and limitations of

SC systems is presented. An existing framework to analyse and manage the accuracy of

combinational stochastic circuits is extended to cover sequential circuits. This framework

enables a designer to predict the effect of small design changes on the accuracy of a circuit

and determine important parameters such as SN length without extensive simulations. It

will further be shown that the functions that are possible to implement in SC are limited.

Due to the probabilistic nature of SC, some arithmetic functions suffer from a small bias

when implemented as a stochastic circuit, including the max-pooling function in SCNNs.

x

Zusammenfassung

Stochastic computing (SC) verspricht eine flächen- und energieeffiziente Alternative zu

konventionellen binären Implementierungen vieler arithmetischer Funktionen. SC er-

reicht dies durch Verwenden eines stream-basierten Zahlenformats, genannt Stochastic

numbers (SNs), das bit-sequentielle Berechnungen ermöglicht, im Gegensatz zu Berech-

nungen im konventionellen Binärformat, die auf vollständigen Wörtern ausgeführt wer-

den. Eine SN codiert einen Wert probabilistisch, wobei jedes Bit im Stream gleich gewichtet

wird. Diese Codierung verursacht approximative Berechnungen, was zu einem Kompro-

miss zwischen Energieaufnahme, Fläche und Berechnungsgenauigkeit führt. Das Muster-

beispiel für effiziente Berechnung in SC ist die Multiplikation, die mit nur einem einzelnen

Gatter durchgeführt werden kann. SC ist deshalb eine attraktive Alternative zu konven-

tionellen Binärimplementierungen für Anwendungen, die eine große Zahl an einfachen

arithmetischen Operationen besizten und dabei die approximativen Berechnungen durch

SC tolerieren können. Die diesbezüglich am häufigsten betrachtete Klasse von Anwen-

dungen sind neuronale Netzwerke (NNs), mit convolutionellen neuronalen Netzwerken

(CNNs) als Hauptziel für SC. In jüngerer Vergangenheit wurde dabei stetiger Fortschritt

bei der Implementierung von SC-basierten CNNs (SCNNs) gemacht. Gleichzeitig wur-

den jedoch auch einige Herausforderungen identifiziert: SCNNs müssen große Mengen

an Daten verarbeiten, die von konventionellem Binärformat zu SNs konvertiert werden

müssen. Diese Konvertierung ist hardware-intensiv und verbraucht einen signifikanten

Anteil der Fläche einer stochastischen Schaltung, insbesondere wenn die SNs unabhängig

voneinander generiert werden müssen. Desweiteren besitzen einige häufig verwendete

Funktionen in CNNs, wie beispielsweise die max-pooling Funktion, keine exakte SC Im-

plementierung, was die Genauigkeit von SCNNs reduziert.

Der erste Teil dieser Arbeit präsentiert Lösungen für diese Herausforderungen in Form

xi

neuer stochastischer Komponenten: Ein neuer stochastic number generator (SNG), welcher

eine große Zahl an SNs gleichzeitig generieren kann, sowie eine Schaltung für die stochastis-

che Maximumsfunktion, die eine genaue Implementierung von max-pooling Operationen

in SCNNs ermöglicht. Darüber hinaus wird im ersten Teil dieser Arbeit eine detailierte

Untersuchung des Verhaltens eines SCNNs und dessen Komponenten bei Timingfehlern

präsentiert. Die Fehlertoleranz von SC is ein vielzitierter Vorteil, der durch die Tatsache

zustande kommt, dass ein einzelnes Bit einer SN nur einen sehr geringen Beitrag zu

ihrem Wert hat. Im Gegensatz dazu besitzen Bits in konventionellen Binärformaten unter-

schiedliche Gewichte und können bis zu 50% des Werts einer Zahl beitragen. SC ist daher

ein Kandidat für extreme low-power Systeme, da es potentiell die in diesen Umgebungen

auftretenden Timingfehler tolerieren kann. Während die Fehlertoleranz von SC Systemen

in der Bildverarbeitung bereits gezeigt wurde, fehlte eine detailierte Untersuchung von

SCNNs in dieser Hinsicht bis jetzt. Es wird gezeigt, dass SC nicht im Allgemeinen fehler-

tolerant ist, sondern dass sich SC-Komponenten unterschiedlich verhalten, sogar when sie

die gleiche Funktion implementieren, und dass die Fehlertoleranz eines SC-Systems ab-

hängig vom Fehlermodell ist.

Im zweiten Teil dieser Arbeit wird eine theoretische Analyse der Genauigkeit und Ein-

schränkungen von SC-Systemen präsentiert. Ein existierendes Framework zur Analyse

und Steuerung der Genauigkeit von kombinatorischen stochastischen Schaltungen wird

auf sequentielle Schaltungen erweitert. Dieses Framework ermöglicht es einem Designer,

die Effekte von kleinen Designänderungen auf die Genauigkeit eine Schaltung vorherzusagen,

und wichtige Parameter, wie beispielsweise SN-Länge, ohne umfangreiche Simulationen

zu bestimmen. Darüber hinaus wird gezeigt, dass die Funktionen, die in SC implementiert

werden können, beschränkt sind. Durch die probabilistische Funktionsweise von SC lei-

den einige arithmetische Funktionen unter einem geringen Bias, wenn sie als stochastische

Schaltung implementiert werden, darunter auch die max-pooling Funktion in SCNNs.

xii

List of Figures

2.1 Basic SC operations . 8

2.2 Standard SNG design . 12

2.3 Decorrelation with isolators . 13

2.4 Halton sequence distribution . 15

2.5 stochastic hyperbolic tangent FSM . 18

2.6 SC error sources example . 20

2.7 Basic CNN neuron structure . 24

2.8 Basic SCNN neuron structure . 30

3.1 Hardware oriented max-pooling circuit . 37

3.2 NMax circuit schematic . 39

3.3 CORDIV divider . 49

3.4 Influence of SNGs on stanh computation . 50

3.5 SBoNG design schematic . 53

3.6 SBox circuit structure . 55

3.7 Accurate stanh computation with SBoNG . 56

3.8 Low pass SC filter simulation . 62

4.1 Capture error illustration . 69

4.2 SCNN layer schematic . 73

4.3 Parallel operations in SCNN layer . 74

4.4 Binary CNN layer schematic . 75

4.5 Effect of gate-level errors on SCNNs . 77

4.6 Effect of gate-level errors on AMax . 78

xiii

4.7 Effect of gate-level errors on NMax . 79

4.8 Effect of gate-level errors on SNG . 81

4.9 Effect of gate-level errors on MAC-activation component 82

4.10 Scaled MAC-activation function under gate-level errors 83

4.11 Classification accuracy under timing errors 84

4.12 Relation between MSE and classification accuracy under timing errors . . . 85

4.13 Effect of timing errors on AMax . 87

4.14 Effect of timing errors on NMax . 88

4.15 Effect of timing errors on MAC-activation component 89

4.16 Effect of timing errors on SNG . 90

4.17 Effect of timing errors on AMax-based SCNN 91

4.18 Effect of timing errors on NMax-based SCNN 92

4.19 Effect of timing errors on binary NN . 93

4.20 Comparison of output feature maps . 94

4.21 Boundary attack illustration . 105

4.22 Influence of PRNG starting states on feature maps 106

4.23 Example of CW attack on SCNN . 107

5.1 Time frame expanded squarer circuit . 114

5.2 Alternative circuit designs with different numbers of isolators 117

5.3 MSE comparison of circuit variants . 118

5.4 MSE comparison of circuit variants . 118

5.5 CORDIV MSE analysis . 122

5.6 CORDIV MSE analysis detailed section . 122

6.1 MNIST input example . 131

6.2 MNIST input value distribution example . 131

6.3 Distribution of feature map values in SCNN for MNIST 132

xiv

List of Tables

2.1 PN sequence example . 15

2.2 Halton sequence multiplication example . 16

2.3 Interference of deterministic sequences with isolation 17

2.4 Interference of deterministic sequences with stanh 17

3.1 NMax computation example . 40

3.2 NN structure for NMax evaluation . 41

3.3 NMax simulations for NN accuracy and correlation. 42

3.4 Bias of SC maximum circuits . 45

3.5 Dependency of LFSR states . 47

3.6 stanh state sequence with Halton sequence-based SNs 51

3.7 S-Box mapping in SBoNG . 54

3.8 Autocorrelation evaluation of SBoNG . 54

3.9 Cross-correlation evaluation of SBoNG . 57

3.10 NIST suite test results . 59

3.11 SNG cost comparison . 63

4.1 Markov chain model example . 66

4.2 SCNN component cost . 76

4.3 Error-affected NMax computation example 80

4.4 Network structure for adversarial attack evaluation 102

4.5 Success rates of CW attack . 103

xv

xvi

List of Abbreviations

CNN Convolutional Neural Network

FSM Finite State Machine

HOMC Hardware-Oriented Max-pooling Circuit

iid independent identically distributed

LFSR Linear Feedback Shift Register

MAC Multiply-accumulate

MC Markov-Chain

MSE Mean Squared Error

MUX Multiplexer

NN Neural Network

PCC Probability Conversion Circuit

PRNG Pseudo-random Number Generator

ReLU Rectified Linear Unit

RNG Random Number Generator

RNN Recurrent Neural Network

SBoNG S-Box based Number Generator

SC Stochastic Computing

SCC Stochastic Computing Correlation

SCNN Stochastic Computing-based Neural Network

SN Stochastic Number

SNG Stochastic Number Generator

TRNG True Random Number Generator

WBG Weighted Binary Generator

xvii

xviii

Chapter 1

Introduction

The steady advance of the Internet of Things (IoT) has led to a significant growth in spe-

cialized hardware and software architectures. The large number of distributed devices in

the IoT has made traditional central server based computing less attractive and less desir-

able. Centralized approaches struggle with the ever increasing number of devices and the

massive increase in available data that has to be processed, causing a shift towards local

data processing, called edge computing. By processing data close to its point of creation,

network traffic and central processing capabilities can be reduced. Ultimately, this leads

to energy savings due to reduced communication overhead and can also make results

available faster. An example for the importance of the latter point is hazard detection in

autonomous vehicles, where the sensor data has to be processed quickly in order to detect

risks as early as possible.

On the other hand, local data processing requires corresponding processing capabilities

and power on the device. However, the size and energy supply of the device might be

heavily restricted, for example in environmental sensors that are not permanently con-

nected to a power grid. Such sensors might operate with either a non-permanent internal

power supply in the form of batteries or a small local power source such as solar cells.

Small, low-power hardware is therefore necessary to enable local processing without sac-

rificing the longevity of such devices. Manufacturing in a very small technology node

to improve power and area efficiency is theoretically possible, however it increases costs

and may impact device performance, as smaller hardware nodes are more susceptible to

environmental noise and fluctuations in supply voltage.

1

1 Introduction

A different approach is taken in approximate computing. Not all applications require high

precision computations to perform well. Many image processing applications such as edge

detection can for example tolerate slightly inaccurate results, as long as the deviations are

too small to be perceived by humans. Other applications such as Neural Networks (NNs)

for sound and image classification have an inherent tolerance for approximate results.

Such NNs usually only output a class label instead of a numerical value and as long as this

label is correct, internal inaccuracies are not noticeable from an outside perspective.

By replacing area expensive hardware for exact high precision arithmetic with smaller,

approximate arithmetic circuits, significant area and power savings are possible. Common

practices are truncation, where lower significant bits are ignored during a computation,

and function approximation, where a hard-to-compute function is approximated by one

or more simpler functions. The most popular version of the latter is piecewise linear ap-

proximation, which replaces a non-linear function by a number of simple linear functions

that are strung together.

Stochastic Computing (SC) is a type of approximate computing that replaces the conven-

tional binary number format based on weighted bits with a probabilistic, stream based

number format called Stochastic Number (SN). This allows certain arithmetic operations

to be computed as sequential single-bit operations instead of simultaneous multi-bit oper-

ations in binary format. All bits of an SN have the same weight, which removes the need

for complex circuitry to manage the varying bit weights in binary format. However, the

probabilistic nature of SC causes operations to be generally inexact and bit stream based

arithmetic can lead to longer computation times. Nevertheless, SC has shown promising

results in a variety of the above mentioned applications, often due to its extremely small

multiplication implementation, which is commonly cited as the prime example of SC’s ef-

ficiency: In its simplest form, SC multiplication can be implemented using a single AND

gate. In contrast to that, binary multipliers can comprise hundreds of gates and even ap-

proximate binary multipliers are often larger by orders of magnitude. Further examples

are addition, which needs only a single 2-to-1 Multiplexer (MUX) and a number of com-

monly used activation functions in NNs, such as sigmoid, which are implemented with

small finite state machines (FSMs).

The stream-based data format of SC has further advantages: The small significance of

2

each single bit makes an SN more resilient against transient faults than conventional bi-

nary numbers. A bit flip changes an SN’s value only by the smallest possible amount,

furthermore multiple bit flips in opposite directions cancel each other out. This makes

SC potentially suitable for applications in noisy or hazardous environments. Moreover,

it is generally possible to control the accuracy of a stochastic circuit by changing the SN

length, therefore trading higher computation time for accuracy. In many other types of

approximate computing this would require a modification of the circuit design, in SC it

can be achieved by simply running the circuit for more clock cycles.

Opposed to these attractive benefits stand several challenges that SC faces: In general,

inputs of an application, for example pixel values of images, are not given in SN format.

Instead, they have to be converted from their original, commonly binary, format to SNs.

This conversion procedure requires a source of entropy to introduce a probabilistic factor

into the SNs, which is commonly achieved through the use of a (pseudo) random number

generator ((P)RNG). The most commonly used RNGs in the context of SC are Linear Feed-

back Shift Registers (LFSRs) and low-discrepancy sequences, as they provide good, well

controllable randomness for a relatively small area investment. However, compared to the

previously mentioned efficient arithmetic blocks in SC, they make up a large portion of a

stochastic circuit. In some cases, input conversion has even been shown to consume more

than 50% of total area.

The second major limitation of SC is its restricted value range. SNs are based on probabil-

ities and can therefore only represent values between 0 and 1 in their most basic format.

A simple modification can be made to the SN format to cover negative numbers as well,

thus increasing the range to −1 to 1. However, absolute values larger than 1 require major

changes that result in much more complicated arithmetic circuits that strongly diminish

the efficiency of SC overall.

Besides these fundamental limitations, further challenges for SC exist, both general and

application specific. With the shift to NNs as the main target application of SC in recent

years, new SC components for previously unsupported functions are needed. These en-

compass among others many non-linear functions that have to be implemented as sequen-

tial rather than combinational circuits, which puts an additional requirement on SNGs to

reduce correlation of generated SNs as much as possible. Such SC-based NNs (SCNNs)

3

1 Introduction

are often proposed for use in resource constrained environments, including low-power

systems, due to the inherent error tolerance of SNs. While this error tolerance has been

demonstrated for some SC systems such as edge detection applications before, the preva-

lence of new SC components with vastly different structures in SCNNs limits the applica-

bility of previous findings in this regard. Furthermore, design of new SC components is

for the most part done manually on a case-by-case basis and sometimes multiple different

circuit implementations for the same function are possible. With the lack of automated

tools to test and analyse correctness and accuracy of designs, this task is also usually left

to the designer. A theoretical foundation for this analysis is necessary to facilitate the test

procedure and reduce the reliance on extensive simulation.

This work presents solutions to several of the above mentioned challenges. Its main con-

tributions are:

• A new PRNG specifically designed for SC is presented that decreases the cost of input

conversion the more inputs a circuits has and reduces correlation of SNs.

• A circuit design for an SC maximum function is presented. It has improved accuracy

compared to previously existing stochastic maximum functions and enables for the

first time the accurate implementation of the widely used rectified linear unit (ReLU)

activation function and the max-pooling operation in stochastic NNs.

• The timing error tolerance of SCNNs is extensively investigated. While error toler-

ance is often mentioned as an advantage of SC over binary computing, an in-depth

investigation of this aspect in SCNNs has been missing so far, especially with regard

to timing errors.

• It is shown that SCNNs show a resilience against adversarial attacks, which try to

cause deliberate misclassifications in an NN.

• Previous work of the author’s master thesis provided a theoretical framework to

estimate the accuracy of a given combinational stochastic circuit. This work extends

the framework to sequential stochastic circuits.

• Theoretical limitations of SC are investigated and it is proven that not all functions

can be implemented exactly in SC, including all non-linear convex functions.

4

Chapter 2

SC Background

2.1 History of SCNNs and related works

Stochastic Computing was first introduced in the 1960s by Brian R. Gaines [Gai69] as

an approach to machine learning and pattern recognition. He remarked that "the data

input [in these applications] is, in some sense, redundant, and the machine does not

have to make very fine discriminations based on small differences in the incoming signal"

([Gai69], p. 40). This property is also inherent to SNs, suggesting a potentially fitting

application for SC. Gaines described basic SC components such as adders and multipliers

and developed a counter based element called ADDIE that is able to implement division

and square root among other functions. The initial interest in SC during this time period

subsided quickly however, as the need for smaller and more efficient computing devices

was solved by technological progress in transistor manufacturing. The benefits of SC were

not considered big enough to outweigh its limitations. It took until the early 2000s for SC

to become a field of active interest again, as Neural Networks quickly gained popularity

and technological limitations were foreseeable in hindering the implementation of ever

larger NNs.

In 2001, Bradley D. Brown and Howard C. Card presented the first major SC implemen-

tation of a small two layer neural network for the task of optical Magnetic Ink Character

Recognition (MICR) under noisy conditions [BC01a] [BC01b]. While this network was

much smaller than currently used NNs, it introduced basic SCNN building blocks that are

still in use today. Shortly after, one of the few physically manufactured SCNN chips was

5

2 SC Background

presented in [SNA+03], implementing a Boltzmann machine. After several years without

significant advances in SCNNs, a shift to stochastic convolutional NNs took place, with

several works in quick succession. These works introduced new concepts such as hybrid

SC-binary addition and modification to Brown’s SC activation function [KKY+16]. To-

gether with further advances such as a stochastic max-pooling circuit [RLD+17] and an

approximate SC ReLU activation function [LLR+18], these concepts enabled the imple-

mentation of larger SCNNs, from the standard LeNet5 architecture to AlexNet and Ima-

geNet. Several further works combined and modified these components to build various

types of SCNNs and NN accelerators, e.g. [LWLH18], [HGT+19] and [SL17]. Due to their

low-power arithmetic operations, SCNNs are a promising candidate for near-sensor and

resource constrained environments, and a number of publications in this area have been

made in recent years, including [LAH+17], [HPB+19] and [FNL+19]. The above men-

tioned works focus mostly on the design aspect of SCNNs, but several works focusing on

FPGA implementations of these networks also exist, among others [SGMA15], [KMM+17]

and [MNPH20]. The body of work on SCNNs continues to grow, expanding also to RNNs

in recent years [LLLH19] [MZWH19], which are however not the focus of the present

work. While the implementation and design details in these works vary widely, the basic

concepts of SNs and probabilistic computation is common to all of them.

2.2 Basic components and operations

2.2.1 Number representation and basic operations

The basic operating principle of SC is to convert the bit-parallel arithmetic operations of

conventional binary number formats into bit-sequential operations of SNs, thereby gener-

ally trading higher computing time for lower circuit area. SNs are bit streams of variable

length n that encode a given probability value. Similar to different binary number repre-

sentations such as sign-magnitude and Twos-complement, SNs come in different formats.

The most commonly used SN formats are unipolar and bipolar.

Definition 2.1. A Stochastic Number is a bit stream of length n with n1 1s and n0 0s and

has the value n1
n in unipolar format and the value n1−n0

n in bipolar format.

6

2.2 Basic components and operations

It follows directly from definition 2.1 that a unipolar SN covers values in the interval [0, 1]

with a precision of 1
n and that its value is equal to the probability of any single one of its

bits being one. Bipolar SNs extend the range of representable values to [−1, 1] and in turn

have a reduced precision of 2
n . For a bipolar SN B the relation between its value b and the

probability pB of any one of its bits being 1 is

pB =
b+ 1

2
. (2.1)

Besides these two main SN formats, several others have been proposed but are not widely

used for practical purposes. One example is the Extended Stochastic Logic (ESL) format

introduced in [CMO+15], which consists of a fraction of two bipolar SNs. ESL removes

the value range restriction of unipolar and bipolar SNs and was supposed to facilitate

the implementation of SCNNs, as it would remove the need to downscale NN weights.

However it complicates addition significantly, as it requires computation of a common

denominator and was therefore not adopted as an alternative. Another notable mention

is the inverse bipolar format, which defines the value of an SN as n0−n1
n and is used in

stochastic computing synthesis through spectral transformation [AH15]. It does not differ

significantly from the regular bipolar format with regards to implementation of arithmetic

functions and is therefore not relevant outside of synthesis. For the remainder of this

work, only unipolar and bipolar formats are used.

An important property of SNs are equally weighted bits throughout their entire length.

In contrast to conventional binary formats, no high or low significance bit positions exist,

which has several major implications: Firstly, all SNs with the same number of 1s and

0s have the same value, as the order of bits has no influence. However, they should not

be treated as being equivalent. The order of bits can have influence on the behaviour

of certain sequential stochastic circuits, as will be shown in later sections of this work.

Secondly, SNs have high tolerance towards bit flips, as each flip changes the value of an

SN by exactly 1/n in unipolar, respectively 2/n in bipolar format. Moreover, multiple bit

flips in opposite directions will cancel out. Finally, equal weight of each bit enables the

computation of some basic arithmetic operations such as multiplication with single bit

input combinational circuits, as there is no need to take care of carry bits.

7

2 SC Background

SC Multiplication is commonly cited as vastly more effective than its binary counterpart.

In unipolar format it is implemented by a single AND gate, as the output of an AND gate

is 1 if and only if both inputs A and B are 1. The probability pAND of the output being 1

is therefore pA · pB, if A and B are independent random variables. In bipolar format an

XNOR gate is used instead:

pXNOR = P ({A = 1} ∧ {B = 1}) + P ({A = 0} ∧ {B = 0})

= P ({A = 1}) · P ({B = 1}) + P ({A = 0}) · P ({B = 0})

=
a+ 1

2
· b+ 1

2
+

(
1− a+ 1

2

)
·
(

1− b+ 1

2

)
=
ab+ 1

2

(2.2)

which, according to (2.1), corresponds to a bipolar SN with value ab.

The second basic SC operation is scaled addition, which can be implemented with a 2-

to-1 multiplexer (MUX) for both SN formats: Assume without loss of generality that the

select input S of a MUX has a probability pS of being 1 and that the MUX routes input SN

A to the output if S = 1 and B otherwise. The output value oMUX of the MUX is then

oMUX = a·pS+b·(1−pS). Basic SC addition is therefore inherently a downscaled, weighted

addition. As SN values are restricted within [−1, 1], a non-scaled addition with SN output

is generally not possible. This limitation poses problems in some applications, as will be

described in later chapters. On the other hand, it provides an efficient way to implement

inner product computation, which has been exploited in the design of stochastic digital

filters [WHCE16] [ISI+16].

Figure 2.1: Basic SC operations: a) unipolar multiplication with example for error af-
fected computation, b) bipolar multiplication, c) unipolar addition with example for error
affected computation.

8

2.2 Basic components and operations

Figure 2.1 shows examples for basic multiplication and addition in both SN formats. In

figure 2.1a) unipolar multiplication in an error free case and an error affected case is

shown. The error only changes the result by 1
n , i.e. the smallest possible amount. In the

bipolar multiplication example b) one of the sources of inaccuracy in SC is demonstrated,

as the correct result of −1
8 cannot be represented with bipolar numbers of length 8. Sub-

figure c) shows that in some cases errors in SC operations do not affect the result at all.

The inherent scaling of MUX-based addition poses a problem in applications with large

sums, as the resulting absolute values decrease and relative errors therefore increase. As

a solution to this issue, the use of SC-binary hybrid adders, mostly in the form of parallel

counters, has been proposed [TH14]. These adders receive SNs as inputs and produce a

stream of integers in conventional binary format as outputs. More specifically, an adder of

this form with k input SNs I1, · · · Ik of length n will output the sum sj =
∑k

i=1 Ii,j of all

input bits in clock cycle 1 ≤ j ≤ n. These hybrid adders avoid the scaling problem but in

turn move the computation from the stochastic into the binary domain. They are mostly

used in SCNNs, which will be described in more detail in subsection 2.2.5.

2.2.2 Correlation and SN generation

Both addition and multiplication in SC only work as described if inputs are independent

of each other. In the context of SC, dependency between SNs is called correlation and is

an important property that can be both beneficial and detrimental. Undesired correlation

can change the intended functionality of a stochastic circuit. For example, assume that

the input SNs A and B of a unipolar multiplier are correlated in a way that for each bit

Ai and Bi it holds that Ai = 1 ⇒ Bi = 1 and overall pA ≤ pB. In other words, all 1s in

A overlap with 1s in B. Instead of multiplying A and B as intended, the multiplier will

output an SN that is identical to min{A,B} = A.

On the other hand, deliberate correlation can be exploited for the implementation of var-

ious functions. Said unipolar multiplier for example turns into a minimum function, if its

inputs are always correlated. Further correlation based SC designs include the CORDIV

divider [CH16] and an SC implementation of the Robert’s Cross edge detection algorithm

[ALH13], where the use of an XOR gate with correlated inputs is used to compute |A−B|.

9

2 SC Background

A commonly used metric to measure correlation between two SNs is the SC Correlation

(SCC) defined in [AH13]:

SCC(X,Y) =

ad−bc

n·min(a+b,a+c)−(a+b)(a+c) if ad > bc

ad−bc
(a+b)(a+c)−n·max(a−d,0) otherwise

(2.3)

where X and Y are two n-bit SNs and a is the number of overlapping 1s, b is the number

of overlapping 1s in X with 0s in Y , c is the number of overlapping 0s in X with 1s in

Y and d is the number of overlapping 0s. SCC ranges from −1 to 1, whereby an SCC of

1 means that all 1s overlap, and an SCC of −1 means that no 1s overlap. For example,

the XOR gate from [ALH13] mentioned above assumes an input SCC of 1. Not all SCC

values may be possible for any given pair of SNs. If the sum of 1s in both SNs is larger

than n, an SCC of -1 is not possible, as a > 0 holds for all permutations of bits in X and

Y . In general, two inputs of a circuit are considered uncorrelated if the average SCC of

their SNs is 0, positively correlated if the average SCC of their SNs is larger than 0, and

negatively correlated otherwise.

It has been shown that a smaller absolute SCC does not always mean higher computational

accuracy, especially when SN pairs of one very small and one very large absolute value are

involved [HMHAA21]. Comparing SCCs of specific SN pairs does therefore not in general

allow conclusions about the correctness or accuracy of a stochastic circuit. However, aver-

aging SCC over a large number of SN pairs is still a useful method to analyse a stochastic

circuit, for example when comparing SNG sharing methods [IIS+14], as it identifies sys-

tematic correlation and therefore potential deviations from the intended functionality.

By definition, SCC and its alternative zero correlation error (ZCE) metric [HMHAA21] are

always a relation between two SNs. So far, no generalized concepts of correlation between

three or more SNs have been developed. However, stochastic circuits with more than two

inputs that also rely on specific correlation between more than two inputs have not been

designed so far, a metric for pairwise correlation has therefore been sufficient. Stochastic

addition via MUX for example does not require uncorrelated data inputs, only the select

input has to be uncorrelated to each of the data inputs. Correlation between two or more

SNs is sometimes also referred to as cross-correlation in order to distinguish it from the

10

2.2 Basic components and operations

concept of autocorrelation, which refers to the dependency of subsequent bits within a

single SN.

Autocorrelation of SNs is commonly measured using general, non SC-specific metrics such

as the autocorrelation function from [Bro06] or the Box-Jenkins function [BJRL15]. Auto-

correlation is an important factor in sequential stochastic circuits, e.g. FSM-based or with

feedback loops, as they usually operate under the assumption that subsequent bits of their

input SNs are independent of each other, i.e. the input is not autocorrelated. [Bro06]

defines the auto-covariance of an SN X = X1, ..., Xn as

rX(k) = E(XtXt+k)− E(Xt)
2 (2.4)

for a distance k. [Bro06] also provides a way to estimate rX that does not require knowl-

edge of expected values:

rX(k) ≈ 1

n

n−k∑
t=1

XtXt+k −

(
1

n

n∑
t=1

Xt

)2

(2.5)

After normalization, the autocorrelation function is given by

ρX(k) =
rX(k)

E(X2
t)− E(Xt)2

(2.6)

which allows comparison of autocorrelations of SNs (although it requires knowledge of

their expected values again).

The Box-Jenkins function defines the autocorrelation factor Ak similarly:

Ak =

∑n−k
i=1 (Xi − E(X)) (Xi+k − E(X))∑n

i=1 (Xi − E(X))2
(2.7)

An autocorrelation factor of Ak = 0 signifies that groups of bits with distance k are statisti-

cally independent. Commonly k = 1 is the most important distance in SC due to particular

decorrelation mechanisms explained further below.

Both cross-correlation and autocorrelation are important to consider when it comes to

generating SNs, the task of stochastic number generators (SNGs). The basic design of an

SNG is shown in figure 2.2. It consists of a k-bit random number generator (RNG) whose

output R is compared to a k-bit constant input B ∈ [0, 1] in unsigned binary format every

11

2 SC Background

clock cycle. If R is uniformly distributed in [0, 1], the output bit of the comparator is 1

with probability B. The comparator is therefore also referred to as a probability conver-

sion circuit (PCC) in this context. After n clock cycles, a unipolar SN with value B will be

generated (for generating bipolar SNs, B has to be adjusted according to eq. 2.1). In early

works, e.g. by Gaines [Gai69] [Gai67], it was proposed to use fast toggling (several times

higher than the circuit’s operating frequency) flip-flops in order to achieve a signal proba-

bility of 1
2 when sampled. They could then be combined to k-bit numbers for comparison,

or transformed directly into SNs of constant value, e.g. to generate constant parameters

for polynomials. However, achieving a signal probability of exactly 1
2 in this manner is

difficult and unreliable. SNGs therefore shifted to simpler pseudo RNGs (PRNGs), most

prominently linear feedback shift registers (LFSRs). Besides LFSRs, other (P)RNGs have

been proposed for use in SNGs, among others analogue RNGs [KA17] and more recently

low-discrepancy sequence generators [NJLR19] [LH17] and emerging devices like mem-

ristors [KLZ14]. The use of different PCCs other than the comparator of the standard

design has also been investigated, for example MUX chains [BC01a] and weighted binary

generators [GK88], but their impact on SN generation is smaller than that of different

random number sources.

