

Prediction and Similarity Models for Visual
Analysis of Spatiotemporal Data

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Gleb Tkachev

aus Kaliningrad

Hauptberichter: Prof. Dr. Thomas Ertl
Mitberichter: Prof. Dr. Steffen Frey

Prof. Dr. Chaoli Wang

Tag der mündlichen Prüfung: 30 Juni 2022

Visualisierungsinstitut
der Universität Stuttgart

2022

Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Summary xi

Zusammenfassung xiii

1 Introduction 1
1.1 Motivation and Research Questions . 2

1.2 Outline and Contributions . 4

2 Background 9
2.1 Visualization . 9

2.1.1 Ensemble Visualization . 9

2.1.2 Distributed Volume Rendering . 13

2.2 Machine Learning . 16

2.2.1 Machine Learning Basics . 16

2.2.2 Neural Networks . 21

2.2.3 Convolutional Neural Networks 26

2.2.4 Machine Learning Research Terminology 28

2.2.5 Self-Supervised (Representation) Learning 31

2.2.6 Contrastive Representation learning 31

3 Detecting Irregular Behavior in Spatiotemporal Volumes 35
3.1 Related Work . 36

3.2 Prediction-based Irregularity Detection 38

3.2.1 Prediction Model . 39

3.2.2 Local Prediction Problem . 40

3.2.3 Multiple Prediction Models . 42

3.3 Causes of Prediction Error . 42

3.3.1 Uncertainty . 42

3.3.2 Uniqueness . 45

3.3.3 Complexity . 46

3.4 Model Architecture, Training and Prediction 48

3.5 Visualization of Prediction Error . 50

iii

Contents

3.5.1 Results . 51

3.6 Automatic Timestep Selection . 57

3.7 Multi-field Volumes . 59

3.8 Assisted Parameter Selection . 62

3.8.1 Parameter Study . 62

3.8.2 Parameter Selection . 64

3.9 Performance . 67

3.10 Limitations and Future Work . 68

4 Learning Spatiotemporal Similarity Metrics 71
4.1 Related Work . 72

4.2 Prediction-based Ensemble Similarity . 73

4.2.1 Method . 74

4.2.2 Results . 75

4.3 Self-supervised Learning of Similarity . 77

4.3.1 Overview . 77

4.3.2 Pretext Task and Model . 79

4.3.3 Model Training . 81

4.3.4 Similarity Metric . 81

4.3.5 Implementation & Prototype System 82

4.3.6 Qualitative Evaluation . 85

Query Results . 85

Parameter Space Analysis . 89

Domain Expert Feedback . 90

4.3.7 Comparative Evaluation . 90

Alternative Approaches . 91

Comparison to SIFT . 91

Comparison to Wang et al. 2016 93

4.3.8 Quantitative Evaluation . 95

Quality Metrics . 95

Baseline Methods . 96

Query Results . 97

Variance Quantification . 97

Model Generalization . 101

Parameter Study . 102

Performance and ML Metrics . 102

4.3.9 Discussion . 104

4.4 Autoencoders for Expressive Dimensionality Reduction 105

5 Metaphorical Visualization 109
5.1 Related Work . 111

iv

Contents

5.2 Metaphorical Visualization . 112

5.3 Distance-based Mapping . 114

5.3.1 Method . 114

5.3.2 Authors to Words . 115

5.3.3 Authors to Cats . 117

5.3.4 Authors to Visual styles . 120

5.4 Attribute-based Mapping . 122

5.4.1 Method . 122

5.4.2 Books to Movies and Games . 123

5.5 Hybrid Mapping . 127

5.5.1 Method . 127

5.5.2 Movies to Stars . 127

5.6 Topological Mapping . 130

5.6.1 Method . 130

5.6.2 Sciences to Industries . 132

5.7 Qualitative Study . 132

5.7.1 Study Design and Analysis . 133

5.7.2 Findings . 135

5.8 Discussion . 138

6 Performance Prediction for Parallel Volume Rendering 141
6.1 Related Work . 143

6.2 Overview . 145

6.3 Emulation of Local Rendering Performance 147

6.4 Cluster Performance Model . 149

6.5 Results . 150

6.5.1 Implementation . 151

6.5.2 Collecting Training Data . 151

6.5.3 Emulated and Actual Render Timings 152

6.5.4 Predicting Performance of an Upgraded Cluster 154

6.5.5 Predicting Performance Across Different Clusters 155

6.5.6 Hyperparameter Study . 156

6.6 Discussion, Limitations and Future Work 157

7 Machine Learning in Scientific Visualization 159
7.1 Types of ML Applications in (Scientific) Visualization 159

7.2 Self-supervised Learning . 164

7.3 User Interaction . 165

7.4 Evaluation . 167

7.5 Future Directions . 169

v

Contents

8 Conclusion 171

References 173

vi

List of Figures

1.1 Machine Learning applications in the context of the visualization pipeline. 4

2.1 The structure of an ensemble dataset. 11

2.2 Dense and sparse approaches to ensemble visualization. 12

2.3 An example of 2-3 swap compositing. 15

2.4 An illustration of under- and overfitting. 19

2.5 Structure of a fully-connected neural network. 22

2.6 Schematic comparison of a convolutional and a fully-connected layers. . . 26

2.7 Perceptive field of a convolutional layer. 27

2.8 The self-supervised image task of predicting relative patch positions. . . . 30

2.9 The architecture of a basic siamese model. 32

3.1 An overview of the prediction-based irregularity approach. 39

3.2 A demonstration of the uncertainty misprediction scenario. 44

3.3 A demonstration of the uniqueness misprediction scenario. 45

3.4 A demonstration of the complexity misprediction scenario. 47

3.5 The training history of the prediction models. 48

3.6 The datasets used to evaluate the visualization of prediction errors. 52

3.7 Comparison of detected temporal events to the ground truth. 53

3.8 Spatial misprediction view of the “bottle” dataset. 54

3.9 Spatial and temporal misprediction views of the “hotroom” dataset. 55

3.10 Interactive analysis of the “droplet” dataset. 56

3.11 Temporal event detection on the “droplet” dataset. 59

3.12 Renderings of the selected timesteps on the “droplet” dataset. 59

3.13 Comparison of scalar and multivariate prediction on “droplet” dataset. . . 61

3.14 A parameter study on the “vortex street” dataset showing temporal mispre-

diction. 63

3.15 Parameter space visualization for two datasets. 65

3.16 Temporal misprediction for four different parameter configurations on the

“hotroom” dataset. 66

3.17 Spatial misprediction views for configurations with low and high error

diversity on the “hotroom” dataset. 67

4.1 Prediction-based dissimilarity measure for a flow simulation ensemble. . . 76

4.2 The architecture of our self-supervised similarity model. 80

4.3 The interactive prototype for navigating an ensemble of spatiotemporal data. 84

4.4 Query results on the “droplet splash” dataset. 86

4.5 Comparison of manual domain-specific results to our method. 88

vii

Figures

4.6 Comparison of our similarity metric to SIFT on the “droplet splash” ensemble. 92

4.7 Comparison of our method to Wang et al. on the example of the 3D Isabel

dataset. 94

4.8 An illustration of our coverage metric. 96

4.9 Renderings of the matches for turbulent queries from Table 4.2. 99

4.10 The distribution of query quality for “cylinder” wrt. randomly sampled

queries. 100

4.11 The variance of query quality wrt. training process. 101

4.12 Results of a parameter study on the “cylinder” ensemble. 103

4.13 Projections of the latent space learned by different autoencoder variants. . 105

4.14 Scatterplot of the quality metric values achieved by each tested autoencoder

configuration. 106

5.1 Mapping VIS authors to English nouns. 116

5.2 Mapping CHI authors to cat images. 118

5.3 Mapping CHI authors to cat images. 119

5.4 Mapping SIGGRAPH authors to visual styles. 121

5.5 Attribute-based mapping of books to films and video games. 124

5.6 Attribute-based mapping of book clusters to clusters of movies and games. 126

5.7 A larger version of the movies-to-stars figure. 128

5.8 The full version of the sciences-to-industries mapping. 131

5.9 The metaphor tool used in our study. 134

6.1 An overview of our performance prediction approach. 145

6.2 An example of a measured and generated performance histograms. 149

6.3 One of our datasets and the model’s learning curve. 152

6.4 Comparison of actual and simulated performance. 153

6.5 Evaluation of our model in the cluster upgrade scenario. 154

6.6 Evaluation of our model on a different cluster. 155

7.1 An approximate comparison of how many ML-based methods are found in

scientific and information visualization. 160

7.2 A two-way classification of recent ML applications in scientific visualization. 163

7.3 The latent space of a Sliced-Wasserstein autoencoder trained on an ensemble

dataset. 166

viii

List of Tables

3.1 Comparison of the total model error using scalar and multivariate prediction. 60

3.2 Performance of our local prediction implementation with different datasets

and models. 68

4.1 The architecture of our convolutional encoder. 82

4.2 Results of manually constructed queries on the cylinder flow ensemble. . . 98

6.1 Comparison of neural network sizes. 156

ix

Acknowledgments

Despite what one says during job interviews, behind any finished PhD thesis stands

the work of many people. In fact, their work is everywhere: behind, in front, above

and, most importantly, beside. Here I would like to thank all those who stood beside

me during this long and winding journey to write this long and winding thesis.

First of all, my gratitude goes to Thomas Ertl, my advisor, who gave me the opportunity

to pursue my doctoral degree and join the wonderful crowd at VIS/US. Thank you for

your guidance and for making sure we all have everything we need to succeed. I would

also like to thank Steffen Frey, who helped me throughout my studies, and without

whom I would defend neither my PhD thesis nor cannon rushes. Furthermore, a special

thanks to Chaoli Wang for reviewing the thesis and taking part in the defense.

A big thank you to all my co-authors, in particular to Alexander Straub, Christoph

Müller, Fabian Beck, Filip Sadlo, Hamid Gadirov, Ilyass Tabiai, Michael Sedlmair, Michael

Wermelinger, Moritz Heinemann, Patrick Diehl, Rene Cutura, Shivam Aragwal and

Valentin Bruder. And thank you to all the other great people at VIS/US, who made these

years fly by: Alex, Cristina, David, Dominik, Frank, Franzi, Johannes, Kuno, Marcel,

Maurice, Moataz, Quynh, Stefan, Tobi and many, many more. I would like to explicitly

exclude my office-mates Katrin, Michael B. and Sergej from this list, because without

our engaging discussions I could have finished a year earlier. Sad. Finally, my thanks to

the negative \vspace function for making my publications possible.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-

search Foundation) under Germany’s Excellence Strategy - EXC 2075 – 390740016 –

with projects in the SimTech Clusters of Excellence EXC 310 and EXC 2075.

x

Summary

Ever since the early days of computers, their usage have become essential in natural

sciences. Whether through simulation, computer-aided observation or data processing,

the progress in computer technology have been mirrored by the constant growth in the

size of scientific data. Although the improvements in scale and resolution of scientific

outputs are critical to the advancement of many fields, they also make the analysis more

challenging, particularly when studying new data and phenomena, where exploratory

analysis is of the most importance.

Over the last decades, visualization experts have proposed many approaches to address

the challenge, but even these methods have their limitations. As the data sizes grow,

and human perception remains constant, it becomes increasingly difficult to mean-

ingfully aggregate and present the data to the user. This general trend leads to the

development of domain-specific visualization methods that can leverage the knowledge

of the application context to appropriately filter and abstract the data. However, they

require significant expertise and effort to develop, without being easily transferable to

other domains. The fast pace of scientific research and its inherent high specialization

exacerbate the problem, as existing and emerging subfields constantly set out to study

new problems and might not have a dedicated visualization expert to research and de-

velop the tools required for the analysis. Fortunately, domain-agnostic approaches can

help to bridge this gap, by both being directly applicable in a large range of applications

and by decoupling other visualization techniques from the underlying data.

The development of general methods is a difficult task, but recent advances in the field

of Machine Learning (ML) can provide the tools needed to solve it. ML models are a

particularly good fit as they can both benefit from the large amount of data present

in the scientific context and allow the visualization system to adapt to the problem

at hand, rather than rely on fixed algorithms. Still, the existing methods need to be

adjusted to account for the spatiotemporal nature of the data, its size and the interactive

performance constraints. Even more importantly, many of the successful ML methods

rely on supervised data, which is lacking in the scientific context, where the problems

are specialized, experts are few and their time is extremely valuable. Therefore, one

should pursue models that are unsupervised or require only minimal supervised data.

This thesis presents research into how existing ML approaches can be adapted and

extended to enable domain-agnostic visualization of spatiotemporal data. The first

introduced technique enables detection of irregular spatiotemporal behavior by means

of training prediction models and observing the deviation between their prediction

and the actual data. The causes for this misprediction are studied, demonstrating

how this information can be used to construct an exploratory visualization of the

whole dataset. Furthermore, the prediction error is shown to produce a meaningful

xi

Tables

similarity metric, when measured across different members of a simulation ensemble.

Continuing the research in this direction, self-supervised methods are investigated in

the context of spatiotemporal data, and a new similarity metric is developed. It is shown

to outperform existing domain-agnostic approaches and works at interactive speeds,

enabling the user to further refine the results. Building upon the insights into ML-

based similarity metrics, a new conceptual approach is developed, called Metaphorical

Visualization. It allows data to be mapped to a large variety of representations in a

very generic fashion, with applications extending even beyond the scientific context.

ML models are also applied to another aspect of visualization systems, predicting

performance of a distributed rendering algorithm. The developed technique is data-

and application-agnostic and enables cluster performance prediction given only single-

node measurements. Reflecting upon this diverse set of successful applications, we

present a summary of insights and experiences of applying ML models to visualization

problems. Combined with the concrete approaches, it constitutes a broad contribution

to introducing ML methods into scientific visualization.

xii

Zusammenfassung

Seit den Anfängen von Computern ist ihr Einsatz in den Naturwissenschaften un-

verzichtbar geworden. Ob durch Simulation, computergestützte Beobachtung oder

Datenverarbeitung, die Fortschritte in der Computertechnologie spiegeln sich in der

ständig wachsenden Menge an der wissenschaftlichen Daten wider. Obwohl die

Verbesserungen in Bezug auf Umfang und Auflösung wissenschaftlicher Ergebnisse für

den Fortschritt in vielen Bereichen von entscheidender Bedeutung sind, erschweren sie

auch die Analyse, insbesondere bei der Untersuchung neuer Daten und Phänomene,

wo explorative Analyse von größter Bedeutung ist.

In den letzten Jahrzehnten haben Visualisierungsexperten viele Methoden vorgeschla-

gen, um diese Herausforderung zu meistern, aber auch diese Methoden haben ihre

Grenzen. Da die Datenmengen wachsen, aber die menschliche Wahrnehmung konstant

bleibt, wird es immer schwieriger, die Daten sinnvoll zu aggregieren und dem Benutzer

zu präsentieren. Dieser allgemeine Trend führt zur Entwicklung von domänenspezifi-

schen Visualisierungsmethoden, die das Wissen über den Anwendungskontext nutzen

können, um die Daten angemessen zu filtern und zu abstrahieren. Die Entwicklung

dieser Methoden erfordert jedoch erhebliche Fachkenntnisse und Aufwand und ist

nicht ohne Änderungen auf andere Bereiche übertragbar. Der rasante Fortschritt der

wissenschaftlichen Forschung und ihre immanente hohe Spezialisierung verschärfen

das Problem, da bestehende und neu auftauchende Teilbereiche ständig neue Probleme

untersuchen und möglicherweise keine speziellen Visualisierungsexperten haben, um

für die Analyse erforderlichen Tools erforschen und entwickeln. Glücklicherweise kön-

nen domänenagnostische Ansätze dazu beitragen, diese Lücke zu schließen, da sie in

einer Vielzahl von Anwendungen anwendbar sind und andere Visualisierungstechniken

von den zugrunde liegenden Daten entkoppeln.

Die Entwicklung allgemeiner Methoden ist eine schwierige Aufgabe, aber die jüng-

sten Fortschritte im Gebiet des maschinellen Lernens (ML) können die notwendigen

Werkzeuge zur Lösung dieser Aufgabe liefern. ML-Modelle eignen sich besonders gut,

da sie sowohl von der großen Datenmenge im wissenschaftlichen Kontext profitieren

können als auch dem Visualisierungssystem erlauben, sich an das jeweilige Problem

anzupassen, anstatt sich auf feste Algorithmen zu verlassen. Dennoch müssen die

bestehenden Methoden angepasst werden, um der räumlich-zeitlichen Natur der Daten,

ihrer Größe und den interaktiven Leistungsbeschränkungen Rechnung zu tragen. Noch

wichtiger ist, dass sich viele der erfolgreichen ML-Methoden auf überwachte Daten

stützen, die im wissenschaftlichen Kontext fehlen, wo die Probleme spezialisiert sind,

und es nur wenige Experten gibt, deren Zeit extrem teuer ist. Daher sollte man Modelle

anstreben, die nicht überwacht sind oder nur minimale überwachte Daten benötigen.

In dieser Arbeit wird untersucht, wie bestehende ML-Ansätze angepasst und erweit-

xiii

Tables

ert werden können, um eine domänenagnostische Visualisierung von raum-zeitlichen

Daten zu ermöglichen. Die erste vorgestellte Technik ermöglicht die Erkennung von un-

regelmäßigem raum-zeitlichem Verhalten durch das Training von Vorhersagemodellen

und die Beobachtung der Abweichung zwischen deren Vorhersage und den tatsäch-

lichen Daten. Die Ursachen für diese Fehlprognosen werden untersucht, und es wird

gezeigt, wie diese Informationen zur Erstellung einer explorativen Visualisierung des

gesamten Datensatzes verwendet werden können. Außerdem wird gezeigt, dass der

Vorhersagefehler eine aussagekräftige Ähnlichkeitsmetrik ergibt, wenn er über ver-

schiedene Mitglieder eines Simulationsensembles gemessen wird. In Fortsetzung der

Forschung in dieser Richtung werden selbstüberwachte Methoden im Kontext von

räumlich-zeitlichen Daten untersucht und eine neue Ähnlichkeitsmetrik entwickelt.

Es wird gezeigt, dass sie bestehende domänenagnostische Ansätze übertrifft und mit

interaktiver Leistung arbeitet, die es dem Benutzer ermöglicht, die Ergebnisse weiter zu

verfeinern. Aufbauend auf den Erkenntnissen über ML-basierte Ähnlichkeitsmetriken

wird ein neuer konzeptioneller Ansatz entwickelt, die sogenannte Metaphorische Vi-

sualisierung. Sie ermöglicht es, Daten auf eine Vielzahl von Darstellungen in einer

sehr generischen Weise abzubilden, wobei die Anwendungen sogar über den wis-

senschaftlichen Kontext hinausgehen. ML-Modelle werden auch auf einen anderen

Aspekt von Visualisierungssystemen angewendet, nämlich die Vorhersage der Leistung

eines verteilten Rendering-Algorithmus. Die entwickelte Technik ist daten- und anwen-

dungsunabhängig und ermöglicht die Vorhersage der Leistung von Clustern auf der

Grundlage von Einzelknotenmessungen. In Anbetracht dieser vielfältigen erfolgreichen

Anwendungen präsentieren wir eine Zusammenfassung der Erkenntnisse und Erfahrun-

gen bei der Anwendung von ML-Modellen auf Visualisierungsprobleme. Zusammen

mit den konkreten Ansätzen stellt dies einen umfassenden Beitrag zur Einführung von

ML-Methoden in die wissenschaftliche Visualisierung dar.

xiv

List of Abbreviations and Acronyms

AR Augmented Reality

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

CPU Central Processing Unit

EMD Earth Mover’s Distance

FC Fully-Connected (Layer)

GAN Generative Adversarial Networks

GD Gradient Descent

GPU Graphics Processing Unit

HCI Human-Computer Interaction

HPC High-Performance Computing

InfoVis Information Visualization

IO Input/Output

LAP Linear Assignment Problem

LSTM Long Short-Term Memory

ML Machine Learning

MPI Message Passing Interface

MSE Mean Squared Error

NLP Natural Language Processing

NN Neural Network

POT Python Optimal Transport

(Library)

RAM Random Access Memory

ReLU Rectified Linear Unit

SciVis Scientific Visualization

SGD Stochastic Gradient Descent

SIFT Scale-Invariant Feature

Transform

SIMD Single-Instruction Multiple-Data

SNE Stochastic Neighborhood

Embedding

SOM Self-Organizing Map

SSIM Structural Similarity Index

SSL Self-Supervised Learning

STD Standard Deviation

SVD Singular Value Decomposition

UI User Interface

UMAP Uniform Manifold

Approximation and Projection

VC-d. Vapnik–Chervonenkis

Dimension

VR Virtual Reality

VRAM Video RAM

xv

1
Introduction

Spatiotemporal data is ubiquitous in natural sciences. It appears in many fields, as most

physical phenomena have innate spatial and temporal extents. Conceptually, spatiotem-

poral data can be classified into sparse and dense. Sparse datasets are collections of

objects that are freely positioned in space-time, e.g., particle data in molecular dynamics.

In contrast, dense datasets are dense fields defined on a discrete mesh that constitutes

the spatiotemporal domain of the data, such as velocity fields in computational fluid

dynamics. This thesis is primarily concerned with field data, although many of the

developed concepts could also be extended to particle datasets.

The spatial character of the data strongly compels us to also display it spatially. This

can be a great advantage, as it makes the visualization intuitive, but can also be a curse

since most datasets have three spatial dimensions that need to be displayed in just the

two dimensions of a computer screen. Especially for larger and more complex datasets,

this can result in occlusion and clutter that prevents a clear view of the data. The

problem becomes even more pronounced when the temporal dimension is involved.

Similarly to space, time is also commonly mapped to time in visualization, i.e., through

animation. And while intuitive, getting an overview of the data can become even harder

due to the difficulty of perceiving and recalling changes over time (change blindness).
Thus, other visual mappings are often pursued as an alternative or an addition to a

direct spatiotemporal visualization, for instance, mapping time to space or color. With

this in mind, visualizing just the four spatiotemporal dimensions can already become

a very challenging task, but the final “nail” in the hopes of a direct spatiotemporal

mapping comes in the form of ensemble data. Ensembles are collections of simulation

or experimental runs, gathered under similar conditions and analyzed together. This

2 Chapter 1 ● Introduction

type of spatiotemporal data adds yet another dimension, called “run” or “member”, that

does not have a direct visual counterpart, but needs to be represented.

Considering the dimensionality of the spatiotemporal data, its visualization cannot rely

solely on finding an appropriate visual mapping. Interactivity and filtering are required

to reduce the data, allowing the user to select and view its parts separately. This can be

as simple as controlling the camera view or scrolling through a temporal animation, but

can also involve data-specific filters, 3D object manipulation, coordinated views and

many other complex techniques. Another solution is to perform aggregation and feature

extraction, trying to reduce the data while preserving the most important information.

This could be done to remove some of the dimensions, construct an overview of the

data or to present only the most relevant details to the user. And although many

solutions were proposed, they inherently come with trade-offs in the completeness of

the presented data and rely on specialized assumptions that may bias the analysis.

1.1 Motivation and Research Questions
The steady improvement in computational and sensor technologies accentuates the

challenges of spatiotemporal visualization. On the one hand, larger scales of simu-

lation and better resolution of experimental data call for increasingly sophisticated

data reduction and abstraction. This reduction is often difficult to achieve without

making domain-specific assumptions about the data, leading to powerful yet highly

specialized solutions that can overlook the unexpected and do not easily transfer to

other applications. And on the other hand, as computational resources become cheaper

and more ubiquitous, more data from novel subfields and problems is collected. Smaller

laboratories might not have sufficient visualization expertise to develop the specialized

tools required for the analysis. Therefore, visualization should pursue generic domain-

agnostic methods, as they can be useful in a wide range of scientific domains, reduce

the number of assumptions in the analysis and provide a way of bridging existing

visualization research with new data.

Although this is a difficult task, Machine Learning (ML) can provide the tools needed to

create visualization methods that are more general. One way of looking at ML is that it

allows us to learn algorithms from the data, rather than manually encoding our knowl-

edge into a computer program. The past decades have shown that raw computational

power eventually beats cleverly designed algorithms – the “bitter lesson” repeated

in chess, speech recognition and computer vision (Sutton 2019). And while in many

application areas this can be infeasible due to the lack of training data, visualization is

inherently about data, and thus has a rich potential for integration with ML.

Furthermore, the state-of-the-art simulation methods are now also pivoting towards

integration with ML models. This thesis project is a part of the Excellence Cluster

1.1 ● Motivation and Research Questions 3

EXC-2075 “Data-Integrated Simulation Science (SimTech)” that pursues data-integrated

simulation approaches as its primary research objective. Thus, ML-driven visualization

techniques become even more desired, as they are now needed not only to analyze

the simulation outputs, but also to understand the data that supports the modeling

itself, helping to successfully merge physics- and data-based simulation methods (Focus

Challenge 2 of SimTech). Furthermore, visualization is also in a unique position to

alleviate one of the main concerns about ML models — their black-box nature and

innate modeling uncertainty, since a visualization can help bring the scientist into the

ML loop, and support the steering and the validation of the ML model.

Nevertheless, to successfully apply ML methods to the problems of scientific visual-

ization, one needs to overcome a number of challenges, especially when dealing with

spatiotemporal fields. These challenges translate directly into the research questions of

this thesis:

RQ1. How to extend existing ML techniques to visualization of
spatiotemporal fields?

The machine learning techniques that are the most relevant to our visualization scenar-

ios are usually designed for working with image and video data. Spatiotemporal data

is conceptually similar, but often has additional dimensions and attributes that create

both challenges and opportunities that need to be considered. Furthermore, while ML

methods operate on and even require large data sizes, they are generally suited for a

large number of data samples, rather than samples of a large size. Evaluating a typical

model on a single scalar field can become very computationally expensive or even

infeasible.

RQ2. How to train ML models for visualization with little or no
supervised data?

A lot of the most successful ML methods rely, at least in some part, on supervised

data. Unfortunately, in the context of scientific data visualization, supervised data is

generally not available. Domain sciences are highly specialized, and their number is

large. At the same time, there are only few experts that could provide the supervised

data, and the experts’ time is highly valuable. Instead, techniques using unsupervised

4 Chapter 1 ● Introduction

Raw Data
Data

Analysis
Visual

Mapping

Machine Learning

Rendering Visualization

Figure 1.1 — The visualization pipeline. Machine learning methods can be applied at

every step of the pipeline: to extract features during data processing, to generate new

visual representations for the data or to speed up and enhance the rendering stage.

learning methods should be developed, particularly when domain-agnostic solutions

are desired.

RQ3. How can the user interact with the ML model?

Although ML methods can be a powerful tool for data analysis, any visualization system

is ultimately about enabling the user to solve their task. As such, it can become difficult

to couple ML models with a human analyst, since models can often be opaque and not

accept human input. In addition, ML techniques can incur significant performance

costs, both during training and inference, thereby preventing an interactive workflow.

For this reason, additional steps should be taken to ensure that the visualization system

has sufficient performance and allows for user control.

1.2 Outline and Contributions
This thesis presents an investigation of how machine learning methods can be applied

to spatiotemporal data to produce visualization techniques that are more automated

and domain-agnostic. The contributions are best structured when viewed in the context

of the visualization pipeline (Figure 1.1). The visualization pipeline (Johnson and

Hansen 2004) is a conceptual model of a visualization application that partitions it into

several distinct stages. First comes the data analysis stage, which prepares the raw data,

performs appropriate data filtering and aggregation. Next, the prepared data undergoes

visual mapping, where it is mapped to visual variables such as position and color, often

stored in the form of geometric primitives and attributes. Finally, the rendering stage

1.2 ● Outline and Contributions 5

generates the final image from the geometric primitives constructed at the previous

stage.

As seen in Figure 1.1, ML techniques can find applications in all stages of the visualiza-

tion pipeline. In the analysis stage, ML can help detect events or structures, measure

similarity or extract expressive features that can be presented in the visualization.

Contributions of this type are discussed in Chapters 3, 4. During visual mapping, visual

representations can be automatically selected or generated by an ML model, which

we discuss in Chapter 5. Rendering is the most performance-centric of the stages, and

so ML methods are often applied here to speed up the computation by learning parts

or even the whole rendering function. However, they can also be used to predict the

rendering performance, helping to design an efficient visualization system (Chapter 6).

See Section 7.1 for a detailed description of ML in the visualization pipeline.

Now, let us briefly summarize the content and the contributions of each chapter, and

how they relate to the research questions stated above.

Chapter 3 — Detecting Irregular Behavior in Spatiotemporal Volumes

The chapter introduces a novel technique for detection of irregular behavior in spa-

tiotemporal volumes (Tkachev et al. 2021a). In this method, we apply ML models at

the analysis stage of the pipeline (Figure 1.1) by training a set of models to predict

local behavior in the data and then extracting regions where the prediction fails. We

demonstrate that this error marks regions of unique, uncertain or complex behavior, all

of which are of interest to the analyst. This feature can be used to present an overview

of irregularities in the data, or to guide the visualization by selecting key timesteps.

Furthermore, using models of different capacity we can extract additional information

about the irregular regions and help automatically select configuration parameters

appropriate for a given dataset. The locality of the models makes the training computa-

tionally feasible (RQ 1), while the auto-regression task avoids the need for supervised

data (RQ 2).

Chapter 4 — Learning Spatiotemporal Similarity Metrics

This chapter presents three self-supervised methods and focuses on learning similarity

metrics for spatiotemporal data, thereby also applying ML at the analysis stage of

the visualization pipeline. The first approach is based on the local prediction mod-

els (Chapter 3) and provides a similarity metric for ensemble datasets (Tkachev et al.

2021a) This is achieved by measuring the prediction errors of models when trained and

evaluated on different members of the ensemble. Low errors imply that the predicted

behavior was also observed during the training, indicating similar members. The second

approach employs a self-supervised model to measure similarity of spatiotemporal

patches (Tkachev et al. 2021c) and therefore addresses RQ 2. The resulting metric

is more granular and allows data queries consisting of user-provided examples, en-

abling the user to influence the results (RQ 3). This method is also computationally

6 Chapter 1 ● Introduction

efficient and runs interactively as part of a prototype system for exploring ensemble

datasets (RQ 1). In the third part, we briefly present a related approach (Gadirov et al.

2021) that utilizes autoencoders for visual exploration of ensembles (RQ 1, RQ 2).

Chapter 5 — Metaphorical Visualization

The chapter presents a new conceptual approach to visualization that allows data to be

mapped to a diverse set of concepts such as words, images and visual styles (Tkachev
et al. 2022). The core idea is based on finding a mapping of data to concepts that

preserves similarity relationships between the data points, such as self-supervised

similarity metrics learned by ML models (RQ 2). Because the ML models are used

to compute a new representation for the data, this application of ML belongs to the

visual mapping stage of the pipeline. The approach is very generic and can be applied

to data from many domains, both scientific and social. We describe several types of

metaphorical mappings and implement many different applications to demonstrate

their flexibility and personalization potential (RQ 3).

Chapter 6 — Performance Prediction for Parallel Volume Rendering

In Chapter 6, we describe how ML can be used to predict performance of distributed

volume rendering, thus situating the method at the rendering stage of the visualization

pipeline. Training a model to predict cluster performance is a difficult task, since it

would require supervised data (performance timings) to be captured on a large variety

of cluster configurations, which is generally infeasible. Instead, we introduce a two-

level approach, where we predict the cluster performance based on the local node

performance, captured in the form of performance histograms (Tkachev et al. 2017).

With this, the cluster model is insulated from hardware- and application-specific details

of the local nodes, allowing us to train it with data from a single cluster (RQ 2). We

demonstrate the accuracy of this approach and discuss how it can be used to help with

procurement of rendering equipment.

Chapter 7 — Machine Learning in Scientific Visualization

In the final chapter, we present an overview of the existing ML applications in scientific

visualization. We distinguish between quantitative and qualitative types, motivating

further investigation of qualitative approaches. Then, we discuss the common chal-

lenges for this line of research and what we learned in the process of solving them.

Here, we touch on all three of our research questions. Finally, we enumerate some

general directions for future work in applying ML to SciVis.

Contributions Beyond This Thesis

During the work on this thesis, there were several other contributions to collaborative

projects. We chose not to include them into the thesis to keep it more focused, but

would still like to briefly mention them. See also the Author’s Work list.

1.2 ● Outline and Contributions 7

In collaboration with Polytechnique Montréal, we developed a technique for automatic

detection of crack areas in camera images of fiber materials (Tabiai et al. 2019a). Here

I designed and implemented the core extraction method, as well as the visualization

of its results, and Ilyass Tabiai et al. collected the experimental data and provided

their valuable expertise in material science. In Agarwal et al. 2020, we proposed

an approach to dynamic set visualization based on the Formal Concept Analysis. I

developed an early prototype of the idea, which was later reworked and extended

considerably by Shivam Agarwal et al., earning the Best Paper Award at VMV 2020.

Finally, in Heinemann et al. 2021, we introduced a system for analysis of droplet

dynamics in spray simulations, demonstrating another application of our prediction-

based irregularity detection (Chapter 3). For this work, I mainly advised on the machine

learning aspects of the method, while Moritz Heinemann et al. performed most of the

work.

We have also published the code for several of our publications. Tabiai et al. 2019b is

the implementation and data from our crack area detection method (Tabiai et al. 2019a).

Tkachev et al. 2021b contains the implementation of the self-supervised similarity

approach (Tkachev et al. 2021c, Section 4.3), which received the Graphics Replicability

Stamp. And in Tkachev 2022 we published PyPlant – a generic software framework

for machine-learning pipelines that we developed to support the projects in this thesis.

2
Background

In this chapter, we briefly present the background knowledge that will be helpful

in understanding the rest of the thesis. The first part (Section 2.1) is dedicated to

visualization and two of itsmore advanced topics: ensemble visualization and distributed

volume rendering. The second part (Section 2.2) is concerned with machine learning,

starting with a quick introduction to the field, followed by a discussion of neural

networks, and finally, advanced concepts like self-supervised and contrastive learning.

2.1 Visualization
Visualization is the central topic of this thesis, and therefore, we assume some minor

prior knowledge about the field and its research challenges. Nevertheless, in this

section we introduce the concepts that are most critical to understanding the following

chapters. First, in the next subsection, we discuss ensemble visualization – a relatively

new, but very activate research subdomain concerned with visualization of multiple

simulation and experimental outputs. And in Section 2.1.2, we introduce the foundations

of distributed volume rendering, which will be needed later in Chapter 6.

2.1.1 Ensemble Visualization
Since the available computational resources and measurement devices keep improving,

domain scientists have the increased ability to generate larger and more accurate

data. One particular outcome of this trend is the collection of series of simulations

or experiments that pertain to the same studied phenomenon. The most common

10 Chapter 2 ● Background

example are simulation ensembles consisting of many runs under different simulation

parameters. Such data can allow the domain scientist to study different physical regimes,

quantify uncertainty and evaluate the simulation code. Ensemble visualization is a

subfield of scientific visualization that focuses on analysis of ensemble data. It adapts

the traditional SciVis techniques to ensembles, as well as develops new approaches that

are necessary to handle its unique challenges.

The meaning of the term “ensemble data”, and consequently, ensemble visualization,

drifts across different application contexts, as one would expect from a new research

domain. In some literature, ensemble data is understood as a subtype of uncertain

data (Bonneau et al. 2014), with different simulation runs being interpreted as samples

from some underlying distribution. The resulting distribution can capture the stochastic

nature of the simulation method (e.g., Monte Carlo approaches) or the uncertainty

over the simulation model and parameters (e.g., multi-model ensembles in weather

forecasting). However, for our purposes, this perspective is limiting because some of our

ensemble datasets (Section 4.3.6) contain significantly different simulation outcomes.

The resulting distribution is complex andmulti-modal, and thus precludes basic statistics

from being descriptive, which would be the common way to proceed in ensemble

visualization. In this thesis, we specifically focus on simulation and experimental

ensembles. So we view ensemble data as a type of multi-faceted spatiotemporal data

that is characterized by having the additional “member” dimension that enumerates

different simulation or experiment outcomes (Kehrer and Hauser 2013). This additional

dimension significantly complicates the visualization, as it increases the data size,

presents yet another dimension that needs to be mapped in a meaningful way, and

most importantly, is qualitatively different from being “just another spatial dimension”.

It needs to be treated differently during the analysis and induces new analytic tasks

that need to be supported (more on tasks below).

In total, ensemble data has five distinct dimensions: location, time, variable, member and
ensemble (Wang et al. 2019), which we illustrate in Figure 2.1. The location dimension

consists of two or three spatial dimensions, but since they are homogeneous, we group

them into one conceptual axis. The variable dimension enumerates different physical

quantities recorded for each data point, e.g., pressure, velocity, temperature, etc. The

ensemble dimension occurs in applications where different ensembles, i.e., set of runs,

are compared with each other. For example, to compare the simulation model outputs

for different output resolutions (Biswas et al. 2017). However, in this work, we do not

perform ensemble-to-ensemble comparisons and leave out the fifth dimension.

Another important facet of spatiotemporal ensembles is their connection to the sim-

ulation/experimental parameter space. Typically, each member of the ensemble has

additional metadata containing the inputs on which the generative process was condi-

tioned to produced the member data. These could be the physical constants used in

the simulation code or the experimental conditions for measurements. In general, the

2.1 ● Visualization 11

Time

Space

Param X

Member

P
a
ra

m
 Y

Figure 2.1 — Ensemble data consists of many members, each being a volume with two

or three spatial and often a temporal dimension, e.g., 2D+T or 3D+T. Additionally, the

volume may contain multiple variables (fields), e.g., pressure (scalar), velocity (vector),

stress (tensor). Ensemble data is typically a product of data-generating process (simula-

tion or experiment) that is conditioned on a set of parameters (simulation parameters,

experimental setup). Thus, each member can also be viewed as a point in a multi-

dimensional parameter space (on the right).

parameters are a heterogeneous set of values that could contain anything, but they

often can be thought of as numerical values that form an n-dimensional parameter

space (Figure 2.1, right). Then, each ensemble member corresponds to a point in that

space. This perspective can be particularly useful when supporting parameter analy-

sis tasks. Still, the parameter metadata is an optional feature of an ensemble dataset,

and its importance is highly task dependent: sometimes, the members are stochastic

realizations of the same underlying parameters, or the parameter values are not of

significance, and only the actual spatiotemporal outcomes are of interest.

Having brought up the tasks, let us briefly discuss them. Following Wang et al. 2019,

one can distinguish five key analytic tasks in ensemble visualization. 1. Overview –

get a high-level understanding of the structure and variations within the ensemble.

2. Comparison – compare pairs or sets of ensemble members, find differences and

similarities between them. 3. Clustering – organize the ensemble members into groups

based on their similarity. 4. Temporal analysis – study how one or more ensemble

members evolve over time. 5. Parameter analysis – understand the connection between

the members and the parameter space. In this thesis, we are concerned primarily

with the development of similarity metrics for ensemble visualization (Chapter 4).

Similarity metrics directly support the clustering task by proving a better basis for

grouping the ensemble member and their individual regions. Furthermore, similarity

and clustering are helpful both in extracting an overview of the dataset and in parameter

space analysis (Section 4.3.6).

12 Chapter 2 ● Background

(a) Dense glyph-based (b) Sparse contour-based

Figure 2.2 — a: A dense glyph-based visualization of a vector field ensemble (Jarema

et al. 2015). The ensemble members are sampled at grid-defined locations, aggregating

local vector field values into a direction distribution glyph. b: A sparse contour based

visualization (Ferstl et al. 2016). A single representative isoline is extracted to represent

each member. The isolines are then grouped into two clusters and plotted as a contour

showing the variance within each cluster.

It is difficult to succinctly describe the techniques in ensemble visualization, because

they are quite diverse and often depend on the application. Still, the most common idea

for how to incorporate the member dimension into the visualization is aggregation.

One approach to aggregation (we will call it dense) involves computing statistics over

the different simulation/experiment realizations at every spatiotemporal point or at

least in a dense grid. An example of this approach is the glyph-based vector field

visualization by Jarema et al. 2015 (Figure 2.2a), where several underlying vector fields

were aggregated into directional distribution glyphs. We see a dense sampling of the

underlying data, and the visualization tries to preserve as much spatial information as

possible. This works well for spatially smooth data and sufficiently similar ensemble

members, but can become problematic with highly heterogeneous and multi-modal

ensembles.

In the sparse aggregation approach, each member is represented by a single distinct

feature extracted from the data, e.g., the position of a vortex or an informative isosurface.

For instance, see a schematic depiction of the approach by Ferstl et al. 2016. An isoline

is extracted from each member, which can be plotted as a contour to represent the mem-

ber (a spaghetti plot). The authors take it further and cluster the contours, producing

the contour variability plots shown in Figure 2.2b. Such representation is sparse in the

sense that it takes only select parts of the original member data, trading the potential

2.1 ● Visualization 13

information loss for the ability to depict important aspects of individual members. The

effectiveness of this approach wholly depends on the quality of the extracted features,

which usually means that the feature extraction needs to be specialized towards the

exact domain or even the single application at hand. We believe that machine learning

methods can be particularly useful in that regard, and so we explore this possibility

throughout the thesis.

These two examples are, of course, only a sample of the many proposed ensemble

visualization techniques, and we refer the interested reader to the surveys by Kehrer

and Hauser 2013, Sedlmair et al. 2014 and Wang et al. 2019.

2.1.2 Distributed Volume Rendering

Volume Rendering is a technique for visualizing dense 3D data defined on a mesh or a

regular grid, such as the outputs of simulation software or dense experimental measure-

ments (e.g., from cameras or scanners). Therefore, it is one of the core techniques in

scientific visualization. The basic idea behind volume rendering is to shoot a ray from

each pixel through the 3D dataset, and sample the data along the ray, accumulating the

color as it would be “seen” from the camera.

Just as any rendering task, volume rendering is a highly parallelizable problem: the

value of each pixel, as well as the transformation of every geometric primitive are mostly

independent of each other. Historically, this parallel potential was exploited through

multi-threading and data parallelism available to general computing architectures. Later,

the increased demand for graphics processing lead to the development and wide-spread

adoption of a Graphics Processing Unit (GPU). Compared to a traditional CPU, a GPU

sacrifices universality to specialize on efficient processing of graphics pipelines. This

is achieved primarily by implementing the Single-Instruction Multiple-Data (SIMD)
architecture, where the hardware is designed to efficiently execute a single instruction

across many inputs. Such instructions are very common in graphical computations.

For example, vertices of a mesh all undergo a projection into camera coordinates, and a

shading computation is performed for every fragment.

Similarly, volume rendering can be significantly accelerated by a GPU, and so a lot of

research was focused on GPU-based volume rendering, further optimizing its perfor-

mance. As a result, today one can render scientific datasets of practical sizes in real time

on a standard workstation. Nevertheless, scientific data is growing ever larger, as the

same hardware advances that made the rendering faster also allowed for larger-scale

data generation. When performance of a single machine becomes insufficient to handle,

e.g., a super-computer simulation output, one turns to distributing the rendering process

across multiple GPUs, machines or both.

Distributed Volume Rendering, and distributed rendering in general, are methods of

14 Chapter 2 ● Background

parallelizing the rendering computing across multiple interconnected processors. A

processor in this context can be a CPU core, a GPU, a cluster node or any computational

unit that is capable of rendering computations. Each processor is assigned a part of the

total computation, and the distributed rendering methods can be classified based on how

the assignments are made. Rendering is essentially a process of computing the effect of

each geometry primitive on each pixel, and can thus be viewed as sorting the primitives

to their positions on the screen (Sutherland et al. 1974). For distributed rendering, in

which different processors are responsible for different pixels and primitives, it means

that the data needs to be re-distributed among them at some point of the process. Thus,

Molnar et al. 1994 proposed to distinguish between sort-first, sort-middle and sort-last
algorithms, depending on when the sort occurs wrt. the main two rendering stages –

geometry processing and rasterization. Sort-first renderers first determine where each

primitive falls on the screen, and distribute them accordingly among the processors,

each responsible for a portion of the screen. In sort-middle, the primitives are distributed

randomly, processed and then re-distributed before rasterization. And finally, sort-last
methods process and rasterize the primitives randomly, but then re-distribute and

merge the intermediate images.

Specifically in volume rendering, a similar classification can be applied, distinguishing

among image-space partitioning (sort-first), object-space partitioning (sort-last) and

hybrid approaches. Image-space partitioning methods assign each processor (node) a

region of the final image. During rendering, the nodes need to compute which part

of the volume affects their respective screen region and render it, producing a part of

the final image. Object-space partitioning assigns each node a partition of the volume.

When rendering, each node simply renders its own partition of the data, but afterwards,

an expensive composition operation needs to be performed, to merge the results of

each node into the final image.

In this thesis, in Chapter 6, we study the performance of an object-partitioning renderer,

so let us discuss it in more detail. Any object-partitioning method consists of two main

stages: local rendering and compositing. During local rendering, every node renders

a data partition into its frame buffer. This can be repeated for multiple partitions,

rendering in visibility order and compositing them into the same buffer. Because the

partitioning of the data happens before rendering, i.e., before its location on the screen is

determined, a node’s partition can fall anywhere on the screen. Thus, these intermediate

buffers need to be composited on top of each other to form the final image.

After the rendering, each node has an image covering the whole screen space, but con-

taining only the contributions from its own volume partitions. Typically, the partitions

are convex, e.g., boxes, so we can merge the local images by merging them in visibility

order. A simple method of orchestrating this composition is to send all the images

to one node, which then sequentially composes the images. This approach is easy to

implement, but it is also very inefficient, because all the nodes are stalling during the

2.1 ● Visualization 15

A B C D E

A DB EC

A B D EC

(a)

A

C A D B E

B

C D E

C←A A←C

A←D

D←A

D←B

B←D E←B

B←E

(b)

Figure 2.3 — An example of 2-3 swap compositing. The compositing proceeds in steps,

each step corresponding to a level of the compositing tree (a). First, at the leaf vertices,

each node holds the whole image that has only local data rendered. With each step up

the tree, nodes exchange their data and own a smaller but fuller regions of the image

space. b: During the second step, each node receives data from others, whose regions

overlap its new domain. This results in eight messages being sent.

compositing. A better method is to assign each node a partition of the screen space, and

have each node send each partition of its intermediate image to the responsible node. In

this approach, called direct send, the compositing operations are distributed across the

nodes, utilizing them more efficiently. But another problem is introduced: each node

is sending a message to every node, resulting in n(n + 1) messages, overloading the

interconnect between the nodes. There are several proposed methods for improving

the network efficiency, one of which is the 2-3 swap.

The 2-3 swap compositing scheme (Yu et al. 2008) organizes the communication to be

performed in small groups. Even though the total amount of data sent is higher thanwith

direct send, the lower message count leads to better overall performance. With 2-3 swap,

the composition is done in steps, and in each step nodes exchange and compose image

data in groups, communicating with at most four nodes per step. The communication

and compositing are orchestrated using a pre-constructed tree (see Figure 2.3a). Each

step of the method corresponds to a level of the tree, and each compositing group is

16 Chapter 2 ● Background

shown as a vertex of the tree.

The leaves represent the initial state, with each group consisting of only one node. At

the start, every node is responsible for the whole image space, but has only its own data

rendered. As we move up the tree with each step, nodes exchange data and compose the

intermediate images, obtaining contributions from more data partitions, while reducing

the image space region that they own. The process terminates at the root vertex, where

each node ends up with a partition of the final image.

We illustrate the algorithm in Figure 2.3. In the first step, the nodes A and B form a

new group and exchange their data. The node A receives the top half of the image

from B, thus becoming responsible for this region, and vice versa. In parallel, node C,

D and E trade their data, but in this group, each node communicates with two others.

During the second (and final) step, the two groups from before are merged into the

final group, where each node owns a fifth of the image, pulling data from nodes that

held data relevant for their new region. For example, in Figure 2.3b the node D receives

data from A and B, since they both have data that falls into D’s new domain. Once

the exchange is complete, each node holds a partition of the final result, which can be

gathered on one node, stored to disk or sent to a display.

Using the 2-3 swap scheme, nodes send at most 4 ⌊log
2
N⌋ messages in total. And

although up to
4

3
< pixel number > data is exchanged overall (Yu et al. 2008), the

scheme on average outperforms simpler alternatives, such as the direct send and the

binary swap (Ma et al. 1994).

2.2 Machine Learning

This section provides an introduction to machine learning and specifically to the ideas

that are particularly relevant for the following chapters. First, we present a high-level

view of machine learning and its most ubiquitous concepts. Then, we focus on neural

networks, since they are heavily used throughout this work. After covering the basics,

we proceed to discuss more advanced ML approaches, including self-supervised and

contrastive learning.

2.2.1 Machine Learning Basics

Machine learning is an area of computer science studying algorithms that improve

their performance through experience rather than by being explicitly programmed. ML

can also be seen as a type of applied statistics that focuses on the use of computers

to perform predictions. Formally, a machine-learning problem can be defined as a

combination of a task (T), experience (E) and a performance measure (P), thus the

2.2 ● Machine Learning 17

system needs to improve its performance on the task T given experience E (Mitchell

1997).

Three most basic examples of a task are classification, regression and generation. In

classification, the system needs to assign one of predefined categories to an input (usually

represented as a vector x). Regression is the task of predicting a real-valued vector y
given an input vectorx. Note that this usage of the term deviates from its usual meaning

in statistics, where it has more to do with the analysis of the factors that influence y.
Finally, generationmeans producing new samples of x. Other more complex tasks could

include denoising, machine language translation, playing chess, etc.

The experienceE comprises all the information that the learning system uses to improve

its performance. The experience is most typically represented as a training dataset, i.e.,
a set of example data points that are sampled from some underlying data-generating

process. We usually conceptualize this process as a probability distribution, from which

the training data points xi are drawn: xi ∼ p(x). Depending on the form of the

available data, one could roughly distinguish between unsupervised and supervised

learning. In unsupervised learning, we have random samples xi of the input and want

to learn something about the distribution p(x). While in supervised learning, the input
samples xi are accompanied by outputs yi, drawn from some distribution p(x, y).
Our task then is to learn the distribution p(y ∣x), i.e., to predict the output given the

input. Although the experience and the task are usually aligned in this way, this does

not have to be the case. In principle, we could try to solve a supervised classification

task using only unsupervised data (experience). We talk more about these distinctions

in Section 2.2.4.

The performance measure P captures how well the system is solving the task and is

usually task-dependent. Often, the task could be reduced to approximating some proba-

bility distribution, e.g., p(y ∣x). And so we measure the performance as a divergence

between the distribution produced by our model and the data distribution. However,

measuring the performance can be more difficult for other tasks, e.g., in machine text

translation we cannot rely simply on the difference between the system’s translation

and the dataset, as there could be innumerably many valid translations.

How would we construct a learning system for T , E and P ? There are many possible

solutions, the simplest of which is to store the available data and provide answers by

simply looking up the most similar example in our data. The most common approach

is to define a parametric function fθ and use it to model the data-generating or some

related distribution, e.g., p(y ∣x) for a supervised task. The idea is that a function (a

model), can efficiently capture the structure of the distribution and thus perform well

on unseen data. To find parameters θ that result in a good approximation, we can use

the training dataset X = {xi, yi}. Typically, the performance on the training data is

defined by an error or loss function L, and we search for parameters θ̂ that minimize

18 Chapter 2 ● Background

the error, thereby training the model fθ:

θ̂ = arg min
θ

L(fθ,X) (2.1)

At the end of the day, most machine learning problems are reduced to a problem in

mathematical optimization.

However, the single most important challenge that separates ML from optimization is

that we want our model to perform well on new unseen data. The optimization problem

that we are explicitly solving is only indirectly connected to our actual task. Good

performance of our model on the training data does not guarantee good performance

on new data samples. Therefore, there are two performance measures, or errors to

consider. The training error measures how well our model performs on the training

data, i.e., how well we solved our derived optimization problem. And the generalization
error represents the expected model’s performance on new data. Although we train

the model by minimizing the training error, what we really want to optimize is the

generalization error. One can typically estimate the generalization error by measuring

its performance on a subset of the data that was not used for training, which is called

the test set.

Assuming that our training set data is independently sampled from the same distribution

as the test set, one could think that ourmodel is expected to perform equally well on both.

However, because we use the training set to choose the model, we actually expect the

test error to be higher than the training error. The more the model specializes towards a

particular training set, the larger this gap becomes. This is known as overfitting. On the

other hand, if the model is not sufficiently utilizing the information from the training

set, it is set to be underfitting, i.e., having a large training error. For example, in the

extreme case we can choose a random model independently of the training set, which

will result in the same but equally poor expected error for both sets.

One way of controlling the trade-off between over- and underfitting is by changing the

model’s capacity. Capacity can be seen as the model’s ability to accurately represent

large arbitrary datasets. More complex models with more parameters can typically

fit more training data and thus have larger capacity. We can control the capacity by

changing the function space of our parametric model. For example, a polynomial model

has larger capacity to fit arbitrary data than a linear model. This is best demonstrated

visually, as we do in Figure 2.4. A linear model in Figure 2.4a has low capacity and is

unable to accurately fit the training set, underfitting it. The training error is high, but

has a small gap to the test error: this model generalizes well to the unseen data, but is a

poor model for this data distribution. A high-degree polynomial model in Figure 2.4b has

larger capacity and can accurately fit the data, effectively interpolating it. However, it

also captures structures that are specific to the training sample and introduces significant

variance, thus overfitting the data. The training error is low, but the model fails to

2.2 ● Machine Learning 19

−1 −0.5 0 0.5 1

−1

0

1

Train

Test

(a) Low capacity, underfitting

−1 −0.5 0 0.5 1

−1

0

1

Train

Test

(b) High capacity, overfitting

−1 −0.5 0 0.5 1

−1

0

1

Train

Test

(c) Optimal capacity

−1 −0.5 0 0.5 1

−1

0

1

Train

Test

(d) High capacity with regularization

Figure 2.4 — An illustration of under- and overfitting. Each subplot shows the training

data (blue crosses), the test data (orange circles) and the training model (line plot). The

bar chart shows the training and the test errors for each model. a: A linear model

has low capacity and cannot fit the training data, resulting in underfitting, which is

also evident from the high training error. b: A high-degree polynomial model has

much higher capacity and overfits the training data. The training error is low, but the

generalization error is much higher. c: A model with optimal capacity provides the

best trade-off between fitting the training data and generalizing to unseen data. d: A

regularization term can help adjust the capacity of the high-degree model and lead to

better generalization.

generalize, which is evident from the high test error. The model in Figure 2.4c has an

ideal capacity for this task and uncovers the underlying structure, while ignoring the

noise. It strikes a good balance between fitting the training data and generalization,

20 Chapter 2 ● Background

thus resulting in the best test error of the three.

