
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

An Approach for Identifiying False
Positive Warnings in SAST Tooling

Lukas Krawczyk

Course of Study: Informatik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Markus Haug,
Dr. Ana Cristina Franco da Silva,
Dr. Daniel Graziotin

Commenced: February 1, 2022

Completed: August 1, 2022





Abstract

In this paper, we present an approach to reduce the number of false positive results in static analysis
of cryptographic libraries. To achieve this, we use an existing path-sensitive algorithm to eliminate
RCE vulnerabilities and adapt it to recognize a group of vulnerabilities found in cryptographic
libraries. We implement a prototype of our approach in Java using the Soot API for control
flow graph and call graph generation. The prototype is then evaluated from two perspectives:
accuracy and performance. We use a cryptographic benchmark to evaluate accuracy and a set of
randomly chosen executable Java programs to evaluate performance. We summarize our results in a
concluding chapter.
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1 Introduction

One of the backbones of the internet are web-applications. These become increasingly important as
companies offer their services through the Internet. As convenient and powerful as they are, they
present a significant security challenge to overcome. Through exposed vulnerabilities, malicious
parties may gain access to company secrets and user data or gain access to critical functionality. To
reduce this risk, one has numerous options. One of the more efficient ways to achieve this goal is to
perform automated analysis during the implementation phase of the application’s life cycle. The
so-called Static Application Security Testing (SAST) tools try to achieve exactly that. However,
to function as intended, these tools must be performant and have a low rate of falsely reported
vulnerabilities, that is, vulnerabilities that are not really vulnerabilities.

In this paper, we will try to reduce the FP rate of existing SAST tools. We will focus our efforts on
SAST tools that specialize in cryptographic libraries. We start with introducing and explaining
the core concepts of this paper in Chapter 2 and mention related works and existing approaches in
Chapter 3. We then outline our study design and explain our approach in Chapter 4. There, we will
also provide a general view of the algorithms, tools, and libraries involved in our implementation.
In Chapter 5 we will go into more depth about our prototype and talk about the various components
of our program. The evaluation of our implementation will be the subject of Chapter 6. We will
evaluate for performance and accuracy. Finally we will summarize our work and provide an outlook
on future potential expansions in Chapter 7.
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2 Background

This chapter is supposed to provide the necessary definitions and explanations of the technical
terms and concepts used in this thesis. Additionally examples are provided to better illustrate these
concepts and further their understanding.

2.1 Static Code Analysis

In order to find bugs or vulnerabilities early on in a programs life cycle, code analysis is one of the
most efficient tools. To avoid spending human resources on this task, one uses automated code
analysis tools. These programs are designed for the express purpose of analyzing other programs.
Such an analysis can be done statically, i.e. the analysis tool uses only the source code, the byte
code, or the binaries as input in the analysis, or dynamically, i.e. the code to be analyzed will be
executed and the analysis runs parallel to that execution. Dynamic analysis has access to more
information than static analysis (program stack, values of variables during runtime etc.) but is more
resource heavy and complicated to perform.

Since about half of all vulnerabilities of a program are introduced in the initial implementation
phase, employing analysis tools at this stage seems particularly fruitful [Bar+10]. We will now take
a closer look at static analysis tools and cover some examples.

2.2 SAST Tools

SAST tools offer automated static analysis of the source code to expose vulnerabilities in the code.
As they perform a static analysis, they do not need to compile and run the code in question, parallel
to the analysis. Most SAST tools build an abstract representation of the source code provided and
use it to search for the specific error patterns of vulnerabilities that they know of. They usually offer
the user of the tool a way to edit these patterns or add new error patterns to the existing ones in
order to cover new vulnerabilities or fine tune the analysis [Bar+10].

As convenient as this sounds, they need to satisfy two metrics in order to be efficient tools of code
analysis. These are performance and accuracy.

Performance is relatively self-explanatory and signifies the amount of work done in a certain
time span. Accuracy, on the other hand, needs a bit more explanation. Accuracy involves both
maximizing the amount of True Positives (TPs) found and minimizing the amount of FPs. By TP
we understand a genuine vulnerability contained in the source code, while a FP is a harmless code
passage falsely reported as a vulnerability by the SAST tool.
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2 Background

In practice, most SAST tools need to find a compromise between performance and accuracy. For
instance, a path-sensitive static analysis can distinguish between the different paths a program
might take as a result of a conditional statement and might ignore infeasible paths. As a result,
vulnerabilities that occur solely on such infeasible paths will not be reported, which will decrease the
FP rate and increase accuracy. Path-sensitive analysis, however, is costly in terms of performance
and, as such, rarely used in SAST.

Popular examples of SAST tools are SonarQube [SQ22] or Coverity [COV22]. These tools are
more general tools in that they are not specialized to detect certain types of vulnerabilities or work
with certain types of APIs. Throughout this thesis, we will focus on SAST tools developed to detect
misuses of cryptographic libraries. To better understand these tools, we will dedicate the next
section to explaining these types of library and their categories of misuses.

2.3 Cryptographic Libraries

Cryptographic APIs provide cryptographic algorithms and methods for usage in web applications.
Examples of cryptographic functionality are key encryption algorithms, hash functions, Message
Authentication Code (MAC) algorithms, key/password storage, secure communication etc.

Whenever cryptographic APIs are used in code, we are dealing with sensitive data and must therefore
take special care not to leak or compromise that data. Any would-be attackers that are interested
in this data, will certainly exploit any vulnerabilities in our cryptographic methods. Additionally,
correct usage of cryptographic methods necessitates some sort of expert knowledge making it easy
to mishandle said methods. It is for these reasons, why specialized analysis of source code that
imports cryptographic functionality is so important.

Examples of SAST tools specialized in analysis of cryptographic libraries are CogniCrypt [KNR+17]
and Cryptoguard [Fra20; RXA+19]. For this thesis we will use CogniCrypt to generate reports of
detected vulnerabilities. We will use these reports as a basis and try to improve them by eliminating
specific groups of FPs warnings reported by CogniCrypt.

For our implementation, we will work with methods and classes provided by the Java Cryptography
Architecture (JCA), the standard cryptographic library used for Java programs.

2.4 Categorizing Crypto Misuses

A helpful tool for evaluating SAST tools focused on cryptographic APIs is Crypto-API-Benchmark
[ARY19]. Crypto-API-Benchmark provides a set of classes covering a wide variety of Cryto-API
use cases that test the accuracy of these tools. For this reason, every use case consists of a variety of
different variants such as interprocedural or path-sensitive applications. Crypto-API-Benchmark
also provides a taxonomy of cryptographic misuses that we will use as a reference in this thesis.

These categories, as listed in [ARY19], are as follows:

1. Cryptographic keys: Cases where predictable and insecure keys are used for encryption.
Concerns the usage of the javax.crypto.spec.SecretKeySpec API.
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2.4 Categorizing Crypto Misuses

2. Passwords in Password-based Encryption (PBE): Cases where predictable passwords are
used in PBE. Concerns the usage of the javax.crypto.spec.PBEKeySpec API.

3. Passwords in KeyStore: Cases where predictable and constant passwords are used when
storing keys or certificates using the java.security.KeyStore API.

4. Hostname Verifier: Cases where the verification of a hostname is omitted. Concerns the
usage of the javax.net.ssl.HostnameVerifier API, specifically where the verify() method
returns true without executing a verification routine.

5. Certificate Validation: Cases where connections to clients or servers are established without
certificate validation. Concerns the usage of the javax.net.ssl.X509TrustManager interface.

6. Secure Sockets Layer (SSL) Sockets: Cases where hostname verification is omitted when
using SSL Sockets from javax.net.ssl.SSLSocket.

7. Hypertext Transfer Protocol (HTTP): Cases where HTTP instead of Hypertext Transfer
Protocol Secure (HTTPS) is used to retrieve a web page. Concerns the usage of java.net.URL.

8. Pseudo-random Number Generator (PRNG): Cases where predictable random num-
bers are generated by using the java.util.Random API instead of using the secure
java.security.SecureRandom API.