Figure 2.2: Standard SNG design consisting of a pseudo random number generator and a
comparator.

SNGs can make up a significant portion of stochastic circuits area, in some cases more than

50% [ISI+16]. A major goal in SC design is therefore to reduce this overhead without sac-

rificing accuracy due to increased SN correlation. A simple approach is SNG sharing,

whereby the RNG component is connected to two or more PCCs of different circuit inputs,

if those inputs are not part of a common operation, or are inputs of correlation insensitive

components such as NMax [NPH19], which will be covered in more detail later. Another

12

2.2 Basic components and operations

popular method is isolation, whereby SNs are generated using the same RNG and then

decorrelated by delaying some of the SNs. This can be done by simply passing it through

a flip-flop. Under the assumption that subsequent bits of an SN are independent of each

other (i.e. the SN is not autocorrelated for distance 1), this will effectively make the SNs

independent of each other. Figure 2.3 shows this process at the example of a squaring op-

eration with shared SNGs. The initial state probability of the flip-flop does in general not

match the value of the input SN and will introduce a small error in the calculation. Grant-

ing the circuit a number of warm-up cycles equal to the maximum number of isolators on

any one circuit path can solve this issue. Figures 2.3c) and d) demonstrate that isolators

behave differently depending on their position in the circuit. Cascading two copies of a

circuit that computes f(x) = x2 does not lead to a circuit with the function g(x) = x4 as

one could assume.

Figure 2.3: Examples for decorrelation via isolators: a) incorrect squaring operation due
to SNG sharing. b) correctly decorrelated squaring operation. c) Two subsequent squaring
circuits build a circuit for f(x) = x3. d) Adding one more isolator leads to g(x) = x4.

Unfortunately, the necessity of using small, simple PRNGs to avoid unacceptable area over-

head means that the assumption of independence between bits that is in theory necessary

for isolation generally does not hold. For example, subsequent states of an LFSR are ob-

viously not independent of each other. This central problem of SNG design is covered in

more detail in section 3.2.

2.2.3 Random number sources in SC

LFSRs have been considered as a standard source of random numbers in SC due to their

low cost and fixed sequence length, which depends on an LFSR’s characteristic feedback

13

2 SC Background

polynomial. A k-bit LFSR with a primitive feedback polynomial has a sequence length of

2k − 1. If it is used to generate an SN of the same length, it will do so with an error of

at most 1
2k−1 , because it will generate every k-bit number in the half open interval (0, 1]

exactly once. The all-0 state can be added to any LFSR with little additional hardware to

remove this error as well. However, this is commonly not done, as this initial error during

SN generation is small compared to the errors commonly introduced by other sources of

inaccuracy in a stochastic circuit and removing it is not worth the additional hardware

overhead. While SN generation with LFSRs is highly accurate, operations using these SNs

are generally not.

To guarantee accuracy of some operations, especially multiplication, PRNGs based on de-

terministic sequences have been proposed for use in SC. In an early work, pseudo noise

(PN) sequences were considered [GK88]. To generate an SN of length n, several ba-

sic PN sequences are combined. In the first step, PN sequences with values p1 = 0.5,

p2 = 0.25, p3 = 0.125,... are constructed according to the following procedure: Sequence

A1 = a1,1, ..., a1,n with value p1 is generated using the output bit of an LFSR with corre-

sponding sequence length. Further basic PN sequences A2, A3,... are constructed from A1

in such a way that no 1s overlap in any position of the sequences, i.e.

m∑
i=1

ai,k ≤ 1 ∀k ∈ {1, ..., n} (2.8)

for m basic sequences, which are required to generate SNs with m-bit precision. This is

achieved by setting a2,k = a1,ka1,k+1, a3,k = a1,ka1,k+1a1,k+2,... These basic sequences

can then be combined through bitwise OR operations to generate sequences with a value

equal to the sum of the basic sequences, as shown in table 2.1.

Instead of a comparator like in the standard SNG design, the PN-based SNG requires some

circuitry to select the proper basic sequences for a given input value. Due to the non-

overlapping 1s in the basic sequences, PN sequences generate SNs with the same accuracy

as the LFSR+comparator design.

A more recent approach to SN generation similar to PN sequences are low discrepancy

sequences such as van der Corput, Sobol and Halton sequences. Low discrepancy se-

quences are also called quasirandom sequences, as they are sometimes used for generating

14

2.2 Basic components and operations

Table 2.1: Generation of an SN with value 0.625 using PN sequences.

k A1 A2 A3 X = 0.625(A1 +A3)

1 0 1 0 0
2 1 0 0 1
3 0 1 0 0
4 1 0 0 1
5 1 0 0 1
6 1 0 0 1
7 0 0 1 1
1 0 1 0 0

uniformly distributed numbers. Despite this terminology and their use, these sequences

are not random or even pseudo random, but follow a strictly deterministic pattern. An

advantage over pseudorandom sequences are their more evenly distributed sequences,

which lead to a highly uniform coverage of the [0, 1] interval even for a small sequence

length. Figure 2.4 shows a comparison of the coverage of [0, 1]2 with points from Halton

sequences, LFSRs and the Mersenne Twister [MN98], a software-based PRNG.

Figure 2.4: Distribution of the first 500 points in a 2-dimensional Halton sequence (left),
LFSR (middle) and Mersenne Twister (right).

The advantage of deterministic sequences in SNGs is their regularity and the similarly reg-

ular patterns they cause in the generated SNs. It is clearly visible in figure 2.4 that the

points in the low-discrepancy sequence are spread more uniformly over the area, whereas

the pseudo randomly generated points cluster or leave larger open spaces between them-

selves. Points in the Halton sequence are also generated in a fixed, uniformly distributed

order, which ensures high progressive precision of an SN (i.e. convergence towards its ex-

pected value), as its value does not fluctuate much. This leads to very small initial random

15

2 SC Background

fluctuation errors during SN generation, or even none at all, if the length of the SN is cho-

sen accordingly to the generator sequence. In addition, different generator sequences can

be used in some cases to ensure exact operations, multiplication being the most prominent

example. Several methods are known to achieve this. Using two Halton sequences with

relatively prime bases, e.g. a base-2 Halton sequence H2 and a base-3 Halton sequence H3

is one possibility, as shown in table 2.2. If this method is used, then SN A = 1 if H2 ≤ a

and SN B = 1 if H3 < b. Without this asymmetry, the result would be off by exactly one

bit.

Table 2.2: Multiplication of values a = 1
2 and b = 2

3 using Halton sequences with relatively
prime bases.

H2
1
2

1
4

3
4

1
8

5
8

3
8

7
8

1
16

9
16

5
16

13
16

3
16

11
16

7
16

15
16 punipolar

H3
1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

1
27

10
27

19
27

4
27

13
27

22
27

7
27

A 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 8
15

B 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 10
15

C 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 5
15

Table 2.2 shows clearly how the regular patterns in the generator sequence (see left part

of figure 2.4) are transformed into similar patterns in the generated SNs. A has a regular

10 pattern with the exception of its first bit, which is due to a = H2. Similarly, B has a

101 pattern. Relatively prime bases for the generator sequences cause the length of these

patterns to be relatively prime in turn. As a consequence, the pattern of A is "shifted" over

the pattern of B by one bit every occurrence, leading to an identical number of overlaps

of every bit in A’s pattern with every bit in B’s pattern.

Deterministically generated SNs enable accurate combinational computations, but can in-

terfere with sequential designs. Many of these designs depend on the statistical indepen-

dence of bits, for example the concept of isolation and FSM-based SC components. This

can limit the practical use of deterministic sequences in certain cases. For example, squar-

ing the SN A from table 2.2 with an isolator-based multiplier (figure 2.3) leads to a highly

inaccurate result as shown in table 2.3.

Accurate computation with deterministically generated SNs has strict requirements, which

are violated by isolation. In this specific case, the SNs A and Â have been generated with

16

2.2 Basic components and operations

Table 2.3: Interference of deterministically generated SNs with isolation-based squarer
circuit.

A 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 8
15

Â 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 8
15

A · Â 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
15

the same deterministic sequence H2 and do therefore not consist of patterns with rela-

tively prime lengths. It is clear that additional isolators cannot solve this issue, as the two

SNs would either be identical (with an even number of isolators) or non-overlapping (with

an odd number of isolators). Computing a2 accurately in this case would therefore need

two independent SNs generated by different Halton generators, increasing the SNG cost

significantly. Other deterministic methods such as the clock division method [NJLR19]

can reduce this overhead as there is no need for two separate sequence generators, how-

ever they are still significantly more expensive than isolation, which only requires a single

flip-flop.

Further complications arise in FSM-based SC components when deterministic sequences

are employed, including the stochastic hyperbolic tangent (stanh) (see figure 2.5) and its

modification Btanh from [KKY+16] as the most prominently used examples. These compo-

nents assume subsequent input bits or integers to be independent, as they compute their

implemented arithmetic function essentially through a restricted one dimensional random

walk. Their output values are therefore severely affected by dependencies between inputs,

as has been shown for LFSR-based SN generation in [NPH17] and [NPH18a]. The effect

that deterministically generated input SNs have on them can be even more severe, as a

simple example with the SN B from example 2.2 and a 4-state stanh FSM in table 2.4

shows.

Table 2.4: Interference of deterministically generated SNs FSM-based SC components on
the example of stanh (4 states) starting in state S2.

SN B 1 0 1 1 0 1 1 0 1 1 0 1 101 repeats
State S2 S3 S2 S3 S3 S2 S3 S3 S2 S3 S3 S2 S3 S3 S2 repeats

Output 1 1 1 1 1 1 1 1 1 1 1 1 1 repeats

17

2 SC Background

Figure 2.5: FSM for the computation of the stochastic hyperbolic tangent [BC01a]. X is a
bit of the input SN, Y the output bit.

The correct (expected) value for the implemented function is tanh(23) = 0.583, however

the value computed by the FSM is 1. Due to the regular 101 bit pattern in B, the FSM

never reaches states S0 and S1, and therefore never outputs any 0 bit. A different starting

state (e.g. S1) would not solve this issue, as it would only cause a change during the first

three cycles, before the FSM starts to alternate between S2 and S3 again.

Besides the SNG implementations mentioned above, all of which are conventional CMOS-

based components, there are proposed SNG designs based on emerging technologies, most

prominently memristors [KLZ14] and spintronic devices [VVF+15]. There is a synergy

and mutual benefit between these types of emerging devices on the one side and stochas-

tic computing on the other. The devices present a cheap and efficient way of generat-

ing SNs due to their inherently probabilistic behaviour. Memristors are resistive devices

whose resistive values can be switched between high resistance and low resistance states

by applying a voltage pulse for a specific amount of time. This switching procedure is

probabilistic, the shorter the voltage pulse is, the smaller the probability of the memris-

tor changing its state. Experiments have shown that this switching probability follows a

Poisson distribution. In theory, the probability of measuring a high or low resistance, i.e.

a 0 or a 1, can therefore be controlled by the length of the applied voltage pulse, and

an SNG could be implemented using only a single memristor. In practice however, the

exact distributions of the switching probability differ slightly between devices due to man-

ufacturing variations, and switching times cannot be controlled arbitrarily accurate either.

SC provides an architecture in which these deficits are partially mitigated by the use of

an error tolerant number format and inherently probabilistic operations, which are not

expected to be accurate in general. An analysis of noisy emerging technologies in SNGs

and techniques to reduce the influence of a device’s manufacturing deficiencies can be

18

2.2 Basic components and operations

found in [YHFQ17]. In this work, SNGs based on emerging devices will not be considered

further, as they are still not readily available and the vast majority of published works on

SC uses conventional CMOS-based SNG designs.

SNG design is a central part of SC, and the choice of a specific design has a major impact

on an SC system’s viability. Some designs provide guarantees on the accuracy of select op-

erations but interfere with common component designs and isolation, while other designs

are universally usable, but lead to less accurate computations. Again others can be shared

more easily among circuit inputs, but require more area for a single instance. An SNG

of the latter type is covered in more detail in section 3.2 where the S-Box based Number

Generator is presented.

2.2.4 Sources of inaccuracy and accuracy estimation

In general, SC produces inexact results due to the involvement of PRNGs and random-

ized SNs. Contrary to other forms of approximate computing however, inaccuracy in SC

can vary each time a stochastic computation is performed, even if the input values are

identical. In contrast, an approximate adder such as the design presented in [GMRR12]

produces fixed errors for specific input combinations. On the other hand, the errors of two

SC computations with identical input values are only the same, if identical PRNGs with

identical starting states are used. For this reason, accuracy analysis in SC is done almost

exclusively using methods from statistics and probability theory.

Errors in SC are commonly split up into three different sources [QLR+10] [AH13]:

Quantization errors are caused by insufficient SN length. For example, the value 0.41

needs an SN length of 100 in unipolar format or 200 in bipolar format (or integer mul-

tiples of these lengths) to be represented exactly. Any other SN length will lead to an

approximated value.

Random fluctuation errors are caused by the randomized order of 1s in SNs. When two or

more SNs are involved in an arithmetic operation, the output SN varies depending on the

bit positions of the inputs and so does its value.

19

2 SC Background

Correlation errors are caused by systematic non-0 cross-correlation of two or more SNs

involved in a correlation sensitive stochastic circuit and by non-0 autocorrelation of SNs

in sequential circuits.

An extreme example of correlation errors is figure 2.3a) where the inputs have an SCC

of 1. It is obvious that any systematic non-0 correlation in this circuit will lead to an inac-

curate result. An example for the other two error sources is given in figure 2.6.

In this work, correlation errors only encompass errors caused by systematic correlation.

This systematic correlation is often unintentionally caused by design errors such as using

the circuit from figure 2.3c) for implementing the function f(x) = x4 or is an effect of

SNG sharing as examined for example in [IIS+14]. Any circuit without systematic cor-

relation (usually due to independently generated SNs) such as in figure 2.6 will almost

always have inputs with non-0 correlation for any single computation, which however av-

erages out to 0 over a large number of computations. Ultimately these temporary varying

correlations are the cause of random fluctuation errors.

Figure 2.6: SC error sources in an exemplary computation. The value ab suffers from a
quantization error, the value of cd from a random fluctuation error.

Recently, the use of previously mentioned low-discrepancy sequences in SNGs has been

proposed to reduce the occurrence of random fluctuation errors in basic SC operations[NJLR19]

[LH17]. However, it is challenging and potentially hardware intensive to eliminate these

errors over several circuit levels in this manner, as sequences have to be combined care-

fully, simple decorrelation methods such as isolation cannot be applied, and generating

multiple sequences requires increasingly larger circuits. Quantization errors on the other

20

2.2 Basic components and operations

hand are virtually unavoidable in SC. Even if the primary inputs of a stochastic circuit can

all be represented exactly with the given SN length, any multiplication or scaled addition

will most likely increase the required precision beyond this point. The only possible so-

lution would be to determine the worst case required precision beforehand and design

the circuit using the corresponding SN length. However, as SN length increases exponen-

tially with precision, this would cause infeasibly long computation times. For example,

input values with 8 bit binary precision require an SN length of 28 = 256 bits to avoid

quantization errors, but the result of a multiplication would require 216 = 65536 bits. It

is therefore desirable to have estimates or even guarantees for the (average) accuracy

of a given stochastic circuit, considering that an exact computation can almost never be

guaranteed and errors are (pseudo) randomly distributed.

Basic observations regarding the variance of SNs were already included in Gaines’ original

work [Gai69]. He noted that the variance of a unipolar SN A with (expected) value a and

length n is given by

Var(Aup) =
a(1− a)

n
(2.9)

under the assumption that the individual bits of A are independent, identically distributed

(iid) Bernoulli variables (i.e. generated using a TRNG). Correspondingly, the variance of

A in bipolar format is

Var(Abp) =
1− a2

n
. (2.10)

It was later shown in [Neu16] that the iid Bernoulli assumption enables much more de-

tailed estimates of a combinational stochastic circuit’s accuracy. Under this assumption

a computation of a stochastic circuit using SNs of length n can be mathematically mod-

elled as a direct simulation, a subtype of Monte-Carlo simulation. In the following, the

definitions from [MGNR12] will be used:

Definition 2.2. Base experiment: A real-valued and integrable random variable Y with

expected value E(Y) = f(x) for a target function f(x) and a specific input value x is a

base experiment for the computation of f(x).

21

2 SC Background

In the context of SC, running a stochastic circuit for a single clock cycle (i.e. an SN of

length 1) computes a base experiment for the function f that the given circuit implements.

A computation over n clock cycles forms a direct simulation:

Definition 2.3. Direct simulation: Let Y1, · · · , Yn be iid random variables with probability

distribution PY1 = PY . The random variable

Dn =
1

n

n∑
i=1

Yi (2.11)

is a direct simulation for the computation of f(x) with n repetitions.

For example, the circuit from figure 2.6 can be expressed as a base experiment by mod-

elling all data inputs and the MUX select input as (Bernoulli) random variables: Y =

rAB + (1 − r)CD. The direct simulation model provides a simple way to compute basic

accuracy metrics such as mean square error (MSE) ∆2 using the standard deviation of the

base experiment (proof can be found in [MGNR12]):

∆2(Dn) =
1

n
· σ2(Y) (2.12)

It was further shown in [Neu16] that the variances of single SNs (according to equa-

tions 2.9 and 2.10) are identical for outputs of any given combinational stochastic circuit

(replacing A with the output SN of the circuit), meaning that all functions that can be

implemented as a combinational stochastic circuit are computed with the same accuracy.

Furthermore, it was shown that the central limit theorem (CLT) applies to SC under the iid

assumption, which results in a connection of confidence intervals and minimum required

SN lengths n∗:

n∗ ≈
(

Φ−1
(

1− γ

2

)
· σ(Y)

ε

)2

(2.13)

where 1− γ is the confidence level for a confidence interval of size 2ε, Φ is the cumulative

normal distribution function and Y is the circuit’s implemented function expressed as a

base experiment. This function estimates the minimum length n∗ that is needed such that

a circuit’s output value differs from the correct value by no more than ε with probability

1 − γ. Equation 2.13 does not factor in quantization error. However, as the quantization

22

2.2 Basic components and operations

error by itself can at most have a value of 1
n respectively 2

n , it is usually dominated by the

random fluctuation error.

The standard deviation of a circuit is key to the accuracy estimate but can be difficult to

obtain in practice, as it depends on the type of SNG used. Modelling bits of SNs as iid

Bernoulli variables can simplify this step greatly, but does generally not actually corre-

spond to the properties of practical SNGs. It has recently been shown for example that

LFSR-based SNGs are better modelled through hypergeometric distributions [BH20]. In

most cases however, equation 2.13 can still serve as a lower bound on accuracy estimates,

as LFSR-based SNGs can generate SNs with minimum error as previously shown and are

therefore more accurate than the Bernoulli assumption suggests. The extension of the

work from [Neu16] covers sequential stochastic circuits [NPH18b] and will be presented

in chapter 5.

2.2.5 Convolutional neural networks and stochastic neural networks

Neural Networks are the state-of-the-art method for recognition, classification and predic-

tion of various kinds of data, from images [HZRS16] over speech [PZJ+20] to biochemical

data, e.g analysing and predicting protein folding structures [AlQ21]. Different types of

NNs are employed depending on the task and the type of data, most prominently convolu-

tional NNs (mostly used for image classification tasks) and recurrent NNs (predominantly

used in speech recognition), although the latter is increasingly replaced by transformer

networks. In the context of SC, CNNs are the most commonly considered NN type, with a

few works targeting recurrent networks and only sporadic works focusing on other types

such as binarized networks [HPB+19]. CNNs lend themselves to SC mostly due to their

large potential for parallelism and their tolerance towards small output errors. The SC

components presented in this work are primarily targeted towards CNNs as well, although

some are also usable in other NN types. The background information given in this section

focuses on CNNs, however, some concepts apply to other NN types as well.

The basic building block of any neural network is a neuron, which can have varying struc-

tures depending on the type of network it is used in. In CNNs, a neuron performs a basic

multiply-accumulate (MAC) function in which the values of incoming connections, called

activations, are multiplied with weights and summed together (fig. 2.7).

23

2 SC Background

Figure 2.7: Basic schematic of a neuron in a CNN.

Depending on the input connections, a neuron can perform slightly different functions.

In a CNN, convolutional and fully connected neurons are used. Inputs of convolutional

neurons are a (usually relatively small) subset of the input space, which is selected by the

convolution window. This window convolves over the entire input space to complete one

full computation of a convolutional layer. These layers are used to extract certain features

from the input data. In the context of image classification, these features can for example

be colors and shapes of the input image in the first layer, and combinations of such simple

features in deeper layers [ZF14]. The outputs of convolutional neurons are called feature

maps and the set of weights assigned to a specific neuron is called filter or kernel.

A fully connected neuron can be seen as a special case of a convolutional neuron in which

the convolutional window has the same size as the input data. These neurons usually

form the final layers of a CNN to combine information from neurons in previous layers

and determine the network’s final decision.

The MAC operation of a neuron is commonly followed by an activation function. The most

common activation functions in CNNs are the Rectified Linear Unit (ReLU) and sigmoidal

24

2.2 Basic components and operations

functions. Among the latter, the logistic function, which is often simply referred to as

sigmoid function in the context of NNs, and the hyperbolic tangent are most relevant in

the context of SC. The functions are given by:

ReLU(x) = max(x, 0) (2.14)

sigmoid(x) =
1

1 + e−x
(2.15)

and

tanh(x) =
ex − e−x

ex + e−x
(2.16)

Activation functions introduce a non-linear component into the network. Because the

neurons described above only consist of linear functions, activation layers are vital for an

NN to model complex relationships in its inputs.

The third major component in CNNs is a pooling element that takes outputs from several

neurons or activation functions and combines them into one output. Traditionally, the

two most relevant pooling functions are average-pooling, where outputs of neurons are

simply averaged, and max-pooling, where only the neuron output with the highest value

is retained and other neuron’s outputs are discarded. Max-pooling has been shown to lead

to overall better performances in CNNs and is therefore the predominant pooling compo-

nent. The purpose of the pooling layer is twofold. Its first goal is to reduce the amount

of information present in the network. Convolutional layers generate huge amounts of

data in order to recognize and extract various features from their inputs. Pooling layers

are necessary to avoid an explosive increase in data that several consecutive convolutional

layers can cause. Their second goal is to filter for important data and discard redundant

and less relevant data. A commonly used pooling layer in image classification networks is

2× 2-sized non-overlapping max-pooling.

These four types of layer can in theory be arranged freely. However, in practice usu-

ally several blocks consisting of one or more pairs of convolutional and activation layers

followed by a pooling layer are connected in sequence, followed by one or more fully

25

2 SC Background

connected layers that produce the network’s final output. Large NNs for very difficult

tasks such as ResNet [HZRS16] often have different configurations. ResNet for example

includes short cut connections that skip several layers. Such large networks are however

not common targets of SC implementations, as they are too large and resource intensive

to be considered for edge and near-sensor computing.

In all networks of the described type, the vast majority of operations is concentrated in

convolutional and fully connected layers. They consist of a large number of MAC oper-

ations that are individually very simple, but nevertheless require lots of computational

power due to their sheer number. For example, a small CNN for MNIST classification,

one of the simplest tasks in image classification, with 20 5 × 5 filters in its first convo-

lutional layer requires 288, 000 multiplications and additions each for processing a single

input image. These operations can be parallelized to an almost arbitrary degree. All filters

are independent of each other and even within a single filter, computations of all pixels

in a feature map are independent. A dedicated hardware implementation for CNNs such

as Google’s Tensor Processing Unit can take advantage of this parallelism and provide a

large number of hardware neurons to speed up computation of a layer significantly. With

conventional multipliers, this entails a significant cost in area and power consumption.

With SC on the other hand, this cost is reduced drastically, as a multiplier only consists

of a single gate. Moreover, independence of operations means that cross-correlation be-

tween SNs is not an issue, as long as they are not directly multiplied with or added to

each other. SNGs can thus be easily shared between different neurons without worrying

about correlation errors. This potential for highly parallelized computations in combina-

tion with reduced overhead from SNGs, combined with the inherent tolerance of CNNs

for approximate computations make them a primary target application for SC.

In order to obtain a set of weights that leads to high classification accuracy, an NN is

trained on known data. Back-propagation is the commonly used training mechanism for

NNs and can be formally described as follows:

An NN with output O is a composition of functions with the network’s weights as param-

eters:

O(x) = fN (WNfN−1(WN−1...f1(W 1x)...)) (2.17)

26

2.2 Basic components and operations

In this equation, x is the network’s input (e.g. an image as a matrix of pixel values), N

is the number of layers and f i is the activation function of layer i. W i = (wijk) is the

weight matrix of layer i, whereby a weight wjk connects an output node k of layer i − 1,

e.g. a value in a feature map, to a neuron j in layer i. For example, w1
12 is the weight

that connects the node 2 of layer 0 with the first neuron in layer 1. In context of an image

classification network, it can be viewed as the weight of the connection from the second

input pixel to the neuron that produces the first feature map in layer 1.

During back-propagation, an NN computes its output O(xm) for an input xm with a pre-

viously known class ym. O is a vector of output values, one per class (typically but not

necessarily probabilities). With the network’s computed output and the known output y,

a loss function L, also called cost function is computed. A typical choice is the standard

Euclidean distance:

L(ym, O(xm)) =
1

2
‖ym −O(xm)‖2 (2.18)

Usually, several training pairs (xm, ym) are processed before the loss function is calculated

in order to reduce the training effort. Such a set of b training pairs is called a batch and

the loss function is computed for the entire batch B:

L(B) =
1

2b

b∑
i=1

‖yi −O(xi)‖2 (2.19)

Loosely speaking, the loss function is a measure of the difference between the network’s

prediction and the correct classification. The higher the value of L, the less accurate the

networks is. The goal of the training algorithm therefore is to minimize the loss function

by adjusting the network’s weight parameters in small steps. After processing a batch, the

algorithm determines the contribution of each weight wjk to the loss L(B) by computing

the partial derivative ∂L
∂wjk

starting from the output layer and moving backwards through

the network to the input layer. Each weight is then adjusted by an amount ∆wjk, usually

multiplied with some learning rate λ > 0 such that the weight’s contribution is reduced:

∆wjk = −λ ∂L

∂wjk
(2.20)

27

2 SC Background

The learning rate is a hyper-parameter that does not affect the network structure itself,

but it’s performance. A higher learning rate can lead to faster training, but also oscillation

around the minimum of L due to overshooting in the weight adjustments. On the other

hand, a smaller learning rate can hit the minimum more accurately, but can lead to the

algorithm getting stuck in a local minimum rather than finding the global minimum.

The training of an SCNN is commonly performed in software on an equivalent fully binary

model. A few exceptions to this procedure exist, such as the SCNN implemented by Brown

and Card [BC01a], which was small enough to enable network training in the stochastic

domain. In [LWLH18], an SCNN with pre-trained weights that are refined by online learn-

ing in SC is presented. Most of the time however, weights of a fully trained binary NN

are transferred to the SC model. SNs are not suitable to accurately represent the very

small weight adjustments ∆wjk and a hardware implementation of the training algorithm

including computation of derivatives of all weights is infeasible. The training procedure

further needs to be slightly adjusted for SCNNs, as the weights of all layers implemented

in SC have to lie within the range [−1, 1]. This is achieved by a second weight adjustment

step after each batch. All weights in the affected layers are scaled by the maximum weight

value after the correction by ∆w:

wjk =
wjk + ∆wjk

max(wjk + ∆wjk)
(2.21)

The scaling ensures that the maximum absolute weight value in the SC layers is 1, thereby

using as much of the available range as possible. At the same time, the ratio of weights

within a layer and thus the relative influence of connections on the network’s output is

preserved.

The first major work on SC-based NNs (SCNNs) was published in 2001 [BC01a] [BC01b]

and introduced SC elements that are still in use, most importantly the FSM-based imple-

mentations of activation functions often used in NNs such as the stochastic hyperbolic

tangent (stanh, figure 2.5). The target NN of this work was a (for today’s standards)

relatively small network encompassing only 184 weighted connections in total and was

used for recognition of noisy characters from the E-13B MICR (Magnetic Ink Character

Recognition) font.

28

2.2 Basic components and operations

A large number of works on SCNNs was published starting around the year 2015, owing to

the increased prevalence of embedded and distributed devices employing NNs in resource

constrained environments. The main developments in many of these more recent works

compared to Brown and Card’s early work was the change in implementation of addition

and the drastic increase in size of target NNs. While [BC01a] uses basic scaled addition

via MUX, more recent works have replaced this with unscaled SC-binary hybrid adders

(see 2.2.1), for example in the form of parallel counters in [KKY+16], or in [LRL+17] in

the form of approximated versions of accumulative parallel counters (APCs) from [PY95].

Even relatively small CNNs frequently include additions with tens to several hundreds of

summands that would require extremely long SNs to compute with reasonable accuracy

via MUX due to the equally large downscaling factors. As these hybrid adders move the

computation from the stochastic into the binary domain, they are often combined with a

corresponding binary-SC hybrid activation function that returns the computation back into

the stochastic domain. An example for such a component is Btanh [KKY+16], a modifica-

tion of stanh. The tanh function’s output is bounded by [−1, 1] and therefore inherently

converts all of its input values back to the standard range for bipolar SNs. SCNNs and

SC-based NN accelerators have shown good performance for various image recognitions

tasks, from simple greyscale datasets like MNIST [LAH+17] and fashion-MNIST [HPB+19]

to the state-of-the-art dataset ImageNet [HGT+19] [LLR+18].

