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Abstract

Cuprate high transition temperature superconductors are of fundamental interest in con-

densed matter physics due to their rich phase diagram, where several phases and regimes

compete and coexist with each other. Among the models proposed to describe the physics

of the electrons in the copper-oxide planes, the two-dimensional Hubbard model has gained

the most popularity. Despite its apparent simplicity, the search for an approximate solu-

tion able to capture all its phases still represents a challenging problem. Mean-field theory

often represents a good starting point to describe ordered phases, but, in order to capture

several physical features, it is necessary to analyze fluctuations of the order parameter.

Among the various methods proposed to treat the Hubbard model, in this thesis we fo-

cus on the moderate coupling functional renormalization group (fRG) and its combination

with the dynamical mean-field theory (DMFT), which extends it to strong coupling. We

deal with the problem of identifying bosonic fluctuations in the vertex function, describing

the effective interaction between two electrons in the many-body medium, which exhibits

an intricate dependence on momenta and frequencies already at moderate coupling. In

the symmetric phase, when no symmetry of the model is broken, the goal is achieved by

employing the recently introduced single-boson exchange decomposition. This decompo-

sition allows for a clear and physically intuitive parametrization of the vertex function in

terms of processes involving the exchange of a single boson, describing a collective exci-

tation, and a residual part. Moreover, the single-boson exchange decomposition allows

for a substantial reduction of the computational complexity of the vertex function. We

also reformulate the previously introduced combination of fRG with mean-field theory,

designed to access symmetry broken phases, by explicitly introducing a bosonic field.

This reformulation is proven to be equivalent to the ”purely fermionic” approach, but it

represents a convenient starting point on top of which one can include order parameter

fluctuations while keeping the full, non-simplified, frequency and momentum dependence
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of the vertex.

A widely discussed and challenging problem is the emergence of a pseudogap in the

Hubbard model and its relation to the pseudogap regime observed in the cuprates. In this

thesis we assume this phase to be characterized by strong magnetic fluctuations. Following

previous works, we fractionalize the electron in a chargon, carrying the electron’s charge,

and a charge neutral spinon, which represents local fluctuations of the spin orientation.

The chargons undergo Néel or spiral magnetic order below a density-dependent transition

temperature T ∗. Charge transport coefficients are only weakly affected by directional

fluctuations of the spin orientation, so that in their computation one can consider only

chargon degrees of freedom. We perform a DMFT computation of the magnetic order

parameter for fermions (that can be interpreted as chargons) displaying spiral magnetic

ordering, starting from the two-dimensional Hubbard model. The magnetic order leads to

a Fermi surface reconstruction. We compute DC charge transport properties by combining

the renormalized band structure as obtained from the DMFT with a phenomenological

scattering rate. We obtain a pronounced drop of the longitudinal conductivity and the Hall

number in a narrow doping regime below a critical doping p∗, above which magnetic order

disappears, in agreement with recent transport measurements for cuprate superconductors

in high magnetic fields in the pseudogap regime.

Directional fluctuations of the spin orientation are described by a non-linear sigma

model. We derive formulas for the non-linear sigma model parameters, namely the spin

stiffnesses, by expanding the inverse of the transverse order parameter susceptibilities in

powers of momentum and frequency, and we prove via local Ward identities that this

approach is equivalent to the computation of the system’s response to a fictitious SU(2)

gauge field. At finite electron or hole doping, the chargons form small Fermi surfaces,

which can induce Landau damping of the Goldstone modes of the magnetic state, which for

low energies coincide with the directional fluctuations of the spins. A spiral magnetic state

is host to three Goldstone modes, two of which correspond to out-of-plane fluctuations,

and one to in-plane fluctuations of the spins. The decay rate of the in-plane mode is found

to be of the order of its excitation energy, while the decay rate of the out-of-plane modes

is smaller so that these modes are asymptotically stable. We also perform a computation

of the chargon order parameter in the pseudogap regime. We employ a renormalized

Hartree-Fock theory, using effective interactions extracted from a fRG flow. The spin

stiffnesses are computed through the response to a fictitious SU(2) gauge field. Spinon
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fluctuations prevent long-range ordering of the electrons at any finite temperature but, at

least in the weak coupling regime, not in the ground state. The phase where the chargon

degrees of freedom are magnetically ordered shares many features with the pseudogap

regime observed in high-Tc cuprates: a strong reduction of the charge carrier density, a

spin gap, Fermi arcs, and electronic nematicity.





Deutsche Zusammenfassung

Kuprat-Supraleiter mit hoher Sprungtemperatur sind aufgrund ihres reichhaltigen Phasen-

diagramms mit mehreren miteinander konkurrierenden und koexistierenden Phasen von

grundlegendem Interesse für die Physik der kondensierten Materie. Unter den Modellen,

die zur Beschreibung der Physik der Elektronen in den Kupfer-Oxid-Ebenen vorgeschla-

gen wurden, hat das zweidimensionale Hubbard-Modell die größte Popularität erlangt.

Trotz seiner scheinbaren Einfachheit ist die Suche nach einer Lösung, die alle Phasen er-

fassen kann, immer noch ein schwieriges Problem. Die Molekularfeldtheorie stellt oft einen

guten Ausgangspunkt für die Beschreibung geordneter Phasen dar. Trotzdem müssen die

Fluktuationen des Ordnungsparameters analysiert werden, um bestimmte physikalische

Eigenschaften zu erfassen.

Unter den zahlreichen Methoden, die zur Behandlung des Hubbard-Modells vorgeschla-

gen wurden, konzentrieren wir uns in dieser Arbeit auf die funktionale Renormierungs-

gruppentheorie (fRG) mit moderater Kopplung und ihre Kombination mit der dynamis-

chen Molekularfeldtheorie (DMFT), die ihre Anwendbarkeit auf starke Kopplung aus-

dehnt. Wir befassen uns mit dem Problem der Identifizierung bosonischer Fluktuatio-

nen in der Vertexfunktion, die die effektive Wechselwirkung zwischen zwei Elektronen

im Vielteilchenmedium beschreibt, und bereits bei mäßiger Kopplung eine komplizierte

Abhängigkeit von Impulsen und Frequenzen aufweist. In der symmetrischen Phase, wenn

keine Symmetrie des Modells gebrochen ist, wird das Ziel durch die kürzlich eingeführte

Ein-Bosonen-Austauschzerlegung (single-boson exchange decomposition) erreicht. Diese

Zerlegung ermöglicht eine klare und physikalisch intuitive Parametrisierung der Vertex-

funktion in Form von Prozessen, die den Austausch eines einzelnen Bosons, das eine kollek-

tive Anregung beschreibt, beinhalten, sowie einen Restteil. Darüber hinaus reduziert die

Zerlegung in Einzelbosonen-Austauschprozesse erheblich die Rechenkomplexität der Ver-

texfunktion. Zur Beschreibung der symmetriegebrochenen Phasen formulieren wir auch
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die zuvor eingeführte Kombination der fRG mit der Molekularfeldtheorie neu, indem wir

explizit ein bosonisches Feld einführen. Diese Neuformulierung erweist sich als äquivalent

zum ”rein fermionischen” Ansatz, stellt aber einen bequemeren Ausgangspunkt dar zur

Einbeziehung von Ordnungsparameterfluktuationen, wobei man die vollständige, nicht

vereinfachte Frequenz- und Impulsabhängigkeit der Vertexfunktion beibehält.

Ein viel diskutiertes und schwieriges Problem ist das Auftreten eines Pseudogaps im

Hubbard-Modell und seine Beziehung zum in den Kupraten beobachteten Pseudogap-

bereich. In dieser Arbeit gehen wir davon aus, dass diese Phase durch starke magnetische

Fluktuationen gekennzeichnet ist. In Anlehnung an frühere Arbeiten fraktionieren wir das

Elektron in ein Chargon, das die Ladung des Elektrons trägt, und ein ladungsneutrales

Spinon, das die Fluktuationen der Spinorientierung repräsentiert. Die Chargons nehmen

unterhalb einer dichteabhängigen Übergangstemperatur T ∗ eine Néel- oder spiralförmige

magnetische Ordnung an. Die Ladungstransportkoeffizienten werden nur schwach von

Fluktuationen der Spinorientierung beeinflusst, sodass man zu ihrer Berechnung nur die

Freiheitsgrade der Ladungen berücksichtigen muss. Wir führen eine DMFT-Berechnung

des magnetischen Ordnungsparameters für Fermionen (die als Chargons interpretiert wer-

den können) durch. Hier zeigt sich ausgehend von dem zweidimensionalen Hubbard-

Modell eine spiralförmige magnetische Ordnung, welche zu einer Rekonstruktion der

Fermi-Fläche führt. Wir berechnen die Gleichstrom-Ladungstransporteigenschaften, in-

dem wir die renormierte Bandstruktur, wie sie sich aus der DMFT ergibt, mit einer

phänomenologischen Zerfallsrate kombinieren. Wir erhalten einen ausgeprägten Abfall der

longitudinalen Leitfähigkeit und der Hall-Zahl in einem engen Dotierungsbereich unter-

halb einer kritischen Dotierung p∗, oberhalb derer die magnetische Ordnung verschwindet.

Dies ist in Übereinstimmung mit Transportmessungen für Kuprat-Supraleiter in hohen

Magnetfeldern im Pseudogapbereich.

Fluktuationen der Spinorientierung werden durch ein nichtlineares Sigma-Modell be-

schrieben. Wir leiten Formeln für die Parameter des nichtlinearen Sigma-Modells ab,

nämlich die Spinsteifigkeiten, indem wir den Kehrwert der transversalen Suszeptibilitäten

des Ordnungsparameters im Bereich spiralförmiger magnetischer Ordnung entwickeln.

Wir zeigen durch lokale Ward-Identitäten, dass dieser Ansatz äquivalent zur Berechnung

der Reaktion des Systems auf ein fiktives SU(2)-Eichfeld ist. Bei endlicher Elektronen-

oder Lochdotierung bilden die Chargons kleine Fermi-Flächen, die eine Landau-Dämp-

fung der Goldstone-Moden des magnetischen Zustands hervorrufen können. Diese Moden
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sind die niederenergetische Richtungsfluktuationen der Spins. Ein spiralförmiger mag-

netischer Zustand beherbergt drei Goldstone-Moden, von denen zwei Moden den Fluk-

tuationen außerhalb der Ebene (out-of-plane Mode) und eine Mode den Fluktuationen

innerhalb der Ebene der Spiralordnung der Spins entsprechen (in-plane Mode). Die Zer-

fallsrate der in-plane-Mode liegt in der Größenordnung ihrer Anregungsenergie, während

die Zerfallsrate der out-of-plane-Moden kleiner ist, so dass diese Moden asymptotisch sta-

bil sind. Wir führen eine Berechnung des Chargon-Ordnungsparameters im Pseudogap-

bereich durch. Dazu verwenden wir eine renormierte Hartree-Fock-Theorie mit effektiven

Wechselwirkungen, die aus einem fRG-Fluss extrahiert werden. Die Spinsteifigkeiten wer-

den anhand der Reaktion auf ein fiktives SU(2)-Eichfeld berechnet. Spinon-Fluktuationen

verhindern eine langreichweitige Ordnung der Elektronen bei jeder endlichen Temper-

atur, in Übereinstimmung mit dem Mermin-Wagner-Theorem, jedoch nicht im Grundzu-

stand. Die Phase, in der die Chargon-Freiheitsgrade magnetisch geordnet sind, weist viele

Gemeinsamkeiten mit dem in Kupraten beobachteten Pseudogapbereich auf: eine starke

Reduzierung der Ladungsträgerdichte, eine Spin-Lücke, Fermi-Bögen und elektronische

Nematizität.
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Introduction

Context and motivation

Since the discovery of high-temperature superconductivity in copper-oxide compounds in

the late 1980’s [1], the strongly correlated electron problem has gained considerable at-

tention among condensed matter theorists. In fact, the conduction electrons lying within

the stacked Cu-O planes, where the relevant physics is expected to take place, strongly

interact with each other. These strong correlations produce a very rich phase diagram

spanned by chemical doping and temperature [2]: while the undoped compounds are

antiferromagnetic Mott insulators, chemical substitution weakens the magnetic correla-

tions and produces a so-called ”superconducting dome” centered around optimal doping.

Aside from these phases, many others have been found to coexist and compete with them,

such as charge- and spin-density waves [3], pseudogap [4], and strange metal [5]. From

a theoretical perspective, the early experiments on the cuprate materials immediately

stimulated the search for a model able to describe at least some of the many competing

phases. In 1987, Anderson proposed the single-band two-dimensional Hubbard model

to describe the electrons moving in the copper-oxide planes [6]. Despite the real mate-

rials exhibiting several bands with complex structures, Zhang and Rice suggested that

the Cu-O hybridization produces a singlet whose propagation through the lattice can be

described by a single band model [7]. While some other models have been proposed,

such as the t-J one [7], describing the motion of holes in a Heisenberg antiferromagnet

and corresponding to the strong coupling limit of the Hubbard model [8, 9], or a more

complex three-band model [10, 11], the Hubbard model has gained the most popular-

ity because of its (apparent) simplicity. The model has been originally introduced by

Hubbard [12, 13], Kanamori [14], and Gutzwiller [15], to describe correlation phenomena

in three-dimensional systems with partially filled d- and f -bands. It consists of spin-1
2
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2 Introduction

Figure 1: Pictorial representation of the Hubbard model on a square lattice. Here we
consider hopping amplitudes t, t′ and t′′ between nearest, next-to-nearest and third-
neighboring sites, respectively. The onsite repulsive interaction only acts between op-
posite spin electrons, as, due to the Pauli principle, equal spin electrons can never occupy
the same site.

electrons moving on a square lattice, with quantum mechanical hopping amplitudes tjj′

between the sites labeled as j and j′ and experiencing an on-site repulsive interaction U

(see Fig. 1).

Despite its apparent simplicity, the competition of different energy scales (Fig. 2)

in the Hubbard model leads to various phases, some of which are still far from being

understood [16]. One of the key ingredients is the competition between the localization

energy scale U and the kinetic energy (given by the bandwith D = 8t) that instead tends

to delocalize the electrons. This gives rise, at half filling, that is, when the single band

is half occupied, to the celebrated Mott metal-to-insulator (MIT) transition. At weak

coupling the system is in a metallic phase, characterized by itinerant electrons. Above

a given critical value of the onsite repulsion U , the energy gained by localizing becomes

lower than that of the metal, realizing a correlated (Mott) insulator. To capture this kind

of physics was one of the early successes of the dynamical mean-field theory (DMFT) [17–

19].

Another important energy scale is given by the antiferromagnetic exchange coupling

J . Indeed, the half-filled Hubbard model with only nearest neighbor hopping amplitude

t at strong coupling can be mapped onto the antiferromagnetic Heisenberg model with

coupling constant J = 4t2/U , where the electron spins are the only degrees of freedom,

as the charge fluctuations get frozen out. Therefore, the ground state at half filling

is a Néel antiferromagnet. This is true not only at strong, but also at weak coupling

and for finite hopping amplitudes to sites further than nearest neighbors. Indeed, a
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Figure 2: Hierarchy of energy scales in cuprate superconductors. Taken from Ref. [27].

crossover takes place by varying the interaction strength. At small U , the instability to

antiferromagnetism is driven by the Fermi surface (FS) geometry, with the wave vector

Q = (π/a, π/a) being a nesting vector (where a is the lattice spacing), that is, it maps

some points (hot spots) of the FS onto other points on the FS. In the particular case of zero

hopping amplitudes beyond nearest neighbors (sometimes called pure Hubbard model),

the nesting becomes perfect, with every point on the FS being a hot spot, implying that

even infinitesimally small values of the coupling U produce an antiferromagnetic state.

In the more general case a minimal interaction strength Uc is required to destabilize the

paramagnetic phase. The state characterized by magnetic order occurring on top of a

metallic state goes under the name of Slater antiferromagnet [20]. Differently, at strong

coupling, local moments form on the lattice sites due to the freezing of charge fluctuations,

which order antiferromagnetically, too [21, 22]. At intermediate coupling, the system is in

a state that is something in between the two limits. In the pure Hubbard model case, a

canonical particle-hole transformation [23] maps the repulsive half-filled Hubbard model

onto the attractive one, in which the crossover mentioned above becomes the BCS-BEC

crossover [24–26], describing the evolution from a weakly-coupled superconductor formed

by loosely bound Cooper pairs, to a strongly coupled one, where the electrons tightly

bind, forming bosonic particles which undergo Bose-Einstein condensation∗.

∗Actually, in the pure attractive Hubbard model at half filling, the charge density wave and super-
conducting order parameters combine together to form an order parameter with SU(2) symmetry, which
is the equivalent of the magnetization in the repulsive model.
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Upon small electron or hole doping, the antiferromagnetic order gets weakened but

may survive, giving rise to an itinerant antiferromagnet, with small Fermi surfaces con-

sisting of hole or electron pockets. Depending on the parameters, doping makes the Néel

antiferromagnetic state unstable, with the spins rearranging in order to maximize the

charge carrier kinetic energy, leading to an incommensurate spiral magnet with ordering

wave vector Q 6= (π/a, π/a). The transition from a Néel to a spiral incommensurate

antiferromagnet has been found not only at weak [28–30], but also at strong [31, 32] cou-

pling, as well as in the t-J model [33, 34], which describes the large-U limit of the doped

Hubbard model. At a given doping value, the (incommensurate) antiferromagnetic order

finally ends, leaving room for other phases. At finite temperature, long-range antiferro-

magnetic ordering is prevented by the Mermin-Wagner theorem [35], but strong magnetic

fluctuations survive, leaving their signature in the electron spectrum [36, 37].

At finite doping, magnetic fluctuations generate an effective attractive interaction be-

tween the electrons, eventually leading to an instability towards a d-wave superconducting

state, characterized by a gap that vanishes at the nodal points of the underlying Fermi

surface (see left panel of Fig. 3). At least in the weak coupling limit, the presence of

a superconducting state has to be expected, because, as pointed out by Kohn and Lut-

tinger [38], as long as a sharp Fermi surface is present, every kind of (weak) interaction

produces an attraction in a certain angular momentum channel, causing the onset of su-

perconductivity. In other words, the Cooper instability always occurs in a Fermi liquid as

soon as the interactions are turned on. At weak and moderate coupling, several methods

have found d-wave superconducting phases and/or instabilities coexisting and competing

with (incommensurate) antiferromagnetic ones. Among these methods, we list the fluctu-

ation exchange approximation (FLEX) [39, 40], and the functional renormalization group

(fRG) [41–47].

The FLEX approximation consists of a decoupling of the fluctuating magnetic and

pairing channels, describing the d-wave pairing instability as a spin fluctuation mediated

mechanism. On the other hand, the fRG [27], based on an exact flow equation [48, 49],

provides an unbiased treatment of all the competing channels (including, for example, also

charge fluctuations). The unavoidable truncation of the hierarchy of the flow equations,

however, limits the applicability of this method to weak-to-moderate coupling values.

Important progress has been made in this direction by replacing the bare initial condi-

tions with a converged DMFT solution [50], therefore ”boosting” [51] the fRG to strong
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Figure 3: Left panel: superconducting d-wave gap and pseudogap as functions of the
lattice momentum k. While the superconducting gap vanishes in a single k-point, the
pseudogap is zero over a finite portion of the bare Fermi surface. Right panel: pseudogap
spectral function (top) exhibiting the characteristic Fermi arcs, and spectral function
without pseudogap (bottom), marked by a large Fermi surface. Taken from Ref. [2].

coupling. One of the most challenging issues of the so-called DMF2RG (DMFT+fRG)

approach is the frequency dependence of the vertex function, representing the effective

interaction felt by two electrons in the many-body medium, which has to be fully retained

to properly capture strong coupling effects [52]. Similarly to the fRG, the parquet ap-

proximation [53, 54] (PA) treats all fluctuations on equal footing. Self-consistent parquet

equations are hard to converge numerically, and this has prevented their application to

physically relevant parameter regimes so far. A notable advancement in this direction has

been brought by the development of the multiloop fRG, that, by means of an improved

truncation of the exact flow equations, controlled by a parameter ` counting the number

of loops present in the flow diagrams, has been shown to become equivalent to the PA in

the limit `→∞ [55, 56].

Aside from antiferromagnetism and superconductivity, the Hubbard model is host to

other intriguing phases, which have also been experimentally observed. One of those is

the pseudogap phase, characterized by the suppression of spectral weight at the antinodal

points of the Fermi surface, forming so-called Fermi arcs (see Fig. 3). A full theoretical

understanding of the mechanisms behind this behavior is still lacking, even though several
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Figure 4: Pictorial representation of stripe order. The spins are ordered antiferromagnet-
ically with a magnetization amplitude that gets modulated along one lattice direction. At
the same time, the charge density also gets modulated, taking its maximum value where
the magnetization density is minimal. Taken from Ref. [68].

works with various numerical methods [54, 57–61] have found a considerable suppression

of the spectral function close to the antinodal points in the Hubbard model. In all these

works, the momentum-selective insulating nature of the computed self-energy seems to

arise from strong antiferromagnetic fluctuations [62]. This can be described, at least

in the weak coupling regime, by plugging in a Fock-like diagram for the self-energy an

Ornstein-Zernike formula for the spin susceptibility, that is (in imaginary frequencies),

χm(q,Ω) ' Zm
Ω2 + c2

s(q−Q)2 + (csξ−1)2
,

with cs the spin wave velocity, Q the antiferromagnetic ordering wave vector, ξ the mag-

netic correlation length, and Zm a constant. According to the analysis carried out by Vilk

and Tremblay [57], a gap opens at the antinodal points when ξ � vF/(πT ), with vF the

Fermi velocity and T the temperature. More recent studies speculate that the pseudogap

is connected to the onset of topological order in a fluctuating (that is, without long-range

order) antiferromagnet [37, 63–67].

Numerical calculations have also shown the emergence of a stripe phase, where the

antiferromagnetic order parameter shows a modulation along one lattice direction, ac-

companied by a charge modulation (see Fig. 4). Stripe order can be understood as an

instability of a spiral phase [33, 69, 70], that is, a uniform incommensurate antiferro-

magnetic phase. It can also be viewed as the result of phase separation occurring in a

hole-doped antiferromagnet [71, 72]. Stripe phases have been observed in several works,

with methods starting from Hartree-Fock [73, 74], up to the most recent density ma-
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trix renormalization group and quantum Monte Carlo studies of ”Hubbard cylinders” at

strong coupling [75, 76]. Stripe order is found to compete with other magnetic orders,

such as uniform spiral magnetic phases [33], as well as with d-wave superconductivity [77].

Among the phases listed above, the pseudogap remains one of the most puzzling ones.

Most of its properties can be described by assuming some kind of magnetic order (often

Néel or spiral) that causes a reconstruction of the large Fermi surface into smaller pockets

and the appearance of Fermi arcs in the spectral function. However, no signature of static,

long-range order has been found in experiments performed in this regime. In this thesis

(see Chapter 6 in particular), we theoretically model the pseudogap phase as a short-

range ordered magnetic phase, where spin fluctuations prevent symmetry breaking at

finite temperature (and they may do so even in the ground state), while many features of

the long-range ordered state are retained, such as transport properties, superconductivity,

and the spectral function. This is achieved by fractionalizing the electron into a fermionic

”chargon” and a charge neutral bosonic ”spinon”, carrying the spin quantum number of

the original electron. In this way, one can assume magnetic order for the chargon degrees

of freedom which gets eventually destroyed by the spinon fluctuations.

Outline

This thesis is organized as it follows:

• In Chapter 1 we provide a short introduction of the main methods to approach the

many body problem that we have used throughout this thesis. These are the func-

tional renormalization group (fRG) and the dynamical mean-field theory (DMFT).

In particular, we discuss various truncations of the fRG flow equations and the limi-

tation of their validity to weak coupling. We finally present the usage of the DMFT

as an initial condition of the fRG flow to access nonperturbative regimes.

• In Chapter 2, we present a study of transport coefficients across the transition

between the pseudogap and the Fermi liquid phases of the cuprates. We model the

pseudogap phase with long-range spiral magnetic order and perform nonperturbative

computations in this regime via the DMFT. Subsequently, we extract an effective

mean-field model, and using the formulas of Ref. [78], we compute the transport

coefficients, which we can compare with the experimental results of Ref. [79].

The results of this chapter have appeared in the publication:
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– P. M. Bonetti∗, J. Mitscherling∗, D. Vilardi, and W. Metzner, Charge car-

rier drop at the onset of pseudogap behavior in the two-dimensional Hubbard

model, Phys. Rev. B 101, 165142 (2020).

• In Chapter 3 we present the fRG+MF (mean-field) framework, introduced in Refs. [80,

81] that allows to continue the fRG flow into a spontaneously symmetry broken

phase by means of a relatively simple truncation of the flow equations, that can be

formally integrated, resulting into renormalized Hartree-Fock equations.

After presenting the general formalism, we apply the method to study the coexis-

tence and competition of antiferromagnetism and superconductivity in the Hubbard

model at weak coupling, by means of a state-of-the-art parametrization of the fre-

quency dependence, thus methodologically improving the results of Ref. [81]. We

conclude the chapter by reformulating the fRG+MF equations in a mixed boson-

fermion representation, where the explicit introduction of a bosonic field allows for

a systematic inclusion of the collective fluctuations on top of the MF.

The results of this chapter have appeared in the following publications:

– D. Vilardi, P. M. Bonetti, and W. Metzner, Dynamical functional renormaliza-

tion group computation of order parameters and critical temperatures in the

two-dimensional Hubbard model, Phys. Rev. B 102, 245128 (2020).

– P. M. Bonetti, Accessing the ordered phase of correlated Fermi systems: Ver-

tex bosonization and mean-field theory within the functional renormalization

group, Phys. Rev. B 102, 235160 (2020).

• In Chapter 4, we present a reformulation of the fRG flow equations that exploits the

single boson exchange (SBE) representation of the two-particle vertex, introduced

in Ref. [82]. The key idea of this parametrization is to represent the vertex in terms

of processes each of which involves the exchange of a single boson, corresponding

to a collective fluctuation, between two electrons, and a residual interaction. On

the one hand, this decomposition offers numerical advantages, highly simplifying

the computational complexity of the vertex function; on the other hand, it provides

physical insight into the collective excitations of the correlated system. The chapter

contains a formulation of the flow equations and results obtained by the applica-

tion of this formalism to the Hubbard model at strong coupling, using the DMFT

approximation as an initial condition of the fRG flow.

∗Equal contribution

https://link.aps.org/doi/10.1103/PhysRevB.101.165142
https://link.aps.org/doi/10.1103/PhysRevB.102.245128
https://link.aps.org/doi/10.1103/PhysRevB.102.235160
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The results of this chapter have appeared in:

– P. M. Bonetti, A. Toschi, C. Hille, S. Andergassen, and D. Vilardi, Single boson

exchange representation of the functional renormalization group for strongly

interacting many-electron systems, Phys. Rev. Research 4, 013034 (2022).

• In Chapter 5, we analyze the low-energy properties of magnons in an itinerant spiral

magnet. In particular, we show that the complete breaking of the SU(2) symmetry

gives rise to three Goldstone modes. For each of these, we present a low energy

expansion of the magnetic susceptibilities within the random phase approximation

(RPA), and derive formulas for the spin stiffnesses and spectral weights. We also

show that local Ward identities enforce that these quantities can be alternatively

computed from the response to a gauge field. Moreover, we analyze the size and the

low-momentum and frequency dependence of the Landau damping of the Goldstone

modes, due to their decay into particle-hole pairs.

The results of this chapter have appeared in:

– P. M. Bonetti, and W. Metzner, Spin stiffness, spectral weight, and Landau

damping of magnons in metallic spiral magnets, Phys. Rev. B 105, 134426

(2022).

– P. M. Bonetti, Local Ward identities for collective excitations in fermionic

systems with spontaneously broken symmetries, arXiv:2204.04132, accepted in

Physical Review B (2022).

• In Chapter 6, we formulate a theory for the pseudogap phase in high-Tc cuprates.

This is achieved fractionalizing the electron into a ”chargon”, carrying the original

electron charge, and a charge neutral ”spinon”, which is a SU(2) matrix providing

a time and space dependent local spin reference frame. We then consider a mag-

netically ordered state for the chargons where the Fermi surface gets reconstructed.

Despite the chargons display long-range order, symmetry breaking at finite temper-

ature is prevented by spinon fluctuations, in agreement with the Mermin-Wagner

theorem. We subsequently derive an effective theory for the spinons integrating out

the chargon degrees of freedom. The spinon dynamics is governed by a non-linear

sigma model (NLσM). By performing a large-N expansion of the NLσM derived

from the two-dimensional Hubbard model at moderate coupling, we find a broad

finite temperature pseudogap regime. At weak or moderate coupling U , however,

spinon fluctuations are not strong enough to destroy magnetic long-range order in

https://doi.org/10.1103/PhysRevResearch.4.013034
https://link.aps.org/doi/10.1103/PhysRevB.105.134426
https://link.aps.org/doi/10.1103/PhysRevB.105.134426
https://doi.org/10.48550/arXiv.2204.04132
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the ground state, except possibly near the edges of the pseudogap regime at large

hole doping. The spectral functions in the hole doped pseudogap regime have the

form of hole pockets with a truncated spectral weight on the backside, similar to

the experimentally observed Fermi arcs. The results of this chapter appear in

– P. M. Bonetti, and W. Metzner, SU(2) gauge theory of the pseudogap phase

in the two-dimensional Hubbard model, arXiv:2207.00829 (2022).

https://doi.org/10.48550/arXiv.2207.00829


Chapter 1

Methods

1.1 Functional renormalization group (fRG)

The original idea of an exact flow equation for a generating functional dates back to

Wetterich [48], who derived it for a bosonic theory. Since then, the concept of a nonper-

turbative renormalization group, that is, distinct from the perturbative Wilsonian one [83],

has been applied in many contexts, ranging from quantum gravity to statistical physics

(see Ref. [84] for an overview). The first application of the Wetterich equation to cor-

related Fermi systems is due to Salmhofer and Honerkamp [85], in the context of the

Hubbard model.

In this section, we present the functional renormalization group equations for the

one-particle-irreducible (1PI) correlators of fermionic fields. The derivation closely follows

Ref. [27], and we refer to it and to Refs. [49, 86, 87] for further details.

1.1.1 Generating functionals

We start by defining the generating functional of connected Green’s functions as [88]

W [η, η] = − ln

∫
DΨDΨ e−S[Ψ,Ψ]+(η,Ψ)+(Ψ,η), (1.1)

where the symbol (η,Ψ) is a shorthand for
∑

x η(x) Ψ(x), with x a collective variable

grouping a set of suitable quantum numbers and imaginary time or frequency. The bare

11
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action S typically consists of a noninteracting one-body term S0

S0

[
Ψ,Ψ

]
= −

(
Ψ, G−1

0 Ψ
)
, (1.2)

with G0 the bare propagator, and a two-body interaction

Sint

[
Ψ,Ψ

]
=

1

(2!)2

∑
x′1,x

′
2,

x1,x2

λ(x′1, x
′
2;x1, x2) Ψ(x′1)Ψ(x′2)Ψ(x2)Ψ(x1), (1.3)

with λ describing the two-body potential. Deriving Eq. (1.1) with respect to the source

fields η and η, one can obtain the correlation functions corresponding to connected Feyn-

man diagrams. In general, we define the connected m-particle Green’s function as

G(2m)(x1, . .., xm, x
′
1, . .., x

′
m) = (−1)m

δ(2m)W [η, η]

δη(x1)...δη(xm)δη(x′m)...δη(x′1)

∣∣∣∣∣
η,η=0

. (1.4)

In particular, the m = 1 case gives the interacting propagator.

Another relevant functional is the so-called effective action, which generates all the

1PI correlators, that is, all correlators which cannot be divided into two distinct parts by

removing a propagator line. It is defined as the Legendre transform of W

Γ
[
ψ, ψ

]
= W [η, η] + (η, ψ) +

(
ψ, η

)
, (1.5)

where the fields ψ and ψ, represent the expectation values of the original fields Ψ and Ψ

in presence of the sources. They are related to η and η via

ψ = −δW
δη

, (1.6a)

ψ = +
δW

δη
, (1.6b)

and the inverse relations read as

δΓ

δψ
= −η, (1.7a)

δΓ

δψ
= +η. (1.7b)
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Deriving Γ, one can obtain the 1PI m-particle correlators, that is,

Γ(2m)(x1, . .., xm, x
′
1, . .., x

′
m) =

δ(2m)Γ
[
ψ, ψ

]
δψ(x′1)...δψ(x′m)δψ(xm)...δψ(x1)

∣∣∣∣∣
ψ,ψ=0

. (1.8)

In particular the m = 1 case gives the inverse interacting propagator,

Γ(2) = G−1 = G−1
0 − Σ, (1.9)

with Σ the self-energy, and the m = 2 case the so-called two-particle vertex or effec-

tive interaction. It is possible to derive [88] a particular relation between the W and Γ

functional, called reciprocity relation. It reads as

Γ(2)
[
ψ, ψ

]
=
(
G(2) [η, η]

)−1
, (1.10)

with

G(2) [η, η] = −

(
δ2W

δη(x)δη(x′)
− δ2W
δη(x)δη(x′)

− δ2W
δη(x)δη(x′)

δ2W
δη(x)δη(x′)

)
, (1.11)

and

Γ(2)
[
ψ, ψ

]
=

 δ2Γ
δψ(x′)δψ(x)

δ2Γ
δψ(x′)δψ(x)

δ2Γ
δψ(x′)δψ(x)

δ2Γ
δψ(x′)δψ(x)

 . (1.12)

1.1.2 Derivation of the exact flow equation

For single band, translationally invariant systems, the bare propagator G0 takes a simple

form in momentum and imaginary frequency space:

G0(k, ν) =
1

iν − ξk
, (1.13)

where ν is a fermionic Matusbara frequency, taking the value (2n + 1)πT (n ∈ Z) at

finite temperature T , and ξk the band dispersion relative to the chemical potential µ. At

low temperatures G0 exhibits a nearly singular structure at ν ∼ 0 and ξk = 0, which

highly influences the physics of the correlated system. This is a manifestation of the

importance of the low energy excitations, that is, those close to the Fermi surface, at low

temperatures. Therefore, one might be tempted to perform the integral in (1.1) step by
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step, including first the high energy modes and then, gradually, the low energy ones. This

can be achieved regularizing the propagator via a scale-dependent function, that is,

GΛ
0 (k, ν) =

ΘΛ(k, ν)

iν − ξk
, (1.14)

where ΘΛ(k, ν) is a function that vanishes for ν � Λ and/or ξk � Λ and tends to one for

ν � Λ and/or ξk � Λ. In this way, one can define a scale-dependent action as

SΛ
[
Ψ,Ψ

]
= −

(
Ψ, QΛ

0 Ψ
)

+ Sint

[
Ψ,Ψ

]
, (1.15)

with QΛ
0 = (GΛ

0 )−1, as well as a scale-dependent W -functional

WΛ [η, η] = − ln

∫
DΨDΨ e−S

Λ[Ψ,Ψ]+(η,Ψ)+(Ψ,η). (1.16)

Differentiating Eq. (1.16) with respect to Λ, we obtain an exact flow equation for W :

∂ΛW
Λ = eW

Λ

∂Λe
−WΛ

= eW
Λ

∫
DΨDΨ

(
Ψ, Q̇Λ

0 Ψ
)
e−S

Λ[Ψ,Ψ]+(η,Ψ)+(Ψ,η)

= eW
Λ

(
δ

δη
, Q̇Λ

0

δ

δη

)
e−W

Λ

=

(
δWΛ

δη
, Q̇Λ

0

δWΛ

δη

)
+ tr

[
Q̇Λ

0

δ2WΛ

δηδη

]
,

(1.17)

with Q̇Λ
0 a shorthand for ∂ΛQ

Λ
0 . Expanding WΛ in powers of the source fields, one can

derive the flow equations for the connected Green’s functions in Eq. (1.4). Since 1PI

correlators are easier to handle, we exploit the above result to derive a flow equation for

the effective action functional ΓΛ:

∂ΛΓΛ
[
ψ, ψ

]
=
(
∂Λη

Λ, ψ
)

+
(
ψ, ∂Λη

Λ
)

+ ∂ΛW
Λ
[
ηΛ, ηΛ

]
, (1.18)

where ηΛ and ηΛ are solutions of the implicit equations

ψ = −δW
Λ

δη
, (1.19a)

ψ =
δWΛ

δη
. (1.19b)
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Using the properties of the Legendre transform, we get

∂ΛΓΛ
[
ψ, ψ

]
= ∂ΛW

Λ
[
ηΛ, ηΛ

] ∣∣∣
ηΛ,ηΛ fixed

, (1.20)

that, combined with Eq. (1.6), (1.10), and (1.17) gives

∂ΛΓΛ
[
ψ, ψ

]
= −

(
ψ, Q̇Λ

0ψ
)
− 1

2
tr
[
Q̇Λ

0

(
Γ(2)Λ

)−1
]
, (1.21)

with Γ(2)Λ the same as in Eq. (1.12), and

Q̇Λ
0 (x, x′) =

(
Q̇Λ

0 (x, x′) 0

0 −Q̇Λ
0 (x′, x)

)
. (1.22)

Alternatively [49], one can define the regularized bare propagators via a regulator RΛ:

GΛ
0 =

1

G−1
0 −RΛ

, (1.23)

and introduce the concept of effective average action,

ΓΛ
R

[
ψ, ψ

]
= ΓΛ

[
ψ, ψ

]
−
(
ψ,RΛψ

)
, (1.24)

so that the flow equation for ΓΛ
R becomes

∂ΛΓΛ
R

[
ψ, ψ

]
=− 1

2
tr

[
ṘΛ
(
Γ

(2)Λ
R + RΛ

)−1
]

=− 1

2
∂̃Λ tr ln

[
Γ

(2)Λ
R + RΛ

]
,

(1.25)

with RΛ defined similarly to QΛ
0 , and the symbol ∂̃Λ is defined as ∂̃Λ = ṘΛ δ

δRΛ
.