9. Seeds in PRNGs: Cases where constant or static seeds are input to generate predictable
random numbers with the java.security.SecureRandom API.

10. Salts in PBE: Cases where constant or static salts are used in PBE. Concerns the usage of
the javax.crypto.spec.PBEParameterSpec API.

11. Mode of Operation: Cases where the insecure Electronic Code Book (ECB) mode is used to
encrypt plaintext with the help of a blockcipher. Concerns usage of the javax.crypto.Cipher

API. An example of this particular vulnerability type is given in Listing 2.1.

12. Initialization Vector (IV): Cases where a predictable constant IV is used in encryption and
decryption. Concerns usage of the crypto.spec.IvParameterSpec API.

13. Iteration Count in PBE: Cases where insufficiently high iteration counts are used in PBE.
Concerns the usage of the javax.crypto.spec.PBEParameterSpec API.

14. Symmetric Ciphers: Cases where insecure ciphers are used in symmetric encryption.
Concerns usage of the javax.crypto.Cipher API. An example of the Symmetric Ciphers
vulnerability is given in Listing 2.2.

15. Asymmetric Ciphers: Cases where insufficiently large key sizes are used in asymmetric
encryption. Concerns usage of the java.security.KeyPairGenerator API.

16. Cryptographic Hash Functions: Cases where insecure hash functions are used in hashing.
Concerns the usage of the java.security.MessageDigestAPI. An example of this vulnerability
is given in Listing 2.3.
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2 Background

Listing 2.1 Example of the Mode of Operation vulnerability. The instance of the Cipher class is
initialized with the insecure ECB mode (line 15).

01 package crypto.examples;

...

11 public class ModeOfOperationExample {

12 public static void main(String[] args) throws NoSuchAlgorithmException,

NoSuchPaddingException,

InvalidKeyException {

13 KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");

14 SecretKey secretKey = keyGenerator.generateKey();

15 Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

16 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

17 }

18 }

Listing 2.2 Example of the Symmetric Ciphers vulnerability. The instance of the Cipher class is
initialized with the insecure cryptographic cipher Blowfish (line 15). Additionally, the KeyGenerator
object is initialized with the same insecure cryptographic cipher (line 13).

01 package crypto.examples;

...

11 public class SymmetricCiphersExample {

12 public static void main(String[] args) throws NoSuchAlgorithmException,

NoSuchPaddingException,

InvalidKeyException {

13 KeyGenerator keyGenerator = KeyGenerator.getInstance("Blowfish");

14 SecretKey secretKey = keyGenerator.generateKey();

15 Cipher cipher = Cipher.getInstance("Blowfish");

16 cipher.init(Cipher.ENCRYPT_MODE, secretKey);

17 }

18 }

Listing 2.3 Example of the Cryptographic Hash Functions vulnerability. The instance of the
MessageDigest class gets initialized with the insecure hash function SHA1 (line 9).

01 package crypto.examples;

...

06 public class CryptographicHashFunctionsExample {

07 public static void main (String[] args) throws NoSuchAlgorithmException{

08 String value = "hashThis";

09 MessageDigest messageDigest = MessageDigest.getInstance("SHA1");

10 messageDigest.update(value.getBytes());

11 System.out.println(messageDigest.digest());

12 }

13 }
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2.5 Path-Sensitivity

Our approach aims to reduce FPs that relate to categories 11, 14 and 16. Specifically we aim to
eliminate FPs that appear as a result of path-insensitive static analysis.

We will now further elaborate on the path sensitivity in static analysis by using an example of a FP
vulnerability in a block of path-sensitive code.

2.5 Path-Sensitivity

Most applications these days heavily utilize conditional statements, like if-else or switch, and loop
constructs, like while- or for-loops. These constructs make it so that an otherwise linear program
execution can branch out into multiple possible paths. Taking also into account that conditionals
and loops can be nested into other conditionals or loops, one can see how using these features
can easily exponentially increase the number of possible paths, and, therefore, the complexity of a
thorough code analysis.

To reduce complexity and improve performance SAST tools will rarely, if at all, try to figure out if
every seemingly possible path is truly reachable given all possible values a program can have at that
point in time. Instead, most SAST tools will treat all paths as feasible, that is, if a security risk is
present on a path that would be impossible to reach during execution, the SAST tool in question
would report it anyway. A path-sensitive analysis would recognize the unreachable path and omit
any vulnerability present on that path. Therefore, path-sensitive analysis reduces the rate of FPs.

An example of a program, where a path-insensitive SAST tool like CogniCrypt would wrongly
report a vulnerability on an unreachable path, is given in Listing 2.4. This code uses the
java.security.MessageDigest API used for hashing. The code creates a MessageDigest object
and assigns it the secure hash-function SHA-256 (line 12). The object will then receive a string
in the form of a byte array (line 13) and then print the hashed string (line 18). The fact that the
MessageDigest object is assigned the insecure hash function SHA1 beforehand (line 10) is irrelevant,
since it is guaranteed that the code will always evaluate the if-statement to true (line 11) and enter
the associated branch, wherein the previously assigned hash function is overwritten by the new
assignment.

We will now look at two constructs crucial for the sort of path-sensitive analysis we want to
implement in this thesis.

2.6 Control-Flow-Graph and Call-Graph

Control Flow Graphs (CFGs) are used to illustrate all possible paths through a program. They are
essential constructs for any data-flow analysis, i.e. an analysis tracing the path of critical values
throughout the code. A CFG is a directed graph whose nodes represent basic code blocks, that is,
blocks of code that do not contain any jump commands. Edges signify jumps or paths from one
basic block of code to another.
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2 Background

Listing 2.4 Example of a FP due to path-insensitive static analysis. Path-insensitive analysis won’t
be able to tell whether SHA1 or SHA-256 will be used as hash-function.

01 package crypto.examples;

...

06 public class PathSensitivityExample {

07 public static void main (String [] args) throws NoSuchAlgorithmException {

08 String message = "abcdef";

09 boolean alwaysTrue = true;

10 MessageDigest messageDigest = MessageDigest.getInstance("SHA1");

11 if(alwaysTrue)

12 messageDigest = MessageDigest.getInstance("SHA-256");

13 messageDigest.update(message.getBytes());

14 hashAndPrint(messageDigest);

15 }

16

17 public static void hashAndPrint(MessageDigest messageDigest) {

18 System.out.println(messageDigest.digest());

19 }

20 }

If a node has multiple outgoing edges, it means that the execution of the code will branch out at
this point and multiple paths could possibly be traversed. This happens because of a conditional
statement, i.e. a if-else-statement or a loop. Each outgoing edge represents one possible condition.
A node in the CFG with multiple incoming edges, signifies the merging of multiple paths.

One CFG alone is usually not used to represent the control flow of the entire application, but rather
the control flow throughout a single method. An example of a simplified CFG is shown in Figure 2.1.
The CFG depicted here represents the main method in Listing 2.4. The line number in each node
signifies the respective starting point of that node.

A data-flow analysis will also need to know how the methods represented by CFGs are connected.
For this purpose, a Call Graph (CG) is used. A CG is a directed graph that represents the call
hierarchy of a program. Its nodes represent methods. Incoming edges are specific calls made to that
method and outgoing edges are method calls made within the method represented by that node.
An example of a simplified CG is shown in Figure 2.2. As with the CFG example, this CG is
constructed from the example code Listing 2.4. The main method for that code sample is the entry
point of the graph.

Using these two constructs, an analysis that accounts for path-sensitivity can be performed. In
Chapter 4 we will introduce an algorithm that uses these graphs to perform a path-sensitive analysis
for finding taint vulnerabilities in PHP code. To understand this algorithm, we have to elaborate on
the concept of taint vulnerabilities.
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2.6 Control-Flow-Graph and Call-Graph

Figure 2.1: Example Control Flow Graph
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2 Background

Figure 2.2: Example Call Graph

2.7 Taint Analysis

Taint vulnerabilities, are vulnerability types that presuppose that any variable containing a user-
defined value poses a potential security risk. In other words, that variable is tainted unless sanitized,
meaning checked for insecure values, or overwritten by a secure value. Additionally if a tainted
variable or it’s value is assigned to another variable, that second variable is now also tainted.

