
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Concept Drift Detection and
adaptation for machine learning

Pratyusha Bhattacharya

Course of Study: M.Sc Computer Science

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Markus Haug, M.Sc.

Commenced: November 9, 2021

Completed: May 23, 2022





Abstract

Machine learning models encounter plethora of challenges due to the changing data over time.
This phenomenon is known as concept drift. Existing techniques for concept drift detection have
shown promising results, but they require true labels as a precondition for drift detection to be
successful. True labels are limited and expensive, especially in real-world application settings.
To deal with this problem, this thesis proposes an AutoEncoder based Drift Detector (AEDD)
technique for drift detection, that can detect drifts without access to true labels. This study combines
two different techniques to achieve this. First, reconstruction error is measured by an autoencoder
and then from the measured reconstruction error, using the ADaptive sliding WINdow (ADWIN)
technique identifies structural changes over time. The observed drifts are utilized to retrain the
prediction model. The thesis demonstrates the superiority of the technique by showing that the
AEDD outperforms alternative state-of-the-art algorithms for classification tasks on real world
datasets with artificially induced drift.

3





Acknowledgement

I want to express my sincere gratitude to my Professor Dr. Stefan Wagner and my supervisor Mr.
Markus Haug. Without their guidance throughout the project, this thesis would not have been
possible. Their expertise, insights, and editing shaped this thesis.

Last but not least, I am eternally grateful for my parents’ and brother’s unwavering support and
encouragement.

5





Contents

1 Introduction 15
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Concept drift in data stream mining . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Background 19
2.1 Data stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Concept drift definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Reasoning for drift in real world scenario: . . . . . . . . . . . . . . . . . . . . 22
2.4 Principle of concept drift learner . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Drift detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Data stream processing with concept drift . . . . . . . . . . . . . . . . . . . . . 28
2.7 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Literature Review 31
3.1 Concept drift detection strategies . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Concept drift adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Study Design 43
4.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Proposed Methodology 47
5.1 Main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Construction of the autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Idea of Adaptive Windowing method for concept drift detection . . . . . . . . . 49
5.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Experimental Results 53
6.1 Experiment goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Parameter setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.5 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.6 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.7 Visual explanation of AEDD . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7



7 Conclusion and Future work 69

Bibliography 71

8



List of Figures

1.1 illustrate (a) static and (b) dynamic environment . . . . . . . . . . . . . . . . . . 15

2.1 Data stream divided into reference window and the detection window . . . . . . 19
2.2 Example of Virtual drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Example of Concept drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 The design of concept drift learner . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Type of changing patterns with time . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Drift detection framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Traditional drift detection and adaptation process . . . . . . . . . . . . . . . . . 28
2.8 Autoencoder Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Model retraining process in presence of concept drift where new model is trained
with latest data and old model is discarded . . . . . . . . . . . . . . . . . . . . 36

3.2 Model upgradation process in presence of concept drift where model is partially
updated with new data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Model upgradation process in presence of concept drift where a new base classifier
is added to the ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Illustration of workflow of the D3 algorithms . . . . . . . . . . . . . . . . . . . 40
3.5 The workflow of Student-Teacher approach . . . . . . . . . . . . . . . . . . . . 41

4.1 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Workflow of the proposed AEDD methodology for drift detection . . . . . . . . 50
5.2 Workflow of the proposed adaptive AEDD methodology . . . . . . . . . . . . . 52

6.1 Accuracy comparison among proposed AEDD and other existing state of art
algorithms: for Phishing dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Accuracy comparison among proposed AEDD and other existing state of art
algorithms: for Bank dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Accuracy comparison among proposed AEDD and other existing state of art
algorithms: for Wine dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 a) Reconstruction and b) refreshed reconstruction error with respect to time for
Bank Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 Plot of Reconstruction error and refreshed reconstruction error over Time for
Phishing dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.6 The change of ADWIN window width with respect to the time for a) Phishing b) Bank 65
6.7 a) loss of autoencoder for training loss and b) loss of auto encoder after each

gradient decent over epochs for Phishing dataset . . . . . . . . . . . . . . . . . . 66
6.8 Plots of a) detected drift over time and b) reconstruction error of specific point for

phishing dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9





List of Tables

6.1 Description of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Effect of performance on predictive model due to artificial drift . . . . . . . . . 55
6.3 Detection results of different methodologies for induced drift dataset . . . . . . . 57
6.4 Performance metric for AEDD and baseline models for bank dataset . . . . . . . 58
6.5 Performance metric for AEDD and baseline models for Phishing datasets . . . . 58
6.6 Performance metric for AEDD and baseline models for Wine datasets . . . . . . 58
6.7 Plot accuracy for adaptive algorithms on Bank Dataset . . . . . . . . . . . . . . 61
6.8 Plot accuracy for adaptive algorithms on Phishing Dataset . . . . . . . . . . . . . 61
6.9 Plot accuracy for adaptive algorithms on Wine Dataset . . . . . . . . . . . . . . 61

11





Acronyms

ADWIN ADaptive sliding WINdow. 3

AEDD AutoEncoder based Drift Detector. 3

ARF Adaptive Random Forest. 37

CUSUM CUmulative SUM. 32

D3 Discriminative Drift Detector. 33

DDM Drift Detection Method. 33

DWM Dynamic Weighted Majority. 37

EDDM Early Drift Detection Method. 33

EFDT Extremely Fast Decision Tree classifier. 35

FHDDM Fast Hoeffding Drift Detection Method. 32

HDDDM Hellinger distance-based drift detection. 33

HT Hoeffding Tree. 35

IKS Incremental Kolmogorov-Smirnov. 33

MD3 Margin Density Drift Detection. 34

MDR Missed Detection Ratio. 57

ML Machine Learning. 15

MTD Mean Time to Detection. 57

MTFA Mean Time Between False Alarms. 57

ND Number of Detections. 58

STUDD Student–Teacher Unsupervised Concept Drift Detection. 40

SVM Support Vector Machine. 34

UDD Uncertainty Drift Detection. 39

13





1 Introduction

Nowadays, Machine Learning (ML) models are being used in almost every industry to make the ever-
increasing volumes of data accessible. Most ML experts develop models with the presumption that
future incoming data streams will be steady, meaning that the data generation process will not vary
over time while implementing models. However, in most real-world applications, this assumption is
incorrect [APHW03]. The model’s predictive performance degrades due to distributional changes
in training and test data over time (shown in Figure 1.1). This phenomenon is known as concept
drift or dataset shift in the ML world.

(a)

(b)

Figure 1.1: illustrate (a) static and (b) dynamic environment

15



1 Introduction

ML practitioners have created several learning algorithms that can adapt incrementally [Sha+12]
under concept drift or detect concept drift explicitly and initiate a model retraining [BG07]-
[GMCR04]. These strategies demand full and rapid access to the true label labels, which is an
unreasonable assumption in most real-world applications. To explain this an example with a
production line with manual quality control at the end of the line is considered. A predictive model
can replace manual quality control and reduce repetitive and expensive human labor by gathering
sensor data from all manufacturing stations and integrating it with previously collected quality
judgments (labels) of human experts. However, due to changes in raw materials, machine wear,
aging sensors, or changing indoor temperatures due to seasonal variations, this prediction model is
likely to experience concept drift.This issue creates an adverse cost implication and quality control
problems for the company. Traditional concept drift detection algorithms are not appropriate in this
situation since a constant stream of true label labels for concept drift identification is not provided.

The thesis presents an AEDD that can detect drift without access to true label labels. This concept
drift detection algorithm is based on the estimated reconstruction error of a neural network at
inference time. It is assumed that true labels are available upon request (e.g., provided by domain
experts) for retraining the prediction model in a detected drift scenario. The thesis compares AEDD
to other state-of-the-art drift detection methods on real-world datasets where drift has been explicitly
induced.

1.1 Motivation

Concept drift detection and adaption are typically accomplished by combining prediction models
with a change detection method [GRB+19]. When any modification in input data distribution
is detected, the detector raises the alarm in the monitoring system. The prediction model’s
performance depends on the error rate used as input data for most of the standard existing drift
detection techniques. If the performance of the prediction methods deteriorates dramatically, drift
is detected in the traditional system. Nevertheless, labels are not readily available to quantify model
performance in several real-world settings. Due to the high cost of labeling, some labels may
arrive late or never arrive. This presents significant difficulty for learning algorithms that rely on
concept drift detection [Žli10a]. An unsupervised techniques for concept drift detection are gaining
popularity in these settings. These techniques presume that no additional labels are available during
the deployment of the model in a test set after an initial fit. As the prevalent unsupervised drift
detectors have not satisfactory results, in this thesis we have focused on improving existing drift
detection problems with a novel deep learning approach.

1.2 Concept drift in data stream mining

Due to the rising volume of data generated by diverse sources such as social networks, online
enterprises, and military-financial applications, data stream mining has become a key area of study
[FB13]. Due to computational and memory constraints, most of this data is unused and discarded.
Due to the dynamic nature of the streaming environment, they must be processed right away, or
they would be lost [KŽB+14]-[GBBC19]. As we know that the data streams are generated in a

16



1.3 Problem statement

non-stationary environment, learning from them is a continual process. If it is envisaged that the
environment may change throughout the deployment phase, the practitioner must devise a plan to
detect changes and adapt accordingly [CGB20].

1.3 Problem statement

As explained in earlier sections, the natural concept drift in a data stream is a significant concern
for production models since it substantially impacts model performance. The most efficient way
to address this issue is to identify when the learned relation between dependent and independent
variables is no longer applicable for the incoming data. Afterward, a new model is trained to learn
the novel concepts.

We must first create a viable method for detecting drifts based on the criteria listed above to achieve
this goal. Following that, we must complete an application that can view the data together with the
detection findings and provide some strategies to adapt with the non-static data. This thesis aims to
create and deploy a practical methodology to investigate concept drift on high-dimensional streams
and make it easier to analyze real-world datasets.

1.4 Contribution of this thesis

The contribution of this thesis are the followings:

1) An autoencoder based unsupervised drift detector is developed to identify model drift where true
labels are inaccessible or might be available later.

2)The encoder and decoder paradigm is used to detect the model drift by monitoring the reconstruction
error [HZ93] with ADWIN [BG07]. This approach is also compared with the existing baseline
models for detecting concept drift.

3) An incremental adaptive model is then used as an inner learner for classification tasks. The drift
detector updates the model approximation with the new data sets when it indicates drift resulting
automatic handling of model drift.

4) The performance analysis between the state of art adaptive algorithms and the proposed AEDD
algorithm is compared and results are analysed.

1.5 Thesis outline

This thesis is organized in the seven chapters.

Chapter 2 (Background): elaborates on the data streams, and explains concept drift and possible
variations. It also provides possible reasons for concept drift occurring in real-world data sets,
the core idea behind the concept drift learners, and possible solutions to detect and avoid concept
drift.

17



1 Introduction

Chapter 3 (Literature Review and Related work): provides an overview of the existing drift
detection methods and identifies common trends. It also reveals the current research gap among the
state of art algorithms. This chapter also summarizes the working mechanism for different concept
drift detection and adaptation strategies.

Chapter 4 (Study design): outlines the research questions and our approach to answering with
the proposed methodology.

Chapter 5 (Proposed Methodology): proposes the novel concept of a AEDD, which is generative
and unsupervised. It tries to catch the change for the essential features more relevant to prediction.
It illustrates the theoretical details of the proposed .

Chapter 6 (Experimental results): explains data generation, data sets, and parameter setups.
It also contains different experiments to approach the research questions abbreviated later and
demonstrates the impact of these experiments. After combining drift detection and drift adaptation
strategies, other existing drift detectors’ performance and accuracy are compared with the proposed
method.

Chapter 7 (Conclusion and Future work): concludes this thesis and highlights possible areas for
future work.

18



2 Background

This chapter provides a brief overview of the technological underpinnings of data stream, concept
drift and their different forms. It also discusses drift detection frameworks and drift adaptation
mechanisms.

2.1 Data stream

Before we delve further, a few terminologies are clarified in this section. Dynamic data environments
are often considered to elaborate concept drift in production. While discussing the concept drift
detection and adaptation, it is always referenced to the data streams, in which data instances occur
continually and sequentially throughout the period. Because the streaming data is frequently
produced on the go and at a rapid and variable rate with a range up to infinity - it is an ideal option
to take it as a reference for expanding dynamic data distributions.

Nevertheless, these streams may not be the only source of concept drift. Concept drift detection
approaches frequently use sliding windows or groupings of progressively ordered data [GCGD20] to
frame a conversation incorporating both stream and batch settings. One window, for example, may
contain cases from the most recent known concept that were used to train or update the deployed
model, whereas the other may have instances that have experienced concept drift. In this example,
The first window will be the reference window and the second window is the detection window.
This concept is shown in Figure 2.1.

Figure 2.1: Data stream divided into reference window and the detection window

19



2 Background

2.2 Concept drift definition

Concept drift occurs when the statistical features of a target domain vary unpredictably over time
[LZL14]. Literature in [SG86] was the first to suggest that similar occurrences could be classified
as noise information or non-noise information at various time instances. Modifications in hidden
factors that cannot be observed directly may be the reason for occurrence of these drifts [LSZL17].

2.2.1 Mathematical notation

The ML model’s challenge is approximating a mapping function 𝐹 learned from the seen training
data, which is generally speaking, static. Here, the input data 𝑋 is given to forecasting an output
value 𝑌 , known as predictive modeling. We define a function as such:

𝐹 : 𝑋 → 𝑌

The definition of a joint distribution can be denoted as 𝑃(𝑋,𝑌 ). It is assumed a sample from the
data-stream can be represented as S and D:

𝐷 [0,𝑡1 ] = {𝑆0, 𝑆1, 𝑆2, ....., 𝑆𝑡1}

Where, The input feature vector is described as X and label vector denoted as 𝑌 and 𝑆𝑖 = (𝑋𝑖 , 𝑌𝑖).