Eq. (1.21) (or (1.25)) is the so-called Wetterich equation and describes the exact

evolution of the effective action functional. For the whole approach to make sense, it is

necessary to completely remove the regularization of G0 at the final scale Λ = Λfin, that

is, GΛfin
0 = G0, so that at the final scale the scale-dependent effective action is the effective

action of the many-body problem defined by action S. Furthermore, like any other first

order differential equation, Eq. (1.21) must be complemented with an initial condition at

the initial scale Λini. If we choose the function ΘΛ such that GΛini
0 = 0, the integral in
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(1.16) is exactly given by the saddle point approximation, and Legendre transforming we

get

ΓΛini
[
ψ, ψ

]
= S

[
ψ, ψ

]
+
(
ψ,
[
QΛini

0 −G−1
0

]
ψ
)

= SΛini
[
ψ, ψ

]
, (1.26)

or, in terms of the effective average action,

ΓΛini
R

[
ψ, ψ

]
= S

[
ψ, ψ

]
. (1.27)

1.1.3 Expansion in the fields

A common approach to tackle Eq. (1.21) is to expand the effective action functional ΓΛ

in powers of the fields, where the coefficient of the 2m-th power corresponds to the m

particle vertex up to a prefactor. We write Γ(2)Λ as

Γ(2)Λ
[
ψ, ψ

]
=
(
GΛ
)−1 − Σ̃Λ

[
ψ, ψ

]
, (1.28)

where
(
GΛ
)−1

is at the same time the field-independent part of Γ(2)Λ and the interacting

propagator, and Σ̃Λ vanishes for zero fields, that is, it is at least quadratic in ψ, ψ.

We further notice that, as long as no pairing is present in the system, GΛ(x, x′) can be

expressed as diag
(
GΛ(x, x′),−GΛ(x′, x)

)
. Inserting (1.28) into (1.21) and writing

(
Γ(2)Λ

)−1
=
(

1−GΛΣ̃Λ
)−1

GΛ = GΛ + GΛΣ̃ΛGΛ + GΛΣ̃ΛGΛΣ̃ΛGΛ + . . . , (1.29)

we get

∂ΛΓΛ
[
ψ, ψ

]
= −

(
ψ, Q̇Λ

0ψ
)
− tr

[
Q̇Λ

0G
Λ
]

+
1

2
tr
[
SΛ
(
Σ̃Λ + Σ̃ΛGΛΣ̃Λ + . . .

)]
, (1.30)

where we have defined a single-scale propagator SΛ = −GΛQ̇Λ
0 GΛ = ∂̃ΛGΛ, which, in a

normal system, reads as SΛ(x, x′) = diag
(
SΛ(x, x′),−SΛ(x′, x)

)
, with SΛ = ∂̃ΛG

Λ. Here,
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the the symbol ∂̃Λ is intended as ∂̃Λ = Q̇Λ
0

δ

δQΛ
0

= ∂Λ

(
1

ΘΛ

)
δ

δ(1/ΘΛ)
. If we now write

ΓΛ
[
ψ, ψ

]
=Γ(0)Λ −

∑
x,x′

Γ(2)Λ(x′, x)ψ(x′)ψ(x)

+
1

(2!)2

∑
x′1,x

′
2,

x1,x2

Γ(4)Λ(x′1, x
′
2, x1, x2)ψ(x′1)ψ(x′2)ψ(x2)ψ(x1)

− 1

(3!)2

∑
x′1,x

′
2,x
′
3,

x1,x2,x3

Γ(6)Λ(x′1, x
′
2, x
′
3, x1, x2, x3)ψ(x′1)ψ(x′2)ψ(x′3)ψ(x3)ψ(x2)ψ(x1)

+ . . . ,

(1.31)

and compare the coefficients in Eq. (1.30), we can derive the flow equations for all the

different moments Γ(2m)Λ of the effective action. We remark that, since we are dealing

with fermions, all the Γ(2m)Λ vertices are antisymmetric under the exchange of a pair of

primed or non-primed indices, that is

Γ(2m)Λ(x′1, . .., x
′
i
, . .., x′

j
, . .., x′m, x1, . .., xi, . .., xj, . .., xm)

= (−1)Γ(2m)Λ(x′1, . .., x
′
j
, . .., x′

i
, . .., x′m, x1, . .., xi, . .., xj, . .., xm)

= (−1)Γ(2m)Λ(x′1, . .., x
′
i
, . .., x′

j
, . .., x′m, x1, . .., xj, . .., xi, . .., xm).

(1.32)

The 0-th moment of the effetive action, Γ(0)Λ, is given by T−1ΩΛ, with T the temperature

and ΩΛ the grand canonical potential [27], so that we have

∂ΛΩΛ = −T tr
[
Q̇Λ

0G
Λ
]
. (1.33)

The flow equation for the 2nd moment reads as

∂ΛΓ(2)Λ = Q̇Λ
0 − Tr

[
SΛΓ(4)Λ

]
. (1.34)

Noticing that Γ(2)Λ = (GΛ)−1 − ΣΛ, we can extract the flow equation for the self-energy:

∂ΛΣΛ(x′, x) =
∑
y,y′

SΛ(y, y′)Γ(4)Λ(x′, y′, x, y), (1.35)
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Figure 1.1: Schematic representation of the flow equations for the self-energy (left) and
vertex (right). The ticked lines represent single-scale propagators, and the dots over the
symbols scale derivatives.

where its initial condition can be extracted from (1.27), and it reads as ΣΛini(x′, x) = 0.

Similarly, one can derive the evolution equation for the two-particle vertex Γ(4)Λ:

∂ΛΓ(4)Λ(x′1, x
′
2, x1, x2) =∑

y′1,y
′
2,

y1,y2

[
PΛ(y′1, y

′
2, y1, y2)

(
+ Γ(4)(x′1, y

′
2, x1, y1)Γ(4)(y′1, x

′
2, y2, x2)

− Γ(4)(x′1, y
′
1, y2, x2)Γ(4)(y′2, x

′
2, x1, y1)

− 1

2
Γ(4)(x′1, x

′
2, y1, y2)Γ(4)(y′1, y

′
2, x1, x2)

)]
−
∑
y,y′

SΛ(y, y′)Γ(6)Λ(x′1, x
′
2, y
′, x1, x2, y),

(1.36)

with

PΛ(y′1, y
′
2, y1, y2) = SΛ(y1, y

′
1)GΛ(y2, y

′
2) + SΛ(y2, y

′
2)GΛ(y1, y

′
1). (1.37)

The initial condition for the two particle vertex, reads as Γ(4)Λini = λ, with λ the bare

two-particle interaction in Eq. (1.3). In Fig. 1.1 a schematic representation of the flow

equations for the self-energy and the two-particle vertex is shown.

1.1.4 Truncations

Inspecting Eqs. (1.35) and, in particular (1.36), we notice that the flow equation for

the self-energy requires the knowledge of the two-particle vertex, whose flow equation

involves ΣΛ (through GΛ and SΛ), Γ(4)Λ, and Γ(6)Λ. Considering higher order terms, one

can prove that the right hand side of the flow equation for Γ(2m)Λ involves all the Γ(2m)Λ,

with m ≤ m+ 1. This produces an infinite hierarchy of flow equations for the m-particle

1PI correlators that, for practical reasons, needs to be truncated at some given order.

Since for most purposes the calculation of the self-energy and of the two-particle vertex
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Figure 1.2: (a) Feynman diagram representing the approximate integration of the flow
equation for Γ(6)Λ. (b-c) Contributions to the vertex flow equations with non-overlapping
(b) and overlapping (c) loops. Here, the ticked lines represent single-scale propagators
SΛ.

is sufficient, the truncations often work as approximations on the three-particle vertex

Γ(6)Λ. The simplest one could perform is the so-called 1-loop (1`) truncation, where the

three-particle vertex is set to zero all along the flow, in this way, the last term in Eq. (1.36)

can be discarded to compute the flow equation of the two-particle vertex.

Alternatively, one can approximately integrate the flow equation for Γ(6), obtaining

the loop diagram schematically shown in panel (a) of Fig. 1.2, and insert it into the last

term of the flow equation for the vertex. One can then classify the resulting terms into

two classes depending on whether the corresponding diagram displays non-overlapping or

overlapping loops (see (b) and (c) panels of Fig. 1.2). By considering only the former

class, one can easily prove that these terms coming from Γ(6)Λ can be reabsorbed into the

first ones of Eq. (1.36) by replacing the single-scale propagator SΛ with the full derivative

of the Green’s function ∂ΛG
Λ = SΛ +GΛ(∂ΛΣΛ)GΛ in Eq. (1.37), so that one can rewrite

PΛ(y′1, y
′
2, y1, y2) = ∂Λ

[
GΛ(y1, y

′
1)GΛ(y2, y

′
2)
]
. (1.38)

This approximation is known under the name of Katanin scheme [89] and, when consid-

ering only one of the first three terms in Eq. (1.36) (with PΛ as in Eq. (1.38)), becomes

equivalent to a Hartree-Fock approximation for the self-energy, combined with a ladder

resummation for the vertex [90]. The more involved inclusion of diagrams with both

non-overlapping and overlapping loops leads to the 2-loop (2`) truncation, introduced by

Eberlein [91].

Finally, Kugler and von Delft [55, 56] have recently developed the so-called multiloop

approximation, which systematically and approximately takes into account contributions
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Figure 1.3: Schematic representation of the first three terms in Eq. (1.36), also referred to
as pp, ph, and ph channels (see text). For each channel, another diagram with the ”tick”
on the other internal fermionic line exists.

from higher order 1PI vertices in the fashion of a loop expansion. They also proved that

in the limit of infinite loops this truncation becomes equivalent to the parquet approxi-

mation [40, 92], based on a diagrammatic approach, rather than on a flow equation.

In the context of statistical physics, where one mainly deals with bosonic rather than

fermionic fields, other nonperturbative truncations are possible. One can, for example,

write the effective action as a one-body term (propagator) plus a local potential that only

depends on the absolute value of the field, and then compute the flow of these two terms.

In this way, one is able to include contributions from vertices with an arbitrary number of

external legs. This approximation goes under the name of local potential approximation

(LPA). For a more detailed discussion on the LPA and its extensions, see Ref. [49] and

references therein.

1.1.5 Vertex flow equation

We now turn our attention to the first three terms of Eq. (1.36) and neglect the con-

tribution from the three-particle vertex, in a 1` approximation. Following the order of

Eq. (1.36), we call them particle-hole (ph), particle-hole-crossed (ph) and particle-particle

(pp) channels, respectively. In Fig. 1.3 we show a diagrammatic representation of each

term.

If we now consider a rotationally and translationally invariant system of spin-1
2

fermions,

we can choose the set of quantum numbers and imaginary frequency as x = {k, σ}, where

k = (k, ν) is a collective variable encoding the spatial momentum and the frequency, and
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σ =↑, ↓ is the spin projection. Under these assumptions, the propagator reads as

GΛ(x′, x) = GΛ
σ′σ(k′, k) = GΛ(k)δσσ′δ(k − k′), (1.39)

and a similar relation holds for SΛ. Analogously, we can write the two-particle vertex as

Γ(4)Λ(x′1, x
′
2, x1, x2) = Γ

(4)Λ

σ′1σ
′
2σ1σ2

(k′1, k
′
2, k1) δ(k′1 + k′2 − k1 − k2), (1.40)

where spin rotation invariance constrains the dependency of the vertex on spin-projections

Γ
(4)Λ

σ′1σ
′
2σ1σ2

(k′1, k
′
2, k1) = V Λ(k′1, k

′
2, k1)δ

σ′1σ1
δ
σ′2σ2

+ V
Λ
(k′1, k

′
2, k1)δ

σ′1σ2
δ
σ′2σ1

. (1.41)

Finally, the antisymmetry properties of Γ(4)Λ enforce V
Λ
(k′1, k

′
2, k1) = −V Λ(k′2, k

′
1, k1).

Inserting (1.40) and (1.41) into (1.36), and with some straightforward calculations, we

obtain a flow equation for V Λ = Γ
(4)Λ
↑↓↑↓

∂ΛV
Λ(k′1, k

′
2, k1) = T Λ

ph(k
′
1, k
′
2, k1) + T Λ

ph
(k′1, k

′
2, k1) + T Λ

pp(k
′
1, k
′
2, k1). (1.42)

From now on, we define the symbol
∫
k=(k,ν)

= T
∑

ν

∫
ddk

(2π)d
as the sum over the Matsubara

frequencies and an integral over the spatial momentum, which can be either unbounded,

for continuum systems, or, for lattice systems, a Brillouin zone momentum. In the case

of zero temperature, the sum T
∑

ν is replaced by an integral. The particle-hole, particle-

hole-crossed, and particle-particle contributions in Eq. (1.42) have been defined as

T Λ
ph(k

′
1, k
′
2, k1) =

∫
p

PΛ(p, p+ k1 − k′1)
[
2V Λ(k′1, p+ k1 − k′1, k1)V Λ(p, k′2, p+ k1 − k′1)

− V Λ(p+ k1 − k′1, k′1, k1)V Λ(p, k′2, p+ k1 − k′1)

(1.43a)

− V Λ(k′1, p+ k1 − k′1, k1)V Λ(k′2, p, p+ k1 − k′1)
]
,

T Λ
ph

(k′1, k
′
2, k1) = −

∫
p

PΛ(p, p+ k′2 − k1)V Λ(k′1, p+ k′2 − k1, p)V
Λ(p, k′2, k1), (1.43b)

T Λ
pp(k

′
1, k
′
2, k1) = −

∫
p

PΛ(p, k′1 + k′2 − p)V Λ(k′1, k
′
2, p)V

Λ(p, k′1 + k′2 − p, k1), (1.43c)
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respectively, and PΛ(p, p′) reads as

PΛ(p, p′) = ∂̃Λ

[
GΛ(p)GΛ(p′)

]
= GΛ(p)SΛ(p′) + SΛ(p)GΛ(p′). (1.44)

An interesting fact of the decomposition in Eq. (1.42) is that each of the three terms, T Λ
ph,

T Λ
ph

, and T Λ
pp, depend on a ”bosonic” variable appearing as a sum or as a difference of two

fermionic variables. One can therefore write the vertex function V Λ as the sum of three

terms, each of which depends on one of the above mentioned bosonic momenta and two

fermionic ones, and its flow equation is given by the T Λ depending on the corresponding

combination of momenta [93]. In formulas, we have

V Λ(k′1, k
′
2, k1) = λ(k′1, k

′
2, k1)+φ

(ph)Λ

kph,k
′
ph

(k1−k′1)+φ
(ph)Λ

kph,k
′
ph

(k′2−k1)−φ(pp)Λ
kpp,k′pp

(k′1 +k′2), (1.45)

where λ represents the bare two-particle interaction, and the last sign is choice of conve-

nience. Furthermore, we have defined

kph =

⌈
k1 + k′1

2

⌉
, k′ph =

⌈
k2 + k′2

2

⌉
, (1.46a)

kph =

⌈
k1 + k′2

2

⌉
, k′

ph
=

⌈
k2 + k′1

2

⌉
, (1.46b)

kpp =

⌈
k′1 − k′2

2

⌉
, k′pp =

⌈
k1 − k2

2

⌉
, (1.46c)

where, at finite T , the symbol dke rounds up the frequency component of k to the clos-

est fermionic Matsubara frequency, while at T = 0 it has no effect. This apparently

complicated parametrization of momenta has the goal to completely disentangle the de-

pendencies on fermionic and bosonic variables of the various terms in (1.45). The flow

equations of these terms read as

∂Λφ
(ph)Λ
k,k′ (q) = T Λ

ph

(
k −

⌈q
2

⌉
, k′ +

⌊q
2

⌋
, k +

⌈q
2

⌉)
, (1.47a)

∂Λφ
(ph)Λ
k,k′ (q) = T Λ

ph

(
k −

⌈q
2

⌉
, k′ +

⌊q
2

⌋
, k′ −

⌊q
2

⌋)
, (1.47b)

∂Λφ
(pp)Λ
k,k′ (q) = −T Λ

pp

(⌊q
2

⌋
+ k,

⌈q
2

⌉
− k,

⌊q
2

⌋
− k′

)
, (1.47c)

where here (at T > 0)
⌈
q
2

⌉
(
⌊
q
2

⌋
) rounds up (down) the frequency component of q

2
to the

closest bosonic Matsubara frequency.
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1.1.6 Instability analysis

One of the main reasons of the success obtained by the application of the fRG to correlated

fermions, and the Hubbard model in particular, is that it allows for an unbiased analysis of

the possible instabilities and competing orders of the system [41–44, 94]. Indeed, through

the fRG flow one can detect the presence of an ordering tendency by looking at the

evolution of the vertex as the scale Λ is lowered and the cutoff removed. In many cases

V Λ diverges at a finite scale Λcr > Λfin, signaling the onset of some spontaneous symmetry

breaking. Decomposition (1.42), though being very practical under a computational point

of view, does not generally allow for understanding which kind of order is to be realized at

scales Λ < Λcr. In this perspective, instead of (1.42), one can perform a physical channel

decomposition, first introduced in the context of the fRG by Husemann et al. [46, 47]:

V Λ(k′1, k
′
2, k1) =λ(k′1, k

′
2, k1)

+
1

2
MΛ

kph,k
′
ph

(k1 − k′1)− 1

2
CΛ
kph,k

′
ph

(k1 − k′1)

+MΛ
kph,k

′
ph

(k′2 − k1)

− PΛ
kpp,k′pp

(k′1 + k′2),

(1.48)

whereMΛ = φ(ph)Λ, CΛ = −2φ(ph)Λ +φ(ph)Λ, and PΛ = φ(pp)Λ are referred to as magnetic,

charge, and pairing channels. Thanks to this decomposition, when a vertex divergence

occurs, one can understand whether the system is trying to realize some kind of magnetic,

charge, or superconducting (or superfluid) order, depending on which amongMΛ, CΛ, or

PΛ diverges. Furthermore, more information on the ordering tendency can be inferred

by analyzing the combination of fermionic and bosonic momenta for which the channel

takes extremely large (formally infinite) values. If, for example, in a 2D lattice system, we

would detect MΛ→Λcr

k,k′

(
q =

((
π
a
, π
a

)
, 0
))
→∞ (a is the lattice spacing), this would signal

an instability towards antiferromagnetism. Differently, PΛ→Λcr

((kx,ky),ν),k′(q = (0, 0)) → +∞,

and PΛ→Λcr

((ky ,kx),ν),k′(q = (0, 0))→ −∞ would imply the tendency to a superconducting state
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with d-wave symmetry. The flow equations for the physical channels read as:

∂ΛMΛ
k,k′(q) = T Λ

ph

(
k −

⌈q
2

⌉
, k′ −

⌊q
2

⌋
, k′ −

⌊q
2

⌋)
, (1.49a)

∂ΛCΛ
k,k′(q) = −2T Λ

ph

(
k −

⌈q
2

⌉
, k′ −

⌊q
2

⌋
, k +

⌈q
2

⌉)
+ T Λ

ph

(
k −

⌈q
2

⌉
, k′ −

⌊q
2

⌋
, k′ −

⌊q
2

⌋)
, (1.49b)

∂ΛPΛ
k,k′(q) = −T Λ

pp

(⌊q
2

⌋
+ k,

⌈q
2

⌉
− k,

⌊q
2

⌋
− k′

)
, (1.49c)

where (1.48) has to be inserted into (1.43). In Appendix A, one can find the symmetry

properties of the various channels.

1.2 Dynamical mean-field theory (DMFT)

While the fRG schemes are able to capture both long- and short-range correlation effects,

their applicability is restricted to weakly interacting systems, as the unavoidable trunca-

tions can be justified only in this limit. In this section, we deal with a different approach,

namely the dynamical mean-field theory (DMFT) [18, 19], which can be used to study

even strongly interacting systems, but treats only local (that is, extremely short-ranged)

correlations. In this section we restrict our attention to a particular class of lattice models

which exhibit a purely local interaction, that is, the Hubbard models:

H =
∑

jj′,σ=↑,↓

tjj′c
†
j,σcj′,σ + U

∑
j

nj,↑nj,↓ − µ
∑
j,σ

nj,σ, (1.50)

where c†j,σ (cj,σ) creates (annihilates) a spin-1
2

electron at site j with spin projection σ,

tjj′ represents the probability amplitude for an electron to hop form site j to site j′, U is

the strength of the onsite interaction, nj,σ = c†j,σcj,σ, and µ is the chemical potential.

In classical spin systems, such as the ferromagnetic Ising model, a mean-field (MF)

approximation consists in replacing all the spins surrounding a given site with a uniform

background field, the Weiss field, whose value is obtained by a self-consistent equation.

Similarly, in lattice quantum many-body systems, one can focus on a single site and

replace the neighboring ones with a dynamical field, which still fully embodies quantum

fluctuation effects [18]. Similarly to MF for spin systems, DMFT is exact in the limit

of large coordination number z → ∞, or, equivalently, in the limit of infinite spatial
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dimensions [17].

1.2.1 Self-consistency relation

The key point of DMFT is to replace the action deriving from (1.50), S =
∫ β

0
dτ [c†∂τc+H],

with a purely local one

Simp = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†0,σ(τ)G−1
0 (τ − τ ′) c0,σ(τ ′) + U

∫ β

0

dτ n0,↑(τ)n0,↓(τ), (1.51)

where the label 0 in the fermionic operators stands for a given fixed site of the lattice and

U takes the same value as in the original Hubbard model. This action is usually referred

to as (quantum) impurity problem, as it describes a 0+1 dimensional system. Here, the

function G−1
0 plays the role of the Weiss field and has to be determined self-consistently.

Since (1.51) is a local approximation of (1.50), we require the local Green’s function of

the Hubbard model, that is

Gloc(τ) = −
〈
T
{
cj,σ(τ)c†j,σ(0)

}〉
, (1.52)

with T {•} the time ordering operator, to equal the one obtained from (1.51), which, in

imaginary frequency space, can be written as

G(ν) =
1

G−1
0 (ν)− Σimp(ν)

, (1.53)

with Σimp(ν) the self-energy of the local action. Furthermore, the self-energy of the

Hubbard model, Σjj′(τ), is approximated to a purely local function, that is,

Σjj′(τ) ' Σdmft(τ)δjj′ , (1.54)

which becomes an exact statement in infinite dimensions d→∞, as shown in Ref. [17] by

means of diagrammatic arguments. In other words, we are requiring the Luttinger-Ward

functional (see Ref. [95]) Φ[Gjj′(τ)] to be a functional of the local Green’s function Gjj(τ)

only, so that

Σjj′(τ) =
δΦ[Gjj′(τ)]

δGjj′(τ)
' δΦ[Gjj(τ)]

δGjj′(τ)
= Σdmft(τ)δjj′ . (1.55)
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Figure 1.4: DMFT self-consistent loop with the AIM as impurity model.

Essentially, we are claiming that if we neglect the nonlocal (j 6= j′) elements of the

self-energy, this can be generated by the Luttinger-Ward functional of a purely local

theory, which we choose to be the one defined by (1.51). This leads us to conclude

that Σdmft(τ) = Σimp(τ). The self-consistency relation can be therefore expressed in the

frequency domain as

Gjj(ν) =

∫
k∈B.Z.

d2k

(2π)2

1

iν − ξk − Σdmft(ν)
=

1

G−1
0 (ν)− Σdmft(ν)

. (1.56)

where ξk = εk − µ, with εk the Fourier transform of the hopping matrix tjj′ and µ the

chemical potential. For a more detailed derivation of (1.56) and for a broader discussion,

see Refs. [18, 19].

Eq. (1.56) closes the equations of the so-called DMFT loop. In essence, one starts with

a guess for the Weiss field G−1
0 , computes the self-energy of the action (1.51), extracts a

new G−1
0 from the self-consistency relation (1.56), and repeats this loop until convergence

is reached, as shown in Fig. 1.4.

The main advantage of this computational scheme is that the action (1.51) is much

easier to treat than the Hubbard model itself, and several reliable numerical methods

(so-called impurity solvers) provide numerically exact solutions. Among those, we find

quantum Monte Carlo (QMC) methods, originally adapted to quantum impurity problems

by Hirsch and Fye [96], exact diagonalization (ED) [97–99], and the numerical renormal-

ization group (NRG) [83, 100].

The ED and NRG methods require the impurity action (1.51) to descend from a
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Hamiltonian H. This is provided by the Anderson impurity model (AIM) [101], which

describes an impurity coupled to a bath of noninteracting electrons. Its Hamiltonian is

given by

HAIM =
∑
`,σ

ε` a
†
`,σa`,σ +

∑
`,σ

V`

[
c†0,σa`,σ + a†0,σc`,σ

]
− µ

∑
σ

c†0,σc0,σ + Un0,↑n0,↓, (1.57)

where a†`,σ (a`,σ) creates (annihilates) an electron on bath level ` with spin projection σ,

ε` are the bath energy levels, V` represent the bath-impurity hybridization parameters,

and µ is the impurity chemical potential. The set {ε`, V`} is often referred to as Anderson

parameters. Expressing HAIM as a functional integral, and integrating over the bath

electrons, one obtains the impurity action (1.51), with the Weiss field given by

G−1
0 (ν) = iν + µ−∆(ν), (1.58)

where the hybridization function ∆(ν) is related to ε` and V` by

∆(ν) =
∑
`

|V`|2

iν − ε`
. (1.59)

In the context of the AIM, the Weiss field is therefore expressed in terms of an optimally

determined discrete set of Anderson parameters.

1.2.2 DMFT two-particle vertex and susceptibilities

For many studies, the knowledge of the single-particle quantities such as the self-energy is

not sufficient. The DMFT provides also a framework for the computation of two-particle

quantities and response functions after the loop has converged and the optimal Weiss field

(or Anderson parameters) has been found.

The impurity two-particle Green’s function is defined as

G4,imp

σ′1,σ
′
2,σ1,σ2

(τ ′1, τ
′
2, τ1, τ2) =

〈
T
{
c

0,σ1
(τ1)c

0,σ2
(τ2)c†0,σ′1

(τ ′1)c†0,σ′2
(τ ′2)
}〉

, (1.60)

and it is by definition antisymmetric under the exchange of (τ ′1, σ
′
1) with (τ ′2, σ

′
2) or (τ1, σ1)

with (τ2, σ2). Fourier transforming it with respect to the four imaginary time variables,
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one obtains

G4,imp

σ′1,σ
′
2,σ1,σ2

(ν ′1, ν
′
2, ν1, ν2) = G4,imp

σ′1,σ
′
2,σ1,σ2

(ν ′1, ν
′
2, ν1) βδν′1+ν′2−ν1−ν2

, (1.61)

where β = 1/T is the inverse temperature, and the delta function of the frequencies arises

because of time translation invariance. Removing the disconnected terms, one obtains

the connected two-particle Green’s function

G4,c,imp

σ′1,σ
′
2,σ1,σ2

(ν ′1, ν
′
2, ν1) =G4,imp

σ′1,σ
′
2,σ1,σ2

(ν ′1, ν
′
2, ν1)

− βG(ν ′1)G(ν ′2) δν′1,ν1
δ
σ′1,σ1

δ
σ′2,σ2

+ βG(ν ′1)G(ν ′2)δν′1,ν2
δ
σ′1,σ2

δ
σ′2,σ1

,

(1.62)

with G(ν) the single-particle Green’s function of the impurity problem. The relation

between the connected two-particle Green’s function and the vertex is then given by [102]

G4,c,imp

σ′1,σ
′
2,σ1,σ2

(ν ′1, ν
′
2, ν1) = −G(ν ′1)G(ν ′2)V imp

σ′1,σ
′
2,σ1,σ2

(ν ′1, ν
′
2, ν1)G(ν1)G(ν2), (1.63)

where V imp is the impurity two-particle (1PI) vertex, and ν2 = ν ′1 + ν ′2 − ν1 is fixed by

energy conservation. Because of the spin-rotational invariance of the system, the spin

dependence of the vertex can be simplified to

V imp

σ′1,σ
′
2,σ1,σ2

(ν ′1, ν
′
2, ν1) = V imp(ν ′1, ν

′
2, ν1)δ

σ′1,σ1
δ
σ′2,σ2
− V imp(ν ′2, ν

′
1, ν1)δ

σ′1,σ2
δ
σ′2,σ1

. (1.64)

Furthermore, we can introduce three different notations for the two particle vertex, de-

pending on the use one wants to make of it. We define the particle-hole (ph), particle-

hole-crossed (ph), and particle-particle (pp) notations as:

V imp,ph
ν,ν′ (Ω) = V imp

(
ν −

⌈
Ω

2

⌉
, ν ′ +

⌊
Ω

2

⌋
, ν +

⌊
Ω

2

⌋)
, (1.65a)

V imp,ph
ν,ν′ (Ω) = V imp

(
ν −

⌈
Ω

2

⌉
, ν ′ +

⌊
Ω

2

⌋
, ν ′ −

⌈
Ω

2

⌉)
, (1.65b)

V imp,pp
ν,ν′ (Ω) = V imp

(⌊
Ω

2

⌋
+ ν,

⌈
Ω

2

⌉
− ν,

⌊
Ω

2

⌋
+ ν ′

)
, (1.65c)

where, as explained previously, d•e (b•c) rounds its argument up (down) to the closest
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Figure 1.5: Schematic representation of the different notations for the two-particle vertex.

bosonic Matsubara frequency. In Fig. 1.5, we show a pictorial representation of the

different notations for the vertex function.

Within the QMC methods, the two-particle Green’s function can be directly sampled

from the impurity action (1.51) with converged Weiss field G−1
0 , while for an ED or a

NRG solver, one has to employ the Lehmann representation of G4,imp [103]. Once the

two-particle Green’s function has been obtained, the vertex can be extract via (1.62)

and (1.63).

The computation of the susceptibilities or transport coefficients of the lattice system

can be achieved, within DMFT, through the knowledge of the vertex function. For ex-

ample, the charge/magnetic susceptibilities of a paramagnetic system can be expressed

in terms of the generalized susceptibility χ
c|m
νν′ (q,Ω) as

χc|m(q,Ω) = T 2
∑
νν′

χ
c|m
νν′ (q,Ω). (1.66)

The DMFT approximation for χ
c|m
νν′ (q,Ω) is obtained solving the integral equation

χ
c|m
νν′ (q,Ω) = βχ0

ν(q,Ω)δνν′ − T
∑
ν′′

χ0
ν(q,Ω) Ṽ

c|m
νν′′ (Ω)χ

c|m
ν′′ν′(q,Ω), (1.67)

where χ0
ν(q,Ω) is given by

χ0
ν(q,Ω) = −

∫
k

G

(
k +

q

2
, ν +

⌊
Ω

2

⌋)
G

(
k− q

2
, ν −

⌈
Ω

2

⌉)
, (1.68)

with
∫

k
=
∫

k∈B.Z.
ddk

(2π)d
, and G(k, ν) the lattice propagator evaluated with the local self-

energy Σ(ν). Finally, in Eq. (1.67), Ṽ c|m represents the two particle irreducible (2PI)

vertex in the charge/magnetic channel at the DMFT level. It can be obtained inverting
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a Bethe-Salpeter equation, that is,

V
c|m
νν′ (Ω) = Ṽ

c|m
νν′ (Ω) + T

∑
ν′′

Ṽ
c|m
νν′′ (Ω)χ0,imp

ν′′ (Ω)V
c|m
ν′′ν′(Ω), (1.69)

where χ0,imp must be evaluated similarly to (1.68) with the local (or impurity) Green’s

function, and

V c
νν′(Ω) = V imp,ph

↑↑↑↑,νν′(Ω) + V imp,ph
↑↑↓↓,νν′(Ω) = 2V imp,ph

νν′ (Ω)− V imp,ph
νν′ (Ω), (1.70a)

V m
νν′(Ω) = V imp,ph

↑↑↑↑,νν′(Ω)− V imp,ph
↑↑↓↓,νν′(Ω) = −V imp,ph

νν′ (Ω). (1.70b)

In d → ∞, even though the two-particle vertex is generally momentum-dependent,

Eq. (1.67) with a purely local 2PI vertex, is exact, as it can be proven by means of

diagrammatic arguments [19].

1.2.3 Strong coupling effects: the Mott transition

One of the earliest successes of the DMFT was, unlike weak-coupling theories, its ability to

correctly capture and the describe the occurrence of a metal-to-insulator (MIT) transition

in the Hubbard model, the so called Mott transition, named after Mott’s early works [104]

on this topic.

In 1964, Hubbard [13] attempted to describe this transition within an effective band

picture. According to his view, the spectral function is composed of two ”domes” which

overlap in the metallic regime. As the interaction strength U is increased, they move

apart from each other, until, at the transition, they split into two separate bands, the

so-called Hubbard bands (see Fig. 1.6). Despite this picture being qualitatively correct in

the insulating regime. it completely fails in reproducing the Fermi liquid properties of

the metallic side. Differently, before the advent of the DMFT, other approaches could

instead properly capture the transition approaching from the metallic regime [105], but

failed in describing the insulating phase.