If a variable that can be tainted is present, a user can exploit it, by saving malicious executable
code segments to the tainted variable. The parts of a program where a user can provide possibly
insecure input are called sources. The then tainted variable will be assigned that input and propagate
throughout the program until it reaches a sink. Sinks are functions or methods that enable the
execution of the code contained within a tainted variable. A sink is therefore defined by a method
and the tainted input parameter or parameters that are assigned the value of the tainted variable and
pose the security risk.

So the presence of a tainted variable in itself is not enough to pose a real security risk. There
also needs to be a feasible path from a source to a sink present in the code for it to be classified
as a taint vulnerability. Analysis tools that want to detect such vulnerabilities, need therefore be
path-sensitive.
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2.7 Taint Analysis

Listing 2.5 Example of a taint vulnerability. The variable $name poses a security risk because it
passes from the source (line 8) to the sink (line 5) without sanitization.

01 <?php

02 function checkuser($user){

03 if(strlen($user)<6) exit("too short");

04 $welcome="Welcome ".$user;

05 print($welcome);

06 }

07 $from=$_GET['from'];

08 $name=$_GET['name'];

09 if($from!='user') exit("error !");

10 checkuser($name);

11 ?>

An example of a taint vulnerability is shown in Listing 2.5 which is taken directly from [YWM17].
It is a short code segment that takes two arguments from the user and prints out a short message
depending on these inputs. The sink in this example is the function int print(string $arg). If
$arg contains executable PHP code, the print function will execute that code. Here the variable
$name in line 8 saves the user input, then gets appended to another string and passed unsanitized, to
the print function in line 5.
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3 Related Work

This chapter provides an overview of theses, research papers, books and tools related to some of the
topics discussed in this thesis.

When looking at the topic of SAST tools in general, one finds an abundance of theses exploring a
vast amount of different angles. For starters, many papers or books give an introduction to SAST
tools in general, such as [CM04] or [CW07].
Another category of theses concerned with SAST tools, are conducted studies on the usage or
behaviour of these tools. For example, [SJM+15] is interested in the type of questions software
developers have, when it comes to the usage of SAST tools. [ANG+19] presents a study of the
warnings created by SAST tools, in an attempt to show a connection between the types of warning
and the rate of FPs produced.
A different path of research, is concerned with evaluating and benchmarking SAST tools. Examples
with a focus on this type of topic are [PDM17], [Pas17] or [HLH+19].

When the field of SAST tools is narrowed down to static analysis tools specialized in detecting
incorrect use of cryptographic libraries, the number of existing research becomes significantly
smaller. [KSA+21] introduces CrySL, a specification language to define the secure usage of classes
in cryptographic libraries. CrySL is used in [KNR+17] to implement CogniCrypt, a SAST tool
specialized in detecting cryptographic misuses and the tool whose output we will analyze using
our implementation. [RXA+19] and [Fra20] introduce CryptoGuard, which uses def-use analysis
and forward and backward program slicing to detect cryptographic misuses.Another cryptographic
SAST tool is Find Security Bugs [FSB] which is a plugin for SpotBugs [SB] which is the spiritual
successor of FindBugs [FB] first introduced in [APH+08].

Another major topic we discuss is path-sensitive algorithms of static analysis. In [BSI+08] a
sequence of path-insensitive runs through code, by an abstract interpreter is used to identify
infeasible paths in the CFG. [ZZ13] uses path- and context-sensitive analysis to detect Remote Code
Execution (RCE) attacks on web applications. Finally, [YWM17] uses a new path-sensitive static
analysis method to find taint-style vulnerabilities in PHP programs. This method is implemented in
a tool called POSE and evaluated for precision and performance.

We will use the algorithm presented in [YWM17] as a basis, adapt it to detect certain misuses of
the JCA and implement and evaluate said algorithm.
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4 Study Design and outline of our approach

This chapter focuses on defining the problems that we want to solve with this thesis and detailing the
steps we took to get there. We also introduce an existing algorithm for detecting taint vulnerabilities
in PHP code, which we will use as a basis for our approach. We go into detail how we will modify
this algorithm to meet our goals. We also introduce the third-party tools that we will be using.

4.1 Study Design

Our goal for this thesis is to reduce FP warnings in reports from SAST tools that specialize in
detecting misuses of cryptographic libraries. It is left entirely to ourselves how and from which
angle we want to tackle this endeavour.

To achieve our goal, we did a library search with the following questions in mind:

1. What SAST tools are available specialized in detecting misuses of cryptographic libraries
and how do they work?

2. What types of cryptographic misuses exist?

3. What are existing methods in static analysis, to detect cryptographic vulnerabilities and
vulnerabilities in general?

We then determined that path insensitivity seems to be a major proponent of a high rate of FPs and
did another library search on existing approaches to implement path-sensitive methods in static
analysis. One of the algorithms we found is discussed in detail in his chapter. We have decided to
use this algorithm for our purpose, altering it to detect FPs in static analysis reports of cryptographic
misuses and implementing this approach as a working prototype.

A final library search for methods to evaluate SAST tools has helped us to decide how we will evaluate
our prototype. We will use an existing benchmark for SAST tools specialized in cryptographic
misuses to evaluate the precision of our prototype and look at the data gathered from the execution
of the benchmark and 2 other randomly chosen open source executable java projects of the internet,
to try to assess the performance of our prototype.

4.2 Path Searching Algorithm

A path-sensitive algorithm that can detect taint vulnerabilities in PHP code is introduced in
[YWM17]. This algorithm requires the CG of the program and all the CFGs of any method on the
path from a source to a potential sink. Furthermore, it requires a list of sink definitions, that is, a
list of method signatures of methods that, depending on their parameters, pose a real security risk.
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The algorithm iterates through all sinks within the program and works backward through the code
until it reaches a source or the beginning of the program (which means it has not found a source on
that particular execution path). Upon reaching the end, it will output the path information for that
particular sink and path, which includes all code lines traversed in order from sink to source and
the conditions picked up along the path. The algorithm is split into 4 distinct parts, path searching
within a basic block, path searching between basic blocks, path searching across function calls and
the final taint analysis.

4.2.1 Path Searching during a Basic Block

This part of the algorithm defines the behavior within a basic block and is shown in its entirety
in Algorithm 4.1. This part also serves as the entry point for the entire algorithm with the $stack
variable containing the context of a possible sink at the start. The context of a sink is a construct
that contains the method and the tainted parameter, the block in the CFG and the line number that
contains this sink and the path information that will be calculated by the algorithm. The variables
$cfg and $cg contain the relevant CFG and CG.

The algorithm iterates through the $stack grabbing the top context (line 3), which would be the
context of the sink we are investigating at the start. It extracts a lot of data from the stack, saving it
in variables (lines 4-7). Since the algorithm is only interested in the code lines from the sink to
the start of the block, it extracts those specific lines and reverses them so we can move backwards
through the block (lines 8-13). Then the path information of the sink context is updated to the
start of the block (lines 14-15). Finally, the algorithm checks whether it needs to enter the "Path
searching between blocks or the "Path searching across function callsroutine, depending on whether
the algorithm has reached the start of the CFG and needs to jump across functions using the CG or
not, and enters the relevant routine (lines 17-19).

4.2.2 Path Searching between Blocks

This part of the algorithm comes into play when finding the predecessors of a basic block within
the same CFG. It is depicted in it’s entirety in Algorithm 4.2.

The input parameters for this part of the algorithm are the $stack variable, that contains the sink
context so far and is used to save the updated context at the end of this routine, the current CFG and
the sink context so far. The algorithm begins retrieving all predecessors of the current code block
(lines 2, 3). Then iterates through these blocks, updates the path information, and constructs the
updated sink context (lines 4-6). Finally, for each predecessor, the respective context gets saved to
the stack, so the other parts of the algorithm can pick it up again (line 7).