Regardless of whether or not there is concept drift, the classification problem can be characterized
as follows:

The joint distribution can be written as:

𝑃(𝑋,𝑌 ) = 𝑃(𝑌 |𝑋)𝑃(𝑋) = 𝑃(𝑋 |𝑌 )𝑃(𝑌 )

P(𝑌 |𝑋) = 𝑃(𝑋 |𝑌 )𝑃(𝑌 )
𝑃(𝑋)

Where,

• 𝑃(𝑌 |𝑋) is the posterior probability of class distribution for the given data

• 𝑃(𝑋 |𝑌 ) is the class conditional probability

• 𝑃(𝑋) is known as the evidence

• 𝑃(𝑌 ) is the prior probability of classes

20



2.2 Concept drift definition

2.2.2 Aspect of a concept drift

The phenomena of changing data distributions w.r.t. to training data over time, impacts machine
learning model performance. This can be described in diverse ways by the ML and data mining
communities [MRA+12]. Several authors have defined concept drift under different titles, like
dataset shift [Sto09] or concept shift [WK96]. In [MRA+12], the researchers claim that concept drift
or shift is merely one subtype of dataset shift, encompassing covariate shift, prior probability shift,
and concept shift. In other words, the concept drift is a subset of dataset shift. Nevertheless, because
concept drift is frequently linked to covariate shift and prior probability shift, many publications
[WK96] refer to the problem as ”concept drift”. During training (tr) and test time (tst), dataset shift
is associated with changes in the joint probability distribution of input data 𝑥 and corresponding
label 𝑦:

𝑃tr(𝑥, 𝑦) ≠ 𝑃tst(𝑥, 𝑦) & 𝑃t0 (𝑥, 𝑦) = 𝑃t1 (𝑥, 𝑦),

Where, 𝑡0 and 𝑡1 are two separate specific times with 𝑡1 > 𝑡0, is indeed a typical explanation of
concept drift. Dataset shift is concerned with the differences between the historical training and
testing data environments, while concept drift is concerned with the conceptual structure of the data
over time.

At a particular time 𝑡1, the concept can be defined as 𝑃𝑡1 (𝑋,𝑌 ) and during a specific time period
[0, 𝑡1], the distribution can be expressed as 𝑃 [0,𝑡1 ] (𝑋,𝑌 ). There are three ways that model drift
might happen:

1. 𝑃(𝑌 ) The class priors may alter over time

2. The class conditional probability of one or more classes 𝑝(𝑋 |𝑌 ) might change

3. The posterior distributions of class memberships 𝑝(𝑌 |𝑋) might change over time

As a result, drift can happen in three ways:

1. Virtual drift:

Virtual drift occurs when input data distribution changes with time but the posterior probability
remains the same (as shown in Figure 2.2). This is also known as co-variate shift or input drift
which can lead to model performance degradation, where,

𝑃𝑡 (𝑋) ≠ 𝑃𝑡+1(𝑋) & 𝑃𝑡 (𝑌 |𝑋) = 𝑃𝑡+1(𝑌 |𝑋)

2. Prior drift:

Prior drift can happen when the prior probability of classes change with time but the posterior
probability of the given data with respect to the classes remains the same. This kind of drift can
change a model’s decision boundary which will degrade the model performance where,

21



2 Background

Figure 2.2: Example of Virtual drift

𝑃𝑡 (𝑌 ) ≠ 𝑃𝑡+1(𝑌 ) & 𝑃𝑡 (𝑌 |𝑋) = 𝑃𝑡+1(𝑌 |𝑋)

3. Concept drift:

This kind of drift happens when the posterior probability changes with time (shown in Figure 2.3).
This might lead to obsoleting the model in this case as the underlying approximating function
changes and as a result, the model won’t be able to predict reliably when,

𝑃𝑡 (𝑌 |𝑋) ≠ 𝑃𝑡+1(𝑌 |𝑋)

If a concept drift occurs between two point of time, it can be denoted as:

𝑃0(𝑋,𝑌 ) ≠ 𝑃𝑡1 (𝑋,𝑌 )

and if the concept between two time periods can change i.e [0, 𝑡1]&[𝑡1 + 1, 𝑡2], It can be expressed
as:

𝑃 [0,𝑡1 ] (𝑋,𝑌 ) ≠ 𝑃 [𝑡1+1,𝑡2 ] (𝑋,𝑌 )

2.3 Reasoning for drift in real world scenario:

There are many reasons which can cause the drifting model, but we will discuss a few example
below. An example can be seen with a technical problem in the context of the upstream data frame.
Due to a faulty pipeline, a modifications in one of the feature’s values can occur. This results
an unplanned unreported format change of feature’s. Even a difference in the default value can

22



2.4 Principle of concept drift learner

Figure 2.3: Example of Concept drift

cause a new pattern in the data stream. Another common examples are: phishing email filtering,
IOT intrusion detection, or financial fraud detection. Here the attackers change their method’s
characteristics to defeat the model to carry out their malicious activity. This is commonly known as
adversarial classification problems and has a significant contribution toward the change of the data
distribution. In another example, deliberate business actions can change the distribution of data sets.
This entails for example, starting an advertising campaign that draws new types of users or making
changes to a website that may (or may not) alter user behavior. Finally, the training data might be
accumulated by flawed joining or through a bias which is known as sample selection bias and if that
occurs, the model can’t work as expected in the deployed environment.

2.4 Principle of concept drift learner

In [Žli10b] authors propose the following paradigm for thinking about concept drift and the
judgments that machine learning practitioners must make:

1. Future assumption for Learner’s perspective

2. Change of Pattern

3. Adaptivity of learner

4. Model selection

This paradigm can assist with this thesis in considering the options accessible to us when dealing
with concept drift in predictive modeling situations. This concept is illustrated in Figure 2.4. The
underlying concept is further described in later sections.

23



2 Background

Figure 2.4: The design of concept drift learner

2.4.1 Future assumption for learner’s perspective

With future data streams, the learner should deliver the best accurate generalization for the data.The
developer must make assumptions about the source from which new data will be created in the future.
So far, machine learning practitioners have discovered three distinct types of choices [Žli10b].

First, most people believe that the source’s characteristics will not change over time. As a result, the
ML model will anticipate data from distributions similar to previous data.
Second, practitioners attempt to estimate the source by statistically assessing the distance between
new and past incoming data.
Third, there is a frequently occurring concept drift problems that the future data source is not
defined clearly. We can incorporate the trainable prediction rules to predict the future change earlier
and use the estimation in incremental learning.

These are a framework and assumptions regarding the data source for determining model drift and
the machine learning practitioner’s judgments.

2.4.2 Change of pattern:

The data could be altered in any way. It’s easy to think about the cases where the transformation has
some temporal coherence. Data obtained over a specific period reveal the same association, which
changes gradually over time. The fact that the configuration pattern of the data streams changes
over time is referred to as change type.

24



2.4 Principle of concept drift learner

Figure 2.5: Type of changing patterns with time

Many scientists prefers classifying drifts according to how they occur, the cause of the drift, and
effect of the changes. As shown in Figure 2.5, concept drifts can be divided into four types: sudden,
incremental, gradual, and recurrent. A sudden drift occurs when the rate of change of a feature
is exceptionally high, for instance when a new policy is implemented. Similarly, gradual drift
refers to a drift with a slow pace of change, such as a piece of production equipment that is slowly
wearing out and causing a continuous drop in output part quality. Many fields are likely to repeat
hidden contexts. Seasonal phenomena, such as changing the seasons, can also create recurring
contexts. Figure 2.5 illustrates the main pattern-changing drift types. It is assumed that data is
one-dimensional (1-D). Only the data from one class is depicted.

2.4.3 Adaptivity of learner

There are four primary areas of adaptability that has been identified [Žli10b]:

Base learners Regularly updating the basic model is a helpful first-level intervention. Rather
than entirely discarding the static model, the current state serves as the starting point for a fit
technique that adjusts the model fit by employing a sample of the most recent historical data.

25



2 Background

Learner parametrization Practitioners can consider weighing the importance of input data with
age. They apply a weighting that is inversely proportionate to the age of the data in the case of
concept drift; this is known as learner parametrization. The most recent data (with a more significant
weight) receives more attention, while minor current data receives less attention (smaller weight).

Training set formation (e.g. training windows, instance selection) The development of a
training set can be broken down into three parts: training set selection, training set manipulation,
feature set manipulation.

Fusion rules of the ensembles The static model can be left alone when using an ensemble
technique. A new model is trained to correct the static model’s predictions using more recent data
associations. This is a boosting type ensemble, with future models revising the forecasts of previous
models.

2.4.4 Model selection

According to this study [Žli10b], the generalization error can be used as a significant metric of
concept drift learner performance. As a result, the process for predicting the expected generalization
error for the target instance at each time step must be established for model selection (training)
purposes. The two primary options are the hypothetical evaluation of the generalization error
and employing k-fold cross-validation to estimate the generalization error. The choice of error
estimation is strongly linked to the future assumption because it is based on the anticipation of future
data sources. As a result, the change type and model chosen have a significant impact on learner’s
adaptability. The speculation about the type of change present in the data must be considered while
considering the learner adaptive. Moreover, assumptions about the future data source must be
accounted for selecting the model and evaluate them.

2.5 Drift detection

The concept drift detection framework consists of four stages as described below:

• Information extraction: Data streams are divided into segments for processing.

• Modeling: Important features are extracted from the segments for further analysis.

• Statistical analysis: The key features extracted from the previous step are used for statistical
analysis to understand the similarity and dissimilarities among the segments.

• Hypothesis testing: To understand the significance of statistical analysis, p values are
compared among consecutive segments to make the final decision. This process framework
is demonstrated in Figure 2.6

26



2.5 Drift detection

Figure 2.6: Drift detection framework

Sequential analysis [Pag54], statistical process control [Pag54], and distribution monitoring
[GMCR04] are standard concept drift techniques. The predictive model evolves by adding new
facts to its knowledge base whenever a variation is identified.

Discarding the current model and training a new one from scratch is a simple example of an
adaptation process. This process overview is shown in Figure 2.7. Here, the first reference data
stream is trained on the reference window. Afterward, the performance metrics are calculated
based on the trained model. Next, the new incoming data stream is fed into the trained model, and
accuracy is evaluated based on the true ground level and predicted level. If the model’s performance
decreases significantly, the system considers it as drift and retrains the model. This iterative process
goes on till the end of the data stream.

27



2 Background

Figure 2.7: Traditional drift detection and adaptation process

2.6 Data stream processing with concept drift

There are various types of generic solutions for categorization challenges with concept drift that
have been described in the literature. To better understand the tactics utilized to cope with concept
drift, many factors including the amount of data input, classifiers, incremental vs. non-incremental
learning, and active vs. blind procedures must be taken into consideration.

2.6.1 Ensemble learning

One of the approaches to categorizing resilient solutions for concept drift is the number of classifiers
employed to determine whether an ensemble of classifiers or a single classifier is utilized. Concept
drifts are generally difficult to manage, and single classifiers are ineffective. One reason is that

28



2.6 Data stream processing with concept drift

unless a classifier is retrained after training, its knowledge will not adapt to the changes. The second
concern is that retraining the classifier frequently will impact the classifier to lose previously learned
concepts, leading to profound performance loss, mainly when the environment changes often. As a
result, traditional single classifiers can only be used when the data source remains static, which is
inapplicable for data stream processing. Data stream processing challenges have been effectively
solved using ensembles of the classifiers. An ensemble of classifiers can be employed to boost the
system’s decision capability rather than building a new robust and well-adapted classification. An
ensemble of classifiers can be utilized to upgrade the software’s reasoning capability instead of
constructing a new resilient and well-adapted classifier. Multiple papers [Alt07; ZZS08] demonstrate
that ensembles of ML classifiers outperform individual ML models’ performance in concept drift
scenarios.

2.6.2 Incremental Learning vs. non-incremental learning

This categorization takes the data re-utilization into account. Non-incremental learning occurs
when a sample is utilized more than once. Whereas incremental learning only uses one instance at
a time and cannot be reused.

This method can also be dubbed as online learning. It is based on data stream processing with
runtime and memory capacity constraints to enhance computational systems. This method is
primarily employed in processing stream, or batch sequence data [DP12].

The advantage of online learning is that each training sample is processed only once by model,
eliminating the need for storage or reprocessing. [MY11] argue that online learning is most common
in those applications that deal with data streams. In another research, [Kun04] also explains that
incremental learning is excellent for stream processing as runtime happens within time constraints
and data is not stored anywhere. This helps in dealing with memory capacity restrictions and
enhances computational systems. As a result, online learning can be thought of as incremental
learning. In addition, the latter refers to learning machines, which are also used to simulate
continuous processes. It also handles incoming data in pieces rather than processing each training
example individually. One-pass learning is another example of incremental learning, but learning
methods requiring access to historical information which cannot be termed incremental.

2.6.3 Active Strategy vs. Blind Strategy

Finally, based on whether or not a drift detection mechanism is included as part of the solution,
this discussion splits concept drift solutions into blind and active strategies. Blind techniques don’t
have any strategies to monitor the input data or performance of the model. This technique just
updates the model without observing changes. It claims that the method’s detection mechanism
is built-in. Blind techniques do not include a drift detection mechanism as part of the detection
process. Previous researches on ensemble classifiers use dynamic combination rules to always keep
the system updated. For example weights can be assigned to every classifier member based on past
performances (i.e. the ensemble classifier members with the highest classification performances will
be assigned the highest weights during the final decision). The primary drawback of blind strategies
is the computational cost. As the system needs to maintain a constant update-process even if no
changes occur, this may result in an increase in processing time by updating the system unnecessarily.