Conventional NNs have shifted towards using the Rectified Linear Unit (ReLU) as their

activation function more often, as it simplifies and speeds up the training process. ReLU

is defined as ReLU(x) = max(0, x) and is therefore identical to the max-pooling layer in

terms of circuit implementation. In previous works, an accurate SC implementation of the

maximum function that does not incur a large delay was considered impossible [RLD+17].

It was thought that a set of SNs would have to be processed completely first to compute

their value in order to determine their maximum and only afterwards could the SN with

the maximum value be processed further. Both max-pooling and ReLU operations were

therefore only approximated [RLD+17] [LLR+18]. However, an accurate SC implemen-

tation of the maximum function with no delay is indeed possible as presented in section

3.1.

29

2 SC Background

A prevalent design scheme for convolutional SC neurons and SCNN layers can be seen

in most of the recent works. An SC neuron commonly consists of a column of parallel

SC multipliers, followed by an SC-binary hybrid adder of varying design, and a binary-SC

activation function, either implementing tanh or ReLU. Many times, four such neurons are

put in parallel, followed by an SC max-pooling component. Such MAC-activation-pooling

elements form the basic building blocks of SCNNs, a schematic is shown in figure 2.8.

Figure 2.8: Schematic of a bipolar SC MAC-activation-pooling element consisting of four
SC neurons.

In fully connected layers, SC neurons consist of only one MAC and activation function

component, as there are no pooling layers after a fully connected layer. One SC neuron

instance in hardware is in theory sufficient to compute a full convolutional layer, as all

neurons within a layer have the same structure. One instance can thus be used several

30

2.2 Basic components and operations

times with changing weight inputs to compute all kernels of a convolutional layer. In

practice, multiple neurons are usually employed in parallel to speed up computation. In-

puts and outputs of the depicted SC neuron 2.8 are SNs, making it possible to implement

several subsequent SC layers without additional intermediate components.

Lately, recurrent NNs (RNNs) have also been implemented in SC [MZWH19] [LLLH19].

These implementations make use of the same components as SC versions of CNNs, e.g.

stanh. While RNNs are generally smaller than CNNs, SC versions of RNNs are faced with

the additional challenge of feedback loops. In RNNs, outputs of neurons are used as inputs

of the same neuron in subsequent computations. SC RNNs therefore also have to take care

of potentially self perpetuating, increasing errors. In addition, RNN neurons have internal

cell states that need to be stored and updated regularly. This also poses a problem for

SC, as storing intermediate values interferes with its stream-based computing paradigm.

These values have to be converted from stochastic to binary domain in order to avoid ex-

ponential memory requirements of SNs. Values are then updated and reconverted to SNs

for the next computation phase. This procedure entails a computational delay equal to

the SN length due to the conversions.

SC RNNs have so far only been shown to work for relatively simple tasks in symbol gener-

ation and basic speech recognition. Under high levels of noise however, SC RNNs can even

outperform their binary counterparts, as shown in [LLLH19]. The main body of the work

on SCNNs is concentrated on covolutional networks, specifically image classification. This

work therefore focuses on convolutional networks for examples and explanations. How-

ever, many of the presented concepts are also applicable in RNNs.

31

32

Part I

Components and Error Resilience

Chapter 3

SCNN Components

3.1 NMax: An accurate stochastic maximum function

3.1.1 The maximum function in SC

With increasingly complex convolutional NNs becoming one of the main focus points of

SC applications, the maximum function equally gained in importance, as it is used for sub-

sampling (max-pooling) and activation (ReLU) functions. While early CNNs such as the

well-known LeNet5 [LBBH98] used general weighted additions for sub-sampling, CNNs

nowadays implement sub-sampling through max-pooling layers most of the time (see also

section 2.2.5). These layers are placed between convolutional layers to filter unimportant

data, avoid overfitting and reduce the overall amount of data in the network. Average

pooling can still be found in some CNNs as well, but is generally considered to perform

worse overall, although it may produce better results for particular datasets. In general

though, max-pooling tends to preserve important features for classification, such as edges

in an image, whereas average pooling tends to blur information from multiple datapoints

together. State-of-the-art CNNs such as AlexNet [KSH12] and ResNet [HZRS16] therefore

employ max-pooling layers.

The second main task of the maximum function is the rectified linear unit (ReLU) activa-

tion function, which is defined as

ReLU(x) = max{x, 0}. (3.1)

35

3 SCNN Components

Due to its easily computable gradient, ReLU speeds up the training process significantly

without sacrificing classification accuracy. It is therefore the preferred activation function

in most large scale CNNs. An SC implementation of the maximum function is therefore

essential for accurate and well-trainable SCNNs.

The simplest possible implementation of an SC maximum function is an OR gate with

maximally correlated inputs. For two input SNs X1 and X2, the result of X1∨X2 will then

be equal to the SN with more 1s. However, maximum correlation is in most cases too big

of a requirement for this theoretically small implementation to be useful. If the maximum

function is not computed on primary inputs, but follows other stochastic components, its

inputs are generally not correlated in a specific way. This is the case in SCNNs, where the

max-pooling layer follows a convolutional and an activation layer. Introducing correlation

at this point requires a process called regeneration, which is a conversion from SNs to

binary numbers and back to SNs. During the second part of regeneration, correlation can

be introduced by sharing RNGs. As previously described though, SNGs are very expensive

components, making the OR gate solution to the maximum function infeasible in most

cases.

The maximum function for arbitrarily correlated inputs poses a challenge for SC, as it

requires knowledge of the overall value of an SN, which is generally only known after

processing the whole SN. In contrast to basic functions such as multiplication, it cannot

be implemented by processing bits in each clock cycle independently, as each bit by itself

carries almost no information about an SN’s value. Previously, SC implementations of the

maximum function were approximative. Implementations in [YKLC17] (proposed for use

in SCNNs) and [LL11] (proposed for use in digital image processing, specifically median

filters) were based on the stanh function in combination with multiplexers, where the

tanh function was used to track the difference of both input values. As stanh produces

its highest inaccuracies for an input value of 0, the accuracy of these maximum circuits

is lowest when input values are close to each other. Both circuits were initially designed

with two inputs, but can be readily arranged in a tree structure to compute the maximum

of more inputs.

The hardware-oriented max-pooling circuit proposed in [RLD+17] shown in figure 3.1

exploits the property of progressive precision in SNs. Counting the number of 1s in a

36

3.1 NMax: An accurate stochastic maximum function

c-bit block of each input SN gives an approximation of the overall value of each SN.

The maximum of these block values therefore is expected to also indicate the SN with

maximum overall value, which is used to route this SN through a MUX to the circuit’s

output for the next c clock cycles. In other words, the circuit updates its routing every c

clock cycles.

This approximation works well if the difference between the maximum and the second

largest input value is large, as differences in individual block values are also large in that

case. If this is not the case however, small fluctuations in the c-bit blocks can cause the

MUX to select an input other than the maximum SN. Furthermore, the first c-bit block

has to be chosen randomly or according to a fixed choice (e.g. always choosing the top

MUX input), otherwise the circuit would cause a delay of c clock cycles. For these reasons,

the expected output value of the hardware-oriented max-pooling circuit is slightly smaller

than the exact value. This circuit will be also referred to as approximate maximum (AMax)

in the following.

Figure 3.1: Hardware-oriented max-pooling circuit from [RLD+17].

SC implementation of ReLU in [LLR+18] is performed using an FSM similar to Btanh with

a saturating up/down counter. This SC-based ReLU was designed to interface directly with

a parallel counter at its input. Due to its (in theory) unlimited input value range but an

37

3 SCNN Components

output value range that is limited to [−1, 1], it cannot implement ReLU in its basic form,

but rather computes a clipped version:

ReLUclipped = min{max{0, x}, 1} (3.2)

Simulations in [LLR+18] show that the circuit is mostly accurate for inputs x ∈ [−5, 5]

with |x| > 2, but less so in the center of the range, where most values in a CNN com-

monly concentrate (cf. section 6.2). Furthermore, as previously mentioned, FSM-based

stochastic circuits are susceptible to cross-correlation and autocorrelation of its inputs,

which appear often in SCNNs due to their massive number of inputs that share SNGs in

order to reduce SNG area. An SC maximum function circuit should therefore be accurate

over the whole value range and correlation insensitive, to both cross- and autocorrelation.

3.1.2 NMax design details

The SC maximum circuit "NMax" posessing these properties has been presented in [NPH19].

NMax is a counter-based circuit with a variable number of inputs. The circuit diagram for

NMax with three inputs is shown in figure 3.2, further inputs can be added with identi-

cal blocks of counters with increment (Inc)/decrement (Dec) logic and cross-connections

to the OR gates of other counter blocks and the final OR gate before the output. It is

noted in [RLD+17] that a stochastic circuit that accurately determines a maximum input

by comparing the values of its input SNs incurs an unacceptable delay, as the value of an

SN can only be accurately determined after looking at all of its bits. A stochastic circuit

operating according to this principle would therefore have to process all n bits of its input

first before outputting another n bits, causing an n-cycle delay in the system. NMax solves

this problem by comparing the differences between inputs at every clock cycle instead of

differences in overall values. Each input SN Xi ∈ {X1, X2, · · · , Xm} has an associated

counter C1, C2, · · · , Cm which tracks the value

ci = max{C l1, C l2, · · · , C lm} − C li (3.3)

38

3.1 NMax: An accurate stochastic maximum function

Figure 3.2: Stochastic maximum circuit NMax with three inputs from [NPH19].

where C lj is the number of 1s in SN Xj until clock cycle l, i.e. the unipolar value of SN Xj

multiplied by l. NMax outputs a 1 when any SN Xj with C lj = 0 and X l
j = 1 exists and a

0 otherwise. The algorithm is formally described below.

The values ci can never be negative. It is also certain that at least one ci equals 0, belonging

to the counter(s) that are assigned to those SNs that contained the most 1s up to the

current clock cycle l. The condition ci = 0 for a 1 at the output of block i ensures that only

SNs with the current maximum value can contribute a 1 to the circuit’s output. Blocks with

ci 6= 0 will instead decrease their counter values and are irrelevant for the circuit’s overall

output. Therefore, NMax’s output value only increases when the maximum input value

39

3 SCNN Components

1 Set all cj = 0;
2 while l ≤ n do
3 for each input SN Xj do
4 if clj = 0 then
5 Set Coutj = 0;
6 else
7 Set Coutj = 1;
8 end
9 end

10 Set Oj = X l
j ∧ Coutj;

11 Set Z =
∨m
i=1Oi;

12 for each input SN Xj in clock cycle l do
13 Set Incj = X l

j ∧ Z;
14 Set Decj = Coutj ∧X l

j ∧ (
∨
i 6=j Oi) ;

15 end
16 end

does so as well. This property holds in every clock cycle, as formally proven in appendix

A.1. Table 3.1 shows an example of an NMax computation over eight clock cycles.

Table 3.1: Example of an NMax computation over 8 clock cycles with bipolar input SNs
X1 = 0.5, X2 = 0, X3 = −0.5 and X4 = −0.5.

Clock cycle: 0 1 2 3 4 5 6 7
X1 0 1 0 1 1 1 1 1
X2 0 1 0 0 1 1 1 0
X3 1 0 1 0 0 0 0 0
X4 0 0 0 0 0 0 1 1
c1 0 1 0 1 0 0 0 0
c2 0 1 0 1 1 1 1 1
c3 0 0 0 0 0 1 2 3
c4 0 1 1 2 2 3 4 4
Z 1 0 1 0 1 1 1 1

It can be seen in table 3.1 that the output value is equal to the maximum input value, but

the distribution of 1s is not identical, as it is determined by X3 in clock cycles 0 to 3, and

X1 afterwards. Moreover, the counter values c3 and c4 are different in clock cycle 7, even

though the values of X3 and X4 are identical. This is due to the table showing the counter

40

3.1 NMax: An accurate stochastic maximum function

values at the beginning of each clock cycle (at the beginning of cycle 8, c3 and c4 would

be equal).

3.1.3 Analysis and evaluation

NMax was primarily designed to be used in SCNNs. The first simulation set-up therefore

evaluates the performance of NMax in a max-pooling layer of a small SCNN (configuration

shown in table 3.2). Table 3.3a shows that the SCNN with NMax as its max-pooling

component performs consistently better than the version using AMax. In addition, the

accuracy of the AMax-based SCNNs vary slightly with block size c, which can only be

determined through trial and error and is dependent on the SN length.

Table 3.2: Network structure used in simulations for NMax evaluation.

Layer ID Layer type Kernel parameters Activation function
1 2D Convolution 4× 4× 20 tanh
2 Max-pooling 2× 2 -
3 2D Convolution 3× 3× 60 ReLU
4 2D Convolution 3× 3× 60 ReLU
5 Max-pooling 2× 2 -
7 2D Convolution 3× 3× 120 ReLU
8 Fully connected 100 -
9 Fully connected 10 softmax

As previously mentioned, NMax works regardless of any correlation within or between its

inputs. Formally, this is also shown by the proof in the appendix, which does not assume

any presence or absence of correlation. However, correlation within NMax’s output and

between the output and its inputs has to be investigated as well. As established in the

circuit design and visible in table 3.1, NMax output tracks the maximum input SN bit

for bit. If several input values have similar values, the tracking can temporarily switch

between them. It is therefore expected that the cross-correlation between the output Z

and these inputs is high, while cross-correlation with other inputs is similar to the cross-

correlation between inputs. Autocorrelation is also expected to be similar to the inputs due

to the bit-for-bit tracking. The correlation properties of NMax have been examined in the

second simulation set-up: Inputs are generated independently of each other and have no

41

3 SCNN Components

deliberate autocorrelation. SN length has been set to n = 1024. As both correlation metrics

are independent of SN length, this choice does not limit the validity of the simulation.

Table 3.3: NMax simulations for NN accuracy and correlation.

(a) Accuracy of an SCNN classifying fashion-MNIST images with NMax and AMax based max-
pooling layers.

Component: NMax AMax c = 32 AMax c = 64 AMax c = 128 AMax c = 256

NN Accuracy: 91.3% 90.7% 90.7% 90.5% 90.4%

(b) Correlation analysis of 4-input NMax. Values of the simulated input sets: Randomized Set 1 =

(0.80, 0.54, 0.14,−0.22), Randomized Set 2 = (0.55,−0.42, 0.04,−0.88), Fixed Set 1 = (0, 0, 0, 0),
Fixed Set 2 = (0.75, 0.75, 0.23,−0.52), Fixed Set 3 = (0.80, 0.78,−0.20,−0.67).

Input values SCC(X1, Z) SCC(X2, Z) SCC(X3, Z) SCC(X4, Z) AC1(Z)

Randomized Set 1 0.994 0.007 0.006 0.021 0.002
Randomized Set 2 0.957 0.015 -0.017 0.007 -0.003
Fixed Set 1 0.252 0.249 0.249 0.248 -0.020
Fixed Set 2 0.496 0.500 -0.012 0.028 0.009
Fixed Set 3 0.765 0.221 -0.001 0.033 -0.006

Table 3.3b confirms the expectations regarding NMax’s influence on correlation. For ease

of writing, the inputs have been reordered such that X1 always has the maximum input

of an input set, in the following X1 therefore refers to the SN with maximum value. If

the value of X1 is significantly distinct from the other input values (Random Sets 1+2),

SCC(X1, Z) is almost 1, as NMax outputsX1 with almost no changes, which almost always

appear in the first few output bits. Furthermore, the SCC between Z and the remaining

input SNs is close to 0 and independent of their values, which is also expected when inputs

are generated independently. Fixed Set 1 shows that NMax does not prioritize any of its

inputs when input values are identical. The SCC values of this set show that NMax tracked

almost exactly 25% of each input to generate Z. Similarly, almost exactly 50% of X1 and

X2 have contributed to Z in fixed set 2, while the remaining two inputs are virtually un-

correlated to Z. Fixed set 3 shows that even a small difference between X1 and any other

value (approximately 20 out of 1024 bits in this example) leads to significantly different

SCC values, showing that NMax converges fast towards the correct output value, i.e has

good progressive precision.

Autocorrelation of distance 1 (see equation 2.7) is close to 0 in all cases, which is ex-

42

3.1 NMax: An accurate stochastic maximum function

pected, as input SNs were generated without autocorrelation in this simulation and NMax

does not reorder input bits in a predetermined way. The most important conclusion from

this result is that NMax is compatible with decorrelation by isolation and can be used in

sequence with FSM-based SC components such as stanh, which are commonly susceptible

to autocorrelated inputs.

In section 6.1 it will be shown that some functions cannot have exact corresponding SC

implementations but instead exhibit a bias in SC. The maximum function belongs to this

group of functions and under specific circumstances it is possible to compute its bias using

equation 6.6. As NMax is a non-approximate SC maximum implementation, it there-

fore also exhibits this bias, while approximate implementations such as in [RLD+17] and

[YKLC17] might not be subject to it. As a detailed theoretical evaluation, e.g. in the form

of a Markov chain, of these circuits is infeasible due to their complexity, a simulation-based

approach was used to evaluate these circuits’ biases.

Two different input situations are considered:

1. Input values are iid. This situation can be found for example in SCNNs for image

classification when input images contain areas with consistent colour (e.g. a black

background).

2. Input values are non-iid. This situation can be found for example in sorting net-

works.

In theory, iid inputs should lead to a larger bias than non-iid inputs in most cases. To

illustrate this, take a case with n normal distributed, real-valued iid input valuesX1, ..., Xn

with expected value µ and standard deviation σ. The probability P>µ that at least one of

the input values is larger than µ is

P>µ = P ({X1 > µ} ∨ {X2 > µ} ∨ ... ∨ {Xn > µ})

= 1− P ({X1 < µ} ∧ {X2 < µ} ∧ ... ∧ {Xn < µ})

= 1− P ({X1 < µ})) · P ({X2 < µ})) · ... · P ({Xn < µ}))

= 1− 1

2n
=

2n − 1

2n
.

(3.4)

43

3 SCNN Components

On the other hand, take the case of n normal distributed non-iid input values X1, ..., Xn

with different expected values and standard deviations µ1, ..., µn and σ1, ..., σn. Assume

without loss of generality that µ1 > µ2, ..., µn. Then, P>µ1 can again be expressed as

P>µ1 = P ({X1 > µ1} ∨ {X2 > µ1} ∨ ... ∨ {Xn > µ1})

= 1− P ({X1 < µ1} ∧ {X2 < µ1} ∧ ... ∧ {Xn < µ1}) .
(3.5)

Because the normal distribution is symmetric around its mean, and µ1 > µ2, ..., µn, it

follows that

P ({X2 > µ1}) < P ({X2 > µ2}) (3.6)

and correspondingly for all other X. Therefore, it follows that

P>µ1 ≤ 1− P ({X1 < µ1} ∧ {X2 < µ2} ∧ ... ∧ {Xn < µn}) = P>µ. (3.7)

This does of course not prove that the bias in the iid case is always larger than in a non-iid

case. A simple counter example is an iid case with µ = 1, which equates to a variance and

therefore bias of 0 in SC. However, it provides a reasoning why the bias in an iid case is

oftentimes larger when the input values are not very close to the boundaries of SN value

range.

A simulation with randomized values supports the theoretical reasoning and provides a

comparison to the bias of other stochastic maximum circuits previously mentioned. Table

3.4 shows biases of NMax, AMax (HOMC) [RLD+17] and the stanh-based maximum cir-

cuit by Yu et al. [YKLC17] using randomly generated input values. The results reported in

the table are obtained from 10, 000 independent simulations with SNs of length 1, 024 bit.

When inputs have identical values, NMax shows a bias that gets bigger as the values get

closer to 0, as indicated by the theoretical analysis above. For an input value of 0, the

measured bias of NMax matches the theoretical prediction from equation 6.5 up to three

decimal places. AMax deals well with identical inputs, as the circuit essentially computes

the average of its inputs under these circumstances. On the other hand, in the more

general situation of randomized (i.e. non-identical input values), NMax achieves its goal

of computing an exact maximum, while AMax suffers from a significant negative bias,

44

3.2 SBoNG: An S-box based number generator

Table 3.4: Bias analysis of three stochastic maximum circuits.

Input values NMax
AMax with block size

Yu et al.
32 64 128 256

−0.67 0.023 0 0 0 0 −0.003
−0.56 0.027 0 0 0 0 −0.002

0 0.032 0 0 0 0 −0.004
0.58 0.026 0 0 0 0 0
0.80 0.019 0 0 0 0 −0.003

randomized 0 −0.036 −0.072 −0.144 −0.291 −0.003
randomized 0 −0.021 −0.033 −0.065 −0.130 −0.072

which increases with the chosen block size. The first output block in AMax has to be

chosen without having any information about input values to avoid introducing a delay

and does therefore not correspond to the maximum in most cases. As the block size

increases, the impact of the first block on the final output value increases accordingly. Yu

et al.’s circuit lies between NMax and AMax regarding its bias, but its major disadvantage

is that it is based on an stanh component, which is highly correlation sensitive. AMax can

in theory also be affected by correlation between blocks, which is however less likely in

practice, as it would require very specific and thus improbable input patterns. It follows

that NMax provides the highest accuracy of available stochastic maximum circuits in the

general case, only suffering from a small bias under very specific circumstances, and is

also the only circuit that cannot be affected by input correlation. It therefore provides the

most reliable and accurate implementation of max-pooling and ReLU functions in SCNNs.

3.2 SBoNG: An S-box based number generator

3.2.1 Challenges of stochastic number generation

SNGs are generally the most expensive component of a stochastic circuit. Not only do

they have to include a register to store the (pseudo) random numbers that the SNG needs,

they also include a circuit part to compare and transform their binary form inputs into

a probability signal, the so-called probability conversion circuit (PCC). The conceptually

simplest PCC is a comparator, which is often used as the default PCC in SC, but there

are alternatives such as the MUX-chain [BC01a] and weighted binary generator (WBG)

45

3 SCNN Components

[GK88] that can have advantages over the comparator, such as smaller area overhead.

Lowering the cost of SNGs is an important issue in SC, as the overhead from number

generation affects all SC systems regardless of application. Two approaches can be made

to achieve this goal: Either the cost of the SNG parts, i.e. the size of the RNG and/or the

size of the PCC can be reduced, or parts are shared between several SNGs.

The first option can only provide very limited improvements. The authors of [YLL+18]

make the conjecture that the minimal cost of the non-shareable part of a PCC that converts

k-bit binary inputs is 2k − 1 (where cost is the number of 2-input gates in the implemen-

tation). The authors do not provide a strict proof of this conjecture, but support it with

the following argument: A PCC receives two k-bit binary inputs: one k-bit input with the

desired SN value v and one k-bit random input r. For each of the k bits of v to contribute

to the PCC output with its correct weight, there has to be an operation (i.e. probabil-

ity multiplication via AND gate) between each pair of bits of v and r. These operations

require at least one 2-input gate per bit and therefore k gates in total. Afterwards, the

resulting k bits have to be somehow combined into the single PCC output bit. Regardless

of methodology, this requires at least another k − 1 2-input gates, leading to a total cost

of 2k − 1 for this part of the SNG. A version of the WBG that achieves this minimal cost is

presented in [YLL+18], a further cost reduction of this SNG part is therefore not possible.

Furthermore, the cost of a k-bit LFSR can be considered close to the minimal cost of the

RNG part, as it only consists of a k-bit register and a small number of XOR gates to gen-

erate its pseudo random sequence. The cost of an SNG consisting of an LFSR and a WBG

can therefore not be improved by reducing the cost of its components.

This leaves the second option as the only possibly successful approach to cost reduction:

Sharing parts between SNGs. [YLL+18] splits the WBG into a non-shareable and a share-

able part with minimum cost. The remaining room for optimization therefore has to come

from sharing one RNG among several SNGs. SNs that have been generated using the same

random number source will be maximally correlated. In some instances, this correlation

is desired, for example in the CORDIV divider (3.3) and the edge detection circuit from

[ALH13]. Apart from these special instances though, correlation needs to be avoided in

order to minimize correlation errors. The two main strategies to achieve this goal are:

46

3.2 SBoNG: An S-box based number generator

1. Decorrelation by isolation of affected SNs.

2. Introducing an intermediate "scrambling" component between shared RNG and non-

shared part of the PCC.

The general process of option 1 has been described in section 2.2.2, although in the case

of RNG sharing it is not used to create uncorrelated duplicates of SNs, but rather to reduce

cross-correlation between jointly generated SNs with generally different values. Isolation

requires low autocorrelation of SNs, i.e. subsequent SN bits should be independent of each

other in the optimal case. As SC commonly employs PRNGs, this is not a given and the

extent of the correlation depends on the specific output sequence of the PRNG. Option 2 on

the other hand potentially introduces additional hardware overhead in the SNG and can

interfere with isolation. Consider for example an LFSR with maximum sequence length

defined by the feedback polynomial x8 +x6 +x5 +x4 + 1 and initial state 00111010. Table

3.5 shows the states of this LFSR when implemented with external feedback function (also

called Fibonacci LFSR) and internal feedback function (also called Galois LFSR) and the

corresponding binary values that are used by the SNG.

Table 3.5: Sequence of LFSR states for Fibonacci and Galois LFSRs with feedback polyno-
mial x8 + x6 + x5 + x4 + 1 and corresponding unsigned binary value.

Fib. LFSR state Binary value 1 Bit cyc. shift Gal. LFSR state Binary value
00111010 0.2265625 0.11328125 00111010 0.2265625
00011101 0.11328125 0.5546875 00011101 0.11328125
00001110 0.0546875 0.02734375 10110110 0.7109375
00000111 0.02734375 0.51171875 01011011 0.35546875
00000011 0.01171875 0.50390625 10010101 0.58203125
10000001 0.50390625 0.75 11110010 0.9453125
11000000 0.75 0.375 01111001 0.47265625
01100000 0.375 0.1875 10000100 0.515625
00110000 0.1875 0.09375 01000010 0.2578125
10011000 0.59375 0.296875 00100001 0.12890625

It is clear that subsequent binary values in table 3.5 are not independent of each other. In

fact, in many cases they are simply roughly half of the previous value (whenever a 0 is

shifted in from the left), or the previous value increases by roughly a factor of 2f where

f is the most significant position with a 0 in the current state (whenever a 1 is shifted in

47

3 SCNN Components

from the left). Changing the order of the shift, i.e. shifting in from the LSB on the right

only reverses these patterns (values double instead of halve) but does not eliminate them.

This high dependency between subsequent LFSR states leads to a high autocorrelation in

the generated SN, which in turn can cause systematic correlation errors in a circuit.

A simple example can be found in the squarer circuit in figure 2.3b. With an input value

of x = 0.75 the circuit would be expected to compute y = x2 = 0.5625 on average.

However, when a Fibonacci LFSR is used to generate the SN X, the circuit consistently

outputs an SN Y with the value y = 0.625 (with minor fluctuations due to quantization

errors). This error is much more serious than quantization errors or random fluctuation

errors of the same order, as it affects the circuit systematically. In other words, it changes

the implemented function of the circuit for this specific input value. When the input X

is analysed in more detail, the reason for the error becomes clear (in the following one

specific example of X is chosen for illustration):

X = 1110110111101111101111100001101100011110...

No occurrence of a single 1 (also referred to as a run of length 1) appears in X, which

would be highly unlikely ifX where a Bernoulli sequence, which decorrelation by isolation

is based on. For example, for an SN of length 128, the probability of having no run

of length 1 is 0.289% [MP11] when bits are iid. The base assumption of isolation is

apparently not met in this case and therefore the isolator in circuit 2.3b does not work as

intended, leading to the systematic output error.

Circuits based on specific input correlations are affected similarly. The CORDIV divider

(fig. 3.3) is based on input SNs X1 and X2 that are generated using a shared PRNG in

order to achieve SCC(X1, X2) = 1. CORDIV outputs Xi
1 in clock cycle i if Xi

2 = 1 or

repeats its output of the previous cycle i − 1 if Xi
2 = 0. While the circuit generally works

well together with LFSR-based SNGs, specific input value combinations can be found for

which CORDIV fails similarly to the example above. One such combination is x1 = 0.5,

x2 = 0.75. The expected result is ẑ = 0.5
0.75 = 0.67, however the observed output value is

z = 0.5 when a Fibonacci LFSR is used in the SNG. Closer examination of X1, X2 and the

48

3.2 SBoNG: An S-box based number generator

Figure 3.3: CORDIV divider circuit from [CH16].

output SN Z again reveals significant autocorrelation as the cause (as above, the following

example is used for illustration):

X1 = 1001110011001010011100...

X2 = 1101111011101111011110...

Z = 1001110011001010011100...

All 1s in the SNs overlap as required by the circuit, however the additional 1s in X2

are distributed in a very specific manner: Whenever a run of 1s starts in X1, a run of

ones starts in X2 at the same position, but exactly one bit longer. If SNs were Bernoulli

sequences, the additional 1s in X2 should be distributed with no such discernible pattern.

In CORDIV, this pattern causes the output Z to be an exact bit-for-bit copy of X1.

The most important type of SC components that can be heavily affected by autocorrelation

is given by FSMs. Their use as activation functions in SCNNs makes them a critical com-

ponent, yet their simple design cannot generally tolerate correlations. Figure 3.4 shows a

comparison of the output function of stanh (figure 2.5) with eight states using input SNs

generated by different RNGs: PN sequence, LFSR and Mersenne Twister (MT) [MN98].

MT is a complex software-based PRNG which is used as standard PRNG in several pro-

gramming languages and tools, e.g. python and MATLAB. In the context of SC, its high

49

3 SCNN Components

complexity and long period makes MT essentially behave like a true RNG and therefore a

good reference to test for effects of correlation. Each data point in the figure is the average

result of 1, 000 independent simulations with the corresponding RNG.

Figure 3.4: Simulation of stanh(4x), comparing different RNGs. The black line shows the
expected output function. SN length 256.