Within the DMFT, since no assumptions are made on the strength of the on-site

repulsion U , both sides of the transitions can be studied qualitatively and quantitatively.

In addition to the Fermi liquid regime and the insulating one, a new intermediate regime

is predicted. In fact, for U only slightly smaller than the critical value (above which a

gap in the excitation spectrum is generated) the spectral function already exhibits two
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Figure 1.6: Schematic picture of Hubbard’s attempt to describe the Mott MIT transition.
Taken from Ref. [19].

evident precursors of the Hubbard bands in between of which, that is, at the Fermi level,

a narrow peak appears (Fig. 1.7). This feature, visible only at low temperatures, is a

hallmark of the Kondo effect taking place. Indeed, in this regime, a local moment (spin)

is already formed on the impurity site, as the charge excitations have been gapped out,

and the (self-consistent) bath electrons screen it, leading to a singlet ground state. A

broader discussion on the MIT as well as the antiferromagnetic properties of the (half-

filled) Hubbard model as predicted by the DMFT can be found in Ref. [19].

1.2.4 Extensions of the DMFT

In this subsection we briefly list possible extensions of the DMFT to include the effects

of nonlocal correlations. For a more detailed overview, we refer to Ref. [106]. First of

all, we find approximations that allow for the treatment of short-range correlations, by

replacing the single impurity atom with a cluster of few sites, either in real space, as

in the cluster DMFT (CDMFT) [107], or in reciprocal space, in the so-called dynamical

cluster approximation (DCA) [108]. Even with few cluster sites, these approximations

are sufficient to capture the interplay of antiferromagnetism and superconductivity in the

Hubbard model [109]. Furthermore, we find the dual boson approach [110], that extends

the applicability of the DMFT to systems with nonlocal interactions by adding to the

impurity problem some local bosonic degrees of freedom. The dual fermion theory [111],

instead allows for a perturbative inclusion of nonlocal correlations on top of the DMFT,

similarly to the vertex-based approaches such as the dynamical vertex approximation

(DΓA) [103] and the triply and quadruply irreducible local expansions (TRILEX and
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Figure 1.7: Evolution of the spectral function across the MIT, as predicted by DMFT.
Between the metallic regime, marked by a large density of states at the Fermi level, and
the insulating one, exhibiting a large charge gap, a Kondo peak is formed, signaling the
onset of local moment screening. Taken from Ref. [19].

QUADRILEX) [112].

1.3 Boosting the fRG to strong coupling: the DMF2RG

approach

In this section, we introduce another extension of the DMFT for the inclusion of non-

local correlations, namely its fusion together with the fRG in the so-called DMF2RG

approach [50, 51]. Alternatively, the DMF2RG can be viewed as a development of the

fRG that enlarges its domain of validity to strongly interacting systems.

We start by defining a scale-dependent action as

SΛ
[
ψ, ψ

]
= −

∫
k

∑
σ

ψk,σ
[
GΛ

0 (k)
]−1

ψk,σ + U

∫ β

0

dτ
∑
j

nj,↑(τ)nj,↓(τ). (1.71)

We notice that by choosing GΛ
0 (k) = G0(ν), (1.71) becomes the action of Ns (number of

lattice sites) identical and uncoupled impurity problems. On the other hand, GΛ
0 (k) =

(iν−ξk)−1, gives the Hubbard model action. The key idea of the DMF2RG is therefore to
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set up a fRG flow, which interpolates between the self-consistent AIM and the Hubbard

model. The boundary conditions for GΛ
0 (k) read therefore as

GΛini
0 (k) = G0(ν), (1.72a)

GΛfin
0 (k) =

1

iν − ξk
. (1.72b)

Furthermore, one requires the DMFT solution to be conserved at each fRG step [52, 113],

that is∫
k

GΛ(k)
∣∣
ΣΛ(k)=Σdmft(ν)

=

∫
k

1

[GΛ
0 (k)]

−1 − Σdmft(ν)
=

1

G−1
0 (ν)− Σdmft(ν)

. (1.73)

Possible cutoffs schemes satisfying the boundary conditions and the conservation of DMFT

might be, for example,

[
GΛ

0 (k)
]−1

= ΘΛ(k) (iν − ξk) + ΞΛ(k)G−1
0 (ν), (1.74)

or

GΛ
0 (k) =

ΘΛ(k)

iν − ξk
+ ΞΛ(k)G0(ν), (1.75)

where ΘΛ(k) is an arbitrarily chosen cutoff satisfying ΘΛini(k) = 0, and ΘΛfin(k) = 1, and

ΞΛ(k) is calculated at every step from (1.73). Obviously, at Λ = Λini (when ΘΛ(k) = 0),

one would get ΞΛini(k) = 1, while at Λ = Λfin, Eq. (1.73) becomes the DMFT self-

consistency condition, fulfilled by GΛ
0 (k) = (iν − ξk)−1, which returns ΞΛfin(k) = 0.

The choice SΛini [ψ, ψ] =
∑

j Simp[ψj, ψj], imposes an initial condition for the fRG

effective action, that is,

ΓΛini
[
ψ, ψ

]
=
∑
j

Γimp

[
ψj, ψj

]
, (1.76)

where Γimp is the effective action of the self-consistent impurity problem. Expanding it
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in power of the fields, we get

Γimp

[
ψ, ψ

]
=−

∫
ν

∑
σ

ψν,σ
[
G−1

0 (ν)− Σdmft(ν)
]
ψν,σ

+
1

(2!)2

∫
ν′1,ν

′
2,ν1

∑
σ′1,σ

′
2,

σ1,σ2

ψν′1,σ′1ψν′2,σ′2 V
imp

σ′1,σ
′
2,σ1,σ2

(ν ′1, ν
′
2, ν1)ψ

ν′1+ν′2−ν1,σ2
ψ
ν1,σ1

+ . . .

(1.77)

Within the DMF2RG, the flow equations for the 1PI vertices remain unchanged, while

their initial conditions can be read from (1.77):

ΣΛini(k) = Σdmft(ν), (1.78a)

V Λini(k1, k2, k3) = V imp(ν1, ν2, ν3) = V imp
↑↓↑↓(ν1, ν2, ν3). (1.78b)

The development of the DMF2RG has enabled the study of the doped Hubbard model

at strong coupling, with particular focus on the (generally incommensurate) antiferromag-

netic and (d-wave) superconducting instabilities [52, 113].



Chapter 2

Charge carrier drop driven by spiral

magnetism

In this chapter, we present a DMFT description of the so-called spiral magnetic state of

the Hubbard model. This magnetically ordered phase is a candidate for the normal state

of cuprate superconductors, emerging when superconductivity gets suppressed by strong

magnetic fields, as realized in a series of recent experiments [4, 79, 114, 115]. In particular,

a sudden change in the charge carrier density, measured via the Hall number, is observed

as the hole doping p = 1 − n is varied across the value p = p∗, where the pseudogap

phase is supposed to end. This observation is consistent with a drastic change in the

Fermi surface topology, which can described, among others, by a transition from a spiral

magnet to a paramagnet [116–118]. Other possible candidates for the phase appearing for

p < p∗ are Néel antiferromagnetism [119, 120], charge density waves [121, 122], or nematic

order [123].

The chapter is organized as it follows. First of all, we define the spiral magnetic state

and provide a DMFT description of it. Secondly, we present results for the spiral order

parameter as a function of doping at low temperatures, together with an analysis of the

evolution of the Fermi surfaces. Finally, we compare our results with the experimental

findings by computing the transport coefficients using the DMFT parameters as an input

for the formulas derived in Ref. [78]. This task has been carried out by J. Mitscherling,

who equally contributed to Ref. [32], which contains the results presented in this chapter.

35
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Figure 2.1: Magnetization pattern for a spiral magnetic state on a square lattice with
lattice constant a = 1, and Q = (π − 2πη, π), with η ' 0.07.

2.1 Spiral magnetism

Spiral magnetic order is defined by a finite expectation value of the spin operator of the

form

〈~Sj〉 = mn̂j, (2.1)

where m is the amplitude of the onsite magnetization, and n̂j is a unitary vector indicating

the magnetization direction on site j, which can be written as

n̂j = cos(Q ·Rj)v̂1 + sin(Q ·Rj)v̂2, (2.2)

with v̂1 and v̂2 two constant mutually orthogonal unitary vectors. The magnetization lies

therefore in the plane spanned by v̂1 and v̂2, and its direction on two neighboring sites j

and j′ differs by an angle Q · (Rj − Rj′). The vector Q is a parameter which must be

determined microscopically. In the square lattice Hubbard model it often takes the form,

in units of the inverse lattice constant a−1, Q = (π− 2πη, π) or, in the case of a diagonal

spiral, Q = (π − 2πη, π − 2πη), where the parameter η is called incommensurability. If

the system Hamiltonian exhibits SU(2) spin symmetry, as in case of the Hubbard model,

the vectors v̂1 and v̂2 can be chosen arbitrarily, and we thus choose v̂1 = ê1 ≡ (1, 0, 0),

and v̂2 = ê2 ≡ (0, 1, 0). The magnetization pattern resulting from this choice on a square

lattice for a specific value of Q is shown in Fig. 2.1. Within the Hubbard model, where

the fundamental degrees of freedom are electrons rather than spins, the spin operator is
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expressed as

~Sj =
1

2

∑
s,s′=↑,↓

c†j,s~σss′cj,s′ , (2.3)

with ~σ the Pauli matrices. Combining the above definition with (2.1) and (2.2), one

obtains the following expression for the onsite magnetization amplitude

m =
1

2

∫
k

〈
c†k,↑ck+Q,↓ + c†k+Q,↓ck,↑

〉
. (2.4)

From the equation above, it is evident that spiral magnetism couples the single particle

states (k, ↑) and (k + Q, ↓), for each momentum k. It is thus convenient to use a Nambu-

like basis (ck,↑, ck+Q,↓), for which the inverse bare Green’s function reads as

G−1
0 (k, ν) =

(
iν − ξk 0

0 iν − ξk+Q

)
, (2.5)

with ξk the single-particle dispersion relative to the chemical potential µ. Within the

above definitions, the 2D Néel state is recovered by setting Q = QAF = (π, π). In the

Hubbard model a spiral magnetic (that is, with Q close to QAF) state has been found

by several methods at finite doping: Hartree-Fock [28], slave-boson mean-field [29] calcu-

lations, as well as expansions in the hole density [30], and moderate-coupling functional

renormalization group [81] calculations. Interestingly enough, normal state DMFT calcu-

lations have revealed that the ordering wave vector Q is related to the shape of the Fermi

surface geometry not only at weak but also at strong coupling [31]. Furthermore, spiral

states are found to emerge upon doping also in the t-J model [33, 34].

2.2 DMFT for spiral states

The single impurity DMFT equations presented in Chap. 1 can be easily extended to

magnetically ordered states [19]. The particular case of spiral magnetism has been treated

in Refs. [124, 125] for the square- and triangular-lattice Hubbard model, respectively.

In the Nambu-like basis introduced previously, the self-consistency equation takes the

form ∫
k

[
G−1

0 (k, ν)−Σdmft(ν)
]−1

=
[
G−1

0 (ν)−Σdmft(ν)
]−1

, (2.6)
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where Σdmft(ν) is the local self-energy, and G0(ν) the bare propagator of the self-consistent

AIM. The self-energy is a 2× 2 matrix of the form

Σdmft(ν) =

(
Σ(ν) ∆(ν)

∆∗(−ν) Σ(ν)

)
, (2.7)

with Σ(ν) the normal self-energy, and ∆(ν) the gap function. Since the impurity model

lives in 0+1 dimensions, there can be no spontaneous symmetry breaking, leading to

off diagonal elements in the self-energy with a diagonal Weiss field G0. We therefore

explicitly break the SU(2) symmetry in the impurity model, allowing for a non-diagonal

bare propagator. The corresponding AIM can be then written as (cf. Eq. (1.57))

HAIM =
∑
`,σ

ε` a
†
`,σa`,σ +

∑
`,σ,σ′

[
V σσ′

` c†0,σa`,σ′ + h.c.
]
− µ

∑
σ

c†0,σc0,σ + Un0,↑n0,↓, (2.8)

with V σσ′

` a hermitian matrix describing spin-dependent hoppings. By means of a suitable

global spin rotation around the axis perpendicular to the magnetization plane, one can

impose ∆(ν) = ∆∗(−ν), and therefore require the V σσ′

` to be real symmetric matrices.

The self-consistent loop will then return nonzero off-diagonal hoppings (V ↑↓` and V ↓↑` ),

and therefore a finite gap function ∆(ν), only if symmetry breaking occurs in the original

lattice system. Integrating out the bath fermions in Eq. (2.8), one obtains the Weiss field

G0(ν) = (iν + µ)1−
∑
`

V †` V`
iν − ε`

, (2.9)

which, in general, exhibits off-diagonal elements.

Using ED with four bath sites as impurity solver, we converge several loops for various

values of Q, and we retain the one that minimizes the grand-canonical potential. For its

computation we use the formula [19]

Ω

V
= Ωimp − T

∑
ν

∫
k

Tr log
[
G−1

0 (k, ν)−Σdmft(ν)
]

+ T
∑
ν

Tr log
[
G−1

0 (ν)−Σdmft(ν)
]
,

(2.10)

with V the system volume, and Ωimp the impurity grand-canonical potential per unit
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Figure 2.2: Free energy potential relative to its minimum value Fmin at two different
doping values, as a function of the incommensurability η for a Q = (π − 2πη, π) spiral.

volume, which can be computed within the ED solver as

Ωimp = −2T
∑
n

log
(
1 + e−βεn

)
, (2.11)

where the factor 2 comes from the spin degeneracy, and εn are the eigenenergies of the

AIM Hamiltonian. In the case of calculations performed at finite density n rather than

at fixed chemical potential µ, the function to be minimized is the free energy per unit

volume F/V = Ω/V + µn. In Fig. 2.2 we show a typical behavior of F/V as a function

of the incommensurability η for a Q = (π − 2πη, π) spiral. We notice that the variation

of microscopic parameters such as the hole doping p = 1− n can drive the system from a

Néel state (η = 0) to a spiral one (η 6= 0).

2.3 Hubbard model parameters

In order to mimic the behavior of real materials, namely YBa2Cu3Oy (YBCO), and

La2-xSrxCuO4 (LSCO), we use hopping parameters (t′ and t′′) calculated by downfold-

ing ab initio band structures on the single-band Hubbard model [126, 127]. For LSCO

we choose t′ = −0.17t, t′′ = 0.05t, and U = 8t, while for YBCO we have t′ = −0.3t,

t′′ = 0.15t, and U = 10t. Furthermore, since YBCO is a bilayer compound, its band
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structure must be extended to

ξk,kz = ξk − t⊥k cos kz, (2.12)

where kz ∈ {0, π} is the z-axis component of the momentum, and t⊥k is an interlayer

hopping amplitude taking the form

t⊥k = t⊥(cos kx − cos ky)
2, (2.13)

with t⊥ = 0.15t. The dispersion obtained with kz = 0 is often referred to as bonding band,

and the one with kz = π as antibonding band. The self-consistency equation must be then

modified to

1

2

∑
kz=0,π

∫
k

[
G−1

0 (k, kz, ν)−Σdmft(ν)
]−1

=
[
G−1

0 (ν)−Σdmft(ν)
]−1

, (2.14)

where the bare lattice Green’s function is now given by

G−1
0 (k, kz, ν) =

(
iν − ξk,kz 0

0 iν − ξk+Q,kz+Qz

)
, (2.15)

with Qz = π, that is, we require the interlayer dimers to be antiferromagnetically ordered.

In the rest of this chapter, all the quantities with energy dimensions will be given in units

of the hopping t when not explicitly stated otherwise.

2.4 Order parameter and incommensurability

In this section, we show results obtained from calculations at the lowest temperatures

reachable by the ED algorithm with Ns = 4 bath sites, namely T = 0.027t for LSCO, and

T = 0.04t for YBCO. Notice that decreasing T below these two values leads, at least for

some dopings, to an unphysical decrease and eventual vanishing of the order parameter

m. Lower temperatures could be reached increasing Ns. However, the exponential scal-

ing of the ED algorithm makes low-T calculations computationally involved. We obtain

homogeneous solutions for any doping, that is, for all values of p shown, we have ∂µ
∂n
> 0.

By contrast, in Hartree-Fock studies [28] phases with two different densities have been
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Figure 2.3: Diagonal (top) and off-diagonal (bottom) component of the DMFT self-energy
as a function of the Matsubara frequency for LSCO parameters at p = 0.10, and T = 0.04t.

found over broad doping regions.

Differently than static mean-field theory, where the off-diagonal self-energy is given

by a simple number which can be chosen as purely real, within DMFT it acquires a

frequency dependency, and, in general, an imaginary part. A particular case when ∆(ν)

can be chosen as a purely real function of the frequency is the half-filled Hubbard model

with only nearest neighbor hoppings (t′ = t′′ = 0), where a particle-hole transformation

can map the antiferromagnetic state onto a superconducting one, for which it is always

possible to choose a real gap function. In Fig. 2.3, we plot the normal and anomalous self-

energies as functions of the Matsubara frequency ν. Σ(ν) displays a behavior qualitatively

similar to the one of the paramagnetic state, with a negative imaginary part, and a

real one approaching the Hartree-Fock expression Un/2 for ν → ∞. The anomalous

self-energy ∆(ν) exhibits a sizable frequency dependence with its real part interpolating

between its value at the Fermi level ∆ ≡ ∆(ν → 0), and an Hartree-Fock-like expression

Um, with m the onsite magnetization. We notice that within the DMFT (local) charge

and pairing fluctuations are taken into account, leading to an overall suppression of ∆

compared to the Hartree-Fock result. This is the magnetic equivalent of the Gor’kov-

Melik-Barkhudarov effect found in superconductors [128]. The observation that ∆ < Um

is another manifestation of these fluctuations.
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Figure 2.4: Magnetic gaps for LSCO (left panel) and YBCO (right panel) as functions of
doping. For LSCO, we show results at T = 0.04t (squares), and T = 0.027t (diamonds).
The dashed black lines represent estimations of the gaps at T = 0 via a linear extrapo-
lation, while the dashed gray lines indicate the doping above which electron pockets are
present, together with hole pockets, in the Fermi surface

In Fig. 2.4, we show the extrapolated zero frequency gap ∆ as a function of the

doping for the two materials under study. As expected, the gap is maximal at half

filling, and decreases monotonically upon doping, until it vanishes continuously at p = p∗.

Due to the mean-field character of the DMFT, the magnetic gap is expected to behave

proportionally to (p∗ − p)1/2 for p slightly below p∗ at finite temperature. Examining the

temperature trend for LSCO (left panel of Fig. 2.4), lowering the temperature, we expect

p∗ to increase, and the approximately linear behavior of ∆ to extend up to the critical

doping, as indicated by the extrapolation in the figure. In principle, a weak first-order

transition is also possible at T = 0.

Within the parameter ranges under study, the ordering wave vector always takes the

form Q = (π − 2πη, π) (or symmetry related), with the incommensurability η varying

with doping, as shown in Fig. 2.5. For both compounds we find that η is lower than p.

Experimentally, the relation η(p) ' p has been found to hold for LSCO for 0.06 < p <

0.12, saturating to η ' 1/8 for larger dopings [129]. Differently, experiments on YBCO

have found η(p) being significantly smaller than p [130].
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Figure 2.5: Incommensurability η as a function of doping for LSCO and YBCO parameters
at T = 0.04t.

2.5 Fermi surfaces

The onset of spiral magnetic order leads to a band splitting and therefore to a fraction-

alization of the Fermi surface. In the vicinity of the Fermi level, we can approximate the

anomalous and normal self-energies as constants, ∆ and Σ0 ≡ ReΣ(ν → 0), which leads

to a mean-field expression [28] for the quasiparticle bands reading as

E±k =
εk + εk+Q

2
±

√(
εk − εk+Q

2

)2

+ ∆2 − µ̃, (2.16)

with µ̃ = µ − Σ0. The quasiparticle Fermi surfaces are then given by E±k = 0. In the

case of the bilayer compound YBCO, there are two sets of Fermi surfaces corresponding

to the bonding and antibonding bands. We remark that the above expression for the

quasiparticle dispersions holds only in the vicinity of the Fermi level, where the expansion

of the DMFT self-energies is justifiable.

In Fig. 2.6 the quasiparticle Fermi surfaces for LSCO and YBCO band parameters

are shown for doping values slightly smaller than their respective critical doping p∗. In

all cases, due to the small value of ∆ in the vicinity of p∗, both electron and hole pockets

are present.

The quasiparticle Fermi surface differs from the Fermi surface observed in photoemis-

sion experiments. The latter is determined by poles of the diagonal elements of the Green’s
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Figure 2.6: Fermi surfaces for LSCO and YBCO slightly below their critical doping at
T = 0.04t. The read lines indicate hole pockets, while the blue ones electron pockets. For
YBCO solid and dashed lines denote the bonding and antibonding bands, respectively.

function, corresponding to peaks in the spectral function at zero frequency A(k, 0). Dis-

carding the frequency dependence of the self-energies, the spectral functions in the vicinity

of the Fermi level can be expressed as [116]

A↑(k, ω) =
∑
η=±

∆2

∆2 +
(
ξk−Q − E−ηk−Q

)2 δ
(
ω − Eη

k−Q

)
, (2.17a)

A↓(k, ω) =
∑
η=±

∆2

∆2 + (ξk − Eη
k)2 δ(ω − E

η
k) , (2.17b)

where ω/t � 1, ξk = εk − µ̃, and δ(x) denotes the Dirac delta function. The total

spectral function, A(k, ω) = A↑(k, ω) + A↓(k, ω), is inversion symmetric (A(−k, ω) =

A(k, ω)) for band dispersions obeying ε−k = εk, while the quasiparticle bands are not [32].

Furthermore, the spectral weight on the Fermi surface is given by ∆2

∆2+ξ2
k
, which is maximal

for momenta close to the ”bare” Fermi surface, ξk = 0.

At low temperatures and in the vicinity of the Fermi level, the main effect of the

normal self-energy Σ(ν) is a renormalization of the quasiparticle weight by the Z factor

Z =

[
1− ∂ ImΣ(ν)

∂ν

∣∣∣∣
ν=0

]−1

≤ 1, (2.18)
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Figure 2.7: Z factors as functions of the doping for LSCO and YBCO band parameters at
T = 0.04t. The dashed lines represent the Z factors in the unstable paramagnetic phase.

where the derivative can be approximated by ImΣ(πT )/(πT ) at finite temperatures. The

Z factor reduces the bare dispersion to ξ̄k = Zξk, the magnetic gap to ∆̄ = Z∆, and the

quasiparticle energies to Ē±k = ZE±k . Moreover, the quasiparticle contributions to the

spectral function get suppressed by a global factor Z. The missing spectral weight is then

shifted to incoherent contributions at higher energies. The resulting spectral function will

then read as

A(k, ω) =Z
∑
η=±

[
∆̄2

∆̄2 +
(
ξ̄k−Q − Ē−ηk−Q

)2 δ
(
ω − Ēη

k−Q

)
+

∆̄2

∆̄2 +
(
ξ̄k − Ēη

k

)2 δ
(
ω − Ēη

k

)]
+ Ainc(k, ω).

(2.19)

In Fig. 2.7, we plot the Z factors for LSCO and YBCO parameters computed at T = 0.04t

as functions of the doping. The values computed for the (enforced) unstable paramagnetic

solution are also shown for comparison (dashed lines). We notice that the Z factors exhibit

a quite weak doping dependence, and, depending on the material, take values between

0.2 and 0.4, with the strongest renormalization occurring for YBCO. We remark that for

p→ 0 the paramagnetic Z factors are not expected to vanish as the choice of parameters

for both materials makes them lie on the metallic side of the Mott transition at half filling.

In Fig. 2.8, we show the quasiparticle Fermi surfaces and spectral functions for various

doping values across the spiral-to-paramagnetic transition. Electron pockets are present
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Figure 2.8: Quasiparticle Fermi surfaces (top) and spectral functions A(k, 0) (bottom)
for LSCO parameters and for different doping values. The spectral functions have been
broadened by a constant scattering rate Γ = 0.025t.

in the Fermi surface only in a narrow doping region below p∗ (see also Fig. 2.4). The

spectral function exhibits visible peaks only on the inner sides of the pockets, as the

outer sides are strongly suppressed by the spectral weight. Therefore, the Fermi surface

observed in photoemission experiments smoothly evolves from Fermi arcs, characteristic

of the pseudogap phase, to a large Fermi surface upon increasing doping.

2.6 Application to transport experiments in Cuprates

Transport coefficients can in principle be computed within the DMFT. However, this in-

volves a delicate analytic continuation from Matsubara to real frequencies. Furthermore,

the quasiparticle lifetimes calculated within this approach are due to electron-electron

scattering processes, while in the real systems important contributions also come from

phonons and impurities. We therefore compute the magnetic gap ∆, the incommensu-

rability η, and the Z factor as functions of the doping p within the DMFT, and plug

them in a mean-field Hamiltonian, while taking estimates for the scattering rates from
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Figure 2.9: Longitudinal conductivity as a function of doping for LSCO (left panel) at
T = 0.04t (solid line, squares), and T = 0.027t (dashed line, diamonds) and YBCO (right
panel) at T = 0.04t. The dashed-dotted lines represent extrapolations at T = 0. The
conductivity in the unstable paramagnetic phase (gray symbols) is shown for comparison.

experiments. The mean-field Hamiltonian reads as

HMF =

∫
k

∑
σ

(ε̄k − µ) c†k,σck,σ +

∫
k

∆̄
(
c†k,↑ck+Q,↓ + c†k+Q,↓ck,↑

)
, (2.20)

with ε̄k = Zεk. The chemical potential µ is then adapted such that the doping calculated

from (2.20) coincides with the one computed within the DMFT. The scattering rate is

then implemented by adding a constant imaginary part iΓ to the inverse retarded bare

propagator, with Γ fixed to 0.025t.

The transport coefficients are obtained by coupling the system to the U(1) electro-

magnetic gauge potential A(r, t) through the Peierls substitution, that is

tjj′ → tjj′ exp

[
ie

∫ Rj′

Rj

A(r, t) · dr

]
, (2.21)

with tjj′ the hopping matrix, that is the Fourier transform of ε̄k, and e < 0 the electron

charge. The ordinary and Hall conductivities are defined as

jα =
[
σαβ + σαβγH Bγ

]
Eβ, (2.22)

with jα the electrical current, and Eβ and Bγ the electric and magnetic field, respectively.
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Figure 2.10: Hall number nH as a function of doping for LSCO (left panel) and YBCO
(right panel). The symbol code is the same as in Fig. 2.9. The black dashed lines
correspond to the näıve expectations nH = p for the hole pockets and nH = 1 + p for a
large Fermi surface.

The Hall coefficient is then given by

RH =
σxyzH

σxx σyy
, (2.23)

and the Hall number as nH = 1/(|e|RH). Exact expressions for the conductivities of the

Hamiltonian (2.20) can be obtained, and we refer to Ref. [78] for a derivation and more

details. These formulas go well beyond the independent band picture often used in the

calculation of transport properties, as they include interband and intraband contributions

on equal footing. For a broad discussion on these different terms in general two-band

models, we refer to Refs. [131, 132].

In Fig. 2.9, we show the longitudinal conductivity as a function of doping for the

two materials under study and for different temperatures, together with an extrapolation

at zero temperature, obtained by inserting the guess for the doping dependence of ∆ at

T = 0 sketched in Fig. 2.4. The expected drop at p = p∗ is particularly steep at T > 0

due to the square root onset of ∆(p), while it is smoother at T = 0. Since in the present

calculation the scattering rate does not depend on doping, the drop in σxx is exclusively

due to the Fermi surface reconstruction.

The Hall number as a function of doping is plotted in Fig. 2.10 for different temper-

atures, together with an extrapolation at T = 0. A pronounced drop is found for p < p∗,
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indicating once again a drop in the charge carrier concentration. In the high-field limit

ωcτ � 1, with ωc the cyclotron frequency and τ ∝ 1/Γ the quasiparticle lifetime, the Hall

number exactly equals the charge carrier density enclosed by the Fermi pockets. However,

the experiments are performed in the low-field limit ωcτ � 1. In this limit, nH equals the

charge carrier density only for parabolic dispersions. For low doping, the Hall number

approaches the value p, indicating that for small p the hole pockets are well approximated

by ellipses. In the paramagnetic phase emerging at p > p∗, nH is slightly above the näıve

expectation 1+p for YBCO, while for LSCO it is completely off, a sign that in this regime

the dispersion is far from being parabolic. In fact, the large values of nH are a precursor

of a divergence occurring for p = 0.33, well above the van Hove doping at p = 0.23.

In Fig. 2.11, we show the ratio σyy/σxx as a function of doping for LSCO and YBCO at

T = 0.04t. The breaking of the square lattice symmetry due to the onset of spiral order

leads to an anisotropy, or nematicity, in the longitudinal conductivity. This behavior

has also been experimentally observed in Ref. [133], where the values for the ratio were

however much larger than the ones of the present calculation. For a wavevector of the

form Q = (π − 2πη, π), the longitudinal conductivity in the y direction is larger than

the one in the x direction. Lowering p below p∗, the decrease in η is compensated by an

increase in ∆, leading to an overall increase in the ratio σyy/σxx, until a point where the

incommensurability becomes too small and the ratio decreases again, saturating to 1 for

small values of the doping, where η = 0.

Figure 2.11: Ratio σyy/σxx as a function of doping for LSCO (orange symbols) and YBCO
(blue symbols) at T = 0.04t.
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Chapter 3

fRG+MF approach to the Hubbard

model

Aim of this chapter is to present a framework that allows to continue the fRG flow into

phases exhibiting spontaneous symmetry breaking (SSB). This can be achieved by means

of a simplified truncation that neglects the interplay of the different channels below the

critical scale Λc, at which symmetry breaking occurs. This set of flow equations can

be shown to be equivalent to a mean-field (MF) approach with renormalized couplings

computed for RG scales (Λ) larger than Λc [80, 81]. Therefore, we call this approach

fRG+MF. Neglecting the channel competition also for Λ > Λc leads to the Hartree-Fock

approximation for the order parameter [90].

This chapter is divided into three parts. In the first one, we introduce the fRG+MF

equations. In the second one, we perform a fRG+MF calculation of the phase diagram of

the Hubbard model. We treat all the frequency dependencies of the two-particle vertex,

therefore extending the static results of Ref. [81]. The results of this part have been

published in Ref. [134]. In the third part, we tackle the problem of reformulating the

fRG+MF approach in a mixed boson-fermion representation, where the explicit presence

of a bosonic field allows for a systematic inclusion of the collective fluctuations on top of

the MF. Ref. [135] contains the results presented in this part.

51
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3.1 fRG+MF formalism

In this section, we derive the fRG+MF equations assuming that at Λ = Λc the particle-

particle channel φ(pp)Λ diverges, signaling the onset of superconductivity for Λ < Λc,

arising from the breaking of the global U(1) charge symmetry. Generalizations to other

orders and symmetries are straightforward, as shown for example in Sec. 3.2 for the case

of Néel and spiral antiferromagnetism.

We now derive the equations for the fRG+MF approach that neglects any kind of

order parameter (thermal or quantum) fluctuations. In order to deal with the breaking

of the global U(1) symmetry, we introduce the Nambu spinors

Ψk =

(
ψk,↑

ψ−k,↓

)
Ψk =

(
ψk,↑

ψ−k,↓

)
, (3.1)

where ψk,σ (ψk,σ) is a Grassmanian field corresponding to the annihilation (creation) of an

electron, k = (k, ν) a collective variable comprising the lattice momentum and a fermionic

Matsubara frequency, and σ =↑, ↓ the spin quantum number.

3.1.1 Flow equations and integration

In the SSB phase, the vertex function V acquires anomalous components due to the

violation of particle number conservation. In particular, besides the normal vertex de-

scribing scattering processes with two incoming and two outgoing particles (V2+2), in the

superfluid phase also components with three (V3+1) or four (V4+0) incoming or outgoing

particles can arise. We avoid to treat the 3+1 components, since they are related to the

coupling of the order parameter to charge fluctuations [136], which do not play any role

in a MF-like approximation for the superfluid state. It turns out to be useful to work

with linear combinations

VA = Re {V2+2 + V4+0} ,

VΦ = Re {V2+2 − V4+0} ,
(3.2)

that represent two fermion interactions in the longitudinal and transverse order parameter

channels, respectively. They are related to the amplitude and phase fluctuations of the

superfluid order parameter, respectively. In principle, a longitudinal-transverse mixed
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interaction can also appear, from the imaginary parts of the vertices in Eq. (3.2), but it

has no effect in the present MF approximation because it vanishes at zero center of mass

frequency [137].

Below the critical scale, Λ < Λc, we consider a truncation of the effective action of

the form

ΓΛ
SSB[Ψ,Ψ] = −

∫
k

Ψk

[
GΛ(k)

]−1
Ψk +

∫
k,k′,q

V Λ
A (k, k′; q)S1

k,q S
1
k′,−q

+

∫
k,k′,q

V Λ
Φ (k, k′; q)S2

k,q S
2
k′,−q,

(3.3)

with the Nambu bilinears defined as

Sαk,q = Ψk+b q2c τ
α Ψk−d q2e, (3.4)

where the Pauli matrices τα are contracted with Nambu spinor indexes. The fermionic

propagator GΛ(k) is given by the matrix(
QΛ

0 (k)− ΣΛ(k) ∆Λ(k)

∆Λ(k) −QΛ
0 (−k) + ΣΛ(−k)

)−1

, (3.5)

where QΛ
0 (k) = iν−ξk +RΛ(k), ξk is the single particle dispersion relative to the chemical

potential, RΛ(k) the fRG regulator, ΣΛ(k) the normal self energy, and ∆Λ(k) the superfluid

gap. The initial conditions at the scale Λ = Λc require ∆Λc to be zero and both V Λc
A and

V Λc
Φ to equal the vertex V Λc in the symmetric phase.

We are now going to introduce the MF approximation to the symmetry broken state,

that means that we focus on the q = 0 component of VA and VΦ and neglect all the rest.

So, from now on we keep only the q = 0 terms. We also neglect the flow of the normal

self-energy below Λc. In order to simplify the presentation, we introduce a matrix-vector

notation for the gaps and vertices. In particular, the functions VA and VΦ are matrices

in the indices k and k′, while the gap and the fermionic propagator behave as vectors.

For example, in this notation an object of the type
∫
k′
V Λ
A (k, k′)∆Λ(k′) can be viewed as

a matrix-vector product, V Λ
A∆Λ.