Another way of controlling the balance between over- and underfitting is regularization.
Informally, regularization can be understood as providing a preference for some of the

possible functions, i.e., parameter values. Unlike the hard restriction of the function

space, which excludes a subset of possible solutions, regularization adds a soft constraint

that increases the error when the preference is violated. Thus, undesired solutions

should only be chosen, if the data strongly suggests it, i.e., if the error would be

considerably higher otherwise. For instance, let us consider the polynomial function

from above, which might look like y = fθ(x) = b +w1x +w2x2 + . . . wnxn
, where the

weights wi and the bias b are its parameters θ = {w, b}. We can add a term to the loss

function that encourages weights w with a smaller L2-norm: Lreg = L(w,X) + λwT w.

This is known as L2-regularization or weight decay. The coefficient λ is used to control

the magnitude of the penalty, that is, how strongly the preference is enforced. In our

example, regularization can help reduce or even remove the contribution from some of

the polynomial termswhen the improvement in the training error would be insignificant.

In Figure 2.4d, we train this regularized model on the data from our previous example,

and we see that it produces a nice balance between training and generalization, showing

performance similar to the model with optimal capacity (Figure 2.4c). This demonstrates

that regularization can provide a way of adjusting the effective capacity of the model

based on the training data.

Of course, regularization does not completely free us from choosing appropriate capacity

or function family of the model. In fact, we had to introduce an additional coefficient λ
that now also needs to be selected. It is a hyperparameter, i.e., a value that is chosen as

part of the model design, rather than learned from the training data. Choosing a very

large λ can constrain the model too much, leading to underfitting, and vice versa. To

select an appropriate amount of regularization or any other hyperparameter or even

the model itself, we could compare their error on the test set and choose the one that

“generalizes” the best. But this procedure would make our model dependent on the

test set, thus introducing the same overfitting issue that we have with choosing the

model parameters from the training data. For this reason, we introduce an additional

set of held-out data, (confusingly) referred to as the validation set. The validation set

can be used to choose hyperparameters during the model development, and then the

untouched test set can provide an estimate of the generalization error.

Choosing λ, a regularization scheme, a model, an optimization procedure or any other

aspect of the learning system introduces an induction bias – an implicit assumption about

the data-generating distribution that we believe will help improve the generalization

performance of our model. Without at least some assumptions, it is impossible to

say anything certain about the data distribution from the training sample alone. For

example, consider that given a finite sample of data points we can come up with an

infinite number of functions that interpolate them. How do we choose one of them

2.2 ● Machine Learning 21

as our model? Unfortunately, there is no silver-bullet solution to this problem and to

achieving good generalization. Theoretical analysis shows that all models perform

equally poorly when averaged over all possible data-generating distributions (Wolpert

and Macready 1997). Luckily, we are not interested in all possible distributions, but

only in ones that occur in practice. Therefore, the focus of machine learning research

lies not in the development of a single perfect algorithm, but in understanding the

structure of practical tasks and introducing appropriate inductive biases that lead to

better generalization performance.

2.2.2 Neural Networks
Neural networks (NN) are a broad type of models that are the driver behind many of

the recent successes in machine learning. Here we briefly summarize their structure,

training and the reasons behind their effectiveness.

The core idea behind neural networks is to stack a number of simple repeating functions

to form a more complex function. The most basic form of a NN is a fully-connected
network, also referred to as the multi-layer perceptron. It consists of a series of layers,
each being a composition of an affine function and a non-linear activation function (Fig-

ure 2.5). The output aj of a j-th layer lj can be written down as

aj = lj(aj−1) = h(Wj aj−1 + bj) , (2.2)

where Wj and bj are the learnable linear weights and biases, aj−1 is the output (ac-
tivations) of the previous layer and h(⋅) is the activation function. Classically, layers

are introduced as consisting of individual neurons, each computing a scalar function

h(wT x + b), but today it is more practical to think in terms of layers, since this is

how NNs are conceived, constructed and computed. Thus, a basic neural network is a

composition of its k fully-connected layers:

Net(x) = lk(lk−1(. . . l1(x))) (2.3)

= h (Wk h [Wk−1 h (. . . h [W1 x + b1] + . . .) + bk−1] + bk) (2.4)

The non-linearity introduced by the activation function h(⋅) is a critical component

of a neural network. Without it, Equation 2.4 could be reduced to a single matrix

multiplication and summation, i.e., to a linear (affine) model. Although any continuous

non-linear function could theoretically be used as activation, the choice can significantly

affect the training efficiency of the model. The early NNs used the tanh function, which

was later replaced by the popular rectified linear unit function ReLU(x) =max{0, x}.
Many other options are available, but before we can understand what properties a

good activation function should have, we need to first review how neural networks are

trained.

22 Chapter 2 ● Background

l1

h (W1 x + b1)

l2

⋯

⋯ lk

h (Wk ak−1 + bk)

x a1 a2 ak−1 ak

Figure 2.5 — A basic neural network consists of a series of layers l1, l2, . . . lk. Each
layer performs an affine transformation W x + b and applies the activation function h
to the previous layer’s output a (activations). The output of the final layer ak is the

output of the network.

Training. Neural networks are often employed as a supervised model that learns

a mapping from inputs x to outputs y from a training dataset {xi, yi}. The model is

trained to optimize a loss function L that measures the deviation between the model’s

outputs and the target outputs {yi}. The loss function is typically an average of the

losses from each individual training points:

Ltrain =
1

N
∑

xi,yi

L (Net(xi), yi) . (2.5)

Since the neural network is a complicated non-linear function, there is no general

closed-form solution to minimizing even the most simple loss functions. Therefore,

approximate iterative methods are used, with gradient descent (GD) being the most

prevalent.

Gradient descent starts by choosing random initial values for the NN parameters. Then,

we perform a series of parameter updates, where at each step we compute the gradient

of the loss wrt. parameters and shift the parameters along the gradient direction, i.e.,

towards the steepest descent of the loss:

W t
k ←W t−1

k + α
∂Ltrain

∂W t−1
k

, (2.6)

where W t
k are the parameter values at step t (we omit bk for brevity) and α is the step

size, also known as the learning rate. The learning rate is a critical hyperparameter

that has a significant impact on the outcome of the training. A small learning rate can

lead to slow convergence, and a large value can result in “stepping over” a good local

minimum of the loss or even non-converging behavior.

The mention of a local minimum brings us to an important point. The gradient descent

is a first-order method and is not guaranteed to converge to a global minumum of the

non-convex function Ltrain(W , b) (Equation 2.5). In fact, considering the typically

2.2 ● Machine Learning 23

large number of NN parameters and the highly erratic shape of the resulting loss

function, reaching the optimum is extremely unlikely. Nevertheless, empirical results

suggest that gradient descent outperforms more principled higher-order algorithms

due to its computational speed. Computing the first derivative is fast and allows for

training larger networks on larger data, which in turn leads to better generalization

performance.

Still, practical gradient descent implementations rely on an additional set of modifica-

tions, some of which approximate higher-order derivatives without sacrificing perfor-

mance. The first critical modification is the use of Stochastic Gradient Descent (SGD).
SGD is a modification of gradient descent where each update is performed using the

gradient from a single data sample, as opposed to an average over the whole dataset.

This is desired when the data is simply too large to compute the derivative each step

and is thus very useful for training neural networks on big datasets. SGD can serve as a

fast approximation of gradient descent, but introduces additional noise to the training

process, which can result in slower or even nonexistent convergence. In practice, SGD

is usually implemented asMinibatch Gradient Descent. At each step, we take a sample of

b training points (called a minibatch) to compute the gradient and perform a parameter

update. This provides a balance between the speed and stability, which can also be

tuned using the hyperparameter b, known as the batch size.

Another common modification of gradient descent is momentum. The momentum

method maintains a moving average of past gradients and uses the average to update

the parameters at each step. This helps to both smooth out the noise introduced by

SGD and to perform larger steps in the flat low-gradient regions of the loss function.

Momentum should be seen as an approximation of the second derivative that is much

cheaper than explicitly computing the curvature. Practically, momentum makes the

training more stable and significantly faster, therefore finding place in most NN training

implementations.

The final missing component for training a neural network is the actual computation

of the loss gradient. A naive approach is to use the finite differences method. We can

perturb each parameter, compute the resulting loss difference and thus approximate the

derivative wrt. that one parameter. This approach, albeit generic, is very slow: for each

parameter, we need to evaluate the whole network several times. A better method is to

utilize the fact that the network is a composition of individual layer functions and apply

the chain rule. The derivative of each layer’s parameters wrt. the loss is dependent

on the derivatives of the following layers, evaluated at the current input value to that

following layer. Thus, we can first evaluate the whole network (forward pass) and store

the activations (each layer’s outputs). Then, we compute the derivatives of the loss

wrt. to parameters, going layer-by-layer in reverse order, starting with the last layer

(backward pass). Each time, we can reuse the derivative of the later layer to compute the

derivative of an earlier layer. This algorithm is called backpropagation and it can also be

24 Chapter 2 ● Background

viewed as an instance of dynamic programming: each problem of finding a derivative is

trivial given the solution to the derivative of the following layer. Backpropagation allows

the gradient to be efficiently computed, requiring only some additional memory to store

the layer outputs and the intermediate derivatives. Furthermore, implementation of

backpropagation is made simpler today by numerous automatic differentiation software

frameworks that seamlessly track the function compositions (the computational graph),
store intermediate outputs and backpropagate derivatives.

Now that we discussed how backpropagation is used to update the gradients, we can

quickly come back to the activation function and the logic behind their selection. The

“classical” functions tanh and sigmoid were inspired by the early theoretical results,

which showed that a neural network can approximate any continuous function (on a

compact subset), given sufficient size and a bounded monotonically-increasing activa-

tion function (Hornik et al. 1989). The main issue with bounded monotonic functions

is that they have regions where the derivative is small as it converges to zero. Com-

pounded with the numerical issues caused by repeatedly multiplying small derivatives

in backpropagation, the bounded activation functions lead to the problem of vanishing
gradients. Some of the neurons can end up in regions with virtually no gradient, slow-

ing down the training. Later, it was shown that the universal approximation can also

be achieved by an unbounded non-polynomial function. In practice, the ReLU func-

tion (max(0, x)) became a popular unbounded solution to the vanishing gradients, due

to its computation efficiency and strong empirical results. However, the ReLU neurons

are prone to “dying”, since there is a region of the parameter space where they have zero

gradient across all data. This is typically addressed by making it unbounded also on the

negative side, thus introducing a small gradient, e.g., LeakyReLU or PReLU. Recently,
functions like GeLU and Swish are getting increased attention, as they are continuously

differentiable, have a non-zero derivative, but are still bounded on the negative domain.

This prevents the issue where a severely negative neuron, which should be turned off,

overrides positive contributions at the next layer. Overall, activation functions are an

ongoing area of research with many alternatives still being discussed. In practice, one

should monitor the gradients of the model for potential numerical issues, introducing

changes if necessary. But more importantly, like any hyper-parameter of the NN, the

activation function should be selected empirically on the validation set.

Training setup. Having discussed the two most important parts of neural network

training – stochastic gradient descent and backpropagation, let us examine a typical

training setup. Continuing with the supervised case, we have a training dataset of the

form {xi, yi} and our goal is to learn the mapping from x to y. First, we need to split

the data into a training, validation and test sets. It is crucial to sample the test data

early and to avoid both explicit training and informing hyperparameter choices using

the test data. Otherwise, we condition the final model on this sample and make it a

2.2 ● Machine Learning 25

poor evaluation of the final generalization performance. Next, the training data needs

to be normalized to have zero mean and variance of one. Normalization helps keep

the layer outputs centered and close to zero, making it easier for neurons to be turned

on or off during early training, and ultimately improving the training convergence.

In some cases, unnormalized data can saturate a significant number of neurons and

completely hinder the training process. Next, the network parameters needs to be

randomly initialized, and for similar reasons, the initialization needs to be designed

such that the layer outputs follow the standard distribution, given normalized inputs.

In this way, all the layers of the network will observe a diverse distribution of inputs,

leading to better training.

After normalization and initialization, we can proceed to optimization. Practical mini-

batch gradient descent is usually implemented not by randomly sampling minibatches,

but by splitting the whole dataset into batches, each getting “shown” to the network

once, i.e., sampling without replacement. This is not strictly necessary, but can produce

more stable results by making sure that the model observes each data point regularly.

For each minibatch, we compute the gradient and update the model parameters. We

keep iterating through minibatches until making a full pass through the dataset. A full

pass is called an epoch, and once an epoch is complete, a new one is started, going over

the same data again. However, the training data should be shuffled in-between epochs

to prevent the model from being biased towards a particular order of data. The training

is terminated after a pre-determined number of epochs has elapsed or when the training

loss has stopped decreasing. A better approach is to monitor the validation loss (e.g.,

computing it once per epoch) and terminating training once it stopped improving. This

is called early stopping and acts as a form of regularization, counteracting the tendency

of neural networks to overfit towards the end of the training. The complete training

process can be repeated multiple times to compare different hyperparameter values and

model architectures (on the validation dataset), or to measure the training uncertainty.

And as the last step, we can evaluate our best trained model on the test data, getting a

final unbiased estimate of its generalization error.

Deep Networks. Overall, various forms of deep (many-layer) neural networks have

demonstrated strong performance on a large number of practical tasks. Their ability to

generalize well even when applied to high-dimensional data is usually attributed to their

compositional structure. Each layer is able to reuse the computations of the previous

layers and applies its own space partitioning on top of the previous partitions, which

results in an exponential number of input space regions that can be efficiently identified

by the network (Montúfar et al. 2014). However, there is still no strong theoretical

framework to understand and predict the NNs generalization behavior, and much of

the progress in the field is driven by empirical results. The philosophy of modern deep

neural networks is to prioritize high computational performance through composition

26 Chapter 2 ● Background

h(wT x{1 ∶3} + b)

h(wT x{3 ∶5} + b)

(a) Convolutional

h(w1
T x + b1)

h(w3
T x + b3)

(b) Fully-connected

Figure 2.6 — Schematic comparison of a convolutional and a fully-connected layers. a:

The output components of a convolutional layer are computed from local regions of the

input, unlike the fully-connected layer on the right (b). Furthermore, the convolution

uses the same trainable filter w, while each fully-connected output learns its own trans-

formation (w1, w3). Locality and positional independence are strong assumptions, but

hold for images and other grid-defined data, significantly reducing the computational

costs.

of simple repeating components. In fact, many researchers attribute the many recent

successes of neural networks primarily to the increase in the available computational

resources (Amodei and Hernandez n.d.; Thompson et al. 2020). Brute force compute

power tends to beat carefully designed algorithms over time (Sutton 2019).

2.2.3 Convolutional Neural Networks
Convolutional Neural Network (CNN) is a type of a neural network that specializes on

processing data defined on a grid: images, videos or, in our case, simulation outputs. The

namesake component of a CNN, the convolutional layer, performs a discrete convolution

of its input with a small learnable filter, which gives it two key properties. First, each

component of the output depends only on a small region of the input, as opposed to a

fully-connected layer (Section 2.2.2), where each output component is computed from

the whole input (via a matrix multiplication). In Figure 2.6a, we show a schematic

depiction of a one-dimensional convolution. Notice that the first component of the

output is computed from only the first three inputs, unlike in Figure 2.6b. Essentially,

the convolution introduces a strong assumption that nearby locations in the data are

related to each other but unrelated to far away locations. This locality is common to

grid data, e.g., to photos, where nearby pixels often belong to the same object. The

second property is that the same convolutional filter is applied everywhere, thus each

output component computes the same function but over different input locations. In

Figure 2.6a, all the outputs are using the same trainable filter w. In contrast, for a

fully-connected layer, each output component (neuron) learns an individual mapping

2.2 ● Machine Learning 27

x

a1

a2

Figure 2.7 — Each convolutional layer aggregates information across the spatial di-

mension of its input. The aggregation thus compounds as we move deeper into the

network, with later layers being affected by a larger region of the original input x. This
input region is called the perceptive field.

from the input (Figure 2.6b). Once again, this positional independence is a suitable

assumption for images, since we want to apply the same basic processing to all locations

(e.g., detect edges, circles, etc.) regardless of their absolution position. A translated and

flipped photo is still a valid photo, unlike a sentence, in which the position of a word

can be critical.

A convolutional layer usually applies not one, but many trainable filters. Each filter is

convolved with the input independently from the others and the results are stacked

together to form the layer’s output. Furthermore, a CNN is built from multiple layers,

and each applies convolutions to an output from a previous layer. Because every layer

aggregates information from a region of the previous layer, the aggregation compounds,

and the output of the later layers gets affected by an increasingly large area of the

original input (Figure 2.7). Thus, the early layers are learning to extract highly local,

low-level, position-independent features that get incrementally aggregated into large-

scale high-level information. In practice, the network is often structured with this

process in mind, reducing the spatial dimensions with each consequent layer by adding

stride to the convolutional layers. A stride of two, for example, means that only every

second output position is actually computed, reducing the spatial extent of the output

by half. The later layers are also given a larger number of filters, so the network is

effectively converting spatial dimensions into feature dimensions. Depending on the

task, the very last layers can be made fully-connected, completely eliminating the

spatial dimensions.

Convolutional networks are designed around the idea of hierarchically applying simple

trainable filters, which enables CNNs to process large spatial data, while keeping

the model size relatively small. Interestingly, CNNs are a subset of fully-connected

28 Chapter 2 ● Background

networks, which can theoretically learn the exact same sparsely-connected structure

of a CNN. Nevertheless, fully-connected networks generally perform worse on image

tasks, in part due to their computational costs, and in part due to having to learn what

is already built-in into CNNs. Thus, convolutional networks are a good example of an

appropriate inductive bias – they make a set of useful task-specific assumptions that

make it easier to learn the underlying structure of images and other grid-defined data.

2.2.4 Machine Learning Research Terminology

This thesis frequently uses various machine learning terminology (thus this background

chapter), but no concept is brought up more often than Self-Supervised Learning (SSL).

The motivation for SSL comes from the common observation that most of the data is

unsupervised, since labeling the data is difficult, expensive and for some tasks even

impossible. Given the large amounts of “unused” unsupervised data, can we learn

anything from it that can help improve our models? This question has existed for

decades and is connected with the development of many related families of methods:

unsupervised learning, representation learning, transfer learning, semi-supervised

learning, self-supervised learning, multi-task learning, zero/few-shot learning and

likely some more. This abundance of terminology and its inconsistent usage can be

sometimes confusing. Thus, we would like to first clarify what the terms signify and

how they relate to self-supervised learning.

Unsupervised learning is the broadest of the concepts and probably the most familiar to

the reader, as it appears in virtually every introduction to machine learning (including

ours in Section 2.2.1). The term is defined by its contrast to supervised learning where

the model is learning to map inputs to outputs, and the correct input-output pairs are

available as training data. This is commonly formalized as learning the distribution

p(y ∣x), with x being the input and y the output. In unsupervised learning, the outputs

are not available and the goal is to learn something about the distribution p(x). This
can take the form of density estimation, i.e., explicitly modeling the probability density

function p(x), or training generative models to produce new samples from p(x). There
is however a subtle ambiguity in how the term “unsupervised learning” is used. In some

cases, it means unsupervised learning tasks where we want to learn about p(x), e.g.,
generative modeling – a pure unsupervised task. And in others, it refers to unsupervised

methods, which can sometimes be used for supervised tasks that lack supervised data,

for example, in zero-shot learning we still want to learn the p(y ∣x) and classify the

inputs, but we lack the labels for the classes of interest.

Representation learning is less of a taxonomical term as it refers to a more specific

problem, namely, finding a good data representation. What it means for a representation

to be “good” can differ depending on the context. Sometimes, the goal is to find a

representation that has certain statistical properties, e.g., independence. Or we might

2.2 ● Machine Learning 29

want to extract features that improve the performance on a particular task. The general

observation is that some representations are more suitable for certain tasks, for instance,

an average person might find it easier to multiply numbers in decimal form rather than

in hexadecimal. Representation learning is typically unsupervised in the sense that we

do not have a dataset of “correct” representations, but instead rely on some generic

prior or regularization. For example, a sparse autoencoder is learning to map data to

a representation that is constrained to be small and sparse. Representation learning

can sometimes be called supervised when the representation is learned as a part of a

supervised task, e.g., the success of deep learning is attributed in part to deep neural

networks learning an efficient representation. (Montúfar et al. 2014). The early layers

transform the inputs into a representation where a supervised task can be solved by

a linear classifier. Some “pure” representation learning methods seek such mappings

explicitly, for instance, aiming to cluster data points of the same class in the learned

feature space (Mairal et al. 2008). In these scenarios, the representation itself is still

technically unsupervised, but it is adapted to some supervised data.

Transfer learning is concerned with reusing what has been learned on one task to help

improve the performance on the other (Pan and Yang 2010). Generally speaking, the

tasks can be represented as any two related probability distributions ps, pt, but the most

common situation is that both are supervised and require different outputs for the same

inputs, i.e., the source distribution p(ys ∣x) and the target p(yt ∣x) (other scenarios
are also possible, e.g., in domain adaptation outputs are similar, but inputs differ). The

idea of transfer learning is that the knowledge about the source distribution can also

be helpful for modeling the target (Goodfellow et al. 2016). This could be exploited

in many different ways, e.g., by transforming data from one domain to the other, or

constraining the target model to be similar to the source. See the survey by Zhuang

et al. 2021 for an overview. One popular approach is to perform representation learning

on the first task and use the representation to fine-tune a model on the other task. If

the tasks are sufficiently similar, the appropriate representations should be similar as

well, preserving the same information in a compatible form.

In a semi-supervised learning setting, we have a partially labeled dataset where only

some of the samples have labels. The goal is to solve the supervised task of estimating

p(y ∣x) using both labeled samples from p(x, y) and unlabeled samples from p(x). The
underlying assumption is that the structure of p(x) is useful for modeling p(y ∣x), for
example, due to samples of the same class being nearby in the input space (Chapelle et al.

2006). This connection then can be exploited, for instance, by learning a representation

of x that separates the clusters and then training a linear classifier on top (Chapelle et al.

2003). Or by training a model with both a discriminative (on p(y ∣x)) and generative

loss (on p(x)), (Lasserre et al. 2006). Semi-supervised learning can be considered as a

specific class of transfer learning, where we transfer knowledge from an unsupervised

to a supervised task.

30 Chapter 2 ● Background

Figure 2.8 — The self-supervised pretext task of predicting relative positions of image

patches. Given an image, two patches from a predefined pattern are extracted (on the

left). The model’s task is to predict the second patch’s relative position, formalized as

an 8-way classification problem (right). By solving the task, the model learns a feature

space that is useful for detecting and relating parts of different objects.

Finally, self-supervised learning is a more recent and specific approach of learning repre-

sentations from unsupervised data. One defines an auxiliary supervised task (a.k.a. the

pretext task) on the unsupervised data, by deriving the supervision signal automatically

from the data structure or metadata. For example, the task could be to predict the next

word in a sentence or to correctly arrange parts of an image. The training data can be

generated by masking parts of a sentence or shuffling image patches. Next, a supervised

model is trained to solve this task, learning a useful representation in the process. The

representation is then used to help with another (typically supervised) task, called

the downstream task. Thus, self-supervised learning is related to semi-supervised and

transfer learning, and shares the same motivating assumption that the two data distri-

butions – of the pretext and downstream tasks – share some underlying structure. And

more specifically, that the representation learned under the pretext task is also useful

for solving the downstream task. Therefore, SSL is also referred to as self-supervised

representation learning. Summing it all up, self-supervised learning is about applying

supervised methods to solve an (unsupervised) representation learning task and then

transferring the representation to a downstream supervised task. So in jest, SSL can be

called supervised unsupervised representation transfer learning. But practically, it is

simply an umbrella term for methods that emphasize the use of an auxilliary task on

unlabeled data to learn a good representation.

2.2 ● Machine Learning 31

2.2.5 Self-Supervised (Representation) Learning
The idea of self-supervised learning has been around for some time in the field of natural

language processing. Word2vec (Mikolov et al. 2013b) is the most prominent example,

where the pretext task is to predict the surrounding words for each word in a sentence.

A model can be trained on a large unsupervised corpus learning a word embedding

(representation) as a result. The learned embedding would then be used as a part of

other models to help with downstream tasks. It took some time before the concept

was studied closely in other application areas, likely because learning a representation

for words is in some sense necessary, the alternative being dictionary-sized one-hot

encoded vectors that all have the same distance to each other. Images, for example,

already have somewhat useful distances, so the need for representation learning is less

pronounced (Goodfellow et al. 2016).

Nevertheless, self-supervised learning gained popularity specifically through its appli-

cations in computer vision problems, where many pretext tasks were proposed over the

years. For instance, Doersch et al. 2015 extracted patches from an image and trained

a model to predict their relative position (Figure 2.8), and Noroozi and Favaro 2016

have tasked their model with solving a jigsaw puzzle of image patches. To correctly

predict the spatial arrangement of a patch, the model needs to learn visual features that

discriminate and relate different parts of the objects depicted in the images. The same

features are likely to be a good representation for solving other visual problems, e.g.,

classifying the objects. For an overview of what other visual tasks exist see surveys

by Doersch and Zisserman 2017; Jing and Tian 2020.

In recent literature, self-supervised learning is sometimes classified into generative and

contrastive (Liu et al. 2021). The former includes auto-regressive models that predict

future values in sequential inputs. As an example, language models like GPT-2 (Radford

et al. 2019) predict future words and sentences for text sampled from large text corpora.

And for images, one can mask a part of it, and train the model to fill-in the missing

fragment (Pathak et al. 2016). This idea is similar to the de-noising autoencoder (Vincent

et al. 2008) – another generative example, as it learns to recover the original input

from its noise-corrupted version, essentially finding a noise-invariant representation.

All of these methods are considered generative because the pretext task is related to

generating the original data or its parts. In contrast, contrastive methods learn the

representation by comparing the inputs, e.g., predicting if two images contain the same

object or not. Since this is the approach we favor in the following chapters, we review

it in more detail below.

2.2.6 Contrastive Representation learning
The aim of contrastive representation learning is to obtain a good representation by

learning to compare input samples. The idea is that the inputs that are similar should

32 Chapter 2 ● Background

Encoder

𝑧1

Encoder

∙
𝑧2

𝑥1

𝑥2

Figure 2.9 — The architecture of a basic siamese model. Two inputs x1, x2 (e.g., images

of a handwritten signature) are each passed through an identical encoder, producing the

representations z1, z2. A distance between the representations is computed and used to

output the probability of the two inputs being similar (e.g., the signature belonging to

the same person).

be mapped to similar representations, and dissimilar inputs should be pushed further

away in the feature space. This is where the name contrastive comes from: the model

is learning to contrast similar and dissimilar pairs.

One of the earliest examples of contrastive learning is the siamese neural network

introduced in Bromley et al. 1993 and Baldi and Chauvin 1993 to solve the problem

of signature and fingerprint verification. A siamese network consists of two identical

encoders that each transform an image into an encoding vector (Figure 2.9). Then, a

cosine distance between the two vectors is used as a prediction of whether the two

images contain the signatures belonging to the same person. The model is trained by

sampling valid and invalid pairs from a supervised dataset of signatures and a loss that

is minimized when valid pairs have a distance of one, and invalid pairs distance of

minus one.

A more explicit example of contrastive learning is the work of Schroff et al. 2015, who

proposed the triplet loss. The authors constructed a facial verification model that works

by learning a representation for input images in which images of identical faces are

placed closely in the feature space. The model is trained by sampling triplets of images

consisting of an anchor, a positive example and a negative one. Then, the loss pushes

the positive example closer to the anchor and the negative is pushed away. After the

training, face similarity can be derived directly from the distances between the encoded

images.

These two methods are both traditional examples of supervised learning – they uti-

lize a dataset of valid face/signature pairs to generalize to new examples. Koch 2015

2.2 ● Machine Learning 33

demonstrated that siamese networks can also be used for one-shot learning. One-shot

learning is an extreme case of transfer learning, where one has only a single example

of the target classes to correctly classify images among them. Just as before, they

train a siamese model by sampling pairs of data points that belong to the same or

different classes. Specifically, the data comes from the Omniglot dataset (Lake et al.

2015), containing images of hand-written characters from 50 different languages. When

testing, the model is presented with a single example for 20 characters from previously

unseen alphabets and tasked with classifying a test image among them. This is achieved

by returning the character whose example image shares the most similarity with the

test image in the learned feature space. The model is still trained on supervised data by

distinguishing different classes, but tested on the new task of distinguishing among un-

seen classes (transfer learning). In Section 4.3, we introduce a similar few-shot learning

method, but extend it further, training the siamese model without the supervised data,

using a self-supervised pretext task.

The approach of using self-supervised contrastive tasks became popular in the last

few years, as it benefits from the large amount of unsupervised data and was shown

to outperform purely supervised models. Instead of using a supervised dataset and

training to contrast different classes, we use a self-supervised approach and generate

classes automatically through data augmentation. For instance, images can be distorted,

rotated, cropped, etc. to generate related samples, effectively producing a new quasi-

class for each original image. We can then learn an image representation by training a

model to distinguish instances of the same quasi-class.

A recent application of this idea is SimCLR (Chen et al. 2020). In SimCLR, a batch of

images is sampled from an unsupervised dataset and each undergoes two different

random transformations. The transformation is defined as a combination of color

distortion and cropping. Transformed images are then encoded into the feature space

using a shared encoder (like in a siamese network). The encodings are then passed

through a small projection block (a pair of fully-connected layers with a non-linearity)

and the distance between them is used to predict which of the other transformed images

was the same image originally. So, given a batch of N images, the model is solving

a 2N -way classification problem. The learned representation was evaluated by fine-

tuning the whole model or adding a linear classifier on top and training on supervised

task, showing that it outperforms purely supervised methods. In Chapter 5, we use

SimCLR to learn an image similarity metric and also extend it to visual styles.

3
Detecting Irregular Behavior in

Spatiotemporal Volumes

This chapter is based on the following publication:

Gleb Tkachev, Steffen Frey, and Thomas Ertl (2021a). “Local Prediction Models

for Spatiotemporal Volume Visualization.” In: IEEE Transactions on Visualization
and Computer Graphics 27.7, pp. 3091–3108

When it comes to the analysis of spatiotemporal volumes, the most popular approach

is still to manually browse through the individual timesteps or to use animation. This

allows one to look at the full spatial information and apply well-known rendering and

interaction techniques. However, relying on the animation alone has been shown to

be ineffective, as only a limited number of frames can be memorized by an observer

(e.g., Joshi and Rheingans 2005). Furthermore, smaller details that are often crucial

can be easily missed in the bulk of the dataset. A logical alternative would be to

generate a static summary of the data or to select its most important parts, but this

is a challenging problem due to issues ranging from occlusion and visual clutter to

performance restrictions. Even more problematically, filtering and aggregation of data

might necessitate specialized assumptions that may exclude the very details we wanted

to preserve. For instance, while temporally dense techniques visualize all timesteps,

these typically restrict themselves to specific (user-defined) features to circumvent the

occlusion problem (Balabanian et al. 2008; Joshi and Rheingans 2005; Liu et al. 2017).

And selecting a subset of timesteps for visualization (e.g., Lu and Shen 2008; Tong et al.

36 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

2012; Frey and Ertl 2017a) requires either data-specific selection criteria or involves the

costly explicit quantification of timestep differences, and interesting process transitions

may still be missed.

In this chapter, we present how ML models can be used to help with this problem

by detecting irregular regions in spatiotemporal data. Instead of explicitly defining

indicators of irregularity, we aim to learn what is typical behavior for a given dataset

by training neural networks to predict the data. This provides an important advantage

of avoiding domain-specific assumptions, making the method much more generic.

Once the models are trained, we investigate the spatiotemporal locations where their

prediction deviates from the actual data. This can happen for a number of reasons, but

all of them indicate irregularity that would be of interest to the analyst, e.g., outliers or

uncertainty. Thus, this information can be used to aid in spatiotemporal visualization,

both explicitly, to highlight the irregular regions, but also in other applications, such as

automatic timestep selection.

3.1 Related Work
Time-varying data visualization. A large body of work in time-dependent volume

visualization is based on feature extraction. Time Activity Curves that contain each

voxel’s time series have been used in several techniques (e.g., Fang et al. 2007; Lee

and Shen 2009). Lee and Shen 2009 extract trend relationships among variables for

multifield time varying data. Wang et al. 2008 extract a feature histogram per volume

block, characterize the local temporal behavior, and classify it via k-means clustering.

Based on similarity matrices, Frey et al. 2012 detect and explore similarity in the

temporal variation of field data. We also perform temporal feature extraction, however,

we do not manually define our features, but learn them from the data.

Dutta and Shen 2016 use GaussianMixtureModels for tracking user-defined distribution-

based features in volume data. Tzeng and Ma 2005 apply neural networks to generate

adaptive transfer functions based on key frames. In contrast, our prediction models

are unsupervised. Muelder and Ma 2009 also use prediction, utilizing an analytical

predictor-corrector approach to track feature regions. However, we learn prediction

mappings from the data and perform prediction directly on data values, without prior

feature or predictor definitions.

Another line of work uses the notion of a space-time hypercube to apply operations like

temporal transfer function in Balabanian et al. 2008 or slicing and projection techniques

in Woodring and Shen 2003 (see Bach et al. 2016 for an overview). Tong et al. 2012

use different metrics to compute the distance between datasets and employ dynamic

programming to select the most interesting timesteps. Based on a similar concept, Frey

and Ertl 2017b generate a distribution-based distance measure to select timesteps. In

3.1 ● Related Work 37

a follow-up work (2017), they use neural networks to estimate this distance metric

for time series data. Our technique also allows for adaptive timestep selection, but it

relies on prediction-based temporal irregularity rather than distribution-based distance

metrics.

Information theory in visualization. Information theory has recently been gaining

attention in visualization research. Bordoloi and Shen 2005 use an entropy-based fea-

ture for view selection in volume rendering. Viola et al. 2006 present an approach to

automatically focus on objects in volumetric data by minimizing mutual information.

Chen and Jaenicke 2010 as well as Wang et al. 2011 provide an overview and discuss the

applicability of information theory in visualization. Related to our approach, Jänicke

et al. 2007 use the domain-agnostic information-theoretic notion of statistical com-

plexity that estimates predictability of spatiotemporal regions. As opposed to using

a probabilistic definition of predictability, we train an actual predictor on the data,

measuring the error of the deviation as an estimate of irregularity. This allows us to

not only benefit from higher-level features and generalization behavior of ML models,

but also to use multiple different models to produce a diverse visualization.

ML in scientific visualization. Machine learning has long been considered to have

great potential in visualization (Ma 2007). Originally, it found most applications in

the area of Visual Analytics (survey in Endert et al. 2017). For example, Fuchs et al.

2009 demonstrated how to foster interaction between a human analyst and a genetic

learning algorithm. And in epidemiological analysis, Klemm et al. 2015 employed

decision trees to study relationships between image shape descriptors and non-image

features. Unsupervised learning via self-organizing maps (Kohonen 1990) has also been

popular. For instance, Andrienko et al. 2010 investigated how SOMs can be integrated

into the visual analysis process of spatiotemporal data and Sacha et al. 2018 presented

a VA approach to analyze time series data using SOMs.

In recent years, learning-based approaches have been applied in scientific visualization.

Some have focused on efficiently representing and interpolating volume data. For

example, Zhou et al. 2017 presented a CNN-based approach to upscaling volume data,

while Han and Wang 2020 employed a recurrent generative model to interpolate in

the temporal, and later, in both spatial and temporal dimensions (Han et al. 2021). Lu

et al. 2021 took a different approach, and used a neural network to represent the data

itself, storing the model weights as a lossy compressed version of the volume. Jakob

et al. 2021 generated a large training dataset and learned an interpolant for vector field

data. Finally, Shi et al. 2022 trained a surrogate model for parameter space exploration

of ocean simulations.

Other works aimed to learn the volume rendering function. Berger et al. 2019 developed

a neural network to generate and explore volume-rendered images. Similarly, Hong et al.

2019 utilized an adversarial framework to restyle and generate new renderings from

38 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

existing images. The method by He et al. 2019 is related to both groups, as they learn

to generate volume rendering images under interpolation of both visual and simulation

parameters. The above works focus primarily on the rendering pipeline, while we train

models that support exploration and navigation of the data. Another use of adversarial

methods was presented in He et al. 2020b, performing comparison for collections of

ensembles that represent different simulation models. Han et al. 2018 have shown that

autoencoders can be used to learn a latent space for the analysis of streamlines and

streamsurfaces. Recently, Guo et al. 2020b used LSTM autoencoders with attention

to embed and find similarities in sequential medical data. The autoencoder objective

is related to self-supervised learning and thus to our method from Chapter 4. But in

contrast, we develop a new self-supervised task suitable for similarity searches and

focus on staying domain-agnostic, handling varied ensembles of spatiotemporal volume

data. Zheng et al. 2021 proposed an explicitly self-supervised approach, pretraining a

model for medical image segmentation and classification. However, they used a smaller

labeled dataset to fine-tune the pretrained model, while our approach in Chapter 4 is

trained fully unsupervised.

A few related ML-based approaches were investigated in the field of video analysis

(preliminary results in Hassanien et al. 2017; Gygli 2017), where neural networks are

used to classify video frames into normal frames and shot boundaries. In this chapter,

we also utilize machine learning models to detect irregular events but for spatiotemporal

visualization. More importantly, we do not make any assumptions about the events

in the data, using prediction error as an indicator of irregular behavior, taking an

unsupervised approach (as opposed to training the model to explicitly classify behavior

as regular/irregular on supervised data).

3.2 Prediction-based Irregularity Detection

This approach is aimed at the detection of irregular events in spatiotemporal volumes

without making domain- or dataset-specific assumptions. We achieve this by using

generic ML models that are trained under a very general task. Specifically, we train

a set of models to predict future data values based on the past. Once our models are

trained, we evaluate them on the data and compare their prediction to the actual data.

The prediction difference that we obtain is itself a spatiotemporal volume, which we use

as an indicator of irregular behavior. Futhermore, we use multiple models of different

capacity as detectors of different “sensitivity”. Simpler models can only predict the most

basic behavior and fail often, while more complicated models produce more compact

and sparse regions of inaccurate prediction. An overview is presented in Figure 3.1.

High prediction error in a particular region tells us that the model failed to capture the

local behavior. There are several reasons why this could happen: the behavior is too

3.2 ● Prediction-based Irregularity Detection 39

Training Local prediction
Local prediction

models
Misprediction

volumes

Interactive exploration

Timestep selection

Ensemble analysis

Figure 3.1 — An overview of our approach. We begin by training several local predic-

tion models on a dataset. Then we perform prediction for the same data and obtain

spatiotemporal misprediction volumes (error). We use the results for several applica-

tions, including exploration via spatial and temporal views, adaptive timestep selection

and ensemble dissimilarity analysis.

complex to be expressed by the model; the behavior is rarely observed in the dataset

(an outlier); or the available information is insufficient to predict the outcome. This is

investigated in more detail in Section 3.3. We argue that these scenarios describe events

of importance to the analyst and can be used to guide the visual exploration process,

highlighting interesting events and providing a meaningful overview of the dataset,

acting as a starting point for a more detailed and specialized analysis.

Once the prediction errors are collected, there are several ways to exploit them in

visualization. Their primary application is to present irregular spatiotemporal regions

directly to the analyst, which can help to explore the most interesting events in the

data. We discuss these techniques in Section 3.5. However, this is not the only applica-

tion (Figure 3.1). The prediction errors can also be used to perform automatic timestep

selection (Section 3.6), and in the next chapter, we will describe an ensemble similarity

metric based on the prediction models (Section 4.2).

3.2.1 Prediction Model

In principle, any model can be used as a predictor. However, the accuracy of the

prediction plays an important role: if the model cannot capture even the most trivial

behavior, we gain no additional information from the analysis. For simpler datasets,

analytical models can be used, repeating past values or estimating local derivatives to

do extrapolation. But as the data grows more complex, we require increasingly complex

models, which inevitably implies additional assumptions and specialization. In contrast,

40 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

we want our models to be uniformly applicable to datasets from different domains,

and thus take a data-driven approach, using machine learning methods to learn local

behavior from the data.

Specifically, we opted to use neural networks with simple architectures, utilizing only

convolutional and densely-connected layers. This provides us with a number of ad-

vantages. First of all, neural networks can represent a large number of functions and

can be efficiently trained on large data. Second, simpler neural networks have fewer

hyperparameters and allow for easy and gradual adjustment of the model capacity by

changing the number of layers and neurons. More advanced network architectures,

e.g., using recurrent connections, often require adjusting several related components

together, each of which may have a complex impact on the prediction. Simple networks

allow us to reason about the models in terms of their overall capacity, rather than qual-

itatively different architectures. Most importantly, by using basic densely-connected

and convolutional layers we make as few dataset- or domain-specific assumptions as

possible. Convolutional layers are basic locally-connected layers that exploit spatial

coherence, which is a reasonable assumption for most types of scientific data. Nev-

ertheless, we use networks both with and without convolutions, demonstrating their

appropriateness for the task.

3.2.2 Local Prediction Problem

One of the key characteristics of our method is that we opted for a local approach to

prediction, i.e. the model predicts each future value based on values that occurred in the

spatial neighborhood of the point in preceding timesteps. In principle, a different path

could be taken, for example predicting the full field belonging to a timestep. However,

there are a number of advantages to the local approach. Most importantly, locality

removes positional information from the input data, making the learned prediction

mapping translation-invariant. First, this makes the results more intuitive: equivalent

behavior occurring in different locations in the data produces an equivalent effect on the

prediction error, and thus has the same impact with respect to the visualization. Second,

it simplifies the prediction problem, which means that much simpler models could

be used for analysis: the model does not need to learn the same behavior in different

locations separately. The local assumption also makes it less likely that the model will

simply “memorize” the dataset, overfitting it heavily. A simple example would be an

object that spontaneously appears: a local model has no way of anticipating that event.

It has to predict that empty space leads to empty space, since that is what happens

99% of the time. If the model had full positional information, it could associate certain

“landmarks” from distant regions of the data with the object appearing, effectively

overfitting the dataset, requiring a lot of care with model regularization and validation.

Local prediction also provides several performance gains. Using smaller patches and

3.2 ● Prediction-based Irregularity Detection 41

simpler models means that we require less training data and update fewer parameters,

speeding up the training process. It also helps avoids exceeding the GPU memory,

which is a common problemwhen passing large fields through a neural network. Finally,

finer data partitioning increases the parallelization potential both during training and

prediction. For further discussion see Section 3.10.

In formal terms, local prediction means that our model, given a voxel value D(p, t) at
the spatial position p = (x, y, z) in timestep t of a dataset D, is trained to perform the

following mapping:

Patch(p, t, ls, lt)→D(p, t + 1) (3.1)

where Patch(p, t, ls, lt) is a spatiotemporal box with spatial extent ls and temporal

extent lt centered in space around point p. Note, that unlike the spatial extent ls, the
temporal extent lt covers only one direction, thus the input includes only the past

values, and none from the future.

For additional control over the difficulty of prediction, we generalize the problem to

predicting not one, but d timesteps ahead. Thus, we add a delay between the input

patch and the target value:

Patch(p, t, ls, lt)→D(p, t + d), d ≥ 1 (3.2)

This extension is useful for datasets with high temporal resolution. Increasing the value

of d makes learning of simple mappings (e.g., repeating the most recent value) less

feasible, forcing the model to learn more complex temporal relationships. The effects

of the prediction problem difficulty are illustrated in Section 3.8.1).

To obtain the data for training the model, we extract all possible spatiotemporal patches

of spatial radius ls, temporal extent lt and delay d. This means, that for a dataset of size

(X, Y, Z, T) we have n data points:

n = (X − ls) × (Y − ls) × (Z − ls) × (T − (lt + d)) (3.3)

The size of the extracted data grows polynomially with the dataset resolution, and

for large volumes it may easily reach terabytes, making the training computationally

impractical. To alleviate the problem, we perform random undersampling of the data,

including a given patch into the training data with probability pu.

After the training, we evaluate the model on the whole dataset, i.e. on every possible

patch, obtaining a full spatiotemporal prediction volume. The prediction volume is

slightly smaller than the original dataset, since we cannot perform prediction near the

borders. Finally, we compute the absolute difference between the prediction volume

and the original data. The resulting misprediction volume is what we use as input for

our explorative visualization (Section 3.5) and other applications.

42 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

3.2.3 Multiple Prediction Models

We can extract more information about the behavior irregularity by using not just

one, but a set of models with varying capacity. Simpler models can only capture basic

temporal relationships during training, producing accurate predictions only for the

most common and simple behavior. More complex models are able to represent many

scenarios and produce fewer large errors, failing only on the most irregular behavior.

This allows to roughly categorize different data regions in terms of their irregularity.

When doing prediction with multiple models we follow the approach described previ-

ously in Section 3.2.2. Only the extracted training data is reused by different models,

while weight initialization, training and prediction are performed separately. Once we

have made a prediction using each of the models, we compute the absolute differences

to the original data, obtaining a misprediction volume for each model. We describe how

these volumes can be used for visualization in Section 3.5.

3.3 Causes of Prediction Error

Before using the models and their prediction errors to support visualization, it is

important to first understand their properties, which we discuss in detail next. There are

several potential causes for errors of a local prediction model. We distinguish between

three scenarios that can lead to high prediction errors, exemplify them via dedicated

synthetic datasets and demonstrate the corresponding results of our prediction-based

approach:

• Uncertainty (Section 3.3.1) Behavior cannot be predicted completely from the

input (due to stochastic processes or insufficient data).

• Uniqueness (Section 3.3.2) Behavior only rarely occurs (i.e., underrepresented

in the training data).

• Complexity (Section 3.3.3) The model’s capacity is insufficient to accurately fit

numerous different behaviors.

3.3.1 Uncertainty

The uncertainty scenario arises when the target volume value is not completely de-

termined by the model’s input. This can happen due to hidden variables that are not

included in the data, the patch size being too small to contain all the relevant informa-

tion (in space or in time) or due to innate stochasticity of the data-generating process.

Conceptually, even an optimal predictor would have non-zero error in this scenario,

i.e., Bayes error rate (Kulkarni and Harman 2011).

3.3 ● Causes of Prediction Error 43

To analyze this scenario, we constructed a dataset consisting of thirty small circular

objects moving in space. The objects have randomized velocities and radii, but all

move uniformly upward. After 32 timesteps, all the objects simultaneously stop moving,

staying in place for three timesteps. Afterward, all of them continue the uniformmotion

but in different directions: half of the objects move to the left, and the other half moves

to the right.

This dataset contains uncertainty, because it is impossible to predict whether an object

is going to turn to the left or to the right using only local information. The pause in

the objects’ motion is introduced to signal the upcoming change of direction, in other

words, the model “knows” when the turn is going to happen, but does not “know”

whether it is a left or a right turn. By restricting the uncertainty to only the direction

we are able to more clearly observe its effects.

We trained a small two-layer neural network using a prediction delay of three frames.

Specifically, we use a “D64-D32” model throughout this section, with the model notation

introduced in more detail later in Section 3.4. In Figure 3.2, we show the resulting

spatial regions of high error and a line plot of the total error over time. The first

important feature is the two peaks in the temporal view (Figure 3.2c). The former peak

corresponds to the pause in the objects’ motion, since it cannot be expected from the

local information alone (a global model could “memorize” that it happens at a certain

position). The latter peak occurs when the objects continue to move left or right, and

the model cannot predict the direction. In the spatial view (Figure 3.2a) we show the

traces of the objects (in pale green) and the errors (in red). We see that for many objects

the model predicts some combination of the left and right motion, resulting in error

blobs on both sides of the turn. This shows that the model predicts the turn, since

predicting a lack of motion would result in even larger errors, but it cannot predict the

exact direction due to its uncertainty. Once the model observes the first of the frames

after the turn, the uncertainty is no longer there, and the model’s prediction becomes

accurate again (thus there are no large errors after timestep 39).

For another experiment, we generated a similar dataset, where only three out of thirty

objects turn right, and the rest turn left. We then trained the model with the same

configuration as previously. Figure 3.2d shows the temporal misprediction, where we

can see that the second peak corresponding to the turn became significantly smaller.

This can be explained by looking at the spatial misprediction in Figure 3.2b: the three

objects that turned right have large errors, because the model has learned to predict the

dominant left direction. The rest of the objects only have errors from the pause event

(half-circles above and below, cf. Figure 3.2a), thus resulting in an overall smaller error

peak. Although the uncertainty is still present, the right turn scenario occurs less often

in the data, and thus the average loss of predicting the left turn is significantly lower

than the other alternatives (predicting a right turn or some mixture of both). Thus, the

model always predicts the left turn which is the optimal prediction in this uncertain

44 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

(a) Spatial misprediction, 50/50 split

(b) Spatial misprediction, 90/10 split

0 20 40 60
0

10

20

30
Pause Turn

Time (t)

M
S
E

(c) Temporal misp., 50/50 split

0 20 40 60
0

10

20

30
Pause Turn

Time (t)

M
S
E

(d) Temporal misp., 90/10 split

Figure 3.2 — Demonstration of the uncertainty scenario. The data has small circular

objects with different radii moving upward with different, but uniform velocities. After

32 timesteps and a pause of three timesteps, they randomly move left or right. We show

the traces of the 30 objects in pale green, with the width of the trace corresponding to

the radius of the object. Since neither the pause nor the turn are deducible from the

local data, the outcome is uncertain, leading to prediction errors (in red). a: When two

turn directions are evenly split, the model predicts a mixture of both turns, incurring

large errors for most objects. b: When most of the objects turn left, the model predicts

the left turn, incurring larger error on the right-turning objects. c, d: Average error
in each timestep, both the pause and the turn events are visible. The error at the turn

decreases for the 90/10 case, since the outcome is less uncertain.

scenario (both in terms of the MSE loss and the Bayesian decision rule).

Note that we used the larger prediction delay of three frames to better illustrate the

uncertainty scenario, but the results do not change qualitatively when using a prediction

delay of one. The model still cannot anticipate the direction change and produces

prediction errors. However, in this case they occur only during one frame and the error

peak immediately follows the event.

3.3 ● Causes of Prediction Error 45

(a) Nineteen objects use a period of seven frames, the right-most object has a period of four.

(b) The left-most object uses a period of seven frames, the rest have period of four frames.

Figure 3.3 — Demonstration of the uniqueness scenario. The two datasets consist of

20 objects with various shapes and sizes moving upward, changing their voxel values

according to the same periodic function. We visualize the traces of objects (in pale

green) and regions with high errors (in red). a: When one of the objects uses a different

period than the rest, it is an outlier and causes high prediction errors. b: When all but

one object use the former “outlier period”, what used to be an inlier becomes an outlier

instead.

3.3.2 Uniqueness
If a distinct pattern of local behavior is sufficiently unique, the models tend to produce

high errors predicting it. Since the behavior is underrepresented in the training data,

the model is likely to prioritize more typical patterns, especially for models of small

capacity. There is also a connection to the generalization performance of the model and

hence, regularization: accurately fitting an outlier may imply overfitting the training

set, which becomes harder when using simpler models and/or stronger regularization.

To demonstrate the uniqueness scenario in practice, we constructed a simple dataset

where twenty small objects of various shapes move uniformly upward with a constant

velocity. The objects change their voxel values following a periodic function (“blinking”),

with all but one object using a period of seven frames. This single object is meant to be

an outlier and has a period of four frames.

The results obtained using the “D64-D32” model and a three-frame prediction delay

are presented in Figure 3.3a. There we visualize the traces of the moving objects (in

pale green) and regions where the model produces high errors (in red). As we can see,

the first nineteen objects (left-to-right) did not incur large prediction errors, and the

last outlier object is easily detected. In an inverse experiment, we used the seven-frame

period for a single object, and the period of four frames for the following nineteen

objects. The results for a model trained on this data are shown in Figure 3.3b. Here we

see a symmetrically opposite outcome: the objects with the former “outlier period” of

seven frames are now accurately predicted, while the four-frame object has incurred

46 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

large errors.

This behavior might appear to be similar to the uncertainty scenario, however there is

an important distinction. With uncertainty, two different outcomes follow identical (or

very similar) local behavior. Thus, it is impossible for the model to “disentangle” the two

outcomes in the input space, regardless of its capacity. In contrast, in the uniqueness

scenario, the rare outcome is still completely determined by the prior local behavior.

3.3.3 Complexity
The complexity scenario refers to the situation where the model’s capacity is insufficient

to accurately fit the data. Conceptually, as the number of distinct local behavior patterns

increases, the learned mapping is expected to produce a correct prediction over an

increasing number of distinct regions of the input space. When the capacity of the model

is too low, it cannot separate the different regions, leading to prediction errors. Although

determining the capacity of a neural network is still a difficult problem (Goodfellow

et al. 2016), some understanding can be gained from statistical learning theory and the

VC-dimension (Vapnik and Chervonenkis 1969), which measures a classifier’s capacity

as its ability to separate arbitrary points in the input space.

To illustrate the effects of complexity, we constructed a dataset consisting of 27 small

objects of varying shapes and radii, which change their value following one of several

predefined patterns. There are three possible shapes and three radii, resulting in

nine unique object types. The first frame of the dataset is presented in Figure 3.4a,

demonstrating the shapes of the objects. For each of the nine shape-radius combinations

we defined one unique temporal pattern. The patterns are polylines with a different

number of segments, resulting in time series of varied complexity. Note that since each

series corresponds to a unique spatial shape, there is no uncertainty in the data, and

the future values are completely determined by the past. We trained a “D16-D8” model

with a prediction delay of three frames on this data, using a long 20-frame patch size

to minimize uncertainty of prediction. For convenience, we plot the prediction over

time only at the center point of each of the nine objects, resulting in one temporal plot

for each unique shape (Figure 3.4b). Even though the model was trained on the data,

its capacity is insufficient to capture the many possible local behavior patterns. Thus,

the model incurred significant errors (in red), with higher errors corresponding to the

more complicated fast-varying temporal sequences.