4.2.3 Path Searching across Function Calls

This part of the algorithm is used when the current block does not have any predecessors in the
associated CFG and the relevant CG is used to find a valid predecessor for the block. This part is
depicted in Algorithm 4.3.
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Algorithm 4.1 Path searching algorithm during a basic block from [YWM17]

01 function path_search($stack,$cfg, $cg){

02 while(!empty($stack)){

03 $context=pop_stack($stack);

04 $block=$context->block;

05 $line=$context->line;

06 $path=$context->path;

07 $codes=$block->codes;

08 $tmp_codes=array();

09 foreach($codes as $s){

10 if($s!=$line) $tmp_codes[]=$s;

11 }

12 if(!empty($tmp_codes)){

13 $tmp_codes=reverse($tmp_codes);

14 $path[]=$tmp_codes;

15 $context->path=$path;

16 }

17 $ret=path_search_blocks($stack, $cfg, $context);

18 if($ret==false){

19 $ret=path_search_call($stack, $cg, $cfg, $context);

20 }

21 }

22 }

Algorithm 4.2 Path searching algorithm between blocks from [YWM17]

01 function path_search_blocks($stack,$cfg,$context){

02 $cur_block=$context->block;

03 $new_blocks=get_front($cur_block,$cfg);

04 foreach($new_blocks as $front){

05 $path_con=get_path_condition($cur_block,$front);

06 $new_context=construct_context($front,$context,$p ath_con);

07 push_stack($stack,$new_context);

08 }

09 }

The input parameters for this part are almost identical to Algorithm 4.2, but additionally contain
the CG used to travel across function calls. The algorithm begins by getting all callees of the
current function (lines 2,3). It then iterates through each callee, retrieving all code including the
line at which the current function gets called, and then creating the updated sink context for the new
function (lines 5-8). The context then gets saved to the stack for the other parts of the algorithm to
retrieve (line 9).
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Algorithm 4.3 Path searching algorithm across function calls from [YWM17]

01 function path_search_call($stack,$cg,$cfg,$context){

02 $cur_func=$context->cur_func;

03 $callees=get_callee($cur_func,$cg);

04 foreach($callees as $callee){

05 $s=get_point($cur_func,$callee,$cg);

06 $line=get_line($s);

07 $front=get_block($s);

08 $new_context=create_context($context,$callee,$cur_func,$line,$front);

09 push_stack($stack,$new_context);

10 }

11 }

4.2.4 Final Taint Analysis

The final part of the algorithm, takes the sink context, after it has been through the previous 3
parts of the algorithm, and traces the tainted input parameters of the sink method to their origin,
outputting a vulnerability if a source is reached. The algorithm is depicted in Algorithm 4.4.

The single input for this part of the algorithm is the updated sink context. The algorithm extracts
the path information and the tainted input parameters of the sink (lines 2, 3). It then iterates through
the path line by line and input parameter by input parameter (lines 4-6). The inner loop first checks
whether or not the current line sanitizes the tainted input. If that is the case, it means that the current
input parameter is not a cause of a taint vulnerability and can be ignored from this point forward
(line 7). It then checks whether the current line is an assignment to the tainted input parameter of
some kind. If that is the case, the traced variable for the input parameter needs to be updated for the
next round of the outer loop, according to a specified rule set (lines 8, 9). Furthermore, if the traced
variable is identified as a source, that is as user input, a vulnerability will be reported for this sink,
with the current input parameter and source in the report (lines 10, 11). All traced input parameters
that have not been sanitized or part of a vulnerability report are saved into the array that is being
iterated through on the next round of the outer loop (lines 12 - 16). At the end, the context of the
sink gets updated to contain only the tainted input parameters, that do not cause a real vulnerability
in the code (line 18).

4.3 Changes and Additions to the Path Searching Algorithm

As mentioned before, we will use the algorithm introduced in [YWM17] and that we have discussed
in the last section, as a basis for a path-sensitive static analysis, focused on identifying certain types
of vulnerability related to the use of cryptographic libraries. To do so, we must modify and update
the algorithm with additional functionality.

Since we will be using this approach to identify crypto-vulnerabilities of the previously established
categories 11, 14 and 16, we will need to modify this algorithm to detect these kinds of vulnerability.
Our strategy is to liken these crypto-vulnerabilities to taint vulnerabilities. Let us take a look at the
Cryptographic Hash Functions vulnerability to better illustrate this.
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Algorithm 4.4 The final taint analysis from [YWM17]

01 function taint_analysis($context){

02 $vars=$context->vars;

03 $cur_path=$context->path[];

04 foreach($cur_path as $s){

05 $new_vars=array();

06 foreach($vars as $var){

07 if(is_sanitation($s,$var)) continue;

08 else if($rule=select_rule($s,$var)){

09 $new_var=update_var($var,$rule);

10 if(is_source($new_var))

11 report_vul($new_var,$s,$context);

12 else put_array($new_var,$new_vars);

13 }

14 else put_array($var,$new_vars);

15 }

16 $vars=$new_vars;

17 }

18 $context->vars=$vars;

19 }

A taint vulnerability consists of a sink, with it’s function definition and the tainted parameters, a
source, a code line that maps user input to a variable, and a path from the source to the sink. The
sink in the example of the a Cryptographic Hash Functions vulnerability would be the method
java.security.MessageDigest.getInstance(String algorithm) and it’s overloads, alongside the
tainted parameter String algorithm. Because the methods in our vulnerability definitions do not
have a problem with malicious user input, since these methods only accept very specific strings
and do not run any code contained inside these strings, we define our sources as the entry points
of the respective programs. So in order for us to accept a vulnerability there would need to be a
path from the beginning of the program to a sink, as defined above, that doesn’t filter out insecure
parameters.

Another thing to keep in mind, is the fact that the problem with our vulnerabilities is that the
associated sink methods return insecure objects. But these objects only pose a real risk if they are
actually used after creation. If they are not used throughout the rest of the program or the variables
used to refer to them are being overwritten before these objects can be used, then they can not be
classified as real vulnerabilities. We will therefore need to check for those cases as well.

Additionally, we will need to define our own functionality for checking for sanitization of the
tainted variables and for updating the variables. Both of these are used in the taint analysis part of
the algorithm and since we will be aiming to detect different kinds of vulnerabilities and using a
different language, we will need to update them to our needs. Since we will be using Java instead of
PHP, we may generally need to make some minor changes.

An important programming structure that does not seem to be handled within the present algorithm
are loops. When the algorithm, which tries to find a path from a source to the sink, through backward
traversal of the CG and the CFGs, encounters a loop, it continues traveling the loop endlessly, since
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it does not have any information about whether the break condition has been met at this point. In our
approach, we will skip over loops during the path searching, while also acknowledging the uncertain
state of all variables who are assigned new values within the loop, when evaluating the path.

Additionally, to loops, recursion is not handled either. We will need to address that as well.

Finally, we need CGs and CFGs of the relevant code sections and a list of potential sinks. We will
use third-party tools to help us create these. For the generation of the CGs and CFGs we will use
the Soot framework [VCG+10] and for help of computing the possible sinks in a piece of code we
will use CogniCrypt [KNR+17].

4.4 CogniCrypt

CogniCrypt [KNR+17] is a plugin for the Eclipse IDE [ECL01]. It is a tool designed to help
developers in the secure usage of cryptographic libraries. Its two main functions are code generation
for the most common tasks a cryptographic API provides, i.e. encryption, secure communication,
and secure storage, and the static analysis of code that makes use of cryptographic APIs. To detect
vulnerabilities, CogniCrypt makes use of CrySL [KSA+21], a language for defining the secure
usage of classes within cryptographic libraries. These definitions are then parsed by CogniCrypt
and checked against when analyzing a given code sample. Like most SAST tools, CogniCrypt is
path-insensitive.

We will use CogniCrypt as a SAST tool, which will generate a list of vulnerabilities for the code
segments to be analyzed. We will use this list of vulnerabilities as input in our program and output
a filtered version of that list, one that has been rid of the kinds of FPs we seek to find.