29



2 Background

Figure 2.8: Autoencoder Architecture

The alternative to blind strategies is to employ active strategies. The active strategies include an
explicit drift detection mechanism. Therefore, only when it detects changed environmental factors,
the system modify its knowledge to new inputs saving valuable computational memory.

2.7 Autoencoders

Autoencoder is a generative unsupervised deep learning system [ZP17]. The encoder and the
decoder are the two main components of an autoencoder. The encoder’s goal is to change incoming
data non linearly while capturing the essential information. The decoder is trained to reconstruct the
encoder’s output as closely as possible to the input data. This neural network uses a tiny bottleneck
layer in the middle of the encoder and decoder that includes the latent representation of the input
data to reconstruct high-dimensional input data. The number of layers in encoding and decoding is
usually, but not always, symmetrical. Figure 2.8 illustrates the autoencoder architecture in details.
The autoencoder’s latent space is a crucial feature and it is responsible of memorizing the input layer
information. An ideal autoencoder should be sensitive enough to decode a latent space accurately
while avoiding over-fitting the input data.

When an autoencoder is implemented, we anticipate it to learn the distribution of the input data,
and the information will be compared with the reconstructed output. If the input data distribution
varies over time, the input and reconstructed output will significantly differ. Due to drift, the input
and reconstructed output data encounters data loss. The loss of input and reconstructed output is
known as the reconstruction error. The autoencoder will trained to minimize the reconstruction
error so that it can learn the new data distributions.

The application of autoencoders are mostly found in data compression and anomaly detection.

30



3 Literature Review

This chapter conducted a rapid survey on the existing drift detection and adaptation methods on
concept drift. Several literature and possible methodologies are studied in details. Based on
the literature review, we have divided the concept of drift detectors and adaption mechanisms
concerning their characteristics. Under these characterizations most commonly used techniques are
highlighted.

3.1 Concept drift detection strategies

Concept drift detection involves sophisticated strategies and there are several methods described
in scientific literature. This section presents a literature review of most apropos studies focused
on concept drift detection strategies. We summarize several methods to catch concept drift and
divided these studies into supervised, unsupervised, and semi-supervised methods.

3.1.1 Supervised concept drift detection methods

These strategies typically need access to the true labels of the whole dataset. Drift detectors, whose
strategy is usually focused on error monitoring, are classified according to whether or not drifts are
expressly or implicitly recognized.

The biggest group of techniques is PLearner error rate-based drift detection techniques. The goal
of these algorithms is to keep track of the progress in the online error rate of base classifiers. An
upgrading procedure (drift alert) will be initiated if a statistically significant rise or decrease in the
error rate is discovered.

Concept drift detection methods are a type of detector that can detect changes in data stream
distributions depending on the performance of a learning algorithm or the statistics of the input
data. The authors of [GŽB+14] divided drift detection techniques into three categories:

Methods for tracking two different time frames’ distributions

Determine whether two fixed-length sequences are from the same distribution using a confidence
level. A fixed reference window, which represents a summary of the previous concept, and a sliding
detection window, which contains the cases to be tested on, are typically used in these methods. The
idea behind based on null hypthosis. The null hypothesis assumes that the two distributions from
two subsequent windows are equal. Based on that, it will perform specific statistical tests on the
two windows to check if they are similar or not. If there is a statistical difference between the two

31



3 Literature Review

windows and there is a significant change, then the null hypothesis is rejected, and the test window
will be incorporated to update the change. The most well-known representative of approaches from
the window based approach the is ADWIN [BG07] method. It takes a potentially endless sequence
of real numbers 𝑥1, . . . , 𝑥𝑡 , ..., a confidence parameter 𝛿(0, 1), a confidence parameter (0, 1), and a
minimum number of items n to begin searching for changes. ADWIN maintains a variable-length
window W of recently observed objects, with the most extended length statistically consistent with
the premise "no change in the average value inside the window". When the number of items in the
window reaches n, it loops over all of the partitions of W = 𝑊0.𝑊1. It raises alarm and indicates
drift, if the average value in one sub-window differs significantly from the other with the confidence
level 𝛿.

Another window based approach is SeqDrift2 [BG07]. This method stores samples in the detection
window using a random sampling technique. SeqDrift2 uses left and proper repositories to store
entries. The reservoir sampling approach ensures that the left repository contains a mix of older and
new entries as entries are processed over time. The latest entries are collected in the appropriate
repository. When the mean of the two windows differs significantly from each other, an alarm is
triggered.

Finally, The Fast Hoeffding Drift Detection Method (FHDDM) [PV16] is also part of sliding
window-based methods to find drift spots and use Hoeffding’s inequality to build a robust drift
detector. This method requires the most recent probability for accurate predictions. This method
utilizes an interesting strategy by moving a long and a short window layered on top of each other,
stacking FHDDM [PVP18] together. This is an improved version of FHDDM. The longer window
lowers false negatives, whereas the narrower window identifies drifts more quickly.

Sequential analysis-based detectors

Change detection techniques in this category are based on sequential probability ratio tests like the
Wald test [Wal73]. In the following way these approaches identify changes: Let 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛
represent a series of instances. Assumed that the subset of cases 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑤 comes from an
unknown distribution 𝑃0, and 𝑥𝑤 , ..., 𝑥𝑡 comes from an distribution 𝑃1. The drift is triggered at the
time instance 𝑤. If the chance of witnessing sub sequences under 𝑃1 is significantly higher (over
some threshold) than 𝑃0, the sequential analysis-based detector indicates drift.

CUmulative SUM (CUSUM) [Pag54] is a popular sequential analytic method. If the average of
the incoming data differs considerably from 0, it triggers an alarm. It takes a sequence of real
values as input, such as 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑡 , and defines 𝑆 (𝑛+1) = 𝑚𝑎𝑥{0, 𝑆𝑛 + 𝑥𝑛−𝛿} at time 𝑡 = 𝑛 + 1.
When 𝑆𝑛 > 𝛾, (the predetermined threshold value) a drift is triggered. Page-Hinkley is a CUSUM
variation that considers the difference between observed and average classifier error.

Statistical Process Control-based detectors

Statistical Process Control uses the learning process as main tool, tracks progress of the learning
evolution. The model’s prediction outcome for each example from the data stream can be correct or
incorrect. For a collection of samples, the error of a random variable is derived from Bernoulli’s
distributions. The Binomial distribution is a generalized form of probability for a random variable

32



3.1 Concept drift detection strategies

that reflects the number of failures in a collection of 𝑛 occurrences. The standard deviation
𝛿𝑖 =

√︁
(𝑝𝑖 − 1)/𝑖 is the probability of observing false 𝑝𝑖 for each point 𝑖 in the series. During model

operation, the drift detector handles two registers: 𝑝𝑚𝑖𝑛 and 𝜎𝑚𝑖𝑛 are introduced. if 𝑝𝑖 + 𝜎𝑖 is less
than 𝑝𝑚𝑖𝑛 + 𝜎𝑚𝑖𝑛, at the time determination instant i, the parameters are updated as, 𝑝𝑚𝑖𝑛 = 𝑝𝑖 and
𝜎𝑚𝑖𝑛 = 𝜎𝑖 .

The Normal distribution can also be used to approximate the Binomial distribution. The requirement
for this the observations must be sufficiently large and should have similar mean and variance. The
𝛿-1/2 confidence interval for 𝑝𝑖 for n > 30 cases is about 𝑝𝑖 , given that the probability distribution
is unchanged unless a concept drift occurs. The threshold 𝑝𝑖 + 𝜎𝑖 ≥ pmin +2 𝛿𝑚𝑖𝑛 has a 95%
confidence level for warning, and the threshold 𝑝𝑖 + 𝜎𝑖 ≥ 𝑝𝑚𝑖𝑛 + 3 𝜎𝑚𝑖𝑛 have a 99% confidence
level for drift and they can be used as confidence level(𝛼) for triggering the warning due to drift.

The most representative detector under this category is the Drift Detection Method (DDM)
[GMCR04]. It is assumed that examples arrive one at a time. As more training instances are
observed, the error rate of the learning algorithm 𝑝𝑖 and its standard deviation 𝑠𝑖 =

√︁
𝑝𝑖 (1 − 𝑝𝑖)/𝑖

should decrease. Drift occurs when the categorization error has greatly risen. The warning level is
attained if 𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 2𝑠𝑚𝑖𝑛. The drift level is attained when 𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 3𝑠𝑚𝑖𝑛. If the
model hits the alert level at instance 𝑥𝑤 , a new context is assumed to begin at 𝑥𝑤 .

[BCF+06] devised the Early Drift Detection Method (EDDM) to address the issues where the drift
detection was identified with a delay with the DDM [GMCR04] . This method also maintains
strong performance with short concept drifts. The approach is based on the fact that the risk of drift
is higher when the distance between errors is smaller. As a result, it computes the average distance
between two recent errors and detects a drift if a predetermined threshold is exceeded. Because
this is more sensitive than the prior method, EDDM achieves early detection in the presence of
incremental changes, even when the difference is sluggish. However, when the data contains a lot of
noise, its sensitivity can be a big disadvantage.

3.1.2 Unsupervised concept drift detection methods

Unlike the previous solutions, this group of methods aims to deal with concept drift even when just
unlabeled data is provided. Several data stream difficulties arise in this situation, with just unlabeled
data.

Model-independent approaches

The goal of unsupervised detection is to find drift that isn’t labeled. Multivariate statistical testing
is a significant methodology used to detect changes in features(X), and P-values are compared to
model-independent ways of unsupervised concept drift detection methods. The Hellinger distance
measures Hellinger distance-based drift detection (HDDDM) [DP11], which uses an adaptive
threshold to infer if drift exists between two chunks of training data. The Discriminative Drift
Detector (D3) [GBBC19] employs a discriminative classifier that may be used online without
a built-in drift detector. A simple classifier is trained to distinguish between two data chunks
and discover drifts in the classifier’s performance. The Incremental Kolmogorov-Smirnov (IKS)
algorithm [RFMB16] is faster for recalculating the KS statistic for samples that change over time. It
enables the KS hypothesis test to be done in real-time with two samples that change over time. The

33



3 Literature Review

request and reverse strategy [YWP18] was designed as a two-layered hierarchical hypothesis testing
framework to detect idea drifts by requesting labels only when necessary, combining supervised and
unsupervised approaches. The present unsupervised model-independent techniques have a crucial
flaw in that they do not assess the performance of the currently deployed model. Detecting changes
in the distribution of input features that aren’t important to classification can result in many false
positives.

Model-dependent approaches

Recent unsupervised drift detection methods in model-dependent approaches attempt to monitor
the classifier output rather than drifts through 𝑃(𝑋) with a statistical test. The Margin Density
Drift Detection (MD3) technique [SK17] measures the fraction of samples within a margin. It is
based on simple margin-based algorithms such as Support Vector Machine (SVM) (margin-based
approach). These strategies are only relevant to stated models or ones that can generate probability
scores, dependent on the model design [GCGD20].

3.1.3 Semi-supervised concept drift detection methods

Even though unsupervised drift detectors have been thought to be the best option for attempting
to deal with entirely unlabeled data, these techniques must guess some configuration inside the
underlying data distribution and forced to store clusters in short-term memory. Their actions are
based on assessments of resemblance and incongruence. When used in practical situations, these
factors could jeopardize machine performance. Semi-supervised approaches, which are often better
equipped with a small quantity of labeled data and higher quantity of unlabeled data, may be an
attractive alternative for avoiding storing examples and providing more confident decision models.
Few methods are worth mentioning. The SUN [WLH12] method splits the streaming data into
training and testing datasets. In the beginning, the process trains the model by construing the
labeled data. The method incrementally creates a developing decision tree and generates concept
clusters. The unlabeled data are labeled according to the majority class of their nearest group. In
another way [KRW10], the concept of usage of the ensemble of the classifier is introduced. This
method calculates the similarity and dissimilarity between normal and suspicious samples to create
a new concept. The suspicious samples are labeled afterward and put together to form new regions.
Following a labeling procedure, the ensemble creates a new member classifier and discards the old
one.

3.2 Concept drift adaptation

This section focuses on drift adaptation and reaction strategies, which is updating current learning
models based on the drift. Some drift adaptation approaches rely on drift detection technologies
and use various retraining tactics to handle different drift types better. Others may not use a global
drift detection approach but instead update models in real-time based on changes in the distribution
of newly available data. There are many popular ensemble learning style, which employs a variety
of learners to handle various ideas.

34



3.2 Concept drift adaptation

3.2.1 Model retraining

Retraining a new model using the most recent data to replace the old-fashioned model is perhaps
the most straightforward approach to reacting to concept drift. Figure 3.1 illustrates the idea of
data being updated after drift is detected. System can use external drift detector to identify the
point when drift has occurred in the system (explained in Section 3.1 on drift detection). This
method frequently uses a windowing strategy to save the most current data for retraining and
previous data for distribution change testing. Paired Learners [BM08] uses this strategy by using
two learners. One of them is a stable learner and the other is a reactive learner. This method is
simple to understand and implement, and it may be used at any point in the data stream. If the
stable learner frequently misclassifies examples that the reactive learner correctly classifies, the
reactive learner is substituted for the stable learner. A small window better reflects the most recent
data distribution, whereas a large window gives more data to train a new model. A trade-off must
be made when deciding on an acceptable window size for a window-based technique. ADWIN
[BG07] is a standard window scheme method that seeks to solve this problem.