In a complementing experiment, we trained a larger “D64-D32” model under the same

configuration, with the results plotted in Figure 3.4c. Although the data has not changed,

the model was able to better predict the behavior, since its capacity is larger (overall

MSE of 1.34 vs. 3.22 for the smaller model). Many more of the various patterns in the

data are now captured well, thus marking a smaller subset of spatiotemporal events as

irregular.

3.3 ● Causes of Prediction Error 47

(a) The first frame of the dataset, showing 27 objects with 9 different spatial shapes.

0 64
0

100

200

Time

V
a
l
u
e

32 32 32 32 32 32 32 32

(b) Results from the “D16-D8” model, showing the object value (gray), the model prediction

(blue) and their difference (red) over time.

0 64
0

100

200

Time

V
a
l
u
e

32 32 32 32 32 32 32 32

(c) Results from the “D64-D32”model, showing the object value (gray), themodel prediction

(blue) and their difference (red) over time.

0 64
0

100

200

Time

V
a
l
u
e

32 32 32 32 32 32 32 32

(d) Results from the “D16-D8” model on the modified dataset, where the most complicated

time series was used for most of the objects. Showing the object value (gray), the model

prediction (blue) and their difference (red) over time.

Figure 3.4 — Demonstration of the complexity scenario. a: The dataset consists

of stationary objects with nine unique radius-shape combinations. Each object type

“blinks” following a unique time series. b: Value at the center of nine objects (one for
each unique behavior), shown together with the prediction of a simpler model (in blue)

and the resulting error (in red). The more complicated fast-changing time series (on

the left) result in larger and more frequent errors. The larger model in c produces

smaller errors with fewer spikes, thus highlighting fewer spatiotemporal patterns. d:
Interaction between the complexity and the uniqueness scenarios. When the most

complicated behavior was made frequent in the dataset, the model captured it more

accurately than the simpler one.

The complexity scenario is distinct from uniqueness, because all the behavior patterns

occur with the same frequency. However, in practice they often interact, with both

complexity and frequency of local patterns dictating what is predicted accurately by

the model. We demonstrate this complexity-uniqueness interaction in Figure 3.4d,

where we modified the dataset, such that the most complicated time series is used

48 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

0 20 40

10

100

1,000

Training epoch

M
S
E

Training

Validation

0 50 100 150

10

100

1,000

Training epoch

M
S
E

Training

Validation

Figure 3.5 — Training history for the models “C64-C64-D256-D256” (left) and “D256”

(right) on the droplet dataset. We perform early stopping to avoid overfitting, terminat-

ing the training when the loss on the validation dataset has stopped improving.

more often than the simpler ones. Specifically, we replaced seven out of nine temporal

patterns with the most complicated series from the previous experiment (on the left),

leaving the two simpler patterns on the right unchanged. First of all, the overall MSE

of the “D16-D8” model has decreased from 3.22 to 0.23 (cf. Figure 3.4b), since there are

fewer unique local patterns to capture. More importantly, the model has predicted the

complicated behavior more accurately than the simpler one, because it is now common

for the dataset. This illustrates a key advantage of ML models compared to manually

defined features: they can still account for complex behavior if it is typical for a given

dataset, without prior assumptions about the exact characteristics of this behavior.

3.4 Model Architecture, Training and Prediction
All of our prediction models are feed-forward neural networks with two types of layers:

convolutional and fully-connected. This choice was made to keep them both simple

and generic (see Section 3.2.1). All convolutional layers act on spatial dimensions using

filters of size 3 × 3 × 3. For 2D datasets, filters of size 3 × 3 are used. When referring

to models, we use short names like “C64-D32“ that encode their architecture. The

convolutional layers are encoded as “CX”, where X specifies the number of feature

maps. We refer to fully-connected (dense) layers as “DX”, where X is the number

of neurons in the layer. Both layers types are also followed by a ReLU activation.

When using a combination of convolutional and fully-connected layers, we insert a

non-parametric flattening layer in-between, which reshapes the input 4D array into a

flat array appropriate for fully-connected layers. Additionally, all models have a final

fully-connected layer with a single neuron and no activation, which acts as a linear

output unit for the regression task.

For instance, model “C64-C64-D256-D256” has the following layer sequence: “Convolu-

tion(64, 33), Activation(ReLU), Convolution(64, 33), Activation(ReLU), Flat(), FC(256),

3.4 ● Model Architecture, Training and Prediction 49

Activation(ReLU), FC(256), Activation(ReLU), FC(1)”. A special case is the model we

refer to as “D1”, which in fact consists only of a flattening layer and a single neuron

with no activation function. Thus the model learns a linear function of the supplied

inputs.

As described in Section 3.2.2, the model is trained on spatiotemporal patches sampled

from the input volume dataset. We normalize the training data to mean zero and

standard deviation of one, but otherwise do not perform any pre-processing. This is an

important aspect of keeping the overall method domain-agnostic.

We train all our models using the “Adam” (Kingma and Ba 2014) variation of the

stochastic gradient descent, with the learning rate of 0.001 and the batch size of 1024.

Following standard practices, the training is performed in epochs, where in each epoch

the model observes the whole training dataset once. We perform holdout validation,

splitting off 20% of our data into a validation dataset to monitor the generalization

performance. Furthermore, we use the validation data to perform early stopping as a

form of regularization (Goodfellow et al. 2016), although due to the relatively small

capacity of ourmodels and large amounts of data we do not experience severe overfitting,

as indicated by our similar training and validation losses (Figure 3.5). We monitor the

validation loss and stop the training process when no improvement has been observed

for 25 epochs and take the model checkpoint from the best epoch as our trained model.

To perform prediction on a dataset we need to evaluate the trained model on every spa-

tiotemporal patch. Even for medium-sized volumes the amount of input data may easily

reach terabytes. Because of this, we try to reduce the amount of processed data through

undersampling (Section 3.2.2) and have also heavily optimized our implementation.

We use Python for all the high-level operations, while IO operations, patch extraction,

metric computation and other performance-critical components are implemented in

C++. The first challenge is that the total size of all the patches, even with undersampling,

is too large to fit into RAM, let alone VRAM. Therefore, our implementation operates

out-of-core, loading batches of patches on the fly during both training and prediction.

Furthermore, reading 4D patches from the volume data stored in C-order on disk incurs

a high load of unaligned reads that significantly slow done the processing. We alleviate

the issue by mediating the reads with a RAM read/write cache that is dynamically

flushed based on the incoming read/write operations. Next, to further speed up the

extraction of patches (which also includes checking them for empty space), it is per-

formed in multiple threads synchronized through atomic operations. Once the patches

are extracted, they are uploaded to the GPU, processed and in case of prediction, the

results are written to disk, again, through a RAM cache that batches the IO operations.

An additional optimization technique that we use is caching of the prediction result

for spatiotemporal patches that contain nothing else but empty space (in the input and

in the target). We compute the model’s prediction for an empty patch once, and then

re-use this result whenever an empty patch is detected during the extraction. As a

50 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

result, we obtain identical prediction results, but can reduce the GPU execution time

for some of the datasets.

3.5 Visualization of Prediction Error

Using our prediction-based approach (Section 3.2.1) we aim to capture the properties

of the dataset in a domain-agnostic fashion and provide an overview of regions with

irregular local behavior. For this, misprediction volumes obtained from multiple local

models can be used to construct spatial and temporal views of irregularities in the

data. Due to the stochastic nature of the model training process, the raw misprediction

volumes are noisy, with the exact error magnitude varying among neighboring voxels.

To suppress this noise and present a visually clear overview of each model’s large-error

regions, we apply spatial smoothing to each volume. This makes sure that large spatially-

coherent prediction errors have a stronger effect on the results than sparse random

deviations. For consistency, we use a kernel radius of five for all results presented below.

After the smoothing, we aggregate each misprediction volume separately using the

maximum function. This way we avoid summing up smaller prediction errors, allowing

us to distinguish between spatial regions where brief unpredictable behavior took place

and regions where low errors consistently occurred throughout the dataset. Thus,

we end up with multiple spatial volumes, each voxel of which represents the largest

smoothed prediction error that a particular model has at the given spatial location.

Next, we assign a transfer function with a single distinctive color to each of the ag-

gregated volumes, and perform multi-volume raycasting. We aggregate the samples

along the ray front-to-back, compositing a sample from each of the volumes at each

spatial location. This allows the user to distinguish where prediction errors occurred

for each of the models. When compositing samples, we order the volumes according to

their model’s capacity, highest first. Although the transfer functions can be adjusted

interactively, we often use single-peak transfer functions for iso-surface-like rendering

of all but the first volume, which corresponds to the model with highest capacity. This

way the user can always see the regions where even the most sophisticated model has

failed, i.e. regions with the most unpredictable behavior. For context, we also render the

original spatiotemporal volume simply averaged over time. Here we typically use a rel-

atively transparent ramp transfer function to keep the focus of the visualization on the

prediction error volumes. We used this approach already in Section 3.3 (e.g. Figure 3.2a)

and demonstrate the results in more detail in Section 3.5.1.

In addition to a spatial misprediction view of the dataset, we provide a temporal view.

Its goal is to highlight the timesteps when the most unpredictable changes occurred

and help to detect different temporal phases of the data. To this end, we aggregate

the misprediction volumes separately for each model, for each timestep, eliminating

3.5 ● Visualization of Prediction Error 51

the spatial dimensions. The aggregation is done using the average function, which we

found to be more appropriate for distinguishing temporal phases. As a result, we obtain

a time series for each model, which we plot as a line graph. A previous example can be

seen in Figure 3.2d, while a detailed discussion of the results follows in Section 3.5.1.

The spatial and temporal views can be linked together via interaction for dataset

exploration. Specifically, the user can interact with the temporal misprediction view

by selecting a time range. When the range is selected, the spatial view is recomputed

using only the timesteps that are part of the specified time range. This can be used to

focus on periods of time with large prediction errors, providing a spatial view of the

regions that couldn’t be predicted well by the model. If only one timestep is selected,

we show a single timestep of the original data augmented by regions of high prediction

error without any aggregation. In this mode the user can access the lowest level of

detail and search for explanation of the patterns occurring in the aggregated views.

3.5.1 Results
Now that we discussed the method of visualizing the prediction errors, we present

the corresponding results. The results are structured according to the datasets, which

we show in Figure 3.6. We use the following three models throughout this section:

“C64-C64-D256-D256”, “D256” and “D1”. For brevity and uniformity, we refer to them

as “Model A”, “Model B” and “Model C” respectively. We also introduce a short patch

size notation: “lt × lk
s ”, where lt and ls are temporal and spatial extents (Section 3.2.2)

and k is the number of spatial dimensions, e.g., 7x5
3
is a patch of size 7x5x5x5.

Synthetic dataset (Figure 3.7). We begin with a synthetic dataset for which we can

provide the ground truth describing all the events that are happening in the data. This

allows us to validate that the model produces error around irregular behavior and not

randomly. Furthermore, using a controlled dataset we can more cleanly demonstrate

some of the common properties of the prediction errors, which will be helpful before

moving on to real-world datasets. The synthetic dataset contains smooth spheres

traveling along straight trajectories. Spheres fully-elastically react to collisions with

each other and with the boundaries of the dataset (Figure 3.6). Some of the spheres

shrink or grow as they move, and may abruptly change their trajectory. Overall, the

data contains simple behavior (linear motion, size change) as well as more interesting

and hard-to-predict events (collisions and trajectory changes).

We applied models A, B and C to the data and present the resulting spatial misprediction

view in Figure 3.7a. What we can see is that the model with the highest capacity (orange)

produces large errors only in smaller regions. These regions correspond to sphere

collisions (appearing as two adjacent objects) and significant trajectory changes. The

model was able to adequately capture the behavior associated with motion, and thus

isolated the collisions and sharp trajectory changes. A simpler model (B, in magenta)

52 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

t = 90 t = 100 t = 110 t = 120

spheres: synthetic data containing moving spheres with collisions.

t = 10 t = 40 t = 240 t = 360

hotroom: air temperature simulation.

t = 40 t = 90 t = 140 t = 240

bottle: images of a laser pulse propagating through a bottle (Velten et al. 2013).

t = 0 t = 100 t = 200 t = 300

vortex street: CFD simulation of flow around a cylinder.

Figure 3.6 — The datasets used to evaluate the visualization of prediction errors.

failed in some additional regions, corresponding to trajectories of smaller fast-moving

objects. Finally, the simplest model (C, in blue) displays significant prediction errors for

many faster-moving objects, resulting in long tube-shaped regions representing the

linear trajectories of the spheres.

An interesting property to observe is that the high prediction error regions are often

subsets of each other: the simple model fails where complex model fails, but also in

some additional locations. This is the expected behavior, considering the fact that all

the model architectures are (1) qualitatively similar (in terms of their components),

differing mostly quantitatively, and (2) trained on the same data with the same loss

function. Data points that produce large gradients during training result in highest

“priority” for all models. The simpler models do not have a high capacity for capturing

3.5 ● Visualization of Prediction Error 53

(a)

0 50 100 150 200
0

2

4

6

8

10

Time (t)

M
S
E

(b)

Figure 3.7 — a: Spatial misprediction on the synthetic dataset with moving spheres. The

most complex model (orange) detects sphere collisions, while simpler models (magenta,

blue) also highlight some of the faster and irregular motion. b: Comparison of detected

temporal events to the ground truth. Orange line: Mean prediction error of the most

complex model (A) in each timestep. Vertical lines: Timesteps when events happen.

Light-gray stripes show the expected error delay (two frames). Whenever an event

occurs, we observe a corresponding spike in the prediction error.

different scenarios, so after fitting the most “important” data points, they cannot fit

additional scenarios without worsening their overall performance.

In Figure 3.7b we present the temporal misprediction view for our synthetic dataset

obtained using the model A. To compare our results to the ground truth, we plot the

model’s error (orange) and mark the timesteps where an event has occurred with a gray

vertical line. The figure shows that when no events happen, the model maintains a

steady prediction error. However, when an event takes place, we can see a corresponding

spike in the graph. Another interesting observation is that the peak error occurs several

frames later than the event itself. This is due to the prediction delay (Section 3.2.2),

which in this case was three frames (d = 3). To better illustrate this effect we have also

plotted the expected error delay with a wider stripe. In the frame when a collision

happens, the objects change their movement direction, but still have not traveled too

far apart from their original trajectory. In the next d − 1 frames, the model still has

not observed the collision (because of the prediction delay), so it continues to predict

movement along the original trajectory, while the object continues to move away,

increasing the error. Once the model has seen the collision, it “corrects” the prediction,

54 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

Figure 3.8 — Spatial misprediction view of the “bottle” dataset, with original data for

context in gray. The complex model (in orange) highlights only the transition regions,

while the others also show the initial pulse trajectory (on the left). The diffuse phase is

completely filtered out (in the middle).

and the error drops to its normal level. The drop is also not immediate, since the model

initially sees only one frame of the new trajectory, and typically needs several timesteps

to accurately extrapolate the object’s future position.

Bottle (Figure 3.8). The data contains femto-photography images of a laser pulse

propagating through a plastic bottle (Velten et al. 2013), shown in Figure 3.6. We used

models A (in orange), B (in magenta) and C (in blue) to perform the prediction. As a

result we obtain a visualization highlighting regions of transitional behavior (Figure 3.8).

Roughly speaking, the pulse moves from left to right, exhibiting different phases:

appearance of the initial pulse, transition into the diffuse phase behind the bottle label,

appearance of inter-reflections near the neck of the bottle. Importantly, the complex

model (in orange) highlights only the transitional regions. Both the propagation of the

diffused pulse (in the center), and the propagation of the inital pulse (on the left) are not

exhibiting irregular behavior and are captured by the model. The simpler models have

a harder time predicting it, resulting in a difference between the misprediction regions.

Similarly, the areas in the upper part of the dataset correspond to the appearance of

the reflection of the pulse (detected by all models) and its propagation (shown by the

simplest model in blue).

Hotroom (Figure 3.9)We use the “hotroom” dataset (Figure 3.6) to show our results

on spatially and temporally smooth data. It depicts a simulation of air temperature in a

room with a hot and a cold plate on the bottom and the top, respectively. This produces

a dense smoothly-changing temperature field (we cut off neutral temperatures in the

3.5 ● Visualization of Prediction Error 55

0 150 300 450

0

1

2

3

4

5

Time (t)

M
S
E

Figure 3.9 — Spatial and temporal misprediction views of the “hotroom” dataset. Three

significant events can be identified in otherwise smooth data: the initial front collision

(t = 21), collision with the plates (t = 231) and the formation of new streams (t = 350).

transfer function to highlight the cold and the hot air streams in Figure 3.6). We use

models A, B and C to construct spatial and temporal views presented in Figure 3.9. The

spatial misprediction regions correspond to three major events that are also apparent in

the temporal view: (1) the initial collision of cold and hot streams (pillar-like structure in

the middle), (2) the collision of the streams with the plates of the opposite temperature

(asymmetric regions top and bottom), and (3) the formation of two new air streams,

after the initial fronts have disappeared (side regions).

Droplet (Figure 3.10). To demonstrate the interaction between the temporal and the

spatial misprediction views, we have applied our method to the droplet dataset. The

dataset comes from a two-phase flow simulation of two colliding droplets. After the

initial collision, the droplets form an expanding disk of fluid that consequently splits

into many secondary droplets. Drop collisions are highly relevant in many technical

applications, e.g., fuel injection and fire suppression. The data contains both temporal

and spatial events, providing an interesting test case for our approach. For our analysis,

we consulted with the domain scientists from the field of aerospace thermodynamics

who conducted the simulation.

In Figure 3.10a we present the temporal misprediction view of the data. Although a lot

of smaller events happen in the data, we can distinguish the initial two-droplet phase

with steady error (frames 0-70), disk expansion phase with increasing error (frames

70-130), and a long tail of smaller spikes with an overall decrease in error, as many

droplets separate (causing spikes) and continue to travel predictably (reducing the

overall error). Of special interest to us were the two biggest spikes at frames 62 and

394. The model’s prediction contains massive errors that couldn’t be explained by the

56 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

0 100 200 300 400
0

2

4

Time (t)

M
S
E

(a) Initial spatial (top) and temporal (bot-

tom) misprediction view.

0 100 200 300 400
0

2

4

Time (t)
M
S
E

(b) Spatial (top) and temporal views (bot-

tom) for the subrange.

(c) t = 190 (d) t = 243 (e) t = 308

Figure 3.10 — Interactive analysis of the “droplet” dataset. a: The models (orange and

magenta in spatial view) highlight the initial droplets, the expanding ring, a few larger

droplet separations and several oscillating droplets. Two largest spikes in the temporal

view correspond to simulation timestep changes. b: After selecting a subrange, we no
longer see the inital droplet collision and can better focus on the locations of droplet

separation. c, d, e: Single-timestep views showing exact locations of the prediction

error (see vertical lines in b).

3.6 ● Automatic Timestep Selection 57

data. After consulting with the domain scientist we discovered that the simulation

has irregular timestep sizes, and the two spikes in model’s error align with two abrupt

changes of the simulation timestep, effectively highlighting an irregular temporal event.

In Figure 3.10a we also show the spatial misprediction view of the data, obtained

using the model A (in orange) and the model B (in magenta). We also aggregate and

render the original data in faint green for context. To filter out the initial droplet phase

and the discovered simulation timestep changes, we select a temporal subset of our

misprediction data (Figure 3.10b). Inspecting the corresponding spatial view, we see

several locations of irregular behavior: the central regions, where many secondary

droplets have separated, the large ring corresponding to the ring separation, and four

smaller regions in the corners, where several large droplets have formed and split

off. We also see abrupt traces of several large droplets flying off to the left and to the

right, caused by their irregular oscillating motion. To investigate further, we focus

on a few smaller temporal events, inspecting three individual timesteps (red lines in

Figure 3.10b). The resulting spatial views (Figure 3.10c, 3.10d, 3.10e) show where the

high errors occurred. In Figure 3.10c and 3.10d we see the source of the ring observed

in the aggregated view: this is the location where rings of fluid have separated from the

initial expanding disk. Figure 3.10e highlights the secondary droplets that split off in

the center, as well as the four large droplets starting to form and separate, producing the

corner regions in the aggregated view. Interestingly, we found an unexpected feature

in the data: there are four small regions of error in the center of Figure 3.10c, which we

could not explain. After an investigation together with the domain scientist it turned

out, that the fluid disk contains small bubbles of air caught during the collision. Its

existence was previously unknown and undetected using domain scientists’ current

tools: volume and vector visualization in ParaView and histograms of droplet properties

extracted via scripts (mass, surface, etc.).

The discovery of the irregular timesteps (believed to be an issue with the pressure solver),

as well as of the bubbles (known neither to us nor to the domain scientist) informally

demonstrates the potential of our domain-agnostic approach to detect unexpected data

features. Overall, navigation of the misprediction volumes allows us to get a quick

impression of the most complex temporal and spatial regions, and then to use this

information to “drill down” into the data, studying individual spatiotemporal events.

3.6 Automatic Timestep Selection

Spatiotemporal data often consists of many timesteps, all of which cannot be statically

presented to the user, motivating temporal subsampling (e.g., Lu and Shen 2008; Tong

et al. 2012; Frey and Ertl 2017a). However, a meaningful selection of timesteps typically

requires data-specific selection criteria, since relying solely on the quantification of

58 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

differences can often lead to interesting process transitions being missed. Here, we aim

to use the prediction error as a generic method to select the timesteps of interest. Our

goal is to automatically present the significant irregular temporal events to the user,

which provides an additional exploration tool, complementary to the misprediction

views described in Section 3.5.

Our technique uses the misprediction volumes obtained from local models (Section 3.2)

to detect timesteps that contain irregular temporal events. As usual, we begin by training

a local prediction model and measuring the prediction error on the original data. As

described in Section 3.5, we average the misprediction volume spatially, constructing a

time series for the model. The resulting series describe the mean prediction error that

occurred at a certain timestep (e.g., Figure 3.2d).

For timestep selection, we now consider the maxima of the time series, since they

mark irregular temporal events and transition points in the data. To remove smaller

deviations and help focus on the most significant events, we perform bilateral filtering

of the time series, using a Gaussian kernel for both the time and value dimensions. The

overall effect of bilateral filtering is smoothing over time that avoids smoothing over

elements with large differences in value, thus preserving the significant error peaks

that we are interested in. Then, we extract the local maxima points of the series and

remove consecutive points that are closer than a predefined threshold. This helps to

avoid choosing peaks that are only a few timesteps away, which can sometimes happen

for events that occur over several timesteps and cause some lingering fluctuation of the

prediction error. Generally, we set the threshold to only a few frames, to avoid missing

separate consecutive events. After the maxima are detected, we pick the corresponding

timesteps as the ones containing significant temporal events.

We exemplify the results of our timestep selection approach on the droplet dataset.

We used the “C64-C64-D256-D256” model to construct the misprediction volume. The

respective temporal misprediction graph is plotted in Figure 3.11. The time series was

smoothed using bilateral filtering, using a Gaussian kernel with STD of 5.0 for time

and 1.0 for value. The selected timesteps (corresponding to the error maxima) are

marked with vertical lines, and their renderings are presented in Figure 3.12). The

first few selected timesteps represent several important events: droplet collision, first

ring separation, second ring separation, and the break-up of the ring into multiple

droplets. The later timesteps correspond to several smaller separations and oscillating

droplets. We can see that our method chose the timesteps near the key large events

and more densely sampled the temporal phase that has many smaller interactions. And

importantly, this happened without the need to define domain-specific selection criteria

or features. This technique could be used in conjunction with the misprediction views

to provide an overview of irregularities in the data, especially when manual navigation

is not desired or not possible.

3.7 ● Multi-field Volumes 59

0 100 200 300 400
0

1

2

3

4

5

Time

M
S
E

Original

Smoothed

Figure 3.11 — Smoothed prediction error on the “droplet” dataset. By finding maxima

of the smoothed prediction error we are able to find key irregular events in the data.

t=61 130 180 245 263 286

305 352 367 380 390

Figure 3.12 — Timesteps of the “droplet” dataset that were automatically selected by

finding maxima of smoothed model error (shown in Figure 3.11). High error locations

are rendered in red. Several sparse important events are captured in the beginning: the

initial collision, two disk separations, outer disk break-up. The rest of the timesteps

correspond to a more chaotic mass separation phase of the data.

3.7 Multi-field Volumes

So far we have concerned ourselves with the analysis of scalar volumes. However,

data coming from scientific simulations is typically multifield, containing velocity

vectors, pressure, temperature and other relevant properties that may be essential for

the prediction task. Therefore, we extend our models to receive additional fields as

input and then investigate how this affects the prediction, and thereby the detected

spatiotemporal regions.

60 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

Dataset Prediction delay Model MSE

cylinder multi-field 1 C64-C64-D256-D256 5.21

cylinder scalar 1 C64-C64-D256-D256 15.53

cylinder multi-field 1 D64 10.93

cylinder scalar 1 D64 14.03

cylinder multi-field 1 D1 31.54

cylinder scalar 1 D1 31.83

cylinder multi-field 6 C64-C64-D256-D256 24.64

cylinder scalar 6 C64-C64-D256-D256 45.42

cylinder multi-field 6 D64 43.97

cylinder scalar 6 D64 53.59

cylinder multi-field 6 D1 167.03

cylinder scalar 6 D1 176.27

Table 3.1—Comparison of the total model error using scalar andmultivariate prediction.

Multivariate input data leads to fewer errors, especially for larger models and far-ahead

prediction, since they have more capacity to leverage the additional information.

We performed a set of experiments on one of the turbulent CFD ensemble members.

The model was supplied with velocity vectors, velocity magnitude and pressure fields,

while predicting the velocity magnitude. We used three models of different capacity

(“C64-C64-D256-D256”, “D64-D32” and “D1”), two prediction delays (one and six frames)

and compared to the prediction made using only the scalar velocity magnitude field

as input (Table 3.1). As we can see, providing additional fields to the model results in

lower overall prediction error. The differences are more significant when we increase

the delay: predicting further into the future is easier with the additional information.

We also notice that the larger models benefit more from the additional fields, since they

can represent a more complex relationship between the input fields.

To investigate the exact spatiotemporal differences between the multifield and scalar

models we performed an additional experiment on the droplet dataset. We compared

a multifield model that received volume-of-fluid, pressure and velocity vector fields,

to a scalar model that received only the volume-of-fluid values. The multifield model

achieved an overall MSE of 0.14 and the scalar model an MSE of 0.23 (values are

relatively low due to large amounts of empty space in the dataset). Thus, similarly to

the previous experiments, providing more data allowed for an overall more accurate

prediction. In Figure 3.13a we present the temporal misprediction of both models,

where we see that they highlight the same events, with the only significant difference

occurring around the initial droplet collision (frames 50-100). The multivariate model

has a lower overall error, though the scalar model “recovers” slightly faster due to

focusing on the motion of fluid and being unaffected by changes within other fields.

3.7 ● Multi-field Volumes 61

0 50 100 150 200 250 300 350 400
0

1

2

3

4

Time (t)

M
S
E

Multivariate

Scalar

(a)

(b) (c)
Scalar better

Multivar better

Figure 3.13 — Comparison of scalar and multivariate prediction on “droplet”. a: Tem-

poral misprediction views: scalar prediction is less accurate overall, but detects similar

temporal events. b, c: Spatial difference between models’ error regions, with red show-

ing where the scalar model had larger errors, and blue – the opposite. The multivariate

model is able to better predict the disk expansion (b) and small droplet separation (c)
events.

In Figure 3.13b we show the difference between the models’ absolute errors at frame

62 around the initial collision. We see that the scalar model produces larger errors

around the expanding disk between the two droplets, while the multivariate model is

able to use the high pressure values that accompany this expansion to distinguish and

more accurately predict this behavior. Then, we inspected the data for other regions

of significant deviation and found several smaller regions near ligament separations,

where the multivariate model produces a more accurate prediction (Figure 3.13c).

Overall, we conclude that although multifield and scalar models are generally similar,

providing and withholding fields from the model can in some cases affect the results

qualitatively. Both approaches can be used depending on the application scenario, while

62 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

combining them can act as an additional analysis tool.

3.8 Assisted Parameter Selection
The main motivation behind our irregularity detection approach is to develop a method

that is domain-agnostic. We achieve this by refraining from any domain-specific

assumptions, but another way in which a method can become specialized is by relying

on a large number of complex parameters. Although the parameters can be tuned

to apply such a method to any domain, their adjustment might require significant

expertise, either in machine learning or in the target domain. This would defeat one of

the main purposes of having a domain-agnostic method in the first place, and should

thus be avoided.

In this section, we discuss and investigate our most important parameters that directly

influence the difficulty of the prediction problem (Section 3.2.2) and thereby, the detected

irregular behavior. We demonstrate that the parameters have a predictable impact on

the results, and furthermore, show how they can be selected in a semi-automated

fashion.

3.8.1 Parameter Study

Prediction delay (Section 3.2.2) is the distance in time between the last timestep

provided to the model and the predicted timestep. To demonstrate its effects, we

perform prediction with ten “C64-C64-D256-D256” models, each using a different delay

on the “vortex street” dataset (Figure 3.6), which has a very fine temporal resolution.

The temporal misprediction view for each delay setting is presented in Figure 3.14a.

As we can see in the cases of one- and two-frame delays, low prediction delay has a

very clear symptom: model prediction error exhibits almost no variation. Since the

prediction task is too easy, the model is able to predict the whole dataset equally well.

When we increase the delay, we can observe an overall increase in the error, as well as

more pronounced differences between temporal phases. Some parts of the data remain

simple to predict, but the more irregular regions start to produce errors that we can use

in our analysis. Crucially, despite the quantitative variation between the different series,

all models trained with the prediction delay of more than two frames highlight similar

temporal events: growth of the trail and of the error until timestep 180, transition to

more turbulent behavior until timestep 400, and eventually the onset of fully-periodic

behavior indicated by the decreasing model error.

Patch size is an important parameter for our local prediction approach, since it defines

what is local, i.e. what information is available to the model. For consistency, we use the

“vortex street” dataset and perform prediction with eight “C64-C64-D256-D256” models

3.8 ● Assisted Parameter Selection 63

0 200 400 600 800 1,000
0

1

2

3

Time (t)

M
S
E

d=1

d=2

d=3

d=4

d=5

d=6

d=7

d=8

d=9

d=10

(a) Prediction delay

0 200 400 600 800 1,000
0

1

2

3

4

5

6

7

8

Time (t)

M
S
E

15x5x5

10x10x10

10x5x5

10x3x3

5x5x5

3x5x5

3x3x3

1x2x2

(b) Patch size

Figure 3.14 — A parameter study on the “vortex street” dataset showing temporal

misprediction plots. a: Models with a delay below three frames do not detect any events

because it is easy to predict a few frames ahead. b: Most of the models successfully

highlight the complexity of the setup phase (frames 100-400). However, the models

with very small (orange) or very large (blue) patch sizes do not clearly distinguish it.

using different patch sizes. The results are presented in Figure 3.14b. An important

property for this fairly regular dataset is whether we can distinguish the different

temporal phases from the model’s misprediction plots. The “contrast” between the

setup and the periodic phases varies with different patch sizes, and there are two extreme

cases. First, a very restricted patch size of 1x2x2 produces a constantly growing error

graph, showing that even high-capacity models cannot produce an accurate prediction

given insufficient information. Second, the very large 10x10x10 patch produces low

error compared to other models, but the misprediction graph of this model alone shows

much smaller differences between the temporal phases. A large model with a very wide

64 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

view can predict well even the complex setup phase. But overall, the rest of the models

produce reasonable and comparable results.

3.8.2 Parameter Selection
The patch size and the prediction delay parameters control the difficulty of the prediction

problem: large delay (further ahead prediction) and small patch size (less input) make

the prediction more difficult, while small delay and large patch size make it easier.

Since our technique differentiates spatiotemporal regions based on prediction errors, it

functions best between the extremes of impossible and trivial prediction, when some

regions are hard to predict and some are not. A key observation is that as we approach

these extremes, models of different capacity tend to produce similar errors. When the

prediction is too difficult, all the models display similarly large errors, because additional

model capacity does not help when information is missing. And when the prediction is

too easy, all the models display similarly low errors, since even the simplest models can

predict slow smooth processes. Thus, we can use this idea to help select appropriate

parameter values by comparing the models’ prediction errors and maximizing their

diversity, i.e., favoring configurations that lead to larger differences between simple

and complex models.

Specifically, we run our method using multiple models and compute misprediction

volumes as described in Section 3.2.2. Then, for each spatiotemporal position we

compute the diversity as the difference between the smallest and largest errors for this

point among the different models. Then, we average this value over the whole dataset

and divide it by the average prediction error of all the models, effectively computing

the relative average prediction error range as our selection criterion. The normalization

allows for better comparison across different parameter configurations and datasets.

Overall, the larger error ranges indicate better parameter settings.

Using this information we construct a parameter space visualization. We render a grid,

where each row corresponds to a patch size value and a column to a prediction delay

value, and show a bar chart in each cell. The bar chart displays the average error of each

model (ordered complex to simple, left-to-right), allowing the user to see a summary of

models’ performance. Additionally, we color each bar chart (grid cell) according to our

error range criterion, showing how appropriate each configuration setting is in terms

of local error diversity.

In Figure 3.15a we show results on the vortex street dataset, using models “C64-C64-

D256-D256”, “D256”, “D64-D32” and “D32-D16” (left to right). Here we also include the

trivial patch size setting of 1x1
2
. First, as to be expected when considering prediction

difficulty, we see that larger patch size and lower prediction delays lead to lower overall

errors. Importantly, when the patch size is too small (1x1
2
) or the delay is too low (d = 1)

the models show very little diversity, either failing or succeeding together. But when

3.8 ● Assisted Parameter Selection 65

1x12

3x32

5x52

7x72

11x112

d=1 d=3 d=5 d=7

0.0 1.5

(a) “vortex street”

3x33

5x53

7x73

11x113

d=1 d=3 d=5 d=7

0.7 1.9

(b) “hotroom”

Figure 3.15 — Parameter space visualization for two datasets. We show a grid of bar

charts for different values of patch size (rows) and prediction delay (columns). Each

bar chart encodes the mean errors of the four models (sorted complex to simple, left

to right). Additionally we compute an error diversity criterion which we use to color

each cell. Higher delays with larger patch sizes lead to higher error diversity, which

indicates a prediction problem of appropriate difficulty.

the patch size is large enough, larger delays lead to more diversity, since more complex

models can still predict well enough, while the simpler models fail. Here specifically

we find that patch sizes above 5x5
2
and delays above 5 lead to best results, which is

also reflected in the diversity score (encoded as color).

Next, we performed experiments on the hotroom dataset, using the same four models as

before. Since 3D datasets are much larger and generate a lot of input data, we introduced

stronger patch undersampling (pu = 10
−4
), which leads to somewhat noisier results, but

still allows trends to be studied. Thus, we can perform a parameter study faster, and if

needed later, run the core method with more data using the chosen parameter values.

We demonstrate the results in Figure 3.15b. Overall, we see a similar pattern: small

patch sizes lead to uniformly large errors, while larger delays improve error diversity,

especially for larger patch sizes. In this case, all the settings with 11x11
3
patch size

lead to larger error ranges, this is explained by fact that very simple non-convolutional

models tend to perform worse on very large 3D patches. For the hotroom, we find

patch sizes of at least 7x7
3
and the delay of 5 as the most appropriate. In general, we

recommend picking the largest patch size that is computationally feasible and the delay

value that maximizes model error diversity.

66 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

0 100 200 300 400 500
0

2

4

6
M
S
E

(a) 3 × 33, d = 1

0 100 200 300 400 500

(b) 3 × 33, d = 7

0 100 200 300 400 500
0

2

4

6

M
S
E

(c) 11 × 113, d = 1

0 100 200 300 400 500

(d) 11 × 113, d = 5

Figure 3.16 — Temporal misprediction for four different parameter configurations on

the “hotroom” dataset (cf. Figure 3.15). With low prediction delay (a, c) prediction is

too easy and leads to models showing few errors, missing an event around frame 370.

With small patch size (a, b) there is little difference between simple (magenta line) and

complex (orange line) models. Larger patch size and delay (d) allow for detection of all

three events and distinction of temporal differences between the models.

We also investigated temporal misprediction graphs for four different settings using the

most complex and the simplest models (Figure 3.16). As we can see, runs with small de-

lay (Figure 3.16a, 3.16c) tend to have very smooth low-error curves and miss the stream

emergence event around frame 370. The run in Figure 3.16b (due to its larger delay)

highlights all three events, but both models provide identical information. The configu-

ration with larger patch size and large delay (Figure 3.16d) further improves this result,

with the complex model clearly distinguishing the three significant events, and the

simpler model also showing a decreasing error trend as the air becomes more diffused.

These findings align well with our parameter space visualization from Figure 3.15b.

In Figure 3.17 we also show the spatial misprediction views for two configurations:

one with low and one with high error range criterion values. We observe that when

the prediction problem is too hard (Figure 3.17a), similarly to the temporal view (Fig-

ure 3.16b), all models fail more often and in similar regions. But when we increase

the patch size, and thereby error diversity, we can better separate different irregular

regions, e.g., regions on the sides corresponding to later air stream formation are not

3.9 ● Performance 67

(a) 3 × 33, d = 7 (b) 7 × 73, d = 5

Figure 3.17 — Spatial misprediction views for configurations with low (a) and high (b)
error diversity on “hotroom”. When the prediction problem is hard and diversity is low,

different models producemany large errors and highlight similar regions, however when

the problem has suitable difficulty we can distinguish regions of different irregularity.

showing errors from the most complex model (in orange).

Crucially, as discussed above, most parameter configurations yield similar results, with

particularly poor settings being easy to avoid using either our selection method or

minor prior knowledge of the data. Furthermore, we found that the parameter space

visualization provides further insight into the data and can be used to complement

our core technique, e.g., we see that for the hotroom the prediction delay has a much

smaller impact on the model error compared to vortex street, which points to a much

smoother and predictable nature of the data.

3.9 Performance
Since our method involves both handling of spatiotemporal fields and training of neu-

ral network models, performance is an important aspect to consider. See Section 3.4

for more details about our efficient implementation. Here we provide performance

measurements, shown in Table 3.2. All tests were performed on a machine with an

Intel Xeon E5-2630 v4 CPU and an Nvidia Tesla V100 GPU. The dataset size is provided

in the format Time × Width × Height × Depth, and pu refers to the undersampling

probability (Section 3.2.2). We also provide the number of training epochs that passed

before the convergence condition was triggered (Section 3.4). We used separate con-

figurations for 2D and 3D datasets, with stronger undersampling and a smaller patch

size for the 3D datasets, which otherwise generate superfluous amounts of data for

our relatively simple models. Overall, we can see that the prediction often takes a

68 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

Dataset Dataset size Patch size Train set pu Model
∗

Train

(min.)

Predict

(min.)

Epoch

droplet 400x256x256x256 5x5
3

712.1K 0.01 A 35.0 171.5 76

droplet 400x256x256x256 5x5
3

712.1K 0.01 B 79.6 170.7 173

droplet 400x256x256x256 5x5
3

714.0K 0.01 C 135.3 177.6 315

spheres 200x128x128x128 5x5
3

185.2K 0.01 A 7.3 16.6 60

spheres 200x128x128x128 5x5
3

185.2K 0.01 B 56.7 16.3 500

spheres 200x128x128x128 5x5
3

185.4K 0.01 C 16.5 16.3 146

bottle 465x450x215x1 15x5
2

3.4M 0.1 A 87.9 8.8 71

bottle 465x450x215x1 15x5
2

3.4M 0.1 B 234.2 8.6 200

bottle 465x450x215x1 15x5
2

3.4M 0.1 C 26.2 10.3 23

vortex st. 800x101x301x1 15x5
2

1.8M 0.1 A 115.9 5.8 173

vortex st. 800x101x301x1 15x5
2

1.8M 0.1 B 157.3 5.8 250

vortex st. 800x101x301x1 15x5
2

1.8M 0.1 C 31.4 5.6 52

Table 3.2 — Performance of our local prediction implementation with different datasets

and models. We undersample the training data with probability pu and cache prediction

results for empty space. Large and dense 3D volumes require the most computation.

∗ Model A: C64-C64-D256-D256, Model B: D256, Model C: D1.

considerable amount of the execution time. This is due to the fact that we cannot

undersample the prediction data and need to obtain a prediction for each data voxel.

For datasets with large amount of empty space (e.g., droplet) we can reduce the amount

of processing (see Section 3.4), while others do not allow this optimization.

For our parameter selection study (Section 3.8.2) on the vortex street dataset, we

performed 80 runs, spending a total of 64 hours to train the models and 108 minutes to

perform the predictions. For the hotroom dataset (500x181x91x181 in size), we used

stronger undersampling (pu = 10−4) to perform 64 runs with a total of 54 hours to

train and 56 hours to predict. Although the time required to sample the parameter

space is significant, the task is highly parallelizable and has linear speedup, since each

experiment can be performed on a separate machine, which we have avoided to provide

comparable performance measurements.

3.10 Limitations and Future Work
Local prediction. Our choice of making the prediction based on local information

yields several advantages, including training performance, translation-invariance and

model simplicity (Section 3.2.2). It also introduces an additional parameter – the patch

size, which can have an impact on prediction performance both in terms of execution

time and accuracy (Section 3.8.1). Although locality is often a reasonable assumption

3.10 ● Limitations and Future Work 69

for scientific data, relationships extending beyond the patch size cannot be captured by

our models. When such effects need to be accounted for, the models could be extended

to incorporate global context, e.g., by using downsampled data.

Performance. A limiting factor of our approach is performance. The performance

costs come from training multiple neural networks on large data, as well as evaluat-

ing them to obtain predictions (Table 3.2). Although smaller patch sizes combined

with undersampling are often sufficient to produce accurate results, analyzing even

moderately-sized datasets may take hours and days. Fortunately, the approach has

large parallelization potential. Both neural network training and prediction can be

distributed in terms of data across multiple machines, and parameter studies are even

easier to parallelize. Finally, pretrained models can be utilized for applications within

the same domain or simulation ensembles.

Temporal interpolation. Our approach operates by detecting regions that are hard

to predict based on past events. We have shown that by varying the prediction delay

we can vary the difficulty of prediction, increasing it for datasets with fine temporal

resolution (Section 3.8.1). However, this also implies that in the opposite case of

very coarse temporal resolution the prediction task can become too hard, causing

the models to produce high errors everywhere, making it impossible to distinguish

behavior of different complexity. An interesting extension to address this case could be

to simplify the prediction problem by considering not only the past, but the future too,

essentially performing interpolation, which would have lower resolution requirements

than extrapolation.

Sequence modeling. For simplicity and generality, we used relatively basic neural

network models (Section 3.2.1, 3.4). However, building upon our findings with simpler

models, more complex and specialized architectures could be used to improve the results.

For example, recurrent neural networks are being successfully used to model temporal

data and might provide a more meaningful prediction for spatiotemporal volumes as

well. Moreover, they can be applied to temporal sequences of variable length, which

can produce additional information about the local temporal complexity by monitoring

the length of accurately predicted sequences.

Physical constraints. While we have used models with no physical or domain-specific

assumptions, there is a number of generic physical properties that could be explicitly

modeled: energy and mass conservation, flow incompressibility, etc. These could be

introduced to the model’s loss function to aid in doing physically-accurate predictions,

or to find spatiotemporal regions where the model violates these conditions.

Enhancing user control. Currently, the user can influence the results by defining

models and some parameters before running our method, and explore the results

interactively afterwards (Section 3.5). However, our approach could be extended to

provide further control to the analyst. On the one hand, more traditional visualization

70 Chapter 3 ● Detecting Irregular Behavior in Spatiotemporal Volumes

techniques like clustering can be applied to discover further instances of similar behavior

or filter detected irregularities. On the other hand, ML-based approaches like one-shot

learning could be explored, reusing the feature space learned by the models to detect

more specific behavior based on the analyst’s feedback. In the next chapter (Section 4.3),

we present a different ML-based approach based on this idea. It can be used for similar

applications, but shows greater performance and interactivity, allowing the user to

directly query the ML model.

4
Learning Spatiotemporal Similarity

Metrics

This chapter is based on the following publications:

Gleb Tkachev, Steffen Frey, and Thomas Ertl (2021a). “Local Prediction Models

for Spatiotemporal Volume Visualization.” In: IEEE Transactions on Visualization
and Computer Graphics 27.7, pp. 3091–3108
Gleb Tkachev, Steffen Frey, and Thomas Ertl (2021c). “S4: Self-supervised

Learning of Spatiotemporal Similarity.” In: IEEE Transactions on Visualization
and Computer Graphics DOI: 10.1109/TVCG.2021.3101418
Hamid Gadirov,Gleb Tkachev, Thomas Ertl, and Steffen Frey (2021). “Evaluation

and Selection of Autoencoders for Expressive Dimensionality Reduction of Spatial

Ensembles.” In: International Symposium on Visual Computing. Springer, pp. 222–
234

In many cases, scientists collect data not from just a single simulation run but from

hundreds or even thousands of different configurations. These so-called ensembles

are fundamental in studying the effects of varying input parameter values, boundary

conditions, materials, etc. (Section 2.1.1). Visualization is essential in making sense of

ensembles, and explorative analysis plays a particularly important role, since there is

often only limited prior knowledge of the newly generated data.

Many of the common tasks in exploratory analysis, e.g., partitioning of the output space

or outlier detection, require a measure of distance or similarity. In some cases, there

72 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

may be domain-specific measures. However, these are not generally available, and

the development of such algorithms requires not only detailed domain knowledge but

also a lot of time. Therefore, generic techniques are needed to support the exploration,

especially when new types of data are involved. Standard metrics operating directly on

the raw data like the mean squared error (MSE) or the earth mover’s distance (EMD)

are generic, but do not yield expressive results for most application contexts (Frey and

Ertl 2017a, 2017b). For example, a phase shift between two members would produce

a large quantitative difference, while qualitatively they are very similar. Instead, we

propose to use machine-learning models, which are capable of extracting higher-level

features from the data, allowing for a more meaningful comparison.

Learning-based approaches have been shown to deliver great results in the quantifica-

tion of image similarity (Wang et al. 2014). However, such models are often pre-trained

on photographic images and are not suitable for scientific data. And training new

models on more appropriate data requires labels at some point in the process, which

are typically not available for simulation and experimental data. The two approaches

that are presented below are aimed specifically at addressing this challenge. The for-

mer (Section 4.2) is an extension of our prediction-based method from Chapter 3 and

focuses on quantifying similarity between ensemble members. And the latter (Sec-

tion 4.3), is a more general self-supervised method that can be applied to any large

spatiotemporal datasets. Furthermore, in the third part (Section 4.4) we briefly discuss a

related autoencoder-based method that focuses on visual exploration of ensemble data.

4.1 Related Work

Ensemble visualization and similarity measures. The analysis of data ensembles is

a challenging visualization task (Obermaier and Joy 2014). Potter et al. 2009 and Sanyal

et al. 2010 proposed some of the first approaches for climate ensembles, while Waser

et al. 2010 demonstrated a system for interactive steering of simulation ensembles.

Sedlmair et al. 2014 and Wang et al. 2019 provided detailed surveys of the techniques in

the area.

In the context of ensemble visualization, a similarity measure often plays an important

role, and so many methods have been explored. Bruckner and Moeller 2010 used

squared differences to explore the visual effects simulation space, Hummel et al. 2013

determined similarity between regions via joint variance, Wei et al. 2017 efficiently

computed similarity between local histograms and Kumpf et al. 2019 tracked statistically-

coherent regions using optical flow. Jarema et al. 2015 utilized Gaussian Mixture Models

to compute a similarity matrix for vector fields. And Wang et al. 2016 proposed a vector

field similarity based on a 3D SIFT implementation. Hao et al. 2016 constructed octrees

to calculate shape similarities for particle data, while He et al. 2020a employed surface

4.2 ● Prediction-based Ensemble Similarity 73

density estimates for distances between surfaces. Fofonov and Linsen 2019 developed

an isosurface-based similarity for multi-fields. We also propose a similarity metric

that can be used for spatiotemporal ensemble data; however, we use a learning-based

approach that is domain-agnostic but capable of adapting to the dataset. Furthermore,

we focus on the search for similar behavior, allowing the user to interactively influence

the similarity score.

Video object detection. The problem of spatiotemporal similarity is related to object

detection in video, which is extensively studied in the field of computer vision (Zou et al.

2019; Jiao et al. 2019). Nevertheless, scientific data presents a unique set of challenges.

Some detection approaches target specific object categories such as people (e.g. Li

et al. 2014; Ahmed et al. 2015; Huang et al. 2018), while in our domain-agnostic setting

we cannot make similar assumptions. Other, especially deep-learning-based tech-

niques (e.g. Han et al. 2016; Bertasius et al. 2018; Deng et al. 2019), can detect a diverse

but fixed set of objects, while also requiring at least some supervised data. Finally,

the computer vision techniques detect spatial objects in video by exploiting frame

coherence, while we are interested in fundamentally temporal processes, thus treating

temporal and spatial dimensions equally.

Self-supervised learning. In recent years, self-supervised learning has been gaining

popularity, especially in computer vision. For example, Dosovitskiy et al. 2014 used

random image transformations to generate surrogate image classes and learn a robust

feature space. Misra et al. 2016 learned their representation by predicting if a sequence

of video frames was given in the correct order, while Doersch et al. 2015 predicted

the relative position of two image patches. Continuing the trend, many other self-

supervised tasks were proposed in the following years (Doersch and Zisserman 2017).

Our approach also uses the idea of self-supervised learning, but instead of fine-tuning

the pretrained model on supervised data, we use the learned representation directly to

find similar behavior.

ML in scientific visualization. See Section 3.1 for an overview of works on this topic

and a discussion of how they relate to our methods.

4.2 Prediction-based Ensemble Similarity
Here, we propose a domain-agnostic (dis-)similarity measure for ensemble members

that could be used to augment existing specialized techniques. The measure is an

extension of our local prediction approach from Chapter 3. The main idea is to perform

cross-prediction across the ensemble members: training a local prediction model on one

member and then applying it on another, measuring the overall prediction error. This

effectively estimates the difference between the behavior captured by the model from

one member and the actual behavior of another member. Conceptually, the measured

74 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

error can also be thought of as the generalization error of the model: by observing how

well the model performs on unobserved data we are estimating how different the data

is from the training dataset.

4.2.1 Method
We train a separate local prediction model (Section 3.2.1) on each member of the

ensemble. Then, using each model, we perform prediction for each member (including

the one that the model was trained on) and compute the mean squared prediction error

across the whole spatiotemporal domain. Thus, we end up with a square matrix of

cross-prediction errors E, where each cell E(i, j) specifies the error resulting from

training on the i-th member and predicting for the j-th member. We further normalize

the cross-prediction error by the error measured when training on the same data. This

addresses the fact that some members can be significantly harder to accurately predict

than others due to a higher amount of irregular behavior, regardless of which data the

model was trained on (Section 3.3). This could lead to cross-prediction errors being

large for a similar pair of complex simulations and low for a similar pair of simple

simulations, although qualitatively the dissimilarity within both pairs should be the

same. Therefore, we use the relative cross-prediction error Er:

Er(i, j) = E(i, j)/E(j, j). (4.1)

Naturally, the cross-prediction error is not symmetric. This is not only a result of model

training being a stochastic process, but also an important insight into the meaning

of the error. A large cross-prediction error means that local behavior common to

the predicted member did not occur in the training member (or occurred too rarely).

This implies, that training on a simulation with diverse local behavior may produce

a low cross-prediction when predicting for another member. The predicted member

on average may be very different, but its local behavior is a subset of what the model

has captured during training and can reproduce during prediction. Thus, to construct

a dissimilarity measure from the cross-prediction error we consider the error in both

directions: ↔
Er(i, j) =

↔
Er(j, i) =

√
E2

r (i, j) +E2
r (j, i). (4.2)

This means that the dissimilarity between a pair of datasets is only low if both cross-

prediction errors are low.

Having a dissimilarity measure for the ensemble, several visualization techniques

could be applied. We chose to visualize the ensemble using a dissimilarity matrix

encoded as a heatmap. This allows us to better evaluate our approach, since we

directly visualize the values of our measure for different member pairs. To improve

the visualization we also sort the ensemble members using hierarchical clustering.

4.2 ● Prediction-based Ensemble Similarity 75

Specifically, we perform agglomerative hierarchical clustering with centroids, i.e. when

merging clusters, distance between clusters is defined as distance between the cluster

centroids. The resulting tree is then sorted, such that the distances between adjacent

leafs are minimized (Bar-Joseph et al. 2001). In other words, the ensemble members in

the visualization are arranged such that the dissimilarity between neighbors is small.

4.2.2 Results

To evaluate our prediction-based ensemble dissimilarity measure, we have applied it

to a CFD ensemble (similar to the “vortex street” dataset). The ensemble has three

parameters: Reynolds number, obstacle offset and obstacle radius. To obtain a diverse

set of simulations we have randomly sampled the whole parameter space, obtaining 25

simulations.

For computing our dissimilarity measure (Section 4.2) we trained an instance of the

“C128-D256” model for each member (notation from Section 3.4), and performed a full

set of cross-predictions (625 predictions in total). The results are presented in Figure 4.1.

In the header we visualize a single timestep of each ensemble member and specify its

three simulation parameter values. The same timestep has been used for all members,

aiming to give an impression of the whole ensemble.

The first observation is that the dissimilarity metric led to ensemble members being

roughly sorted according to how turbulent they are. The most turbulent members were

put on the left, with members slowly becoming more laminar as we move to the right.

Looking at the dendrogram in the header, three high-level clusters can be distinguished:

strongly-turbulent (on the left), turbulent (middle) and mostly-laminar (right).

