
Institute of Information Security

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

A Formal Analysis Of Hashgraph
And Its Accountability Properties

Marcel Flinspach

Course of Study: Informatik

Examiner: Prof. Dr. Ralf Küsters

Supervisor: Dipl.-Math. Mike Graf

Commenced: January 11, 2022

Completed: July 11, 2022





Abstract

The Hashgraph algorithm is a distributed ledger technology (DLT) consensus algorithm that is an
alternative to conventional blockchains. Generally, a distributed ledger can be seen as a database of
transactions that is replicated across serveral locations, typically run by multiple parties. In order
to reach an agreement on the validity and order of transactions, DLTs typically rely on consensus
protocols as a key component.

Participants of the Hashgraph algorithm locally manage a hashgraph. This is a directed acyclic graph
of events. All events include, among other (meta)data, mainly transactions that were submitted by
clients. In order to reach a consens, Hashgraph utilizes so-called virtual voting so that parties with
different hashgraphs assign all events the same position in the total order of events. We call this
desirable property consistency, which allows different participants to calculate and agree on the
same order of transactions.

Accountability is a well-known concept in distributed systems and cryptography but new to
blockchains and DLTs in general. With this concept, misbehaving parties violating predefined
security goals can be identified and held accountable with undeniable cryptographic evidence to
incentivize participants to behave honestly.

In this work, we put forward a rigorous proof that Hashgraph does achieve accountability w.r.t.
consistency. That is, participants that misbehave by calculating a different order of transactions, by
not following the Hashgraph protocol, can always be identified and rightfully blamed. To achieve
this, we construct an iUC model of the hashgraph protocol with the necessary additions to hold
dishonest participants accountable. In particular, we prove under relatively mild assumptions
that honest participants, following the Hashgraph algorithm, will always assign events in their
hashgraph the same order. That is, honest participants can reach a consens on the total order of
events and transactions. Due to the real-world applications of Hashgraph, we believe this result is
of independent interest.

3





Contents

1 Introduction 9

2 The Hashgraph Consensus Algorithm 11
2.1 Overview of the Hashgraph Protocol . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Events and Hashgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Hashgraph Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Synchronization of hashgraphs . . . . . . . . . . . . . . . . . . . . . . . 13

3 Security Model of Hashgraph 17
3.1 Introduction to the iUC Framework . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Structure of Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Modeling Corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 An iUC Model for Hashgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 The Ideal Signature Functionality ℱcert . . . . . . . . . . . . . . . . . . 19

4 Accountability 35
4.1 Formal Definition of Accountability . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Security and Accountability of Hashgraph 39
5.1 Accountability of Hashgraph w.r.t. Basic Correctness . . . . . . . . . . . . . . 40
5.2 Accountability of Hashgraph w.r.t. Fork-Freeness . . . . . . . . . . . . . . . . 46
5.3 Consistency of the Hashgraph Algorithm . . . . . . . . . . . . . . . . . . . . . 48
5.4 Accountability of Hashgraph w.r.t. Consistency . . . . . . . . . . . . . . . . . 56
5.5 Closing Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusion 67

Bibliography 69

5





List of Figures

2.1 A hashgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 A hashgraph (paths highlighted) . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The divideRounds function of hashgraph. . . . . . . . . . . . . . . . . . . . . 14
2.4 The decideFame function of hashgraph. . . . . . . . . . . . . . . . . . . . . . . 15
2.5 The findOrder function of hashgraph. . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Template for specifying protocols, see [6]. Blocks labeled with an asterisk
(*) are optional. Our template differs to [6] by the addition of the block
Procedures and Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 The model of a Hashgraph client 𝒫H
client. . . . . . . . . . . . . . . . . . . . . . 21

3.3 The model of a Hashgraph node 𝒫H
node (Part 1). . . . . . . . . . . . . . . . . . . 22

3.4 The model of a Hashgraph node 𝒫H
node (Part 2). . . . . . . . . . . . . . . . . . . 23

3.5 The model of a Hashgraph node 𝒫H
node (Part 3). . . . . . . . . . . . . . . . . . . 24

3.6 The model of a Hashgraph node 𝒫H
node (Part 4). . . . . . . . . . . . . . . . . . . 25

3.7 The model of a Hashgraph node 𝒫H
node (Part 5). . . . . . . . . . . . . . . . . . . 26

3.8 The ideal certificate functionality ℱcert. . . . . . . . . . . . . . . . . . . . . . . 27
3.9 The random oracle ℱro (cf. [7]). . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10 The ideal clock functionality ℱclock. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11 The ideal initialization functionality ℱH

init. . . . . . . . . . . . . . . . . . . . . . 29
3.12 The judging functionality ℱH

judge for the Hashgraph model (Part 1). . . . . . . . . 30
3.13 The judging functionality ℱH

judge for the Hashgraph model (Part 2). . . . . . . . . 31
3.14 The judging functionality ℱH

judge for the Hashgraph model (Part 3). . . . . . . . . 32
3.15 The judging functionality ℱH

judge for the Hashgraph model (Part 4). . . . . . . . . 33
3.16 The judging functionality ℱH

judge for the Hashgraph model (Part 5). . . . . . . . . 34

7





1 Introduction

The invention of the blockchain in 2008 with Bitcoin [15], a payment system solution without
central authority, instigated interest in blockchain technologies and distributed ledger technology
(DLT) in general. The focus of interest and research on blockchains and distributed ledgers has
developed byond the original concepts of alternative payment systems. Specifically in the financial
sector, a plethora of use cases emerged for blockchain and DLT solutions with Corda [5] and
Hyperledger Fabric [1] being among the most widely adopted distributed ledgers.

DLTs. In essence, a distributed ledger can be seen as a synchronized, replicated database across
multiple locations, generally run by different mutually non-trusting participants, managing a ledger
of transactions. Each participant in the network usually preserves its own copy of the ledger. DLT
offers new ways to validate and order transactions across distributed systems: Unlike traditional
approaches which typically require central institutions and their applications to carry out transactions
(e.g. money transfers), DLT is intended to reduce reliance on central parties. In order to reach an
agreement on the validity and order of transactions in the distributed ledger, DLTs typically rely on
so-called consensus protocols.

Blockchains. A blockchain is a distributed ledger with a growing list of records, called blocks,
that are linked together to from a chain of blocks by means of cryptographic hashes. Except for
the first created block, each block in the chain is linked to its preceding block by including a
cryptographic hash of this block. The blocks usually contain more metadata (e.g. a timestamp of
block creation) and transactions. Participants of the blockchain network usually store the chain of
blocks, called blockchain, locally.

Depending on the blockchain, no special authorization or identification is required to join the
blockchain network. Such blockchains (e.g. Bitcoin) are referred to as public or permissionless.
In these networks, a consens among participants is usually reached by solving a computationally
complex mathematical puzzle that requires intense computational effort. This concept is known as
proof of work, which is widely used for many permissionless blockchains (e.g. Bitcoin and Ethereum
[18]). This class of consensus algorithms often suffer from enormous energy consumption, slow
transaction speeds, high transaction fees, and lack of finality. Therefore, proof of work consensus
algorithms are for many application purposes not sufficient. Analogous to public blockchains, there
are private or permissioned blockchains that allow access for authorized participants only.

Hashgraph. Since first introduced in 2016 [2], the Hashgraph protocol [2, 3, 4, 16] gained a
lot of attention [9, 17]. In January 2022, the Hashgraph algorithm was made open source under
the Apache License [13]. The most prominent implementation of the Hashgraph algorithm is

9



1 Introduction

the Hedera Hashgraph distributed ledger that is owned and managed by the Hedera Governing
Council [3]. The council’s members encompass many important companies, including Google,
IBM, Boeing, Deutsche Telekom, and LG [12].

The Hashgraph consensus protocol solves many issues that exist with popular distributed ledgers;
namely, high transaction throughput, high efficiecy, low cost, fairness, ACID compliance, DoS
resistantance, and Byzantine fault tolerance [3, 4].

Accountability. Accountability is a well-known concept in distributed systems and cryptography;
however, there are not many applications in the domain of distributed ledgers and blockchains. Graf
et al. proposed in [10] a formal treatment of accountability for distributed ledgers. Moreover, the
authors of this paper proved that Hyperledger Fabric, with some additional changes, does achieve
accountability w.r.t. consistency.

Related Work. The Hashgraph consensus protocol was proved in [2] to be consistent. That is,
honest participants, following the Hashgraph algorithm, do calculate the same order of transactions
under the assumption of a supermajority (i.e., more than 2

3 ) of honest participants. However, the
proof in [2] is incomplete in several key portions; thus, a unrestrictedly convicing security analysis
of Hashgraph does not exist, yet. Besides the correctness proof of Karl Crary in [8] using the Coq
proof assistant, we are not aware of any other work in this field.

Our approach of proving accountability w.r.t. consistency generally follows the proof of account-
ability w.r.t. Fabric* in [10]. Particularly, we adopt many terms and general concepts presented in
[10].

Contribution. In this work, we will apply the accountability framework from Küsters et al. in
[14] to proof our main result that the Hashgraph protocol satisfies accountability w.r.t. consistency.
To do so, we first formally define accountability w.r.t. consistency for Hashgraph. We will argue
that fork-freeness is an indispensable security property to show accountability w.r.t. consistency
without assuming a supermajority of honest participants.

Furthermore, we will demonstrate in a detailed proof that Hashgraph is consistent. By this, we aim
to close the gaps of the proofs in [2] that are relevant to consistency.

Structure of this work. We first introduce the Hashgrap protocol in Chapter 2. In Chapter 3,
we present our Hashgraph model after we provide a brief introduction to the iUC framework that
we use for our model. The accountability framework we use is explained in Chapter 4. Finally, in
Chapter 5 we present all security notions, formally define accountability w.r.t. consistency (and
fork-freeness), and present all proofs, relevant to Hashgraph.

10



2 The Hashgraph Consensus Algorithm

We explain the Hashgraph algorithm as presented in [2], but we also adopt some notations from
[8].

2.1 Overview of the Hashgraph Protocol

In Hashgraph, there are clients and nodes. Clients submit transactions, arbitrary messages, to nodes.
The consensus on the order of transactions is only achieved by nodes which belong to the same
Hashgraph session. All nodes in a session are predefined in the set

nodes = {pid1, . . . , pid𝑛}

with arbitrary but fixed party IDs pid 𝑖.1 We define 𝑛 := nodes to be the fixed number of nodes in
one session. We later prove that all honest nodes calculate a prefix of the list of ordered transactions,
as long as there is a supermajority (defined to be more than 2

3𝑛) of nodes that behave honestly.

2.1.1 Events and Hashgraphs

Instead of ordering transactions directly, nodes group transactions into so-called events. Then, nodes
can reach a consensus on the total order of events, and extract subsequently the order of transactions
from ordered events. Events are created by nodes and form the vertices of the hashgraph, a directed
acyclic graph, that each nodes maintains locally. Formally an event is a 7-tuple,

(pid , eventID , selfParent , otherParent , txs, ts, 𝜎),

where
• pid is the party ID of the node that created this event,
• eventID is its ID which is computed as hash over (selfParent , otherParent , txs, ts),
• selfParent is the eventID of an event created by pid ,
• otherParent is the eventID of an event created by some node other than pid ,
• txs is a set of transactions,
• ts ∈ N is the time pid created this event,
• 𝜎 is the signature of the event signed by pid over (selfParent , otherParent , txs, ts).

11



2 The Hashgraph Consensus Algorithm

Alice Cathy

A1 B1 C1 D1

A1 B2 C2

B4

B3 D2

B5

C3

Bob Dave Eve

E1

E2

Time

Figure 2.1: A hashgraph

Alice Cathy

A1 B1 C1 D1

A1 B2 C2

B4

B3 D2

B5

C3

Bob Dave Eve

E1

E2

Time

Figure 2.2: A hashgraph (paths highlighted)

The edges of a vertex are therefore defined by the event IDs selfParent and otherParent (cf. Figure
2.1). We denote the hashgraph of a participant pid as 𝐺(pid) or simple 𝐺. Formally, a hashgraph
is a set of events with the addition of the genesis event (⊥,⊥,⊥,⊥,⊥,⊥,⊥) that is contained in
all hashgraphs of honest nodes.

2.1.2 Hashgraph Terminology

We first define some general concepts of the Hashgraph algorithm. Let 𝐺 be the hashgraph of some
node pid and 𝐸,𝐸′ ∈ 𝐺 be two events.

• Event 𝐸 is an ancestor of 𝐸′ if 𝐸 = 𝐸′ or there exists a down-path from 𝐸′ to 𝐸 along the
vertices of 𝐺.

• 𝐸 is an self-ancestor of 𝐸′ if 𝐸 = 𝐸′ or there exists a down-path from 𝐸′ to 𝐸 such that each
event included in this path was created by pid .

• The pair of events (𝐸,𝐸′) is a fork if𝐸 and𝐸′ have the same creator, but neither is a self-ancestor
of the other.

• 𝐸 can see 𝐸′ if 𝐸′ is an ancestor of 𝐸, and the ancestors of 𝐸 do not include a fork by the
creator of 𝐸′.

• 𝐸 can strongly see 𝐸′ if 𝐸 can see 𝐸′ and there is a set 𝑆 ⊆ 𝐺 of events such that |𝑆| > 2
3𝑛, all

events in 𝑆 have pairwise different creators, and for all 𝐸𝑠 ∈ 𝑆 applies 𝐸 sees 𝐸𝑠 and 𝐸𝑠 sees
𝐸′.

Example 1. Figure 2.2 illustrates the concept of strongly seeing; in this hashgraph with 𝑛 = 5,
event B5 can strongly see event B1: Let 𝑆 = {A1, C3, D2, E2}, then |𝑆| = 4 > 2

3 · 5, B5 can see
all events in 𝑆, and all events in 𝑆 can see 𝐵1.

1Throughout this work, we usually use the terms party, participant, and node synonymously if it is clear that we refer to
an actual node participant in a Hashgraph session.

12



2.1 Overview of the Hashgraph Protocol

2.1.3 Synchronization of hashgraphs

In this section, we assume all nodes are honest and follow the described procedures.2 During a run
of a hashgraph session, all nodes try to sync infinitely often with other random nodes. A sync is a
procedure where one node, the initiator of the sync, sends a local copy of its hashgraph to another
node pid . In Hashgraph, this process is also called gossiping.

Upon receiving the synced hashgraph, the pid merges all events with valid signatures and hashes
into its local one. Additionally, the receiving node creates a new event 𝐸 with self-parent being the
last event it created or the genesis event, in case it has not created any events yet. The other-parent is
set to the last event, say 𝐸′, the initiator node created; that is, there is no other event in the gossiped
hashgraph with self-parent being the event ID of 𝐸′. The receiving node includes all transactions,
submitted by clients that have not yet been included in any other event, into the set txs of event 𝐸.

Lastly, pid runs the following three functions in the given order: 1) divideRounds, 2) decideFame,
and 3) findOrder. The three functions above are abbreviated withℋalg . The output ofℋalg with
the local hashgraph of pid as input is a total order of events. In the following, we discuss all three
functions in more detail.

1) The divideRounds functions (cf. Figure 2.3) assigns all events in the local hashgraph a round
created (or simple round) number. Initially, the genesis event is assigned round 1. All other
events have a round number 𝑟 that is equal the maximum round of its two parent events. However,
there is one exception: If an event 𝐸 can strongly see more than 2

3𝑛 round 𝑟 witnesses, it will
be assigned round number 𝑟 + 1 instead. In this case, 𝐸 is a witness event. A witness event is
the first event created by a member in round.

We denote with𝒲pid
𝑟 the witness events of round 𝑟 in the local hashgraph of pid . We usually

omit the participant and just write𝒲𝑟 when it is clear to which hashgraph this set belongs.

2) The decideFame function (cf. Figure 2.4) decides for all witness events 𝐸 ∈ 𝐺 whether it is
famous or not. This is done by virtual voting, where a supermajority of events from different
participants decide whether an event is famous or not. Each participants runs this algorithm
locally, with their own local hashgraph as input, with no additional network communication.

Only witness events are eligible to participate in the election. Let 𝐸𝑟 be a witness event in 𝐺 of
round 𝑟. During the first voting round, all witnesses 𝐸𝑟+1 ∈ 𝒲𝑟+1 vote for 𝐸𝑟. A witness votes
𝛽 = true for 𝐸𝑟’s fame if it can see it. Otherwise, it will vote 𝛽 = false and thus against it.
This concludes the first voting round.

Subsequent voting rounds 𝑖 ≥ 1 are different compared to the first round. Let𝐸𝑟+𝑖+1 ∈ 𝒲𝑟+𝑖+1

be a round 𝑟 + 𝑖+ 1 witness. Let𝒲 be the set of all round 𝑟 + 𝑖 witnesses in 𝐺 that 𝐸𝑟+𝑖+1

can strongly see, and let 𝑣 be the majority vote of events in𝒲 for 𝐸𝑟. During virtual voting,
there are normal voting rounds and so-called coin rounds. During a normal voting round,
𝐸𝑟+𝑖+1 always vote for 𝐸𝑟 w.r.t. the majority decision 𝑣. If there is a supermajority of events
in 𝒲 with the same vote for 𝐸𝑟, then 𝐸𝑟+𝑖+1 will decide the fame for 𝐸𝑟 according to the
supermajority decision 𝑣. We denote this voting result with decision𝐺(𝐸𝑟, 𝐸𝑟+𝑖+1, 𝑣). At this
point, the virtual voting for 𝐸𝑟 is ended. Now, suppose we are in a coin round. In coin rounds

2The handling of exceptions due to dishonest nodes is discussed in the subsequent chapters

13



2 The Hashgraph Consensus Algorithm

events cannot decide the famousness for events. However, events still vote for 𝐸𝑟. If there is a
supermajority of round 𝑟 + 𝑖 events in𝒲 that agree on vote 𝑣, 𝐸𝑟+𝑖+1 will still vote with 𝑣 for
𝐸𝑟. Otherwise, 𝐸𝑟+𝑖+1 “flips a coin” for the vote 𝐸𝑟 by voting according to its last bit of the
signature.

For later proofs we will need the predicate

vote𝐺(𝐸𝑟, 𝐸𝑟+𝑖+1, 𝛽)

that is true if event 𝐸𝑟+𝑖+1, in voting round 𝑖, votes for event 𝐸𝑟’s fame with 𝛽.

3) The decideFame function (cf. Figure 2.5) assigns events a position in the total order of events.
First, we need to define the following definition: A Unique famous witness is a famous witness
that does not have the same creator as any other famous witness created in the same round.
Notice that in the absence of forking, each famous witness is also a unique famous witness.

Let 𝐸0 ∈ 𝐺 be an arbitrary event. At the beginning, decideFame determines if there can even
exist an ordering of 𝐸0 at this point, by checking if the round received number of 𝐸0 exists. The
round received number 𝑟 of an event 𝐸0 is defined to be the first round where all unique famous
witnesses of round 𝑟 are descendants of 𝐸0. If 𝐸0 has a round received number, decideFame
calculates the set 𝒮 ⊆ 𝐺 for 𝐸0, which is defined as

𝒮 = {𝐸1 ∈ 𝐺 |∃𝐸2 ∈ 𝐺 : 𝐸2 ∈ 𝒰𝑟𝑟
∧ 𝐸1 is a self-ancestor of 𝐸2

∧ 𝐸0 is an ancestor of 𝐸1.

∧ 𝐸0 is not an ancestor of 𝐸1’s self-parent}.

Now, the consensus timestamp of event𝐸0 is determined by taking the median of the timestamps
of the events in 𝑆.

Lastly, the complete order of events is calculated: Events are sorted in ascending order by 1. the
round received number, 2. remaining ties by consensus timestamps, and 3. any remaining ties
lexicographically by their signature.

We later proof that hashgraph is consistent, i.e., honest participants calculate the same order of
events if there are less than 1

3𝑛 dishonest participants.

1: function divideRounds() :
{︀

Assign rounds to events and mark witnesses.
2: for all event 𝑥 ∈ 𝐺(pid), in topological order do:

{︀
Iterate over events in the hashgraph of pid .

3: 𝑟 ← 1.
4: if event 𝑥 has parents:
5: 𝑟 ← max round of parents of 𝑥.
6: 𝑥.round← 𝑟.
7: if 𝑥 strongly sees more than 2

3
𝑛 round 𝑟 witnesses:

{︀
If event 𝑥 is a witness.

8: 𝑥.round← 𝑥.round + 1.

9: 𝑥.witness← (𝑥 has no self parent) ∨ (𝑥.round > 𝑥.selfParent.round).

Figure 2.3: The divideRounds function of hashgraph.

14



2.1 Overview of the Hashgraph Protocol

1: function decideFame() :
{︀

Decide which events are famous.
2: for all event 𝑥 ∈ 𝐺(pid), in order from earlier rounds to later do:
3: 𝑥.famous←?.

{︀
Fame of 𝑥 is undecided at first.

4: if ∃𝑟 ∈ N s.t. 𝑥 ∈ 𝒲pid
𝑟 :

{︀
If 𝑥 is a witness in round 𝑟.

5: for all 𝑦 ∈ 𝒲pid
𝑟+1 do:

{︀
First round of the election; 𝑖 = 0.

6: 𝑦.vote← 𝑦 can see 𝑥?.
7: for 𝑖 = 1, . . . s.t.𝒲pid

𝑟+𝑖+1 ̸= ∅ do:
{︁Further rounds of the election; continues

until there are no more witnesses.
8: for all 𝑦 ∈ 𝒲pid

𝑟+𝑖+1 do:
9: 𝒲 ← {𝑤 ∈ 𝒲pid

𝑟+𝑖 | 𝑦 strongly sees 𝑤}.
10: 𝑣 ← majority vote in𝒲(true for tie).
11: 𝑡← number of events in𝒲 with a vote of 𝑣.
12: if 𝑖 mod 𝑐 > 0:

{︀
This is a normal round.

13: 𝑦.vote← 𝑣.
14: if 𝑡 > 2

3
𝑛:

{︀
If supermajority is reached, decide fame of 𝑥.

15: 𝑥.famous← 𝑣.
16: break out of 𝑖-loop.
17: else:

{︀
Begin coin round.

18: if 𝑡 > 2
3
𝑛:

19: 𝑦.vote← 𝑣.
20: else:
21: 𝑦.vote← last bit of 𝑦.signature.

{︀
Event 𝑦 votes pseudorandomly.

Figure 2.4: The decideFame function of hashgraph.

1: function findOrder() :
{︀

Establish total order of events and transactions.
2: for all event 𝑥 ∈ 𝐺(pid) do:
3: if there exists a round 𝑟 ∈ N s.t.

{︂
Check and calculate the roundReceived
number of 𝑥, if it exists.4: 1. there is no event 𝑦 with 𝑦.round ≤ 𝑟 that has

5: (i) 𝑦.witness = true and
6: (ii) 𝑦.famous = ?; and
7: 2. 𝑥 is an ancestor of every unique famous witness in round 𝑟; and
8: 3. 𝑟 is minimal, i.e., conditions 1. and 2. are false for all 𝑟′ < 𝑟 :
9: 𝑥.roundReceived← 𝑟.

10: 𝒮 ← set off all events 𝑧 ∈ 𝐺(pid), where
11: 1. 𝑧 is a self-ancestor of a round 𝑟 unique famous witness, and
12: 2. 𝑥 is an ancestor of 𝑧, and
13: 3. 𝑥 is not an ancestor of 𝑧’s selfparent.
14: 𝑥.consensusTimestamp← median of the timestamps of all events in 𝒮.
15: 𝐸 ← list of all events in 𝐺(pid) with a round received number.
16: 𝐸 ← sort events in 𝐺(pid) in ascending order by
17: 1. roundReceived number,
18: 2. consensusTimestamp, and
19: 3. lexicographically by their signature in case of ties.
20: return 𝐸.

Figure 2.5: The findOrder function of hashgraph.

15





3 Security Model of Hashgraph

3.1 Introduction to the iUC Framework

The iUC framework [6] is a highly expressive universal composability model with many sensitive
defaults for easier use. In particular, the framework offers a convenient template for specifying
various prtocols and systems. We begin reiterating the general structure of protocols as described in
[6].

A protocol 𝒫 in the iUC framework is specified via a system of machines {𝑀1, . . . ,𝑀𝑙}. Each
machine 𝑀𝑖 implements one or more roles of the protocol, where a role describes a piece of
code that performs a specific task. In a run of a protocol, there can be several instances of every
machine, interacting with each other (and the environment) via I/O interfaces and interacting with
the adversary (and possibly the environment) via network interfaces. An instance of a machine
manages one or more so-called entities. An entity is identified by a tuple (pid , sid , role ) and
describes a specific party with party ID (PID) pid running in a session with session ID (SID) sid
and executing some code defined by the role role where this role has to be (one of) the role(s) of
𝑀𝑖 according to the specification of 𝑀𝑖. Entities can send messages to and receive messages from
other entities and the adversary using the I/O and network interfaces of their respective machine
instances.

3.1.1 Structure of Protocols

Roles. Roles are piece of codes that perform a specific task in a protocol 𝒫 . Each role in 𝒫
is implemented by a single machine 𝑀𝑖; however, one machine can implement multiple roles.
Roles of a protocol can be either public or private. I/O interfaces of public roles are accessible
by other entities belonging to roles in the same protocol 𝒫 or the environment/unknown higher
level protocols. Whereas I/O interfaces of private roles are only accessible by other entities
belonging to the same protocol. For a protocol 𝒫 with 𝑝 public and 𝑞 private roles, we write
(pubrole1, . . . , pubrole𝑝 | privrole1, . . . , privrole𝑞). If two protocols are combined to a new
protocol, all private roles will remain private, whereas previously public roles can be either public
or private.

Subroutines. A machine 𝑀𝑖 implementing a specific role can implement other roles as sub-
routines. Then, the I/O interfaces of 𝑀𝑖 will be connected to the I/O interfaces of the machine
implementing the (as subroutine) specified role.

17



3 Security Model of Hashgraph

Setup for the protocol𝒬 = {𝑀1, . . . ,𝑀𝑛}:
Participating roles: list of all 𝑛 sets of roles participating in this protocol; each set corresponds to one machine 𝑀𝑖.
Corruption model: corruption model of𝒬 (e.g., incorruptible or dynamic corruption).
Protocol parameters*: e.g., externally provided algorithms or variables parametrizing a machine.