Here, users don’t have to guess a fixed size of the windows in advance; instead, it investigates all
conceivable window cuts and calculates ideal sub-window estimates based on the rate of change
between the two sub-windows. After determining the best window cut, the old data window is
removed, and a new model can be trained using the most recent window data.

Many studies have incorporated the drift detection technique in the machine learning algorithm, and
machine learning models must be retrained once the drift detectors detect drift. DEML [XW17]
improves the standard ELM algorithm by altering the number of hidden layer nodes to manage
concept drift. DEML adds more nodes to the network layers when the error rate increase. In this
way, the onset of a concept drifts to strengthen its approximation capabilities. FP-ELM [LWJ16] is
another ELM-extended approach that responds to drift by adding a forgetting component to the
ELM model. A parallel variant of the ELM-based technique [HGL15] has also been developed
for high-speed classification under idea drift. OS-ELM [SA16] is an online learning ensemble
of repress models that combines ELM with an ordered aggregation (OA) technique to solve the
challenge of determining the ideal ensemble size.

3.2.2 Adaptive models

Developing a model that adaptive learns from changing input is an alternative to retraining a whole
learner. An adaptive model can partially update itself as the underlying data distribution changes
(see Figure 3.2). This strategy may be more effective when drift occurs exclusively in local areas. An
online decision tree algorithm called Hoeffding Tree (HT) [HSD01] was proposed in a foundational
study [DH00], specifically optimized for high-speed data streams. The Hoeffding limitation limits
the number of instances necessary for node splitting.

Another online decision tree algorithm called Extremely Fast Decision Tree classifier (EFDT)
[DH00] was proposed in a foundational study, specifically optimized for high-speed data streams.
The Hoeffding limitation limits the number of instances necessary for node splitting. Because
of various advantages, this strategy has become highly popular: 1) It only needs to process each

35



3 Literature Review

Figure 3.1: Model retraining process in presence of concept drift where new model is trained with
latest data and old model is discarded

instance once and does not store instances in memory or on disk; 2) the tree itself takes up very
little space and does not grow in size with the number of instances it processes unless there is new
information in the data; 3) tree maintenance is very inexpensive.

Two node-level drift detection methods based on observing discrepancies between a node and its
sub-nodes have been proposed. The first technique employs the classification error rate, while the
second checks the distribution difference directly. When a node detects drift, it transforms into a
leaf, and its descending sub-tree is eliminated. Later work [YF12] developed VFDT further by
employing an adaptive leaf technique that selects the best classifier from three options: Majority
Voting, Naive Bayes, and Weighted Naive Bayes.

3.2.3 Adaptive ensemble

The stream data mining research community has given much attention to ensemble approaches
in recent years. Ensemble methods comprise a group of base classifiers with varying types and
parameters. To anticipate the freshly arriving data, the output of each base classifier is combined
using specified voting criteria. Many adaptive ensemble methods have been devised to address
concept drift, either by expanding classical ensemble methods or developing specific adaptive voting
rules. A new base classifier is introduced to the ensemble when concept drift occurs (Figure 3.3
demonstrate the process).

36



3.2 Concept drift adaptation

Figure 3.2: Model upgradation process in presence of concept drift where model is partially updated
with new data

Bagging, Boosting, and Random Forests are traditional ensemble methods for improving single
classifier performance. All of them have been enhanced to handle streaming data with concept drift.
[OR01a] proposed the first online version of the bagging method, which employs each instance
only once to approximate batch mode bagging. This method was integrated with the ADWIN
drift detection system in a later work [BHP10] to address concept drift. The newly suggested
Leveraging Bagging approach trains a new classifier on the most recent data to replace the previous
classifier with the poorest performance when a concept drift is detected. Similarly, [CZ04] created
an adaptive boosting technique that manages concept drift by monitoring prediction accuracy using
a hypothesis test, assuming that classification errors on non-drifting data should follow a Gaussian
distribution.

Ensemble learning approaches like as bagging and boosting are well-known. They use a combination
of learnt base models to improve generalization performance. They have mostly been employed
in batch mode so far, and no successful online versions have been offered. [OR01b] describes a
simple online bagging and boosting algorithms that, outperform the offline counterparts.

The Adaptive Random Forest (ARF) algorithm was suggested in a recent paper [GBR+17], which
extends the random forest tree algorithm with a concept drift detection approach, such as ADWIN,
to determine when an outmoded tree should be replaced with a new one. [LWHW15] employs the
Hoeffding bound to separate concept drift from noise within trees and does something similar.

Many new ensemble approaches have been created to address concept drift employing novel voting
procedures [STM+16] and expanding conventional methods. With a basic set of weighted voting
rules, Dynamic Weighted Majority (DWM) [KM07] is an ensemble approach capable of responding
to drifts. This method controls base classifiers based on the individual classifiers and the global
ensemble’s performance. DWM would train a new base classifier and add it to the ensemble if the

37



3 Literature Review

Figure 3.3: Model upgradation process in presence of concept drift where a new base classifier is
added to the ensemble

ensemble misclassified an instance. DWM would decrease an instance’s weight by a factor if a base
classifier misclassified it. DWM removes a base classifier from the ensemble when its weight falls
below a user-defined threshold.

The major disadvantage of this strategy is that the adding classifier process may be triggered too
often, resulting in performance concerns in some cases, such as when progressive drift develops.
Learn++NSE [EP11], a well-known ensemble approach, mitigates this problem by weighting base
classifiers based on their prediction error rate on the most recent batch of data. If the youngest
classifier’s error rate exceeds 50%, a new classifier will be taught using the most recent data. This
method has several other advantages: it can quickly adapt almost any base classifier algorithm; it
only stores the most recent batch of data, which it only uses once to train a new classifier; and it can
handle sudden, gradual, and recurrent drift because underperforming classifiers can be reactivated
or deactivated as needed by adjusting their weights. Other voting procedures outside weighted
voting have been used to deal with concept drift. Hierarchical ensemble structure [YHH15], short
and long-term memory [XXYA17], and dynamic ensemble sizes are only a few examples.

Several studies have developed ensemble approaches for dealing with various types of notion drift.
The Accuracy Update Ensemble (AUE2) [BS13] was proposed to be able to handle both sudden
and gradual drift. It’s an incremental base classifier-based batch mode weighted voting ensemble
approach. The ensemble can react fast to sudden drift by re-weighting. Likewise, all classifiers are
gradually trained with the most recent data, ensuring that the ensemble drifts slowly.

This thesis aims to take advantage of instance-based techniques while avoiding the computational
overhead and build efficient and descriptive methods for detecting and adapting to context drift.

38



3.3 Related work

3.3 Related work

In [BSSK21], authors proposed a novel Uncertainty Drift Detection (UDD) algorithm to identify
concept drift without true label. This methodology can be used both for classification and regression
tasks. The main idea behind this approach is to identify drift by monitoring the uncertainty
estimation of the deep neural network in conjunction with monte carlo dropout. The uncertainty
change with respect to time is detected with ADWIN and notified to the system by ADWIN to
retrain the predictive model. UDD doesn’t only detect drift based on input data but also incorporate
the effect of feature’s on the classification model.

Explanation of Uncertainty in Neural Networks w.r.t concept drift:

Previous research shows that test error in neural networks is highly intertwined with the it’s
uncertainty [RCNW18]. In neural networks, authors have used this uncertainty as a proxy of error
rate which is utilized as input to ADWIN to find drift. Generally, the common drift detector such
as DDM or EDDM can only accept inputs originating from a Binomial distribution. Since the
uncertainty has a different distribution characteristics, ADWIN is more suitable canditate for such
cases. Once drift is detected by the UDD, it is required to retrain the predictive model. To get
a good estimation of uncertainty, authors have incorporated Monte Carlo dropout in the neural
network. The UDD algorithm is mentioned in Algorithm 3.1.

Algorithm 3.1 UDD: Uncertainty Drift Detection
Input: Trained model M; Data stream T ;
Training data D
Output: Predict output for a given t
repeat
Receive incoming instance 𝑥𝑡
𝑦𝑡 ,𝑈𝑡 ← 𝑀.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥𝑡 )
ADD 𝑈𝑡 to ADWIN
if ADWIN detects change then

AE.train (D ∪ T)
Return Drift

end if
Until T end

In [GBBC19], the author proposed a discriminative classifier (D3) along with ADWIN for concept
drift classification . The idea of D3 is to detect Drift in an unsupervised way. D3 can be used
along with any online classifier without any explicit drift detector specified. The drift identification
depends on the discriminative classifiers’s performance. Also, the advantage of D3 is that it can
identify drift continuously without measuring any distribution.The concept of D3 is as follows:

D3 has a fixed size window of W which consists of reference and part of a new data with respect to
reference data. The new samples are added in the right of the window. Before starting any analysis,
the process needs to wait until the window is full. The reference and newer data are labeled with
stack variables once the window is full and then they are fed into a logistic regression model for
classification to check if the new incoming data pattern is changed or not. To identify drift, area
under the curve(AUC) of the classifier is monitored. If there is a significant change in the AUC
value and this value exceeds the programmed threshold, it is detected as drift. On the other hand,

39



3 Literature Review

Figure 3.4: Illustration of workflow of the D3 algorithms

if the AUC values stays under the threshold, it is considered as no significant change within the
dataset, and therefore no drift detection information in intimated. When a drift is identified, the
reference data are removed from the window and new data are added. In case of no drift is detected,
the window is shifted towards the left. This workflow can continue as long as the stream generates
the data. The workflow of D3 method is depicted in Figure 3.4.

With a student-teacher (Student–Teacher Unsupervised Concept Drift Detection (STUDD)) learning
method, the authors [CGBT21] provided another novel approach to concept drift detection. This
method only requires the feature vectors 𝑋 of the testing samples from the environment. The authors
refer to the suggested method as unsupervised because it is not dependent on the labels of the target
variable 𝑦. The main idea of this study focuses following four primary steps:
1. Developing the teacher as a secondary model.
2. Developing a student model as primary model to replicate the teacher model’s behavior
3.Compress the large ensemble (the teacher) to a compact predictive model (the student).
3. Deploy the primary teacher model and detecting concept drift.

The available training instances are denoted by 𝐷𝑡𝑟 (𝑥, 𝑦) is to train the main classifier T, where
𝐷𝑡𝑟 (𝑋, 𝑦) represents an initial batch of training cases. The forecast of upcoming future instances
in the stream D, is referred to as 𝑋𝑛𝑒𝑤 . Due to assumed incremental nature of the model , T is
updated as soon as new labels are obtained. Using Student–Teacher method, it is assumed that
the corresponding labels of 𝑋𝑛𝑒𝑤 are not immediately available after the prediction was made.
Therefore the method that rely on tracking the T data losses becomes ineffective. A clever solution
to this problem is to use student-teacher (ST) learning method. T is named as the teacher model. A
second predictive model, S, the student is created that can be trained to closely represent teacher’s T

40



3.3 Related work

behavior. This can be accomplished by first obtaining the predictions �̂�𝑖 ,of T for 𝐷𝑡𝑟 (𝑥, 𝑦). Then S
is trained using the same observations used to train the teacher with a new dataset S. As a result, the
predictions of the teacher replaces the target variable. The ST method working principle is depicted
graphically in Figure 3.5

(a)

(b)

Figure 3.5: The workflow of Student-Teacher approach

41





4 Study Design

This chapter highlights the research question that this thesis attempts to answer. It also explains the
objectives of the research and research methodology used to address these study questions.

4.1 Research question

The research questions(RQ) are framed and described in detail in this section. Solution to three
main research questions are explored in the scope of this thesis.

RQ1 How can you accurately detect real concept drift while separating it from false alarm?

Arbitrary changes in distribution usually interfere with machine learning performance on streaming
data. Classification boundary transformation, also known as real concept drift, is the primary
source of classification performance drop. Existing drift detection methods, such as two-sample
distribution tests and monitoring classification error rates, have inherent limitations, such as the
inability to distinguish between false alarm and real concept drift. The drifts that do not affect the
classification boundary will result in unnecessary model maintenance, computational cost, and
statistical power. Therefore, we have considered detecting false alarms, which don’t affect model
performance degradation.

RQ2 How does the proposed drift detector’s performance compare to other supervised and
unsupervised drift detection algorithms?

There are a few challenges to incorporating drift detectors in machine learning algorithms. Most
research counts on the error rate for their identify drift in their machine learning model in a
supervised way. But in many real-world scenarios, supervised drift detectors are not along sufficient
as true label availability are rare. Over the years, many unsupervised drift detection mechanisms
have been proposed, but these methods have their own limitations. Therefore, we need a new
strategy to evaluate those unsupervised drift detectors in a meaningful way with respect to different
real-world scenarios.

RQ3 How well the proposed method adapts to the data stream in the classification task with the
presence of concept drift?

43



4 Study Design

Processing streaming data under non-stationary conditions is more complex than processing static
data. Traditional offline machine learning (ML) models cannot cope with concept drift, necessitating
the creation of online adaptive analytical models that can adapt to both predictable and unpredictable
changes. Adaptive machine learning algorithms are suitable options because they can process
changing data streams while responding to any notion deviations.

4.2 Objective

In this section the objectives of the research questions that are being attempted to be solved is briefly
explained.

