
Personalized Route Planning:
On Finding your Way in Theory and Practice

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur
Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Florian Benjamin Ihle

aus Heilbronn

Hauptberichter: Prof. Dr. Stefan Funke
Mitberichter: Prof. Dr. Peter Sanders

Tag der mündlichen Prüfung: 28.06.2022

Institut für Formale Methoden der Informatik

2022

Contents

1. Introduction 13
1.1. Motivation . 13
1.2. Routing . 13

1.2.1. Dijkstra’s Algorithm . 14
1.2.2. Contraction Hierarchies . 14

1.3. Linear Programming . 16
1.4. Personalized Route Planning Model . 17

1.4.1. Personalized Contraction Hierarchies . 17
1.5. Outline . 18

I. Personalized Paths as alternative Routes 21
2. Enumerating personalized Routes efficiently 23

2.1. Introduction . 23
2.2. Related Work . 24

2.2.1. k-Shortest Paths . 24
2.2.2. Edge Usage Penalty Approach . 24
2.2.3. Via Nodes . 25
2.2.4. Pareto-optimal Routes . 26
2.2.5. Triangle Splitting . 27
2.2.6. Quality Measures for Alternative Paths . 27

2.3. Parameter Space Exploration via Partial Convex Hull Construction 28
2.3.1. Exhaustive Exploration . 29
2.3.2. Bounded Exploration with Guidance . 31
2.3.3. Making use of the Parameter Exploration: Path Extraction 32

2.4. Improving the LP Oracle for Personalized Contraction Hierarchies 33
2.5. Experimental Results for Route Enumeration . 33

2.5.1. Edge Weight Generation . 33
2.5.2. Personalized Contraction Hierarchy Construction 34
2.5.3. Parameter Space Exploration and Route Recommendations 36
2.5.4. Exemplary Queries . 40

3

2.6. Restricting Enumeration and Metric Invention for Diversification 43
2.6.1. Restricted Enumeration of Personalized Routes 43
2.6.2. Metric Invention . 44

2.7. Experimental Results for constrained Enumeration and Metric Invention 45
2.7.1. Used Metrics . 46
2.7.2. Personalized Contraction Hierarchy Preprocessing 46
2.7.3. Experiment Design . 46
2.7.4. Results . 47
2.7.5. Load Distribution . 48
2.7.6. Exemplary Queries . 50

2.8. Conclusions . 52

II. Understanding real world trajectories 55
3. Identifying Intermediate Destinations in Real World Trajectories 57

3.1. Introduction . 57
3.2. Related Work . 59

3.2.1. Supervised Trajectory Segmentation . 59
3.2.2. Unsupervised Trajectory Segmentation . 59
3.2.3. Driving Preferences Models . 60

3.3. Preliminaries . 61
3.3.1. Data Set . 61
3.3.2. Routing Cost Types . 62
3.3.3. Trajectory Segmentation . 63

3.4. Multi-Criteria Trajectory Segmentation . 64
3.4.1. The Personalized Path Criterion . 64
3.4.2. Experiments . 65
3.4.3. Discussion . 70

3.5. Conclusion . 71

4. Clustering Trajectories by Preference 73
4.1. Introduction . 73
4.2. Related work . 74
4.3. Preliminaries . 74

4.3.1. Geometric Hitting Set . 74
4.3.2. Minimum Geometric Hitting Set Hardness . 75

4.4. Driving Preferences and Geometric Hitting Sets . 75
4.4.1. Exact Polyhedron Construction . 76
4.4.2. Minimum Geometric Hitting Set . 77
4.4.3. Hitting Set Instance Construction via Arrangements of Hyperplanes 78
4.4.4. Challenges . 79

4.5. Polynomial-Time Heuristics with Instance-based Lower Bounds 80
4.5.1. Approximate Instance Generation . 80
4.5.2. Approximate Instance Solving . 81

4 Contents

4.6. Experimental Results . 82
4.6.1. Experimental Setup . 82
4.6.2. Implementation Details . 83
4.6.3. Geometric Hitting Set Instance Generation . 83
4.6.4. Geometric Hitting Set Solving . 83
4.6.5. Varying Polyhedron Approximation . 84
4.6.6. Dependence on the number of preferences . 84

4.7. Conclusions . 86

III. Theoretical analysis of Personalized Paths 87
5. Upper Bounding the number of personalized Paths 89

5.1. Introduction . 89
5.1.1. Related Work . 90
5.1.2. Our contribution . 90

5.2. Preliminaries . 90
5.3. Bounds on the Number of Shortest Paths . 93

5.3.1. Multi-edge Path Graphs . 93
5.3.2. Preference Spaces of multi-edge Path Graphs . 93
5.3.3. Bounds for General Graphs . 96

5.4. Conclusion . 99

6. Discussion 101
6.1. Conclusion . 101
6.2. Future Work . 102

Bibliography 103

List of Figures 109

List of Tables 111

Contents 5

Zusammenfassung

Personalisierung ist ein wichtiger Trend in der heutigen digitalen Welt. Im Bereich der Routenplanung
hatte dieser jedoch noch keine starken Auswirkungen. Diese Dissertation beschäftigt sich mit dem
multikriteriellen Routenplanungsansatz, der “personalized route planning model” genannt wird. Das
Modell optimiert Konvexkombinationen von Routenplanungskriterien wie z.B. Reisezeit, Distanz oder
Straßentyp und berechnet unterschiedliche Routen basierend auf den Präferenzen des Nutzers. Wir
nennen die optimalen Pfade dieses Modells personalisierte Pfade. Das Angeben solcher Präferenzen ist
keine einfache Aufgabe für einen Nutzer. Daher haben wir uns im praktischen Teil unserer Forschung
auf Anwendungen konzentriert, die die Präferenzen im Backend verarbeiten ohne den Nutzer mit
ihnen zu konfrontieren. Wir stellen drei praxisorientierte Anwendung und eine theoretische Analyse
des Models vor. Für jede der Anwendungen entwickelten wir effiziente Algorithmen und verifizierten
die Qualität und Laufzeit experimentell.

Die erste Anwendung findet große Mengen von Alterantivrouten, die nicht zu sehr überlappen. Dazu
entwickeln wir einen Algorithmus, der alle personalisierten Pfade aufzählen kann. Dieser wird dann
erweitert um optional das Berechnen von Pfaden zu vermeiden, die zusätzliche Optimalitätskriterien
nicht erfüllen. Darüber hinaus zeigen wir ‘erfundene’ Routenplanungskriterien, die die Ergebnisse
noch weiter diversifizieren. In unseren Experimenten beobachteten wir große Mengen an sinnvollen
Alternativrouten.

Im Gegensatz zur ersten Anwendung sind die nächsten beiden Anwendung nicht an Endnutzer
gerichtet, sondern dienen zum Lernen aus bestehenden Trajektorien. Die zweite Anwendung identifi-
ziert Zwischenziele in Trajektorien. Wir nehmen an, dass Fahrer auf längeren Fahrten mit mehreren
Zielen personalisierte Pfade zwischen den einzelnen Zielen wählen. Daher verwenden wir einen
Trajektoriensegmentierungsansatz, der die Trajektorien in personalisierte Pfade aufteilt. Unser Ansatz
konnte ca. 60% aller bekannten Zwischenziele in einem echt Welt Datensatz exakt erkennen und
90% waren sehr nahe an den errechneten Zwischenzielen.

Unsere letzte Anwendung hat das Ziel Trajektorien nach Präferenzen zu clustern. Hier ist die Idee
eine Menge an Trajektorien durch eine kleine Menge Präferenzen zu erklären, so dass jede Trajektorie
für eine der Präferenzen optimal ist. Das erlaubt es wichtige Präferenzen für einzelne Fahrer zu
finden oder eine Menge von Fahrern zu kategorisieren. Wir berechnen den Präferenzbereich für alle
Trajektorien und lösen eine darauf basierende geometrische “Hitting Set” Instanz. Obwohl beide
Schritte im schlimmsten Fall teuer zu berechnen sind, stellten wir fest, dass der gesamte Prozess
häufig in Sekunden bis Minuten berechnet werden kann für Instanzen mit tausenden Trajektorien.

Im letzten Teil der Dissertation analysieren wir wie viele personalisierte Pfade es abhängig von der

7

Graphgröße zwischen zwei Knoten geben kann. Unsere Analyse basiert auf zwei speziellen Graphfami-
lien und wird dann auf alle Graphen generalisiert. Wir beweisen, dass die Anzahl der personalsierten
Pfade subexponentiell in der Graphgröße und exponentiell in der Zahl der Routenplanungskriterien
ist.

8 Contents

Abstract

Personalization is an important trend in today’s digital world. One area where this trend has not
yet had deep impact is route planning. This dissertation discusses the multi-criteria route planning
approach called personalized route planning model. The model optimizes convex combinations of
route planning criteria, e.g., travel time, distance, road type, etc., and gives different results based
on user preferences. We call the resulting optimal paths personalized paths. Specifying preferences
is not an easy task for users. Therefore, we focus on applications that handle the preferences in
the back end without exposing it to users, in the practical parts of our research. We present three
different practical applications and a theoretical analysis of the model. For each application, we
provide efficient algorithms and experiments to verify result quality and running time.
The first application deals with finding large numbers of alternative routes which do not overlap

too much. To this end, we develop an algorithm that is able to enumerate all personalized paths. This
algorithm is then extended to optionally avoid computing paths that do not meet certain stronger
optimality conditions. Furthermore, we present ‘invented’ routing criteria to diversify the results
even more if needed. In our experiments, we observed large sets of meaningful alternative routes for
the users to choose from.
While our first application is aimed at end users, the next two are focused on learning from

existing trajectories. The second one is about identifying intermediate destinations in trajectories. We
assume that on long trips with intermediate destinations drivers will take personalized paths between
destinations. So, we employ a trajectory segmentation approach, which partitions trajectories into
personalized paths. Our approach recovered about 60% of all known intermediate destinations from
real-world trajectories exactly and 90% were in close neighborhood to our predicted destinations.
The final application considers clustering trajectories by preference. Here, the idea is to explain

a set of trajectories by a small number of preferences, such that each trajectory is optimal for one
preference. This allows finding important preferences for a single driver or classifying multiple drivers
into categories, e.g., cruisers and speeders. We approach this by computing the preference space of
all trajectories and solving a geometric hitting set instance based on the preference spaces. While
both of these steps are expensive in the worst case, we found that the process can often be computed
in seconds to minutes for instances with thousands of trajectories.
In the last part of this dissertation, we analyze how many personalized paths can exist between

two vertices depending on the graph size. We base our analysis on two specific graph families and
generalize to all graphs. We proved that the number of personalized paths is subexponential in the
graph size and exponential in the number of criteria used.

9

Acknowledgements

For this thesis coming together, I have many people to thank. I will try my best to not forget anyone
and to give credit for the support I have received. I know already, that my words cannot do justice to
the wonderful people around me and I am nearly sure I will miss someone. Just know you are much
appreciated.
I want to thank my supervisor Prof. Dr. Stefan Funke. His lectures introduced me to the field of

Algorithm Engineering, sparked my enthusiasm for it and made me seriously consider pursing a PhD
for the first time. Thank you for providing me the opportunity and for your support throughout my
time at the FMI. I am grateful for the suggestions, insights and pointers I received in our conversations
as well as for the time and trust you gave me to figure things out on my own.
Next up, I want to thank my colleagues at FMI: Daniel Bahrdt, Filip Krumpe, Thomas Mendel,

Claudius Proissl, Tobias Rupp and Felix Weitbrecht. I thank you for the brainstorming sessions, the
discussions, the table soccer sessions, the coffee and cake breaks, for showing up in the online space
when social distancing was necessary and most of all for making our time together not only about
research and teaching, but also about joy and companionship. An extra thanks for proof reading this
document goes to Claudius Proissl, Tobias Rupp and Felix Weitbrecht.

I want to thank my coauthors of the papers we published together: Stefan Funke, Claudius Proissl,
Jan Rapp, Tobias Jepsen Skovgaard and Sabine Storandt. It was a pleasure working with you and
developing ideas into lemmas, theorems, algorithms and research papers.

The last but surely not least important group to thank consists of my “chosen family”, that supported
me in the private space. Most important here is Ilona Ihle who will be my wife by the time this
document is published. She always believed in me and supported me even when the work at a paper
with an impending deadline ate large parts of my weekend time. Thank you, I am truly fortunate to
receive your love and support. I am proud for having you at my side! Finally, I want to mention my
closest friends who have probably listened to me talking about route planning algorithms way too
much. Thank you for your interest, your patience, your understanding and most of all your friendship
Fabian Friz, Igor Hörner and Jan Rapp.

11

Ch
ap

te
r 1

Introduction

1.1. Motivation

Navigation system are common for basically every mode of transportation. No matter if you plan a
trip by foot, bicycle, car or public transportation, systems which are specialized for those purposes
are available. Usually, these tools will yield routes or trips that are optimized for one - potentially
selectable - criterion like travel time or number of transfers. Typically, there are only few options to
customize the routing results to ones liking like adding intermediate destination or avoiding certain
types of roads. In this work, we explore a routing model which uses multiple criteria for optimal paths
and makes the importance of these criteria configurable per query. So customization cannot only
happen per user but in theory a user can tweak every route to their liking by tuning the importance
of the criteria. In day-to-day use, finding the right configuration for every query can be difficult and
time consuming. So instead of requiring a user to do all the work, such a system should propose good
options to the user or learn his preferences. We present three practical applications for this model,
which showcase capabilities a personalized navigation system might have. These include finding
suitable alternative routes for the user to choose from but also gaining insight in the users routing
preferences by analyzing existing trajectories.
The rest of this chapter, contains basic definitions and building blocks used in the later chapters

and an overview of the rest of the work.

1.2. Routing

Routing is the process of finding a path between two given points. More specifically in this thesis, we
are talking about finding an optimal (or shortest) path in a road network represented by a graph
G = (V, E).
Definition 1.1
A graph G = (V, E) is a pair of a set of vertices V and a set of edges E. An edge e ∈ E is a pair of vertices
(v1, v2) with v1, v2 ∈ V .

The vertices of G represent intersections of the road network, while the edges represent the roads
connecting the intersections. The edges of a graph can either be undirected or directed. If e = (v, u) is

13

undirected, it means that edge can be used along both direction, from u to v and from v to u. In the
directed case, traversal is only possible from v to u. All graphs in this work are directed. The cost
of traveling along such an edge is usually modeled by a cost function c : E→ R+0 . The cost function
assigns each edge some cost, such as seconds to traverse (travel time) or meters (distance). In the
following section, we will use distance as the example representative for any cost type. A path π in a
graph is a sequence of edges e1, e2, . . . , e j such that each two consecutive edges ei = (u, v), ei+1 = (v, w)
share a vertex v between them. One algorithm to find a shortest path, given a graph G a cost function c
(which assigns non-negative costs) and source and destination vertices s and t is Dijkstra’s Algorithm.

1.2.1. Dijkstra’s Algorithm

The main idea of Dijkstra’s algorithm [Dij59] is to explore the graph from s in ascending distance
order until t is reached. One can picture this by an expanding circle centered in s. The vertices
inside the circle have a known shortest path distance. The vertices on the boundary or frontier of
the circle are adjacent to vertices inside the circle but their shortest path distance is not yet known.
Finally, the vertices outside of the circle were not yet observed by the algorithm. To facilitate this,
the algorithm keeps a heap of the current frontier of vertices which were seen but not yet explored.
In every iteration, the vertex with the shortest distance in the frontier is taken from the heap and
all its neighbors inspected. Taking a vertex from the heap is called settling the vertex as its shortest
path distance is now known. Inspecting an (outgoing) edge of a vertex is called relaxing the edge. If
the neighbors can be reached with a better distance than previously known, they are added to or
updated in the heap with this distance. The algorithm computes all shortest path distances from s
in running time O((|E|+ |V |) log |V |) when using a binary heap and O(|E|+ |V | log |V |) when using a
Fibonacci heap [MS08]. It is the fastest-known algorithm for the single source shortest path problem
on directed graph with non-negative costs in terms of the asymptotic worst case running time. A
trivial lower bound for the problem would be the size of the input graph Ω(|E|+ |V |). It is not known
if this lower bound for the problem can be achieved or if Dijkstra’s algorithm has an optimal running
time. Because Dijkstra’s algorithm processes nodes in ascending distance order, thereby implicitly
sorting them, an alternative algorithm to compute shortest paths would need to not process nodes
in this order or have at least Ω(|V | log |V |) running time for the sorting of nodes. In practice, on a
country sized road network a shortest path query takes a few seconds to complete.

An important variation of the algorithm for this work is the bidirectional Dijkstra. Here the graph
is explored both from s and from t. When the first vertex has been settled from both searches, all
vertices on the shortest path have been processed by at least one of the searches. By starting from
both sides, the algorithm has to explore a smaller number of vertices in most queries and in practice
runs in about half the time of a regular Dijkstra.

1.2.2. Contraction Hierarchies

On top of Dijkstra’s Algorithm, speed up techniques have been developed. These techniques usually
improve the shortest path query time by using a data structure that was computed in a preprocessing
phase. One important approach in practice is called Contraction Hierarchies (CH) [GSSV12]. The
high level idea of this approach is to use the inherent hierarchy in road networks. Each vertex in
the graph is assigned a rank signifying its importance. The query is a modified bidirectional Dijkstra
which only considers edges leading to higher ranked vertices. To ensure that queries still yield the

14 1 | Introduction

same shortest paths, shortcut edges are added to the graph. On road networks, this approach typically
yields a query speed up of about 1, 000 compared to a regular Dijkstra.

Preprocessing In the preprocessing phase, the ranks for the vertices are assigned and shortcuts are
added to the graph. The shortcuts are created in a process called node contraction. In this process,
one vertex v gets contracted and assigned a rank. Vertices contracted later have higher rank, i.e.,
they are “more important”. For every pair of neighboring vertices u and w of v a shortcut is created,
if the only shortest path from u to w is of the form (u, v), (v, w). The shortcut from u to w will have
cost equal to the shortest path distance and store a reference to the pair of edges it replaced. An
example of this is shown in Figure 1.1. Afterwards, the contracted vertex and the edges adjacent to it
are removed from the graph for the rest of the preprocessing phase. The order in which vertices are
contracted is important for the efficiency of the final data structure, as it determines the ranks of
the vertices and the amount of created shortcuts. The goal would be to create only a small number
of shortcuts and have vertices that are part of many shortest paths have high rank. Unfortunately,
finding the optimal contraction order is NP-hard [BCK+10]. Hence, different heuristic strategies
have been developed and are used in practice.

u
v

w

x

y1
1

1

1

12

2

Figure 1.1.: Example Node contraction of vertex u. Shortcuts (dashed lines) have to be created for
vertex pairs vw and vx but not for wx because there is a path via y which has the same
distance as the one via u. [GSSV12]

Query The CH-query is a special bidirectional Dijkstra query. Both searches only relax edges that
lead to vertices with higher rank. By construction the vertex v that minimizes ds(v) + dt(v) where ds

is the distance calculated by the CH-query rooted in s and dt respectively for t, is on the shortest
path from s to t. In contrast to the “normal” bidirectional Dijkstra, the CH-query can only stop when
either all reachable nodes are settled or each search x ∈ {s, t} has found some vertex wx such that
dx(wx)> ds(v) + dt(v) where v is the vertex with the shortest combined distance found so far. While
the distances computed via this query are the same as via Dijkstra the actual paths now contain
shortcut edges which need to be resolved. This can be done by recursively unpacking the shortcuts
in the path via the references to the replaced edges until all edges in the path are edges from the
original graph.

Uncontracted Core There are some graphs for which a full contraction is not advantageous. This
usually happens for graph with complicated edge costs, e.g., in time-dependent route planning [Bat14]
or personalized route planning. With such edge costs, the number of shortcut increases tremendously
at some point. When the number of shortcuts gets too large, the additional memory used and
the number of edges needed to be visited per vertex negatively affect performance. Which means
contraction only makes sense up to a certain level. In these cases, leaving a small core of vertices

1.2 | Routing 15

uncontracted is often a performance benefit for query and preprocessing times. To keep the queries
correct, the core vertices are assigned the highest rank in the CH graph and the query will now
consider neighbors with greater or equal rank to the current vertex. The effect of this is, that CH-query
will behave as normal for non-core vertices and like a standard Dijkstra for core vertices.

1.3. Linear Programming

Vanderbei [Van20] describes Linear Programming as an approach to find the optimal solution for a
linear objective function under a set of linear constraints. A linear program (LP) is given as follows:

Maximize cT · x (1.1)
Subject to A · x ≤ b (1.2)

Here Equation (1.1) is the objective function. It consists of the two vectors c, x ∈ Rn for an LP with n
variables. Here, c contains the coefficients of the objective function as given by the instance and x
contains the variables which need to be optimized. In Equation (1.2) m constraints are given via a
matrix A∈ Rm×n, which contains the coefficients of the constraints, and a vector b which contains the
limits of the constraints. So the j-th constraint looks as follows:

n
∑

i=1

ai j · x i ≤ bi

An LP can be visualized as the intersection of the halfspaces defined by its constraints. If the
intersection is non-empty, the intersection of the halfspaces is called feasible region. In such a picture,
the objective function can be shown as a vector pointing into the direction of the optimal solution. If
the optimal solution is bounded and unique, it is the vertex formed by at least n halfspaces which is
the furthest into the direction of the objective function vector.
Figure 1.2 shows an example for this.
The simplex algorithm for solving LPs was first developed by Dantzig [Dan51]. It is an iterative

method that starts at some feasible vertex formed by n constraints and then goes to a neighboring
vertex with a better objective function value until no better vertex can be found and the optimal
solution is reached. This moving to a neighboring vertex is called the pivoting step and multiple
pivoting rules exist. The algorithm is efficient in practice but [KM72] showed that LPs for which the
simplex algorithm with a deterministic pivoting rule takes exponential running time (in the number
of variables and constraints) exist.

Another algorithm to solve LPs is the ellipsoid method [GLS81]. The idea is to start with an ellipse
that is guaranteed to contain the whole feasible region and iteratively shrink the ellipse until the
optimal solution is found or the feasible region is proven empty. To shrink the ellipse a separation
oracle is employed which given some point p returns a constraint of the LP that is not fulfilled by
p which will then be used to shrink the ellipse in “the right direction”. In contrast to the simplex
algorithm, for the ellipsoid method one can prove a polynomial worst case running time. At the same
time, this method performs worse on most instances in practice.
Furthermore, interior-point methods have delivered a different approach to solving LPs. Some of

these methods, notably one presented by Karmarkar [Kar84], not only have a theoretical guarantee
of a polynomial running time, but also perform well in practice. [PW00]

16 1 | Introduction

Figure 1.2.: Visualization of a linear program with 2 variables. On the right side, the objective
function vector c is shown. The feasible region is colored in blue and the vertex that
represents the optimal solution is circled.

1.4. Personalized Route Planning Model

The personalized route planning model is a way to represent different driving behaviors in rout-
ing [FS15]. Instead of minimizing one kind of cost, e.g., travel time, the model considers d cost types.
A cost function c : E→ Rd

+ assigns each edge a vector of costs of length d. The driving behaviors are
modeled via preference vectors α ∈ [0,1]d whose entries sum up to one, i.e.,

∑

αi = 1. The cost for
an edge e under preference α is then defined as c(e,α) :=

∑

i c(e)i ·αi and similarly the cost for a path
π is c(π,α) :=

∑

e∈π c(e,α). To decide the optimal path between two vertices s, t with preference
α one needs to find the path π from s to t which minimizes c(π,α). Clearly, such an optimal path
can be found via a modified Dijkstra’s algorithm, which takes a preference α as additional input and
calculates c(e,α) on the fly. We call a path that is optimal for some α a personalized path. In the
literature, the model is also known as the parametric shortest path problem and usually discussed with
fixed d, see for example [Gus80].

1.4.1. Personalized Contraction Hierarchies

The Contraction Hierarchies technique was adapted to the personalized route planning model
by [FLS17]. The key difference to the single cost case is that it is no longer possible to easily tell if
some path is the optimal path at preprocessing time because it is dependent on the preference used
at query time. Therefore, shortcuts need to be added for any path that is optimal for some α in the
node contraction step. As there exists an infinite amount of preferences, a structured approach is
needed to determine whether a path is a personalized path. We know that for a personalized path π∗

1.4 | Personalized Route Planning Model 17

which is optimal for preference α∗ and is part of the set P of all paths from s to t the following holds:

∀π ∈ P : c(π∗,α∗)≤c(π,α∗) (1.3)

This can be used as a set of constraints for an LP to test whether some path π∗ is a personalized
path. If one defines the α to be the variable vector and adds constraints to make the result a valid
preference as seen in Equations (1.4) and (1.5), this LP yields either an α for which π∗ is optimal or
is infeasible if π∗ is not an optimal path.

∑

i

αi =1 (1.4)

i = 1, . . . , d : αi ≥0 (1.5)

Unfortunately, the path set P might be exponentially large which means creating the whole LP might
be infeasible in practice. Instead of enumerating all paths an incremental approach is possible, when
solving the LP via the ellipsoid method. This method does not need to know all constraints to solve
the LP instead it needs a separation oracle. In this case, the oracle gets as input a certain α and
should output one of two things. Either, a certificate that π∗ is optimal for α or a constraint that
is violated by α. The adapted Dijkstra’s algorithm is a perfect fit for this. A query with the α in
question will return either that π∗ is optimal or another path π′ that has less cost then π∗ for this α.
Hence, c(π∗,α) ≤ c(π′,α) is not fulfilled. In summary, the following procedure efficiently answers
the question “Is π∗ a personalized path?” in the node contraction process.

1. Initialize LP with Equations (1.4) and (1.5).
2. Solve the LP using ellipsoid method. If the LP is infeasible return false. Otherwise let the

solution be α∗.
3. Run Dijkstra with α∗. If the optimal path is π∗ return true. Otherwise, add the constraint

c(π∗,α)≤ c(π′,α) to the LP where π′ is optimal for α∗. Go to 2.

Funke, Laue, and Storandt [FLS17] call this procedure the LP-Oracle. Let P be the set of paths
returned by the separation oracle so far, then the LP looks as follows in every iteration:

Maximize α1

Subject to:
∀π ∈ P : c(π∗,α∗)≤c(π,α∗)

∑

i

αi =1

i = 1, . . . , d : αi ≥0

Note that the objective function was chosen arbitrarily and is not important for the purpose of the
LP-Oracle.

1.5. Outline

In Chapter 2 we show how to use this model to find a diverse set of alternative routes. Furthermore,
we show how to enumerate only those routes that are not “too bad” in important metrics and diversify

18 1 | Introduction

the results even further by inventing new metrics. The next part focuses on explaining existing
trajectories with this model. Chapter 3 presents how to split long trajectories into smaller parts to
identify intermediate destinations. Instead of looking at individual trajectories, Chapter 4 shows how
a set of trajectories can be clustered, such that each cluster contains only trajectories that can be
explained by the same preference. Chapter 5 explores the theoretical underpinnings of the model. It
focuses on finding upper bounds for the number of optimal paths in the model and shows properties
of the preferences used in the model. Finally, Chapter 6 concludes the dissertation and gives some
ideas on possible future work.