Within our MF approximation, we consider in the set of flow equations only the terms

that involve only the q = 0 components of the functions VA and VΦ. This means that
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in a generalization of Eq. (1.36) to the SSB phase, we consider only the particle-particle

contributions. In formulas we have:

∂ΛV
Λ
A = V Λ

A

[
∂̃ΛΠΛ

11

]
V Λ
A + Γ(6)Λ ◦ ∂̃ΛG

Λ, (3.6)

∂ΛV
Λ

Φ = V Λ
Φ

[
∂̃ΛΠΛ

22

]
V Λ

Φ + Γ(6)Λ ◦ ∂̃ΛG
Λ, (3.7)

where we have defined the bubbles

ΠΛ
αβ(k, k′) = −1

2
Tr
[
τα GΛ(k) τβ GΛ(k)

]
δk,k′ , (3.8)

with δk,k′ = (2π)2/T δ(k− k′)δνν′ , and the trace runs over Nambu spin indexes. The last

terms of Eqs. (3.6) and (3.7) involve the 6-particle interaction, which we treat here in the

Katanin approximation, that allows us to replace the derivative acting on the regulator ∂̃Λ

of the bubbles with the full scale derivative ∂Λ [89]. This approach is useful for it provides

the exact solution of mean-field models, such as the reduced BCS model, in which the bare

interaction is restricted to the zero center of mass momentum channel [90]. In this way,

the flow equation (3.6) for the vertex VA, together with the initial condition V Λc
A = V Λc

can be integrated analytically, yielding

V Λ
A =

[
1 + V Λc(ΠΛc − ΠΛ

11)
]−1

V Λc =
[
1− Ṽ ΛcΠΛ

11

]−1

Ṽ Λc , (3.9)

where

ΠΛc(k, k′) = GΛc(k)GΛc(−k)δk,k′ , (3.10)

is the (normal) particle-particle bubble at zero center of mass momentum,

GΛ(k) =
1

QΛ
0 (k)− ΣΛc(k)

, (3.11)

is the fermionic normal propagator, and

Ṽ Λc =
[
1 + V ΛcΠΛc

]−1
V Λc (3.12)

is the irreducible (normal) vertex in the particle-particle channel at the critical scale. The

flow equation for the transverse vertex VΦ exhibits a formal solution similar to the one in

Eq. (3.9), but the matrix [1− Ṽ ΛcΠΛ
22] is not invertible. We will come to this aspect later.
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3.1.2 Gap equation

Similarly to the flow equations for vertices, in the flow equation of the superfluid gap we

neglect the contributions involving the vertices at q 6= 0. We are then left with

∂Λ∆Λ(k) =

∫
k′
V Λ
A (k, k′) ∂̃ΛF

Λ(k′), (3.13)

where

FΛ(k) =
∆Λ(k)

[GΛ(k)GΛ(−k)]−1 + [∆Λ(k)]2
(3.14)

is the anomalous fermionic propagator, with GΛ defined as in Eq. (3.11), and with the

normal self-energy kept fixed at its value at the critical scale. By inserting Eq. (3.9) into

Eq. (3.13) and using the initial condition ∆Λc = 0, we can analytically integrate the flow

equation, obtaining the gap equation [80]

∆Λ(k) =

∫
k′
Ṽ Λc(k, k′)FΛ(k′). (3.15)

In the special case in which the contributions to the vertex flow equation from other

channels (different from the particle-particle) are neglected also above the critical scale,

the irreducible vertex is nothing but the bare interaction, and Eq. (3.15) reduces to the

standard Hartree-Fock approximation to the SSB state.

3.1.3 Goldstone Theorem

In this subsection we prove that the present truncation of flow equations fulfills the Gold-

stone theorem. We revert our attention on the transverse vertex VΦ. Its flow equation in

Eq. (3.7) can be (formally) integrated, too, together with the initial condition V Λc
Φ = V Λc ,

giving

V Λ
Φ =

[
1 + V Λc(ΠΛc − ΠΛ

22)
]−1

V Λc =
[
1− Ṽ ΛcΠΛ

22

]−1

Ṽ Λc . (3.16)

However, by using the relation

ΠΛ
22(k, k′) =

FΛ(k)

∆Λ(k)
δk,k′ , (3.17)
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one can rewrite the matrix in square brackets on the right hand side of Eq. (3.16) as

δk,k′ − Ṽ Λc(k, k′)
FΛ(k′)

∆Λ(k′)
. (3.18)

Multiplying this expression by ∆Λ(k′) and integrating over k′, we see that it vanishes if

the gap equation (3.15) is obeyed. Thus, the matrix in square brackets in Eq. (3.16) has

a zero eigenvalue with the superfluid gap as eigenvector. In matrix notation this property

can be expressed as [
1− Ṽ ΛcΠΛ

22

]
∆Λ = 0. (3.19)

Due to the presence of this zero eigenvalue, the matrix [1− Ṽ ΛcΠΛ
22] is not invertible. This

is nothing but a manifestation of the Goldstone theorem. Indeed, due to the breaking of

the global U(1) symmetry, transverse fluctuations of the order parameter become massless

at q = 0, leading to the divergence of the transverse two fermion interaction VΦ.

3.2 Interplay of antiferromagnetism and supercon-

ductivity

In this section, we present an application of the fRG+MF approach to the phase diagram of

the two-dimensional Hubbard model. We parametrize the vertex function by fully taking

into account its frequency dependence. In Refs. [47, 138] the frequency dependence of the

vertex function has been shown to be important, as a static approximation underestimates

the size of magnetic fluctuations, while overestimating the d-wave pairing scale. The

present dynamic computation therefore extends and improves the static results obtained

in Ref. [81].

3.2.1 Symmetric regime

In the symmetric regime, that is, for Λ > Λc, we perform a weak-coupling fRG calculation

within a 1-loop truncation. For the vertex function, we start from the parametrization

in Eq. (1.48), and simplify the dependencies of the three channels on k, k′. We perform

a form factor expansion in these dependencies and retain only the s-wave terms for the

magnetic and charge channels, and s-wave and d-wave terms for the pairing one. In
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formulas, we approximate

MΛ
k,k′(q) =MΛ

νν′(q), (3.20a)

CΛ
k,k′(q) = CΛ

νν′(q), (3.20b)

SΛ
k,k′(q) = SΛ

νν′(q) + dkdk′DΛ
νν′(q), (3.20c)

where the d-wave form factor reads as dk = cos kx − cos ky, and q = (q,Ω) is a collective

variable comprising a momentum and a bosonic Matsubara frequency. Furthermore, we

set the initial two-particle vertex equal to the bare interaction U , that is, in Eq. (1.48)

we set λ(k′1, k
′
2, k1) = U . The parametrization of the vertex function described above has

been used in Ref. [138], with a slightly different notation, and we refer to this publication

and to Appendix A for the flow equations for MΛ, CΛ, SΛ, and DΛ.

3.2.2 Symmetry broken regime

In the Λ < Λc regime, at least one of the symmetries of the Hubbard Hamiltonian is

spontaneously broken. The flow in the symmetric phase [27], and other methods [139]

indicate antiferromagnetism, of Néel type or incommensurate, and d-wave pairing as the

leading instabilities. Among all possible incommensurate antiferromagnetic orderings, we

restrict ourselves to spiral order, exhaustively described in Chap. 2, characterized by the

order parameter 〈ψk,↑ψk+Q,↓〉, with Q = (Q, 0), and Q the ordering wave vector. Néel

antiferromagnetism is then recovered by setting Q = (π, π).

Allowing for the formation of spiral order and d-wave pairing, the quadratic part of

the effective action takes the form

Γ(2)Λ
[
ψ, ψ

]
=−

∫
k

∑
σ

ψk,σ

[(
GΛ

0 (k)
)−1 − ΣΛ(k)

]
ψk,σ

−
∫
k

[(
∆Λ
m(k∗)

)∗
m(k) + ∆Λ

m(k)m∗(k)
]

−
∫
k

[(
∆Λ
p (k∗)

)∗
p(k) + ∆Λ

p (k)p∗(k)
]
,

(3.21)

where ∆Λ
m(k) and ∆Λ

p (k) are the spiral and pairing anomalous self-energies, respectively,
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and k∗ = (k,−ν). We have defined the bilinears m(k) and p(k) as

m(k) = ψk,↑ψk+Q,↓, m∗(k) = ψk+Q,↓ψk,↑, (3.22a)

p(k) = ψk,↑ψ−k,↓, p∗(k) = ψ−k,↓ψk,↑. (3.22b)

From now on, we neglect the normal self-energy ΣΛ(k) both above and below Λc. It is

more convenient to employ a 4-component Nambu-like basis, reading as

Ψk =


ψk,↑

ψ−k,↓

ψk+Q,↓

ψ−k−Q,↑

 Ψk =


ψk,↑

ψ−k,↓

ψk+Q,↓

ψ−k−Q,↑

 . (3.23)

In this way, the quadratic part of the action can be expressed as

Γ(2)Λ
[
Ψ,Ψ

]
= −

∫
k

Ψk

[
GΛ(k)

]−1
Ψk, (3.24)

with

[
GΛ(k)

]−1
=


[
GΛ

0 (k)
]−1

∆Λ
p (k) ∆Λ

m(k) 0[
∆Λ
p (k∗)

]∗ −
[
GΛ

0 (−k)
]−1

0 −∆Λ
m(−k −Q)[

∆Λ
m(k∗)

]∗
0

[
GΛ

0 (k +Q)
]−1 −∆Λ

p (−k −Q)

0 −
[
∆Λ
m(−k∗ −Q∗)

]∗ −
[
∆Λ
m(−k∗ −Q∗)

]∗ −
[
GΛ

0 (−k −Q)
]−1

.
(3.25)

The fRG+MF approach introduced in Sec. 3.1 can be easily generalized to the present

case. Neglecting the q 6= 0 (q 6= Q) contributions to the pairing (spiral) channel, the

quartic part of the effective action reads as

Γ(4)Λ
[
ψ, ψ

]
= +

1

2

∫
k

V Λ
m (k, k′) [m∗(k)m(k′) +m∗(k′)m(k)]

+
1

2

∫
k

WΛ
m(k, k′) [m∗(k)m∗(k′) +m(k′)m(k)]

+
1

2

∫
k

V Λ
p (k, k′) [p∗(k)p(k′) + p∗(k′)p(k)]

+
1

2

∫
k

WΛ
p (k, k′) [p∗(k)p∗(k′) + p(k′)p(k)] ,

(3.26)
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where WΛ
m and WΛ

p represent anomalous interaction terms in the SSB phase. At the

critical scale, the normal interactions are given by

V Λc
m (k, k′) = V Λc

↑↓↓↑(k +Q, k′, k), (3.27a)

V Λc
p (k, k′) =

1

2

[
V Λc
↑↓↑↓(k,−k, k

′)− V Λc
↑↓↓↑(k,−k, k

′)
]
, (3.27b)

where the pairing vertex has been projected onto the singlet component. One can then

define the longitudinal and transverse interactions as

AΛ
m(k, k′) = V Λ

m (k, k′) +WΛ
m(k, k′), (3.28a)

ΦΛ
m(k, k′) = V Λ

m (k, k′)−WΛ
m(k, k′), (3.28b)

AΛ
p (k, k′) = V Λ

p (k, k′) +WΛ
p (k, k′), (3.28c)

ΦΛ
p (k, k′) = V Λ

p (k, k′)−WΛ
p (k, k′). (3.28d)

While ΦΛ
m and ΦΛ

p are decoupled from the flow equations for the gap functions within

the fRG+MF approach, they are crucial for the fulfillment of the Goldstone theorem, as

shown in Sec. 3.1.3.

In line with the parametrization performed in the symmetric regime, we approximate

∆Λ
m(k) = ∆Λ

m(ν), (3.29a)

∆Λ
p (k) = ∆Λ

p (ν)dk, (3.29b)

and

AΛ
m(k, k′) = AΛ

m(ν, ν ′), (3.30a)

AΛ
p (k, k′) = AΛ

p (ν, ν ′)dkdk′ . (3.30b)

Notice that for the pairing gap we do not have considered an s-wave term because in the

repulsive Hubbard model the interaction in the s-wave particle-particle channel is always

repulsive.

Within the matrix notation previously introduced, the flow equations for the longitu-



60 fRG+MF approach to the Hubbard model

dinal interactions read as

∂ΛAΛ
X = AΛ

X

[
∂ΛΠΛ

X

]
AΛ
X , (3.31)

with X = m, p. The longitudinal bubbles are defined as

ΠΛ
m(ν, ν ′) = Tδνν′

∫
k

{
GΛ(k)GΛ(k +Q) + [Fm(k)]2

}
, (3.32a)

ΠΛ
p (ν, ν ′) = Tδνν′

∫
k

d2
k

{
−GΛ(k)GΛ(−k) + [Fp(k)]2

}
, (3.32b)

with

GΛ(k) =
[
GΛ(k)

]
11
, (3.33a)

FΛ
m(k) =

[
GΛ(k)

]
13
, (3.33b)

FΛ
p (k) =

[
GΛ(k)

]
12
, (3.33c)

where GΛ(k) is obtained inverting Eq. (3.25). As shown in Sec. 3.1, the flow equations

for AΛ
X can be analytically solved, giving

AΛ
X =

[
1− Ṽ Λc

X ΠΛ
X

]−1

Ṽ Λc
X , (3.34)

with the irreducible vertex at the critical scale reading as

Ṽ Λc
X =

[
1 + V Λc

X ΠΛc
X

]−1
V Λc
X . (3.35)

The flow equations for the gap functions are given by

∂Λ∆Λ
m(ν) = −T

∑
ν′

∫
k

AΛ
m(ν, ν ′)∂̃ΛFm(k, ν ′), (3.36a)

∂Λ∆Λ
p (ν) = −T

∑
ν′

∫
k

AΛ
p (ν, ν ′)∂̃ΛFp(k, ν

′)dk, (3.36b)
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with ∂̃Λ the single-scale derivative. The integration of the above equations returns

∆Λ
m(ν) = −T

∑
ν′

∫
k

Ṽ Λc
m (ν, ν ′)Fm(k, ν ′), (3.37a)

∆Λ
p (ν) = −T

∑
ν′

∫
k

Ṽ Λc
p (ν, ν ′)Fp(k, ν

′)dk. (3.37b)

Since a solution of the above nonlinear integral equations is hard to converge when both

order parameters are finite, we compute the gap functions from their flow equations (3.36),

plugging in the integrated form of the function AΛ
X , in Eq. (3.34). By means of global

transformations, one can impose [∆m(−ν)]∗ = ∆m(ν), and [∆Λ
p (−ν)]∗ = ∆p(ν). Since the

relation ∆p(−ν) = ∆p(ν), descending from the singlet nature of the pairing, is general,

one can always remove the imaginary part of the pairing gap function. Notice that for

the magnetic one this is in general not possible. Concerning the computation of the spiral

wave vector Q, we fix it to the momentum at which the magnetic channelMΛ peaks (or

even diverges) at Λ = Λc.

3.2.3 Order parameters

We run a fRG flow in the symmetric phase keeping, for each of the channel functions

MΛ, CΛ, SΛ, and DΛ, about 90 values for each of the three frequency arguments and

320 patches in the Brillouin zone for the momentum dependence. The critical scale Λc

has been determined as the scale where the largest of the channels exceeds the value of

400t (t is the nearest neighbor hopping). The electron density n has been calculated

along the flow from the first diagonal entry of the matrix propagator (3.25) and kept

fixed at each scale Λ by tuning the chemical potential µ. The chosen Hubbard model

parameters are t′ = −0, 16t, t′′ = 0, and U = 3t. The lowest temperature reached by

dynamical calculations has been set to T = 0.027t. When not explicitly stated, we use t

as our energy unit all along this section. All quantities without the superscript Λ have

to be understood as computed at the final scale Λ = 0. In Fig. 3.1, we show the order

parameters computed at the lowest Matsubara frequency ν0 = πT , as functions of the hole

doping p = 1− n, and at fixed temperature T = 0.027t. For the pairing gap, we consider

its maximum in momentum space, that is, ∆p(ν) multiplied by a factor 2, coming from

maxk(dk) = 2, occurring at k = (0, π), or symmetry related. While ∆p(ν) is purely real,

∆m(ν) has an imaginary part, whose continuation to real frequencies vanishes for ν → 0.
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Figure 3.1: Gap function amplitudes at the lowest fermionic Matsubara frequency ν0 = πT
as functions of the hole doping p at T = 0.027t. Static results are shown for comparison.
The factor 2 in the pairing gap is due to the fact that maxk(dk) = 2.

Im∆m(ν0) is therefore always small for low T .

Magnetic order is found from half filling to about p = 0.20, with the size of the gap

monotonically decreasing upon doping, and with spiral replacing Néel order at about

p = 0.14. The ordering wave vector is always of the form Q = (π − 2πη, π), or symmetry

related, with the incommensurability η exhibiting a sudden jump at the Néel-to-spiral

transition. A sizable d-wave pairing state is found for dopings between 0.08 and 0.20

coexisting with antiferromagnetic ordering, therefore confirming the previous static results

obtained in Refs. [80, 81, 140].

From Fig. 3.1 we deduce that the inclusion of dynamic effects enhances the order

parameter magnitudes. This is due to multiple effects. First of all the functionMΛ
νν′(Q, 0)

has a minimum at ν = ν ′ = ±πT , which in the static approximation is extended to the

whole frequency range, leading to reduced magnetic correlations. Secondly, the static

approximation largely overestimates the screening of the magnetic channel by the other

channels for Λ > Λc [138, 141]. On the other hand, the function DΛ
νν′(0) is maximal at

ν = ν ′ = ±πT and rapidly decays to zero for large ν, ν ′. This implies that, conversely

to the magnetic channel, d-wave correlations are enhanced in the static limit [47]. In

this approximation, however, as previously discussed, the magnetic fluctuations providing
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Figure 3.2: Frequency dependence of the real parts of the gap functions at p = 0.12 and
T = 0.027.

the seed for the pairing are weaker, leading to a mild overall enhancement of the d-wave

pairing gap when dynamical effects are included.

A typical behavior of the gap functions as a function of the Matsubara frequency

ν is shown in Fig. 3.2. Similarly to what has been discussed in Chap. 2, the magnetic

gap interpolates between its value at the Fermi level and the constant Hartree-Fock-like

expression Um, with m the onsite magnetization, at ν → ∞. By contrast, the d-wave

pairing gap is maximal for ν → 0 and rapidly decays to zero for large frequencies, related

to the fact that the Hartree-Fock approximation would yield no d-wave pairing at all in

the Hubbard model. Finally, the magnetic gap function shows a generally small imaginary

part (not shown) obeying Im∆m(−ν) = −Im∆m(ν) therefore extrapolating to zero for

ν → 0.

In Fig. 3.3 we show the behavior of the magnetic gap function and of the longitudinal

magnetic interaction computed at ν0 = πT as functions of the fRG scale. In the symmetric

phase, the effective interaction grows until it diverges at the critical scale Λ = Λc. In

the SSB regime, a magnetic order parameters forms, leading to a quick decrease of the

longitudinal interaction, that saturates to a finite value at the end of the flow. By contrast,

the transverse interaction (not shown) remains infinite for all Λ < Λc, in agreement with
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Figure 3.3: Scale dependence of the real part of the magnetic gap function Re∆m(ν) (blue
dots) and longitudinal two-particle interaction ReAm(ν, ν ′) (red diamonds) at the lowest
Matsubara frequency ν0 = πT , at doping p = 0.12, and temperature T = 0.027t.

the Goldstone theorem. The flow of the analogous quantities in the pairing channel looks

similar, but the divergence occurs at a scale smaller than Λc, as the leading instability in

the present parameter regime is always a magnetic one.

3.2.4 Berezinskii-Kosterlitz-Thouless transition and phase dia-

gram

In this section, we compute the superfluid phase stiffness, which enables us to estimate

the Berezinskii-Kosterlitz-Thouless, or simply Kosterlitz-Thouless, (KT) transition tem-

perature (TKT) for the onset of superconductivity [142, 143]. TKT, together with the

temperature for the onset of magnetism, T ∗, allows us to draw a phase diagram for the

Hubbard model at intermediate coupling.

Coupling the system to an external U(1) electromagnetic gauge field A(r, t), via, for

example, the Peierls substitution (see Eq. (2.21)), one is able to compute the electromag-

netic response kernel Kαα′(q, ω), defined via

jα(q, ω) = −
∑
α′

Kαα′(q, ω)Aα′(q, ω), (3.38)
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with jα the electromagnetic current. The superfluid stiffness is then given by

Jαα′ =
1

(2e)2
lim
q→0

Kαα′(q, 0), (3.39)

with e the electron charge. If the global U(1) charge symmetry is broken via the formation

of a pairing gap, the limit in the equation above is finite, and one finds a finite stiffness.

Writing the superconducting order parameter as Φ(x) =
√
α2 + %(x)e2ieθ(x), with α =

〈Φ(x)〉 ∈ R, and neglecting the amplitude fluctuations described by %(x), one can derive

a long-wavelength classical effective action for phase fluctuations only

Seff [θ] =
1

2

∑
αα′

Jαα′

∫
d2x [∇αθ(x)][∇α′θ(x)], (3.40)

where θ(x) ∈ [0, 2π], and the superfluid stiffness plays the role of a coupling constant.

This action is well known to display a topological phase transition at finite temperature

TKT, above which topological vortex configurations proliferate and reduce Jαα′ to zero,

causing an exponential decay in the correlation function. Differently, for 0 < T < TKT,

the vortices get bound in pairs and form a quasi-long-range ordered phase, marked by a

power law decay of the order parameter correlation function. The power law exponent

is found to scale linearly with temperature, eventually vanishing at T = 0, marking the

onset of a true off-diagonal long-range order (ODLRO). The 0 < T < TKT phase does not

exhibit ODLRO, according to the Mermin-Wagner theorem [35], but an infinite correlation

length, due to the slower than exponential decay of the correlation function. For isotropic

systems, that is, when Jαα′ = Jδαα′ , the transition temperature can be computed by the

universal formula [144]

TKT =
π

2
J(TKT). (3.41)

If the system is non-isotropic, one can introduce some rotated spatial coordinates as

x′α =
2∑

α′=1

[
J

1
2

]
αα′

xα′ , (3.42)

with J the stiffness tensor. Action (3.40) is thus rotationally invariant in the new basis,

with a new stiffness given by Jeff =
√

det[J ], coming from the Jacobian of the coordinate
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Figure 3.4: Doping-temperature phase diagram with the Kosterlitz-Thouless temperature,
TKT, and the antiferromagnetic (T ∗) and pairing (Tp) onset temperatures. The fading
colors at low temperatures indicate that our dynamical fRG code is not able to access
temperatures lower than T = 0.027t.

change. The BKT temperature for a non-isotropic system therefore reads as

TKT =
π

2

√
det[J(TKT)]. (3.43)

The authors of Ref. [145] have derived formulas for the superfluid stiffness in a mean-

field state in which antiferromagnetism and superconductivity coexist. Since these equa-

tions have been derived in the static limit, we compute the superfluid phase stiffness by

plugging into them the (real parts of) the gap functions calculated at the lowest Mat-

subara frequency. For a spiral state with Q = (π − 2πη, π), we have Jxx 6= Jyy, and

Jxy = Jyx = 0, while for a Néel state, Jxx = Jyy, and Jxy = Jyx = 0.

In Fig. 3.4, we plot the computed TKT, together with T ∗, that is, the lowest tempera-

ture at which the flow does not encounter a divergence in the magnetic channel down to

Λ = 0, and Tp, at which the pairing gap vanishes, as functions of the hole doping p. We

notice a large difference between TKT and Tp, marking a sizable window (TKT < T < Tp) of

the phase diagram where strong superconducting fluctuations open a gap in the spectrum,

but the order parameter correlation function remains exponentially decaying, resulting in
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the lack of superconducting properties, which, instead, are present for T < TKT.

The Mermin-Wagner theorem prevents the formation of long-range order at finite

temperature. We therefore expect that, upon including order parameter fluctuations, the

antiferromagnetic state found for T < T ∗ will be transformed into a pseudogap state with

short-range correlations. We can thus interpret T ∗ as the temperature for the onset of

the pseudogap behavior. This topic is the subject of Chap. 6

3.3 Broken symmetry phase: bosonic formalism

The SSB phase can be accessed also via the introduction of a bosonic field, describing the

fluctuations of the order parameter [45, 146–148], and whose finite expectation value is

related to the formation of anomalous components in the fermionic propagator. Similarly

to Sec. 3.1, we focus here on superconducting order, while generalizations to other order

parameters are straightforward.

In order to introduce this bosonic field, we express the vertex at the critical scale in

the following form:

V Λc(k, k′; q) =
hΛc(k; q)hΛc(k′; q)

mΛc(q)
+QΛc(k, k′; q). (3.44)

We assume from now on that the divergence of the vertex, related to the appearance of a

massless mode, is absorbed into the first term, while the second one remains finite. In other

words, we assume that at the critical scale Λc, at which the vertex is formally divergent, the

(inverse) bosonic propagator mΛc(q) vanishes at zero frequency and momentum, while the

Yukawa coupling hΛc(k; q) and the residual two fermion interaction QΛc(k, k′; q) remain

finite.

In Sec. 3.3.5 we introduce a systematic scheme to extract the decomposition (3.44)

from a given vertex at the critical scale.

3.3.1 Hubbard-Stratonovich transformation and MF-truncation

Since the effective action at a given scale Λ can be viewed as a bare action with bare

propagator G0 − GΛ
0 (with GΛ

0 the regularized bare propagator)∗, one can decouple the

factorized (and singular) part of the vertex at Λc via a Gaussian integration, thus intro-

∗One can prove it by considering the effective interaction functional V, as shown in Ref. [27].
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ducing a bosonic field. By adding source terms which couple linearly to this field and to

the fermionic ones, one obtains the generating functional of connected Green’s functions,

whose Legendre transform at the critical scale reads as

ΓΛc [ψ, ψ, φ] =−
∫
k,σ

ψk,σ
[
GΛc(k)

]−1
ψk,σ −

∫
q

φ∗qm
Λc(q)φq

+

∫
k,k′,q

QΛc(k, k′; q)ψk,↑ψq−k,↓ψq−k′,↓ψk′,↑

+

∫
k,q

hΛc(k; q)
[
ψk,↑ψq−k,↓φq + h.c.

]
,

(3.45)

where φ represents the expectation value (in presence of sources) of the Hubbard-Stratonovich

field. Note that we have avoided to introduce an interaction between equal spin fermions.

Indeed, since we are focusing on a spin singlet superconducting order parameter, within

the MF approximation this interaction does not contribute to the flow equations.

The Hubbard-Stratonovich transformation introduced in Eq. (3.45) is free of the so-

called Fierz ambiguity, according to which different ways of decoupling of the bare inter-

action can lead to different mean-field results for the gap (see, for example, Ref. [146]).

Indeed, through the inclusion of the residual two fermion interaction, we are able to

recover the same equations that one would get without bosonizing the interactions, as

proven in Sec. 3.3.4. In essence, the only ambiguity lies in selecting what to assign to the

bosonized part of the vertex and what to Q, but by keeping both of them all along the

flow, the results will not depend on this choice.

We introduce Nambu spinors as in Eq. (3.1) and we decompose the bosonic field into its

(flowing) expectation value plus longitudinal (σ) and transverse (π) fluctuations [147, 148]:

φq = αΛ δq,0 + σq + i πq, (3.46a)

φ∗q = αΛ δq,0 + σ−q − i π−q, (3.46b)

where we have chosen αΛ to be real. For the effective action at Λ < Λc in the SSB phase,

we use the following ansatz

ΓΛ
SSB[Ψ,Ψ, σ, π] = ΓΛ

Ψ2 + ΓΛ
σ2 + ΓΛ

π2 + ΓΛ
Ψ2σ + ΓΛ

Ψ2π + ΓΛ
Ψ4 , (3.47)
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where the first three quadratic terms are given by

ΓΛ
Ψ2 = −

∫
k

Ψk

[
GΛ(k)

]−1
Ψk, (3.48a)

ΓΛ
σ2 = −1

2

∫
q

σ−qm
Λ
σ (q)σq, (3.48b)

ΓΛ
π2 = −1

2

∫
q

π−qm
Λ
π (q) πq, (3.48c)

and the fermion-boson interactions are

ΓΛ
Ψ2σ =

∫
k,q

hΛ
σ (k; q)

{
S1
k,−q σq + h.c.

}
, (3.49a)

ΓΛ
Ψ2π =

∫
k,q

hΛ
π (k; q)

{
S2
k,−q πq + h.c.

}
, (3.49b)

with Sαk,q as in Eq. (3.4). The residual two fermion interaction term is written as

ΓΛ
Ψ4 =

∫
k,k′,q

AΛ(k, k′; q)S1
k,q S

1
k′,−q +

∫
k,k′,q

ΦΛ(k, k′; q)S2
k,q S

2
k′,−q. (3.50)

Notice that in the above equation the terms AΛ and ΦΛ have a different physical meaning

than those in Eq. (3.28). While the former represent only a residual interaction term, the

latter embody all the interaction processes in the longitudinal and transverse channels.

As in the fermionic formalism, in the truncation in Eq. (3.47) we have neglected

any type of longitudinal-transverse fluctuation mixing in the Yukawa couplings, bosonic

propagators and two fermion interactions because at q = 0 they are identically zero. In

the bosonic formulation, as well as for the fermionic one, the MF approximation selects

only the q = 0 components of the various terms appearing in the effective action and

neglects all the rest. So, from now on we keep only the q = 0 terms. We will make use of

the matrix notation introduced in Sec. 3.1, where the newly introduced Yukawa couplings

behave as vectors and bosonic inverse propagators as scalars.

3.3.2 Flow equations and integration

Here we focus on the flow equations for two fermion interactions, Yukawa couplings and

bosonic propagators in the longitudinal and transverse channels within a MF approxima-

tion, that is, we focus only on the Cooper channel (q = 0) and neglect all the diagrams



70 fRG+MF approach to the Hubbard model

containing internal bosonic lines or couplings AΛ, ΦΛ at q 6= 0. Furthermore, we in-

troduce a generalized Katanin approximation to account for higher order couplings in

the flow equations. This approximation allows to replace the single-scale derivatives in

the bubbles with full scale derivatives. We refer to Appendix B for more details and a

derivation of the latter. We now show that our reduced set of flow equations for the

various couplings can be integrated. We first focus on the longitudinal channel, while in

the transverse one the flow equations possess the same structure.

The flow equation for the longitudinal bosonic mass (inverse propagator at q = 0)

reads as

∂Λm
Λ
σ =

∫
k,k′

hΛ
σ (k)

[
∂ΛΠΛ

11(k, k′)
]
hΛ
σ (k′) ≡

[
hΛ
σ

]T [
∂ΛΠΛ

11

]
hΛ
σ . (3.51)

Similarly, the equation for the longitudinal Yukawa coupling is

∂Λh
Λ
σ = AΛ

[
∂ΛΠΛ

11

]
hΛ
σ , (3.52)

and the one for the residual two fermion longitudinal interaction is given by

∂ΛAΛ = AΛ
[
∂ΛΠΛ

11

]
AΛ. (3.53)

The above flow equations are pictorially shown in Fig. 3.5. The initial conditions at

Λ = Λc read, for both channels,

mΛc
σ = mΛc

π = mΛc , (3.54a)

hΛc
σ = hΛc

π = hΛc , (3.54b)

AΛc = ΦΛc = QΛc . (3.54c)

We start by integrating the equation for the residual two fermion longitudinal interaction

AΛ. Eq. (3.53) can be solved exactly as we have done in the fermionic formalism, obtaining

for AΛ

AΛ =
[
1− Q̃ΛcΠΛ

11

]−1

Q̃Λc , (3.55)

where we have introduced a reduced residual two fermion interaction Q̃

Q̃Λc =
[
1 +QΛcΠΛc

]−1QΛc . (3.56)
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We are now in the position to employ this result and plug it in Eq. (3.52) for the Yukawa

coupling. The latter can be integrated as well. Its solution reads as

hΛ
σ =

[
1− Q̃ΛcΠΛ

11

]−1

h̃Λc , (3.57)

where the introduction of a ”reduced” Yukawa coupling

h̃Λc =
[
1 +QΛcΠΛc

]−1
hΛc (3.58)

is necessary. This Bethe-Salpeter-like equation for the Yukawa coupling is similar in

structure to the parquetlike equations for the three-leg vertex derived in Ref. [149]. Finally,

we can use the two results of Eqs. (3.55) and (3.57) and plug them in the equation for

the bosonic mass, whose integration provides

mΛ
σ = m̃Λc −

[
h̃Λc
]T

ΠΛ
11 h

Λ
σ , (3.59)

where, by following definitions introduced above, the ”reduced” bosonic mass is given by

m̃Λc = mΛc +
[
h̃Λc
]T

ΠΛc hΛc . (3.60)

In the transverse channel, the equations have the same structure and can be integrated

in the same way. Their solutions read as

ΦΛ =
[
1− Q̃ΛcΠΛ

22

]−1

Q̃Λc , (3.61a)

hΛ
π =

[
1− Q̃ΛcΠΛ

22

]−1

h̃Λc , (3.61b)

mΛ
π = m̃Λc −

[
h̃Λc
]T

ΠΛ
22 h

Λ
π . (3.61c)

Eq. (3.61c) provides the mass of the transverse mode, which, according to the Goldstone

theorem, must be zero. We will show later that this is indeed fulfilled.
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Figure 3.5: Schematic representation of flow equations for the mass and the couplings in
the longitudinal channel. Full lines represent Nambu matrix propagators, triangles the
Yukawa coupling hσ and squares the residual interaction A. The black dots over fermionic
legs represent full derivatives with respect to the scale Λ.

The combinations

hΛ
σ

[
hΛ
σ

]T
mΛ
σ

+AΛ, (3.62a)

hΛ
π

[
hΛ
π

]T
mΛ
π

+ ΦΛ, (3.62b)

obey the same flow equations, Eqs. (3.6) and (3.7), as the vertices in the fermionic for-

malism and share the same initial conditions. Therefore the solutions for these quantities

coincide with expressions (3.9) and (3.16), respectively. Within this equivalence, it is

interesting to express the irreducible vertex Ṽ Λc of Eq. (3.12) in terms of the quantities,

QΛc , hΛc and mΛc , introduced in the factorization in Eq. (3.44):

Ṽ Λc =
h̃Λc

[
h̃Λc
]T

m̃Λc
+ Q̃Λc , (3.63)

where Q̃Λc , h̃Λc and m̃Λc were defined in Eqs. (3.56), (3.58) and (3.60). For a proof

see Appendix B. Relation (3.63) is of particular interest because it states that when the

full vertex is expressed as in Eq. (3.44), then the irreducible one will obey a similar

decomposition, where the bosonic propagator, Yukawa coupling and residual two fermion
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Figure 3.6: Schematic representation of flow equations for the bosonic expectation value
αΛ and fermionic gap ∆Λ. Aside from the slashed lines, representing Nambu matrix
propagators with a scale derivative acting only on the regulator, the conventions for the
symbols are the same as in Fig. 3.5.

interaction are replaced by their ”reduced” counterparts. This relation holds even for

q 6= 0.