When inspecting the heatmap, several groups of simulations can be spotted. The most

prominent group of members is (d - j), which has high dissimilarity to many other

members outside of the group. This is due to their highly turbulent behavior that does

not appear in other simulations. Importantly, the dissimilarity inside this group is low,

showing that our measure captures the differences in local behavior, rather than just

differences in value (direct difference between two turbulent members would still be

high). Another significant group of simulations is (m - x), which represents members

with mostly laminar behavior. Again, they have low dissimilarity in-between, and

higher values to other members, especially towards the highly turbulent ones. Within

the groups we can look at a few members that were added to the cluster later (because

of their slightly higher dissimilarity to the rest), e.g. (v) and (w) that are significantly

asymmetric.

Simulations (k, l) also form a low-dissimilarity pair and represent a less distinct case

of slower turbulent results. We observe a medium dissimilarity to the most turbulent

members, as well as to the mostly laminar members. Presence of some turbulence

76 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

100
40
30
(a)

80
25
30
(b)

70
10
30
(c)

70
40
40
(d)

90
20
50
(e)

90
40
60
(f)

100
20
70
(g)

100
0
60
(h)

80
0
50
(i)

70
20
50
(j)

80
15
80
(k)

70
35
70
(l)

50
15
30
(m)

70
0
70
(n)

60
0
50
(o)

50
15
50
(p)

50
20
70
(q)

40
0
60
(r)

40
0
80
(s)

40
0
30
(t)

40
35
30
(u)

50
40
60
(v)

40
35
80
(w)

100
5
80
(x)

100
5
30
(y)

1.0 138.0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(s)

(t)

(u)

(v)

(w)

(x)

(y)

Figure 4.1 — Our dissimilarity measure for a flow simulation ensemble. The top row

shows one timestep from each simulation. Groups of members that exhibit similar

behavior (e.g., turbulent) have low dissimilarity (blue) to each other, but high dissimi-

larity (yellow) towards other members.

4.3 ● Self-supervised Learning of Similarity 77

helps the models trained on them to perform better on the turbulent members than

the laminar-trained models. Similarly, member (o) is also interesting in that it exhibits

an in-between case: although it belongs to the group of laminar members, it has

lower dissimilarity to the turbulent ones than the rest. During most of the simulation

time it exhibits laminar flow, but turns turbulent towards the end. For this reason,

the model trained on simulation (o) was more successful in predicting the turbulent

ensemble members, akin to (k) and (l). Another special case is simulation (b) which

is the most turbulent member of the ensemble with very distinct local behavior that

leads to large prediction errors for most models. Simulation (c) is similar to it in

terms of turbulence, however, it has a longer laminar setup phase, leading to lower

dissimilarity values overall (laminar models can still predict the first part correctly).

Finally, interesting outliers are members (a) and (y), which were sorted away to the

left and right sides by the hierarchical clustering algorithm. Initially, they appear as

a strongly-turbulent member and a laminar member respectively. However, closer

inspection showed that the simulation files were corrupted, resulting in “flickering” that

has not been observed in the ensemble before, but was identified via our visualization.

These artifacts caused increased errors when predicting on the data, even for the model

trained on it, thus resulting in medium normalized cross-prediction error for most other

ensemble members. Overall, we found that our dissimilarity metric produces results

that correspond to what is intuitively and qualitatively expected from comparing pairs

of ensemble members, which allows us to identify prominent features of the ensemble.

4.3 Self-supervised Learning of Similarity
In this section, we present another learning-based approach to spatiotemporal similarity.

In contrast to the cross-prediction method from Section 4.2 that computes similarity

between ensemble members, the new method operates on spatiotemporal patches.

Thus, it can better localize the behavior of interest and can also be applied to non-

ensemble data. Moreover, the similarity is guided by user-constructed queries and can

be computed quickly to perform the search interactively. We evaluate our approach

both qualitatively with a domain expert and quantitatively by comparing to several

baselines on both simulation and experimental ensemble data.

4.3.1 Overview

As described in the introduction of Chapter 4, machine learning can produce domain-

agnostic methods that adapt to the data, which can be a significant advantage. However,

they often require suprvised training data that is usually not available for scientific

datasets, especially newly generated ones. Indeed, it would be cumbersome and unreal-

istic for a domain scientist to meticulously label every region of their dataset, which

78 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

can have high resolution in space and time, as well as numerous members in the case

of ensemble data. This would completely defeat the purpose of a domain-agnostic

visualization system.

To overcome the problem of missing labels, we propose to use self-supervised learning.

The motivation for self-supervised learning comes from the fact that unlabeled data

is unusable by typical supervised models, and yet most of the data is unlabeled. How

can we utilize this large unlabeled data to improve our models? The answer of self-

supervised learning is to define an artificial task (the pretext task) on unsupervised

data that does not require manual labels. For example, predicting if two images are

transformed versions of the same original image to learn transformation-invariant

features. We can then train a supervisedmodel on the pretext task and use it to help solve

the target task, typically by fine-tuning it on a much smaller labeled dataset (Doersch

and Zisserman 2017). However, we do not have any labeled data available. Instead,

we directly use the feature space (representation) learned by the model and compute

distances in that space as our similarity metric. To make sure that these distances

correspond to similarity, we use the siamese architecture for our model.

Siamese networks (Bromley et al. 1993; Chopra et al. 2005) are a method of learning

similarity. They consist of two identical sub-networks that are joined at the output.

Each sub-network takes an input (e.g., an image) and encodes it into a feature space.

Then, a distance is computed between the pair of encodings to output their similarity.

This setup allows us to train the sub-network (which we call the encoder) and also

encourages a feature space with useful distances, since we explicitly constrain the

model to rely on distances when solving the task. Typically, a siamese model is trained

on a labeled dataset of known similarities, but we do not have such data and instead

train the model on a self-supervised pretext task.

The choice of the pretext task is critical to the learned representation and thus the

final performance of our method. Most importantly, we need a task that is as similar

as possible to our target task because similar tasks require similar information to

be encoded by the model. One should also consider the invariances imposed by the

task on the representation, as they will determine what information gets preserved

or discarded. With this in mind, we designed our task to be a binary classification

problem: “given two spatiotemporal regions of the data, are they nearby in space and

time?”. More concretely, the model is provided with two rectangular spatiotemporal

patches (boxes) from the data and needs to determine whether they originate from

the same ensemble member and within a certain spatiotemporal window from each

other. This task is closely related to detecting similar behavior because nearby locations

often contain similar behavior. Additionally, we explicitly encourage temporal and

translational invariance of our representation, which helps detect similar processes that

are not perfectly aligned. Note that other formulations are possible, e.g., predicting the

distance of patches in space/time (regression) or using contrastive loss, but we prefer a

4.3 ● Self-supervised Learning of Similarity 79

classification formulation for practical reasons. It is simple and produces an intuitive

performance metric – accuracy, which allows us to make sure that the model is solving

the pretext task during training. In contrast, raw MSE or cross-entropy values would

be more difficult to interpret.

The result of the self-supervised training of our siamese model is the encoder that

enables us to compute distances between data patches in the learned feature space. Of

course, one cannot expect this distance to provide a perfect solution for the target task

of finding similar behavior, but we demonstrate below that it is meaningful and is a

significant improvement over distances computed directly on the raw data (Section 4.3.6,

Section 4.3.7 & Section 4.3.8).

We can apply our technique to any type of a spatiotemporal dataset that is large enough

for training, but we focus on ensemble data because it allows us to most effectively

demonstrate the utility of our learned similarity. Ensemble datasets often contain

many distinct types of behavior but are typically too large to manually search through.

We will demonstrate that our approach can detect these behavior types without any

domain-specific assumptions. More specifically, we describe and evaluate our approach

with 2D+T ensemble data as it enables us to effectively present our results, but we also

show that our approach works with 3D+T data (Section 4.3.7). As mentioned above,

our similarity metric could be useful in a large variety of visualization applications.

To exemplify one of these applications and better demonstrate the properties of the

learned metric, we use it to perform search for occurrences of similar behavior. We

developed a prototype system that enables the user to do this search interactively to

explore an ensemble dataset (Section 4.3.5).

Our prototype’s main feature is the example-based search over spatiotemporal patches,

i.e., 2D+T rectangular subsets of the data. The user can select a few patches containing

behavior of interest, and the system returns others containing similar behavior. The

similarity is determined using our metric, encoding the query patches and measuring

distances to other patches in the learned feature space. While the prototype has only

basic features, it showcases our learned metric and its possible applications.

4.3.2 Pretext Task and Model
The key component of our approach is the model that we train on the pretext task. As

indicated above in Section 4.3.1, the pretext task is to predict whether two spatiotemporal

patches originate from nearby locations in space and time. As our model, we use a

neural network that follows the siamese architecture. A typical siamese network takes

two inputs (in our case, 2D+T patches), passes them through an encoder and computes

the distance between the encodings. Crucially, both inputs use the same encoder, i.e.,

they share weights. This ensures that the inputs are projected into the same space in

which distances will be computed.

80 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

Patch Q1

Encoder

Encoding Q1

Patch Qk

Encoder

Encoding Qk

… ……

Patch T

Encoder

Encoding T

∙

∙

∙

… F
C

Q near T?

Figure 4.2 — Our model architecture. We encode the query (Q1, ..., Qk) and the test (T)

patches using a convolutional encoder. Then L1 distances from each encoded query

patch to the encoded test patch are computed. Finally, the average distance is used by

the fully-connected layers (FC) to predict if the query and the test patches are located

nearby.

In our search application, we will be computing distances to several patches provided

by the user, not just one. To improve the performance in this regard, we deviate from a

typical siamese model. Specifically, we replace one of the input patches with a set of k
patches, here called the query. During the training, these patches are sampled from the

same spatiotemporal neighborhood, and the network’s task is to predict whether they

also share the neighborhood with the other input patch, called the test patch.

An illustration of the model architecture is presented in Figure 4.2. Each input patch (the

query patches and the test patch) goes through the encoder, which is a convolutional

network. All invocations of the encoder use the same shared weights. Next, we compute

an element-wise distance between each of the query patch encodings and the test patch

encoding. These distances are then averaged (again, element-wise) and used as input

for a fully-connected layer that acts as a simple classifier predicting whether the inputs

came from the same neighborhood. We use element-wise L1-distance following Koch

2015. The element-wise aspect is particularly important in our self-supervised case:

if instead we would have a vector distance producing just a scalar value, the pretext

task will have to be solved in the encoder already, which would specialize the learned

4.3 ● Self-supervised Learning of Similarity 81

representation to the pretext task and make it less general. Thus, we use the element-

wise distance to let more information pass through the distance operator, shifting the

pretext task decision towards the classifier.

4.3.3 Model Training
The model is trained on data sampled from an ensemble of spatiotemporal volumes.

Each data point consists of several patches: the test patch and the set of k query patches.

Half of the points represent the positive class, i.e., query and test patches coming from

the same neighborhood, and half represent the opposite class. In either case, we first

determine the location of the test patch by uniformly sampling a random ensemble

member and then uniformly sampling a spatiotemporal location within it. This makes

sure that ensemble members of different sizes are equally represented in the training

data. For points of the positive class, the query patches come from the same member as

the test patch, sampled uniformly from a spatiotemporal neighborhood around the test

patch. The neighborhood is defined by the maximum spatial and temporal offsets os, ot.

This means that all query patches are at most os cells and ot timesteps away from the

test patch. For negative points, we first randomly choose an anchor location that is not

in the neighborhood of the test patch. We then uniformly sample k patches around

the anchor location with maximum offsets os, ot, like the positive case but around a

different location. Thus, the query patches always represent similar behavior, which

makes them more suitable for distance averaging and improves our latent space. When

choosing the offset parameters, we generally try to make offsets larger to make the

pretext task more difficult while still training to high accuracy (in Section 4.3.8 we also

show that the method is robust to the choice of parameters).

After the data is collected, we train the model using standard ML practices. We use

20% of the data as a hold-out validation set to monitor the model’s generalization

performance and perform early stopping. Overall we observed that higher accuracy and

lower overfitting on the pretext task leads to better performance of the derived similarity

metric. Implementation details of the model and its training follow in Section 4.3.5.

4.3.4 Similarity Metric
Once themodel is trained, we use the encoder to compute patch similarity. With encoder

fe and two spatiotemporal patches p1, p2, our patch similarity metric d (technically,

dissimilarity) is determined by the L1-distance between the encoded patches:

d(p1, p2) = ∥fe(p1) − fe(p2)∥1 . (4.3)

As described in Section 4.3.1, we demonstrate the utility of this metric by performing

interactive queries. To provide results for user queries, we use our similarity metric to

82 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

Layer Units/Ch. Activation Kernel size Strides

Conv3D 64 ReLU (1, 3, 3) (1, 2, 2)

Conv3D 128 ReLU (1, 3, 3) (1, 1, 1)

Conv3D 128 ReLU (3, 3, 3) (2, 2, 2)

Conv3D 256 ReLU (1, 3, 3) (1, 2, 2)

Reshape

FC 256 ReLU

FC 256 Sigmoid

Table 4.1 — The architecture of our convolutional encoder, top-to-bottom. We use a

sequence of strided convolutions followed up by a few fully-connected layers to encode

each input patch.

construct a ranking score. A query Q consists of two sets of spatiotemporal patches:

a set of positive examples Q+ containing behavior the user is interested in; and an

optional set of negative examples Q− containing behavior that the user would like to

exclude. The negative examples can help the user narrow down the query and filter

out false-positive results. We define the ranking score r of some patch p to be the

average similarity metric between the patch and the query, where the sum of distances

of negative patches is subtracted from the sum of distances of positive patches:

r (Q+, Q−, p) =
1

∥Q+∥ + ∥Q−∥
(∑

p+∈Q+
d(p, p+) − ∑

p−∈Q−
d(p, p−)) (4.4)

The ranking score is therefore low for patches that are similar to the positive part of the

query and dissimilar to the negative, indicating a good match. The score is normalized

to make the values more comparable across queries of different sizes. Note that during

the model training we used only a single set of patches but sampled both positive

and negative examples to learn a good similarity metric. This implicitly supports our

ranking score that has the positive and the negative parts.

4.3.5 Implementation & Prototype System
Network implementation. The architecture of our convolutional encoder is depicted
in Table 4.1. Since the ensemble datasets in the evaluation are all 2D+Time, we use 3D

convolutional layers to perform both spatial and temporal convolutions, taking an input

with dimensions batch, time, height, width, channels. For the 3D+T implementation

in Section 4.3.7 we replace all the 3D convolutional layers (2D+T) of the encoder with 4D

convolutions (3D+T), using the same strides and sizes. The 4D convolution takes a tensor

with dimensions batch, time, depth, height, width, channels, and is implemented as

a series of 3D convolutions along the time dimension. The output of the final fully-

connected layer is used as the encoding of the input. After applying the encoder to

4.3 ● Self-supervised Learning of Similarity 83

each patch, we compute element-wise L1 distance between each query patch and the

test patches (see Figure 4.2). The distances are then averaged componentwise. Finally,

the average distance vector is passed to the classifier. The classifier is a single fully-

connected layer with one unit that has the sigmoid activation. During the training, we

set the number of query patches k = 2 for all our models. Increasing the k further did

not harm the final performance but also did not seem to improve it, so we chose the

lower value.

The process of sampling training data is described in Section 4.3.3. For all datasets, we

downsample spatially by the factor of two and then sample 500,000 data points (50,000
for the non-ensemble Isabel dataset), each consisting of k + 1 input patches. We split

the points 50:50 between the positive and negative classes, but other ratios could be

explored. We also perform data augmentation: patches are randomly mirrored along

the spatial axes, and their values are scaled with a random coefficient ∈ [0.5,1.5]. We

train the model using the Adam optimizer (Kingma and Ba 2014) with a learning rate

of 10−4 and a batch size of 32. As a loss function we use binary cross-entropy and an

L2-regularization term with a lambda of 2 × 10−4. During training, we monitor the loss

on the held-out validation set and terminate the training when the validation loss stops

improving.

To perform search using the ranking score from Section 4.3.4, we first need to obtain

the encodings of all the candidate patches. We can choose how densely to sample the

candidates, trading off matching time for spatial precision. We extract patches that

are non-overlapping in time. When using patches that do not cover the whole spatial

domain (Section 4.3.6), the patches are extracted with spatial stride equal to the quarter

of their size. This introduces some redundancy, since the patches overlap, but enables

us to better study the spatial properties of our method.

Prototype system. To better demonstrate the utility of our ranking score and learned

similarity metrics in general, we developed a prototype system for navigating ensembles

of spatiotemporal data. This is a challenging task, especially for ensembles with a large

number of members, making it prohibitive to manually search for the behavior of

interest. Our system addresses the problem by allowing the user to find instances of the

behavior with only a handful of examples. This reduces the effort for the user, as well

as avoids rendering large amounts of data at once. It also reduces the risk of missing

good matches compared to the manual search.

In our prototype, we limit ourselves to working with patches that spatially cover the

whole domain, i.e., temporal slices (we investigate spatial aspects in Section 4.3.6). The

front-end interface of the system is shown in Figure 4.3, with the cylinder dataset

loaded (depicting flow around a cylinder at the bottom of the domain). The navigation

panel (1) is the main component of the UI. Here we present each ensemble member as

a row containing a list of renderings of its timesteps. The user can click on a timestep

84 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

-0.01 0.22

Figure 4.3 — Our interactive prototype for navigating an ensemble of spatiotemporal

data, demonstrating query results on the cylinder dataset. In the navigation panel (1) we
render a timestep rollout of all the members, showing markers for the query patches (5),
ranking score (6, colorbar below) and highlighting the timesteps that match (7). In
panel 2 we show sorted ranking scores of all patches in the ensemble. This gives an

impression of their distribution and allows us to select which patches are considered

to be a match. In panels 3 and 4 we show the contents of the query and the full list of

matching patches.

to include a patch starting on this timestep into the query. We show the contents of

the query using green and red marks (5) in the navigation panel, as well as a separate

list in the query panel (3). The green marks correspond to positive examples and red

to negative. Once the query is formed, the user can use the controls (2) to execute

the query, loading the results from the back-end. The results are presented in several

ways. First, we encode the ranking score (similarity) of every patch in the ensemble

as a colored bar right below the timestep renderings (6, colorbar below). The best N
matching patches are highlighted with green (7) in the navigation panel and are also

shown as a list in the matches panel (4). To allow the user to configure the value N , we

show the ranking score graph (2), plotting the sorted ranking scores of all the patches

in the dataset. This gives an overall impression of the distribution of ranking scores

and enables the selection of the cut-off line, i.e., how many top matches to display.

Finally, the user can also sort the members in the navigation panel, according to the

current query: members mentioned in the query itself are shown on top, followed by

the members with the most matches. This makes it possible to quickly see the most

relevant members for the current query and its results.

4.3 ● Self-supervised Learning of Similarity 85

4.3.6 Qualitative Evaluation
In this section, we perform a qualitative evaluation, demonstrating specific queries and

their outcome (Section 4.3.6). We then show how our approach compares to results

manually crafted by a domain expert (Section 4.3.6) and discuss her feedback (Sec-

tion 4.3.6).

Query Results

First, we demonstrate the search results on the “droplet splash” dataset, which is an

ensemble of experiments containing monochrome camera images of a single droplet

impacting a thin liquid layer. Using different fluids, droplet size and impact velocity

result in different impact regimes such as deposition, bubble formation or splashing,

i.e., secondary droplets separating. There are 110 members, each ranging from 44 to

538 timesteps with a spatial size of 224 × 160. We used patches with a temporal size

of three timesteps and a spatial extent of 50, and the neighborhood size is defined as

ot = 9, os = 60. This experimental ensemble is particularly challenging, as it contains

images with differences in panning, zoom and illumination. Conventional similarity

metrics often yield poor results under these conditions (see discussion below). However,

since our model is trained on the dataset, it is able to learn some of these invariances

and performs robustly.

In Figure 4.4 we present the results of different queries. First, we performed a query

searching for fluid crowns (Figure 4.4a). The query contains three positive examples

of crowns and one negative example with the initial droplet collision that occurs just

before a crown is typically formed. In the results, we present the best matching patches

rendered in the context of the data. Specifically, we took 500 best matching patches

and grouped them by the timestep they begin on. We render timesteps that have

the highest count of matches, highlighting the matching patch locations. The patch

rectangles are colored according to their ranking score and rendered in worst-to-best

order. Thus, in the locations where multiple patches overlap, we see the best-ranking

score for that location. We observe that the results contain examples of crowns with

varying shapes coming from many different members (specified by their ID). Despite

the significant optical differences between the experiments, the method is able to detect

relevant behavior. Furthermore, we see that beyond determining the member and the

timestep where the behavior took place, we also receive spatial information: the best

matching patches are well aligned spatially with the feature of interest. For an example

of constructing queries interactively, see the supplementary video.

Another query is shown in Figure 4.4b. Here we search for instances of splashing, i.e.,

secondary droplets forming after the collision. We see that the results again contain a

diverse set of patches matching our query. Even though direct differences between the

patches with secondary droplets are large, our method can still find them. We found a

86 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

id:7 t:23
id:15 t:31

id:54 t:30
id:60 t:15

id:5 t:24
id:76 t:27

id:15 t:39
id:16 t:36

id:16 t:33
id:16 t:39

id:15 t:42
id:76 t:21

id:12 t:33
id:75 t:27

id:2 t:36
id:76 t:24

id:76 t:30
id:12 t:30

id:44 t:39

id:34 t:36
id:12 t:27

id:34 t:27
id:33 t:24

id:15 t:33
id:15 t:30

id:15 t:36
id:44 t:33

id:16 t:30
id:44 t:36

id:16 t:27
id:34 t:45

id:44 t:30
id:40 t:27

id:15 t:27

0.028
0.033

(a)
A
q
u
e
r
y
f
o
r
c
r
o
w
n
s
.

id:0 t:31
id:1 t:38

id:9 t:40
id:0 t:21

id:69 t:12
id:54 t:29

id:0 t:45
id:0 t:42

id:0 t:36
id:0 t:48

id:0 t:39
id:9 t:39

id:66 t:54
id:66 t:57

id:9 t:60
id:0 t:33

id:0 t:51
id:66 t:48

id:66 t:51
id:0 t:54

id:9 t:42

id:9 t:36
id:9 t:45

id:9 t:57
id:66 t:45

id:66 t:60
id:0 t:57

id:66 t:42
id:66 t:63

id:9 t:48
id:9 t:51

id:0 t:30
id:66 t:39

id:0 t:60
id:9 t:33

id:66 t:36

-0.05
-0.03

(b)
A
q
u
e
r
y
f
o
r
d
r
o
p
l
e
t
s
p
l
a
s
h
i
n
g
.

id:97 t:147

id:63 t:60
id:97 t:165

id:101 t:54
id:100 t:54

id:62 t:81
id:71 t:120

id:65 t:39
id:68 t:81

id:89 t:81
id:64 t:24

id:102 t:57
id:99 t:54

id:69 t:126

0.00
0.07

(c)
A
q
u
e
r
y
f
o
r
j
e
t
s
.

id:0 t:31
id:1 t:38

id:9 t:40
id:0 t:21

id:69 t:12
id:54 t:29

id:66 t:0
id:66 t:3

id:66 t:69
id:64 t:3

id:64 t:48
id:64 t:39

id:64 t:45
id:65 t:72

id:64 t:42
id:64 t:60

id:64 t:51
id:64 t:63

id:64 t:54
id:65 t:90

id:63 t:12

-2811.8
-2658.0

(d)
M
S
E
r
e
s
u
l
t
s
f
o
r
t
h
e
q
u
e
r
y
f
r
o
m

b
.

Figure
4.4

—
Q
u
e
r
y
r
e
s
u
l
t
s
o
n
t
h
e
d
r
o
p
l
e
t
s
p
l
a
s
h
d
a
t
a
s
e
t
.
I
n
t
h
e
t
o
p
l
e
f
t
,
w
e
r
e
n
d
e
r
t
h
e
q
u
e
r
y
p
a
t
c
h
e
s
(
t
h
e
i
r
fi
r
s
t
t
i
m
e
s
t
e
p
)
.

W
e
c
o
l
o
r
t
h
e
m
a
t
c
h
i
n
g
p
a
t
c
h
e
s
b
a
s
e
d
o
n
t
h
e
i
r
s
c
o
r
e
,
w
h
e
r
e
b
l
u
e
m
e
a
n
s
b
e
t
t
e
r
m
a
t
c
h
e
s
.
A
s
w
e
s
e
e
,
o
u
r
m
e
t
h
o
d
fi
n
d
s
m
a
n
y

d
i
v
e
r
s
e
e
x
a
m
p
l
e
s
o
f
t
h
e
q
u
e
r
i
e
d
b
e
h
a
v
i
o
r
,
w
h
i
l
e
M
S
E
p
r
o
d
u
c
e
s
t
r
i
v
i
a
l
r
e
s
u
l
t
s
.

4.3 ● Self-supervised Learning of Similarity 87

few examples that initially look like crowns (see also appendix), but on closer inspection,

they turn out to be crowns that have just transformed into a spray of secondary droplets,

thus matching the query. This hints at a property that follows from the training process:

since we train the model by encouraging spatiotemporal coherence, we expect the

matching to be somewhat “fuzzy”, also having low distances to spatially and temporally

neighboring behavior.

For comparison, in Figure 4.4d we show the same query but using MSE as the similarity

metric for the ranking score. The search does not yield meaningful results, among others

returning patches with empty space, since MSE heavily prioritizes the background and

misses the droplets. It returns one valid timestep by matching the background, but

this is only a rare outlier. In contrast, the top model-based results (Figure 4.4b) contain

precisely the relevant patches with splashing droplets.

Although crowns and secondary droplets are the key features of this dataset, we also

want to investigate if the method is capable of finding rare events. We constructed a

query with just a single patch containing a fluid column with a droplet separation (Fig-

ure 4.4c). This figure, shows only the best frame of each matched member to conserve

space (full result in the appendix). Here we note two types of matches. First, we see

some crowns that have distinct fluid columns with droplets separating (id 63 and 101).

Since separation occurs simultaneously in several locations, we get a lot of matches, and

the corresponding timesteps get sorted to the top. Then, we also see some matches with

a single fluid column. Some are from the query member (id 97), but some point towards

other members with similar behavior (id 62, 71 and 89). Despite this event being much

less typical for the ensemble, our approach was able to find similar instances with just

a single example.

Next, we evaluate the temporal aspects of our metric on the “cylinder” dataset. This

dataset is a CFD simulation ensemble of flow around a cylinder obstacle. Depending on

the Reynolds number and the obstacle configuration, one observes different degrees

of turbulence in the flow. We cropped the spatial domain, such that the obstacle is no

longer visible (only the channel), so that the matching algorithm cannot “cheat” by

comparing the obstacles. We used 300 ensemble members, where each member is a

scalar velocity magnitude field with 39 timesteps and the spatial domain size 84 × 220.

For this dataset, we focus on behavior extending over the whole spatial domain, so we

use patches with the temporal size of three and spatial size equal to the data domain

size, while the neighborhood size is ot = 9. In Figure 4.3, we used our prototype to

perform a query for turbulent members, providing two examples of turbulence and one

negative example containing laminar behavior.

As we can see, after sorting the members by the number of matching patches, we find

many other members containing turbulent behavior. Notice that the exact geometry

of the flow can be very different, but the model still considers them similar due to

88 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

(a) Results by the domain expert (Geppert et al. 2017).

(b) A query for splashing. (c) A query for deposition.

Figure 4.5 — Comparison of manual domain-specific results to our method. a: Parame-

ter space map of droplet impact regimes manually constructed by the domain expert. b:
Ranking scores of ensemble members for a splashing query (see Figure 4.4a). We find

structure similar to (a), with best matching experiments (in blue) being located in the

top-left quadrant of the parameter space and a similar transition region (the transition

line from (a) plotted for comparison). We also found a poor-matching outlier region

(marked “1”). A closer investigation led to the discovery of a region containing bubble

formation and deposition that was previously unknown to the expert. c: Ranking
scores for a deposition query. We find best-matching experiments to have lower Weber

number or higher film thickness, in accordance with domain-expert results. A few

experiments (marked “2”) are matched moderately well by both queries because they

display both bubble formation and splashing.

invariances learned during training. We also observe that the matching is successful

temporally: we identify the point in time when the turbulence starts to occur.

4.3 ● Self-supervised Learning of Similarity 89

Parameter Space Analysis

Next, we evaluate our results on the “droplet splash” dataset in comparison with the

extensive manual analysis by a domain expert. This dataset was collected to study

droplet impact regimes wrt. experimental parameters such as fluid viscosity, droplet

velocity, film thickness, etc. In the previous analysis (Geppert et al. 2017), the expert has

taken a subset of the ensemble depicting a particular fluid and has manually constructed

a regime map of the parameter space, shown in Figure 4.5a. As we change the droplet

velocity (Weber number) and the film thickness, we observe qualitatively different

outcomes, with a thicker film and a slower droplet leading to cleaner deposition.

To compare our method’s ability to detect different impact regimes, we performed

two queries, one for splashing (also in Figure 4.4b) and another one for deposition.

Then, we computed a ranking score for each ensemble member by simply taking the

minimum score of all the patches from a given member. Thus, if a member contains a

well-matching patch, the member itself is considered to be well-matching. We visualize

the member scores positioned in the parameter space to compare them to the regime

map that was constructed manually by the domain expert.

In Figure 4.5b we show the splashing query results. The best-matching members are

located in the top-left corner (high velocity, thin film), and we can see that the score

degrades as we move bottom-right, forming a transition region, which aligns well

with the expert results. We plot the transition line from the expert map to make the

comparison easier. Here we noticed a region with some poorly-matching outliers in

the top-right quadrant (marked with “1”). After consulting with the domain expert

and checking the experiment images, we found out that there is a bubble deposition

subregime, which explained why the splashing query was not matching well. More

importantly, its existence was previously unknown to the expert, highlighting one of

the strengths of our method: being able to detect features of the data that the domain

expert might have overlooked.

In Figure 4.5c we show results of a deposition query. Here, as expected, we get an

inverse result: best-matching members contain clean deposition and are located in the

bottom right corner of the parameter space (low velocity, thick film), and the splashing

members (top-left corner) have high scores, again corresponding well to the results

by the expert. We found one interesting outlier (marked with “2”) that is matched

reasonably well by both the splashing and the deposition queries. Upon inspection, we

found that it contains a splashing phase, followed by a bubble phase, and since we use

the minimum function to aggregate the patch scores for this figure, the member was

matched well by both of the queries, each matching an appropriate time range.

Overall, we confirmed that our technique yields meaningful results when applied to

data from this domain, successfully finding different types of behavior with a few simple

90 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

queries. The results exhibit a high degree of similarity to the manually-constructed

regime map, which the domain expert also pointed out (Section 4.3.6).

Domain Expert Feedback

As part of our evaluation, we discussed our results on the droplet splash data with a do-

main expert in droplet dynamics. She collected and extensively analyzed the experimen-

tal ensemble data. We performed searches for several droplet regimes (e.g. Figure 4.4),

which were previously studied by manually selecting relevant members and time ranges

that were fed into ad-hoc Matlab scripts for further analysis. The expert noted very

good agreement for detection of droplet splashing and deposition with bubble formation

and fair results for queries of crown-forming deposition and jet formation. However,

the query for splashing with bubble formation had a lot of unexpected matches. Here

our method produced many matches containing crown-forming splashing, confusing

bubbles with transparent crowns. Our parameter space comparison (Section 4.3.6) was

viewed very positively: “In my opinion, the results are very good. The splashing limit

is quite well reproduced in your maps.”. The expert also pointed out that we found a

small region that was previously inaccurately classified: “You detected a small region

of bubble formation and deposition, which we did not recognize or to be precise which

we counted as splashing”.

She was very optimistic about the utility of the system in her workflow: “I think such a

tool would have been and would be very useful for us because all the regime maps and

splashing limits were derived by manually digging through every video and deciding

what we see. [...] A tool like yours would make it much easier if we are looking for

example at a special feature like jet formation.” As a suggestion, she noted that the

current results for splashing with a bubble could be further improved by performing

iterative searches, i.e., first searching for a generic regime and then narrowing down

the results with more specialized queries. Overall, we received very positive feedback

about our technique, suggesting that our domain-agnostic method can act as a useful

building block in addressing domain-specific problems.

4.3.7 Comparative Evaluation

In this chapter, we aim to demonstrate that machine learning can be used to construct an

effective spatiotemporal similarity metric in a domain-agnostic fashion. This section dis-

cusses existing approaches to computing a spatiotemporal similarity metric and perform

a qualitative comparison to some of these techniques. In the next section (Section 4.3.8),

we also compare quantitatively to many more alternative methods.

4.3 ● Self-supervised Learning of Similarity 91

Alternative Approaches

A similarity metric is an important component of many ensemble visualization ap-

proaches. Thus many other possibilities have been proposed. These can be roughly

split into two categories. First, there are mostly generic vector, image or distribution

distances, such as MSE (L2), L1, EMD, SSIM and local histogram differences. Such

similarity metrics can be applied directly to the raw data and are a very common choice

in modern ensemble visualization literature (see Table 2 in the survey by Wang et al.

2019). The other group of methods extracts domain- or problem-specific features from

the data (e.g., vorticity or λ2 for CFD datasets) and computes distances in that feature

space.

The former metrics are the most appropriate to compare with our technique, as they

are widely used in recent work and are similarly domain-agnostic. We compare our

method to many of these metrics in our quantitative evaluation in Section 4.3.8. The

comparison to the latter group is less appropriate since we are proposing a general

domain-agnostic technique. While problem-specific solutions might outperform a

general method, they cannot be applied to data from different domains, which is the

core motivation for a learning-based similarity. Nevertheless, we still compare with two

specialized methods in Section 4.3.7 and Section 4.3.7. We have chosen these approaches

because they rely on a commonly used algorithm (SIFT), are somewhat data-agnostic

(within their domain) and do not rely solely on basic distance metrics, improving the

diversity of our evaluation. With this, we demonstrate that our generic metric yields

similar performance while not relying on domain-specific features.

Comparison to SIFT

In this section, we compare the results of our similarity metrics to those computed

with SIFT (Lowe 2004). SIFT is a computer vision technique for computing image

keypoints and their local feature descriptors that are invariant to illumination, scale and

orientation changes. Since SIFT is a robust matching algorithm that can, in principle,

be applied to any scalar field, it provides an interesting comparison for our approach.

We applied the SIFT algorithm (which computes sparse image correspondences) to

perform our patch-based queries as follows. First, we compute SIFT keypoints for

all the timesteps and all the members of the ensemble dataset. By computing the

keypoints over the whole spatial domain (as opposed to a given patch), we make sure

that any large-scale keypoints would still be correctly extracted. Next, we define the

SIFT distance between two patches as the minimum SIFT-descriptor distance between

any keypoints lying within the patches. Given a query consisting of several positive and

negative examples, we compute the ranking score according to Equation 4.4, i.e., the

average SIFT distance from all the query patches to a candidate patch, where negative

92 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

(a)
C
r
o
w
n
q
u
e
r
y
(
o
u
r
s
)
.

(b)
C
r
o
w
n
q
u
e
r
y
(
S
I
F
T
)
.

(c)
S
p
l
a
s
h
i
n
g
q
u
e
r
y
(
o
u
r
s
)
.

(d)
S
p
l
a
s
h
i
n
g
q
u
e
r
y
(
S
I
F
T
)
.

Figure
4.6

—
C
o
m
p
a
r
i
s
o
n
o
f
o
u
r
s
i
m
i
l
a
r
i
t
y
m
e
t
r
i
c
t
o
S
I
F
T
o
n
t
h
e
d
r
o
p
l
e
t
e
n
s
e
m
b
l
e
.a,b:

w
e
s
e
e
t
h
a
t
b
o
t
h
m
e
t
h
o
d
s
p
r
o
d
u
c
e

g
o
o
d
r
e
s
u
l
t
s
o
n
t
h
e
fl
u
i
d
c
r
o
w
n
q
u
e
r
y
,
a
s
i
t
i
s
v
e
r
y
s
u
i
t
a
b
l
e
f
o
r
t
h
e
S
I
F
T
d
e
s
c
r
i
p
t
o
r
s
.c,d:

H
o
w
e
v
e
r
,
o
n
t
h
e
s
p
l
a
s
h
i
n
g
q
u
e
r
y

o
u
r
m
e
t
h
o
d
r
e
t
u
r
n
s
m
o
r
e
r
o
b
u
t
s
r
e
s
u
l
t
s
,
a
s
S
I
F
T
i
s
s
t
r
u
g
g
l
i
n
g
t
o
m
a
t
c
h
s
m
a
l
l
d
i
s
p
e
r
s
e
d
r
o
p
l
e
t
s
.
A
n
e
x
t
e
n
d
e
d
v
e
r
s
i
o
n
o
f
t
h
i
s

fi
g
u
r
e
c
a
n
b
e
f
o
u
n
d
i
n
t
h
e
a
p
p
e
n
d
i
x
.

4.3 ● Self-supervised Learning of Similarity 93

patches contribute negatively. This way, we compute the SIFT-based ranking score

from the query to every dataset patch and find the best matches.

The results for the “droplet splash” are presented in Figure 4.6. In Figure 4.6a and Fig-

ure 4.6b we show the results for the same crown query obtained using our model and

the SIFT-based method. As we can see, SIFT produces a very accurate matching, which

is not surprising: the dataset of camera images and the characteristic corners of the

crowns provide an ideal application scenario for SIFT. Our model also successfully finds

crowns in the data, though it also sometimes matches similar bubble deposition (this is

discussed in more detail in Section 4.3.6).

Next, we perform a query for splashing (Figure 4.6c, Figure 4.6d), and here we see that

SIFT performs much less robustly, also returning some crown deposition cases. The

reason behind this is that a spray of small droplets does not yield robust SIFT keypoints,

thus leading to worse performance. In contrast, our method has learned dataset-specific

features and is thus able to return accurate matches.

Overall, we found that our method performs well compared to SIFT-based matching on

this dataset of camera images and even outperforms it in some scenarios. Furthermore,

we were unable to apply SIFT to our “cylinder” CFD ensemble (described in Section 4.3.6)

because SIFT is not extracting any keypoints for most of the timesteps of this smooth

dataset, while our method still performs robustly. This once again demonstrates the

advantages of our generic similarity metric.

Comparison to Wang et al. 2016

In order to demonstrate that our approach can qualitatively match the results obtained

with more traditional non-MLmethods, we compare to the results fromWang et al. 2016.

They introduced a method for finding similar regions in vector fields, which is used

to return matches for a user-provided query region. First, they extract a pre-defined

set of vector field features (called traits): divergence, the norm of Jacobian, etc. Then,

SIFT-matches are computed in each field and used as match candidates. This serves to

reduce the search space, as well as align the candidate regions with the query. Finally,

they use the weighted L2 norm to evaluate the similarity of candidates to the query

region. Notably, the method relies on a fixed set of features and can only be applied

to vector fields. As discussed in Section 4.3.7, our approach prioritizes generality and

thus only relies on a single raw scalar field. We also compare with applying SIFT to

raw data in Section 4.3.7.

To compare to the results byWang et al. we apply our method to the Isabel dataset, using

the 3D+T version of our encoder (Section 4.3.5) and a 3D+T patch size 3 × 15 × 50 × 50,

matching the proportions of the Isabel dataset. Unlike Wang et al., we are only using

a single scalar field as input – the velocity magnitude. After training the model, we

performed a query that aims to reproduce the result in their teaser image (Fig. 1 inWang

94 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

Figure 4.7 — Comparison of our method to Wang et al. 2016 on the example of the 3D

Isabel dataset. The figure is analogous to Fig. 1 in their paper. We provided a single query

patch of the hurricane eye in timestep 20 (left) and then render the best matching patch

in the following timesteps. As we see, similarly to the method of ūthorg:wang:2016, we

are able to track the eye of the hurricane.

4.3 ● Self-supervised Learning of Similarity 95

et al. 2016). In the query, we provided a single patch near the eye of the hurricane

at timestep 20, and in Figure 4.7 we visualize the best-matching patch in each of the

following timesteps, rendering it as a transparent red box. Here we sampled candidate

patches with stride equal to a quarter of the patch size to provide better spatial precision.

As we can see, we are able to reproduce the result, effectively tracking the eye of the

hurricane, while using only a single scalar field and not relying on any vector field

features. This demonstrates the model’s ability to learn relevant features during the

self-supervised training.

4.3.8 Quantitative Evaluation

Next, we perform a quantitative evaluation of our method, aiming to assess its accuracy

and compare it to alternative approaches. However, we do not have the ground truth

describingwhat behavior occurs in different parts of the data or the similarity of different

data patches. In fact, this is the very problem that we are addressing with our method.

Thus, to enable the evaluation, we have manually labeled a small subset of the “cylinder”

simulation ensemble (25 out of 300members). This ensemble exhibits a range of different

outcomes, however, there are two overall behavior types that we can approximately

distinguish: turbulent and laminar flow. Importantly, this behavior occurs across the

whole spatial domain, which means that we only need to label timesteps.

We assess accuracy using different search quality metrics (Section 4.3.8), both for our

method and four alternative approaches (Section 4.3.8). Then in the following sections,

we discuss results on manual as well as random queries, quantify model variance and

its generalization performance.

Quality Metrics

Given a query, our method assigns a score to each patch in the data, effectively ranking

the patches based on howwell they match the query. Assuming that the positive patches

in the query all contain some sought-after behavior A and all negative patches do not

contain behavior A, we get the binary ground truth of patch relevance: patches with

behavior A are relevant, and patches without behavior A are irrelevant. With this, we

compute precision at three different cut-off ranks of 10, 50 and 100, e.g., Precision@50

is the percentage of relevant patches in the top 50 matches. In an interactive search

scenario, it would be unreasonable to consider cut-off values above a few hundred for

user investigation.

Aiming to also measure the result completeness, we designed a metric suitable to our

problem. We compute timestep coverage, i.e., what percentage of timesteps exhibiting

the queried behavior is included (covered) in the top N patches. And we determine

N to be the minimum amount of patches needed to cover all the relevant timesteps.

96 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

✓ ✓ ✓ ✓ ✗ ✗

Member 1 t

✓ ✓

Member 2 t

✓✓✓✓✓✓

✓✓✓✓✓✓✗✗
= 75%

Figure 4.8 — Our coverage metric illustrated on a simple example. Two members of

the ensemble contain the queried behavior (green) in some of its timesteps. To fully

cover all queried regions with non-overlapping patches (brackets) we need four patches.

Thus, we consider the top four matches according to our score (solid-line brackets).

Due to a false negative in member 1 and a false positive in member 2, we miss two

timesteps and get the total coverage of 75%.

See Figure 4.8 for an example. A ranking score that prioritizes patches with matching

behavior will have higher coverage. The metric is less sensitive to the changes in the

patch size, whereas precision may be more optimistic when the patch size is small

and many candidates are available. Furthermore, the coverage metric considers how

patches are positioned near the borders of feature regions: missing a patch that barely

touches a relevant region has less penalty than missing a patch in the middle of the

region.

Baseline Methods

We compare ourmodel against many other similaritymetrics: mean squared error (MSE),

earth mover’s distance (EMD), EMD applied to histograms (Hist-EMD) and a metric

based on a pre-trained VGG16model. In the appendix, we also show results for structural

similarity (SSIM), L1 distance applied to histograms (Hist-L1) and fine-tuned VGG vari-

ants. To implement search using these metrics, we replace our model-based similarity

metric d with the baseline metric when computing the ranking score from Equation 4.4.

For the MSE metric, we compute the squared difference between the two spatiotemporal

patches. We compute the EMD using the POT library (Flamary and Courty 2017) im-

plementation of the Sinkorn algorithm (Cuturi 2013), computing the distance between

the first timesteps, downsampled by the factor of four. Even with these simplifications,

it takes around two days to perform the EMD computations for the evaluation on the

“cylinder” ensemble. Hist-EMD is computed as the distance between the patch data

4.3 ● Self-supervised Learning of Similarity 97

sorted into a histogram. VGG16 (Simonyan and Zisserman 2015) is a large computer

vision model (100 million parameters vs. our 2 million) pre-trained on a big image

classification dataset. VGG has been shown to generate generic features that are useful

for estimating image similarity (Zhang et al. 2018). By comparing with it, we want to

check if our encoder is learning useful problem-specific features or if it can be replaced

with a powerful but generic computer vision model. The VGG metric is computed by

putting the first frame of each patch through the VGG16 model and computing the

distance in its learned feature space. Specifically, we take the output of the “fc1” layer

and compute the Euclidean distance.

Query Results

We manually prepared two groups of queries containing typical laminar and turbulent

patches. The quantitative metrics are presented in Table 4.2 and the rendered matches

are shown in Figure 4.9. First of all, we see that overall the model-based search

outperforms all the baselines, especially the non-ML methods. Specifically, the model

shows both higher precision in the top results and higher coverage. The difference

between the methods is generally less pronounced on the laminar queries because this

scenario is more favorable for our baseline methods (especially MSE and EMD), since

laminar members often have very small direct differences to each other. We also notice

that the other learning-based method VGG achieves better coverage on the first three

queries than our approach. This is because our model learns spatiotemporal aspects

of the dataset and might, for example, consider slightly turbulent members similar to

laminar, which is not accounted for by our binary labeling. Thus, in this particularly

simple scenario of laminar behavior, it might perform slightly worse than a computer

vision model. However, adding even a single negative patch to the query significantly

improves the model’s performance, again putting it above all the baselines. Another

interesting observation is that the quality of the model’s results generally improves as

we expand the query. This is not always the case for other methods, e.g., MSE and EMD:

especially for the turbulent queries, additional patches sometimes do not improve the

result or even worsen the performance. Even a slight temporal shift or a difference in

phase can result in very large MSE distances, worsening its results, while the model

has learned these invariances during the training. For example, notice in Figure 4.9

that some of the matched patches have different phases (velocity peaks do not align).

Furthermore, our model is more consistently benefiting from negative query patches,

while other methods benefit from them only under certain circumstances.

Variance Quantification

Query sampling variance. We aim to evaluate the accuracy across a large number

of possible search queries. For this, we defined 12 query types by specifying sought-

98 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

O
u
r
s

V
G
G

M
S
E

E
M
D

H
i
s
t
-
E
M
D

F
e
a
t
u
r
e
P
a
t
c
h
e
s

C
P
1
0

P
5
0

P
1
0
0

C
P
1
0

P
5
0
P
1
0
0

C
P
1
0

P
5
0
P
1
0
0

C
P
1
0

P
5
0
P
1
0
0

C
P
1
0

P
5
0
P
1
0
0

t
u
r
b

1
+
0
-

72.9
100.0

8
4
.0

77.0
6
5
.0

100.0
90.0

7
2
.0

4
2
.4

9
0
.0

5
0
.0

4
5
.0

3
8
.5

100.0
6
2
.0

3
9
.0

5
6
.5

7
0
.0

5
6
.0

5
4
.0

t
u
r
b

2
+
0
-

67.6
100.0

8
8
.0

74.0
6
4
.1

100.0
90.0

7
3
.0

3
9
.4

9
0
.0

5
0
.0

4
2
.0

3
8
.5

9
0
.0

6
0
.0

4
1
.0

6
0
.0

9
0
.0

4
8
.0

5
4
.0

t
u
r
b

3
+
0
-

78.2
100.0

96.0
88.0

6
6
.8

100.0
9
4
.0

7
7
.0

3
6
.8

7
0
.0

4
4
.0

4
1
.0

3
5
.0

8
0
.0

4
2
.0

3
6
.0

5
9
.1

2
0
.0

5
2
.0

5
6
.0

t
u
r
b

1
+
1
-

80.3
100.0

100.0
83.0

6
9
.4

100.0
9
4
.0

7
5
.0

5
3
.8

9
0
.0

5
6
.0

5
4
.0

5
2
.1

5
0
.0

6
4
.0

5
4
.0

5
4
.7

6
0
.0

5
6
.0

5
6
.0

t
u
r
b

2
+
2
-

82.6
100.0

96.0
87.0

6
9
.4

100.0
9
2
.0

7
6
.0

5
2
.1

9
0
.0

5
6
.0

5
2
.0

4
7
.6

5
0
.0

6
4
.0

5
3
.0

5
7
.4

5
0
.0

5
4
.0

5
6
.0

t
u
r
b

3
+
3
-

88.5
100.0

100.0
92.0

7
6
.5

100.0
100.0

8
1
.0

5
2
.1

7
0
.0

5
8
.0

5
3
.0

4
8
.5

5
0
.0

6
4
.0

5
3
.0

5
6
.5

6
0
.0

5
4
.0

5
6
.0

l
a
m

1
+
0
-

6
3
.7

100.0
100.0

90.0
73.7

100.0
9
4
.0

8
9
.0

6
4
.2

100.0
7
6
.0

7
7
.0

6
5
.1

100.0
9
4
.0

8
6
.0

6
0
.9

9
0
.0

5
4
.0

4
9
.0

l
a
m

2
+
0
-

6
6
.2

100.0
100.0

93.0
73.7

100.0
100.0

9
0
.0

6
4
.2

100.0
100.0

8
7
.0

6
4
.2

100.0
100.0

9
2
.0

6
0
.9

9
0
.0

5
4
.0

4
9
.0

l
a
m

3
+
0
-

6
4
.6

100.0
100.0

95.0
73.7

100.0
9
4
.0

9
0
.0

6
5
.1

100.0
9
8
.0

8
6
.0

6
5
.1

100.0
9
4
.0

9
1
.0

6
2
.8

9
0
.0

5
6
.0

5
9
.0

l
a
m

1
+
1
-

79.6
100.0

100.0
100.0

7
1
.7

100.0
9
0
.0

8
8
.0

6
2
.3

6
0
.0

7
2
.0

6
8
.0

6
1
.7

5
0
.0

5
8
.0

7
1
.0

6
3
.6

9
0
.0

5
2
.0

5
0
.0

l
a
m

2
+
2
-

81.2
100.0

100.0
100.0

7
6
.4

100.0
9
8
.0

9
1
.0

6
4
.0

7
0
.0

8
6
.0

7
5
.0

6
3
.1

7
0
.0

6
6
.0

7
0
.0

6
3
.1

9
0
.0

5
8
.0

4
9
.0

l
a
m

3
+
3
-

83.5
100.0

100.0
100.0

8
1
.9

100.0
9
8
.0

9
3
.0

6
8
.3

100.0
9
0
.0

7
7
.0

6
4
.9

6
0
.0

7
2
.0

7
3
.0

7
9
.8

100.0
9
2
.0

9
4
.0

Table
4.2

—
R
e
s
u
l
t
s
o
f
m
a
n
u
a
l
l
y
c
o
n
s
t
r
u
c
t
e
d
q
u
e
r
i
e
s
o
n
t
h
e
c
y
l
i
n
d
e
r
fl
o
w
e
n
s
e
m
b
l
e
.
E
a
c
h
r
o
w
d
e
p
i
c
t
s
m
e
t
r
i
c
s
c
o
r
e
s
f
o
r
o
n
e

q
u
e
r
y
.
A
q
u
e
r
y
c
o
n
t
a
i
n
s
e
i
t
h
e
r
p
a
t
c
h
e
s
w
i
t
h
t
u
r
b
u
l
e
n
t
(
t
u
r
b
)
o
r
l
a
m
i
n
a
r
(
l
a
m
)
b
e
h
a
v
i
o
r
.
T
h
e
’
P
a
t
c
h
e
s
’
c
o
l
u
m
n
s
p
e
c
i
fi
e
s

h
o
w
m
a
n
y
p
o
s
i
t
i
v
e
a
n
d
n
e
g
a
t
i
v
e
p
a
t
c
h
e
s
e
a
c
h
q
u
e
r
y
c
o
n
t
a
i
n
s
.
D
i
ff
e
r
e
n
t
q
u
e
r
i
e
s
a
r
e
c
o
n
s
t
r
u
c
t
e
d
b
y
e
d
i
t
i
n
g
p
r
e
v
i
o
u
s
o
n
e
s
.

F
o
r
e
x
a
m
p
l
e
,
t
h
e
t
u
r
b
u
l
e
n
t
q
u
e
r
y
’
t
u
r
b
3
+
3
-
’
c
o
n
t
a
i
n
s
t
h
e
s
a
m
e
t
h
r
e
e
p
o
s
i
t
i
v
e
p
a
t
c
h
e
s
a
s
’
t
u
r
b
3
+
0
-
’,
b
u
t
w
e
a
d
d
e
d
t
h
r
e
e

n
e
g
a
t
i
v
e
n
o
n
-
t
u
r
b
u
l
e
n
t
p
a
t
c
h
e
s
.
W
e
s
h
o
w
f
o
u
r
q
u
a
l
i
t
y
m
e
t
r
i
c
s
:
c
o
v
e
r
a
g
e
(
C
)
a
n
d
p
r
e
c
i
s
i
o
n
(
P
)
a
t
t
h
r
e
e
d
i
ff
e
r
e
n
t
r
a
n
k
s
.
W
e

r
e
n
d
e
r
q
u
e
r
y
m
a
t
c
h
e
s
i
n
F
i
g
u
r
e
4
.9
.
O
u
r
m
o
d
e
l
a
c
h
i
e
v
e
s
s
i
g
n
i
fi
c
a
n
t
l
y
b
e
t
t
e
r
r
e
s
u
l
t
s
t
h
a
n
t
h
e
v
a
r
i
o
u
s
b
a
s
e
l
i
n
e
s
.

4.3 ● Self-supervised Learning of Similarity 99

1
2

3
4

5
6

7
8

9
10

46
47

48
49

50
96

97
98

99
10

0
99

6
99

7
99

8
99

9
10

00
38

95
38

96
38

97
38

98
38

99

tu
rb

 1
+

0-

tu
rb

 3
+

0-

tu
rb

 1
+

1-

tu
rb

 3
+

3-

Fi
gu

re
4.
9
—
C
o
r
r
e
s
p
o
n
d
i
n
g
r
e
n
d
e
r
i
n
g
s
t
o
m
a
t
c
h
e
s
o
f
t
u
r
b
u
l
e
n
t
q
u
e
r
i
e
s
f
r
o
m

T
a
b
l
e
4
.2
.
E
a
c
h
r
o
w
c
o
r
r
e
s
p
o
n
d
s
t
o
a
q
u
e
r
y
.