Objective 1 Create a novel create drift detection method to detect concept drift and avoid false
alarms

This objective refers to the first research question. The existing supervised concept drift detection
algorithms can be a good starting point for monitoring drift. They observe prediction output
instantly and are computationally efficient. They can witness true concept drift. Nevertheless, they
cannot adequately define the drift and require true labels. On the other hand, unsupervised drift
detection methods such as two-sample tests can notice changes in distribution without employing
true labels. However, these techniques have severe flaws, such as they are prone to false alarms.
They can’t tell the difference between concept drift i.e., the changes in the classification border, and
virtual drift, i.e., changes in the distribution that don’t affect classification results. In this context,
this work needs to investigate a robust deep learning-based drift detection method that aims to
detect true concept drift while disregarding false alarm or virtual drift.

Objective 2 Define a strategy comparing different drift detection algorithms

Real-world datasets frequently contain various drift types and lack specific indicators for start and
end of drifting points, making a proper evaluation of drift detection systems difficult. Artificial drift
can be used to understand better how to drift detectors work in various settings. The concept drift
detectors need to be tested without employing classifiers in this experiment. The comparison of
these drift detectors needs to analyzed based on how often false alerts are given when there is no
change and also compute how long it takes for the system to responds on changes once they have
occurred. Finally, it must be estimated how often a warning was not received when there was a drift
present in data stream. These experiments are only possible when the drifted points are known
from before.

Objective 3 Proposed new adaptation strategies combining with drift detector

Concept drift adaption strategies after detecting drift need to be examined. To deal with the observed
drifts and preserve good learning performance, an effective drift adaptation method should be
devised. To solve the performance limitations of current concept drift approaches, a unique drift
adaption method can be derived. The proposed framework should be tested against real-world data
to understand it’s practicality.

44



4.3 Research Methods

Figure 4.1: Research methodology

4.3 Research Methods

This section explains the research procedure used to answer the research questions mentioned
before. Figure 4.1 gives an overview of that research process performed. We started by conducting
a literature review and related work (Chapter 3) to summarise the state of art algorithms, challenges
when working with data streaming with machine learning and possibility of betterment. Based
on the results of these steps, a deep learning-based drift detector algorithm was proposed and
implemented. Afterward, a concrete analysis was developed and evaluated on real-world datasets.

4.3.1 Literature review and related work

We conducted a thorough review of concept drift-related papers in the initial phase from Google
Scholar. Many relevant literature were obtained related to keyword ”concept drift”, ”data stream”
and ”non-stationary environment”. The summary of the state of the art and the most salient methods
are described in Chapter 3.

4.3.2 Prototype of deep learning-based drift detector

From the literature review, it was evident that the application of ML models such as neural networks,
random forest, etc. is widely used for drift detection. Still, the application of autoencoder was very
rare. So, I have decided to incorporate an autoencoder-based drift detector for identifying drift. The
details of the main underlying concepts are described in Chapter 5.

45



4 Study Design

4.3.3 Evaluation of the prototype

Finally, based on the autoencoder algorithm designed to detect drift, I ran several experiments to
validate the concept. There were 3 separate experiments carried out that looked into several aspects
like comparison of performance against existing methods, adaption capability and accuracy in terms
of identifying drift. The details of the experiments carried out, and the results are compiled in
Chapter 6.

46



5 Proposed Methodology

Standard drift detection techniques like ADWIN , DDM, and Page-Hinkley are not suitable drift
detectors for scenarios when the labels are costly. Their application is restricted because these
algorithms identify drifts associated with a change in the predicted error rate (and therefore require
true labels). There are several possibilities for dealing with concept drift when restricted label
availability (depicted in Chapter 3). This study presents a unique method for detecting drifts that do
not require access to true labels. Here, an unsupervised autoencoder is used to detect drifts.

5.1 Main idea

Autoencoder is a generative unsupervised deep learning system. We have already discussed about
autoencoder in the Section 2.7. It has been demonstrated in [ZP17] that the reconstruction error
relates to anomaly detection.

The reconstruction error can be a good indicator of concept drift. If the data distribution change
with time, the new incoming data instances will be different from training data instances. The
autoencoder will have trouble reconstructing the instances, and hence the reconstruction error
will be high. If the reconstruction error is higher for a prolonged time, we can assume this as an
indication of drift. We have extended this idea and proposes in this study that model reconstruction
error may be used as a proxy for error rate and, as a result, should be a valuable predictor of concept
drift.

The encoder’s goal is to change incoming data in a nonlinear manner while capturing the most
significant information [WYZ16]. Since, the encoder captures the most significant features, we can
extent this to the idea that autoencoder can ignore the changes in distribution for those feature that
doesn’t contribute in the model performance degradation in predictive models. Therefore, it can
avoid the virtual drift.

To test this idea, the following strategy has been developed:

First, the reconstruction error is measured for each data instance by the autoencoder. Afterwards, the
ADWIN drift detector is used to identify change by using the reconstruction error value as input.

5.2 Construction of the autoencoder

Before we delve further, lets have a look at the detail mathematical notion of autoencoder. The
architecture of autoencoders is considered with 𝐿 + 1 layers and value of the j-th neuron in the l-th
layer acquired for input data 𝑥𝑛 is denoted by 𝑦

(𝑙)
𝑗
(𝑥𝑛). Using the Equation 5.1 [JRA20], the values

of neurons in the l-th layer can then be calculated.

47



5 Proposed Methodology

(5.1) 𝑦
(𝑙)
𝑗
(𝑥𝑛) = 𝜎

( 𝑁𝑙−1∑︁
𝑖=1

𝑤𝑙
𝑖 𝑗 𝑦

𝑙−1
𝑗 (𝑥𝑛) + 𝑏𝑙𝑗

)
, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 1, . . . , 𝐿.

The weights of synapses between the (l-1)-th and l-th layers are 𝑤𝑖 𝑗
𝑙 , the size of the l-th layer is 𝑁𝑙

and the biases are 𝑏𝑙
𝑗

. An activation function is denoted by 𝜎(𝑧). In autoencoder, several different
forms of activation functions can be used. The most frequent one is used in this study, which is the
sigmoid function, which is defined in Equation 5.2.

(5.2) 𝜎(𝑧) = 1
1 + 𝑒−𝑧

The output layer has the same size as the input layer, i.e. 𝑁𝐿 = 𝑁0 = 𝐷 and the input layer, 𝑦0
𝑗
= 𝑥

𝑗
𝑛,

is the 0-th layer. The middle layer should be the smallest because no sparsity constraints are applied
during autoencoder learning, i.e.

(5.3) 𝐷 = 𝑁0 > ...... > 𝑁𝐿/2 < ¤...... < .𝑁𝐿 = 𝐷

By minimizing a cost function, the autoencoder is taught like a traditional feed-forward neural
network. The cost function obtained for the 𝑥𝑛 data element is 𝐶 (𝑥𝑛). The weight 𝑤 (𝑙)

𝑖 𝑗
, for example,

would be changed in each step using Equation 5.4 [JRA20].

(5.4) 𝑤
(𝑙)
𝑖 𝑗

= 𝑤
(𝑙)
𝑖 𝑗
− [ · 𝛿𝐶 (𝑥𝑛)

𝛿𝑤
(𝑙)
𝑖 𝑗

where [ is the rate of learning. For biases, the similar formula applies. In practice, rather than
single data instance, learning is frequently done on mini batches of data. Assumed that the mini
batch 𝑀𝑡 is made up of B subsequent data, defined as:

𝑀𝑡 =
(
𝑥𝑡𝐵, ......, 𝑥 (𝑡+1)𝐵−1

)
The arithmetic average of gradients for all mini batch data are used to calculate the neural network
parameters.

(5.5) 𝑤
(𝑙)
𝑖 𝑗

= 𝑤
(𝑙)
𝑖 𝑗
− [ · 1

𝐵
·
𝑡(𝐵+1)−1∑︁
𝑚=𝑡𝐵

𝛿𝐶 (𝑥𝑚)
𝛿𝑤
(𝑙)
𝑖 𝑗

48



5.3 Idea of Adaptive Windowing method for concept drift detection

Next, the reconstruction error has been considered. The cost function of the reconstruction error is
defined in Equation 5.6

(5.6) 𝐶𝑅𝐸 (𝑥𝑛) =

√√√( 𝐷∑︁
𝑗=1
(𝑥𝑛) 𝑗 − 𝑦

(𝐿)
𝑗
(𝑥𝑛)

)2

This reconstruction error 𝐶𝑅𝐸 will be monitored to identify drift in the data stream.

5.3 Idea of Adaptive Windowing method for concept drift detection

Input: In general, ADWIN accepts numeric value which is related to concept change and can be
used for analysis. Here we have used the reconstruction error as input to the ADWIN.

Importance of ADWIN in this context: ADWIN has been chosen because it can function with
any real-valued input and requires no prior knowledge of the input distribution. Alternative drift
detection techniques, such as DDM or EDDM, are built for data with a binomial distribution and
are thus they might be inapplicable to taking reconstruction error[AC15] as input. Therefore, we
choose ADWIN, as it is more relevant in context of identifying change in the reconstruction error
distribution [BG07]. We have already discussed about working mechanism of ADWIN in chapter 3.
ADWIN is more robust in terms of false positive and false negative for detecting concept drift than
other exiting drift detectors[BG07]. It has unique mechanism for adjusting window size to provide
quick response by shrinking or expanding the windows.

Work mechanism of ADWIN in this context ADWIN [BG07] utilizes the idea of confidence value
𝛿 which is between range of 0 to 1 to identify drift in between two sub windows. It monitors the
reconstruction error between two consecutive windows and declares when retraining of autoencoder
is necessary.

5.4 Implementation details

In this section the AEDD methodology is explained in brief. Two dependent algotithms are
employed in the proposed methodology. The inputs to Algorithm 1 are the following: 𝑊1 - denotes
the current window, which consists of existing test data, and 𝑊0 - indicates the reference window
consisting of reference data steam. The function will return whether or not drift is detected.

We train initially an autoencoder 𝐴𝐸 with a dataset of the reference window and calculate
reconstruction error (Equation 5.6) 𝑅𝐸 t for each instance in the current window. This calculated
reconstruction error is the input to the 𝐴𝐷𝑊𝐼𝑁 . If 𝐴𝐷𝑊𝐼𝑁 finds the statistical change of
distribution in the incoming data stream, it informs the algorithm to retrain the autoencoder 𝐴𝐸
with the current data. Otherwise, it will keep the autoencoder 𝐴𝐸 as it is and return that no drift is
detected. Once the algorithm finishes calculating the reconstruction error for all the data instances
in the current data frame (see the Figure 5.1) the current data frame slides towards right to discover
the new incoming data.

Symbols:

49



5 Proposed Methodology

Algorithm 5.1 AEDD: Autoencoder based drift detection
Input: Trained model AE; Data stream of current window 𝑊1;
Data stream of previous window 𝑊0
Output: Prediction whether drift is present or not
repeat
Receive incoming instance 𝑥𝑡 from 𝑊1
𝑅𝐸𝑡 ← 𝐴𝐸.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥𝑡 )
ADD 𝑅𝐸𝑡 to 𝐴𝐷𝑊𝐼𝑁

if 𝐴𝐷𝑊𝐼𝑁 detects change then
𝐴𝐸 .train (𝑊0 ∪𝑊1)
Return Drift

end if
Until 𝑊1 end

Figure 5.1: Workflow of the proposed AEDD methodology for drift detection

𝑅𝐸𝑡 reconstruction error

𝑥𝑡 input feature of the data instances

𝑊0 reference window

𝑊1 current window

𝐴𝐸 autoencoder

𝐴𝐷𝑊𝐼𝑁 adaptive windowing

Base learner We are mainly working on classification task. Therefore, we need a base model for
the classification of the incoming data stream. This can be any type of classifier that can be trained
and tested on data. We have considered an adaptive tree classifier( the Hoeffding tree) [HSD01] as

50



5.4 Implementation details

a base classifier in our investigation. The Hoeffding Tree is competent of dealing with an enormous
data stream, and it can endure high dimensional data. It allows for incremental updates, which is
excellent for our tests because it allows us to compare it to other drift detection systems that employ
streaming data.

Next, the Algorithm 5.2 implements the drift adaptation strategies. First 10% of the data in the
stream is used for the reference window 𝑊0 and the subsequent 10% of the following data stream is
gathered in the current window 𝑊1. We train our base learner 𝑏𝑎𝑠𝑒_𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 for classification
with the data stream from the reference window( 𝑊0 ). Then we check if there is any drift in the
data of the current window( 𝑊1 ) with the help of Algorithm 5.1. The current window slides
towards the further right if no drift is found. This workflow continues as long as the stream
generates data. But if the algorithm identifies drift, base learner need to be updated with the new
concepts. It requests the data label of the corresponding data in the current window and updates
the base learner(𝑏𝑎𝑠𝑒_𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟) incrementally. The workflow of the proposed adaptive AEDD
methodology is illustrated in Figure 5.2.