3.3.3 Ward identity for the gap and Goldstone theorem

We now focus on the flow of the fermionic gap and the bosonic expectation value and

express a relation that connects them. Their flow equations are given by (see Appendix B)

∂Λα
Λ =

1

mΛ
σ

[
hΛ
σ

]T
∂̃ΛF

Λ, (3.64)

and

∂Λ∆Λ = ∂Λα
Λ hΛ

σ +AΛ∂̃ΛF
Λ =

[
hΛ
σ

[
hΛ
σ

]T
mΛ
σ

+AΛ

]
∂̃ΛF

Λ, (3.65)

with FΛ given by Eq. (3.14). In Fig. 3.6 we show a pictorial representation. Eq. (3.64)

can be integrated, with the help of the previously obtained results for A, hσ and mσ,

yielding

αΛ =
1

m̃Λc

[
h̃Λc
]T
FΛ. (3.66)

In the last line of Eq. (3.65), as previously discussed, the object in square brackets equals

the full vertex VA of the fermionic formalism. Thus, integration of the gap equation is
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possible and the result is simply Eq. (3.15) of the fermionic formalism. However, if we

now insert the expression in Eq. (3.63) for the irreducible vertex within the ”fermionic”

form (Eq. (3.15)) of the gap equation, and use relation (3.17), we get:

∆Λ(k) = αΛhΛ
π (k). (3.67)

This equation is the Ward identity for the mixed boson-fermion system related to the

global U(1) symmetry [148]. In Appendix B we propose a self consistent loop for the

calculation of α, hπ, through Eqs. 3.66 and 3.61b, and subsequently the superfluid gap

∆. Let us now come back to the question of the Goldstone theorem. For the mass of the

Goldstone boson to be zero, it is necessary for Eq. (3.61c) to vanish. We show that this

is indeed the case. With the help of Eq. (3.17), we can reformulate the equation for the

transverse mass in the form

mΛ
π = m̃Λc −

∫
k

h̃Λc(k)FΛ(k)
hΛ
π (k)

∆Λ(k)
= m̃Λc − 1

αΛ

∫
k

h̃Λc(k)FΛ(k), (3.68)

where the Ward Identity ∆ = αhπ was applied in the last line. We see that the expres-

sion for the Goldstone boson mass vanishes when α obeys its self consistent equation,

Eq. (3.66). This proves that our truncation of flow equations fulfills the Goldstone theo-

rem.

Constructing a truncation of the fRG flow equations which fulfills the Ward identities

and the Goldstone theorem is, in general, a nontrivial task. In Ref. [150], in which the

order parameter fluctuations have been included on top of the Hartree-Fock solution,

no distinction has been made between the longitudinal and transverse Yukawa couplings

and the Ward identity (3.67) as well as the Goldstone theorem have been enforced, by

calculating the gap and the bosonic expectation values from them rather than from their

flow equations. Similarly, in Ref. [148], in order for the flow equations to fulfill the

Goldstone theorem, it was necessary to impose hσ = hπ and use only the flow equation

of hπ for both Yukawa couplings. Within the present approximation, due to the mean-

field-like nature of the truncation, the Ward identity (3.67) and the Goldstone theorem

are automatically fulfilled by the flow equations.
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3.3.4 Equivalence of bosonic and fermionic formalisms

As we have proven in the previous sections, within the MF approximation the fully

fermionic formalism of Sec. 3.1 and the bosonized approach introduced in the present

section provide the same results for the superfluid gap and for the effective two fermion

interactions.

Notwithstanding the formal equivalence, the bosonic formulation relies on a further

requirement. In Eqs. (3.61a) and (3.61b) we assumed the matrix
[
1− Q̃ΛcΠΛ

22

]
to be

invertible. This statement is exactly equivalent to assert that the two fermion residual

interaction Φ remains finite. Otherwise the Goldstone mode would lie in this coupling and

not (only) in the Hubbard-Stratonovich boson. This cannot happen if the flow is stopped

at a scale Λc coinciding with the critical scale Λc at which the (normal) bosonic mass mΛ

turns zero, but it could take place if one considers symmetry breaking in more than one

channel, as we have done in Sec. 3.2. In particular, if one allows the system to develop

two different orders and stops the flow when the mass of one of the two associated bosons

becomes zero, it could happen that, within a MF approximation for both order types, the

appearance of a finite gap in the first channel makes the two fermion transverse residual

interaction in the other channel diverging. In that case one can apply the technique of

the flowing bosonization [45, 151], by reassigning to the bosonic sector the (most singular

part of the) two fermion interactions that are generated during the flow. It can be proven

that also this approach gives the same results for the gap and the effective fermionic

interactions in Eq. (3.62) as the fully fermionic formalism.

3.3.5 Vertex bosonization

In this section we present a systematic procedure to extract the quantities in Eq. (3.44)

from a given vertex, within an approximate framework.

Starting from the channel decomposition in Eq. (1.48), we simplify the treatment of

the dependence on fermionic spatial momenta of the various channels expanding them in

a complete basis of Brillouin zone form factors {f `k} [152]

φΛ
X(k, k′; q) =

∑
``′

φΛ
X,``′(ν, ν

′; q)f `k f
`′

k′ , (3.69)

with X = p, m or c, corresponding to pairing, magnetic, and charge channels. For
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practical calculations the above sum is truncated to a finite number of form factors and

often only diagonal terms, ` = `′, are considered. Within the form factor truncated

expansion, one is left with the calculation of a finite number of channels that depend on

a bosonic collective variable q = (q,Ω) and two fermionic Matsubara frequencies ν and

ν ′.

We will now show how to obtain the decomposition introduced in Eq. (3.44) within

the form factor expansion. We focus on only one of the three channels, depending on

the type of order we are interested in, and factorize its dependence on the two fermionic

Matsubara frequencies. We introduce the so called channel asymptotics, that is, the

functions that describe the channels for large ν, ν ′. From now on, we adopt the shorthand

limν→∞ g(ν) = g(∞) for whatever g, function of ν. By considering only diagonal terms

in the form factor expansion in Eq. (3.69), we can write the ` = `′ components of the

channels as [153]:

φΛ
X,`(ν, ν

′; q) = K(1)Λ
X,` (q) +K(2)Λ

X,` (ν; q) +K(2)Λ

X,` (ν ′; q) + δφΛ
X,`(ν, ν

′; q), (3.70)

with

K(1)Λ
X,` (q) = φΛ

X,`(∞,∞; q) (3.71a)

K(2)Λ
X,` (ν; q) = φΛ

X,`(ν,∞; q)−K(1)Λ
X,` (q) (3.71b)

K(2)Λ

X,` (ν ′; q) = φΛ
X,`(∞, ν ′; q)−K

(1)Λ
X,` (q) (3.71c)

δφΛ
X,`(ν,∞; q) = δφΛ

X,`(∞, ν ′; q) = 0. (3.71d)

According to Ref. [153], these functions are related to physical quantities. K(1)
X,` turns

out to be proportional to the relative susceptibility and the combination K(1)
X,` +K(2)

X,` (or

K(1)
X,` +K(2)

X,`) to the boson-fermion vertex, that describes both the response of the Green’s

function to an external field [154] and the coupling between a fermion and an effective

boson. In principle one should be able to calculate the above quantities directly from

the vertex (see Ref. [153] for the details) without performing any limit. However, it is

well known how fRG truncations, in particular the 1-loop approximation, do not properly

weigh all the Feynman diagrams contributing to the vertex, so that the diagrammatic

calculation and the high frequency limit give two different results. To keep the property

in the last line of Eq. (3.71), we choose to perform the limits. We rewrite Eq. (3.70) in



fRG+MF approach to the Hubbard model 77

the following way:

φΛ
X,`(ν, ν

′; q) =

[
K(1)Λ
X,` +K(2)Λ

X,`

] [
K(1)Λ
X,` +K(2)Λ

X,`

]
K(1)Λ
X,`

+RΛ
X,`

=
φΛ
X,`(ν,∞; q)φΛ

X,`(∞, ν ′; q)
φΛ
X,`(∞,∞; q)

+RΛ
X,`(ν, ν

′; q),

(3.72)

where we have made the frequency and momentum dependencies explicit only in the

second line, and we have defined

RΛ
X,`(ν, ν

′; q) = δφΛ
X,`(ν, ν

′; q)−
K(2)Λ
X,` (ν; q)K(2)Λ

X,` (ν ′; q)

K(1)Λ
X,` (q)

. (3.73)

From the definitions given above, it is obvious that the rest function RX,` decays to zero

in all frequency directions.

Since the first term of Eq. (3.72) is separable by construction, we choose to identify

this term with the first one of Eq. (3.44). Indeed, in many cases the vertex divergence

is manifest already in the asymptotic K(1)Λ
X,` , that we recall to be proportional to the

susceptibility of the channel. There are however situations in which the functions K(1) and

K(2) are zero even close to an instability in the channel, an important example being the d-

wave superconducting instability in the repulsive Hubbard model. In general, this occurs

for those channels that, within a Feynman diagram expansion, cannot be constructed

with a ladder resummation with the bare vertex. In the Hubbard model, due to the

locality of the bare interaction, this happens for every ` 6= 0, that is, for every term in

the form factor expansion different than the s-wave contribution. In this case one should

adopt a different approach and, for example, replace the limits to infinity in Eq. (3.72) by

some given values of the Matsubara frequencies, ±πT for example. In Chap. 4, we will

present an alternative approach to the vertex factorization, by means of a diagrammatic

decomposition called single boson exchange (SBE) decomposition [82].

3.3.6 Results for the attractive Hubbard model at half filling

In this section we report some exemplary results of the equations derived within the

bosonic formalism, for the two-dimensional attractive Hubbard model. We focus on the

half-filled case. For pure nearest neighbor hopping with amplitude −t, the band dispersion
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ξk is given by

ξk = −2t (cos kx + cos ky)− µ, (3.74)

with µ = 0 at half filling. We choose the onsite attraction and the temperature to be

U = −4t and T = 0.1t, respectively. All results are presented in units of the hopping

parameter t.

Symmetric phase

In the symmetric phase, in order to run a fRG flow, we introduce the Ω-regulator [46]

RΛ(k) = (iν − ξk)
Λ2

ν2
, (3.75)

so that the initial scale is Λini = +∞ (fixed to a large number in the numerical calculation)

and the final one Λfin = 0. We choose a 1-loop truncation, and use the physical channel

decomposition in Eq. (1.48), with a form factor expansion. We truncate Eq. (3.69) only

to the first term, that is, we use only s-wave, f
(0)
k ≡ 1, form factors. Within these

approximations, the vertex reads as

V Λ(k1, k2, k3) =− U − PΛ
ν1ν3

(k1 + k2)

+MΛ
ν1ν2

(k2 − k3)

+
1

2
MΛ

ν1ν2
(k3 − k1)− 1

2
CΛ
ν1ν2

(k3 − k1),

(3.76)

where P , M, C, are referred as pairing, magnetic and charge channel, respectively. Fur-

thermore, we focus only on the spin-singlet component of the pairing (the triplet one is

very small in the present parameter region), so that we require the pairing channel to

obey [102]

PΛ
νν′(q) = PΛ

−ν+Ω m 2,ν′(q) = PΛ
ν,−ν′+Ω m 2(q), (3.77)

where q = (q,Ω), and Ω m 2 = 2(nmod 2)πT , and n ∈ Z is the Matusbara frequency

index. The initial condition for the vertex reads as

V Λini(k1, k2, k3) = −U, (3.78)

so that PΛini = MΛini = CΛini = 0. Neglecting the fermionic self-energy, ΣΛ(k) ≡ 0, we

run a flow for these three quantities until one (ore more) of them diverges. Each channel
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is computed by keeping 50 positive and 50 negative values for each of the three Matsubara

frequencies (two fermionic, one bosonic) on which it depends. Frequency asymptotics are

also taken into account by following Ref. [153]. The momentum dependence of the channel

is treated by discretizing with 38 patches the region B = {(kx, ky) : 0 ≤ ky ≤ kx ≤ π} in

the Brillouin zone and extending to the other regions by using lattice symmetries.

Due to particle-hole symmetry occurring at half filling, pairing fluctuations at q = 0

combine with charge fluctuations at q = (π, π) to form an order parameter with SO(3)

symmetry [23]. Indeed, with the help of a canonical particle-hole transformation, one can

map the attractive half-filled Hubbard model onto the repulsive one. Within this duality,

the SO(3)-symmetric magnetic order parameter is mapped onto the above mentioned

combined charge-pairing order parameter and vice versa. This is the reason why we find

a critical scale, Λc, at which both C((π, π), 0) and P(0, 0) diverge. On a practical level, we

define the critical scale Λc as the scale at which one (or more, in this case) channel exceeds

103t. With our choice of parameters, we find that at Λc ' 0.378t both C and P cross our

threshold. In the SSB phase, we choose to restrict the ordering to the pairing channel, thus

excluding the formation of charge density waves. This choice is always possible because

we have the freedom to choose the ”direction” in which our order parameter points. In the

particle-hole dual repulsive model, our choice would be equivalent to choose the (antiferro-

) magnetic order parameter to lie in the xy plane. This choice is implemented by selecting

the particle-particle channel as the only one contributing to the flow in the SSB phase, as

exposed in Secs. 3.1 and 3.3.2.

In order to access the SSB phase with our bosonic formalism, we need to perform

the decomposition in Eq. (3.44) for our vertex at Λc. Before proceeding, in order to be

consistent with our form factor expansion in the SSB phase, we need to project V in

Eq. (3.76) onto the s-wave form factors, because we want the quantities in the ordered

phase to be functions of Matsubara frequencies only. Therefore we define the total vertex

projected onto s-wave form factors

V
Λc
νν′(q) =

∫
k,k′

V Λc
(⌊q

2

⌋
+ k,

⌈q
2

⌉
− k, k′

)
. (3.79)

Furthermore, since we are interested only in spin singlet pairing, we symmetrize it with
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respect to one of the two fermionic frequencies, so that in the end we are dealing with

V Λc
νν′(q) =

V
Λc
νν′(q) + V

Λc
ν,−ν′+Ω m 2(q)

2
. (3.80)

In order to extract the Yukawa coupling hΛc and bosonic propagator mΛc , we employ the

strategy described in Sec. 3.3.5. Here, however, instead of factorizing the pairing channel

PΛc alone, we subtract from it the bare interaction U . In principle, U can be assigned

both to the pairing channel, to be factorized, or to the residual two fermion interaction,

giving rise to the same results in the SSB phase. However, when in a real calculation the

vertices are calculated on a finite frequency box, it is more convenient to have the residual

two fermion interaction QΛc as small as possible, in order to reduce finite size effects in the

matrix inversions needed to extract the reduced couplings in Eqs. (3.56), (3.58) and (3.60),

and in the calculation of hπ, in Eq. (3.61b). Furthermore, since it is always possible to

rescale the bosonic propagators and Yukawa couplings by a constant such that the vertex

constructed with them (Eq. (3.72)) is invariant, we impose the normalization condition

hΛc(ν →∞; q) = 1. In formulas, we thus have

mΛc(q) =
1

K(1)Λc
p,`=0(q)− U

=
1

PΛc∞,∞(q)− U
, (3.81)

and

hΛc(ν; q) =
K(2)Λc
p,`=0(ν; q) +K(1)Λc

p,`=0(q)− U
K(1)Λc
p,`=0(q)− U

=
PΛc
ν,∞(q)− U
PΛc∞,∞(q)− U

. (3.82)

The limits are numerically performed by evaluating the pairing channel at large values of

the fermionic frequencies. The extraction of the factorizable part from the pairing channel

minus the bare interaction defines the rest function

RΛc
νν′(q) = PΛc

νν′(q)− U −
hΛc(ν; q)hΛc(ν ′; q)

mΛc(q)
, (3.83)

and the residual two fermion interaction Q

QΛc
νν′(q) =

[
V Λc
νν′(q)− P

Λc
νν′(q) + U

]
+RΛc

νν′(q) = V Λc
νν′(q)−

hΛc(ν; q)hΛc(ν ′; q)

mΛc(q)
. (3.84)
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We are now in the position to extract the reduced couplings, Q̃Λc , h̃Λc and m̃Λc , defined

in Eqs. (3.56), (3.58), (3.60). This is achieved by numerically inverting the matrix (we

drop the q-dependence from now on, assuming always q = 0)

δνν′ +QΛc
νν′ χ

Λc
ν′ , (3.85)

with

χΛc
ν = T

∫
k

GΛc
0 (k)GΛc

0 (−k), (3.86)

and

GΛc
0 (k) =

1

iν − ξk +RΛc(k)
=

ν2

ν2 + Λc
2

1

iν − ξk
. (3.87)

In Fig. 3.7 we show the results for the pairing channel minus the bare interaction, the rest

function, the residual two fermion interaction Q and the reduced one Q̃ at the critical

scale. One can see that in the present parameter region the pairing channel (minus U) is

highly factorizable. Indeed, despite the latter being very large because of the vicinity to

the instability, the rest function R remains very small, a sign that the pairing channel is

well described by the exchange of a single boson. Furthermore, thanks to our choice of

assigning the bare interaction to the factorized part, as we see in Fig. 3.7, both Q and Q̃
possess frequency structures that arise from a background that is zero.

Finally, the full bosonic mass at the critical scale is close to zero, mΛc ' 10−3, due to

the vicinity to the instability, while the reduced one is finite, m̃Λc ' 0.237.

SSB Phase

In the SSB phase, instead of running the fRG flow, we employ the analytical integration

of the flow equations described in Sec. 3.3.2. On a practical level, we implement a solu-

tion of the loop described in Appendix B, that allows for the calculation of the bosonic

expectation value α, the transverse Yukawa coupling hπ and subsequently the fermionic

gap ∆ through the Ward identity ∆ = αhπ. In this section we drop the dependence on

the scale, since we have reached the final scale Λfin = 0. Note that, as exposed previously,

in the half-filled attractive Hubbard model the superfluid phase sets in by breaking a

SO(3) rather than a U(1) symmetry. This means that one should expect the appearance

of two massless Goldstone modes. Indeed, besides the Goldstone boson present in the

(transverse) particle-particle channel, another one appears in the particle-hole channel

and it is related to the divergence of the charge channel at momentum (π, π). However,
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Figure 3.7: Couplings contributing to the total vertex at the critical scale.
Upper left : pairing channel minus the bare interaction. At the critical scale this quantity
acquires very large values due to the vicinity to the pairing instability.
Upper right : rest function of the pairing channel minus the bare interaction. In the present
regime the pairing channel is very well factorizable, giving rise to a small rest function.
Lower left : residual two fermion interaction. The choice of factorizing PΛc −U instead of
PΛc alone makes the background of this quantity zero.
Lower right : reduced residual two fermion interaction. As well as the full one, this
coupling has a zero background value, making calculations of couplings in the SSB phase
more precise by reducing finite number of Matsubara frequencies effects in the matrix
inversions.

within our choice of considering only superfluid order and within the MF approximation,

this mode is decoupled from our equations.

Within our previously discussed choice of bosonizing PΛc − U instead of PΛc alone,

the self consistent loop introduced in Appendix B converges extremely fast, 15 iterations

for example are sufficient to reach a precision of 10−7 in α. Once convergence is reached

and the gap ∆(ν) obtained, we are in the position to evaluate the remaining couplings

introduced in Sec. 3.3.2 through their integrated flow equations. In Fig. 3.8 we show the

computed frequency dependence of the gap. It interpolates between ∆0 = ∆(ν → 0),

its value at the Fermi level, and its asymptotic value, that equals the absolute value
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Figure 3.8: Frequency dependence of the superfluid gap. It interpolates between its value
at the Fermi level, ∆0, and its asymptotic one. The dashed line marks the BCS value,
while the dotted one |U | times the condensate fraction.

of the bare interaction times the condensate fraction 〈ψ↓ψ↑〉 =
∫

k
〈ψ−k,↓ψk,↑〉. ∆0 also

represents the gap between the upper and lower Bogoliubov band. Magnetic and charge

fluctuations above the critical scale significantly renormalize the gap with respect to the

Hartree-Fock calculation (Ṽ = −U in Eq. (3.15)), that in the present case coincides

with Bardeen-Cooper-Schrieffer (BCS) theory. This effect is reminiscent of the Gor’kov-

Melik-Barkhudarov correction in weakly coupled superconductors [128]. The computed

frequency dependence of the gap compares qualitatively well with Ref. [136], where a more

sophisticated truncation of the flow equations has been carried out.

Since ∆ is a spin singlet superfluid gap, and we have chosen α to be real, it obeys

∆(ν) = ∆(−ν) = ∆∗(−ν), (3.88)

where the first equality comes from the spin singlet nature and the second one from

the time reversal symmetry of the effective action. Therefore, the imaginary part of the

gap is always zero. By contrast, a magnetic gap would gain, in general, a finite (and

antisymmetric in frequency) imaginary part.

In Fig. 3.9 we show the results for the residual two fermion interactions in the lon-
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Figure 3.9: Effective interactions calculated in the SSB phase as functions of Matsubara
frequencies.
Upper left : longitudinal residual two fermion interaction A.
Upper right : transverse residual two fermion interaction Φ.
Lower left : longitudinal effective two fermion interaction VA.
Lower right : longitudinal residual two fermion interaction A with its reduced counterpart
Q̃ at the critical scale subtracted (left), and transverse longitudinal residual two fermion
interaction Φ minus its equivalent, Q, at Λc (right). Both quantities exhibit very small

values, showing that A and Φ do not deviate significantly from Q̃ and Q, respectively.

gitudinal and transverse channels, together with the total effective interaction in the

longitudinal channel, defined as

VA,νν′ =
hσ(ν)hσ(ν ′)

mσ

+Aνν′ . (3.89)

The analog of Eq. (3.89) for the transverse channel cannot be computed, because the

transverse mass mπ is zero, in agreement with the Goldstone theorem. The key result

is that the residual interactions Aνν′ and Φνν′ inherit the frequency structures of Q̃Λc
νν′

and QΛc
νν′ , respectively, and they are also close to them in values (compare with Fig. 3.7).

The same occurs for the Yukawa couplings, as shown in Fig. 3.10. Indeed, the calculated

transverse coupling hπ does not differ at all from the Yukawa coupling at the critical scale
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Figure 3.10: Frequency dependence of Yukawa couplings both at the critical scale Λc

and in the SSB phase. While hπ coincides with hΛc , the longitudinal coupling hσ does
not differ significantly from the reduced one at the critical scale, h̃Λc . The continuous
lines for hΛc and h̃Λc are an interpolation through the data calculated on the Matsubara
frequencies.

hΛc . In other words, if instead of solving the self consistent equations, one runs a flow

in the SSB phase, the transverse Yukawa coupling will stay the same from Λc to Λfin.

Furthermore, the longitudinal coupling hσ develops a dependence on the frequency which

does not differ significantly from the one of h̃Λc . This feature, at least for our choice of

parameters, can lead to some simplifications in the flow equations of Sec. 3.3.2. Indeed,

when running a fRG flow in the SSB phase, one might let flow only the bosonic inverse

propagators by keeping the Yukawa couplings and residual interactions fixed at their

values, reduced or not, depending on the channel, at the critical scale. This simplifications

can be crucial to make computational costs lighter when including bosonic fluctuations of

the order parameter, which, similarly, do not significantly renormalize Yukawa couplings

in the SSB phase [148, 150].
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Chapter 4

Single boson exchange decomposition

of the two-particle vertex

In this chapter, we introduce a reformulation of the fRG equations that exploits the sin-

gle boson exchange (SBE) representation of the vertex function, introduced in Ref. [82].

The latter is based on a diagrammatic decomposition classifying the contributions to the

vertex function in terms of their reducibility with respect to removing a bare interaction

vertex. This idea is implemented in the fRG by writing each physical channel in terms

of a single boson process and a residual two-particle interaction. On the one hand, the

present decomposition offers numerical advantages, substantially reducing the computa-

tional complexity of the vertex function. On the other hand, it provides a physical insight

into the collective fluctuations of the correlated system. We apply the SBE decomposi-

tion to the strongly interacting Hubbard model, by combining it with the DMF2RG (see

Chap. 1), both at half filling and at finite doping. The results presented in this chapter

can be found in Ref. [155].

4.1 Single boson exchange decomposition

In this section, we introduce the SBE decomposition, and we refer to Ref. [82] for fur-

ther details. The SBE decomposition relies on the concept of U -reducibility [156]. The

diagrams contributing to the two-particle vertex V can be classified as two-particle re-

ducible or irreducible, depending on whether they can be cut into two disconnected parts

by removing a pair of fermionic propagators. The U -reducibility sets in as an alternative

87
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criterion to classify these diagrams. A diagram is called U -reducible (irreducible) if it

can (cannot) be cut in two by the removal of a bare interaction vertex. Furthermore,

similarly to what happens for the two-particle reducibility, a diagram can be classified as

U -pp (particle-particle), U -ph (particle-hole), or U -ph (particle-hole-crossed) reducible,

depending on how the fermionic Green’s functions are connected to the removed interac-

tion. Moreover, since the bare vertex has always two pairs of fermionic legs attached, a

U -reducible diagram is always also two-particle reducible in the same channel, while the

opposite is in general not true, as shown by the exemplary diagrams in Fig. 4.1. The only

exception to this rule is the diagram consisting of a single bare interaction, which as a

convention we choose to be U -reducible, but it is two-particle irreducible (see Fig. 4.2).

Switching from diagrammatic to physical channels, one can re-write the vertex de-

composition in Eq. (1.48) as

V (k′1, k
′
2, k1) = ΛU irr(k

′
1, k
′
2, k1)− 2U

+
1

2
φm,SBE
kph,k

′
ph

(k1 − k′1) +
1

2
φc,SBE
kph,k

′
ph

(k1 − k′1)

+ φm,SBE
kph,k

′
ph

(k′2 − k1)

+ φp,SBE
kpp,k′pp

(k′1 + k′2),

(4.1)

with kph, k
′
ph, kph, k

′
ph

, kpp, and k′pp defined as in Eq. 1.46. Here, ΛU irr is given by the

U -irreducible diagrams, and [φm,SBE +φc,SBE]/2, φm,SBE, and φp,SBE by the ph, ph, and pp

U -reducible diagrams, respectively. Notice that a term 2U has been subtracted to avoid

double counting of the bare interaction, present in each of the φX,SBE. Every U -reducible

channel can be then further reduced in more fundamental building blocks. Because of the

locality of the Hubbard interaction U , its dependence on the fermionic arguments k and

Figure 4.1: Representative diagrams of the U -reducibility. While all three diagrams are
two-particle-pp reducible, diagram (a) and (b) are also U -pp reducible, while (c) is U -
irreducible.
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Figure 4.2: Venn diagram showing the differences between the U - and two-particle re-
ducibility (here denoted as gg). We notice that in a given channel (pp, ph or ph) the
U -reducible diagrams are a subset of those which are two-particle reducible. The dia-
gram consisting of the bare interaction U is the only diagram that is U -reducible but
two-particle irreducible. Taken from Ref. [82].

k′ gets completely factorized, and it can be written as

φX,SBE
k,k′ (q) = hXk (q)DX(q)hXk′(q), (4.2)

where X = m, c or p, and hX are referred to as Yukawa (or sometimes Hedin) couplings

and DX as bosonic propagators of screened interactions. The former are related to the

three point Green’s functions G(3)X via

hmk (q) =
G

(3)m
k (q)

χ0,ph
k (q) [1 + Uχm(q)]

, (4.3a)

hck(q) =
G

(3)c
k (q) + βnG(k)δq,0

χ0,ph
k (q) [1− Uχc(q)]

, (4.3b)

hpk(q) =
G

(3)p
k (q)

χ0,pp
k (q) [1− Uχp(q)]

, (4.3c)

where G(k) is the fermionic Green’s function, χX(q) the magnetic, charge or pairing
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susceptibility, n the particle density, and the generalized bare bubbles are defined as

χ0,ph
k (q) = G

(
k +

⌊q
2

⌋)
G
(
k −

⌈q
2

⌉)
, (4.4a)

χ0,pp
k (q) = G

(⌊q
2

⌋
+ k
)
G
(⌈q

2

⌉
− k
)
. (4.4b)

The three point Green’s functions are then related to the four point one G(4) via

G
(3)m
k (q) =

∑
σ=↑,↓

∫
k′

sgn(σ)G
(4)
↑σ↑σ

(
k −

⌊q
2

⌋
, k′ +

⌈q
2

⌉
, k +

⌈q
2

⌉)
, (4.5a)

G
(3)c
k (q) =

∑
σ=↑,↓

∫
k′
G

(4)
↑σ↑σ

(
k −

⌊q
2

⌋
, k′ +

⌈q
2

⌉
, k +

⌈q
2

⌉)
, (4.5b)

G
(3)p
k (q) =

∫
k′
G

(4)
↑↓↑↓

(⌊q
2

⌋
+ k,

⌈q
2

⌉
− k,

⌊q
2

⌋
+ k′

)
, (4.5c)

where sgn(↑) = +1, sgn(↓) = −1, and the definition for G(4) is a straightforward lattice

generalization of Eq. (1.60). Notice that in Eq. (4.3b) a disconnected term has been

removed from the definition of the charge Yukawa coupling.

The screened interactions are related to the susceptibilities through

Dm(q) = U + U2χm(q), (4.6a)

Dc(q) = U − U2χc(q), (4.6b)

Dp(q) = U − U2χp(q). (4.6c)

We therefore see that the division by a term 1±UχX(q) in Eq. (4.3) is necessary to avoid

double counting of the diagrams in φX,SBE.

It is then interesting to analyze the limits when the frequencies contained in the

variables k and q are sent to infinity. All the susceptibilities decay to zero for large

frequency, implying

lim
Ω→∞

DX(q,Ω) = U. (4.7)

Concerning the Yukawa couplings, with some algebra one can express them in the form [157]
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hmk (q) = 1 +

∫
k′
ϕmk,k′(q)χ

0,ph
k′ (q), (4.8a)

hck(q) = 1−
∫
k′
ϕck,k′(q)χ

0,ph
k′ (q), (4.8b)

hpk(q) = 1−
∫
k′
ϕpk,k′(q)χ

0,pp
k′ (q), (4.8c)

with

ϕXk,k′(q) = V X
k,k′(q)− hXk (q)DX(q)hXk′(q), (4.9)

and

V m
k,k′(q) = V

(
k −

⌈q
2

⌉
, k′ +

⌈q
2

⌉
, k′ −

⌈q
2

⌉)
, (4.10a)

V c
k,k′(q) = 2V

(
k −

⌈q
2

⌉
, k′ +

⌈q
2

⌉
, k +

⌊q
2

⌋)
− V

(
k −

⌈q
2

⌉
, k′ +

⌈q
2

⌉
, k′ −

⌈q
2

⌉)
,

(4.10b)

V p
k,k′(q) = V

(⌊q
2

⌋
+ k,

⌈q
2

⌉
− k,

⌊q
2

⌋
+ k′

)
, (4.10c)

where V = V↑↓↑↓ is the vertex function defined in Sec. 1.1.5. Combining decomposi-

tion (4.1), Eq. (4.7) and the fact that ΛU irr decays to zero when sending to infinity one of

its frequency arguments (this can be proven diagrammatically), one then sees that

lim
Ω→∞

ϕXk,k′(q,Ω) = lim
ν→∞

ϕX(k,ν),k′(q) = 0, (4.11)

because the frequencies that are sent to infinity enter as arguments in all the screened

interactions present in the definition of ϕX . This lets us conclude that

lim
Ω→∞

hXk (q,Ω) = lim
ν→∞

hX(k,ν)(q) = 1. (4.12)

The limits here derived can be also proven by means of diagrammatic arguments, as shown

in Ref. [153], where a different notation has been used.

The SBE decomposition offers several advantages. In first place, it allows for a sub-

stantial reduction of the computational complexity. Indeed, the calculation of the SBE

terms, accounting for the asymptotic frequency dependencies of the vertex, reduces to

two functions, namely DX and hX , that depend on at least one less collective variable
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k than the full channel functions φX . Furthermore, since the rest functions are fast de-

caying in all frequency directions, the number of Masubara frequencies required for their

calculation can be kept small. Approximations where the RX are fully neglected are also

possible, based on the choice of selecting only the class of U -reducible diagrams. Secondly,

the SBE offers a clear physical interpretation of the processes that generate correlations

between the electrons, allowing, for example, to diagnose which kind of collective fluc-

tuations give the largest contribution to a given physical observable. Finally, the clear

identification of bosonic fluctuations allows for a better treatment of the Goldstone modes

when spontaneous symmetry breaking occurs.

4.2 SBE representation of the fRG

In this section, we implement the SBE decomposition in the 1-loop fRG equations. Gen-

eralizations to other truncations (Katanin, 2-loop, multiloop [158]) are also possible. To

keep the notation light, we omit the Λ-dependence of the quantities at play.

We start by recasting the channel flow equations, derived in Sec. 1.1.6, in the following

form

∂Λφ
X
k,k′(q) =

∫
p

V X
k,p(q)

[
∂̃Λχ

0,X
p (q)

]
V X
p,k′(q), (4.13)

where, according to the definitions in Sec. 1.1.6, we have defined φm = U+M, φc = U−C,
and φp = U − P . The bare bubbles are given by

χ0,m
k (q) = −χ0,ph

k (q), (4.14a)

χ0,c
k (q) = χ0,ph

k (q), (4.14b)

χ0,p
k (q) = −χ0,pp

k (q). (4.14c)

In essence, the φX represent the collection of all two-particle reducible diagrams in a given

(physical) channel plus the bare interaction. We can express them in the form

φXk,k′(q) = φX,SBE
k,k′ (q) +RX

k,k′(q)− U, (4.15)

where φX,SBE is U -reducible and can be written as in Eq. (4.2), and RX is U -irreducible

but two particle reducible in the given channel. The rest function RX decays to zero when

any of the three frequencies on which it depends is sent to infinity [153]. With the help
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of Eqs. (4.11) and (4.12), one can therefore prove that

lim
ν′→∞

φXk,(k′,ν′)(q) = lim
ν′→∞

V X
k,(k′,ν′)(q) = hXk (q)DX(q), (4.16a)

lim
ν→∞
ν′→∞

φX(k,ν),(k′,ν′)(q) = lim
ν→∞
ν′→∞

V X
(k,ν),(k′,ν′)(q) = DX(q). (4.16b)

The flow equations for the screened interactions, Yukawa couplings, and rest functions

immediately follow

∂ΛD
X(q) =

[
DX(q)

]2 ∫
p

hXp (q)
[
∂̃Λχ

0,X
p (q)

]
hXp (q), (4.17a)

∂Λh
X
k (q) =

∫
p

ϕXk,p(q)
[
∂̃Λχ

0,X
p (q)

]
hXp (q), (4.17b)

∂ΛRX
k,k′(q) =

∫
p

ϕXk,p(q)
[
∂̃Λχ

0,X
p (q)

]
ϕXp,k′(q), (4.17c)

where ϕX has been defined in Eq. (4.9). In Appendix A one can find the symmetry

properties of the screened interactions, Yukawa couplings, and rest functions. The above

flow equations can be alternatively derived by introducing three bosonic fields in the

Hubbard action via as many Hubbard-Stratonovich transformations, and running an fRG

flow for a mixed boson-fermion system (for more details see Appendix C).

4.2.1 Plain fRG

For the plain fRG, the initial condition V Λini = U translates into φXk,k′(q) = U , which

implies

DX,Λini(q) = U, (4.18a)

hX,Λini

k (q) = 1, (4.18b)

RX,Λini

k,k′ (q) = 0. (4.18c)

Furthermore, in the 1-loop, Katanin, 2-loop, and multiloop approximations, the fully

U -irreducible term ΛU irr is set to the sum of the three rest functions, lacking any fully

two-particle irreducible contribution.
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4.2.2 DMF2RG

Within the DMF2RG, one has to apply the parametrization in Eq. (4.1) also to the

impurity vertex, that is

V imp(ν ′1, ν
′
2, ν1) =Λimp

U irr(ν
′
1, ν
′
2, ν1)− 2U

+
1

2
φm,SBE,imp
νph,ν

′
ph

(ν1 − ν ′1) +
1

2
φc,SBE,imp
νph,ν

′
ph

(ν1 − ν ′1)

+ φm,SBE,imp
νph,ν

′
ph

(ν ′2 − ν1)

+ φp,SBE,imp
νpp,ν′pp

(ν ′1 + ν ′2),

(4.19)

where the definitions of the frequencies νph, ν
′
ph, νph, ν

′
ph

, νpp, and ν ′pp can be read from

the frequency components of Eq. (1.46). The impurity U -reducible terms can be written

as

φX,SBE,imp
νν′ (Ω) = hX,imp

ν (Ω)DX,imp(Ω)hX,imp
ν′ (Ω), (4.20)

where the impurity Yukawa couplings and screened interactions can be computed from the

momentum independent version of Eqs. (4.3) and (4.6), after the DMFT self-consistent

loop has converged. The U -irreducible contribution is then obtained by subtracting the

φX,SBE,imp from the impurity vertex. In principle, one can invert three Bethe-Salpeter

equations to extract the local rest functions from Λimp
U irr. However, this can be avoided

assigning to the flowing k-dependent rest functions only those contributions arising on

top the local ones.