4.5 Soot

Soot [VCG+10] [SOOT] is a framework for optimizing and transforming Java code. It can be used
as a standalone tool as well as a library whose functionality one can integrate into one’s own code.

For the purpose of code optimization, Soot provides different types of analyses, like null pointer,
array bounds or liveness analysis [EN08]. These check the code for parts that can potentially cause
null pointer exceptions or array bound violations and provide information about live variables at
each point in the code, respectively.

To help with the analysis, Soot makes use of four different intermediate byte code representations,
all with their own set of advantages and disadvantages: Jimple, a typed 3-address, statement
based representation, that heavily reduces the amount of possible instructions to 15 different types,
Shimple, the Static Single Assignment-form that guarantees exactly one single assignment point for
each local variable, Grimp, a code representation similar to Jimple, that strikes a balance between
being easier to read than Jimple but better for analysis than regular Java code, and lastly Baf, a stack
based code representation.

Soot divides the various steps of it’s code optimization and transformation routine into packs. The
name of each pack is an abbreviation that specifies the intermediate representation used and the
operation performed. For instance the name of the pack sop stands for Shimple-Optimization-Pack.
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Figure 4.1: Execution flow of Soot from [HLL+03]

Additionally the packs jtp and stp perform user-defined transformation, meaning these are the points
of the analysis that can be customized by the user. Figure 4.1 from [HLL+03] shows the execution
flow of Soot.

For our purposes we will be using Soot as a tool to generate both the necessary CGs and CFGs.
Additionally the CFG will use Jimple as the representation for it’s basic blocks. The CFG we will
use will also benefit from Soot’s analysis, by already having dead code and never used variable
values marked.
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5 Implementation

This chapter goes into the details of the implementation, specifically with regard to the altercations
made to the original algorithm. We start by giving an overview of the program and its components
and their relationship. The rest of the chapter will be an in-depth look at each of these components,
with code excerpts from the most relevant parts.

5.1 Overview

From here on out we will be referring to the implementation of our approach as the Crypto-
FP-Reducer, wherein Crypto stands for cryptographic library and FP stands for false positive.

Figure 5.1: An overview of the components of the Crypto-FP-Reducer and their relationships.
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Figure 5.1 shows an overview of the Crypto-FP-Reducer, it’s various components and their
relationship to each other. The application is split into two layers. The upper layer can be seen as
the front-end of the application; it serves as an entry point, accepts all user input, and passes those
inputs to the components of the lower layer. The lower layer is the back end of the application; it
provides all of the logic and functionality for the front end.

The solid lines in the graphic represent the sequence flow of the program. The dotted lines represent
the input that needs to be provided to specific components of the back-end. For the sake of readability,
the fact that all these inputs are channeled through the Main component is omitted.

The execution is started by the Main component of the front-end layer. It reads all user input,
calls all necessary functionality of the back-end in order, and outputs the results at the end of the
execution.

The first component of the back-end whose functionality is needed is the SAST Output Parser. This
component accepts the output of CogniCrypt, which has run an analysis of the program code that is
being tested for vulnerabilities. This output provides a list of vulnerabilities found, some of which
may be FPs. The SAST Output Parser parses this list and saves it for later use.

The next stage of the execution is the Sink Finder. This component accepts a txt-file, containing
a list of sink definitions, and the path to the Java source and class files of the program code to
be analyzed as input. It then searches this code for all possible sinks and saves them for further
processing.

The next part of the program uses the functionality of the Graph Builder component to construct
the CGs and the CFGs needed for the analysis. The Graph Builder makes use of the Soot library for
this purpose.

Finally, the Path Searching and Evaluation component features a modified version of the path
searching algorithm discussed in the last chapter. It analyzes the sinks found by the Sink Finder and
computes which of those sinks don’t pose an actual security risk by traversing the relevant CGs and
CFGs and evaluating the resulting paths, therefore identifying the relevant FPs. It then cross checks
the list of found FPs with the list of vulnerabilities found by CogniCrypt and parsed by the SAST
Output Parser and outputs those vulnerabilities found by CogniCrypt that it can link to a FP.

5.2 Main

This component functions as a starting point for execution. It constitutes the entirety of the front-end
of the Crypto-FP-Reducer. It parses all the inputs from the user and outputs the results of the
algorithm. It has access to all the functionality the back-end exposes and constructs the sequence of
routines that provide the desired results.

Since, algorithmically speaking, the interesting things are happening in the back-end, we will now
focus on the various inputs that need to be provided by the user. The inputs are currently passed
along to the Main component as command line arguments. They are in the order they need to be
input: The absolute path to the source-files-directory of the code that needs to be analysed, the
absolute path to the class-files-directory of said code, the path to a txt-file containing the output of a
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Listing 5.1 Example of a correctly formatted line in the txt-input-file for the SAST Output Parser
component.

Error description SourceFileContainingVulnerability.java my/custom/package/ line 21

CogniCrypt analysis of said code and the absolute path to a txt-file containing the sink definitions
the user aims to focus on. These values are then passed on to the components of the back-end that
require them.

The Main component will run the back-end components in the order established in the previous
section. When this process is done and the Crypto-FP-Reducer has finished determining which of
the provided vulnerabilities, detected by CogniCrypt, are FPs, it outputs a list of vulnerabilities
from the original report by CogniCrypt that can be linked to a found FP.

5.3 SAST Output Parser

This component is responsible for parsing the output of the CogniCrypt analysis and saving all
detected vulnerabilities in a list for future use. Currently the SAST Output Parser is set up to only
detect the output of the SAST tool CogniCrypt or more specifically, a list of errors pasted from
Eclipse, that have been detected by CogniCrypt. If the user wishes to rely on a different SAST tool
as the basis for static analysis, the SAST Output Parser would have to be modified and an additional
input parameter, that picks between CogniCrypt and other SAST tools, needs to be introduced. This
modification should be easy enough to do and could be part of future updates to this application.
Alternatively, the user can parse the output of his SAST tool of choice to the input format supported
by our application, by using a third party tool. To make this possible, we will now specify the
correct format needed for our application.

The detected vulnerabilities need to be available as a txt-file, and the absolute path to that file
needs to be provided to our program. Each line of the txt-file represents a vulnerability found by
the SAST tool and contains a set of properties that define that vulnerability. These properties are
separated by tab stops. Our application only uses the first four of these properties. They are in
order: A short text containing a description of the type of vulnerability, the name of the source file
containing the vulnerability, the relative path from the root folder of the code’s project to the source
file mentioned before, and finally the keyword line followed by a space and the actual line number
of the vulnerability. An example of a correctly formatted line is shown in Listing 5.1.

5.4 Sink Finder

The job of this component is to find all potential sinks within the code that is being analyzed. For
this purpose the component is divided into two parts. First, it parses the sink definitions that are
available via the input parameters, and second, it searches the code that is being analyzed for sinks
that meet those definitions.
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Listing 5.2 Example of a correctly formatted line in the txt-file containing the sink definitions.

java.security.MessageDigest:getInstance(java.lang.String):1:SHA-256,SHA-384,SHA-512

A txt-file, containing the definitions of all types of sinks that need to be searched for, needs to be
provided to the Sink Finder via the file’s absolute path. The file contains one sink definition per line.
A sink definition consist of the method signature, containing the class the method belongs to and
the method header surrounded by angled brackets, the index of the vulnerable method parameter
(all the vulnerabilities that we focus on in our analysis, are tied to exactly one vulnerable input
parameter) and a list of valid values for that parameter, separated by commas. These properties are
separated by colons. An example of a correctly formatted line is shown in Listing 5.2.

After obtaining a list of all possible sink definitions, the second part of the Sink Finder searches all
source files for sinks that match those definitions. In addition to the properties of the sink definitions
that the found sinks inherit, the found sinks also contain the line number of the source file they are
in, the name of the object, if there exists such an object, calling the sink method and the signature of
the surrounding method that contains the sink.

The sinks found are saved and subsequently assigned to those CGs from which the surrounding
method can be reached. Finally, the sinks will be used in the Path Searching component, where it
will be determined which sinks correspond to FPs and which to TPs warnings.