O
n
t
h
e
l
e
f
t
a
r
e
t
h
e
q
u
e
r
y
p
a
t
c
h
e
s
,
a
n
d
o
n
t
h
e
r
i
g
h
t
,
w
e
s
h
o
w
r
e
s
p
e
c
t
i
v
e
m
a
t
c
h
e
s
.
W
e
o
n
l
y
r
e
n
d
e
r
t
h
e
fi
r
s
t
f
r
a
m
e
o
f
e
a
c
h

p
a
t
c
h
.
W
e
s
h
o
w
t
h
e
t
o
p
1
0
m
a
t
c
h
e
s
a
s
w
e
l
l
a
s
s
o
m
e
e
x
a
m
p
l
e
s
o
f
l
o
w
e
r
m
a
t
c
h
e
s
.
T
h
e
i
c
o
n
o
n
t
h
e
q
u
e
r
y
p
a
t
c
h
e
s
i
n
d
i
c
a
t
e
s

w
h
e
t
h
e
r
a
p
a
t
c
h
i
s
a
p
o
s
i
t
i
v
e
(
+)

o
r
a
n
e
g
a
t
i
v
e
(
-)
e
x
a
m
p
l
e
.

100 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

turb 1+0-

C P10 P50 P100

turb 3+0-

turb 1+1-

turb 3+3-

lam 1+0-

lam 3+0-

lam 1+1-

 0 100

lam 3+3-

 0 100 0 100 0 100
Ours VGG Hist-EMD MSE EMD

(a) Including all results.

turb 1+0-

C P10 P50 P100

turb 3+0-

turb 1+1-

turb 3+3-

lam 1+0-

lam 3+0-

lam 1+1-

 0 100

lam 3+3-

 0 100 0 100 0 100
Ours VGG Hist-EMD MSE EMD

(b) Excluding query members.

Figure 4.10 — The distribution of query quality for “cylinder” wrt. randomly sampled

queries. Each row represents a query type, e.g., ’turb 3+1-’ means queries containing

three random turbulent patches and one random non-turbulent patch. In the columns,

we compute the same quality metrics as in Table 4.2, with all metrics ranging from

0 to 100. a: Our model shows better results than the baselines, especially on larger

queries. We also see that the variance is reduced when more examples are used in the

query. b: We evaluate the model’s generalization by excluding patches from members

mentioned in the query. Performance is slightly worse (as expected when removing the

best matches), but the model is still successful. This suggests that the model generalizes

beyond the pretext task and finds other instances of behavior.

after behavior (turbulent or laminar) and the number of patches in the query. Then

for each type, we randomly generated 100 queries, utilizing the labels to ensure that

each query contains appropriate patches. We present the results as a table of boxplots

in Figure 4.10a. Most importantly, we again find that the model performs better than

the baselines, and the effects described in Section 4.3.8 are still present when measured

over a large sample of queries. However, we also see that non-ML results (MSE, EMD,

Hist-EMD) sometimes have lower variance. This due to basic methods mostly finding

nearby patches (due to temporal coherence), which gives consistent albeit poor results.

4.3 ● Self-supervised Learning of Similarity 101

turb 1+0-
C P10 P50 P100

turb 3+0-
turb 1+1-
turb 3+3-
lam 1+0-
lam 3+0-
lam 1+1-

 0 100

lam 3+3-
 0 100 0 100 0 100

Figure 4.11 — The variance of query quality wrt. training process. Here we have

trained our model ten times and performed the search with each one. We used the same

manually constructed queries as in Table 4.2. While some variance is present, it is not

significant and decreases with increasing query size.

Notice also that our results again tend to improve not only in accuracy, but also in

terms of uncertainty as more patches are provided in the query.

Model training variance. One potential concern when using ML-models is the vari-

ance introduced during the training process, especially when transferring the model’s

representation to another task. To quantify the impact of model training, including

training data sampling, weight initialization and data shuffling, we performed the train-

ing ten times and applied the resulting models to the twelve queries from Section 4.3.8.

We observe that the model results indeed exhibit some variance, however, it is signifi-

cantly below the query variance and stays consistently above the baselines (Figure 4.11).

Additionally, we see that the results are the noisiest when using queries with few

patches, but as more patches are added, the uncertainty gets considerably reduced.

We believe that this effect is similar to ensemble averaging, as we effectively average

several instantiations of our convolutional encoder.

Model Generalization

Another important aspect of a model’s performance is its generalization properties

across different tasks. Since we train the model on the pretext task, we want to make

sure that we “get out” more than we “put in”, i.e., that our model does not simply find

patches from nearby locations. While finding similar patches from similar locations is

useful, ideally the model should also generalize to other instances of similar behavior.

To study this, we have used the same setup as in Section 4.3.8, sampling random queries

and measuring search result metrics. However, we made a crucial modification: we

remove from the list of candidate patches those patches that come from ensemble

members mentioned in the query. This way, a model that simply solves the pretext task

102 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

would only find the members from the query and show poor results on the out-of-query

data. The results are presented in Figure 4.10b.

Overall we can see that the performance is comparable to our previous experiments

in Section 4.3.8, again demonstrating better results than the baselines. This suggests

that the model indeed generalizes beyond finding patches from the same ensemble

members. We observe some decrease in accuracy, but this is reasonable, since patches

from members included in the query usually contain the most similar behavior and

are expected to be among the top results. Thus, removing them from the pool of valid

matches slightly lowers the quality metrics.

Parameter Study

Next, we perform a study of the patching parameters described in Section 4.3.3. In Fig-

ure 4.12, we present the results, where we vary the size of the spatiotemporal neigh-

borhood (offsets os, ot) and measure the resulting query accuracy. Despite significant

changes to the parameter values, the model’s performance remains consistent across

several different queries, especially when considering larger queries.

Performance and ML Metrics

On the “droplet splash” dataset, the siamese model was trained with 45GB of data (500k

points) on a desktop NVIDIA GTX 2070 graphics card in 4 hours and 20 minutes,

achieving 94.7% training and 94.2% validation accuracy in 22 epochs. In our prototype

system, the encodings of the candidate patches are precomputed (see Section 4.3.5),

so the query performance is determined by how fast query patch data is encoded and

distances to candidates are computed. A single-patch query in our prototype system

takes 19ms to execute, where 3ms are spent encoding the patch on the GPU. And a

ten-patch query takes 178ms to execute, where again only 3ms are spent encoding the

patches (no impact due to parallelism), with distance computations taking up the most

time. On the “cylinder”, the model was trained in 4h 25min to 97.7% / 97.8% accuracy;

a one-patch query takes 8ms, and a ten-patch query takes 41ms to execute. On the

“Isabel”, the model was trained in 3h 15min to 72.0% / 69.7% accuracy (if trained further,

the model overfits on this smaller dataset); a one-patch query takes 5ms and a ten-patch

query takes 31ms to execute. If we sample patches 64 times more densely (Figure 4.7),

queries take 148ms and 1.3s, respectively. The above query timings are obtained while

preloading the ensemble data into memory to remove the IO bottleneck of loading

the patch data from disk. When this feature is disabled (or if the ensemble is too

large), a naive implementation incurs an overhead of about 100-150ms per ensemble

member present in the query. Note that, in general, we did not heavily optimize our

implementation for performance, and we believe there is potential for improvement. In

particular, the performance of the prototype system could significantly be reduced with

4.3 ● Self-supervised Learning of Similarity 103

turb 1+0-

C P10 P50 P100

turb 3+3-

lam 1+0-

 0 100

lam 3+3-

 0 100 0 100 0 100
o_s=2 o_t=4
o_s=2 o_t=6
o_s=2 o_t=8

o_s=6 o_t=4
o_s=6 o_t=6
o_s=6 o_t=8

o_s=10 o_t=4
o_s=10 o_t=6
o_s=10 o_t=8

o_s=14 o_t=4
o_s=14 o_t=6
o_s=14 o_t=8

o_s=18 o_t=4
o_s=18 o_t=6
o_s=18 o_t=8

Figure 4.12 — Results of a parameter study on the cylinder ensemble. The experiment

setup is similar to Figure 4.10 with metrics excluding the query members to better

assess the generalization performance. Despite the changes in both the spatial and

temporal offsets used during the model training, all models produce similar results.

This indicates that our method is not overly sensitive to the parameters, which can be

chosen with some minor knowledge of the dataset size.

104 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

an optimized parallel implementation, a spatial data structure or using precomputed

encodings for the query patches as well.

4.3.9 Discussion

The method presented in this section addresses an important challenge in visualization:

data-driven analysis of large amounts of unlabeled scientific data. While here we

focus on using our learned metric to perform search, our similarity metric can be

useful for various visualization techniques. For example, clustering algorithms are

generally based on quantifying distances, which our similarity metric could provide.

Some algorithms, e.g., hierarchical clustering, also use the distance between a cluster

and a point to compute clusters progressively. Here, our ranking score can be used to

help form more meaningful clusters. Furthermore, a similarity metric can be utilized to

perform projections, producing both a more meaningful representation of the overall

ensemble and serving as a starting point for the search-based exploration presented in

this chapter.

We demonstrated above that our model performs well on the search task, clearly out-

performing other problem-agnostic approaches and even performing well compared

to domains-specific methods (see Section 4.3.7). Nevertheless, there is room for im-

provement. While the model produces consistent results across different training runs,

it has quite a high variance wrt. random queries (Section 4.3.8). There are several

reasons for this. First, the problem itself is uncertain: the goal is to detect high-level

behavior “types”, which can have rather vague boundaries. For example, for some

members of the cylinder dataset, it is difficult to say at what exact point the transition

to turbulence occurs. Another reason is related: we are not certain that the random

queries express the behavior that we are trying to find. Indeed, we see that some

queries lead to better results than others, but we found that a common cause of poor

results is an “unclear” query. The model’s response might be reasonable, but it does not

align with our expectations. Though, the user can improve the query in such cases by

providing additional examples. Yet another aspect is that there is a disconnect between

the evaluation and the target application. During the evaluation, we sample query

patches independently, while in a practical scenario, the next patch included by the

user is conditioned on the previous results. In other words, the user adjusts the query

based on the intermediate results, e.g., to filter out a false positive. We do not model

this effect in our evaluation metrics for simplicity, but it should be done in the future,

iteratively constructing queries by including the incorrectly ranked patches into the

query.

Overall, we see a lot of potential for self-supervised machine learning in scientific

visualization, with many exciting directions for further research. We discuss these

further in Chapter 7.

4.4 ● Autoencoders for Expressive Dimensionality Reduction 105

bubble bubble-splash crown crown-splash
splash column drop none unlabeled

(a) UMAP only (b) 2D Sparse AE 64 (c) 2D VAE 256

(d) 3D AE 256 * (e) 3D SWAE 32 * (f) 3D SWAE 128

(g) 3D β(0.1)-VAE 256 * (h) 3D VAE 256 (i) 3D β(4)-VAE 256

Figure 4.13 — Projections of the latent space learned by different autoencoder variants.

Behavior classes are color-coded. We see that varying the autoencoder architecture

and parameters produces qualitatively different outcomes.

4.4 Autoencoders for Expressive Dimensionality Re-
duction

In the previous section, we described how one can construct a latent space for spa-

tiotemporal data and then use it to measure similarity. We used a contrastive pretext

task to learn this space (Section 2.2.6), but this is not the only way to approach (self-

supervised) representation learning. Here, we will briefly present an approach where

we learn a latent space with an autoencoder and use it to provide a visual overview

of the ensemble data (Gadirov et al. 2021). This work is based on the Master thesis of

Hamid Gadirov (Gadirov 2020), supervised by Thomas Ertl, Steffen Frey and me. In this

project, I primarily advised on the machine learning aspects of the approach.

Autoencoders can be considered as a separate class of self-supervised learning ap-

106 Chapter 4 ● Learning Spatiotemporal Similarity Metrics

0.3 0.4 0.5 0.6 0.7 0.8
Neighborhood hit (n.h., higher is better)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Si
lh

ou
et

te
 (s

.,
hi

gh
er

 is
 b

et
te

r)

2D 256
2D 64

2D 4 128

2D 128
2D 256

3D 128

3D 256

3D 256

3D 64

3D 0.1 256

3D 10 256

3D 2 256

3D 4 256

3D 256

3D 128

3D 32

3D 64

AE
Sparse AE
SWAE
VAE
Baseline
Pareto efficient

Figure 4.14 — Scatterplot of the quality metric values achieved by each tested autoen-

coder configuration. The Pareto-optimal configurations are circled (and marked with an

asterisk in Figure 4.13). Again, we see that the choice of the model and its parameters

has a significant impact on the projection. Moreover, no one model is superior across

both metrics.

proaches, in addition to autoregressive (like our prediction-based method in Chapter 3)

and contrastive (like the method from Section 4.3). Furthermore, many autoencoder

variants were proposed in the years since their inception, with some demonstrating a

superior ability to disentangle latent factors and smoothly interpolate between different

input samples (Higgins et al. 2017; Kolouri et al. 2019). This property could be quite

useful in visual analysis tasks, uncovering low-dimensional factors that could be used

to construct an overview, separate different behavior classes and highlight outliers. The

idea behind our project is to investigate which of these many autoencoder variants

produce latent spaces that are most useful for visualization of spatiotemporal data.

We implemented several autoencoder architectures and trained them on spatiotemporal

ensemble data, using a single timestep or a short sequence of timesteps as the input

data. After training, we encode each timestep (or sequence) and use UMAP (McInnes

et al. 2018) to project the latent vectors into 2D. To help with evaluation, we labeled

a subset of the data into different domain-specific behavior classes. This way we can

better understand the model’s ability to separate the different classes.

4.4 ● Autoencoders for Expressive Dimensionality Reduction 107

The resulting projections are shown in Figure 4.13, along with the baseline of directly

projecting the raw data. From the images we see that different architectures lead to

noticeably different outcomes. For example, vanilla autoencoders and sparse autoen-

coders produce tight clusters but are worse at grouping together each behavior class.

And (beta-)variational autoencoders provide an opposite trade-off.

We can better understand the differences by computing projection quality metrics,

specifically, silhouette, which is higher for projections that tightly cluster each behavior

class, and neighborhood hit, which is higher when the classes are separated from

each other. In Figure 4.14, we see the value of these two metrics for all the tested

autoencoder variants and parameter configurations. This view confirms what we see

in the projections themselves – different models produce qualitatively different results.

Worse, we cannot select the best model, as no single model is strictly better than the rest.

Instead, we construct a Pareto frontier that consists of several models, each offering

different trade-offs.

A similar situation is observed on another ensemble dataset, although a different set of

model configurations become Pareto-optimal. This is likely due to the other dataset

being a denser simulation dataset, while the droplet ensemble is fairly sparse and has

a significant amount of empty space or unrelated features. On a positive side, we

discovered that a small labeled subset is sufficient to determine an appropriate model

and that this decision is consistent with larger labeled subsets. Therefore, we can use

this approach to help explore large ensembles using only a small labeled subset of the

data to choose the model.

In the context of this thesis, an interesting question is how do autoencoders compare to

the contrastive approach from Section 4.3. Informally, it seems that the autoencoders

are somewhat less reliable in the detection of similar behavior, likely due to being

trained under a reconstruction loss. The model is forced to preserve the full information

about the input (albeit efficiently represented), while a contrastive model can throw

away irrelevant information such as the background, noise, etc. Still, in future work,

we will perform a more thorough investigation, considering different contrastive and

autoregressive pretext tasks. We discuss future work further in Section 7.5.

5
Metaphorical Visualization

This chapter is based on the following publication:

Gleb Tkachev, Rene Cutura, Michael Sedlmair, Steffen Frey, and Thomas

Ertl (2022). “Metaphorical Visualization: Mapping Data to Familiar Concepts.”

In: Extended Abstracts of the 2022 CHI Conference on Human Factors in Com-
puting Systems. CHI EA ’22. Association for Computing Machinery, DOI:

10.1145/3491101.3516393

The mapping stage is the cornerstone of the visualization pipeline (Section 1.2). After

all, mapping data to visuals is the essence of visualization. Not surprisingly, it is

also the stage that (currently) benefits the least from ML applications. Designing the

visual mapping requires significant human expertise and does not easily lend itself

to automation. Nevertheless, this is an active area of research, in which the most

prominent direction is to use ML models to recommend the appropriate chart type and

axis assignments (e.g., Mutlu et al. 2016, Dibia and Demiralp 2019, Hu et al. 2018). We

take a different route and use ML to extend the mapping beyond the assignment of

visual attributes. The method is inspired by the similarity learning from Section 4.3,

applying self-supervised models to connect vastly different domains.

In previous chapters, we adopted the traditional view of data visualization that presents

the user as a trained specialist performing data analysis as part of their occupation. In

this context, a visualization application is primarily evaluated by its efficiency, accuracy

and scalability. However, there are many visualization “edge cases” that do not fit

this description (Pousman et al. 2007). For example, ambient visualization might trade

110 Chapter 5 ● Metaphorical Visualization

accuracy and richness of encoded information for aesthetic qualities. And in science

communication, the engagement of the audience can be one of the most essential

factors (Borkiewicz et al. 2019; Ynnerman et al. 2018).

Similar scenarios are described under the umbrella of Personal Visualization (Huang

et al. 2015), referring to both visualization of personal ego-centric data and data analysis

in the personal context. Here, a user might have very different goals, background and

expectations, when compared to a professional. Over the years, there were a number

of applications that explored these research directions and were used by a much wider

public for their personal goals and data. For example, Wordle was used to create more

than 600,000 word clouds (Viegas et al. 2009). LastHistory allowed thousands of users

to visualize their listening history (Baur et al. 2010). These and similar PersonalVis

applications create an additional set of challenges that may rival or even eclipse the more

classical evaluation criteria. Personal visualization should be accessible and address

the personal goals of the user. But above all, in our opinion, it should be engaging and

fun, as it encourages people to experiment with visualization and stay long enough to

appreciate its rewards and more “serious” methods.

In this chapter, we invite the reader to consider data visualization through the lens

of metaphors, as we believe this perspective can help us create more accessible and

engaging visualizations. Cognitive linguists argue that metaphors are not only a poetic

device, but are central to our language and cognition (Lakoff 1980). Every day we

implicitly use conceptual metaphors like “time is a moving object” (time “flies”, the time

“will come”, etc.) or “theories are buildings” (they are constructed, have a foundation,

etc.) to help us structure complex ideas. Considering how pervasive metaphors are in

our thinking, it is not surprising to find us using metaphors to understand our data.

Visualization relies on many similar conceptual metaphors (e.g., “green is good”, “up is

more”), but is also itself a form of metaphor that helps us interpret abstract data entities

in terms of visual experiences (shape, position, color, etc.).

What we propose is to extend the visualization metaphors beyond the visual. We

can devise new ways of representing data by mapping it to concepts that are tacitly

understood by humans. Of course, constructing mappings that are as abstract as “life is

a journey” is not yet possible for automatic methods. But, if we have data from two

domains, one of which is familiar to the user, we can map the entities (data points) of the

unknown domain to the entities of the known one. For example, by preserving pairwise

similarity, we can map data to words and learn that points X, Y and Z relate to each other

like “dog”, “house” and “chimney”. Although the interpretation of relationships between

words is somewhat ambiguous, we can leverage our knowledge of word similarity to

explore the data, similarly to how we use metaphors in language to explain new ideas

in familiar terms.

Conveying information in the form of metaphors is innately familiar to humans and

5.1 ● Related Work 111

requires less expertise from the user, especially compared to the “expert” alternatives,

such as glyphs, parallel coordinate plots and dimensionality reduction algorithms.

Additionally, we can tailor the metaphor to the application context: if we are creating

an infographic for an astronomy magazine, we could map our data to stars in the night

sky, but we might use popular movies for the general public. Most importantly, it

becomes possible to generate fun and vivid associations and provide an engaging way

of communicating data that is suitable for more casual applications.

We call this approach Metaphorical Visualization. While we originally conceived of

metaphorical mappings as a specific method of mapping between data and image

embeddings, we quickly realized that the idea leads to many exciting applications. In

what follows, we will present several diverse use cases, discuss their strengths and

weaknesses, and outline how they fit together under the umbrella of metaphors.

5.1 Related Work

Metaphors for interaction and visualization. Metaphors have a long history in

HCI, appearing as early as the first personal computers, where they were required

for describing novel objects and interactions (Richards et al. 2009; Hartson and Pyla

2019). Finding effective interaction metaphors is also an important challenge for VR/AR

applications (Mendes et al. 2019; Jerald et al. 2017). For example, designing an input

mapping for 3D object manipulation often involves physical object metaphors: a balloon-

on-a-string (Benko and Feiner 2007), corkscrew (Daiber et al. 2012), handlebar (Song

et al. 2012), crank handle (Bossavit et al. 2014), and many others. Metaphors are also

prominent in visualization where they are used for interaction, but also to construct

visual representations. For instance, Havre et al. 2002 proposed a river metaphor to

represent themes in document collections. And a city metaphor can be used to represent

software architecture (Jeffery 2019). Overall, choosing an appropriate metaphor can

have a noticeable impact on user performance (Ziemkiewicz and Kosara 2008). In this

work, we extend the usage of metaphors for visualization from conceptual metaphors

that structure the representation to computing mappings between concrete entities.

So, for example, where ThemeRiver (Havre et al. 2002) would present topics as lines

resembling rivers, we would map the topics to real rivers, using their properties to

represent the data.

Metaphors can find applications in communicating information to wider audiences,

where connecting to people and building their interest can be more important than

conveying the raw facts. For example, in cinematic SciVis (Borkiewicz et al. 2020),

metaphors are vital in conveying the subject to the audience. Metaphors also play

an important role in creating infographics, where making the visualization memo-

rable (Borkin et al. 2013) and aesthetically pleasing (Harrison et al. 2015) are important

112 Chapter 5 ● Metaphorical Visualization

considerations.

Image and style embeddings. Several of our implementations rely on image em-

beddings, which are most often constructed in the context of generative models and

self-supervised pre-training for computer vision tasks. For example, Dosovitskiy et al.

applied random transformation to learn a robust image embedding space, and Doersch

et al. predicted positions of image patches to learn image features (see Doersch and

Zisserman 2017 and Jing et al. 2020 for an overview). There have been a few works

aiming to construct style embeddings or learn style similarity. Lun et al. used geometric

similarities and supervised data to construct a model of style similarity, and Bell and

Bala trained a siamese network to construct a style embedding to search for products

with similar design. In this chapter, we use the SimCLR pipeline (Chen et al. 2020) and

ideas from neural style transfer to construct our self-supervised image embeddings, but

we focus on using the embeddings to explore relationships in other data.

Aligning word embeddings. One of our approaches to constructing metaphors is

based on mapping between different embedding spaces. A related idea is utilized

in natural language processing to facilitate machine translation. Given two word

embeddings of different languages, a transformation (often linear) can be constructed to

map the words of one language onto another. This can be done by using supervised word

pairs (Mikolov et al. 2013a), finding similar strings in both languages (Smith et al. 2016),

or more recently, in an unsupervised fashion by aligning the two distributions (Lample

et al. 2018; Artetxe et al. 2018), see Ruder et al. 2019 for a comprehensive survey. We

also aim to transfer knowledge by exploiting similarities between two domains, but

unlike languages, our domains can share little similarity, making the linear (or any

simple) mapping insufficient. Furthermore, there is no “ground truth metaphor” and

many possible varied solutions could be valid, especially when the source domain is

smaller. Most importantly, we present a conceptual approach to visualization through

metaphors, where mapping between embeddings is just one of the many possible

implementations.

5.2 Metaphorical Visualization

The main idea of our approach is to leverage the user’s knowledge of one domain to

learn more about another. Practically, this means that there is a dataset of interest and

some data about another domain that is familiar to the user. We call the former the
data space and the latter the concept space, where both are a discrete set of entities (data

points or concepts). Our goal is to find a mapping of data onto concepts such that

the relationships in the data space are preserved in the concept space. For example,

we can express similarities between researchers (data) by mapping them to English

nouns (concepts), such that related researchers are assigned to related words. This

5.2 ● Metaphorical Visualization 113

mapping allows users to apply their knowledge of words to learn more about the

researchers.

The key consideration in creating a metaphor is defining the relationships that should be

preserved by the mapping. Depending on the structure of the data and the application,

there could be several alternatives. We distinguish between distance-based, attribute-

based, topology-based and hybrid methods of constructing the metaphor.

Distance-based mapping. In this type of mapping, we have a distance function in

both spaces, which quantifies the pairwise similarity of points. We then compute a

discrete assignment that aims to preserve distances, i.e., the distance between points in

the data space should be as close as possible to the distances between their assigned

concepts. With this mapping, the users can explore the pairwise similarities in the

data by comparing the concepts, but also form groups of related data-concept pairs.

The biggest advantage of this approach is its flexibility: we can use almost anything as

the concept space, as long as it has a distance function. The richer the relationships

captured by the distances, the more nuanced of a metaphor we can construct. We find

this method to be most useful when we can apply machine learning models to construct

distance functions for both spaces, allowing us to use complex entities, such as people,

words, images, etc. In Section 5.3, we show howwe can construct a distance function for

researchers and then represent them with English nouns or with cat images, mapping

between different ML embedding spaces.

Attribute-based mapping. This type of metaphor is applicable for tabular data with

directly interpretable attributes. We can specify which data and concept attributes

should have similar values. Unlike the distance-based mapping, we no longer define

similarity among data/concept points, but instead specify similarity of data to concepts,

i.e. across spaces. Therefore, the attribute-based method should be used when we have

distinct features that can be conceptually related to each other. This gives us direct

control over the metaphor and makes it easier to interpret, although it can lose some

subtleties of a distance-based mapping. In Section 5.4, we use this approach to map

between books, movies and games, such that their rating and popularity have analogous

values, finding the “Twilight” among the games and the “Shawshank Redemption” of

books.

Topological mapping can be pursued when the exact distances are not important

or not available. For example, when constructing metaphors for network data or

hierarchies, the relations in the data are modeled as a graph. Here, we need to build a

mapping that preserves topology, e.g., adjacency for generic graphs or descendancy for

trees. Interestingly, dimensionality reduction techniques like t-SNE or UMAP can also be

considered a topological metaphor since they only preserve the local neighborhood and

not the exact distances. We discuss a topological mapping for hierarchies in Section 5.6,

where we map a taxonomy of sciences onto a taxonomy of industries while preserving

114 Chapter 5 ● Metaphorical Visualization

the parent-descendant relations.

The three conceptual approaches above are distinct from each other but are not mutually

exclusive. They can be combined to produce hybrid mappings. This might be desirable,

for example, when we want to control an aspect of a distance-based metaphor by

explicitly aligning some of the data and concept attributes. Or, the concept space of an

attribute-based metaphor might have an innate spatial layout that should be considered

with an additional distance-based constraint. In Section 5.5, we use both distances

and attributes to produce the mapping of movies to stars in the night sky. There, we

match the movie rating to stars’ brightness (attribute mapping), while also ensuring

that similar movies are represented by nearby stars (distance mapping).

Overall, there are several approaches to defining and computing a metaphorical map-

ping, but they all share the overarching idea of representing data from one domain

using another. In what follows, we present many concrete applications of metaphorical

visualization and use them to demonstrate its advantages, discuss its limitations and

outline important design considerations.

5.3 Distance-based Mapping
This section describes how to construct a metaphorical mapping by preserving distances

in the data and the concept spaces. Here, we chose to focus on machine-learning

embeddings for our data and concept spaces, but anything that has a distance function

can be used for this approach. Throughout this section, we use the publication records

of CHI, VIS and SIGGRAPH authors as our data. Initially, we constructed all results

using their names and bio photos, but to avoid revealing personal information, we refer

to each author using a randomly generated name and portrait.

5.3.1 Method
Given a set of data points X and a set of concept points C , our goal is to find a distance-

preserving mapping from the data space onto the concept space. Because we are

mapping to a discrete set of concept points (e.g., a set of images), we seek a discrete

assignment, explicitly establishing correspondences between the data points and valid

concept points. We can formulate this as an optimization problem, where we search for

a map M ∶ X → C between data points x ∈ X and concepts c ∈ C that minimizes the

sum of squared differences between the distances d:

min
M

E(M) , with E(M) =∑
i,j

(d(xi, xj) − d(M(xi), M(xj)))
2
. (5.1)

Depending on the application, M can be constrained to be injective (i.e., mapping to

unique concepts). We specify the same distance function d for both spaces, but different

5.3 ● Distance-based Mapping 115

functions could be used if normalized appropriately. Note that Equation 5.1 is very

similar to the Multidimensional Scaling objective (Mead 1992), with the key distinction

that we perform a discrete assignment instead of mapping to a continuous space. This

is a necessary complication because most interesting concept spaces are discrete (e.g.,

words), even if we construct continuous embeddings to obtain the distance function.

Unfortunately, this assignment problem is very challenging. Notice that the cost of each

individual assignment depends on all the others: if we change the assignment of a single

data point, it will change the distances in the concept space to all the other points, thus

affecting their assignment costs as well. Because of this, the resulting problem is non-

linear and difficult to solve optimally. Formally, it could be represented as a Quadratic

Assignment Problem (Koopmans and Beckmann 1957) in Lawler’s formulation (Lawler

1963), but the problem would be very large and intractable.

Instead, we use simulated annealing (Kirkpatrick et al. 1983) to compute an approximate

solution. We initialize the algorithm with a random assignment of concept points. At

every iteration, a candidate neighboring solution is generated by randomly changing

the assignment of one of the points. The candidate’s cost E′ is computed (Equation 5.1),

compared to the current cost E and with probability p = P (E, E′, T) we update the
current solution to the candidate, whereP is the acceptance probability function defined

as:

P (E, E′, T) =min (1, e−
E′−E

T) . (5.2)

Here T is the temperature parameter set to be initially high, encouraging early ex-

ploration, and then gradually decreased to converge to better local solutions. After a

fixed number of iterations has elapsed, we obtain the final solution to our assignment

problem.

5.3.2 Authors to Words
In this first example, we illustrate how VIS authors could be explored metaphorically

by mapping them to English nouns. The data space is an embedding of authors, and the

concept space is an embedding of English nouns, both learned from data. We train the

author embedding using a self-supervised model similar to word2vec (Mikolov et al.

2013b) on the VisPubData dataset (Isenberg et al. 2017), which contains 3108 papers and

5415 unique authors The model is provided with a pair of authors and is tasked with

predicting whether they are co-authors. Each author is passed to the model as an integer

index used to look up a corresponding 32-dimensional embedding vector. Then, a dot

product is computed between the vectors, followed by a single sigmoid output unit. The

model is trained with a cross-entropy objective to perform the classification, learning

an embedding in the process, and achieves 91% accuracy on a held-out validation set.

116 Chapter 5 ● Metaphorical Visualization

ear

Alfredo Kelly

Krista Murphy

Tammy Edwards

Carlos Smith

Dennis Edwards

Dominick Wood

Harold Simmons

Henry Hernandez
Jesse Hill

love

user

depth

director

cousin

measurement

writer

mouse
Harry Patterson

Maurice Green

literature

insect

Figure 5.1 — Mapping VIS authors to English nouns. We show a UMAP projection of

the author embedding (left) and the word embedding (right), and plot lines to visualize

a few pairs from the resulting mapping. Some similarity relationships are present in

the author projection (Maurice Green→‘user’, Henry Hernandez→‘measurement’), but

some are seen only in the concept projection (Harry Patterson →‘literature’, Alfredo

Kelly→‘writer’). And some of the more subtle similarities can only be noticed from the

word themselves, e.g., Harry Patterson →‘literature’ and Dennis Edwards →‘love’.

Our concept space consists of 500 common English nouns, which we passed to a

pre-trained word-embedding model. We used the “en_core_web_md” model from

the spaCy toolkit (Honnibal and Montani 2017) for the embedding, producing 300-

dimensional embedding vectors. Both of the embedding models use the dot product,

and accordingly, we also use the normalized dot product (cosine similarity) as our

distance function d for both spaces.

Results. For our metaphor, we map the top 100 IEEE VIS authors to English nouns. We

focus on the authors with the most entries in the dataset because they have the most

co-authorship information and are likely to produce interesting relationships in the

data. Again, we used randomly generated names to warrant the privacy of authors.

We visualize themapping in Figure 5.1. We present each of the two spaces as a scatterplot

of the UMAP-projected points (McInnes et al. 2018). Here, we also connect data points

to their assigned concepts with lines. While showing the projections is not necessary

for our approach, it helps us compare the positional and the metaphorical mappings.

The common co-authors were assigned to strongly related words, e.g., Maurice Green

→ ‘user’ and Henry Hernandez→ ‘measurement’ (cosine 0.61), similarly Krista Murphy

→ ‘mouse’ and Harold Simmons →‘insect’ (cos 0.64). Points that are not related are

5.3 ● Distance-based Mapping 117

appropriately mapped to unrelated words, for instance Krista Murphy → ‘mouse’, Jesse

Hill→ ‘director’ (cos -0.45). There are also pairs, e.g., Harry Patterson→ ‘literature’ and

Dennis Edwards→ ‘love’, that share similarity (cos 0.53), but it is lost in the projections,

revealed only through the metaphorical mapping.

Importantly, the mapping works not only for points highlighted in Figure 5.1 but for

the whole dataset. If we now consider the 50 most frequent authors, we can “wander”

through the space, following pairs of related authors (about 0.4-0.7 cosine), e.g.: Maurice

Green → ‘user’, Adam Varma → ‘engine’, Harold Taylor → ‘mixture’, Kellie Jackson →

‘salad’, Harvey Hill→ ‘ratio’, Ben Patterson→ ‘efficiency’, Marilyn Huang→ ‘interaction’

and back to Maurice Green → ‘user’. A single word like ‘mouse’ (Krista Murphy), can

express relationships to ‘user’ and ‘device’, but also to ‘insect’ and ‘bird’. This flexibility

of the word metaphor allows it to preserve some of the global relationships. In our

study (Section 5.7), people reported that the word space requires time to interpret,

but they were generally able to find thematic word clusters and sometimes the finer

connections between the words.

This example is meant to introduce the idea of the metaphorical mapping, but also to

illustrate some of its strengths and weaknesses. Of course, mapping data to words is not

as accurate and reliable as traditional visualization. However, words can be concise and

engaging, giving us the ability to describe a person’s research interests with a single

term. This can be advantageous when the main goal is not to convey facts as accurately

as possible, but to engage the audience in casual data exploration. For example, imagine

printing a single keyword on badges at a conference social event, providing a fun way

of encouraging interaction and guiding people to others with shared interests.

5.3.3 Authors to Cats

In our second example of a distance-based mapping, we construct a space of CHI

authors and use cat images as our concepts. For the data space, we obtained publication

data from Microsoft Academic, loading 14k authors who have published at CHI and

their 19k keywords. This author-keyword matrix underwent a sparse Singular Value

Decomposition (SVD) to compute 30-dimensional author embedding vectors for the 100

most frequent authors according to our data. To construct a cat embedding, we took

the cat images from the “Dogs-vs-Cats” dataset (Kaggle 2014) and trained a model using

SimCLR (Chen et al. 2020), with ResNet18 (He et al. 2016) as the encoder architecture.

In SimCLR, the model is trained in a self-supervised fashion to find identical images

under random cropping, color distortion and blur transformations. The images are

passed through the encoder that constructs a transformation-invariant representation,

producing a 256-dimensional embedding vector. Then, cosine similarity is computed

between the encoded images to predict which of the images were identical prior to

the transformation. Deviating from the original SimCLR approach, we take the feature

118 Chapter 5 ● Metaphorical Visualization

B.Scott J.Huang B.Long C.Perry K.King

1

P.Butler S.Zink J.Ramirez C.Hall J.Butler

2

R.Brown S.Hall D.White G.Foster K.Howard

3

P.Wright M.Barnes S.Baker

4

Figure 5.2 — Mapping CHI authors to cat images. Groups of similar-looking cats were

mapped to related authors, e.g., the black-and-white cats (1 : Bruce Sanchez, Jesse Hill,

Brian Lee, etc.) or the black cats (2 : Peter Butler, Simon Zink, Jeremy Ramirez, etc.).

See also Figure 5.3.

vector after the projection head because, in our application, we are interested in a

space with meaningful distances rather than an information-rich representation for

fine-tuning. After training the model, we used a sample of 1000 images and their feature

vectors as our concept space.

Results. In Figure 5.2 we show the assigned cat images for some of the frequent

authors in our data (names randomly generated). Although cat similarity can be more

ambiguous to interpret, there are several interesting clusters. For example, there

is a set of black-and-white cats (1): Bruce Sanchez, Jesse Hill, Brian Lee, etc. that

contains related authors working in visualization and visual analytics (cos 0.62-0.83).

Similarly, there is a large group of black cats that feature many similar authors sharing

a connection through mobile and ubiquitous computing (2): Peter Butler, Simon Zink,

Jeremy Ramirez, etc. (cos 0.57-0.90). The mapping also utilizes other features, producing

a different but related cluster of black cats with a cage background (3). In this cluster we

5.3 ● Distance-based Mapping 119

5

Figure 5.3 — Mapping CHI authors to cat images. A UMAP projection of the frequent

author vectors, drawn as cats. We see many clusters of similar cats (cf. Figure 5.2),

while some outliers (5) also hint at further global relationships.

find researchers whose topics commonly include user interfaces andmultimedia: Ramon

Brown, Sara Hall, Darrin White, etc. (cos 0.45-0.79). Strongly dissimilar to the above

are the white and ginger cats. The latter (4) represent some of the authors working in

psychology and sociology, e.g., Phillip Wright, Mary Barnes, Sam Baker (cos 0.63-0.69).

We show the author projection in Figure 5.3, replacing the markers with the cat images.

On this scatterplot, we can also confirm that strongly-related authors from the same

120 Chapter 5 ● Metaphorical Visualization

cluster are assigned similar cat images. And in a few cases, we can see an “outlier cat”

that hints at the author’s global relations, e.g., Peter Kelly (5) sharing similarity with

the cluster of striped cats.

Overall, we found that our metaphorical mapping produces meaningful results for

image embeddings. Our user study (Section 5.7) indicated that people are generally able

to find similar cats, with the color being the most prominent feature. This example is

meant to demonstrate that the idea of metaphors can be applied to many types of data,

and we hope that it can spark other creative applications. In fact, in the next section,

we continue to build upon this image mapping method to stylize author photographs

to implicitly encode author similarity.

5.3.4 Authors to Visual styles

Continuing with the idea of image metaphors, we can not only assign a specific image to

each author, but use just some of its properties to encode the metaphor. In this example,

we will use neural style transfer to encode the similarity of SIGGRAPH authors into the

artistic style of their portrait images. We use images generated by StyleGAN2 (Karras

et al. 2020) to anonymize the authors images. The author embedding vectors are

learned from a dataset of 1090 SIGGRAPH papers and 2008 authors, using the method

from Section 5.3.2. Similarly to our cat metaphor, we perform a mapping between the

author embedding vectors and an image embedding of style donor images. However, to

construct an image distance metric that emphasizes the style of the image (rather than

its content), we make several modifications to our model from Section 5.3.3. We are

again using SimCLR, but replace the encoder with a pretrained VGG16model (Simonyan

and Zisserman 2015), which has its weights frozen during training. Instead of using the

output of the encoder directly, we extract the style information as the activations after

the convolutional layers (‘conv11’, ‘conv21’, . . . , ‘conv51’, see Simonyan and Zisserman

2015) and compute the Gram matrix for each layer’s activation (we follow (Gatys et al.

2015) in how the style information is extracted). Concatenated Gram matrices are used

as the input to the projection head. The idea is to constrain the encoder to only extract

the stylistic features, and train the projection head to map them to a 256-dimensional

vector that describes the style. We follow the SimCLR procedure as usual, but use

an aggressive cropping setting (10-20% of the image size) to further encourage the

encoding of the style and not of the content. The model is trained using a dataset of

11,000 digital art images (Srujan 2020).

Then, we construct a distance-based mapping between the author and style vectors,

mapping 100 most frequent authors to a small sample of 16 style images. We deliberately

use a small number of style images and allow duplicate assignments to make it easier

to distinguish style similarity. Once the style images are assigned, we perform the style

transfer for each author image with the method of Gatys et al. 2015.

5.3 ● Distance-based Mapping 121

1

3

2

(a) Similar pairs.

(b) Dissimilar pairs.

Figure 5.4 —Mapping SIGGRAPH authors to visual styles. We map each author to a

style donor image, such that similar authors are mapped to similar (or even identical)

styles. We then transfer the style onto the author’s portrait (we use artificial images) to

seamlessly encode their interests. In (a), we show a sampling of related author pairs,

where similarity can be encoded by using an identical style (1), styles with similar

colors (2) or strokes (3). And in (b) we show pairs of unrelated authors, which were

assigned significantly different styles.

122 Chapter 5 ● Metaphorical Visualization

Results. The styled author portraits are presented in Figure 5.4. In the top half, we

show samples of similar author pairs (75th percentile and above). Authors with stronger

similarity are assigned identical styles (1), making them particularly easy to distinguish.

But other similar authors are also distinguishable through the similarities in the color

scheme (2) or brushwork (3). And in the bottom half, we see that the most dissimilar

authors (25th percentile and below) were mapped to significantly different visual styles.

Compared to the pure image metaphor from Section 5.3.3, mapping to visual styles

allows more control over the final representation. Here we can fix the content of an

image and use the metaphor to only alter its style, creating an implicit visualization of

the metadata. Once again, the main strength of this approach is that it can be adapted

to the application at hand and can provide a seamless way for users to engage with the

data. For example, imagine generating stylized avatars for participants of an online

conference. The users could be provided with a few options to tweak the result to their

liking and then implicitly communicate their research topics to connect with the other

participants.

5.4 Attribute-based Mapping
Now we demonstrate another method of constructing a metaphorical mapping. The

idea of the attribute-based mapping is that when we have tabular data with directly

interpretable attributes, we can explicitly define which concept attribute should rep-

resent which data attribute. For example, we could map movies onto stars, such that

the star’s apparent brightness represents the user rating of a movie. Compared to

the distance-based mapping, this requires additional design choices to construct the

mapping, but provides more control over the result and leads to a more transparent

metaphor. Note, that we use the term attribute as opposed to a more common feature
to avoid confusion with ML feature spaces from Section 5.3.

5.4.1 Method
We compute the attribute-basedmapping by solving a Linear Assignment Problem (LAP).

First, we take each data and concept attribute and normalize it to get zero mean and

a standard deviation of one. Then, we define the cost of assigning a data point xi to

a concept point cj as the MSE between the data and concept attribute vectors. More

formally, the cost matrix C for the LAP is:

C = [cij = (x̄i − c̄j)
2
] ∈ R∣X ∣×∣C∣. (5.3)

Here x̄i and c̄j are the vectors of normalized data and concept attributes, constructed

according to which data attribute should be mapped to which concept attribute. The

5.4 ● Attribute-based Mapping 123

final mapping is obtained by solving the LAP minM ∑i ci,M(i) , which can be done

optimally and efficiently.

As our cost function, we opted to use MSE between the normalized attribute values, but

many other options are available. The advantage of our choice is that we encourage

relative scales to be preserved, so if a data point a is twice as far from the mean as b, this
relationship will be maintained in the concept space. This works well in our examples,

e.g., user ratings across various websites can be given in different ranges (1 to 5, 1 to 10

or 0 to 100) and have different voting patterns, so they should be normalized, but it is

important to preserve their relative scales. An outlier in the data space should remain

an outlier in the concept space.

5.4.2 Books to Movies and Games

We demonstrate our attribute-based mapping with a metaphor between popular books,

movies and video games. All three domains are represented by tabular data with directly

interpretable attributes such as user rating, release date, etc. Furthermore, we make the

metaphor even more intuitive by mapping between similar attributes, e.g., matching

the book’s user rating to the movie’s user rating.

We use a dataset of books from Goodreads (Dasgupta 2019), the movie dataset comes

from IMDb (Leone 2019) and the game data is from Steam (Antonov 2019). For all three

domains, we take the 500 entries with the most user ratings (i.e., the most popular). We

construct two mappings, one from books to movies and the other from books to games.

In the former, we assign the IMDb user rating to the Goodreads user rating and the

number of ratings on IMDb to the same attribute from Goodreads. Similarly, we map

the two book attributes to the user rating and the number of ratings on Steam.

The results for mapping books to movies and games one-to-one are presented in Fig-

ure 5.5, where we show the book-movie-game triplets as their cover images. In this

example, we jointly explore these spaces via the 16 most popular books, ordered left-to-

right, top-to-bottom. We see that the first match is “Twilight”, “Batman v Superman”

and “PUBG” (1), and it corresponds to items that are very popular but have an average,

even controversial user rating. Note that by average, we mean average among the

500 most popular items. A similar case, albeit slightly less popular, can be seen in

the “Lord of the Flies”, “Star Wars: Episode I” and “Day Z” triplet (3). “HP and the

Half-Blood Prince” is both very popular and very favorably rated, which results in it

being appropriately matched to the IMDb’s #1 rated “Shawshank Redemption” and

the “Factorio” game (2). In general, we find that this metaphor is easier to interpret

than the distance-based mapping and produces meaningful associations between the

different media. Now one could explain to a person familiar with movies that “The Da

Vinci Code” is the “Iron Man 2” of books.

124 Chapter 5 ● Metaphorical Visualization

1

2

3

Figure 5.5 — Attribute-based mapping of books to films and video games. Here we

explicitly map the books’ rating and vote count attributes to similar film and game

attributes. As a result, one can interpret the metaphor more directly since all three items

in a book-film-game triplet will have similar rating and popularity. The user can rely

on their sparse knowledge across all three domains to learn more about the unknown

items. For example, top-left we see the “Twilight”, “Batman v Superman”, “PUBG”

triplet (1), where all three are very popular and have a mediocre rating. While “HP

and the Half-Blood Prince”, “Shawshank Redemption” and “Factorio” (2) are connected

because all three are popular, but are also rated very favorably.

5.4 ● Attribute-based Mapping 125

Another interesting way of applying attribute-based mapping is to perform clustering

first. The mapping is then performed between the clusters, producing both a multi-way

assignment and generating distinct “categories” of analogous items across the three

domains. For this metaphor, we apply k-means clustering with 64 clusters to each

domain and then compute the mapping between the cluster centroids. We also add a

third attribute, matching the book’s page count to the movie duration and the average

playtime of a game.

The results are presented in Figure 5.6. In each row, we display three clusters (one from

each domain) that were mapped to each other. For each cluster, we show three of its

elements as examples and plot where the cluster centroid (blue marks) is located in

the overall distribution of each attribute (gray outline). In the first row (1), we see

a cluster with works that are quite popular, positively rated and have above-average

length. For books, we have “The Shining” and “Outlander” with 600+ pages, matched

to the movie “The Shining” and popular games like “Rocket League” and “Arma 3”.

We observe that the mapping is preserving all three attributes well, resulting in a

richer metaphor. Next (2), we have the opposite situation, with items that are not so

popular, poorly rated (compared to the other 500 items) and are on the shorter side.

Unsurprisingly, many of them are sequels. We also find a “short and sweet” cluster (3)

of short and well-rated items, like “The Tale of Peter Rabbit”, “Casablanca”, “Monty

Python and the Holy Grail”, “Hellblade”, and so on. Another interesting example is an

outlier cluster of popular, very well rated and very long works (4): George R.R. Martin’s

“Clash of Kings”, “The Lord of the Rings” films, “The Godfather”, “Team Fortress 2” and

“Warframe”. All well-known, beloved and very long (or played a lot in the case of games).

And the last cluster (5) has even longer works that have positive but not an outstanding

rating. Here we see “War and Peace”, “Titanic” and “Rust”, all extremely long and with

favorable user ratings, but not the highest possible. These last two clusters are outlier

cases, resulting in the higher assignment cost and fewer elements since it is harder to

find analogous items for the outliers. Nevertheless, we are still able to construct an

appropriate metaphor, even when dealing with the extremes of all three distributions.

In summary, we see that despite the simplicity of the attribute-based mapping, we are

able to generate accurate and engaging associations between different domains. Its

particular strength lies in the control that we have over the metaphor and its resulting

transparency. In the above examples, we have opted to use the most popular works to

reach the widest audience. So when we say that a book or a film has a below-average

rating, it is not awful, but only mediocre. Showing films with the IMDb rating of 5/10

would result in many unknown movies. However, the ultimate application of this

metaphor could be, for example, in recommendation systems. With the knowledge

of which works the user has read/watched/played, we can generate a personalized

metaphor, also taking into the account the user’s own ratings. So if you liked that one

book that everyone else hated, we can use it as a metaphor to describe an unpopular

126 Chapter 5 ● Metaphorical Visualization

1
.
“
G
o
o
d
,
P
o
p
u
l
a
r
,
L
o
n
g
e
r
”

2
.
“
M
e
d
i
o
c
r
e
S
e
q
u
e
l
s
2
”

3
.
“
S
h
o
r
t
a
n
d
S
w
e
e
t
”

4
.
“
T
h
e
D
i
r
e
c
t
o
r
’
s
C
u
t
”

5
.
“
T
h
e
T
o
l
s
t
o
y
’
s
C
u
t
”

Figure
5.6

—
A
t
t
r
i
b
u
t
e
-
b
a
s
e
d
m
a
p
p
i
n
g
o
f
b
o
o
k
c
l
u
s
t
e
r
s
t
o
c
l
u
s
t
e
r
s
o
f
m
o
v
i
e
s
a
n
d
g
a
m
e
s
.
T
h
e
w
o
r
k
s
w
i
t
h
s
i
m
i
l
a
r
r
e
l
a
t
i
v
e
p
o
p
u
l
a
r
i
t
y
,

r
a
t
i
n
g
a
n
d
l
e
n
g
t
h
a
r
e
m
a
t
c
h
e
d
t
o
g
e
t
h
e
r
.
E
a
c
h
r
o
w

s
h
o
w
s
a
t
r
i
p
l
e
t
o
f
m
a
t
c
h
e
d
c
l
u
s
t
e
r
s
,
a
n
d
w
h
e
r
e
e
a
c
h
c
l
u
s
t
e
r
f
a
l
l
s
i
n
t
h
e
o
v
e
r
a
l
l

d
i
s
t
r
i
b
u
t
i
o
n
o
f
p
o
p
u
l
a
r
i
t
y
,
r
a
t
i
n
g
a
n
d
l
e
n
g
t
h
.
T
h
i
s
m
e
t
a
p
h
o
r
s
u
c
c
e
s
s
f
u
l
l
y
c
o
n
n
e
c
t
s
s
i
m
i
l
a
r
a
r
c
h
e
t
y
p
e
s
a
c
r
o
s
s
a
l
l
t
h
r
e
e
d
o
m
a
i
n
s
.
F
o
r

e
x
a
m
p
l
e
,
w
e
s
e
e
a
“
s
h
o
r
t
a
n
d
s
w
e
e
t
”
c
a
t
e
g
o
r
y
(
3
)
w
i
t
h
“
T
h
e
T
a
l
e
o
f
P
e
t
e
r
R
a
b
b
i
t
”
,
“
C
a
s
a
b
l
a
n
c
a
”
a
n
d
“
H
e
l
l
b
l
a
d
e
”
;
o
r
t
h
e
e
x
t
r
e
m
e
l
y
l
o
n
g
,

b
u
t
m
o
d
e
r
a
t
e
l
y
r
a
t
e
d
m
a
t
c
h
o
f
“
W
a
r
a
n
d
P
e
a
c
e
”
,
“
T
i
t
a
n
i
c
”
a
n
d
“
R
u
s
t
”
(
5
)
.

5.5 ● Hybrid Mapping 127

movie that you personally might enjoy.

5.5 Hybrid Mapping
So far we have discussed twomethods for computingmetaphorical mappings: a distance-

based approach (Section 5.3) and an attribute-based approach (Section 5.4). The former

is very flexible, as it requires only distance functions and enables us to map across

many different domains. The latter is more manual but provides additional control

over the mapping, making it more interpretable. In this section, we will combine the

two methods and preserve both the distances as well as the relative attribute values.

One scenario where preserving both could be helpful is when we want to control a

particular aspect of a distance-based metaphor, e.g., to assign frequently used words

to the more frequent authors in our metaphor from Section 5.3.2. Another important

use case arises when using attribute-based mapping with concepts that have inherent

spatial information. Visualizing the spatial structure of the concept space will inevitably

imply similarity among nearby data points, and so it is important to make sure that

this similarity exists also in the data space. We describe such a scenario below, where

we map movies to stars in the night sky.

5.5.1 Method
The hybrid metaphor mapping is a straightforward extension of the distance-based

method from Section 5.3. Now the total cost of an assignment from Equation 5.1 also

needs to include the linear attribute cost from Equation 5.3 and becomes:

E(M) =∑
i

[cxi,M(xi) + λ∑
j

(d(xi, xj) − d(M(xi), M(xj)))
2
]. (5.4)

Here the first term is the attribute-based cost of mapping each data point xi to a

concept M(xi). And the second term is the distance-based cost from Equation 5.1 that

captures the difference between the data and the concept distance for every pair of

data point. The coefficient λ is used to control their relative importance. We solve

this extended optimization problem using the same simulated annealing algorithm

described in Section 5.3, replacing only the cost function.

5.5.2 Movies to Stars
We demonstrate the hybrid mapping by assigning popular movies to bright stars. With

this metaphor, we generate an illustrated map of the night sky, inviting the users to

explore the data and build connections between movies and stars.