PN sequence and LFSR show a clear deviation from the target function, while MT matches

the expected result very well. The design of stanh does not take into account possible

dependencies between subsequent input bits and is therefore not able to tolerate the au-

tocorrelation in SNs generated by PN sequences and LFSRs. Low discrepancy sequences

cause similar problems, as illustrated by the following example:

An SN X with value 2
3 and length n generated using a Halton sequence has a regular

pattern, e.g.

X = 011011011011011...

and the stanh FSM will traverse through its states according to table 3.6, assuming eight

states in total and starting state S4. The resulting output SN Y will have a value of n−1
n

instead of the expected 0.583, as the FSM will never reach the left half of the FSM after

clock cycle 2, because of the regular pattern of X with only single occurrences of 0s.

50

3.2 SBoNG: An S-box based number generator

Table 3.6: Example for stanh state traversal with a Halton sequence-based input SN X.

X State Output
0 S4 1
1 S3 0
1 S4 1
0 S5 1
1 S4 1
1 S5 1
0 S6 1
1 S5 1
1 S6 1
... ... 1

Closely related to the issue of autocorrelation and isolation is the property of an RNG to

produce different pseudo random numbers from the same state by shifting or scrambling

of bits. If several random numbers can be produced in this way such that they lead to

SNs with little correlation, isolation may be unnecessary. In [IIS+14] the authors explored

circular shifting of LFSR states as a method to share an RNG without the need for isolation.

A circular shift by L/2 where L is the LFSR size produced the best results (i.e. the lowest

SCC between generated SNs), while small shifts by one or two bits cause significant cross-

correlation. The third column in table 3.5 provides some intuitive reasoning for this effect,

as the value of the right shifted state is often identical to the value of the original state

one clock cycle later. Cyclic state shifting by one bit therefore often behaves not much

different from isolation and can in fact interfere significantly with it. An SN generated

using the original LFSR state in table 3.5 would be significantly correlated with an isolated

(i.e delayed by one clock cycle) SN that was generated using the shifted state. Cyclical

shifting by larger amounts however leads to fewer options for sharing. With a shifting

amount of L/2, only two SNGs can share the same LFSR.

Some SC systems, especially digital filters and SCNNs can have a very large number of

inputs. As filter systems are generally much smaller than SCNNs, the percentage of total

circuit area occupied by RNGs in them is significant. In a 32-tap digital filter analysed

in [ISI+16], LFSRs consume up to 70% of the total circuit area when no sharing is used.

Through a carefully considered sharing strategy, the authors were able to reduce this area

to only 3.6% at the cost of an increase in absolute error from 3.31 · 10−2 to 3.94 · 10−2

51

3 SCNN Components

on average. This considerable improvement is possible in filters due to their mostly cross-

correlation insensitive MUX-based structure and their purely combinational design, which

makes them insensitive to autocorrelation as well.

However, SCNNs do not have these beneficial properties; they contain sequential compo-

nents that are affected by autocorrelation and components that are potentially sensitive

to crosscorrelation such as AMax. For example, an NN for the classification of the MNIST

datasets has 784 input pixels and several hundreds of weight and bias values, out of which

commonly 20 to 50 values (depending on the size of the convolution kernel) are part of

one computation set. Within such sets, SNs are interacting directly with each other in

MAC operations and activation functions, and outputs of different sets can be involved

in the same max-pooling operation. In an SCNN with a 4 × 4 convolutional kernel, 16

weights and 16 input values are part of one computation set, as they are involved in the

same MAC operation and subsequent activation function. Three other computation sets

are independent up to this operation, but are part of the same max-pooling function (cf.

figure 2.8). Using the sharing method with the best results from [IIS+14] would still result

in a total of at least 16 required LFSRs, even if max-pooling is not considered.

3.2.2 SBoNG design and evaluation

A PRNG for SC that is designed to be shareable should satisfy two requirements: Produce

sequences with low autocorrelation and include a scrambling component with low hard-

ware cost. The S-Box based Number Generator (SBoNG) first presented in [NPH17] and

[NPH18a] was designed with these requirements in mind.

In its basic form, SBoNG consists of an LFSR for area efficient generation of pseudo ran-

dom numbers and a substitution box (S-box) used in a small scale version of the AES

encryption scheme [GBH+16]. An S-box is a non-linear component used in cryptography

that replaces fixed-size blocks of its input with different blocks of the same size according

to a specifically determined mapping. The purpose of an S-box is to introduce a high-

entropy step in an encryption scheme in order to make algebraic attacks on the cypher

more difficult. Cyphers that use an S-box commonly consist of two different types of lay-

ers, a confusion layer and a diffusion layer. The diffusion layer is a combination of linear

operations, such as shifting rows and mixing columns of the bit matrix that is currently

52

3.2 SBoNG: An S-box based number generator

being encrypted. The S-box comprises the confusion layer and is used to break the lin-

earity of the diffusion layer. As it is in essence just a look up table, it does not require

much hardware area to be implemented directly, thus making it a good option for the

scrambling component in SBoNG. The design schematic of SBoNG including connections

to subsequent PCCs is shown in figure 3.5.

Figure 3.5: Design schematic of SBoNG with connections to PCCs.

SBoNG has an n bit internal state, which is randomly initialized. To generate a pseudo

random number with SBoNG, the following steps are taken:

1. The internal state is XORed with the state of an n bit LFSR.

2. The resulting n bit state is split into blocks of 4 bit each, which are passed through

(identical) S-boxes.

3. The S-box outputs are concatenated and the resulting n bit state is rotated by one

bit to the right. This rotated value is considered the output of SBoNG.

4. The internal state is XORed with the LFSR state once more.

The XOR operation in step one ensures that every bit of the internal state has a roughly

50% chance of flipping compared to the previous cycle, which prevents sequences of highly

dependent output values such as shown in table 3.5. However, subsequent states would

still be linearly dependent on each other. The S-box in the second step breaks this linearity

for each 4 bit block of the internal state. The rotation in step three causes an interaction

between the otherwise largely independent blocks and ensures that the entropy intro-

duced by the S-boxes is spread over the entire n bit state.

53

3 SCNN Components

One downside coming with the use of S-boxes is a restriction in state size. As the internal

state has to be split into blocks of size 4 bit, n can only be a multiple of 4. The S-box from

[GBH+16] was chosen specifically because of its 4 bits block size, in contrast to the 8 bit

size in regular AES. A small block size ensures a particularly small hardware implementa-

tion and enables a wider range of internal state sizes. The specific substitution mapping

of SBoNG’s S-box is given in table 3.7 and the corresponding hardware implementation in

figure 3.6.

Table 3.7: Substitution mapping of the 4 bit S-box in SBoNG (in hexadecimal).

Input: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output: 6 B 5 4 2 E 7 A 9 D F C 3 1 0 8

The impact of the S-box as a non-linear component can be seen clearly when autocorrela-

tion of generated SNs is measured and compared to SNs generated by LFSR-based SNGs.

SBoNG generates SNs with an autocorrelation factor A1 according to equation (2.7) that

is one to two orders of magnitude better on average. Table 3.8 shows the average A1 and

A2 factors of 1, 000 independently generated SNs of length 256 bit for selected randomly

chosen input values.

Table 3.8: Autocorrelation values of SNs generated with SBoNGs and LFSRs.

SN value
A1 A2

SBoNG LFSR SBoNG LFSR
0.15 −0.002 0.40 −0.02 0.12
0.23 0.002 0.35 0 0.02
0.30 −0.003 0.28 −0.03 0.17
0.41 0.003 0.15 −0.03 0.15
0.55 −0.003 0.09 −0.03 0.09
0.63 0.001 0.28 −0.08 0.20
0.70 0.001 0.27 −0.06 0.16
0.83 0 0.39 −0.03 0.10

Across all input values, autocorrelation of SNs generated by SBoNG are much lower than

their LFSR-generated counterparts. An interesting observation is that A2 factors are larger

than A1 factors for SBoNG. This is likely caused by the XORing of subsequent LFSR states,

which does not get entirely de-linearised by the S-box. In cryptography, cyphers with S-

54

3.2 SBoNG: An S-box based number generator

Figure 3.6: Hardware implementation of the S-box from table 3.7 with input bits i0, · · · , i3
and output bits o0, · · · , o3.

boxes commonly consist of several applications of the previously mentioned confusion and

diffusion layers to prevent such residual linear dependencies. This would however cause

a significant area overhead in SC, where even a single LFSR is already considered to be a

relatively large component. Even so, SBoNG’s A2 factors are still significantly smaller than

those of the LFSR, and are highly unlikely to impact SC operations to a noticeable degree.

This is further corroborated by the performance of FSM-based SC components in combi-

nation with SBoNG. In figure 3.4, the deficiencies of LFSR and PN sequences have been

55

3 SCNN Components

illustrated for stanh. The same simulation repeated for SBoNG is shown in figure 3.7.

SBoNG almost perfectly matches the expected output function and is virtually indistin-

guishable from MT for most input values. Only very minor differences between the two

can be seen for input values in [−0.4,−0.2] and [0.2, 0.5].

Figure 3.7: Simulation of stanh(4x) with SBoNG (blue) and MT (red) used as RNGs. The
black line shows the expected output function. SN length 256.

A further important point to investigate is SBoNG’s compatibility with isolation and cross-

correlation. Copying an SN through a fan-out with isolation on the fan-out lines is a

common practice that is of great importance in polynomial circuits. Basic building blocks

shown in figure 2.3 allow simple computation of monomials with only a single input SN.

The isolated SN should have low cross-correlation with the input SN for the multiplication

to be accurate. As shown in table 3.9, SBoNG clearly meets this target and reaches cross-

correlation values that are only slightly higher than those obtained with MT.

Values in the table were obtained after 1, 000 independent simulations for both SBoNG

and MT. For comparison, the SCC of two SNs obtained by LFSR rotation method [IIS+14]

is included as well. The SCC values of SBoNG are almost as low as those of MT, meaning

that SBoNG performs almost as well as a significantly more complex software-based RNG

in the context of SC. Higher SCC values in the table, e.g. in the last line are due to the

manner in which SCC is computed, which causes SNs with values towards the edges of

56

3.2 SBoNG: An S-box based number generator

Table 3.9: Cross-correlation (SCC) value examples of SNs generated with SBoNG, MT and
LFSR rotation.

SN value
SBoNG MT

LFSR
min max min max

0.18 0.074 0.109 0.073 0.113 0.401
0.39 0.006 0.021 0.005 0.023 0.180
0.58 0.002 0.016 0.001 0.012 0.149
0.77 0.051 0.086 0.043 0.079 0.354
0.90 0.183 0.275 0.177 0.246 0.468

the [0, 1] range to have higher SCC (see section 2.2.2). In conclusion, SBoNG is fully

compatible with isolation and FSM-based sequential SC components.

3.2.3 Statistical analysis of SBoNG

Statistical properties of RNGs are often evaluated with specifically designed test suites

such as dieharder [Bro] and the NIST test suite [RSN+]. These test suites are aimed at

RNGs for cryptographic applications, which require a much higher complexity that LFSR

and SBoNG provide. It is therefore expected that both of them do not pass the entire tests

suites. Nevertheless, several of the simpler tests in the NIST suite were performed to inves-

tigate if the different behaviours of these RNGs in SC can be traced to specific properties

of their generated sequences. For comparison, MT was also tested. MT uses significantly

more hardware area than LFSR and SBoNG and its inclusion here should only provide

context, it should not be seen as a viable alternative in SC.

The following tests from the NIST test suite are performed: Frequency, normal runs,

longest runs in a block, discrete Fourier transform (DFT), cumulative sums and serial test.

All tests are performed with input sizes (i.e. length of tested sequences) recommended in

the NIST documentation. Each test consists of 100 runs, an RNG passes a test when at

least 96 runs are successful. A P-value is used to evaluate each test run. The P-value is

the probability for observing the specific test outcome under the condition that the input

sequence is indeed random. If the P-value is larger than 0.01, the run is considered suc-

cessful.

The specifics of each test vary and an extended description of each test would be out of

57

3 SCNN Components

place here. Therefore, only the frequency test will be explained in some detail to illustrate

the general procedure, and a short description of the remaining tests will be given.

Frequency test procedure: The frequency test focuses on the proportion of 1s and 0s

in the test sequence. In a truly random bit stream, the ratio of 1s and 0s should be

one, the test focuses on the fraction of 1s, which should be 1
2 in this case. A bit stream

s = s1, s2, ..., sn, n ≥ 100 is generated as input for each test run. This bit stream is the

output of an RNG, and is not to be confused with an SN, which is the output of an SNG

that is supplied by the RNG. A parameter sobs is computed for the sequence according to

sobs =

∑n
i=1(2si − 1)√

n
(3.8)

from which the P-value is further determined by

P-value = erfc

(
sobs√

2

)
(3.9)

where erfc is the error function:

erfc(z) =
2√
π

∫ ∞
z

e−u
2
du (3.10)

For example, let s = 1001011110 with n = 1, then sobs ≈ 0.632 and P-value ≈ 0.527. s is

therefore considered to be random and this test run is considered successful.

Normal runs test: The number of runs (consecutive bits of the same value) of 1s and

0s is determined and compared to the expected numbers from a true random sequence.

Longest runs in a block test: The longest run of 1s in an M bit block is compared to

the length expected from a true random sequence.

Discrete Fourier transform (DFT) test: A DFT is applied to the sequence and the peaks

of the resulting transform are examined. This test is used to detect periodic features, i.e.

repeating patterns in the sequence that are not expected from truly random sequences.

58

3.2 SBoNG: An S-box based number generator

Cumulative sums test: A random walk on the sequence is performed and the sum∑
(2si − 1) is computed after every step i of the walk. The maximal absolute value of

the series of sums is determined, higher values suggest insufficient randomness. This test

consists of two parts: a forwards and a backwards pass.

Serial test: This test determines the frequency of all possible overlapping m-bit and m−1-

bit patterns in the sequence. In a truly random sequence, every one of the possible patterns

is expected to appear with the same frequency.

The results of these test are shown in table 3.10:

Table 3.10: Results of performed NIST tests for LFSR, SBoNG and MT.

Test LFSR SBoNG MT
Frequency 100 100 100
Normal runs 98 99 100
Longest runs in block 97 99 100
DFT 97 100 100
Cumulative sums part 1 100 100 100
Cumulative sums part 2 100 100 100
Serial part 1 98 100 100
Serial part 2 98 99 100

Interestingly, differences between LFSR and SBoNG test results are almost non-existent.

The results from these tests with the recommended test parameters do not seem to re-

late to the performance of RNGs in SN generators. This is especially noticeable in the

serial test, which is of particular interest for SN generation. Subsequent bits of an SN

are generated using subsequent states of an RNG. If the output of the RNG is seen as a

bit stream, as it is in order to generate the input sequences for the test, this is equivalent

to using blocks (states) of length k with an overlap of m = k − 1 between consecutive

blocks. The recommended overlap in [RSN+] is mrec < blog2Nc − 2 for sequences of

length N . However, in a stochastic circuit with SN length n, the sequence length of the

RNG is commonly chosen such that N ≥ 2dlog2 ne, with equality being preferred to keep

hardware cost of RNGs as low as possible. The overlap between consecutive states used

for SN generation is therefore mSC = dlog2 ne − 1, while the recommended parameter for

59

3 SCNN Components

the test is mrec < dlog2 ne − 2.

Consider for example a k = 8 bit LFSR with a maximum sequence length of 255. For

the purpose of the serial test, the full output sequence is viewed as a single bit stream

b1b2...b255 with 8-bit blocks and an overlap of mrec < dlog2 255e − 2 = 5, e.g. B1 = b1...b8

and B2 = b5...b12. In an SNG, the situation is different: in the first clock cycle, the state of

the LFSR, which is used to generate the first SN bit, is S1 = b1...b8. The next SN bit in the

second clock cycle is generated using the state corresponding to S2 = b2...b9, an overlap

of 7 bits. The serial test with the recommended settings is therefore not capable to detect

correlations caused by the additional 3 overlapping bits.

Additionally, different significance of bits is not considered in these tests, as the test input

sequences are seen as a constant stream of equally significant bits. In an SNG however, the

states of the RNG are interpreted as unsigned binary numbers, e.g. in the above example

B1 = b1...b8, the bit b1 has significance 2−1 while the bit b8 has significance 2−8. High

significance bits of course have more influence on the generated SN bits and correlations

between them therefore have a larger effect. This could account for the differences be-

tween LFSR and SBoNG regarding autocorrelation and cross-correlation even though both

RNGs perform almost identically in NIST tests. It is thus vital to evaluate PRNGs in the

context of SC using SC-specific metrics such as SCC or, if possible, through simulation of

specific SC components directly.

To illustrate the practical impact of SBoNG, a digital signal filter, a popular application for

SC (e.g. [ISI+16] [WHCE16] [YW16]), is simulated for different SNG configurations. In

particular, a 31-tap finite impulse response (FIR) filter is implemented as a MUX tree as

described in [ISI+16], which is an equivalent, though slightly modified, version of the ar-

chitecture in [WHCE16]. Digital filters have several properties that make them profit from

shareable RNGs: Firstly, they have a large number of input values, split between varying

data inputs and constant filter coefficients. Secondly, the MUX-based core component of

the filter has multiple correlation sensitive select inputs. Thirdly, SNGs make up a large

part of such a filter’s hardware area due to the small arithmetic core component and the

large number of inputs, thus the filter benefits greatly from reduced SNG costs. Another

major advantage of SBoNG comes into play here: As SBoNG includes a basic LFSR, cor-

relation insensitive inputs such as the data inputs can be generated using only this LFSR,

60

3.2 SBoNG: An S-box based number generator

which allows a quantization error free SN generation, while correlation sensitive inputs

such as the MUX select inputs can be generated using the full SBoNG architecture to en-

sure fewer correlation errors.

For this application, a 31-tap low pass filter with filter coefficients generated in MATLAB

was implemented. The number of taps was chosen such that the SC filter can be im-

plemented by a balanced MUX tree with five levels. The SN length used is 216 which

is quite long compared to SN length in other SC applications such as image processing,

but is necessary to achieve the higher accuracy requirements of digital filters according

to [WHCE16]. A 16 bit internal state is therefore needed for SBoNG. A five level MUX

tree has five select inputs that are generated from a single SBoNG instance by rotating the

SBoNG output by multiples of three bit for each of these inputs (corresponding to k1, ..., kS

in figure 3.5). Data inputs are all generated from this SBoNG’s internal LFSR. No decor-

relation is necessary, as the data input SNs are insensitive to crosscorrelation. The out-

put of the stochastic filter on an electrocardiogram signal from the PhysioBank database

[GAG+00] (original ECG data from [Lug05]) is depicted in figure 3.8. For comparison,

results of an implementation using a single LFSR with the optimal rotation method found

in [IIS+14], and an exact floating point computation for reference are also included in the

figure.

The output of the SBoNG-based stochastic circuit matches the reference result almost

exactly, while the LFSR-based circuit is not working as intended and does not properly

function as a low pass filter. In order to achieve similarly accurate results, the five select

signals of the MUX tree would have to be implemented using multiple independent LFSRs.

The SBoNG-based implementation achieves an MSE of 7.00·10−6, which lies slightly below

the predicted upper bound of 1.53 · 10−5 according to equation 2.12. On the other hand,

the MSE of the LFSR-based circuit is 0.0027 which is not even significantly better than

the MSE of the unfiltered input signal at 0.0164. These numbers can be interpreted as

the noise of the respective signals compared to the reference result. Note that stochastic

circuits technically remove all original input noise and instead introduce new noise sources

in the form of quantization and random fluctuation errors. This is true for both SBoNG

and LFSR, the difference between these two implementations thus stems from correlation

errors, which SBoNG successfully eliminates.

61

3 SCNN Components

Figure 3.8: Results of SC low pass filter using SBoNG (green line), LFSR with rotation
(orange line) and floating point reference (red line). Blue line shows the input signal.

Besides eliminating correlation errors, reducing the hardware overhead of SNGs was an-

other design goal of SBoNG. As explained at the beginning of this section, the PCC part of

an SNG is independent of the RNG and cannot be shared or reduced in size beyond a spe-

cific point. The benefit of an SBoNG based SNG therefore have to come from its capacity to

be shared among multiple SNGs without introducing correlation errors. Table 3.11 shows

the cost (in 2-input gates and flip-flops) of individual SNGs as well as a full SCNN layer

(following the design from section 4.1.2) for SBoNG and LFSR-based implementations.

A single SBoNG instance is of course much larger than a single LFSR, but SBoNG’s ability

to supply multiple SNGs without causing issues due to cross-correlation quickly lets it pull

ahead of LFSR-based SNGs in terms of sequential cost. The majority of the combinational

cost comes from the comparators and not from the PRNGs. As there are less than 100

primitive polynomials of degree 8, the numbers for LFSR-based SNGs are extrapolated in

this case. Note that SBoNG’s internal state length l has to be a multiple of four due to the

4-bit S-Box inputs. This means that for an SN length other than 2l, SBoNGs internal state

has to be larger than that of a single LFSR. For example, for an SN length of 1024, a 10 bit

62

3.2 SBoNG: An S-box based number generator

Table 3.11: Sequential and combinational cost of SNGs and SCNN layer implemented with
SBoNG and LFSR.

SN length
LFSR SBoNG

seq. comb. seq. comb.

1 SNG
256 8 51 16 114

4, 096 12 83 24 178

5 SNGs
256 40 254 16 302

4, 096 60 413 24 490

10 SNGs
256 80 505 24 570

4, 096 120 826 24 880

100 SNGs
256 (800) (5, 100) 208 5, 571

4, 096 1, 200 8, 251 216 8, 698

SCNN layer 4, 096 2, 169 62, 776 1, 817 62, 860

LFSR is sufficient, however SBoNG needs a 12 bit internal state. Even so, efficient sharing

enables significantly lower overall sequential hardware cost for circuits requiring three or

more uncorrelated inputs.

63

3 SCNN Components

64

Chapter 4

Error Resilience

4.1 Robustness of stochastic circuits

Two often mentioned advantages of SC are its supposedly high tolerance of soft errors

due to the structure of SNs, and its low power requirement due to its smaller circuit sizes.

SC has therefore been proposed for use in noisy and power-constrained environments, for

example in battery-powered sensor nodes. Indeed, the tolerance of any single SN towards

bit flips is significant and much larger than in conventional binary number formats. Any

bit flip in an n-bit unipolar SN changes its value only by 1
n , while it can possibly change

the value of a binary number by 1
2 . Furthermore, bit flips in opposite directions even at

different positions cancel each other out, as the total number of 1s in the SN stays the

same. These beneficial properties have been confirmed to carry over to whole SC sys-

tems in image processing, as shown in [ALH13] and [LL11] among others. More recently

however, as SC shifted towards NNs as its main application, stochastic components have

become more complex and a larger proportion of sequential stochastic circuits has been

introduced.

The behaviour of these newer components differs substantially from the mostly combina-

tional image processing systems. Specifically, soft errors in sequential circuits have the

potential to affect subsequent clock cycles, while the effects are isolated to single clock cy-

cles in combinational circuits. The more substantial impact of errors in sequential circuits

have been demonstrated on the example of FSM-based stochastic components, for exam-

ple on the stanh function in [IMII19]. The authors showed that the binary state encoding

65

4 Error Resilience

in an FSM drastically reduces the robustness of this component. In [ACH+17] a detailed

investigation of voltage and frequency scaling of stochastic circuits, mostly focused on

(combinational) image processing SC systems, has been performed. The authors conclude

that these circuits are extremely tolerant of timing errors, making it an attractive tech-

nique for aggressive voltage and frequency scaling. The significantly different behaviour

of sequential and combinational stochastic circuits in these works suggests that the error

tolerance from individual SNs does in general not carry over to entire SC systems, but is

instead highly dependent on specific implementations.

One possibility to rigorously analyse the reliability of a circuit with probabilistic behaviour

is to construct a Markov-chain (MC) model for it. In both works mentioned above an

MC model has been used to complement the experimental data. MC models describe a

system as a set of states similar to an FSM. Transitions between states in an MC model

are however probabilistic instead of an FSM’s deterministic transitions. This enables the

theoretical analysis of a system in the presence of errors that appear with given probabil-

ities. For example, a correctly functioning 3-bit counter that is unaffected by errors has a

probability of 1 to transition from the state 000 to the state 001, while all other transitions

have probability 0. Assuming an independent bit flip probability of 0.01 for each bit, the

corresponding MC model for such a counter is given in table 4.1.

Table 4.1: Markov-chain model for a 3-bit counter with bit flip probability 0.01. Rows are
counter states in clock cycle i, columns are counter states in cycle i + 1. Due to rounding
errors, probabilities add up to slightly more than 1.

State 000 001 010 011 100 101 110 111

000 0.010 0.970 9.9 · 10−5 0.010 9.9 · 10−5 0.010 1.0 · 10−6 9.9 · 10−5

001 0.010 9.9 · 10−5 0.970 0.010 9.9 · 10−5 1.0 · 10−6 0.010 9.9 · 10−5

010 9.9 · 10−5 0.010 0.010 0.970 1.0 · 10−6 9.9 · 10−5 9.9 · 10−5 0.010
011 0.010 9.9 · 10−5 9.9 · 10−5 1.0 · 10−6 0.970 0.010 0.010 9.9 · 10−5

100 9.9 · 10−5 0.010 1.0 · 10−6 9.9 · 10−5 0.010 0.970 9.9 · 10−5 0.010
101 9.9 · 10−5 1.0 · 10−6 0.010 9.9 · 10−5 0.010 9.9 · 10−5 0.970 0.010
110 1.0 · 10−6 9.9 · 10−5 9.9 · 10−5 0.010 9.9 · 10−5 0.010 0.010 0.970
111 0.970 0.010 0.010 9.9 · 10−5 0.010 9.9 · 10−5 9.9 · 10−5 1.0 · 10−6

The state transition probability P ({S → Ŝ}) for an n-bit counter can be obtained with the

formula

66

4.1 Robustness of stochastic circuits

P
(
{S → Ŝ}

)
=

n∏
k=1

(
|(S + 1)k − Ŝk| · p+ ||(S + 1)k − Ŝk| − 1| · (1− p)

)
(4.1)

where Sk is the k-th bit of state S and p is the bit flip probability. Markov Chain models are

a useful tool for the analysis of error affected circuits, as they can accurately (assuming

the error probability is known) predict the circuit behaviour over an arbitrary number of

clock cycles. Unfortunately however, such analysis methods don’t scale well. The number

of state transitions grows exponentially with the number of sequential elements, i.e. flip-

flops in the circuit. Generally, the state transition table will have (2n)2 entries for a circuit

with n flip-flops. This poses a problem for the general error analysis using Markov chains

in SC, mainly for two reasons:

Firstly, SNGs should be part of this analysis. A faulty SNG can have a major effect on

a circuit’s accuracy. For instance, an LFSR that is put into the all-0 state due to a fault

cannot function as a PRNG any more. Similarly, deterministic SC depends on specific cor-

relations and overlapping patterns in the generated SNs, such as obtained by rotation and

clock division methods [NJLR19], or matching low-discrepancy sequences [FNL+19]. If

these correlations and patterns are disturbed, computations can potentially become highly

inaccurate even after a single error. SNGs always consist of at least one register, and in

most SC systems, several SNGs are needed to avoid undesired cross-correlation. They thus

increase the state space of the SC system significantly.

Secondly, SCNNs have many independent computations that are commonly implemented

in parallel to reduce computation time. This includes sequential components, which there-

fore also increases the state space of the overall circuit massively. For example, a single

8-state stanh FSM has a state transition table with 64 entries, while two of them in parallel

have a combined table with 4096 entries, as there are 64 possible state combinations.

The use of Markov Chain models to analyse large-scale SC systems, especially SCNNs, is

therefore infeasible. A simulation-based approach is preferable, although it does not come

with the mathematical certainties that a Markov Chain model provides. Previous works

that employed MC models for the analysis of SC were restricted to relatively small sys-

tems such as a single FSM [IMII19] or combinational circuits [ACH+17]. Furthermore,

probabilistic models make it hard to accurately model errors that appear in non-random

67

4 Error Resilience

fashion, for example timing errors that may only appear at certain operating frequencies

and on certain paths.

The effect of such timing errors is of special interest to SC, as it is often proposed for use

in low-power systems. In such systems, the supply voltage is lowered from the nominal

value down to a value slightly larger than the threshold voltage of the transistors in order

to save energy (e.g. Razor [EKD+03]). This has significant effects on a circuit’s suscepti-

bility towards errors: A smaller margin between operating and threshold voltage makes

transistors more vulnerable to physical variations (i.e. process variations during manufac-

turing) as well as outside effects such as noise on the power supply network or effects of

radiation. Moreover, lower supply voltages increase the rising and falling signal delays of

gates, effectively slowing down the circuit. If this slow down becomes too large, set-up

and hold times of flip-flops may not be met any more and incorrect values are captured

by them. These incorrect values corrupt the state of a sequential component and disturb

its functionality. In contrast to single event upsets due to radiation, timing errors do not

appear randomly with certain probabilities over the whole circuit area. They are instead

clustered at specific points of the circuit, for example the flip-flop at the end of the circuit’s

critical path. As rising and falling delays of gates are generally not identical, they can also

be biased towards a transition direction, i.e. favour 1→ 0 or 0→ 1 errors.

While SC is often proposed for use in low-power systems due to its assumed robustness, a

detailed investigation, especially of potentially more vulnerable hybrid SC-binary circuits,

has been lacking so far. The aforementioned works are restricted to simplified error mod-

els and/or relatively small and mostly combinational SC systems. If SC is supposed to

be deployed in noisy environments, its robustness has to be properly investigated and its

potential risks should be known.

In [NHP22], a detailed investigation of several state-of-the-art SC components has been

performed, including a large SC system in the form of a full layer of a convolutional SCNN

including SNG sharing. Both errors due to timing violations as well as single event upsets

on gate level are considered as potential causes for errors. The results of this investigation

are presented in this section.