Algorithm 5.2 Online adaptation with AUTOENCODER based drift detector
Initialize window W where |W| = w(1+p)
Initialize Unsupervised Neural Network i.e autoencoder AE
Train the base-classifier with initial 10% of data
for (X,y) in D .class label (y) is not used do

if W is not full then
𝑊 ← 𝑊 ∪ 𝑋 .i.e., add 𝑋 to the head of 𝑊

else
𝑊0 = 𝑤

𝑊1 = 𝑤𝑝

Trained model AE with W0
if AEDD(AE, W1, W0): then

base-classifier.retrain(W1)
drift=true
number-of-drift =number-of-drift + 1
remove w element from W

else
drift = false
remove wp from W

end if
end if

end for

51



5 Proposed Methodology

Symbols:

𝑊 fixed window size

𝐷 data stream

𝐴𝐸𝐷𝐷 function name to the Algorithm 5.1

𝑏𝑎𝑠𝑒_𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 baseline model

𝑝 percentage of new data

Figure 5.2: Workflow of the proposed adaptive AEDD methodology

52



6 Experimental Results

This study conducted extensive experiments to compare AEDD with other competing benchmark
procedures for evaluation purposes. We used a publicly available dataset in our investigation. The
thesis aims to achieve higher accuracy for the predictive model in a concept drift environment. The
experimental analysis and results of the proposed AEDD approach to these datasets are presented in
details. The first part of this chapter helps to understand how efficiently the proposed framework’s
drift detection works. This is done by artificially inducing drift explicitly in the real-world dataset.
The primary motivation behind explicitly causing drift within the dataset is that we don’t know
where the drifted position within the real-world datasets is. So, comparing different drift detectors
will be complicated. For example, even if there are false alarms, there is no way to identify them
because the true drifted position are unknown. The second motivation is to present the adaptation
strategy within the AEDD results and its application in the real-world dataset to demonstrate its
practicality. Finally, this chapter will illustrate the result of different drift detectors’ performance
and final accuracy after combining drift detection and drift adaptation strategies together.

6.1 Experiment goal

Following are the goal of the experiment:

• Research question 1 (RQ1) is addressed primarily in this experiment. Unsupervised drift
detection is a challenging task for many real-world applications. Since these methods are
prone to false alarms, it can lead to unwanted model retraining. The objective of this
experiment is to approach the 1st research question to identify genuine concept drift, ignoring
the false alarms when the true labels are unavailable. So, with experiment 1, we want to
demonstrate how proficiently AEDD can handle false alarms by creating different testing
scenarios.

• In the second experiment, we will try to approach 2nd research question (RQ2), which is
related to comparing different drift detectors. The main goal is to understand how well our
proposed model can perform as a robust drift detector compared to other state-of-the-art
algorithms. We will be using performance metics (discussed in Experiment 2 in details) to
evaluate unsupervised drift detectors in a meaningful way concerning real-world scenarios.

• The 3rd experiment concerns the performance of the proposed AEDD-based adaptive algorithm
with other existing adaptation algorithms. It is geared towards solving the rd research question
(RQ3) by comparing the performance of the proposed AEDD and different state-of-the-art
drift adaptation algorithms.

• The th experiment is the visual representation of the working mechanism of the proposed
AEDD for better understanding. Here, the change of width of ADWIN window and fluctuation
of the reconstruction errors by application of AEDD are demonstrated.

53



6 Experimental Results

6.2 Parameter setup

• The Autoencoder architecture is defined and checked whether the bottleneck of the encoder
is smaller than the input dimensions of the dataset. The Autoencoder consists of four fully
connected layers. The encoder consists of the first 2 layers, and the decoder consists of the
last two. Relu is an activation function in the encoder, and the sigmoid activation function is
used for the decoder.

• At first, the parameters for the AEDD-based drift detector need to be defined for the experiment.
Following are the details about the parameters for the Autoencoder: The number of epochs is
100, batch size of the Autoencoder is 64. Early stopping is used as a regularization technique.
The value for ADWIN is set to 0.002, and the window size is 64. Here, Adam optimizer is
used. Once ADWIN detects drift, AEDD is retrained with 100 epochs with a batch size of 32,
and the ADWIN window also drops the previous reference data.

• Parameter optimization for AEDD requires the simultaneous ADWIN algorithm to detect one
drift on a given validation data set, resulting in a approximate value for the delta. Assume
there are no drifts in the validation data while the delta is set to the initial value. Once the
validation data is considered free of drift, the delta is set to the default value of 0.002, defined
by scikit-multiflow.

• On a system with an i7-8700 processor and 16 GB of memory, the suggested framework was
developed using Python 3.9 version by extending the Scikit-Multiflow [MRBA18] framework.

6.3 Dataset description

This section gives a supervised experimental evaluation of the AEDD method on static datasets
produced by concept drift. By exploiting the position of drifts in these datasets, researchers can
better grasp the different approaches’ drift detection abilities in a real-world context.

6.3.1 Datasets

Three datasets from the UCI machine learning library [Lic+13; SK17] were chosen. Bank data is
related to direct marketing campaigns of a Portuguese banking institution used for classification
task [Lic+13]. Wine data results from a chemical analysis used for quality classification[Lic+13].
Phishing dataset contains data about malicious web pages [SK17] . These were pre-processed to
have only numeric and binary values, normalized in [0,1] (refer to Table 6.1). The multi-class
datasets were reduced to binary class issues, and the data instances were randomized (sequence of
the data changed at random) to remove any existing unwanted concept drifts.

54



6.3 Dataset description

Data Set Instances Attributes Problem

Bank 45211 48 Classification
Phishing 11055 46 Classification

Wine 6497 12 Classification

Table 6.1: Description of the dataset

Data Train accuracy Test accuracy Detectability test False Alarm
( accuracy) (test accuracy)

Bank 85.4 85.2 67.45 85.5
Phishing 90.9 90.7 87.29 90

Wine 99.9 99.7 81.79 99.7

Table 6.2: Effect of performance on predictive model due to artificial drift

6.3.2 Drift injection

Experiments with artificial drift are carried out to understand better the relative behaviour of drift
detectors in various settings. This is accomplished utilizing a similar strategy proposed by this
study [Žli10a]. According to the author [Žli10a], the drift induction approach permits the insertion
of concept drift in static datasets at a precise moment in the data stream. This enables managed
drift analysis while maintaining the attributes of the application areas from which the sample was
created. To eliminate any undesirable concept drift and to prepare the dataset for the drift induction
procedure, it is first shuffled. The drift induction technique suggested by [Žli10a] creates feature
drift within the static dataset at the point known as the Change of Point in the stream. Drift is
created by selecting a subset of features at random and rotating their values for a specific class. As
per this method, if the feature sequence(2,4,6) is chosen for class label 0, after the ChangePoint,
the rearranged feature sequence would be (4,6,2). This simple methodology guarantees significant
feature drifts can be formed, whereas the dataset’s initial data attributes are maintained. This method
is, however, reliant on the features chosen for rotation, and if the ’correct’ set of features is not
chosen, it produces inconsistent results. The core idea of [Žli10a] is extended in this drift induction
approach, which provides for more flexibility over the form of change. Rather than selecting a
set of characteristics at random, it is preferable to choose features based on their significance to
the classification assignment. It would be implemented by ranking individual features as per its
information gain metric [DWBB04]. Afterward, it would select top-ranked features for inducing
real drift and selecting the lowest rank feature depending on the desired change.

6.3.3 Detectability & false alarm

Here, two experiments are carried out: a) Detectability studies, in which the top 25% of features
from the ranked list are chosen, and b) False alarm tests, in which the lowest 25% are chosen. This
was done to evaluate the detection performance and the robustness against irrelevant modifications.
Because the top 25% of ranking features are ranked based on their information content, and changing
these features causes performance to degrade, which must be noticed and rectified, they significantly

55



6 Experimental Results

impact the classification process. Modifying the bottom 25% of the features has a minor impact on
the classification process. It leads to false alarms, which the detectors should ignore—the effect of
shifting the top 25% and lowest 25% of the population. The ChangePoint was triggered at 50% of
the stream in all datasets. A model is trained on data before the ChangePoint and then evaluated on
samples afterward. The model’s accuracy on the training and original test sets (before induction) is
similar, indicating a static dataset. For detection of ChangePoint studies, the top 25% of the features
are rotated, resulting in a considerable decline in test accuracy. (Table 6.2). Real drifts, which
must be discovered by a drift detection method, are indicated by this. In the False alarm trials,
rotating the bottom 25% of the features did not result in a substantial reduction in test accuracy.
Even though the same number of characteristics is turned in both circumstances, the importance
of the features varies when it comes to the classification task. To examine the behaviour of the
algorithms under different change scenarios, this study has conducted experimental analysis on the
top 25% and bottom 25% datasets.

6.4 Experiment 1

The detectability and False alarm test(discussed in 6.3.2) can be used to understand the performance
of different drift detectors in terms of real drift detection and false alarm. Following aspects are
examined with these tests:
1. No retraining (keep the static model) concept

2.ADWIN (supervised drift detector, discussed in 3.1) drift detector

3. Unsupervised drift detector D3 ( discussed in 3.3)

4. AEDD (proposed unsupervised drift detector) drift detector

A false alarm can be caused by drift detector because of the change in the feature space, but such
differences might not have a meaningful effect on predictive analysis. If the detector can avoid false
alarms, then valuable resources like cost and time for model retraining can be saved. With the
above-mentioned drift induction technique, the real drift is induced in the data stream once. The
model performance is expected to degrade significantly in case of the detectability test, but for false
alarm, performance has a slight change overall (refer to Table 6.2). The results and the finding will
be discussed in the following sub-section.

6.4.1 Results and discussion on experiment 1

The experiment (refer to Table 6.3) shows a vast accuracy drop if the model doesn’t incorporate any
drift detection and retraining mechanism. Since the no retraining method has the lowest accuracy,
the need for a drift detection mechanism is evident. Next, the standard supervised drift detector
ADWIN is applied to the dataset and found drift exactly once. This proves its resilience toward
false alarms. The approaches D3 and AEDD successfully discover 3 and 2 drifts respectively, in
Detectability tests and achieve overall good accuracy. D3 and AEDD are unsupervised approaches,
but their overall accuracy was similar to supervised drift detector methods. This demonstrates that
AEDD techniques can be utilized rather than supervised approaches without reducing predictive

56



6.5 Experiment 2

Datasets Algorithms Induced drift in top 25% of feature Induced Drift in bottom 25% of feature
Accuracy Drifts False Alarms detected drifts

Bank No retraining 67.45 0 0 0
ADWIN 88.86 1 0 0

D3 91.50 3 2 1
AEDD 92.87 2 1 0

Phishing No retraining 87.29 0 0 0
ADWIN 93.57 1 0 0

D3 92.87 2 1 2
AEDD 93.59 1 1 0

Wine No retraining 81.79 0 0 0
ADWIN 97.96 1 0 0

D3 99.01 0 1 1
AEDD 99.57 0 1 0

Table 6.3: Detection results of different methodologies for induced drift dataset

accuracy considerably. But it can necessitate unnecessarily model retraining as these methods are
not resilient to false alarm. ADWIN and AEDD methods are both immune to a false alarm but the
D3 approach flags them as a significant shift that should be investigated further.

6.5 Experiment 2

Due to some fundamental constraints such as true label unavailability, drift detection is a complicated
process [Bif17]. When creating a drift detection system, balancing false and genuine alarms is
essential while decreasing the time between transition and detection must also be focused. A drift
detector’s design compromises the ability to identify actual changes while avoiding false alarms.
This information is formally apprehended in the specified benchmarks [GG00] to estimate the
performance of change detection systems. The four performance metrics related to the drift detector
are listed below:

• Mean Time Between False Alarms (MTFA): How frequently a false alarm occurs while no
change occurs (the higher, the better). The distance between consecutive (false) alarms before
the change point is used to calculate MTFA. In addition, this score is averaged over the 5
repetitions.

• Mean Time to Detection (MTD): How long does it take on average for a method to identify
a modification after this occurs (the lower, the better)? The number of points between the
change point and the following alert triggered by the method, is counted. MTD’s score is
averaged across 5 repetitions, similar to MTFA’s.

• Missed Detection Ratio (MDR): This metric represents likelihood of missing a drift. The
fraction of repetitions (across the 5 simulations) in which the drift method fails to raise an
alarm following the start of the drift is used to calculate this. This value should ideally be
zero, indicating that all drifts are collected, regardless of duration.

57



6 Experimental Results

Method MTFA MTD MDR ND
D3 2238 562 0.0 9

STUDD 5400 1618 0.0 2
UDD 13276 2374 0.0 3

AEDD 12765 1031 0.2 5

Table 6.4: Performance metric for AEDD and baseline models for bank dataset

Method MTFA MTD MDR ND
D3 811 154 0.14 12

STUDD 4765 1654 0.08 6
UDD 8778 1254 0.03 5

AEDD 7686 910 0.18 9

Table 6.5: Performance metric for AEDD and baseline models for Phishing datasets

• Number of Detections (ND) A total number of detected drift in the model has been taken into
account.

6.5.1 Results and discussion on experiment 2

To find out how good our proposed drift detection algorithm is in terms of performance and
efficiency, we used the idea of performance metric (discussed in Experiment 2). The state of art
methods for this study considered D3[CGBT21], STUDD[CGBT21], UDD[BSSK21] are discussed
in related work. The results are shown in Table 6.4, Table 6.5 and Table 6.6 for their respective
datasets. We induce drift in the bank, phishing and wine dataset (discussed in the experiment
section) and calculate the performance metrics. This experiment has been done 5 times to calculate
the average of these metrics.

Based on the results obtained for the Bank, phishing and the wine dataset, we can say that proposed
method AEDD have a MDR value of 20%, 18% and 5% repectively that means it has low probability
of failing to identify a drift. Therefore, AEDD is able to obtain artificial drift that has been induced
in externally. But in terms of MDR values (ideal value is 0) terms of other state-of-art methods,
STUDD and UDD has done better job than AEDD.

Method MTFA MTD MDR ND
D3 549 62 0.30 6

STUDD 657 543 0.23 4
UDD 983 376 0.03 4

AEDD 884 176 0.05 3

Table 6.6: Performance metric for AEDD and baseline models for Wine datasets

58



6.6 Experiment 3

Figure 6.1: Accuracy comparison among proposed AEDD and other existing state of art algorithms:
for Phishing dataset

In terms of MTD, the value for AEDD is relatively lower than the UDD and STUDD which means
after the drift was induced in the dataset it has taken relatively lower time than other methods to
identify drift.