Implementation of 𝑀𝑖 for each set of roles:

Implemented role(s): the set of roles implemented by this machine.
Subroutines*: a list of all (other) roles that this machine uses as subroutines.
Internal state*: internal state variables of 𝑀𝑖 that are used to store data across different machine invocations.
CheckID*: algorithm for deciding whether this machine is responsible for an entity (pid , sid , role ).
Corruption behavior*: description of the DetermineCorrStatus and AllowAdvMessage algorithms.
Initialization*: this block is executed the first time an instance of the machine 𝑀𝑖 accepts a message; useful to, e.g., assign

initial values that are globally used for all entities managed by this instance.
EntityInitialization*: this block is executed only the first time that some message for a (new) entity is received; useful to, e.g.,

assign initial values that are specific for single entities.
MessagePreprocessing*: this algorithm is executed every time a new message for an uncorrupted entity is received.
Main: specification of the actual behavior of an uncorrupted entity.
Procedures and Functions*: this block can be used to specify functions or procedures that can be used by other algorithms

of this machine. Useful to, e.g., split up longer algorithms or reduce code repetitions.

Figure 3.1: Template for specifying protocols, see [6]. Blocks labeled with an asterisk
(*) are optional. Our template differs to [6] by the addition of the block
Procedures and Functions.

Exchanging Messages. Entities can send and receive messages using the I/O and network
interfaces belonging to their respective role. The receiver of the message must always be specified,
which is either the adversary in case of network interfaces of some other entity (with a role that has
a connected I/O interface) in case of the I/O interface.

The iUC model specifies a convenient template for specifying protocols. This is illustrated in
Figure 3.1.

3.1.2 Modeling Corruption

Depending on the used corruption model of a protocol, an entity might become explicitly corrupted
by the adversary in a run of the system. In this case, the adversary gains full control of the
corrupted entity: arriving messages at an entity are forwarded to the adversary, while the adversary
can also tell an entity to send messages to other entities on behalf of the corrupted entity. The
AllowAdvMessage algorithm can be used to restrict the adversary from sending messages on
behalf of a corrupted entity to arbitrary entities.

However, the adversary cannot corrupt incorruptible protocols. An entity might consider itself
implicitly corrupted, but in this case, the adversary does not gain control over the implicitly corrupted
entity. This can be specified in the DetermineCorrStatus algorithm.

3.2 An iUC Model for Hashgraph

In this chapter we give a introduction to our iUC model, which is specified at the end of this chapter.
We begin defining the Hashgraph protocol:

18



3.2 An iUC Model for Hashgraph

Definition 1 (The Hashgraph Protocol 𝒫H).
For protocols 𝒫H

client,𝒫H
node,ℱcert,ℱro,ℱclock,ℱinit,ℱH

judge as in Figures 3.2 to 3.16 we define
the Hashgraph protocol to be

𝒫H = (client, init | node, cert, ro, clock, judge).

The protocols 𝒫H
client and 𝒫H

node correspond to the clients and nodes as in Chapter 2. With ℱinit

we introduce an ideal initialization functionality that starts a hashgraph session. We stress that our
model is able to run multiple hashgraph session in parallel. However, we consider a participant
pid ∈ nodes to be dishonest if one of its node instances is corrupted. That is, the attacker explicitly
corrupted a node instance of pid or a node instance considers itself implicitly corrupted due to the
corruption of the signing key of its signer entity.

3.2.1 The Ideal Signature Functionality ℱcert

The ideal protocol ℱcert is an incorruptible signature and verifier protocol that is used for two
purposes: (i) Nodes can use the signer role of this protocol to sign arbitrary messages, and (ii)
other participants can use the verifier role to check the validity of signatures. By default, ℱcert
prevents forgeries of messages that have not been previously signed by the participant of the signing
key. However, we still allow the network attacker to corrupt signing keys and give the attacker the
ability to forge signatures. This will be explained in more detail later.

Entities in ℱcert
Observe in the definition of ℱcert that one machine instance of ℱcert manages all parties and
roles in a single session sid ′. This session is a triple (pid , sid , role) and thus represents that one
machine instance of ℱcert manages the ideal signing and verifying functionalities of participant
pid in one session sid and one role role. For a machine instance managing all entities with SID
(pid , sid , role), we call pid also the pidowner; this becomes important when signing messages.

Verifying signatures
Other entities of machines implementing ℱcert as subroutine (𝑀node, 𝑀client, and 𝑀judge in
our case) can verify if a signature 𝜎, supposedly signed by pid (in session sid with role role),
of msg is indeed valid. This is done by sending the message (Verify,msg , 𝜎) to 𝑒 = (pidcur,
(pid , sid , role),ℱcert : verify), where pidcur is the party ID of the calling entity and the receiver
is the machine instance of ℱcert that manages all entities with SID (pid , sid , role). We denote the
reply of entity 𝑒 as

verifySigpk(pid)(msg , 𝜎).

One can observe such verification requests in the protocols 𝒫H
client, 𝒫H

node, and ℱH
judge.

Signing messages
Similar to verifying signatures, participants (i.e., an entity (pid , sid , role )) can sign arbitrary
messagesmsg atℱcert by sending the message (Sign,msg) to 𝑒 = (pidcur, (pid , sid , role),ℱcert :
signer) on the I/O interface. Analogously, we denote the reply of 𝑒 as

signpk(pid)(msg).

19



3 Security Model of Hashgraph

Notice in our iUC model for Hashgraph that only nodes implement the signer role of ℱcert as
subroutine. Therefore, only nodes are able to send messages to entities of role signer. Moreover,
a receiving entity (pid , sid , signer) of ℱcert must be the pidowner itself; this is used to prevent
nodes of other parties to sign messages for pid . But a node with party ID pid ′ could still send a
message (Sign,msg) to entity (𝑝𝑖𝑑, (pid , sid , role),ℱcert : signer), where pid ̸= 𝑝𝑖𝑑′ and thus
sign in the name of pid . One can observe in Figure 3.16 that honest nodes never sign messages of
other nodes. However, to ensure the same for corrupted nodes, we restrict in the implementation
of AllowAdvMessage in 𝒫H

node the adversary to send messages via an explicitly corrupted
entity (pid , sid ,𝒫H

node : node) to (pid receiver , sid receiver , rolereceiver ) if pid ̸= pid receiver . We
will discuss more about this later in Chapter 5.

20



3.2 An iUC Model for Hashgraph

Description of 𝒫H
client = (client):

Participating roles: {client}
Corruption model: Dynamic corruption without secure erasures
Protocol parameters:

– 𝜂 ∈ N.
{︀

The security parameter, defines the bit-length of txId and eventID .
– nodes ⊆ {0, 1}*.

{︀
The identities of the Hashgraph nodes.

Description of 𝑀client:

Implemented role(s): {client}
Subroutines: ℱcert : verifier,ℱH

judge : judge,ℱinit : init

Internal state:

– states : nodes→ (N× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}*) ∪ {∅}.

⎧⎪⎨⎪⎩
Mapping from nodes to states provided by these nodes;
initially ∅ for all entries. A state is a list of transaction
with entries of form (counter , txId , eventID , tx);
cf. msglist in 𝒫H

node.
CheckID(pid , sid , role ):

Accept all messages with the same SID and PID.
{︀

Accept a single party in one session.
Corruption behavior:

DetermineCorrStatus(pid , sid , role ):
return explicitCorr[entitycur]a.

Main:

recv (Submit,msg) from I/O:
{︀

Process a transaction submission. Any message is a valid transaction.
send (Submit,msg) to NET;

{︀
The adversary is responsible for dispatching Submit requests.

recv Read from I/O:
{︀

Process a read request.
msglist ← ∅; i ← 1.
while ∃e ∈ {𝑖} × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* s.t. hasSupermajority(e) = true do

msglist ← msglist ∪ {𝑒}.
i ← 𝑖+ 1.

output ← {(counter ,msg) | (counter , _, _,msg) ∈ msglist}.
{︀

Remove txId and eventID from output.
reply (Read, output).

recv (StateUpdate, (pidsend ,msglist), 𝜎) from NET s.t. pidsend ∈ nodes:
{︂

State update from a node – mod-
eled as push operation.

sigIsValid ← verifySig(pidsend , (pidsend ,msglist), 𝜎).
if sigIsValid = true:

{︀
Drop state update if signature is invalid.

isConsecutive ← true.
for 𝑖 = 1, . . . , |msglist | do:

if (𝑖, _, _, _) /∈ msglist:
isConsecutive ← false.

{︃If the reported msglist from pid is no consecutive sequence of
transaction, starting at index 1 and ending at index |msglist |,
decline update.

if isConsecutive = true:
if states[pid ] ⊊ msglist:

{︀
Messages with “older” state information are irgnored.

states[pid ]← msglist .
{︀

Record that pidcur accepted an update from pidsend .

send (Evidence, (pidsend ,msglist), 𝜎) to (pidcur, sidcur,ℱH
judge : judge);{︀

Honest clients always report all state updates signed by pidsend to ℱH
judge as evidence.

Procedures and Functions:
function hasSupermajority(entry) :

{︂
Check if entry(𝑖, txId , eventID , tx) is in
at least 3

2
|nodes| states of all nodes.

voteCount ← |{pid ∈ nodes | entry ∈ states[pid ]}|.
if voteCount > 3

2
|nodes|:

return true.
else:

return false.

function verifySig(pid ,msg, 𝜎) :
{︀

Verify signature at ℱcert.
send (Verify,msg, 𝜎) to (pidcur, (pid , sidcur,𝒫H

node : node),ℱcert : verifier);
wait for (VerResult, result).
return result .

aexplicitCorr is an internal framework specific variable in iUC that stores all explicitly corrupted entities (by adversary𝒜) that are
managed by the current machine instance, see [6].

Figure 3.2: The model of a Hashgraph client 𝒫H
client (Part 1).

21



3 Security Model of Hashgraph

Description of 𝒫H
node = (node):

Participating roles: {node}
Corruption model: Dynamic corruption without secure erasures
Protocol parameters:

– 𝜂 ∈ N.
{︀

The security parameter.
– nodes ⊆ {0, 1}*.

{︀
The identities of the Hashgraph nodes.

– coinRound ∈ N.
{︀

After coinRound rounds in Hashgraph, there is a “coin round” during virtual voting.

Description of 𝑀node:

Implemented role(s): {node}
Subroutines: ℱcert : signer,ℱcert : verifier,ℱro : randomOracle,ℱH

judge : judge,ℱclock : clock

Internal state:
– events ⊆ (nodes× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* × N× {0, 1}*) ∪ ({⊥}7) = ∅.{︃This set represents the local hashgraph 𝐺 of pidcur and is a subset of events with entries

(pid , eventID , selfParent , otherParent , transactions, ts, 𝜎) or, in the case of the gene-
sis event, (⊥,⊥,⊥,⊥,⊥,⊥,⊥).

– msglist ⊆ N ∪ {𝜀} × {0, 1}𝜂 × {0, 1}𝜂 ∪ {𝜀} × {0, 1}* = ∅.
{︂

A list of transactions: entries are of form
(counter , txId , eventID , tx).

– roundReceivedEvents : N→ (nodes× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* × N× {0, 1}*) ∪ ({⊥}7).{︂
Stores all events with a round received number in consecutive order, starting
at index 0. Also used for sorting events; see function findOrder.

– lastEvent ∈ {0, 1}𝜂 ∪ {⊥} = ⊥.
{︀

The last event created by pidcur.

– roundCreated : {0, 1}𝜂 ∪ {⊥} → N.
{︂

The round created of an event (identified via eventID);
initially 0 for all entries.

– roundReceived : {0, 1}𝜂 ∪ {⊥} → N.
{︂

The round received of an event (identified via eventID); ini-
tially 0 for all entries.

– tmpVotes : {0, 1}𝜂 → {?, true, false}.
{︀

Used to store votes during virtual voting; initially ? for all entries.

– eventConsensusNumber : {0, 1}𝜂 ∪ {⊥} → N ∪ {𝜀}.
{︂

Stores the total order of events from events; intially
𝜀 for all entries.

– round ∈ N.
{︀

The current “time”.

– isWitness : {0, 1}𝜂 ∪ {⊥} → {?, true, false}.
{︀

Stores whether an event is a witness; intially ? for all entries.

– isFamous : {0, 1}𝜂 ∪ {⊥} → {?, true, false}.
{︀

Stores whether an event is famous; intially ? for all entries.
CheckID(pid , sid , role ):

Accept all entities with the same PID and SID.
{︀

Accept a single party in one session.
Corruption behavior:

DetermineCorrStatus(pid , sid , role ):
if entitycur ∈ explicitCorra:

{︀
Check whether node itself is corrupted.

return true.
return corr(pid , (pid , sid ,𝒫H

node : node),ℱcert : signer)b
{︁Request corruption status at
ℱcert and return its value.

AllowAdvMessage(pid , sid , role, pidreceiver , sidreceiver , rolereceiver ),𝑚): c

if pid = pidreceiver :
return true.

else:
return false.

EntityInitialization:d

events.add((⊥,⊥,⊥,⊥,⊥,⊥,⊥)).
{︀

Add the genesis event to the local hashgraph.

Description of 𝑀node continues in Figure 3.4.

aexplicitCorr is an internal framework specific variable in iUC that stores all explicitly corrupted entities (by adversary𝒜) that are
managed by the current machine instance, see [6].

bcorr is a macro in iUC to querry if an entity is corrupted.
cWe could have also omitted this algorithm entirely, as our implementation is the default behavior, specified in [6], if
AllowAdvMessage is not stated explicitly.

dWe could have also added this complete section to the “Initialization” block of iUC, since a machine manages exactly one entity.

Figure 3.3: The model of a Hashgraph node 𝒫H
node (Part 1).

22



3.2 An iUC Model for Hashgraph

Description of 𝑀node (cont.):

MessagePreprocessing:

recv msg from I/O or NET:
if isInitialized = true:

send GetCurRound to (pidcur, sidcur,ℱclock : clock);
{︀

Update internal clock.
wait for (GetCurRound, round).
round← round .

else:
abort.

{︃Abort current machine activation if the client instance is not
initialized. Upon executing the abort command, the environment
gets activated by definition of the IITM model.Main:

recv (Submit,msg) from NET:
{︀

Process a transaction submission. Any message is a valid transaction.
txId ← hash(msg).

{︀
Generate transaction ID.

msglist.add(𝜀, txId , 𝜀,msg).
{︀

Record submitted transaction.

recv (RecvGossipEvents, gossipedEvent , events) from NET s.t.
{︀

Node receives a gossip event.
events ⊆ (nodes× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* × N×) ∪ ({⊥}7) :

validity ← verifyBasicGraphCorrectness(events).
{︀

Ensure Basic Graph Correctness in Definition 6.
if validity = false:

break.
{︀

If basic graph correctness is violated, break here.
if ∃!(pid , eventID , _, _, _, _, _) ∈ events s.t.

(pid ̸= pidcur ∨ |events| = 1)
∧ eventID = gossipedEvent :

{︂
Ensure complete other-ancestor construction for
eventIDnew (see below) (cf. Definition 5, 1. (ii).)

if ∄(pid , eventID ′, selfPar , _, _, _, _) ∈ events s.t.
eventID ′ ̸= eventID ∧ gossipedEvent = selfPar :

{︂
Only “sync” with most recent event frompid , where
pid is the creator of gossipedEvent .

for all (_, eventID ′′, _, _, txs, _, _) ∈ events ∖ (events ∩ events) do:
for all msg ∈ 𝑡𝑥𝑠 do:

msglist.add((𝜀, hash(𝑚𝑠𝑔), eventID ′′,msg)).
{︂

Add new messages to msglist
from previous sync.

events.add(events).
{︀

Merge new events into pidcur’s hashgraph.

txsnew ← {msg | (𝜀, txId , 𝜀,msg) ∈ msglist}.
{︀

Add transactions for new event.
eventIDnew ← hash((lastEvent, gossipedEvent , txsnew , round)).

{︀
Create eventID of the new event.

𝜎new ← sign((lastEvent, gossipedEvent , txsnew , round)).
{︀

Sign new event.
events.add((pidcur, eventIDnew , lastEvent, gossipedEvent , txsnew , round, 𝜎new )).{︀

Merge the new event (eventIDnew ) into local hashgraph.
for all (𝜀, txId , 𝜀,msg) ∈ msglist} do:

msglist.remove((𝜀, txId , 𝜀,msg)).
msglist.add((𝜀, txId , eventIDnew ,msg)).

{︂
Assign the newly created event ID to trans-
actions in msglist.

lastEvent← eventIDnew .
divideRounds().

{︀
Determines rounds of events and whether events are witnesses.

decideFame().
{︀

Determines whether events are “famous”.
findOrder().

{︀
Establishes total order over events and transactions.

send (EvidenceNode, events) to (pidcur, sidcur,ℱH
judge : judge);

{︀
Report current state to ℱH

judge.

recv StateUpdate from NET:
{︀

Process a read request from NET.
currentState ← ∅.
for all (counter , txId , eventID ,msg) ∈ msglist s.t. counter ̸= 𝜀 do:

currentState.add((counter , txId , eventID ,msg)).
{︀

Extract output and drop eventID .
𝜎 ← sign((pidcur, currentState)).

{︀
Sign output.

reply (StateUpdate, (pidcur, currentState), 𝜎).

recv GossipEvents from NET:
{︀
𝒜 triggers when nodes gossip events.

pid𝑟
$← nodes ∖ {pidcur}.

{︀
Randomly chose a node to sync current events to.

reply (RecvGossipEvents, lastEvent, events).

recv GetCurRound from I/O or NET:
{︀

Current round can be requested externally.
reply (GetCurRound, round).

Description of 𝑀node continues in Figure 3.5.

Figure 3.4: The model of a Hashgraph node 𝒫H
node (Part 2).

23



3 Security Model of Hashgraph

Description of 𝑀node (cont.):

Procedures and Functions:
function divideRounds() :

{︀
Assign rounds to events and mark witnesses.

for all 𝐸 ∈ events, in topological order a do:
(_, eventID , selfPar , otherPar , _, _, _)← parse 𝐸.
𝑟 ← 1.
if eventID ̸= ⊥:

𝑟 ← max{roundCreated[selfPar ], roundCreated[otherPar ]}.
{︂

Determine round created for
events 𝐸 ̸= genesis event.

𝒮 ← {(_, eventID ′, _, _, _, _, _) ∈ events | roundCreated[eventID ′] = 𝑟}.
𝒮 ← {𝐸′ ∈ 𝒮 | StronglySees(𝐸,𝐸′) = true}.
if |𝒮| > 2

3
|nodes|:

roundCreated[eventID ]← 𝑟 + 1.
else:

roundCreated[eventID ]← 𝑟.

if (selfPar = ⊥) ∨ (roundCreated[eventID ] > roundCreated[selfPar ]):{︂
If 𝐸 is the genesis event, or it has the genesis event as self-parent, or
it is the first event of pid within a new round, 𝐸 is a witness.isWitness[eventID ]← true.

function decideFame() :
{︀

Decide which events are famous (cf. Figure 2.4).
for all 𝐸𝑟 ∈ events, in order from earlier rounds to later do:

(_, eventID𝑟, _, _, _, _, _)← parse 𝐸𝑟
{︀
𝐸𝑟 is the candidate, i.e., the witness whom is voted for next.

tmpVotes← ? for all entries.
{︀

Initially, all votes for 𝐸𝑟 are undecided.
isFamous[eventID𝑟]←?.
if isWitness[eventID𝑟] = true:

{︀
Only witnesses take part in the election.

𝑟 ← roundCreated[eventID𝑟].
for all 𝐸𝑟+1 ∈ WitnessesOfRound(𝑟 + 1) do:

{︀
First round of the election.

(_, eventID𝑟+1, _, _, _, _, _)← parse 𝐸𝑟+1.
if Seesb(𝐸𝑟+1, 𝐸𝑟) = true:

tmpVotes[eventID𝑟+1]← true.

{︂
All witnesses in the next round (w.r.t. 𝐸𝑟’s
round 𝑟) vote for 𝐸𝑟 .else:

tmpVotes[eventID𝑟+1]← false.

for all 𝑖 = 1, . . . s.t. (𝒲𝑟+𝑖+1 ← WitnessesOfRound(𝑟 + 𝑖+ 1)) ̸= ∅ do:
{︀

Further rounds of election.
for all 𝐸𝑟+𝑖+1 ∈ 𝒲𝑟+𝑖+1 do:

(_, eventID𝑟+𝑖+1, _, _, _, _, 𝜎𝑟+𝑖+1)← parse 𝐸𝑟+𝑖+1.
𝒲 ← {𝐸𝑟+𝑖 ∈ WitnessesOfRound(𝑟 + 𝑖) | StronglySeesc(𝐸𝑟+𝑖+1, 𝐸𝑟+𝑖) = true}.
𝑦 ← |{(_, eventID𝑟+𝑖, _, _, _, _, _) ∈ 𝒲 | tmpVotes[eventID𝑟+𝑖] = true}|.
𝑛← |{(_, eventID𝑟+𝑖, _, _, _, _, _) ∈ 𝒲 | tmpVotes[eventID𝑟+𝑖] = false}|.{︂

All witnesses in the previous round (w.r.t. 𝐸𝑟+𝑖+1’s round
𝑟 + 𝑖+ 1) vote for 𝐸𝑟 .if 𝑦 ≥ |𝒲|

2
|:

vote ← true.
else:

{︂
𝐸𝑟+𝑖+1’s vote, whether 𝐸𝑟 is famous, is a majority
voting among the witnesses it strongly sees.

vote ← false.
if 𝑖 mod coinRound > 0:

{︀
This is a normal round.

tmpVotes[eventID𝑟+𝑖+1]← vote.
{︀
𝐸𝑟+𝑖+1 votes in any case according to majority decision.

if 𝑦 > 2
3
|nodes| ∨ 𝑛 > 2

3
|nodes|:

isFamous[eventID𝑟]← vote.
{︂

If a supermajority is achieved during voting (i.e.,
2
3
|nodes|), 𝐸𝑟+𝑖+1 votes whether 𝐸𝑟 is famous.

break out of 𝑖-loop.
else:

{︀
Begin coin round.

if 𝑦 > 2
3
|nodes| ∨ 𝑛 > 2

3
|nodes|:

tmpVotes[eventID𝑟+𝑖+1]← vote.
{︀

If supermajority is reached, 𝐸𝑟+𝑖+1 votes.
else:

if last bit of 𝜎𝑟+𝑖+1 is 1:
{︀

Otherwise, 𝐸𝑟+𝑖+1 “flips a coin”.
tmpVotes[eventID𝑟+𝑖+1]← true.

else:
tmpVotes[eventID𝑟+𝑖+1]← false.

Description of 𝑀node continues in Figure 3.6.

aGo over events in topological order, i.e., events are always “visited” after their parents.
bReturns true or false whether the first event (first argument) “can see” the second event (second argument).
cThe function StronglySees returns true or false whether the first event “can strongly see” the second event.

Figure 3.5: The model of a Hashgraph node 𝒫H
node (Part 3).

24



3.2 An iUC Model for Hashgraph

Description of 𝑀node (cont.):

Procedures and Functions:
function findOrder() :

{︀
Establish total order of events and transactions (cf. Figure 2.5).

maxRoundCreated ← 1.
for all (_, eventID , _, _, _, _, _) ∈ events do:

maxRoundCreated ← max{maxRoundCreated , roundCreated[eventID ]}.
for all (𝐸1 ← (_, eventID1, _, _, _, _, _)) ∈ events do:

for all 𝑟 = 1, . . . ,maxRoundCreated do:
{︂

Check and calculate the round received num-
ber 𝑟 of 𝐸1, if it exists.if isRoundReceived(𝐸1, 𝑟):

roundReceived[eventID1]← 𝑟.
{︀

Round received number for 𝐸1 exists.

𝒮 ← ∅.
{︃Intuitively, 𝒮 contains events that

other nodes included with, or shortly
after, when they learned of 𝐸1.for all (𝐸2 ← (_, eventID2, selfPar2, _, _, _, _)) ∈ events do:

𝐸2-selfPar ← (_, eventID , _, _, _, _, _) ∈ events s.t. eventID = selfPar2.
if ∃(𝐸3 ← (_, eventID3, _, _, _, _, _)) ∈ events s.t.

IsSelfAncestorOf(𝐸2, 𝐸3) = true

∧ roundCreated[eventID3] = 𝑟
∧ isFamous[eventID3] = truea

∧ IsUniqueFamousWitness(𝐸3, 𝑟) = true

∧ IsAncestorOf(𝐸1, 𝐸2) = true

∧ IsAncestorOf(𝐸1, 𝐸2-selfPar) = false :
𝒮.add(𝐸2).

eventConsensusNumber[eventID1]← GetMedianWrtTimestamp(𝒮).
counter ← 0.
roundReceivedEvents←? for all entries.

{︂
Function that maps natural numbers to events; used
for sorting events.for all (𝐸 ← (_, eventID , _, _, _, _, _)) ∈ events do:

if roundReceived[eventID ] > 0:
{︀

Check if 𝐸 has a round received number.

roundReceivedEvents[counter ]← 𝐸.
{︁Add all events with a round received number to
isRoundReceived.

counter ← counter + 1. {︀
Sort all events with a round received number as in Figure 2.5.

roundReceivedEvents← SortByRoundReceived(roundReceivedEvents).
roundReceivedEvents← SortTiesByEventConsensusNumber(roundReceivedEvents).
roundReceivedEvents← SortTiesBySignatureLexicographically(roundReceivedEvents).{︀

Now, all events are sorted.
for all (entry ← (𝑐𝑡𝑟, txId , eventID ,msg)) ∈ msglist s.t. ctr ̸= 𝜀 do:

msglist.remove(entry).

{︃Removing sorted messages is not nec-
essary, but it simplifies the proof for
𝛼4 (ii).msglist.add((𝜀, txId , eventID ,msg)).

entryCounter ← 1.
for 𝑖 = 0, . . . s.t. roundReceivedEvents[𝑖] ̸= ? do:

{︀
Iterate over all sorted events in ascending order.

(_, _, _, _, txs, _, _)← roundReceivedEvents[𝑖].
𝑀 ← {(𝜀, txId , eventID ,msg) ∈ msglist | msg ∈ txs}.

{︀
Set of all messages of the 𝑖-th event.

for all (𝜀, txId , eventID ,msg) ∈𝑀 , in ascending order w.r.t. txId do:
msglist.add((entryCounter , txId , eventID ,msg)).

{︂
Add an ordered entry to the local
message list.

msglist.remove((𝜀, txId , eventID ,msg)).
{︀

Remove the corresponding unordered entry.
entryCounter ← entryCounter + 1.

function isRoundReceived(𝐸1, 𝑟) :
{︂

Checks if 𝑟 fulfills all conditions for being a round received
number of 𝐸1 except for being minimal.for all (𝐸2 ← (_, eventID2, _, _, _, _, _)) ∈ events do:

if roundCreated[eventID2] ≤ 𝑟
∧ isWitness[eventID2] = true

∧ isFamous[eventID2] = ? :
return false.