5.5 Graph Builder

This component is responsible for creating all CGs and CFGs and mapping the found sinks to CGs.
To create the necessary graphs, this component relies heavily on the Soot API.

Listing 5.3 shows the class responsible for generating the CGs. We consciously omit showing some
of the code that is self-explanatory or not interesting, like comments or repetitions.

The generateGraph method (line 36) accepts the paths to the classes and the main class, the class
containing the main method that will serve as the entry point to the CG, as inputs and outputs the
CG. The call G.reset() (line 37) right at the start resets the state of the Soot variables. Soot saves
some global settings across objects, so when we generate a new CG, we need to make sure to start
fresh. Next, we need to tell Soot the paths to our code and the Java JRE that we are using (lines
39-44). We then set some options for the analysis Soot will execute. These are in order: Telling
Soot to analyse all classes as a collective rather than separate from each other (line 49), telling Soot
to analyze all classes on the path rather than just the main class (line 50) and telling Soot to save
information about line numbers of the original source code (line 51). Before creating the graph we
must tell Soot which class to use as the main class (lines 53-55). We use the CHATransformer to
generate the CG (line 57) and finally return the result (line 61).

Listing 5.4 shows the class responsible for generating the CFGs. This class is fairly similar to the
class generating the CG, with a few notable exceptions. As with the code for generating CGs we
omit showing some of the code for the reasons mentioned above. As with the class for creating the
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Listing 5.3 The class responsible for generating the call graphs.

01 package graph_builder;

...

26 public class CallGraphGenerator{

...

36 public static CallGraph generateGraph(String classPath, String mainClass){

37 G.reset();

38

39 String javaPath = System.getProperty("java.class.path");

40 javaPath = classPath.substring(0, classPath.indexOf("\\bin\\") + 4)

+ javaPath.substring(javaPath.indexOf(";"));

41 String jrePath = System.getProperty("java.home")+"/lib/rt.jar";

42 String finalPath = javaPath+File.pathSeparator+jrePath+File.pathSeparator+classPath;

43

44 Scene.v().setSootClassPath(finalPath);

...

49 Options.v().set_whole_program(true);

50 Options.v().set_app(true);

51 Options.v().set_keep_line_number(true);

52

53 SootClass sootMainClass = Scene.v().loadClassAndSupport(mainClass);

54 Scene.v().setMainClass(sootMainClass);

55 Scene.v().loadNecessaryClasses();

56

57 CHATransformer.v().transform();

...

61 return Scene.v().getCallGraph();

62 }

...

93 }

CG, the generateGraph method is responsible for creating the graph. The CFG we are building is
a Soot class by the name of ExceptionalUnitGraph (line 52). Contrary to the builder for the CG
we need to define our own transformation step (lines 61, 62). We want the analyzed code to be in
the Jimple format when we create our graph, as this format will be easier to process by the Path
Searching and Evaluation component. Since at the end of a standard Soot analysis, the code will
be in the Baf format, we extract our CFG during the analysis. That is why we need our custom
transformation step (lines 111-116). Next we set our analysis options (lines 67-69). The option in
line 69 lets us keep our original variable names throughout the analysis. Finally, we run the actual
Soot analysis by running the packs (line 75) and return the CFG created during our custom phase
(line 77).

Additionally to the classes for generating the graphs, this component also consists of a wrapper
class for the CG. The wrapper contains the generated CG and a list of sinks associated with that
graph. It therefore also features a method that maps sinks to CGs. This method iterates through all
edges of the CG and checks whether the end of an edge points to any sink within the list of potential
sinks found by the Sink Finder. All sinks that are identified as a target of a CG edge will be added
to that CG’s list of associated sinks.
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Listing 5.4 The class responsible for generating the control flow graphs.

001 package graph_builder;

...

024 public class ControlFlowGraphGenerator extends BodyTransformer{

025 private String pathToClasses;

026 private String pathToSingleClass;

027 private String mainClass;

028 private String methodName;

029 private static ExceptionalUnitGraph cfg;

...

052 public ExceptionalUnitGraph generateGraph(){

...

061 ControlFlowGraphGenerator analysis = new ControlFlowGraphGenerator(this.

pathToClasses, this.pathToSingleClass, this.mainClass, this.methodName);

062 PackManager.v().getPack("jtp").add(new Transform("jtp.ControlFlowGraphGenerator",

analysis));

...

067 Options.v().set_app(true);

068 Options.v().set_keep_line_number(true);

069 Options.v().setPhaseOption("jb", "use-original-names:true");

...

075 PackManager.v().runPacks();

076

077 return ControlFlowGraphGenerator.cfg;

078 }

...

111 @Override

112 protected void internalTransform(Body b, String phaseName,

113 Map<String, String> options){

114 if(b.getMethod().getSignature().equals(this.methodName))

115 ControlFlowGraphGenerator.cfg = new ExceptionalUnitGraph(b);

116 }

117 }

5.6 Path Searching and Evaluation

The Path Searching and Evaluation component consists, as the name suggests, of two main parts:
The Path Searching algorithm, which finds all feasible paths from the start of a program to a sink, by
doing a backward search through the relevant CGs and CFGs, and the evaluation of these paths that
iterates through the found paths in order, propagating variable values and evaluating conditional
statements.

5.6.1 Path Searching

The path searching mainly consists of the 3 methods pathSearch, pathSearchBlocks and path-
SearchCall, which are based on the first 3 routines of the path searching algorithm discussed in
Chapter 4.
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Listing 5.5 The signature of the method responsible for path searching inside a block.

01 public static void pathSearch(List<Context> contexts, Context context,

ExceptionalUnitGraph cfg, CallGraph cg, String pathToClasses, String

pathToSingleClass, String mainClass) {

...

31 }

Recall that our goal in this section is to find all feasible paths from a sink to the start of the program.
We use a list to save the feasible paths found. The pathSearch method is our entry point into our
routine, and we travel through the 3 methods above recursively. First, we travel through a single
node of a CFG, then we call the pathSearchBlocks method that uses the pathSearch method on
all predecessors of the current node. In this way, we search backward through the entire CFG.
Once we arrive at the start of the CFG, we call the pathSearchCall method, that provides us all
possible CFGs, that are connected to our current CFG via method call, and the particular nodes
inside those CFGs from which that method call originates. We iterate through those nodes and call
the pathSearch method, starting the cycle anew. This routine is executed until we reach the start of
the program. Then we add the path to our list of feasible paths.

Listing 5.5 shows the signature of the pathSearch method. The input parameters are the list of
contexts of type Context, which is used to save the results of the path searching routine, the current
context of type Context which is a n object that contains and is used to save the information about
the current path, the current CFG, the associated CG, the paths to all relevant classes, the current
class and the main class of the CG. The path information is necessary when creating a new CFG
when tracing a method call back to it’s caller during the method pathSearchCall.

The pathSearch method starts by saving all path information of the current node to the current
context. The method then decides whether to call the pathSearchBlocks method, the pathSearchCall
method, save the current context to the list of contexts and finish or just finish without saving the
current path information. This decision is based on whether there are any predecessor nodes in the
current CFG and CG, and whether or not we have reached the start of the program or the path has
reached a dead end making it infeasible.

The pathSearchBlocks method has the same input parameters as the pathSearch method. This
method iterates through all predecessor nodes of the current CFG node and calls the pathSearch
method for each valid predecessor. Additionally, this part of the routine also handles loops. We
detect whether or not a predecessor of the current node represents the end of a loop. If that is
the case, we travel backward through the loop once, save the path information of the loop to our
context, and then skip the loop, or else we face infinite recursion through the pathSearch and
pathSearchBlocks methods. The reason why we save the loop information to our context is so that
we can mark the values of all variables used inside the loop as uncertain when we evaluate the
context. Since we don’t know how many times the loop will be executed, the state of the variables
that get values assigned to them within the loop, is also uncertain.