68

4.1 Robustness of stochastic circuits

4.1.1 Capture errors and simulation procedure

Any signal that transitions between logical values does so with a delay that depends on the

length of the path, i.e. the number of gates it has to pass through. Circuits are designed

with a timing margin, which ensures that all signals stabilize before they are captured by

flip-flops. Each gate on a path has its own transition delay that depends on the type of the

gate and the direction of the transition and adds to the path’s overall delay. Gate delays

increase when the supply voltage VDD of the circuit decreases. A smaller supply voltage

therefore leads to an increased signal propagation delay, in essence reducing the timing

margin of the circuit. If the voltage is reduced too far, signals may not stabilize in time

and wrong values can be captured (in the following called a capture error). In contrast

to random bit flips, capture errors do not affect all gates and paths equally, as short paths

have a larger timing margin than long paths. Figure 4.1 shows an illustration where a

long path causes a capture error due to increased propagation delay, while the signal on a

short path still stabilizes in time.

Figure 4.1: Illustration of capture errors in longer paths under decreased supply voltage.

In extreme low-power systems, VDD is decreased to be only slightly higher than the thresh-

old voltage of a gate’s transistors (so-called near-threshold operation). When operated in

this range, small manufacturing differences in the transistors also make such designs vul-

nerable to voltage variations due to external noise (e.g. from the power delivery network)

69

4 Error Resilience

or faults caused by radiation, adding additional error sources. In contrast to conventional

binary computing, the natural error tolerance of SNs may enable smaller timing margins

and thus higher operating frequencies, as occasional capture errors only have a small

effect on an SN’s value. SC is therefore a promising candidate for extreme low-power

systems, however the extent to which more recent FSM-based or hybrid SC-binary circuits

can tolerate these errors has to be analysed in detail.

Investigating the overall effect that near-threshold operation has on an SC system re-

quires extensive simulation including variations in individual gate delays. In contrast to

basic logic simulation, these timing simulations have to be performed with signal wave

forms, including timing information of each logic gate. Stefan Holst from the Kyushu

Institute of Technology has developed a GPU-based simulator for such detailed timing

simulations. The simulator is not part of this work, for details on its design and function-

ality, see [HIW15]. The simulator does not offer the functionality of changing voltages

directly, however it can model the effects of voltage changes by modifying delays of indi-

vidual gates. For the simulations that were performed to obtain the results presented in

this section, this modelling was done in the following way: The Verilog files of the base

circuits are synthesized with Synopsis Design Compiler, resulting in gate-level net-lists

including nominal delay information for gates and interconnects. For any delay d in this

net-list, the simulator adds a random variation according to a normal distributionN (µ, σ),

with mean µ = d and and standard deviation σ = s · d with a configuration parameter

0 < s ≤ 1. These individual delays are assigned independently before a particular sim-

ulation is started to every gate and interconnect to model manufacturing differences in

the components. The circuit-wide increase in delay due to lower voltage is modelled by

multiplying all delays d with a factor df > 1 called delay factor before simulation start.

A GPU-based simulator is desired in this case due to the enormous number of individually

simulated values, even in small networks. The LeNet5 architecture [LBBH98] as the most

well-known example of a (for today’s standards) small convolutional network outputs

150, 528 bits in its first layer (assuming 32-bit fix-point format). A timing simulation of the

layer requires individual simulation of each of these bits, each time taking into account all

delay and waveform information on the entire path through the circuit. GPUs make it pos-

sible to distribute these simulations, which consist of many individually simple steps, over

70

4.1 Robustness of stochastic circuits

many independent simulation threads. The structure of the underlying task lends itself

well to parallelization, as it is composed of operations that are independent of each other

on several levels: On the network level, all input images are processed independently by

an SCNN. A GPU can therefore simulate the same layer with two different inputs at the

same time without running into dependency problems. On the layer level, each kernel in

a layer operates independently of all other kernels. Simulation of kernels can thus be per-

formed in parallel as well. On the level of individual kernels, each convolution operation

consists of multiple independent MAC operations on different areas of the input data, as

the kernel moves over this data. This enables the computation of a full feature map in a

single step by computing all involved MAC operations in parallel.

4.1.2 Design of simulated circuits

While there effectively exists a standard SCNN neuron design, the individual components

can vary. SNGs may be implemented with different types of PRNGs, adders may be imple-

mented as accurate or approximate parallel counters and max-pooling may be performed

using different versions of stochastic maximum circuits. To take these differences into ac-

count, several different versions of the stochastic design were implemented using varying

components described in the following.

SNGs: Differences in the number generator of an SNG have two main consequences:

Firstly, an LFSR as a sequence-based generator will have a short portion of its natural

sequence repeated when its state changes due to an error. This can cause an increased

quantization error in the resulting SN, as the sequence length and SN length do not match

any more. In the worst case, an LFSR is put into the all-0 state from which it cannot

recover, causing the SNG to output only 1s for the remaining runtime.

Secondly, different number generators have varying potential for SNG sharing (cf. section

3.2). As an RNG provides its output to multiple SNGs, an error also spreads to more SNGs

and its effects potentially cover a larger portion of the circuit and influence more outputs.

For the simulations in this section, LFSR and SBoNG were considered as PRNGs.

MAC and activation function: This component follows the standard design using paral-

lel XNOR gates for multiplication with an SC-binary hybrid approximate parallel counter

71

4 Error Resilience

for addition. The subsequent hyperbolic tangent activation function is implemented using

the FSM-based binary-SC hybrid Btanh circuit [KKY+16]. As a sequential circuit, Btanh is

potentially very susceptible to timing errors that corrupt the FSM’s state.

Max-pooling: Max-pooling is implemented in two different ways to investigate the in-

fluence of sequential depth on the robustness of SC components: The AMax component

from [RLD+17] and the NMax circuit presented in section 3.1 are considered. Both cir-

cuits function according to the same principle: A counter tracks which input SN has the

(approximate) maximum value and routes this SN to the circuit’s output. The main differ-

ence lies in the periodic reset of counters in AMax, which is absent in NMax. The counter

reset in AMax is used to periodically update its estimate of the maximum input value.

This causes the circuit to generally output inaccurate values slightly smaller than the max-

imum in an error free case. However, it may make AMax more robust towards errors, as

the periodic reset acts as a recovery mechanism. In NMax on the other hand, any error

can potentially affect all subsequent output bits. The reset period in AMax is not fixed in

[RLD+17]; for the simulation in this section a reset period of 32 clock cycles was chosen,

as it provided a good middle point between accuracy in error-free cases and robustness in

experiments (see also table 3.4).

These components are assembled into a full convolutional SCNN layer with 20 convolution

filters (kernels) of size 4 × 4 using a tanh activation function, and a 2 × 2 max-pooling

operation. Fig. 4.2 shows the RTL schematic of the resulting circuit.

The design is highly parallelized. On the highest level, all 20 kernels are computed in

parallel, as they operate independently of each other. For each kernel, MAC-operation,

activation function and max-pooling are likewise computed in parallel. While they are

connected in sequence in the schematic, they effectively form a pipeline with each stage

processing one SN bit in every clock cycle and thus operate on the same SN simultane-

ously. In addition to the functional components, the full SC circuit contains an interme-

diate register stage between SNGs and MAC-operation. This register stage splits the long

combinational path between PRNG registers and state registers of the Btanh FSM, which

increases the maximum possible operating frequency of the circuit significantly. In order to

provide all four required inputs to the max-pooling operations at the same time, four par-

allel copies of the MAC-activation function block are used per kernel. These copies cover

72

4.1 Robustness of stochastic circuits

Figure 4.2: RTL schematic of the SCNN layer. Combinational elements in grey, sequential
elements in orange.

a 5× 5 pixel sized area of the input that corresponds to the 2× 2 pooling window. Figure

4.3 illustrates the resulting parallelism within each kernel with parallel MAC-operations

shown in different colors, with MAC1 using inputs A11 to A33, MAC2 using inputs A12 to

A34, MAC3 using inputs A21 to A43 and MAC4 using inputs A22 to A44.

All kernels operate on the same section of the input image simultaneously, leading to

the total number of 25 input pixel values and 320 weights for the entire implemented

SCNN layer. Overall, the circuit therefore contains 345 SNGs with shared PRNGs. The

degree to which they can be shared differs between SBoNG and LFSRs. Two 16-bit SBoNG

instances, one for input pixels and one for weights, are sufficient for the NN to reach

73

4 Error Resilience

Figure 4.3: Example of parallel operations within an SC component for computation of
one kernel. In this example, kernel size is 3× 3, max-pooling size is 2× 2.

a classification accuracy comparable to the one achieved with 32 LFSRs with different

feedback polynomials. 16 LFSRs are used for generating SNs for input pixel values, the

remaining ones are used to generate the 16 weights within each kernel. As all kernels

operate independently of each other, sharing between kernels does not lead to conflicts

for any PRNG. MAC operations in the circuit are computed with 80 parallel MAC-Btanh

components, which provide the inputs for the 20 max-pooling circuits.

The design of the circuit computing the binary NN layer follows a different approach.

It consists of only a single multiplier and accumulator, which are used sequentially to

compute the entire layer. Fig. 4.4 shows the circuit’s RTL design.

Two large multiplexers control which input values and weights are routed to the mul-

tiplier. The resulting products are accumulated for 16 cycles (to cover one 4 × 4 sized

MAC-operation) and routed through a custom, piecewise linear approximation of the tanh

function. The tanh function as given in equation 2.16 requires computation of several ex-

ponential functions and a division. These operations are very costly to implement in hard-

ware and would in fact require significantly more area than the entire remaining binary

layer. For this reason it is common practice in hardware NN design to use piecewise linear

approximations that can be computed using only adders and multipliers [YWT+18]. The

approximation pw in the present design can even be computed without a multiplier, as it

only involves multiplication with powers of two, which are implemented as shifts:

74

4.1 Robustness of stochastic circuits

Figure 4.4: RTL schematic of the binary NN layer. Combinational elements in grey, se-
quential elements in orange.

pw(x) =

−1, if x < −2

1
4 · (x− 2), if x ≥ −2 and x < −11

16

x, if x ≥ −11
16 and x < 11

16

1
4 · (x+ 2), if x ≥ 11

16 and x < 2

1, if x ≥ 2

(4.2)

Boundaries between cases are multiples of 1
16 and can therefore be distinguished with a

comparison of only the four most significant decimal bits, further reducing the complexity

of this component. The whole binary circuit is controlled by an FSM that is responsible

75

4 Error Resilience

for routing the correct weights and input values, and for storing the output of each kernel

in its respective register. This FSM is part of the circuit and is therefore also considered in

the fault simulation.

Table 4.2 lists the costs of each individual component and the overall cost of the resulting

SCNN layer, with the binary layer’s cost for comparison. Combinational cost is given as

the number of 2-input gates, sequential component cost is the number of flip-flops.

Table 4.2: Component costs (in 2-input gates and flip-flops) of individual components and
the resulting SCNN layer.

Component Combinational cost Sequential cost Total cost
SNG (LFSR) 81 12 93
SNG (SBoNG) 211 16 227
MAC-Btanh 335 6 341
NMax 811 48 859
AMax 307 28 335
SCNN layer (SBoNG) 62, 860 1, 817 64, 677
SCNN layer (LFSR) 62, 776 2, 169 64, 945

Binary layer 17, 363 103 18, 466

Due to the sequential design, the binary circuit has a much lower gate count than the SC

version. Roughly 30% of the stochastic circuit’s area is consumed by the comparators of

the SNGs. Much of this overhead could be saved by opting for a design that likewise com-

putes kernels sequentially, at the cost of significantly longer computation times. For fault

simulation, these differences are however irrelevant, as faults in any specific kernel do

not affect other kernels. Gate counts in table 4.2 are therefore not a generally applicable

comparison between the sizes of SCNNs and binary NNs, as the implementation focused

on obtaining comparable delays for the binary and stochastic circuits: The critical path

delay is 21.8ns for the binary circuit and 26ns for the stochastic circuit, which is mainly

due to the simple approximation pw of the activation function. 12-bit precision is used in

both cases, leading to a corresponding SN length of 4096. The results presented in the

following were obtained using the fashion MNIST dataset [XRV17] but are not restricted

to this dataset (except for specific examples). The NN structure used for evaluation of

network accuracies is given in table 3.2.

76

4.1 Robustness of stochastic circuits

4.1.3 Gate-level bit flips

In an initial simulation, the robustness of the described circuits against generic gate-level

bit flip errors is tested. For this purpose, bit flips are simulated on each line of a circuit

with a fixed probability. This is the current standard method to analyse robustness of

stochastic circuits and provides a reference to compare against the results of the timing

fault simulations. Bit flip probabilities between 10−6 and 10−2 were simulated; fig. 4.5

shows the resulting degradation in classification accuracy for the binary network (blue),

and two versions of the SCNN: an implementation with an NMax-based max-pooling com-

ponent (orange) and an implementation with AMax-based max-pooling (green). As LFSR

and SBoNG-based implementations showed virtually the same behaviour, only graphs for

SBoNG are shown for NN accuracy for better visibility.

Figure 4.5: Classification accuracy as function of bit error rate for binary (blue), and SC
implementations.

The classification accuracy of the binary network starts to drop noticeably even for small

error rates of around 2 · 10−6 and falls of sharply after that point. Such a behaviour is

expected, as even a single bit flip can have a high impact on the binary circuit, if it affects

a high significance bit.

Surprisingly, the behaviour of SC implementations is highly inconsistent. While the AMax-

77

4 Error Resilience

based circuit supports the assumption that SC provides an inherent robustness against

bit-flips, the NMax-based implementation shows an entirely different picture. Its overall

classification accuracy degrades quickly, partially even quicker than the accuracy of the

binary implementation. As the maximum circuit is the only component that differs be-

tween these implementations, the reason for the significant difference in robustness must

lie within these circuits. Individual simulation of these circuits provides more detailed

information about their behaviour. In order to visualize the effect of bit flips on the output

value distribution of the analysed circuits, scatter plots are used in many of the following

figures. In these plots, expected output values are shown on the x-axis and error-affected

output values are shown on the y-axis. In an error-free case, the plots would show a nar-

row distribution of points around a diagonal through the origin, as the output values of

an SC component are distributed around the expected values. Point clouds that cover a

wider area signify higher output variance, while clouds that are not centred around the

origin signify a biased output distribution. Figs. 4.6 and 4.7 show such plots for AMax

and NMax for error probabilities of 0, 10−5, 10−4 and 10−3.

Figure 4.6: AMax output bias under gate-level errors.

It is apparent that AMax is a significantly more robust component with regard to gate-level

errors. While it does show a small output bias in the error-free case (see section 3.1 for an

78

4.1 Robustness of stochastic circuits

Figure 4.7: NMax output bias under gate-level errors.

explanation), it tolerates error rates up to 10−4 with only a small increase in output bias

and variance. NMax on the other hand is strongly affected already at error rates of 10−5. It

shows a massive increase in output variance and bias, such that it cannot reliably perform

its intended function of max-pooling any more. This effect increases with the error rate,

such that it outputs almost a constant −1 at an error rate of 10−3. The reason for these

different behaviours lies in the circuit structures. Both are counter-based circuits that are

essentially multiplexers. In any clock cycle i, the input with the maximum value up to

cycle i is routed through to the circuit’s output. The main difference between the circuits

lies in the counter logic: AMax periodically resets its counters to update the routing after

every c clock cycles (in the simulation above c = 32). NMax on the other hand relies on

accurately tracking the differences between its inputs for correct routing and can therefore

not reset its counters during computation. Any bit flip in AMax can thus only affect at most

c output bits, before the circuit recovers from the error due to the counter reset. In NMax

on the other hand, a bit flip can potentially affect all remaining cycles of the computation,

as illustrated by the example in table 4.3.

As explained in section 3.1, at least one counter of NMax is 0 in any clock cycle by design.

When this circuit state is violated due to an error, the circuit outputs constant 0s, until a

79

4 Error Resilience

Table 4.3: Example of an NMax computation without and with error (in cycle 5) over 8
clock cycles with bipolar input SNs X1 = 0.5, X2 = −0.75 and X3 = −0.5.

Clock cycle: 0 1 2 3 4 5 6 7
X1 0 1 0 1 1 1 1 1
X2 0 1 0 0 0 0 0 0
X3 1 0 1 0 0 0 0 0
c1 0 1 0 1 0 0/4 0/3 0/2
c2 0 1 0 1 1 2 3 4
c3 0 0 0 0 0 1 2 3
Z 1 0 1 0 1 1/0 1/0 1/0

valid circuit state is reached again. The strong negative bias of NMax in fig. 4.7 is caused

by this behaviour. Depending on the timing and position of the error, and the specific

input SNs, recovery can take any number between one and n clock cycles, leading to the

large variance of output values in fig. 4.7.

While this simulation is just one example with specific circuits, it already suggests that in

general, the error tolerance of their underlying number format does not always transfer

to stochastic circuits. It is therefore not justified to assume that SC as a whole is error tol-

erant, rather any specific implementation should be evaluated on its own. This example

does however demonstrate that a main characteristic of a stochastic circuit that can influ-

ence a given design’s error tolerance is its sequential depth. A circuit that is guaranteed to

recover from an error within a short time frame, e.g. AMax, will in general be less affected

by an error than a circuit that carries the error’s effects of this error through the whole

remaining computations (e.g. NMax).

However, a large sequential depth does not necessarily lead to low error tolerance in the

case of SC. Consider for example an LFSR-based SNG generating generating an SN A with

expected value a with length n. Its sequential depth is n, as an error that changes the

LFSR’s state in the first clock cycle causes this state to differ from the error-free state for

the entire remaining computation. The SNG however will in most cases still generate A

with value a, as the sequence of pseudo-random numbers that the LFSR produces will be

the same as in the error-free case, only shifted. The only exception is an error that puts

the SNG into the all-0 state, from which it cannot recover. Such a case is unlikely, as it

requires possibly multiple simultaneous bit flips at very specific positions. Fig. 4.8 shows

80

4.1 Robustness of stochastic circuits

simulation results for an LFSR-based SNG under gate-level errors. Error rates in all fol-

lowing figures in this subsection are colour coded with the following probabilities: green

for 0.01%, blue for 0.1% and red for 1%.

Figure 4.8: SNG output bias under gate-level errors.

The graph shows clearly that for all error rates almost all points are distributed narrowly

around the line through the origin, i.e. the component produces the expected results

with low variance. A few outliers are visible above this line, which are caused by errors

that put the LFSR into the all-0 state. In this state, the SNG outputs only 1s, causing the

output values to be larger than expected. Depending on the timing of the error and if

the circuit recovers from this state due to another error, the outliers distance to the line

varies. For the simulation with 1% error rate (red data points) no such outliers are visible,

as the error rate is high enough such that the LFSR does not remain in the all-0 state

long enough to affect the output value significantly. The key observation of Fig. 4.8 is

that sequential depth alone is not sufficient to gauge the robustness of a stochastic circuit.

The characteristic error distribution of the circuit, i.e. variance and bias of error-affected

outputs, have to be considered as well and, more importantly, evaluated on a case-by-case

basis.

The remaining major component of the SCNN layer, the MAC-activation block, exhibits a

mix of characteristics from both components examined above. On the one hand, it has

81

4 Error Resilience

sequential depth n, as the state of the FSM of the activation function does not reset during

the processing of a single SN, and can stay in an erroneous state for the whole computa-

tion. On the other hand, its FSM is implemented as a saturating up-down counter, which

can cause it to recover from errors in cases where the maximum or minimum counter

value is reached and held for several clock cycles. For example, a counter that saturates

at a value of 8 will recover from any error after counting "up" for eight consecutive clock

cycles, as it will reach the maximum value from any erroneous or error-free starting state.

Simulation results for gate-level errors of the MAC-activation component are shown in fig.

4.9.

Figure 4.9: MAC-activation block output bias under gate-level errors.

A small bias under higher error rates (red data points) is clearly visible in fig. 4.9. It

increases with the absolute of the expected output value, and always has the opposite

sign, i.e. the bias is positive if the expected output value is negative and vice-versa. The

FSMs of the various stochastic hyperbolic tangent implementations are split in a lower

half with states S0 to SN
2
−1 and an upper half with states SN

2
to SN−1, with N being the

total number of states (cf. fig. 2.5). When the FSM is in a state of the lower half, it will

output a 0, when it is in a state of the upper half, it will output a 1. An expected output

with a large absolute value means that the FSM is either in the lower half or the upper

half for the vast majority of the computation. An error that corrupts the state such that

it enters the other half of the FSM will therefore cause a bias with the opposite sign of

82

4.1 Robustness of stochastic circuits

the expected output value. This bias acts effectively as a downscaling factor for the whole

MAC-activation component as shown in fig. 4.10.

Figure 4.10: MAC-activation block downscaling under gate-level errors.

It follows that gate-level errors change the functionality of the MAC-activation component

systematically, and in effect lead to a modification of the activation layer compared to the

initial NN model that the SCNN is based on.

In summary, the data from gate-level error simulations shows several important properties

of stochastic circuits:

• Not all stochastic circuits retain the high error tolerance of SNs.

• Different stochastic circuits have vastly different behaviours under errors.

• Stochastic circuits often show biased error distributions.

• Some stochastic circuits can lose their functionality entirely even for low error rates.

The assumption that SC provides inherent error tolerance is therefore not generally valid

for gate-level errors. Rather, every specific stochastic circuit has its own degree of error

tolerance and affects the overall system differently.

83

4 Error Resilience

4.1.4 Timing error analysis

Timing error analysis is carried out according to the procedure laid out in section 4.1.1.

The classification accuracy of the SCNNs and the binary network under timing errors is

given in figure 4.11 as a function of the simulated delay factor, starting at 100% (i.e.

nominal delay).

Figure 4.11: Classification accuracy as function of delay factor for binary (blue) and SC
implementations.

Several observations can be made in the graph: Firstly, the binary circuit shows an imme-

diate sharp drop in classification accuracy for delays of 110% of the nominal delay and

recovers again starting at 120%. This local minimum is due to a glitch in the multiplier

stage of the design (cf. figure 4.4), which is heavily biased towards outputting 1s as the

result of an error for these delays. For other delays, faulty outputs of this component are

roughly equally distributed between 1s and 0s. Secondly, both stochastic circuits perform

very similar for delays up to 160%, a significant difference to the behaviour of the AMax-

based SCNN under gate-level errors (cf. figure 4.5). Thirdly and most importantly, none of

the SCNN implementations shows any significant tolerance towards timing errors above a

delay factor of 1.2, but they show no drop in accuracy up to this factor.

84

4.1 Robustness of stochastic circuits

Similarly to the results of the gate-level error simulation, both versions of the SCNN show

different behaviour, though in the case of timing errors, these differences only appear at

higher delays above 160%. Therefore, two questions have to be answered:

• What is the reason for the equally low error tolerance of both SCNN version even

though they differ in components and have previously been shown to behave differ-

ently under a different error model?

• What is the reason for the fluctuating classification accuracies of the SCNNs for high

(≥ 160%) delays?

As a first step towards answering these questions, the dependency between MSE and clas-

sification accuracy of the simulated circuits is analysed. Figure 4.12 shows the resulting

graph. Each data point in the graph corresponds to a simulated delay in figure 4.11, with

each data set approximated by an exponential curve.

Figure 4.12: Classification accuracy as function of delay factor for binary (blue) and SC
implementations.

The data in figure 4.12 shows that even though the MSE of the SCNNs is lower than that

of the binary NN for most delays, their classification accuracy is lower as well. This sug-

gests that the cause of this low accuracy is due to biased error distributions. In this regard,

timing errors in stochastic circuits would behave similarly to gate-level errors in that they

85

4 Error Resilience

mainly cause small, but biased absolute errors. Furthermore, one difference between the

NMax-based and the AMax-based SCNNs becomes apparent: The AMax-based implemen-

tations have a much lower MSE than the NMax-based implementation for most delays

above 160%, which leads to the differences in accuracy between these two implementa-

tions visible in 4.11.

In order to further determine the reasons for these observed phenomena, SC components

are analysed individually, as previously done in section 4.1.3. To achieve this, data from

individual stages is extracted from the overall SCNN simulation and visualized in individ-

ual plots for each simulated delay. As before, the expected output value of a component is

plotted on the x-axis, the simulated output value on the y-axis. If both match, the graph

is a diagonal through the origin. Deviations from this diagonal signify an increased MSE,

which increases with a point’s distance from the diagonal in y-direction, and bias, which

increases with the number of points on one side of the diagonal.

Max-pooling:

Analysis of the stochastic maximum circuits reveals that AMax shows consistently good

behaviour for all simulated delays, with small MSE and virtually no bias (figure 4.13).

The main reason for its good performance is the small length of its critical path, which is

not enough to cause capture errors. Furthermore, its periodic reset of all memory elements

allows AMax to recover from errors frequently, as described in section 4.1.3. Due to its

approximate nature, the graph for AMax does not match the diagonal exactly.

On the other hand, the graph for NMax (figure 4.14) is a perfectly straight line for delays

up to 115% and almost exact for delays up to 150%. This behaviour is expected, as NMax

implements the maximum function accurately (cf. section 3.1) and also has a short critical

path length. When delay increases however, its performance starts to deteriorate and a

clear failure point can be seen for delays of 205% and 210%. The difference to AMax

can be attributed to two points: NMax’s critical path is longer than AMax’s, mostly due to

the large OR gate combining all bits of each counter, which was synthesised as a chain of

2-input or gates (cf. figure 3.2). In addition, NMax accumulates errors as it misses any

reset mechanism.

MAC-activation: The MAC-activation component turns out to be the most problematic

part of the SCNN (figure 4.15). It is affected only slightly by timing errors for delays up to

86

4.1 Robustness of stochastic circuits

Figure 4.13: Bias and MSE of AMax for varying delays.

120%, but shows quickly deteriorating functionality for longer delays. This deterioration

is however not monotonic, as the circuit reaches a maximum MSE and bias at delays

around 170% and starts to recover slightly at even higher delays.

In general, the error distribution of this component shows the same trend already ob-

served under gate-level errors, however with an even stronger bias. The distribution also

shows a clear prevalence towards a positive bias, which can be inferred from most out-

put values lying above the diagonal. In contrast, figure 4.9 is roughly point symmetric to

the origin, having approximately equal halves with positive and negative bias respectively.

This suggests that timing errors are not uniformly distributed across all flip-flops and/or

lead to asymmetric bit flips, i.e. there are more 0→ 1 than 1→ 0 flips.

87

4 Error Resilience

Figure 4.14: Bias and MSE of NMax for varying delays.

SNG: The final individual component to be analysed is the SNG. Timing errors in an SNG

can affect both its internal state (i.e. the LFSR/SBoNG register) and the final output after

the comparator. As previously mentioned, errors in its internal state have on average

no effect on the final output if the PRNG still produces uniformly distributed numbers

over the entire [0, 1] interval. On the other hand, errors in the comparator portion will in

general change the value of the output SN. Figure 4.16 shows the simulation results of the

SBoNG-based SNG under timing errors.

The SNG is almost unaffected by delays up to 160% with only a very minor anomaly for

large values (upper right corner of each graph). At delays between 160% and 205%, the

SNG’s output values concentrate around three values: −1, 0 and 1. The erroneous output

88

4.1 Robustness of stochastic circuits

Figure 4.15: Bias and MSE of the MAC-activation component for varying delays.

values mainly tend towards −1 if the expected value was negative, and are mostly split

between 0 and 1 for expected positive values. This distinct behaviour must mostly stem

from erroneous behaviour of the comparator section, as the PRNG is independent of the

SNG’s input value, which is equal to its expected output value. An erroneous PRNG would

therefore have to show consistent behaviour regardless of this value.

In the simulations of the entire SCNN layer (figures 4.17 and 4.18), the combined influ-

ence of all components described above on the layer’s output is clearly visible.

Starting at a delay of 125%, the bias of the MAC-activation component becomes the domi-

nating influence on the circuit and is therefore the main reason for the SCNNs’ significantly

89

4 Error Resilience

Figure 4.16: Bias and MSE of the SBoNG-based SNG for varying delays.

decreasing accuracy. Both SC implementations have almost identical graphs for delays up

to about 170% due to the similar performance of AMax and NMax in this range. As seen in

figure 4.11, the implementations diverge after this point. In figures 4.17 and 4.18 this di-

vergence becomes clearly visible at a delay of 175%, where the output of the NMax-based

SCNN layer shows a noticeably larger bias (as the graph is shifted upwards compared to

the graph of the AMax-based layer). At the same point, timing errors in the SNG start to

have an effect on the layer’s output, noticeable due to the characteristic vertical streams

originating from the main branch of the graph. In the AMax-based implementation, the

effects of these two components partially cancel each other out, leading to a reduced bias.

This is the reason for the recovering accuracy of the AMax-based SCNN at delays higher

90

4.1 Robustness of stochastic circuits

Figure 4.17: Bias and MSE of the AMax-based SCNN layer for varying delays.

than 170% in 4.11. For a small range of delay values, the same behaviour sets in in the

NMax-based layer at delays between 190% and 205%. However, at this point the NMax

circuit starts to dominate the error characteristic with its strong negative bias, causing a

final drop in accuracy for this version of the SCNN.

For comparison, the same graphs have been produced for the binary NN layer (figure

4.19), allowing a direct comparison of the error characteristics of the various implemen-

tations.

In general, a difference in the error characteristic of the binary layer compared to the

SCNN layers is immediately obvious. The binary implementation has a relatively symmet-

rical error distribution with one major exception. Starting with a delay of 110%, a thin

91

4 Error Resilience

Figure 4.18: Bias and MSE of the NMax-based SCNN layer for varying delays.

line appears at the upper edge of each graph. Initially, these errors are caused by the

aforementioned glitch in the multiplier and cause the local minimum in accuracy in figure

4.11. While this specific glitch in the multiplier disappears at a delay of around 125%, the

large effects of errors in high significance bits cause a slow but steady concentration of

values at the extreme upper and lower edges of the graphs, leading to the similarly steady

decline of the binary NN’s accuracy.