1.5 | Outline 19

Part I.

Personalized Paths as alternative Routes

21

Ch
ap

te
r 2

Enumerating personalized Routes
efficiently

2.1. Introduction

This chapter is based on joint work with Stefan Funke and Sabine Storandt. Its contents were
published in the 2019 proceedings of the 21st Workshop on Algorithm Engineering and Experiments
(ALENEX) [BFS19] (up to and including Section 2.5) and the proceedings of the 12th ACM SIGSPATIAL
International Workshop on Computational Transportation Science [BF19] (from Section 2.6 onward).
I contributed to all parts of this chapter.
Route planning in road networks is an intensively studied field. While Dijkstra’s algorithm takes

several seconds to find the shortest route for a distance metric in a country sized network, multiple
speed up techniques have been developed in recent years. These techniques usually employ some
form of preprocessing to build data structures which later enable query times for shortest path queries
of only a few milli- or even microseconds. See [BDG+15] for a comprehensive survey.

With the single weight case being well understood, people have started to consider more complex
route planning tasks, e.g., scenarios where the edge weights are functions dependent on time, several
weight values associated with each edge, or dynamically changing edge weights. One of the more
complex route planning tasks is the computation of not only one optimal route, but a selection of
several, hopefully reasonable, but sufficiently distinct routes. This problem is of practical importance,
since routes that people actually take are often not simply the quickest or shortest routes but take
into account additional aspects like quietness, road surface properties, or scenicness. As most of the
time these criteria are unknown to a route planner, modern route planning systems like Google Maps
always propose several alternative routes for a given query from a source s to a target t, hoping that
one of them is to the user’s liking.
This chapter explores finding alternative routes via a personalized routing model. For a given

source and target node combination s, t, each preference might yield a different optimal path. The
hope is that there are many different optimal routes which also appeal to different users. A user
preferences like “a short travel time is most important, but the gas price should also not be to high”
might e.g., be captured by a preference that values travel time at 70% and gas price at 30%. We

23

evaluate the quantity of routes found in our experiments and do a qualitative examination on queries
of different types.

2.2. Related Work

This section reviews previous works on computing alternative routes. In Sections 2.2.1 to 2.2.3, we
review approaches where the only constraint on the alternative routes created – apart from being
relatively disjoint – is that they must be ’almost’ optimal with respect to the single edge weight
that is considered. Sections 2.2.4 and 2.2.5 presents prior work that uses multiple edge weights.
Finally, Section 2.2.6 contains an approach to measure the quality of alternative routes created by
any approach based on a single edge weight. An overview of the different approaches in regard to
run time and number of found alternative paths can be found in Table 2.1.

2.2.1. k-Shortest Paths

Probably the first approach that comes to mind when thinking about the computation of alternative
routes is the computation of the k shortest paths from s to t. This means calculating the shortest
path, the 2nd shortest path up to the kth-shortest path. Eppstein [Epp94] studied this problem for
digraphs with non-negative edge weights which can contain cycles, self-loops and multi-edges. They
use an implicit representation of the shortest paths to ensure running times of O(|E|+ |V | log |V |+ k)
for finding k-shortest paths.
The implicit path representation uses the fact that every s-t path p can be represented by the

sequence of its edges Sp which are not part of the single-destination shortest path tree rooted in t.
The representation is a heap of paths where each path p has a parent path prefix(p) and an edge e
such that Sp = Sprefix(p) + {e}. The root of the heap is the shortest path with S = ;. Using this heap of
paths, it is possible to provide some properties of each path, e.g., the length, in constant time and
build an explicit representation in time proportional to the number of edges of the path.
Unfortunately, the computation is complex and the resulting paths are typically almost identical,

differing in only few edges.
The approach by [CBGL15] is in fact based on the k-shortest path idea and addresses the “similarity”

downside of the k-shortest path approach. It essentially enumerates shortest paths in increasing
distance and discards paths that are too similar. They also introduce the OnePass algorithm which
checks the similarity of the paths in construction (a subpath of a potential k-shortest path) with paths
already found. Thereby pruning candidates early in the search and improving the running time in
comparison to their baseline.

Yet, it seems to be only viable for very small networks of few thousand nodes, as Figure 3 in their
paper shows running times in the order of tens of seconds for city-sized networks.

2.2.2. Edge Usage Penalty Approach

More successful attempts (in particular w.r.t. to practicality) have been based, e.g., on the penalty
approach. Here, one starts with the optimal shortest path but then additively penalizes its edges
before recomputing another s-t shortest path in the reweighted network. Bader et al. [BDGS11] note
that a fixed penalty per edge, penalizes paths with many edges more than those with few edges.
They instead propose a penalty-factor by which each edge weight should be increased. Furthermore,

24 2 | Enumerating personalized Routes efficiently

they consider the case of alternative paths that only make short detours from the shortest path and
join it again, which is not desirable in most situations. To counter this behavior, the authors utilize a
rejoin-penalty to edges that leave/join the shortest path (or any of the previously computed alternative
paths). The rejoin-penalty should be based on the aforementioned penalty-factor as well as the length
of the shortest s− t-path.
This approach suffers from the need of careful tuning of the reweighting parameters to obtain

good results. The authors stated that penalty factors between 0.3 and 0.4 yielded the best results but
did not report how they obtained these values.

2.2.3. Via Nodes

Another approach is based on so-called via nodes. Here the idea is to compute a selection of s − t
paths that are all of the form ’shortest path from s to some other node v’ followed by a ’shortest path
from v to t ’. Abraham et al. [ADGW13] first define admissibility criteria for an alternative route P
and then develop exact and heuristic algorithms to find via nodes. Lastly, the found nodes are sorted
by an objective function and (approximate) admissibility is verified.

Admissibility Criteria The criteria are limited sharing, local optimality and uniformly bounded
stretch (UBS). Limited sharing restricts the length of P that can be shared with the optimal path Opt.
Local optimality means that subpaths of P below a length T must be optimal paths. UBS limits the
length of each subpath P ′ from s′ to t ′ to be at most an ε-factor longer than the optimal path from s′

to t ′: l(P ′)≤ (1+ ε)l(Opt(s′, t ′)).
Checking the local optimality and UBS naively takes O(|P|2) time which makes the checks infeasible

in practice. The authors therefore provide heuristic checks which only require a single point to point
query each. The local optimality check uses that the property can only be violated around the via
node v. By checking the subpath from x to y for optimality where x and y are the closest nodes
to v with distance T on either side of v, one finds that either P is T -locally optimal or that it is not
2T -locally optimal. The authors call this procedure the T -test and go on to prove that if P has a
stretch of (1+ ε) and passes the T -test for T = β · dist(s, t) (with 0< ε < β < 1) then P is a β

β−ε UBS
path.

The BDV-Algorithm Family The BDV algorithm is based on bidirectional Dijkstra and differs from it
only in the stopping condition. The two searches continue until they find a node that is more than
(1+ ε)l(Opt) from its origin (No admissible path can be longer than that). Then all nodes reached
from both searches can be checked for approximate admissibility and the best alternative path
according to the objective function is returned. The CHV and REV algorithms are created with the
same approach based on contraction hierarchies [GSSV12] and reach for A∗ [GKW09], respectively.
The authors state that these algorithms find too many potential via nodes to be practically useful and
therefore designed “X-” variants. These variants aggressively prune nodes that are not likely to be
good via nodes.

Evaluation All algorithms were evaluated on a continent sized network. On long range queries,
the X-CHV and X-REV have fast running times (3ms and 20ms respectively) and moderate to good
success rates (58% and 91%). The success rates can be improved by pruning less strictly at the cost
of running time. In mid range queries, the success rate drops to about 60% for X-REV.

2.2 | Related Work 25

The approach yields alternative routes that have good qualities with respect to the single metric used
and has fast running times. The main disadvantage are the low success rates for finding alternative
routes for mid and short range queries which are arguably the most important query sizes in continent
sized road networks.

2.2.4. Pareto-optimal Routes

If several criteria are to be considered, one natural idea is to compute the set of all Pareto-optimal
solutions. These are all routes which are non-dominated by other routes, which means the routes are
better or equal than all other routes in at least one criterion. Delling and Wagner [DW09] augmented
the SHARC speed-up technique to work for the multi-criteria case. To achieve this they replace three
basic operations of SHARC with multi-criteria variants: shortest path queries, arc-flags computation
and contraction.

Augmenting SHARC For the shortest path queries, they use a multi-criteria Dijkstra query which
assigns lists of labels to each node instead of a single label.
Arc-flags are used to reduce the number of edges that need to be considered in a shortest path

query. The nodes of the graph are partitioned into cells and each edge contains a flag for each cell.
In the single criteria case, if an edge is contained in a shortest path into a cell, then the flag for that
cell is set to true. For the multi-criteria case, the authors set an arc-flag to true if there exists at least
one Pareto path into the cell which contains the edge.
The contraction step of SHARC works similarly to the node contraction in CH. Nodes and their

edges get temporarily removed and shortcut edges which maintain the shortest path property are
inserted. Note that not all nodes are contracted but a core of uncontracted node is left. To adapt
the step to the multi-criteria setting, the authors allow multi-edges and augment the edge reduction
phase which removes unnecessary shortcuts. The latter is done by running a multi-criteria Dijkstra
from all core nodes u to all their neighbors v. Then all edges from u to v whose labels are dominated
by one of the labels of v can be removed.

For a graph with 77k nodes and two metrics only, they report running times around 200ms. They
stated in the paper explicitly that more than 2 metrics are only considered for very strongly correlated
travel time metrics. For a network of 18Mio nodes they state: “however, it turns out this input is too
big for finding all Pareto routes”.

Heuristically reducing the Number of Paths The authors also present an algorithm based on a
tightened definition of dominance. For this definition an important criterion is determined (travel
time is used in the paper) and paths are only allowed to be an (1+ ε)-factor worse in this criterion.
This new definition allows to reduce the running time as well as the number of returned paths
significantly. Given a small enough ε (≤ 0.05), this approach is also viable on the continent sized
road networks.

Skyline Queries In [KRS10] an approach inspired by skyline queries, which also yields Pareto-
optimal routes, is presented. They show two pruning strategies that allow to recognize dominated
(sub-)paths during exploration to reduce runtime. The first is based on the A∗-search which uses lower
bounds to direct the path search. They use these lower bounds for the path costs to do a dominance
check on sub-paths. Thereby pruning sub-paths which cannot be Pareto-optimal without exploring

26 2 | Enumerating personalized Routes efficiently

the whole path. The second strategy relies on the fact that sub–paths of Pareto-optimal paths are
Pareto-optimal as well. The authors expand their algorithm to keep track of the Pareto-optimal
path costs found for each node and prune sub-paths that are dominated at their current node. The
approach also turned out to be feasible only for very small graphs, e.g., a query time of 40s on a
graph with 6k nodes and three metrics was reported.

2.2.5. Triangle Splitting

In the master’s thesis [Bar18], we developed an algorithm for finding alternative routes based on the
personalized route planning model (see Section 1.4). For the case of three criteria, the preference
space forms a triangle in the plane. The corners of this triangle are the preferences and respective
paths that each only consider one of the criteria. The idea is to split this triangle successively into
smaller triangles and gain new alternative routes with every split. Each split is performed at the
center of some triangle whose coordinates form the preference used for the next alternative path.
Also, with this center point three new triangles are formed which each consist of two corners from the
original triangle and the split point as third corner. See Figure 2.1 for an example. The paths obtained
this way are optimal for their preference and also Pareto-optimal. One can show that a triangle that
is formed by preferences belonging to the same path cannot yield new paths and therefore does not
need to be split further. In general, this algorithm does not converge to a situation where all triangles
are of this form and therefore needs to rely on heuristics like a limited refinement depth to ensure
termination.

Figure 2.1.: Triangle split into three parts [Bar18]

2.2.6. Quality Measures for Alternative Paths

Somewhat orthogonal to these approaches, Bader et al. in [BDGS11] propose to not only consider
the set of alternative routes as routes but also consider their overlay, which they call alternative graph.
An alternative graph H = (V ′, E′) can be built for a graph G = (V, E) and source and target nodes s
and t. Its nodes are a subset of the graph nodes V ′ ⊆ V and it edges are representations of paths in
G. For every edge e = (u, v) ∈ E′, there exists a path p from u to v in G with cost(e) = dist(u, v) and
there exists a simple s-t-path which contains p. Such an H can be created iteratively by starting with
the shortest path and adding new alternative paths if they fulfill some constraints or improve the

2.2 | Related Work 27

Algorithm Graph Size Metrics #Alternative Runtime
#nodes Paths

Via-Nodes [ADGW13] 18M 1 3 4ms
Pareto-SHARC [DW09] 77k 2 100 200ms
Pareto-SHARC (tightened
dominance definition) [DW09] 18M 2 23 400ms
Triangle Splitting [Bar18] 10M 3 20 5s
Skyline-queries [KRS10] 6k 3 250 40s
k-shortest paths [CBGL15] 18k 1 5 120s
Edge Penalty [BDGS11] not reported

Table 2.1.: Running times of Related work implementations. Note that this overview is not a fair
comparison as the experimental settings as well as the concrete problems the algorithms
solve are very different. Some of the approaches require preprocessing of the graph while
others have a low success rate.

quality measures. The authors develop three main quality measures for alternative graphs: total
distance, average distance and number of decision edges.

totalDistance :=
∑

e=(u,v)∈E′

cost(e)
dist(s, u) + cost(e) + dist(v, t)

averageDistance :=

∑

e∈E′ cost(e)
dist(s, t) · totalDistance

decisionEdges :=
∑

v∈V ′\{t}

outdegree(v)− 1

The total distance measures how much the alternative paths are nonoverlapping. It increases up to k
for k disjoint paths. The average distance, on the other hand, describes the average stretch of the
alternative paths. Finally, the number of decision edges measure the complexity of the alternative
graph. The authors suggest to limit the number of decision edges and the average distance and
maximize the objective function totalDistance−α(averageDistance− 1) for some parameter α.

This approach is a general way to represent and measure the quality of a set of alternative routes
mainly in regard to the used distance criterion. It suffers a bit from its definition of admissibility
which depends on the insertion order of the routes.

2.3. Parameter Space Exploration via Partial Convex Hull Construction

This section contains the main contribution of this chapter. It provides an algorithm that efficiently
enumerates optimal paths in the personalized route planning model and gives proofs for correctness
and termination of this algorithm.
For a given source s, target t and a graph G with d weights on every edge, we are interested in

finding a large set {α(1),α(2), . . . ,α(k)} with α(j) ∈ [0,1]d and
∑d

i=1α
(j)
i = 1 for all j = 1, . . . , k, such

that the respective optimal paths π1,π2, . . . ,πk are ’sufficiently’ different. Our approach will be based
on a parameter space exploration by partially computing the convex hull of a set of suitable points in
Rd .

28 2 | Enumerating personalized Routes efficiently

2.3.1. Exhaustive Exploration

Let us first try to explore all paths from s to t that are optimal for some α ignoring overlap between
the paths. In the following, we will explain our approach for the general case of d metrics, but
illustrate our concepts for the case of two metrics. Later on, our approach is evaluated for a concrete
application scenario with three metrics.
Consider d metrics (weights on each edge) of the graph that are to be minimized, e.g., for d = 2

distance and (positive) height difference in case of a simple route planner for bicycles. Every s-t-path π
(also a suboptimal one) has aggregated costs ci(π) for i = 1, . . . , d in each of these metrics. We associate
the point (c1(π), c2(π), . . . , cd(π)) ∈ Rd with the path π. Let P be the set of points corresponding to
all possible s-t-paths; note that P resides in the positive orthant of Rd . Consider Figure 2.2 for the
example of d = 2. Here, every point in R+0 corresponds to the two costs c1 and c2 associated with an
s-t-path. Clearly, some of the paths are not really of interest, e.g., if a path has higher or equal cost
than another path in each dimension (and strictly higher cost in one dimension), the former is said to
be dominated by the latter. The set of non-dominated paths is called the Pareto set. In our concrete
example for d = 2, the path corresponding to point (3.5, 5) under no circumstances is preferrable to
the path (1.5, 4.5). So (3.5,5) is dominated by (1.5, 4.5). In Figure 2.2 all non-dominated paths are
marked in blue. Clearly, a dominated path is not of interest for our purpose, since it can always be
replaced by a path dominating it. Note though that it is not the case that for every non-dominated (or
Pareto-optimal) path there exists an α such that the path is the only optimum under this preference
α, in Figure 2.2, (2.5,4) is such an example. In fact, only the Pareto-optimal paths that are extreme
points of the convex hull of P are unique optima for some α:
Lemma 2.1
An s-t-path π is a unique optimum for some α ∈ Rd

≥0 if and only if it is Pareto-optimal and an extreme
point of the convex hull of P.

Proof If a point p is an extreme point of the convex hull of P, there exists a halfspace aT x ≥ b
which has p on its boundary (aT p = b) and all other points p′ strictly on one side (aT p′ > b for all
p′ ∈ P − {p}). Since p is Pareto-optimal, such a, b must exist with a, b ≥ 0. Normalizing a yields the
desired α. On the other hand, if a path π is an unique optimum for some α, it has to be Pareto-optimal
and for all other paths π′, their weighted cost under this α is higher. This again translates into a
respective half space certifying being an extreme point of the convex hull. □

In Figure 2.2, the paths extreme for the convex hull are additionally circled in red, the respective
convex hull edges are also drawn in red. Note that there are paths which are on the hull boundary but
not extreme points. These points are surrounded by a dashed circle. There is no α for which (6,1.5)
is the only optimal path. Only for α = (1

3 , 2
3) it is optimal together with the neighboring extreme

points. In general, the set of Pareto-optimal paths can have exponential size and has turned out to be
too big to handle in practice even for moderately-sized networks with uncorrelated metrics (see, e.g.,
[DW09]). The set of points/paths on the convex hull is considerably smaller and can be computed
for moderately sized networks. See Chapter 5 for a theoretical analysis of the maximum number of
optimal paths. But more importantly, there are natural ways of partially computing the boundary of
the convex hull with its extreme points that are efficient enough for practical use and that lead to a
good selection of alternative paths.

2.3 | Parameter Space Exploration via Partial Convex Hull Construction 29

1

1
(7, 1)

(1, 6)

(1.5, 4.5)

(2.5, 4)

(3.5, 5)

(3, 3)

(5, 2)

(4.5, 2.5)

(6,1.5)

Figure 2.2.: Space of possible paths in terms of distance and height differences for d = 2.

2.3.1.1. Convex Hull Exploration

Conceptually, the complete exploration of the convex hull of all paths is quite simple. We start by
computing optimal paths for each of the d metrics. This yields d points in Rd spanning a d − 1

dimensional simplex in Rd . We determine the preference α for which these d paths are equally valued,
and then search for the optimum path for preference α. Let us illustrate this for our example in d = 2

in Figure 2.3. The optimum path for the first metric corresponds to point (1,6), the optimum path for
the second metric to (7,1). We then search in direction indicated by the small arrow in Figure 2.3,
top, which corresponds to searching for the optimum path for α= (5/11, 6/11). In this example, this
yields a path with cost/point with coordinates (3,3) (see Figure 2.3, top right); by computing the
convex hull of the now three points, we identify facets and directions in which to search further for
optimum paths. In general, having determined an optimal path for α, we compute the part of the
convex hull of the now d + 1 points in Rd and inspect its facets which are again (d − 1)-dimensional
simplices. When inspecting a facet and searching for an optimal point for the respective α, two
things can happen: (a) the resulting path has the same objective function (for this α) as the d points
spanning the facet; in this case, the facet is indeed part of the relevant part of the final convex hull.
(b) the resulting path has a better objective function value (like in the example above for (3, 3)); in
this case we have to update the convex hull und explore newly created facets. Figure 2.3 depicts two
more steps in the hull exploration where point/path (1.5, 4.5) is found when inspecting the facet
spanned by (1,6) and (3,3), and point/path (5, 2) is found when inspecting the facet spanned by
(3,3) and (7,1). At the very end, the relevant part of the convex hull has 4 facets, none of which
yield new paths when optimizing for the respective α, hence the relevant part of the convex hull is
complete and we have determined all paths that are optimal for some α value.

30 2 | Enumerating personalized Routes efficiently

Note that for large distance queries, the complexity of the relevant part of the convex hull might
still be too high to afford full computation, so we will refine the exploration in the following to be
able to abort computation at any time but still obtain useful results.

Figure 2.3.: Steps of exhaustive hull exploration for d = 2.

2.3.2. Bounded Exploration with Guidance

Depending on the scenario, full exploration of the relevant part of the convex hull might be too
expensive, since the number of searches with some α is essentially the number of d − 1 simplices
therein.

So we will modify our exploration strategy to simply stop after a given number R of exploration steps.
As we are interested in as diverse as possible s-t-paths at the end, we better guide the exploration
and prefer inspecting facets that might lead to considerably different new paths.
To that end, we introduce a prioritization of facets which are candidates for refinement. Let us

define for two paths π1,π2 the overlap coefficient κ(π1,π2) as the number of edges shared by both
paths divided by the smaller edge count of the two paths:

κ(π1,π2) :=
#edges(π1 ∩π2)

min(#edges(π1), #edges(π2))

Depending on our preferences, we fix a parameter K ∈ [0,1] and consider paths π1,π2 sufficiently
different, if κ(π1,π2) ≤ K. For any facet f with corners p1, . . . , pd consider the s-t-paths π1, . . . ,πd

corresponding to the respective corners. We count the number of already computed paths which are
not sufficiently different from π1, . . . ,πd (|{π ∈ P|∃i ∈ {1, . . . , d} : κ(π,πi)≥ K}|). Intuitively, we give
priority to simplices for which this number is small.

2.3 | Parameter Space Exploration via Partial Convex Hull Construction 31

Having introduced the prioritization, we are now ready to state our final algorithm. The algorithm
is called with an initial convex hull H, the maximum number of refinement steps R and a limit for
the overlap coefficient. The initial convex hull is obtained by adding the d paths which belong to
the d preferences that have exactly one non-zero component, as well as the path which is obtained
by setting αi =

1
d . In each round it refines the most promising facets according to their priority,

see Algorithm 2.1 for the pseudo-code. As more than one facet is refined per round, some of the
facets could be destroyed by the insertion of a new path. Therefore we check facets for validity in
line 8.
Algorithm 2.1 BoundedChExploration

Input: Convex Hull H, Refinement Step Limit R, overlap limit K
Output: Path Set P

1: PriorityQueue Q
2: for all Facet f ∈ H do
3: prio←count routes p ∈ P, fp ∈ f with κ(p, fp)> K
4: Q.insert(f , prio)
5: end for
6: while not Q.empt y()∧ R≥ 0 do
7: Facet f ←Q.pop_min()
8: if not H.isValid(f) then
9: continue

10: end if
11: R← R− 1
12: find α which equalizes costs for paths in f
13: p← dijkstra(s, t,α)
14: fp ← a path in f
15: if c(p)Tα≤ c(fp)Tα then
16: H.insert(p)
17: for all Facet f ∈ H.incidentFacets(p) do
18: prio← count routes p ∈ P, fp ∈ f with κ(p, fp)> K
19: Q.insert(f , prio)
20: end for
21: end if
22: end while
23: for all Vertex v ∈ H do
24: P.insert(v.path)
25: end for

2.3.3. Making use of the Parameter Exploration: Path Extraction

Once the parameter space exploration terminates, we have found a set of α values which hopefully
represent the variety of different s − t-paths well. Our goal is to extract a large set from the α
values encountered during the parameter exploration, such that the respective paths are all pairwise
sufficiently different, i.e., have κ(., .)≤ K. We do so by constructing a conflict graph as follows:

• every α value (or the respective optimal path) corresponds to a node
• nodes v and w have an edge between them if and only if for the respective paths πv ,πw we

have κ(πv ,πw)> K

The largest set of sufficiently different paths now corresponds to a maximum independent set in

32 2 | Enumerating personalized Routes efficiently

this conflict graph. For medium sized candidate sets we can employ integer linear programming for
solving this subproblem optimally, for larger sets, a simple greedy approach which repeatedly picks
the node with minimum degree from the conflict graph (removing all neighbors of the picked node)
results in very good results.

2.4. Improving the LP Oracle for Personalized Contraction Hierarchies

The LP oracle, as described in Section 1.4.1, wants to find a preference α such that a path π∗ is
optimal. We insert one constraint for every other optimal path π′ found so far. It will always output
an α for which at least two of its constraints are tight. If the constraint for π′ is tight the costs of π∗
and π′ under α are equal. In the contraction phase of PCH, we want to ascertain that there exists
an α∗ such that π∗ is the only optimal path for α∗. Therefore, we would like the oracle’s output to
be such an α∗. To that end, we introduce a new variable δ which represents the maximum cost
difference c(π′,α)− c(π∗,α) and an objective function which tries to maximize δ.

max δ

c(π∗,α)− c(π′,α) +δ ≤ 0

For our concrete application scenario, where we quite frequently encounter many optimal paths, this
together with a slightly more involved search for dominating paths, allowed us to reduce the number
of created shortcuts and the preprocessing time and to increase the speed-up by a factor of about
two compared to the implementation in [FLS17].

2.5. Experimental Results for Route Enumeration

Our implementations are all in C++ using g++ (version 7.3.0). As LP solver for the PCH as well as for
the independent set computation via ILP we used GLPK in version 4.65-1. We used the CGAL package
for arbitrary dimensional triangulations to compute the convex hulls in version 4.11-2 [DHJ17;
The17]. The code was executed on an intel i7-3770 running Ubuntu Linux 18.04 with 32GB of
RAM. Our experiments are based on data from the OpenStreetMap project [18]. We have extracted
a road network of the German state of Baden-Württemberg which contains all roads, paths, and
tracks passable by a bicycle. This results in a graph with 9,711,550 nodes and 20,192,264 edges,
see Figure 2.4. Note that this graph contains almost 3 times as many nodes and edges as the respective
network of roads passable by car. Baden-Württemberg is very suitable as a test case for a bicycle route
planner due to its heterogeneous landscape with mountain ranges, river valleys and flat planes.

2.5.1. Edge Weight Generation

The length of the edges is calculated by using the haversine formula on the node coordinates
and rounded to the next meter. The highway and bicycle tags (or respective attributes) in the
OpenStreetMap data are used to determine the unsuitability of the edges. Edges with an explicit
bicycle tag having a value other than “no”, do only incur half the usual unsuitability cost. The
unsuitability cost of other edges is determined by the value of their highway tag which represents the
road type of the edge; larger roads have bigger unsuitability costs. Each highway tag is assigned a

2.5 | Experimental Results for Route Enumeration 33

Figure 2.4.: Rendering of the considered network (9.7 million nodes, 20.2 million edges) of the
German state of Baden-Württemberg (around 35,000 square kilometers).

factor which is then multiplied with the length of the road. This way of computing the costs takes
into consideration that staying on a large road with the bicycle for a long distance is worse than only
following it for a few meters. The complete mapping can be found in Table 2.2. The data from the
Shuttle Radar Topography Mission (SRTM) is used to assign a height to each node and subsequently
calculate the positive height difference traveled by traversing each edge [FRC+07], that is, only
uphill edges bear some non-zero value.