The DMF2RG initial conditions thus read as

DX,Λini(q) = DX,imp(Ω), (4.21a)

hX,Λini

k (q) = hX,imp
ν (Ω), (4.21b)

RX,Λini

k,k′ (q) = 0. (4.21c)

Within the 1-loop, Katanin, 2-loop, and multiloop approximations, the DMF2RG U -

irreducible vertex consists of two terms: a non-flowing one, accounting also for the local

fully two-particle irreducible contributions, and a flowing one, given by the sum of the

three rest functions, consisting of nonlocal two-particle reducible but U -irreducible cor-

rections.
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Figure 4.3: Magnetic (left) and charge (right) susceptibilities at zero frequency as func-
tions of the spatial momentum q for U = 16t and T = 0.286t. In the left panel the black
dashed line indicates the values taken by χm(q, 0) along the path in the Brillouin zone
considered in Fig. 4.5.

4.2.3 Results at half filling

In this section we test the validity of the SBE decomposition on the Hubbard model from

moderate to strong coupling by means of the DMF2RG. In order to further simplify the

numerics, we project the Yukawa couplings and rest functions dependencies on secondary

momenta k and k′ onto s-wave form factors, so that

hX(k,ν)(q) ' hXν (q), (4.22a)

RX
(k,ν),(k′,ν′)(q) ' RX

νν′(q). (4.22b)

The flow equations therefore simplify to

∂ΛD
X(q) =

[
DX(q)

]2
T
∑
ω

hXω (q)
[
∂̃Λχ

0,X
ω (q)

]
hXω (q), (4.23a)

∂Λh
X
ν (q) = T

∑
ω

ϕXνω(q)
[
∂̃Λχ

0,X
ω (q)

]
hXω (q), (4.23b)

∂ΛRX
νν′(q) = T

∑
ω

ϕXνω(q)
[
∂̃Λχ

0,X
ω (q)

]
ϕXων′(q), (4.23c)



96 Single boson exchange decomposition of the two-particle vertex

where we have projected ϕX and the bubbles onto s-wave form factors, that is

χ0,X
ν (q) =

∫
k

χ0,X
(k,ν)(q), (4.24a)

ϕXνν′(q) =

∫
k,k′

ϕX(k,ν),(k′,ν′)(q). (4.24b)

We notice that in some parameter ranges the Yukawa couplings and, more importantly,

the rest functions may acquire a strong dependence on k and k′. In this case, the s-wave

approximation is no longer justified. However, in this section we will focus on the half-

filled Hubbard model at fairly high temperature, where the dependencies of the vertices

on secondary momenta are expected to be weak. In all the rest of the chapter we will

neglect the flow of the self-energy, which we keep fixed at the DMFT value.

As far as the computation of the DMFT initial conditions is concerned, we use ED with

4 bath sites as impurity solver. After the self-consistent loop has converged, we calculate

the impurity three- and four-point Green’s functions as well as the susceptibilities from

their Lehmann representation [159], and extract the respective Yukawa couplings, screened

interactions, and the U -irreducible DMFT vertex.

In this section we focus on the half-filled Hubbard model with only nearest neighbor

hoppings (t′ = t′′ = 0) for different couplings and temperatures. For the present choice of

parameters particle-hole symmetry is realized. In the results below, the flow of the rest

functions has been neglected, when not explicitly stated otherwise. We take the hopping

t as energy unit.

Susceptibilities

We start by testing the validity of the SBE decomposition at strong coupling, focusing

on the physical response functions.

In Fig. 4.3, we show the zero frequency magnetic and charge susceptibilities, extracted

from the computed screened interactionsDm andDc, as functions of the lattice momentum

for U = 16t and T = 0.286t, that is, slightly above the Néel temperature predicted by

DMFT at this coupling (see also leftmost panel of Fig. 4.5). We notice that particle-hole

symmetry implies Dp(q,Ω) = Dc(q + Q,Ω), with Q = (π, π). The 1-loop truncation of

the DMF2RG does not substantially suppress the Néel temperature TN predicted by the

DMFT, resulting in large peaks of χm(q, 0) at q = Q. It is remarkable, however, that

within the DMF2RG TN is much smaller than the one that plain fRG would give for the
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(a) (b)

Figure 4.4: Panel (a): Generalized magnetic (left column) and charge (right) susceptibil-
ities at U = 4t, and T = 0.250t, obtained from the impurity model (upper row) and from
the DMF2RG (lower row). Panel (b): same as (a), with U = 16t and T = 0.286t.

present coupling, that is, TN ∝ U for large U . The charge susceptibility χc is strongly

suppressed at strong coupling, vanishing at q = 0, due to the fully insulating nature of

the system at the coupling here considered. Indeed, U = 16t lies far above the critical

coupling at which the Mott metal to insulator occurs in DMFT (UMIT(T = 0) ' 12t).

Following the analysis in Ref. [160], it is instructive to analyze the evolution of the

generalized susceptibilities, introduced in Sec. 1.2.2, as the coupling is tuned across the

Mott transition. They are in general defined as

χmk,k′(q) = −χ0,ph
k (q)δk,k′ + χ0,ph

k (q)V m
k,k′(q)χ

0,ph
k′ (q), (4.25a)

χck,k′(q) = −χ0,ph
k (q)δk,k′ − χ0,ph

k (q)V c
k,k′(q)χ

0,ph
k′ (q), (4.25b)

χpk,k′(q) = χ0,pp
k (q)δk,k′ + χ0,pp

k (q)V c
k,k′(q)χ

0,pp
k′ (q), (4.25c)

where δk,k′ = βδνν′δ(k−k′), and V X defined as in Eq. (4.10). The physical susceptibilities

are then obtained from χX(q) =
∫
k,k′

χXk,k′(q). We notice that in a conserving approxima-

tion (such as the multiloop fRG) the χX(q) calculated with the above ”post-processing”

formula coincide with the ones extracted from the screened interactions DX(q). However,

for the 1-loop truncation here employed, the two calculations might yield different results.
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In the following, we project the k and k′ dependencies of the generalized susceptibility

onto s-wave form factors, that is, we consider

χmνν′(q) = −βχ0,ph
ν (q)δνν′ + χ0,ph

ν (q)V m
νν′(q)χ

0,ph
ν′ (q), (4.26a)

χcνν′(q) = −βχ0,ph
ν (q)δνν′ − χ0,ph

ν (q)V c
νν′(q)χ

0,ph
ν′ (q), (4.26b)

χpνν′(q) = +βχ0,pp
ν (q)δνν′ + χ0,pp

ν (q)V p
νν′(q)χ

0,pp
ν′ (q), (4.26c)

with χ0,X
ν (q) as defined in Eq. (4.24a), and V X

νν′(q) =
∫

k,k′
V X
k,k′(q).

In the following, we will focus on the generalized susceptibilities at zero bosonic fre-

quency and for two coupling values, U = 4t, and U = 16t, below and above the Mott

transition. The corresponding temperatures are chosen to be close to the DMFT Néel

temperature for the given coupling, that is, T = 0.250t and T = 0.286t. The corre-

sponding results are shown in Fig. 4.4, where we also plot the corresponding generalized

susceptibilities for the self-consistent impurity problem, denoted as χXaim,νν′(Ω). At mod-

erate coupling (Fig. 4.4a), the leading structure of the charge susceptibility, both for the

AIM and DMF2RG results, is given by a positive diagonal decaying to zero for large

ν = ν ′, arising from the bubble term −χ0,ph
ν (q), built upon a metallic Green’s func-

tion. At the AIM level, the role of vertex corrections appears to be marginal in both

channels, with small negative (positive) off-diagonal elements, leading to an overall mild

suppression (enhancement) of the physical charge (magnetic) susceptibility. While for

the charge channel the nonlocal DMF2RG corrections are essentially irrelevant, in the

magnetic one, they lead to a strong enhancement of χmνν′(Q, 0), signaling strong antifer-

romagnetic correlations. In the Mott phase, the picture changes drastically, due to large

vertex corrections. In the magnetic channel, they strongly enhance the physical suscep-

tibility even at the AIM level overtaking the diagonal term. This is a clear hallmark of

the formation of local magnetic moments, resulting in a large magnetic response at zero

frequency, following the Curie-Weiss law. Differently, in the charge channel, the vertex

strongly suppresses the physical response, flipping the sign of the diagonal entries up to

frequencies |ν = ν ′| ∼ U . In more detail, these negative values are responsible for the

freezing of charge fluctuations in the deep insulating regime [160, 161]. This observation

can be interpreted as the charge counterpart of the local moment formation in the mag-

netic sector. The negative diagonal entries are in general related to negative eigenvalues

of the generalized susceptibility. Increasing the coupling U , when one of the eigenvalues
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Figure 4.5: Left panel: DMFT Néel temperature and location of the parameters con-
sidered in the remaining three panels. Other panels: magnetic susceptibility at zero
frequency in a path in the Brillouin zone (see Fig. 4.3 for its definition) calculated with
and without considering the flow of the rest functions. The coupling values considered
are, from left to right, U = 4t, 8t, and 16t.

flips its sign, the matrix χcνν′(0) becomes non-invertible, leading to divergences of the

irreducible vertex function [161–164], which are in turn related to the multivaluedness of

the Luttinger-Ward functional [165, 166].

Figure 4.6: Inverse magnetic susceptibility at zero frequency and q = Q as a function of
temperature for a coupling value of U = 8t. The dashed lines correspond to linear fits of
the data, whose extrapolation yields the Néel temperature.
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Role of the rest functions

All the results presented so far have been obtained neglecting the flow of the rest functions.

While this approximation significantly reduces the computational cost, the extent of its

validity has to be verified in different coupling regimes. We recall that by considering the

flow of RX we recover the results obtained by conventional implementations of the fRG

(see, for example Refs. [52, 138]).

In Fig. 4.5, we analyze the impact of the inclusion/neglection of the rest functions on

the magnetic susceptibilities at coupling values of U = 4t, 8t, and 16t and temperatures

close to the corresponding TN as obtained in the DMFT, namely T = 0.250t, 0.444t,

and 0.286t, respectively (see leftmost panel for the location of these points in the (U, T )

phase diagram). The corrections due to the inclusion of the RX are rather marginal for

all couplings considered, resulting in only a slight enhancement of magnetic correlations.

As a consequence of this, the Néel temperature, which is finite as the 1-loop truncation

here considered violates the Mermin-Wagner theorem, is very mildly affected by the rest

functions. This can be observed in Fig. 4.6, where we plot the inverse magnetic suscep-

tibility at q = Q and zero frequency as a function of the temperature for U = 8t. We

notice that the inclusion of the RX yields a Néel temperature of TN = 0.4042t, and the

one obtained without rest function lies very close to it, TN = 0.3986t. The effects of the

rest functions on the charge and pairing susceptibilities (not shown) are negligible.

In Fig. 4.7, we plot the frequency structure of the rest functions for the three channels

at zero bosonic frequency, for U = 4t and U = 16t and for the same temperatures consid-

ered in Fig. 4.5. The decay to zero for large frequencies ν, ν ′ is clear, particularly at strong

coupling (lower row), where the RX take extremely large values at the lowest Matsubara

frequencies. However, in the insulating regime the Green’s function is suppressed at the

smallest Matsubara frequencies, strongly reducing the effect of the large values of the rest

functions on the physical observables.

4.2.4 Finite doping: fluctuation diagnostics of d-wave correla-

tions

In this section, we show results for the doped Hubbard model at fairly low temperature.

The parameter set we consider is a hole doping of p = 1 − n = 0.18, T = 0.044t, a

next-to-nearest neighbor hopping of t′ = −0.2t, and U = 8t. Since at finite doping and
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Figure 4.7: Fermionic frequency dependence of the magnetic (left column), charge (central
column), and pairing (right column) rest functions for zero bosonic frequency, and for
couplings U = 4t (upper row) and U = 16t (lower row). The temperatures are the same
as in Fig. 4.5.

low temperatures the Hubbard model is expected to display sizable d-wave correlations,

we improve our form factor expansion to include them. Considering the pairing channel,

we notice that the U -reducible term can have a finite d-wave coefficient thanks to the

Yukawa coupling

hp(k,ν)(q) ∼ hp,sν (q) + hp,dν (q)dk, (4.27)

with dk = cos kx−cos ky. However, due to the locality of the bare interaction, the function

hp,dν (q,Ω) identically vanishes for q = 0, therefore not contributing to an eventual d-wave

pairing state. For this reason we retain only the s-wave contribution to the pairing Yukawa

coupling. What would really drive the formation of a d-wave superconducting gap is the

rest function Rp. We expand the latter as

Rp
k,k′(q) ' R

p
νν′(q)−Dνν′(q)dkdk′ , (4.28)

where we have neglected possible s-d-wave mixing terms, and the minus sign has been

chosen for convenience. In essence, the function Dνν′(q), which we refer to as d-wave

pairing channel, is given by diagrams that are two-particle-pp reducible but U -irreducible
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Figure 4.8: From left to right: magnetic, charge, s- and d-wave pairing susceptibilities at
zero bosonic frequency as functions of the lattice momentum q, for p = 0.18, t′ = −0.2t,
T = 0.044t, and U = 8t, determined at the stopping scale Λc = 0.067t.

and, at the same time, exhibit a d-wave symmetry in the dependence on k and k′. The

flow equation for Dνν′(q) reads as

∂ΛDνν′(q) = T
∑
ω

V d
νω(q)

[
∂̃Λχ

0,d
ω (q)

]
V d
ων′(q), (4.29)

with

χ0,d
ν (q) =

∫
k

d2
k χ

0,pp
(k,ν)(q), (4.30)

and

V d
νν′(q) =

∫
k,k′

dkdk′ V
p

(k,ν),(k′,ν′)(q). (4.31)

The flow equations of the other quantities remain unchanged, except that the contribution

in Eq. (4.28) has to be considered in the calculation of the functions V X
νν′(q), with X = m,

c, or p. In this section we neglect the flow of all the rest functions but D.

In the parameter regime considered, and within the 1-loop truncation employed, the

system is unstable under the formation of incommensurate magnetic order. Thus the

flow needs to be stopped due to the divergence of Dm(q, 0) at q = (π − 2πη, π) (and

symmetry related). We therefore arbitrarily define the stopping scale Λc as the one at

which Dm exceeds the value of 8 × 103t, corresponding to a magnetic susceptibility of

∼ 120t−1. We obtain Λc = 0.067t. While the choice of a parameter regime close to

a magnetic instability is crucial to detect sizable d-wave pairing correlations, we expect

that an improved truncation (as, for example, the multiloop extension) would remove the

divergence in the magnetic channel, allowing to continue the flow down to Λ = 0, thereby
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Figure 4.9: Diagrammatic representation of the two boson contributions to the flow equa-
tion of Dνν′(q). Wavy (dashed) lines represent magnetic (charge) screened interactions,
and solid lines fermionic Green’s functions. The ticked lines indicate single scale propa-
gators.

probably enhancing the d-wave susceptibility.

In Fig. 4.8, we show the magnetic, charge, s- and d-wave pairing susceptibilities,

computed at the stopping scale. While the first three have been extracted from the bosonic

propagators DX (see Eq. (4.6)), the d-wave pairing susceptibility has been calculated with

the ”post-processing” formula

χd(q) = T
∑
ν

χ0,d
ν (q) + T 2

∑
ν,ν′

χ0,d
ν (q)V d

νν′(q)χ
0,d
ν′ (q). (4.32)

The magnetic susceptibility displays very large values in the form of peaks at wave vectors

(π − 2πη, π) and symmetry related (η ' 0.08) due to the incommensurate antiferromag-

netic instability. Differently, the charge and s-wave pairing response functions are rather

suppressed, with χc(q) exhibiting peaks at q = (π, 0) (and symmetry related), signaling

very mild charge stripe correlations. Finally, χd(q), although being not excessively large,

presents a well-defined peak at q = 0 and is by far the second largest response function.

Similarly to what has been done in the fluctuation diagnostics for the self-energy [62,

167], it is instructive to analyze the different bosonic fluctuations contributing to the

formation of a sizable d-wave pairing channel D. The function V d
νν′(q) entering the flow

equation of D can be written as

V d
νν′(q,Ω) = −Ld,mνν′ (Ω)− Ld,cνν′(Ω)−Dνν′(q, ω), (4.33)
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where we have defined

Ld,mνν′ (Ω) =
1

2
φm,SBE,d

(⌊
Ω

2

⌋
+

⌈
ν + ν ′

2

⌉
,

⌈
Ω

2

⌉
−
⌈
ν + ν ′

2

⌉
; ν ′ − ν

)
+ φm,SBE,d

(⌈
ν − ν ′ + Ω

2

⌉
,

⌈
ν ′ − ν + Ω

2

⌉
;−ν − ν ′ + Ω m 2

)
, (4.34a)

Ld,cνν′(Ω) =
1

2
φc,SBE,d

(⌊
Ω

2

⌋
+

⌈
ν + ν ′

2

⌉
,

⌈
Ω

2

⌉
−
⌈
ν + ν ′

2

⌉
; ν ′ − ν

)
, (4.34b)

with

φX,SBE,d(ν, ν ′; Ω) = −
∫

q

cos qx + cos qy
2

φX,SBE
νν′ (q,Ω). (4.35)

We can then split the different terms contributing to (4.29) as

∂ΛDmmνν′ (q) = T
∑
ω

Ld,mνω (q)
[
∂̃Λχ

0,d
ω (q)

]
Ld,mων′ (q), (4.36a)

∂ΛDccνν′(q) = T
∑
ω

Ld,cνω(q)
[
∂̃Λχ

0,d
ω (q)

]
Ld,cων′(q), (4.36b)

∂ΛDmcνν′(q) = T
∑
ω

Ld,mνω (q)
[
∂̃Λχ

0,d
ω (q)

]
Ld,cων′(q) + T

∑
ω

Ld,cνω(q)
[
∂̃Λχ

0,d
ω (q)

]
Ld,mων′ (q),

(4.36c)

∂ΛDNb≥3
νν′ (q) = ∂ΛDνν′(q)− ∂ΛDmmνν′ (q)− ∂ΛDccνν′(q)− ∂ΛDmcνν′(q)

= T
∑
ω

Dνω(q)
[
∂̃Λχ

0,d
ω (q)

]
Dων′(q) +

∑
X=m,c

T
∑
ω

Dνω(q)
[
∂̃Λχ

0,d
ω (q)

]
Ld,Xων′ (q)

+
∑
X=m,c

T
∑
ω

Ld,Xνω (q)
[
∂̃Λχ

0,d
ω (q)

]
Dων′(q). (4.36d)

A diagrammatic representation of the flow equations of the first three terms, Dmm,

Dcc, and Dmc is given in Fig. 4.9. They represent two boson processes, also known as

Aslamazov-Larkin diagrams. Inspecting Eqs. (4.36a), (4.36b), and (4.36c), one can notice

that they are not fully reconstructed by the flow, as the functions Ld,m and Ld,c (and the

self-energy) also depend on the fRG scale. This is a feature of the 1-loop truncation and

is not present in the framework of the multiloop extension. It is nonetheless reasonable

to interpret these contributions as two boson processes, and the remainder DNb≥3 as a

higher order contribution in the number of exchanged bosons. In Fig. 4.10, we plot the

different contributions to Dνν′ at q = 0 and ν = ν ′ = ν0 ≡ πT as functions of the scale
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Figure 4.10: Different terms contributing to the d-wave pairing channel Dνν′(q), as defined
in Eq. (4.36), at q = (0, 0) and ν = ν ′ = ν0 ≡ πT as functions of the scale Λ. The total
flow of D is also reported for comparison (red stars).

Λ. We notice that in the early stages of the flow the largest contribution to D comes

from magnetic two boson process, confirming that magnetic fluctuations provide the seed

for the formation of d-wave pairing in the 2D Hubbard model, as found in other fRG

studies [42, 46, 52, 138, 168]. Moreover, the multiboson term (DNb≥3) develops at smaller

scales, compared to the two boson ones. At the same time, it increases considerably when

approaching the stopping scale Λc, overtaking the other contributions. In general, arbi-

trarily close to a thermodynamic instability towards a d-wave pairing state, the Nb ≥ N̄

boson contribution is always larger than all the Nb < N̄ ones, for every finite N̄ [155].

In the present parameter region we indeed observe DNb≥3 > Dmm,Dcc,Dmc, which means

that an important precondition for the onset of a thermodynamic superconducting insta-

bility has already been realized.
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Chapter 5

Collective modes of metallic spiral

magnets

In this chapter, we present a detailed analysis of the low-energy magnons of a spiral

magnet. In particular, we show that, differently than a Néel antiferromagnet, the SU(2)

spin symmetry is broken down to Z2, giving rise to three Goldstone modes, corresponding

to three gapless magnon branches. We focus on the case of coplanar spiral order, that

implies that two of the three magnon modes have the same dispersion. In particular, one

finds one in-plane and two out-of-plane modes. We perform a low energy expansion of

the magnetic susceptibilities in the spiral magnetic state, and derive general expressions

for the spin stiffnesses and spectral weights of the magnon excitations. We also show that

they can be alternatively computed from the response to a gauge field. We prove that the

equivalence of this approach with a low-energy expansion of the susceptibilities is enforced

by some Ward identities. Moreover, we analyze the size and the low-momentum and

frequency dependence of the Landau damping of the Goldstone modes. The understanding

of the low energy physics of a spiral magnet will be of fundamental importance for the

next chapter, where a model for the pseudogap phase is presented in terms of short-range

spiral order.

This chapter is organized as it follows. In Sec. 5.1, we derive the local Ward identities

that enforce the equality of the spin stiffnesses and spectral weights computed expanding

the susceptibilities near their Goldstone pole and from the response to a gauge field. In

this Section, besides the spiral magnet, we also analyze the case of a superconductor and

of a Néel antiferromagnet. In Secs. 5.2 and 5.3, we present the mean-field and random

107
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phase approximation (RPA) approaches to the spiral magnetic state and its collective

excitations. In Sec. 5.4 we expand the RPA magnetic susceptibilities around their Gold-

stone poles and derive expressions for the spin stiffnesses, spectral weights and Landau

dampings of the three magnon modes. In Sec. 5.5 we compute the spin stiffnesses and

spectral weights as response coefficients of the spiral magnet to a SU(2) gauge field and

show the equivalence with the formulas of Sec. 5.4. In Sec. 5.6 we analyze the Néel limit,

and in Sec. 5.7 we show a numerical evaluation of the results of the previous sections.

The content of this chapter has been published in Refs. [169] and [170].

5.1 Local Ward identities for spontaneously broken

symmetries

In this section we derive and discuss the Ward identities connected with a specific gauge

symmetry which gets globally broken due to the onset of long-range order in the fermionic

system. We focus on two specific symmetry groups: the (abelian) U(1) charge symmetry

and the (nonabelian) SU(2) spin symmetry. All over the chapter we employ Einstein’s

notation, that is, a sum over repeated indices is implicit.

5.1.1 U(1) symmetry

We consider the generating functional of susceptibilities of the superconducting order

parameter and gauge kernels, defined as:

G [Aµ, J, J
∗] = − ln

∫
DψDψe−S[ψ,ψ,Aµ]+(J∗,ψ↓ψ↑)+(J,ψ↑ψ↓), (5.1)

where ψ = (ψ↑, ψ↓) (ψ = (ψ↑, ψ↓)) are Grassmann spinor fields corresponding to the

annihilation (creation) of a fermion, Aµ is the electromagnetic field, J (J∗) is a source

field that couples to the superconducting order parameter ψ↑ψ↓ (ψ↓ψ↑), and S[ψ, ψ,Aµ]

is the action of the system. The index µ = 0, 1, . . . , d, with d the system dimensionality,

runs over temporal (µ = 0) and spatial (µ = 1, . . . , d) components. In the above equation

and from now on, the expression (A,B) has to be intended as
∫
x
A(x)B(x), where x

is a collective variable consisting of a spatial coordinate x (possibly discrete, for lattice

systems), and an imaginary time coordinate τ , and
∫
x

is a shorthand for
∫
ddx

∫ β
0
dτ , with
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β the inverse temperature. Even in the case of a lattice system, we define the gauge field

over a continuous space time, so that expressions involving its gradients are well defined.

We let the global U(1) charge symmetry be broken by an order parameter that, to

make the treatment simpler, we assume to be local (s-wave)

〈ψ↓(x)ψ↑(x)〉 = 〈ψ↑(x)ψ↓(x)〉 = ϕ0, (5.2)

where the average is computed at zero source and gauge fields, and, without loss of

generality, we choose ϕ0 ∈ R. A generalization to systems with nonlocal order parameters,

such as d-wave superconductors, is straightforward.

The functional (5.1) has been defined such that its second derivative with respect to

J and J∗ at zero J , J∗ and Aµ gives (minus) the susceptibility of the order parameter

χ(x, x′), while (minus) the gauge kernel Kµν(x, x
′) can be extracted differentiating twice

with respect to the gauge field. In formulas

χ(x, x′) = − δ2G
δJ(x)δJ∗(x′)

∣∣∣∣
J=J∗=Aµ=0

, (5.3a)

Kµν(x, x
′) = − δ2G

δAµ(x)δAν(x′)

∣∣∣∣
J=J∗=Aµ=0

. (5.3b)

Let us now consider the constraints that the U(1) gauge invariance imposes on the func-

tional G. Its action on the fermionic fields is

ψ(x)→ eiθ(x)ψ(x), (5.4a)

ψ(x)→ e−iθ(x)ψ(x), (5.4b)

with θ(x) a generic function. Similarly, the external fields transform as

J(x)→ J ′(x) = e2iθ(x)J(x), (5.5a)

J∗(x)→ [J ′(x)]∗ = e−2iθ(x)J∗(x), (5.5b)

Aµ(x)→ A′µ(x) = Aµ(x)− ∂µθ(x), (5.5c)

where ∂µ = (i∂τ ,∇). In Eqs. (5.4) and (5.5) the spatial coordinate x of the spinors ψ

and ψ, as well as the sources J and J∗ may be a lattice one, while the gauge field Aµ

and the parameter θ are always defined over a continuous space. To keep the notation
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lighter, we always indicate the space-time coordinate as x, keeping in mind that its spatial

component could have a different meaning depending on the field it refers to.

For G to be invariant under a U(1) gauge transformation, it must not to depend on

θ(x):
δ

δθ(x)
G[A′µ, J

′, (J ′)∗] = 0. (5.6)

Considering an infinitesimal transformation, that is |θ(x)| � 1, from Eqs. (5.5) and (5.6),

we obtain

∂µ

(
δG

δAµ(x)

)
+ 2i

[
δG
J(x)

J(x)− δG
J∗(x)

J∗(x)

]
= 0. (5.7)

We now consider the change of variables

J(x) = J1(x) + iJ2(x), (5.8a)

J∗(x) = J1(x)− iJ2(x), (5.8b)

such that J1(x) (J2(x)) is a source field coupling to longitudinal (transverse) fluctuations

of the order parameter, and the functional Γ, defined as the Legendre transform of G,

Γ[Aµ, φ1, φ2] =
∑
a=1,2

∫
x

φa(x)Ja(x) + G[Aµ, J1, J2], (5.9)

where φa(x) = δG[Aµ,J1,J2]

δJa(x)
. The gauge kernel can be computed from Γ as well:

Kµν(x, x
′) = − δ2Γ

δAµ(x)δAν(x′)

∣∣∣
~φ=Aµ=0

, (5.10)

because, thanks to the Legendre transform properties, δΓ/δAµ(x) = δG/δAµ(x). Differ-

ently, differentiating Γ twice with respect to the fields φa returns the inverse correlator

Cab(x, x′) = − δ2Γ

δφa(x)δφb(x′)

∣∣∣∣
~φ=Aµ=0

, (5.11)

which obeys a reciprocity relation [88]∫
x′′
Cac(x, x′′)χcb(x′′, x′) = δabδ(x− x′), (5.12)
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with the generalized susceptibility χab(x, x′), defined as

χab(x, x′) = − δ2G
δJa(x)δJb(x′)

∣∣∣∣
Ja=Aµ=0

. (5.13)

Eq. (5.7) can be expressed in terms of Γ as

∂µ

(
δΓ

δAµ(x)

)
− 2

[
δΓ

δφ1(x)
φ2(x)− δΓ

δφ2(x)
φ1(x)

]
= 0. (5.14)

Eq. (5.14) is an identity for the generating functional Γ stemming from U(1) gauge in-

variance of the theory. Taking derivatives with respect to the fields, one can derive an

infinite set of Ward identities.

We are interested in the relation between the gauge kernel and the transverse inverse

susceptibility C22(x, x′). For this purpose, we differentiate Eq. (5.14) once with respect

to φ2(x′) and once with respect to Aν(x
′), and then set the fields to zero. We obtain the

set of equations

− ∂µC2
µ(x, x′) = 2ϕ0C

22(x, x′), (5.15a)

− ∂µKµν(x, x
′) = 2ϕ0 C2

ν(x, x
′), (5.15b)

where ϕ0 = 〈φ(x)〉 = 〈φ1(x)〉 = 〈ψ↓(x)ψ↑(x)〉, and we have defined the quantity

Caµ(x, x′) = − δ2Γ

δAµ(x)δφa(x′)

∣∣∣∣
~φ=Aµ=0

. (5.16)

Combining (5.15a) and (5.15b), we obtain

∂µ∂νKµν(x, x
′) = 4ϕ2

0C
22(x, x′). (5.17)

Fourier transforming Eq. (5.17) and rotating to real frequencies, we have

− qµqνKµν(q) = 4ϕ2
0C

22(q), (5.18)

with q = (q, ω) a collective variable combining momentum and real frequency.

We now define the superfluid stiffness Jαβ and the uniform density-density suscepti-
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bility χn
∗ as

Jαβ ≡ − lim
q→0

Kαβ(q, ω = 0), (5.19a)

χn ≡ lim
ω→0

K00(q = 0, ω), (5.19b)

where the minus sign in (5.19a) has been introduced so that Jαβ is positive definite. Notice

that, even though the limits q → 0 and ω → 0 in Eq. (5.19b) have been taken in the

opposite order compared to what it is conventionally done, they commute in a s-wave

superconductor because of the absence of gapless fermionic excitations. In the above

equation and from now on, we employ the convention that the indices labeled as µ, ν

include temporal and spatial components, whereas α and β only the latter. Taking the

second derivative with respect to q on both sides of (5.18), we obtain

Jαβ = 2ϕ2
0∂

2
qαqβ

C22(q, ω = 0)
∣∣
q→0

, (5.20a)

χn = −2ϕ2
0∂

2
ωC

22(q = 0, ω)
∣∣
ω→0

, (5.20b)

where ∂2
qαqβ

and ∂2
ω are shorthands for ∂2

∂qαqβ
and ∂2

∂ω2 , respectively. Moreover, we have made

use of the Goldstone theorem, reading C22(0, 0) = 0. To derive Eq. (5.20) from (5.18) we

have exploited the finiteness of the gauge kernel Kµν(q) in the q → 0 and ω → 0 limits.

Eq. (5.20) states that the superfluid stiffness and the uniform density-density correlation

function are not only the zero momentum and frequency limit of the gauge kernel, but

also the coefficients of the inverse transverse susceptibility when expanded for small q and

ω, respectively. Inverting Eq. (5.12), C22(q) can be expressed in terms of χab(q) as

C22(q) =
1

χ22(q)− χ21(q) 1
χ11(q)

χ12(q)
. (5.21)

In the limit q → 0 = (0, 0), χ22(q) diverges for the Goldstone theorem, while the second

term in the denominator vanishes like some power of q. This implies that, for small q,

C22(q) ' 1

χ22(q)
. (5.22)

∗The spin stiffnesses and dynamical susceptibilities (or density-density uniform susceptibility, for the
superconductor) can be equivalently defined as the coefficients of a low-energy expansion of the transverse
susceptibilities. Here, we choose to define them from the gauge kernels and show that, within a conserving
approximation, the two definitions are equivalent.
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From this consideration, together with (5.20), we can deduce that the transverse suscep-

tibility can be written as

χ22(q, ω) ' 4ϕ2
0

−χnω2 + Jαβqαqβ
, (5.23)

for small q and ω.

The above form of the χ22(q) can be also deduced from a low energy theory for the

phase fluctuations of the superconducting order parameter. Setting J and J∗ to zero in

(5.1), and integrating out the Grassmann fields, one obtains an effective action for the

gauge fields. The quadratic contribution in Aµ is

S(2)
eff [Aµ] = −1

2

∫
q

Kµν(q)Aµ(−q)Aν(q), (5.24)

where
∫
q

is a shorthand for
∫

dω
2π

∫
ddq

(2π)d
. Since we are focusing only on slow and long-

wavelength fluctuations of Aµ, we replace Kµν(q) with Kµν(0). Considering a pure gauge

field, Aµ(x) = −∂µθ(x), where θ(x) is (half) the phase of the superconducting order

parameter (φ(x) = ϕ0e
−2iθ(x)), we obtain

Seff [θ] =
1

2

∫
x

{
−χn [∂tθ(x)]2 + Jαβ∂αθ(x)∂βθ(x)

}
, (5.25)

with θ(x) ∈ [0, 2π] a periodic field. The above action is well known to display a Berezinskii-

Kosterlitz-Thouless (BKT) transition [142, 143] for d = 1 (at T = 0) and d = 2 (at T > 0),

while for d = 3 (T ≥ 0) or d = 2 (T = 0), it describes a gapless phase mode known as

Anderson-Bogoliubov phonon [171].

From (5.25), we can extract the propagator of the field θ(x)

〈θ(−q)θ(q)〉 =
1

−χnω2 + Jαβqαqβ
, (5.26)

where we have neglected the fact that θ(x) is defined modulo 2π. Writing φ2(x) =

(φ(x)− φ∗(x))/(2i) = −ϕ0 sin(2θ(x)) ' −2ϕ0θ(x), χ22(q) can be expressed as

χ22(q) = 〈φ2(−q)φ2(q)〉 ' 4ϕ2
0〈θ(−q)θ(q)〉 =

4ϕ2
0

−χnω2 + Jαβqαqβ
, (5.27)
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which is in agreement with Eq. (5.23).