The very distinct behaviour of stochastic and binary NN implementations also manifests

itself clearly in the output feature maps of the layer. Comparing feature maps of both

circuits for delays that lead to comparable classification accuracy gives an impression of

the characteristics of the error distributions. Figure 4.22 shows feature maps of the same

92

4.1 Robustness of stochastic circuits

Figure 4.19: Bias and MSE of the NMax-based SCNN layer for varying delays.

kernel produced by the binary NN (a) and the AMax-based SCNN (b) for delays of 150%

and 125% respectively (error distribution sub-graphs are extracted from previous figures)

and the fault free reference output (c). The classification accuracies of both networks lie

between 46% and 48% for these delays (see figure 4.11).

The feature map of the binary network shows a large MSE, with widely fluctuating pixel

values. The object’s outline is however still clearly visible. The stochastic circuit on the

other hand blurs image and background together, as the biased error distribution has a

downscaling effect. Even though both networks produce unreliable results to the same

degree at these delays, the reasons for their failure are different. High MSE is the main

cause for the failure of the binary network (except for the glitch in the multiplier), while

93

4 Error Resilience

Figure 4.20: Output feature maps of binary circuit (a) with delay factor 150%, and
stochastic circuit (b) with delay factor 125%. Brightness of pixels in the feature map
corresponds to pixel values (yellow = 1, black = −1). (c) shows the error free feature
map.

the stochastic networks fail due to high and consistent bias. This is quite different from

the behaviour that would naively be expected from SC, as individual SNs do not have an

inherent tendency towards biased errors.

4.1.5 Summary of SC’s error resilience

In summary, the assumption that stochastic circuits have a higher error tolerance than

binary circuits could not be confirmed for SCNNs in general. While errors in stochastic

circuits do indeed result in a smaller MSE due to the error tolerance of individual SNs,

this does not always translate to a better error tolerance of the overall SC system. For

fully combinational stochastic circuits (with exception of the SNG), high error tolerance

has been demonstrated before on the example of SC image processing systems [ALH13]

[LL11]. However, the simulation results given here show that sequential stochastic circuits

behave quite differently. Their sequential elements remove the independence between

subsequent bits of SNs and thus allow errors to accumulate and spread throughout the

computation. Error distributions of sequential stochastic circuits differ significantly from

those of binary circuits, as errors tend to be smaller in magnitude, but are often biased

instead. Biased error distributions not only change a circuit’s output accuracy, but also

94

4.1 Robustness of stochastic circuits

its functionality and can therefore have an equal or even larger detrimental effect than

uniformly distributed errors of higher magnitude. According to the simulation results,

an SC system’s behaviour under errors depends mainly on the following properties of its

components:

• Characteristic error distribution

• Sequential depth

• Error model

The first property depends on a component’s implemented function and its implementa-

tion details. For example, the activation function implements a point symmetrical function

using an FSM with a symmetrical structure and its characteristic error distribution there-

fore shows a point symmetrical bias. The second property describes loosely the maximum

recovery time of a component. AMax and NMax implement the same functionality, but

due to its much shorter sequential depth, AMax recovers from errors much faster and

shows less bias in its error distribution. The first two properties are linked as the example

of the maximum circuits shows, but do not have a clear correlation. As the simulation

of gate-level errors in SNGs (figure 4.8) shows, it is possible for components with maxi-

mum (i.e. SN length) sequential depth to have unbiased error distributions with low MSE,

while other such components, e.g. NMax, have highly biased error distributions. Lastly, SC

systems can show highly different behaviour depending on the error model that the simu-

lation is based on. Most notably in the presented simulation results is the performance of

the AMax-based SCNN layer, which greatly outperforms both the NMax-based SCNN layer

and the binary layer under gate-level errors, but has almost identical performance under

timing errors.

It is vital in the design of SC systems for error-prone environments in general and low-

power environments in particular to consider these properties. All components of the

system should be simulated individually and in combination using accurate error models

for the intended environment. Depending on the outcomes of these test simulations, a de-

signer can then adapt both the specific hardware designs as well as application details to

improve error tolerance if necessary. Possible design improvements include a reset mech-

anism, which reduces dependency between subsequent output bits and enables periodic

95

4 Error Resilience

recovery, and PRNGs without zero-state such as SBoNG. A further improvement for FSM-

based SC components was presented in [IMII19] and is based on encoding FSM-states as

SNs instead of binary numbers.

On the application side, a designer should consider avoiding functions that result in SC

implementations with heavily biased error distributions if the application allows for al-

ternatives. Neural networks are flexible with regard to several functions and parameters

such as layer and kernel sizes and activation functions. For example, the hyperbolic tan-

gent function that is commonly used in SCNNs today can be replaced by a clipped ReLU

function, which can be implemented using the relatively error tolerant AMax component.

While such modifications to an underlying application can lower its accuracy in an error-

free environment, it can improve its performance under errors significantly. The findings

made in this section enable a more systematic and thorough design of stochastic circuits

for low-power, error-prone environments, which are central target domains for SC sys-

tems.

4.2 Adversarial attacks on SCNNs

The increasing prevalence of NNs in safety critical systems such as self-driving cars has

made them an attractive target for attacks. Such attacks aim to cause networks to mis-

classify a given input by making carefully crafted, small changes called perturbations to it

that are imperceptible to humans. These so-called adversarial attacks were first demon-

strated in 2013 [SZS+13] and have since diversified into a large number of different

attack algorithms. As a consequence, a variety of defence mechanisms have been de-

veloped in turn, covering an equally wide range of protection algorithms. Among the

proposed defences are training algorithms that incorporate previously generated adver-

sarial examples [GSS14] [NKM17], input transformations such as rescaling and compres-

sion [GRCVDM17] and defences based on randomness such as random neuron dropout

[DAL+18] and the addition of randomization layers into the network [XWZ+17]. The

inherent randomness in SC and its successful implementation of NNs make it a possible

candidate for low-cost protection against adversarial attacks, and early results have indeed

demonstrated that SCNNs provide a natural robustness against such attacks [TH19]. The

96

4.2 Adversarial attacks on SCNNs

authors replace the last fully connected layer of their network with an SC implementation

and generate adversarial examples using the zeroth-order optimization attack [CZS+17].

Their results show that the attacks success rate drops from 76% without SC layer to 59%

with an SC layer present. Their experiments demonstrate that SC can increase the ro-

bustness of NNs against adversarial attacks, however only a black box attack scenario is

considered. A white box attack scenario is not investigated, even though white box at-

tacks are generally considered to be more powerful due to their detailed knowledge of an

NN’s structure and parameters. Furthermore, replacing the last layer of the NN with an

SC implementation possibly limits its defensive capabilities, as undefended layers prior to

it may have already magnified the perturbations to an unrecoverable degree. In this sec-

tion, adversarial attacks on SCNNs are investigated further by including white box attacks

in the form of the C&W attack [CW17] and it will be demonstrated that a first layer SC

implementation provides a higher robustness against adversarial attacks. It will further

be shown that such an SCNN can even prevent the generation of adversarial examples

for some black-box attacks entirely using the example of boundary attack [BRB17]. This

section is partially based on [Vek20], where the C&W attack has been performed on an

SCNN.

4.2.1 Attack algorithms and attack scenarios

The general goal of any adversarial attack can formally be described as follows: For an

input x, a classifier function c of the target NN and a distance metric d, an adversarial

attack tries to find a modified input x′ such that c(x′) 6= c(x) and d(x′, x) is small. If c(x′)

can be any class other than c(x), the attack is called untargeted, if c(x′) has to evaluate

to a specific target class, the attack is called targeted. The latter are generally harder to

perform, as they restrict the solution space for generating x′. The distance metric d can

vary, but almost all attack algorithms use one of three different Lp norms, specifically the

L0, L2 and L∞ norms. The Lp norm is defined as

‖x′ − x‖p =

(
m∑
i=1

|x′i − xi|p
) 1

p

(4.3)

97

4 Error Resilience

for an m-dimensional input, e.g. a grey scale image with m pixels.

With regard to an image classification task, the L0 norm corresponds to the number of dif-

fering pixels between x′ and x. Specific pixel values are of no importance to this metric, a

change by 1% or 100% results in the same L0 norm. An example for an attack using this

norm is the one pixel attack [SVS19], which places the restriction d(x′, x) = ‖x′−x‖0 = 1

on its generated adversarial examples. The L2 norm corresponds to the standard Eu-

clidean norm in an m-dimensional space. With regard to images, it measures the average

change in all modified pixels. The L∞ norm measures the maximum change in any pair

of pixels x′i and xi and can be interpreted as the opposite of the L0 norm. The number

of modified pixels has no influence on the L∞ norm, only the pixel that was modified the

most matters. Some attacks, like the one pixel attack, are tailored to a specific norm, while

others, like the C&W attack, have variants for all norms.

Attacks are commonly split into categories depending on the knowledge about the target

NN that the attack algorithm requires: white-box, grey-box and black-box attacks.

• White-box attacks have complete information about the NN architecture, its imple-

mentation details and parameters such as weights and biases. Many gradient-based

attacks fall into this category.

• Grey-box attacks have partial information about the target NN. A grey-box attack

might for example know the architecture of an NN, but lack information about the

exact parameter values or implementation details.

• Black-box attacks have no information about the NN. They can only send queries to

the target network and receive answers in form of a class label or the output of the

final network layer.

White-box attacks are in general the most powerful type of attack, as they have access

to all information about the target NN. In many cases they are gradient-based, i.e. they

use a back-propagation algorithm as described in section 2.2.5 to identify how neurons

are affected by the perturbations to the input image. This information is then used to

compute the minimum perturbations to the input that cause the desired misclassification.

With regard to SCNNs, this type of attack is however very hard or even impossible to

98

4.2 Adversarial attacks on SCNNs

perform. An SCNN is often a close approximation of an underlying binary model, but

not an exact match. Components such as AMax and stanh implement specific arithmetic

functions very well, but not exactly. The deviations to their binary counterparts have to

be incorporated into the back-propagation algorithm of a white box attack, which leads to

major problems:

Firstly, the output values of a sequential stochastic component may not only depend on

its input values, but also on the specific order of bits in the input SNs. It is possible for

two different SNs X1 and X2 with x1 = x2 to lead to different output values of such a

stochastic circuit. For example, X1 = 00001111 and X2 = 10101010 are SNs with identical

values, but lead to significantly different output values in stanh (figure 2.5, starting state

S4), with stanh(X1) = 10000000 and stanh(X2) = 11111111. It is therefore not possible to

perform back-propagation only based on SN values, instead every single bit operation has

to be simulated, thus massively increasing the required computation effort.

Secondly, even in the case that an attacker invests this effort, the bit order in any SN in the

SCNN is ultimately dependent on the PRNG output of the SNGs, either directly (for all SNs

that are generated from binary inputs) or indirectly (for SNs that are output of stochastic

components in the NN) and thus on the PRNG’s starting state. However, not only can this

state easily be changed during runtime of the application, it may also depend on data that

was processed before. For example, SBoNG’s period is not matched specifically to an SN

length. When multiple subsequent SNs are generated, SBoNG’s starting state therefore

changes from the view of any individual SN. With regard to SCNNs, this would mean that

an attacker would have to know how many inputs were processed before the targeted

input since the last circuit reset.

Thirdly, while the parameter data of an NN may be publicly available and therefore enable

white-box attacks, as it is the case for popular networks such as ResNet [HZRS16], details

of any specific hardware implementation may not. A white-box attack on an SCNN needs

this information as well, as the same functionality can be implemented using different

components, e.g. a max-pooling layer with AMax or NMax, and an SNG with varying

PRNGs.

Due to these major hindrances for white-box attacks, a grey-box scenario is much more

likely for SCNNs. This allows an attacker to use the underlying binary model as a basis on

99

4 Error Resilience

which perturbations are computed, and then rely on the nearly identical functionality of

the SCNN for successful misclassification. For black-box attacks the structure and specific

implementation of the internal components do not matter by definition. Any black-box

attack can therefore readily be used on SCNNs. Furthermore, SCNNs are intended for spe-

cialized, low-cost hardware implementations with limited communication capabilities like

sensor nodes, which may have no functionality to retrieve the parameter values needed

for a white or grey-box attack. As previously mentioned, the C&W attack will be used to

evaluate a white-box, respectively grey-box scenario. As [TH19] used a black-box attack

scenario, the performance of boundary attack will also be evaluated in order to compare

the effect of a first layer SC implementation to the final layer SC approach of [TH19].

C&W attack: The C&W attack is a targeted attack that uses a gradient-based algorithm to

solve the optimization problem described above, i.e. minimize the distance between the

adversarial example x′ and the original image x, such that x′ evaluated to the target class

t. In [CW17] the formulation is slightly different with x′ = x+ δ and is written as:

minimize d(x, x+ δ)

such that c(x+ δ) = t

and x+ δ ∈ [0, 1]m

(4.4)

This is a minor rephrasing that includes the constraint that the adversarial example must

only consist of valid pixel values (here scaled to [0, 1]). The main problem with this initial

formulation is the constraint c(x+δ) = t, as the function c is non-linear. The authors solve

this problem by rephrasing the optimization problem once more by defining an objective

function f such that c(x + δ) = t if and only if f(x + δ) ≤ 0. They list several candidate

functions and determine empirically which of them performs best. As a second step, a

change of variables is used to make the last constraint compatible with more existing

optimization algorithms:

δi =
1

2
(tanh(wi) + 1)− xi (4.5)

With these changes made, the authors define their attack algorithms for the three distance

metrics described above. As the simulations in this chapter will be based on the L2 dis-

100

4.2 Adversarial attacks on SCNNs

tance, only the corresponding C&W attack will be given here:

Given an input x and a target class t other than the original class of x, find w that solves

the following optimization problem:

minimize ‖1

2
(tanh(w) + 1)− x‖22 + h · f

(
1

2
(tanh(w) + 1)

)
(4.6)

where f is the objective function chosen empirically by the authors of C&W attack as

f(y) = max{max{Z(y)i : i 6= t} − Z(y)t,−κ}. (4.7)

In equation 4.7, Z is the logits function of the NN, i.e. the output function of the NN ex-

cluding the final softmax normalization. h is an adjustable hyperparameter and κ controls

the distance of an adversarial example from the NN’s decision boundary, i.e. its classifica-

tion confidence level. The code that the authors provide for their attack [CW] was used

to generate adversarial examples for the SCNN.

Boundary attack: Boundary attack was chosen for the black-box scenario because it re-

quires only very little communication with the target network. Only the final classification

result, i.e. the class label is required for the attack. This information is always available

to an attacker, even if the SCNN is employed in an environment with heavily restricted

communication capabilities. The attack algorithm starts with an initial adversarial sam-

ple x̃0 than can be obtained for example by adding random noise to the original input x.

Through an iterative process, boundary attack then tries to minimize the distance d(x̃i, x)

while keeping the samples x̃i in the adversarial region during each step. The authors

achieve this by following three steps in each iteration:

1. Generate the candidate for the next adversarial sample x̃i+1 = x̃i + ηi+1 using an

iid Gaussian distribution for η, followed by rescaling and clipping to ensure that the

sample consists only of valid pixel values and lies within a given maximum distance

from the original image.

2. Project ηi+1 onto a sphere around x to ensure that d(x, x̃i + ηi+1) = d(x, x̃i).

3. Move the sample towards the original image.

101

4 Error Resilience

In step 2, only the direction in which the new sample moves from the previous one is

determined. This allows the algorithm to move a sample along the network’s decision

boundary between the original class of x and any adversarial class. In step 3, the distance

between the new sample and the original image is then reduced. The attack terminates

after a set number of iterations have been performed, and the distance of the adversarial

sample to the original image is below a set threshold. Boundary attack simulations in this

section were performed using the code provided by the authors [BRB].

4.2.2 Evaluation of adversarial attacks on SCNN

For the evaluation of C&W and boundary attack, an NN with a first layer in SC following

the design principles laid out in section 2.2.5 was implemented. Remaining layers were

implemented in conventional binary format, specific layer types and parameters are given

in table 4.4. It has been noted that the first layer in CNNs is more susceptible to attacks

than later layers [RHF19], a defensive mechanism in the first layer therefore promises the

highest success rate.

Table 4.4: Network structure used in simulations. Kernel sizes vary with the input type
(greyscale or RGB).

Layer ID Layer type Kernel parameters Activation function
1 2D Convolution 3× 3× 32/3× 3× 3× 64 tanh
2 2D Convolution 3× 3× 32/3× 3× 3× 64 ReLU
3 Max-pooling 2× 2 -
4 2D Convolution 3× 3× 64/3× 3× 3× 92 ReLU
5 2D Convolution 3× 3× 64/3× 3× 3× 92 ReLU
6 Max-pooling 2× 2 -
7 2D Convolution 3× 3× 128 ReLU
8 2D Convolution 3× 3× 128 ReLU
9 Max-pooling 2× 2 -

10 Fully connected 20/100 -
11 Fully connected 10 softmax

The network consists of three blocks of two convolutional layers and one max-pooling

layer each, following the NN design from [CW17], where two such blocks were used. De-

pending on the input data, kernel numbers can vary. For the grey-scale fashion-MNIST

data set, less kernels are required than for the coloured CIFAR10 data set. In addition, the

102

4.2 Adversarial attacks on SCNNs

structure of the first layer is slightly different, as the network needs three input channels

to handle RGB data and only one for grey-scale. With an SN length of 4096 bits, the

SCNN reaches a classification accuracy of 91% for fashion-MNIST and 82% for CIFAR10.

The binary version achieves 93% and 88% respectively.

C&W attack results: To evaluate the performance of the attack, 900 adversaries were

generated for fashion-MNIST and 450 adversaries for CIFAR10 using the L2 norm version

of the attack. Only classes that were initially classified correctly by the network were

considered for the attack and each class was represented equally, with 10% of all initial

images and target misclassifications per class. An attack is considered successful, if the

network classifies the adversarial example as the target class, and unsuccessful otherwise.

Unsuccessful attacks are further split into adversarial examples that were misclassified

as some class other than the correct or target class, and examples that were classified

correctly. The success rates of the attack on both the binary NN and the SCNN are shown

in table 4.5.

Table 4.5: Classification results of CW attack on fashion MNIST and CIFAR10 datasets.

Binary NN SCNN
Inputs Ratio Inputs Ratio

Fashion-MNIST
Target 734 81.6% 46 5.1%
Correct 42 4.7% 497 55.2%
Other 124 13.8% 357 39.7%
CIFAR10
Target 441 98.0% 41 9.1%
Correct 1 0.2% 94 20.9%
Other 8 1.8% 315 70.0%

Success rates are very high in case of the binary network with 81.6% for fashion-MNIST

and 98% for CIFAR10. The attack is not 100% successful, as sometimes an adversarial ex-

ample could not be found within the specified L2 limit and the given number of iterations.

Success rate is higher for CIFAR10, as the attack can use a larger search space for RGB

images than for grey-scale. The SCNN on the other hand shows a remarkable resilience

against the attack. Only 5.1% of attacks on the fashion-MNIST dataset are successful,

103

4 Error Resilience

while more than half of all adversarial examples are classified correctly. As expected,

many inputs end up being misclassified due to the combination of the attack’s perturba-

tions and SC’s randomness. These cases can be considered a partially successful defence,

because the attacker’s goal, i.e. a specific target class, was not achieved. Similar results

can be observed for the CIFAR10 data set, where only 9.1% of attacks lead to the desired

misclassification. On the other hand, most inputs are incorrectly classified overall in this

case, making the network very unreliable. However, if the goal is to prevent an attacker’s

targeted output class, the SCNN can be considered a very good defence. In summary, SC

reduces the success rate of the C&W attack by a factor of 16 for the fashion-MNIST data

set and a factor of 10.8 for CIFAR10.

Boundary attack results: The execution of Boundary attack takes significantly longer

than C&W attack, as it is performed directly on the SCNN and thus has to simulate all

bitwise operations during each of its iterations. Initially, an attempt to generate adversarial

examples for 100 images of fashion-MNIST was made. After 10,000 iterations however,

only 22 of those examples had been found. In the remaining 78 cases, the L2 distances did

not decrease notably at all from the distance of the attack’s starting point. For example, the

average L2 distances of iterations 1053 and 1828 were 2.90 and 2.86, but the eventually

successful adversarial samples had reached distances in the order of 10−3 by that point.

This observation fits to an example given by the attack’s authors in [BRB17], where the L2

distances of one sample are 8.0 ·10−3 at iteration 1053 and 5.6 ·10−4 at iteration 1828. The

distances of the unsuccessful samples on the other hand fluctuated in further iterations,

but did not show a gradual decrease.

The reasons for the low success rate of Boundary attack on the SCNN lies in the lack of

clearly defined decision boundaries. In a conventional binary NN, boundaries between

classes are sharp and can only be moved by changing the network’s weights. Boundary

attack uses this boundary as a guideline along which it moves its adversarial samples as

described above. In an SCNN, this boundary line becomes a boundary space as illustrated

in figure 4.21. Within this space, the SCNN does not always place the same input in

the same class, but instead only assigns classes around this boundary space with certain

probabilities. An input close to the centre of this space has an almost identical probability

to be classified as any one of the surrounding classes.

104

4.2 Adversarial attacks on SCNNs

Figure 4.21: Illustration of decision boundary in binary NNs versus decision space in
SCNNs.

For example, in a two-class problem there is a boundary next to which a conventional

binary classifier would assign an output vector such as (A = 0.501, B = 0.499) and thus

assign class A to the input. A very small perturbation in the input, i.e. an adversarial

attack, can change the output vector just enough to change the classification consistently

to B. An equivalent SC-based classifier would assign class A with a probability of slightly

more than 50% and class B with slightly less. The same perturbation in the input would

change this probability only a little in favour of class B, but would not lead to a consistent

misclassification. Boundary attack relies on this consistency near the decision boundary

to generate adversarial examples with low distance to the original input. In SCNNs, this

consistency is often only given further away from this boundary, which leads to the large

L2 distances observed in the simulations.

105

4 Error Resilience

4.2.3 Interference of randomness with adversarial attacks

Inherent randomness in SCNNs interferes with both attacks described in the previous sec-

tion. The main defensive property of SCNNs is that even two computations with identical

inputs and network parameters can lead to different outcomes, if the PRNG starting states

don’t match. Figure 4.22 shows feature maps of the same kernel of an SCNN for identi-

cal inputs and weights, but with different PRNG starting states. The variations caused by

these different states are clearly visible, most prominently in the background pixels. Reg-

ular patterns in the background caused by RNG sharing can also be seen. It is also notable

that the shape of the object is not effected much by the variations. As mentioned in section

2.2.4 equation 2.9, variance in SNs is highest at the centre of their value range. In the

case of figure 4.22, background pixels have an expected value of 0, exactly at the centre

of the range for bipolar SNs. A convenient side effect of this fact is that SCNNs naturally

concentrate variations more in areas of the image that are less useful for classification,

while keeping the important features for classification mostly intact.

Figure 4.22: Feature maps from the same kernel using identical inputs and weights but
different PRNG starting states (fashion-MNIST dataset).

The core process of the described attacks is an iterative algorithm, with small added per-

turbations in each step, determined by the outcome of the previous iteration. A single

iteration can only make small changes, as it may otherwise not find a solution to the

underlying optimization problem. However, such small changes in an input can lead to

unpredictable changes in the output of SCNNs, as the order of bits in SNs has a much

higher influence on the computation result than changes in value of small magnitude. If

106

4.2 Adversarial attacks on SCNNs

an input value changes by 1%, it can affect at most 1% of bits in an SN. A change in the

PRNG starting state can potentially affect all bits in an SN and can therefore also have

a much higher impact. As the attacks can not always reliably infer the required input

perturbations from the result of the previous iteration in this condition, they can fail to

converge. In the case C&W attack, the specific reasons are as follows:

C&W attack: White-box attacks chose their perturbations according to the result of the

back-propagation step, in which the contribution of each input value to the classification

result is computed. They are therefore deliberately chosen in a way to minimize the

distance from the original values and still provide the desired misclassification. Due to

their small magnitude, the inherent random fluctuations in the SCNN "overwrite" these

perturbations however, and the perturbations can not spread throughout the network as

determined by the attack. Figure 4.23 illustrates this effect using an image from the

CIFAR10 dataset. The original image depicts a cat, but the binary NN classifies it as an

airplane after the attack. The SCNN classifies the image correctly.

Figure 4.23: Original image (a) and difference to adversarial example (b) (enhanced by
factor 10). Differences in feature map 0 between classification of original image and
adversary for Binary network (c) and SCNN (d).

107

4 Error Resilience

While the perturbations in sub-figure 4.23b that cause the misclassification in the binary

network might look like random noise, they are specifically crafted by the attack algo-

rithm after multiple forward and backwards passes through the network. The resulting

variations in the feature maps (see sub-figure c for one example) are thus also deliberately

generated to magnify throughout the network’s layers. In the corresponding feature map

of the SCNN (sub-figure d) however, these variations were entirely overwritten by the

random fluctuations of the SNs and SC operations. As the figure depicts the differences

between the feature map of the original image and the adversarial example, it effectively

creates a map that is a mixture of variations caused by the attack’s perturbations and SC’s

random effects. The magnitude of the latter is greater and dominates the map. Because

SC’s variations do indeed have characteristics of random noise, they cancel each other out

frequently throughout the subsequent layers, leading to a correct classification most of the

time. Interestingly, the shape of the input image can still be vaguely recognized, as the

magnitude of the variations depends on the absolute pixel values in the feature maps.

Expanding on early results by Ting et al. in [TH19], the results above further demonstrate

that SCNNs possess inherent defensive properties against adversarial attacks. Small ran-

dom fluctuations overwrite the effect of specifically crafted input perturbations that C&W

attack and other white-box attacks are based on. Boundary attack’s iterative optimiza-

tion algorithm fails to reliably find good adversarial examples due to SCNNs’ probabilistic

output behaviour, which removes clear decision boundaries that the algorithm needs for

orientation. In contrast to probabilistic defensive mechanisms introduced in binary net-

works, SCNNs achieve these feats without any additional network layers, operations or

input transformations and therefore no hardware or computational overhead. It has to

be noted that the above simulations only cover two specific attacks and do therefore not

prove that SCNNs are resilient towards all attacks. It is for example conceivable that

a white-box attack with complete information about the network including the detailed

hardware design as well as initial states of all registers and flip-flops in the network could

be able to craft SCNN-specific perturbations that persist through the random fluctuations

(although such an attack would be computationally significantly more expensive than an

attack on a binary network). However, SC’s defensive properties do not rely on a specific

network type, structure or attack algorithm, they are emerging from elementary proper-

108

4.2 Adversarial attacks on SCNNs

ties of basic arithmetic components. It is therefore not unlikely that these properties carry

over in part or even entirely to other attacks, making SC a promising candidate for the

implementation of secure small-scale NNs.

109

110

Part II

Analysis and Limitations

Chapter 5

Extended Accuracy Management Framework

Accuracy management is an important part of SC design. SN length is directly proportional

to computation time and logarithmically proportional to circuit size due to the required

size of SNGs and counters in various SC components. It is therefore desirable to keep

SNs as short as possible while still reaching the computational accuracy that is required

for the application to work as intended. On the other hand, it is beneficial to use SN

lengths that are equal to the maximum sequence length of the employed PRNG, as this

ensures SN generation with minimum quantization error. In that case knowing the result-

ing accuracy of the circuit is important for adapting the application correspondingly. The

accuracy estimation method for combinational stochastic circuits from [Neu16] has been

covered in section 2.2.4. Purely combinational circuits are however only a small sub-class

of SC, as they are only able to implement multilinear polynomials [AH15]. In a multilinear

polynomial every term can only contain products of variables of degree of at most one.

Polynomials with variables of degree two or higher can only be implemented by isolation

(or an equivalent decorrelation method), which requires sequential circuit elements.

Due to this limited capability of combinational stochastic circuits, many more complex

functions require sequential elements in SC. Among them are for example division [CH16],

several types of activation functions for NNs [BC01a] and the maximum function [RLD+17]

[NPH19]. Moreover, isolation is a widely used method for decorrelating SNs and requires

the use of flip-flops. It is therefore beneficial to have a method to estimate and man-

age accuracy of sequential stochastic circuits as well. The theoretical accuracy estimation

framework for combinational circuits from [Neu16] provides a basis, but is not readily ap-

113

5 Extended Accuracy Management Framework

plicable to sequential circuits due to two main reasons: Firstly, a base experiment covers

exactly one clock cycle in a combinational circuit, but can span over an arbitrary number

of clock cycles in a sequential circuit. Secondly, a basic assumption of the framework is

that inputs are iid random variables, which might not be the case if the circuit includes

delay elements and feedback loops. These limitations were overcome in [NPH18b], which

successfully extended the original framework to sequential stochastic circuits.

5.1 Sequential circuits without feedback

Sequential circuits without feedback encompass circuits with memory elements (i.e. flip-

flops) but no feedback of gate outputs. In SC, this class is formed by circuits with isolators

for decorrelation due to shared PRNGs or fanout in the circuit. The core principle of

[NPH18b] is to transform a target sequential circuit into a combinational circuit with

pseudo primary inputs through a time frame expansion, and then extend the modelling of

the circuit’s base experiment over multiple clock cycles to express dependencies between

random variables. In a time frame expansion, the combinational part of a circuit is copied

several times and sequential elements are replaced by connections between these copies

and pseudo primary inputs. Figure 5.1 shows an example for a time frame expansion

Ctf,3 of the circuit from figure 2.3d for three clock cycles, which is the necessary amount

to remove the three isolators. In the following, this circuit will be used as an example for

the general procedure in the case of sequential circuits without feedback.

Figure 5.1: Time frame expansion Ctf,3 of the circuit from figure 2.3d for three clock
cycles.