2.5.2. Personalized Contraction Hierarchy Construction

We computed a PCH graph following the description in Section 1.4.1 with the improvements to the
LP oracle stated in Section 2.4. However, we did not contract all nodes but left a so-called core of

34 2 | Enumerating personalized Routes efficiently

Table 2.2.: Unsuitability costs assigned to different road types
Highway Tag Unsuitability Cost Factor
cycleway 0.5
footway 0.75
path 0.75
pedestrian 0.75
platform 0.75
track 0.75
service 0.75
living_street 0.75
traffic_island 1.0
residential 1.0
unclassified 1.0
bridleway 1.25
road 1.25
tertiary_link 1.25
tertiary 1.25
secondary_link 1.5
secondary 1.5
primary_link 1.75
primary 1.75
other tags 2

uncontracted nodes. We only contracted 99.9% of all nodes and hence left a core of roughly 9,000
nodes. The contraction process took about four hours and resulted in a CH graph with 53,766,688
edges. This is an increase in the number of edges by almost a factor of about 2,7 compared to the
original graph.

Averaged over 1,000 queries with a randomly selected source and target node as well as a random
choice of α, the running time for a conventional Dijkstra is about 3.37 seconds in the original graph.
Using Dijkstra on the CH-graph took 0.09 seconds on average, resulting in a speed-up of 36. The
number of poll operations (number of node extractions from the priority queue used in Dijkstra’s
algorithm) decreased on average from 4,826,370 to 45,091 which is a reduction by factor 107. These
numbers refer to our implementation of [FLS17] with the modifications mentioned in Section 2.4.
Without these modifications, the speed-up was around 18 and preprocessing times as well as number
of shortcuts was slightly higher.

Note that for road networks tested in [FLS17], the number of edges in the CH graph for personalized
route planning with d = 3 metrics was only about twice the number of original edges and the speed-up
for query answering was two orders of magnitude. There are several reasons why the performance is
worse in our case: (1) Our input network is denser than a typical road network. In fact, we use a
road network augmented with all segments that are suitable for cycling, which are not necessarily
passable by car, hence we consider significantly more edges. (2) Our chosen metrics lead to a large
diversification of optimal paths for different choices of α. This is a desired property for our application
of computing useful sets of alternative routes. But for the CH computation, a large diversity of
shortest paths also means that many shortcuts are necessary to represent them. In [FLS17], the three
tested metrics were distance, travel time (for cars) and positive height difference. As distance and
travel time are often closely correlated, these metrics usually induce rather similar shortest paths. In
our scenario, where we replace travel time with unsuitability, the three metrics usually lead to very

2.5 | Experimental Results for Route Enumeration 35

different optimal path structures when considered each on their own. This explains the higher factor
of inserted shortcut edges in our CH graph.

Next, we will discuss the experimental results for our complete pipeline for alternative cycle route
computation.

2.5.3. Parameter Space Exploration and Route Recommendations

Let us now evaluate the performance of the actual parameter space exploration as well as the route
recommendation. We will investigate three different scenarios in which we expect to search for route
alternatives. For a typical commuter ride, we consider random source-target pairs that are within
10km beeline distance from the city center of a large metropolitan area (in our case Stuttgart) and
are between 2km and 20 km apart from each other. But we also generate routes that mimic a common
day trip by bicycle, by randomly picking source and target that are between 40km and 80km apart
from each other. At last, we consider routes which are typically taken over several days by randomly
picking source and target that are at least 120km apart from each other. We call these vacation routes.

2.5.3.1. Complete Enumeration

For the commuter and day trip routes a complete enumeration of all optimal routes for all possible
values of α is feasible. For this experiment we modified the Algorithm 2.1 to omit the calculation
of priorities as we will visit every facet anyway. We measured the number of routes as well as the
running time. The result is displayed in Figure 2.5. For the rather short commuter routes, the number
of routes on the relevant part of the convex hull ranges from four to 1,027. To compute these path
sets the algorithm ran 8ms and 59.8s respectively. The average run for commuter routes was 10.1s
long and yielded 255.2 routes. In comparison, the day trip route count ranges from 113 to 3,279 and
took between 4.5s and 14.8min. On average exploring all paths for a day trip route took 3 minutes
and resulted in 1,052 routes. The smoothed lines for the two data sets show that our method takes
time roughly proportional to the number of routes it needs to enumerate. The different slopes of the
lines are explained by the different run times per Dijkstra in the data sets.

From these numbers it becomes clear that in an interactive scenario a full exploration only makes
sense for routes of moderate length. So in the following, our experiments will focus on bounded but
guided exploration of the relevant part of the convex hull.

2.5.3.2. Bounded Exploration and Route Recommendation

For the bounded exploration, we consider the algorithm parameter maximum number of refinement
steps R as well as the maximum overlap coefficient K from Section 2.3. We measure the time taken
by the algorithm as well as the number of routes that are obtained. We do not report the time to
compute the convex hull separately because it is dominated by the shortest path queries and only
operates on a small point set.
The result of the parameter space exploration is a set of α values and respective optimal paths.

Yet, this set is typically too large to be presented at once to a user, and many of the paths in this
set exhibit a considerable pairwise overlap. So as described in Section 2.3.3, we extract a subset
of paths, each pair of which does not exhibit an overlap coefficient of more than K. We compute
the largest such set via an integer linear programming formulation and employing the ILP solver of

36 2 | Enumerating personalized Routes efficiently

0

250

500

750

0 1000 2000 3000

#Routes

T
im

e
in

 s
ec

on
ds

Type

Coummuter Route

Day Trip Route

Figure 2.5.: Scatter plot showing the time needed to enumerate all optimal routes depending on the
number of routes for commuter and day trip routes.

glpk [And12]. Additionally, we employ the greedy independent set algorithm. The running time of
the greedy algorithm was not included into the tables below, as it always finished in less than 1ms.
In Table 2.3 we see the results for the commuter routes. For example, the line with R = 12,

K = 0.5 states that with 12 refinement steps, our parameter space exploration takes around 108ms
and produces 12 different α values and respective paths on average. Determining a subset of paths
which have pairwise overlap coefficient of less than 0.5 via our ILP formulation takes fewer than a
millisecond resulting in 5.3 route alternatives on average, so considerably more than just the three
paths one would get by simply optimizing for each of the three weights separately (often these paths
also partly coincide, in particular for short distance queries).

In Table 2.4 we see the results for the day trip routes. Running times for parameter space exploration
are higher due to the more expensive CH-Dijkstra computations. We get a considerable increase in
the number of paths after pruning, e.g., for R = 48, K = 0.8 we obtain on average 22.8 routes vs.
16.7 in the commuter scenario. This comes as no surprise since the longer the distance between
source and target, the more options there are.
Finally, in Table 2.5 we see the results for the holiday routes. Running times have increased even

further as have the number of routes after pruning.
Common to all three scenarios, the number of (unpruned) values for α (or the respective paths) is

directly related to the number of allowed refinement steps. If many refinement steps are allowed, the
running time naturally increases due to the increased number of shortest path computations. Apart
from the largest value for the number of allowed refinement steps, the time to prune the α values
via ILP to obtain diverse paths with not too much overlap is negligible and most of the time below
one millisecond. Large values of R also increase the time for the parameter space exploration to a
degree that is not acceptable for interactive use, in particular for the non-commuter-route scenarios.
In the 9,000 runs of this experiment, there were 12 instances for which the ILP run time exceeded

2.5 | Experimental Results for Route Enumeration 37

Table 2.3.: Commuter Route (2km-20km): Statistics for parameter space exploration and route rec-
ommendation; averages over 3,750 runs.

R K explore result ILP ILP Greedy
time size time size size
(ms) (ms)

3 0.5 33.1 4 0 3.4 3.4
0.8 33.2 4 0 3.8 3.8
0.9 33.2 4 0 3.8 3.8

6 0.5 51.0 6 0 4.3 4.3
0.8 51.0 6 0 5.3 5.3
0.9 51.1 6 0 5.5 5.5

12 0.5 108.0 12 0 5.3 5.3
0.8 108.1 12 0 8.9 8.9
0.9 108.5 12 0 9.9 9.9

24 0.5 229.1 23.8 2 6.2 6.1
0.8 228.8 23.8 0.1 12.8 12.8
0.9 231.4 23.8 0 16.6 16.6

48 0.5 505.4 47.4 175 6.9 6.7
0.8 507.4 47.4 10.2 16.7 16.6
0.9 503.5 47.4 0.8 24.6 24.6

Table 2.4.: Day Trip Route (40km-80km): Statistics for parameter space exploration and route recom-
mendation; averages over 3,750 runs.

R K explore result ILP ILP Greedy
time size time size size
(ms) (ms)

3 0.5 179.2 4 0 3.6 3.6
0.8 179.6 4 0 3.9 3.9
0.9 180.0 4 0 4.0 4.0

6 0.5 273.5 6 0 4.7 4.7
0.8 273.5 6 0 5.5 5.5
0.9 273.7 6 0 5.7 5.7

12 0.5 567.8 12 0.1 6.6 6.5
0.8 574.4 12 0.1 10.1 10.1
0.9 569.1 12 0 11.0 11.0

24 0.5 1192.0 24 2.1 7.9 7.8
0.8 1188.5 24 0.3 16.2 16.2
0.9 1190.4 24 0.2 19.8 19.8

48 0.5 2590.1 48 311.5 9.2 8.9
0.8 2579.3 48 10.4 22.8 22.7
0.9 2595.8 48 1.0 32.7 32.6

38 2 | Enumerating personalized Routes efficiently

Table 2.5.: Vacation Route (> 120km): Statistics for parameter space exploration and route recom-
mendation; averages over 1,500 runs.

R K explore result ILP ILP Greedy
time size time size size
(ms) (ms)

3 0.5 507.7 4 0 3.7 3.7
0.8 508.9 4 0 4.0 4.0
0.9 508.8 4 0 4.0 4.0

6 0.5 777.8 6 0 5.0 5.0
0.8 776.9 6 0 5.7 5.7
0.9 776.0 6 0 5.8 5.8

12 0.5 1599.0 12 0.2 7.9 7.9
0.8 1604.2 12 0.1 10.6 10.6
0.9 1602.3 12 0.1 11.2 11.2

24 0.5 3365.4 24 1.1 10.3 10.2
0.8 3344.8 24 0.1 19.0 19.0
0.9 3363.1 24 0.3 21.1 21.1

48 0.5 7321.2 48 263.0 12.4 12.0
0.8 7315.6 48 4.1 29.9 29.8
0.9 7297.3 48 2.5 38.3 38.3

the exploration time. All of these were started with the parameter combination R= 48, K = 0.5. This
suggest that for larger R and lower K values the greedy algorithm might be a better fit for interactive
use. Therefore, we will compare the results of the greedy algorithm to the ILP variant in the next
section.

2.5.3.3. Comparison of Independent Set Algorithms

For most parameter combinations, the average result of the ILP and the greedy algorithm are identical.
The biggest difference can be found in Table 2.5 for R= 48, K = 0.5 where the average differs by 0.4.
Figure 2.6 illustrates the data in more detail. It contains a scatter plot showing the independent set
size returned by the ILP on the x-axis and the difference between the ILP set size and the greedy set
size on the y-axis. Combinations that occur more often are displayed as bigger dots. The blue line is
a smoothed trend line. The graph shows that the greedy algorithm produced sets that contained up
to three routes less than the ILP on two occasions. Which in one case meant a reduction in set size of
more than 35% from eight to five. However, in 97% of the cases the results were identical, which is
emphasized by the trend line.
Therefore, the greedy algorithm is a good fit for interactive use. It is always on par or faster than

the ILP solver and produces equal results most of the time.

2.5.3.4. Comparison to naive Parameter Space Exploration

We now compare the results of our approach to a random and a naive exploration of the parameter
space for the same s–t combinations as before. For the random exploration, we ran R Dijkstras with
random configurations to get roughly the same number of routes. The naive exploration was conducted
by fixing an ε < 1 as discretization parameter. Then all choices of αi = k · ε with k = 0, 1,2, . . . , ⌊ 1

ε ⌋
and i = 1, 2 were explored. α3 was uniquely determined by α1 and α2. We chose epsilon values to

2.5 | Experimental Results for Route Enumeration 39

0

1

2

3

0 10 20 30 40

#Routes recommended by ILP

D
iff

er
en

ce
 b

et
w

ee
n

IL
P

 a
nd

 G
re

ed
y

n

500

1000

1500

Figure 2.6.: Scatter plot showing the difference in ILP and Greedy result set size over the ILP set size.

reflect the number of Dijkstra runs our approach used for every R. Afterwards, we applied the same
route recommendation procedure described in Section 2.3.3 and compared the results. Figure 2.7
displays a smoothed line of the results with confidence areas in grey and one graph per K value. In
every case the number of selected routes is significantly higher for our approach.

2.5.4. Exemplary Queries

Let us illustrate the produced results for two exemplary queries.

Commuter Route Here we consider a route from the village of Scharnhausen (305m above sea
level) to Vaihingen (438m) in the Stuttgart metropolitan area, see Figure 2.8. Essentially there are
three different route categories. The first one (top, in red) is via the Degerloch and the Stuttgart TV
tower (483m); this is characterized by a steady climb to the highest point followed by a mild descent;
this route is found when optimizing for road unsuitability only. A considerable part of this path uses
tracks blocked for cars and hence are favoured for bicycle routes. The second type of route follows
right of the small river Körsch via Hohenheim. It never reaches an altitude comparable to the red
route. Our algorithm finds several routes in that category (in varying shades of blue and purple)
when favouring distance more than the other two criteria. Lastly the third category of routes is to the
left of the river Körsch mostly staying on the Fildern plateau; these three paths were found by our
algorithm when avoiding climbs. Our algorithm performed 15 refinements; from the resulting paths,
the integer linear program selected 14 paths which have pairwise overlap coefficients of at most
42%. The whole computation took about 200ms, the only parameters provided were 15 (number of
refinements) and 42% (degree of disjointness of the recommended paths).

40 2 | Enumerating personalized Routes efficiently

0.5 0.8 0.9

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

10

20

30

R: #Refinements

#R
ec

om
m

en
de

d
R

ou
te

s

Method

CH Exploration

Naive Exploration

Random Exploration

Figure 2.7.: Comparison of random sampling and naive exploration with our approach for different
R and K values.

Vacation Route For this scenario we consider a tour across the state of Baden-Württemberg from
the city of Ulm near the border to Bavaria in the east to the city of Offenburg at the French border
in the west, see Figure 2.9. The direct routes with small distance values lead directly through the
mountain range of the Schwäbische Alb and the Black Forest. The routes with small positive height
difference try to minimize the intersection with the Schwäbische Alb and avoid the Black forest by
passing north of it via Stuttgart and Karlsruhe and then going south in the valley of the river Rhein.
The southernmost route (in red) is optimal for road unsuitability, ignoring the other metrics. The
computation took less than three seconds with parameter choices R= 15 and K = 0.46.

2.5 | Experimental Results for Route Enumeration 41

Figure 2.8.: Urban Commute Routes in the Stuttgart Metropolitan area from Scharnhausen to Vaihin-
gen.

Figure 2.9.: Vacation routes across the state of Baden-Württemberg from Ulm to Offenburg.

Figure 2.10.: Example for large set of alternative routes all within 30 % of the shortest route.

42 2 | Enumerating personalized Routes efficiently

2.6. Restricting Enumeration and Metric Invention for Diversification

Inspired by [DDP19] from the public transit routing space, we show how to compute a large set of
reasonable routes. In this work, the authors suggested that not any Pareto-optimal journey is desirable
for users and focused on those journeys which are good in the travel time and number of trips metrics.
The goal is that the set of routes should be diverse but at the same time, all routes inside the set
should not be too far from the selfish optimum of reducing travel time. The former part of the goal
should enable to distribute traffic in a fashion that reduces congestion. The latter part ensures that
each individual vehicle is not “punished” too much when following one of the routes in the set. Our
approach is based on restricted enumeration and metric invention.

2.6.1. Restricted Enumeration of Personalized Routes

Depending on the metrics used, the enumeration algorithm described in Section 2.3.1 often yields
hundreds of routes for queries in large road networks with three dimensions or more. Furthermore, it
opens up the possibility for using less conventional metrics like the number of traffic lights or left turns
on the path. On their own, these metrics would be of limited use. While these new metrics lead to
good routes that would previously not be found, the algorithm also finds all the routes which mainly
focus on these metrics. This in turn might lead to rather strange routes that increase travel time or
distance too much. This section explores how to prevent computing such “bad” routes. Therefore,
only the reasonable routes remain in the resulting set.

2.6.1.1. Definitions

We formalize the notion of trade offs that are undesirable for a user by defining certain metrics as
important. The slack for an important metric defines how much a route may exceed the cost of the
cheapest route in that metric. This maximum excess may be specified as absolute or relative value.
Consider an example with d = 2 where the metrics are distance and travel time. Let there be

four personalized routes between some s and t with costs (10km, 30min), (13km, 25min), (20km,
15min), (25km, 10min). If the user considers the distance of the trip important and assigns it a
slack of h1 = 1.5 then only routes with distance costs ≤ 10km ∗ 1.5 = 15km conform to the users
preferences. In this example, the routes with cost (10km, 30min) and (13km, 25min) are interesting
to the user. We call these admissible routes. The Restricted Personalized Routes Problem is now defined
as follows:
Given a street network G(V, E), with a d-dimensional non-negative cost vector c(e) ∈ Rd for

each edge e ∈ E; a query consists of source and target s, t ∈ V and a set of important metrics
M = {m1, . . . , m j} and their slacks H = {hm1

, . . . , hm j
} which represent how much of a detour is

acceptable to the user. The goal is to compute all routes π ∈ R from s to t in G which minimize
∑

e∈πα
T c(e) for some α and fulfill ∀mi ∈ M : copt,mi

∗ hmi
≥ c(π)mi

. Where copt,mi
is the minimum cost

in metric mi over all routes in R.

2.6.1.2. Restricting Enumeration

The performance goal for the modification of the algorithm is to prevent Dijkstra runs that yield
inadmissible routes as much as possible. Given only the input preference α, it is not possible to predict

2.6 | Restricting Enumeration and Metric Invention for Diversification 43

the admissibility of the route. Even an α which assigns a factor of zero to all important metrics might
lead to an admissible route.

By the properties of personalized routes, we know that in every iteration of the algorithm all routes
in R are extreme points of the partial convex hull as well as the final convex hull in cost space. With
this information, we can compute a lower bound on the costs of the cheapest route that may be found
by refining a facet f . Figure 2.11 depicts an example convex hull and the areas and points used by
the algorithm to determine if a facet needs to be refined. The area A which contains all personalized
routes that may be obtained by refining f , is defined by the intersection of the hyperplanes induced
by the facets adjacent to f . To determine if A intersects with the area B that contains all admissible
routes, we construct a lower bound coordinate plow. It consists of the cheapest costs of the routes
defining f :

plow,i =min pi : ∀p ∈ f

Clearly, plow dominates all p ∈ f . Therefore, if plow ̸∈ B, no route that can be obtained from f can be
admissible. The slack condition formulated in the previous section is used to determine if plow lies in
B. In this example the point plow (black dot) lies inside the area B (beneath the black, dashed line)
and the facet needs to be refined.

distance

time

(2, 7)

(10, 2)
(7, 3)

(1,9)

(3.4, 4.2)
plow = (2, 3)

time slack

B
A

Figure 2.11.: Partial convex hull in cost space; Area A contains all potential routes which can be
found by refining the central facet (red, dashed lines); Area B contains all admissible
routes (beneath slack constraint); Lower bound plow is used for determining if a facet
may not yield admissible routes (black dot).

2.6.2. Metric Invention

An important factor for finding a large and diverse set of alternative routes with the above approach
are the underlying metrics used in the graph. If the used metrics are very similar e.g., travel time for
cars and trucks, which only differ on roads with high speed limit, only a small number of alternative
routes can be found. Data for other natural metrics than distance and travel time are not always
available in high quality. With the restriction on natural and important metrics in place, ‘invented’
metrics might be sufficient to diversify the result without producing bad routes. In this section, we
describe two metrics we ‘invented’.

44 2 | Enumerating personalized Routes efficiently

2.6.2.1. Random Weights

An obvious way to avoid correlation with any given metric is to use random values from a uniform
distribution. For this metric, we assign a cost value between 1 and 20 to every edge.

2.6.2.2. Chessboard Metric

For our second ‘invented’ metric, we overlay our graph with a rectangular grid. We consider the cells
in the grid colored as if they were a chessboard. See Figure 2.12 for an illustration. For each edge
that starts inside a white cell we assign a “high” cost of 20. Edges that start in black cells are assigned
a “low” cost of 1. Assigning the costs like this should have little to no effects while moving inside a
cell, as uniform edge costs are similar to the distance metric calculated from OpenStreetMap (OSM)
data. On the other hand, traveling between different cells induces cost depending on the starting cell
and the moving direction.

Figure 2.12.: Visualization of the chessboard metric grid overlaying a road network.

2.7. Experimental Results for constrained Enumeration and Metric
Invention

Our implementations are all in C++ and were compiled using clang++ (version 7.0.0). We used
the CGAL package for arbitrary dimensional triangulations to compute the convex hulls in version
4.11-2 [DHJ17; The17]. For solving of linear equations the version 3.3.4 of the Eigen3 library was
used [GJ+10]. The code was executed on an AMD Ryzen Threadripper 1950X 16-Core Processor
with 32 threads running Ubuntu Linux 18.04 with 128GB of RAM. In contrast to the description
in Section 2.6.1.2, the facet refinement is executed in parallel in our implementation. Our experiments

2.7 | Experimental Results for constrained Enumeration and Metric Invention 45

are based on data from the OSM project [18] and SRTM [FRC+07]. We have extracted the road
network of Germany as a graph with 26,084,719 nodes and 54,666,385 edges.

2.7.1. Used Metrics

For the experiments, we used five types of metrics. We view distance and travel time for cars as
essential for routing car traffic and combined these two metrics with each one of the other metrics.

Distance The length of the edges is calculated by using the haversine formula on the node coordi-
nates.

Travel Time for Cars and Trucks The speed limit per edge is determined by the OSM tag maxspeed
or inferred by the highway tag. If the speed limit exceeds 120km/h for cars (80km/h for trucks),
we cap the speed limit. The result is used for the travel time calculation together with the distance
metric.

Height Ascent The data from SRTM is used to assign a height to each node and subsequently
calculate the positive height difference traveled by traversing each edge, that is, only uphill edges
bear some non-zero value. While height ascent may not be a very important criterion for car routing
today, it is relevant for electric vehicles, which may charge their batteries when driving downwards.

Random Weights As described in Section 2.6.2.1.

Chessboard The chessboard metric from Section 2.6.2.2 was used with a 20×20 and a 200×200
grid.

2.7.2. Personalized Contraction Hierarchy Preprocessing

To improve Dijkstra query times we applied the PCH scheme described in [FLS17] and refined in
Section 2.4. For every metric combination, the graph was contracted to 99.9% leaving an uncontracted
core of about 24,500 nodes. In Table 2.6 the contraction times and speed-up for every metric
combination is listed. The speed-up and preprocessing time are both linked to the “similarity” of
the used metrics. The higher the similarity the faster the preprocessing can be done and the higher
the speed-up will be. The speed-up is determined by running 200 random Dijkstra queries with and
without the additional shortcuts in the graph. Processing time ranges from 13min to 146min while
the speed-up goes from 93 to 245.

2.7.3. Experiment Design

We evaluate our implementation by using 100 randomly chosen s-t pairs with a distance of at least
100km. For each of these pairs, we compute all personalized routes, as well as the restricted route set
for a slack of 1.1, 1.15 and 1.2 for distance and car travel time separately. We measure the execution
time, the size of the route set and the average load per edge defined as l(e) = #routes that contain e

#routes .

46 2 | Enumerating personalized Routes efficiently

Table 2.6.: Preprocessing time and average speed-up for Dijkstra queries for each of the metric
combinations.

Additional Metric Preprocessing Speed-Up
- 14 min 245
Truck Travel Time 13 min 227
Height 29 min 121
Chess 20×20 146 min 110
Chess 200×200 61 min 93
Random 59 min 96

2.7.4. Results

Table 2.7 contains the average measurements for the distance restricted queries grouped by the
additional metric and used slack value. The speed-up and the share of admissible routes are measured
in comparison to a full enumeration of all personalized routes in the same query, i.e., for a given
st-pair we perform both a full and a restricted enumeration and compare the query times and the
result sets to obtain these values.

Speed-up: Full Query Time
Restricted Query Time

Share of admissible routes: |Full Query result set|
|Restricted Query Result set|

When no additional metric is used, the queries returned 28 or 29 routes on average and took about
0.3 seconds. Most of the personalized routes (≥ 97%) for this metric combination did not exceed even
the smallest slack condition used in the experiments. Therefore, there is no speed-up in comparison
to the full enumeration with these metrics. The average edge load falls in the range 43% to 45%.

Adding the truck travel time metric more than doubles the output of the algorithm into the range
62 to 63, but at the same time nearly quadruples the running time to 1.19s. The number of excluded
routes and the speed-up stay negligible with this addition.

The two chessboard metrics increase the number of personalized routes significantly. Depending on
the used slack, the output set grew up to 362 routes for large cells (20×20) and 1062 for small cells
(200×200). The running time rises respectively up to levels of ten to sixteen seconds (20×20) and
48s to 51s (200×200). Note that the portion of admissible routes sank for the large cell Chessboard
to ≈ 25% for a slack of 1.1 leading to a speed-up of five compared to a full enumeration. On the
other hand, the small cell variant leads to a considerably smaller average edge load of ≈ 31% or less.
In comparison to the small cell chessboard metrics, using random edge weights and a distance

restriction leads to results that are relatively similar but a little lower in #routes and time but higher
in edge load.

The largest results are achieved by using the height ascent metric. It produced up to 1416 routes
on average and most of the time had less running time than the chessboard metric. It also produced
the smallest edge load of all metrics (≈ 22%-26%)
The second set of experiments which use a slack for the travel time are summarized in Table 2.8.

For the German road network, travel time seems to be a more limiting restriction. For all metrics the
share of admissible routes decreased and a speed-up compared to full enumeration was achieved. The
flip side of this is that the result size is reduced substantially ranging from approximately ten to 685.