{︁The fame for all witnesses with a round created in or before
round 𝑟 must be decided.for all 𝐸3 ∈ WitnessesOfRound(𝑟) do:

(_, eventID3, _, _, _, _, _)← 𝐸3.
if IsAncestorOf(𝐸1, 𝐸3) = false

∧ IsUniqueFamousWitness(eventID3, 𝑟) :
return false.

{︁
𝐸1 must be an ancestor of all round 𝑟 unique famous
witnesses.

return true.
{︀

Return true if all checks succeed.

Description of 𝑀node continues in Figure Figure 3.7.

aIn the absence of forking, each famous witness is also a unique famous witness (cf. [2]).

Figure 3.6: The model of a Hashgraph node 𝒫H
node (Part 4).

25



3 Security Model of Hashgraph

Description of 𝑀node (cont.):

Procedures and Functions:
function verifyBasicGraphCorrectness(events) :

{︂
Check basic graph correctness for new synced
events, see Definition 5.for all 𝐸 ∈ events do:

if ((pid , eventID , selfPar , otherPar , txs, ts, 𝜎)← 𝐸) can not be parsed s.t.
1. pid ∈ nodes, txs, 𝜎 ∈ {0, 1}*, ts ∈ N
2. eventID , selfPar , otherPar ∈ {0, 1}𝜂 :

if 𝐸 ̸= (⊥,⊥,⊥,⊥,⊥,⊥,⊥):
return false.

{︂
Nodes have to report well-formed evidence (cf.
Definition 6, Well-Formed Data (i)); 𝛼1.

for all (pid , eventID , selfPar , otherPar , txs, ts, 𝜎) ∈ events ∖ {(⊥,⊥,⊥,⊥,⊥,⊥,⊥)} do:
if ¬(∃(pid , eventID ′, _, _, _, _, _) ∈ events s.t.

selfPar = eventID ′):
return false.

{︃All events, except for the genesis event, have to suffice a
complete self-ancestor construction (cf. Definition 5, 1.(i));
𝛼2.

if ¬(∃(pid ′, eventID ′, _, _, _, _, _)) ∈ events s.t.
otherPar = eventID ′ ∧ pid ′ ̸= pid):

return false.

{︃All events, except for the genesis event, must satisfy a
complete other-ancestor construction (cf. Definition 5,
1.(ii)); 𝛼2.

if verifySig(pid , (selfPar , otherPar , txs, ts), 𝜎) = false:
return false.

{︂
Nodes need to report events with valid signa-
tures (cf. Definition 5, 2.); 𝛼2.

if hash((selfPar , otherPar , txs, ts)) ̸= eventID:
return false.

{︂
Nodes must report valid events
(cf. Definition 5, 3.); 𝛼2.

if (⊥,⊥,⊥,⊥,⊥,⊥,⊥) /∈ events:
return false.

{︀
Ensure legitimate root constructions (cf. Definition 5, 4.); 𝛼2.

if ∃(_, _,⊥,⊥, _, _, _) ∈ events s.t.
(_, _,⊥,⊥, _, _, _) ̸= (⊥,⊥,⊥,⊥,⊥,⊥,⊥):

return false.
{︀

Ensure legitimate root construction; 𝛼2.
if ∃(pid , eventID ,⊥,⊥, _, _, _), (pid , eventID ′,⊥,⊥, _, _, _) s.t.

eventID ̸= eventID ′:
return false.

{︀
Ensure legitimate root construction; 𝛼2.

return true.

function sign(msg) :
{︀

Sign message at ℱcert.
send (Sign,msg) to (pidcur, (pidcur, sidcur,𝒫H

node : node),ℱcert : signer);
wait for (Signature, 𝜎).
return 𝜎.

function verifySig(pid ,msg, 𝜎) :
{︀

Verify signature at ℱcert.
send (Verify,msg, 𝜎) to (pidcur, (pid , sidcur,𝒫H

node : node),ℱcert : verifier);
wait for (VerResult, result).
return result .

function hash(msg) :
{︀

Generate “hash” at ℱro.
send (Hash,msg) to (pidcur, sidcur,ℱro : randomOracle);
wait for (Hash, h).
return h .

Figure 3.7: The model of a Hashgraph node 𝒫H
node (Part 5).

26



3.2 An iUC Model for Hashgraph

Description of the protocol ℱcert = (signer, verifier):

Participating roles: {signer, verifier}
Corruption model: incorruptible
Protocol parameters:

– p ∈ Z[𝑥].
{︂

Polynomial that bounds the runtime of the algorithms provided
by the adversary.

– 𝜂 ∈ N.
{︀

The security parameter.

– sig.
{︀

Signing algorithm, outputs a signature 𝜎 on input (msg, sk).

– ver.
{︀

Signature verifying algorithm, outputs verification result on input (msg, 𝜎, pk).
– gen.

{︀
Key generation algorithm, outputs (pk, sk) on input 1𝜂 .

Description of 𝑀signer,verifier:

Implemented role(s): {signer, verifier}
Internal state:

– (pk, sk) ∈ ({0, 1}* ∪ {⊥})2 = (⊥,⊥).
{︀

Key pair.
– pidowner ∈ {0, 1}* ∪ {⊥} = ⊥.

{︀
Party ID of the key owner.

– msglist ⊆ {0, 1}* = ∅.
{︀

Set of recorded messages.
– corrupted ∈ {true, false} = false.

{︀
Is signature key corrupted?

CheckID(pid , sid , role ):
Check if sid can be parsed as (pid ′, sid ′, role′):
If this check fails, output reject.
Otherwise, accept all entities with the same SID.

{︃A single instance manages all parties and roles in a
single session. The session ID models one signature
key pair belonging to party pid in a session sid .Corruption behavior:

– DetermineCorrStatus(pid , sid , role ):
return corrupted.

Initialization:
(pk, sk)

$← Gen(1𝜂).
{︀

Generate public/secret key pair.
(pid , sid , role)← parse sidcur.
pidowner← pid .

{︀
Assign key owner.

Main:

recv (Sign,msg) from I/O to (pidowner, _, signer):
{︂

Sign message; only pidowner is permited to
sign with its key.

𝜎 ← sig(p)(msg, sk).
msglist.add(msg).
reply (Signature, 𝜎).

{︀
Record msg for verification and return signature.

recv (Verify,msg, 𝜎) from I/O to (_, _, verifier):
𝑏← ver(p)(msg, 𝜎, pk).

{︀
Verify signature.

if 𝑏 = true ∧msg /∈ msglist ∧ corrupted = false:
reply (VerResult, false).

{︀
Prevent forgery.

else:
reply (VerResult, 𝑏).

{︀
Return verification result.

recv corruptSigKey from NET:
{︀

Allow network attacker to corrupt signature keys.
corrupted← true.
reply (corruptSigKey, ok).

Figure 3.8: The ideal signature functionality ℱcert (cf. [11]).

27



3 Security Model of Hashgraph

Description of the protocol ℱro = (randomOracle):

Participating roles: {randomOracle}
Corruption model: incorruptible
Protocol parameters:

– 𝜂 ∈ N.
{︀

The security parameter and length of the hash.

Description of 𝑀randomOracle:

Implemented role(s): {randomOracle}
Internal state:

– hashHistory ⊆ {0, 1}* × {0, 1}𝜂 = ∅.
{︀

The set of recorded value/hash pairs; initially ∅.
CheckID(pid , sid , role ):

Accept all messages with the same SID.
{︀

One random oracle is responsible for one session of hashgraph.
Main:

recv (Hash, 𝑥) from I/O or NET:
{︀

Requesting ℱro for “hashes”.
if ∃ℎ ∈ {0, 1}𝜂 s.t. (𝑥, ℎ) ∈ hashHistory:

{︀
Extract existing value from hashHistory.

reply ℎ.
else:

ℎ
$← {0, 1}𝜂

{︀
Generate “hash value” uniformly at random.

hashHistory← hashHistory.add((𝑥, ℎ))
{︀

Store generated key-value pair in hashHistory.
reply (Hash, ℎ).

Figure 3.9: The random oracle ℱro (cf. [7]).

Description of the ideal clock ℱclock = (clock):

Participating roles: {clock}
Corruption model: incorruptible

Description of 𝑀clock:

Implemented role(s): {clock}
Internal state:

– 𝜏 ∈ N = 0.
{︀

Current time in the ℱclock; initially 0.
CheckID(pid , sid , role ):

Accept all messages for the same SID.
Main:

recv UpdateRound from I/O or NET:
{︀

Triggering a clock update increases the time.
𝜏 ← 𝜏 + 1.

recv GetCurRound from I/O or NET:
{︀

Handling reads from the clock.
reply (GetCurRound, 𝜏).

Figure 3.10: The ideal clock functionality ℱclock.

28



3.2 An iUC Model for Hashgraph

Description of the protocol ℱH
init = (init):

Participating roles: {init}
Corruption model: incorruptible
Protocol parameters:

– nodes ⊆ {0, 1}*.
{︀

The identities of the Hashgraph nodes in all sessions of hasgraph instances.

Description of 𝑀init:

Implemented role(s): {init}
Subroutines: 𝒫H

node : node

CheckID(pid , sid , role ):
Accept all entities with the same SID.

{︂
By this construction, we allow multiple Hashgraph in-
stances to run parallel in one run of the system.

Initialization:
for all pid ∈ nodes do:

init(pid , sidcur,𝒫H
node : node)a.

⎧⎪⎨⎪⎩
Initialize all nodes in the current Hashgraph instance; such
instance is uniquely identified by the session ID of sidcur, i.e.,
all nodes have the same SID sidcur. Notice that 𝒫H

client, ℱcert,
ℱro, and ℱclock do not have to be initialized.Main: {︀

Do nothing after initialization of the Hashgraph instance.

ainit is a macro in iUC to initialize an entity.

Figure 3.11: The ideal initialization functionality ℱH
init.

29



3 Security Model of Hashgraph

Description of ℱH
judge = (judge):

Participating roles: {judge}
Corruption model: incorruptible
Protocol parameters:

– 𝜂 ∈ N.
{︀

The security parameter.
– nodes ⊆ {0, 1}*.

{︀
The identities of the Hashgraph nodes.

– coinRound ∈ N.
{︀

After coinRound rounds in Hashgraph, there is a “coin round” during virtual voting.

Description of 𝑀judge:

Implemented role(s): {judge}
Subroutines: ℱsig : verifier,ℱro : randomOracle

Internal state:
– W ⊆ N× nodes× ((nodes× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* × N× {0, 1}*) ∪ ({⊥}7)) = ∅.{︂

The collected evidences are of form (ctr , pid , 𝐺), where 𝐺 is a hashgraph with entries as
in 𝒫H

node (cf. events in Figure 3.3). Initially ∅, since there is no evidence at the beginning.

– states : nodes→ N× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}*.{︂
Mapping from nodes to states provided by these nodes; initially ∅ for all entries. A state is a
list of transaction with entries of form (counter , txId , , eventID , tx); cf. msglist in 𝒫H

node.
– evidenceCounter ∈ N = 0.

{︀
Counter for internally sorting evidence data; initially 0.

– msglistmax ⊆ N× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* = ∅.
{︂

A list of transactions: entries are of form
(counter , txId , eventID , tx); initially ∅.

– verdictsa ⊆ {0, 1}* = ∅.
{︀

Set of recorded verdicts; initially ∅.

– forkingNodes ⊆ nodes = ∅.
{︀

Set of all node participants that created a fork.

– consistencyVerdicts ⊆ nodes = ∅.
{︂

Set of all node participants that violated self or node-consistency
(cf. 𝛾1, 𝛾2 in Definition 11).

– events ⊆ (nodes× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* × N× {0, 1}*) ∪ ({⊥}7) = ∅.{︂
Set of events of form (pid , eventID , selfParent , otherParent , transactions, ts, 𝜎) –
solely used for calculating purposes in divideRounds, decideFame, and findOrder.

– msglist ⊆ N ∪ {𝜀} × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* = ∅.
{︂

A list of transactions: entries are of form (counter , txId ,
eventID , tx) – only used for internal computations.

– roundReceivedEvents : N→ (nodes× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* × N× {0, 1}*) ∪ ({⊥}7).{︂
Stores all events with a round received number in consecutive order, starting
at index 0. Also used for sorting events; see function findOrder.

– roundCreated : {0, 1}𝜂 ∪ {⊥} → N.
{︂

The round created of an event (identified via eventID);
initially 0 for all entries.

– roundReceived : {0, 1}𝜂 ∪ {⊥} → N.
{︂

The round received of an event (identified via eventID); ini-
tially 0 for all entries.

– tmpVotes : {0, 1}𝜂 → {?, true, false}.
{︀

Used to store votes during virtual voting; intially ? for all entries.

– eventConsensusNumber : {0, 1}𝜂 ∪ {⊥} → N ∪ {𝜀}.
{︂

Stores the total order of events from events; intially
𝜀 for all entries.

– isWitness : {0, 1}𝜂 ∪ {⊥} → {?, true, false}.
{︀

Stores whether an event is a witness; intially ? for all entries.

– isFamous : {0, 1}𝜂 ∪ {⊥} → {?, true, false}.
{︀

Stores whether an event is famous; intially ? for all entries.
CheckID(pid , sid , role ):

Accept all messages with the same SID.
MessagePreprocessing:

Description of 𝑀judge continues in Figure 3.13.

aMultiple verdicts of ℱjudge should be interpreted as “and conected”, e.g., for verdicts = {dis(𝑝𝑖𝑑1), dis(pid2)}, ℱjudge states
(implicitly) the verdict dis(pid1) ∧ dis(pid2).

Figure 3.12: The judging functionality ℱH
judge for the Hashgraph model (Part 1).

30



3.2 An iUC Model for Hashgraph

Description of 𝑀judge (cont.):

MessagePreprocessing:

recv msg from I/O:
if ∄pid ∈ nodes s.t. dis(pid) /∈ verdicts:

abort.
{︀

If there exists no honest party, abord.
Main:

recv GetVerdicts from I/O or NET:
{︀

Current verdict can be requested externally.
reply (GetVerdicts, verdicts).

recv (EvidenceNode, events) from I/O s.t. pidcalla ∈ nodes:
{︀

Process evidence from nodes.
for all 𝐸 ∈ events do:

if ((pid , eventID , selfPar , otherPar , txs, ts, 𝜎)← 𝐸) can not be parsed s.t.
1. pid ∈ nodes, txs, 𝜎 ∈ {0, 1}*, ts ∈ N
2. eventID , selfPar , otherPar ∈ {0, 1}𝜂 :

if 𝐸 ̸= (⊥,⊥,⊥,⊥,⊥,⊥,⊥):
verdicts.add(dis(pidcall)).

{︂
Nodes have to report well-formed evidence (cf.
Definition 6, Well-Formed Data (i)); 𝛼1.break.

W.add(evidenceCounter, pidcall, events).
{︀

Record new (witness) data.
evidenceCounter← evidenceCounter + 1.

for all (pid , eventID , selfPar , otherPar , txs, ts, 𝜎) ∈ events ∖ {(⊥,⊥,⊥,⊥,⊥,⊥,⊥)} do:
if ¬(∃(pid , eventID ′, _, _, _, _, _) ∈ events s.t.

selfPar = eventID ′):
verdicts.add(dis(pidcall)).

{︃All events, except for the genesis event, have to suffice a
complete self-ancestor construction (cf. Definition 5, 1.(i));
𝛼2.

if ¬(∃(pid ′, eventID ′, _, _, _, _, _)) ∈ events s.t.
otherPar = eventID ′ ∧ pid ′ ̸= pid):

verdicts.add(dis(pidcall)).

{︃All events, except for the genesis event, must satisfy a
complete other-ancestor construction (cf. Definition 5,
1.(ii)); 𝛼2.

if verifySig(pid , (selfPar , otherPar , txs, ts), 𝜎) = false:
verdicts.add(dis(pidcall)).

{︂
Nodes need to report events with valid signa-
tures (cf. Definition 5, 2.); 𝛼2.

if hash((selfPar , otherPar , txs, ts)) ̸= eventID:
verdicts.add(dis(pidcall)).

{︂
Nodes must report valid events
(cf. Definition 5, 3.); 𝛼2.

if (⊥,⊥,⊥,⊥,⊥,⊥,⊥) /∈ events:
verdicts.add(dis(pidcall)).

{︀
Ensure legitimate root constructions (cf. Definition 5, 4.); 𝛼2.

if ∃(_, _,⊥,⊥, _, _, _) ∈ events s.t.
(_, _,⊥,⊥, _, _, _) ̸= (⊥,⊥,⊥,⊥,⊥,⊥,⊥):

verdicts.add(dis(pidcall)).
{︀

Ensure legitimate root construction; 𝛼2.
if ∃(pid , eventID ,⊥,⊥, _, _, _), (pid , eventID ′,⊥,⊥, _, _, _) s.t.

eventID ̸= eventID ′:
verdicts.add(dis(pidcall)).

{︀
Ensure legitimate root construction; 𝛼2.

EW ←
⋃︀

(𝑖,pid,𝐺)∈W 𝐺.
{︂

Ensure fork-freeness for all participants
pid ∈ nodes (cf. Definition 8); 𝛽1.

for (pid , eventID1, selfPar1, otherPar1, txs1, ts1, 𝜎1) ∈ EW do:
for (pid , eventID2, selfPar2, otherPar2, txs2, ts2, 𝜎2) ∈ EW do:

if eventID1 ̸= eventID2 ∧ selfPar1 = selfPar2:
if verifySig(pid , (selfPar1, otherPar1, txs1, ts1), 𝜎1) = true

∧ verifySig(pid , (selfPar2, otherPar2, txs2, ts2), 𝜎2) = true :
forkingNodes.add(pid).
verdicts.add(dis(pid)).

{︂
Ensure fork-freeness for all participants pid ∈
nodes (cf. Definition 8); 𝛽1.

for all ctr = 0, . . . , evidenceCounter − 1 do:
if (ctr , pidcall, 𝐺′) ∈W:

if 𝐺′ ̸⊂ events:
verdicts.add(dis(pidcall)).

{︃Each submitted graph 𝐺 by pidcall has to be a proper superset of
each prviously submitted graph 𝐺′ by pidcall (cf. Definition 6, valid
evidence); 𝛼3.Description of 𝑀judge continues in Figure 3.14.

aBy definition of AllowAdvMessage in 𝑀node, it always applies pidcall = pidcur

Figure 3.13: The judging functionality ℱH
judge for the Hashgraph model (Part 2).

31



3 Security Model of Hashgraph

Description of 𝑀judge (cont.):

Main:

recv (EvidenceClient, (pidsend ,msglist), 𝜎) from I/O s.t. pidsend ∈ nodes:
{︀

Process evidence from clients.
sigIsValid ← verifySig(pidsend , (pidsend ,msglist), 𝜎).
if sigIsValid = false:

break.
{︀

Ensure that only valid evidence is processed.
if msglist ⊈ N× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}*:

verdicts.add(dis(pidsend ))

{︂
The message list of clients must be well-formed (cf. Defini-
tion 6, Well-Formed Data (ii)); 𝛼1.break.

for all (ctr , txId , eventID ,msg) ∈ msglist do:
if txId ̸= hash(msg):

verdicts.add(dis(pidsend )).
{︂

Nodes are obligated to compute valid hashes for all messages they
include in their msglist (cf. Definition 6, Valid Msglist (i)); 𝛼4.break.

for 𝑖 = 1, . . . , |msglist | do:
if (𝑖, _, _, _) /∈ msglist:

verdicts.add(dis(pidsend )).

{︃If the reported msglist from pid is no consecutive sequence of
transaction, starting at index 1 and ending at index |msglist |,
decline update (cf. Definition 6, Valid Msglist (ii)); 𝛼4.break.

if pidsend /∈ consistencyVerdicts ∧ |forkingNodes| < 1
3

:
if states[pidsend ] ⊊ msglist:

{︀
Messages with “older” state information are irgnored.

states[pidsend ]← msglist .
{︀

Record update for pidsend .
if msglistmax ⊊ states[pidsend ]:

msglistmax ← states[pidsend ].
{︂

Record that msglist is now the longest known
message list.

if msglist ⊈ states[pidsend ] ∧ states[pidsend ] ⊈ msglist:
verdicts.add(dis(pidsend )).

{︂
Node pidsend violated self-consistency
(cf. Definition 11); 𝛾1.

consistencyVerdicts.add(pidsend ).
msglistmax ←

⋃︀
pid∈nodes∖consistencyVerdicts states[pid ].

{︂
Recalculate longest state of nodes that have not
yet been blamed for consistency violations.

if states[pidsend ] ⊈ msglistmax:
{︀

Only true if msglist2 and msglistmax do not share a prefix.

generateReport().
{︂

Some participant(s) must have misbehaved w.r.t. node-consistency.
Let us find the culprit in generateReport.

Procedures and Functions:
function generateReport() :

{︂
Recalculate the state of all nodes with their latest sub-
mitted hashgraphs.

for all (ctr , pid ,G) ∈W s.t. dis(pid) /∈ verdicts do:
if ∄(ctr ′, pid , 𝐺′) s.t. ctr ′ > ctr :

{︂
Calculate pid’s state on the last hashgraph (set of
events) which pid reported (cf. Definition 6, 𝛼3).

events← G; msglist← ∅.
roundCreated← 0 for all entries.
roundReceived← 0 for all entries.

{︃Reset all necessary internal variables; note,
not all variables, relevant to the consensus
algorithm, need to be reset.isWitness←? for all entries.

for all (_, eventID , _, _, txs, _, _) ∈ events do:
for all msg ∈ txs do:

msglist.add(𝜀, hash(msg), eventID ,msg).
{︂

Build message list of transactions from lat-
est submitted hashgraph.

divideRounds().
decideFame().

{︂
Calculate total order of entries in msglist; the calculation is
entirely identical to the calculations nodes perform internally.

findOrder().
if states[pid ] ⊈ msglist:

verdicts.add(dis(pid)).

{︃The latest message list of pid is not derivable from pid’s
latest reported internal state 𝐺 – thus pid is responsible
for the node-consistency violation (cf. Definition 11); 𝛾2.consistencyVerdicts.add(pidsend ).

msglistmax ←
⋃︀

pid∈nodes∖consistencyVerdicts states[pid ].
{︂

Recalculate longest state of nodes that have not
yet been blamed for consistency violations.

function verifySig(pid ,msg, 𝜎) :
{︀

Verify signature at ℱcert.
send (Verify,msg, 𝜎) to (pidcur, (pid , sidcur,𝒫H

node : node),ℱcert : verifier);
wait for (VerResult, result).
return result .

function hash(msg) :
{︀

Generate “hash” at ℱro.
send (Hash,msg) to (pidcur, sidcur,ℱro : randomOracle);
wait for (Hash, h).
return h .

Description of 𝑀judge continues in Figure 3.15.

Figure 3.14: The judging functionality ℱH
judge for the Hashgraph model (Part 3).

32



3.2 An iUC Model for Hashgraph

Description of 𝑀judge (cont.):

Procedures and Functions:
function divideRounds() :

{︀
Assign rounds to events and mark witnesses.

for all 𝐸 ∈ events, in topological order a do:
(_, eventID , selfPar , otherPar , _, _, _)← parse 𝐸.
𝑟 ← 1.
if eventID ̸= ⊥:

𝑟 ← max{roundCreated[selfPar ], roundCreated[otherPar ]}.
{︂

Determine round created for
events 𝐸 ̸= genesis event.

𝒮 ← {(_, eventID ′, _, _, _, _, _) ∈ events | roundCreated[eventID ′] = 𝑟}.
𝒮 ← {𝐸′ ∈ 𝒮 | StronglySees(𝐸,𝐸′) = true}.
if |𝒮| > 2

3
|nodes|:

roundCreated[eventID ]← 𝑟 + 1.
else:

roundCreated[eventID ]← 𝑟.

if (selfPar = ⊥) ∨ (roundCreated[eventID ] > roundCreated[selfPar ]):{︂
If 𝐸 is the genesis event, or it has the genesis event as self-parent, or
it is the first event of pid within a new round, 𝐸 is a witness.isWitness[eventID ]← true.

function decideFame() :
{︀

Decide which events are famous (cf. Figure 2.4).
for all 𝐸𝑟 ∈ events, in order from earlier rounds to later do:

(_, eventID𝑟, _, _, _, _, _)← parse 𝐸𝑟
{︀
𝐸𝑟 is the candidate, i.e., the witness whom is voted for next.

tmpVotes← ? for all entries.
{︀

Initially, all votes for 𝐸𝑟 are undecided.
isFamous[eventID𝑟]←?.
if isWitness[eventID𝑟] = true:

{︀
Only witnesses take part in the election.

𝑟 ← roundCreated[eventID𝑟].
for all 𝐸𝑟+1 ∈ WitnessesOfRound(𝑟 + 1) do:

{︀
First round of the election.

(_, eventID𝑟+1, _, _, _, _, _)← parse 𝐸𝑟+1.
if Seesb(𝐸𝑟+1, 𝐸𝑟) = true:

tmpVotes[eventID𝑟+1]← true.

{︂
All witnesses in the next round (w.r.t. 𝐸𝑟’s
round 𝑟) vote for 𝐸𝑟 .else:

tmpVotes[eventID𝑟+1]← false.

for all 𝑖 = 1, . . . s.t. (𝒲𝑟+𝑖+1 ← WitnessesOfRound(𝑟 + 𝑖+ 1)) ̸= ∅ do:
{︀

Further rounds of election.
for all 𝐸𝑟+𝑖+1 ∈ 𝒲𝑟+𝑖+1 do:

(_, eventID𝑟+𝑖+1, _, _, _, _, 𝜎𝑟+𝑖+1)← parse 𝐸𝑟+𝑖+1.
𝒲 ← {𝐸𝑟+𝑖 ∈ WitnessesOfRound(𝑟 + 𝑖) | StronglySeesc(𝐸𝑟+𝑖+1, 𝐸𝑟+𝑖) = true}.
𝑦 ← |{(_, eventID𝑟+𝑖, _, _, _, _, _) ∈ 𝒲 | tmpVotes[eventID𝑟+𝑖] = true}|.
𝑛← |{(_, eventID𝑟+𝑖, _, _, _, _, _) ∈ 𝒲 | tmpVotes[eventID𝑟+𝑖] = false}|.{︂

All witnesses in the previous round (w.r.t. 𝐸𝑟+𝑖+1’s round
𝑟 + 𝑖+ 1) vote for 𝐸𝑟 .if 𝑦 ≥ |𝒲|

2
|:

vote ← true.
else:

{︂
𝐸𝑟+𝑖+1’s vote, whether 𝐸𝑟 is famous, is a majority
voting among the witnesses it strongly sees.

vote ← false.
if 𝑖 mod coinRound > 0:

{︀
This is a normal round.

tmpVotes[eventID𝑟+𝑖+1]← vote.
{︀
𝐸𝑟+𝑖+1 votes in any case according to majority decision.

if 𝑦 > 2
3
|nodes| ∨ 𝑛 > 2

3
|nodes|:

isFamous[eventID𝑟]← vote.
{︂

If a supermajority is achieved during voting (i.e.,
2
3
|nodes|), 𝐸𝑟+𝑖+1 votes whether 𝐸𝑟 is famous.

break out of 𝑖-loop.
else:

{︀
Begin coin round.

if 𝑦 > 2
3
|nodes| ∨ 𝑛 > 2

3
|nodes|:

tmpVotes[eventID𝑟+𝑖+1]← vote.
{︀

If supermajority is reached, 𝐸𝑟+𝑖+1 votes.
else:

if last bit of 𝜎𝑟+𝑖+1 is 1:
{︀

Otherwise, 𝐸𝑟+𝑖+1 “flips a coin”.
tmpVotes[eventID𝑟+𝑖+1]← true.

else:
tmpVotes[eventID𝑟+𝑖+1]← false.