As with the previous method, the pathSearchCall method has basically the same input parameters
as the pathSearch method. The method starts by iterating through all possible callers of the current
method, represented by it’s CFG. We first compare the signature of the caller to the current method’s
signature and skip the caller if the signatures are identical, because this means that we are dealing
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with a recursive call. The next step is to construct the new CFG for each caller. This involves
adjusting the path information in our input parameters. After the creation of the new CFG we
also have to find the caller node within that graph. This involves iterating through all CFG nodes
and checking if it contains the method being called and the line number of the call matches the
information we have. When we finally have obtained the correct node, we call the pathSearch
method and continue our search with the new node and the new CFG.

5.6.2 Evaluation

After obtaining all possible paths for a particular sink, we need to evaluate these, to determine
whether or not any of these paths is actually feasible given the values of the conditionals encountered
on the path and whether or not the sink argument can possibly carry an insecure value.

The method responsible for the evaluation is isValidButInsecurePath and its signature is given in
Listing 5.6. The inputs are the path that needs to be evaluated and the sink to which that path
belongs.

Evaluation of the path occurs from the source to the sink, as opposed to the path searching, which
finds paths through backward traversal from the sink to the source.This way, we can trace the value
of each variable in execution order. We keep two lists throughout the evaluation: one that contains
all known variables and the other that contains all their values. Unknown values are marked by a
’?’. In the following, we will list all the checks that occur during an evaluation for each line of the
path.

The evaluation first checks if the line consists of an assignment. If that is the case and the variable
that has a new value assigned to it is part of our variables list, we update the value of that variable.
If the variable is newly introduced, we add it to our variables list and the assigned value is added to
the values list.

The evaluation also checks if the new line signifies a jump to a different method. If that is the
case, we have to save the input values of the new method and assign these values to the new local
variables used within that method that represent the method’s parameters.

Another thing we do is check whether the current line is the start of a loop. If that is the case, we
fast forward to the end of the loop. New variables introduced within that loop will not get stored,
and variables that are already known to the evaluation and get assigned a new value within the loop,
are marked with an ’?’ since we cannot be sure whether or not that assignment takes place during
an actual execution.

We also evaluate conditional statements, since Jimple does a good job of reducing the syntactical
complexity of conditionals. First, we check whether the values and variables involved in the
conditional are literals, numbers, or booleans. Then we decide whether the conditional operator is a
’==’, ’!=’, ’>=’ etc. Using the lists of variables and values, we then try to evaluate the conditional.
If we are unsure about the values involved in the conditional, we skip the conditional and continue
evaluation of the path. If the conditional evaluates to true or false, we check the jump target of the
conditional. If the conditional is true and the jump target is equal to the next line on our path, or if
the conditional is false and the jump target does not equal the next line on our path, we continue the
evaluation of the path. In all other cases, we abort the evaluation.
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Listing 5.6 The signature of the method responsible for evaluating the feasible paths.

195 public static boolean isValidButInsecurePath(List<String> path, Sink sink) {

...

465 }

If we reach the end of the evaluation, i.e. the line containing the sink method, we check if the values
the sink parameter can attain are permissible. If all values in the possible value range are valid or
secure, the sink itself is secure and this particular path is secure. In cases where the evaluation is
aborted preemptively, the path is also considered secure, since it doesn’t actually reach the sink.
Only in the case where there is a real possibility that the sink parameter has an insecure value, the
evaluation method returns true.

Finally, we also check whether any conditionals are used to sanitize the sink input parameter.
We execute these checks in a separate run-through at the end of our evaluation, when we have
information about the name of the variable used as sink input and its aliases, that is variables that
share the same value and who can be used to sanitize the original variable. We go through the
entire code again, checking whether any conditionals, involving the mentioned variable or one of its
aliases, sanitize the sink input, by making sure it contains only valid values. If the sink input has
been sanitized we output the boolean value false.

In order for a sink to be considered a FP, all paths of that sink, that have been found during the path
searching phase, must evaluate to false. If only one path evaluates to true, we have a TP on our
hands.

5.7 Limitations

We want to use this section of the thesis to point out some of the limitations of our approach to
identify FPs in the output of SAST tools specialized in cryptographic libraries.

As we have already stated in Chapter 2 we limit our approach to path-sensitive warnings of the
categories described. Furthermore, our implementation is focused on warnings generated by misuse
of the JCA, using the SAST tool CogniCrypt as a basis. Although modifying that aspect of the
implementation shouldn’t be hard at all.

Since we are also using Soot and Soot requires a main class for generating a CG, our analysis can
only be performed on executable projects or libraries that have a "gateway"to it’s functionality
present, that is a path from an executable class, to the methods and functions that we want to test.

When traveling backward through the execution paths of the program, we ignore any side paths, as
this would severely increase the complexity of the algorithm and reduce the performance, possibly
making it practically not viable. Any variables that are assigned new values as a result of these side
paths, will be assigned values that reflect that they cannot be resolved conclusively.

Our analysis also circumvents some of the more complex code structures like loops and recursion.
This speeds up the evaluation but possibly reduces the FPs found. Future enhancements to the code
could solve this issue.
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Finally, our approach has very limited capabilities in detecting when an object is never used again
for the rest of a program, after it’s sink method has been executed, therefore making the sink a FP.
This is because we only analyze the path from sink to source and ignore the rest of the program.
For a more conclusive path sensitive analysis, we would also need to track the next usage of that
object.
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This chapter contains the evaluation of the implementation of our approach. We test our implemen-
tation for accuracy and performance; hence, this chapter is split into two parts. For each case we
describe the individual set up and give an overview of the results.

6.1 Accuracy

The first part of our evaluation is concerned with determining the accuracy or precision of the
program. By accuracy we mean whether or not the program performs as intended. In order to
measure it’s semantical correctness we use a benchmark. We expand the benchmark to include
additional cases not yet covered by said benchmark.

6.1.1 Crypto-API-Benchmark

Crypto-API-Benchmark is a library specifically designed to provide test cases for 16 different
categories of cryptographic library misuse. We have already gone over these categories in
Chapter 2. In fact, our approach is specifically designed to correctly identify FP vulnerabilities
in the categories Mode of Operation, Symmetric Ciphers and Cryptographic Hash Functions.
Test cases for these three categories are located in the packages org.cryptoapi.bench.ecbcrypto,
org.cryptoapi.bench.brokencrypto and org.cryptoapi.bench.brokenhash. Within these packages,
the acronym PS is used to mark classes containing path-sensitive test cases. We focus our program
testing on these classes.

Path-sensitive test cases consist entirely of cases in which an insecure object is created but never
used again, because it is being immediately overwritten. As we have mentioned in the previous
chapter, our implementation only recognizes some of these cases as FP, namely when the FP is
locally contained within a method.

Listing 6.1 shows an example, directly taken from the Crypto-API-Benchmark, where our program
falls short of recognizing the FP. The FP we do not recognize is located on line 14. Here the
cipher objects gets initialized by a sink method using an insecure parameter. This however is not a
vulnerability, because the object is overwritten in line 16 never to be used again. The if-statement in
line 15 always resolves to true because choice has the value 2. Our program fails to recognize this,
because the value of choice is initialized in another method. To elaborate a bit further, cases where
an insecure object is overwritten before being used, are recognized and eliminated during the CFG
graph creation phase and at that point the application has only access to the local values of that
graphs method.
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Listing 6.1 An example of a false positive not recognized by our program. Class taken directly
from Crypto-API-Benchmark.

01 package org.cryptoapi.bench.brokencrypto;

...

10 public class BrokenCryptoABPSCase1 {

11 public void go(int choice) throws NoSuchPaddingException,

NoSuchAlgorithmException, InvalidKeyException {

...

14 Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");

15 if (choice > 1)

16 cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

17

18 cipher.init(Cipher.ENCRYPT_MODE, key);

19 }

20

21 public static void main (String [] args) throws NoSuchPaddingException,

NoSuchAlgorithmException, InvalidKeyException {

22 BrokenCryptoABPSCase1 bc = new BrokenCryptoABPSCase1();

23 int choice=2;

24 bc.go(choice);

25 }

26 }

The rest of the path-sensitive test cases in the three packages mentioned before, also involve an
insecure object that is overwritten before being used. These cases, however, only involve local
values, and so our implementation recognizes these FPs without fail.