2.7 | Experimental Results for constrained Enumeration and Metric Invention 47

The best average load for the travel time restricted queries was achieved for the 20×20 chessboard
metric with a slack of 1.2. This setting produced about 314 routes on average and each edge is only
used by approximately 30% of these. The greatest speed-up of ≈ 13.6 was accomplished by using a
slack of 1.1 with the height ascent metric. Which is directly related to the small share of admissible
routes of ≈ 11.3%

Table 2.7.: Average results of the distance restricted queries
Distance #Routes Time (s) Speed-Up Admissible Load (%)

Added Metric Slack Routes (%)
— 1.1 28.05 0.36 1.00 97.03 45.09

1.15 28.78 0.37 1.00 99.34 43.38
1.2 28.86 0.36 1.00 99.66 43.06

Travel Time for Truck 1.1 61.93 1.19 1.04 94.65 40.94
1.15 63.14 1.16 1.00 97.20 39.81
1.2 63.69 1.19 1.00 98.77 39.21

Chessboard 20×20 1.1 220.58 10.36 5.13 25.19 50.87
1.15 293.56 13.54 3.74 32.70 44.77
1.2 362.78 16.41 3.00 38.95 41.20

Chessboard 200×200 1.1 976.46 48.21 1.01 91.42 31.02
1.15 1040.43 51.09 1.00 97.13 28.63
1.2 1062.17 51.84 1.00 98.99 27.75

Random 1.1 943.93 45.82 1.02 90.26 31.80
1.15 1010.74 49.01 1.00 96.21 29.23
1.2 1029.49 49.76 1.00 97.94 28.15

Height Ascent 1.1 1111.39 41.59 1.56 70.65 26.32
1.15 1308.09 48.96 1.23 82.56 23.69
1.2 1416.61 52.93 1.14 89.08 22.66

2.7.5. Load Distribution

While the addition of the “invented” metrics effectively reduced the average load per edge, it is unclear
whether this is sufficient to reduce congestion. If there are still few edges that are part of most routes
these might easily become congested. For evaluating the potential of reducing such bottleneck edges
in the road network by using alternative routes, we examine the distribution of routes onto edges via
histograms. Figure 2.13 shows the histograms for the query shown in Figure 2.10. On the x-axis,
the number of routes that contain an individual edge are categorized into bins. The y-axis shows
how many edges fall into each bin. Edges that do not belong to any route are excluded. Figure 2.13
contains one chart for the case where no metrics were added as well as one for truck travel time,
the chessboard metric (200× 200) and the height ascent metric. The different configurations led to
12 (No additional metrics), 19 (Truck Travel Time), 283 (Chessboard 200× 200) and 537 (Height
Ascent) routes. When only distance and car travel time are used, most edges belong to seven of the
twelve routes and over 100 edges are used by eleven routes or more. By adding the Truck Travel Time,
the distribution shifts towards lower numbers. Especially, no edge is present in all routes anymore.
Also, most edges are only shared by four or five routes.

As the number of routes increases immensely, the histograms get less detailed for the other two

48 2 | Enumerating personalized Routes efficiently

Table 2.8.: Average results of the time restricted queries
Time #Routes Time (s) Speed-Up Admissible Load (%)

Added Metric Slack Routes (%)
— 1.1 10.54 0.08 1.32 39.94 62.40

1.15 13.83 0.10 1.23 51.11 56.18
1.2 16.94 0.14 1.11 61.51 50.93

Travel Time for Truck 1.1 30.21 0.59 1.60 60.88 58.44
1.15 41.18 0.76 1.26 76.12 53.69
1.2 48.22 0.92 1.17 82.35 50.08

Chessboard 20×20 1.1 102.05 4.86 10.74 15.35 42.16
1.15 188.98 8.61 5.85 25.23 35.00
1.2 314.36 14.11 3.67 37.47 30.02

Chessboard 200×200 1.1 352.44 19.07 2.85 37.76 42.17
1.15 535.69 27.90 2.00 54.22 36.03
1.2 684.72 35.06 1.54 66.79 32.55

Random 1.1 333.41 18.01 2.92 37.79 42.34
1.15 505.22 26.39 2.04 52.95 36.39
1.2 652.56 33.20 1.58 65.41 32.41

Height Ascent 1.1 121.32 5.01 13.56 11.27 44.13
1.15 211.52 8.13 8.91 19.04 37.61
1.2 337.68 12.94 5.68 27.31 33.14

Figure 2.13.: Histograms showing the distribution of routes onto edges for different added metrics
for the query of Figure 2.10.

2.7 | Experimental Results for constrained Enumeration and Metric Invention 49

metrics. Both metrics have in common that most edges fall into the first bin of the histogram, which
includes more routes than were found in the first two metrics. For the chessboard metric, the first
bin contains edges that are shared by up to 29 routes while for the height ascent metric it contains
edges contained by up to 54 routes. There is a significant number of edges that are included by 115
to 171 routes of the chess board metrics which means half the routes use these nearly 4,700 edges.
Furthermore, eleven edges are used by all routes. The Height Ascent metric does not have edges that
are used by all routes, but about 3,000 of the 16,843 edges are used by more than 375 of the 537
routes.

2.7.6. Exemplary Queries

In this Section, two exemplary queries are described that were computed by using the distance and
car travel time metrics only. To better follow the next paragraphs it is important to know that the
German highways (autobahn) are identified by an ‘A’ and a number.

Figure 2.14.: Example query with a time slack of 1.2.

Figure 2.14 depicts all personalized routes from Leipzig to Hamburg with a time slack of 1.2. All
routes begin on highway A14 (dark green, later light green), but split up after a few kilometers to

50 2 | Enumerating personalized Routes efficiently

follow a state road which takes a more direct way (dark green). The dark brown routes takes the A2
over Hannover and merges on A7 with the cyan route. As the time is constrained in this example, the
computed routes focus on highways or state roads which are considerably shorter than their faster
alternative.

Figure 2.15.: Example query with a distance slack of 1.2.

The example query displayed in Figure 2.15 has a distance slack of 1.2 and connects a small city
in Baden-Württemberg to a small city in Brandenburg. As we have seen in Section 2.7.4, distance
restricted queries tend to have more diverse outputs. In the beginning, the dark green route moves
directly onto highway A81, while the others use smaller streets until they find their way onto the
same highway. After a short period, the dark green route changes to A6 and then to A9 while the
light brown one stays on A81. For a longer stretch, all routes more or less follow these two highways
until dark brown branches off onto A71. Closer to the destination, the routes begin to diverge and
use a variety of state and country roads.

Those two examples show that the classical car routing metrics naturally encourage the use of the
highways that can take the most load anyway. On the other hand, the routes emitted by the algorithm
also use a lot of different smaller streets. The resulting routes are not necessarily interesting for a

2.7 | Experimental Results for constrained Enumeration and Metric Invention 51

driver who just wants to reach his destination fast but might be a step to reduce congestion if used by
self-driving vehicles.

2.8. Conclusions

In this chapter, we have presented a novel way of computing alternative routes in case more than
one set of edge weights is available in the road network. Our approach is based on a guided, partial
exploration of the parameter space. With a standard Dijkstra on the multi-weighted graph, this
exploration would be far too time-consuming, so we had to adopt a recently developed speed-up
scheme for multi-criteria shortest paths [FLS17]. For the concrete example of bicycle route planning
with alternatives, this allowed us to answer queries within few seconds, coming up with several
reasonable alternative routes.

Existing approaches for generating alternative routes based on one metric only essentially generate
suboptimal routes (according to that metric) avoiding paths with too much overlap. Our approach is
fundamentally different in that respect as it always produces routes that are optimal for a convex
combination of the metrics considered. Similar to the existing approaches, a filtering of routes with
too much pairwise overlap takes place.

For our concrete example of route planning for bicycles, the two other edge weights apart from the
distance – namely positive height difference and road unsuitability for cycling – were in fact very
obvious choices. It remains to explore in future work whether in case of route planning for cars the
consideration of additional edge weights like energy consumption or non-scenicness of the road lead
to similarly good alternative routes.
We also expanded our algorithm to be able to only compute paths which do not diverge from

important metrics such as distance or travel time too much and experimentally evaluated this in
a route planning scenario for cars. Given an appropriate slack value, our algorithm efficiently
skips inadmissible routes and achieves a considerable speed-up in contrast to a full enumeration of
personalized routes. Especially, for the time restricted queries the average speed-up exceeded 10
in two experiment configurations. If none or only few routes are excluded, the overhead is small
enough to not slow down the algorithm noticeably.
Using “invented” and untypical metrics for car routing did diversify the results with respect to

the number of admissible routes as well as the average edge load. While the height ascent metric
might work especially well for the German street network, the chessboard and random metrics
should provide improvements that are independent of the underlying geography. The average load
per edge did also decrease as was expected. For the time restricted case, the average load could
be reduced from 51% to 30% for a slack of 1.2 by adding the chessboard 20×20 metric. A more
detailed inspection of the edge load distribution, showed that most of the edge load did get spread
to more edges. Still, there is a small number of edges that are used by most routes, which might
lead to congestion in these areas. To determine the potential for congestion reduction the described
algorithm and metrics should be used in a traffic simulation and compared to selfish routing. The
idea would be to assign one of the restricted routes at random to each simulated car and compare
total and individual travel times of all cars.
Computing so many routes has a major impact on running time, which should be addressed in

future work. Of course, one obvious way to improve running time is to use less slack and reducing
the number of routes. But this probably affects the average load negatively. A simulation as described

52 2 | Enumerating personalized Routes efficiently

above can be used to empirically search for efficient and effective parameters. Another way could be
to use the current average load to determine whether more routes need to be computed or not.

2.8 | Conclusions 53

Part II.

Understanding real world trajectories

55

Ch
ap

te
r 3

Identifying Intermediate
Destinations in Real World

Trajectories

3.1. Introduction

This chapter is based on joint work with Stefan Funke, Tobias Skovgaard Jepsen and Claudius
Proissl. It was published in the proceedings of the 9th ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data [BFJP20]. My contribution to this work was focused on the
trajectory segmentation and the generation of routing cost types. Part of this work which proposes an
approach for identifying robust driving preferences is not included in this dissertation as I contributed
little to it.
The ubiquity of mobile devices with position tracking capabilities via GPS or localization using

WiFi and mobile networks continuously generate vast streams of location data. Such data may be
used in a variety of ways. Mobile networks providers and many companies, such as Google or Apple,
use the location data of their customers to improve their services, e.g., by monitoring of traffic flow
or detection of special events. Location data sharing platforms such as Strava, GPSies, and OSM
allow their users to share their location data with their community. In all of these cases, location
measurements are considered collectively as sequences, each reflecting the movement of a person or
a vehicle. Such sequences can be map-matched to paths in an underlying transportation network—
in our case a road network—using appropriate methods [Zhe15]. We refer to such map-matched
sequences as trajectories throughout the chapter.

A common assumption is that most of the time, users travel on ‘optimal’ routes towards a (possibly
intermediate) destination, where optimality is understood as the shortest path w.r.t. suitable scalar
traversal costs of each road section in the underlying road network. For instance, route planners and
navigation systems often use travel times as traversal costs. However, in practice, drivers seldom
travel on such ‘optimal’ routes due to complex traversal costs, e.g., time-dependent and uncertain
travel times [PYJ20], a (possibly unknown) combination of several traversal costs [DGG+15], or due
to changing intentions/destinations during a trip. We therefore investigate analysis techniques that

57

do not rely on a fixed criterion but are capable of identifying a suitable combination of given criteria.
The high-level goal of this chapter is to develop a trajectory segmentation approach to enable a

better understanding of the semantics of trajectory data.

Figure 3.1.: An example of a trajectory going from S to T with two intermediate stops labeled B.

Trajectory Segmentation

A trajectory is often not just the manifestation of someone going from location S to location T following
an optimal route w.r.t. some criteria, but rather determined by a sequence of activities/intentions.
For instance, Figure 3.1 shows a trajectory from S to T with two intermediate stops labeled B. The
driver starts at location S but rather than taking the fastest routes, decides to drive southwest and
makes a stop. Then, the driver backtracks and takes the fastest route from S to T but decides to
make a stop on the way. In this chapter, we present a trajectory segmentation approach that can
identify intermediate stops or other points of interest in a trajectory and divide it into subtrajectories
accordingly.
In contrast to previous work on trajectory segmentation [ABB+14; BDVS11; EJH+19; JTR+18;

SMT+15], our approach solely relies on traversal costs and the structure of the road network.
No additional information such as time stamps are required. Thus, compression techniques for
efficient trajectory storage [KJT16; SSZZ14] are applicable. However, despite not utilizing temporal
information, our experiments show that our trajectory segmentation approach can recover such
information through a structural analysis of the trajectory. In addition, our trajectory segmentation
approach uses a driving preference model to segment trajectories into subtrajectories. To the best of
our knowledge, this is the first trajectory segmentation approach to do so.

58 3 | Identifying Intermediate Destinations in Real World Trajectories

3.2. Related Work

In this section, we present approaches from literature for supervised (3.2.1) and unsupervised (3.2.2)
trajectory segmentation, as well as Driving Preferences Modelling (3.2.3).

3.2.1. Supervised Trajectory Segmentation

Supervised trajectory segmentation relies on predefined criteria and parameters for the segmentation.
These have to be chosen and customized for the respective data set.

Buchin et al. [BDVS11] presented a general framework for supervised trajectory segmentation into
a minimal number of segments for decreasing monotone criteria. As we leverage this framework, it is
described in more detail in Section 3.3.3.

In a follow up work [ABB+14], the authors considered not only decreasing monotone criteria, but
boolean combinations of criteria which can be increasing and decreasing monotone. More concretely,
they worked with criteria that do not change often along the trajectory and called this property
stable. Furthermore, they allowed for classification of the subtrajectories into movement states to
further refine and constrain the resulting segmentation. The main data structure to enable this is
the compressed start stop matrix. Such a matrix stores the allowed segments of a trajectory for a
stable criterion in a space O(n) and can be computed in O(n log n). One can also compute them for
conjunctions and disjunctions of criteria.
This approach allows for a finely customized segmentation of trajectories with many rules and

criteria. At the same time, the need for careful parameter tuning is even higher than for less
sophisticated supervised approaches, because of the large parameter space.

3.2.2. Unsupervised Trajectory Segmentation

In contrast to supervised approaches, unsupervised trajectory segmentation does not need predeter-
mined criteria or parameters. Instead, suitable criteria and parameters are selected e.g., based on a
cost function.

GRASP-UTS Soares Júnior et al. [SMT+15] introduced an algorithm named Greedy Randomized
Adaptive Search Procedure for Unsupervised Trajectory Segmentation (GRASP-UTS). The algorithm
works by first setting a number of landmarks (points of the trajectory representing segments) and
then optimizing their placement. Their approach aims to generate segmentations with low distortion
and high compression. Where low distortion means that segments have high homogeneity, which is
measured by the euclidean distance between the landmark and all points inside the segment in all
trajectory features. Compression, on the other hand, is measured in the number of segments. To
balance these two goals, they introduced a cost function based on the minimum description length
principle. The cost function prioritizes landmarks that create segments with high homogeneity but
different consecutive movement behaviors. The high level idea of the GRASP-UTS algorithm is to
repeatedly, randomly generate a feasible solution and optimize it according to the cost function via
local search.

OctalWindow Segmentation The octal window segmentation algorithm from Etemad et al. [EJH+19]
uses an interpolation based approach. Concretely, the trajectory is processed with a sliding window

3.2 | Related Work 59

containing seven trajectory points. The first and last three points inside a window are used to
interpolate the position of the central point from both sides. The haversine distance between the
midpoint of the two interpolations and the actual central point is then called the error signal. A high
error signal indicates a change in movement behavior and therefore a good candidate for beginning
a new segment.

Although the authors claim that their algorithm classifies as unsupervised, it uses an ε parameter
to split trajectories at points where the error signal is greater than ε, which the authors determine
with a subset of each data set.

3.2.3. Driving Preferences Models

Driving preference models try to explain why a driver choose a certain route over another. They can
also be used to create personalized routing recommendations.

Weighting of Cost Types Yang et al. [YGMJ15] modeled driving preferences by a preference vector
w that contains one nonnegative weight wi for each travel cost ci. A vector w prefers route R1 over
R2 if
∑

i wi · ci(R1)<
∑

i wi · ci(R2). With this definition only the driving preferences for trajectories
which are non-dominated by other possible routes can be optimal. To be able to assign a preference
to dominated trajectories, the authors used what they call positive and negative personalized skyline
routes. A personalized skyline route is a route which is not dominated by any other route. Positive
skyline routes are such routes that dominate the trajectory and therefore are routes the driver should
have taken instead. On the other hand, negative skyline routes are routes that do not dominate the
trajectory and therefore there exists preferences where the trajectory is preferable to the negative
route. For each pair of a negative R j and a positive skyline route Ri, two training features for a
support vector machine are created. The features fi, j = c(Ri)− c(R j) is classified as good and the
feature f j,i = c(R j)− c(Ri) is classified as bad. The output of the support vector machine learning a
linear classification is a preference vector w for the trajectory.

This simple model catches trade-offs between different cost types well. But it can suffer from cost
types that strongly differ in value range in general as well as in localized regions of the road network
(e.g., mountain areas vs. plains).

Preference Ratios Dai et al. [DYGD15] modeled driving preferences by a vector P that represents
desired ratios between different cost types of a trajectory. They defined the preference ratio between
the i-th and the j-th cost type of a trajectory as pri, j =

ci
c j
. The vector P contains M =

�N
2

�

entries if N
cost types are used. Each entry pi is a random variable which describes the preference ratio between
two costs. The driving preference for a specific driver are derived from their historical trajectories.
To do this, the individual preference ratios are calculated and consolidated into a Gaussian Mixture
Model. The Personalized Satisfaction Score F(T , P) measures how a satisfied a driver is with a given
trajectory T according to his preferences P. The higher the value of F(T , P) =

∑M
i=0

∫ T̂i+∆
T̂i−∆

pi(c)dc

is, the better the trajectory fits to the driver preferences. Here T̂i is the preference ratio of T that
corresponds to pi and ∆ is a small real value to form a neighborhood.
In contrast to the weighting model, this model has more information at hand to use. This might

lead to a better explanation for trajectories, but also means there is greater potential for overfitting.
Especially, because the size of a preference increases superlinear with the number of cost types used.
Furthermore, the model in itself does not enforce some form of optimality in the trajectory. This

60 3 | Identifying Intermediate Destinations in Real World Trajectories

means that non-optimal trajectories might be explained, but also that trajectories with irregular parts
like circling and looking for a parking space can be overemphasized.

Function Parameters The work of Delling et al. [DGG+15] represented the preference of a driver as
a set of parameters β to a complex cost function F . The cost function used β to determine the travel
time of each edge according to the attributes of the edge. The parameters can include for example
average driving speed for different kinds of roads, boolean variables which exclude certain road types
and time penalties for different kinds of turns. To arrive at a specific parameter set β∗ for a driver, the
authors used a combination of local search to approach local optima, perturbation to explore regions
in the search space that do not lead to strictly better solutions and specialised sampling to shift the
attention to trajectories which are not yet well explained by the current β .

A cost function and its parameters can catch fine details of the behavior of drivers. As described by
the authors, those parameters influence the travel time or the availability of an edge for a certain
driver. This means other factors like the crowdedness or scenicness of a route are hard to include
into such a cost function.

3.3. Preliminaries

3.3.1. Data Set

3.3.1.1. Road Network Data

We use a directed graph representation of the Danish road network [JJN20] G = (V, E) that has been
derived from data provided by the Danish Business Authority and the OSM project. In this graph
representation, V is a set of nodes, each of which represents an intersection or the end of a road, and
E is a set of edges, each of which represents a directed road section. The graph representation of
the Danish road network contains the most important roads and has a total of 583,816 intersections
and 1, 291,171 road sections. In addition, each road section has attributes describing their length
and type (e.g., motorway) and each intersection has attributes that indicate whether they are in a
city area, a rural area, or a summer cottage area. The data is further augmented with a total of
163, 044 speed limits combined from OSM data and speed limits provided by Aalborg Municipality
and Copenhagen Municipality [JJNT18].

3.3.1.2. Trajectory Data

We use a set of 1, 306,392 vehicle trajectories from Denmark collected between January 1st 2012 and
December 31st 2014 [AKT13]. The trajectories have been map-matched to the graph representation
of the Danish road network s.t. each trajectory is a sequence of traversed road sections T = (e1, . . . , en)
where ei ∈ E for 1≤ i ≤ n. In addition, each segment is associated with a time stamp and a recorded
driving speed whenever the GPS data is sufficiently accurate. In this data set, a trajectory ends after
its GPS position has not changed more than 20 meters within three minutes. See [AKT13] for more
details.

Trajectory Stitching A vehicle trajectory in the trajectory data set ends when the vehicle has not
moved more than 20 meters within three minutes. However, in practice, a driver may choose a
trajectory with several intermediate stops, for instance when visiting multiple supermarkets to go

3.3 | Preliminaries 61

grocery shopping. We are interested in examining such trajectories. We therefore stitch temporally
consecutive trajectories from the same vehicle together if there is less than 30 minutes difference
between the end of the current trajectory to the start of the next. Each stitch thus indicates the end
of a 3 to 33 minutes break in movement. We call these stitches break points that mark a temporal gap
in the trajectory.

In many cases temporally consecutive trajectories are not connected due to imprecision or lack of
GPS data. In such cases, we compute the shortest route from the destination of the current trajectory
to the start of the next. If the shortest route is shorter than 200 meters or consists of at most one road
section, we stitch the trajectories. We continue attempting to join the stitched to the next trajectory
until the next trajectory does not meet the stitching criteria.
From the original 1, 306,392 trajectories we obtain 260,190 combined trajectories. Of these

trajectories, 190, 199 trajectories are stitched and contain break points.

3.3.2. Routing Cost Types

From the data sets described in Section 3.3.1, we derive a number of criteria that are a measure of
the expected cost of taking a route. In our experiments, we use the following four cost types: travel
time, congestion, crowdedness, and number of intersections. We normalize the average value of each
cost type to one.

Travel Time Each road section is associated with a fixed value that represents the time it takes to
traverse the road section. To derive travel time, we combine historical traversal data from the trajectory
data set with travel time estimates from a pre-trained machine learning model [JJN20]. The vehicle
trajectories in our trajectory set have the tendency to be concentrated on a few popular segments,
as such, many road sections have few or no traversals in the trajectory set. We therefore require a
means of estimating travel times for such road sections. To this end, we use a pre-trained machine
learning model to provide travel time estimates. However, for road sections with an abundance
of traversal data the model’s estimates may be inaccurate. Inspired by previous work [FJ17], we
therefore combine travel time estimates with travel times of historical traversals s.t. when the driving
speed estimate of a road section becomes increasingly less influential the more historical traversals
the road section is associated with.
We compute the travel time te for a road section e as te =

kt̂e+nt̄e
k+n where t̂e is the estimate of the

mean travel time, t̄e is the mean travel time of the historical traversals, n is the number of historical
traversals of segment e in the trajectory dataset, and k represents the confidence in t̂e. We use k = 10

in our experiments.
We use a pre-trained Relational Fusion Network (RFN) [JJN20] to provide travel time estimates

t̂e for each road section e ∈ E. Specifically, we use the best performing RFN from [JJN20] which
has been trained on the Danish Municipality of Aalborg using trajectories within the municipality
that occurred between January 1st 2012 and June 30th 2013. Despite having been trained only on
a subset of the network, the model generalizes well to unseen areas of the road network [JJN20].
However, in a few cases the network would give very low values. We therefore modify the output s.t.
the estimated driving speed on any road section cannot be below 5 km/h.

Congestion We derive the congestion level on a particular road section based on how close to the
speed limit people tend to drive. The closer to the speed limit, the less congestion. Many road

62 3 | Identifying Intermediate Destinations in Real World Trajectories

sections do not have a speed limit in our speed limit data set. In such cases, we use a simple OSM
routing heuristic.We assign a congestion level to road section e depending on the speed limit se on the
segment in km/h, the length of le of the segment in km, and the travel time te in hours. Let τe = le/se

denote the travel time on road section e if a vehicle is driving at exactly the speed limit. Formally,
we assign road section e the congestion level ce =max{1− te

τe
, 0} s.t. a value of 0 indicates that it is

possible to drive at (or above) the speed limit and a value of 1 indicates that the road section is not
traversable.
The value of τe relies on the speed limit of road section e. We use a speed limit data set that

combines OSM speed limits with speed limits provided by Aalborg Municipality and Copenhagen
Municipality [JJNT18]. This data set contains 163044 speed limits, thus leaving many road sections
without a known speed limit. In such cases, we use an OSM routing heuristic1 which in Denmark
assigns a speed limit of 130 km/h to motorways, a speed limit of 50 km/h in cities, and a speed limit
of 80 km/h on other types of segments. For our data, we count a road section as in a city if either the
source or destination intersection is in a city according to its attributes.

Crowdedness This criterion measures how ‘crowded’ the surroundings along a vehicle trajectory are.
We derive a crowdedness value for each road sections from the number of nearby road sections and
points of interest OSM nodes. We use all OSM nodes in Denmark from a 2019 data set regardless
whether they represent a road, a building or some other point of interest. To calculate it, we first
overlay our graph with a grid and count the OSM nodes within each cell. For each road section, we
locate the OSM nodes that are part of its geometry in the grid. The cost per road section is then the
sum of the cell counts of its (geometry) nodes. We use a grid of 2000 by 2000 resulting in a cell size
of roughly 209 m x 177 m.

Number of Intersections The number of intersections visited in a trajectory, excluding the source
intersection.

3.3.3. Trajectory Segmentation

In this section, we discuss the definition of the trajectory segmentation problem and a general
algorithmic framework for it.

3.3.3.1. Trajectory Segmentation Problem

The segmentation of a trajectory T = v0v1 . . . vk−1 is a sequence of B trajectory segments S1 =
v0v1 . . . vb1

, S2 = vb1
vb1+1 . . . vb2

, S3 = vb2
vb2+1 . . . vb3

, up to SB = vbB−1
vbB−1+1 . . . vbB

. We refer to the
common node of two consecutive trajectory segments, e.g., S1 and S2, as a segmentation point. For
instance, vb1

is a segmentation point because it is at the end of S1 and the start of S2. Buchin et al.
[BDVS11] define the segmentation problem as finding a (minimal) number of segments for a trajectory
such that each segment fulfills a criterion. They provide a general algorithmic framework for arbitrary
segmentation criteria.

1See https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Maxspeed.

3.3 | Preliminaries 63

https://wiki.openstreetmap.org/wiki/OSM_tags_for_routing/Maxspeed

3.3.3.2. Trajectory Segmentation Framework

In the framework of Buchin et al. [BDVS11], one has to provide a test procedure which verifies if a
given segment meets the desired criterion. This test procedure is then used to repeatedly, greedily
find the longest prefix that meets the criterion. The authors prove that this approach leads to an
optimal, i.e., minimal, segmentation for (decreasing) monotone criteria in O(T (k) log k) time if the
test procedure takes T (m) time for a segment of length m. They define monotonicity for a criterion
as follows. If any segment S ⊆ T satisfies the criterion, then any segment S′ ⊆ S also satisfies the
criterion. Even though Buchin et al. [BDVS11] focus on self-similarity criteria (criteria that do not
change too much inside a segment) for the segments, this definition adapts well to the optimality
criterion we introduce in Section 3.4.1.