128 Chapter 5 ● Metaphorical Visualization

A
n

d
ro

m
e

d
a

A
q

u
ariu

s

A
q

u
ila

A
rie

s

A
u

rig
a

B
o

ö
te

s

C
am

e
lo

p
ard

alis

C
an

c
e

r

C
an

e
s V

e
n

atic
i

C
an

is M
ajo

r

C
an

is M
in

o
r

C
ap

ric
o

rn
u

s

C
arin

a
C

assio
p

e
ia

C
e

n
tau

ru
s

C
e

p
h

e
u

s

C
e

tu
s

C
o

ro
n

a B
o

re
alis

C
ru

x

C
yg

n
u

s

D
rac

o

E
rid

an
u

s G
e

m
in

i

H
e

rc
u

le
s

H
yd

ra

Le
o

Lib
ra

Ly
ra

M
o

n
o

c
e

ro
s

O
p

h
iu

c
h

u
s

O
rio

n

P
avo

P
e

g
asu

s

P
e

rse
u

s

P
h

o
e

n
ix

P
isc

e
s

P
isc

is A
u

strin
u

s

P
u

p
p

is

S
ag

ittariu
s

S
c

o
rp

iu
s

T
au

ru
s

T
rian

g
u

lu
m

 A
u

strale

U
rsa M

ajo
r

U
rsa M

in
o

r

V
e

la

V
irg

o

C
an

o
p

u
s

ro
m

e
d

a

A
q

u
ariu

s

A
q

u
ila

B
o

ö
te

s

C
an

c
e

r

ic
i

C
an

is M
ajo

r

C
an

is M
in

o
r

C
ap

ric
o

rn
u

s

C
arin

a

ssio
p

e
ia

C
e

n
tau

ru
s

p
h

e
u

s

C
o

ro
n

a B
o

re
alis

C
ru

x

C
yg

n
u

s

D
rac

o

E
rid

an
u

s

G
e

m
in

i

H
e

rc
u

le
s

H
yd

ra

Le
o

Lib
ra

Ly
ra

M
o

n
o

c
e

ro
s

O
p

h
iu

c
h

u
s

O
rio

n

P
avo

P
e

g
asu

s

P
h

o
e

n
ix

P
isc

is A
u

strin
u

s

P
u

p
p

is

S
ag

ittariu
s

S
c

o
rp

iu
s

T
rian

g
u

lu
m

 A
u

strale

U
rsa M

in
o

r

V
e

la

V
irg

o

A
lk

aid

C
an

o
p

u
s

S
iriu

s

A
n

d
ro

m
e

d
a

A
q

u
ariu

s

A
q

u
ila

A
rie

s

A
u

rig
a

C
an

is M

C
ap

ric
o

rn
u

s

C
arin

a

C
assio

p
e

ia

C
e

tu
s

C
ru

x

C
yg

n
u

s

P
avo

P
e

g
asu

s

P
e

rse
u

s

P
h

o
e

n
ix

P
isc

e
s

P
isc

is A
u

strin
u

s

P
u

p
p

is

S
ag

ittariu
s

S
c

o
rp

iu
s

T
au

ru
s

T
rian

g
u

lu
m

 A
u

strale

V
e

laC
an

o
p

u
s

C
an

o
p

u
s

B
o

ö
te

s

C
t

C
o

ro
n

a B
o

re
alis

H
e

rc
u

le
s

H
yd

ra

L

Lib
ra

O
p

h
iu

c
h

u
s

V
irg

o

A
lp

h
e

c
c

a

A
q

u
ariu

s

C
ap

ric
o

rn
u

s

P
avo

P
h

o
e

n
ix

P
isc

is A
u

strin
u

s

S
ag

ittariu
s

A
c

h
e

rn
ar

Figure
5.7

—
T
h
e
m
e
t
a
p
h
o
r
i
c
a
l
m
a
p
p
i
n
g
o
f
p
o
p
u
l
a
r
m
o
v
i
e
s
t
o
s
t
a
r
s
i
n
t
h
e
n
i
g
h
t
s
k
y
.
W
e
a
s
s
i
g
n
w
e
l
l
-
r
a
t
e
d
m
o
v
i
e
s
t
o
b
r
i
g
h
t
e
r
s
t
a
r
s
,

w
h
i
l
e
a
l
s
o
a
t
t
r
i
b
u
t
i
n
g
r
e
l
a
t
e
d
m
o
v
i
e
s
t
o
n
e
i
g
h
b
o
r
i
n
g
s
t
a
r
s
.
U
s
e
r
s
c
a
n
e
x
p
l
o
r
e
t
h
i
s
e
n
g
a
g
i
n
g
i
n
f
o
g
r
a
p
h
i
c
t
o
b
u
i
l
d
c
o
n
n
e
c
t
i
o
n
s
b
e
t
w
e
e
n

s
t
a
r
s
a
n
d
m
o
v
i
e
s
a
n
d
t
o
fi
n
d
o
u
t
m
o
r
e
a
b
o
u
t
b
o
t
h
i
n
t
h
e
p
r
o
c
e
s
s
.
F
o
r
e
x
a
m
p
l
e
,
i
n
t
h
e
t
o
p
-
l
e
f
t
c
o
r
n
e
r
,
w
e
s
e
e
M
i
y
a
z
a
k
i
’
s
a
n
i
m
a
t
e
d

fi
l
m
s
(
i
n
g
r
e
e
n
,
“
M
y
N
e
i
g
h
b
o
r
T
o
t
o
r
o
”
,
“
H
o
w
l
’
s
M
o
v
i
n
g
C
a
s
t
l
e
”
,
e
t
c
.)
m
a
p
p
e
d
t
o
t
h
e
B
o
ö
t
e
s
c
o
n
s
t
e
l
l
a
t
i
o
n
.
H
e
r
e
t
h
e
b
r
i
g
h
t
e
s
t
s
t
a
r
A
l
k
a
i
d

w
a
s
a
s
s
i
g
n
e
d
t
o
“
S
p
i
r
i
t
e
d
A
w
a
y
”
,
s
u
g
g
e
s
t
i
n
g
t
h
a
t
i
t
i
s
t
h
e
h
i
g
h
e
s
t
-
r
a
t
e
d
o
f
t
h
e
fi
l
m
s
.
J
u
s
t
b
e
l
o
w
,
t
h
e
a
n
i
m
a
t
e
d
fi
l
m

c
l
a
s
s
i
c
“
T
h
e
L
i
o
n

K
i
n
g
”
(
i
n
p
u
r
p
l
e
)
b
e
c
a
m
e
A
l
p
h
e
c
c
a
–
t
h
e
j
e
w
e
l
o
f
t
h
e
n
o
r
t
h
e
r
n
c
r
o
w
n
(
C
o
r
o
n
a
B
o
r
e
a
l
i
s
)
.
A
n
d
t
h
e
e
x
c
e
p
t
i
o
n
a
l
l
y
p
o
s
i
t
i
v
e
l
y
r
a
t
e
d
“
T
h
e

G
o
d
f
a
t
h
e
r
”
b
e
c
a
m
e
t
h
e
s
e
c
o
n
d
-
b
r
i
g
h
t
e
s
t
s
t
a
r
i
n
t
h
e
s
k
y
–
C
a
n
o
p
u
s
,
s
u
r
r
o
u
n
d
e
d
b
y
t
h
e
m
a
fi
a
,
w
e
s
t
e
r
n
a
n
d
s
a
m
u
r
a
i
m
o
v
i
e
s
.

5.5 ● Hybrid Mapping 129

For our data space, we use a list of 200 movies from IMDb with the highest number of

votes (popularity), cross-referenced with the MovieLens Tag Genome Dataset (Vig et al.

2012). With the tag data, we build a movie-tag matrix and perform SVD to construct a

movie embedding. We then use the left singular vectors to represent the movies, and

for the concept space, we use a list of 400 brightest stars in the night sky.

Next, we need to define themapping, and here wemust consider how it will be presented

to the user. The stars have natural spatial positions that we can exploit to encode more

information into the visualization. We accomplish this by using our hybrid mapping

approach to add additional distance-based costs. For the stars, we compute the Euclidean

distance in the display space, using the equirectangular projection and the galactic

coordinate system. An area-preserving projection like Aitoff is also an option, but we

prefer a rectangular projection for an infographic. And for the movies, we take their

singular vectors, apply UMAP to first project them into a two-dimensional space and

then compute the Euclidean distance. We apply this pre-projection step rather than

compute the distances in the high-dimensional space because a neighbor-preserving

projection works better when mapping to the low-dimensional space of 2D positions.

As the last step, distances in both spaces are normalized to mean zero and standard

deviation of one to match their scale. For the attribute cost, we map the average movie

rating to the star brightness (apparent magnitude) so that highly-rated movies will

correspond to the brightest stars. Finally, we compute the mapping with simulated

annealing, using the cost function from Equation 5.4.

The results are presented in Figure 5.7. We render the stars and the constellations with

D3-Celestial (Frohn 2017) and mark all the stars that were assigned a movie. The posters

are shown only for the most popular films to avoid clutter. We also show magnified

images for several clusters.

First, we observe that the movie similarity was properly encoded as the star distances.

For example, we see a cluster of Disney/Pixar animated films (purple, “The Lion King”,

“Up”) next to the Boötes constellation of Miyazaki animes (teal, “Spirited Away”, “My

Neighbor Totoro”); a cluster of older western and mafia movies (orange, “Once Upon a

Time in the West”, “The Godfather”); and a constellation of Tarantino and similar crime

films (green, “Pulp Fiction”, “Snatch”). Inspecting different regions of the sky, we also

see that the films with the highest rating are mapped to the brightest stars (relative to

the other popular films). The highly-rated “The Godfather” is mapped to the brightest

star of the region – Canopus, while the nearby “Goodfellas” is assigned to the dimmer

Adhara.

Overall, we believe that the mapping captures the metaphor of the “movie night sky

panorama” and generates some memorable connections, like Boötes being the anime

constellation and Leo representing films about war. Informally, we found it much more

engaging to explore both stars and movies under a joint metaphor than as separate

130 Chapter 5 ● Metaphorical Visualization

datasets. It shows that sometimes the metaphors could be even more fun when the user

has some knowledge of both spaces, telling stories and making associations across them.

This could be used, for example, for science communication or to connect to a particular

audience. Furthermore, together with the Authors-to-Styles metaphor (Section 5.3.4),

this application also demonstrates how the metaphors can influence the visualization it-

self, mapping to visual attributes (positions, in this case) as well as abstract data (ratings)

to construct the final representation.

5.6 Topological Mapping
In this section, we present a prototype of topological mapping. We use it to map a

taxonomy of sciences (taken from Wikidata) to a taxonomy of industries (taken from

Eurostat), i.e., between two trees.

5.6.1 Method
We define a hierarchical dataset as a directed tree with edges oriented from parents

to children, where each vertex of the tree is associated with a vector of attributes.

For example, this could be a file system tree, with each vertex having a size and a

creation date. Our goal is to map vertices of the data tree to vertices of the concept

tree, such that the difference between their attribute vectors is minimal according to

some cost function (e.g., MSE). This is the attribute cost from Equation 5.3. Additionally,

the map M must satisfy the hierarchy constraint: if vertices xp, xd in the data tree

are connected by a path (xp, . . . , xk, . . . , xd), then their assigned concepts must also

be connected by some path (M(xp), ..., ck, ..., M(xd)). In other words, the parent-

descendant relationship must be preserved.

We solve this problem with the simulated annealing algorithm described in Section 5.3.

However, generating random neighboring assignments is no longer trivial due to

the hierarchy constraint, so we must make some modifications. The most important

modification is that we do not require all of the data vertices to be assigned, so that we

can compute mappings for data trees that do not fit topologically within the concept

tree. Instead, we add a loss term that penalizes unassigned vertices, making it a soft

constraint. This simplifies the search of the solution space since we can move through

“partial” solutions to more easily find low-cost regions. And it also makes the algorithm

much more practical to use with real datasets that do not align well with each other.

We initialize the search with a random assignment computed in the following way. The

data root is assigned to the concept root. Then, we traverse the data tree breadth-first,

and assign each vertex xc with parent xp, to a random descendant of M(xp), satisfying

the hierarchy constraint. If concept M(xp) has no unassigned descendants, we leave xc

unassigned. After initialization, we proceed as described in Section 5.3, stepping over

5.6 ● Topological Mapping 131

W
ire

d
te

le
co

m
m

un
ic

at
io

ns
C

om
pu

ta
tio

na
l s

ci
en

ce
W

ire
d

te
le

co
m

m
un

ic
at

io
ns

A
pp

lie
d

m
at

he
m

at
ic

s
T

el
ec

om
m

un
ic

at
io

ns
M

at
he

m
at

ic
s

In
fo

rm
at

io
n

an
d

co
m

m
un

ic
at

io
n

E
xa

ct
 s

ci
en

ce

O
rg

an
is

at
io

n
of

 c
on

ve
nt

io
ns

 a
n

S
ys

te
m

s
en

gi
ne

er
in

g

O
ffi

ce
 a

dm
in

is
tr

at
iv

e,
 o

ffi
ce

E

ng
in

ee
rin

g

A
D

M
IN

IS
T

R
A

T
IV

E
 A

N
D

 S
U

P
P

O
R

T
 S

E
R

A
pp

lie
d

sc
ie

nc
e

A
ct

iv
iti

es
 o

f h
ea

d
of

fic
es

; m
a

S
oc

io
lo

gy
P

R
O

F
E

S
S

IO
N

A
L,

 S
C

IE
N

T
IF

IC
 A

N
D

 T
S

oc
ia

l s
ci

en
ce

M
an

. o
f e

le
ct

ric
al

 e
qu

ip
m

en
t

B
io

m
ed

ic
al

 e
ng

in
ee

rin
g

M
an

. o
f l

ig
ht

in
g

eq
ui

pm
en

t
B

io
m

ed
ic

in
e

M
an

. o
f e

le
ct

ric
al

 e
qu

ip
m

en
t

B
io

lo
gy

M
an

uf
ac

tu
rin

g
N

at
ur

al
 s

ci
en

ce

R
E

A
L

E
S

T
A

T
E

 A
C

T
IV

IT
IE

S
F

oo
d

sc
ie

nc
e

A
rc

hi
te

ct
ur

al
 a

nd
 e

ng
in

ee
rin

g
R

eg
io

na
l s

ci
en

ce

In
ve

st
ig

at
io

n
ac

tiv
iti

es
O

pt
om

et
ry

S
ec

ur
ity

 a
nd

 in
ve

st
ig

at
io

n
ac

t
H

ea
lth

 s
ci

en
ce

..a
dm

in
is

tr
at

iv
e

an
d

su
pp

or
t a

ct
C

iv
il

en
gi

ne
er

in
g

..c
om

m
un

ic
at

io
n

eq
ui

pm
en

t
P

hy
si

ca
l s

ci
en

ce
s

M
an

uf
ac

tu
re

 o
f c

om
pu

te
r,

 e
le

ct

..g
en

er
al

-p
ur

po
se

 m
ac

hi
ne

ry
G

eo
de

sy

M
an

uf
ac

tu
re

 o
f m

ac
hi

ne
ry

 a
nd

 e
E

ar
th

 s
ci

en
ce

..l
ig

ni
te

Li
br

ar
y

sc
ie

nc
e

M
in

in
g

of
 c

oa
l a

nd
 li

gn
ite

In
fo

rm
at

io
n

sc
ie

nc
e

M
IN

IN
G

 A
N

D
 Q

U
A

R
R

Y
IN

G

S
ci

en
tif

ic
 r

es
ea

rc
h

an
d

de
ve

lo
M

an
ag

em
en

t s
ci

en
ce

S
ew

er
ag

e
P

sy
ch

ol
og

y
W

at
er

 s
up

pl
y

an
d

se
w

er
ag

e
H

um
an

 s
ci

en
ce

Le
ga

l a
nd

 a
cc

ou
nt

in
g

ac
tiv

iti
e

R
el

ig
io

us
 s

tu
di

es

M
an

ag
em

en
t c

on
su

lta
nc

y
ac

tiv
it

G
en

de
r

st
ud

ie
s

..a
gr

ic
ul

tu
ra

l a
nd

 fo
re

st
ry

 m
ac

h
S

oi
l s

ci
en

ce

T
R

A
N

S
P

O
R

T
A

T
IO

N
 A

N
D

 S
T

O
R

A
G

E
H

yd
ro

lo
gy

S
at

el
lit

e
te

le
co

m
m

un
ic

at
io

ns
S

ta
tis

tic
s

S
at

el
lit

e
te

le
co

m
m

un
ic

at
io

ns
D

at
a

sc
ie

nc
e

..n
on

-e
le

ct
ric

 d
om

es
tic

 a
pp

lia
nc

A
gr

on
om

y
M

an
. o

f d
om

es
tic

 a
pp

lia
nc

es
P

la
nt

 s
ci

en
ce

"
M

ac
hi

ne
 le

ar
ni

ng
"

C
om

pu
te

r
sc

ie
nc

e
In

fo
rm

at
io

n
se

rv
ic

es
F

or
m

al
 s

ci
en

ce

V
et

er
in

ar
y

ac
tiv

iti
es

P
ol

iti
ca

l s
tu

di
es

M
an

uf
ac

tu
re

 o
f l

ea
th

er
 a

nd
 r

el
G

eo
lo

gy

P
riv

at
e

se
cu

rit
y

ac
tiv

iti
es

M
ed

ic
in

e

G
en

er
al

 c
le

an
in

g
of

 b
ui

ld
in

gs
..t

ec
hn

ol
og

y
C

le
an

in
g

ac
tiv

iti
es

In
fo

rm
at

io
n

an
d

co
m

m
un

ic
at

io
ns

S
er

vi
ce

s
to

 b
ui

ld
in

gs
 a

nd
 la

nd
T

ec
hn

ol
og

y

O
T

H
E

R
 S

E
R

V
IC

E
 A

C
T

IV
IT

IE
S

T
ra

ns
po

rt
 s

ci
en

ce
s

A
ct

iv
iti

es
 o

f c
al

l c
en

tr
es

A
ut

om
ot

iv
e

en
gi

ne
er

in
g

A
ct

iv
iti

es
 o

f c
al

l c
en

tr
es

E
le

ct
ric

al
 e

ng
in

ee
rin

g

A
cc

om
m

od
at

io
n

O
pe

ra
tio

ns
 r

es
ea

rc
h

A
cc

om
m

od
at

io
n

an
d

F
oo

d
S

er
vi

ce
S

ys
te

m
s

sc
ie

nc
e

P
riv

at
e

se
cu

rit
y

ac
tiv

iti
es

V
et

er
in

ar
y

m
ed

ic
in

e

M
an

. o
f b

at
te

rie
s

E
vo

lu
tio

na
ry

 b
io

lo
gy

W
ire

le
ss

 te
le

co
m

m
un

ic
at

io
ns

G
eo

m
et

ry

M
an

uf
ac

tu
re

 o
f m

et
al

 fo
rm

in
g

m
ac

hi
ne

ry
P

hy
si

ca
l g

eo
gr

ap
hy

..m
et

al
 fo

rm
in

g
m

ac
hi

ne
ry

 a
nd

 m
a

G
eo

gr
ap

hy

A
dv

er
tis

in
g

an
d

m
ar

ke
t r

es
ea

rc
A

rc
ha

eo
lo

gy

O
th

er
 te

le
co

m
m

un
ic

at
io

ns
P

ur
e

m
at

he
m

at
ic

s

C
om

bi
ne

d
fa

ci
lit

ie
s

su
pp

or
t a

c
N

an
ot

ec
hn

ol
og

y

N
ew

s
ag

en
cy

 a
ct

iv
iti

es
A

rt
ifi

ci
al

 in
te

lli
ge

nc
e

R
ep

ai
r

of
 c

om
pu

te
rs

 a
nd

 p
er

so
n

T
ra

ns
po

rt
at

io
n

en
gi

ne
er

in
g

O
th

er
 te

le
co

m
m

un
ic

at
io

ns
M

at
he

m
at

ic
al

 a
na

ly
si

s
..s

ys
te

m
s

se
rv

ic
e

ac
tiv

iti
es

P
ub

lic
 h

ea
lth

B
us

in
es

s
su

pp
or

t s
er

vi
ce

 a
ct

iv
C

on
tr

ol
 e

ng
in

ee
rin

g

M
an

. o
f t

ob
ac

co
 p

ro
du

ct
s

A
st

ro
no

m
y

..f
oo

tw
ea

r
M

in
er

al
og

y

..o
th

er
 m

ac
hi

ne
 to

ol
s

D
em

og
ra

ph
y

O
rg

an
is

at
io

n
of

 c
on

ve
nt

io
ns

 a
nd

 tr
ad

e
sh

ow
s

S
of

tw
ar

e
en

gi
ne

er
in

g

S
ew

er
ag

e
C

lin
ic

al
 p

sy
ch

ol
og

y

T
ra

ns
la

tio
n

an
d

in
te

rp
re

ta
tio

n
C

og
ni

tiv
e

sc
ie

nc
e

O
th

er
 p

ro
fe

ss
io

na
l,

sc
ie

nt
ifi

c
A

nt
hr

op
ol

og
y

M
an

. o
f t

ob
ac

co
 p

ro
du

ct
s

A
st

ro
ph

ys
ic

s
M

an
uf

ac
tu

re
 o

f c
om

m
un

ic
at

io
n

eq
ui

pm
en

t
P

hy
si

cs
T

an
ni

ng
 a

nd
 d

re
ss

in
g

of
 le

at
he

P
et

ro
lo

gy

..o
th

er
 e

le
ct

ric
al

 e
qu

ip
m

en
t

T
ox

ic
ol

og
y

..w
iri

ng
 a

nd
 w

iri
ng

 d
ev

ic
es

A
st

ro
bi

ol
og

y

S
al

e,
 m

ai
nt

en
an

ce
 a

nd
 r

ep
ai

r
o

P
hi

lo
lo

gy

W
ho

le
sa

le
 a

nd
 r

et
ai

l t
ra

de
 a

nd
G

ei
st

es
w

is
se

ns
ch

af
t

W
H

O
LE

S
A

LE
 A

N
D

 R
E

T
A

IL
 T

R
A

D
E

; R
E

M
ai

nt
en

an
ce

 a
nd

 r
ep

ai
r

of
 m

ot
o

P
ed

ag
og

y

V
et

er
in

ar
y

ac
tiv

iti
es

..s
ci

en
ce

M
an

uf
ac

tu
re

 o
f f

oo
tw

ea
r

C
ry

st
al

lo
gr

ap
hy

..e
le

ct
ric

 m
ot

or
s,

 g
en

er
at

or
s,

 t
A

na
to

m
y

..o
th

er
 s

pe
ci

al
-p

ur
po

se
 m

ac
hi

ne
r

A
tm

os
ph

er
ic

 s
ci

en
ce

s

S
al

e
of

 m
ot

or
 v

eh
ic

le
 p

ar
ts

 a
n

A
rt

 h
is

to
ry

S
al

e
of

 m
ot

or
 v

eh
ic

le
s

T
he

ol
og

y

..o
th

er
 g

en
er

al
-p

ur
po

se
 m

ac
hi

ne
r

G
eo

ch
em

is
tr

y

La
nd

sc
ap

e
se

rv
ic

e
ac

tiv
iti

es
B

io
te

ch
no

lo
gy

1

2

3

Fi
gu

re
5.
8
—
M
a
p
p
i
n
g
t
h
e
s
c
i
e
n
c
e
t
a
x
o
n
o
m
y
(
b
l
u
e
)
t
o
i
n
d
u
s
t
r
i
e
s
(
o
r
a
n
g
e
)
.
T
h
e
a
r
e
a
o
f
t
h
e
(
h
a
l
f
-
)
c
i
r
c
l
e
s
e
n
c
o
d
e
s
t
h
e
s
i
z
e

o
f
e
a
c
h
fi
e
l
d
o
r
i
n
d
u
s
t
r
y
.
T
h
e
m
a
p
p
i
n
g
p
r
e
s
e
r
v
e
s
b
o
t
h
t
h
e
p
a
r
e
n
t
-
d
e
s
c
e
n
d
a
n
t
r
e
l
a
t
i
o
n
s
h
i
p
s
a
n
d
t
h
e
s
i
z
e
o
f
t
h
e
n
o
d
e
s
.
F
o
r

e
x
a
m
p
l
e
,
n
a
t
u
r
a
l
s
c
i
e
n
c
e
(
1
)
i
s
a
s
s
i
g
n
e
d
t
o
t
h
e
l
a
r
g
e
s
t
i
n
d
u
s
t
r
y
–
m
a
n
u
f
a
c
t
u
r
i
n
g
,
w
h
i
l
e
b
i
o
l
o
g
y
a
n
d
a
s
t
r
o
n
o
m
y
a
r
e
m
a
p
p
e
d

t
o
d
i
ff
e
r
e
n
t
t
y
p
e
s
o
f
m
a
n
u
f
a
c
t
u
r
i
n
g
.
F
i
e
l
d
s
a
r
e
a
l
l
o
w
e
d
t
o
“
s
k
i
p
”
l
e
v
e
l
s
o
f
h
i
e
r
a
r
c
h
y
t
o
b
e
t
t
e
r
m
a
t
c
h
t
h
e
i
r
a
t
t
r
i
b
u
t
e
s
,
l
i
k
e
i
n

t
h
e
c
a
s
e
o
f
i
n
f
o
r
m
a
t
i
o
n
s
c
i
e
n
c
e
(
2
)
.
A
n
d
f
o
r
p
h
y
s
i
c
s
(
3
)
t
h
e
r
e
i
s
n
o
t
y
p
e
o
f
m
a
n
u
f
a
c
t
u
r
i
n
g
t
h
a
t
i
s
s
u
ffi
c
i
e
n
t
l
y
l
a
r
g
e
t
o

r
e
p
r
e
s
e
n
t
i
t
.

132 Chapter 5 ● Metaphorical Visualization

random neighboring assignments. The sampling of the neighboring assignments also

needs to be adapted. First, we sample a random data vertex xc that has an assigned

parent xp. Then, we assign xc to a random descendant cd of cp =M(xp), where cp must

be connected to cd with a path of unassigned concept vertices. If there are no such

vertices cd, we simply unassign data vertex xc. Finally, we unassign all descendants

of xc and cd. These procedures guarantee that after changing the assignment of the

data vertex xc we still satisfy the hierarchy constraint.

5.6.2 Sciences to Industries

In Figure 5.8, we show the mapping of scientific fields onto industries. It matches the

topology and one attribute: the number of publications to the number of employees (size

of a subfield to a size of an industry). We render the resulting mapping as a joint tree,

where sciences are colored blue and industries are orange. We use the area of the

(half-)circles to represent the number of publications/employees in each field/industry

but set a minimal value to prevent the nodes from getting too small. Overall, we are able

to satisfy both constraints: the natural sciences are assigned to the largest economic

sector – manufacturing (1), preserving the size attribute across the two spaces. And the

specific natural sciences are mapped to the descendants of manufacturing, e.g., biology

becomes electrical manufacturing. Similarly, mathematics and computer science are

mapped to subtypes of the information and communication industry. We see that some

scientific fields, e.g., information science (2), appropriately skip a hierarchy level to

better match the attribute. Another interesting case is physics (3), which is a very

large field and cannot be matched well to any subindustry of manufacturing, because

there is no type of manufacturing that is so much larger than the others. Nevertheless,

finding good solutions requires us to introduce multiple loss functions and constraints,

leading to an inelegant algorithm. We present it here for the sake of completeness, and

in the future, we will pursue a specialized algorithm for tree mapping, e.g., searching

for assignments hierarchically and providing better initialization by aligning nodes

with similar local topology.

5.7 Qualitative Study

To learn more about how people perceive and interact with metaphors, we conducted a

user study. We opted for a qualitative study because it is better suited for our rather

unconventional idea of metaphorical visualization and allows us to study aspects that

we might not have anticipated.

5.7 ● Qualitative Study 133

5.7.1 Study Design and Analysis

We recruited 10 participants who are doctoral students working on visualization and

HCI at a local department (3 female and 7 male, aged 27-36). Aiming to study metaphors

in a personalized context, we purposefully collected data and built metaphors about

the people at the department, which included the participants themselves. We ob-

tained the data from Microsoft Academic, retrieving 13k authors that published in top

visualization venues and 18k topics (keywords) attributed to them. Similarly to Sec-

tion 5.3.3, we extracted embedding vectors for 50 authors at the department. The

authors were then mapped to words (Section 5.3.2), cat images (Section 5.3.3) and visual

styles (Section 5.3.4).

All three metaphors could be explored in a web-based tool that we created for the

study (Figure 5.9). The tool displays all 50 authors as draggable notes on a digital

corkboard so that the users can perform affinity diagramming. This setup provides the

participants with a simple task that encourages them to explore the metaphor. It also

allows them to better illustrate the perceived similarities and clusters. The users can

also create new metaphors by dragging concepts from the left panel onto the authors,

thereby providing initial assignments for some authors. The tool would then compute

the concepts for the remaining authors, continuing the metaphor.

A session with each participant lasted around 45 minutes in an one-on-one video

call, the screen and the audio were recorded. It began with a short introduction to

metaphorical visualization. Then, the participants were shown their personal Microsoft

Academic page and the dataset origin was explained. Next followed the main part of

the study, where the participants used the web tool to interact with the metaphors.

This usually began by asking the participant to find themselves and a few people with

similar concepts. Afterward, they were instructed to search for any other similarities

and arrange the notes while thinking aloud. Participants were occasionally prompted

to comment on why they considered grouped concepts to be similar, or whether the

groups aligned with what they know about their colleagues. After about 5-10 minutes,

the participants were explained how they can change the metaphor and prompted to try

it. They would then comment on their existing groupings and continue to explore and

edit the metaphor for about 5 minutes. This process was repeated for all three concept

spaces in a different order, and the session was concluded with a 5-10 minute semi-

structured interview. During the interview, the participants were asked to comment on

which spaces they found easier to interpret, and which they liked better. They were

asked about any expected or unexpected groupings that stood out and any particular

assignments that they remembered. Also, we asked if they had any ideas for other

concept spaces or applications of metaphorical visualization. Finally, the demographic

data was collected.

During the analysis phase, the recordings were transcribed and annotated to include

134 Chapter 5 ● Metaphorical Visualization

12

3

Figure 5.9 — The metaphor tool used in our study. All the names are anonymized.

Top: The initial state of the tool displaying the word metaphor. 1: The main area used

for affinity diagramming. Each draggable note displays a person’s name and the word

that they are currently mapped to. 2: A list of concepts that can be assigned to any

person by dragging the concept onto a note. 3: The controls for switching between

metaphorical spaces. Bottom: The tool during the exploration of the authors-to-cats

metaphor.

5.7 ● Qualitative Study 135

the groupings formed by the users in the tool. Then, the transcripts underwent an

iterative coding process using NVivo, eventually generating 65 codes that were grouped

into 10 categories.

5.7.2 Findings

Perception of similarity in different spaces. During the study we observed the

participants explain how they reasoned about similarity in different spaces, and during

the interview, they were asked which they found to be easier. When working with

words, participants most often grouped them based on the topic, for example, technical

terms (application, system, data), art-related (guitar, singer, poem), business (investment,

contract, client), and so on. P6: “*Groups ‘data’, ‘system’, ‘control’, ‘database’, ‘applica-
tion’* This is kind of software-ish.” But some more subtle and multi-faceted connections

were also made, showcasing the flexibility that words can offer. P7: “‘Explanation’ [and
‘poem’], poems always need explanation or interpretation.” P1: “‘Honey’ maybe comes
with ‘girlfriend’, it depends if honey is honey [food] or honey [endearment], like *chuckles*.”
It seems that the word space requires thinking and can be harder to interpret, but can

also be more flexible and interesting, a point brought up by 4 participants. P6: “Words
need a lot of parsing, and thinking about ‘does this work?”’ P2: “*Matches ‘celebration’
and ‘football’ to ‘music’.* I really like this, because it seems sooo infinitely dimensional.
laughs It works, because there are so many directions that terms can be similar.” P1: “If
the domain is for exploration, maybe I use the words.” P3: “For words you have to really
look harder, I think. But it’s also fun.” We believe that the flexibility of word similarity

can be especially useful in fostering playful and creative exploration of personal data.

When looking for cat similarity, people most commonly relied on the color of the cat:

black, white, orange, striped, etc. P2: “Oh! We can go for black cats right away. *Groups
5 people.* Yeah, this works out nicely.” But sometimes they also used other traits, such

as kittens or cats in cages. P10: “I’m just looking for some baby cats.” P3: “Apparently,
[Person A] and [Person B] and [Person C] are similar because they all have cats with this
type of head.” P8: “I put these two together because they are both in cages.” In general,

the opinions on how easy it was to perceive similarities in the cat space seemed to

diverge, with some people saying that it was easier and others that it was harder than

words. P10: “You don’t have to interpret it so much. You just see black cats.” P6: “Cats
were the hardest because I didn’t really know what were the primary features.” P7: “And
cats were funny. I liked the cats as well, but I couldn’t find much.” This suggests that the

cat images, being visual, are compared more quickly, but some of the finer features may

require time to interpret.

The style metaphor was regarded as the easiest for finding similarities by the majority of

our participants. P9: “And for the style transfer it was super intuitive, because I look at it,
and it looks similar or not, this is like a no-brainer.” P8: “The style visualization made me

136 Chapter 5 ● Metaphorical Visualization

fully understand the connection between the researchers.” This was somewhat surprising

to us, the advantage appears to be that the content of the image can be ignored, with

only the color and the texture encoding the similarity. P2: “[Person], well, he fits color-
wise, and also texture I think is similar, that’s cool.” Another contributing factor is that

we used 16 styles, making clusters of similarly-styled people more easily detectable.

Nevertheless, participants were able to not only find the clusters of identical style, but

also in-between cases of similar texture or color. P10: “And these two are something
in-between. Here you have really smooth area, and here something’s just blurred.” P9:
“[Person A] is like a weird case. It feels like he’s between [Person B] and probably this group
above here.” P5: “Oh and look here, a small [Professor] group cluster, [Professor] is the
same as us, between us and here.” This is quite encouraging and we think that such

“data-enriched avatars” might make for an interesting future study.

Expected and unexpected findings by participants. We observed our participants

construct many similarity groupings, both around themselves and involving others.

In total, we coded around 180 similarity clusters and pairs being mentioned. In 106

cases, the participants indicated whether the discovered similarity aligned with their

knowledge of their colleagues. Among those instances, we counted 90 that were

expected and 16 that were not. The latter cases, where the perceived metaphor does not

correspond to the user’s expectation are the most interesting to us, so we have manually

reviewed them by computing the underlying similarity between the researchers, i.e. the

data points. Interestingly, in 12 out of 16 cases, the data similarity was above the 75th

percentile or 0.27 cosine, i.e. the cases were not false positives, but rather represented

similarities in the research topics that were unknown to the participants but reported

by Microsoft Academic. P2: “My cluster doesn’t make sense. [‘meat’, ‘chocolate’, ‘potato’].
Maybe, I don’t know. [Person A] does a lot of HCI, [Person B] as well. [cosine 0.55]” P5: “I
think this one is similar to these ones, but I don’t see the connection between these two and
[Person]. [cosine 0.32]”

We also performed a similar investigation for the 18 instances where participants said

that they expected people to be similar, but did not find the expected similarity. We

found 12 cases where the perceived lack of similarity was explained by the data, i.e.

similarity was below the 75th percentile. P5: “But I expected that [Person] is closer to
our topics. [cosine 0.17]” P1: “Interviewer (I): Who should be similar? – [Person], for
example? But she’s not similar. [cosine -0.04]” P4: “[Person A with ‘organization’] I
would put here [to ‘potato’, ‘honey’], but the word doesn’t fit. [cosine -0.02]” Overall, we
observed that most of the cases where the user’s perception of the metaphor did not

fulfill their expectations were actually in the data. Our prototype did not provide access

to the underlying data, and it should have, in retrospect, because these cases indicate

opportunities for users to verify and extend their knowledge of their colleagues. P2: “I
would’ve like to have [...] the papers, the keywords for the authors, to see how this could
make sense. Because for some pairings it was surprising to see.” P4: “[...] it would be

5.7 ● Qualitative Study 137

interesting to know what types of topics are behind these images.”

Metaphor creation feature underused. One thing that our study setup did not

encourage enough is changing the metaphor by manually defining assignments. We

structured our tool around affinity diagramming, which worked well for understanding

how similarity is perceived and data connections are made, but an unintended conse-

quence was that people focused too much on finding similarity groups, which is logical

in hindsight. A few participants were even confused that the whole mapping would be

recomputed once they added an initial assignment and needed additional clarification.

P7: “Oh, ‘temperature’ is different. *Tries to fit it somewhere* Ooh, now everything’s
different.” P8: “I try a white cat for [Person]. And now, what? Did mine also change?” In

future work, we’d like to have a tool that is more suited for building fun metaphors, e.g.,

by presenting only a few people at a time, prompting the user to define assignments,

and automatically presenting some of the interesting outcomes.

Fun and personalization. One of our main goals for this qualitative study was to

see if metaphorical visualization can provide a fun and casual way of exploring data.

And throughout the study we observed participants find amusing assignments and

associations. P10: “*Laughs* Good, [Person A], ‘error’. I have to make a screenshot. [And
later after the study:] *Chuckles* The [Person A] error. I still have to send it to him.” P2:
“Let’s see if there are more baby cats around. Oh [Senior researcher] does not, *chuckles*
this is like an old cat.” P9: “But then it’s pretty funny that [Person A] has ‘maintenance’
and [Person B] has ‘system’ it’s like a maintenance system they do together *chuckles*.”
P7: “[‘cousin’ is put next to ‘marriage’] *Laughs* and I don’t marry my cousin. But yeah,
chuckles maybe we need the police here.”

And even more interesting were the many cases where people connected the concepts

to their associations about themselves and their colleagues. P7: “Uh.. *chuckles* so I
like .. *laughs* I’m one of the small cats because I’m one of the youngest here.” P1: “I like
this [Person] ‘appointment‘. – I: Why? – Like, when I remember [Person], the first thing
that pops into my mind is the [Seminar] timing thing. *laughs*” P3: “He looked tired
like this cat *chuckles* this morning when I saw him.” P5: “Look! All [Project] people are
easily "confused" or arguing with each other and explaining to each other things. *Groups
‘depth’, ‘confusion’, ‘argument’.*” We believe that creating such associations between

the data and their personal experience, and especially making assignments that reflect

them, can allow people to introduce their personal knowledge and connect with the

data metaphor.

Of course, the participants are from our own department, but still, we were pleasantly

surprised that many people spontaneously expressed that they enjoyed the experience,

without being prompted. P9: “I’m surprised that it worked so well, really. – I: Really? –
It’s crazy, yeah. I mean, if I would’ve see a graph layout of those, just for reference, I would
argue that you would have to do some major trickery to get the amounts of freedom you

138 Chapter 5 ● Metaphorical Visualization

need to describe something like this.” P1: “This was fun.” P5: “*Prompted to finish* Sorry,
I’m obsessed now, I feel like I finally acclimatized to cats. *Continues to group cats.*” P2:
“This was really cool.” P4: “It’s like playing “Memory” – I: Where you find similar pairs? –
Yeah, exactly.” P3: “I really like it. And I kind of would use it for memorization. I think if
you connect vocabularies to funny images and so on, would be easier for learning.” P7:
“This is like that game where you have to insert words for a sentence and then something
funny or politically wrong comes out. – I: Cards Against Humanity? – Yes *chuckles*.”
This quality of data metaphors to be fun and enjoyable in themselves could be an

important advantage when bringing data to casual users and applications.

5.8 Discussion
Our goal in this chapter was to demonstrate the flexibility and creativity of metaphorical

visualization, so we focused on constructing a wide range of application examples.

Here, we discuss our general takeaways from building data metaphors and future

improvements for our concrete examples.

We see the most promising applications of metaphors to be in personal visualization,

science communication and data storytelling. From this standpoint, one of the most im-

portant design considerations is making the metaphor clear and intuitive. For example,

in our books-movies-games metaphor (Section 5.4) we map between semantically identi-

cal (user rating) or analogous (length) attributes. Mapping the user rating to the number

of actors would be possible but would likely feel unintuitive. The metaphor should also

avoid “metaphorical artifacts”, which occur when we attribute to data some concept

properties that are not a part of the metaphor. In our movies to stars mapping (Sec-

tion 5.5), we originally did not consider distances between stars in the metaphor, but

this led to interpreting movies mapped to nearby stars as related. As a response, we

incorporated the distances into the metaphor and avoided false associations.

Another important aspect of metaphorical visualization lies in how the metaphor is

visually represented. Unlike the traditional visual primitives like points in a scatterplot,

words or artistic styles do not visually aggregate. And so, presenting the metaphor

across the whole dataset at once could be challenging. When necessary, scalability

should rather be pursued through interaction. This also aligns well with personal

applications, where we present only small parts of the data and where interaction can

improve engagement even further. And in general, metaphors designed for informal

applications should strive to be visually pleasing and fun to use.

In this work, we focused on the overall approach of using metaphors and therefore opted

for simple and generic methods in our implementations. In the future, many of them can

be refined with more specialized techniques. For example, our study showed that using

generic image similarity for cat images might not be optimal. It can be improved by

5.8 ● Discussion 139

using a customized measure, e.g., eliminating the background, restricting the dataset to

certain poses and using a more robust similarity function (Zhang et al. 2018). Another

interesting future direction is to use generative image models to directly generate

suitable images, instead of relying on fixed dataset. For our visual styles metaphor, we

can apply style transfer methods that specialize on portraits (e.g., Selim et al. 2016). The

distance-based metaphors are computed using simulated annealing, which provides

robust and unbiased solutions, but can struggle when scaling to thousands of points. We

aim to address this by first mapping a subset of “landmark” points (e.g., most frequent

authors) and then using them to define linear costs for the rest of the data. Finally, we

would like to conduct another study with a tool that is more interactive and encourages

users to build more personalized metaphors.

We are excited about the idea of metaphorical visualization and believe that metaphors

could find their usage in many informal and personalized applications. Overall, the

goal was to explore the idea in its breadth and to inspire many more data metaphors

and use cases.

6
Performance Prediction for

Parallel Volume Rendering

This chapter is based on the following publication:

Gleb Tkachev, Steffen Frey, Christoph Müller, Valentin Bruder, and Thomas

Ertl (2017). “Prediction of Distributed Volume Visualization Performance to

Support Render Hardware Acquisition.” In: Proceedings of the 17th Eurographics
Symposium on Parallel Graphics and Visualization. EGPGV ’17. Eurographics

Association, pp. 11–20

Rendering is the final step that is present in any visualization pipeline (Section 1.2). And

although it may appear to be a mere technicality compared to the feature extraction or

the design of visual mappings, this is not the case. Rendering is the primary surface

of interaction between the system and the user. Thus, it both constrains the previous

stages and has a major impact on the overall effectiveness of the visualization system.

When considering the potential benefits that machine learning can bring to rendering in

visualization, the most straight-forward applications include augmenting or replacing

the rendering function with a learned model, typically with the goal of performance

or fidelity improvements (see also Section 7.1). In this chapter, we consider a different

angle and apply ML models to assist in the implementation of rendering algorithms via

performance prediction.

Performance prediction has a variety of useful applications in complex visualization

142 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

systems. First, it supports decisions made during systems design: a performance model

can be quickly used to estimate how hypothetical changes to hardware or software will

affect the performance of an application, without implementing them. Second, it can be

used for recognizing the need and driving the optimization process of a newly created

application. The implementation of rendering algorithms is a difficult, error-prone

task, and an existing model may help find issues in application performance. Finally,

a performance model is useful during equipment procurement, allowing potential

performance gains to be estimated before purchasing expensive hardware, helping to

achieve an optimal performance-to-price ratio. While there is a significant amount of

research on performance prediction for generic workloads, visualization applications

have a set of special, challenging properties.

In this chapter, we will focus on volume rendering, which is a powerful method for

visualization of three-dimensional data obtained through measurements or simulation.

It is therefore one of the most important techniques in scientific visualization. Volume

rendering is not only computationally expensive, but also an embarrassingly parallel

problem. Therefore, it is often solved on (multi-layered) parallel architectures such

as GPU clusters. In such scenarios, many different factors influence rendering perfor-

mance, which makes the prediction of the overall rendering performance a challenging

task. Furthermore, it is an inherently interactive technique, with user input having a

large impact on the performance. Prediction approaches assuming stable and repeti-

tive performance (like in many HPC codes) are inapplicable to this case, warranting

specialized performance models. Finally, visual computing applications use highly

parallel discrete graphics hardware, complicating the overall prediction problem with

an additional node-local level of parallelism and transfer bottlenecks, both in each GPU

and between GPUs of a node.

While machine learning-based approaches are widely used to capture the properties of

complex systems, a general model of cluster performance should ideally be trained using

data from a wide range of possible variations. In our target application scenario dealing

with render hardware upgrades for GPU clusters, this means including measurements

from reasonable combinations of different sizes of clusters with varying node hardware

(CPUs, etc.), different number and types of GPUs, and different network interconnects.

However, interchanging node hardware of the whole cluster to perform each set of

measurements is impractical in most cases as it would require an enormous amount of

equipment and effort.

To address this, in Tkachev 2017 we proposed a two-level approach to predicting

parallel volume rendering performance using neural networks. Neural networks are

a flexible data-driven tool that can be used without manually putting application and

hardware-specific knowledge into the model. Training is performed using synthesized

performance histograms, which allow for acquiring more training data from a single

cluster. These can be used to emulate different node hardware by simply stalling the

6.1 ● Related Work 143

nodes during local rendering for a predefined amount of time. This way, local rendering

(which is practically limited byGPU performance) is decoupled from compositing (which

is dominated by the network speed). In this chapter, we present the original method

from Tkachev 2017, and further extend the work with clearer exposition, improved

prediction accuracy and a comprehensive study of neural network configurations.

6.1 Related Work

Volume visualization. An overview of the current state of the art in GPU techniques

for interactive large-scale volume visualization was given by Beyer et al. 2015. We also

reviewed the basics in Section 2.1.2. Popularly, parallel rendering is classified into three

classes: sort-first, sort-middle and sort-last (Molnar et al. 1994). In our work, we use

the latter, i.e., we parallelize over volume data (in object space) by having each GPU

create a local image from its own data. In a second step, local results are composited to

yield the final image. The two phases differ in that the first one can be done completely

independently, while compositing is done collectively and begins only after finishing

all rendering tasks.

Rendering performance of large-scale systems has been the subject of several studies in

the past. Peterka et al. 2008 implemented, tested and analyzed performance of parallel

volume rendering on an IBM Blue Gene/P, while Howison et al. 2012 investigated the

benefits of a hybrid parallel approach to volume raycasting in their work. Focusing

on small to medium scale GPU visualization clusters (similar to the one used in this

work), Müller et al. 2006 as well as Fogal et al. 2010 (among others) presented respective

performance characteristics for volume rendering. Bruder et al. 2020 and Bruder 2022

have presented a thorough analysis of factors influencing GPU volume rendering

performance and provided a set of recommendations for robust performance evaluation.

Performance prediction. Assessment, modeling and prediction of application perfor-

mance in distributed environments is an active field of research in high-performance

computing. Different approaches for performance modeling have been proposed in re-

cent years. Those include performance skeletons (Sodhi et al. 2008), regression (Barnes

et al. 2008), micro benchmarks (Escobar and Boppana 2016) and neural networks (Singh

et al. 2007). We use neural networks as a component in our prediction model. Ipek

et al. 2005 also predicted performance of a large scale parallel application applying a

multilayer neural network. They trained their model with data from executions on

the target platform, to capture full system complexity. Lee et al. 2007 extended the

neural network approach with additional statistical techniques for preliminary data

analysis and added a comparison to a piece-wise polynomial regression approach in

their work. They both applied their models on well known HPC benchmarks, namely

SMG2000, a semicoarsening multigrid solver (Brown et al. 2000), and High-Performance

144 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

LINPACK (Petitet 2004). However, those benchmarks only consider CPUs and have

significantly different characteristics in comparison to distributed volume rendering.

Unfortunately, CPU-focused techniques are typically inadequate for modeling GPU

performance. In contrast, we not only consider GPUs, but also crucially have a different

focus on predicting performance for hardware upgrades.

GPU performance models for guiding application optimization have been proposed

by Baghsorkhi et al. 2010. They developed a compiler-based approach for analyzing

GPU kernel code and modeling its performance. Zhang and Owens 2011 took a different

approach but with a similar goal. They utilize micro-benchmarks to accurately measure

various aspects of GPU performance, using the results to construct a performance

model. Artificial neural networks for performance and power prediction of GPU ap-

plications were applied by Wu et al. 2015. They formed a collection of representative

scaling behaviors by employing k-means clustering. Using neural network classifiers,

they mapped those scaling behaviors to performance counter values. However, their

performance estimation model was designed to predict how applications scale as a GPU

configuration changes, i.e. their main objective as well as the scope differs from ours

(in that they focus on single GPU performance).

In particular for parallel volume rendering, Rizzi et al. 2014 constructed an analytical

model for predicting of the scaling behavior on GPU clusters, separately considering

different rendering phases. Larsen et al. 2016 developed a performance model for

rasterization, ray tracing and volume rendering algorithms in the context of in-situ

visualization. They constructed an analytical model for the performance of every appli-

cation being executed on a single machine, and used statistical methods to determine

constants. Then the authors extended the model to parallel execution by introducing a

related model for image compositing performance. Similarly, Bruder et al. 2017 used

a combination of an analytical and a statistical performance models to help perform

dynamic load balancing. The last two methods are “semi-empirical” (Hoefler et al. 2011),

i.e., a combination of empirical measurements (e.g., execution times) and an analytical

performance model. In contrast, we take a solely empirical approach, training a neural

network and intentionally abstracting away hardware and application-specific details

from the model. This has the benefit of implicitly capturing the interplay between

application and hardware, without the need for manually adapting the model to a given

scenario. Also, we can faster adapt to significant hardware changes via (automatic)

training rather than re-modeling. Most importantly, our objective differs in that we

focus on hardware procurement as our main use case rather than the question of

feasibility in the context of in-situ rendering.

6.2 ● Overview 145

Node Level Cluster Level

T
ra

in
in

g
P

re
d
ic

ti
o

n

GPU A

GPU B

Rendering

Histogram Set

Histogram Set

Generated

Histogram Set

Distributed Rendering

on the Cluster

Rendering

emulation

Compositin

g

Neural

Network

Target GPU

Rendering

Target

Histogram Set

Render Time

Prediction

Training Data

Figure 6.1 — An overview of our performance prediction approach. First, we measure

local rendering performance of our training hardware, obtaining two sets of histograms

(top-left). We generate an additional set of histograms by scaling our measured data.

Then, we use the histograms to perform rendering emulation on the cluster (top-right),

collecting the resulting cluster frame time for training our neural network. We can

then predict cluster performance by measuring a histogram set on the target GPU

(bottom-left), and using it as input to the model (bottom-right).

6.2 Overview
Objective. The main objective of the approach is to predict the total render time Tc of

a frame, based on the size of the resulting image (I), the data set and its size (D), view

parameters (V), the node hardware (H) and the cluster size (C). More formally, we are

looking for a model that achieves the following mapping:

(I, D, V, H, C)→ Tc. (6.1)

In particular, our focus lies on predicting the performance impact of changes to the

node hardware H .

Parallel volume rendering. To develop our prediction technique, we implemented

a parallel volume renderer. It can be classified as a sort-last renderer (Section 2.1.2),

using object-space partitioning to parallelize the computation. Using this technique, the

rendering of each frame basically consists of twomajor phases: local rendering and inter-

node compositing. During the local rendering phase, each node independently renders

its own partition, performing raycasting on GPUs. During the second phase, inter-node

compositing combines the individual images into the final rendering using the 2-3 swap

compositing scheme (Yu et al. 2008). In 2-3 swap, as explained in Section 2.1.2, the

146 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

compositing is performed in steps, during which nodes exchange and compose data

in small groups of up to four nodes. Initially, each node has a full image with only its

own volume partition rendered on it. As data is exchanged each step, the image that

the node holds shrinks, while its contents become more complete, i.e., contribution of

other volume partitions is taken into account. And in the end, each processor is left

with a small complete chunk of the final image.

Two-level prediction approach. A distributed renderer running on a GPU cluster is

a complex system exhibiting parallelism at multiple levels and featuring intricacies like

network congestion. We can use neural networks to capture this complexity. To obtain

acceptable results from a neural network, it needs to be trained with a lot of training

data on a wide range of hardware (we evaluate the benefits of additional training data

in Section 6.5.3). The more general the model should be, the more hardware, datasets

and different output resolutions we need for collecting the training data to prevent

the network from overfitting a particular configuration. However, the number of GPU

clusters available for training is limited, and exchanging all GPUs of a cluster for

extensive testing is unfeasible in practice.

We reformulate our model by splitting it into two levels similar to the two phases of an

object-space distributed renderer. First, we render an image of a subset of the data on

each node (local rendering). Second, a compositing phase follows, which exchanges

data over the network and assembles the final image on the CPU. In our setup, the

GPU only affects the local rendering phase. This allows us to abstract this part of the

hardware and application parameters as a local render time Tn, which specifies how

long it takes a node of the cluster to finish its local rendering. With this, the model

from Equation 6.1 can be split into two models:

(I, D, V, H)→ Tn (6.2)

(I, C, Tn)→ Tc (6.3)

The first model (Equation 6.2) represents the local rendering phase, where image size (I),
data set (D), view parameters (V) and node hardware (H) define the local render time

(Tn). The second model (Equation 6.3) covers the compositing phase, mapping image

size (I), cluster size (C) and local render time (Tn) to the final cluster frame time (Tc). An

advantage of this reformulation is that Equation 6.3 does not rely on information about

the hardware used for rendering, in contrast to the original model (Equation 6.1). There-

fore, we can emulate different rendering hardware on a single cluster by simply stalling

the nodes according to Tn. This allows us to gather more performance measurements

from the cluster by emulating different local GPU rendering times without actually

installing different graphics cards in the nodes (see Section 6.3). The data gathered

this way can then be used for training the neural network to predict Equation 6.3. The

model we eventually obtain is only tied to the hardware used for compositing and the

network hardware and topology. This means that our model can make meaningful

6.3 ● Emulation of Local Rendering Performance 147

predictions on the basis of local render time measured on a single node equipped with

target hardware. A graphical overview of our approach is presented in Figure 6.1.

6.3 Emulation of Local Rendering Performance

A key technique for acquiring sufficient training data for the cluster performance

model is the emulation of local render times Tn (Equation 6.2). This section covers

our approach to suitably representing local rendering performance via performance
histograms.

Motivation and objective. The main issue when taking a machine learning-based

approach to performance prediction for clusters is that typically only one (or very few)

specific hardware configurations are available for obtaining training data. Therefore, the

training data is conceptually restricted to this one configuration, and allows prediction

only in terms of scaling with the number of nodes. To circumvent this, we propose to

remove local rendering from the model to only capture how communication (hardware

and network topology) affects the final time, training the model to predict the cluster

performance already given local performance. We represent this local performance

using performance histograms, which can either be measured from arbitrary hardware

available on individual machines, or even be generated artificially. This allows us to

emulate different local rendering performance on a single cluster and collect more

training data. Additional training data helps the cluster model (discussed in Section 6.4)

to better learn the dependency between local rendering performance and overall render

time, and prevents the model from implicitly adapting to particular node performance.