Description of 𝑀judge continues in Figure 3.16.

aGo over events in topological order, i.e., events are always “visited” after their parents.
bReturns true or false whether the first event (first argument) “can see” the second event (second argument).
cThe function StronglySees returns true or false whether the first event “can strongly see” the second event.

Figure 3.15: The judging functionality ℱH
judge for the Hashgraph model (Part 4).

33



3 Security Model of Hashgraph

Description of 𝑀judge (cont.):

Procedures and Functions:
function findOrder() :

{︀
Establish total order of events and transactions (cf. Figure 2.5).

maxRoundCreated ← 1.
for all (_, eventID , _, _, _, _, _) ∈ events do:

maxRoundCreated ← max{maxRoundCreated , roundCreated[eventID ]}.
for all (𝐸1 ← (_, eventID1, _, _, _, _, _)) ∈ events do:

for all 𝑟 = 1, . . . ,maxRoundCreated do:
{︂

Check and calculate the round received num-
ber 𝑟 of 𝐸1, if it exists.if isRoundReceived(𝐸1, 𝑟):

roundReceived[eventID1]← 𝑟.
{︀

Round received number for 𝐸1 exists.

𝒮 ← ∅.
{︃Intuitively, 𝒮 contains events that

other nodes included with, or shortly
after, when they learned of 𝐸1.for all (𝐸2 ← (_, eventID2, selfPar2, _, _, _, _)) ∈ events do:

𝐸2-selfPar ← (_, eventID , _, _, _, _, _) ∈ events s.t. eventID = selfPar2.
if ∃(𝐸3 ← (_, eventID3, _, _, _, _, _)) ∈ events s.t.

IsSelfAncestorOf(𝐸2, 𝐸3) = true

∧ roundCreated[eventID3] = 𝑟
∧ isFamous[eventID3] = truea

∧ IsUniqueFamousWitness(𝐸3, 𝑟) = true

∧ IsAncestorOf(𝐸1, 𝐸2) = true

∧ IsAncestorOf(𝐸1, 𝐸2-selfPar) = false :
𝒮.add(𝐸2).

eventConsensusNumber[eventID1]← GetMedianWrtTimestamp(𝒮).
counter ← 0.
roundReceivedEvents←? for all entries.

{︂
Function that maps natural numbers to events; used
for sorting events.for all (𝐸 ← (_, eventID , _, _, _, _, _)) ∈ events do:

if roundReceived[eventID ] > 0:
{︀

Check if 𝐸 has a round received number.

roundReceivedEvents[counter ]← 𝐸.
{︁Add all events with a round received number to
isRoundReceived.

counter ← counter + 1. {︀
Sort all events with a round received number as in Figure 2.5.

roundReceivedEvents← SortByRoundReceived(roundReceivedEvents).
roundReceivedEvents← SortTiesByEventConsensusNumber(roundReceivedEvents).
roundReceivedEvents← SortTiesBySignatureLexicographically(roundReceivedEvents).{︀

Now, all events are sorted.
for all (entry ← (𝑐𝑡𝑟, txId , eventID ,msg)) ∈ msglist s.t. ctr ̸= 𝜀 do:

msglist.remove(entry).

{︃Removing sorted messages is not nec-
essary, but it simplifies the proof for
𝛼4 (ii).msglist.add((𝜀, txId , eventID ,msg)).

entryCounter ← 1.
for 𝑖 = 0, . . . s.t. roundReceivedEvents[𝑖] ̸= ? do:

{︀
Iterate over all sorted events in ascending order.

(_, _, _, _, txs, _, _)← roundReceivedEvents[𝑖].
𝑀 ← {(𝜀, txId , eventID ,msg) ∈ msglist | msg ∈ txs}.

{︀
Set of all messages of the 𝑖-th event.

for all (𝜀, txId , eventID ,msg) ∈𝑀 , in ascending order w.r.t. txId do:
msglist.add((entryCounter , txId , eventID ,msg)).

{︂
Add an ordered entry to the local
message list.

msglist.remove((𝜀, txId , eventID ,msg)).
{︀

Remove the corresponding unordered entry.
entryCounter ← entryCounter + 1.

function isRoundReceived(𝐸1, 𝑟) :
{︂

Checks if 𝑟 fulfills all conditions for being a round received
number of 𝐸1 except for being minimal.for all (𝐸2 ← (_, eventID2, _, _, _, _, _)) ∈ events do:

if roundCreated[eventID2] ≤ 𝑟
∧ isWitness[eventID2] = true

∧ isFamous[eventID2] = ? :
return false.

{︁The fame for all witnesses with a round created in or before
round 𝑟 must be decided.for all 𝐸3 ∈ WitnessesOfRound(𝑟) do:

(_, eventID3, _, _, _, _, _)← 𝐸3.
if IsAncestorOf(𝐸1, 𝐸3) = false

∧ IsUniqueFamousWitness(eventID3, 𝑟) :
return false.

{︁
𝐸1 must be an ancestor of all round 𝑟 unique famous
witnesses.

return true.
{︀

Return true if all checks succeed.

aIn the absence of forking, each famous witness is also a unique famous witness (cf. [2]).

Figure 3.16: The judging functionality ℱH
judge for the Hashgraph model (Part 5).

34



4 Accountability

Accountability is a security concept that does not prevent (directly) certain security goals from
being violated. However, it does require that all involved misbehaving participants can be uniquely
identified. This is achieved by means of a judging procedure or judge, which is a algorithm that
outputs verdicts for misbehaving participants. By this, participants are incentivized to follow
protocol rules.

For practical applications, it is usually necessary to indentify at least one individual participants for
a misbehavior. If for instance, only a group of participants can be held accountable, and it is known
that not all participants in this group must have misbehaved, then each party will deny responsibility,
rendering this “weaker” accountability notion unsuitable for practical purposes. Therefore, at
least one individual participant must be held accountable. The authors in [10, 14] refer to this as
individually accountability. All of our proofs in Chapter 5 of accountability w.r.t. a security goal
will fulfill this notion.

4.1 Formal Definition of Accountability

In the following, we aim to formalize the concepts and objectives of accountability. For this
work, we apply the formal definition of accountability in [10], which adapts and enhances the
accountability framework from [14] to (i) permit the judge to render a verdict at any point during a
run and to (ii) allow dynamic corruption (in addition, to only static corruption).

Let Q be a system of machine instances (as in the iUC model) that includes a judge machine instace
𝐽 , and let Σ denote the set of all participants in Q. In the iUC framework, participants 𝑝 ∈ Σ are
usually uniquely identified by party IDs (PIDs), and 𝑝 typically belongs to exactly one instance of a
machine in a run of Q.

During a run of the system Q, we expect 𝐽 to render verdicts if a participent misbehaved. Formally,
a verdict of 𝐽 is a boolean formula 𝜓 built from atomic propositions of the form dis(𝑝) for 𝑝 ∈ Σ,
which indicates (a allegedly) misbehavior of 𝑝, i.e., 𝑝 behaved dishonestly by violating prescribed
protocol rules. Consider, for instance, the verdict dis(𝑝1) ∨ dis(𝑝2) by 𝐽 ; this states the judge’s
conviction that at least one of the participants 𝑝1 and 𝑝2 misconducted. Analogously, if 𝐽 renders
a verdict dis(𝑝1) ∨ dis(𝑝2), she claims that both 𝑝1 and 𝑝2 misbehaved. We denote the set of all
verdicts by 𝒱 . In a run of Q, the judge 𝐽 can state multiple verdicts 𝜓1, . . . , 𝜓𝑘 ∈ 𝒱 , which is
semantically equivalent to 𝐽 claiming the verdict 𝜓1 ∧ . . . ∧ 𝜓𝑘.

35



4 Accountability

Since a verdict is a boolean formula, it can be evaluated to true or false using propositional logic. Let
𝜔 be a run of Q with ⌊𝜔⌋ denoting some point in this run. For a participant 𝑝 ∈ Σ, the proposition
dis(𝑝) is set to true iff 𝑝 is corrupted at point ⌊𝜔⌋, and set to false otherwise1. Formally, we will
write ⌊𝜔⌋ |= 𝜓 iff the verdict 𝜓 is true at ⌊𝜔⌋; otherwise, we write ⌊𝜔⌋ ̸|= 𝜓.

In order to formalize and precisely capture the intended level of accountability, [14] introduces
the notion of security properties and accountability constraints: A security property (or property)
𝛼 of a protocol Q is a subset of all runs of Q. Intuitively, 𝛼 contains all runs of 𝑄 in which
some predefined (security) goal is not satisfied as a consequence of some misbehaving protocol
participant(s). By means of a property 𝛼 of Q, we define an accountability constraint 𝐶 of a
protocol Q to be a tuple (𝛼,𝜓1, . . . , 𝜓𝑘), written (𝛼⇒ 𝜓1 | · · · | 𝜓𝑘), with one or more verdicts
𝜓1, . . . , 𝜓 ∈ 𝒱 . Intuitively, 𝐶 specifies a set of minimal verdicts 𝜓1, . . . , 𝜓𝑘, wherein at least one
of these verdicts are assumed to be rendered by 𝐽 if some security property is violated (i.e., the run
of the protocol is in 𝛼); however, 𝐽 is free to state stronger verdicts that logically imply at least one
of the minimal verdicts of 𝐶 (in the sense of propositional logic). We say, for a run 𝜔 of Q, that 𝐽
ensures 𝐶 in 𝜔 if either 𝜔 /∈ 𝛼 or at some point in the run of 𝜔 the judge renders a verdict 𝜓 that
implies one of 𝜓1, . . . , 𝜓𝑘.

Example 2. We illustrate the notion of accountability constraints in the following examples, in
which we consider 𝑛 hashgraph nodes pid 𝑖 managed by different parties that are supposed to be
blamed by 𝐽 for any misbehavior defined by 𝛼:

𝐶1 := (𝛼⇒ dis(pid1) | · · · | dis(pid𝑛)) (4.1)
𝐶2 := (𝛼⇒ dis(pid1) ∨ · · · ∨ dis(pid𝑛)). (4.2)

In this work, we are primarily interested in assuring consistency for hashgraph; thus, the property
𝛼 will later contain all runs of hashgraph where consistency is violated. Constraint 𝐶H

1 requires
that if 𝛼 (e.g., consistency) is violated, then at least one node pid 𝑖 can be held accountable
by 𝐽 in this run, i.e., 𝐽 ensures 𝐶H

1 in a run 𝜔 ∈ 𝛼 by stating dis(pid 𝑖) or, more generally,
dis(pid 𝑖)

⋀︀
𝑗∈{1,...,𝑛},𝑗 ̸=𝑖 dis(pid 𝑗) if multiple parties violated 𝛼 (we stress that 𝐽 is not obliged to

render the more general verdict if multiple parties misbehaved; we merely require that at least one
party is rightfully blamed in a run). A verdict of the form dis(pid 𝑖)

⋁︀
𝑗∈{1,...,𝑛},𝑗 ̸=𝑖 dis(𝑝𝑖𝑑𝑗) by 𝐽

is not sufficient to ensure 𝐶H
1 , since no individual participant can be blamed; however, 𝐽 clearly

ensures the weaker constraint 𝐶H
2 .

As discussed in the before, in practice it is necessary to ensure individual accountability. Formally,
an accountability constraint (𝛼 ⇒ 𝜓1 | · · · | 𝜓𝑘) is said to achieve individual accountability if
for every 𝑖 ∈ {1, . . . , 𝑘} there exists a party 𝑝 ∈ Σ such that 𝜓𝑖 implies dis(𝑝). Therefore, each
minimal verdict 𝜓𝑖 determines at least one misbehaving party. In the example above, 𝐶H

1 certainly
provides individual accountability, but 𝐶H

2 does not.

A set Φ of accountability constraints for the protocol Q is called an accountability property of
Q. Grouping different accountability constraints allows more expressiveness in defining security
goals, but for our case study of hashgraph we will consider only a single constraint. Formally, we

1This enhances the definition in [14] by allowing dynamic corruption, i.e., corruption at arbitrary points in a run. Note
that once a party gets corrupted at some point in a run, we consider it as corrupted for the rest of the run.

36



4.1 Formal Definition of Accountability

will write Pr[Q(1𝜂) ↦→ ¬(𝐽 : Φ)] to denote the probability that the judge 𝐽 does not ensure 𝐶,
for some 𝐶 ∈ Φ, in a run of Q(1𝜂), in which the probability is taken over the random coins of
the run and 1𝜂 is the security parameter given to the machine instances. Moreover, we denote by
Pr[Q(1𝜂) ↦→ {(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}] the probability that 𝐽 states a verdict 𝜓 at some point ⌊𝜔⌋
in a run of Q(1𝜂) such that ⌊𝜔⌋ ̸|= 𝜓, i.e., 𝐽 renders a false verdict. Intuitively, we would like to
demand from 𝐽 to ensure all accountability constraints in Φ and never render false verdicts, except
for a negligible number of cases; this is captured in the subsequent definition:

Definition 2 (Accountability).
Let Q be a system of machine instances with participants Σ that includes a judge 𝐽 ∈ Σ, and let Φ
be an accountability property of Q. We say that 𝐽 ensures Φ-accountability for System Q (or Q is
Φ-accountable w.r.t. 𝐽) iff

(i) (fairness) Pr[Q(1𝜂) ↦→ {(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}] is negligible as a function in 𝜂2, and

(ii) (completeness) Pr[Q(1𝜂) ↦→ ¬(𝐽 : Φ)] is negligible as a function in 𝜂.

2A function 𝑓 : N→ [0, 1] is negligible if, for every 𝑐 > 0, there exists an 𝜂0 such that 𝑓(𝜂) < 1
𝜂𝑐 , for all 𝜂 > 𝜂0.

37





5 Security and Accountability of Hashgraph

In this chapter, we present our proofs for Hashgraphs’s consistency and accountability properties.
We begin with some general discussions about parameters, signatures, and hash collisions. It is
convenient to define some general basic correctness conditions that are enforced in a run of the
system in order to prove fork-freeness and consistency; we define these conditions in Section 5.1 and
prove that Hashgraph is accountable w.r.t. basic correctness. In Section 5.2 we show that Hashgraph
is accountable w.r.t. fork-freeness. Then, we present our proof of Hashgraph’s consistency in
Section 5.3 and show that Hashgraph is accountable w.r.t. consistency in Section 5.4. Lastly, we
have a closing discussion in Section 5.5.

In what follows, we always look at runs of the system {ℰ ,𝒜,𝒫H} for some environment ℰ and some
adversary𝒜 and require that the Hashgraph protocol 𝒫H has sound parameters. These requirements
are summarized in the next definition.

Definition 3 (Parameters for 𝒫H).
Let 𝜔 be a run of the system {ℰ ,𝒜,𝒫H} for some environment ℰ and some adversary𝒜, where 𝒫H

is the Hashgraph protocol as in Definition 1 with parameters
• 𝜂 ∈ N the security parameter,
• a finite set of hashgraph node identities nodes ⊆ {0, 1}*,
• the parameter coinRound ∈ N2 that specifies the coin round interval during virtual voting,
• a polynomial p ∈ Z[𝑥] that limits the runtime of externally provided algorithms,
• an EUF-CMA secure signature scheme Σ = (gen(1𝜂), sig, ver), where gen, sig, and ver run for

at most p(𝜂 + |𝑥|) steps on input 𝑥,

and where all internal subprotocols use the same parameters as 𝒫H.

Signatures. We first take a closer look at signatures and define what we understand under a
forged signature:

Definition 4 (Forged Signature).
Consider a run 𝜔 as in Definition 3. For pid ∈ nodes, the signature 𝜎 is a forgery of message msg
for pid if, at some point ⌊𝜔⌋,

verifySigpk(pid)(msg , 𝜎) = true

but pid never signed msg at ℱcert up to point ⌊𝜔⌋.

39



5 Security and Accountability of Hashgraph

Recall from Section 3.2.1 that the adversary cannot simple forge valid signatures of another honest
node pid (in session sid ) by calling the entity 𝑒 = (pid , (pid , sid ,𝒫H

node : node), signer) via
a corrupted node, due to the specification of AllowAdvMessage. Therefore, 𝒜 cannot forge
valid singatures for pid if its signing entity 𝑒 is uncorrupted; that is, 𝒜 has not send the message
corruptSigKey to 𝑒 on the network interface beforehand to corrupt the signing key of pid in
session sid .

In the following, we often have statements that are only valid because signatures cannot be forged.
We will (often) denote such statements at the end with (*).

Hashes. The foundation of all subsequent proofs is the fact that hashes can only be forged with
negligible probability:

Lemma 1 (Hash Collisions).
For a run 𝜔 as in Definition 3 holds true that 𝒜 can only find two 𝑥, 𝑥′ ⊆ {0, 1}* such that an
instance of ℱro returns for both 𝑥 and 𝑥′ the same hash with negligible probability in 𝜂.

Proof. By definition of ℱro, the random oracle outputs hashes with length 𝜂. Since the system runs
in polynomial time, the probability of finding a collision is negligible in 𝜂 [10]. ■

The above lemma is pivotal to ensure basic structural conditions on the hashgraph of honest nodes
(e.g. self-parent and other-parent of events should be uniquely indentifiable). In particular, this is
necessary to ensure that honest nodes have consistent hashgraphs (i.e., they share the same subgraph
of all events in common). This will be later discussed in Sections 5.3 and 5.4.

Similar to signatures, we often have statements that are generally true only if hash collisions cannot
be found. Since hash collision can be found with negligible probability, we will (often) mark such
(“mostly true”) statements with (⋆).

5.1 Accountability of Hashgraph w.r.t. Basic Correctness

Throughout this chapter we will consider only a single hashgraph instance. Since hashes and
signatures cannot be forged (except for negligible probability), one can conclude at the end of this
chapter that an honest participant cannot be unrightfully blamed (except for negligible probability)
due to interference of another hashgraph session.

Definition 5 (Basic Graph Correctness).
Let nodes be the set of Hashgraph node identities (as specified as a parameter for 𝒫H). Let 𝐺𝑖

be the local hashgraph of a node pid 𝑖 ∈ nodes. We say that hashgraph 𝐺𝑖 fulfills basic graph
correctness if all the below conditions are satisfied:

1. (complete parent-construction) For each event 𝐸 ∈ 𝐺𝑖, different to the genesis event, exist
events 𝐸′, 𝐸′′ ∈ 𝐺 such that
(i) (complete self-ancestor) pid = pid ′ and selfParent = eventID ′, and
(ii) (complete other-ancestor) pid ̸= pid ′′ and otherParent = eventID ′′.

40



5.1 Accountability of Hashgraph w.r.t. Basic Correctness

2. (signature validity) All events 𝐸 ∈ 𝐺𝑖, where 𝐸 is not the genesis event, have a valid signature,
i.e., the verification algorithm outputs

verifySigpk(pid)((selfParent , otherParent , transactions, ts), 𝜎) = true.

3. (hash validity) For all events 𝐸 ∈ 𝐺𝑖, where 𝐸 is not the genesis event applies

eventID = hash((selfParent , otherParent , transactions, ts)).

4. (unambigous root) In𝐺𝑖 exists exactly one event with indegree1 0, and for each node pid ∈ nodes
exists at most one event 𝐸′ such that selfParent ′ = ⊥, i.e., the genesis event is the selfParent
of 𝐸′.

5. (role compliance) For all 𝐸 ∈ 𝐺𝑖, where 𝐸 was signed by pid applies pid ∈ nodes, i.e., the
creator of 𝐸 is a node participant.

Definition 6 (Accountability w.r.t. Basic Corretness).
Consider a run 𝜔 as in Definition 3. Let 𝐽 be an instance of ℱH

judge and let nodes denote the set of
all Hashgraph node identities. Let the witness set W denote the set of all collected evidences, of
form (ctr , pid , 𝐺(pid)), by 𝐽 for all pid ∈ nodes until ⌊𝜔⌋; formally,

W ⊆ N× nodes× ((nodes× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}* × N× {0, 1}*) ∪ ({⊥}7)).

This set stores all reported hashgraphs, with well-formed data (see below), of pid with ctr depicting
the amount of hashgraphs that were previously submitted by any party to 𝐽 . We now define the
following three security properties of the system {ℰ ,𝒜,𝒫H}:

𝛼1 (Well-Formed Data). The security property𝛼1 includes all runs𝜔 in which any of the succeeding
condition is violated:

(i) There exists no event 𝐸 ∈ 𝐺(pid), different to the genesis event, which was reported to 𝐽 by
pid that is not of form (pid , eventID , selfParent , otherParent , transactions , ts , 𝜎) with
pid ∈ nodes, eventID , selfParent , otherParent ∈ {0, 1}𝜂, transactions, 𝜎 ∈ {0, 1}*,
and ts ∈ N.

(ii) No client submitted a state update ((pid ,msglist), 𝜎) to 𝐽 such that pid ∈ nodes and
verifySigpk(pid)(msglist , 𝜎) = true but msglist is not a subset of N × {0, 1}𝜂 ×
×{0, 1}𝜂 × {0, 1}*.

𝛼2 (Basic Graph Correctness). Let 𝜔 ∈ 𝛼2 if 𝜔 /∈ 𝛼1 and at some point during the run 𝜔 there
exists an entry (ctr , pid , 𝐺(pid)) ∈W, such that the hashgraph 𝐺 of pid violates any of the
basic graph correctness properties defined in Definition 5 (Therefore, 𝛼1 includes all runs in
which 𝜔 /∈ 𝛼1 and basic graph correctness was violated in a hashgraph that was submitted to
𝐽).

1In graph theory, indegree is the number of edges directed into a vertex in a directed graph. In terms of hashgraph, each
event has indegree 2 except for the genesis event (⊥,⊥,⊥,⊥,⊥,⊥,⊥), which has indegree 0.

41



5 Security and Accountability of Hashgraph

𝛼3 (Valid Evidence). We define 𝛼3 to include all runs 𝜔, where 𝜔 /∈ 𝛼1 ∪ 𝛼2 and a party
pid ∈ nodes submitted a hashgraph that violates the following condition: For each submitted
hashgraph 𝐺 from pid to 𝐽 applies 𝐺′ ⊊ 𝐺 for all entries (ctr , pid , 𝐺′) ∈ W (i.e., each
submitted hashgraph 𝐺 by pid is a proper superset of each previously submitted hashgraph 𝐺′
by pid .).

𝛼4 (Valid Msglist). Let msglist be the message list that was signed by pid ∈ nodes and submitted
to 𝐽 by a client with a valid signature. The security property 𝛼4 comprises all runs 𝜔 that are
not in

⋃︀3
𝑖=1 𝛼𝑖 and where at least one of the following conditions is violated:

(i) For each entry (𝑖, txId , eventID ,msg) ∈ msglist applies txId = hash(msg) (i.e., nodes
are obligated to compute valid hashes (i.e., transaction IDs) for all messages they include in
their msglist).

(ii) There exists exactly one entry (i , txId , eventID ,msg) ∈ msglist for all 𝑖 = 1, . . . , |msglist |
(i.e., the reported msglist from pid has to be a consecutive sequence with no duplicates or
gaps w.r.t. the first parameter 𝑖).

Lastly, we define with 𝛼 =
⋃︀4

𝑖=1 𝛼𝑖 the accountability constraint 𝐶H
1 as follows:

𝐶H
1 := (𝛼⇒ dis(pid1) | · · · | dis(pid𝑛)). (5.1)

As discussed in Example 2, this constraint ensures in a violation of 𝛼 that 𝐽 blames at least one
individual from the set nodes. Further, we set the accountability property Φ1 := {𝐶H

1 }.

We say 𝒫H with parameters as in Definition 3 is individually accountable w.r.t. basic correctness if
for all environments ℰ and adversaries 𝒜 the system {ℰ ,𝒜,𝒫H} is Φ1-accountable w.r.t. 𝐽 .

Lemma 2 (Hashgraph achieves accountability w.r.t. basic correctness).
Consider runs for the system {ℰ ,𝒜,𝒫H} with parameters for 𝒫H as in Definition 3 and let 𝐽 be an
instance of ℱH

judge. Then, it holds true that 𝒫H is individually accountable w.r.t. basic correctness.

Proof. Let 𝒫H be the Hashgraph protocol with parameters from the lemma above, and let ℰ
be an arbitrary environment and 𝒜 be an arbitrary adversary. Towards proving this lemma, we
have to show that 𝐽 ensures Φ1-accountability for the system Q = {ℰ ,𝒜,𝒫H}; we do this by
proving fairness and completeness independently. Before doing this, we first discuss some general
observations:

Handling of state updates in ℱH
judge with invalid signatures

In Figure 3.4 nodes sign their current state, the tuple (pid , currentState), with their own signature
key, i.e., nodes calculate the signature 𝜎 = signsk(pid)((pid , currentState)) before sending a
state update, (pid , currentState) together with the signature 𝜎, to NET (which may be received
as parameter ((pid send ,msglist), 𝜎) by a machine instance of 𝒫H

client (cf. Figure 3.2) or ℱH
judge

(cf. Figure 3.14). The signature ensures that only misbehaving nodes are blamed by 𝐽 (*): Upon
receiving a state update ((pid send ,msglist), 𝜎), 𝐽 first checks whether 𝜎 is indeed a valid signature
of the tuple. If this check fails, 𝐽 discards the state update, since 𝐽 cannot decide which party, if any,
misbehaved. There are multiple scenarios which can lead to this occurrence of invalid signatures:

42



5.1 Accountability of Hashgraph w.r.t. Basic Correctness

1. pid send is dishonest and included an invalid signature in its state update that was then reported
to 𝐽 by a dishonest client (By implementation of 𝒫H

client, honest clients only submit state
updates to an instance of ℱH

judge iff the signature contained in the state update is valid, i.e.,
verifySigpk(pidsend )

((pid send , currentState), 𝜎) evaluates to true).
2. pid send is honest but a dishonest client reported malformed evidence (e.g., an invalid signature

or message list) to 𝐽 such that verifySigpk(pidsend )
((pid send , currentState), 𝜎) = false.