3.4. Multi-Criteria Trajectory Segmentation

In this section, we present our trajectory segmentation approach designed to find all interesting
via-points along a trajectory. A driver may have several via-points on a trip. Sometimes, these
via-points may be linked to a point-of-interest such as a gas station or may be marked by an extended
parking duration, but that is not necessarily the case. Therefore, our algorithm does not rely on such
features of the trajectory but focuses on the path taken by the driver.
In brief, our approach assumes that drivers choose personalized paths between their via-points.

Any deviation from their personalized path along a trajectory that goes from s to t indicates some
interesting point p in the trajectory. The point of deviation p is marked as the end of the first trajectory
segment and the beginning of the next. This process is repeated on the remaining subtrajectory going
from p to t and so forth.

3.4.1. The Personalized Path Criterion

For trajectory segmentation in the framework of [BDVS11], described in Section 3.3.3.2, we propose a
type of criteria that uses only the underlying graph and does not need any predetermined parameters.
The optimal path criterion requires each trajectory segment S of a trajectory T to be an optimal
path according to the traversal costs in the underlying graph. This criterion is monotone as defined
in Section 3.3.3 because it requires S to be a “shortest path” and subpaths of shortest paths are also
shortest paths. As a test procedure for a segment, we use a Dijkstra query.

The optimal path criterion can be generalized to the personalized path criterion. The personalized
path criterion requires each trajectory segment to be a personalized path with respect to some driver
preference α. This criterion is satisfied if there exists a solution to the LP described in Section 1.4.1.
Note that the α for each trajectory segment can differ.

Fixing Corner Cases It is possible that there exists a minimal trajectory segment S ⊆ T (consisting
of a single edge) which is not a personalized/optimal path. One edge (u, v) might be more expensive
in every traversal cost type than another path from u to v. This indicates that the used traversal
cost types cannot explain driver behavior for taking such a road section. For the personalized path
criterion, this can be remedied by including a cost type for which each edge is a personalized path
between its source and target intersections. In general, a unit cost type (every edge e has ci(e) = 1)
has this property. This guarantees segmentability for arbitrary trajectories and makes the personalized

64 3 | Identifying Intermediate Destinations in Real World Trajectories

path more robust. In our experiments, the number of intersections cost type fulfills this role, as the
road network only contains vertices that represent intersections.
This does, however, not fix the special case of self-loop edges, which in our data set typically

represent road sections that allow traversals in parking lots. Such road section can never be optimal
because the optimal path from the source intersection to itself remains at the intersection. Self-loop
edges can either be dealt with by deleting them from the trajectories, if they do not cover significant
areas in the road networks, or by representing such road section as two edges that each represent
partial traversal of the self-looping road section.

3.4.2. Experiments

We now investigate the capabilities of the trajectory segmentation method to identify via-points
in trajectories on the basis of the trajectory data set described in Section 3.3.1. In particular, we
use the stitched trajectory set to evaluate our trajectory segmentation approach, Personalized Path
Trajectory Segmentation (PPTS), to the Optimal Path Trajectory Segmentation (OPTS) baseline which
uses only a single cost type to check for the optimal path criterion. We consider the four variants
OPTS-TT, OPTS-Con, OPTS-Int, and OPTS-Cro, that use the travel time, congestion level, number of
intersections, and crowdedness, respectively, as the single cost type.
We compare PPTS’s ability to segment trajectories to that of the baselines. Our comparison is

both in terms of the number of trajectories that can be segmented and the ability of the trajectory
segmentation algorithms to recover the break points in the stitched trajectory set. As mentioned in
Section 3.3.1.2, these break points indicate a break of 3 to 33 minutes and are therefore likely to
indicate a via-point within the trajectory. We discard the self-loop edges within each trajectory to
increase segmentability, as described in Section 3.4.1. Typically, these self-loop edges represent road
sections that allow driving around parking lots.

All algorithms used in our experiments are implemented in the Rust programming language1. We
make the implementation of our method, the used graph and some example trajectories publicly
available2. We use PCH [FLS17] to speed up the Dijkstra queries by orders of magnitude.

3.4.2.1. Evaluation Functions

We use several evaluation functions to evaluate our trajectory segmentation method and for compari-
son with the baselines.

Segmentability Score The segmentability score, or simply S-score, measures the proportion of
trajectories that are segmentable by a trajectory segmentation algorithm. Ideally, the S-score is 100%

indicating that all trajectories in the data set could be segmented by the used trajectory segmentation
algorithm.

Break Recovery Rate The Break Recovery Rate (BRR) is a measure of how good a trajectory seg-
mentation algorithm is at placing segmentation points s.t. they coincide with known break points
in the stitched trajectories. Let BP denote the set of known break points in a trajectory T and let SP

1https://www.rust-lang.org/
2https://github.com/Lesstat/ppts

3.4 | Multi-Criteria Trajectory Segmentation 65

https://www.rust-lang.org/
https://github.com/Lesstat/ppts

denote the set of segmentation points output by a trajectory segmentation algorithm that has been
given trajectory T as input. Then, the BRR of trajectory T is

BRR(T) = |RBP|
|BP|

where RBP= BP∩ SP is the set of recovered break points.

Segmentation Rate A trajectory segmentation algorithm can achieve a high BRR by simply seg-
menting a trajectory into trajectory segments consisting of one road section each. Although such a
segmentation is guaranteed to recover all break points, it is also very likely to contain a lot of noise in
the form of many false positives. To measure such noise, we use the Segmentation Rate (SR) which
measures the number of segmentation points per break point:

SR(T) = |SP|
|BP|

Ideally, the SR should be 1 for a trajectory segmentation that recovers all break points, i.e., has a
BRR of 100%.

Segmentation Quality Score The segmentation quality score, or simply SQ-score, is a summary
score to measure the overall quality of a trajectory segmentation. It combines the BRR and SR as
follows:

SQ(T) = BRR(T)
SR(T)

Note that the unit of the SQ-score is recovered break points per segmentation point and should ideally
be 1.

3.4.2.2. Results

The results of our experiments are shown in Table 3.1.

Segmentability As shown in Table 3.1, PPTS and OPTS-Int are both capable of segmenting all
trajectories and achieve an S-score of 100%. This result is not too surprising, since both algorithms use
a unit cost type—the number of intersections—which guarantees that any trajectory can be segmented
by these approaches, as discussed in Section 3.4.1. The remaining algorithms cannot segment a
large portion of the trajectories (more than half in the case of OPTS-Con) and therefore achieve
comparatively low S-scores. Thus, the inclusion of additional cost types can increase segmentability.

Segmentation Quality As shown in Table 3.1, PPTS and OPTS-Int achieve similar BRRs that are
substantially higher than the remaining OPTS variants. However, for a fair comparison that ignores
the ability of the algorithms to segment trajectories, we have computed BRRs, SRs, and SQ-scores on
the subset of trajectories that are commonly segmentable, i.e., the trajectories that can be segmented
by all algorithms. On this subset, the BRRs of all algorithms are comparable. This suggests that the
superior BRR when considering all trajectories for PPTS and OPTS-Int can largely be attributed to
their greater capability for segmenting trajectories.

66 3 | Identifying Intermediate Destinations in Real World Trajectories

Table 3.1.: Mean algorithm performance on all stitched trajectories (ALL) and the 60,249 commonly
segmentable trajectories (CS) that can be segmented by all algorithms.

ALL CS
Algorithm BRR S-score BRR SR SQ-score

PPTS 57.98% 100.0% 56.29% 2.39 0.235
OPTS-TT 34.62% 58.16% 58.35% 2.83 0.206
OPTS-Con 29.32% 49.61% 57.49% 3.99 0.144
OPTS-Int 59.19% 100.0% 57.61% 4.37 0.132
OPTS-Cro 35.86% 61.11% 58.10% 5.62 0.103

Although the BRRs are quite similar on the commonly segmentable trajectories, the SRs are quite
different, as shown in Table 3.1 In particular, the OPTS-Con, OPTS-Int, and OPTS-Cro algorithms
have, respectively, 67%, 83%, and 135% more segmentation points per break point than PPTS. The
SR of OPTS-TT algorithm is just 18% higher than that of PPTS.
The higher SRs of the single-cost-type baselines compared to PPTS suggest that the inclusion of

driving preferences and multiple criteria reduces the number of false positives. The PPTS achieves the
lowest BRR on the commonly segmentable trajectories, but, as shown in Table 3.1, PPTS achieves the
best overall trajectory segmentation quality with an SQ-score of 0.235, since it introduces the fewest
false break points and thus has the lowest SR. Conversely, OPTS-TT achieves the highest BRR score
on the same data subset, but introduces more false break points than PPTS. As a result, OPTS-TT
achieves only the second-highest segmentation quality with an SQ-score of 0.206. Still, our results
support the wide-spread use of the travel time cost type in many routing services, but also show
that taking additional cost types and driving preferences into account can lead to better trajectory
segmentation.
For the sake of brevity, we present only the comparison between PPTS and the best-performing

baseline, OPTS-TT, in the remainder of this section.

Segmentation Point Accuracy We have thus far only considered exact break point recovery, but
a segmentation may still be useful if it indicates that a break point is near. Figure 3.2 shows the
percentage of break points which is within a certain (hop) distance to the next segmentation point
for OPTS-TT and PPTS. PPTS places segmentation points considerably more accurate than OPTS-TT.
PPTS places more than 60% of the break points within one road section of the nearest segmentation
point and over 80% are within two road sections of the next segmentation point. OPTS-TT achieves
less than half of PPTS’s performance. However, the performance disparity illustrated in Figure 3.2
is largely due to better segmentability of trajectories when using PPTS. If the analysis is restricted
to break points with distance d <∞ to the nearest segmentation point, i.e., trajectories that are
segmentable by OPTS-TT, their distributions are comparable.

Qualitative Segmentation Assessment A good trajectory segmentation marks break points (or
other interesting points) along a trajectory with a segmentation point. However, a good trajectory
segmentation should also avoid too many false positives.
The PPTS and OPTS-TT, respectively, have an SR of 2.39 and 2.83 segmentation points per break

point, respectively. However, although these numbers suggest that there are more false break points
when using OPTS-TT, our data only contains positive examples of interesting behavior within the

3.4 | Multi-Criteria Trajectory Segmentation 67

(a) OPTS-TT

(b) PPTS

Figure 3.2.: Distribution of distance between a break point and the next segmentation point for (a)
OPTS-TT and (b) PPTS. Break points in trajectories without any segmentation point are
assigned distance∞.

trajectory, i.e., the break points in the stitched trajectories. As result, we cannot quantitatively
determine whether the segmentation points that do not match a break point are indeed false positives
or mark interesting, but unknown, behavior during the trajectory. We therefore qualitatively assess
the validity of the segmentation of a few trajectories.
Figure 3.3 shows a break point (marked with ‘B’ in yellow) in a segmented trajectory. The

segmentation by OPTS-TT shown in Figure 3.3a places two segmentation points (marked with ‘S’ in
black) around the break point. These segmentation points fail to recover the break point but are both
within a distance of two road sections of the break point. Thus, the OPTS-TT segmentation appear to
detect the presence of the break point, but fails to place the segmentation points exactly. The PPTS
segmentation shown in Figure 3.3b, is a better segmentation and recovers the break point exactly
(indicated by the black marker labeled ‘B’).

Figure 3.4 shows another part of the trajectory shown in Figure 3.3. Here, OPTS-TT places
a segmentation point without comparable segmentation points in the PPTS segmentation. This
additional segmentation point has no apparent meaning, and, upon detailed inspection, appears to

68 3 | Identifying Intermediate Destinations in Real World Trajectories

(a) OPTS-TT (b) PPTS

Figure 3.3.: A break point in a trajectory and the segmentation points for (a) OPTS-TT and (b)
PPTS. Yellow markers labeled ‘B’ indicate a break point and black markers labeled ‘S’ a
segmentation point. A black marker labeled B indicates a break point that is recovered
by a segmentation point.

occur due to inaccuracies in the estimated travel time in the area. This suggests that PPTS may be
more robust than OPTS-TT to noise in the traversal cost data.

Figure 3.4.: A segmentation point with no obvious event occurring.

For the purposes of quantitative evaluation, our method attempts to recover breaks of 3 to 33

minutes from trajectories. However, our trajectory segmentation approach can discover interesting
behavior beyond these known breaks. For instance, Figure 3.5 shows a segmentation point marking a
detour to a gas station. This segmentation point is placed by both OPTS-TT and PPTS.

3.4.2.3. Processing Time

While using personalized routing does improve break recovery, it comes with an increase in processing
time of trajectory segmentation. The increase in processing time for the personalized path variant is
mostly driven by the PCH-Dijkstra queries being slower.

The trajectory segmentation process is trivially parallelizable, since each trajectory can be processed
independently, making segmentation of even billions of trajectories feasible. In our experiments, we
parallelized the trajectory segmentation process across 64 cores, each with a clock speed of 2.3 GHz.
The time to process the 190, 199 stitched trajectories for single-criteria and multi-criteria trajectory
segmentation is, respectively, 1 and 5 hours in total, and 19 and 95 milliseconds per trajectory on

3.4 | Multi-Criteria Trajectory Segmentation 69

Figure 3.5.: A segmentation point recovers a detour to a gas station that is not marked as a break in
our data set.

average. The total processing time took about half an hour in wall-clock time.

3.4.3. Discussion

Overall, PPTS achieves the highest trajectory segmentation quality in our experiments, followed
by OPTS-TT. The results suggest that PPTS has two primary advantages over the baselines in our
experiments. The use of multiple cost types and driving preferences makes PPTS capable of (1)
segmenting more trajectories and (2) explaining driving behavior better, resulting in fewer false break
points being placed. Our qualitative assessment of the OPTS-TT and PPTS segmentations support
the conclusion that the segmentation points placed by PPTS are less likely to be false positives. In
addition, PPTS discovered a detour to a gas station that is not indicated by a break point in our
trajectory data set.

Even in the case where a break point is not recovered, PPTS is likely to place a segmentation point
near the break point. PPTS places a segmentation point within a distance of 3 road sections for
95% of break points, but OPTS-TT for less than 40% of the break points. Although, this difference
is largely explained by PPTS being capable of segmenting more trajectories, it suggests that PPTS’s
segmentation points are likely to indicate some interesting part of a trajectory. Although the increase
in performance of PPTS over OPTS-TT comes at a factor 5 increase in processing time, it is still
capable of segmenting a trajectory in a fraction of a second on average.

70 3 | Identifying Intermediate Destinations in Real World Trajectories

Stitching Parameters Changing the parameters for the stitching process has only very little effect on
our results and does not affect our conclusions. The results are virtually invariant to changes to the
temporal stitching threshold. However, they are sensitive to changes to the stitch length threshold,
although the effect is minor. The longer the stitches are allowed to be, the worse break recovery
performance for both OPTS-TT and PPTS. This is likely because more noise is introduced when longer
stitches are allowed.

3.5. Conclusion

In this chapter, we presented a technique for large scale trajectory segmentation. We have shown
experimentally that our proposed trajectory segmentation approach is a useful tool for understanding
the semantics of a trajectory, e.g., the driver’s intentions or changing destinations. Our technique
can be implemented efficiently in practice and is trivially parallelizable. Thus, it scales to very large
trajectory sets consisting of millions or even billions of trajectories.

Future Directions Our trajectory segmentation approach relies on linear combinations of costs.
However, relationships between costs may be more complex and present an interesting opportunity
for future work. In addition, driver preferences can be highly context-dependent and depend on,
e.g., the time of day [YGMJ15]. Extending our approach to utilize such contextual information is an
important future direction.

3.5 | Conclusion 71

Ch
ap

te
r 4

Clustering Trajectories by
Preference

4.1. Introduction

This chapter is based on joint work with Stefan Funke and Claudius Proissl. It was published in the
proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC) [BFP21].
I contributed to all parts of this chapter, but to the Corner Cutting Approach in Section 4.4.1.2 I made
only secondary contributions. The corresponding parts are included for completeness.
It is well observable in practice that drivers’ preferences are not homogeneous. If we have two

alternative paths π1,π2 between a given source-target pair, characterized by 3 costs/metrics (travel
time, distance, and ascent along the route) each, e.g., c(π1) = (27min, 12km, 150m), and c(π2) =
(19min, 18km, 50m), there are most likely people who prefer π1 over π2 and vice versa. Moreover,
a single driver might choose differently depending on the context of his trip like, e.g., time of day,
remaining gas in the tank, or being late. While typical real-world trajectories are not necessarily
optimal in a the personalized route planning model, they are usually decomposable into very few
optimal subtrajectories, as shown in Chapter 3.

Since the preferences are hard to specify as a user of a personalized route planning system, methods
have been developed which infer the preferences from paths that the user has traveled before. The
larger a set of paths is, though, the less likely it is that a single preference/weighting exists which
explains all paths, i.e., for which all paths are optimal. One might, for example, think of different
driving styles/preferences when commuting versus leisure trips through the country side.

So a natural question to ask is, what is the minimum number of preferences necessary to explain a
set of given paths in a road network with multiple metrics on the edges. This can also be interpreted
as a trajectory clustering task where routes are to be classified according to their purpose.
Note that we regard trajectories in this chapter as paths and disregard any timestamps attached

to them. We are using the expected travel times rather than the actual instance based travel times
because we are more interested in the preference that led to choosing a certain route compared to the
result of choosing said route. In our example, one might be able to differentiate between commute
and leisure. Or in another setting, where routes of different drivers are analyzed, one might be able

73

to cluster them into speeders and cruisers depending on the routes they prefer.
The goal of this chapter is the formulation of this natural optimization problem in the context of

multicriteria routing and investigate the theoretical and practical challenges of solving this problem.

4.2. Related work

The linear preference model in the navigation context has been used in numerous works, e.g., [FLS17;
FNS16; FS15; GKS10], to allow for personalized route planning services.
Fewer papers deal with the inference of personal preferences like [ONH17], [FLS16].
Oehrlein, Niedermann, and Haunert [ONH17] try to explain user trajectories in a bicriteria model

which behaves like the personalized route planning model with d = 2. The cost function of their
model is c(e,α) = (1−α) · c0 +α · c1. Their goal is to find a preference α such that an input trajectory
π of length n decomposes into the minimal number of α-optimal paths. To find such a decomposition,
they first define the optimality range problem (OR) which given some path π asks for the range
I ⊆ [0; 1] of α values for which the path is optimal. The authors developed an algorithm which solves
this via a binary search approach if the costs are natural numbers. For the original problem, the idea
is to solve OR for all subpaths of π to obtain a set R of intervals and then decompose π with each of
the O(n2) α values in R. This leads to a total running time of O(n3 + n2 · o) where o is the running
time for solving OR. This approach for inferring driving preferences has the advantage that it can
work with trajectories that are not themselves optimal paths in the given model. While this makes
successfully inferring a preference more likely, it does not guarantee it. A trajectory with a subpath
that is not optimal for any α cannot be processed with this approach. Furthermore, it is limited to
integer costs and only two cost types.

The other paper is most related to this work as it introduced preference inference based on a
linear programming formulation, which we will also instrument in our approach. Note though that
while [FLS16] already talked about the problem of minimizing the number of preferences to explain
a set of trajectories, only a greedy algorithm is presented. The algorithm considers the trajectories in
some order and only considers consecutive paths to be grouped under one preference. The quality of
the output depends mainly on the order of the input and can be arbitrarily bad as we show in the
following (one preference per trajectory). Consider two sets of trajectories T1, T2. Let all trajectory
of T1 be optimal for preference α1 and those of T2 for α2. Also, let there be no two trajectories
t1 ∈ T1, t2 ∈ T2 such that they are optimal for the same preference. Clearly, the minimal number
of preferences needed to explain all trajectories in T1 ∪ T2 is two. If we use the sweep algorithm
and order the trajectories such that those of T1 alternate with those of T2, the algorithm will output
|T1 ∪ T2| preferences instead.

4.3. Preliminaries

4.3.1. Geometric Hitting Set

The classic Minimum Hitting Set problem is defined as follows: Given a universe U with n elements
{u1, u2, . . . , un} and a set S of subsets of U , find a (hitting) set H of elements of U such that ∀S ∈
S,∃u ∈ H : u ∈ S and |H| is minimized. In the geometric variant of the problem the universe U

74 4 | Clustering Trajectories by Preference

becomes the set of all points in d-space Rd , while the subsets contained in S now become geometric
shapes, e.g., polyhedra.

4.3.2. Minimum Geometric Hitting Set Hardness

The minimum hitting set problem (or equivalently the set cover problem) in its general form is known
to be NP-hard and even hard to approximate substantially better than a ln n factor, see [AMS06].
A simple greedy algorithm yields a O(log n) approximation guarantee, which in the general case is
about the best one can hope for. For special instances, e.g., when the instance is derived from a
geometric setting (as ours), better approximation guarantees can sometimes be achieved. While the
exact solution remains still NP-hard even for seemingly simple geometric instances [FPT81], quite
strong guarantees can be shown depending on the characteristics of the objects to be hit. Sometimes
even PTAS are possible, see, e.g., [MR09]. Unfortunately, apart from convexity, none of the favourable
characterizations seem to be applicable in our case. We cannot even exclude infinite VC dimension
in hope for a O(log OPT) approximation [BG95], as the preference polyhedra might have almost
arbitrarily many corners.

4.4. Driving Preferences and Geometric Hitting Sets

The LP-Oracle from Section 1.4.1 can easily be extended to decide for a set of paths (with different
source-target pairs) whether there exists a single preference α for which they are optimal (i.e., which
explains this route choice). It does not work, though, if different routes for the same source-target
pair are part of the input or simply no single preference can explain all chosen routes. The latter
seems quite plausible when considering that one would probably prefer other road types on a leisure
trip on the weekend versus the regular commute trip during the week. So the following optimization
problem is quite natural to consider:

Given a set of (optimal) trajectories T in a multiweighted graph, determine a set A of
preferences of minimal cardinality, such that each π ∈ T is optimal with respect to at least
one α ∈ A.

We call this problem preference-based trajectory clustering (PTC).
For a concrete problem instance from the real world, one might hope that each preference in the

set A then corresponds to a driving style like speeder or cruiser. Also, note that a real-world trajectory
often is not optimal for a single α (prime example for that would be a round trip), yet, in Chapter 3
we showed that it can typically be decomposed into very few optimal subtrajectories if multiple
metrics are available.
We aim to find practical ways to solve PTC optimally as well as approximately with good quality

guarantees. Our (surprisingly efficient) strategy is to explicitly compute for each trajectory π in T
the polyhedron of preferences for which π is optimal and to translate PTC into a geometric hitting
set problem.
Fortunately, the formulation as a linear program as described in Section 1.4.1 already provides a

way to compute these polyhedra. The constraints in the LP exactly characterize the possible values of
α for which one path π is optimal. These values are the intersection of half-spaces described by the
optimality constraints and the non-negativity constraints of the LP. We call this (convex) intersection
preference polyhedron. A preference polyhedron P of path π is d − 1 dimensional, where d is the

4.4 | Driving Preferences and Geometric Hitting Sets 75

number of metrics. This is because the LP’s scaling constraint reduces the dimension by one and
we can substitute αd by 1−

∑

i<d αi. In the remainder of this Section, we discuss how to construct
preference polyhedra from given paths and reformulate PTC as a minimum geometric hitting set
problem.

4.4.1. Exact Polyhedron Construction

A straightforward, yet quite inefficient way of constructing the preference polyhedron for a given st-
path π is to actually determine all simple st-paths and perform the respective half-space intersection.
Even when restricting to Pareto-optimal paths and real-world networks, their number is typically
huge. So we need more efficient ways to construct the preference polyhedron.

4.4.1.1. Boundary Exploration

With the tool of linear programming at hand, one possible way of exploring the preference polyhedron
is by repeated invocation of the LP described in Section 1.4.1 but with varying objective functions.
Note that this is strongly related to the enumeration of personalized paths via convex hull exploration
in Section 2.3. For sake of simplicity let us assume that the preference polyhedron is full (that is,
d − 1) dimensional1. We first determine d − 1 distinct extreme points of the polyhedron to obtain
a d − 1-simplex as first (inner) approximation of the preference polyhedron. We then repeatedly
invoke the LP with an objective function corresponding to the normal vectors of the facets of the
current approximation of the polyhedron. The outcome is either that the respective facet is part
of the final preference polyhedron, or a new extreme point is found which destroys this facet and
induces new facets to be investigated later on. If the final preference polyhedron has f facets, this
approach clearly requires O(f) invocations of the LP solver (and some effort to maintain the current
approximation of the preference polyhedron as the convex hull of the extreme points found so far).
While theoretically appealing, in practice this approach is not very competitive due to the overhead
of repeated LP solving.

4.4.1.2. Corner Cutting Approach

We developed the following Corner Cutting Approach (CCA) which in practice turns out to be extremely
efficient to compute for a given path π its preference polyhedron, even though we cannot bound its
running time in terms of the complexity of the produced polyhedron.
CCA is an iterative algorithm, which computes the preference polyhedron via a sequence of half-

space intersections. Let Pπ be the preference polyhedron of path π. In the i-th iteration CCA computes
a polyhedron Pi with Pπ ⊆ Pi ⊆ Pi−1. P0 is the entire preference space with a number of corners equal
to the number of metrics. Each of these corners is initially marked as unchecked.

In iteration i CCA takes one corner α(i) of Pi−1 that has not been checked before. If no such corner
exists, CCA terminates and returns PCCA := Pi−1. Otherwise, it marks the corner α(i) as checked and
computes the optimal path πα(i) . If c

�

π,α(i)
�

− c
�

πα(i) ,α
(i)
�

= 0, the corner α(i) belongs to Pπ and
there is nothing to do. Otherwise, the constraint c (π,α)− c (πα(i) ,α)≤ 0 is violated by a part of Pi−1.
We call this part P ′i . It is clear that α(i) ∈ P ′i . Finally, the polyhedron Pi := Pi−1\P ′i is computed by
intersecting Pi−1 with the half-space c (π,α)− c (πα(i) ,α) ≤ 0. This intersection may introduce new
corners, which are marked as unchecked. Afterwards, the next iteration starts.

1after elimination of αd

76 4 | Clustering Trajectories by Preference

We prove that CCA indeed computes Pπ. Let PCCA be the output of CCA. We first show that Pπ ⊆ PCCA.
Pπ ⊆ P0 is trivially true. Furthermore, in each iteration i it is clear that P ′i ∩ Pπ = ;. Hence, for each
iteration i, we have Pπ ⊆ Pi and therefore Pπ ⊆ PCCA. The other direction PCCA ⊆ Pπ follows from the
fact that Pπ is convex and that all corners of PCCA belong to Pπ as they are marked as checked.
CCA also terminates for finite graphs. Each optimal path πα(i) can add finitely many corners to Pi

only once. Since the number of optimal paths is finite the number of corners to be considered is finite
as well.
The great advantage of CCA compared to the boundary exploration approach is the avoidance of

the linear programming solver.

4.4.2. Minimum Geometric Hitting Set

Figure 4.1.: Example of a geometric hitting set problem as it may occur in the context of PTC. Two
feasible hitting sets are shown (white squares and black circles).