5.1.2 SU(2) symmetry

In this Section, we repeat the same procedure we have applied in the previous one to

derive the Ward identities connected to a SU(2) gauge invariant system. We consider the

functional

G[Aµ, ~J ] = − ln

∫
DψDψe−S[ψ,ψ,Aµ]+( ~J, 1

2
ψ~σψ), (5.28)

where Aµ(x) = Aaµ(x)σ
a

2
is a SU(2) gauge field, ~σ are the Pauli matrices, and ~J(x) is a

source field coupled to the fermion spin operator 1
2
ψ(x)~σψ(x). Similarly to the previous

section, derivatives of G with respect to Aµ and ~J at zero external fields give minus the

gauge kernels and spin susceptibilities, respectively. In formulas,

χab(x, x′) = − δ2G
δJa(x)δJb(x′)

∣∣∣∣
~J=Aµ=0

, (5.29a)

Kab
µν(x, x

′) = − δ2G
δAaµ(x)δAbν(x

′)

∣∣∣∣
~J=Aµ=0

. (5.29b)

We let the SU(2) symmetry be broken by a (local) order parameter of the form〈
1

2
ψ(x)~σψ(x)

〉
= mv̂(x), (5.30)

with v̂(x) a position-dependent unit vector pointing along the local direction of the mag-

netization.

A SU(2) gauge transformation on the fermionic fields reads

ψ(x)→ R(x)ψ(x), (5.31a)

ψ(x)→ ψ(x)R†(x), (5.31b)

where R(x) ∈ SU(2) is a matrix acting on the spin indices of ψ and ψ. The external

fields transform as

Ja(x)→ J ′a(x) =Rab(x)Jb(x), (5.32a)

Aµ(x)→ A′µ(x) =R†(x)Aµ(x)R(x) + iR†(x)∂µR(x), (5.32b)
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where R(x) is the adjoint representation of R(x)

Rab(x)σb = R(x)σaR†(x). (5.33)

The SU(2) gauge invariance of G can be expressed as

δ

δR(x)
G[A′µ, ~J

′] = 0. (5.34)

Writing R(x) = eiθa(x)σ
a

2 , R†(x) = e−iθa(x)σ
a

2 , and considering an infinitesimal transforma-

tion |θa(x)| � 1, we obtain the functional identity

∂µ

(
δΓ

δAaµ(x)

)
− εa`m

[
δΓ

δφ`(x)
φm(x)− δΓ

δA`µ(x)
Amµ (x)

]
= 0, (5.35)

where εabc is the Levi-Civita tensor. Γ[Aµ, ~φ] is the Legendre transform of G, defined as

Γ[Aµ, ~φ] =

∫
x

~φ(x) · ~J(x) + G[Aµ, ~J ], (5.36)

with φa(x) = δG[Aµ, ~J ]

δJa(x)
. The inverse susceptibilities Cab(x, x′), defined as,

Cab(x, x′) = − δ2Γ

δφa(x)δφb(x′)

∣∣∣∣
~φ=Aµ=0

, (5.37)

obey a reciprocity relation with the spin susceptibilities χab(x, x′) similar to (5.12).

Defining the quantities

Cabµ (x, x′) = − δ2Γ

δAaµ(x)δφb(x′)

∣∣∣∣
~φ=Aµ=0

, (5.38a)

Baµ(x) = − δΓ

δAaµ(x)

∣∣∣∣
~φ=Aµ=0

, (5.38b)
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we obtain from (5.35) the set of equations

−∂µCabµ (x, x′) = mεa`mC`b(x, x′)vm(x), (5.39a)

−∂µKab
µν(x, x

′) = mεa`mCb`ν (x, x′)vm(x)− εa`bB`ν(x)δ(x− x′), (5.39b)

∂µBaµ(x) = 0, (5.39c)

where (5.39a), (5.39b), have been obtained differentiating (5.35) with respect to φb(x
′)

and Aν(x
′), respectively, and setting the fields to zero. Eq. (5.39c) simply comes from

(5.35) computed at zero Aµ, φa. According to Eq. (5.30), the expectation value of ~φ(x)

takes the form 〈~φ(x)〉 = mv̂(x). Combining (5.39a), (5.39b), and (5.39c), we obtain the

Ward identity

∂µ∂νK
ab
µν(x, x

′) = m2εa`mεbnpv`(x)vn(x′)Cmp(x, x′), (5.40)

which connects the gauge kernels with the inverse susceptibilities.

In the following, we analyze two concrete examples where the above identity applies,

namely the Néel antiferromagnet and the spiral magnet. We do not consider ferromagnets

or, in general, systems with a net average magnetization, as in this case the divergence

of the transverse components of the kernel Kab
00(q) for q → 0 leads to changes in the

form of the Ward identities. In this case, one can talk of type-II Goldstone bosons [172],

characterized by a non-linear dispersion.

Néel order

We now consider the particular case of antiferromagnetic (or Néel) ordering for a system

on a d-dimensional bipartite lattice. In this case v̂(x) takes the form (−1)xv̂, with (−1)x

being 1 (−1) on the sites of sublattice A (B), and v̂ a constant unit vector. In the following,

without loss of generality, we consider v̂ = (1, 0, 0). Considering only the diagonal (a = b)

components of (5.40), we have

∂µ∂νK
11
µν(x, x

′) = 0, (5.41a)

∂µ∂νK
22
µν(x, x

′) = m2(−1)x−x′C33(x, x′), (5.41b)

∂µ∂νK
33
µν(x, x

′) = m2(−1)x−x′C22(x, x′). (5.41c)

Despite Néel antiferromagnetism breaking the lattice translational symmetry, the com-

ponents of the gauge Kernel considered above depend only on the difference of their
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arguments x − x′, and thus have a well-defined Fourier transform. Eq. (5.41a) implies

qµqνK
µν
11 (q, ω) = 0, as expected due to the residual U(1) gauge invariance in the Néel state.

In particular, one obtains limq→0K
11
αβ(q, 0) = 0, and limω→0K

11
00(0, ω) = 0. Eqs. (5.41b)

and (5.41c) are the same equation as we have K22(x, x′) = K33(x, x′), again because of

the residual symmetry. If we rotate them onto the real time axis and perform the Fourier

transform, we get

Jαβ ≡ − lim
q→0

K22
αβ(q, 0) =

1

2
m2∂2

qαqβ
C33(q, 0)

∣∣∣
q→Q

, (5.42a)

χ⊥dyn ≡ lim
ω→0

K22
00(0, ω) = −1

2
m2∂2

ωC
33(Q, ω)

∣∣∣
ω→0

, (5.42b)

where Jαβ is the spin stiffness, Q = (π/a0, . . . , π/a0), with a0 the lattice spacing, and we

name χ⊥dyn as transverse dynamical susceptibility†. In the above equations we have made

use of the Goldstone theorem, which in the present case reads

C22(Q, 0) = C33(Q, 0) = 0. (5.43)

Furthermore, to derive Eq. (5.42) from (5.41b), we have used the finiteness of the q→ 0

and ω → 0 limits of the gauge kernels. Following the argument given in the previous

section, for q = (q, ω) close to Q = (Q, 0), we can replace C33(q) by 1/χ33(q) in (5.42),

implying

χ22(q ' Q) = χ33(q ' Q) ' m2

−χ⊥dynω
2 + Jαβ(q −Q)α(q −Q)β

. (5.44)

Notice that in Eq. (5.44) we have neglected the imaginary parts of the susceptibilities, that,

for doped antiferromagnets, can lead to Landau damping of the Goldstone modes [169].

Also for Néel ordering, form (5.44) of the transverse susceptibilities can be deduced

from a low energy theory for the gauge field Aµ(x), that is,

Seff [Aµ] = −1

2

∫
q

[
Kab

00(0, ω → 0)Aa0(−q)Ab0(q) +Kab
αβ(q→ 0, 0)Aaα(−q)Abβ(q)

]
. (5.45)

†See footnote∗
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Considering a pure gauge field

Aµ(x) = iR†(x)∂µR(x), (5.46)

with R(x) a SU(2) matrix, we obtain the action

Seff [n̂] =
1

2

∫
x

{
−χ⊥dyn |∂tn̂(x)|2 + Jαβ∂αn̂(x) · ∂βn̂(x)

}
, (5.47)

where n̂(x) = (−1)xR(x)v̂(x), with R(x) defined as in Eq. (5.33), and |n̂(x)|2 = 1.

Eq. (5.47) is the well-known O(3)/O(2) non-linear sigma model (NLσM) action, describing

low-energy properties of quantum antiferromagnets [21, 173].

Writing R(x) = eiθa(x)σ
a

2 , and expanding to first order in θa(x), n̂(x) becomes n̂(x) '
(1, θ2(x),−θ3(x)). Considering the expression ~φ(x) = (−1)xmn̂(x) for the order parameter

field, we see that small fluctuations in n̂(x) only affect the 2- and 3-components of ~φ(x).

The transverse susceptibilities can be therefore written as

χ22(q) = χ33(q) = 〈φ2(q)φ2(−q)〉 ' m2〈n2(q +Q)n2(−q −Q)〉

=
m2

−χ⊥dynω
2 + Jαβ(q −Q)α(q −Q)β

,
(5.48)

which is the result of Eq. (5.44). In Eq. (5.48) we have made use of the propagator of the

n̂-field dictated by the action of Eq. (5.47), that is,

〈na(q)na(−q)〉 =
1

−χ⊥dynω
2 + Jαβqαqβ

. (5.49)

Eq. (5.48) predicts two degenerate magnon branches with linear dispersion for small q−Q.

In the case of an isotropic antiferromagnet (Jαβ = Jδαβ), we have ωq = cs|q|, with the

spin wave velocity given by cs =
√
J/χ⊥dyn.

Spiral magnetic order

We now turn our attention to the case of spin spiral ordering, described by the magneti-

zation direction

v̂(x) = cos(Q · x)v̂1 + sin(Q · x)v̂2, (5.50)
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where v̂1 and v̂2 are two generic constant unit vectors satisfying v̂1 · v̂2 = 0, and at

least one component of Q is neither 0 nor π/a0. Without loss of generality, we choose

v̂1 = ê1 = (1, 0, 0) and v̂2 = ê2 = (0, 1, 0). It is convenient to rotate the field ~φ(x) to a

basis in which v̂(x) is uniform. This is achieved by the transformation [174]

~φ′(x) =M(x)~φ(x), (5.51)

with

M(x) =

 cos(Q · x) sin(Q · x) 0

− sin(Q · x) cos(Q · x) 0

0 0 1

 . (5.52)

In this way, the inverse susceptibilities are transformed into

C̃ab(x, x′) =− δ2Γ

δφ′a(x)δφ′b(x
′)

∣∣∣∣
~φ′=Aµ=0

= [M−1(x)]ac[M−1(x′)]bdCcd(x, x′). (5.53)

If we now apply the Ward identity (5.40), we obtain

∂µ∂νK
11
µν(x, x

′) = m2 sin(Q · x) sin(Q · x′)C̃33(x, x′), (5.54a)

∂µ∂νK
22
µν(x, x

′) = m2 cos(Q · x) cos(Q · x′)C̃33(x, x′), (5.54b)

∂µ∂νK
33
µν(x, x

′) = m2C̃22(x, x′), (5.54c)

with

C̃33(x, x′) = C33(x, x′), (5.55a)

C̃22(x, x′) = sin(Q · x) sin(Q · x′)C11(x, x′) + cos(Q · x) cos(Q · x′)C22(x, x′)

− sin(Q · x) cos(Q · x′)C12(x, x′)− cos(Q · x) sin(Q · x′)C21(x, x′). (5.55b)

We remark that an order parameter of the type (5.50) completely breaks the SU(2) spin

symmetry, which is why none of the right hand sides of the equations above vanishes. We

have considered a coplanar spiral magnetic order, that is, we have assumed all the spins

to lie in the same plane, so that out of the three Goldstone modes, two are degenerate

and correspond to out-of-plane fluctuations, and one to in-plane fluctuations of the spins.

Furthermore, translational invariance is broken, so the Fourier transforms of the gauge
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kernels Kab
µν(q,q

′, ω) and inverse susceptibilities Cab(q,q′, ω) are nonzero not only for

q−q′ = 0 but also for q−q′ = ±Q or ±2Q. Time translation invariance is preserved, and

the gauge kernels and the inverse susceptibilities depend on one single frequency. However,

in the basis obtained with transformation (5.52), translational invariance is restored, so

that the Fourier transform of C̃ab(x, x′) only depends on one spatial momentum. With this

in mind, we can extract expressions for the spin stiffnesses and dynamical susceptibilities

from (5.54). After rotating to real frequencies, and using the property that for a spiral

magnet the gauge kernels are finite in the limits q = q′ → 0 and ω → 0, we obtain‡

J⊥,1αβ ≡− lim
q→0

K11
αβ(q, 0) =

1

8
m2∂2

qαqβ

∑
η=±

C̃33(q + ηQ, 0)

∣∣∣∣
q→0

, (5.56a)

J⊥,2αβ ≡− lim
q→0

K22
αβ(q, 0) =

1

8
m2∂2

qαqβ

∑
η=±

C̃33(q + ηQ, 0)

∣∣∣∣
q→0

, (5.56b)

J�
αβ ≡− lim

q→0
K33
αβ(q, 0) =

1

2
m2∂2

qαqβ
C̃22(q, 0)

∣∣∣∣
q→0

, (5.56c)

and

χ⊥,1dyn ≡ lim
ω→0

K11
00(0, ω) = −1

8
m2∂2

ω

∑
η=±

C̃33(ηQ, ω)

∣∣∣∣
ω→0

, (5.57a)

χ⊥,2dyn ≡ lim
ω→,0

K22
00(0, ω) = −1

8
m2∂2

ω

∑
η=±

C̃33(ηQ, ω)

∣∣∣∣
ω→0

, (5.57b)

χ�
dyn ≡ lim

ω→0
K33

00(0, ω) = −1

2
m2∂2

ωC̃
22(0, ω)

∣∣∣∣
ω→0

, (5.57c)

where the labels ⊥ and � denote out-of-plane and in-plane quantities, respectively. In the

equations above, we have defined Kab
µν(q, ω) as the prefactors of the components of the

gauge kernels Kab
µν(q,q

′, ω) which are proportional to (2π)dδd(q − q′). From Eqs. (5.56)

and (5.57) it immediately follows that J⊥,1αβ = J⊥,2αβ ≡ J⊥αβ, and χ⊥,1dyn = χ⊥,2dyn ≡ χ⊥dyn, as

expected in the case of coplanar order [175]. To derive the equations above, we have

made use of the Goldstone theorem, which for spiral ordering reads (see for example

‡See footnote∗
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Refs. [30, 174])

C̃33(±Q, 0) = 0, (5.58a)

C̃22(0, 0) = 0. (5.58b)

Notice that the above relations can be also derived from a functional identity similar

to (5.35) but descending from the global SU(2) symmetry. Moreover, close to their re-

spective Goldstone points ((0, 0) for C̃22, and (±Q, 0) for C̃33), C̃22(q) can be replaced

with 1/χ̃22(q), and C̃33(q) with 1/χ̃33(q), with the rotated susceptibilities defined analo-

gously to (5.53). If the spin spiral state occurs on a lattice that preserves parity, we have

C̃aa(q, ω) = C̃aa(−q, ω), from which we obtain

J⊥αβ =
1

4
m2∂2

qαqβ

(
1

χ̃33(q, 0)

) ∣∣∣∣
q→±Q

, (5.59a)

J�
αβ =

1

2
m2∂2

qαqβ

(
1

χ̃22(q, 0)

) ∣∣∣∣
q→0

, (5.59b)

χ⊥dyn = −1

4
m2∂2

ω

(
1

χ̃33(±Q, ω)

) ∣∣∣∣
ω→0

, (5.59c)

χ�
dyn = −1

2
m2∂2

ω

(
1

χ̃22(0, ω)

) ∣∣∣∣
ω→0

. (5.59d)

Neglecting the imaginary parts of the susceptibilities, giving rise to dampings of the

Goldstone modes [169], from Eq. (5.59) we can obtain expressions for the susceptibilities

near their Goldstone points

χ̃22(q ' (0, 0)) ' m2

−χ�
dynω

2 + J�
αβqαqβ

, (5.60a)

χ̃33(q ' (±Q, 0)) ' m2/2

−χ⊥dynω
2 + J⊥αβ(q ∓Q)α(q ∓Q)β

. (5.60b)

Expressions (5.60) can be deduced from a low energy model also in the case of spin

spiral ordering. Similarly to what we have done for the Néel case, we consider a pure

gauge field, giving the non-linear sigma model action

Seff [R] =
1

2

∫
x

tr
[
Pµν∂µR(x)∂νRT (x)

]
, (5.61)
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where R(x) ∈ SO(3) is defined as in Eq. (5.33), and now ∂µ denotes (−∂t, ~∇). The matrix

Pµν is given by

Pµν =


1
2
J�
µν 0 0

0 1
2
J�
µν 0

0 0 J⊥µν − 1
2
J�
µν

 , (5.62)

with

Jaµν =

 −χadyn 0

0 Jaαβ

 , (5.63)

for a ∈ {�,⊥}. Action (5.61) is a NLσM describing low energy fluctuations around a spiral

magnetic ordered state. It has been introduced and studied in the context of frustrated

antiferromagnets [175–178].

We now write the field ~φ′(x) as ~φ′(x) = mM(x)R(x)v̂(x), and consider an R(x)

stemming from a SU(2) matrix R(x) = eiθa(x)σ
a

2 with θa(x) infinitesimal, that is,

Rab(x) ' δab − εabcθc(x), (5.64)

we get

~φ′(x) ' mM(x)[v̂(x)− v̂(x)× ~θ(x)]

= m[ê1 − ê1 × ~θ′(x)],
(5.65)

with ê1 = (1, 0, 0), and ~θ′(x) =M(x)~θ(x). Inserting (5.64) into (5.61), we obtain

Seff [~θ] =
1

2

∫
x

{
J⊥µν

∑
a=1,2

[∂µθa(x)∂νθa(x)] + J�
µν∂µθ3(x)∂νθ3(x)

}
. (5.66)

We are finally in the position to extract the form of the susceptibilities for small fluctua-

tions

χ̃22(q) =〈φ′2(q)φ′2(−q)〉 ' m2〈θ′3(q)θ′3(−q)〉 =
m2

−χ�
dynω

2 + J�
αβqαqβ

, (5.67a)

χ̃33(q) =〈φ′3(q)φ′3(−q)〉 ' m2〈θ′2(q)θ′2(−q)〉 =
∑
η=±

m2/2

−χ⊥dynω
2 + J⊥αβ(q − ηQ)α(q − ηQ)β

,

(5.67b)
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which is the result of Eq. (5.60). In the above equations we have used the correlators of

the θ field descending from action (5.66). Form (5.60) of the susceptibilities predicts three

linearly dispersing Goldstone modes, two of which (the out-of-plane ones) are degenerate

and propagate with velocities c
(n)
⊥ =

√
λ

(n)
⊥ /χ⊥dyn, where λ

(n)
⊥ are the eigenvalues of J⊥αβ

and n = 1, . . . , d. Similarly, the in-plane mode velocity is given by c
(n)
� =

√
λ

(n)
� /χdyn

� ,

with λ
(n)
� the eigenvalues of J�

αβ.

5.2 Mean-field treatment of the spiral magnetic state

For this chapter to be self-contained, we repeat here the some of the basic concepts of

spiral magnetism already presented in Chapter 2.

A spiral magnetic state is characterized by an average magnetization lying in a plane,

which, by rotational invariance, can have any orientation. Without loss of generality,

we choose it to be the xy-plane. We therefore express the expectation value of the spin

operator as

〈~Sj〉 = m [cos(Q ·Rj)ê1 + sin(Q ·Rj)ê2] , (5.68)

where m is the magnetization amplitude, Rj is the spatial coordinate of lattice site j,

êa is a unit vector pointing along the a-direction, and Q is a fixed wave vector. In an

itinerant electron system, the spin operator is given by

Saj =
1

2

∑
s,s′=↑,↓

c†j,sσ
a
ss′cj,s′ , (5.69)

where σa (a = 1, 2, 3) are the Pauli matrices, and c†j,s (cj,s) creates (annihilates) an elec-

tron at site j with spin projection s. Fourier transforming Eq. (5.68), we find that the

magnetization amplitude is given by the momentum integral∫
k

〈c†k,↑ck+Q,↓〉, (5.70)

where c†k,σ (ck,σ) is the Fourier transform of c†j,s (cj,s),
∫

k
=
∫

ddk
(2π)d

denotes a d-dimensional

momentum integral, with d the system dimensionality. From Eq. (5.70), we deduce that

spiral magnetism only couples the electron states (k, ↑) and (k + Q, ↓). It is therefore



124 Low-energy physics of metallic spiral magnets

convenient to use a rotated spin reference frame [174], corresponding to transformation

c̃j = e−
i
2
Q·Rje

i
2
Q·Rjσ

3

cj , c̃†j = c†j e
− i

2
Q·Rjσ

3

e
i
2
Q·Rj . (5.71)

In this basis, the Fourier transform of the spinor c̃j is given by c̃k = (ck,↑, ck+Q,↓), and the

magnetization (5.68) points along the ê1 axis:

〈S̃αj 〉 =
1

2

〈
c̃†jσ

ac̃j
〉

= mδa,1. (5.72)

With the help of transformation (5.71), we can express the mean-field Green’s function

in Matsubara frequencies as

G̃k(iνn) =

(
iνn − ξk −∆

−∆ iνn − ξk+Q

)−1

, (5.73)

where νn = (2n+1)πT , ξk = εk−µ, with the single-particle dispersion εk and the chemical

potential µ, while ∆ is the magnetic gap associated with the spiral order. Diagonaliz-

ing (5.73), one obtains the quasiparticle bands

E±k = gk ±
√
h2

k + ∆2, (5.74)

where gk = 1
2
(ξk + ξk+Q) and hk = 1

2
(ξk − ξk+Q). It is convenient to express the Green’s

function (5.73) as

G̃k(iνn) =
1

2

∑
`=±

u`k
iνn − E`

k

, (5.75)

with the coefficients

u`k = σ0 + `
hk

ek

σ3 + `
∆

ek

σ1, (5.76)

where σ0 is the 2× 2 unit matrix and ek =
√
h2

k + ∆2.

We assume the spiral states to emerge from a lattice model with onsite repulsive

interactions (Hubbard model), with imaginary time action

S[ψ, ψ] =

∫ β

0

dτ

{∑
j,j′,σ

ψj,σ [(∂τ − µ)δjj′ + tjj′ ]ψj′,σ + U
∑
j

ψj,↑ψj,↓ψj,↓ψj,↑

}
, (5.77)
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where tjj′ describes the hopping amplitude between the lattice sites labeled by j and j′

and U is the Hubbard interaction. The Hartree-Fock or mean-field (MF) gap equation at

temperature T reads

∆ = −U
∫

k

T
∑
ν

G̃↑↓k (ν) = U

∫
k

∆

2ek

[
f(E−k )− f(E+

k )
]
, (5.78)

where f(x) = (ex/T + 1)−1 is the Fermi function, the magnetization amplitude is related

to ∆ via ∆ = Um.

Finally, the optimal Q-vector is obtained minimizing the mean-field free energy

FMF(Q) =− T
∑
νn

∫
k

Tr ln G̃k(iνn) +
∆2

U
+ µn

=− T
∫

k

∑
`=±

ln
(

1 + e−E
`
k/T
)

+
∆2

U
+ µn,

(5.79)

where n is the fermion density.

5.3 Susceptibilities and Goldstone modes

In spin spiral state, the spin and charge susceptibilities are coupled. It is therefore con-

venient to treat them on equal footing by extending the definition of the spin operator in

Eq. (5.69) to

Saj =
1

2

∑
s,s′=↑,↓

c†j,sσ
a
ss′cj,s′ , (5.80)

where now a runs from 0 to 3, with σ0 the unit 2×2 matrix. It is evident that for a = 1, 2, 3

we recover the usual spin operator, while a = 0 gives half the density. We then consider

the imaginary-time susceptibility

χabjj′(τ) = 〈T Saj (τ)Sbj′(0)〉, (5.81)

where T denotes time ordering. Fourier transforming to Matsubara frequency repre-

sentation and analytically continuing to the real frequency axis, we obtain the retarded

susceptibility χabjj′(ω). As previously mentioned, χabjj′(ω) is not invariant under spatial

translations. It is therefore convenient to compute the susceptibilities in the rotated
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reference frame [174] of Eq. (5.52)

χ̃jj′(ω) =Mjχjj′(ω)MT
j′ , (5.82)

where in this case we have

Mj =


1 0 0 0

0 cos(Q ·Rj) sin(Q ·Rj) 0

0 − sin(Q ·Rj) cos(Q ·Rj) 0

0 0 0 1

 . (5.83)

The physical susceptibilities χjj′(ω) can be obtained inverting Eq. (5.82). Their momen-

tum representation typically involves two distinct spatial momenta q and q′, where q′ can

equal q, q±Q (only for a 6= b), or q±2Q. Inverting Eq. (5.82) and Fourier transforming,

we obtain the following relations between the momentum and spin diagonal components

of the physical susceptibilities and those within the rotated reference frame

χ00(q,q, ω) = χ̃00(q, ω) (5.84a)

χ11(q,q, ω) = χ22(q,q, ω)

=
1

4

[
χ̃11(q + Q, ω) + χ̃11(q−Q, ω) + χ̃22(q + Q, ω) + χ̃22(q−Q, ω)

+ 2i χ̃12(q + Q, ω) + 2i χ̃21(q−Q, ω)
]

= χ̃−+(q + Q, ω) + χ̃+−(q−Q, ω) , (5.84b)

χ33(q,q, ω) = χ̃33(q, ω) , (5.84c)

where we have used χ̃21(q) = −χ̃12(q) (see Table 5.1), and we have defined

χ̃+−(q, ω) = 〈S̃+
−q,−ωS̃

−
q,ω〉, (5.85)

with S̃± = (S̃1 ± iS̃2)/2. For a = b the only momentum off-diagonal components are

given by

χ11(q,q± 2Q, ω) =
1

4

[
χ̃11(q∓Q, ω)− χ̃22(q∓Q, ω)

]
, (5.86a)

χ22(q,q± 2Q, ω) =
1

4

[
χ̃22(q∓Q, ω)− χ̃11(q∓Q, ω)

]
. (5.86b)
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Here, with a slight abuse of notation, we denoted as χaa(q,q, ω) and χaa(q,q±2Q, ω) the

prefactors of (2π)dδd(q− q′) and (2π)dδd(q− q′ ∓ 2Q), respectively, in the contributions

to the full susceptibilities χaa(q,q′, ω). In the spacial case of Néel ordering, the obser-

vation 2Q ' 0 combined with Eqs. (5.84) and (5.86), implies χ11(q,q, ω) 6= χ22(q,q, ω),

differently than for the spiral state, where 2Q 6= 0.

Within the random phase approximation, the susceptibilities of the Hubbard model

are given by

χ̃(q) = χ̃0(q)[14 − Γ0χ̃0(q)]−1, (5.87)

where 1 is the 4×4 unit matrix, and Γ0 = 2Udiag(−1, 1, 1, 1) is the bare interaction. The

bare bubbles on the real frequency axis are given by

χ̃ab0 (q, ω) = −1

4

∫
k

T
∑
νn

tr
[
σa G̃k(iνn)σb G̃k+q(iνn + iΩm)

]∣∣∣
iΩm→ω+i0+

, (5.88)

where Ωm = 2mπT denotes a bosonic Matsubara frequency. Using (5.75), one can perform

the frequency sum, obtaining

χ̃ab0 (q, ω) = −1

8

∑
`,`′=±

∫
k

Aab``′(k,q)F``′(k,q, ω), (5.89)

where we have defined

F``′(k,q, ω) =
f(E`

k)− f(E`′

k+q)

ω + i0+ + E`
k − E`′

k+q

, (5.90)

and the coherence factors

Aab``′(k,q) =
1

2
Tr
[
σau`kσ

bu`
′

k+q

]
. (5.91)

The coherence factors are either purely real or purely imaginary, depending on a and

b. The functions F``′(k,q, ω) have a real part and an imaginary part proportional to a

δ-function. To distinguish the corresponding contributions to χ̃ab0 (q, ω), we refer to the

contribution coming from the real part of F``′(k,q, ω) as χ̃ab0r(q, ω), and to the contribution

from the imaginary part of F``′(k,q, ω) as χ̃ab0i (q, ω). Note that χ̃ab0r(q, ω) is imaginary and

χ̃ab0i (q, ω) is real if the corresponding coherence factor is imaginary.
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5.3.1 Symmetries of the bare susceptibilities

Both contributions χ̃ab0r and χ̃ab0i to χ̃ab0 have a well defined parity under q → −q. In

Appendix D we show that the diagonal components of χ̃ab0r and the off-diagonal ones

which do not involve either the 2- or the 3-component of the spin are symmetric, while the

other off-diagonal elements are antisymmetric. The sign change of χ̃ab0i (q) under q→ −q

is the opposite, that is, χ̃ab0i (q) is antisymmetric if χ̃ab0r(q) is symmetric and vice versa.

In two spatial dimensions, for a spiral wave vector Q of the form (π − 2πη, π) all the

susceptibilities are symmetric under qy → −qy. This implies that those susceptibilities

which are antisymmetric for q → −q are identically zero for qy = 0, and vanish in the

limit of Néel order (η → 0). Similarly, for a diagonal spiral Q = (π−2πη, π−2πη) all the

susceptibilities are symmetric for qx ↔ qy and those which are antisymmetric in q vanish

for qx = qy.

The contributions χ̃ab0r and χ̃ab0i to χ̃ab0 are also either symmetric or antisymmetric under

the transformation ω → −ω. In Appendix D we show that among the functions χ̃ab0r all

the diagonal parts and the off-diagonal ones which do not involve the 3-component of the

spin are symmetric in ω. The off-diagonal terms involving the 3-component of the spin

are antisymmetric. χ̃ab0i (q) is antisymmetric under ω → −ω if χ̃ab0r(q) is symmetric and

vice versa.

In Table 5.1 we show a summary of the generic (for arbitrary Q) symmetries of the bare

susceptibilities. Susceptibilities with real (imaginary) coherence factors are symmetric

(antisymmetric) under the exchange a↔ b.

a, b 0 1 2 3

0 +,+,+ +,+,+ −,+,− −,−,+

1 +,+,+ +,+,+ −,+,− −,−,+

2 −,+,− −,+,− +,+,+ +,−,−

3 −,−,+ −,−,+ +,−,− +,+,+

Table 5.1: Symmetries of the bare susceptibilities. The first sign in each field represents
the sign change of χ̃ab0r(q) under q → −q. The second one represents the sign change of
χ̃ab0r(q) under ω → −ω. The sign changes of χ̃ab0i (q) under q → −q or ω → −ω are just
the opposite. The third sign in each field is the sign change of χ̃ab0 (q) under the exchange
a↔ b.
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5.3.2 Location of Goldstone modes

We now identify the location of Goldstone modes in the spiral magnet by analyzing

divergences of the rotated susceptibilities χ̃(q).

In-plane mode

For q = 0 = (0, 0), all the off-diagonal components of the bare bubbles χ̃0(q) involving the

2-component of the spin vanish: χ̃20
0 (q) and χ̃21

0 (q) because they are odd in momentum,

and χ̃23
0 (q) because it is antisymmetric for ω → −ω. We also remark that all the χ̃ab0i vanish

at zero frequency. The RPA expression for the 22-component of the rotated susceptibility

therefore takes the simple form

χ̃22(0) =
χ̃22

0 (0)

1− 2Uχ̃22
0 (0)

. (5.92)

Notice that the limits q → 0 and ω → 0 commute for χ̃22
0 as the intraband coherence

factor A22
`` (k,q) vanishes for q = 0 (see Appendix D). Eq. (5.89) yields

χ̃22
0 (0) =

∫
k

f(E−k )− f(E+
k )

4ek

. (5.93)

The denominator of Eq. (5.92) vanishes if the gap equation (5.78) is fulfilled. Thus, χ̃22(0)

is divergent. From Eq. (5.84b), we see that this makes the momentum diagonal part of

the physical susceptibilities χ11(q,q, 0) and χ22(q,q, 0) divergent at q = ±Q. These

divergences are associated with a massless Goldstone mode corresponding to fluctuations

of the spins within the xy plane [30], in which the magnetization is aligned. By contrast,

χ̃11(q, 0) is always finite and corresponds to a massive amplitude mode.

Out-of-plane modes

By letting ω → 0, all the off-diagonal components of the bare susceptibilities involving

the 3-component of the spin vanish as they are odd in ω. Hence, we can express χ̃33(q, 0)

as

χ̃33(q, 0) =
χ̃33

0 (q, 0)

1− 2Uχ̃33
0 (q, 0)

. (5.94)
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In Appendix D, we show that

χ̃33
0 (±Q, 0) =

∫
k

f(E−k )− f(E+
k )

4ek

= χ̃22
0 (0), (5.95)

so that the denominator of (5.94) vanishes if the gap equation is fulfilled. Therefore, the

33-component of the susceptibility is divergent at q = (±Q, 0) due to two degenerate

Goldstone modes corresponding to fluctuations of the spins out of the xy plane [30].

5.4 Properties of the Goldstone modes

As we have already anticipated in Sec. 5.1.2, the susceptibilities containing a Goldstone

mode can be expanded around their zero-energy pole as (cf. Eq. (5.67))

χ̃22(q, ω) ∼ m2

J�
αβ qαqβ − χ�

dyn ω
2 + iD�(q, ω)

, (5.96a)

χ̃33(q, ω) ∼ m2/2

J⊥αβ
(
qα ∓Qα

)(
qβ ∓Qβ

)
− χ⊥dyn ω

2 + iD⊥(q, ω)
, (5.96b)

where m is the magnetization amplitude as defined before, Jaαβ (a ∈ {�,⊥}) are the spin

stiffnesses, and χadyn the dynamical susceptibilities. The ratios m2/χadyn define the spectral

weights of the Goldstone modes and [Jaαβ/χ
a
dyn]1/2 their velocity tensors. Compared with

Eq. (5.67), we have also considered an imaginary part iDa(q, ω) in the denominator of the

susceptibilities, due to Landau damping of the collective excitations due to their decay

into particle-hole pairs, which has been instead neglected in Sec. 5.1.2. The structure of

this term will be discussed below.

In the following we will discuss how to extract the spin stiffnesses, dynamical suscep-

tibilities and Landau dampings from the RPA expressions for χ̃22(q, ω) and χ̃33(q, ω).

5.4.1 In-plane mode

Using (5.87), the in-plane susceptibility can be conveniently written as

χ̃22(q) =
χ22

0 (q)

1− 2Uχ22
0 (q)

, (5.97)
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with

χ22
0 (q) = χ̃22

0 (q) +
∑

a,b∈{0,1,3}

χ̃2a
0 (q)Γ̃ab2 (q)χ̃b20 (q). (5.98)

Γ̃2(q) is given by

Γ̃2(q) = [13 − Γ0,2χ̃0,2(q)]−1 Γ0,2, (5.99)

where Γab0,2 and χ̃ab0,2(q) are matrices obtained from Γab0 and χ̃ab0 (q) removing the components

where a = 2 and/or b = 2, and 13 denotes the 3×3 identity matrix. For later convenience,

we notice that for q = 0, all the off-diagonal elements χ̃2a
0 (q) and χ̃a2

0 (q) vanish, so that

Γ̃2(0) can be obtained from the full expression

Γ̃(q) = [1− Γ0χ̃0(q)]−1 Γ0, (5.100)

selecting only the components in which the indices take the values 0,1, or 3.

Spin stiffness

Setting ω = 0, the bare susceptibilities χ̃23
0 (q) and χ̃32

0 (q) vanish as they are odd in ω.