This is not a complete enumeration of all possible scenarios (for instance, the attacker 𝒜 can
also modify a state update, since all communication between clients and nodes is via network
interfaces), however, both scenarios illustrate that pid can be both honest and dishonest. Thus, to
achieve fairness, 𝐽 does not state any verdicts for violations w.r.t. a message list from a state update
containing an invalid signature.

Verdicts of 𝐽 w.r.t. basic correctness
Notice that all verdicts of 𝐽 w.r.t. basic correctness (see Definition 6) are of form dis(pidcall),
dis(pid send), or dis(pid), where pidcall, pid send , and pid has to be party IDs included in the set
nodes. Clearly, these verdicts achieve individual accountability for the accountabillity constraint
𝐶H
1 .

Fairness. To prove fairness, one has to show that Pr[Q(1𝜂) ↦→ {(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}] is
negligible as a function in 𝜂. We do this by showing that 𝐽 outputs a verdict 𝜓 in 𝜔 which evaluates
to false at point ⌊𝜔⌋ (written ⌊𝜔⌋ ̸|= 𝜓) in at most negligible amount of runs 𝜔 ∈ 𝛼. Subsequently,
we show for each run in 𝛼𝑖, 𝑖 ∈ {1, 2, 3, 4}, that 𝐽 never renders a wrong verdict (except for
negligible amount of runs), and thus conclude that 𝐽 never outputs a false verdict w.r.t. 𝛼 (except
for a negligible amount of runs)2; this then infers fairness of 𝐽 . By definition, the judge 𝐽 checks
all properties 𝛼𝑖, for 𝑖 ∈ {1, . . . , 4}. So, to fulfill fairness, we have to show that honest nodes
never report hashgraphs to ℱH

judge and send state updates to NET that violate basic correctness
conditions.

𝛼1 (Well-Formed Data). We have to show that honest nodes always provide well-formed data,
their local hashgraph, to ℱH

judge. Further, message lists in state updates submitted by clients (which
they received from nodes via the network interface) must suffice a particular format.
(i) One can observe in Figure 3.4 honest nodes sending their internal hashgraph (the state variable

events) to ℱH
judge. Since the variable events already has the required format (cf. Figure 3.12),

no honest node will be blamed by 𝐽 .
(ii) Figure 3.4 illustrates the computations of an honest node, say pid , before sending a

state update to NET (and therefore possibly to 𝐽): pid extracts all entries of form
(counter , txId , eventID ,msg) ∈ N×{0, 1}𝜂 ×{0, 1}𝜂 ×{0, 1}* with counter ≠ 𝜀 from the
local state variable msglist and adds it to the local set currentState. Before nodes send their
current state to NET, nodes sign the tuple (pid , currentState) with their own signature key, i.e.,
nodes calculate the signature 𝜎 = signsk(pid)((pid , currentState)). Finally, pid sends the
state update, (pid , currentState) together with the signature 𝜎, to NET (which may be received
as parameter msglist by 𝐽 in Figure 3.14). Consequently, msglist = currentState is also a

2This holds true because negligible functions are closed under addition, i.e., for two negligible function 𝑓, 𝑔 : N→ [0, 1]
is also the function 𝑥 ↦→ 𝑓(𝑥) + 𝑔(𝑥) negligible.

43



5 Security and Accountability of Hashgraph

subset of N× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}*. In case of interference from a malicious client, the
signature of the state update is invalid, i.e. verifySigpk(pid)((pid , currentState), 𝜎) evaluates
to false (*). As mentioned above, 𝐽 discards all state updates with invalid signatures. In both
cases, 𝐽 outputs no verdicts.

𝛼2 (Basic Graph Correctness). Let W denote the set of all collected evidences by participants up
to point ⌊𝜔⌋, as in Definition 6. One can observe in Figure 3.13 𝐽 stating the verdicts dis(pidcall)
for the latest submitted hashgraph of pidcall for misbehavior defined in basic graph correctness,
Definition 5. Therefore, it suffices to show that honest nodes only submit hashgraphs that comply
with the conditions for basic graph correctness. We show this result with proof by induction:

Base case
For the base case, we observe in the implementation of 𝒫H

node that the local hashgraph of an honest
node is after initialization equal to {(⊥,⊥,⊥,⊥,⊥,⊥,⊥)}. This set clearly fulfills all conditions
for basic graph correctness.

Induction step
For the induction step, we assume the local hashgraph, the set events in 𝒫H

node, of an honest node
pid satisfies all conditions for basic graph correctness. Honest nodes only include new events
into their local hashgraph during a hashgraph sync, i.e., the process of one node sending a gossip
event together with its local hashgraph to another node. Therefore, we only need to consider the
circumstance where an honest node merges another hashgraph into its own. After the merging
however, a node creates a new event, containing newly submitted transactions, which also has
to satisfy basic graph correctness (particularly complete parent-construction). Upon receiving a
gossip event (more precisely the event ID of the gossiped event) gossipedEvent together with the
hashgraph events over the network interface, pid first does the same basic correctness checks
for events as 𝐽 does with the submitted hashgraphs of pid . In particular, 𝐽 checks if all events
contain valid signatures of valid nodes (cf. Definition 5 role compliance). If any condition in
this check is violated, pid does not merge the received hashgraph into its own and thus events
remains unchanged. If the previous check succeeds, pid performs some additional checks to
ensure gossipedEvent is indeed in the gossiped hashgraph events , the creator of gossipedEvent
is not pid itself, and gossipedEvent is the last event created by the initiator of the sync.3 If all
aforementioned checks succeed, pid merges the gossiped hashgraph events into his own hashgraph
(events). We denote this newly merged hashgraphs as events′, which clearly inherits the basic graph
correctness properties from events and events . Moreover, pid creates a new event (cf. eventIDnew

in Figure 3.4) with valid signature and hash, with the self-parent being the event ID of the last event
created by pid and the other-parent being the gossiped event. This newly created event ensures
all conditions for basic graph correctness – particularly complete parent-construction. Lastly, this
newly created event is added to the local hashgraph of pid . We conclude, events′ still satisfies basic
graph correctness (*⋆). This completes the induction step.

𝛼3 (Valid Evidence). We have to show for 𝛼3 that an honest node, say pid , reports hashgraphs to
𝐽 that are always proper supersets of all previously submitted hashgraphs by pid .

3This last property is not necessary in order to prove fairness for 𝐽 , but it is still a desirable property we enforce for
honest nodes.

44



5.1 Accountability of Hashgraph w.r.t. Basic Correctness

By definition of 𝒫H
node, honest nodes always create a new event (with event ID eventIDnew ), which

is added to the local hashgraph events, before reporting their current hashgraph to ℱH
judge at end of

a sync. Thus, honest nodes are never blamed by 𝐽 .

𝛼4 (Valid Msglist). It has to be shown that the message list extracted from a valid state update
((pid send ,msglist), 𝜎) (i) contains valid hashes (the transaction IDs) for all messages and (ii)
msglist is a consecutive sequence with no duplicates or gaps. As discussed before, 𝐽 discards
all state updates from clients where the signature of (pid send ,msglist) cannot be verified since 𝐽
cannot judge if pid send actually misbehaved. Therefore, it remains to prove that honest nodes obey
conditions (i) and (ii) before sending their state update to NET.

(i) One can observe in the implementation of𝒫H
node two occurrences where nodes add new messages

to their message list (and therefore compute the corresponding transaction IDs): First, nodes
may receive a new message msg on their network interface; then, nodes simply calculate the
hash txId for this message and add the entry (𝜀, txId , 𝜀,msg) to their message list. Secondly,
nodes can receive new events via a hashgraph sync. In this case, if nodes accept the sync, they
calculate the transaction IDs for all messages contained in newly received events and add a
new entry for each message to their message list. In both cases, we see that nodes compute the
hashes for new messages themself and do not rely on transaction IDs from third parties (e.g.,
other nodes or clients). Therefore, all hashes of messages in message lists from honest nodes
are always guaranteed to be valid.

(ii) We observe that honest nodes include in their message list for a state update (cf. currentState
in Figure 3.4) all entries (ctr , txId , eventID ,msg) ∈ msglist, where ctr ≠ 𝜀 (we call such
entries in what follows ordered entries). Consequently, it must be shown that at any time ordered
entries in msglist form a consecutive sequence with no duplicates w.r.t. ctr . By definition of
𝒫H
node, nodes add ordered entries only at the end of the function findOrder to their message

list. Before this occurs, all so far ordered entries (ctr , txId , eventID ,msg) ∈ msglist are
replaced with (unordered) entries (𝜀, txId , eventID ,msg). Thereafter, nodes iterate over all
(now) unordered entries (𝜀, txId , eventID ,msg) ∈ msglist, where the event with ID eventID
has been asigned a consensus position in the total order of events, and add the ordered entry
(𝑖, txId , eventID ,msg) to msglist. Thereby, 𝑖 = 1 at the beginning, and 𝑖 is increased by one
each time an entry is added to msglist. Clearly, the resulting message list is a consecutive
sequence of ordered entries with no gaps and duplicates.

We conclude, 𝐽 is fair in all but negligible amount of runs of the system Q.

Completeness. To prove completeness, we have to show that Pr[Q(1𝜂) ↦→ ¬(𝐽 : Φ1)] is
negligible as a function in 𝜂; that is, 𝐽 must ensure the accountability constraint 𝐶H

1 in all but a
negligible number of runs 𝜔 of the system {𝒫H,𝒜, ℰ} with parameters for 𝒫H as in Definition 3.
Particularly, if 𝜔 is contained within the security property 𝛼, 𝐽 has to state a verdict 𝜓 that implies
at least one of the verdicts dis(pid1), . . . , dis(pid𝑛) defined by 𝐶H

1 (cf. Example 2). As already
argued above, all verdicts of 𝐽 are of form

⋀︀
𝑖∈𝐼 dis(pid 𝑖), for ∅ ̸= 𝐼 ⊂ {1, . . . , 𝑛}; hence, 𝐽

achieves individual accountability because each verdict rendered by 𝐽 implies at minimum one
of the verdicts defined by the constraint 𝐶H

1 . In order to prove fairness, we already argued that by
definition of ℱH

judge, the judge 𝐽 checks all properties 𝛼𝑖 for 𝑖 ∈ {1, . . . , 4}, i.e., 𝐽 states a verdict
if any of the conditions for basic correctness is violated during a run 𝜔 ∈ 𝛼. This can be seen in
Figures 3.13 and 3.14.

45



5 Security and Accountability of Hashgraph

We conclude this lemma that for a run 𝜔 ∈ 𝛼 the judge 𝐽 never renders a wrong verdict for
𝜔 except for a negligible amount of runs, and 𝐽 always states a verdict for a violation of 𝛼.
Therefore, we have Pr[Q(1𝜂) ↦→ {(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}] is negligible as a function in 𝜂, and
Pr[Q(1𝜂) ↦→ ¬(𝐽 : Φ1)] = 0. This concludes the proof for this lemma. ■

5.2 Accountability of Hashgraph w.r.t. Fork-Freeness

Definition 7 (Fork-Freeness).
Consider a run 𝜔 as in Definition 3, where 𝜔 /∈ 𝛼. Let nodes be the set of Hashgraph node identities
(as specified as a parameter for 𝒫H), and assume 𝐽 is an instance of ℱH

judge. Let ⌊𝜔⌋ denote one
point somewhere in the run 𝜔, and let the witness set W denote the set of all collected evidences by
𝐽 of form (𝑖, pid , 𝐺) where 𝐺, submitted by pid , is the 𝑖-th hashgraph that was reported to 𝐽 by
any node prior to ⌊𝜔⌋ (see Definition 6). We define

EW :=
⋃︁

(𝑖,pid ,𝐺)∈W

𝐺

to be the set of all so far reported events by any node.

Fork-Freeness. We say pid ∈ nodes satisfies fork-freeness at point ⌊𝜔⌋ if for all pairs of events
𝐸1, 𝐸2 ∈ EW signed by pid it holds true that selfParent1 = selfParent2 implies eventID1 =
eventID2.

The system {ℰ ,𝒜,𝒫H} satisfies fork-freeness in the run 𝜔 if there is no pid ∈ nodes that violates
fork-freeness at some point during the run 𝜔.

Definition 8 (Accountability w.r.t. Fork-Freeness).
Consider a run 𝜔 as in Definition 3. Let nodes be the set of all Hashgraph node identities, and
assume 𝐽 is an instance of ℱH

judge. Let W denote the witness set (i.e., the set of all collected
evidences of nodes, see Definition 6).

𝛽1 (Fork-Freeness). This security property contains all runs, where 𝜔 /∈ 𝛼 and there exists a node
pid ∈ nodes such that pid does not satisfy fork-freeness at some point ⌊𝜔⌋.

We set 𝛽 = 𝛽1 ∪ 𝛼, and define the accountability constraint 𝐶H
2 as follows:

𝐶H
2 := (𝛽 ⇒ dis(pid1) | · · · | dis(pid𝑛)). (5.2)

This accountability constraint also ensures individually accountability. Finally, we set the
accountability property Φ2 := {𝐶H

2 }.

We call 𝒫H with parameters as in Definition 3 individually accountable w.r.t. fork-freeness if for all
environments ℰ and adversaries 𝒜 the system {ℰ ,𝒜,𝒫H} is Φ2-accountable w.r.t. 𝐽 .

Theorem 1 (Hashgraph achieves accountability w.r.t. fork-freeness).
Consider runs for the system {ℰ ,𝒜,𝒫H} with parameters for 𝒫H as in Definition 3 and let 𝐽 be an
instance of ℱH

judge. Then, it holds true that 𝒫H is individually accountable w.r.t. fork-freeness.

46



5.2 Accountability of Hashgraph w.r.t. Fork-Freeness

In what follows, we present our proof for Theorem 1, i.e., we demonstrate that Hashgraph does
achieve individual accountability w.r.t. fork-freeness for runs as in Definition 3.

Proof. Consider a run 𝜔 as in Definition 3, where ℰ is an arbitrary environment and 𝒜 is an
arbitrary adversary. Further, let Φ2 be the accountability constraint from Definition 8. We show
that the system Q = {𝒫H,𝒜, ℰ} in the run 𝜔 satisfies Φ2-accountability, i.e., {𝒫H,𝒜, ℰ} fulfills
both fairness and completeness.

Fairness. In order to prove fairness, we have to show that Pr[Q(1𝜂) ↦→ {(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}]
is negligible as a function in 𝜂. That is, we have to show that the judge 𝐽 renders verdicts 𝜓 that
evaluate to false at point ⌊𝜔⌋ (written ⌊𝜔⌋ ̸|= 𝜓) in at most negligible amount of runs of the system
{𝒫H,𝒜, ℰ} with parameters as in Definition 3. We have already shown that 𝐽 is fair for verdicts
w.r.t. basic correctness (𝛼), i.e., if 𝜔 /∈ 𝛼, 𝐽 will not render verdicts for honest nodes except for
negligible probability in 𝜂. Therefore, it is left to prove that 𝐽’s verdicts w.r.t. 𝛽1 are also fair:

First, one can observe in Figure 3.13 that 𝐽 does the exact same checks as specified in the
definition of fork-freeness before it outputs a verdict, blaming some participant: Initially, 𝐽
calculates EW, the set of all so far reported events by any node, then 𝐽 checks if there exists a
pair of two events 𝐸1, 𝐸2 ∈ EW created by pid for which applies selfParent1 = selfParent2
and eventID1 ̸= eventID2. Thereafter, 𝐽 ensures that the signatures 𝜎1, 𝜎2 for 𝐸1 and 𝐸2

are indeed valid, i.e., 𝐽 verifies that verifySigpk(pid)((selfParent 𝑖, otherParent 𝑖, txs 𝑖, ts 𝑖), 𝜎𝑖)
outputs true for 𝑖 ∈ {1, 2}. If this check also succeeds, 𝐽 states the verdict dis(pid) for node pid .
It remains to be shown that 𝑝𝑖𝑑 is indeed dishonest. Since 𝐽 verifies the signature of two forking
events 𝐸1, 𝐸2 created by pid , node pid must have created and signed both events (*). Thus, for 𝐽
to be fair, honest nodes must not create forked events. By definition of 𝒫H

node, nodes create new
events only when they receive and accept a sync from another node. Let 𝐸new be such a new event
created by pid (i.e., pid signed it) with self-parent being the last event that pid created before 𝐸new ,
or the genesis event in case 𝐸new is the first event that pid created. Therefore, each new event
created by pid has a different self-parent (⋆); thus, honest nodes never fork (⋆). We conclude that
𝐽 is fair, since 𝐽 never renders verdicts, blaming honest nodes, w.r.t. fork-freeness (*⋆); hence,
Pr[Q(1𝜂) ↦→ {(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}] is negligible in 𝜂.

Completeness. To prove completeness, one has to show that Pr[Q(1𝜂) ↦→ ¬(𝐽 : Φ2)] is
negligible as a function in 𝜂, i.e., 𝐽 ensures the accountability constraint 𝐶H

2 in all but a negligible
number of runs 𝜔 of the system {𝒫H,𝒜, ℰ} with parameters as in Definition 3. Particularly, if the
run 𝜔 is contained within the security property 𝛽1 ∪ 𝛼, 𝐽 has to state a verdict 𝜓 that implies at
least one of the verdicts dis(pid1), . . . , dis(pid𝑛) defined by 𝐶H

2 . First, oberserve that all verdicts
of 𝐽 are of form

⋀︀
𝑖∈𝐼 dis(pid 𝑖), for ∅ ≠ 𝐼 ⊂ {1, . . . , 𝑛} (notice that 𝐽 can state multiple verdicts

for different parties); consequently, each such verdict clearly achieves individual accountability for
𝐶H
2 as each verdict implies at minimum one of the verdicts defined by the constraint 𝐶H

2 . Since
we have already shown 𝐽 fulfilling completeness for basic correctness (i.e., the run 𝜔 is in 𝛼), it
remains to prove that 𝐽 is complete w.r.t. fork-freeness (i.e., 𝜔 ∈ 𝛽1).

In the following, let 𝜔 be a run of 𝛽1; therefore, there exists at some point ⌊𝜔⌋ in the set
EW = {𝐸 ∈ 𝐺 | (ctr , pid , 𝐺) ∈ W} a pair of events that are both signed by some node pid ,
such that pid does not satisfy fork-freeness. More specifically, there are two events 𝐸1, 𝐸2 ∈ EW

with verifySigpk(pid)((selfParent 𝑖, otherParent 𝑖, txs 𝑖, ts 𝑖), 𝜎𝑖) = true for 𝑖 ∈ {1, 2}, so that

47



5 Security and Accountability of Hashgraph

selfParent1 = selfParent2 but eventID1 ̸= eventID2, i.e., pid created a fork at selfParent1
with eventID1 and eventID2. One can observe in Figure 3.13 that the judge, indeed, outputs
a verdict dis(pid) for this violation. We conclude that 𝐽 always renders a verdict in 𝛽1, i.e.,
Pr[Q(1𝜂) ↦→ ¬(𝐽 : Φ2)] = 0.

We have shown that 𝐽 is fair and complete in all runs of {𝒫H,𝒜, ℰ} with parameters as in
Definition 3 (*⋆). This concludes the proof for Theorem 1. ■

5.3 Consistency of the Hashgraph Algorithm

Definition 9 (Consistent Hashgraphs).
Let 𝐺 be a hashgraph and 𝐸 ∈ 𝐺. Let 𝐺[𝐸] ⊆ 𝐺 denote the subgraph of 𝐸 in 𝐺 that contains
𝐸 and all ancestors of 𝐸. We say two hashgraphs 𝐺 and 𝐺′ are consistent if for all 𝐸 ∈ 𝐺 ∩𝐺′
follows 𝐺[𝐸] = 𝐺′[𝐸].

Lemma 3.
Let 𝐺,𝐺′ be two hashgraphs, both satisfying basic graph correctness. Then, it holds true that 𝐺
and 𝐺′ are consistent .

Proof. We first prove for an arbitrary event 𝐸 ∈ 𝐺 ∩𝐺′, different to the genesis event, that both
its parent events are in 𝐺 ∩𝐺′, and there exist no other events in 𝐺 or 𝐺′ with the same event ID
as one of 𝐸’s parents events except for negligible probability in 𝜂. Because 𝐺,𝐺′ satisfy basic
graph correctness, there must be self-parents 𝐸′1 ∈ 𝐺, 𝐸′2 ∈ 𝐺′ with pid = pid ′1, pid = pid ′2 and
selfParent = eventID ′1, selfParent = eventID ′2, and other-parents 𝐸′′1 ∈ 𝐺, 𝐸′′2 ∈ 𝐺′ where
pid ≠ pid ′′1 , pid ̸= pid ′′2 and otherParent = eventID ′′1 , otherParent = eventID ′′2 . Furthermore,
hash collisions cannot be found except for negligible probability in 𝜂; therefore, there cannot be
two events in 𝐺 ∪ 𝐺′ with the same event ID (⋆); thus, 𝐸′1 = 𝐸′2, 𝐸

′′
1 = 𝐸′′2 and self-parent and

other-parent of 𝐸 are unique in 𝐺 and 𝐺′ (⋆).

Recall from Definition 9 that 𝐺, 𝐺′ are consistent if for all 𝐸 ∈ 𝐺∩𝐺′ follows 𝐺[𝐸] = 𝐺′[𝐸]. We
know the genesis event is in 𝐺 and 𝐺′, and for each other event 𝐸 ∈ 𝐺 ∩𝐺′ there is exactly one
self-parent event and exactly one other-parent event in 𝐺∩𝐺′. By this, we conclude 𝐺[𝐸] = 𝐺′[𝐸]
(⋆). ■

In the following, we will usually demand for two hashgraphs 𝐺,𝐺′ that both fulfill basic graph
correctness and follow implicitly with the above lemma that 𝐺,𝐺′ are also consistent.

Lemma 4.
Let 𝐺 and 𝐺′ be two hashgraphs, both satisfying basic graph correctness. Then, it holds true that
the divideRounds algorithm assigns for all 𝐸 ∈ 𝐺 ∩ 𝐺′ the same round created number and
witness status, when run on input 𝐺 or 𝐺′.

Proof. Let 𝐸 ∈ 𝐺 ∩𝐺′ be arbitrary. Because 𝐺 and 𝐺′ are also consistent, by Definition 9 applies
𝐺[𝐸] = 𝐺′[𝐸], i.e., both hashgraphs share the same subgraph of 𝐸. We show this lemma with
proof by induction over the subgraph 𝐺[𝐸].

48



5.3 Consistency of the Hashgraph Algorithm

Base case
Initially, the genesis event receives round created number 1 and is assigned to be the sole witness
of round 1. Additionally, each event 𝐸 containing the genesis event as self-parent receives round
number 2 and is assigned to be a witness of this round; basic graph correctness ensures that there is
at most one such event for each creator of 𝐸.

Induction step
Assume the induction hypothesis that for an event𝐸0 ∈ 𝐺[𝐸] = 𝐺′[𝐸] it is true that divideRounds
assigned for all ancestors of𝐸0, in particular the self-parent𝐸1 and other-parent𝐸2, the same round
created number when run on hashgraph 𝐺 or 𝐺′. Then, with input 𝐺 and 𝐺′, divideRounds will
assign 𝐸0’s round 𝑟 to be the maxium of the rounds of 𝐸1 and 𝐸2, and if 𝐸0 strongly sees more
than 2

3𝑛 round 𝑟 witnesses, it will instead assign 𝑟 + 1 as round created number of 𝐸0 and mark 𝐸0

as witness of round 𝑟 + 1.

Therefore, divideRounds assigns on input 𝐺 and 𝐺′ for each event in 𝐺[𝐸], including 𝐸, the
same round and witness status. ■

Corollary 1 (Consistent Witnesses).
Let 𝐺,𝐺′ be two hashgraphs, both satisfying basic graph correctness, with 𝐺 ⊆ 𝐺′. Then it holds
true that𝒲𝑟 ⊆ 𝒲 ′𝑟, i.e., if 𝐸𝑟 ∈ 𝒲𝑟 is a round 𝑟 witness in 𝐺, then 𝐸𝑟 is also a round 𝑟 witness in
𝐺′.

Proof. By Lemma 4, for all 𝐸𝑟 ∈ 𝐺 ∩ 𝐺′ follows 𝐸𝑟 ∈ 𝒲𝑟,𝒲 ′𝑟 or 𝐸𝑟 /∈ 𝒲𝑟,𝒲 ′𝑟; thus, with
𝐺 ⊆ 𝐺′ holds true that𝒲𝑟 ⊆ 𝒲 ′𝑟. ■

Lemma 5.
Let 𝐺 be a hashgraph fulfilling basic graph correctness, and let𝒲𝑟 denote the set of all round 𝑟
witnesses in 𝐺. If there exists an event 𝐸𝑟 ∈ 𝒲𝑟 whose fame is decided (by running the algorithm
decideFame) by a witness 𝐸𝑟+𝑖+1 ∈ 𝒲𝑟+𝑖+1 in round 𝑟 + 𝑖+ 1 (𝑖 ≥ 1), then it holds true for all
𝑘 ∈ {1, . . . , 𝑖} that there exist more than 2

3𝑛 witnesses in𝒲𝑟+𝑘.

Proof. Let 𝐸𝑟 ∈ 𝒲𝑟 be an event whose fame has been decided during decideFame. Therefore,
virtual voting of 𝐸𝑟 must have at least reached the second round 𝑟 + 2, otherwise 𝐸′𝑟𝑠 fame could
not have been decided (witnesses in the first round do not decide the fame for the candidate);
hence, 𝑖 ≥ 1 for witness 𝐸𝑟+𝑖+1 which decides the fame for 𝐸𝑟. Suppose 𝐸𝑟+𝑖+1 ∈ 𝒲𝑟+𝑖+1 is a
witness that decides the famousness of 𝐸𝑟. One can observe in decideFame that 𝐸𝑟+𝑖+1’s decision
depends solely on the round 𝑟 + 𝑖 witnesses 𝐸1

𝑟+𝑖, . . . 𝐸
𝑚
𝑟+𝑖 it strongly sees, where 𝑚 > 2

3𝑛 by the
definition of witnesses. If 𝑖 = 1, then |𝒲𝑟+1| ≥ 𝑚 > 2

3𝑛 and the above statement holds true.