Using the preference polyhedra we are armed to rephrase our original problem as a geometric hitting
set (GHS) problem. In an instance of GHS we typically have geometric objects (possibly overlapping)
in space and the goal is to find a set of points (a hitting set) of minimal cardinality, such that each
of the objects contains at least one point of the hitting set. Figure 4.1 shows an example of how
preference polyhedra of different optimal paths could look like in case of three metrics. In terms of
GHS, our PTC problem is equivalent to finding a hitting set for the preference polyhedra of minimum
cardinality, and the ’hitters’ correspond to respective preferences. In Figure 4.1 we have depicted two
feasible hitting sets (white squares and black circles) for this instance. Both solutions are minimal in
that no hitter can be removed without breaking feasibility. However, the white squares (in contrast to
the black circles) do not describe a minimum solution as one can hit all polyhedra with less points.

While the GHS problem allows to pick arbitrary points as hitters, it is not hard to see that it suffices
to restrict to vertices of the polyhedra and intersection points between the polyhedra boundaries, or

4.4 | Driving Preferences and Geometric Hitting Sets 77

Figure 4.2.: Inner (yellow) and outer approximation (grey) of the preference polyhedron (black).

more precisely vertices in the arrangement of preference polyhedra. We describe the computation of
these candidates for the hitting sets in Section 4.4.3.

The GHS instance is then formed in a straightforwardmanner by having all the hitting set candidates
as ground set, and subsets according to containment in respective preference polyhedra. For an exact
solution we can formulate the problem as an integer linear program (ILP). Let α(1), α(2), . . . , α(l) be
the hitting set candidates and U := {P1, P2, . . . , Pk} be the set of preference polyhedra. We create a
variable X i ∈ 0, 1 indicating whether α(i) is picked as a hitter and use the following ILP formulation:

min
∑

i

X i

∀ P ∈ U :
∑

α(i)∈P

X i ≥ 1

∀ i : X i ∈ {0, 1}

While solving ILPs is known to be NP-hard, it is often feasible to solve ILPs derived from real-world
problem instances even of non-homeopathic size.

4.4.3. Hitting Set Instance Construction via Arrangements of Hyperplanes

To obtain the actual hitting set instance, we overlay the individual preference polyhedra. This can be
done via construction of the arrangement of the hyperplanes bounding the preference polyhedra.
Each vertex in this arrangement then corresponds to a candidate for the hitting set. If N is the
total number of hyperplanes bounding all preference polyhedra in D-dimensional space, then this
arrangement has complexity O(N D) and can be computed by a topological sweep within the same
time bound [Ede87]. For K polyhedra with overall N bounding hyperplanes we obtain a hitting set

78 4 | Clustering Trajectories by Preference

instance with K sets and O(N D) potential hitter candidates.

4.4.4. Challenges

While our proposed approach to determine the minimum number of preferences to explain a set of
given paths is sound, it raises two major issues. First, the complexity of a single preference polyhedron
might be too large for actual computation, so just writing down the geometric hitting set instance
becomes infeasible in practice. Second, solving a geometric hitting set instance to optimality is far
from trivial. In the following we will briefly discuss these two issues and then in the next section
come up with remedies.

4.4.4.1. Preference Polyhedron Complexity

In this section, we show that the number of facets of a preference polyhedron can be as high as the
number of optimal paths. For this section, we use a tighter definition of optimal. Namely, that a
path is a unique optimal path if and only if its preference polyhedron has a non-zero volume. See
Chapter 5 for a more thorough explanation of the concept. We do this in two steps. First, we show
that we can construct a graph with 2-dimensional costs with k optimal paths between s and t for any
k. Then, we show how to transform such a graph into a graph with 3-dimensional costs and k+ 1

optimal paths, such that one preference polyhedron has at least k facets.
Lemma 4.1
It is possible to construct a graph with 2-dimensional costs and k+ 1 optimal paths between two nodes
for arbitrary k.

Proof Let us assume that there are k+1 st-pathsπ0, π1, . . . , πk with cost vectors c (πi) :=
�

i2, (k− i)2
�

.
This could be easily realized with one-edge paths. A preference is in this case a tuple [1−α, α] with
0≤ α≤ 1.
For any 0≤ i < k we have c(πi)− c(πi+1) = [−2i − 1, 2(k− i)− 1]. With α= 2i+1

2k we get

[1−α, α]T (c(πi)− c(πi+1))

=
�

2(k− i)− 1
2k

,
2i + 1

2k

�T

[−2i − 1, 2(k− i)− 1]

=0

Hence, for 0< i < k the path πi is optimal for the range α ∈
�

2i−1
2k , 2i+1

2k

�

. Path π0 is optimal for the
range α ∈
�

0, 1
2k

�

and path πk is optimal for the range α ∈
�

2k−1
2k , 1
�

. □

Lemma 4.2
Given a 2-dimensional cost graph with k optimal paths between two nodes, one can construct a graph
with 3-dimensional costs and k+ 1 optimal paths where one path has a preference polyhedron with at
least k 1-dimensional facets for arbitrary k > 1.

Proof Let the k optimal paths be called π1 to πk. We refer to the j-th entry of cost vector c(πi) with
c(πi) j . Let x :=max1≤i≤k c(πi)1 + c(πi)2 be the maximum of the sums of the cost vectors.
We now introduce a third metric with a constant cost of 3x for each path. It is clear that each of

the k optimal paths is optimal for the preference α3 = [0, 0, 1]. Hence, each preference polyhedron
is now a triangle as shown in Figure 4.3a.

4.4 | Driving Preferences and Geometric Hitting Sets 79

(a) Before inserting new optimal path (b) After inserting new optimal path

Figure 4.3.: Example of preference polyhedra of optimal paths with the same source and target and
with equal cost in the third metric

Finally, we create a new optimal path πk+1 with the cost vector c(πk+1) := [2x , 2x , 2x]. This path
is clearly optimal for the preference α3. Since αT

3 (c(πk+1)− c(πi)) is strictly less than zero for each
1 ≤ i ≤ k the volume of the preference polyhedron of πk+1 is non-zero. Furthermore, restricted to
the first two metrics πk+1 is not optimal. This directly follows from the definition of x . Hence, the
preference polyhedron of πk+1 shares a constraint with each of the k other optimal paths as shown
in Figure 4.3b. □

The arguments of Lemmas 4.1 and 4.2 can be extended to arbitrary dimension. As we will see in
Chapter 5, the number of optimal st-paths is subexponential in the graph size. Therefore, it follows
that there are no preference polyhedra with exponential complexity.

4.5. Polynomial-Time Heuristics with Instance-based Lower Bounds

The previous section suggests that if we require worst-case polynomial running time, we have to
resort to approximation of some kind. Both, generation of the geometric hitting set instance as well
as solving of the instance might not be possible in polynomial time. We address both issues in this
section.

4.5.1. Approximate Instance Generation

It appears difficult to show polynomial bounds on the size of a single preference polyhedron, so
approximation with enforced bounded complexity seems a natural approach. There are well-known
techniques like coresets [AHV+05] that allow arbitrarily (specified by some ε) accurate approximation
of convex polyhedra in space polynomial in 1/ε (which is independent of the complexity of the original
polyhedron). We follow the coreset approach and also make use of the special provenance of the
polyhedron to be approximated.

For d metrics, our polyhedron lives in d − 1 dimensions, so we uniformly ε-sample the unit (d − 2)-
sphere using O((1/ε)d−2) samples. Each of the samples gives rise to an objective function vector
for our linear program, we solve each such LP instance to optimality. This determines O((1/ε)d−2)
extreme points of the polyhedron in equally distributed directions. Obviously, the convex hull of

80 4 | Clustering Trajectories by Preference

these extreme points is contained within and with decreasing ε converges towards the preference
polyhedron. Guarantees for the convergence in terms of ε have been proven before, but are not
necessary for our (practical) purposes. We call the convex hull of these extreme points the inner
approximation of the preference polyhedron.

What is interesting in our context is the fact that each extreme point is defined by d −1 half-spaces.
So we can also consider the set of half-spaces that define the computed extreme points and compute
their intersection. Clearly, this half-space intersection contains the preference polyhedron. We call
this the outer approximation of the preference polyhedron.
Let us illustrate our approach for a graph with d = 3 metrics, so the preference polyhedron lives

in the 2-dimensional plane, see the black polygon/polyhedron in Figure 4.2. Note that we do not
have an explicit representation of this polyhedron but can only probe it via LP optimization calls. To
obtain inner and outer approximation we determine the extreme points of this implicitly (via the
LP) given polyhedron, by using objective functions maxα1, maxα2,minα1, minα2. We obtain the four
solid red extreme points. Their convex hull (in yellow) constitutes the inner approximation of the
preference polyhedron. Each of the extreme points is defined by 2 constraints (halfplanes supporting
the two adjacent edges of the extreme points of the preference polyhedron). In Figure 4.2, these are
the light green, blue, dark green, and cyan pairs of constraints. The half-space intersection of these
constraints form the outer approximation in gray.

4.5.1.1. Sandwiching the Optimum Hitting Set Size

If – by whatever means – we are able to solve geometric hitting set instances optimally, our inner and
outer approximations of the preference polyhedra yield upper and lower bounds to the solution size
for the actual preference polyhedra. That is, if for example the optimum hitting set of the instance
derived from the inner approximations has size 23 and the optimum hitting set of the instance derived
from the outer approximations has size 17, we know that the optimum hitting set size of the actual
exact instance lies between 17 and 23. Furthermore, the solution for the instance based on the
inner approximations is also feasible for the actual exact instance. So in this case we would have an
instance-based (i.e., not apriori, but only aposteriori) approximation guarantee of 23/17≈ 1.35. If
for the application at hand this approximation guarantee is not sufficient, we can try improving by
refining the inner and outer approximations. In the limit, inner and outer approximations coincide
with the exact preference polyhedra.

4.5.2. Approximate Instance Solving

In this section, we discuss approximation algorithms to replace the ILP shown in Section 4.4.2, which
is not guaranteed to run in polynomial time.
The geometric objects to be hit are the preference polyhedra of the given set of paths, the hitter

candidates and which polyhedra they hit are computed via the geometric arrangement as described
in Section 4.4.3.

4.5.2.1. Naive Greedy Approach

The standard greedy approach for hitting set iteratively picks the hitter that hits most objects, which
have not been hit before. We call this algorithm Naive Greedy or short NG. It terminates as soon as all
objects have been hit. The approximation factor of this algorithm is O(log n), where n is the number

4.5 | Polynomial-Time Heuristics with Instance-based Lower Bounds 81

of objects to be hit, see [Joh74]. The information which preference hits which polyhedron comes
from the arrangement described in Section 4.4.3.
After computing the cover, NG iterates over the picked hitters and removes them if feasibility is

not violated. In this way the computed hitting set is guaranteed to be minimal (but not necessarily
minimum).

4.5.2.2. LP-guided Greedy Approach

While naive greedy performs quite well in practice, making use of a precomputed optimal solution to
the LP relaxation of the ILP formulation from Section 4.4.2 can improve the quality of the solution.
We call this algorithm LP Greedy or LPG. It starts with an empty set S∗ and iterates over a random
permutation of the cover constraints of the LP. Note that each of these constraints Ci corresponds to a
preference polyhedron Pi .

At each constraint Ci LPG checks if Pi is hit by at least one preference in S∗. If not, one of its hitters
is randomly picked based on the weights of the LP solution and added to S∗. To be more precise, the
probability of a hitter α to be drawn is equal to its weight divided by the sum of the weights of all
hitters of Pi .

After iterating over all constraints it is clear that S∗ is a feasible solution. Finally, LPG iterates over
S∗ in random order removing elements if feasibility is not violated. This ensures that S∗ is minimal.
This process is repeated several times and the best solution is returned.

4.6. Experimental Results

In this section, we assess how real-world relevant the theoretical challenges of polyhedron complex-
ity and NP-hardness of the GHS problem are, and compare exact solutions to our approximation
approaches.

4.6.1. Experimental Setup

We run our experiments on a server with two intel Xeon E5-2630 v2 running Ubuntu Linux 20.04
with 378GB of RAM. The running times reported are wall clock times in seconds. Some parts of
our implementation make use of all 24 CPU threads. We cover two different scenarios by extracting
different graphs from OpenStreetMap of the German state of Baden-Württemberg. This first graph is
a road network with the cost types distance, travel time for cars and travel time for trucks. It contains
about 4M nodes and 9M edges. The second graph represents a network for cyclists with the cost types
distance, height ascent, and unsuitability for biking. The latter metric was created based on the road
type (big road⇒ very unsuitable) and bicycle path tagging. The cycling graph has a size of more than
double of the road graph with about 11M nodes and 23M edges. The Dijkstra separation oracle was
accelerated using a precomputed personalized contraction hierarchy. For the Sections 4.6.3 to 4.6.5,
we used a set of 50 preferences chosen u.a.r. per instance and created different quantities of paths
with those preferences. We therefore know an apriori upper bound for the size of the optimal hitting
set for our instances. In Section 4.6.6, we show that the number of preferences used does not change
the characteristics of our approaches.

82 4 | Clustering Trajectories by Preference

4.6.2. Implementation Details

Our implementation consists of multiple parts. The routing and the computation of the (approximate)
preference polyhedra of paths is implemented in the rust programming language (compiled with rustc
version 1.51) and uses GLPK [And12] (version 4.65) as a library for solving LPs. We intentionally
refrained from using non-opensource solutions like CPLEX or GUROBI, as they might not be accessible
to everyone. The preference polyhedra are processed in a C++ implementation (compiled with
g++ version 10.2) which uses the CGAL library [The20; WBF+20] (version 5.0.3) to compute
the arrangements with exact arithmetic and output the hitting set instances. We transform the
hitting set instances into the ILP formulation from Section 4.4.2 and solve this ILP formulation
and its LP relaxation with GLPK. Finally, we implemented the two greedy algorithms described
in Sections 4.5.2.1 and 4.5.2.2 which solve the hitting set instances in C++. Source code and data
under https://doi.org/10.17605/osf.io/4qkuv.

4.6.3. Geometric Hitting Set Instance Generation

First, we assess the generation of the GHS instances via preference polyhedra construction and
computation of the geometric arrangement. In our tables, we refer to the corner cutting approach as
“exact” and the approximate approach as “inner-k”/ “outer-k” where k is the number of directions
that were approximated. Since the hitter candidates from the geometric arrangement contain a lot of
redundancies (which slows down in particular the (I)LP solving), e.g., some hitters being dominated
by others, we prune the resulting candidate set in a straightforward set minimization routine. The
preference polyhedra construction as well as the set minimization routine are the multithreaded
parts of our implementation. Table 4.1 shows run times and the average polyhedron complexity for a
problem instance with 10,000 paths. In this instance, approximating in twelve directions takes more
time than the exact calculation with CCA. This is due the polyhedron complexity being very low in
practice. It shows that CCA is a valid approach in practice. Set minimizing is particularly expensive
for the inner approximations since considerably more candidates are not dominated.

Table 4.1.: Statistics about instance generation: average number of polyhedron corners, polyhedra
construction time (multithreaded), construction time for arrangement, time for set mini-
mization (multithreaded). Car graph with 10,000 paths. Time in seconds.

Algo. Polyh. Polyh. Arr. SetMin
Compl Time Time Time

Inner-12 3.8 70.6 352.3 1450.0
Exact 4.7 54.9 356.7 414.8
Outer-12 4.5 70.6 361.4 473.0

4.6.4. Geometric Hitting Set Solving

We now compare the two greedy approaches from Section 4.5.2 with the ILP formulation of Sec-
tion 4.4.2. For the ILP solver, we set a time limit of 1 hour after which the computation was aborted
and the best found solution (if any) was reported. The results for two instances on the bicycle graph
are shown in Table 4.3. The naive greedy approach has by far the smallest run time but it also reports
worse results than the LP-based greedy which was able to find the optimal solution for exact and
outer approximations of the two instances. The ILP solver always reports the optimal solution but it

4.6 | Experimental Results 83

https://doi.org/10.17605/osf.io/4qkuv

Table 4.2.: Instance generation and solving for various polyhera approximations. Car graph with
1,000 paths. Time in seconds.

Algo. Polyh. Arr. ILP ILP
Time Time Sol. Time

Inner-4 6.7 4.4 110 >3600
Inner-8 8.4 5.5 50 >3600
Inner-16 11.3 4.8 45 15.5
Inner-32 16.5 5.0 42 3.7
Inner-64 26.9 4.9 39 1.8
Inner-128 48.8 5.0 36 2.3
Exact 6.5 5.2 36 0.7
Outer-128 48.8 5.1 36 0.8
Outer-64 26.9 5.1 36 0.8
Outer-32 16.5 5.0 36 0.6
Outer-16 11.3 5.2 36 1.8
Outer-8 8.4 5.0 36 1.6
Outer-4 6.7 5.9 35 11.5

might take a very long time to do so. Especially, the inner approximations seem to yield hard GHS
instances before they converge to the exact problem instance. A state of art commercial ILP solver
might improve run time drastically.

Table 4.3.: Comparison of GHS solving algorithms on two instances on the bicycle graph. The times
(given in seconds) for the LP-Greedy and ILP algorithm include solving the LP-relaxation
first.

Algorithm Paths Greedy Greedy LP-Greedy LP-Greedy ILP ILP
Solution Time Solution Time Solution Time

Inner-12 5000 210 4.2 181 40.8 - >3600.0
Exact 5000 54 2.9 48 24.8 48 68.4
Outer-12 5000 57 3.1 48 30.5 48 95.5
Inner-12 10000 421 10.9 399 144.6 - >3600.0
Exact 10000 58 7.6 50 73.5 50 188.9
Outer-12 10000 59 8.1 50 81.1 50 114.6

4.6.5. Varying Polyhedron Approximation

In Table 4.2 we show that increasing the number of directions in the approximation approach makes
its results converge to the exact approach. Interestingly, the outer approximation converges faster
than the inner approximation. It typically yields good lower bounds already for four approximation
directions and higher. In Table 4.2 it yields a tight lower bound for eight directions while the inner
approximation only achieves a tight upper bound with 128 directions.

4.6.6. Dependence on the number of preferences

So far, we have only considered PTC problem instances that were derived from 50 initial preferences.
To ensure that the fixed number of preferences does not bias our results, we also ran instances

84 4 | Clustering Trajectories by Preference

generated with 10, 20, 100 and 1000 preferences. Tables 4.4 and 4.5 hold the results for instances
with 1,000 paths on both graphs. As expected, we found larger optimal solutions as the number
of preferences increased. Although, the solution size did increase only to 53 and 177 for the car
and bicycle graph, respectively. We attribute this to the probably bounded inherent complexity of
the graphs and cost types used. We also note a slight increase in ILP run times with spikes when
computing the solution to the inner approximation as discussed in Section 4.6.4. Otherwise, there is
no performance difference.

Table 4.4.: Run times and optimal solution of instances generated with varying number of preferences.
The instances each consist of 1.000 paths on the car graph.

Algorithm α Polygon Arrangement Set Minimization ILP ILP
Time Time Time Solution Time

Inner-8 10 7.9 4.8 1.2 23 6.5
Exact 10 5.9 4.5 0.4 10 0.3
Outer-8 10 7.9 4.4 0.4 10 0.2
Inner-8 20 7.8 7.7 2.8 28 96.6
Exact 20 5.2 6.0 0.6 17 0.8
Outer-8 20 7.8 6.1 0.6 17 0.8
Inner-8 100 8.3 5.5 1.7 57 3601.0
Exact 100 6.3 5.8 0.6 49 23.1
Outer-8 100 8.3 5.6 0.6 49 21.1
Inner-8 1000 8.0 5.7 2.1 61 1166.5
Exact 1000 5.9 5.3 0.5 53 2.1
Outer-8 1000 8.0 5.2 0.5 53 21.9

Table 4.5.: Run times and optimal solution of instances generated with varying number of preferences.
The instances each consist of 1.000 paths on the bicycle graph.

Algorithm α Polygon Arrangement Set Minimization ILP ILP
Time Time Time Solution Time

Inner-8 10 47.9 3.0 0.6 45 0.9
Exact 10 57.9 2.9 0.4 10 0.1
Outer-8 10 47.9 3.0 0.5 10 0.1
Inner-8 20 42.4 2.9 0.7 69 3600.0
Exact 20 47.7 3.1 0.5 20 0.3
Outer-8 20 42.4 3.1 0.6 20 0.3
Inner-8 100 43.8 2.0 0.3 125 398.3
Exact 100 50.1 2.1 0.2 85 0.2
Outer-8 100 43.8 2.1 0.3 83 0.3
Inner-8 1000 43.9 2.0 0.4 193 1.2
Exact 1000 49.0 2.2 0.3 177 1.6
Outer-8 1000 43.9 2.2 0.3 177 3.7

4.6 | Experimental Results 85

4.7. Conclusions

We have exhibited an example for a real-world application where theoretical complexities and hardness
do not prevent the computation of optimal results even for non-toy problem instances. The presented
method allows the analysis of large trajectory sets as they are, for example, collected within the
OpenStreetMap project. Our results suggest that exact solutions are computable in practice, even
more so if commercial ILP solvers like CPLEX or GUROBI are employed. An open problem is to find
an explanation for the observed average preference polyhedra complexity, which is surprisingly low.
On a more abstract level, our approach of approximating the hitting set problem with increasing
precision by refining the inner and outer approximations until an optimal solution can be guaranteed
could also be viewed as an extension of the framework of structural filtering ([FMN05]), where the
high-level idea is to certify exactness of possibly error-prone calculations. It could be interesting to
apply this not only to the instance generation step but simultaneously also to the hitting set solution
process.

86 4 | Clustering Trajectories by Preference

Part III.

Theoretical analysis of Personalized Paths

87

Ch
ap

te
r 5

Upper Bounding the number of
personalized Paths

5.1. Introduction

This chapter is based on joint work with Stefan Funke and Claudius Proissl. It was presented in the
38th European Workshop on Computational Geometry and is pending publication. I made secondary
contributions to Section 5.3.3 and contributed to the rest of the chapter.
In this chapter, we consider the question how many optimal paths can exist in the personalized

route planning model. As we have shown in the previous chapters, our implementations based on the
model perform well in practice. Here, we want to focus on better understanding the theory behind
the model. Having an upper bound on the number of unique optimal paths would make it possible
to better analyze algorithms that work with the model and differentiate it from other settings like
Pareto-optimal paths.

Complexity-wise there can be quite a huge gap between optimizing over all Pareto-optimal paths
or only over unique shortest paths. For example, in the resource-constrained shortest path problem
in 2-metric graphs, one is interested in finding the st-path minimizing the first metric but having the
second metric (the resource) below some limit R. In general – considering all Pareto-optimal solutions
– this problem is NP-hard via reduction from knapsack, see [HZ80], while restricting to unique shortest
paths, polynomial running-time has been achieved, e.g., see [MZ00]. While the number of paths in
both models is not the only factor for this complexity difference, it seems somewhat expectable that
a lot more Pareto-optimal paths than unique shortest paths exist. It remains to prove a substantial
gap between the number of Pareto-optimal and unique shortest paths. This chapter sheds some light
on this question and proves that there is indeed a gap.
For fixed dimension d it is possible to enumerate all unique shortest st-paths in polynomial time

(polynomial in the output size) using the exploration technique shown in Chapter 2. Thus, the
mentioned gap between the number of Pareto-optimal and unique shortest paths is not only of
theoretical interests but can also be leveraged in practice.

89

5.1.1. Related Work

The fact that the number of Pareto-optimal paths can be exponential in the graph size can be considered
folklore. Both, Pareto-optimal paths as well as unique shortest paths have been instrumented to
create alternative route recommendations. The former approach, pursued e.g., in [DW09; KRS10;
MW06], unfortunately only seems to be viable on rather small graphs due to the too rapidly growing
number of Pareto-optimal paths. Restricting to unique shortest paths, though, as in [FS15], has been
shown to be feasible in different practical applications [BFP21; BFS19].
Very much related to Pareto-optimal paths are the maxima of a point set. In a set of n vectors

(points) in d-space, a vector is called maximal if there is no other vector which has a strictly greater
value in every component. Maxima (like the convex hull) can be understood as a characterization of
the boundary of a point set and have also been instrumental in the analysis of dynamic programming
algorithms, see [BKST78]. In the same paper, the authors show that the expected number of maxima
of an n-vector set is O((ln n)d−1) if the vector set is drawn from a distribution with component-wise
independence, e.g., uniformly at random from a hypercube. On the other hand, the expected number
of vertices of the convex hull from such a vector set is also O((ln n)d−1). In [Dwy88] it is shown that
this upper bound is tight in many cases. So in this random setting, there is in fact no substantial gap
between the number of maximal points and the number of extreme points of the convex hull.

Gusfield [Gus80] has shown an upper bound of nlog n+O(1) on the number of optimal paths for d = 2.
We adapted his proof for arbitrary d and describe it in more detail in Section 5.3.3. This d = 2 bound
can also be derived from the work of Gajjar and Radhakrishnan [GR19] on a bound of n(log n)2+O(log n)

for d = 3. Their proof relies on the relation between the representation of personalized paths in the
cost space with Minkowski sums as well as Euler’s polyhedral formula. Specifically, given vertices
s, v, t ∈ V the convex hull (in cost space) of all st-paths bisected by v can be obtained by computing
the Minkowski sum of the convex hulls of all sv-paths and all vt-paths. Euler’s formula allows to put
the number of different dimensional faces created by the Minkowski sum into relation and give a
strong bound on the 0-dimensional faces in cost space which correspond to unique optimal paths in
the graph. Unfortunately, there is no equivalent for Euler’s formula in d > 3.

5.1.2. Our contribution

In this chapter we show that while there are graphs with an exponential number of Pareto-optimal
(and shortest) paths (even for d = 2), the number of unique shortest paths is in O(n2d

p
n+d+1), which is

subexponential for fixed d. On the other hand we construct d-metric graphs with Ω(nd−1) unique
shortest paths.

5.2. Preliminaries

In this section we introduce the notions used in Section 5.3 and show some basic properties.
Definition 5.1
The set of all possible preferences

Pd := {(α1, α2, . . . , αd) ∈ Rd
+ |

d
∑

i=1

αi = 1}

90 5 | Upper Bounding the number of personalized Paths

is called d-metric preference space.

We simply write P instead of Pd if the dimension is unimportant. Note that a d-metric preference
space is a (d − 1)-dimensional simplex. We say that a preference α ∈ Pd is degenerate if it contains
zeros (recall that all preference entries are non-negative). The following simple lemma draws a
connection between shortest paths and Pareto-optimal paths.
Lemma 5.2
A shortest path is Pareto-optimal if it is optimal for a non-degenerate preference α.

Proof Assume we find a shortest path π that is optimal for a non-degenerate α but that is not a
Pareto-optimal path. By definition of Pareto-optimality one then finds another path π′ with the cost
vector c(π′) being less or equal to c(π) in every dimension and being strictly less in at least one
dimension. Hence, c(π, α)> c(π′, α), which is a contradiction to π being optimal for α. □

Definition 5.3
Given a graph G(V, E) and a path π in G. The set A(π) := {α ∈ P | π is optimal for α} is called the
preference polyhedron of π.