6.1.2 Modifications of the benchmark

We want to test for two additional path-sensitive cases: Cases in which the insecure object is created
on a path that is never visited during execution and cases where the sink input parameter is being
sanitized beforehand. To do so, we create additional classes within the library.

Listing 6.2 shows an example of the type of test case where the path on which the sink occurs is
never visited because of the result of a conditional statement. Here the integer variable choice has
the value 2. Therefore, the if-statement in line 15 is always true, and as a consequence, the insecure
initialization of the variable cipher in line 18 is never executed. As a result, the sink on line 18 is a
FP that CogniCrypt will falsely report.

The other type of test case that we introduce to the benchmark is depicted in Listing 6.3. In this
example, the variable cipher is initialized using the value stored in cryptoValue. Our implementation
recognizes that the variable cryptoValue is sanitized in line 18, meaning it is ensured that the value
of this variable can only be the secure value AES/CBC/PKCS5Padding in order to even reach the
sink method. Line 19 will consequentially be marked as a FP by our implementation. The thing to
note here is that CogniCrypt will also not mark the sink in line 19 as a vulnerability. This however
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Listing 6.2 An example of a false positive test case. Line 18 contains an insecure initialization of
the Cipher object. Since choice has the value 2 line 18 is never visited.

01 package org.cryptoapi.bench.brokencrypto;

...

10 public class BrokenCryptoABPSCase1Visited {

11 public void go(int choice) throws NoSuchPaddingException,

NoSuchAlgorithmException, InvalidKeyException {

...

14 Cipher cipher;

15 if (choice > 1)

16 cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");

17 else

18 cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

19

20 cipher.init(Cipher.ENCRYPT_MODE, key);

21 }

22

23 public static void main (String [] args) throws NoSuchPaddingException,

NoSuchAlgorithmException, InvalidKeyException {

24 BrokenCryptoABPSCase1Visited bc = new

BrokenCryptoABPSCase1Visited();

25 int choice=2;

26 bc.go(choice);

27 }

28 }

is not because CogniCrypt recognizes the FP. In fact, it does not matter what value you compare the
variable cryptoValue in line 18 to, CogniCrypt will not mark line 19, even if it happens to be a very
real vulnerability.

6.1.3 Results

Regarding the case of overwritten insecure objects, CogniCrypt fails to recognize the unused object
as a FP. Our program pinpoints the FP correctly, when it can be decided locally that the insecure
object will not be used in the future.

Regarding the cases of vulnerabilities on invalid paths and sanitized variables, used as input for sink
methods, CogniCrypt fails to recognize the FPs in the case of invalid paths and will not deal with
cases where values are possibly sanitized, at all. Both of these cases are marked correctly as a FP
by our program. However, since we cross check with the output of CogniCrypt and CogniCrypt has
no report about the cases with sanitized values, we only output the reported vulnerabilities in the
invalid path cases, as FPs.
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Listing 6.3 An example of a false positive test case. The variable cryptoValue used to create the
Cipher object is sanitized beforehand.

01 package org.cryptoapi.bench.brokencrypto;

...

10 public class BrokenCryptoABPSCase1Sanitize {

...

14 public void go() throws NoSuchPaddingException,

NoSuchAlgorithmException, InvalidKeyException {

15 KeyGenerator keyGen =

KeyGenerator.getInstance(String.valueOf(crypto));

16 SecretKey key = keyGen.generateKey();

17 String cryptoValue = "IDEA";

18 if(cryptoValue.equals("AES/CBC/PKCS5Padding")) {

19 Cipher cipher = Cipher.getInstance(cryptoValue);

20 cipher.init(Cipher.ENCRYPT_MODE, key);

21 }

22 }

...

37 }

6.2 Performance

Aside from evaluating the accuracy of our program, we also want to give a rough estimate of its
performance. Performance evaluation proves to be difficult for several reasons. First, there are no
benchmarks to evaluate the performance of cryptographic SAST tools. Second, our approach is
specialized in detecting FPs in specific cases, making it difficult to find similar tools with which we
can compare our program. We decided to analyze the Crypto-API-Benchmark and two randomly
chosen executable Java programs from GitHub using CogniCrypt and then analyze those programs
with our implementation. We will record the results in a table.

6.2.1 Set up

The three projects we analyze for performance are the Crypto-API-Benchmark used for the accuracy
evaluation, a two-player poker game called BigTwoGame [BTG] and a management system for
medical drugs [MMS].

We alter the source code of both the poker game and the medical management system to include
some true and false cryptographic vulnerabilities. We use additional executable test classes to really
expose all the functionality of these systems and make all included vulnerabilities reachable for our
program.

We then run an CogniCrypt analysis on the three projects and keep track of the time it takes
CogniCrypt to finish its analysis. After that we perform an analysis using our program and record
the execution time.
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We save all results in a table that includes execution time, total lines of code, and the number of
main classes of the project.

6.2.2 Results

Table 6.1 lists the results of the CogniCrypt analysis, and Table 6.2 lists the results of the analysis of
our program.

When it comes to execution speed our program is roughly as fast as CogniCrypt with the big
exception being the Crypto-API-Benchmark. Our program has to generate a new CG and execute
the routine that maps sinks to a CG for every main class, and since the number of main classes
in the Crypto-API-Benchmark is exceedingly high, we have to execute this procedure a lot. This
seems to be the bottleneck in our implementation.

Another thing to note, in regards to the number of vulnerabilities contained within a project; the
higher the number of vulnerabilities, the more time the computation takes. Looking specifically at
the BigTwoGame project, we have tested it both with only 10 and a 100 vulnerabilities inserted into
the code and execution time has grown. Given the tests we made it seems that our prototype seems
to scale slightly worse than CogniCrypt with the amount of vulnerabilities.

Table 6.1: A table containing the results of the CogniCrypt analysis.
Project Lines of Code Number of Main Classes Execution Time [s]

Crypto-API-Benchmark 4139 163 22
BigTwoGame (10 vulnerabilities) 3346 1 15
BigTwoGame (100 vulnerabilities) 3602 1 32
Medical Management System 2142 1 27

Table 6.2: A table containing the results of the analysis of our program.
Project Lines of Code Number of Main Classes Execution Time [s]

Crypto-API-Benchmark 4139 163 124
BigTwoGame (10 vulnerabilities) 3346 1 18
BigTwoGame (100 vulnerabilities) 3602 1 55
Medical Management System 2142 1 13
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7 Conclusion & Outlook

The goal of this thesis was to develop and implement an approach for reducing FPs warnings in
SAST tools reporting, specifically for tools specialized in cryptographic libraries. To achieve this
goal, we have conducted research on existing approaches and settled for an approach that eliminates
path sensitive FPs of the three categories Mode of Operation, Symmetric Ciphers and Cryptographic
Hash Functions. We used an existing approach that uses a backward search through CGs and
CFGs, and adapted it to our needs. We implemented a prototype and evaluated it for accuracy and
performance, showing off its capabilities and limitations.

Our implementation is a first attempt at providing path-sensitive analysis of cryptographic vulner-
abilities in specific cases. There is still a lot of work to do to make it a viable solution for static
analysis. Some future work on the prototype might include: Making it independent of CogniCrypt
or any other SAST tool, making it independent of the Soot API and, therefore, giving it more
freedom and flexibility in the creation of the graphs, extending the range of the categories of
vulnerabilities covered, and getting rid of some or all of the limitations related to the path sensitive
search, such as properly dealing with loops, recursion, and side branches. We also estimate that by
introducing parallel processing for the different CGs, we could speed up performance noticeably.

Generally speaking, we think there is a lot of potential in improving accuracy and performance in
SAST tooling. One possible path for achieving progress in that respect, that we have not touched
on in this thesis, might be the inclusion of deep learning techniques in static analysis. Using deep
learning might prove more viable in tackling the complexity that comes with path sensitivity. This
is of course all just speculation.
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