Suppose 𝑖 > 1. A witness 𝐸𝑟+𝑘+1 ∈ 𝒲𝑟+𝑘+1 participates in the virtual voting for 𝐸𝑟, if 𝑘 = 𝑖,
or 𝑘 ≥ 1 and there exist 𝑙 = 𝑖 − 𝑘 witnesses ̂︀𝐸𝑟+𝑘+2 ∈ 𝒲𝑟+𝑘+2, . . . , ̂︀𝐸𝑟+𝑖+1 ∈ 𝒲𝑟+𝑖+1 such
that ̂︀𝐸𝑟+𝑝+1 strongly sees ̂︀𝐸𝑟+𝑝 for all 𝑝 ∈ {𝑘 + 2, . . . , 𝑖}, and ̂︀𝐸𝑟+𝑘+2 strongly sees 𝐸𝑟+𝑘+1. A
participating witness 𝐸𝑟+𝑘+1 strongly sees at least least 𝑚𝑘 >

2
3𝑛 witnesses 𝐸1

𝑟+𝑘, . . . , 𝐸
𝑚𝑘
𝑟+𝑘 ∈

𝒲𝑟+𝑘 in round 𝑟 + 𝑘, which also participate in the election if 𝑘 ≥ 2. Since 𝐸𝑟+𝑘+𝑖 participates
in the election, we inductively conclude that there must exist at least 𝑚𝑘 > 2

3𝑛 witnesses
𝐸1

𝑟+𝑘, . . . , 𝐸
𝑚𝑘
𝑟+𝑘 ∈ 𝒲𝑟+𝑘 in round 𝑟 + 𝑘 for all 𝑘 ∈ {1, . . . , 𝑖}; thus, |𝒲𝑟+𝑘| ≥ 𝑚𝑘 >

3
2𝑛. ■

49



5 Security and Accountability of Hashgraph

Lemma 6 (Consistent Voting).
Let 𝐺,𝐺′ be two hashgraphs such that 𝐺 ⊆ 𝐺′ and both satisfy basic graph correctness. Then, for
all 𝐸𝑟 ∈ 𝒲𝑟 and 𝐸𝑟+𝑖 ∈ 𝒲𝑟+𝑖 with vote𝐺(𝐸𝑟, 𝐸𝑟+𝑖, 𝛽) (where 𝛽 ∈ {true, false}) holds true
that vote𝐺′(𝐸𝑟, 𝐸𝑟+𝑖, 𝛽), if there is no 𝐸𝑟+𝑖′+1 ∈ 𝒲 ′𝑟+𝑖′+1 with decision𝐺′(𝐸𝑟, 𝐸𝑟+𝑖′+1, 𝛽

′) that
votes before 𝐸𝑟+𝑖 in 𝐺′. Moreover, if additionally applies decision𝐺(𝐸𝑟, 𝐸𝑟+𝑖, 𝛽), then it holds
true that decision𝐺′(𝐸𝑟, 𝐸𝑟+𝑖, 𝛽) if there exists no witnesses that ends 𝐸𝑟’s election (see above)
before 𝐸𝑟+𝑖 can vote.

Proof. Observe that voting (and deciding the fame for some witness) is purely a function on the
ancestors of voting (deciding) witnesses. Because of 𝐺 ⊆ 𝐺′, the ancestors for events in 𝐺, clearly,
to do not change in 𝐺′ (note that 𝐺 ⊆ 𝐺′ implies that 𝐺,𝐺′ are consistent hashgraphs). Thus,
events will vote (decide) identically for 𝐸𝑟 in 𝐺′ if the election for 𝐸𝑟 is not ended beforehand by
some new witness 𝐸𝑟+𝑖′+1 ∈ 𝒲 ′𝑟+𝑖′+1 ∖𝒲𝑟+𝑖′+1. ■

The purpose of strongly seeing is to ensure that nodes with different hashgraphs achieve consistent
voting results. We prove in the following lemma that this holds true as long as more than 2

3𝑛 nodes
do not create forks. This result is the foundation for Hashgraph to achieve consistency, and will be
used frequently for the rest of the remaining proofs.

Lemma 7 (Strongly Seeing Lemma).
Let 𝐺,𝐺′ be two hashgraphs with 𝐺 ⊆ 𝐺′ and both fulfilling basic graph correctness. Suppose 𝐺′
contains less than 1

3𝑛 forking nodes. Let the pair of events (𝐸1, 𝐸2) be a fork with self-parent 𝐸0 in
𝐺. If 𝐸1 is strongly seen by event 𝐸 in 𝐺, then 𝐸2 will not be strongly seen by all events in 𝐺′ (cf.
[2]4).

Proof. We prove that no event in 𝐺′ can strongly see 𝐸2. Assume 𝐸1 is strongly seen by some
event 𝐸 ∈ 𝐺. By the definition of strongly seeing, there must exist a set of events 𝑆1 ⊆ 𝐺 such that
|𝑆1| > 2

3𝑛, all events in 𝑆1 have pairwise different creators, and for all 𝐸𝑠 ∈ 𝑆1 applies 𝐸 sees
𝐸𝑠 and 𝐸𝑠 sees 𝐸1. Let 𝒩1 = {creator𝐺(𝐸𝑠) | 𝐸𝑠 ∈ 𝑆1} ⊆ nodes be the set of all creators of
events in 𝑆1, and let 𝒩𝐻

1 ⊆ 𝒩1 denote the set of all honest nodes (i.e., nodes without forks) in 𝒩1.
Because of the assumption of less than 1

3𝑛 forking nodes, it holds true that |𝒩𝐻
1 | > 1

3𝑛.

Let 𝐸′ ∈ 𝐺′ be an arbitrary event; we prove that 𝐸′ cannot strongly see 𝐸2 in 𝐺′. For the purpose
of contradiction, let 𝑆2 ⊆ 𝐺′ be a set of events such that |𝑆2| > 2

3𝑛, all events in 𝑆2 have pairwise
different creators, and for all events 𝐸𝑠 ∈ 𝑆2 holds true that 𝐸′ sees 𝐸𝑠 and 𝐸𝑠 sees 𝐸2. We show
that this set cannot exist. Again, let 𝒩2 be the set of all creators of events in 𝑆2, where |𝒩2| > 2

3𝑛
by the definition of strongly seeing. Then, we can conclude |𝒩2 ∩𝒩𝐻

1 | ≥ 1. Therefore, there must
be an honest node pid ∈ 𝒩2 ∩ 𝒩𝐻

1 with no forks in 𝐺 and 𝐺′. Moreover, there must be events
𝐸𝐻

1 ∈ 𝑆1, 𝐸𝐻
2 ∈ 𝑆2 created by pid such that 𝐸𝐻

1 sees 𝐸1 and 𝐸𝐻
2 sees 𝐸2. However, this is not

possible: Due to 𝐺 ⊆ 𝐺′ and 𝐸𝐻
1 seeing 𝐸1 in 𝐺, 𝐸𝐻

1 can also see 𝐸1 in 𝐺′. By the definition
of seeing, the subgraph 𝐺[𝐸𝐻

1 ] = 𝐺′[𝐸𝐻
1 ] does not contain a fork of 𝐸1; thus 𝐸2 /∈ 𝐺′[𝐸𝐻

1 ].
Therefore, 𝐸𝐻

1 ̸= 𝐸𝐻
2 and 𝐸𝐻

1 is an self-ancestor of 𝐸𝐻
2 . But then is also 𝐸1 an anestor of 𝐸𝐻

2 .
So both 𝐸1 and 𝐸2 are ancestors of 𝐸𝐻

2 ; hence, 𝐸𝐻
2 cannot see either of two the events. This is a

contradiction to 𝐸𝐻
2 ∈ 𝑆2. Therefore, 𝑆2 does not exist and 𝐸2 is not strongly seen in 𝐺′. ■

4The author of this paper proved a slightly stronger statement: Instead of assuming 𝐺 ⊆ 𝐺′, Leemon Baird proved this
lemma with the more strict requirement of 𝐺,𝐺′ being consistent hashgraphs.

50



5.3 Consistency of the Hashgraph Algorithm

We proved the above lemma for all hashgraphs 𝐺,𝐺 that satisfy basic graph correctness, where
𝐺 ⊆ 𝐺′. However, we cannot guarantee that hashgraphs of different nodes are always subsets of
each other, but rather expect honest nodes to have consistent hashgraphs. We will later demonstrate
in Theorem 2 that our assumption of 𝐺 ⊆ 𝐺′ is sufficient, and we do not have to prove Lemma 7
under the more strict condition of 𝐺,𝐺′ being consistent hashgraphs.

Corollary 2.
Let 𝐺 be a hashgraph satisfying basic graph correctness and suppose less than 1

3𝑛 forking nodes in
𝐺. Let𝒲 ⊆𝒲𝑟 be the set of round 𝑟 witnesses that are strongly seen by events in 𝐺. Then it holds
true for all pairs of events (𝐸𝑟, 𝐸

′
𝑟) in𝒲 that creator𝐺(𝐸𝑟) ̸= creator𝐺(𝐸

′
𝑟).

Proof. By definition, a witness of round 𝑟 is the first event created by a node, say pid , in this round.
In the absence of forking, there is at most one witness created by pid in round 𝑟. If pid created a
fork, we know by Lemma 7 that at most one event of the forked round 𝑟 witnesses of pid is strongly
seen in 𝐺. Hence,𝒲 contains only round 𝑟 witnesses of different creators. ■

Corollary 3.
Let 𝐺 be a hashgraph satisfying basic graph correctness and suppose less than 1

3𝑛 forking nodes in
𝐺. Then it holds true that all witnesses in𝒲𝑟+1 can strongly see at most 𝑛 witnesses of round 𝑟. In
particular, there exist at most 𝑛 witnesses in𝒲𝑟 that are strongly seen by witnesses in𝒲𝑟+1.

Proof. Follows immediately by Lemma 7 and Corollary 2. ■

Lemma 8 (Consistent Famous Witnesses).
Let 𝐺,𝐺′ be two hashgraphs such that 𝐺 ⊆ 𝐺′ and both satisfy basic graph correctness. Further,
suppose𝐺′ contains less than 1

3𝑛 forking nodes. Let ∅ ≠𝒲𝑟,𝒲 ′𝑟 be the sets of all known witnesses
with round created 𝑟 in 𝐺 and 𝐺′, respectively. Let ℱ𝑟 ⊆ 𝒲𝑟 and ℱ ′𝑟 ⊆ 𝒲 ′𝑟 be the sets of all
famous witnesses of round 𝑟.

If the fame state for all witnesses in𝒲𝑟 is decided, then it holds true that ℱ𝑟 = ℱ ′𝑟, i.e., it is not
possible to discover new famous witnesses of round created 𝑟 or alter the fame state of round 𝑟
witnesses once the fame of all round 𝑟 witnesses is decided.

Proof. Let all variables be as specified above. Assume that the famousness for all witnesses in𝒲𝑟

is decided, i.e., each event in𝒲𝑟 is either famous or not. Moreover, we can assume by Corollary 1
that𝒲𝑟 ⊆ 𝒲 ′𝑟 for all 𝑟 ∈ N.

Proof of ℱ𝑟 ⊆ ℱ ′
𝑟

Let𝐸𝑟 ∈ 𝒲𝑟 be an arbitrary but fixed witness whose fame has been decided by some𝐸𝑟+𝑖+1 ∈ 𝒲𝑟,
written decision𝐺(𝐸𝑟, 𝐸𝑟+𝑖+1, 𝛽), for 𝑖 ≥ 1 with decision 𝛽 ∈ {true, false}. We prove the
existence of a witness 𝐸′𝑟+𝑖′+1 ∈ 𝒲 ′𝑟+𝑖′+1 with decision𝐺′(𝐸𝑟, 𝐸

′
𝑟+𝑖′+1, 𝛽

′) such that 𝛽′ = 𝛽; thus,
we show a stronger statement: We do not only prove that (1) 𝐸𝑟 ∈ ℱ𝑟 implies 𝐸𝑟 ∈ ℱ ′𝑟, but also
the implication (2) 𝐸𝑟 /∈ ℱ𝑟 ⇒ 𝐸𝑟 /∈ ℱ ′𝑟. In the what follows, we present a direct proof of both
implications.

By Lemma 6, we know that decision𝐺′(𝐸𝑟, 𝐸𝑟+𝑖+1, 𝛽), if there exists no witness that ends 𝐸𝑟’s
virtual voting (by deciding its fame) before 𝐸𝑟+𝑖+1 can vote. First, assume this is the case; thus
𝐸′𝑟+𝑖′+1 = 𝐸𝑟+𝑖+1 and (1) and (2) holds true. So, we only have to prove that (1) and (2) also

51



5 Security and Accountability of Hashgraph

hold true if 𝐸′𝑟+𝑖′+1 ≠ 𝐸𝑟+𝑖+1, which implies that 𝐸′𝑟+𝑖′+1 ends 𝐸𝑟’s election by deciding its
fame before 𝐸𝑟+𝑖+1 has the opportunity to do so. Clearly, this is only the case if 𝑖′ ≤ 𝑖, which we
assume in the following. Also notice that 𝑖′ ≥ 1 (cf. proof of Lemma 5), and 𝐸𝑟+𝑖′+1 ∈ 𝐺′ ∖𝐺 by
Lemma 6.

𝐸′𝑟+𝑖′+1 decides the fame for 𝐸𝑟 w.r.t. the supermajority decision of the witnesses in the previous
round that 𝐸′𝑟+𝑖′+1 can strongly see; let𝒲 ′ ⊆ 𝒲 ′𝑟+𝑖′ be the set of such witnesses that 𝐸′𝑟+𝑖′+1

strongly sees. By Corollary 3 and the definition of witnesses, it must be 2
3𝑛 < 𝑚′ = |𝒲 ′| ≤ 𝑛, and

the witnesses in𝒲 ′ have pairwise different creators by Corollary 2. We further define𝒲 ′𝛽′ ⊆ 𝒲 ′

to be the set of all witnesses in round 𝑟+ 𝑖′ with a vote of 𝛽′, where |𝒲 ′𝛽′ | > 2
3𝑛 since 𝐸𝑟+𝑖′+1 has

a supermajority of votes of 𝛽′. Next, we define the voting set of round 𝑟 + 𝑖′,

𝒱𝑟+𝑖′ = {𝐸𝑟+𝑖′ ∈ 𝒲 ′𝑟+𝑖′ | ∃𝐸𝑟+𝑖′+1 ∈ 𝒲 ′𝑟+𝑖′+1 : 𝐸𝑟+𝑖′+1 strongly sees 𝐸𝑟+𝑖′}, (5.3)

to be the set of all witnesses of round 𝑟 + 𝑖′ in 𝐺′ that are strongly seen by some witness of round
𝑟+ 𝑖′ + 1 in 𝐺′, where |𝒱𝑟+𝑖′ | ≤ 𝑛 by Corollary 3. With Corollary 2 we can conclude that all pairs
of witnesses in 𝒱𝑟+𝑖′ have different creators. Subsequently, we differentiate whether (i) 𝑖′ = 𝑖 or (ii)
𝑖′ < 𝑖.

Case (i)
Suppose 𝑖′ = 𝑖 first. Then there must exist a set 𝒲 ⊆ 𝒲𝑟+𝑖 (cf. Lemma 5) with |𝒲| > 2

3𝑛
that 𝐸𝑟+𝑖+1 can strongly see, where each pair of witnesses in𝒲 have pairwise different creators
(see Corollary 2). Additionally, we conclude with Corollary 3 that 2

3𝑛 < |𝒲| ≤ 𝑛. Because of
decision𝐺(𝐸𝑟, 𝐸𝑟+𝑖+1, 𝛽), we have for all 𝐸𝑟+𝑖 with vote𝐺(𝐸𝑟, 𝐸𝑟+𝑖, 𝛽) also vote𝐺′(𝐸𝑟, 𝐸𝑟+𝑖, 𝛽)
by Lemma 6; let 𝒲𝛽 ⊆ 𝒲𝑟+𝑖 be the set of all such 𝐸𝑟+𝑖. Clearly, it applies |𝒲𝛽| > 2

3𝑛 and
𝒲𝛽 ⊆ 𝒱𝑟+𝑖 (cf. Corollary 1), but we also have𝒲 ′𝛽′ ⊆ 𝒱𝑟+𝑖. Therefore, 𝒱𝑟+𝑖 must have more than
2
3𝑛 witnesses with votes for 𝛽 and 𝛽′. With |𝒱𝑟+𝑖| ≤ 𝑛, we conclude that 𝛽 = 𝛽′; thus (1) and (2)
are satisfied.

Case (ii)
Suppose 𝑖′ < 𝑖. This case is a little more sophisticated. We claim the existence of at least 1

3𝑛
witnesses 𝐸𝑟+𝑖′ ∈ 𝒲𝑟+𝑖′ such that vote𝐺(𝐸𝑟, 𝐸𝑟+𝑖′ , 𝛽) (and therefore also vote𝐺′(𝐸𝑟, 𝐸𝑟+𝑖′ , 𝛽)
by Lemma 6); let𝒲𝛽 ⊆ 𝒲𝑟+𝑖′ denote the set of such witnesses.

We show |𝒲𝛽| ≥ 1
3𝑛 with proof by contradiction. Suppose for the purpose of contradiction that

|𝒲𝛽| < 1
3𝑛. Then, all round 𝑟 + 𝑖′ + 1 witnesses 𝐸𝑟+𝑖′+1 in 𝐺 will strongly see at least 1

3𝑛
witnesses of the previous round with vote 𝛽 for 𝐸𝑟; thus, vote𝐺(𝐸𝑟, 𝐸𝑟+𝑖′+1, 𝛽). Hereafter, we
have to distinguish whether round 𝑟 + 𝑖′ + 2 is a normal voting or coin round. First assume round
𝑟 + 𝑖′ + 2 is not a coin round. Then all witnesses of this round will have a supermajority of votes
𝛽 of the round 𝑟 + 𝑖′ + 1 witnesses they strongly see. Let 𝐸𝑟+𝑖′+2 be the first witness in this
round that can vote, then decide𝐺(𝐸𝑟, 𝐸𝑟+𝑖′+2, 𝛽). This is clearly a contradiction to the assumption
decision𝐺(𝐸𝑟, 𝐸𝑟+𝑖+1, 𝛽). Oppositely, suppose 𝑟 + 𝑖′ + 2 is a coin round. Notice that witnesses in
coin rounds cannot decide the fame; thus 𝑖′ − 𝑖 ≥ 2. However, if they have a supermajority of votes,
as in our case in favour of 𝛽, they will still vote according to the supermajority voting decision; hence,
vote𝐺(𝐸𝑟, 𝐸𝑟+𝑖′+2, 𝛽) for all 𝐸𝑟+𝑖′+2 ∈ 𝒲𝑟+𝑖′+2. Finally, the first witness of round 𝑟 + 𝑖′ + 3
able to vote will see a supermajority of 𝛽 votes; thus decision𝐺(𝐸𝑟, 𝐸𝑟+𝑖+3, 𝛽), which is again a
contradiction to the assumption decision𝐺(𝐸𝑟, 𝐸𝑟+𝑖+1, 𝛽). Concluding, |𝒲𝛽| ≥ 1

3𝑛.

52



5.3 Consistency of the Hashgraph Algorithm

So, we have 𝒲𝛽 ⊆ 𝒲 ′𝑟+𝑖′ ⊆ 𝒱𝑟+𝑖′ , but also 𝒲 ′𝛽′ ⊆ 𝒱𝑟+𝑖′ . We know |𝒲 ′𝛽′ | > 2
3𝑛, and with

|𝒱𝑟+𝑖′ | ≤ 𝑛 there can be at most 2
3𝑛 witnesses in𝒲 ′𝑟+𝑖′ with vote 𝛽 for 𝐸𝑟, therefore missing one

vote to have a supermajority decision of 𝛽 in favor of 𝐸𝑟; thus, 𝛽′ = 𝛽, decision𝐺′(𝐸𝑟, 𝐸𝑟+𝑖′+1, 𝛽),
and (1), (2) are fulfilled. In particular, we conclude ℱ𝑟 ⊆ ℱ ′𝑟.

Proof of ℱ𝑟 ⊇ ℱ ′
𝑟

Proof by contrapositive. Let 𝐸′𝑟 ∈ 𝒲 ′𝑟 be an arbitrary but fixed round 𝑟 witness that is not in ℱ𝑟.
First, suppose additionally 𝐸′𝑟 ∈ 𝒲𝑟. Then, by implication (2) 𝐸𝑟 /∈ ℱ𝑟 ⇒ 𝐸𝑟 /∈ ℱ ′𝑟 from earlier,
we know 𝐸′𝑟 /∈ ℱ ′𝑟. So, let 𝐸′𝑟 ∈ 𝒲 ′𝑟 ∖𝒲𝑟 in the following.

Because of𝒲𝑟 ̸= ∅, there must exist a witness 𝐸𝑟 ∈ 𝒲𝑟 whose fame has been decided in some
round 𝑟 + 𝑖 + 1 (𝑖 ≥ 1) by some 𝐸𝑟+𝑖+1 ∈ 𝒲𝑟+𝑖+1, written decide𝐺(𝐸𝑟, 𝐸𝑟+𝑖+1, 𝛽), during
decideFame. Thus, virtual voting of 𝐸𝑟 must have at least reached round 𝑟 + 2. By Lemma 5,
there must exist a set of round 𝑟 + 1 witnesses 𝒲 ⊆ 𝒲𝑟+1, with |𝒲| > 2

3𝑛, that are strongly
seen by some 𝐸𝑟+2 ∈ 𝒲𝑟+2 (cf. proof of Lemma 5) that voted for 𝐸𝑟. Because of 𝐸′𝑟 /∈ 𝒲𝑟,
and more generally also 𝐸′𝑟 /∈ 𝐺 , all round 𝑟 + 1 witnesses in𝒲 ⊆ 𝐺 cannot be descendants of
𝐸′𝑟. Therefore, vote𝐺′(𝐸′𝑟, 𝐸𝑟+1, false) for all 𝐸𝑟+1 ∈ 𝒲 . Furthermore, we now𝒲 ⊆ 𝒱𝑟+1, so
there cannot be more than 1

3𝑛 − 1 true-votes for 𝐸′𝑟 in 𝒱𝑟+1; thus, decide𝐺′(𝐸′𝑟, 𝐸𝑟+2, false)
or decide𝐺′(𝐸′𝑟, 𝐸

′
𝑟+2, false) by some 𝐸′𝑟+2 ∈ 𝒲 ′𝑟+2 that strongly sees a supermajority of

false-votes and has the ability to vote before 𝐸𝑟+2. Finally, 𝐸′𝑟 /∈ ℱ ′𝑟.

Hence, ℱ𝑟 = ℱ ′𝑟 for all 𝑟 ∈ N. This concludes this lemma. ■

Corollary 4.
Let 𝐺,𝐺′ be the two hashgraphs as in Lemma 8, and let 𝒰𝑟,𝒰 ′𝑟 denote set of all unique famous
witnesses in round 𝑟 for 𝐺 and 𝐺′, respectively. Then it holds true that 𝒰𝑟 = 𝒰 ′𝑟 if the fame state
for all witnesses in𝒲𝑟 is decided.

Proof. By Lemma 8 it holds ℱ𝑟 = ℱ ′𝑟 if the fame state for all witnesses in𝒲𝑟 is decided. Clearly,
if 𝐸 ∈ 𝒰𝑟, it must also be 𝐸 ∈ 𝒰 ′𝑟 since there can be no new famous witness in ℱ ′𝑟 with the same
creator. Analogously, 𝒰 ′𝑟 ⊆ 𝒰𝑟. ■

Corollary 5.
Let 𝐺,𝐺′ be the two hashgraphs as in Lemma 8, and let 𝑟 ∈ N be an arbitrary round. If𝒲𝑟 ̸= ∅
and the fame state for all witnesses in𝒲𝑟 is decided, then it holds true that also the fame state for
all witnesses in𝒲 ′𝑟 is decided.

Proof. We have 𝒲𝑟 ⊆ 𝒲 ′𝑟 by Corollary 1 and ℱ𝑟 = ℱ ′𝑟 according to Lemma 8. This lemma
also proved that non-famous witnesses are decided to be not famous in 𝐺′ (cf. implication (2)).
Moreover, the proof for ℱ ′𝑟 ⊆ ℱ𝑟 in Lemma 8 demonstrates for all witnesses 𝐸′𝑟 ∈ 𝒲 ′𝑟 ∖ 𝒲𝑟 the
existence of a round 𝑟 + 2 witness that decides 𝐸′𝑟 to be not famous. Therefore, the famousness for
all witnesses in𝒲 ′𝑟 is decided. ■

Lemma 9 (The Hashgraph Algorithm Achieves Self-Consistency).
Let 𝐺,𝐺′ be two hashgraphs such that 𝐺 ⊆ 𝐺′ and both satisfy basic graph correctness. Further,
suppose less than 1

3𝑛 forking nodes in 𝐺′. We denote with ℋalg the hashgraph algorithm (i.e.,
divideRounds, decideFame, findOrder) that some honest participant locally runs with some
(local) hashgraph as input.

53



5 Security and Accountability of Hashgraph

Then, the following statement holds true for each event 𝐸 ∈ 𝐺: Ifℋalg with input 𝐺 assigned 𝐸
a consensus position in the total order of events, thenℋalg with input 𝐺′ will assign 𝐸 the same
consensus position.

Proof. First, we note that the Hashgraph algorithm is deterministic; in particular for the function
decideFame, the occurrence of a coin round, 𝑖 mod coinRound (cf. Figure 3.6), is predefined by
the variable coinRound which is equal for all nodes. Further, voting events may “flip a coin” in
a coin round by voting w.r.t. their signature; clearly, this is not nondeterministic: If 𝐺,𝐺′ share
an event, they also share the same signature of this event. Therefore,ℋalg running with the same
hashgraph as input5 will always output the same total order of events.

Let 𝐺,𝐺′ be the two hashgraphs from above, and assume 𝐸 ∈ 𝐺 is an arbitrary event that ℋalg ,
with input 𝐺, assigned a consensus position 𝑥. That is, findOrder assigned 𝐸 a round received
number 𝑟𝑟 ∈ N. Recall that, generally, an event ̂︀𝐸 ∈ ̂︀𝐺 has round received number ̂︀𝑟𝑟, if the
following three conditions are fulfilled in ̂︀𝐺:
(1) The fame for all witnesses in ̂︁𝒲𝑟, for all 𝑟 ≤ ̂︀𝑟𝑟, is decided.
(2) ̂︀𝐸 is an ancestor of all unique famous witnesses in ̂︀𝒰̂︀𝑟𝑟 .
(3) ̂︀𝑟𝑟 is minimal, i.e., there is no 𝑟 < ̂︀𝑟𝑟 fulfilling the two conditions above.

Because of roundReceived𝐺(𝐸) = 𝑟𝑟, all three above conditions are fulfilled for 𝐸 in 𝐺.