The following lemma justifies the chosen term preference polyhedron.
Lemma 5.4
Given a graph G(V, E). For any path π in G, the preference polyhedron A(π) is convex and closed.

Proof Closure follows from the continuity of the aggregated cost. Regarding convexity, consider a
path π that is optimal for k ∈ N preferences α(1), α(2), . . . , α(k) and consider any convex combination
β :=
∑k

i=1 γiα
(i) of the preferences induced by a vector γ ∈ [0, 1]k with

∑

γi = 1. We claim that π is
also optimal for preference choice β . The cost of π with preference β can be written as

c(π,β) = γ1c(π,α(1)) + · · ·+ γkc(π,α(k))

Assume there is a path π′ with c(π′,β) < c(π,β). But then, since π is optimal for each preference
α(i), we know that for every summand we have γic(π,α(i))≤ γic(π′,α(i)), which is a contradiction to
our assumption c(π′,β)< c(π,β). Thus, π is also optimal for any such β and A(π) is convex. □

Lemma 5.5
Given a graph G(V, E). A path π in G is a unique shortest path if and only if A(π) has non-zero volume.

Proof Given a shortest path π(s, t). If π is a unique shortest path we find a preference α such that
c(π, α) is strictly less than the aggregated cost of all other st-paths. Since the aggregated cost is
continuous regarding the preference α we can find an ε > 0 such that the sphere with radius ε and
midpoint α is contained in A(π).
On the other hand, if A(π) has non zero volume, one can find a sphere within A(π) that does not

touch the boundary of A(π). Obviously, for any preference in this sphere π is the unique shortest
st-path. □

5.2 | Preliminaries 91

Figure 5.1.: Example preference space subdivision from a real world street network for bicyclists
in Baden-Württemberg, Germany. The graph has the cost types unsuitability for bikes,
distance and ascent. Each cell in the subdivision is convex and corresponds to a unique
shortest path π. We call such a cell preference polyhedron A(π). The framing triangle is
the preference space P3. Each corner of the triangle corresponds to a preference where
only one metric has a non-zero weight (and therefore weight 1).

Definition 5.6
Given a graph G(V, E) and two nodes s and t in V . The set

A(s, t) := {A(π(s, t)) | π is a unique shortest path}

is called the preference space subdivision from s to t.

From Lemma 5.5 and the fact that preference polyhedra are closed it is clear that ∪A∈A(s, t)A= P.
It follows that for any preference α one can find a unique shortest path that is optimal for α. This
cover property makes it especially interesting to find bounds on the number of unique shortest paths.
Figure 5.1 shows an example of a preference space subdivision. It was created using the Corner
Cutting Approach in Chapter 4 with a real-world street network for bicyclists. The source and target
node were randomly chosen.

92 5 | Upper Bounding the number of personalized Paths

5.3. Bounds on the Number of Shortest Paths

In this section we investigate upper and lower bounds on the number of shortest paths and unique
shortest paths. Since each shortest path is also Pareto-optimal, we implicitly obtain results for Pareto-
optimal paths as well. We start with the definition of a graph family we call multi-edge path graph or
simply path graph.

5.3.1. Multi-edge Path Graphs
Definition 5.7
A multi-edge path graph is a directed graph G(V, E) with V := {v1, v2, . . . , vn} and the property e :=
(vi , v j) ∈ E⇒ j = i + 1. Multiple edges between the same pair of nodes are allowed.

Figure 5.2 shows an example path graph. The nodes of a path graph G form a line and each node
can only have outgoing edges to its immediate right neighbor. This property makes the path graph
especially easy to analyze. Note that if the number of edges between two nodes is O(1), it is easy
to transform this graph into an equivalent (non-path) graph without parallel edges but still O(|V |)
nodes and O(|E|) edges.

Figure 5.2.: Example path graph

It is a well known result that there can be exponentially many shortest paths with respect to the
graph size (see, for instance, [Han79]). Nonetheless, for the sake of completeness we give a proof of
the following lemma.
Lemma 5.8
There are 2-metric path graphs with n nodes and 2n − 2 edges that have Θ(2n) shortest paths with
different cost vectors between v1 and vn. The same bound holds for Pareto-optimal paths.

Proof We consider a path graph G with n nodes and two outgoing edges at each node except the last
one vn (which, by definition, cannot have outgoing edges) and some arbitrary M > 0. For each of the
2n−2 edges we choose some rational value z ∈ [0, M] uniformly at random and set its 2-dimensional
cost vector to (z, M − z). Clearly, for any path π of the 2n−1 st-paths in this graph, the sum of the
aggregated costs is c(π)1 + c(π)2 = M(n− 1). Yet, with probability zero two of them have the same
cost vector. For preference α= (0.5,0.5) each one of these paths is optimal and, thus, Pareto-optimal
(see Lemma 5.2). The statement follows. □

See Figure 5.3 for a path graph illustrating the previous Lemma together with the respective
configuration in the cost space.

5.3.2. Preference Spaces of multi-edge Path Graphs

In the following, we will show that unique shortest paths behave quite differently. While there can be
exponentially many Pareto-optimal or shortest paths in path graphs with only 2-metrics according to
Lemma 5.8, we show that in a d-metric path graph with n nodes and maximum node (out)degree ∆

5.3 | Bounds on the Number of Shortest Paths 93

tvus
(8,0)

(0,8)

(4,4)

(6,2)

(8,0)

(7,1)

4 8 12 16 20 24

4

8

12

16

Figure 5.3.: Illustration of Lemma 5.8 for M = 8. Each path from s to t in the path graph corresponds
to a distinct point on the line y = 24− x in the cost space on the right. They are all
optimal for αT = (0.5, 0.5). Only (11,13) (e.g., for αT = (1, 0)) and (22, 2) (e.g., for
αT = (0,1)) are unique shortest.

there are O(
�

n∆2
�d−1
) unique shortest paths between v1 and vn. This upper bound is exponential in

the dimension but polynomial if the dimension is fixed.
The upper bound proof will essentially bound the complexity of the preference space subdivision

for a path graph. In the following we will use our definition of a preference polyhedron (Definition
5.3) also for the base case of a path formed by a single edge e = (v, w). Here A(e) describes the
choices of α for which e is optimal when compared to other potential paths/edges between v and w.
Lemma 5.9
Given a path graph G(V, E) and a path π in G. Then for the preference polyhedron A(π) we have

A(π) =
⋂

e∈π
A(e).

Proof Let α be any preference in A(π(s, t)). This always implies that each subpath of π is optimal
for α as well. Hence, α ∈

⋂

e∈π A(e). We now assume that
�⋂

e∈π A(e)
�

\A(π) is not empty and let α̃ be
a preference in it. Hence, we have that each edge in π is optimal for α̃ but not the complete path π.
Let π̃ be the shortest path from s to t with respect to α̃. As G is a path graph, the edges in π and π̃
connect the same nodes. Therefore, since all edges in π and π̃ are optimal for α̃, it holds

c(π, α̃)− c(π̃, α̃) = 0,

which is a contradiction. □

Lemma 5.9 implies that in a path graph G we obtain the preference space subdivision A(v1, vn) by
computing the overlay of A(v1, v2), A(v2, v3) and so forth until A(vn−1, vn) as illustrated in Figure
5.4. It is easy to see that this property does not hold for general graphs. If we add an edge from v1 to
v3 that forms an unique optimal path π∗, it will not affect A(v1, v2) and A(v2, v3), but A(π∗) will be
part of A(v1, v3). This property of path graphs is the main ingredient to the proof of Lemma 5.10,
which bounds the number of unique shortest paths by bounding the complexity of the preference
space subdivision.

94 5 | Upper Bounding the number of personalized Paths

v3v2v1

(4/7/50)

(5/5/50)

(7/4/50)

(7/50/4)

(5/50/5)

(4/50/7)

(a) Example path graph with 9 unique shortest paths

(b) A(v1, v2) (c) A(v2, v3) (d) A(v1, v3)

Figure 5.4.: Example of a path graph preference subdivision. The preference space subdivision
A(v1, v3) is the intersection of A(v1, v2) and A(v2, v3).

Lemma 5.10
Given a d-metric path graph G(V, E). There are O

�

�

n∆2
�d−1� unique shortest paths between any two

nodes in G, where ∆ is the maximum node (out)degree in G.

Proof We first consider two consecutive nodes vi and vi+1 and their preference space subdivision
A(vi , vi+1). For each pair of edges e1, e2 from vi to vi+1 there is a hyperplane

H(e1, e2) := {α ∈ Pd | c(e1,α)− c(e2,α) = 0}.

All boundaries of preference polyhedra in A(vi , vi+1) are supported by such hyperplanes. Since there
are O(∆2) edge pairs from vi to vi+1, the preference polyhedra in A(vi , vi+1) are separated by O(∆2)
hyperplanes. From Lemma 5.9 it follows that the preference space subdivision A(v1, vn) is the overlay
ofA(v1, v2), A(v2, v3), . . . , A(vn−1, vn). Therefore, the preference polyhedra inA(v1, vn) are separated
by O(n∆2) hyperplanes. Considering A(v1, vn) as an arrangement with O(n∆2) hyperplanes it follows
that there are O(

�

n∆2
�d−1
) cells or preference polyhedra in A(v1, vn) (recall that the preference space

Pd is (d − 1)-dimensional). □

Interestingly, a similar result can be found in [GS93] regarding the complexity of the Minkowski sum
of convex polytopes. Given a path graph G(V, E) with n nodes, the Minkowski sum C := ⊕n

i=1Ei , where
Ei is the set of cost vectors of the edges from node vi to node vi+1, is equal to the set of cost vectors
of all possible paths from v1 to vn. Chapter 2 shows that the cost vector of a unique shortest path π
is a vertex of the convex hull of C . Thus, the complexity of the convex hull of C is an upper bound
of |A(v1, vn)|. In [GS93] it is shown that having n d-dimensional convex polytopes P1, P2, . . . , Pn

with at most ∆ vertices each, then the convex hull of ⊕i Pi has O(nd−1∆2d−2) vertices, which is the
same upper bound as in Lemma 5.10. On the other hand, in Lemma 5.8 we show that there can be

5.3 | Bounds on the Number of Shortest Paths 95

exponentially many shortest paths between v1 and vn all with distinct cost vectors. Hence, while |C |
can be exponential in n, the convex hull of C is polynomial in n for fixed d.
We show that the upper bound in Lemma 5.10 is tight up to the factor ∆2d−2. We show this by

essentially constructing an arbitrary arrangement of n hyperplanes within the preference space.
Let us consider a path graph G(V, E) with n nodes and two outgoing edges at each node except

the end node. Thus, we have exactly one edge pair per consecutive pair of nodes and therefore
also one hyperplane. The task is now to choose the edge costs in a way to maximize the number of
preference polyhedra in A(v1, vn). It is well known that in general position n hyperplanes in d − 1

dimensions induce an arrangement with Θ(nd−1) cells. Our first step to use this result is to show that
with two edges we can create any hyperplane. We do that via the halfspaces that are induced by
such hyperplanes.
Lemma 5.11
For any halfspace h ⊂ Rd−1 with h ∩Pd ̸= ;, there exist a path graph with two nodes, two edges and
respective edge cost vectors such that A(e1) ⊂ h and A(e2)∩ h= ;.

Proof The inequality c(e1,α)≤ c(e2,α) holds for all α ∈ A(e1). We rewrite it as
∑d

i αi ·(c(e1)i−c(e2)i)≤
0. By setting αd = 1−

∑d−1
i αi , we get the halfspace in Pd . It describes a (d−1)-dimensional halfspace of

the form
∑

i αi ·ai ≤ b, where the factors are ai = c(e1)i−c(e2)i−c(e1)d+c(e2)d and b = c(e2)d−c(e1)d .
Clearly, we can choose cost vectors for e1 and e2 that form any ai and b. □

All that remains is to show that having n hyperplanes there is an arrangement with Ω(nd−1) cells
within the preference space. Recall that the preference space is a (d − 1)-dimensional simplex.
Theorem 5.12
There are d-metric path graphs with n nodes, 2n− 2 edges and Θ

�

nd−1
�

unique shortest paths between
two nodes.

Proof We know that in general position (d − 1)-dimensional arrangements with n hyperplanes
have Θ
�

nd−1
�

cells. From Lemma 5.11 we know that we can translate any arrangement within the
preference space into a path graph with two outgoing edges per node. We need one node and two
edges per hyperplane (plus one end node). All that remains is to show that there are arrangements
with Θ
�

nd−1
�

cells within the preference space. Since the preference space Pd is a (d−1)-dimensional
simplex we can place a (d−1)-dimensional sphere in it with positive volume. Having any arrangement
with n hyperplanes and Θ

�

nd−1
�

vertices we can scale it down such that all vertices of the arrangement
fit into this sphere. Clearly, with this new arrangement we still have n hyperplanes and Θ

�

nd−1
�

cells
in the preference space. □

So path graphs seem to be somewhat well understood in terms of the number of Pareto-optimal
and unique shortest paths. While for the former, we easily obtain an exponential (in n) number, for
the latter we have essentially tight upper and lower bounds for constant outdegree. The number of
unique shortest paths is polynomial for fixed d with an exponential dependency on d.

5.3.3. Bounds for General Graphs

Let us now consider general graphs and aim for upper bounds. In this, we follow the approach
of [Gus80], but do not restrict our proof to d = 2. Since most graphs do not contain multi-edges, we

96 5 | Upper Bounding the number of personalized Paths

restrict our considerations to this case. First, we introduce the family of layered graphs. We then
show that using the bounds on the path graph we get subexponential bounds in the graph size for
this family as well and extend those bounds to general multi-metric graphs.

5.3.3.1. Layered Graphs
Definition 5.13
A layered graph L(V, E, r, c) is a graph without multi-edges that is partitioned into r disjoint node sets
V1, V2, . . . , Vr with c nodes each such that any edge (v, u) ∈ E connects nodes of consecutive node sets
(also called layers of L), i.e., there is an index i with v ∈ Vi and u ∈ Vi+1.

See Figure 5.5 for an example layered graph. The layered graph is similar to the path graph in the
sense that the edges point only in one direction and connect two consecutive rows. In fact, a path
graph without multi-edges is a layered graph with one column. However as we show in this section,
the layered graph is more powerful in terms of generalization.

Figure 5.5.: Similar to the path graph, in the layered graph only consecutive rows are connected.
Example layered graph with c = 3 and r = 5.

Lemma 5.14
Given a d-metric layered graph L(V, E, r, c). There are O(rd c2d

p
r) unique shortest paths between a node

in the first and a node in the last layer of L.

Proof Let T (r, c) be the maximum possible number of unique shortest paths between a node v1

of the first layer and a node vr of the last layer of any layered graph L(V, E, r, c). Our approach to
find an upper bound for T is to decompose L into path graphs and to use Lemma 5.10 for each of
them. It is clear that for two numbers r1 < r2 and a fixed number c it holds T (r1, c)≤ T (r2, c). Let
r0 = 1< r1 < · · ·< rk = r be k+ 1 layers of the graph L with ri − ri−1 ≤ ⌈

r
k ⌉ for each 1≤ i ≤ k. Thus,

from a node vri−1
in layer ri−1 to a node vri

in layer ri there are at most T
�

⌈ r
k ⌉+ 1, c
�

unique shortest
paths. We remove all layers that do not belong to the k+1 chosen layers and connect the k+1 layers
with the unique shortest paths between consecutive layers (see Figure 5.6 for an illustration). In that
way, all unique shortest paths between the first and the last layer are preserved. In the new graph
there are ck−1 node sequences to reach vr from v1. Each node sequence can be considered as a path
graph with k+ 1 nodes and maximum node degree ∆≤ T

�

⌈ r
k ⌉+ 1, c
�

. Hence, with Lemma 5.10 we
get

T (r, c) ∈ O

�

ck−1
�

k · T
�
 r

k

£

+ 1, c
�2�d−1�

.

5.3 | Bounds on the Number of Shortest Paths 97

Figure 5.6.: Example layered graph with two skipped layers. Consecutive remaining layers are
connected with one edge per unique shortest path in the graph without skipped layers in
order to preserve all unique shortest paths from the first to the last layer.

Setting k = ⌈
p

r⌉ we get

T (r, c) ∈ O
�

c⌈
p

r⌉−1
�

⌈
p

r⌉ · T
�

⌈
p

r⌉+ 1, c
�2�d−1�

⇒ T (r, c) ∈ O
�

c
p

r · r
d−1

2 · T
�

⌈
p

r⌉+ 1, c
�2(d−1)�

.

A trivial upper bound for T (r, c) is c r−2 as this is the number of all possible paths. Thus, with
T (⌈
p

r⌉+ 1, c)≤ c
p

r it follows

T (r, c) ∈ O
�

c
p

r · r
d−1

2 · c2(d−1)
p

r
�

⇒ T (r, c) ∈ O
�

rd c2d
p

r
�

. □

5.3.3.2. Extending Upper Bounds to general Graphs

To be able to generalize our results from the previous section, we first show how to represent any
graph without multi-edges as a layered graph without loosing unique shortest paths in the process.
Then we use this representation to derive general bounds.
Definition 5.15
Given any graph G(V, E) with n nodes, m edges and without multi-edges. The layered graph L of G has
n rows and n columns. Each row of L consists of one copy of V and there is one copy of E between each
two consecutive rows. Each edge points from one row to the next while the end nodes are the same as in
G. Hence, L has n2 nodes and (n− 1) ·m edges. For a node vi ∈ V we write vi,r for its copy in the r-th
row of L.

See Figure 5.7a and Figure 5.7b for an example. The following Lemma allows us to focus on
layered graphs regarding general upper bounds.
Lemma 5.16
Given a graph G(V, E) without multi-edges and its layered graph L. Then for any two nodes vi , v j ∈ V it
holds

|A(vi , v j)| ≤
n
∑

r=1

|A(vi, 1, v j, r)|.

98 5 | Upper Bounding the number of personalized Paths

v1v2

v3

(a) Example graph G(V, E) with n= 3 nodes and 4
edges

v1,1 v2,1 v3,1

v1,2 v2,2 v3,2

v1,3 v2,3 v3,3

(b) The layered graph L of G has n rows, one copy
of V per row and one copy of E between each
two consecutive rows.

Figure 5.7.: Figures 5.7a and 5.7b show an example how a general graph G is translated into a
layered graph L.

Proof Any unique shortest path π(vi , v j) in G consists of at most n− 1 edges. Hence, we can map all
unique shortest paths π of G injectively to L by starting in the first row and by following the copies of
π’s edges in L. Thus, if π has k−1 edges, we stop in row k. Let π′(vi,1, v j,k) be the path in L obtained
in this way from π. We now show that for any preference α ∈ A(π) it holds α ∈ A(π′) and, thus, that
π′ is a unique shortest path in L. Let us assume that there is a preference α ∈ A(π) that is not in A(π′).
Then we can find another path π′′(vi,1, v j,k) in L that is optimal for α. However, since there is a path
in G from vi to v j with the same cost vector as π′′ this is a contradiction to π being optimal for α. □

Theorem 5.17
In any d-metric graph G(V, E) with n nodes there are O(n2d

p
n+d+1) unique shortest paths between any

two nodes.

Proof Let L be the layered graph of G. Recall that L has n rows and columns. Let vi , v j ∈ V . From
Lemma 5.14 we know that for any row r there are O

�

n2d
p

n+d
�

unique shortest paths between vi,1

and v j,r . With Lemma 5.16 it follows that there are O
�

n2d
p

n+d+1
�

unique shortest paths between vi

and v j in G. □

So we obtain an upper bound for unique shortest paths significantly below the lower bound for
shortest paths in general (see Lemma 5.8), hence establishing a significant gap.

5.4. Conclusion

In this chapter we gave upper and lower bounds on the maximum number of ‘optimal’ paths in
multicriteria networks. In case of Pareto-optimality, it is well known that exponentially (in the number
of nodes) many optimal paths exist. We show that for a commonly used model of linear aggregation
(very popular, e.g., for personalized route planning) the number of optimal paths is subexponential
in the graph size, yet possibly exponential in the number of criteria. To this end, we utilized two
graph families, the path and layered graphs, first proving bounds for these graph families and then
extending the bounds to general graphs. Our arguments are highly dependend on a geometric view
on the set of all possible preferences, in particular the complexity of a respective decomposition.

5.4 | Conclusion 99

We suspect, though, that for general graphs, our upper bound is still too pessimistic, in particular
since in practice, it is often possible to actually enumerate all ‘optimal’ paths in personalized route
planning contexts. One might also try to identify additional properties of the network that allow for
stronger upper bounds. On a technical level, we have a feeling that the structure of the preference
space for path graphs is rather well understood, yet for general graphs, it is still somewhat unclear,
whether it can also be modeled in a compositional way.

100 5 | Upper Bounding the number of personalized Paths

Ch
ap

te
r 6

Discussion

6.1. Conclusion

Throughout this work, we have showcased three different practical application of the personalized
route planning model. Namely, finding alternative routes, identifying intermediate destinations
and clustering trajectories by preference. In Chapter 2 we presented an algorithm that enumerates
personalized routes. Even after filtering to avoid too much overlap between the routes, our algorithm
can produce a large number of alternative routes that also fulfilled our expectation in a qualitative
assessment. In contrast to most previous approaches, these routes do not rely on heuristics but are
still optimal routes as defined by our model. Also, we refined our algorithm to efficiently skip many
routes that are to expensive in important metrics as defined by the user achieving significant speed up
depending on the parameters and improving our result quality. The final contribution of the chapter
is a general ‘invented’ metric that serves to diversify alternative routes in case the natural metrics for
the use case are too similar.
Chapter 3 contains a trajectory segmentation approach which aims to discover intermediate

destinations in trajectories. We assumed that drivers follow personalized paths and segmented the
trajectories into a minimal number of optimal paths. In a real world data set, we were able to
recover ≈ 60% of known intermediate destinations exactly with this approach. Most intermediate
destinations (≈ 90%) were within a hop distance of two to our predicted intermediate destination.
With our experiments we showed that having multiple cost types not only increases segmentability in
comparison to relying only on travel time but also improves overall segmentation quality with regard
to recovering intermediate destinations.

In Chapter 4 we demonstrated how to cluster trajectories by preferences. By first (approximately)
computing the preference spaces for which the trajectories are optimal and then solving the geometric
hitting set instance consisting of these spaces, we achieve fast running times in practice although
the underlying problems are of high theoretical worst-case complexity. Especially, for the preference
space we showed that it can be arbitrary complex in theory but is of constant complexity in our
experiments so our approach to exactly construct them is more efficient than our approximation
approach.

Furthermore in Chapter 5, we presented a deeper insight in the theoretical working of the model
and found that a bound for the number of optimal paths that is subexponential in the graph size

101

exists.
Our applications showed that given suitable cost types, the model works well in a bicycle and in car

scenarios. It gives good results in reasonable running times but is not quite fast enough for large scale
online usage. The biggest drawback for using the model in the way we used it lies in the scalability
of the PCH speed-up technique. Running times increase drastically with the dissimilarity of the used
cost types as well as the size of the graph.

6.2. Future Work

There are multiple interesting direction for future work regarding this route planning model. The
most important direction for the practical applicability is to find speed-up techniques that scale
better with dissimilar cost types and graph size or improve PCH. An interesting starting point for
this can be the personalizable route planning based on the customizable route planning speed-up
technique presented in [FS15]. As it uses a partitioning of the graph, it might be less susceptible to
the combinatorial increase that comes with larger graphs.

Another opportunity for future work are the theoretical foundations of the model and bounds for
the number of optimal paths. We expect our current upper bound to be far from tight. Better insights
here might be an important stepping stone to give good lower bounds for algorithms and improving
the speed-up techniques mentioned before.
Furthermore, we expect there to be more practical applications for which the model is suitable.

102 6 | Discussion

Bibliography

[18] OpenStreetMap. en-US. Mar. 2018. url: https://www.openstreetmap.org/ (visited on
03/29/2018) (cit. on pp. 33, 46).

[ABB+14] S. P. Alewijnse, K. Buchin, M. Buchin, A. Kölzsch, H. Kruckenberg, M. A. Westenberg. ‘A framework
for trajectory segmentation by stable criteria’. In: Proceedings of the 22nd ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems. 2014, pp. 351–360 (cit. on
pp. 58, 59).

[ADGW13] I. Abraham, D. Delling, A. V. Goldberg, R. F. Werneck. ‘Alternative routes in road networks’. In:
ACM Journal of Experimental Algorithmics 18 (2013). url: http://doi.acm.org/10.1145/
2444016.2444019 (cit. on pp. 25, 28).

[AHV+05] P. K. Agarwal, S. Har-Peled, K. R. Varadarajan, et al. ‘Geometric approximation via coresets’. In:
Combinatorial and computational geometry 52 (2005), pp. 1–30 (cit. on p. 80).

[AKT13] O. Andersen, B. B. Krogh, K. Torp. ‘An Open-source Based ITS Platform’. In: Proc. of MDM. Vol. 2.
2013, pp. 27–32 (cit. on p. 61).

[AMS06] N. Alon, D. Moshkovitz, S. Safra. ‘Algorithmic construction of sets for k-restrictions’. In: ACM Trans.
Algorithms 2.2 (2006), pp. 153–177 (cit. on p. 75).

[And12] Andrew Makhorin. GLPK - GNU Project - Free Software Foundation (FSF). 2012. url: https:
//www.gnu.org/software/glpk/glpk.html (visited on 06/11/2018) (cit. on pp. 37, 83).

[Bar18] F. Barth. ‘Multi-criteria Bicycle Routing’. MA thesis. University of Stuttgart, 2018. url: http:
//dx.doi.org/10.18419/opus-10243 (cit. on pp. 27, 28).

[Bat14] G. V. E. Batz. ‘Time-Dependent Route Planning with Contraction Hierarchies’. PhD thesis. Karlsruhe
Institute of Technology, 2014 (cit. on p. 15).

[BCK+10] R. Bauer, T. Columbus, B. Katz, M. Krug, D. Wagner. ‘Preprocessing speed-up techniques is hard’.
In: International Conference on Algorithms and Complexity. Springer. 2010, pp. 359–370 (cit. on
p. 15).

[BDG+15] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner,
R. F. Werneck. ‘Route Planning in Transportation Networks’. In: CoRR abs/1504.05140 (2015).
arXiv: 1504.05140. url: http://arxiv.org/abs/1504.05140 (cit. on p. 23).

[BDGS11] R. Bader, J. Dees, R. Geisberger, P. Sanders. ‘Alternative Route Graphs in Road Networks’. In:
Proceedings of the First International ICST Conference on Theory and Practice of Algorithms in
(Computer) Systems. TAPAS’11. Rome, Italy: Springer-Verlag, 2011, pp. 21–32. url: http://dl.
acm.org/citation.cfm?id=1987334.1987339 (cit. on pp. 24, 27, 28).