Performance histograms representing local render time. An emulation run works

similarly to real rendering, but during the local rendering phase we simply stall the

nodes without performing any actual computation. Once all the nodes have finished

waiting, the inter-node compositing phase proceeds as normal. The nodes exchange

and compose random data, but the amount of compositing and communication remains

unchanged, allowing us to measure how a given local render time affects the overall

cluster performance (Equation 6.3). By varying the local render time, we can simulate

rendering with different combinations of hardware and application parameters, produc-

ing more training data from a single cluster. Note, that during compositing we always

consider the full image, and do not make any optimizations based on footprints.

The local render time Tn obviously does not represent the time it takes to render the

whole volume on a single node, but rather the time it takes for a single node of a cluster

to render its partition. In our implementation, we use a static, uniform partitioning of

the volume into bricks, i.e., each partition has an approximately equal number of voxels.

However, render times still can differ significantly between bricks due to the perspective

148 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

projection and the early ray termination. This results in dynamic load imbalance with

different nodes becoming the bottleneck under different camera orientations.

Thus, instead of using a static, predefined local render time for each node, we use

a representation of node performance that can capture dynamic load imbalance. To

do so, we use a distribution of local render time, which describes a probability of a

node taking a certain amount of time to perform local rendering during a frame. This

distribution can be expressed as a histogram, which is randomly sampled to decide

how long a node needs to stall when emulating local rendering. This way, we can

replicate the varying character of local render time, while still maintaining the same

average performance, resulting in a reasonably accurate emulation of volume rendering

performance (Figure 6.4b).

Obtaining performance histograms. As outlined in Section 6.2, our goal is to use

rendering emulation to collect more training data from a single cluster. To perform

more emulation runs, we require more performance histograms that describe the node

performance to be emulated. The histograms can be obtained either by measuring

them on various node hardware, or by generating them artificially, representing some

hypothetical hardware. We explore viability of both approaches, measuring some

histograms on existing hardware and generating additional histograms to get more

training data.

To measure the histograms on existing node hardware, we execute a run of the volume

renderer for each combination of image size, volume size and cluster size parame-

ters (this influences the size of the volume partitions). We record the local render time

for each node and frame and sort the measurements into a histogram. By measuring

a histogram for each combination of the parameters, we obtain a set of histograms

that captures performance of the tested node hardware. Additionally, the histogram

approach allows us to uniformly represent both single and dual GPU configurations.

Two GPUs act together to render the node’s partition, and from the standpoint of local

render time are viewed as a single faster rendering device. Thus, we can measure two

sets of histograms: one in single GPU mode, and another in dual GPU mode.

Then, we generate modified histograms that are similar to those measured during

actual volume rendering to produce a larger variation of training data (Figure 6.2). This

noticeably improves the results of our cluster model (discussed later in Section 6.5.3).

To generate artificial histograms, we take the values from a histogram previously

measured on hardware under the same rendering parameters and perturb it slightly

using a uniform distribution. Without perturbation, all generated histograms would

be the same, making the network biased towards their particular shape. To define

the domain of the histogram, i.e., the minimal and the maximal local render time, we

take the values from the measured histogram and scale it by a constant, effectively

imitating slower/faster hardware with similar scaling behavior. This way, we generate

6.4 ● Cluster Performance Model 149

0 500 1000 1500

0

0.2

0.4

0.6

Node render time [ms]

P
r
o
b
a
b
i
l
i
t
y

0 500 1000 1500

0

0.2

0.4

0.6

Node render time [ms]

P
r
o
b
a
b
i
l
i
t
y

Figure 6.2 — An example of a performance histogram created frommeasurements (left),

and artificially generated (right). They represent local rendering performance of a node

of a 24-node cluster for image size 61442 and volume size 10242.

two additional sets of histograms. Note, that while the primary purpose of modifying

histograms is to generate a larger variation of training data, the concept could also be

applied to basically simulate arbitrary combinations of hardware and volume rendering

characteristics. However, investigating this more closely is beyond the scope of this

work.

6.4 Cluster Performance Model
In this section, we present our cluster performance model. For this, we train a neural

network using data acquired through our rendering emulation technique (Section 6.3).

Model input and output. For our model we train a neural network that has the

following input data:

Image resolution (I). Although image size is an application parameter that affects

local rendering and is implicitly captured in a performance histogram, it also

defines the amount of data exchanged over the network, and thus, it is useful for

predicting the cluster frame time.

Cluster size (C). The number of nodes affects both the amount of data exchanged and

the communication pattern.

Performance histogram (Tn). The performance histogram is fed into the network

using two sets of features. The average, minimum and maximum local render

time features define the domain of the histogram, which is a rough estimate of

node performance. Ten bin features represent the distribution of local render

time, which encodes the load imbalance of the rendering application (Section 6.3).

By choosing to use ten histogram bins, we aim to maximize the resolution of the

150 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

histogram to provide more data for the network. However, a further increase

of the bin number causes the histograms to have occasional gaps, introducing

undesirable noise into the input data.

Cluster frame time (Tc). As output, the model provides a prediction for the cluster

frame render time. Specifically, we predict the average frame time recorded

over the camera path. The choice of the target variable is made in line with our

emulation technique (Section 6.3): our histogram-based emulation is designed to

match the average performance (Section 6.5), so by training the model to predict

the average performance of the emulation, we transitively predict the average

performance of actual volume rendering.

Model and training. Our architecture is a series of fully connected layers with the

ReLU activation function (Glorot et al. 2011). The last layer is the output layer and

consists of a single unit, since the render time is our sole output variable. Generally, the

number of units and layers can be varied to control the complexity of the network. Too

little complexity typically means that the network is too simple to represent important

relations, while too much complexity induces the risk of overfitting. Because a good

choice is very hard to make a priori, we determined the adequate structure for our

network experimentally as follows. We started with a simple single-layer network,

and increased the number of neurons and layers while the accuracy of prediction was

improving. Using this procedure resulted in a network with two hidden layers of

16 and eight neurons, since further increase in the network’s complexity yielded no

improvement in the accuracy of prediction. See Section 6.5.6 for details.

For training the network, we use both measured and generated histograms. Each point

of the training data maps a combination of image size, cluster size and a corresponding

histogram to the resulting cluster frame time (Equation 6.3). The model is trained with

theMSE loss and an L2 regularization term, controlled by the regularization parameter λ.
We train a network for the values of λ ∈ {10−3,10−2, . . . ,105}, and choose λ with the

smallest loss on held-out validation data.

6.5 Results

In this section, we evaluate the prediction accuracy of ourmodel. We begin by describing

the training data for the neural network. Then we assess the quality of our prediction

in a cluster upgrade scenario, and also on a different cluster with a similar network

configuration.

6.5 ● Results 151

6.5.1 Implementation

Our renderer can utilize both one and multiple GPUs per cluster node. In a case of multi-

ple GPUs, the raycasting results are locally composed among the GPUs. The raycasting

uses front-to-back compositing with early ray termination and is implemented in CUDA.

Once all nodes have finished local rendering, the intermediate results are exchanged

among the nodes and composited into the final image using the 2-3 swap compositing

scheme (Yu et al. 2008). We used asynchronous operations provided by the MSMPI

implementation for our inter-node communication. The volume is partitioned using

a k-d tree, which implicitly provides ordering for compositing. We statically assign a

partition to each node during initialization, without performing runtime load balancing.

If a node has multiple GPUs, the partition is split further, assigning a sub-partition to

each GPU.

With four nodes on a 10243 volume with 61442 image size the renderer achieved an

average frame time of 3545ms, with 2084ms spend in local rendering phase and 1461ms

in compositing. As we increased the cluster size, the frame time started to decrease,

with compositing having a larger impact on performance. For example, with 32 nodes

the average frame time was reduced to 2081ms, where local rendering and compositing

took 394ms and 1687ms respectively. Overall, both local rendering and compositing

had a significant impact on the cluster performance, which showed the necessity of a

two-level approach to cluster performance modeling.

6.5.2 Collecting Training Data

We acquired the training data for our model on a 33-node GPU cluster. Each node was

equipped with two Intel Xeon E5620 CPUs, 24GB RAM, two NVIDIA GeForce GTX

480 GPUs and DDR InfiniBand. The InfiniBand network had full bisectional bandwidth.

For evaluation, we used a render run consisting of 72 frames while orbiting the camera

twice around the volume on the XZ-plane. We recorded the local render time for each

volume partition and the overall cluster frame time. We considered every combination

of the following parameters (a total of 594 configurations):

• Image size ∈ {10242,20482,30722,40962,51202,61442}

• Volume size ∈ {2563,5123,10243} (scaled version of the Chameleon, Figure 6.3a,

with the original size being 10243 voxels)

• Cluster size ∈ {1,2, . . . 33}

We measured histograms for both single and dual GPU mode for the 594 configurations

mentioned above. Furthermore, from the sets of measured histograms, we artificially

generated two additional sets. We did this by perturbing the histogram bins with a

152 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

(a) Chameleon

200 400 600 800 1,000 1,200

104

105

Training set size

M
S
E
l
o
s
s

(b) Learning curve

Figure 6.3 — (a) Test data rendering. (b) Learning curve showing improving test loss

with larger training sets.

uniform distribution and scaling the domain of the histograms by a factor of 0.7. The ra-
tionale behind this factor is that it significantly changes the local rendering performance,

while the result still remains within the same order of magnitude as measurements.

This produces variation in the training data that helps prediction (Section 6.5.3).

Finally, we used measured and generated histograms to perform rendering emulation on

the cluster, obtaining the data for training the network (see Figure 6.1 for an overview):

• Sm1: Measured-histogram data set, single GPU mode

• Sm2: Measured-histogram data set, dual GPU mode

• Sg1: Generated-histogram data set, derived from Sm1

• Sg2: Generated-histogram data set, derived from Sm2

6.5.3 Emulated and Actual Render Timings
An important aspect of our approach is that we used rendering emulation to obtain

training data for our model (as discussed in Section 6.3), making it possible to train a full

cluster model while measuring only on a single cluster. The benefit of additional training

data can be seen in Figure 6.3b where we depict the learning curve, plotting MSE loss

on the test data against the training set size. The initial steep drop corresponds to the

drastic improvement made after having almost no training data. (Note, that to show

more details a logarithmic scale is used on the y-axis.) As more training data is added,

one can see an improvement in accuracy on the test data set (the model becomes better

6.5 ● Results 153

0 10 20 30

2

4

6

8

10

12

14
⋅103

Cluster size

F
r
a
m
e
t
i
m
e
[
m
s
]

Actual

Simulated

(a) Simulation using simpler local render

time vectors.

0 10 20 30

2

4

6

8

10

12

14
⋅103

Cluster size

F
r
a
m
e
t
i
m
e
[
m
s
]

Actual

Simulated

(b) Simulation using our performance his-

tograms.

Figure 6.4 — Comparison of actual and simulated performance for 6144
2
image size

and 1024
3
volume size. 6.4a: Simulation using local render time vectors, with each node

stalling for the average amount of time taken by this node during an actual rendering

run. 6.4b: Simulation using performance histograms, with each node sampling the

distribution during runtime to determine the amount of time it should be stalling.

at generalizing to previously unseen data). This shows that the additional training data

acquired through usage of performance histograms and rendering emulation improves

the prediction accuracy of our model and makes the approach practical.

We investigated the accuracy of our distribution-based rendering emulation technique

by comparing its performance to that of an actual rendering application. For this, we

performed a set of normal rendering runs, recording not only the cluster frame time,

but also the performance histograms (Figure 6.4b). We can see that the performance

emulated with the histograms closely matches the performance of an actual render run.

To demonstrate the importance of using a distribution of values for our emulation,

we further compared it against a simpler vector-based technique, which assigns a

predefined local render time to each node. For this, local render times were averaged for

each node over all frames to acquire a local render time vector. Figure 6.4a illustrates

that the vector-based approach allows imitating a general performance trend, but

has a large deviation from the actual performance. The vectors capture the static load

imbalance, i.e., nodes having different computational load overall (e.g., due to some parts

of the volume being more opaque than others), but it does not capture the dynamic

load imbalance, which refers to the effect of nodes having different computational

load every frame, with different nodes becoming the fastest/slowest under different

camera orientations. However, our histogram-based approach covers both types of load

imbalance. Therefore, it has a significantly smaller performance deviation, making it

suitable for obtaining better training data.

154 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

0 10 20 30
0

1

2

3
⋅103

Cluster size

F
r
a
m
e
t
i
m
e
[
m
s
]

Actual

Predicted

(a) 30722 image size, 1024
3

volume size

0 10 20 30
0

2

4

6
⋅103

Cluster size

F
r
a
m
e
t
i
m
e
[
m
s
]

Actual

Predicted

(b) 61442 image size, 512
3

volume size

0 10 20 30
0

2

4

6

8

10
⋅103

Cluster size

F
r
a
m
e
t
i
m
e
[
m
s
]

Actual

Predicted

(c) 61442 image size, 1024
3

volume size

Figure 6.5 — Evaluation of our model in the cluster upgrade scenario for different

image and volume resolutions. The model is trained using data obtained in single GPU

mode, and used to predict performance of the cluster with two GPUs per node. All

three subplots represent different ’slices’ of the same data, for different fixed values of

image and volume size.

6.5.4 Predicting Performance of an Upgraded Cluster

We evaluated our approach in a cluster GPU upgrade scenario. Specifically, we investi-

gated benefits of upgrading single GPU nodes to dual GPU nodes (same model). We

trained our model using two data sets that were obtained from measurements in single

GPU mode: a measured-histogram data set Sm1 and a generated-histogram data set Sg1.

No data collected in dual GPU mode was used for training. To make a prediction, we

collected a set of histograms on the target hardware, i.e., on a single node equipped

with two GPUs. To test our prediction, we executed the volume renderer on the whole

cluster running in dual GPU mode, without any rendering emulation, thereby com-

paring the prediction to the actual rendering performance and not just the emulation

performance. The results are presented in Figure 6.5, with our model achieving an MSE

loss of 3.826 ⋅ 104 and an R2
score of 0.95. The R2

score measures how well the model

predicts the data: the best score of 1.0 means a perfect prediction, and a score of 0.0
is achieved by simply predicting the mean. It can be seen that our model works well

both for a smaller and larger number of nodes. For instance, in Figure 6.6b we see how

the prediction matches both the steep descent in the beginning of the graph, and the

“tail” of the graph, where the communication overhead prevents further performance

gain. Furthermore, the model also reproduces the smaller details of the scaling curve,

predicting which cluster sizes are more favorable: in Figure 6.5c both the prediction

and the actual performance have a local minimum at even cluster sizes.

6.5 ● Results 155

0 5 10 15 20
0

0.2

0.4

0.6

0.8
⋅103

Cluster size

F
r
a
m
e
t
i
m
e
[
m
s
]

Actual

Predicted

(a) 30722 image size, 1024
3

volume size

0 5 10 15 20
0

0.5

1

1.5

2
⋅103

Cluster size

F
r
a
m
e
t
i
m
e
[
m
s
]

Actual

Predicted

(b) 61442 image size, 512
3

volume size

0 5 10 15 20
0

1

2

3
⋅103

Cluster size

F
r
a
m
e
t
i
m
e
[
m
s
]

Actual

Predicted

(c) 61442 image size, 1024
3

volume size

Figure 6.6 — Evaluation of our model on a different cluster. The model is trained using

data collected on one cluster, and used to predict performance of a different cluster

with similar network configuration. All three subplots represent different ’slices’ of the

same data, for different fixed values of image and volume size.

6.5.5 Predicting Performance Across Different Clusters

While the main focus of our approach is on predicting the outcome of upgrading

node rendering hardware, it can also be used to predict the performance of a different

cluster having a similar network configuration. For this application case, the test was

performed with data from a different cluster. Therefore, we trained our model with

measured data sets Sm1 and Sm2, using data acquired both in single and dual GPU

mode. The generated data set Sg2 was used to automatically choose a value of the

regularization parameter λ during training (Section 6.4). For testing, we performed

measurements on a 20-node cluster with two Intel Xeon E5-2640 v3 CPUs, 128 GB RAM,

an NVIDIA Quadro M6000 and FDR InfiniBand (this is a faster network interconnect

than in the cluster used for measuring the training data). As mentioned before, no

rendering emulation was used for the test data, so we compared the prediction of the

model to the actual rendering performance and not just the emulation performance.

The model achieves an MSE loss of 7.603 ⋅ 103 and an R
2
score of 0.93. It exhibits some

jittering when predicting performance on smaller image and volume sizes, producing

an initial spike in Figure 6.6a and Figure 6.6b. In this case, the exact shape of the curve

changes between different executions of the neural network training (due to random

initialization of the network’s weights), but the overall trend remains the same: on a

small number of nodes, the model predicts lower performance compared to measured

results. An explanation to this deviation is that the GPUs of the training cluster are

significantly older and slower than the ones of the test cluster, and, unlike them, benefit

from parallelization even for smaller image and volume sizes. Thus, the network has

156 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

Layers Neurons Lambda Test score Val. score

1 64 1 10207.09 5949.29

1 64 10 12801.47 6200.41

1 128 0.01 8178.46 6233.40

2 16+8 1 10241.14 6289.66

. . .

2 128+64 0.01 11632.76 14039.96

1 8 1 30517.56 15841.59

3 64+32+16 0.1 17013.04 17065.43

. . .

3 8+4+2 0.01 106556.08 302147.11

3 8+4+2 1 111366.93 303968.76

3 8+4+2 0.1 138458.65 341182.30

Table 6.1 — Comparison of neural network sizes. Performance of 75 networks ordered

by the validation score, best (top) to worst (bottom).

observed a steady decline in frame time, as we add more nodes to the cluster. However,

the test cluster has a different scalability trend, which results in a large deviation from

the model’s prediction for a small number of nodes.

In all three cases we can see that the model’s prediction has some bias as the model con-

sistently predicted slower performance than what was actually achieved. We attribute

this deviation to the different network interconnects, as the lower network bandwidth

of the training cluster is implicitly captured in the model. Hence, when the model is

used to predict performance of a cluster with a faster network, it consistently underesti-

mates the performance. This implies, as expected, that our approach is not suitable for

predicting performance of an arbitrarily different cluster. While changes in rendering

hardware are covered by our histogram approach, the communication/compositing is

learned by the model from the data of the training cluster, and changes in that respect

are not accounted for in any way. However, our results show that we can still yield

reasonable results for clusters with similar network configuration (see also Section 6.6).

6.5.6 Hyperparameter Study

To further validate our empirically chosen neural network architecture (see Section 6.4)

we trained 75 different networks, varying the number of layers (1, 2, 3), the number

of neurons (8, 16 . . . 128) and the regularization parameter (10−2,10−1 . . .101). In Ta-

ble 6.1 we present the results for best-, medium- and worst-performing networks,

chosen based on their validation dataset score (average of 10 runs). We can see that

the best-performing networks show similar results, however our ’16+8’ architecture

6.6 ● Discussion, Limitations and Future Work 157

has significantly fewer neurons and hence, lower training time. Among the networks

with medium performance, we can find both complex architectures (e.g., 128+64 neu-

rons) with low regularization, and simple architectures (e.g., 8 neurons) with stronger

regularization. The former suffer from overfitting the data, while the latter are too regu-

larized to capture some of the details of the training data. Finally, the worst-performing

networks are deeper networks with fewer neurons (e.g., 8+4+2 neurons) that attempt to

reduce the data to a very compact representation (just 2 neurons), which is insufficient

to meaningfully represent the training data, leading to poor accuracy.

6.6 Discussion, Limitations and Future Work
In our approach, we used performance histograms as a representation of node per-

formance. However, these depend on the exact rendering scenario used for their

measurement (e.g., the camera path). Choosing a different camera path for performing

the rendering may have an effect on the local rendering performance (Section 6.3).

Although our model conveniently abstracts away such details of local rendering, using

a model trained under a certain scenario to predict performance of a significantly dif-

ferent scenario may potentially worsen the prediction accuracy. In this case the neural

network might not have observed this significantly different performance histogram,

and might give a less accurate prediction. We performed some testing of these condi-

tions, predicting rendering performance for a camera orbiting in a different plane and

with a different transfer function, observing no significant drop in prediction accuracy.

Furthermore, our histogram construction technique exerts a limitation on the com-

plexity of the camera trajectory used for performance measurement. In particular, we

construct the histograms by measuring the performance of each node during each

frame of a rendering run and sorting all the measurements into bins. Thereby, we

aim to capture both the dynamic load imbalance (i.e., nodes having different local

render time during different frames) and the variation in the overall computational load

caused by the volume being faster to render under certain camera orientations. This

results in mixing together two different distributions: one characterizes load imbalance

among the nodes, the other the overall computational load, which varies between the

frames. For example, if we measured a histogram in a scenario where camera distance

to the volume is changed significantly, the resulting histogram could be interpreted by

our rendering emulation as “some nodes being slow, some being fast”, instead of “all

nodes being slow during certain frames, and all nodes being fast during other frames”.

Eventually, this would lead to a different emulated rendering performance, making

our method less accurate. This limitation could be addressed by using a distribution of

distributions, representing local render time distribution during each frame separately.

For emulation, one would first choose a distribution for the current frame, and then

use it to determine the local render time for each node. However, this extension has

158 Chapter 6 ● Performance Prediction for Parallel Volume Rendering

two major challenges that require further investigation: sorting distributions into a

histogram, and finding a vectorial representation suitable for training neural networks.

Furthermore, our statistical approach would benefit from a larger amount of systemati-

cally gathered empirical data of volume rendering performance. This way, one could

learn about how render times are distributed in general and use this information to

build more representative emulations.

For the sake of simplicity, we did not implement any advanced optimization tech-

niques (empty-space skipping, interleaved rendering and composition, etc.) in our

volume renderer. However our approach is in principle capable of handling these

methods, and we would like to investigate its prediction accuracy in future work.

Our performance prediction approach is best suited for supporting equipment procure-

ment, allowing cluster performance to be estimated by only performing measurements

on one of its nodes, without purchasing the whole set of hardware. However, the model

implicitly captures network hardware and topology of the training cluster and therefore

has some limitation in general applicability and re-usability. Optimally, it needs to be

trained on a cluster with similar conditions. This presents no problem in the case of

node hardware upgrade, but can become cumbersome when building a completely new

GPU cluster. Possible future extensions are therefore the emulation of the composition

phase performance and a suitable representation of communication patterns. This could

be used to abstract away cluster-specific details, similar to how we use performance

histograms to abstract away node hardware.

One could argue that an analytical model for estimating local rendering performance,

e.g., in the form of a cost-per-sample calculation, could be a better approach. However,

our usage of histogram poses the advantage of being possibly a much more universal

method, in terms of variations in the volume rendering technique or even applicability to

other applications. Furthermore, (GPU) hardware algorithms such as caching, swizzling,

3D memory etc. can be the cause of significant performance deviations (Bruder et al.

2016).

In summary, with our approach we were able to obtain accurate predictions for our

main application scenario – the upgrade of GPUs in an existing cluster. Furthermore,

when using it in the context of a faster, but similar network configuration, we still

achieved an adequate accuracy with a consistent error reflecting the difference in

network performance. For such application cases, we intend to extend our model of

cluster performance to become network-agnostic. Finally, we can gather a wider variety

of measurements for various hardware to improve the model on the local rendering

level as well.

7
Machine Learning in Scientific

Visualization

In the chapters above, we have presented a diverse set of new methods that apply

machine learning to scientific visualization. Here we would like to reflect upon our

experiences and summarize some of the themes and insights developed during our

research.

7.1 Types of ML Applications in (Scientific) Visualiza-
tion

When it comes to applications of machine learning in visualization, we find it to be

generally useful to categorize them based on where in the visualization pipeline the

ML methods are applied. The visualization pipeline is a well-established concept but it

exists in many different variations. In Figure 7.1, we show a simplified version of the

pipeline, distinguishing four stages: data analysis, visual mapping, rendering and user

interaction. Let us briefly describe the individual stages and enumerate a few examples

of relevant ML applications to get an overview of the sub-field.

The data analysis stage encompasses operations like data loading, pre-processing and

filtering. Feature extraction also occurs in this stage, which is of particular interest in

the context of ML applications. For example, He et al. 2020b supported comparative

visualization of a pair of climate ensembles by training a model to distinguish between

their members. They effectively extracted an additional scalar feature that helps to

160 Chapter 7 ● Machine Learning in Scientific Visualization

Data
Analysis

Visual
Mapping

Rendering

InfoVis

SciVis

User
Interaction

Figure 7.1 —An approximate comparison of howmanyML-based methods are found in

scientific and information visualization. The former is characterized by a large number

of rendering applications, while the latter focuses more on visual mapping and user

interaction.

group similar ensemble members and easily compare the member distributions of the

two ensembles. Shi et al. 2022 proposed a graph-neural-network surrogate model for

ocean simulations, which can generate data for new simulation parameters, facilitating

faster parameter space analysis. Another related application in this category was

proposed by Lu et al. 2021, where they used a neural network to approximate volume

data, effectively compressing the data. Other data analysis applications include timestep

selection, clustering, classification and similar tasks where the data is filtered, converted

between different representations or additional features are extracted.

The next stage of the pipeline is visual mapping. Here, the prepared data from the

previous step is converted to visual objects and attributes such as polygons, positions

and color. Interestingly, there are very few ML applications of this kind in scientific

visualization, and we turn instead to information visualization, where it is a more com-

mon occurrence. The primary topic for such applications is automated/recommended

visualization. The goal is to automate the visualization design process, suggesting or

directly producing an appropriate mapping of data to visuals. Dibia and Demiralp 2019

developed one such approach, mapping data to a formal description of an appropriate

7.1 ● Types of ML Applications in (Scientific) Visualization 161

visualization using a supervised model. And Cui et al. 2020 generated basic infographics

from text, using a combination of a natural language model and a rule-based visuals

generation. These are clear cases of visual mapping applications, as they neither gen-

erate additional features nor use an ML model for rendering, focusing specifically on

choosing a visual representation.

The rendering stage of the pipeline is where the visual attributes are used to generate

the final image. Rendering can present significant challenges in scientific visualization,

and so many of the ML applications are concentrated here. In contrast, there are no

InfoVis works in this category, since rendering is rarely a major concern for abstract

data visualization. The typical ML applications of the rendering variety include learning

the whole or some parts of the rendering function, performance prediction, workload

optimization and so on. To name some concrete examples, Guo et al. 2020a; Han and

Wang 2020 trained super-resolution models for field data. Although super-resolution,

being data interpolation, can be considered a data analysis application, the evaluation

focuses on rendering, and thus we attribute this family of applications to rendering. A

more clear case is the work of Engel and Ropinski 2021, who demonstrated a model for

fast generation of volume ambient occlusion maps, replacing a part of the rendering

function with an ML model.

The final stage of the pipeline is less easily defined, but for our purposes, we describe it

as having to do with the user interaction. Both in the usual sense of user inputs, but

also the user’s perception and comprehension of the visualization itself. Once again,

this area contains no applications from scientific visualization and is of the primary

concern in InfoVis. On the side of interaction, Fan and Hauser 2018 proposed to use a

neural network to refine the brushing selection in scatterplots. The model considers

the data distribution to adapt the user’s input and improve the selection. An example

of perception-related application is the work of Bylinskii et al. 2017, who presented

an ML model of user attention for infographics. Such a model can be useful for both

visualization design and summarization of existing images.

Overall, it is quite interesting that both scientific and abstract data visualization pub-

lications showcase ML applications in data processing, but specialize in the further

pipeline stages. SciVis authors concentrate on rendering, while ML methods in InfoVis

are applied primarily to visual mapping and user interaction (Figure 7.1). On the one

hand, this is not unexpected, since this aligns well with the topics of each respective

subfield. Nevertheless, we see an unexplored opportunity in the SciVis ML research,

since interaction and visual representation are both of interest to the field, and yet the

potential of ML models was not yet properly explored in those directions.

Type I and Type II applications. If we categorize the scientific visualization publi-

cations, we may note that when it comes to ML applications, many of them focus on

rendering and data interpolation. This preference hints at a different classification facet

162 Chapter 7 ● Machine Learning in Scientific Visualization

that can be useful in understanding the current research space. Specifically, we propose

to distinguish between two groups of ML applications, which we call Type I and Type II.

The Type I methods are characterized by employing ML models to create a surrogate

of an existing visualization system component, e.g., replacing the data interpolation

function, the rendering function or its parts. This is done typically to improve the

performance of the system, the quality of the renderings or to save storage/compute

resources. The essential criterion of Type I applications is that they do not generate

qualitatively different information, instead pursuing quantitative improvements. The

outputs of a Type I method could be generated with a traditional non-ML algorithm,

given enough computational resources, storage and time. In this sense, the Type I

applications can be roughly referred to as quantitative.

In contrast, Type II applications seek to produce additional information that qualitatively

differs from the products of the original pipeline. This can come in the form of feature

extraction, summarization or providing new ways of interacting with the visualization.

Instead of quantitative improvements, Type II methods seek to qualitatively enhance

the visualization system with new components.

In Figure 7.2, we depict recent publications on ML methods in SciVis, classifying them

according to the vis pipeline and the Type I/II dichotomy. As we can see, most of

the publications focus on quantitative Type I applications of machine learning. The

rendering methods are particularly common. In pale orange, we show approaches to

volume super-resolution and interpolation, which can be considered as belonging to the

data processing stage. However, they are mainly evaluated in the context of rendering

the data directly, and so we lean towards classifying them as rendering applications.

This Type I prevalence is not particularly surprising when one considers the advantages

of Type I applications. First, they offer a clearly defined and relevant problem, such as

performance optimization. Rendering performance (as a goal) is well-understood and

improvements in this space are always desired. The results are innately quantifiable and

offer a reliable and convincing evaluation. Most importantly, since Type I applications

aim to replace an existing algorithm or replicate existing data, they have access to

supervised data, which makes the development of ML methods much more straight-

forward. For many of the applications, e.g., learning the rendering function, additional

data can be easily generated given enough computational resources. Finally, Type I

applications can often build on top of existing ML methods from computer vision and

computer graphics, for instance, extending image/video models to handle volume data.

Combined with supervised data, this provides a solid methodological foundation for

new research.

Comparing these observations to the Type II applications, the problem of achieving

qualitative improvements in the form of better features, a comprehensive overview

or generally helping the user obtain additional insight is rather vague. The reviewers

7.1 ● Types of ML Applications in (Scientific) Visualization 163

Data

Analysis

Visual

Mapping
Rendering

He 2020a

Lu 2021

Han 2018

Han 2019

Type I

(Quan.)

Type II

(Qual.)

He 2019

Hong 2019

Zhou 2017

Berger 2019

Han 2020 Weiss 2020

Weiss 2019Guo 2020a

Jakob 2021 Schwartz 2021

Engel 2021

Han 2021

Chapter 3

Chapter 4

Chapter 6

Chapter 5

Cheng 2019

Kim 2019a
Wang 2020

Ghahremani 2021

Han 2022

Shi 2022

Figure 7.2 — A two-way classification of recent ML applications in scientific visualiza-

tion. Type I methods focus on quantitative improvements and Type II on qualitative.

Most publications are about Type I rendering applications. The pale-orange methods

train super-resolution models and can be considered as data processing applications. In

this work (in green), we focused primarily on the under-explored Type II methods.

typically need to be convinced that the problem (before even considering the solution)

has practical merit. It is also difficult to judge whether the proposed solution actually

solves the problem. The main obstacle here is that no benchmarks are available and

qualitative evaluation is often the only option, leading to a less clear-cut evaluation.

Furthermore, Type II applications have no supervised data available, as there are no

labeled datasets of “good overviews” or “useful features”, and conceptually, there cannot

be any, due to heterogeneity of the problem space. Finally, since no supervised data

is available, Type II approaches rely on unsupervised methods that are typically less

effective and need significant adaptation to be useful.

With the above differences in mind, it is understandable why Type I applications are so

much more common – they offer a more solid research path, from problem definition,

to development and publication. But at the same time, we find Type II applications to

be the more exciting because they have the potential of enhancing the visualization

system with new analytical capabilities. We believe that this area can yield many

promising methods but it remains under-explored due to the issues outlined above. In

this thesis, we attempted to remedy the situation and proposed several of such Type II

164 Chapter 7 ● Machine Learning in Scientific Visualization

applications, shown with green in Figure 7.2. They are situated in different locations

along the visualization pipeline and concentrate on qualitative contributions. In the

following sections, we summarize challenges that commonly occur in developing Type

II applications and offer some advice on how to overcome them. We hope that these

insights might be useful in continuing this line of research.

7.2 Self-supervised Learning
One of the main challenges for Type II ML applications is the lack of supervised data.

While it is possible to collect, e.g., rendered images or downsampled volume data for

the Type I scenarios, it is usually not possible for qualitative applications, for several

reasons. The first reason is that the domain expert’s time is too valuable to be spent

labeling their data. And this task cannot be outsourced, since deep expertise is required

to understand the original data. Second, it is difficult to even formalize some of the tasks

addressed by the Type II methods. The expert could probably classify different types of

events and behavior in the data, or perhaps even mark some anomalies or processes

of particular interest. But it is difficult to imagine how to collect a dataset of “good

overviews”, since the answer is highly task-dependent and likely very subjective. The

final and biggest issue is that the target domains of scientific visualization are highly

heterogeneous, divided into domains with many sub-domains that in turn study many

different phenomena. In fact, it is quite likely that a labeled visualization dataset created

by a domain scientist might not be useful even to a colleague sharing their office.

This means that we have to contend with unsupervised data. And we believe that self-

supervised learning offers the most promising solution for visualization applications.

The motivation behind self-supervised learning is that labeled data is scarce, but there

is often an abundance of unsupervised data that should be utilized in some way. The

idea is to formulate an auxiliary supervised task from the unsupervised data (called

the pretext task), and train a model to solve that task. While the model is training on

the pretext task it is learning a feature space that can be useful not only for solving the

pretext task, but for other tasks on the same data. For example, a vision model trained

to fill-in missing parts of images is likely to learn low-level features that can be helpful

for a wide range of vision tasks. See Section 2.2.5 for more detail.

A typical next step for a self-supervised application is to use a small labeled dataset to

fine-tune the pretrained model on the downstream task. The fine-tuned model generally

displays better performance than the model trained purely on the small supervised

dataset. However, in visualization applications we typically have no supervised data at

all, and so we cannot rely on supervised fine-tuning.

Our solution to this issue is prosaic, but can be surprisingly effective: we need to

carefully design the pretext task to be as similar as possible to the downstream task.

7.3 ● User Interaction 165

We also should consider how the pretrained model will be used during inference on

our downstream task and modify the model architecture to support our usage. By

introducing appropriate inductive biases into the pretext task, the training procedure

and the model architecture, we can obtain a model that has reasonable performance

despite training on a different task. See Section 4.3 for an example of how we trained a

similarity model without any supervised data. Another important factor is that visual-

ization applications present a unique advantage compared to pure machine learning

– they are typically interactive and have “access” to a domain expert at the time of

inference. Even though we are unlikely to have any labeled data, we can compensate

for it by relying on the user’s live feedback.

7.3 User Interaction

User interaction is an important component of most visualization systems, especially

when dealing with large and complex data. And it can be equally important for suc-

cessful integration of ML models that are not trained on supervised data, like the

self-supervised approaches discussed in the previous section.

Nevertheless, integrating the user with an ML model is generally considered to be

difficult due to the black-box nature of the latter. A typical supervised approach

would be to collect a supervised dataset of user inputs and correct responses and

simply feed the user’s input to the model during training. Of course, such datasets

are unavailable in most visualization scenarios. In what we would call the “Vis4ML”

approach to interaction, the trained model is evaluated on various data points, collecting

and aggregating its predictions, gradients, weights and any domain-appropriate metrics.

The user would then be presented with complex visualizations, enabling them to select

the more appropriate model/prediction and better understand the causes of the model’s

output. This approach can perhaps be appropriate for an ML expert (the target audience

in this case), but is unlikely to be useful for scientists in other domains.

Instead, we propose to continue building on the idea of self-supervised learning. The

user input can compensate for the lack of supervised data during training because

this live input is significantly more valuable than the static training data. Unlike the

training data that should sufficiently cover the complete data domain, live feedback

is concentrated on what the user is actually interested in, and is thus much more

relevant. Furthermore, the user can adapt and correct themodel’s predictions, effectively

sampling the most informative data points. Finally, a pretrained model provides a rich

feature space, in which only a few user-provided data points may be sufficient for an

accurate prediction. As an illustration, consider the projected latent space from our

work on autoencoders for feature extraction (Gadirov et al. 2021), shown in Figure 7.3.

Here, an autoencoder was trained on timesteps of a 2D+T simulation ensemble. The

166 Chapter 7 ● Machine Learning in Scientific Visualization

Figure 7.3 —AUMAP projection of the latent space of a Sliced-Wasserstein autoencoder

trained on timesteps of a 2D+T ensemble dataset, e.g., the dark-blue class. So if the

downstream task was to classify different classes, this could be achieved with only a

few user examples, producing a simple decision boundary (the black line).

encoded timesteps were then projected with UMAP and are shown in the scatterplot.

As part of our evaluation, we manually labeled some of the samples according to their

behavior type. Notice that in this feature space the classes are relatively easy to separate,

so only a few user samples would be needed to solve the downstream task, e.g., to locate

timesteps with a certain behavior. This is an optimistic example, but it demonstrates the

overall idea: user inputs provided interactively and considered in a learned higher-level

feature space are significantly more data efficient than the supervised training data.

We can further improve the effectiveness of user interaction for self-supervised models

if we also consider the model’s architecture and training procedure in this context. Just

as before, a core machine-learning principle applies – keeping the training regime as

close to inference as possible. Therefore we should design our training regime with the

future interaction in mind. For example, in Section 4.3 we enabled the user to perform

similarity queries on spatiotemporal data. Since we computed the results based on the

distances in the feature space of our model, i.e., nearby points in the feature space were

7.4 ● Evaluation 167

returned as similar, we also explicitly constrained the model to use a distance operator

when training. Thereby, we encourage the training procedure to produce a space with

meaningful distances, rather than hope that the distances would be representative of

similarity. Furthermore, we allowed the user to provide multiple examples in their

query, and accordingly, we also trained the model not on pairwise comparisons, but

by comparing a point to a set of points. These measures bring the model and the

pretext task closer to our target usage and make a noticeable difference for the model

performance. In summary, the design of the entire pipeline should take into account

how the users will interact with the system.

7.4 Evaluation
Likely the most difficult challenge faced by machine learning applications in visualiza-

tion is evaluation. The problem of evaluation is prominent in both machine learning

and visualization as standalone fields. Although benchmark datasets are available for

many established ML problems, they do not always capture the target task perfectly

and can be difficult to formalize, e.g., consider the BLEU and ROUGE metrics used in

machine translation, which operate by comparing the model’s outputs to a set of correct

outputs produced by humans. While they correlate well with human judgement, it is

clear that comparing to a set of reference translations can be insufficient to account

for all possible and valid variations. Another issue is that over time the well-known

benchmark datasets can get over-tuned by the competing methods, possibly neglecting

some of the real-world usage scenarios.

In visualization, evaluation is an even more difficult subject. The spectrum of different

methodologies ranges from purely qualitative interview-based evaluation to highly

quantitative rendering performance metrics. In short, it is as broad as the research

topics themselves and the discussion about which type of evaluation is appropriate for

a given approach is still ongoing.

For ML applications in visualization, the evaluation approach largely follows the Type

I-II divide. The Type I ML applications typically employ a quantitative evaluation that

features established performance or quality metrics computed on common datasets.

Overall, the approach is similar to pure machine learning, except that the datasets do

not represent the final task, but rather the typical application contexts, e.g., common

CFD datasets.

In comparison, Type II applications often cannot be evaluated quantitatively, and

similarly to many other visualization approaches, rely on more qualitative evaluation

methods, which can be difficult to implement. However, there is also a unique challenge

present: the machine learning development workflow inherently relies on quantitative

evaluation. Different models, parameters and training regimes need to be assessed

168 Chapter 7 ● Machine Learning in Scientific Visualization

on daily basis in the process of developing an effective ML pipeline. In this context,

qualitative evaluation would be infeasible and likely ineffective, as users start to form

biases and expectations, affecting the outcome.

Self-supervised learning provides a part of the solution. While Type II applications do

not have access to supervised data on the downstream task, the pretext task allows some

form of quantification. The models can at least be judged on their pretext performance,

which should correlate with the downstream task, given that the two tasks are chosen to

be sufficiently similar. Furthermore, we can design the pretext task to have more useful

performance metrics. For example, we recommend to define the task as a classification

problem, as it provides metrics that are more easily interpreted. Compare an outcome

of training a regression model (Chapter 3) or an autoencoder, which would produce

an MSE value like “16.4”, to a binary classification model with accuracy of 91% on the

pretext task. The former metric is rather meaningless because it is difficult to judge

whether the model is performing well. And any changes to the data or the sampling

process would make the values incomparable. In contrast, the accuracy value is more

easily interpreted, especially if we control the pretext task. Knowing that the data

is generated to have a 50-50 distribution of positive and negative samples, and with

some minor understanding of the application domain, we can be reasonably sure that

the model is at least somewhat successful in solving the task. We can then further

investigate the results, compute the F-score, study the mispredicted cases, and so on.

Of course, even a careful design of the pretext task does not guarantee the model’s

ultimate performance. The final evaluation must be performed on the downstream

task, which is likely to be qualitative and lacking metrics for a Type II application. This

leads to our main recommendation: when looking to do research on ML applications in

SciVis, it is a good idea to choose problems that are amenable to quantification. This

may appear to be running against our main point: did we not argue for qualitative Type

II contributions? There are two nuances to consider here.

First, the binary Type I/II classification is convenient for our discussion of ML appli-

cations, but it is a simplification. Rather, one could consider it to be a continuum,

with extremes corresponding to applications fulfilling all the criteria outlined before,

and many intermediate methods that may display the characteristics of both. For in-

stance, considering the two key publications of this thesis, the irregularity detection

method (Tkachev et al. 2021a) is a more pure example of a Type II application. Our

later work on similarity learning (Tkachev et al. 2021c) is a Type II application that

departs from the extreme of this spectrum.

The second and the more important point is that a Type II qualitative application does

not imply a qualitative evaluation. In fact, this is precisely why our similarity method

departs from the pure image of a Type II application – it employs both quantitative

and qualitative evaluation methods. The former allowed us to develop the ML pipeline

7.5 ● Future Directions 169

and provide a thorough comparison to alternative methods, while the latter offers a

domain-situated test of the method’s utility. The quantitative aspect connects with

the ML requirements of the approach, which in term helps to address the qualitative

visualization problem. Generalizing from this experience, we would argue that this

combination of a Type II qualitative contribution and a possibility of at least partial quan-

tification is the most desirable quality when searching for a potential ML applications

in visualization.

Closing the subject of evaluation, we would like to bring up the question of benchmark

tasks and datasets for ML applications in visualization. It would be easy to say that

there is an unfulfilled need of better quantification and thus a need for a shared set

of benchmark datasets for the more qualitative applications of ML. However, this is

difficult in visualization, which is very diverse in both its application domains and user

tasks. By seeking to formalize the visualization problems, we are perhaps trying to

turn them into machine learning, losing sight of what is important in visualization. In

this light, we think it would be impractical to try and collate evaluation datasets for

Type II applications. The sub-area of ML in SciVis is still new and unexplored, and we

would rather argue for a careful choice of applications, guided by the suggestions in

this chapter. When the most promising directions are discovered, then perhaps more

comprehensive evaluation data could be collected. But until then, it is likely that the

Type II applications will still rely on a significant degree of qualitative evaluation.

7.5 Future Directions

Overall, we see great promise in applying machine learning to scientific visualization.

We have generally argued for self-supervised learning approaches, since scientific data

is usually unlabeled, but often large and with enough metadata (coordinates, simulation

parameters, multiple fields, etc.) to set up a pretext task for training. We proposed one

such task, but many other possibilities should be compared in the context of visualiza-

tion. For instance, from our experience, we suspect that a reconstruction task, like in

an auto-encoder, is less useful than a contrastive classification problem (Section 4.4)

when it comes to learning a features space that distinguishes different behavior types.

A more thorough and complete analysis may reveal many similar insights. One could

experiment with not only the many existing image-centric tasks (Doersch and Zisser-

man 2017), but devise new ones specialized to scientific data, e.g., stability prediction,

variable reconstruction, etc. And it would be particularly interesting to incorporate the

simulation parameters into the model, for example, distinguishing between simulations

under different physical conditions.

One future research area related to self-supervised learning is sharing pretrained mod-

els for scientific data. Pretrained models are commonly used as feature extractors in

170 Chapter 7 ● Machine Learning in Scientific Visualization

computer vision and are a prominent trend in natural language processing. Train-

ing extremely large models on field data is infeasible and likely impractical, but a

moderately-sized pretrained convolutional stack could be useful for many applications.

Unsupervised model pre-training started to crop up in recent work (e.g., Han et al.

2021), it is still used for a single downstream task or within the same dataset. This trend

is likely to continue to develop in the future, and so it would be of value to provide a

comprehensive investigation across different datasets, models and tasks. An established

and reliable pretrained volume/vector-field feature extractor can help accelerate other

research in the area by reducing the training costs and the data requirements.

A potential application of self-supervised models would be to bridge the gap between

data-rich and data-poor contexts. We are especially interested in transferring models

trained on simulation data to help with the analysis of experimental data. Experiments

are complicated and expensive, usually generating less or incomplete data, compared

to a simulation. Newly acquired experimental data may not allow ML models to be

trained to help with the analysis, however, a model pretrained on simulation could be

fine-tuned to solve the issue. Furthermore, simulation-trained models can help fill in

the gaps in the measurements, e.g., reconstructing missing variables from the available

observations.

Another interesting direction for future work is interpretable ML. Providing additional

insight into the learned feature spaces can help significantly with user interaction. A

common approach is to perform feature visualization, computing relevance scores (La-

puschkin et al. 2015) or visualizing input patches that activate specific latent dimensions

the most (Olah et al. 2017). This is often done when applying visualization to machine

learning models, but can also support the reverse direction. However, when it comes

to interpretability, we believe that the most promising approach is to apply additional

constraints to the model, enouraging its features to be interpretable. For instance,

sparsity (Makhzani and Frey 2014) and latent distribution constraints (Higgins et al.

2017) could be utilized to disentagle the latent dimensions (Gadirov et al. 2021). We

can also apply spatial attention layers to attribute different parts of the data to latent

dimensions of the model. Both visualization and constraints could even be combined,

visualizing the model’s features while constraining them to be more interpretable.

8
Conclusion

Computational methods are an essential component of the modern scientific process.

The development of computer hardware and simulation technologies produce ever

larger amounts of data that needs to be analyzed by the experts. Current works in

scientific visualization propose many potent solutions, but they inevitably become

specialized towards certain domains and applications. This can lead to young research

domains lacking the tools they need to benefit from the newly acquired data.

In this thesis, we aimed to address this challenge by developing domain-agnostic

visualizationmethods with the help of machine learning. First, we proposed an approach

based on local prediction in spatiotemporal volumes, detecting regions of irregular

behavior (Chapter 3). We showed that the method can be used to find anomalous

local behavior, construct an overview of the dataset and automatically select important

timesteps across different application domains. Next, we developed two techniques

for learning spatiotemporal similarity metrics directly from the raw data (Chapter 4).

Here we focused on the analysis of ensemble data – a particularly challenging scenario

in scientific visualization. We demonstrated that it is possible to extract meaningful

similarity for both simulation and experimental ensembles without any supervised

data. The learned similarity matched the results obtained manually by the experts or

with the help of specialized features. In Chapter 5, we presented a unique method for

building data metaphors, which can connect data across any two domains. The method

is highly flexible, personalizable and can be of particular use in communicating science

to wider audiences. Then, we discussed our method for performance prediction of

parallel volume rendering (Chapter 6). Once again, we developed a training approach

that side-steps the need for expensive supervised data and can make predictions given

172 Chapter 8 ● Conclusion

measurements from only a single cluster node.

We summarized our findings on integrating machine learning into visualization appli-

cations in Chapter 7. We presented the current research trends in this area and outlined

the two major types of ML applications, their goals, advantages and current problems.

The applications of the qualitative type are of a particular interest to visualization

research, but they face many unique challenges, which we ourselves experienced. We

discussed these issues of missing supervised data, user integration and evaluation,

presenting our views on how they can be alleviated. We see self-supervised methods as

being particularly potent in SciVis, and showed how careful and holistic design of the

training pipeline can help adapt them to visualization.

Of course, this thesis only scratches the surface of how machine learning can be

integrated into scientific visualization, and many possibilities remain unexplored. The

more method-specific improvements were discussed in their respective chapters, while

the higher-level directions were presented in Chapter 7. For example, we see the need

for further analysis of self-supervised tasks and their impact on the extracted features,

both adapting existing tasks from computer vision and developing specialized methods

for scientific data. Another potential direction are pretrained feature extractors that

already helped to accelerate research in other domains and could also be constructed

for simulation data. Finally, techniques that improve interpretability of the learned

models can prove to be useful in visualization, but should be carefully incorporated

into the model and its training.

Author’s Work

Agarwal, Shivam, Gleb Tkachev, Michel Wermelinger, and Fabian Beck (2020). “Visu-

alizing Sets and Changes in Membership Using Layered Set Intersection Graphs.”

In: VMV: Vision, Modeling, and Visualization. Vol. VMV2020. The Eurographics

Association, pp. 69–78.

Gadirov, Hamid, Gleb Tkachev, Thomas Ertl, and Steffen Frey (2021). “Evaluation

and Selection of Autoencoders for Expressive Dimensionality Reduction of Spatial

Ensembles.” In: International Symposium on Visual Computing. Springer, pp. 222–234.
Heinemann, Moritz, Steffen Frey, Gleb Tkachev, Alexander Straub, Filip Sadlo, and

Thomas Ertl (2021). “Visual Analysis of Droplet Dynamics in Large-Scale Multiphase

Spray Simulations.” In: Journal of Visualization 24.5, pp. 943–961.

Tabiai, Ilyass,Gleb Tkachev, Patrick Diehl, Steffen Frey, Thomas Ertl, Daniel Therriault,

and Martin Lévesque (2019). “Hybrid Image Processing Approach for Autonomous

Crack Area Detection and Tracking Using Local Digital Image Correlation Results

Applied to Single-Fiber Interfacial Debonding.” In: Engineering Fracture Mechanics
216, p. 106485.

Tkachev, Gleb (2022). PyPlant: A Python Framework for Cached Function Pipelines. url:
https://doi.org/10.18419/darus-2249.

Tkachev, Gleb, Rene Cutura, Michael Sedlmair, Steffen Frey, and Thomas Ertl (2022).

“Metaphorical Visualization: Mapping Data to Familiar Concepts.” In: Extended
Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. CHI
EA ’22. Association for Computing Machinery, DOI: 10.1145/3491101.3516393.

Tkachev, Gleb, Steffen Frey, and Thomas Ertl (2021a). “Local Prediction Models for

Spatiotemporal Volume Visualization.” In: IEEE Transactions on Visualization and
Computer Graphics 27.7, pp. 3091–3108.

Tkachev, Gleb, Steffen Frey, and Thomas Ertl (2021b). “S4: Self-supervised Learning

of Spatiotemporal Similarity.” In: IEEE Transactions on Visualization and Computer
Graphics DOI: 10.1109/TVCG.2021.3101418.

Tkachev, Gleb, Steffen Frey, Christoph Müller, Valentin Bruder, and Thomas Ertl

(2017). “Prediction of Distributed Volume Visualization Performance to Support

Render Hardware Acquisition.” In: Proceedings of the 17th Eurographics Symposium
on Parallel Graphics and Visualization. EGPGV ’17. Eurographics Association, pp. 11–

20.

https://doi.org/10.18419/darus-2249

References

Agarwal, Shivam, Gleb Tkachev, Michel Wermelinger, and Fabian Beck (2020). “Visu-

alizing Sets and Changes in Membership Using Layered Set Intersection Graphs.”

In: VMV: Vision, Modeling, and Visualization. Vol. VMV2020. The Eurographics

Association, pp. 69–78 (cit. on p. 7).

Ahmed, Ejaz, Michael Jones, and Tim K. Marks (2015). “An Improved Deep Learning

Architecture for Person Re-Identification.” In: 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3908–3916 (cit. on p. 73).

Amodei, Dario and Danny Hernandez (n.d.). AI and Compute. OpenAI. url: https:
//openai.com/blog/ai-and-compute/ (cit. on p. 26).

Andrienko, G., N. Andrienko, S. Bremm, T. Schreck, T. Von Landesberger, P. Bak, and D.

Keim (2010). “Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring

Spatiotemporal Patterns.” In: Computer Graphics Forum 29.3 (3), pp. 913–922 (cit. on

p. 37).

Antonov, Alexander (2019). Steam Games Complete Dataset. url: https://kaggle.
com/trolukovich/steam-games-complete-dataset (cit. on p. 123).

Artetxe, Mikel, Gorka Labaka, and Eneko Agirre (2018). “A Robust Self-LearningMethod

for Fully Unsupervised Cross-Lingual Mappings of Word Embeddings.” In: Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, pp. 789–798

(cit. on p. 112).

Bach, Benjamin, Pierre Dragicevic, Daniel Archambault, Christophe Hurter, and Shee-

lagh Carpendale (2016). “A Descriptive Framework for Temporal Data Visualizations

Based on Generalized Space-Time Cubes: Generalized Space-Time Cube.” In: Com-
puter Graphics Forum 36.6, pp. 36–61 (cit. on p. 36).

Baghsorkhi, Sara S, Matthieu Delahaye, Sanjay J Patel, William D Gropp, and Wen-mei

W Hwu (2010). “An Adaptive Performance Modeling Tool for GPU Architectures.”

In: ACM Sigplan Notices. Vol. 45. 5, pp. 105–114 (cit. on p. 144).

Balabanian, Jean-Paul, Ivan Viola, Torsten Möller, and Eduard Gröller (2008). “Temporal

Styles for Time-Varying Volume Data.” In: Proceedings of 3DPVT’08 - the Fourth
International Symposium on 3D Data Processing, Visualization and Transmission,
pp. 81–89 (cit. on pp. 35, 36).