We denote with 𝑥′ the consensus position thatℋalg with input 𝐺′ assigns 𝐸. For this theorem, we
must prove 𝑥 = 𝑥′. Next, we define the round received set of 𝑟 in 𝐺,

𝒞𝑟 = {𝐸0 ∈ 𝐺 | roundReceived𝐺(𝐸0) = 𝑟} ⊆ 𝐺, (5.4)

to bet the set of all events in𝐺 with round received 𝑟. The Hashgraph algorithm sorts events (as one
can observe in the findOrder algorithm, see Figure 3.6) first by the round received number, then
ties by a consensus timestamp, and any remaining ties lexicographically by the signature of events.
Further, let ∆ denote the relative consensus number of 𝐸 in 𝒞𝑟𝑟 (i.e., the position of 𝐸 in 𝒞𝑟𝑟
ordered by consensus timestamp, and then lexicographically by signatures), where 0 ≤ ∆ ≤ |𝒞𝑟𝑟 |.
Analogously, let 𝒞′𝑟 denote the round received set of 𝑟 in 𝐺′, and ∆′ the relative consensus number
of 𝐸 in 𝒞′𝑟𝑟 . In order to prove this theorem, we show (i) 𝒞𝑟 = 𝒞′𝑟 for all 𝑟 ≤ 𝑟𝑟 and (ii) ∆ = ∆′; this
implies

𝑥 =

⃒⃒⃒⃒ 𝑟𝑟−1⋃︁
𝑟=1

𝒞𝑟
⃒⃒⃒⃒
+∆

(𝑖)
=

⃒⃒⃒⃒ 𝑟𝑟−1⋃︁
𝑟=1

𝒞′𝑟
⃒⃒⃒⃒
+∆

(𝑖𝑖)
=

⃒⃒⃒⃒ 𝑟𝑟−1⋃︁
𝑟=1

𝒞′𝑟
⃒⃒⃒⃒
+∆′ = 𝑥′. (5.5)

Also notice that by condition (3) the sets 𝒞𝑟 (and 𝒞′𝑟) are each pairwise disjoint for all 𝑟 ≤ 𝑟𝑟, i.e.,
𝒞𝑟1 ∩ 𝒞𝑟2 = ∅ (and 𝒞′𝑟1 ∩ 𝒞

′
𝑟2 = ∅) for all 𝑟1, 𝑟2 ≤ 𝑟𝑟, 𝑟1 ̸= 𝑟2.

Proof of 𝒞𝑟 = 𝒞′
𝑟

We first show 𝒞𝑟 ⊆ 𝒞′𝑟 and 𝒞𝑟 ⊇ 𝒞′𝑟 subsequently.

5In our implementation, nodes may have different states for the internal variables isWitness, isFamous, and
roundReceived. However, in Corollary 1 we proved that for two hashgraphs 𝐺,𝐺′, with 𝐺 ⊆ 𝐺′, follows
𝒲𝑟 ⊆ 𝒲 ′

𝑟 , and ℱ𝑟 ⊆ ℱ ′
𝑟 (cf. proof of Lemma 8) for all rounds 𝑟 ∈ N. Moreover, we do not reset the variable

roundReceived, because round received numbers do not change as we will demonstrate in this proof.

54



5.3 Consistency of the Hashgraph Algorithm

𝒞𝑟 ⊆ 𝒞′𝑟
Let 𝐸0 ∈ 𝒞𝑟 and 𝑟 ≤ 𝑟𝑟 be arbitrary; we first show 𝐸0 ∈ 𝒞𝑟 ⇒ 𝐸0 ∈ 𝒞′𝑟, by proving
roundReceived𝐺′(𝐸0) = 𝑟, i.e., 𝐸0 fulfills all three round received conditions for 𝑟 in 𝐺′. First,
because of roundReceived𝐺(𝐸) = 𝑟𝑟, we know by condition (1) from above that the fame for all
witnesses in𝒲𝑟′ , for all 𝑟′ ≤ 𝑟𝑟, is decided. By Corollary 5 is also the fame for all witnesses in
𝒲 ′𝑟′ , for all 𝑟′ ≤ 𝑟𝑟, decided; hence, 𝐸0 satifies condition (1) in 𝐺′.

Furthermore, by Lemma 8 applies ℱ𝑟′ = ℱ ′𝑟′ for all 𝑟′ ≤ 𝑟𝑟. This together with 𝐺 ⊆ 𝐺′ implies
that 𝐸0 is an ancestor of all (unique) famous witnesses in ℱ ′𝑟 ⊆ 𝐺′; hence, condition (2) is fulfilled
by 𝐸0 in 𝐺′.

Condition (3), i.e. 𝑟 is minimal in 𝐺′, still needs to be shown: We already know that the fame for
all witnesses𝒲 ′𝑟′ , for all 𝑟′ ≤ 𝑟𝑟, is decided in 𝐺′; therefore, we have to prove that 𝐸0 is not an
ancestor of all unique famous witnesses in 𝒰 ′𝑟−1. Because of 𝐸0 ∈ 𝒞𝑟, 𝐸0 cannot be an ancestor of
all 𝒰𝑟−1 witnesses, otherwise roundReceived𝐺(𝐸0) < 𝑟, which is a contradiction to 𝐸0 ∈ 𝒞𝑟. By
Corollary 4, 𝒰𝑟−1 = 𝒰 ′𝑟−1; hence, 𝐸0 is also not an anestor of all 𝒰 ′𝑟−1. Therefore, condition (3) is
satisfied by 𝐸0 in 𝐺′, and we have roundReceived𝐺′(𝐸0) = 𝑟 and 𝐸0 ∈ 𝒞′𝑟.

𝒞𝑟 ⊇ 𝒞′𝑟
Conversely, we show the contrapositive, i.e., the implication 𝐸0 /∈ 𝒞𝑟 ⇒ 𝐸0 /∈ 𝒞′𝑟. Let 𝐸0 ∈ 𝐺′ be
arbitrary but 𝐸0 /∈ 𝒞𝑟. First, suppose there exists a 𝑟′ ≤ 𝑟𝑟, 𝑟′ ̸= 𝑟, such that 𝐸0 ∈ 𝒞𝑟′ . But then, as
we just proved above, immediately follows 𝐸0 ∈ 𝒞′𝑟′ ; thus 𝐸0 /∈ 𝒞′𝑟. So, let us assume 𝐸0 has either
no round received in 𝐺 or roundReceived𝐺(𝐸0) > 𝑟𝑟, in what follows.

We want to show roundReceived𝐺′(𝐸0) ̸= 𝑟 to conclude 𝐸0 /∈ 𝒞′𝑟. We already know that all
witnesses in 𝒲𝑟′ , for all 𝑟′ ≤ 𝑟𝑟, are decided to be either famous or not; thus, for rounds
𝑟′ = 1, . . . , 𝑟𝑟, all famous and, in particular, unique famous witnesses 𝒰𝑟′ = 𝒰 ′𝑟′ are known (cf.
Lemma 8 and Corollary 4). Since, for all 𝑟′ ≤ 𝑟𝑟, 𝐸0 /∈ 𝒞𝑟′ and round received condition (1) is
fulfilled for 𝐸0 in 𝐺, 𝐸0 cannot be an anecstor of all 𝒰1, . . . ,𝒰𝑟𝑟 . By 𝒰1 = 𝒰 ′1, . . . ,𝒰𝑟𝑟 = 𝒰 ′𝑟𝑟 , we
conclude 𝐸0 has either no round received in 𝐺′ or roundReceived𝐺′(𝐸0) > 𝑟𝑟; hence, 𝐸0 /∈ 𝒞𝑟.

Proof of Δ = Δ′

It remains to show that all events in 𝒞𝑟𝑟 = 𝒞′𝑟𝑟 are identically sorted by consensus timestamp, and
remaining ties by their signature lexicographically. Clearly, 𝐻alg will calculate the correct order
for the latter if 𝒞𝑟𝑟 = 𝒞′𝑟𝑟 . So, it is sufficient to prove that events will receive the same consensus
timestamp by findOrder with input 𝐺 and 𝐺′.

The consensus timestamp of an event 𝐸0 ∈ 𝒞𝑟𝑟 is defined to be the median of the timestamps of the
events in 𝒮 ⊆ 𝐺, which is defined as

𝒮 = {𝐸1 ∈ 𝐺 |∃𝐸2 ∈ 𝐺 : 𝐸2 ∈ 𝒰𝑟𝑟
∧ 𝐸1 is a self-ancestor of 𝐸2

∧ 𝐸0 is an ancestor of 𝐸1.

∧ 𝐸0 is not an ancestor of 𝐸1’s self-parent}.

Observe that each event 𝐸1 ∈ 𝒮 is a self-ancestor of a unique famous witness in 𝒰𝑟𝑟 . Clearly, with
𝒰𝑟𝑟 = 𝒰 ′𝑟𝑟 and 𝐺 ⊆ 𝐺′ immediately follows 𝐸1 ∈ 𝒮 ′; thus, 𝒮 ⊆ 𝒮 ′. Conversely, we also have
𝒮 ′ ⊆ 𝒮; thus all events in 𝒞𝑟𝑟 , 𝒞′𝑟𝑟 are assigned identical consensus timestamps in 𝐺 and 𝐺′. We
conclude ∆ = ∆′.

55



5 Security and Accountability of Hashgraph

We have proven 𝒞𝑟 = 𝒞′𝑟, for all 𝑟 ≤ 𝑟𝑟, and ∆ = ∆′; by Equation (5.5) we conclude 𝑥 = 𝑥′, i.e.,
ℋalg assigns on input 𝐺 event 𝐸 the same consensus position in the total order of events asℋalg

with input 𝐺′. ■

Theorem 2 (The Hashgraph Algorithm Achieves Consistency).
Let 𝐺,𝐺′ be two consistent hashgraphs, both satisfying basic graph correctness, such that 𝐺 ∪𝐺′
contains less than 1

3𝑛 forking nodes. Letℋalg denote the hashgraph algorithm (see Lemma 9).

Then, the following statement holds true for each event 𝐸 ∈ 𝐺: Ifℋalg with input 𝐺 assigned 𝐸
consensus position 𝑥 in the total order of events, thenℋalg with input 𝐺′ will assign 𝐸 either no
consensus position or 𝑥.

Proof. Let 𝑥 be the consensus position of 𝐸 byℋalg on input 𝐺. Ifℋalg with input 𝐺′ assigns 𝐸
no consensus position, the theorem is fulfilled. So, supposeℋalg with input𝐺′ assigns 𝐸 consensus
position 𝑥′. Moreover, let 𝑦 be the consensus position 𝐸 received byℋalg on input 𝐺 ∪𝐺′, where
𝐺 ∪𝐺′ inherits the basic graph corretness property from 𝐺 and 𝐺′. By Lemma 9, we have 𝑥 = 𝑦
and 𝑥′ = 𝑦; thus, 𝑥 = 𝑥′. This concludes this proof. ■

5.4 Accountability of Hashgraph w.r.t. Consistency

Definition 10 (Consistency of Hashgraph).
Consider a run 𝜔 as in Definition 3, where 𝜔 /∈ 𝛼. Let nodes be the set of Hashgraph node
identities (as specified as a parameter for 𝒫H), and assume 𝐽 is an instance of ℱH

judge. Let
((pid 𝑖,msglist 𝑖), 𝜎) be a state update received by 𝐽 such that

• pid 𝑖 ∈ nodes,
• verifySigpk(pid𝑖)

((pid 𝑖,msglist), 𝜎) = true, and
• msglist 𝑖 ⊆ N× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}*.

Further, we defineℳ𝑖(⌊𝜔⌋) to be the set of all msglist 𝑖 (from pid 𝑖) that have been reported up to
point ⌊𝜔⌋.

Common Prefix. We say two message lists msglist1,msglist2 ∈ N× {0, 1}𝜂 × {0, 1}𝜂 × {0, 1}*
share a prefix if msglist1 ⊆ msglist2 or msglist2 ⊆ msglist1.

Self-Consistency. We call pid 𝑖 ∈ nodes self-consistent at point ⌊𝜔⌋ if all pairs of message lists
msglist1,msglist2 ∈ℳ𝑖(⌊𝜔⌋) share a prefix.

Node-Consistency. We say that pid1, pid2 ∈ nodes, pid1 ̸= pid2, are consistent at point ⌊𝜔⌋ if all
pairs of message lists msglist1 ∈ℳ1(⌊𝜔⌋), msglist2 ∈ℳ2(⌊𝜔⌋) share a prefix.

The system {ℰ ,𝒜,𝒫H} satisfies consistency in the run 𝜔 if all nodes are self-consistent at every
point of the run 𝜔, and all pairs of nodes are consistent at every point ⌊𝜔⌋.

Definition 11 (Accountability w.r.t. Consistency).
Consider a run 𝜔 as in Definition 3. Again, we denote with nodes the set of all Hashgraph node
identities and assume 𝐽 to be an instance of ℱH

judge.

56



5.4 Accountability of Hashgraph w.r.t. Consistency

𝛾1 (Self-Consistency). The security property 𝛾1 contains all runs, where 𝜔 /∈ 𝛼 and there exists
some participant pid ∈ nodes such that pid does not satisfy self-consisteny at some point ⌊𝜔⌋.

𝛾2 (Node-Consistency). This security property contains all runs, where 𝜔 /∈ 𝛼 and there exist two
participants pid1, pid2 ∈ nodes, pid1 ̸= pid2, such that pid1 and pid2 are not consistent at
some point ⌊𝜔⌋.

We define the accountability constraint 𝐶H
3 with the property 𝛾 = 𝛾1 ∪ 𝛾2 ∪ 𝛼 as

𝐶H
3 := (𝛾 ⇒ dis(pid1) | · · · | dis(pid𝑛)), (5.6)

and set the accountability property Φ3 := {𝐶H
3 }.

We say 𝒫H with parameters as in Definition 3 is individually accountable w.r.t. consistency if for
all environments ℰ and adversaries 𝒜 the system {ℰ ,𝒜,𝒫H} is Φ3-accountable w.r.t. 𝐽 .

Lemma 10.
Let 𝐺1, 𝐺2 be two hashgraphs, both satisfying basic graph correctness, with 𝐺1 ∪𝐺2 containing
less than 1

3𝑛 forking nodes. We denote with msglist1,msglist2 the message list of ordered entries
thatℋalg outputs on input 𝐺1 and 𝐺2, respectively. Then, it holds true that msglist1 and msglist2
share a prefix, i.e., msglist1 ⊆ msglist2 or msglist2 ⊆ msglist1 (*⋆).

Proof. Let 𝐺1, 𝐺2 be the hashgraphs from above. We denote with 𝐸1
1 , 𝐸

1
2 , . . . , 𝐸

1
𝑘1

the total order
of 𝑘1 ∈ N events ℋalg outputs with input 𝐺1, i.e., the order of events pid1 calculates locally by
running the Hashgraph algorithm ℋalg . Analogously, let 𝐸2

1 , 𝐸
2
2 , . . . , 𝐸

2
𝑘2

be the total order of
𝑘2 ∈ N events byℋalg on input𝐺2. We know𝐺1 ∪𝐺2 has less than 1

3𝑛 forking nodes and both𝐺1

and 𝐺2 satisfy basic graph correctness. Moreover, 𝐺1, 𝐺2 are consistent hashgraphs by Lemma 3.
We therefore conclude with Theorem 2, 𝐸1

𝑖 = 𝐸2
𝑖 for all 𝑖 = 1, . . . ,min{𝑘1, 𝑘2}, i.e., pid1 and

pid2 calculate the same prefix of ordered events.

It still needs to be shown that msglist1,msglist2 share a prefix. Observe in the implementation of
findOrder in 𝒫H

node or ℱH
judge that findOrder calculates with input 𝐺1 and 𝐺2 the same order,

say 𝑗, for an (yet) unordered message list entry (𝜀, txId , eventID ,msg), where msg is from the
transaction set txs of an ordered event 𝐸1

𝑘 = 𝐸2
𝑘 , 𝑘 < max{𝑘1, 𝑘2}. That is, findOrder adds

(𝑗, txId , eventID ,msg) to the message list msglist 𝑖 with input 𝐺𝑖, for 𝑖 ∈ {1, 2}. This holds
because of the common prefix of ordered events of 𝐺1 and 𝐺2 and the fact that findOrder iterates
over all unordered entries, belonging to the same event, in the same order. Hence, msglist1 and
msglist2 share a common prefix of ordered message list entries.

Notice that many of the above statements may not hold true with negligible probability. ■

Theorem 3 (Hashgraph Achieves Individual Accountability w.r.t. Consistency).
Consider runs for the system {ℰ ,𝒜,𝒫H} with parameters for 𝒫H as in Definition 3 and let 𝐽
be an instance of ℱH

judge. Then, it holds true that 𝒫H achieves individually accountability w.r.t.
consistency.

Proof. Let 𝒫H be the Hashgraph protocol with parameters as described above, and let ℰ be an
arbitrary environment and 𝒜 be an arbitrary adversary. Towards proving this theorem, we have
to show that 𝐽 ensures Φ3-accountability for the system Q = {ℰ ,𝒜,𝒫H}. Again, we do this by
proving fairness and completeness independently. As before, we consider only a single Hashgraph
instance in this proof. We first state some observations and general procedures in ℱH

judge:

57



5 Security and Accountability of Hashgraph

Handling of state updates in ℱH
judge with invalid signatures

We discussed earlier for the proof of Lemma 2 that all (supposed) state updates ((pid , currentState),
𝜎) submitted to 𝐽 by some client are discarded if the containing signature is invalid with the
tuple (pid , currentState) (i.e., verifySigpk(pid)((pid , currentState), 𝜎) outputs false) since
𝐽 cannot definitively decide if pid , the reporting client, or both misbehaved. Consequently, such
invalid state updates are ignored and do not influence any processing in ℱH

judge.

Handling of valid state updates w.r.t. basic correctness at ℱH
judge

We first describe how 𝐽 processes valid state updates (i.e., state updates containing a valid signature)
and which circumstances can lead to some node pid being blamed:

• 𝐽 first checks whether the message list msglist of the state update is a subset of N× {0, 1}𝜂 ×
{0, 1}𝜂 × {0, 1}*; that is, 𝐽 ensures condition (ii) of 𝛼1.

• Next, 𝐽 checks if condition (i) of 𝛼4 is satisfied, i.e., all entries (ctr , txId , eventID ,msg) ∈
msglist have a valid transaction ID, namely hash(msg) = txId .

• Lastly, condition (ii) of 𝛼4 is checked by 𝐽 , i.e., msglist from pid must be a consecutive
sequence with no duplicates or gaps w.r.t. the parameter ctr ; formally, there exists exactly one
entry (ctr , txId , eventID ,msg) ∈ msglist for all ctr = 1, . . . , |msglist |.

In Lemma 2 it was proven that 𝐽 is fair and complete under the above three basic correctness
conditions. Particularly, all the aforementioned conditions for basic correctness hold true in a run
𝜔 ∈ 𝛾, i.e., a run that violates consistency does satisfy basic correctness, by definition of 𝛾. Since
𝒫H is accountable w.r.t. basic correctness, it remains solely to prove that 𝐽 is fair and complete
w.r.t. the security properties 𝛾1 and 𝛾2.

Handling of message list states of nodes
Analogous to clients, 𝐽 stores in the local variable states for each node pid the longest known
message list, i.e., states[pid ] = msglist ′ expresses that msglist ′ is the longest message list of pid ,
which was previously submitted by some client. After initialization of 𝐽 applies states[pid ] = ∅,
for all pid ∈ nodes, since no client submitted any state update yet.

𝐽 receives a new longest message list from pid

If the received message list (msglist) contained in a valid state update passes all basic correctness
conditions, and it is the longest known message list from pid so far, i.e., states[pid ] ⊊ msglist ,
then 𝐽 updates the state for pid by setting states[pid ]← msglist . Notice that the older state of pid
(states[pid ] before the assignment of msglist) must be a subset of the newly received msglist . If
this is not the case, then there is a violation of self-consistency and pid must have misbehaved (we
discuss this case later).

Besides the internal variable states that stores all longest submitted message lists from each
node so far, 𝐽 manages another internal variable for storing the longest so far received message
list from all nodes that have not been blamed for a violation of self-consistency (𝛾1) or node-
consistency (𝛾2), namely msglistmax. This initially empty message list is set to msglist if not only
states[pid ] ⊊ msglist applies, but also msglistmax ⊊ msglist holds true. Observe that even if
some node, say pid , violates self-consistency, it still holds true that states[pid ] ⊆ msglistmax. After
𝐽 outputs a verdict for pid , due to the violation of self-consistency, 𝐽 recalculates msglistmax by
including only nodes that have not violated consistency so far.

58



5.4 Accountability of Hashgraph w.r.t. Consistency

Nodes that 𝐽 has determined to have misbehaved w.r.t. consistency are captured in the set
consistencyVerdicts. Misbehaving nodes are added to this set after 𝐽 outputs a verdict for such
nodes. But it still remains to be shown that 𝐽 actually blames nodes that violate consistency. We
will prove later that 𝐽 indeed blames nodes that violate consistency; thus, consistencyVerdicts
captures exactly all nodes that violated 𝛾.

This completes the processing of a common state update in ℱH
judge where node-consistency is not

violated.

Forking nodes
𝐽 keeps track of all nodes that violate fork-freeness by means of the set forkingNodes ⊆ nodes.
Observe in Figure 3.13 that 𝐽 does not only output a verdict for a forking node but also adds the
misbehaving node to the set forkingNodes. Since all honest nodes report their local hashgraph 𝐺
to 𝐽 before runningℋalg with input 𝐺 to calculate the order of entries in the message list, 𝐽 will
know if EW, the union of all reported hashgraphs so far, contains at least 1

3𝑛 forking nodes. If this
is the case, 𝐽 no longer outputs any verdicts regarding 𝛾1, 𝛾2 for the rest of the run. This is vital to
ensure that 𝐽 does not blame any honest nodes that may calculate false states, due to the missing
precondition of less than 1

3𝑛 forking nodes of Lemma 10.6

Notice that two honest nodes can each have a hashgraph with less than 1
3𝑛 forking nodes, but the

union of both hashgraphs, say 𝐺, contains 1
3𝑛 forking nodes. Besides, these two nodes may even

calculate message lists that do not have a common prefix. But this implies by Lemma 10 that 𝐺 has
more than 1

3𝑛 forking nodes.

Verdicts of 𝐽 w.r.t. consistency 𝛾
Observe in Figure 3.14 of ℱH

judge that there is exactly one verdict for security properties 𝛾1 and
𝛾2, namely dis(pid send ) and dis(pid), where pid , pid send ∈ nodes. Clearly, these verdicts achieve
individual accountability for the accountabillity constraint 𝐶H

3 .

Fairness. Analogously to the proof for fork-freeness, it has to be shown that Pr[Q(1𝜂) ↦→
{(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}] is negligible as a function in 𝜂, i.e., 𝐽 renders a false verdict 𝜓 only in a
negligible amount of runs. In the proof of Lemma 2, we already showed that 𝐽 is fair w.r.t. the
verdicts of basic correctness (𝛼); therefore it is left to show that 𝐽 is also fair for the verdicts
capturing properties 𝛾1 and 𝛾2. In the following, let msglist be a message list of a valid state update
of an honest node pid ∈ nodes.

𝐽 is fair w.r.t. the verdict of 𝛾1

One can observe that 𝐽 outputs a verdict for the violation of self-consistency only if states[pid ]
and msglist do not share a common prefix, i.e., states[pid ] ⊈ msglist and msglist ⊈ states[pid ].
Recall that states[pid ] stores the longest of all previously submitted message lists that were signed
by pid .

6The precondition of less than 1
3
𝑛 forking nodes can be traced back to the strongly seeing lemma.

59



5 Security and Accountability of Hashgraph

The proof for fairness of property 𝛼2 illustrated (basic graph correctness) that honest nodes only
submit hashgraphs to 𝐽 that satisfy all conditions for basic graph correctness. In particular,
the aforementioned proof also demonstrates that hashgraphs of honest nodes fulfill basic graph
correctness at every point during the run 𝜔, since honest nodes only merge other hashgraphs that
fulfill basic graph correctness into their local one.

Let 𝐺1 be the hashgraph pid used to calculate states[pid ], and 𝐺2 be the hashgraph pid used to
calculate msglist . If pid is honest, it will have submitted 𝐺1 and 𝐺2 to 𝐽 . The judge 𝐽 will not
render any verdicts if it detects at least 1

3𝑛 forking nodes; thus, 𝐽 is always fair if it detects 1
3𝑛

forking nodes. Suppose this is not the case, then it holds in particular that 𝐺1 ∪𝐺2 contains less
than 1

3𝑛 forking nodes (because EW contains less than 1
3𝑛 forking nodes). Hence, msglist and

states[pid ] share a prefix by Lemma 10 (*⋆), and thus 𝐽 will never blame an honest node for a
violation of 𝛾1 (*⋆).

𝐽 is fair w.r.t. the verdict of 𝛾2

Observe in the implementation ofℱH
judge that 𝐽 blames nodes for a violation of 𝛾2 only if msglistmax

and msglist do not share a prefix. If this is the case, 𝐽 recalculates pid ’s latest state (msglist) on
the latest submitted hashgraph, say 𝐺, by pid and checks whether states[pid ] is a subset of the
recalculated state of pid . Let 𝐺′ be the hashgraph pid used to calculate states[pid ], i.e., pid ran
ℋalg with input 𝐺′ which outputted states[pid ]. Honest nodes always report new hashgraphs (i.e.,
a merged hashgraph of a sync that pid accepted) to 𝐽 . Thus, 𝐺′ = 𝐺 or 𝐺′ ⊊ 𝐺 if 𝐺 is a more
recent hashgraph of pid (cf. basic correctness 𝛼3).

We know 𝐺 contains less than 1
3𝑛 forking nodes (otherwise 𝐽 would know about it and discard

any new received message lists). Accordingly, we can conclude with Lemma 10 that msglist and
states[pid ] share a prefix (*⋆). Because of 𝐺′ ⊆ 𝐺, states[pid ] ⊆ msglist follows. Hence, pid will
not be blamed by 𝐽 (*⋆).

Consequently, 𝐽 is fair w.r.t. the verdicts for 𝛾 except for a negligible amount of runs. That is,
Pr[Q(1𝜂) ↦→ {(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}] is negligible as a function in 𝜂.