114

5.1 Sequential circuits without feedback

Time frame expansion enables a remodelling of the base experiment, as Ctf,3 covers three

clock cycles of the original circuit in one cycle. However, Ctf,3 does not address the second

problem raised above: The inputs of the subsequent circuit block that computes z4 are not

independent of the inputs of Ctf,3, for example x3 = iC and x1x2 = iE . It is therefore not

sufficient to formulate a base experiment for Ctf,3 alone, it has to cover all clock cycles,

i.e. the full length of the output SN. A base experiment covering k ≥ 4 clock cycles is thus

modelled as

Y =
z1 + z2 + · · ·+ zk

k
(5.1)

In the case of Ctf,3 z1 = x1iCiE , z2 = x1x2iD, z3 = x1x2x3iC and zj = xj−3xj−2xj−1xj

with j ∈ {4, · · · , k}. Again all inputs are modelled as Bernoulli random variables where

E(x1) = E(x2) = · · · = E(xk) = x. For the initial iC , iD and iE several different cases

are possible. If it is assumed that the circuit is run for at least three warm up cycles, the

initial flip-flop states are not influencing the circuit any more and therefore E(iC) = x

and E(iD) = E(iE) = x2. Alternatively, other assumptions can be modelled as needed, for

example all flip-flops are initially set to 0 or 1 (with corresponding expected values) or are

random (e.g. with expected value 1
2). To keep equations shorter, it will be assumed in the

following that the circuit has a warm up period. The variation and standard deviation of

the base experiment are then given by

σ2(Y) = E(Y 2)− E2(Y) =
E((z1 + z2 + · · ·+ zk)

2)

k2
− E2(Y) (5.2)

which can be rewritten as

σ2(Y) =
E(ẑ1 + ẑ2 + · · ·+ ẑk2)

k2
− x8 =

E(ẑ1) + E(ẑ2) + · · ·+ E(ẑk2)

k2
− x8 (5.3)

where ẑ(i−1)k+j = zizj with i, j ∈ 1, · · · , k. For example, ẑ1 = z21 , ẑ2 = z1z2 and

ẑk+3 = z2z3. The numerator includes k2 terms, but in circuits without feedback, these

terms follow simple patterns. In the example of Ctf,3, E(ẑ) can only take on one of five

different values:

115

5 Extended Accuracy Management Framework

• E(ẑ) = x4 if i = j.

• E(ẑ) = x5 if |i− j| = 1.

• E(ẑ) = x6 if |i− j| = 2.

• E(ẑ) = x7 if |i− j| = 3.

• E(ẑ) = x8 otherwise.

In general, any sequential circuit without feedback with sequential depth d will have d+ 2

different product terms in the numerator. In this particular example the resulting variance

is thus given by

σ2(Ctf,3) =
kx4 + 2(k − 3)x5 + 2(k − 1)x6 + 2(k − 2)x7 + (12− 7k)x8

k2
(5.4)

This base experiment variance now allows accuracy estimation with the formulas given

in section 2.2.4. The variable n in equations 2.11 and 2.13 is set to 1, as there is now

only a single base experiment that in itself encompasses all n clock cycles. In general,

the concrete input values of a circuit are unknown. The presented modelling allows for

a worst case estimate by maximizing a circuit’s variance within the input bounds of any

given application.

Beyond quantifying accuracy of given circuits, the technique allows for a design space ex-

ploration of sequential circuits, especially regarding the trade off between accuracy and

RNG overhead. RNG sharing leads to lower hardware costs, but on the other hand reduces

accuracy, as isolation cannot fully decorrelate SNs from shared RNGs and is furthermore

susceptible to autocorrelation. For example, the circuit from figure 2.3d has a range of

alternative implementations. On one side of the spectrum is the depicted implementation

with one SNG and three isolators, on the other side would be a combinational implementa-

tion with four independent SNGs and no isolators. During design phase, these alternatives

can now be compared easily by modelling their respective base experiments and using the

provided formulas. Continuing the ongoing example, four implementations of f(x) = x4

as shown in figure 5.2 will be compared.

116

5.1 Sequential circuits without feedback

Figure 5.2: Four alternative implementations of f(x) = x4 with differing numbers of SNGs
and isolators.

The variance of C3 has already been computed in equation 5.4. Using the same procedure

of time frame expansion and base experiment modelling, the respective variances for the

other sequential circuits are:

σ2(C2A) =
kx4 + 2(k − 1)x6 + (2− 3k)x8

k2
(5.5)

σ2(C2B) =
kx4 + 2(k − 1)x6 + 2(k − 2)x7 + (6− 5k)x8

k2
(5.6)

and C0 is a combinational circuit with variance

σ2(C0) =
x4 − x8

k
(5.7)

according to equation 2.9. Using the formulas given in 2.2.4, accuracy differences between

the circuit variants can now be quantified. Figure 5.3 shows a comparison between esti-

mated MSEs, figure 5.4 the convergence behaviour of the circuits (squares are simulation

results, lines are theoretical estimates). Convergence behaviour refers to the confidence

pn(ε) to reach a certain precision ε in any single computation. In other words, it specifies

the probability that the result of a single computation of a given stochastic circuit differs

from the expected result by more than ε. This probability can be determined by solving

equation 2.13 for γ with the standard deviation of the circuit as given above.

117

5 Extended Accuracy Management Framework

Figure 5.3: MSE of circuit variants from figure 5.2.

Figure 5.4: Convergence behaviour of circuit variants from figure 5.2 for ε = 0.1.

Circuit C0 shows the lowest MSE and the fastest convergence behaviour, while C3 has

the highest MSE and slowest convergence. This is expected, as C0 uses four independent

SNGs, while C3 only requires a single SNG, which is decorrelated multiple times, thus cre-

118

5.2 Sequential circuits with feedback

ating dependencies between SNs in the circuit. Much more interesting are the behaviours

of circuits C2A and C2B, as both use two SNGs and two isolators. Even so, their MSE and

convergence behaviours differ notably. For example, C2A requires an SN length of 116 to

reach a confidence level of 10% for a precision ε = 0.1, while C2B requires an SN length

of 138. Even though the two circuits consume exactly the same hardware area and have

the same number of components, their accuracies differ, which the presented framework

is able to quantify exactly.

5.2 Sequential circuits with feedback

Several important functions in SC require a circuit implementation with a feedback loop.

This includes elementary functions like division with the CORDIV divider (figure 3.3)

[CH16], but also more complex functions such as hyperbolic tangent [BC01a] and various

implementations of the maximum function [RLD+17] [NPH19] that are based on saturat-

ing counters. The general procedure for this type of circuits is the same as presented in

the previous section:

1. Construct a time frame expansion over k clock cycles.

2. Extend the modelling of the base experiment over the whole time frame expansion

according to equation 5.1.

3. Compute the variance of the base experiment as shown in equation 5.2.

The main difference compared to circuits without feedback lies in the much longer and

more complex equations to determine the variance. Any bit in a circuit with feedback can

potentially influence all subsequent bits until the end of the computation. The E(ẑ) terms

in equation 5.3 are therefore all different in general, leading to a fraction with k2 unique

product terms in the numerator. In some cases, it is however possible to find a concise re-

cursive formula to compute the variance. For example the variance of CORDIV is given by:

119

5 Extended Accuracy Management Framework

s0 = x2

y + x
y − x, σ20 = k · xy with 1 ≤ i ≤ k:

σ2i = σ2i−1 + 2(k − i) · si−1

si =
x2

y
+ (1− y) · si−1

The overall variance σ2 is then given by:

σ2 =
σ2k − k2 ·

x2

y2

k2
(5.8)

Design space exploration is possible for this circuit type as well. In the case of CORDIV,

additional flip-flops can be inserted to increase the accuracy of the circuit at additional

hardware cost. In the original design with one flip-flop, every output bit depends on all

previous output bits. By adding a second flip-flop, output bits are split in two groups of

independent bits (even and odd bit positions of the outputs SN). Adding more flip-flops

increases the number of groups. During design phase the impact that adding a flip-flop has

on the accuracy can be quantified with the presented formulas. The variance of CORDIV

with two flip flops is given by equation 5.8 with

s−1 = x2

y + x
y − x, t0 = x2

y2
, σ20 = k · xy + (2k − 2) · x2

y2
with 1 ≤ i ≤ k − 1

σ2i =

σ2i−1 + 2(k − 1− i) · si−2 if imod 2 = 1

σ2i−1 + 2(k − 1− i) · ti−2 if imod 2 = 0

si =
x2

y
+ (1− y) · si−2 if imod 2 = 1

ti =
x2

y
+ (1− y) · ti−2 if imod 2 = 0

and for CORDIV with three flip flops by equation 5.8 with

120

5.2 Sequential circuits with feedback

s−2 = x2

y + x
y − x, t−1 = x2

y2
, u0 = x2

y2
, σ20 = k · xy + (4k − 6) · x2

y2
with 1 ≤ i ≤ k − 2

σ2i =

σ2i−1 + 2(k − 2− i) · si−3 if imod 3 = 1

σ2i−1 + 2(k − 2− i) · ti−3 if imod 3 = 2

σ2i−1 + 2(k − 2− i) · ui−3 if imod 3 = 0

si =
x2

y
+ (1− y) · si−3 if imod 3 = 1

ti =
x2

y
+ (1− y) · ti−3 if imod 3 = 2

ui =
x2

y
+ (1− y) · ui−3 if imod 3 = 0

These equations for the variances result in terms that include k-th powers of x and y,

multiplied by comparably large integers. For larger k it is therefore important to ensure

that an adequate number format is used for evaluation to avoid numerical errors. For very

large k, e.g. k = 500 even double precision floating point numbers might not be sufficient

any more to evaluate these equations correctly without rearrangements. This affects all

circuits with feedback, as the first bit potentially influences all subsequent bits.

Figure 5.5 shows an analysis for the MSE of CORDIV with one, two and three isolators

computing x
0.8 for 100 evenly distributed values of x ∈ [0, 0.8] and an SN length of 128.

The MSE for each data point was computed over 10, 000 simulations and a small warm-

up period of one, two or three clock cycles (depending on the number of isolators) to

flush out the initial unknown flip-flop states is assumed. Differences between the MSEs

of the three circuit versions are so small that it is difficult to determine from simulation

alone (squares, triangles and circles) if the circuits have different accuracies at all. Using

the theoretically obtained variances above reveals that accuracy indeed differs between

circuit versions, although the difference is so small that it will most likely not justify the

increase in circuit size and can only be properly seen in a zoomed-in section of the graph

(figure 5.6). This example demonstrates that the presented accuracy analysis framework

enables a designer to compare different circuits precisely without the uncertainties that

naturally come with all simulations in SC, and pinpoint even tiny changes in accuracy that

the addition or removal of a single isolator can cause.

121

5 Extended Accuracy Management Framework

Figure 5.5: Analysis of MSE for CORDIV with one, two and three isolators.

Figure 5.6: Zoomed-in section of subfigure a) that shows the differences of theoretical
MSE estimates.

122

Chapter 6

On the Limitations of SC

6.1 On implementable functions in SC

One important question to be answered is: What are the limits of SC, i.e. which functions

are implementable as a stochastic circuit and which are not. In order to address this

question it is necessary to first define the concept of an "exact" SC implementation:

Definition 6.1. Exact SC implementation: An SC implementation of a function f : Rn →

Rm with input SNs X1, · · · , Xn and E(X1) = x1, · · · ,E(Xn) = xn is called an exact SC

implementation if the mean E(f(X1, · · · , Xn)) exists and

E(f(X1, · · · , Xn)) = f(E(X1), · · · ,E(Xn)) = f(x1, · · · , xn) (6.1)

Any function f that does not meet the requirement of equation 6.1 cannot have a corre-

sponding exact stochastic circuit. The consequences of this restriction have been investi-

gated in [NPH19] and [NPH19] and are presented in this section.

For some functions it is possible to determine if they fit the above definition without eval-

uating equation 6.1. This includes all convex functions, as they are satisfying Jensen’s

inequality:

E (f(X)) ≥ f (E(X)) (6.2)

123

6 On the Limitations of SC

with the opposite relation holding for concave functions. Any concave function can be

turned into a convex function by a multiplication with −1, therefore only convex func-

tions will be mentioned from here on. Equality in 6.2 only holds if f is linear, or if X is

constant almost surely. The latter condition cannot be met in SC, as that would mean that

a circuit’s inputs never change, which would make it obsolete. Therefore, it follows from

definition 6.1 that an exact SC implementation for a convex function f can only exist, if f

is also linear. Linear functions have to satisfy additivity and homogeneity of degree 1:

Additivity:

f(a+ b) = f(a) + f(b) (6.3)

Homogeneity of degree 1:

f(α · a) = α · f(a) (6.4)

For example, scaled addition via MUX g(a, b) = a+b
2 is a linear function as it is additive

g ((a, b) + (c, d)) = g(a+ c, b+ d) =
a+ c+ b+ d

2
=
a+ b

2
+
c+ d

2
= g(a, b) + g(c, d)

and homogeneous

g (α · (a, b)) = g(α · a, α · b) =
α · a+ α · b

2
= α · g(a, b)

and therefore can be implemented exactly in SC.

On the other hand, the function h(a) = a2 is not linear, as it is not additive, and is

homogeneous of degree 2:

h(a+ b) = (a+ b)2 6= a2 + b2

h(α · a) = α2 · a2 6= α · h(a)

A more visual description of a linear function is a function that maps linear subspaces

onto linear subspaces of equal or lower dimensionality, e.g a straight line is mapped onto

124

6.1 On implementable functions in SC

a straight line or a point. In the case of h, a straight line (e.g. the real line in the interval

[0, 1]) is mapped onto a curved line, signifying that h is not linear.

It has to be noted that Jensen’s inequality only applies to convex functions and does not

allow any conclusion otherwise. It is possible for non-linear functions to meet the re-

quirements in definition 6.1. An important example in the context of SC is the function

j(x, y) = xy, which is neither additive nor homogeneous of degree 1, but satisfies equa-

tion 6.1 if the respective random variables of x and y are independent. This case is not

covered by Jensen’s inequality because j is neither convex nor concave. The function is

of special importance for SC, as Jensen’s inequality would otherwise suggest that polyno-

mials cannot be implemented exactly in SC (see function h above). However there have

been several works that show the opposite, for example works on synthesis and design

of polynomial stochastic circuits [AH15] [QR08] [QLR+10]. This apparent contradiction

stems from a simplified way of notation in SC. [AH15] already notes that SC actually im-

plements multi-linear polynomials, where every variable appears with degree of at most

1. Different random variables with the same expected value are however commonly con-

sidered to be the same real variable in the context of SC. For example, the squarer circuit

2.3b) is said to implement x2. However, due to decorrelation it would be more accurate

to say that it is implementing xy with x = y, as the AND gate receives two independent

bits (i.e. random variables) in each clock cycle under the assumption that subsequent bits

of X are independent of each other.

Definition 6.1 also does not imply that a function without exact SC implementation is

not usable in SC, but that one should be aware of the possible effects. Such a function

is subject to an approximation error which causes a systematic deviation from the target

function similar to correlation errors. This is specifically an issue in applications where

these biases can accumulate in further operations, such as SCNNs.

As a consequence, the most affected function in recent SC applications is the maximum

function. It is used in SCNNs for both activation functions (ReLU) and max-pooling sub-

sampling layers, and is often followed by multiply-accumulate operations. The maximum

function is a convex function (proof in appendix A.2) that is non-linear, as it is not addi-

125

6 On the Limitations of SC

tive:

max((1, 3) + (2, 1)) = max(3, 4) = 4 6= max(1, 3) + max(2, 1) = 3 + 2 = 5

Strict inequality therefore holds in Jensen’s inequality (6.2) and definition 6.1 is not met.

The knowledge that the maximum function is biased in SC is valuable by itself, however a

quantification of the effect is desirable, i.e. a way to compute

bias = E(max(X1, · · · , Xn))−max(E(X1), · · · ,E(Xn)). (6.5)

A formula for the general case of the maximum of non-identically distributed random

variables is not known at this time, but an expression can be found for the special case

of iid random variables. While this case may seem very restrictive, it is still practically

relevant in SCNNs, as many of them deal with the classification of images. Maximum

operations in those systems are typically performed over small 2 × 2-sized windows of

neighbouring pixels that often have very similar or even identical pixel values (e.g. the

black background pixels in figure 6.1). It has been explained in section 2.2.4 that the

value of an SN can be approximated as a normal distributed random variable, if the iid

assumption holds for individual bits of this SN. Under those circumstances, it is possible to

find a closed form expression for equation 6.5, as shown in [NPH19] (proof in appendix

A.3):

E
(

max
i
Xi

)
= µ+ σ

∫ ∞
−∞

t
d

dt
Φ (t)n dt (6.6)

However, even in this special case, the value can only be computed numerically for n < 5.

Experimental results for the bias have been presented in table 3.4 and match the the-

oretically predicted values well, for example the measured bias of 0.032 for E(X) = 0

corresponds up to three decimal places to the result of equation 6.6. Even though the

extent of the bias seems small compared to the effects of random fluctuations, it should be

considered carefully in SC design, as it affects not only the output of each individual com-

putation, but changes the expected output value and therefore the function implemented

by the circuit itself.

126

6.2 On types of stochastic circuits and practical limitations

6.2 On types of stochastic circuits and practical limitations

Contrary to the theoretical limitations of SC regarding implementable functions, practical

limitations are much harder to judge, as they depend on factors that vary on a case by

case basis. An SN length of 512 might be perfectly acceptable in a sensor node that only

transmits information once per minute, but unacceptable in an image processing system

with real-time requirements. Especially the value range restriction of unipolar and bipolar

SNs often leads to complications that necessitate work-arounds in many SC systems. In

image processing, pixel values (either grey scale or RGB) are commonly given in the range

of 0 to 255; NN parameters are commonly also not restricted to specific values except for

quantization to reduce required memory for storing. In the case of pixel values, scaling

down all values by a factor of 256 is often sufficient and does not even require any addi-

tional hardware. However, input parameters that have unbounded values cannot simply

be scaled down, as the required scaling factor is unknown. In that case, the algorithm

itself has to be adapted, e.g. by restricting NN weights to [−1, 1] during training, which in

turn restricts the search space of the training algorithm.

Beyond the basic building blocks of multiplication and scaled addition, many new SC com-

ponents have been introduced that include conventional binary counters or perform parts

of their computations in binary arithmetic. Examples can regularly be found in works on

SCNN, where parallel counters and approximate versions thereof are used as unscaled

adders, replacing the basic scaled addition by MUX [KKY+16][RLD+17]. Lately, complete

systems based on integral SC have been proposed [ALPO+17] that function according to

the same basic principle as SC, but are based on streams of small Integers instead of single

bits. The idea of stochastic-binary hybrid components is not new and has in fact been an

important part of Gaines’ original work, where he introduces the ADDIE component that

computes functions such as square root of an SN using an integrator. These hybrid com-

ponents overcome some limitations of basic combinational SC components, as they are

generally not restricted in the number range and can have an internal memory, but the

costs can be significant. SC-binary hybrid components can often not be used in sequence

with each other due to their mix of binary and stochastic input and output formats, and

might therefore require additional SNGs, which are among the most expensive compo-

127

6 On the Limitations of SC

nents in an SC system. This was the main reason for the relatively small role that the

ADDIE played in subsequent research despite its versatility, as each individual ADDIE re-

quires an SNG or at least a comparator in order to produce an SN at its output. In the

case of unscaled addition, it is clear that such a component can not be readily followed

by another SC-binary hybrid component, as the computation has been moved from the

stochastic into the binary domain.

Furthermore, hybrid components potentially lose one of basic SC’s strongest benefits,

namely its error tolerance (see section 4.1). The use of elements with conventional bi-

nary number formats within an SC component reintroduces weighted bit positions. While

any bit in an SN contributes to the overall SN value only by 1
n respectively 2

n (depend-

ing on the SN format), and can therefore also only cause the SN value to deviate by this

amount in case of a bit flip, any binary element can potentially change a value by 50%

of its maximum value when the MSB flips. SCNN implementations rely especially on SC-

binary hybrid components for addition, because the downscaling of MUX-based addition

poses a significant problem as shown later in this section. Due to these numerous signif-

icant differences between purely stochastic and hybrid components, a discussion of SC’s

limitations needs to take the implementation type into account. A clear classification of

stochastic circuits is therefore desirable. On the basis of the discussion in [NPH19], three

classes are proposed:

1. Strongly stochastic circuit type 1: Basic strongly stochastic circuits of type 1 receive

only SNs as inputs, compute a single basic arithmetic operation with only SNs as

outputs and do not include elements that use a non-SN number format. A strongly

stochastic circuit of type 1 consists exclusively of basic strongly stochastic circuits of

type 1.

2. Strongly stochastic circuit type 2: Basic strongly stochastic circuits of type 2 receive

only SNs as inputs and compute a single basic arithmetic operation with only SNs as

outputs. A strongly stochastic circuit of type 2 consists exclusively of basic strongly

stochastic circuits of type 2.

3. Weakly stochastic circuit: Basic weakly stochastic circuits receive only SNs as in-

puts and compute a single basic arithmetic operation with at least one output in a

128

6.2 On types of stochastic circuits and practical limitations

conventional binary number format, or vice-versa. A weakly stochastic circuit in-

cludes at least one basic weakly stochastic circuit.

Type 1 strongly stochastic circuits include many combinational circuits such as the func-

tional components of SC image processing implementations [ALH13] and digital filters

[WHCE16] [ISI+16] that mainly consist of multiplication and MUX-based addition, but

also sequential circuits such as the CORDIV divider [CH16] and otherwise combinational

circuits with isolators. They form the most basic and "classical" type of stochastic circuits,

with a strict limitation of all input, output and internal values to the range of [−1, 1]. They

are therefore the most restrictive type in terms of implementable functions, but on the

other hand offer the highest error tolerance, as demonstrated in investigations of strongly

stochastic image processing circuits in [ALH13] [LL11].

Counter and FSM-based circuits often fall into the class of type 2 strongly stochastic cir-

cuits, including stanh [BC01a] and different implementations of the maximum function

[RLD+17] [NPH19] among others. Gaines’ ADDIE component is part of this class as well.

The internal use of non-SC number formats allows this type of stochastic circuit to track

dependencies between or within SNs over several clock cycles more easily, which is for

example a requirement for the efficient and delay free implementation of the maximum

function. The trade off for this increase in flexibility is a reduced tolerance towards er-

rors and sometimes also towards autocorrelation. Usually, FSM-based stochastic circuits

like stanh are designed assuming no systematic patterns in input SNs and can therefore

perform poorly when used in combination with autocorrelated inputs, as shown in 3.2.

Strongly stochastic circuits of both types can be combined easily without intermediate

conversions or normalizations, as their input and output formats match.

The most important examples of weakly stochastic circuits are the classical SNG with bi-

nary inputs, stochastic outputs and a PCC, and the final SN-to-binary conversion usually

implemented with a counter as the final component of an SC system. Having an unre-

stricted range for either input or output values makes them the most flexible class regard-

ing their functionality, but also comes with several drawbacks. Besides their reduced error

tolerance, non matching value ranges prevent them from being readily used in sequence

with strongly stochastic circuits and often even with other weakly stochastic circuits. Mod-

129

6 On the Limitations of SC

ification for interfacing is generally required, such as the Btanh variant [KKY+16], which

allows stanh to be used in combination with unscaled addition.

With SNGs in the class of weakly stochastic circuits, almost all SC systems are considered

weakly stochastic circuits as a whole. The only exceptions are systems with unconven-

tional SNGs, for example direct analogue to stochastic conversions [LAH+17]. While this

seems counter-intuitive at first, consider that any stochastic circuit produces incorrect re-

sults if the input values themselves (which are in binary format before being transformed

by the SNG) are faulty. Similarly, if the SC-to-binary conversion is faulty due to errors in

the counter, the output of the SC system will be incorrect, independently of the properties

and accuracy of its arithmetic portion. The main difference between the vast majority of

SC systems therefore lies in the classification of their arithmetic circuit portion.

6.2.1 Practical limitations of scaled addition

A major practical limitation in SC is scaled strongly stochastic addition. Some SC applica-

tions such as digital filters and NNs include sums of several hundred or even thousands of

values. The corresponding large downscaling factors often cause a significant reduction in

absolute values in the systems. This leads to problems with loss of information and longer

computation times due to higher required precision. For example, the different variants of

the well known MNIST datasets consist of grey scale images with an object on black back-

ground. Background pixels have a value of 0, while pixels belonging to the object have

values up to 1 (white). As pixel values are added together in an NN that classifies these

objects, values gradually get downscaled and concentrate in a smaller interval around 0.

Figure 6.1 shows an example of an image from the MNIST dataset, with the corresponding

histogram of pixel values in figure 6.2.

During the convolution operation in the first layer of a CNN, these pixel values are first

multiplied with weights that lie in the range [−1, 1] and these products are added. With

scaled stochastic addition, the results are downscaled by a factor of k2 for a k×k convolu-

tion kernel, causing most post-convolution values to concentrate around the center of the

value range. Figure 6.3 shows the resulting distribution of values in the network after the

layer. Almost all values fall in the interval [− 1
16 ,

1
16].

130

6.2 On types of stochastic circuits and practical limitations

Figure 6.1: Example for an input image in the MNIST dataset.

Figure 6.2: Distribution of pixel values in image 6.1.

Situations such as the example above lead to two significant problems. Firstly, the signal to

noise ratio (SNR) is reduced, as the random noise in SC does not scale down accordingly.

In fact, according to equation 2.10 the noise in bipolar SNs is highest when the SN’s value

is 0. As the SNR decreases and the relative errors in the SNs increase, information is lost

and cannot be recovered any more. Chaining such operations together will eventually lead

to a loss of all useful information in the system, a problem that affects SCNNs to a large

extent due to their sequential, layer-based structure. There are two main possibilities to

address this issue in a strongly stochastic system: Increasing the SN length proportionally

to the scaling factor reduces the loss of information, as longer SNs have higher precision,

but does not prevent the gradual decrease in absolute values. Upscaling of values on the

other hand can keep values distributed over a broader range, but does not help against

loss of information.

131

6 On the Limitations of SC

Figure 6.3: Distribution of pixel values after the first convolutional layer of an SCNN
classifying the image 6.1.

Increasing the SN length naturally comes with an increase in computation time and/or

circuit area and is therefore not the preferred solution. As SN length increases linearly

with precision, downscaling by a factor of d requires an increase in SN length by the same

factor to counteract any possible information loss due to this scaling. Even in small NNs

with few layers, combined scaling factors exceed factors of several hundreds or thousands,

making this possibility infeasible in practical applications. For example, the NN structure

used in the simulations of section 4.1 would have a scaling factor of 16 in the first layer

and 180 in the second layer, which would combine to a factor of 2880. Therefore, upscaling

is commonly used in combination with strongly stochastic addition when possible. From

a mathematical view, upscaling is a tough challenge in SC, as it requires a multiplication

with a value larger than 1, i.e. outside of the typical range of SNs, and also requires

a clipping mechanism to ensure that the resulting value stays inside this range as well.

Performing these operations in binary is not an option, as conversion between the SC and

binary domain is the most hardware intensive part of SC, as laid out in section 3.2. On the

other hand, circuits that duplicate 1s in an SN suffer from the problem that SN values are

generally not known during computation. Upscaling in this manner would therefore lead

to significant saturation errors, e.g. an initial SN value of 0.6 that is upscaled by a factor

of 2 would suffer a saturation error of 1.2− 1 = 0.2.

132

6.2 On types of stochastic circuits and practical limitations

Some stochastic circuits posess intrinsic upscaling functionality. The stanh component

(figure 2.5) approximates the function f(x) = tanh
(
N
2 x
)
. When used after a strongly

stochastic addition, e.g. in a previous convolutional layer, it serves as a countermeasure to

downscaling during addition and a functional component at the same time. However, this

does not prevent information loss during the downscaling and may in fact even decrease

accuracy, as small relative errors are magnified and lead to large absolute errors.

Due to the issues of strongly stochastic addition, most SCNN applications have moved

entirely to weakly stochastic addition, i.e. hybrid SC-binary adders in different forms of

(approximate) parallel counters. The use of strongly stochastic addition lies mostly in

relatively small functional circuits, such as the Robert’s cross algorithm for edge detection

[ALH13], the implementation of polynomials [QR08] [QLR+10], and SC filters [ISI+16]

[WHCE16]. Although there have been recent advances in the design of more accurate

strongly stochastic adders [BH22], the large additions in SCNNs will continue to pose a

limitation to MUX-based SC adders.

133

134

Chapter 7

Conclusion

Neural networks have become the main target applications for SC in recent years for

several reasons. Firstly, their large reliance on multiplications makes them an attractive

target, as SC provides a very efficient multiplier implementation. Secondly, they are able

to tolerate small computational inaccuracies and can therefore handle SC’s random fluctu-

ations well. Thirdly, the increasing importance of edge devices and low-power computing

increases the need for implementations that work reliably in resource constrained envi-

ronments. With its error tolerant number format, SC is a promising candidate for this

task. On the other hand, each of these benefits is connected with its own challenges and

open questions: SNs can be multiplied efficiently, but their generation is more expensive.

Sharing of PRNGs can reduce the resulting hardware overhead, but can interfere strongly

with sequential SC components. SC’s random fluctuations can be tolerated up to some

degree by an NN, but generally lead to lower classification accuracies. Finally, SC’s error

tolerance has been investigated in the past, but prior analysis was primarily focused on

combinational SC systems, e.g. image processing applications.

The first part of this work presented several contributions regarding these challenges and

questions: The S-Box based random number generator is introduced to enable PRNG-

sharing without introducing correlations that interfere with sequential SC components.

SBoNG achieves this by combining an LFSR with a cryptographic S-box to shuffle the

LFSR’s state, which mostly eliminates the linear dependencies between subsequent LFSR

states that lead to cross-correlation and autocorrelation of SNs. The cross-correlation val-

ues of multiple SNs generated by one SBoNG instance are comparable to those achieved

135

Conclusion

with complex and expensive software-based PRNGs like Mersenne Twister. This enables

SBoNG to be shared between many more SNGs than LFSRs, reducing the hardware over-

head of SNGs in systems that require many uncorrelated SNs and/or include many se-

quential components that are sensitive to autocorrelation within SNs. Simulations of a

digital filter and an SCNN show that SBoNG provides accurate results while keeping the

hardware cost low.

The NMax circuit was proposed as the first non-approximate SC implementation of the

maximum function and reduces the random fluctuations in max-pooling layers of SC-

NNs. Previous stochastic circuits for this function were based on approximations of the

maximum value to avoid delays resulting from the accurate comparison of input values.