Baldi, Pierre and Yves Chauvin (1993). “Neural Networks for Fingerprint Recognition.”

In: Neural Computation 5.3, pp. 402–418 (cit. on p. 32).

Bar-Joseph, Ziv, David K. Gifford, and Tommi S. Jaakkola (2001). “Fast Optimal Leaf

Ordering for Hierarchical Clustering.” In: Intelligent Systems in Molecular Biology.
Vol. 17, pp. 22–29 (cit. on p. 75).

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://kaggle.com/trolukovich/steam-games-complete-dataset
https://kaggle.com/trolukovich/steam-games-complete-dataset

176 References

Barnes, Bradley J., Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bronis de Supinski,

and Martin Schulz (2008). “A Regression-Based Approach to Scalability Prediction.”

In: Proceedings of the ACM/IEEE Conference on Supercomputing, pp. 368–377 (cit. on
p. 143).

Baur, Dominikus, Frederik Seiffert, Michael Sedlmair, and Sebastian Boring (2010).

“The Streams of Our Lives: Visualizing Listening Histories in Context.” In: IEEE
Transactions on Visualization and Computer Graphics 16.6 (6), pp. 1119–1128 (cit. on
p. 110).

Bell, Sean and Kavita Bala (2015). “Learning Visual Similarity for Product Design with

Convolutional Neural Networks.” In: ACM Transactions on Graphics 34.4 (4), 98:1–
98:10 (cit. on p. 112).

Benko, Hrvoje and Steven Feiner (2007). “Balloon Selection: A Multi-Finger Technique

for Accurate Low-Fatigue 3D Selection.” In: 2007 IEEE Symposium on 3D User Inter-
faces (cit. on p. 111).

Berger, M., J. Li, and J. A. Levine (2019). “A Generative Model for Volume Rendering.” In:

IEEE Transactions on Visualization and Computer Graphics 25.4 (4), pp. 1636–1650
(cit. on p. 37).

Bertasius, Gedas, Lorenzo Torresani, and Jianbo Shi (2018). “Object Detection in Video

with Spatiotemporal Sampling Networks.” In: 2018 European Conference on Computer
Vision, pp. 342–357 (cit. on p. 73).

Beyer, Johanna, Markus Hadwiger, and Hanspeter Pfister (2015). “State-of-the-Art in

GPU-Based Large-Scale Volume Visualization.” In: Computer Graphics Forum 34.8,

pp. 13–37 (cit. on p. 143).

Biswas, Ayan, Guang Lin, Xiaotong Liu, and Han-Wei Shen (2017). “Visualization of

Time-VaryingWeather Ensembles across Multiple Resolutions.” In: IEEE Transactions
on Visualization and Computer Graphics 23.1, pp. 841–850 (cit. on p. 10).

Bonneau, Georges-Pierre, Hans-Christian Hege, Chris R. Johnson, Manuel M. Oliveira,

Kristin Potter, Penny Rheingans, and Thomas Schultz (2014). “Overview and State-

of-the-Art of Uncertainty Visualization.” In: Scientific Visualization: Uncertainty,
Multifield, Biomedical, and Scalable Visualization. Mathematics and Visualization.

Springer, pp. 3–27 (cit. on p. 10).

Bordoloi, U.D. and H.-W Shen (2005). “View Selection for Volume Rendering.” In: Pro-
ceedings of the IEEE Visualization Conference, pp. 487–494 (cit. on p. 37).

Borkiewicz, Kalina, A J Christensen, Ryan Wyatt, and Ernest T. Wright (2020). “Intro-

duction to Cinematic Scientific Visualization.” In: ACM SIGGRAPH 2020 Courses.
SIGGRAPH ’20. Association for Computing Machinery, pp. 1–267 (cit. on p. 111).

Borkiewicz, Kalina, AJ Christensen, Helen-Nicole Kostis, Greg Shirah, and Ryan Wyatt

(2019). “Cinematic Scientific Visualization: The Art of Communicating Science.” In:

ACM SIGGRAPH 2019 Courses. SIGGRAPH ’19. Association for Computing Machin-

ery, pp. 1–273 (cit. on p. 110).

References 177

Borkin, Michelle A., Azalea A. Vo, Zoya Bylinskii, Phillip Isola, Shashank Sunkavalli,

Aude Oliva, and Hanspeter Pfister (2013). “What Makes a Visualization Memorable?”

In: IEEE Transactions on Visualization and Computer Graphics 19.12 (12), pp. 2306–
2315 (cit. on p. 111).

Bossavit, Benoît, Asier Marzo, Oscar Ardaiz, Luis Diaz De Cerio, and Alfredo Pina (2014).

“Design Choices and Their Implications for 3D Mid-Air Manipulation Techniques.”

In: Presence: Teleoperators and Virtual Environments 23.4 (4), pp. 377–392 (cit. on
p. 111).

Bromley, Jane, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah (1993).

“Signature Verification Using a "Siamese" Time Delay Neural Network.” In: Proceed-
ings of the 6th International Conference on Neural Information Processing Systems.
NIPS’93. Morgan Kaufmann Publishers Inc., pp. 737–744 (cit. on pp. 32, 78).

Brown, Peter N, Robert D Falgout, and Jim E Jones (2000). “Semicoarsening Multigrid

on Distributed Memory Machines.” In: SIAM Journal on Scientific Computing 21.5,

pp. 1823–1834 (cit. on p. 143).

Bruckner, S. and T. Moeller (2010). “Result-Driven Exploration of Simulation Parameter

Spaces for Visual Effects Design.” In: IEEE Transactions on Visualization and Computer
Graphics 16.6 (6), pp. 1468–1476 (cit. on p. 72).

Bruder, Valentin (2022). “Performance Quantification of Visualization Systems.” In:

(cit. on p. 143).

Bruder, Valentin, Steffen Frey, and Thomas Ertl (2016). “Real-Time Performance Pre-

diction and Tuning for Interactive Volume Raycasting.” In: Proceedings SIGGRAPH
ASIA 2016 Symposium on Visualization, 7:1–7:8 (cit. on p. 158).

Bruder, Valentin, Steffen Frey, and Thomas Ertl (2017). “Prediction-Based Load Balancing

and Resolution Tuning for Interactive Volume Raycasting.” In: Visual Informatics
1.2, pp. 106–117 (cit. on p. 144).

Bruder, Valentin, Christoph Müller, Steffen Frey, and Thomas Ertl (2020). “On Evalu-

ating Runtime Performance of Interactive Visualizations.” In: IEEE Transactions on
Visualization and Computer Graphics 26.9, pp. 2848–2862 (cit. on p. 143).

Bylinskii, Zoya et al. (2017). “Learning Visual Importance for Graphic Designs and Data

Visualizations.” In: Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology. UIST ’17. Association for Computing Machinery, pp. 57–69

(cit. on p. 161).

Chapelle, Olivier, Bernhard Schölkopf, and Alexander Zien, eds. (2006). Semi-Supervised
Learning. Red. by Francis Bach. Adaptive Computation and Machine Learning Series.

MIT Press. 528 pp. (cit. on p. 29).

Chapelle, Olivier, Jason Weston, and Bernhard Schölkopf (2003). “Cluster Kernels for

Semi-Supervised Learning.” In: Advances in neural information processing systems,
pp. 601–608 (cit. on p. 29).

178 References

Chen, M. and H. Jaenicke (2010). “An Information-theoretic Framework for Visualiza-

tion.” In: IEEE Transactions on Visualization and Computer Graphics 16.6 (6), pp. 1206–
1215 (cit. on p. 37).

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton (2020). A
Simple Framework for Contrastive Learning of Visual Representations. url: http:
//arxiv.org/abs/2002.05709 (cit. on pp. 33, 112, 117).

Cheng, Hsueh-Chien, Antonio Cardone, Somay Jain, Eric Krokos, Kedar Narayan, Sriram

Subramaniam, and Amitabh Varshney (2019). “Deep-Learning-Assisted Volume

Visualization.” In: IEEE Transactions on Visualization and Computer Graphics 25.2,
pp. 1378–1391.

Chopra, S., R. Hadsell, and Y. LeCun (2005). “Learning a Similarity Metric Discrimina-

tively, with Application to Face Verification.” In: 2005 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’05). Vol. 1, pp. 539–546 (cit. on p. 78).

Cui, Weiwei et al. (2020). “Text-to-Viz: Automatic Generation of Infographics from

Proportion-Related Natural Language Statements.” In: IEEE Transactions on Visual-
ization and Computer Graphics 26.1, pp. 906–916 (cit. on p. 161).

Cuturi, Marco (2013). “Sinkhorn Distances: Lightspeed Computation of Optimal Trans-

port.” In: Advances in Neural Information Processing Systems 26. Curran Associates,

Inc., pp. 2292–2300 (cit. on p. 96).

Daiber, Florian, Eric Falk, and Antonio Krüger (2012). “Balloon Selection Revisited:

Multi-Touch Selection Techniques for Stereoscopic Data.” In: Proceedings of the
International Working Conference on Advanced Visual Interfaces. AVI ’12. Association
for Computing Machinery, pp. 441–444 (cit. on p. 111).

Dasgupta, Soumik Ranjan (2019). Goodreads-Books. 2021. url: https://kaggle.com/
jealousleopard/goodreadsbooks (cit. on p. 123).

Deng, Jiajun, Yingwei Pan, Ting Yao, Wengang Zhou, Houqiang Li, and Tao Mei (2019).

“Relation Distillation Networks for Video Object Detection.” In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 7022–7031 (cit. on p. 73).

Dibia, Victor and Çağatay Demiralp (2019). “Data2Vis: Automatic Generation of Data

Visualizations Using Sequence-to-Sequence Recurrent Neural Networks.” In: IEEE
Computer Graphics and Applications 39.5, pp. 33–46 (cit. on pp. 109, 160).

Doersch, Carl, Abhinav Gupta, and Alexei A. Efros (2015). “Unsupervised Visual Repre-

sentation Learning by Context Prediction.” In: Proceedings of the IEEE International

Conference on Computer Vision, pp. 1422–1430 (cit. on pp. 31, 73, 112).

Doersch, Carl and Andrew Zisserman (2017).Multi-Task Self-Supervised Visual Learning.
url: http://arxiv.org/abs/1708.07860 (cit. on pp. 31, 73, 78, 112, 169).

Dosovitskiy, Alexey, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox

(2014). “Discriminative Unsupervised Feature Learning with Convolutional Neu-

ral Networks.” In: Advances in Neural Information Processing Systems 27. Curran
Associates, Inc., pp. 766–774 (cit. on pp. 73, 112).

http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
https://kaggle.com/jealousleopard/goodreadsbooks
https://kaggle.com/jealousleopard/goodreadsbooks
http://arxiv.org/abs/1708.07860

References 179

Dutta, Soumya and Han-Wei Shen (2016). “Distribution Driven Extraction and Tracking

of Features for Time-varying Data Analysis.” In: IEEE Transactions on Visualization
and Computer Graphics 22.1 (1), pp. 837–846 (cit. on p. 36).

Endert, A., W. Ribarsky, C. Turkay, B.L. William Wong, I. Nabney, I. Díaz Blanco, and

F. Rossi (2017). “The State of the Art in Integrating Machine Learning into Visual

Analytics.” In: Computer Graphics Forum 36.8 (cit. on p. 37).

Engel, Dominik and Timo Ropinski (2021). “Deep Volumetric Ambient Occlusion.” In:

IEEE Transactions on Visualization and Computer Graphics 27.2 (2), pp. 1268–1278
(cit. on p. 161).

Escobar, R. and R. V. Boppana (2016). “Performance Prediction of Parallel Applications

Based on Small-Scale Executions.” In: 2016 IEEE 23rd International Conference on
High Performance Computing (HiPC), pp. 362–371 (cit. on p. 143).

Fan, Chaoran and Helwig Hauser (2018). “Fast and Accurate CNN-based Brushing in

Scatterplots.” In: Computer Graphics Forum 37.3, pp. 111–120 (cit. on p. 161).

Fang, Zhe, Torsten Möller, Ghassan Hamarneh, and Anna Celler (2007). “Visualiza-

tion and Exploration of Time-varying Medical Image Data Sets.” In: Proceedings of
Graphics Interface 2007. GI ’07. ACM, pp. 281–288 (cit. on p. 36).

Ferstl, Florian, Mathias Kanzler, Marc Rautenhaus, and Rüdiger Westermann (2016).

“Visual Analysis of Spatial Variability and Global Correlations in Ensembles of

Iso-Contours.” In: Computer graphics forum 35.3 (3), pp. 221–230 (cit. on p. 12).

Flamary, R’emi and Nicolas Courty (2017). POT Python Optimal Transport Library. url:
https://github.com/rflamary/POT (cit. on p. 96).

Fofonov, A. and L. Linsen (2019). “Projected Field Similarity for Comparative Visualiza-

tion of Multi-Run Multi-Field Time-Varying Spatial Data.” In: Computer Graphics
Forum 38.1 (1), pp. 286–299 (cit. on p. 73).

Fogal, Thomas, Hank Childs, Siddharth Shankar, Jens Krüger, R Daniel Bergeron, and

Philip Hatcher (2010). “Large Data Visualization on Distributed Memory Multi-

GPU Clusters.” In: Proceedings of the Conference on High Performance Graphics.
Eurographics Association, pp. 57–66 (cit. on p. 143).

Frey, Steffen (2017). “Sampling and Estimation of Pairwise Similarity in Spatio-Temporal

Data Based on Neural Networks.” In: Informatics 4.3 (3), p. 27 (cit. on p. 37).

Frey, Steffen and Thomas Ertl (2017a). “Flow-Based Temporal Selection for Interactive

Volume Visualization.” In: Computer Graphics Forum 36.8 (8), pp. 153–165 (cit. on

pp. 36, 57, 72).

Frey, Steffen and Thomas Ertl (2017b). “Progressive Direct Volume-to-Volume Trans-

formation.” In: IEEE Transactions on Visualization and Computer Graphics 23.1 (1),
pp. 921–930 (cit. on pp. 36, 72).

Frey, Steffen, Filip Sadlo, and Thomas Ertl (2012). “Visualization of Temporal Similarity

in Field Data.” In: IEEE Transactions on Visualization and Computer Graphics 18.12
(12), pp. 2023–2032 (cit. on p. 36).

https://github.com/rflamary/POT

180 References

Frohn, Olaf (2017). D3 Celestial. url: https://github.com/ofrohn/d3-celestial
(cit. on p. 129).

Fuchs, R., J. Waser, and M. E. Groller (2009). “Visual Human+Machine Learning.” In:

IEEE Transactions on Visualization and Computer Graphics 15.6 (6), pp. 1327–1334
(cit. on p. 37).

Gadirov, Hamid (2020). “Autoencoder-Based Feature Extraction for Ensemble Visualiza-

tion.” Master’s thesis. University of Stuttgart (cit. on p. 105).

Gadirov, Hamid, Gleb Tkachev, Thomas Ertl, and Steffen Frey (2021). “Evaluation

and Selection of Autoencoders for Expressive Dimensionality Reduction of Spatial

Ensembles.” In: International Symposium on Visual Computing. Springer, pp. 222–234
(cit. on pp. 6, 71, 105, 165, 170).

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge (2015). A Neural Algorithm of
Artistic Style. url: http://arxiv.org/abs/1508.06576 (cit. on p. 120).

Geppert, A., A. Terzis, G. Lamanna, M. Marengo, and B. Weigand (2017). “A Bench-

mark Study for the Crown-Type Splashing Dynamics of One- and Two-Component

Droplet Wall–Film Interactions.” In: Experiments in Fluids 58.12 (12), p. 172 (cit. on
pp. 88, 89).

Ghahremani, Parmida et al. (2021). “NeuroConstruct: 3D Reconstruction and Visual-

ization of Neurites in Optical Microscopy Brain Images.” In: IEEE Transactions on
Visualization and Computer Graphics (Early Access).

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep Sparse Rectifier Neural

Networks.” In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, pp. 315–323 (cit. on p. 150).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press

(cit. on pp. 29, 31, 46, 49).

Guo, Li et al. (2020a). “SSR-VFD: Spatial Super-Resolution for Vector Field Data Analysis

and Visualization.” In: 2020 IEEE Pacific Visualization Symposium, pp. 71–80 (cit. on

p. 161).

Guo, Rongchen, Takanori Fujiwara, Yiran Li, Kelly M. Lima, Soman Sen, Nam K. Tran,

and Kwan-Liu Ma (2020b). “Comparative Visual Analytics for Assessing Medical

Records with Sequence Embedding.” In: Visual Informatics 4.2, pp. 72–85 (cit. on
p. 38).

Gygli, Michael (2017). Ridiculously Fast Shot Boundary Detection with Fully Convolutional
Neural Networks. url: http://arxiv.org/abs/1705.08214 (cit. on p. 38).

Han, Jun, Jun Tao, and Chaoli Wang (2018). “FlowNet: A Deep Learning Framework for

Clustering and Selection of Streamlines and Stream Surfaces.” In: IEEE Transactions
on Visualization and Computer Graphics 26.4, pp. 1732–1744 (cit. on p. 38).

https://github.com/ofrohn/d3-celestial
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1705.08214

References 181

Han, Jun and Chaoli Wang (2020). “TSR-TVD: Temporal Super-Resolution for Time-

Varying Data Analysis and Visualization.” In: IEEE Transactions on Visualization and
Computer Graphics 26.1 (1), pp. 205–215 (cit. on pp. 37, 161).

Han, Jun and Chaoli Wang (2022). “VCNet: A Generative Model for Volume Completion.”

In: Visual Informatics (In Ppess).

Han, Jun, Hao Zheng, Danny Z. Chen, and Chaoli Wang (2021). “STNet: An End-to-End

Generative Framework for Synthesizing Spatiotemporal Super-Resolution Volumes.”

In: IEEE Transactions on Visualization and Computer Graphics 28.1, pp. 270–280 (cit.
on pp. 37, 170).

Han, Wei et al. (2016). Seq-NMS for Video Object Detection. url: http://arxiv.org/
abs/1602.08465 (cit. on p. 73).

Hao, Lihua, Christopher G. Healey, and Steffen A. Bass (2016). “Effective Visualization of

Temporal Ensembles.” In: IEEE Transactions on Visualization and Computer Graphics
22.1 (1), pp. 787–796 (cit. on p. 72).

Harrison, Lane, Katharina Reinecke, and Remco Chang (2015). “Infographic Aesthetics:

Designing for the First Impression.” In: Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems. CHI ’15. Association for Computing

Machinery, pp. 1187–1190 (cit. on p. 111).

Hartson, Rex and Pardha Pyla (2019). “Chapter 15 - Mental Models and Conceptual

Design.” In: The UX Book (Second Edition). Ed. by Rex Hartson and Pardha Pyla.

Morgan Kaufmann, pp. 327–340 (cit. on p. 111).

Hassanien, Ahmed, Mohamed Elgharib, Ahmed Selim, Sung-Ho Bae, Mohamed Hefeeda,

andWojciech Matusik (2017). Large-Scale, Fast and Accurate Shot Boundary Detection
through Spatio-temporal Convolutional Neural Networks. url: http://arxiv.org/
abs/1705.03281 (cit. on p. 38).

Havre, S., E. Hetzler, P. Whitney, and L. Nowell (2002). “ThemeRiver: Visualizing The-

matic Changes in Large Document Collections.” In: IEEE Transactions on Visualiza-
tion and Computer Graphics 8.1 (1), pp. 9–20 (cit. on p. 111).

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning for Image Recogni-

tion.” In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–

778 (cit. on p. 117).

He, Wenbin, Hanqi Guo, Han-Wei Shen, and Tom Peterka (2020a). “eFESTA: Ensem-

ble Feature Exploration with Surface Density Estimates.” In: IEEE Transactions on
Visualization and Computer Graphics 26.4 (4), pp. 1716–1731 (cit. on p. 72).

He, Wenbin, Junpeng Wang, Hanqi Guo, Han-Wei Shen, and Tom Peterka (2020b).

“CECAV-DNN: Collective Ensemble Comparison and Visualization Using Deep

Neural Networks.” In: Vis. Informatics 4.2 (2), pp. 109–121 (cit. on pp. 38, 159).

http://arxiv.org/abs/1602.08465
http://arxiv.org/abs/1602.08465
http://arxiv.org/abs/1705.03281
http://arxiv.org/abs/1705.03281

182 References

He, Wenbin et al. (2019). “InSituNet: Deep Image Synthesis for Parameter Space Explo-

ration of Ensemble Simulations.” In: IEEE Transactions on Visualization and Computer
Graphics 26.1, pp. 23–33 (cit. on p. 38).

Heinemann, Moritz, Steffen Frey, Gleb Tkachev, Alexander Straub, Filip Sadlo, and

Thomas Ertl (2021). “Visual Analysis of Droplet Dynamics in Large-Scale Multiphase

Spray Simulations.” In: Journal of Visualization 24.5, pp. 943–961 (cit. on p. 7).

Higgins, Irina et al. (2017). “Beta-VAE: Learning Basic Visual Concepts with a Con-

strained Variational Framework.” In: International Conference on Learning Represen-
tations (ICLR) (cit. on pp. 106, 170).

Hoefler, Torsten, William Gropp, William Kramer, and Marc Snir (2011). “Performance

Modeling for Systematic Performance Tuning.” In: State of the Practice Reports. SC
’11, 6:1–6:12 (cit. on p. 144).

Hong, Fan, Can Liu, and Xiaoru Yuan (2019). “DNN-VolVis: Interactive Volume Visu-

alization Supported by Deep Neural Network.” In: 2019 IEEE Pacific Visualization
Symposium, pp. 282–291 (cit. on p. 37).

Honnibal, Matthew and Ines Montani (2017). spaCy 2: Natural Language Understanding
with Bloom Embeddings, Convolutional Neural Networks and Incremental Parsing.
url: https://spacy.io/ (cit. on p. 116).

Hornik, Kurt, Maxwell Stinchcombe, and HalbertWhite (1989). “Multilayer Feedforward

Networks Are Universal Approximators.” In: Neural Networks 2.5, pp. 359–366 (cit.
on p. 24).

Howison, M., E. W. Bethel, and H. Childs (2012). “Hybrid Parallelism for Volume Render-

ing on Large-, Multi-, andMany-Core Systems.” In: IEEE Transactions on Visualization
and Computer Graphics 18.1, pp. 17–29 (cit. on p. 143).

Hu, Kevin Zeng, Michiel A. Bakker, Stephen Li, Tim Kraska, and César A. Hidalgo (2018).

VizML: A Machine Learning Approach to Visualization Recommendation. (Cit. on
p. 109).

Huang, Dandan et al. (2015). “Personal Visualization and Personal Visual Analytics.”

In: IEEE Transactions on Visualization and Computer Graphics 21.3 (3), pp. 420–433
(cit. on p. 110).

Huang, Qingqiu, Wentao Liu, and Dahua Lin (2018). “Person Search in Videos with

One Portrait Through Visual and Temporal Links.” In: 2018 European Conference on
Computer Vision, pp. 437–454 (cit. on p. 73).

Hummel, M., H. Obermaier, C. Garth, and K. I. Joy (2013). “Comparative Visual Analysis

of Lagrangian Transport in CFD Ensembles.” In: IEEE Transactions on Visualization
and Computer Graphics 19.12 (12), pp. 2743–2752 (cit. on p. 72).

Ipek, Engin, Bronis R. De Supinski, Martin Schulz, and Sally A. McKee (2005). “An Ap-

proach to Performance Prediction for Parallel Applications.” In: European Conference
on Parallel Processing. Springer, pp. 196–205 (cit. on p. 143).

https://spacy.io/

References 183

Isenberg, Petra et al. (2017). “Vispubdata.Org: A Metadata Collection About IEEE Visu-

alization (VIS) Publications.” In: IEEE Transactions on Visualization and Computer
Graphics 23.9 (9), pp. 2199–2206 (cit. on p. 115).

Jakob, Jakob, Markus Gross, and Tobias Günther (2021). “A Fluid Flow Data Set for

Machine Learning and Its Application to Neural Flow Map Interpolation.” In: IEEE
Transactions on Visualization and Computer Graphics 27.2, pp. 1279–1289 (cit. on
p. 37).

Jarema, M., I. Demir, J. Kehrer, and R. Westermann (2015). “Comparative Visual Analysis

of Vector Field Ensembles.” In: 2015 IEEE Conference on Visual Analytics Science
and Technology (VAST). 2015 IEEE Conference on Visual Analytics Science and

Technology (VAST), pp. 81–88 (cit. on pp. 12, 72).

Jeffery, Clinton L. (2019). “The CityMetaphor in Software Visualization.” In: International
Conference in Central Europe on Computer Graphics, Visualization and Computer
Vision WSCG 2019, pp. 153–163 (cit. on p. 111).

Jerald, Jason, Joseph J. LaViola, and Richard Marks (2017). “VR Interactions.” In: ACM
SIGGRAPH 2017 Courses. SIGGRAPH ’17. Association for Computing Machinery

(cit. on p. 111).

Jiao, Licheng, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng, and Rong

Qu (2019). “A Survey of Deep Learning-Based Object Detection.” In: IEEE Access 7,
pp. 128837–128868 (cit. on p. 73).

Jing, Longlong and Yingli Tian (2020). “Self-Supervised Visual Feature Learning with

Deep Neural Networks: A Survey.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 43.11, pp. 4037–4058 (cit. on p. 31).

Jing, Yongcheng, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli Song

(2020). “Neural Style Transfer: A Review.” In: IEEE Transactions on Visualization and
Computer Graphics 26.11 (11), pp. 3365–3385 (cit. on p. 112).

Jänicke, H., A. Wiebel, G. Scheuermann, and W. Kollmann (2007). “Multifield Visualiza-

tion Using Local Statistical Complexity.” In: IEEE Transactions on Visualization and
Computer Graphics 13.6 (6), pp. 1384–1391 (cit. on p. 37).

Johnson, Christopher and Charles Hansen (2004). Visualization Handbook. Academic

Press, Inc. (cit. on p. 4).

Joshi, A. and P. Rheingans (2005). “Illustration-Inspired Techniques for Visualizing

Time-Varying Data.” In: IEEE Visualization 2005, pp. 679–686 (cit. on p. 35).

Kaggle (2014). Dogs vs Cats. url: https://www.kaggle.com/c/dogs-vs-cats
(cit. on p. 117).

Karras, Tero, Samuli Laine,Miika Aittala, JanneHellsten, Jaakko Lehtinen, and TimoAila

(2020). “Analyzing and Improving the Image Quality of StyleGAN.” In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8107–8116

(cit. on p. 120).

https://www.kaggle.com/c/dogs-vs-cats

184 References

Kehrer, Johannes and Helwig Hauser (2013). “Visualization and Visual Analysis of

Multifaceted Scientific Data: A Survey.” In: IEEE Transactions on Visualization and
Computer Graphics 19.3 (3), pp. 495–513 (cit. on pp. 10, 13).

Kim, Byungsoo and Tobias Günther (2019). “Robust Reference Frame Extraction from

Unsteady 2D Vector Fields with Convolutional Neural Networks.” In: Computer
Graphics Forum 38.3, pp. 285–295.

Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Optimization.
url: http://arxiv.org/abs/1412.6980 (cit. on pp. 49, 83).

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). “Optimization by Simulated

Annealing.” In: Science 220.4598 (4598), pp. 671–680 (cit. on p. 115).

Klemm, Paul, Sylvia Saalfeld, Kai Lawonn, Marko Rak, Henry Völzke, Katrin Hegen-

scheid, and Bernhard Preim (2015). “Interactive Visual Analysis of Lumbar Back

Pain What the Lumbar Spine Tells About Your Life.” In: IVAPP 2015 - 6th Interna-
tional Conference on Information Visualization Theory and Applications; VISIGRAPP,
Proceedings, pp. 85–92 (cit. on p. 37).

Koch, Gregory R. (2015). “Siamese Neural Networks for One-Shot Image Recognition.”

In: 2015 ICML Deep Learning Workshop (cit. on pp. 32, 80).

Kohonen, T. (1990). “The Self-Organizing Map.” In: Proceedings of the IEEE 78.9 (9),

pp. 1464–1480 (cit. on p. 37).

Kolouri, Soheil, Phillip E. Pope, Charles E. Martin, and Gustavo K. Rohde (2019). “Sliced

Wasserstein Auto-Encoders.” In: International Conference on Learning Representations
(cit. on p. 106).

Koopmans, Tjalling C. and Martin Beckmann (1957). “Assignment Problems and the

Location of Economic Activities.” In: Econometrica 25.1 (1), pp. 53–76 (cit. on p. 115).

Kulkarni, Sanjeev R. and Gilbert Harman (2011). “Statistical Learning Theory: A Tuto-

rial.” In:Wiley Interdisciplinary Reviews: Computational Statistics 3.6 (6), pp. 543–556
(cit. on p. 42).

Kumpf, Alexander, Marc Rautenhaus, Michael Riemer, and Rüdiger Westermann (2019).

“Visual Analysis of the Temporal Evolution of Ensemble Forecast Sensitivities.”

In: IEEE Transactions on Visualization and Computer Graphics 25.1 (1), pp. 98–108
(cit. on p. 72).

Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum (2015). “Human-

Level Concept Learning through Probabilistic Program Induction.” In: Science 350.6266
(6266), pp. 1332–1338 (cit. on p. 33).

Lakoff, George (1980).Metaphors We Live By. University of Chicago Press (cit. on p. 110).

Lample, Guillaume, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer, and

Hervé Jégou (2018). “Word Translation without Parallel Data.” In: International

Conference on Learning Representations (cit. on p. 112).

Lapuschkin, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen,

Klaus-Robert Müller, and Wojciech Samek (2015). “On Pixel-Wise Explanations for

http://arxiv.org/abs/1412.6980

References 185

Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation.” In: PLoS
ONE 10.7 (cit. on p. 170).

Larsen, Matthew, Cyrus Harrison, James Kress, David Pugmire, Jeremy S. Meredith,

and Hank Childs (2016). “Performance Modeling of in Situ Rendering.” In: Proc. High
Performance Computing, Networking, Storage and Analysis. SC ’16, 24:1–24:12 (cit. on

p. 144).

Lasserre, Julia A, Christopher M Bishop, and Thomas P Minka (2006). “Principled

Hybrids of Generative and Discriminative Models.” In: 2006 IEEE Conference on
Computer Vision and Pattern Recognition. Vol. 1. IEEE, pp. 87–94 (cit. on p. 29).

Lawler, Eugene L (1963). “The Quadratic Assignment Problem.” In: Management Science
9.4 (4), pp. 586–599 (cit. on p. 115).

Lee, Benjamin C., David M. Brooks, Bronis R. de Supinski, Martin Schulz, Karan Singh,

and Sally A. McKee (2007). “Methods of Inference and Learning for Performance

Modeling of Parallel Applications.” In: Proc. SIGPLAN Principles and Practice of
Parallel Programming, pp. 249–258 (cit. on p. 143).

Lee, Teng-Yok and Han-Wei Shen (2009). “Visualizing Time-varying Features with

TAC-based Distance Fields.” In: 2009 IEEE Pacific Visualization Symposium. IEEE

Computer Society, pp. 1–8 (cit. on p. 36).

Leone, Stefano (2019). IMDb Movies Extensive Dataset | Kaggle. url: https://www.
kaggle.com/stefanoleone992/imdb-extensive-dataset/version/2 (cit.

on p. 123).

Li, Wei, Rui Zhao, Tong Xiao, and Xiaogang Wang (2014). “DeepReID: Deep Filter

Pairing Neural Network for Person Re-identification.” In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 152–159 (cit. on p. 73).

Liu, L., D. Silver, K. Bemis, D. Kang, and E. Curchitser (2017). “Illustrative Visualization

of Mesoscale Ocean Eddies.” In: Computer Graphics Forum 36.3 (3), pp. 447–458

(cit. on p. 35).

Liu, Xiao, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang

(2021). “Self-Supervised Learning: Generative or Contrastive.” In: IEEE Transactions
on Knowledge and Data Engineering, pp. 1–1 (cit. on p. 31).

Lowe, David G. (2004). “Distinctive Image Features from Scale-Invariant Keypoints.” In:

International Journal of Computer Vision 60.2 (2), pp. 91–110 (cit. on p. 91).

Lu, A. and H. W. Shen (2008). “Interactive Storyboard for Overall Time-Varying Data

Visualization.” In: 2008 IEEE Pacific Visualization Symposium. 2008 IEEE Pacific

Visualization Symposium, pp. 143–150 (cit. on pp. 35, 57).

Lu, Y., K. Jiang, J. A. Levine, and M. Berger (2021). “Compressive Neural Representations

of Volumetric Scalar Fields.” In: Computer Graphics Forum 40.3, pp. 135–146 (cit. on

pp. 37, 160).

https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset/version/2
https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset/version/2

186 References

Lun, Zhaoliang, Evangelos Kalogerakis, and Alla Sheffer (2015). “Elements of Style:

Learning Perceptual Shape Style Similarity.” In: ACM Transactions on Graphics 34.4
(4), 84:1–84:14 (cit. on p. 112).

Ma, K., J. Painter, C. Hansen, and M. Krogh (1994). “Parallel Volume Rendering Using

Binary-Swap Compositing.” In: IEEE Computer Graphics and Applications 14.4, pp. 59–
68 (cit. on p. 16).

Ma, Kwan-Liu (2007). “Machine Learning to Boost the Next Generation of Visualization

Technology.” In: IEEE Computer Graphics and Applications 27.5 (5), pp. 6–9 (cit. on
p. 37).

Mairal, Julien, Francis Bach, Jean Ponce, Guillermo Sapiro, andAndrewZisserman (2008).

Supervised Dictionary Learning. url: https://arxiv.org/abs/0809.3083 (cit.

on p. 29).

Makhzani, Alireza and Brendan J. Frey (2014). “K-Sparse Autoencoders.” In: 2014 Inter-
national Conference on Learning Representations. Ed. by Yoshua Bengio and Yann

LeCun (cit. on p. 170).

McInnes, Leland, John Healy, and James Melville (2018). UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. url: http://arxiv.org/
abs/1802.03426 (cit. on pp. 106, 116).

Mead, A. (1992). “Review of the Development of Multidimensional Scaling Methods.”

In: Journal of the Royal Statistical Society 41.1 (1), pp. 27–39 (cit. on p. 115).

Mendes, D., F. M. Caputo, A. Giachetti, A. Ferreira, and J. Jorge (2019). “A Survey on 3D

Virtual Object Manipulation: From the Desktop to Immersive Virtual Environments.”

In: Computer Graphics Forum 38.1 (1), pp. 21–45 (cit. on p. 111).

Mikolov, Tomas, Quoc V. Le, and Ilya Sutskever (2013a). Exploiting Similarities among
Languages for Machine Translation. url: https://arxiv.org/abs/1309.4168
(cit. on p. 112).

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean (2013b).

“Distributed Representations of Words and Phrases and Their Compositionality.”

In: Advances in Neural Information Processing Systems (NIPS), pp. 3111–3119 (cit. on
pp. 31, 115).

Misra, Ishan, C. Lawrence Zitnick, and Martial Hebert (2016). “Shuffle and Learn: Unsu-

pervised Learning Using Temporal Order Verification.” In: 2016 European Conference
on Computer Vision, pp. 527–544 (cit. on p. 73).

Mitchell, Tom M. (1997). Machine Learning. McGraw-Hill (cit. on p. 17).

Müller, C., M. Strengert, and T. Ertl (2006). “Optimized Volume Raycasting for Graphics-

Hardware-Based Cluster Systems.” In: Proc. EGPGV, pp. 59–66 (cit. on p. 143).

Molnar, Steven, Michael Cox, David Ellsworth, and Henry Fuchs (1994). “A Sorting

Classification of Parallel Rendering.” In: IEEE Computer Graphics and Applications
14.4, pp. 23–32 (cit. on pp. 14, 143).

https://arxiv.org/abs/0809.3083
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1309.4168

References 187

Montúfar, Guido, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio (2014). On the
Number of Linear Regions of Deep Neural Networks. url: http://arxiv.org/abs/
1402.1869 (cit. on pp. 25, 29).

Muelder, C. and K. L. Ma (2009). “Interactive Feature Extraction and Tracking by Utilizing

Region Coherency.” In: 2009 IEEE Pacific Visualization Symposium. 2009 IEEE Pacific

Visualization Symposium, pp. 17–24 (cit. on p. 36).

Mutlu, Belgin, Eduardo E. Veas, and Christoph Trattner (2016). “VizRec: Recommending

Personalized Visualizations.” In:Ksii Transactions on Internet and Information Systems
6.4 (4), p. 31 (cit. on p. 109).

Noroozi, Mehdi and Paolo Favaro (2016). “Unsupervised Learning of Visual Represen-

tations by Solving Jigsaw Puzzles.” In: European Conference on Computer Vision.
Springer, pp. 69–84 (cit. on p. 31).

Obermaier, H. and K. I. Joy (2014). “Future Challenges for Ensemble Visualization.” In:

IEEE Computer Graphics and Applications 34.3 (3), pp. 8–11 (cit. on p. 72).

Olah, Chris, Alexander Mordvintsev, and Ludwig Schubert (2017). “Feature Visualiza-

tion.” In: Distill 2.11 (11), e7 (cit. on p. 170).

Pan, Sinno Jialin and Qiang Yang (2010). “A Survey on Transfer Learning.” In: IEEE
Transactions on Knowledge and Data Engineering 22.10, pp. 1345–1359 (cit. on p. 29).

Pathak, Deepak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros

(2016). “Context Encoders: Feature Learning by Inpainting.” In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2536–2544 (cit. on p. 31).

Peterka, Tom, Hongfeng Yu, Robert B Ross, Kwan-Liu Ma, et al. (2008). “Parallel Volume

Rendering on the IBM Blue Gene/P.” In: Proc. EGPGV, pp. 73–80 (cit. on p. 143).

Petitet, Antoine (2004).HPL –A Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers. url: http://www.netlib.org/
benchmark/hpl/ (cit. on p. 144).

Potter, Kristin, Andrew Wilson, Peer-Timo Bremer, Dean Williams, Charles Doutriaux,

Valerio Pascucci, and Chris R. Johnson (2009). “Ensemble-Vis: A Framework for

the Statistical Visualization of Ensemble Data.” In: In Proceedings of the 2009 IEEE
International Conference on Data Mining Workshops, pp. 233–240 (cit. on p. 72).

Pousman, Zachary, John Stasko, and Michael Mateas (2007). “Casual Information Visu-

alization: Depictions of Data in Everyday Life.” In: IEEE Transactions on Visualization
and Computer Graphics 13.6 (6), pp. 1145–1152 (cit. on p. 109).

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. (2019). “Language Models Are Unsupervised Multitask Learners.” In: OpenAI
blog 1.8, p. 9 (cit. on p. 31).

Richards, Stephen, Philip Barker, Ashok Banerji, Charles Lamont, and Karim Manji

(2009). “The Use of Metaphors in Iconic Interface Design.” In: Digital Creativity
(Intelligent Tutoring Media) 5.2, pp. 73–80 (cit. on p. 111).

http://arxiv.org/abs/1402.1869
http://arxiv.org/abs/1402.1869
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/

188 References

Rizzi, Silvio, Mark Hereld, Joseph A. Insley, Michael E. Papka, Thomas D. Uram, and

Venkatram Vishwanath (2014). “Performance Modeling of Vl3 Volume Rendering

on GPU-Based Clusters.” In: Proc. EGPGV, pp. 65–72 (cit. on p. 144).

Ruder, Sebastian, Ivan Vulić, and Anders Søgaard (2019). “A Survey of Cross-lingual

Word Embedding Models.” In: Journal of Artificial Intelligence Research 65, pp. 569–

631 (cit. on p. 112).

Sacha, Dominik, Matthias Kraus, Jürgen Bernard, Michael Behrisch, Tobias Schreck,

Yuki Asano, and Daniel A. Keim (2018). “SOMFlow: Guided Exploratory Cluster

Analysis with Self-Organizing Maps and Analytic Provenance.” In: IEEE Transactions
on Visualization and Computer Graphics 24.1 (1), pp. 120–130 (cit. on p. 37).

Sanyal, J., S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moorhead (2010). “Noodles:

A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty.” In:

IEEE Transactions on Visualization and Computer Graphics 16.6 (6), pp. 1421–1430
(cit. on p. 72).

Schroff, Florian, Dmitry Kalenichenko, and James Philbin (2015). “FaceNet: A Unified

Embedding for Face Recognition and Clustering.” In: 2015 Conference on Computer

Vision and Pattern Recognition, pp. 815–823 (cit. on p. 32).

Sedlmair, M., C. Heinzl, S. Bruckner, H. Piringer, and T. Möller (2014). “Visual Parameter

Space Analysis: A Conceptual Framework.” In: IEEE Transactions on Visualization
and Computer Graphics 20.12 (12), pp. 2161–2170 (cit. on pp. 13, 72).

Selim, Ahmed, Mohamed Elgharib, and Linda Doyle (2016). “Painting Style Transfer

for Head Portraits Using Convolutional Neural Networks.” In: ACM Transactions on
Graphics 35.4 (4), 129:1–129:18 (cit. on p. 139).

Shi, Neng, Jiayi Xu, Skylar W. Wurster, Hanqi Guo, Jonathan Woodring, Luke P. Van

Roekel, and Han-Wei Shen (2022). “GNN-Surrogate: A Hierarchical and Adaptive

Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh

Ocean Simulations.” In: IEEE Transactions on Visualization and Computer Graphics
(Early Access) (Early Access) (cit. on pp. 37, 160).

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Networks

for Large-Scale Image Recognition.” In: International Conference on Learning Repre-
sentations (ICLR) (cit. on pp. 97, 120).

Singh, Karan, Engin Ipek, Sally A. McKee, Bronis R. de Supinski, Martin Schulz, and Rich

Caruana (2007). “Predicting Parallel Application Performance via Machine Learning

Approaches.” In: Concurrency and Computation 19.17, pp. 2219–2235 (cit. on p. 143).

Smith, Samuel L., David H. P. Turban, Steven Hamblin, and Nils Y. Hammerla (2016).

“Offline Bilingual Word Vectors, Orthogonal Transformations and the Inverted

Softmax.” In: 2017 International Conference on Learning Representations (cit. on

p. 112).

Sodhi, Sukhdeep, Jaspal Subhlok, and Qiang Xu (2008). “Performance Prediction with

Skeletons.” In: Cluster Computing 11.2, pp. 151–165 (cit. on p. 143).

References 189

Song, Peng, Wooi Boon Goh, William Hutama, Chi-Wing Fu, and Xiaopei Liu (2012).

“A Handle Bar Metaphor for Virtual Object Manipulation with Mid-Air Interaction.”

In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’12. Association for Computing Machinery, pp. 1297–1306 (cit. on p. 111).

Srujan, Suddala (2020). Art for Generative Modelling. url: https://www.kaggle.com/
suddalasrujan/art-for-generative-modelling-images/version/3 (cit.

on p. 120).

Sutherland, Ivan E., Robert F. Sproull, and Robert A. Schumacker (1974). “A Characteri-

zation of Ten Hidden-Surface Algorithms.” In: ACM Computing Surveys 6.1, pp. 1–55
(cit. on p. 14).

Sutton, Richard (2019). The Bitter Lesson. url: http://www.incompleteideas.net/
IncIdeas/BitterLesson.html (cit. on pp. 2, 26).

Tabiai, Ilyass,Gleb Tkachev, Patrick Diehl, Steffen Frey, Thomas Ertl, Daniel Therriault,

and Martin Lévesque (2019b). Hybrid Image Processing Approach for Autonomous
Crack Area Detection and Tracking Using Local Digital Image Correlation Results
Applied to Single-Fiber Interfacial Debonding. Version 1.0.0. url: https://doi.
org/10.5281/zenodo.2566394 (cit. on p. 7).

Tabiai, Ilyass,Gleb Tkachev, Patrick Diehl, Steffen Frey, Thomas Ertl, Daniel Therriault,

and Martin Lévesque (2019a). “Hybrid Image Processing Approach for Autonomous

Crack Area Detection and Tracking Using Local Digital Image Correlation Results

Applied to Single-Fiber Interfacial Debonding.” In: Engineering Fracture Mechanics
216, p. 106485 (cit. on p. 7).

Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso (2020).

The Computational Limits of Deep Learning. url: http://arxiv.org/abs/2007.
05558 (cit. on p. 26).

Tkachev, Gleb (2017). “Investigation and Prediction of Distributed Volume Rendering

Performance.” Master’s thesis. University of Stuttgart (cit. on pp. 142, 143).

Tkachev, Gleb (2022). PyPlant: A Python Framework for Cached Function Pipelines. url:
https://doi.org/10.18419/darus-2249 (cit. on p. 7).

Tkachev, Gleb, Rene Cutura, Michael Sedlmair, Steffen Frey, and Thomas Ertl (2022).

“Metaphorical Visualization: Mapping Data to Familiar Concepts.” In: Extended
Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. CHI
EA ’22. Association for Computing Machinery, DOI: 10.1145/3491101.3516393 (cit.

on pp. 6, 109).

Tkachev, Gleb, Steffen Frey, and Thomas Ertl (2021a). “Local Prediction Models for

Spatiotemporal Volume Visualization.” In: IEEE Transactions on Visualization and
Computer Graphics 27.7, pp. 3091–3108 (cit. on pp. 5, 35, 71, 168).

Tkachev, Gleb, Steffen Frey, and Thomas Ertl (2021b). Replication Data for: “S4: Self-
supervised Learning of Spatiotemporal Similarity”. url: https://doi.org/10.
18419/darus-2174 (cit. on p. 7).

https://www.kaggle.com/suddalasrujan/art-for-generative-modelling-images/version/3
https://www.kaggle.com/suddalasrujan/art-for-generative-modelling-images/version/3
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://doi.org/10.5281/zenodo.2566394
https://doi.org/10.5281/zenodo.2566394
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2007.05558
https://doi.org/10.18419/darus-2249
https://doi.org/10.18419/darus-2174
https://doi.org/10.18419/darus-2174

190 References

Tkachev, Gleb, Steffen Frey, and Thomas Ertl (2021c). “S4: Self-supervised Learning

of Spatiotemporal Similarity.” In: IEEE Transactions on Visualization and Computer
Graphics DOI: 10.1109/TVCG.2021.3101418 (cit. on pp. 5, 7, 71, 168).

Tkachev, Gleb, Steffen Frey, Christoph Müller, Valentin Bruder, and Thomas Ertl

(2017). “Prediction of Distributed Volume Visualization Performance to Support

Render Hardware Acquisition.” In: Proceedings of the 17th Eurographics Symposium
on Parallel Graphics and Visualization. EGPGV ’17. Eurographics Association, pp. 11–

20 (cit. on pp. 6, 141).

Tong, Xin, Teng-Yok Lee, and Han-Wei Shen (2012). “Salient Time Steps Selection

from Large Scale Time-Varying Data Sets with Dynamic Time Warping.” In: IEEE
Symposium on Large Data Analysis and Visualization (LDAV). IEEE Symposium on

Large Data Analysis and Visualization (LDAV), pp. 49–56 (cit. on pp. 35, 36, 57).

Tzeng, Fan-Yin and Kwan-Liu Ma (2005). “Intelligent Feature Extraction and Tracking

for Visualizing Large-Scale 4D Flow Simulations.” In: Proceedings of the ACM/IEEE
SC 2005 Conference. Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005

Conference, pp. 6–6 (cit. on p. 36).

Vapnik, V. N. and A. Ya. Chervonenkis (1969). “On the Uniform Convergence of Rel-

ative Frequencies of Events to Their Probabilities.” In: Theory of Probability & Its
Applications 16.2 (2), pp. 264–280 (cit. on p. 46).

Velten, Andreas et al. (2013). “Femto-Photography: Capturing and Visualizing the

Propagation of Light.” In: ACM Transactions on Graphics 32.4 (4), 44:1–44:8 (cit. on
pp. 52, 54).

Viegas, Fernanda B., Martin Wattenberg, and Jonathan Feinberg (2009). “Participatory

Visualization with Wordle.” In: IEEE Transactions on Visualization and Computer
Graphics 15.6 (6), pp. 1137–1144 (cit. on p. 110).

Vig, Jesse, Shilad Sen, and John Riedl (2012). “The Tag Genome: Encoding Commu-

nity Knowledge to Support Novel Interaction.” In: ACM Transactions on Interactive
Intelligent Systems 2.3 (3), 13:1–13:44 (cit. on p. 129).

Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol (2008).

“Extracting and Composing Robust Features with Denoising Autoencoders.” In:

Proceedings of the 25th International Conference on Machine Learning. ICML ’08.

Association for Computing Machinery, pp. 1096–1103 (cit. on p. 31).

Viola, I., M. Feixas, M. Sbert, and M. E. Groller (2006). “Importance-Driven Focus of

Attention.” In: IEEE Transactions on Visualization and Computer Graphics 12.5 (5),
pp. 933–940 (cit. on p. 37).

Wang, C., H. Yu, and K. L. Ma (2008). “Importance-Driven Time-Varying Data Visu-

alization.” In: IEEE Transactions on Visualization and Computer Graphics 14.6 (6),
pp. 1547–1554 (cit. on p. 36).

References 191

Wang, J., S. Hazarika, C. Li, and H. Shen (2019). “Visualization and Visual Analysis

of Ensemble Data: A Survey.” In: IEEE Transactions on Visualization and Computer
Graphics 25.9 (9), pp. 2853–2872 (cit. on pp. 10, 11, 13, 72, 91).

Wang, Jiang et al. (2014). “Learning Fine-Grained Image Similarity with Deep Ranking.”

In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014 IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (cit. on

p. 72).

Wang, Yifan, Zichun Zhong, and Jing Hua (2020). “DeepOrganNet: On-the-Fly Recon-

struction and Visualization of 3D / 4D Lung Models from Single-View Projections by

Deep Deformation Network.” In: IEEE Transactions on Visualization and Computer
Graphics 26.1, pp. 960–970.

Wang, Yunhai, Wei Chen, Jian Zhang, Tingxing Dong, Guihua Shan, and Xuebin Chi

(2011). “Efficient Volume Exploration Using the Gaussian Mixture Model.” In: IEEE
Transactions on Visualization and Computer Graphics 17.11 (11), pp. 1560–1573 (cit.
on p. 37).

Wang, Z., H. P. Seidel, and T. Weinkauf (2016). “Multi-Field Pattern Matching Based

on Sparse Feature Sampling.” In: IEEE Transactions on Visualization and Computer
Graphics 22.1 (1), pp. 807–816 (cit. on pp. 72, 93, 94).

Waser, J., R. Fuchs, H. Ribicic, B. Schindler, G. Bloschl, and E. Groller (2010). “World

Lines.” In: IEEE Transactions on Visualization and Computer Graphics 16.6 (6), pp. 1458–
1467 (cit. on p. 72).

Wei, Tzu-Hsuan, Chun-Ming Chen, Jonathan Woodring, HuiJie Zhang, and Han-Wei

Shen (2017). “Efficient Distribution-Based Feature Search in Multi-Field Datasets.”

In: 2009 IEEE Pacific Visualization Symposium, pp. 121–130 (cit. on p. 72).

Wolpert, D.H. and W.G. Macready (1997). “No Free Lunch Theorems for Optimization.”

In: IEEE Transactions on Evolutionary Computation 1.1, pp. 67–82 (cit. on p. 21).

Woodring, Jonathan and Han-Wei Shen (2003). Chronovolumes: A Direct Rendering
Technique for Visualizing Time-Varying Data. The Eurographics Association (cit. on

p. 36).

Wu, G., J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou (2015). “GPGPU Per-

formance and Power Estimation Using Machine Learning.” In: Proc. HPCA, pp. 564–
576 (cit. on p. 144).

Ynnerman, Anders, Jonas Löwgren, and Lena Tibell (2018). “Exploranation: A New

Science Communication Paradigm.” In: IEEE Computer Graphics and Applications
38.3 (3), pp. 13–20 (cit. on p. 110).

Yu, Hongfeng, Chaoli Wang, and Kwan-Liu Ma (2008). “Massively Parallel Volume Ren-

dering Using 2–3 Swap Image Compositing.” In: Proc. High Performance Computing,
Networking, Storage and Analysis, pp. 1–11 (cit. on pp. 15, 16, 145, 151).

Zhang, Richard, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang (2018).

“The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.” In: 2018

192 References

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 586–595 (cit. on pp. 97,

139).

Zhang, Yao and John D Owens (2011). “A Quantitative Performance Analysis Model for

GPU Architectures.” In: Proc. HPCA, pp. 382–393 (cit. on p. 144).

Zheng, Hao, Jun Han, Hongxiao Wang, Lin Yang, Zhuo Zhao, Chaoli Wang, and Danny

Z. Chen (2021). “Hierarchical Self-supervised Learning for Medical Image Segmen-

tation Based on Multi-domain Data Aggregation.” In: Medical Image Computing
and Computer Assisted Intervention – MICCAI 2021: 24th International Conference,
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I. Springer-Verlag,
pp. 622–632 (cit. on p. 38).

Zhou, Zhenglei, Yule Hou, Qirui Wang, Guangxiang Chen, Jiawei Lu, Yubo Tao, and Hai

Lin (2017). “Volume Upscaling with Convolutional Neural Networks.” In: Proceedings
of the Computer Graphics International Conference (Yokohama, Japan). CGI ’17. ACM,

38:1–38:6 (cit. on p. 37).

Zhuang, Fuzhen et al. (2021). “A Comprehensive Survey on Transfer Learning.” In:

Proceedings of the IEEE 109.1, pp. 43–76 (cit. on p. 29).

Ziemkiewicz, Caroline and Robert Kosara (2008). “The Shaping of Information by Visual

Metaphors.” In: IEEE Transactions on Visualization and Computer Graphics 14.6 (6),
pp. 1269–1276 (cit. on p. 111).

Zou, Zhengxia, Zhenwei Shi, Yuhong Guo, and Jieping Ye (2019). Object Detection in 20
Years: A Survey. url: http://arxiv.org/abs/1905.05055 (cit. on p. 73).

http://arxiv.org/abs/1905.05055