Completeness. For completeness, it must be shown that Pr[Q(1𝜂) ↦→ ¬(𝐽 : Φ2)] is negligible
as a function in 𝜂. That is, 𝐽 ensures the accountability constraint 𝐶H

3 in all but a negligible
number of runs of the system {ℰ ,𝒜,𝒫H}. Specifically, for a run 𝜔 ∈ 𝛾, 𝐽 must state a verdict⋀︀

𝑖∈𝐼 dis(pid 𝑖) for ∅ ≠ 𝐼 ⊂ {1, . . . , 𝑛} to ensure individually accountability of Φ3. As discussed
above, all verdicts for runs in 𝛾1 or 𝛾2 accomplish individually accountability, and for runs in 𝛼 we
already showed that 𝐽 satisfies individual accountability w.r.t. basic correctness (see Lemma 2).
Therefore, it is left to prove that 𝐽 is also complete for runs in 𝛾1 ∪ 𝛾2. Subsequently, let 𝜔 be a
run of 𝛾1, 𝛾2, or both (thus, basic correctness is always satisfied). For the rest of this proof, we
differentiate whether 1. 𝜔 ∈ 𝛾1 or 2. 𝜔 ∈ 𝛾2:7

1. Let 𝜔 ∈ 𝛾1.

Then, by definition of 𝛾1, there exists some pid ∈ nodes that does not satisfy self-consistency at
some point ⌊𝜔⌋, i.e., some client(s) submitted message lists msglist1,msglist2 to 𝐽 in separate
valid state updates, each containing a valid signature 𝜎𝑖 of msglist 𝑖 that was sigend by pid , for

7For proving completeness, the case 𝜔 ∈ 𝛾1 ∩ 𝛾2 is not relevant because it is already included in case 1. and 2..

60



5.4 Accountability of Hashgraph w.r.t. Consistency

𝑖 ∈ {1, 2}. W.l.o.g. let |msglist1| < |msglist2|. Next, we do a case distinction whether (i) 𝐽
stated some verdict for pid preceding point ⌊𝜔⌋ or 𝐽 identified at least 1

3𝑛 forking nodes (i.e.,
|forkingNodes| ≥ 1

3𝑛), or (ii) pid has not been blamed by 𝐽 until point ⌊𝜔⌋.

Case (i): dis(pid) ∈ verdicts ∨ |forkingNodes| ≥ 1
3𝑛

First, if |forkingNodes| ≥ 1
3𝑛, then 𝐽 identified and blamed at least 1

3𝑛 nodes for violation of
fork-freeness; therefore, 𝐽 ensures the constraint 𝐶H

3 and completeness is satisfied for this case.

Suppose less than 1
3𝑛 forking nodes. Observe in Figure 3.14 of ℱH

judge that 𝐽 discards all message
lists for nodes that are already blamed. Since basic correctness is satisfied, pid must have violated
fork-freeness or consistency at some point prior to ⌊𝜔⌋ . Trivially, 𝐽 already blamed pid ; thus, 𝐽
also ensures the constraint 𝐶H

3 in this case.

Case (ii): dis(pid) /∈ verdicts

It must be shown that 𝐽 states in this run the verdict dis(pid) for the violation of self-consistency by
pid . We prove this statement by showing the following proposition:

We claim that pid satisfies self-consistency in every point ⌊𝜔⌋ before msglist2 was received by 𝐽 ,
i.e., msglist2 is the first message list received by 𝐽 such that self-consistency is violated.

Direct proof
Let msglist ′2 be the message list from pid that was received by 𝐽 such that pid violates self-
consistency the first time in run 𝜔. Accordingly, there exists another msglist ′1 ⊆ states[pid ], so that
msglist ′1 and msglist ′2 do not share a prefix. Particularly, it holds true that msglist ′1 ⊈ msglist ′2 and
msglist ′2 ⊈ msglist ′1. But then we also have states[pid ] ⊈ msglist ′2. Therefore, |states[pid ]| <
|msglist ′2|, or states[pid ] and msglist ′2 do not share a prefix. From both cases we conclude
msglist ′2 ⊈ states[pid ]. Observe in Figure 3.14 that 𝐽 states the verdict dis(pid) if, as in our case,
states[pid ] and msglist ′2 do not have a common prefix. However, since dis(pid) /∈ verdicts, it must
be that msglist ′2 = msglist2. We conclude that pid satisfies self-consistency before 𝐽 received
msglist2; this proves the statement.

The above proof demonstrates in particular that 𝐽 states a verdict for pid . We conclude that 𝐽 is
complete w.r.t. self-consistency (*⋆).

2. Let 𝜔 ∈ 𝛾2.

By definition of 𝛾2, there exist two nodes pid1, pid2 ∈ nodes, pid1 ̸= pid2 such that pid1 and
pid2 are not consistent at some point ⌊𝜔⌋, i.e., there exist two message lists

msglist1 ∈ℳ1(⌊𝜔⌋),msglist2 ∈ℳ2(⌊𝜔⌋)

from valid state updates that were reported to 𝐽 by some client(s) such that msglist1 and msglist2
do not share a prefix at this point ⌊𝜔⌋. Specifically, for the two message lists applies msglist1 ⊈
msglist2 ∧ msglist2 ⊈ msglist1. We have to prove for completeness that 𝐽 states at least one
verdict, blaming pid1 or pid2.

61



5 Security and Accountability of Hashgraph

W.l.o.g. let msglist2 be the latter of the two message lists that 𝐽 receives. We fix ⌊𝜔⌋ to be the
point in 𝜔 where 𝐽 just receives msglist2 without doing any further processing. If we talk about a
point in 𝜔 prior to ⌊𝜔⌋, we assume 𝐽 has not yet received msglist2. To begin with, we assume that
⌊𝜔⌋ is the first point in 𝜔 such that node-consistency is violated. We will later show that 𝐽 outputs
additional verdicts for further node-consistency violations.8

First, assume there are at least 1
3𝑛 forking nodes, i.e., |forkingNodes| ≥ 1

3𝑛. But then 𝐽 must
have already blamed at least 1

3𝑛 nodes due to violation of fork-freeness before ⌊𝜔⌋; thus, 𝐽 fulfills
completeness under this circumstance.

So, suppose |forkingNodes| < 1
3𝑛. Since ⌊𝜔⌋ is the first point in 𝜔 where node-consistency is

violated, 𝐽 stated no verdict for pid1 and pid2 w.r.t. node-consistency, due to 𝐽’s fairness w.r.t.
node-consistency, until ⌊𝜔⌋. If pid1 or pid2 violates self-consistency at point ⌊𝜔⌋ (or before), 𝐽 will
(have) output(ted) a verdict for pid1 or pid2, as demonstrated in the completeness proof of 𝛾1; hence,
completeness for 𝛾2 is again satisfied. Therefore, we assume for the rest of this proof that pid1 and
pid2 satisfy self-consistency at point ⌊𝜔⌋ and conclude pid1, pid2 /∈ consistencyVerdicts at ⌊𝜔⌋.
At the beginning of this proof we discussed that msglistmax is the longest state of all nodes until there
is a node-consistency violation. Particularly, at point ⌊𝜔⌋ holds true that msglist1 ⊆ states[pid1]
and states[pid 𝑖] ⊆ msglistmax, for 𝑖 ∈ {1, 2}.

Processing of 𝐽 upon receiving msglist2
We describe the processing of 𝐽 upon receiving msglist2: Since msglist2 is a proper superset
of states[pid2] (otherwise, msglist2 ⊆ states[pid2] implies that msglist2 ⊆ msglistmax and thus
msglist1,msglist2 share a prefix which is clearly a contradiction), 𝐽 sets states[pid2]← msglist2.
Next, we have to prove that msglistmax and msglist2 do not share a prefix. This is important so that
𝐽 can call the internal function generateReport, which tries to recalculate the state of all nodes
and blames participants for which this is not possible.

Proof: msglistmax ⊈ msglist2
From above applies msglist1 ⊆ states[pid1] ⊆ msglistmax. Hence, msglistmax ⊈ msglist2
(otherwise msglist1 ⊆ msglistmax ⊆ msglist2, which is a contradiction to msglist1 ⊈ msglist2).

Proof: msglist2 ⊈ msglistmax

Suppose msglist2 ⊆ msglistmax for the purpose of contradiction. This and the valid statement
msglist1 ⊆ msglistmax implies that msglist1 and msglist2 share a prefix. Based on this contradic-
tion, we conclude msglist2 ⊈ msglistmax.

Therefore, msglistmax and msglist2 do not share a prefix. Consequently, 𝐽 calls the internal function
generateReport since msglist2 = states[pid2]. Due to msglist1 ⊆ states[pid1],msglist2 =
states[pid2] andmsglist1,msglist2 not sharing a prefix, it must be that states[pid1] and states[pid2]
also cannot share a prefix. This will be important in the function generateReport:

Proof: 𝐽 outputs a verdict in generateReport

We prove that 𝐽 outputs a verdict for pid1 or pid2 in generateReport. Let 𝐺1, 𝐺2 be the latest
submitted hashgraphs of pid1 and pid2, respectively. 𝐽 recalculates the message lists for pid1

and pid2 by running ℋalg with input 𝐺1 and 𝐺2. Since 𝜔 /∈ 𝛼, 𝐺1 and 𝐺2 must satisfy basic
graph correctness. Furthermore, the proof of Lemma 3 demonstrates that 𝐺1, 𝐺2 are consistent

8We stress that the additional verdicts are not necessary in order to prove that 𝐽 is complete w.r.t. node-consistency.

62



5.5 Closing Discussion

hashgraphs. Notice that because |forkingNodes| < 1
3𝑛, it holds in particular true that 𝐺1 ∪𝐺2 has

less than 1
3𝑛 forking nodes. Let msglist1,msglist2 be the message lists 𝐽 recalculates with input

𝐺1 and 𝐺2, respectively. By Lemma 10 we conclude that msglist1,msglist2 share a prefix (*⋆), but
we know states[pid1], states[pid2] do not have a common prefix. Thus, states[pid1] ⊈ msglist1
or states[pid2] ⊈ msglist2. Hence, 𝐽 outputs a verdict for pid1 or pid2, and we conclude 𝐽 is
complete w.r.t. node-consistency in all but a negligible amount of runs of Q.

Remark
There are many possible outcomes of generateReport: pid2 is not necessarily misbehaving, 𝐽
may output a verdict for both participants, or 𝐽 may even output additional verdicts for participants
other than pid1 and pid2. But we stress that at least either pid1 or pid2 is blamed, as the above
proof demonstrates. The function generateReport can blame arbitrary many participants: Instead
of recalculating the states for pid1 and pid2 only, the functions compares all known states of
participants to the recalculated state in generateReport. If their is any discrepancy, i.e., the
known state is not a subset of the recalulated state, then 𝐽 blames the corresponding participant. By
Lemma 10, all recalculated states in generateReport share a prefix. In particular applies for all
nodes pid that are not blamed in generateReport, states[pid ] ⊆ msglist, where msglist is the
recalculated state of pid . Thus, msglistmax is the longest state of all nodes, not violating consistency,
after generateReport finishes; these are all nodes that are not in the set consistencyVerdicts.
Next, we show that 𝐽 outputs additional verdicts for node-consistency violations.

Additional verdicts
Let pid1, pid2 be two nodes that violate node-consistency at some point ⌊𝜔⌋ in the run 𝜔. Again, let
⌊𝜔⌋ be the first point in 𝜔 where 𝐽 received both message lists, not sharing a prefix, of pid1 and pid2

without doing any further processing. We again assume that forkingNodes < 1
3𝑛 and pid1, pid2 have

not been blamed by 𝐽 for any consistency violation until ⌊𝜔⌋, i.e., pid1, pid2 /∈ consistencyVerdicts.
The only difference to the proof above is that we now allow possible node-consistency violations
of other nodes prior to ⌊𝜔⌋. With one exception, the proof is analogous: In the former proof, we
easily observed that msglistmax must be the longest state of all nodes since there was no previous
node-consistency violation (see above); but this may not be true in this case. However, because of
the implementation of generateReport, it still applies that msglistmax is the longest state of all
nodes that have not violated consistency at ⌊𝜔⌋. Hence, states[pid1], states[pid2] ⊆ msglistmax

is again fulfilled upon ⌊𝜔⌋. The remaining proof is completely analogous and 𝐽 is guaranteed to
blame pid1 or pid2.

Conclusion. We have succesfully proved that 𝐽 ensures Φ3-accountability for the system
{ℰ ,𝒜,𝒫H} with parameters as in Definition 3, by showing that 𝐽 satisfies both fairness and
completeness except for a negligible amount of runs, i.e., Pr[Q(1𝜂) ↦→ {(𝐽 : 𝜓) | ⌊𝜔⌋ ̸|= 𝜓}] and
Pr[Q(1𝜂) ↦→ ¬(𝐽 : Φ3)] are negligible as a function in 𝜂. This concludes the proof. ■

5.5 Closing Discussion

In this section we mainly discuss some strengths and weaknesses of our iUC model for hashgraph,
specifically concerning consistency.

63



5 Security and Accountability of Hashgraph

First, all our security results depend on an ideal certificate authority functionality ℱcert. Similar to
the work by Graf et al. in [10], it can be shown that all results carry over if ℱcert is replaced by its
realization protocol, where signing is again done using an EUF-CMA secure signature scheme.

What 𝐽 models in reality. In our model, (honest) nodes report their hashgraph to 𝐽 , which then
uses this information to render verdicts. Additionally, 𝐽 collects auxiliary evidence, in from of
states from nodes, to capture violations of consistency. In a real run of the hashgraph protocol, this
corresponds to the situation where a client finds an inconsistency between the states of different
nodes. That is, some nodes have a divergent order of messages. We capture this property in our
definition for node-consistency.

Upon determining such an inconsistency, nodes would have to provide their hashgraph, which
they have used to calculate their last state. These evidences are then given to other parties (e.g.
other nodes or independent third parties [10]) to determine which party is responsible for the
inconsistency; this is done by following the judging procedures as defined in our iUC model.
Concretely, evidences (the hashgraphs and message lists) are first checked whether they fulfill basic
correctness in order to prevent malicious participants to escape a verdict by providing malformed
evidence. Secondly, since we do not restrict our model to less than 1

3𝑛 dishonest participants, it
must be assured that the union of all submitted hashgraphs contains less than 1

3𝑛 forking nodes
before making any judgements w.r.t. consistency. Only if the previous two conditions are fulfilled,
the judging procedure for consistency is executed. However, we proved that in any case at least one
node will always be determined to have misbehaved. Besides, if one of the nodes withholds the
requested hashgraph, it is trivially guilty for disrupting the protocol [10].

Determining a consistency violation. In the judging procedure, recognition of consistency
violations is exclusively determined by means of submitted message lists of clients (i.e., the states
of nodes). No additional data, in form of hashgraphs, from nodes is required before a consistency
violation is detected. This is indispensable in a real run of the protocol because it allows clients or
nodes to determine a violation of consistency by following the judging procedure in ℱH

judge. The
function call generateReport corresponds the situation where a consistency violation is detected,
and nodes have to submit their hashgraphs as evidence; this situation was described in the previous
paragraph.

Relaxing requirements for real-world employments. By the occurrence of a consistency
violation, nodes have the burden of proof. That is, an honest node must put forward valid evidence
in form of a hashgraph that can be used to recalculate its last ordering of messages and thus justify
its state. If an honest node is unable to provide such a hashgraph, it is guilty and will accordingly be
blamed in our model. In reality, this is a comparatively strict requirement: In a real implementation
of the Hashgraph algorithm, nodes may not store the complete hashgraph and may only keep
unordered events (i.e., events with no consensus position in the total order of events). However,
nodes may agree out of band on the order of the first 𝑚 messages (more specifically, the ordering of
message list entries). Since message list entries also contain the eventID of the event in which the
message was included, nodes may also agree on the order of the first 𝑘𝑚 events. By this, nodes must
agree on the total order of all messages included in these 𝑘𝑚 events. Therefore, nodes can report
pruned hashgraphs without these 𝑘𝑚 events, for which consensus is already achieved. Besides some

64



5.5 Closing Discussion

formal inconsistency problems (such as the genesis event or the correct message list entry order), all
proved results should hold true for such pruned hashgraphs. In particular, the Hashgraph algorithm
should output the same order of events, for which consensus is not yet reached, for all equally pruned
hashgraphs of honest nodes. Herewith, it can be again checked, following the judging procedure in
generateReport, if all disputed subsets of states can be recalculated with the pruned hashgraphs.
Therefore, misbehaving participants can be again undisputedly identified.

65





6 Conclusion

In this work, we succesfully applied the accountability framework from Küsters et al. in [14] to
demonstrate that the Hashgraph protocol fulfills accountability w.r.t. consistency, i.e., individual
nodes of a hashgraph instance can be rightfully hold accountable for misbehavior. To achieve
this, we constructed in Section 3.2 an iUC model of the Hashgraph protocol with the extension
of the ℱH

judge protocol. We presented in Section 5.4 a rigorous proof that individual participants,
violating consistency, can be identified and blamed. Moreover, due to the fairness property of
the accountability framework, we conclude that honest nodes, following the hashgraph protocol,
will never be accused of misbehavior by our judging procedure. Our proof for accountability w.r.t.
consistency relies on three cornerstones: 1) the possibility to hold nodes accountable w.r.t. basic
correctness which prevents participants (nodes and clients) to submit malformed evidence, 2) the
ability to identify forking nodes, and 3) the consistency of the hashgraph algorithm, i.e., honest
nodes with different hashgraphs will assign events (eventually) the same consensus position in the
total order of events.

1) In Section 5.1, we demonstrated that the Hashgraph algorithm satisfies basic correctness w.r.t.
consistency. This result enables us to enforce structural properties of submitted hashgraphs
and message lists. Particularly, the basic graph correctness property of hashgraphs is an
indispensable prerequisite for almost all proofs in our work.

2) Secondly, we proved in Section 5.2 that Hashgraph is accountable w.r.t. fork-freeness. Fur-
thermore, our implementation of ℱH

judge is able to output multiple verdicts for different nodes,
violating fork-freeness. This is of exceptional importance because it nullifies the precondition
of having more than 2

3𝑛 honest nodes. Therefore, we were able to prove accountability w.r.t.
consistency of the system {ℰ ,𝒜,𝒫H} without assuming a supermajority of honest nodes. We
emphasize that our results for accountability w.r.t. consistency would not hold without the
detection of forking nodes.

3) Lastly, we put forward in Section 5.3 a complete proof that illustrates the consistency of the
Hashgraph algorithm. This result is captured by Theorem 2. By that, we proved that the
Hashgraph algorithm will not assign two different consensus positions of an event for two
hashgraphs, satisfying basic graph correctness with less than 1

3𝑛 forking nodes, as input. This
result is essential to show that our judging procedure for consistency is both fair and complete.
Our proof is considerably more detailed compared to the proof presented in [2] by Leemon Baird.
Therefore, we believe our proof is also of interest independent to our work for accountability.

In Section 5.4 we illustrated, using the three results above, that Hashgraph does achieve accountability
w.r.t. consistency. Moreover, we demonstrated in our approach that the judging procedure is
able to output multiple verdicts, as long as less than 1

3𝑛 forking nodes are detected. Furthermore,
we illustrated how our judging procedure could be employed for real-world applications of the

67



6 Conclusion

Hashgraph algorithm, and discussed potential problems for real-world usages. We also demonstrated,
without proving it formally, how these problems can be mitigated if participants agree on a prefix of
the list of ordered messages.

68



Bibliography

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart,
C. Ferris, G. Laventman, Y. Manevich, et al. “Hyperledger fabric: a distributed operating
system for permissioned blockchains”. In: Proceedings of the thirteenth EuroSys conference.
2018, pp. 1–15 (cit. on p. 9).

[2] L. Baird. “The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance”.
In: Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep 34 (2016) (cit. on pp. 9–11, 25,
34, 50, 67).

[3] L. Baird, M. Harmon, P. Madsen. “Hedera: A public hashgraph network & governing council”.
In: White Paper 1 (2019) (cit. on pp. 9, 10).

[4] L. Baird, A. Luykx. “The Hashgraph Protocol: Efficient Asynchronous BFT for High-
Throughput Distributed Ledgers”. In: 2020 International Conference on Omni-layer Intelligent
Systems (COINS). 2020, pp. 1–7. doi: 10.1109/COINS49042.2020.9191430 (cit. on pp. 9, 10).

[5] R. G. Brown. “The corda platform: An introduction”. In: Retrieved 27 (2018), p. 2018 (cit. on
p. 9).

[6] J. Camenisch, S. Krenn, R. Küsters, D. Rausch. “iUC: Flexible Universal Composability Made
Simple”. In: Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference
on the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part III. Vol. 11923. Lecture Notes in Computer
Science. Springer, 2019, pp. 191–221. url: https://publ.sec.uni- stuttgart.de/

camenischkrennkuestersrausch-asiacrypt-iuc-2019.pdf (cit. on pp. 17, 18, 21, 22).

[7] R. Canetti, A. Jain, A. Scafuro. Practical UC security with a Global Random Oracle.
Cryptology ePrint Archive, Paper 2014/908. https://eprint.iacr.org/2014/908. 2014. url:
https://eprint.iacr.org/2014/908 (cit. on p. 28).

[8] K. Crary. “Verifying the hashgraph consensus algorithm”. In: arXiv preprint
arXiv:2102.01167 (2021) (cit. on pp. 10, 11).

[9] Forbes. Hedera Hashgraph Explored. https://www.forbes.com/sites/forbesdigitalassets/
2019/09/26/hedera-hashgraph-explored/#70dad16d7bd0. (Accessed on 2022-07-10). Sept.
2019 (cit. on p. 9).

[10] M. Graf, R. Küsters, D. Rausch. Accountability in a Permissioned Blockchain: Formal
Analysis of Hyperledger Fabric. Tech. rep. 2020/386. Cryptology ePrint Archive, 2020. url:
https://publ.sec.uni-stuttgart.de/grafkuestersrausch-iacr-2020.pdf (cit. on pp. 10,
35, 40, 64).

[11] M. Graf, D. Rausch, V. Ronge, C. Egger, R. Küsters, D. Schröder. A Security Framework for
Distributed Ledgers. Tech. rep. 2021/145. Cryptology ePrint Archive, 2021. url: https:
//publ.sec.uni-stuttgart.de/grafrauschrongeeggerkuestersschroeder-iacr-2021.pdf

(cit. on p. 27).

69

https://doi.org/10.1109/COINS49042.2020.9191430
https://publ.sec.uni-stuttgart.de/camenischkrennkuestersrausch-asiacrypt-iuc-2019.pdf
https://publ.sec.uni-stuttgart.de/camenischkrennkuestersrausch-asiacrypt-iuc-2019.pdf
https://eprint.iacr.org/2014/908
https://eprint.iacr.org/2014/908
https://www.forbes.com/sites/forbesdigitalassets/2019/09/26/hedera-hashgraph-explored/#70dad16d7bd0
https://www.forbes.com/sites/forbesdigitalassets/2019/09/26/hedera-hashgraph-explored/#70dad16d7bd0
https://publ.sec.uni-stuttgart.de/grafkuestersrausch-iacr-2020.pdf
https://publ.sec.uni-stuttgart.de/grafrauschrongeeggerkuestersschroeder-iacr-2021.pdf
https://publ.sec.uni-stuttgart.de/grafrauschrongeeggerkuestersschroeder-iacr-2021.pdf


[12] L. Hedera Hashgraph. Hedera Global Governing Council. https://hedera.com/council.
(Accessed on 2022-07-10) (cit. on p. 10).

[13] L. Hedera Hashgraph. Hedera Governing Council Votes to Purchase Hashgraph IP, Commits
to Open Source World’s Most Advanced Distributed Ledger Technology. https://hedera.
com/blog/hedera-governing-council-votes-to-purchase-hashgraph-ip-commits-to-

open- source- worlds- most- advanced- distributed- ledger- technology. (Accessed on
2022-07-10). Jan. 2022 (cit. on p. 9).

[14] R. Küsters, T. Truderung, A. Vogt. “Accountability: Definition and Relationship to Verifi-
ability”. In: Proceedings of the 17th ACM Conference on Computer and Communications
Security (CCS 2010). ACM Press, 2010, pp. 526–535. url: https://publ.sec.uni-

stuttgart.de/kuesterstruderungvogt-ccs-2010.pdf (cit. on pp. 10, 35, 36, 67).

[15] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentralized Business
Review (2008), p. 21260 (cit. on p. 9).

[16] Swirlds, Inc. GitHub - Swirlds Hashgraph Platform code for Open Review. https://github.
com/hashgraph/swirlds-open-review. (Accessed on 2022-07-10). 2016 (cit. on p. 9).

[17] The Hindu. Can hashgraph succeed blockchain as the technology of choice for cryptocur-
rencies? https://www.thehindu.com/sci-tech/technology/can-hashgraph-succeed-

blockchain-as-the-technology-of-choice-for-cryptocurrencies/article23348176.ece.
(Accessed on 2022-07-10). Mar. 2018 (cit. on p. 9).

[18] G. Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151.2014 (2014), pp. 1–32 (cit. on p. 9).

https://hedera.com/council
https://hedera.com/blog/hedera-governing-council-votes-to-purchase-hashgraph-ip-commits-to-open-source-worlds-most-advanced-distributed-ledger-technology
https://hedera.com/blog/hedera-governing-council-votes-to-purchase-hashgraph-ip-commits-to-open-source-worlds-most-advanced-distributed-ledger-technology
https://hedera.com/blog/hedera-governing-council-votes-to-purchase-hashgraph-ip-commits-to-open-source-worlds-most-advanced-distributed-ledger-technology
https://publ.sec.uni-stuttgart.de/kuesterstruderungvogt-ccs-2010.pdf
https://publ.sec.uni-stuttgart.de/kuesterstruderungvogt-ccs-2010.pdf
https://github.com/hashgraph/swirlds-open-review
https://github.com/hashgraph/swirlds-open-review
https://www.thehindu.com/sci-tech/technology/can-hashgraph-succeed-blockchain-as-the-technology-of-choice-for-cryptocurrencies/article23348176.ece
https://www.thehindu.com/sci-tech/technology/can-hashgraph-succeed-blockchain-as-the-technology-of-choice-for-cryptocurrencies/article23348176.ece


Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature


	1 Introduction
	2 The Hashgraph Consensus Algorithm
	2.1 Overview of the Hashgraph Protocol
	2.1.1 Events and Hashgraphs
	2.1.2 Hashgraph Terminology
	2.1.3 Synchronization of hashgraphs


	3 Security Model of Hashgraph
	3.1 Introduction to the iUC Framework
	3.1.1 Structure of Protocols
	3.1.2 Modeling Corruption

	3.2 An iUC Model for Hashgraph
	3.2.1 The Ideal Signature Functionality Fcert


	4 Accountability
	4.1 Formal Definition of Accountability

	5 Security and Accountability of Hashgraph
	5.1 Accountability of Hashgraph w.r.t. Basic Correctness
	5.2 Accountability of Hashgraph w.r.t. Fork-Freeness
	5.3 Consistency of the Hashgraph Algorithm
	5.4 Accountability of Hashgraph w.r.t. Consistency
	5.5 Closing Discussion

	6 Conclusion
	Bibliography