NMax avoids these delays entirely by only tracking the differences between input values,

not their actual values. It does not rely on specific input correlations and can therefore

readily be interfaced with any other SC components. Outside of improving max-pooling

layers, NMax also enables a non-approximate implementation of the clipped ReLU activa-

tion function and can in general be used for any SC application that requires computation

of maximums.

The third major practical contribution of this work is a detailed analysis of the effect of

timing errors on an SCNN and its components. Existing works focused on bit flip models

and/or combinational SC components and could therefore not capture the behaviour of

SCNNs with their various sequential components accurately under low-power conditions.

The analysis presented in this work expands significantly on these prior investigations by

employing an error model that combines circuit wide slow-downs to model low-power en-

vironments with individual per-gate delay variations to model manufacturing differences.

The results show that the investigated SCNN is able to compensate small increases in de-

lay very well, as it shows no decrease in classification accuracy when the circuit delay is

increased up to 20% over nominal delay. Larger delays however lead to a significant drop

in accuracy, proving that some SCNN components are heavily influenced by timing errors,

most strongly among them the combined convolution-activation circuit. The reason was

found to be a strong bias in the error distributions of these components. These biases lead

to systematic deviations in the implemented arithmetic functions and can cause the SCNN

to have a lower accuracy than the binary NN, even though its MSE is lower. It was further

136

demonstrated on the example of AMax and NMax that different SC components that im-

plement the same functionality can have vastly different characteristic error distributions,

and show very different behaviour depending on the error model. While an AMax-based

SCNN outperforms its NMax-based counterpart under a bit flip error model, both show

almost identical behaviour under a timing error model. These observations are crucial for

the design of SC for error-prone environments in general and extreme low-power environ-

ments specifically. While SC systems do indeed often show higher resilience than corre-

sponding binary circuits, error tolerance is by no means guaranteed, and should therefore

be an important part of the SC design process. SC components should be designed with a

particular error model in mind and tested for biased error distributions under this model.

The second main part of this work addresses theoretical observations on and insights into

SC. The author’s previously existing accuracy management framework for combinational

circuits was extended to sequential circuits. Through time frame expansion, a sequential

circuit is modelled as a combinational circuit with multiple inputs. Intermediate signals

that include identical bits of the input SNs are modelled as dependent random variables.

With this extension, it is now possible to estimate the accuracy of sequential stochastic cir-

cuits without simulation. The effect of isolators on a circuit’s accuracy can be determined

as well, which provides a means to find an optimal balance between RNG sharing and

additional isolators to trade-off circuit area and output accuracy.

Finally, a contribution towards better understanding the practical and theoretical limita-

tions of SC was made. It was shown that some classes of functions cannot be implemented

exactly in SC. This includes all non-linear convex and concave functions. SC implemen-

tations of such functions exhibit systematic, biased deviations from their target functions.

Furthermore, the categorization of strongly and weakly stochastic circuits was introduced

to distinguish between types of stochastic circuits that have differing practical limitations.

Strongly stochastic circuits are limited by their restricted input and output values range

and are prone to loss of information in applications that include many additions, e.g. digi-

tal filters and NNs. Weakly stochastic circuits circumvent this specific limitation with either

binary inputs or outputs, but generally require more expensive building blocks such as full

adders and accumulators, and potentially additional number conversions. Each type of

stochastic circuit comes with its own advantages and limitations, and large SC systems

137

Conclusion

such as SCNNs often combine all types to find a balance between efficient and accurate

implementation.

SCNNs have become the primary application for SC in recent years. Their tolerance for

approximate computations and large number of individually simple operations has made

them an attractive target for SC implementations and advent of distributed, resource con-

strained devices further incentivizes the development of these systems. New SC compo-

nents, insights into SC’s robustness under such resource constrained conditions, a clearer

understanding of its limitations, and an extended framework to analyse the accuracy of SC

systems presented in this work help in the design, evaluation and improvement of these

future SC systems.

138

Bibliography

[ACH+17] Armin Alaghi, Wei-Ting J. Chan, John P. Hayes, Andrew B. Kahng, and Jiajia Li.

Trading accuracy for energy in stochastic circuit design. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 13(3):1–30, 2017.

[AH13] Armin Alaghi and John P. Hayes. Exploiting correlation in stochastic circuit design.

In 2013 IEEE 31st International Conference on Computer Design (ICCD), pages 39–

46. IEEE, 2013.

[AH15] Armin Alaghi and John P. Hayes. Strauss: Spectral transform use in stochastic

circuit synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 34(11):1770–1783, 2015.

[ALH13] Armin Alaghi, Cheng Li, and John P. Hayes. Stochastic circuits for real-time image-

processing applications. In Proceedings of the 50th Annual Design Automation Con-

ference, pages 1–6, 2013.

[ALPO+17] Arash Ardakani, François Leduc-Primeau, Naoya Onizawa, Takahiro Hanyu, and

Warren J. Gross. Vlsi implementation of deep neural network using integral

stochastic computing. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 25(10):2688–2699, 2017.

[AlQ21] Mohammed AlQuraishi. Machine learning in protein structure prediction. Current

opinion in chemical biology, 65:1–8, 2021.

[BC01a] Bradley D. Brown and Howard C. Card. Stochastic neural computation. i. compu-

tational elements. IEEE Transactions on computers, 50(9):891–905, 2001.

[BC01b] Bradley D. Brown and Howard C. Card. Stochastic neural computation. ii. soft

competitive learning. IEEE Transactions on Computers, 50(9):906–920, 2001.

[BH20] Timothy J. Baker and John P. Hayes. The hypergeometric distribution as a more

accurate model for stochastic computing. In 2020 Design, Automation & Test in

Europe Conference & Exhibition (DATE), pages 592–597. IEEE, 2020.

[BH22] Timothy J Baker and John P Hayes. Cemux: Maximizing the accuracy of stochas-

tic mux adders and an application to filter design. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 27(3):1–26, 2022.

139

Bibliography

[BJRL15] George E.P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time

series analysis: forecasting and control. John Wiley & Sons, 2015.

[BRB] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Boundary attack code.

https://github.com/greentfrapp/boundary-attack. Accessed: 2022-02-10.

[BRB17] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial

attacks: Reliable attacks against black-box machine learning models. arXiv preprint

arXiv:1712.04248, 2017.

[Bro] Robert G. Brown. Dieharder: A random number test suite. https://webhome.phy.

duke.edu/~rgb/General/dieharder.php. Accessed: 2021-07-28.

[Bro06] Petrus M.T. Broersen. Automatic autocorrelation and spectral analysis. Springer

Science & Business Media, 2006.

[CH16] Te-Hsuan Chen and John P. Hayes. Design of division circuits for stochastic com-

puting. In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages

116–121. IEEE, 2016.

[CMO+15] Vincent Canals, Antoni Morro, Antoni Oliver, Miquel L. Alomar, and Josep L.

Rosselló. A new stochastic computing methodology for efficient neural net-

work implementation. IEEE transactions on neural networks and learning systems,

27(3):551–564, 2015.

[CW] Nicholas Carlini and David Wagner. Cw attack code. https://github.com/

carlini/nn_robust_attacks. Accessed: 2022-02-09.

[CW17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural

networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,

2017.

[CZS+17] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Ze-

roth order optimization based black-box attacks to deep neural networks without

training substitute models. In Proceedings of the 10th ACM workshop on artificial

intelligence and security, pages 15–26, 2017.

[DAL+18] Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy Bernstein,

Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic activation pruning

for robust adversarial defense. arXiv preprint arXiv:1803.01442, 2018.

[EKD+03] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham,

Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, et al. Razor: A

low-power pipeline based on circuit-level timing speculation. In Proceedings. 36th

Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.,

pages 7–7. Citeseer, 2003.

140

https://github.com/greentfrapp/boundary-attack
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://github.com/carlini/nn_robust_attacks
https://github.com/carlini/nn_robust_attacks

[FNL+19] S. Rasoul Faraji, M. Hassan Najafi, Bingzhe Li, David J. Lilja, and Kia Bazargan.

Energy-efficient convolutional neural networks with deterministic bit-stream pro-

cessing. In 2019 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 1757–1762. IEEE, 2019.

[GAG+00] Ary L. Goldberger, Luis A.N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Plamen Ch.

Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and

H. Eugene Stanley. Physiobank, physiotoolkit, and physionet: components of a new

research resource for complex physiologic signals. circulation, 101(23):e215–e220,

2000.

[Gai67] Brian R. Gaines. Stochastic computing. In Proceedings of the April 18-20, 1967,

spring joint computer conference, pages 149–156, 1967.

[Gai69] Brian R. Gaines. Stochastic computing systems. In Advances in information systems

science, pages 37–172. Springer, 1969.

[GBH+16] Maël Gay, Jan Burchard, Jan Horácek, Ange-Salomé Messeng Ekossono, Tobias

Schubert, Bernd Becker, Martin Kreuzer, and Ilia Polian. Small scale aes toolbox:

algebraic and propositional formulas, circuit-implementations and fault equations.

2016.

[GK88] Prabhat Kumar Gupta and Ramdas Kumaresan. Binary multiplication with pn se-

quences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(4):603–

606, 1988.

[GMRR12] Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, and Kaushik Roy. Low-

power digital signal processing using approximate adders. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 32(1):124–137, 2012.

[GRCVDM17] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten.

Countering adversarial images using input transformations. arXiv preprint

arXiv:1711.00117, 2017.

[GSS14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-

nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[HGT+19] Reza Hojabr, Kamyar Givaki, SM Reza Tayaranian, Parsa Esfahanian, Ahmad Khon-

sari, Dara Rahmati, and M. Hassan Najafi. Skippynn: An embedded stochastic-

computing accelerator for convolutional neural networks. In 2019 56th ACM/IEEE

Design Automation Conference (DAC), pages 1–6. IEEE, 2019.

[HIW15] Stefan Holst, Michael E. Imhof, and Hans-Joachim Wunderlich. High-throughput

logic timing simulation on gpgpus. ACM Transactions on Design Automation of Elec-

tronic Systems (TODAES), 20(3):1–22, 2015.

141

Bibliography

[HMHAA21] Hsuan Hsiao, Joshua San Miguel, Yuko Hara-Azumi, and Jason Anderson. Zero

correlation error: A metric for finite-length bitstream independence in stochastic

computing. In Proceedings of the 26th Asia and South Pacific Design Automation

Conference, pages 260–265, 2021.

[HPB+19] Tifenn Hirtzlin, Bogdan Penkovsky, Marc Bocquet, Jacques-Olivier Klein, Jean-

Michel Portal, and Damien Querlioz. Stochastic computing for hardware imple-

mentation of binarized neural networks. IEEE Access, 7:76394–76403, 2019.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[IIS+14] Hideyuki Ichihara, Shota Ishii, Daiki Sunamori, Tsuyoshi Iwagaki, and Tomoo In-

oue. Compact and accurate stochastic circuits with shared random number sources.

In 2014 IEEE 32nd International Conference on Computer Design (ICCD), pages 361–

366. IEEE, 2014.

[IMII19] Hideyuki Ichihara, Yuki Maeda, Tsuyoshi Iwagaki, and Tomoo Inoue. State encod-

ing with stochastic numbers for transient fault tolerant linear finite state machines.

In 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), pages 1–6. IEEE, 2019.

[ISI+16] Hideyuki Ichihara, Tatsuyoshi Sugino, Shota Ishii, Tsuyoshi Iwagaki, and Tomoo

Inoue. Compact and accurate digital filters based on stochastic computing. IEEE

Transactions on Emerging Topics in Computing, 7(1):31–43, 2016.

[KA17] M. Burak Karadeniz and Mustafa Altun. Sampling based random number generator

for stochastic computing. In 2017 24th IEEE International Conference on Electronics,

Circuits and Systems (ICECS), pages 227–230. IEEE, 2017.

[KKY+16] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun Lee, and Kiy-

oung Choi. Dynamic energy-accuracy trade-off using stochastic computing in deep

neural networks. In Proceedings of the 53rd Annual Design Automation Conference,

pages 1–6, 2016.

[KLZ14] Phil Knag, Wei Lu, and Zhengya Zhang. A native stochastic computing architec-

ture enabled by memristors. IEEE Transactions on Nanotechnology, 13(2):283–293,

2014.

[KMM+17] Daewoo Kim, Mansureh S Moghaddam, Hossein Moradian, Hyeonuk Sim, Jongeun

Lee, and Kiyoung Choi. Fpga implementation of convolutional neural network

based on stochastic computing. In 2017 International Conference on Field Pro-

grammable Technology (ICFPT), pages 287–290. IEEE, 2017.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information processing

systems, 25:1097–1105, 2012.

142

[LAH+17] Vincent T. Lee, Armin Alaghi, John P. Hayes, Visvesh Sathe, and Luis Ceze. Energy-

efficient hybrid stochastic-binary neural networks for near-sensor computing. In

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages

13–18. IEEE, 2017.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[LH17] Siting Liu and Jie Han. Energy efficient stochastic computing with sobol sequences.

In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages

650–653. IEEE, 2017.

[LL11] Peng Li and David J. Lilja. Using stochastic computing to implement digital image

processing algorithms. In 2011 IEEE 29th International Conference on Computer

Design (ICCD), pages 154–161. IEEE, 2011.

[LLLH19] Yidong Liu, Leibo Liu, Fabrizio Lombardi, and Jie Han. An energy-efficient and

noise-tolerant recurrent neural network using stochastic computing. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, 27(9):2213–2221, 2019.

[LLR+18] Zhe Li, Ji Li, Ao Ren, Ruizhe Cai, Caiwen Ding, Xuehai Qian, Jeffrey Draper,

Bo Yuan, Jian Tang, Qinru Qiu, et al. Heif: Highly efficient stochastic computing-

based inference framework for deep neural networks. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 38(8):1543–1556, 2018.

[LRL+17] Ji Li, Ao Ren, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, and Yanzhi Wang. Towards

acceleration of deep convolutional neural networks using stochastic computing. In

2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pages

115–120. IEEE, 2017.

[Lug05] Tatiana S. Lugovaya. Biometric human identification based on electrocardiogram.

Master’s thesis, Faculty of Computing Technologies and Informatics, Electrotechnical

University ‘LETI’, Saint-Petersburg, Russian Federation, 2005.

[LWLH18] Yidong Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han. An energy-efficient

online-learning stochastic computational deep belief network. IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, 8(3):454–465, 2018.

[MGNR12] Thomas Müller-Gronbach, Erich Novak, and Klaus Ritter. Monte Carlo-Algorithmen.

Springer-Verlag, 2012.

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Transactions on

Modeling and Computer Simulation (TOMACS), 8(1):3–30, 1998.

143

Bibliography

[MP11] Frosso S. Makri and Zaharias M. Psillakis. On success runs of a fixed length in

bernoulli sequences: Exact and asymptotic results. Computers & Mathematics with

Applications, 61(4):761–772, 2011.

[MZWH19] Guy Maor, Xiaoming Zeng, Zhendong Wang, and Yang Hu. An fpga implementation

of stochastic computing-based lstm. In 2019 IEEE 37th International Conference on

Computer Design (ICCD), pages 38–46. IEEE, 2019.

[NJLR19] M. Hassan Najafi, Devon Jenson, David J. Lilja, and Marc D. Riedel. Performing

stochastic computation deterministically. IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems, 27(12):2925–2938, 2019.

[NKM17] Taesik Na, Jong Hwan Ko, and Saibal Mukhopadhyay. Cascade adversarial machine

learning regularized with a unified embedding. arXiv preprint arXiv:1708.02582,

2017.

[PY95] Behraoz Parhami and Chi-Hsiang Yeh. Accumulative parallel counters. In Confer-

ence Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Com-

puters, volume 2, pages 966–970. IEEE, 1995.

[PZJ+20] Daniel S Park, Yu Zhang, Ye Jia, Wei Han, Chung-Cheng Chiu, Bo Li, Yonghui Wu,

and Quoc V Le. Improved noisy student training for automatic speech recognition.

arXiv preprint arXiv:2005.09629, 2020.

[QLR+10] Weikang Qian, Xin Li, Marc D. Riedel, Kia Bazargan, and David J. Lilja. An archi-

tecture for fault-tolerant computation with stochastic logic. IEEE transactions on

computers, 60(1):93–105, 2010.

[QR08] Weikang Qian and Marc D. Riedel. The synthesis of robust polynomial arithmetic

with stochastic logic. In 2008 45th ACM/IEEE Design Automation Conference, pages

648–653. IEEE, 2008.

[RHF19] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack: Crushing neural

network with progressive bit search. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 1211–1220, 2019.

[RLD+17] Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai Qian, and

Bo Yuan. Sc-dcnn: Highly-scalable deep convolutional neural network using

stochastic computing. ACM SIGPLAN Notices, 52(4):405–418, 2017.

[RSN+] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan

Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and

San Vo. A statistical test suite for random and pseudorandom number generators

for cryptographic applications. https://nvlpubs.nist.gov/nistpubs/Legacy/

SP/nistspecialpublication800-22r1a.pdf. Accessed: 2021-07-28.

144

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

[SGMA15] Kayode Sanni, Guillaume Garreau, Jamal Lottier Molin, and Andreas G Andreou.

Fpga implementation of a deep belief network architecture for character recogni-

tion using stochastic computation. In 2015 49th Annual Conference on Information

Sciences and Systems (CISS), pages 1–5. IEEE, 2015.

[SL17] Hyeonuk Sim and Jongeun Lee. A new stochastic computing multiplier with ap-

plication to deep convolutional neural networks. In Proceedings of the 54th Annual

Design Automation Conference 2017, pages 1–6, 2017.

[SNA+03] Shigeo Sato, Ken Nemoto, Shunsuke Akimoto, Mitsunaga Kinjo, and Koji Nakajima.

Implementation of a new neurochip using stochastic logic. IEEE Transactions on

Neural Networks, 14(5):1122–1127, 2003.

[SVS19] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for

fooling deep neural networks. IEEE Transactions on Evolutionary Computation,

23(5):828–841, 2019.

[SZS+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.

[TH14] Pai-Shun Ting and John P. Hayes. Stochastic logic realization of matrix operations.

In 2014 17th Euromicro Conference on Digital System Design, pages 356–364. IEEE,

2014.

[TH19] Paishun Ting and John P. Hayes. Exploiting randomness in stochastic computing. In

2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages

1–6. IEEE, 2019.

[Vek20] Vivek Vrujlal Vekariya. Evaluating robustness of stochastic neural networks against

adversarial learning attacks. Master’s thesis, University of Stuttgart, 2020.

[VVF+15] Rangharajan Venkatesan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy,

and Anand Raghunathan. Spintastic: Spin-based stochastic logic for energy-

efficient computing. In 2015 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pages 1575–1578. IEEE, 2015.

[WHCE16] Ran Wang, Jie Han, Bruce F. Cockburn, and Duncan G. Elliott. Design, evalua-

tion and fault-tolerance analysis of stochastic fir filters. Microelectronics Reliability,

57:111–127, 2016.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,

2017.

[XWZ+17] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating

adversarial effects through randomization. arXiv preprint arXiv:1711.01991, 2017.

145

Bibliography

[YHFQ17] Meng Yang, John P. Hayes, Deliang Fan, and Weikang Qian. Design of accurate

stochastic number generators with noisy emerging devices for stochastic comput-

ing. In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pages 638–644. IEEE, 2017.

[YKLC17] Joonsang Yu, Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. Accurate and

efficient stochastic computing hardware for convolutional neural networks. In 2017

IEEE International Conference on Computer Design (ICCD), pages 105–112. IEEE,

2017.

[YLL+18] Meng Yang, Bingzhe Li, David J Lilja, Bo Yuan, and Weikang Qian. Towards theo-

retical cost limit of stochastic number generators for stochastic computing. In 2018

IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 154–159. IEEE,

2018.

[YW16] Bo Yuan and Yanzhi Wang. High-accuracy fir filter design using stochastic com-

puting. In 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages

128–133. IEEE, 2016.

[YWT+18] Tao Yang, Yadong Wei, Zhijun Tu, Haolun Zeng, Michel A. Kinsy, Nanning Zheng,

and Pengju Ren. Design space exploration of neural network activation function

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 38(10):1974–1978, 2018.

[ZF14] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

146

Appendix A

Appendix

A.1 Proof of NMax correctness

Proof of NMax correctness. Proving the correctness of NMax is done by induction over

clock cycle l ∈ {1, · · · , n}:

Induction hypothesis: At clock cycle l, NMax has output an SN MAX with the same

value pMAX as its maximum input value up to this cycle.

Induction basis: At clock cycle l = 1 all counters have been initialized to 0 (c1j = 0 ∀j)

and thus there can be two cases:

Case 1 (all inputs are 0):

X1
j = 0 ∀j

⇒Oj = 0 ∀j

⇒Z = 0

⇒pMAX1 = 0 = max(X1
1 , · · · , X1

m) and Incj = 0 and Decj = 0 ∀j

⇒c2j = 0 ∀j

147

A Appendix

Case 2 (at least one input is 1):

∃k ∈ 1, · · · , j : X1
k = 1

⇒Ok = 1

⇒Z = 1

⇒pMAX1 = 1 = pX1
k

= max(X1
1 , · · · , X1

m) and Incj = 1 ∀j 6= k and Inck = 0

⇒c2k = 0 and c2j = 1 ∀j 6= k

Induction step l→ l + 1:

Circuit blocks are split into two cases: case 1 covers blocks with cl+1
j = 0 and case 2 all

blocks with cl+1
j > 0.

Case 1 (all counter blocks with current count 0):

If ∃Xk, k ∈ 1, · · · , j withX l+1
k = 1 :

Ok = 1

⇒Z = 1

⇒pMAX1,··· ,l+1 =
pMAX1,··· ,l · l + 1

l + 1

IC
=
p
X1,··· ,l

k
· l + 1

l + 1

=
max(X1,··· ,l

1 , · · · , X1,··· ,l
m) · l + 1

l + 1

= max(X1,··· ,l+1
1 , · · · , X1,··· ,l+1

m)

Furthermore Inck = 0 ∧ Deck = 0⇒ cl+2
k = 0

Otherwise:

Oj = 0 ∀j

⇒Z = 0

⇒pMAX1,··· ,l+1 =
pMAX1,··· ,l · l

l + 1

IC
=
p
X1,··· ,l

j
· l

l + 1

=
max(X1,··· ,l

1 , · · · , X1,··· ,l
m) · l

l + 1

= max(X1,··· ,l+1
1 , · · · , X1,··· ,l+1

m) because allX l+1
j = 0

Furthermore Inck = 0 ∧ Deck = 0⇒ cl+2
k = 0

148

A.1 Proof of NMax correctness

Case 2 (all counter blocks with current count > 0):

∀j withX l+1
j = 0 :

Oj = 0

⇒Z is independent ofXj and therefore pMAX is only determined by case 1.

If @k 6= j withX l+1
k = 1 ∧ cl+1

k = 0 :

Z = 0 according to case 1

⇒Incj = 0 ∧ Decj = 0

⇒cl+2
j > 0

Otherwise:

Z = 1 according to case 1

⇒Incj = 1 ∧ Decj = 0

⇒cl+2
j > 0

∀j withX l+1
j = 1 :

Oj = 0

⇒Z is independent ofXj and therefore pMAX is only determined by case 1.

If @k 6= j withX l+1
k = 1 ∧ cl+1

k = 0 :

Z = 0 according to case 1

⇒Incj = 0 ∧ Decj = 1

⇒cl+2
j ≥ 0

Otherwise:

Z = 1 according to case 1

⇒Incj = 0 ∧ Decj = 0

⇒cl+2
j > 0

In conclusion:

• Only input SNs with associated counter values of 0 can affect the output of NMax

and the output value pMAX is always equal to the maximum of the input values.

149

A Appendix

• A counter will have a value of 0 if and only if its corresponding input SN has the

current maximum value. Otherwise, a counter will have a value larger than 0.

A.2 Proof that the maximum function is convex

Proof that maximum is convex. The maximum function max(x, y), x, y ∈ R can be written

as:

max(x, y) =
x+ y

2
+ |x− y

2
|

The function x+y
2 is linear and therefore convex (and concave). The absolute value func-

tion |·| is convex:

Let a, b ∈ R and α, β ∈ R≥0 with α+ β = 1 and f the absolute value function, then:

f(α · a+ β · b) = |α · a+ β · b|

≤ |α · a|+ |β · b| (triangle inequality)

= |α| · |a|+ |β| · |b|

= α · f(a) + β · f(b)

The maximum function is therefore a composition of convex functions and likewise con-

vex.

A.3 Proof of equation 6.6

Proof of equation 6.6. Let Xi, 1 ≤ i ≤ n be independent, normally distributed random

variables with mean µ and standard deviation σ, and let Zi, 1 ≤ i ≤ n be independent,

normally distributed random variables with mean 0 and standard deviation 1, such that

Xi = µ+ σZi.

150

A.3 Proof of equation 6.6

Then max
i
Xi = µ+ σmax

i
Zi. Therefore:

P
(

max
i
Xi ≤ µ+ tσ

)
= P

(
max
i
Zi ≤ t

)
=
∏
i

P (Zi ≤ t) = Φ(t)n

With the substitution u = µ+ tσ, it follows that

P
(

max
i
Xi ≤ u

)
= Φ

(
u− µ
σ

)n
.

The expected value of max
i
Xi is defined as

E
(

max
i
Xi

)
=

∫ ∞
−∞

u
d

du
Φ

(
u− µ
σ

)n
du

where d
duΦ

(u−µ
σ

)n
is the probability density function (pdf) of max

i
Xi (as the pdf is the

derivative of the cumulative distribution function). With re-substitution of u and du =

σ · dt, and because the integral of the pdf over all R equals 1, this leads to equation 6.6:

E
(

max
i
Xi

)
=

∫ ∞
−∞

(µ+ tσ)
d

σ · dt
Φ(t)nσ · dt

=

∫ ∞
−∞

(
µ
d

dt
Φ(t)n + tσ

d

dt
Φ(t)n

)
dt

= µ

∫ ∞
−∞

d

dt
Φ(t)ndt+ σ

∫ ∞
−∞

t
d

dt
Φ(t)ndt

= µ+ σ

∫ ∞
−∞

t
d

dt
Φ(t)ndt

151

152

Publications of the Author

In the following, all former publications of the author are listed.

Journal Publications

[NPH18a] Florian Neugebauer, Ilia Polian, and John P. Hayes. S-box-based random num-

ber generation for stochastic computing. Microprocessors and Microsystems,

61:316–326, 2018.

[NPH18b] Florian Neugebauer, Ilia Polian, and John P Hayes. Framework for quantifying

and managing accuracy in stochastic circuit design. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 14(2):1–21, 2018.

Conference Proceedings

[MNPH20] Ponnanna Kelettira Muthappa, Florian Neugebauer, Ilia Polian, and John P.

Hayes. Hardware-based fast real-time image classification with stochastic

computing. In 2020 IEEE 38th International Conference on Computer Design

(ICCD), pages 340–347. IEEE, 2020.

[NPH19] Florian Neugebauer, Ilia Polian, and John P. Hayes. On the maximum func-

tion in stochastic computing. In Proceedings of the 16th ACM International

Conference on Computing Frontiers, pages 59–66, 2019.

[NPH17] Florian Neugebauer, Ilia Polian, and John P. Hayes. Building a better random

number generator for stochastic computing. In 2017 Euromicro Conference on

Digital System Design (DSD), pages 1–8. IEEE, 2017.

153

[NHP22] Florian Neugebauer, Stefan Holst, and Ilia Polian. On the impact of hardware

timing errors on stochastic computing based neural networks. In 2022 IEEE

European Test Symposium (ETS), pages 1–6. IEEE, 2022.

[NPH19] Florian Neugebauer, Ilia Polian, and John P. Hayes. On the limits of stochastic

computing. In 2019 IEEE International Conference on Rebooting Computing

(ICRC), pages 1–8. IEEE, 2019.

[NPH17] Florian Neugebauer, Ilia Polian, and John P. Hayes. Framework for quantify-

ing and managing accuracy in stochastic circuit design. In Design, Automation

& Test in Europe (DATE), 2017, pages 1–6, 2017.

[ONPH20] Junseok Oh, Florian Neugebauer, Ilia Polian, and John P. Hayes. Retraining

and regularization to optimize neural networks for stochastic computing. In

2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 246–

251. IEEE, 2020.

Other Publications

[Neu16] Florian Neugebauer. Quantifying accuracy in stochastic circuits. Master’s thesis,

University of Passau, 2016.

154

Declaration

All the work contained within this thesis,

except where otherwise acknowledged, was

solely the effort of the author.

At no stage was any collaboration entered into

with any other party.

Florian Neugebauer

	Contents
	Acknowledgments
	Abstract
	Zusammenfassung
	List of Abbreviations
	Introduction
	SC Background
	History of SCNNs and related works
	Basic components and operations
	Number representation and basic operations
	Correlation and SN generation
	Random number sources in SC
	Sources of inaccuracy and accuracy estimation
	Convolutional neural networks and stochastic neural networks

	I Components and Error Resilience
	SCNN Components
	NMax: An accurate stochastic maximum function
	The maximum function in SC
	NMax design details
	Analysis and evaluation

	SBoNG: An S-box based number generator
	Challenges of stochastic number generation
	SBoNG design and evaluation
	Statistical analysis of SBoNG

	Error Resilience
	Robustness of stochastic circuits
	Capture errors and simulation procedure
	Design of simulated circuits
	Gate-level bit flips
	Timing error analysis
	Summary of SC's error resilience

	Adversarial attacks on SCNNs
	Attack algorithms and attack scenarios
	Evaluation of adversarial attacks on SCNN
	Interference of randomness with adversarial attacks

	II Analysis and Limitations
	Extended Accuracy Management Framework
	Sequential circuits without feedback
	Sequential circuits with feedback

	On the Limitations of SC
	On implementable functions in SC
	On types of stochastic circuits and practical limitations
	Practical limitations of scaled addition

	Conclusion
	Bibliography
	Appendix
	Proof of NMax correctness
	Proof that the maximum function is convex
	Proof of equation 6.6

	Publications of the Author