Concerning the MTFA values, AEDD has has relatively higher value than D3 and STUDD, which
indicates there is relatively long distance between two false alarms, therefore it is more robust to
false alarms.

The number of detected drift by AEDD is relatively fewer than D3. So, regarding our research
question 2, how we can compare different drift detector’s performance, we can conclude that
the proposed approach with this performance metrics the unsupervised drift detector algorithm’s
performance can be soundly compared. The comparison study clearly demonstrates that the AEDD
method perform better than D3 but is not superior to UDD. In few cases has given even better
performance that STUDD.

6.6 Experiment 3

The main goal is to approach the RQ3 by comparing the accuracy, precision, recall and average
test time values among proposed AEDD and other existing state of art algorithms (detailed in the
literature review), including ARF [GBR+17], HT [HSD01], EFDT [DH00], LB [BHP10], Bagging
Classifier [OR01a], Adaboost [YQJL13], LightGBM [KMF+17].

59



6 Experimental Results

Figure 6.2: Accuracy comparison among proposed AEDD and other existing state of art algorithms:
for Bank dataset

Figure 6.3: Accuracy comparison among proposed AEDD and other existing state of art algorithms:
for Wine dataset

60



6.6 Experiment 3

Method Accuracy(%) Precision(%) Recall(%) Avg. Test time(ms)
Proposed AEDD 92.87 91.99 92.98 15.6

LightGBM 67.45 76.21 50.79 0.13
ARF ADWIN 88.86 88.77 88.96 1.4
ARF DDM 87.74 85.56 90.56 1.55

EFDT 88.68 90.62 86.97 5.4
HT 87.50 89.91 85.91 0.3
LB 89.70 88.65 91.76 7.4

AdaBoostClassifier 88.97 87.97 90.67 6.5
BaggingClassifier 90.31 90.64 90.94 3.1

Table 6.7: Plot accuracy for adaptive algorithms on Bank Dataset

Method Accuracy(%) Precision(%) Recall(%) Avg. Test time(ms)
Proposed AEDD 93.57 85.55 81.85 5.5

LightGBM 87.29 84.34 94.67 0.3
ARF ADWIN 88.85 87.85 92.85 0.9
ARF DDM 89.59 89.76 94.76 1.2

EFDT 90.30 88.98 94.98 2.4
HT 88.68 90.23 88.23 0.7
LB 90.97 90.45 93.45 1.4

AdaBoostClassifier 89.47 90.67 90.67 1.5
BaggingClassifier 91.19 90.16 94.16 3.1

Table 6.8: Plot accuracy for adaptive algorithms on Phishing Dataset

Method Accuracy(%) Precision(%) Recall(%) Avg. Test time(ms)
Proposed AEDD 99.57 99.57 99.53 15.6

LightGBM 81.97 81.97 81.56 0.3
ARF ADWIN 97.96 98.96 98.56 0.9
ARF DDM 99.57 99.32 99.76 1.2

EFDT 99.95 99.75 99.43 0.4
HT 99.56 99.23 99.64 0.5
LB 99.85 99.85 99.65 5.4

AdaBoostClassifier 99.90 99.90 99.26 1.5
BaggingClassifier 97.20 97.20 97.20 3.1

Table 6.9: Plot accuracy for adaptive algorithms on Wine Dataset

61



6 Experimental Results

6.6.1 Results and discussion on experiment 3

Figure 6.1, Figure 6.2 and Figure 6.3 demonstrates the accuracy, precision, recall and avg. test time
comparison among proposed AEDD and other existing state of art algorithms. Table 6.7 lists the
comparison on key parameters of all studied algorithms. The study shows that the proposed AEDD
has outperformed the other algorithms in precision, accuracy, and recall value for all dataset.

6.7 Visual explanation of AEDD

Finally, the visual representation of the working mechanism of autoencoder based drift detector is
described.

6.7.1 Reconstruction error change

The working principle of the autoencoder based drift detector is elucidated in Section 5. Here, we
will demonstrate visually how does the reconstruction error vary with time and what is the impact of
using an autoencoder based drift detector in terms of reconstruction error change. The Figure 6.4a
shows the original reconstruction error of the real world dataset when no drift detection mechanism
is taken account and the Figure 6.4b demonstrate the refreshed reconstruction error calculated by
the autoencoder after drift is detected. If we look into the Figure 6.4b carefully, we can see that
reconstruction error changes with time. As per the explanation in 5, if the pattern of the data streams
varies over time, the input and reconstructed output will be significantly different. Figure 6.4a
shows reconstruction error is substantially high for a change in distribution. If reconstruction error
changes and it continuously high for prolong period then AEDD identifies that as drift and initiate
an autoencoder retraining. Therefore, autoencoder learns the new distribution and the autoencoder
has a new refreshed reconstruction error over time shown in Figure 6.4b. Figure 6.4 and Figure 6.5
represents Bank and Phishing dataset respectively.

62



6.7 Visual explanation of AEDD

(a)

(b)

Figure 6.4: a) Reconstruction and b) refreshed reconstruction error with respect to time for Bank
Dataset

6.7.2 Change of width for ADWIN

We have chosen ADWIN to monitor the relative change in the reconstruction error. If ADWIN
finds that the incoming dataset belongs to the same distribution,its window grows. However, once
ADWIN detects a change in the data distribution, the window shrinks and starts gathering the
data from the new distribution. The evolution of ADWIN’s window width over time is shown in
Figure 6.6. Figure 6.6a and Figure 6.6b shows the ADWIN width change for the Phishing and Bank
dataset respectively.

63



6 Experimental Results

(a)

(b)

Figure 6.5: Plot of Reconstruction error and refreshed reconstruction error over Time for Phishing
dataset

6.7.3 Autoencoder training

Autoencoder is trained with training data initially. Since then, whenever ADWIN detect drift the
autoencoder has to retrain with the new incoming data. The model was trained over 100 epochs.
Figure 6.7a demonstrate the loss of autoencoder over epochs and 6.7b shows the loss of auto encoder
after each gradient decent over epochs respectively.

6.7.4 Detected drift points

In the final stage, drift is signaled once ADWIN identifies the significant change in the reconstruction
error with its adaptive windowing technique. Autoencoder must retrain again with the new incoming
dataset. Figure 6.8a shows the detected drift over time. We also wanted to dive deep into the

64



6.7 Visual explanation of AEDD

(a)

(b)

Figure 6.6: The change of ADWIN window width with respect to the time for a) Phishing b) Bank
dataset

65



6 Experimental Results

(a)

(b)

Figure 6.7: a) loss of autoencoder for training loss and b) loss of auto encoder after each gradient
decent over epochs for Phishing dataset

reconstruction error change over individual feature dimensions. Figure 6.8b demonstrates the
features 8, 27, and 34 that have the highest reconstruction error on the detected point from the
experiment.

6.7.5 Summary of experimental results

Due to drift detection, maintaining the precision of a high-performing machine learning model over
time is difficult. Numerous attempts and techniques have identified drift in streaming data sets.
Our findings show that AEDD can compete with other cutting-edge unsupervised drift detection

66



6.7 Visual explanation of AEDD

(a)

(b)

Figure 6.8: Plots of a) detected drift over time and b) reconstruction error of specific point for
phishing dataset

67



6 Experimental Results

techniques. Finally, we demonstrate that the AEDD tend to give better test results, more reliable
drift threshold parameter adjustments and more extensive and more complicated auto encoder
architectures.

6.7.6 Limitations

The suggested method does not require the class labels during detection and gives the domain
expert the flexibility to set the label. However, when there is a feature change does not occur, its
performance can be degraded since we cannot locate a feature that significantly correlates with the
true label. The results of the dataset experiments are validated on the assumption that there is a
significant change in the feature’s space. However, given a real-world dataset, this assumption may
not be always valid and more research is needed to look at the intricacies of this methodology.

68



7 Conclusion and Future work

This thesis proposes a novel unsupervised drift detection method. The state-of-the-art unsupervised
drift detection mechanisms are often ill equipped to deal with drift detection and often provides
poor results due to lack of label availability, false alarms and lack of adaptability. Because these
methods often require access to the whole collection of true labels, standard drift detection methods
like DDM and ADWIN are inapplicable of providing reliable results in such situations.

To deal with these problems, the AEDD algorithm for concept drift detection is proposed in this
thesis. This approach does not rely on true labels to detect concept drift, and only requires access to
a small selection of true labels to retrain the prediction model if drift is discovered. As a result, this
approach is particularly well suited to drift handling in deployed ML settings in real-world scenarios
where correct label acquisition is costly. The problem solving approach is based on reconstruction
error estimation obtained by an autoencoder.

To validate the performance of the proposed AEDD method, a series of experiments are carried out.
In Experiment 1, we have explicitly induced drift to identify if the detector can find drift in proper
positions or if it gives false alarms. We see that the performance of AEDD is comparable with other
supervised drift detectors. It manages to ignore false alarms in most of the cases, outperforming
other unsupervised drift detection algorithms. The performance was tested on different test scenarios
to compare the output of AEDD in conjunction with other unsupervised drift detectors and obtained
similar results. In experiment 2, we tried to determine how accurately different drift detectors can
identify drift and the time required to react against drift. The proposed methodology can compete
with other existing drift detectors to identify drift more accurately and faster. Finally, in Experiment
3, we tried to understand how well the proposed adaptive algorithm adapts with new incoming
data distribution so that even if drift is present, the model performance won’t be affected. The
AEDD-based drift adaptation strategies outperformed other existing drift adaptation strategies in
terms of accuracy, precision, and recall of all three datasets.

The AEDD approach can be adopted in many real-life situations, for example, in the production
line where quality control of products is determined using machine learning using sensor and
observation data. This method can be incorporated to the existing ML algorithms used in the
monitoring system without significant cost and computational resources. The future work includes
extending the suggested method to make it more resource-aware for various fast-changing data
streams containing multiple types of drift and capable of dealing with missing values and unbalanced
datasets. Although the study has been conducted in three known data sets, a more comprehensive
analysis must be carried out on several unbiased datasets to test the concepts and its applicability.

69





Bibliography

[AC15] J. An, S. Cho. “Variational autoencoder based anomaly detection using reconstruction
probability”. In: Special Lecture on IE 2.1 (2015), pp. 1–18 (cit. on p. 49).

[Alt07] H. Altınçay. “Ensembling evidential k-nearest neighbor classifiers through multi-
modal perturbation”. In: Applied Soft Computing 7.3 (2007), pp. 1072–1083 (cit. on
p. 29).

[APHW03] C. C. Aggarwal, S. Y. Philip, J. Han, J. Wang. “A framework for clustering evolving
data streams”. In: Proceedings 2003 VLDB conference. Elsevier. 2003, pp. 81–92
(cit. on p. 15).

[BCF+06] M. Baena-Garcıa, J. del Campo- Avila, R. Fidalgo, A. Bifet, R. Gavalda, R. Morales-
Bueno. “Early drift detection method”. In: Fourth international workshop on knowl-
edge discovery from data streams. Vol. 6. 2006, pp. 77–86 (cit. on p. 33).

[BG07] A. Bifet, R. Gavalda. “Learning from time-changing data with adaptive windowing”.
In: Proceedings of the 2007 SIAM international conference on data mining. SIAM.
2007, pp. 443–448 (cit. on pp. 16, 17, 32, 35, 49).

[BHP10] A. Bifet, G. Holmes, B. Pfahringer. “Leveraging bagging for evolving data streams”.
In: Joint European conference on machine learning and knowledge discovery in
databases. Springer. 2010, pp. 135–150 (cit. on pp. 37, 59).

[Bif17] A. Bifet. “Classifier concept drift detection and the illusion of progress”. In: Inter-
national Conference on Artificial Intelligence and Soft Computing. Springer. 2017,
pp. 715–725 (cit. on p. 57).

[BM08] S. H. Bach, M. A. Maloof. “Paired learners for concept drift”. In: 2008 Eighth IEEE
International Conference on Data Mining. IEEE. 2008, pp. 23–32 (cit. on p. 35).

[BS13] D. Brzezinski, J. Stefanowski. “Reacting to different types of concept drift: The
accuracy updated ensemble algorithm”. In: IEEE Transactions on Neural Networks
and Learning Systems 25.1 (2013), pp. 81–94 (cit. on p. 38).

[BSSK21] L. Baier, T. Schlör, J. Schöffer, N. Kühl. “Detecting concept drift with neural network
model uncertainty”. In: arXiv preprint arXiv:2107.01873 (2021) (cit. on pp. 39, 58).

[CGB20] V. Cerqueira, H. M. Gomes, A. Bifet. “Unsupervised concept drift detection using
a student–teacher approach”. In: International Conference on Discovery Science.
Springer. 2020, pp. 190–204 (cit. on p. 17).

[CGBT21] V. Cerqueira, H. M. Gomes, A. Bifet, L. Torgo. “STUDD: A Student-Teacher Method
for Unsupervised Concept Drift Detection”. In: arXiv preprint arXiv:2103.00903
(2021) (cit. on p. 58).

[CZ04] F. Chu, C. Zaniolo. “Fast and light boosting for adaptive mining of data streams”. In:
Pacific-Asia conference on knowledge discovery and data mining. Springer. 2004,
pp. 282–292 (cit. on p. 37).

71



Bibliography

[DH00] P. Domingos, G. Hulten. “Mining high-speed data streams”. In: Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and data
mining. 2000, pp. 71–80 (cit. on pp. 35, 59).