[BDVS11] M. Buchin, A. Driemel, M. Van Kreveld, V. Sacristán. ‘Segmenting trajectories: A framework and
algorithms using spatiotemporal criteria’. In: Journal of Spatial Information Science 2011.3 (2011),
pp. 33–63 (cit. on pp. 58, 59, 63, 64).

103

https://www.openstreetmap.org/
http://doi.acm.org/10.1145/2444016.2444019
http://doi.acm.org/10.1145/2444016.2444019
https://www.gnu.org/software/glpk/glpk.html
https://www.gnu.org/software/glpk/glpk.html
http://dx.doi.org/10.18419/opus-10243
http://dx.doi.org/10.18419/opus-10243
https://arxiv.org/abs/1504.05140
http://arxiv.org/abs/1504.05140
http://dl.acm.org/citation.cfm?id=1987334.1987339
http://dl.acm.org/citation.cfm?id=1987334.1987339

[BF19] F. Barth, S. Funke. ‘Alternative Routes for Next Generation Traffic Shaping’. In: Proceedings of the
12th ACM SIGSPATIAL International Workshop on Computational Transportation Science. ACM, Nov.
2019. url: https://doi.org/10.1145%2F3357000.3366141 (cit. on p. 23).

[BFJP20] F. Barth, S. Funke, T. S. Jepsen, C. Proissl. ‘Scalable unsupervised multi-criteria trajectory segmen-
tation and driving preference mining’. In: BigSpatial@SIGSPATIAL. ACM, 2020, 6:1–6:10 (cit. on
p. 57).

[BFP21] F. Barth, S. Funke, C. Proissl. ‘Preference-based Trajectory Clustering: An Application of Geometric
Hitting Sets’. In: 32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2021 (cit. on pp. 73, 90).

[BFS19] F. Barth, S. Funke, S. Storandt. ‘Alternative Multicriteria Routes’. In: 2019 Proceedings of the
Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). Society for Industrial
and Applied Mathematics, Jan. 2019, pp. 66–80. url: https://doi.org/10.1137%2F1.
9781611975499.6 (cit. on pp. 23, 90).

[BG95] H. Brönnimann, M. T. Goodrich. ‘Almost optimal set covers in finite VC-dimension’. In: Discrete &
Computational Geometry 14.4 (1995), pp. 463–479 (cit. on p. 75).

[BKST78] J. L. Bentley, H. T. Kung, M. Schkolnick, C. D. Thompson. ‘On the Average Number of Maxima
in a Set of Vectors and Applications’. In: J. ACM 25.4 (Oct. 1978), pp. 536–543. url: https:
//doi.org/10.1145/322092.322095 (cit. on p. 90).

[CBGL15] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser. ‘Alternative Routing: K-shortest Paths with
Limited Overlap’. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems. SIGSPATIAL ’15. Seattle, Washington: ACM, 2015, 68:1–68:4.
url: http://doi.acm.org/10.1145/2820783.2820858 (cit. on pp. 24, 28).

[Dan51] G. B. Dantzig. ‘Maximization of a Linear Function of Variables Subject To Linear Inequalities’. In:
Activity analysis of production and allocation 13 (1951), pp. 339–347 (cit. on p. 16).

[DDP19] D. Delling, J. Dibbelt, T. Pajor. ‘Fast and Exact Public Transit Routing with Restricted Pareto Sets’.
In: 2019 Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX). 2019,
pp. 54–65. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611975499.5. url:
https://epubs.siam.org/doi/abs/10.1137/1.9781611975499.5 (cit. on p. 43).

[DGG+15] D. Delling, A. V. Goldberg, M. Goldszmidt, J. Krumm, K. Talwar, R. F. Werneck. ‘Navigation Made
Personal: Inferring Driving Preferences from GPS Traces’. In: Proc. of SIGSPATIAL’15. Seattle,
Washington: Association for Computing Machinery, 2015 (cit. on pp. 57, 61).

[DHJ17] O. Devillers, S. Hornus, C. Jamin. ‘dD Triangulations’. In: CGAL User and Reference Manual. 4.11.
CGAL Editorial Board, 2017. url: http://doc.cgal.org/4.11/Manual/packages.html#
PkgTriangulationsSummary (cit. on pp. 33, 45).

[Dij59] E.W. Dijkstra. ‘A Note on Two Problems in Connexion with Graphs’. In: Numer. Math. 1.1 (Dec.
1959), pp. 269–271 (cit. on p. 14).

[DW09] D. Delling, D. Wagner. ‘Pareto Paths with SHARC’. In: Proc. 8th International Symposium on
Experimental Algorithms (SEA). Vol. 5526. Lecture Notes in Computer Science. Springer, 2009,
pp. 125–136 (cit. on pp. 26, 28, 29, 90).

[Dwy88] R. A. Dwyer. ‘On the Convex Hull of Random Points in a Polytope’. In: Journal of Applied Probability
25.4 (1988), pp. 688–699. url: http://www.jstor.org/stable/3214289 (cit. on p. 90).

[DYGD15] J. Dai, B. Yang, C. Guo, Z. Ding. ‘Personalized route recommendation using big trajectory data’.
In: 2015 IEEE 31st international conference on data engineering. IEEE. 2015, pp. 543–554 (cit. on
p. 60).

104 Bibliography

https://doi.org/10.1145%2F3357000.3366141
https://doi.org/10.1137%2F1.9781611975499.6
https://doi.org/10.1137%2F1.9781611975499.6
https://doi.org/10.1145/322092.322095
https://doi.org/10.1145/322092.322095
http://doi.acm.org/10.1145/2820783.2820858
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975499.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611975499.5
http://doc.cgal.org/4.11/Manual/packages.html#PkgTriangulationsSummary
http://doc.cgal.org/4.11/Manual/packages.html#PkgTriangulationsSummary
http://www.jstor.org/stable/3214289

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Vol. 10. EATCSMonographs on Theoretical
Computer Science. Springer, 1987 (cit. on p. 78).

[EJH+19] M. Etemad, A. S. Júnior, A. Hoseyni, J. Rose, S. Matwin. ‘A Trajectory Segmentation Algorithm
Based on Interpolation-based Change Detection Strategies.’ In: EDBT/ICDT Workshops. 2019 (cit.
on pp. 58, 59).

[Epp94] D. Eppstein. ‘Finding the k Shortest Paths’. In: 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994. IEEE Computer Society, 1994, pp. 154–
165. url: https://doi.org/10.1109/SFCS.1994.365697 (cit. on p. 24).

[FJ17] M. Fruensgaard, T. S. Jepsen. ‘Improving Cost Estimation Models with Estimation Updates and
road2vec: a Feature Learning Framework for Road Networks’. MA thesis. Aalborg University, 2017
(cit. on p. 62).

[FLS16] S. Funke, S. Laue, S. Storandt. ‘Deducing individual driving preferences for user-aware navigation’.
In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS 2016, Burlingame, California, USA, October 31 - November 3, 2016. Ed. by
S. Ravada, M. E. Ali, S. D. Newsam, M. Renz, G. Trajcevski. ACM, 2016, 14:1–14:9 (cit. on p. 74).

[FLS17] S. Funke, S. Laue, S. Storandt. ‘Personal Routes with High-Dimensional Costs and Dynamic
Approximation Guarantees’. In: 16th Int. Symp. on Experimental Algorithms (SEA 2017). Vol. 75.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany, 2017, 18:1–18:13
(cit. on pp. 17, 18, 33, 35, 46, 52, 65, 74).

[FMN05] S. Funke, K. Mehlhorn, S. Näher. ‘Structural filtering: a paradigm for efficient and exact geometric
programs’. In: Comput. Geom. 31.3 (2005), pp. 179–194 (cit. on p. 86).

[FNS16] S. Funke, A. Nusser, S. Storandt. ‘On k-Path Covers and their applications’. In: VLDB J. 25.1 (2016),
pp. 103–123 (cit. on p. 74).

[FPT81] R. J. Fowler, M. Paterson, S. L. Tanimoto. ‘Optimal Packing and Covering in the Plane are NP-
Complete’. In: Inf. Process. Lett. 12.3 (1981), pp. 133–137 (cit. on p. 75).

[FRC+07] Farr Tom G., Rosen Paul A., Caro Edward, Crippen Robert, Duren Riley, Hensley Scott, Kobrick
Michael, Paller Mimi, Rodriguez Ernesto, Roth Ladislav, Seal David, Shaffer Scott, Shimada
Joanne, Umland Jeffrey, Werner Marian, Oskin Michael, Burbank Douglas, Alsdorf Douglas. ‘The
Shuttle Radar Topography Mission’. In: Reviews of Geophysics 45.2 (May 2007). url: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183 (visited on
03/29/2018) (cit. on pp. 34, 46).

[FS15] S. Funke, S. Storandt. ‘Personalized route planning in road networks’. In: Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic Information Systems, Bellevue, WA,
USA. Ed. by J. Bao, C. Sengstock, M. E. Ali, Y. Huang, M. Gertz, M. Renz, J. Sankaranarayanan.
ACM, 2015, 45:1–45:10 (cit. on pp. 17, 74, 90, 102).

[GJ+10] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010 (cit. on p. 45).
[GKS10] R. Geisberger, M. Kobitzsch, P. Sanders. ‘Route Planning with Flexible Objective Functions.’ In:

Proc. 12th Workshop on Algorithm Engineering and Experiments (ALENEX). 2010, pp. 124–137
(cit. on p. 74).

[GKW09] A. Goldberg, H. Kaplan, R. Werneck. ‘Reach for A∗: shortest path algorithms with preprocessing’. In:
DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society, July 2009, pp. 93–139. url: https://doi.org/10.1090/dimacs/074/05 (cit. on
p. 25).

[GLS81] M. Grötschel, L. Lovász, A. Schrijver. ‘The ellipsoid method and its consequences in combinatorial
optimization’. In: Combinatorica 1.2 (1981), pp. 169–197 (cit. on p. 16).

Bibliography 105

https://doi.org/10.1109/SFCS.1994.365697
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183
https://doi.org/10.1090/dimacs/074/05

[GR19] K. Gajjar, J. Radhakrishnan. ‘Parametric Shortest Paths in Planar Graphs’. In: 2019 IEEE 60th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, Nov. 2019. url: https:
//doi.org/10.1109%2Ffocs.2019.00057 (cit. on p. 90).

[GS93] P. Gritzmann, B. Sturmfels. ‘Minkowski addition of polytopes: computational complexity and
applications to Gröbner bases’. In: SIAM Journal on Discrete Mathematics 6.2 (1993), pp. 246–269
(cit. on p. 95).

[GSSV12] R. Geisberger, P. Sanders, D. Schultes, C. Vetter. ‘Exact routing in large road networks using
contraction hierarchies’. In: Transportation Science 46.3 (2012), pp. 388–404 (cit. on pp. 14, 15,
25).

[Gus80] D.M. Gusfield. ‘Sensitivity analysis for combinatorial optimization’. PhD thesis. University of
California, Berkeley, 1980 (cit. on pp. 17, 90, 96).

[Han79] P. Hansen. ‘Bicriterion path problems’. In: Lecture Notes in Economics and Mathematical Systems
177 (1979) (cit. on p. 93).

[HZ80] G. Y. Handler, I. Zang. ‘A dual algorithm for the constrained shortest path problem’. In: Networks
10.4 (1980), pp. 293–309 (cit. on p. 89).

[JJN20] T. S. Jepsen, C. S. Jensen, T. D. Nielsen. ‘Relational Fusion Networks: Graph Convolutional Networks
for Road Networks’. In: IEEE Transactions on Intelligent Transportation Systems (2020), pp. 1–12
(cit. on pp. 61, 62).

[JJNT18] T. S. Jepsen, C. S. Jensen, T. D. Nielsen, K. Torp. ‘On Network Embedding for Machine Learning
on Road Networks: A Case Study on the Danish Road Network’. In: Proc. of Big Data 2018. 2018,
pp. 3422–3431 (cit. on pp. 61, 63).

[Joh74] D. S. Johnson. ‘Approximation algorithms for combinatorial problems’. In: Journal of computer and
system sciences 9.3 (1974), pp. 256–278 (cit. on p. 82).

[JTR+18] A. S. Junior, V. C. Times, C. Renso, S. Matwin, L. A. Cabral. ‘A semi-supervised approach for the
semantic segmentation of trajectories’. In: 2018 19th IEEE International Conference on Mobile Data
Management (MDM). IEEE. 2018, pp. 145–154 (cit. on p. 58).

[Kar84] N. Karmarkar. ‘A New Polynomial-Time Algorithm for Linear Programming’. In: Combinatorica 4.4
(Dec. 1984), pp. 373–395. url: https://doi.org/10.1007%2Fbf02579150 (cit. on p. 16).

[KJT16] B. Krogh, C. S. Jensen, K. Torp. ‘Efficient in-memory indexing of network-constrained trajectories’.
In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. 2016, pp. 1–10 (cit. on p. 58).

[KM72] V. Klee, G. J. Minty. ‘How Good Is the Simplex Algorithm’. In: Inequalities 3.3 (1972), pp. 159–175
(cit. on p. 16).

[KRS10] H.-P. Kriegel, M. Renz, M. Schubert. ‘Route skyline queries: A multi-preference path planning
approach’. In: 26th International Conference on Data Engineering (ICDE). IEEE Computer Society,
2010, pp. 261–272 (cit. on pp. 26, 28, 90).

[MR09] N.H. Mustafa, S. Ray. ‘PTAS for geometric hitting set problems via local search’. In: Symposium on
Computational Geometry. ACM, 2009, pp. 17–22 (cit. on p. 75).

[MS08] K. Mehlhorn, P. Sanders. Algorithms and data structures: The basic toolbox. Vol. 55. Springer, 2008
(cit. on p. 14).

[MW06] M. Müller-Hannemann, K. Weihe. ‘On the cardinality of the Pareto set in bicriteria shortest path
problems’. In: Annals of Operations Research 147.1 (2006), pp. 269–286 (cit. on p. 90).

[MZ00] K. Mehlhorn, M. Ziegelmann. ‘Resource constrained shortest paths’. In: European Symposium on
Algorithms. Springer. 2000, pp. 326–337 (cit. on p. 89).

106 Bibliography

https://doi.org/10.1109%2Ffocs.2019.00057
https://doi.org/10.1109%2Ffocs.2019.00057
https://doi.org/10.1007%2Fbf02579150

[ONH17] J. Oehrlein, B. Niedermann, J. Haunert. ‘Inferring the Parametric Weight of a Bicriteria Routing
Model from Trajectories’. In: SIGSPATIAL/GIS. ACM, 2017, 59:1–59:4 (cit. on p. 74).

[PW00] F. A. Potra, S. J. Wright. ‘Interior-Point Methods’. In: Journal of computational and applied mathe-
matics 124.1-2 (2000), pp. 281–302 (cit. on p. 16).

[PYJ20] S. A. Pedersen, B. Yang, C. S. Jensen. ‘Fast stochastic routing under time-varying uncertainty’. In:
The VLDB Journal 29.4 (2020), pp. 819–839 (cit. on p. 57).

[SMT+15] A. Soares Júnior, B. N. Moreno, V. C. Times, S. Matwin, L. d. A. F. Cabral. ‘GRASP-UTS: an algorithm
for unsupervised trajectory segmentation’. In: International Journal of Geographical Information
Science 29.1 (2015), pp. 46–68 (cit. on pp. 58, 59).

[SSZZ14] R. Song, W. Sun, B. Zheng, Y. Zheng. ‘PRESS: A Novel Framework of Trajectory Compression in
Road Networks’. In: Proceedings of the VLDB Endowment. Vol. 7. May 2014, pp. 661–672 (cit. on
p. 58).

[The17] The CGAL Project. CGAL User and Reference Manual. 4.11. CGAL Editorial Board, 2017. url:
http://doc.cgal.org/4.11/Manual/packages.html (cit. on pp. 33, 45).

[The20] The CGAL Project. CGAL User and Reference Manual. 5.0.3. CGAL Editorial Board, 2020. url:
https://doc.cgal.org/5.0.3/Manual/packages.html (cit. on p. 83).

[Van20] R. J. Vanderbei. Linear programming. Springer, 2020 (cit. on p. 16).
[WBF+20] R. Wein, E. Berberich, E. Fogel, D. Halperin, M. Hemmer, O. Salzman, B. Zukerman. ‘2D Arrange-

ments’. In: CGAL User and Reference Manual. 5.0.3. CGAL Editorial Board, 2020. url: https:
//doc.cgal.org/5.0.3/Manual/packages.html#PkgArrangementOnSurface2 (cit. on
p. 83).

[YGMJ15] B. Yang, C. Guo, Y. Ma, C. S. Jensen. ‘Toward Personalized, Context-aware Routing’. In: The VLDB
Journal 24.2 (Apr. 2015), pp. 297–318 (cit. on pp. 60, 71).

[Zhe15] Y. Zheng. ‘Trajectory Data Mining: An Overview’. In: ACM Trans. Intell. Syst. Technol. 6.3 (May
2015), 29:1–29:41 (cit. on p. 57).

All URLs were last checked on 11.04.2022.

Bibliography 107

http://doc.cgal.org/4.11/Manual/packages.html
https://doc.cgal.org/5.0.3/Manual/packages.html
https://doc.cgal.org/5.0.3/Manual/packages.html#PkgArrangementOnSurface2
https://doc.cgal.org/5.0.3/Manual/packages.html#PkgArrangementOnSurface2

List of Figures

1.1. Example Node contraction of vertex u. Shortcuts (dashed lines) have to be created
for vertex pairs vw and vx but not for wx because there is a path via y which has the
same distance as the one via u. [GSSV12] . 15

1.2. Visualization of a linear program with 2 variables. On the right side, the objective
function vector c is shown. The feasible region is colored in blue and the vertex that
represents the optimal solution is circled. 17

2.1. Triangle split into three parts [Bar18] . 27
2.2. Space of possible paths in terms of distance and height differences for d = 2. 30
2.3. Steps of exhaustive hull exploration for d = 2. 31
2.4. Rendering of the considered network (9.7 million nodes, 20.2 million edges) of the

German state of Baden-Württemberg (around 35,000 square kilometers). 34
2.5. Scatter plot showing the time needed to enumerate all optimal routes depending on

the number of routes for commuter and day trip routes. 37
2.6. Scatter plot showing the difference in ILP and Greedy result set size over the ILP set

size. 40
2.7. Comparison of random sampling and naive exploration with our approach for different

R and K values. 41
2.8. Urban Commute Routes in the Stuttgart Metropolitan area from Scharnhausen to

Vaihingen. 42
2.9. Vacation routes across the state of Baden-Württemberg from Ulm to Offenburg. . . . 42
2.10.Example for large set of alternative routes all within 30 % of the shortest route. . . . 42
2.11.Partial convex hull in cost space; Area A contains all potential routes which can be

found by refining the central facet (red, dashed lines); Area B contains all admissible
routes (beneath slack constraint); Lower bound plow is used for determining if a facet
may not yield admissible routes (black dot). 44

2.12.Visualization of the chessboard metric grid overlaying a road network. 45
2.13.Histograms showing the distribution of routes onto edges for different added metrics

for the query of Figure 2.10. 49
2.14.Example query with a time slack of 1.2. 50
2.15.Example query with a distance slack of 1.2. 51

109

3.1. An example of a trajectory going from S to T with two intermediate stops labeled B. 58
3.2. Distribution of distance between a break point and the next segmentation point for (a)

OPTS-TT and (b) PPTS. Break points in trajectories without any segmentation point
are assigned distance∞. 68

3.3. A break point in a trajectory and the segmentation points for (a) OPTS-TT and (b)
PPTS. Yellow markers labeled ‘B’ indicate a break point and black markers labeled ‘S’ a
segmentation point. A black marker labeled B indicates a break point that is recovered
by a segmentation point. 69

3.4. A segmentation point with no obvious event occurring. 69
3.5. A segmentation point recovers a detour to a gas station that is not marked as a break

in our data set. 70

4.1. Example of a geometric hitting set problem as it may occur in the context of PTC. Two
feasible hitting sets are shown (white squares and black circles). 77

4.2. Inner (yellow) and outer approximation (grey) of the preference polyhedron (black). 78
4.3. Example of preference polyhedra of optimal paths with the same source and target

and with equal cost in the third metric . 80

5.1. Example preference space subdivision from a real world street network for bicyclists
in Baden-Württemberg, Germany. The graph has the cost types unsuitability for bikes,
distance and ascent. Each cell in the subdivision is convex and corresponds to a unique
shortest path π. We call such a cell preference polyhedron A(π). The framing triangle
is the preference space P3. Each corner of the triangle corresponds to a preference
where only one metric has a non-zero weight (and therefore weight 1). 92

5.2. Example path graph . 93
5.3. Illustration of Lemma 5.8 for M = 8. Each path from s to t in the path graph corresponds

to a distinct point on the line y = 24− x in the cost space on the right. They are all
optimal for αT = (0.5, 0.5). Only (11,13) (e.g., for αT = (1, 0)) and (22,2) (e.g., for
αT = (0, 1)) are unique shortest. 94

5.4. Example of a path graph preference subdivision. The preference space subdivision
A(v1, v3) is the intersection of A(v1, v2) and A(v2, v3). 95

5.5. Similar to the path graph, in the layered graph only consecutive rows are connected.
Example layered graph with c = 3 and r = 5. 97

5.6. Example layered graph with two skipped layers. Consecutive remaining layers are
connected with one edge per unique shortest path in the graph without skipped layers
in order to preserve all unique shortest paths from the first to the last layer. 98

5.7. Figures 5.7a and 5.7b show an example how a general graph G is translated into a
layered graph L. 99

110 List of Figures

List of Tables

2.1. Running times of Related work implementations. Note that this overview is not a
fair comparison as the experimental settings as well as the concrete problems the
algorithms solve are very different. Some of the approaches require preprocessing of
the graph while others have a low success rate. 28

2.2. Unsuitability costs assigned to different road types . 35
2.3. Commuter Route (2km-20km): Statistics for parameter space exploration and route

recommendation; averages over 3,750 runs. 38
2.4. Day Trip Route (40km-80km): Statistics for parameter space exploration and route

recommendation; averages over 3,750 runs. 38
2.5. Vacation Route (> 120km): Statistics for parameter space exploration and route rec-

ommendation; averages over 1,500 runs. 39
2.6. Preprocessing time and average speed-up for Dijkstra queries for each of the metric

combinations. 47
2.7. Average results of the distance restricted queries . 48
2.8. Average results of the time restricted queries . 49

3.1. Mean algorithm performance on all stitched trajectories (ALL) and the 60,249 com-
monly segmentable trajectories (CS) that can be segmented by all algorithms. 67

4.1. Statistics about instance generation: average number of polyhedron corners, polyhedra
construction time (multithreaded), construction time for arrangement, time for set
minimization (multithreaded). Car graph with 10,000 paths. Time in seconds. 83

4.2. Instance generation and solving for various polyhera approximations. Car graph with
1,000 paths. Time in seconds. 84

4.3. Comparison of GHS solving algorithms on two instances on the bicycle graph. The
times (given in seconds) for the LP-Greedy and ILP algorithm include solving the
LP-relaxation first. 84

4.4. Run times and optimal solution of instances generated with varying number of prefer-
ences. The instances each consist of 1.000 paths on the car graph. 85

4.5. Run times and optimal solution of instances generated with varying number of prefer-
ences. The instances each consist of 1.000 paths on the bicycle graph. 85

111

	1 Introduction
	1.1 Motivation
	1.2 Routing
	1.2.1 Dijkstra's Algorithm
	1.2.2 Contraction Hierarchies

	1.3 Linear Programming
	1.4 Personalized Route Planning Model
	1.4.1 Personalized Contraction Hierarchies

	1.5 Outline

	I Personalized Paths as alternative Routes
	2 Enumerating personalized Routes efficiently
	2.1 Introduction
	2.2 Related Work
	2.2.1 k-Shortest Paths
	2.2.2 Edge Usage Penalty Approach
	2.2.3 Via Nodes
	2.2.4 Pareto-optimal Routes
	2.2.5 Triangle Splitting
	2.2.6 Quality Measures for Alternative Paths

	2.3 Parameter Space Exploration via Partial Convex Hull Construction
	2.3.1 Exhaustive Exploration
	2.3.2 Bounded Exploration with Guidance
	2.3.3 Making use of the Parameter Exploration: Path Extraction

	2.4 Improving the LP Oracle for Personalized Contraction Hierarchies
	2.5 Experimental Results for Route Enumeration
	2.5.1 Edge Weight Generation
	2.5.2 Personalized Contraction Hierarchy Construction
	2.5.3 Parameter Space Exploration and Route Recommendations
	2.5.4 Exemplary Queries

	2.6 Restricting Enumeration and Metric Invention for Diversification
	2.6.1 Restricted Enumeration of Personalized Routes
	2.6.2 Metric Invention

	2.7 Experimental Results for constrained Enumeration and Metric Invention
	2.7.1 Used Metrics
	2.7.2 Personalized Contraction Hierarchy Preprocessing
	2.7.3 Experiment Design
	2.7.4 Results
	2.7.5 Load Distribution
	2.7.6 Exemplary Queries

	2.8 Conclusions

	II Understanding real world trajectories
	3 Identifying Intermediate Destinations in Real World Trajectories
	3.1 Introduction
	3.2 Related Work
	3.2.1 Supervised Trajectory Segmentation
	3.2.2 Unsupervised Trajectory Segmentation
	3.2.3 Driving Preferences Models

	3.3 Preliminaries
	3.3.1 Data Set
	3.3.2 Routing Cost Types
	3.3.3 Trajectory Segmentation

	3.4 Multi-Criteria Trajectory Segmentation
	3.4.1 The Personalized Path Criterion
	3.4.2 Experiments
	3.4.3 Discussion

	3.5 Conclusion

	4 Clustering Trajectories by Preference
	4.1 Introduction
	4.2 Related work
	4.3 Preliminaries
	4.3.1 Geometric Hitting Set
	4.3.2 Minimum Geometric Hitting Set Hardness

	4.4 Driving Preferences and Geometric Hitting Sets
	4.4.1 Exact Polyhedron Construction
	4.4.2 Minimum Geometric Hitting Set
	4.4.3 Hitting Set Instance Construction via Arrangements of Hyperplanes
	4.4.4 Challenges

	4.5 Polynomial-Time Heuristics with Instance-based Lower Bounds
	4.5.1 Approximate Instance Generation
	4.5.2 Approximate Instance Solving

	4.6 Experimental Results
	4.6.1 Experimental Setup
	4.6.2 Implementation Details
	4.6.3 Geometric Hitting Set Instance Generation
	4.6.4 Geometric Hitting Set Solving
	4.6.5 Varying Polyhedron Approximation
	4.6.6 Dependence on the number of preferences

	4.7 Conclusions

	III Theoretical analysis of Personalized Paths
	5 Upper Bounding the number of personalized Paths
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Our contribution

	5.2 Preliminaries
	5.3 Bounds on the Number of Shortest Paths
	5.3.1 Multi-edge Path Graphs
	5.3.2 Preference Spaces of multi-edge Path Graphs
	5.3.3 Bounds for General Graphs

	5.4 Conclusion

	6 Discussion
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	List of Figures
	List of Tables