[DP11] G. Ditzler, R. Polikar. “Hellinger distance based drift detection for nonstationary
environments”. In: 2011 IEEE symposium on computational intelligence in dynamic
and uncertain environments (CIDUE). IEEE. 2011, pp. 41–48 (cit. on p. 33).

[DP12] G. Ditzler, R. Polikar. “Incremental learning of concept drift from streaming imbal-
anced data”. In: IEEE transactions on knowledge and data engineering 25.10 (2012),
pp. 2283–2301 (cit. on p. 29).

[DWBB04] W. Duch, T. Wieczorek, J. Biesiada, M. Blachnik. “Comparison of feature ranking
methods based on information entropy”. In: 2004 IEEE International Joint Conference
on Neural Networks (IEEE Cat. No. 04CH37541). Vol. 2. IEEE. 2004, pp. 1415–1419
(cit. on p. 55).

[EP11] R. Elwell, R. Polikar. “Incremental learning of concept drift in nonstationary
environments”. In: IEEE Transactions on Neural Networks 22.10 (2011), pp. 1517–
1531 (cit. on p. 38).

[FB13] W. Fan, A. Bifet. “Mining big data: current status, and forecast to the future”. In:
ACM SIGKDD explorations newsletter 14.2 (2013), pp. 1–5 (cit. on p. 16).

[GBBC19] Ö. Gözüaçık, A. Büyükçakır, H. Bonab, F. Can. “Unsupervised concept drift detection
with a discriminative classifier”. In: Proceedings of the 28th ACM international
conference on information and knowledge management. 2019, pp. 2365–2368 (cit. on
pp. 16, 33, 39).

[GBR+17] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck, B. Pfharinger, G. Holmes,
T. Abdessalem. “Adaptive random forests for evolving data stream classification”. In:
Machine Learning 106.9 (2017), pp. 1469–1495 (cit. on pp. 37, 59).

[GCGD20] R. N. Gemaque, A. F. J. Costa, R. Giusti, E. M. Dos Santos. “An overview of
unsupervised drift detection methods”. In: Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 10.6 (2020), e1381 (cit. on pp. 19, 34).

[GG00] F. Gustafsson, F. Gustafsson. Adaptive filtering and change detection. Vol. 1. Citeseer,
2000 (cit. on p. 57).

[GMCR04] J. Gama, P. Medas, G. Castillo, P. Rodrigues. “Learning with drift detection”. In:
Brazilian symposium on artificial intelligence. Springer. 2004, pp. 286–295 (cit. on
pp. 16, 27, 33).

[GRB+19] H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, J. Gama. “Machine learning for
streaming data: state of the art, challenges, and opportunities”. In: ACM SIGKDD
Explorations Newsletter 21.2 (2019), pp. 6–22 (cit. on p. 16).

[GŽB+14] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia. “A survey on concept
drift adaptation”. In: ACM computing surveys (CSUR) 46.4 (2014), pp. 1–37 (cit. on
p. 31).

[HGL15] D. Han, C. Giraud-Carrier, S. Li. “Efficient mining of high-speed uncertain data
streams”. In: Applied Intelligence 43.4 (2015), pp. 773–785 (cit. on p. 35).

72



Bibliography

[HSD01] G. Hulten, L. Spencer, P. Domingos. “Mining time-changing data streams”. In:
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining. 2001, pp. 97–106 (cit. on pp. 35, 50, 59).

[HZ93] G. E. Hinton, R. Zemel. “Autoencoders, minimum description length and Helmholtz
free energy”. In: Advances in neural information processing systems 6 (1993) (cit. on
p. 17).

[JRA20] M. Jaworski, L. Rutkowski, P. Angelov. “Concept drift detection using autoencoders
in data streams processing”. In: International Conference on Artificial Intelligence
and Soft Computing. Springer. 2020, pp. 124–133 (cit. on pp. 47, 48).

[KM07] J. Z. Kolter, M. A. Maloof. “Dynamic weighted majority: An ensemble method
for drifting concepts”. In: The Journal of Machine Learning Research 8 (2007),
pp. 2755–2790 (cit. on p. 37).

[KMF+17] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu. “Lightgbm: A
highly efficient gradient boosting decision tree”. In: Advances in neural information
processing systems 30 (2017) (cit. on p. 59).

[KRW10] M. Kantardzic, J. W. Ryu, C. Walgampaya. “Building a new classifier in an ensemble
using streaming unlabeled data”. In: International Conference on Industrial, En-
gineering and Other Applications of Applied Intelligent Systems. Springer. 2010,
pp. 77–86 (cit. on p. 34).

[Kun04] L. I. Kuncheva. “Classifier ensembles for changing environments”. In: International
Workshop on Multiple Classifier Systems. Springer. 2004, pp. 1–15 (cit. on p. 29).

[KŽB+14] G. Krempl, I. Žliobaite, D. Brzezi nski, E. Hüllermeier, M. Last, V. Lemaire, T. Noack,
A. Shaker, S. Sievi, M. Spiliopoulou, et al. “Open challenges for data stream mining
research”. In: ACM SIGKDD explorations newsletter 16.1 (2014), pp. 1–10 (cit. on
p. 16).

[Lic+13] M. Lichman et al. UCI machine learning repository, 2013. 2013 (cit. on p. 54).
[LSZL17] A. Liu, Y. Song, G. Zhang, J. Lu. “Regional concept drift detection and density

synchronized drift adaptation”. In: IJCAI International Joint Conference on Artificial
Intelligence. 2017 (cit. on p. 20).

[LWHW15] P. Li, X. Wu, X. Hu, H. Wang. “Learning concept-drifting data streams with random
ensemble decision trees”. In: Neurocomputing 166 (2015), pp. 68–83 (cit. on p. 37).

[LWJ16] D. Liu, Y. Wu, H. Jiang. “FP-ELM: An online sequential learning algorithm for
dealing with concept drift”. In: Neurocomputing 207 (2016), pp. 322–334 (cit. on
p. 35).

[LZL14] N. Lu, G. Zhang, J. Lu. “Concept drift detection via competence models”. In:
Artificial Intelligence 209 (2014), pp. 11–28 (cit. on p. 20).

[MRA+12] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodr ıguez, N. V. Chawla, F. Herrera. “A
unifying view on dataset shift in classification”. In: Pattern recognition 45.1 (2012),
pp. 521–530 (cit. on p. 21).

[MRBA18] J. Montiel, J. Read, A. Bifet, T. Abdessalem. “Scikit-multiflow: A multi-output
streaming framework”. In: The Journal of Machine Learning Research 19.1 (2018),
pp. 2915–2914 (cit. on p. 54).

73



Bibliography

[MY11] L. L. Minku, X. Yao. “DDD: A new ensemble approach for dealing with concept drift”.
In: IEEE transactions on knowledge and data engineering 24.4 (2011), pp. 619–633
(cit. on p. 29).

[OR01a] N. C. Oza, S. Russell. “Experimental comparisons of online and batch versions of
bagging and boosting”. In: Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining. 2001, pp. 359–364 (cit. on
pp. 37, 59).

[OR01b] N. C. Oza, S. J. Russell. “Online bagging and boosting”. In: International Workshop
on Artificial Intelligence and Statistics. PMLR. 2001, pp. 229–236 (cit. on p. 37).

[Pag54] E. S. Page. “Continuous inspection schemes”. In: Biometrika 41.1/2 (1954), pp. 100–
115 (cit. on pp. 27, 32).

[PV16] A. Pesaranghader, H. L. Viktor. “Fast hoeffding drift detection method for evolving
data streams”. In: Joint European conference on machine learning and knowledge
discovery in databases. Springer. 2016, pp. 96–111 (cit. on p. 32).

[PVP18] A. Pesaranghader, H. Viktor, E. Paquet. “Reservoir of diverse adaptive learners
and stacking fast hoeffding drift detection methods for evolving data streams”. In:
Machine Learning 107.11 (2018), pp. 1711–1743 (cit. on p. 32).

[RCNW18] A. G. Roy, S. Conjeti, N. Navab, C. Wachinger. “Inherent brain segmentation quality
control from fully convnet monte carlo sampling”. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer. 2018,
pp. 664–672 (cit. on p. 39).

[RFMB16] D. M. dos Reis, P. Flach, S. Matwin, G. Batista. “Fast unsupervised online drift
detection using incremental kolmogorov-smirnov test”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
2016, pp. 1545–1554 (cit. on p. 33).

[SA16] S. G. Soares, R. Ara ujo. “An adaptive ensemble of on-line extreme learning machines
with variable forgetting factor for dynamic system prediction”. In: Neurocomputing
171 (2016), pp. 693–707 (cit. on p. 35).

[SG86] J. C. Schlimmer, R. H. Granger. “Incremental learning from noisy data”. In: Machine
learning 1.3 (1986), pp. 317–354 (cit. on p. 20).

[Sha+12] S. Shalev-Shwartz et al. “Online learning and online convex optimization”. In:
Foundations and Trends® in Machine Learning 4.2 (2012), pp. 107–194 (cit. on
p. 16).

[SK17] T. S. Sethi, M. Kantardzic. “On the reliable detection of concept drift from streaming
unlabeled data”. In: Expert Systems with Applications 82 (2017), pp. 77–99 (cit. on
pp. 34, 54).

[STM+16] Y. Sun, K. Tang, L. L. Minku, S. Wang, X. Yao. “Online ensemble learning of data
streams with gradually evolved classes”. In: IEEE Transactions on Knowledge and
Data Engineering 28.6 (2016), pp. 1532–1545 (cit. on p. 37).

[Sto09] A. Storkey. “When training and test sets are different: characterizing learning transfer”.
In: Dataset shift in machine learning 30 (2009), pp. 3–28 (cit. on p. 21).

[Wal73] A. Wald. Sequential analysis: Courier Corporation. 1973 (cit. on p. 32).

74



[WK96] G. Widmer, M. Kubat. “Learning in the presence of concept drift and hidden contexts”.
In: Machine learning 23.1 (1996), pp. 69–101 (cit. on p. 21).

[WLH12] X. Wu, P. Li, X. Hu. “Learning from concept drifting data streams with unlabeled
data”. In: Neurocomputing 92 (2012), pp. 145–155 (cit. on p. 34).

[WYZ16] Y. Wang, H. Yao, S. Zhao. “Auto-encoder based dimensionality reduction”. In:
Neurocomputing 184 (2016), pp. 232–242 (cit. on p. 47).

[XW17] S. Xu, J. Wang. “Dynamic extreme learning machine for data stream classification”.
In: Neurocomputing 238 (2017), pp. 433–449 (cit. on p. 35).

[XXYA17] Y. Xu, R. Xu, W. Yan, P. Ardis. “Concept drift learning with alternating learners”.
In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE. 2017,
pp. 2104–2111 (cit. on p. 38).

[YF12] H. Yang, S. Fong. “Incrementally optimized decision tree for noisy big data”.
In: Proceedings of the 1st International Workshop on Big Data, Streams and
Heterogeneous Source Mining: Algorithms, Systems, Programming Models and
Applications. 2012, pp. 36–44 (cit. on p. 36).

[YHH15] X.-C. Yin, K. Huang, H.-W. Hao. “DE2: Dynamic ensemble of ensembles for learning
nonstationary data”. In: Neurocomputing 165 (2015), pp. 14–22 (cit. on p. 38).

[YQJL13] C. Ying, M. Qi-Guang, L. Jia-Chen, G. Lin. “Advance and prospects of AdaBoost
algorithm”. In: Acta Automatica Sinica 39.6 (2013), pp. 745–758 (cit. on p. 59).

[YWP18] S. Yu, X. Wang, J. C. Pr ıncipe. “Request-and-reverify: Hierarchical hypothesis testing
for concept drift detection with expensive labels”. In: arXiv preprint arXiv:1806.10131
(2018) (cit. on p. 34).

[Žli10a] I. Žliobaite. “Change with delayed labeling: When is it detectable?” In: 2010 IEEE
International Conference on Data Mining Workshops. IEEE. 2010, pp. 843–850
(cit. on pp. 16, 55).

[Žli10b] I. Žliobaitė. “Learning under concept drift: an overview”. In: arXiv preprint
arXiv:1010.4784 (2010) (cit. on pp. 23–26).

[ZP17] C. Zhou, R. C. Paffenroth. “Anomaly detection with robust deep autoencoders”.
In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 2017, pp. 665–674 (cit. on pp. 30, 47).

[ZZS08] P. Zhang, X. Zhu, Y. Shi. “Categorizing and mining concept drifting data streams”.
In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2008, pp. 812–820 (cit. on p. 29).





Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature


	1 Introduction
	1.1 Motivation
	1.2 Concept drift in data stream mining
	1.3 Problem statement
	1.4 Contribution of this thesis
	1.5 Thesis outline

	2 Background
	2.1 Data stream
	2.2 Concept drift definition
	2.3 Reasoning for drift in real world scenario:
	2.4 Principle of concept drift learner
	2.5 Drift detection
	2.6 Data stream processing with concept drift
	2.7 Autoencoders

	3 Literature Review
	3.1 Concept drift detection strategies
	3.2 Concept drift adaptation
	3.3 Related work

	4 Study Design
	4.1 Research question
	4.2 Objective
	4.3 Research Methods

	5 Proposed Methodology
	5.1 Main idea
	5.2 Construction of the autoencoder
	5.3 Idea of Adaptive Windowing method for concept drift detection
	5.4 Implementation details

	6 Experimental Results
	6.1 Experiment goal
	6.2 Parameter setup
	6.3 Dataset description
	6.4 Experiment 1
	6.5 Experiment 2
	6.6 Experiment 3
	6.7 Visual explanation of AEDD

	7 Conclusion and Future work
	Bibliography