Moreover, in the limit q → 0, χ̃2a
0 (q, 0) and χ̃a2

0 (q, 0), with a = 0, 1, are linear in q as

they are odd under q → −q. The in-plane spin stiffness can be therefore written as

(cf. Eq. (5.59b))

J�
αβ =− 2∆2∂2

qαqβ
χ22

0 (0)

=− 2∆2

[
∂2
qαqβ

χ̃22
0 (0) + 2

∑
a,b∈{0,1}

∂qαχ̃
2a
0 (0) Γ̃ab(q→ 0, 0) ∂qαχ̃

b2
0 (0)

]
,

(5.101)

where we have used χ22
0 (0) = χ̃22

0 (0) = 1/(2U), descending from the gap equation, and

∂qαf(0) is a shorthand for ∂f(q, 0)/∂qα|q→0, and similarly for ∂2
qαqβ

f(0).

Dynamical susceptibility

In a similar way, if we set q to 0 and consider the limit of small ω, the terms where a

and/or b are 0 or 1 vanish as χ̃2a
0 (q) and χ̃a2

0 (q) for a=0,1 are odd in q. On the other

hand, χ̃23
0 (q) and χ̃32

0 (q) are linear in ω for small ω. With these considerations, the in-plane
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dynamical susceptibility is given by (see Eq. (5.59d))

χ�
dyn =2∆2∂2

ωχ
22
0 (0)

=2∆2
[
∂2
ωχ̃

22
0 (0) + 2∂ωχ̃

23
0 (0) Γ̃33(0, ω → 0) ∂ωχ̃

32
0 (0)

]
,

(5.102)

where ∂nωf(0) is a shorthand for ∂nf(0, ω)/∂ωn|ω→0, and Γ̃33(0, ω → 0) can be cast in the

simple form

Γ̃33(0, ω → 0) =
2U

1− 2Uχ̃33
0 (0, ω → 0)

. (5.103)

Landau damping

We now analyze the leading imaginary term, describing the damping of the in-plane

Goldstone mode for small q and ω. Imaginary contributions to the bare susceptibilities

arise from the δ-function term in χ̃ab0i . For small q and ω only intraband (` = `′) terms

contribute since E+
k − E

−
k > 2∆. We expand the imaginary part of 1/χ̃22(q, ω) for small

q and ω by keeping the ratio ω̂ = ω/|q| fixed. The coupling to the 3-component can be

neglected, since the intraband coherence factor A23(k−q/2,q) is already of order |q|2 for

small q. Hence at order |q|2, we obtain

Im
1

χ̃22(q, ω̂|q|)
= −4U2

[
χ̃22

0i (q, ω̂|q|) + Im
∑
a,b=0,1

χ̃2a
0 (q, ω̂|q|)Γ̃ab(0, 0) χ̃b20 (q, ω̂|q|)

]
.

(5.104)

Note that Γ̃ab(0, 0) = lim|q|→0 Γ̃ab(q, ω̂|q|) depends on ω̂ and the direction of q̂ = q/|q|.
We now show that both terms in Eq. (5.104) are of order |q|2 at fixed ω̂.

Shifting the integration variable k in Eq. (5.89) by −q/2, χ̃22
0i becomes

χ̃22
0i (q, ω) =

iπ

8

∫
k

∑
`,`′

A22
``′(k− q/2,q)

[
f(E`

k−q/2)− f(E`′

k+q/2)
]
δ(ω + E`

k−q/2 − E`′

k+q/2).

(5.105)

For small ω, only the intraband terms contribute. The intraband coherence factor

A22
`` (k− q/2,q) = 1−

hk−q/2hk+q/2 + ∆2

ek−q/2ek+q/2

, (5.106)

is of order |q|2 for small q. Expanding E`
k+q/2 − E`

k−q/2 = q · ∇kE
`
k + O(|q|3) and
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f(E`
k−q/2)− f(E`

k+q/2) = −f ′(E`
k)(q · ∇kE

`
k) +O(|q|3), with f ′(x) = df(x)/dx, and using

δ(|q|x) = |q|−1δ(x), we obtain

χ̃22
0i (q, ω) = − iπ

16
ω̂qαqβ

∫
k

∑
`

[
∂2
qαqβ

A22
`` (k− q/2,q)

∣∣
q=0

]
f ′(E`

k) δ(ω̂− q̂ ·∇kE
`
k)+O(|q|3).

(5.107)

We thus conclude that χ̃22
0i (q, ω) is of order ω̂|q|2 for small q and ω = ω̂|q|. Since at low

temperatures T � ∆ the term f ′(E`
k) in Eq. (5.107) behaves as −δ(E`

k), we deduce that

the only presence of Fermi surfaces (that is, k-points where E`
k = 0) is sufficient to induce

a finite χ̃22
0i (q, ω) at small q.

Since the effective interaction Γ̃ab(0, 0) is real, the second term in Eq. (5.104) receives

contribution only from the cross terms χ̃2a
0r(q, ω)Γ̃ab(0, 0) χ̃b20i(q, ω) and χ̃2a

0i (q, ω)Γ̃ab(0, 0)·
χ̃b20r(q, ω). For small ω only intraband terms contribute to χ̃2a

0i (q, ω) and χ̃b20i(q, ω). Both

are of order ω̂q for small q at fixed ω̂ because the intraband coherence factors A02
`` (k,q) =

−A20
`` (k,q) and A12

`` (k,q) = −A21
`` (k,q) are of order q. Moreover, χ̃2a

0r(q, ω) and χ̃b20r(q, ω)

are antisymmetric in q and thus of order q, too. Hence, the second term in Eq. (5.104)

is of order ω̂|q|2.

We thus have shown that the damping term of the in-plane mode has the form

Im
m2

χ̃22(q, ω)
= −ω̂|q|2γ(q̂, ω̂) +O(|q|3) , (5.108)

where the scaling function is symmetric in ω̂ and finite for ω̂ = 0. The Landau damping

of the in-plane mode has the same form of the two Goldstone modes in a Néel antiferro-

magnet [179]. It is of the same order of the leading real terms near the pole, implying that

the damping of the Goldstone mode is of the same order as its excitation energy, that is,

|q|. This implies that the in-plane mode of a spin spiral state and the Goldstone modes of

a Néel antiferromagnet are not asymptotically stable quasiparticles, as this would require

a damping rate vanishing faster than the excitation energy when approaching the pole of

the susceptibility.
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5.4.2 Out-of-plane modes

Similarly to the in-plane mode, one can write the out-of-plane susceptibility in the form

χ̃33(q) =
χ33

0 (q)

1− 2Uχ33
0 (q)

, (5.109)

with

χ33
0 (q) = χ̃33

0 (q) +
∑

a,b∈{0,1,2}

χ̃3a
0 (q)Γ̃ab3 (q)χ̃b30 (q), (5.110)

where Γ̃3(q) is defined similarly to Γ̃2(q), that is, removing the components that involve

the index 3 instead of the index 2. We also notice that

Γ̃ab3 (q, 0) = Γ̃ab(q, 0), (5.111)

for a, b = 0, 1, 2, because all the off-diagonal components χ̃3a
0 (q) and χ̃a3

0 (q) vanish for

zero frequency.

Spin stiffness

Using Eq. (5.59a) and χ33
0 (±Q) = χ̃33

0 (±Q) = 1/(2U), we obtain the out-of-plane spin

stiffness

J⊥αβ = −∆2∂2
qαqβ

χ33
0 (±Q) = −∆2∂2

qαqβ
χ̃33

0 (±Q), (5.112)

where ∂2
qαqβ

f(±Q) stands for ∂2f(q, 0)/∂qα∂qβ|q→±Q.

Dynamical susceptibility

In the limit ω → 0, all the χ̃3a
0 (q) and χ̃a3

0 (q), with a = 0, 1, 2, are linear in ω, and the

dynamical susceptibility is given by (see Eq. (5.59c))

χ⊥dyn = ∆2∂2
ωχ

33
0 (±Q)

= ∆2

[
∂2
ωχ̃

33
0 (±Q) + 2

∑
a,b∈{0,1,2}

∂ωχ̃
3a
0 (±Q)Γ̃ab(±Q)∂ωχ̃

b3
0 (±Q)

]
,

(5.113)

with ∂nωf(±Q) a shorthand for ∂nf(±Q, ω)/∂ωn|ω→0. We remark that for Γ̃ab(q) the

limits q → Q and ω → 0 commute if Q is not a high-symmetry wave vector, that is, if

E`
k+Q 6= E`

k.
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Landau damping

We now analyze the q- and ω-dependence of the imaginary part of 1/χ̃33 for small ω and

for q near ±Q. We discuss the case q ∼ Q. The behavior for q ∼ −Q is equivalent.

We first fix q = Q and study the ω-dependence of the damping term. Since all the

off-diagonal bare susceptibilities χ̃3a
0 (q) and χ̃b30 (q) in Eq. (5.110) vanish for ω = 0, we

obtain the following expansion of 1/χ̃33(Q, ω) for small ω

1

χ̃33(Q, ω)
= 2U

[
1− 2Uχ̃33

0 (Q, ω)− 2U
∑

a,b∈{0,1,2}

χ̃3a
0 (Q, ω)Γ̃ab(Q, 0) χ̃b30 (Q, ω)

]
+O(ω3) .

(5.114)

The first contribution to the imaginary part of 1/χ̃33 comes from the imaginary part of

the bare susceptibility χ̃33
0i (Q, ω):

χ̃33
0i (Q, ω) =

iπ

8

∫
k

∑
`,`′

A33
``′(k,Q)

[
f(E`

k)− f(E`′

k+Q)
]
δ(ω + E`

k − E`′

k+Q) . (5.115)

For small ω, only momenta for which both E`
k and E`′

k+Q are O(ω) contribute to the

integral. These momenta are restricted to a small neighborhood of hot spots kH , defined

by the relations

E`
kH

= E`′

kH+Q = 0. (5.116)

In most cases, only intraband (` = `′) hot spots appear. While the existence of interband

hot spots cannot be excluded in general, we restrict our analysis to intraband contribu-

tions.

For ` = `′, Eq. (5.116) is equivalent to

E`
kH

= 0 and ξkH = ξkH+2Q . (5.117)

In the Néel state 2Q is a reciprocal lattice vector and the second equation is always sat-

isfied, so that all momenta on the Fermi surfaces are hot spots. The condition ξkH =

ξkH+2Q implies hkH+Q = −hkH , which in turn translates into A33
`` (kH ,Q) = 0 and also

∇kA
33
`` (k,Q)|k→kH = 0. For small frequencies and temperatures, the momenta contribut-

ing to the integral (5.115) are situated at a distance of order ω from the hot spots. For

these momenta, the coherence factor is of order ω2 as both A33
`` (k,Q) and its gradient

vanish at the hot spots. Multiplying this result with the usual factor ∝ ω coming from
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the difference of the Fermi functions, we obtain

χ̃33
0i (Q, ω) ∝ ω3, (5.118)

for small ω.

We now consider the contribution to the imaginary part of 1/χ̃33 coming from the

second term in Eq. (5.114). Since Γ̃ab(Q, 0) is real, only the cross terms
∑

a,b χ̃
3a
0i (Q, ω)

Γ̃ab(Q, 0) χ̃b30r(Q, ω) and
∑

a,b χ̃
3a
0r(Q, ω) Γ̃ab(Q, 0) χ̃b30i(Q, ω) contribute to the damping of

the out-of-plane modes. The real parts of the bare susceptibilities χ̃3a
0r(Q, ω) and χ̃b30r(Q, ω)

are antisymmetric in ω and of order ω for small frequencies. Their coherence factor vanish

at k = kH but they have a finite gradient there. Hence, following the arguments given

before for χ̃33
0i (Q, ω), we deduce

χ̃3a
0i (Q, ω) ∝ ω2 (5.119)

for a ∈ {0, 1, 2} and small ω. The imaginary part of the second term in Eq. (5.114) is

therefore of order ω3. We thus have shown that the Landau damping of the out-of-plane

modes at q = Q obeys

Im
m2

χ̃33(Q, ω)
∝ ω3. (5.120)

For q 6= Q, the hot spots are determined by E`
kH

= E`′

kH+q and the coherence factors

remain finite there, so that

χ̃3a
0i (q, ω) ' −p3a(q)ω (5.121)

for a = 0, 1, 2, 3 and small ω. For a = 3 both the coherence factor A33
`` (k,q) and its

gradient vanish at the hot spots, implying p33(q) ∝ (q−Q)2 for q ∼ Q. Differently, for

a 6= 3 the gradient of the coherence factor remains finite, so that p3a(q) ∝ |q − Q| for

q ∼ Q (and a 6= 3). For ω → 0 the contribution coming fror χ̃33
0i is leading and we can

generalize Eq. (5.120) as

Im
m2

χ̃33(q, ω)
= −γ(q)ω +O(ω2), (5.122)

with γ(q) ∝ (q − Q)2 for q → Q. The contributions to the damping coming from the

off-diagonal susceptibilities are of order ω2 with a prefactor linear in |q−Q|. Considering

the limit ω → 0, q → Q at fixed ω̂ = ω/|q −Q|, both diagonal and off-diagonal terms

are of order |q−Q|3.
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The above results are strongly dependent on the existence of hot spots. If Eq. (5.116)

has no solutions, the out-of-plane modes are not damped at all, at least within the RPA.

5.5 Explicit evaluation of the Ward identities

In this section, we explicitly evaluate the Ward identities derived in Sec. 5.1 for a spiral

magnet and explicitly show that the expressions for the spin stiffnesses and dynamical

susceptibilities obtained from the response to a SU(2) gauge field coincide (within the

RPA, which is a conserving approximation in the sense of Baym and Kadanoff [180, 181])

with those derived within the low-energy expansion of the susceptibilities, carried out in

Sec. 5.4.

5.5.1 Gauge kernels

We begin by setting up the formalism to compute the response to a SU(2) gauge field Aµ

within the Hubbard model. We couple our system to Aµ via a Peierls substitution in the

quadratic part of the Hubbard action (5.77):

S0[ψ, ψ,Aµ] =

∫ β

0

dτ
∑
jj′

ψj

[
(∂τ − A0,j + µ)δjj′ + tjj′e

−rjj′ ·(∇−iAj)
]
ψj, (5.123)

where e−rjj′ ·∇ is the translation operator from site j to site j′, with rjj′ = rj − rj′ . Notice

that under the transformation ψj → Rjψj, with Rj ∈ SU(2), the interacting part of the

action (5.77) is left unchanged, while the gauge field transforms according to (5.32b).

Since the gauge kernels correspond to correlators of two gauge fields, we expand (5.123)

to second order in Aµ. After a Fourier transformation one obtains

S0[ψ, ψ,Aµ] =−
∫
k

ψk [iνn + µ− εk]ψk

+
1

2

∫
k,q

Aaµ(q)γµk ψk+qσ
aψk −

1

8

∫
k,q,q′

Aaα(q − q′)Aaβ(q′)γαβk ψk+qψk,
(5.124)

where the first order coupling is given by γµk = (1,∇kεk), and the second order one is γαβk =

∂2
kαkβ

εk. In the equation above,the symbol
∫
k

=
∫

k
T
∑

νn
(
∫
q

=
∫

q
T
∑

Ωm
) denotes an

integral over spatial momenta and a sum over fermionic (bosonic) Matsubara frequencies.
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Figure 5.1: Diagrams contributing to the spin stiffnesses. The wavy line represents the
external SU(2) gauge field, the solid lines the electronic Green’s functions, the black
triangles the paramagnetic vertex γµkσ

a, the black circle the diamagnetic one γαβk σ0, and
the dashed line the effective interaction Γ(q,q′, ω).

Analyzing the coupling of the temporal component of the gauge field to the fermions in

(5.123) and (5.124), we notice that the temporal components of the gauge kernel (see

definition (5.29b)) are nothing but the susceptibilities in the original (unrotated) spin

basis

Kab
00(q,q′, ω) = χab(q,q′, ω), (5.125)

where ω is a real frequency.

The spatial components of the gauge kernel can be expressed in the general form (see

Fig. 5.1)

Kab
αβ(q,q′, ω) =Kab

para,αβ(q,q′, ω) + δabK
dia
αβ

+

∫
q′′,q′′′

∑
c,d

Kac
para,α0(q,q′′, ω)Γcd(q′′,q′′′, ω)Kdb

para,0β(q′′′,q′, ω),
(5.126)

where Γ(q′,q′′, ω) is the effective interaction (5.100) expressed in the unrotated basis.

Within the RPA, the paramagnetic terms are given by

Kab
para,µν(q,q

′, ω) = −1

4

∫
k,k′

T
∑
νn

γµkγ
ν
k′+q′ tr

[
σaGk,k′(iνn)σbGk′+q′,k+q(iνn + iΩm)

]
,

(5.127)

with the replacement iΩm → ω + i0+. The Green’s function in the unrotated basis takes

the form

Gk,k′(iνn) =

(
Gk(iνn)δk,k′ Fk(iνn)δk,k′−Q

Fk−Q(iνn)δk,k′+Q Gk−Q(iνn)δk,k′

)
, (5.128)
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where δk,k′ is a shorthand for (2π)dδd(k− k′), and

Gk(iνn) =
iνn − ξk+Q

(iνn − ξk)(iνn − ξk+Q)−∆2
, (5.129a)

Gk(iνn) =
iνn − ξk

(iνn − ξk)(iνn − ξk+Q)−∆2
, (5.129b)

Fk(iνn) =
∆

(iνn − ξk)(iνn − ξk+Q)−∆2
. (5.129c)

The diamagnetic term does not depend on q, q′ and ω, and is proportional to the unit

matrix in the gauge indices. It evaluates to

Kdia
αβ = −1

4

∫
k,k′

T
∑
νn

(∂2
kαkβ

εk) tr [Gk,k′(iνn)] . (5.130)

We can now compute the spin stiffnesses and dynamical susceptibilities from the gauge

kernels.

In-plane mode

The in-plane spin stiffness is defined as

J�
αβ = − lim

q→0
K33
αβ(q, 0), (5.131)

where we have defined as Kµν(q, ω) the prefactors of those components of the gauge

kernels Kµν(q,q
′, ω) which are proportional to δq,q′ . In addition to the bare term

J0,�
αβ = − lim

q→0
Kpara,33
αβ (q, 0)−Kdia

αβ , (5.132)

we find nonvanishing paramagnetic contributions that mix spatial and temporal compo-

nents. They involve

lim
q→0

K30
0α(q,q′, 0) = κ30

α (0)δq′,0, (5.133a)

lim
q→0

K31
0α(q,q′, 0) = κ31

α (0)
δq′,Q + δq′,−Q

2
, (5.133b)

lim
q→0

K32
0α(q,q′, 0) = κ32

α (0)
δq′,Q − δq′,−Q

2i
, (5.133c)
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where κ32
α (0) = κ31

α (0). Noticing that for a = 0, 1, 2, we have limq→0K
3a
α0(q, 0) =

limq→0K
a3
0α(q, 0), and inserting this result into (5.126), we obtain

J�
αβ = J0,�

αβ −
∑

a,b∈{0,1}

κ3a
α (0)Γ̃ab(q→ 0, 0)κ3b

β (0), (5.134)

where Γ̃(q → 0, 0) is the effective interaction in the rotated spin basis, defined in

Eq. (5.100). Notice that the delta functions in Eq. (5.133) convert the unrotated Γ to

Γ̃ and, together with the equality κ32
α (0) = κ31

α (0), they remove the terms where a or b

equal 2 in the sum. The dynamical susceptibility is defined as

χ�
dyn = lim

ω→0
K33

00(0, ω) = lim
ω→0

χ33(0, ω). (5.135)

From Eq. (5.83) we deduce that

χ33(q, ω) = χ̃33(q, ω). (5.136)

Remarking that for ω = 0 all the off-diagonal elements of the bare susceptibilities with

one (and only one) of the two indices equal to 3 vanish, we obtain the RPA expression

for χ�
dyn

χ�
dyn = lim

ω→0

χ̃33
0 (0, ω)

1− 2Uχ̃33
0 (0, ω)

. (5.137)

Out-of-plane modes

To compute the the out-of-plane stiffness, that is,

J⊥αβ = − lim
q→0

K22
αβ(q, 0), (5.138)

we find that all the paramagnetic contributions to the gauge kernel that mix temporal

and spatial components vanish in the ω → 0 and q = q′ → 0§ limits. Moreover, the

§The terms Kα0
13 (0,±Q, 0) and Kα0

23 (0,±Q, 0) are zero only if Q is chosen such that it minimizes the
free energy (see Eq. (5.79)). In fact, if this is not the case, they can be shown to be proportional to
∂qα χ̃

0
33(±Q), which is finite for a generic Q.
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q→ 0 limit of the momentum diagonal paramagnetic contribution can be written as

lim
q→0

K22
para,αβ(q, 0) =− 1

4

∫
k,k′

T
∑
νn
ζ=±

γαkγ
β
k′ tr

[
σζGk,k′(iνn)σ−ζGk′,k(iνn)

]
=− 1

2

∫
k

T
∑
νn

γαkγ
β
k Gk(iνn)Gk−Q(iνn),

(5.139)

where we have defined σ± = (σ1± iσ2)/2. The out-of-plane spin stiffness is thus given by

J⊥αβ =− 1

2

∫
k

T
∑
νn

γαkγ
β
k Gk(iνn)Gk−Q(iνn)− 1

4

∫
k,k′

T
∑
νn

(∂2
kαkβ

εk) tr [Gk,k′(iνn)]

(5.140)

Finally, we evaluate the dynamical susceptibility of the out-of-plane modes. This is

defined as

χ⊥dyn = lim
ω→0

K22
00(0, ω) = lim

ω→0
χ22(0, ω). (5.141)

Applying transformation (5.82), we can express the momentum-diagonal component of

χ22(q,q′, ω) in terms of the susceptibilities in the rotated basis as

χ22(q, ω) =
1

4

∑
ζ=±

[
χ̃11(q + ζQ, ω) + χ̃22(q + ζQ, ω) + 2iζχ̃12(q + ζQ, ω)

]
, (5.142)

where we have used (see Table 5.1) χ̃12(q) = −χ̃21(q). Sending q to 0 in (5.142), and using

the symmetry properties of the susceptibilities for q→ −q (see Table 5.1), we obtain

χ22(0, ω) =
1

2

[
χ̃11(Q, ω) + χ̃22(Q, ω) + 2iχ̃12(Q, ω)

]
= 2χ̃−+(Q, ω), (5.143)

with χ̃−+(q) = 〈S−(−q)S+(q)〉, and S±(q) = (S1(q) ± iS2(q))/2. It is convenient to

express χ̃−+(Q, ω) as

χ̃−+(Q, ω) = χ̃−+
0 (Q, ω) +

∑
a,b∈{0,1,2,3}

χ̃−a0 (Q, ω)Γ̃ab(Q, ω)χ̃b+0 (Q, ω), (5.144)
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where we have defined

χ̃−a0 (q) =
1

2

[
χ̃1a

0 (q)− iχ̃2a
0 (q)

]
, (5.145a)

χ̃a+
0 (q) =

1

2

[
χ̃a1

0 (q) + iχ̃a2
0 (q)

]
. (5.145b)

In the limit ω → 0, χ̃−3
0 (Q, ω) and χ̃3+

0 (Q, ω) vanish as they are odd in frequency (see

Table 5.1). We can now cast the dynamical susceptibility in the form

χ⊥dyn = 2χ̃−+
0 (Q) + 2

∑
a,b∈{0,1,2}

χ̃−a0 (Q)Γ̃ab(Q)χ̃b+0 (Q), (5.146)

or, equivalently,

χ⊥dyn = 2χ̃+−
0 (−Q) + 2

∑
a,b∈{0,1,2}

χ̃+a
0 (−Q)Γ̃ab(−Q)χ̃b−0 (−Q). (5.147)

We remark that in the formulas above we have not specified in which order the limits

q→ ±Q and ω → 0 have to be taken as they commute.

5.5.2 Equivalence of RPA and gauge theory approaches

In this Section, we finally prove that the expressions for the spin stiffnesses and dynamical

susceptibilities obtained from a low energy expansion of the susceptibilities (Sec. 5.4)

coincide with those computed via the SU(2) gauge response of the previous section via a

direct evaluation.

In-plane mode

We start by computing the first term in Eq. (5.101). The second derivative of the 22-

component of the bare susceptibility can be expressed as

−2∆2∂2
qαqβ

χ̃22
0 (0) = −∆2

∫
k

γαkγ
β
k+Q

[
f(E−k )− f(E+

k )

4e3
k

+
f ′(E+

k ) + f ′(E−k )

4e2
k

]
, (5.148)
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where f ′(x) = df/dx is the derivative of the Fermi function. On the other hand, the bare

contribution to J�
αβ (Eq. (5.132)) reads

J0,�
αβ =

1

4

∫
k

T
∑
νn

[
Gk(iνn)2γαkγ

β
k +Gk(iνn)2γαk+Qγ

β
k+Q − 2Fk(iνn)2γαkγ

β
k+Q

]
+

1

4

∫
k

T
∑
νn

[
Gk(iνn)γαβk +Gk(iνn)γαβk+Q

]
.

(5.149)

The second (diamagnetic) term can be integrated by parts, giving

−1

4

∫
k

T
∑
νn

[
G2

k(iνn)γαkγ
β
k +G

2

k(iνn)γαk+Qγ
β
k+Q + 2F 2

k(iνn)γαkγ
β
k+Q

]
, (5.150)

where we have used the properties

∂kαGk(iνn) = G2
k(iνn)γαk + F 2

k(iνn)γαk+Q, (5.151a)

∂kαGk(iνn) = G
2

k(iνn)γαk+Q + F 2
k(iνn)γαk . (5.151b)

Summing up both terms, we obtain

Jαβ0,� = −
∫

k

T
∑
νn

γαkγ
β
k+QF

2
k(iνn). (5.152)

Performing the Matsubara sum, we arrive at

J0,�
αβ = −∆2

∫
k

γαkγ
β
k+Q

[
f(E−k )− f(E+

k )

4e3
k

+
f ′(E+

k ) + f ′(E−k )

4e2
k

]
, (5.153)

which is the same result as in (5.148). Furthermore, one can show that

2i∆∂qαχ̃
20
0 (0) = −2i∆∂qαχ̃

02
0 (0) = κ30

α (0), (5.154a)

2i∆∂qαχ̃
21
0 (0) = −2i∆∂qαχ̃

12
0 (0) = κ31

α (0). (5.154b)

Inserting results (5.148), (5.152), and (5.154) into (5.101) and (5.134), we prove that

these two expressions give the same result for the in-plane stiffness. Explicit expressions

for κ30
α (0) and κ31

α (0) are given in Appendix D.
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If we now consider the dynamical susceptibility, it is straightforward to see that

2∆2∂2
ωχ̃

22
0 (0) =2i∆∂ωχ̃

23
0 (0) = lim

ω→0
χ̃33

0 (0, ω) = ∆2

∫
k

f(E−k )− f(E+
k )

4e3
k

, (5.155)

which, if inserted into Eqs. (5.102) and (5.137), proves that the calculations of χ�
dyn via

gauge kernels and via the low-energy expansion of the susceptibilities provide the same

result.

Out-of-plane modes

With the help of some lengthy algebra, one can compute the second momentum derivative

of the bare susceptibility χ̃33
0 (q), obtaining

−∆2∂2
qαqβ

χ̃33
0 (Q) =

1

8

∫
k

∑
`,`′=±

(
1− `hk

ek

)(
1 + `

hk+Q

ek+Q

)
γαk+Qγ

β
k+Q

f(E`
k)− f(E`′

k+Q)

E`
k − E`′

k+Q

− 1

8

∫
k

∑
`=±

[(
1− `hk

ek

)2

γαk+Q +
∆2

e2
k

γαk

]
γβk+Qf

′(E`
k)

− 1

8

∫
k

∑
`=±

[
∆2

e2
k

(γαk+Q − γαk )

]
γβk+Q

f(E`
k)− f(E−`k )

E`
k − E

−`
k

.

(5.156)

Similarly to what we have done for the in-plane mode, we integrate by parts the diamag-

netic contribution to the gauge kernel. Its sum with the paramagnetic one gives

− lim
q→0

K22
αβ(q,q, 0) =

=
1

2

∫
k

T
∑
νn

{
γαk+Qγ

β
k+QGk(iνn)

[
Gk+Q(iνn)−Gk(iνn)

]
− γαkγ

β
k+QF

2
k(iνn)

}
.

(5.157)

Performing the Matsubara sums, one can prove the equivalence of the RPA and gauge

theory approach for the calculation of J⊥αβ.
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Similarly, we obtain for the second frequency derivative of the bubble χ̃33
0 (q)

∆2∂2
ωχ̃

33
0 (Q) = −1

8

∫
k

∑
`,`′=±

(
1− `hk

ek

)(
1 + `

hk+Q

ek+Q

)
f(E`

k)− f(E`′

k+Q)

E`
k − E`′

k+Q

= 2χ̃−+
0 (Q).

(5.158)

Furthermore, one can prove that

∆∂ωχ̃
3a
0 (Q) = ∆[∂ωχ̃

a3
0 (Q)]∗ = χ̃−a0 (Q) = [χ̃a+

0 (Q)]∗, (5.159)

for a = 0, 1, 2. Inserting results (5.158) and (5.159) into Eqs. (5.97) and (5.146), one sees

that the RPA and gauge theory approaches are equivalent for the calculation of χ⊥dyn.

In Appendix D we provide explicit expressions for the off diagonal bare susceptibilities

χ̃−a0 (Q).

Remarks on more general models

We remark that in the more general case of an interaction of the type

Sint =

∫
k,k′,q

Uk,k′(q)[ψk+q~σψk] · [ψk′−q~σψk′ ], (5.160)

producing, in general, a k-dependent gap, the identities we have proven above do not

hold anymore within the RPA, as additional terms in the derivative of the inverse sus-

ceptibilities emerge, containing expressions involving first and second derivatives of the

gap with respect to the spatial momentum and/or frequency. In fact, in the case of

nonlocal interactions, gauge invariance requires additional couplings to the gauge field in

Sint, complicating our expressions for the gauge kernels. Similarly, even for action (5.77),

approximations beyond the RPA produce in general a k-dependent ∆, and vertex correc-

tions in the kernels are required to obtain the same result as the one obtained expanding

the susceptibilities.

5.6 Néel limit

In this Section, we analyze the Néel limit, that is, Q = (π/a0, . . . , π/a0). In this case, it

is easy to see that, within the RPA, the bare susceptibilities in the rotated basis obey the
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identities

χ̃22
0 (q, ω) = χ̃33

0 (q + Q, ω), (5.161a)

χ̃20
0 (q, ω) = χ̃21

0 (q, ω) = 0, (5.161b)

χ̃30
0 (q, ω) = χ̃31

0 (q, ω) = 0. (5.161c)

Furthermore, we obtain for the mixed gauge kernels (see Appendix D)

Kab
para,α0(q,q′, ω) = Kab

para,0α(q,q′, ω) = 0. (5.162)

We also notice that K11
αβ(q,q′, 0) and K22

αβ(q,q′, 0) have (different) momentum off-diagonal

contributions for which q′ = q ± 2Q. If Q = (π/a0, . . . , π/a0), these terms become

diagonal in momentum, as 2Q ∼ 0, such that

lim
q→0

K11
αβ(q, 0) = 0, (5.163a)

K22
αβ(q, 0) = K33

αβ(q, 0). (5.163b)

From the above relations, we can see that J⊥αβ = J�
αβ ≡ Jαβ, and χ⊥dyn = χ�

dyn ≡ χ⊥dyn,

as expected for the Néel state.

From these considerations, we obtain for the spin stiffness

Jαβ =− lim
q→0

K22
αβ(q, 0) = − lim

q→0
K33
αβ(q, 0) = −2∆2∂2

qαqβ
χ̃22

0 (0) = −2∆2∂2
qαqβ

χ̃33
0 (Q),

(5.164)

which implies that Jαβ is given by Eq. (5.153). If the underlying lattice is C4-symmetric,

the spin stiffness is isotropic in the Néel state, that is, Jαβ = Jδαβ. Similarly, for the

dynamical susceptibility, we have

χ⊥dyn = lim
ω→0

χ22(0, ω) = lim
ω→0

χ33(0, ω) = 2∆2∂2
ωχ̃

22
0 (0) = 2∆2∂2

ωχ̃
33
0 (Q), (5.165)

which, combined with (5.155), implies

χ⊥dyn = lim
ω→0

χ̃33
0 (0, ω)

1− 2Uχ̃33
0 (0, ω)

, (5.166)
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with χ̃33
0 (0, ω → 0) given by Eq. (5.155).

We notice that the dynamical susceptibility is obtained from the susceptibility by

letting q → 0 before ω → 0. This order of the limits removes the intraband terms (that

is, the ` = `′ terms in Eq. (5.89)), which instead would yield a finite contribution to

the uniform transverse susceptibility χ⊥ ≡ limq→0 χ
22(q, 0). In the special case of an

insulator at low temperature T � ∆, the intraband contributions vanish and one has the

identity χ⊥dyn = χ⊥, leading to the hydrodynamic relation for the spin wave velocity [182]

cs =
√
J/χ⊥ (in an isotropic antiferromagnet). As noticed in Ref. [179], in a doped

antiferromagnet this hydrodynamic expression does not hold anymore, and one has to

replace the uniform transverse susceptibility with the dynamical susceptibility. Since

J = 0 and χ⊥dyn = 0 in the symmetric phase due to SU(2) gauge invariance, the expression

cs =
√
J/χ⊥dyn yields a finite value cs at the critical point ∆ → 0, provided that J and

χ⊥dyn scale to zero with the same power of ∆, as it happens within mean-field theory. Note

that in the symmetric phase SU(2) gauge invariance does not pose any constraint on χ⊥,

which is generally finite.

In the simpler case of perfect nesting, that is, when ξk = −ξk+Q, corresponding to the

half-filled particle-hole symmetric Hubbard model, and at zero temperature, expressions

for J and χ⊥ have been derived in Refs. [36, 183] for two spatial dimensions, and it is

straightforward to check that our results reduce to these in this limit. Moreover, Eqs. 31-

34 in Ref. [183] are similar to our Ward identities but no derivation is provided.

We finally analyze the Landau damping of the Goldstone modes for a Néel antiferro-

magnet. Using the decoupling of the sector 0 and 1 from sectors 2 and 3, one obtains

Im
1

χ̃22(q, ω)
= −4U2χ̃22

0i (q, ω) +O(|q|3) (5.167)

for small q, and

Im
1

χ̃33(q, ω)
= −4U2χ̃22

0i (q, ω) +O(|q−Q|3) (5.168)

for q ∼ Q. Because of χ̃22(q, ω) = χ̃33(q+Q, ω), the damping of the two Goldstone modes

is identical. Returning to the susceptibilities in the unrotated basis, where χ22(q, ω) =

χ̃22(q + Q, ω) and χ33(q, ω) = χ̃33(q, ω), one has

Im
1

χ22(q′, ω)
= Im

1

χ33(q′, ω)
= −|q′|2ω̂γ(q̂′, ω̂) +O(|q|3), (5.169)
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for small q′ = q −Q and at fixed ω̂ = ω/|q′|. This form of the Landau damping in the

Néel state has already been derived by Sachdev et al. in Ref. [179].

5.7 Numerical results in two dimensions

Figure 5.2: Magnetization m (left axis, solid line) and incommensurability η (right axis,
dashed line) as functions of the electron density in the mean-field ground state of the
two-dimensional Hubbard model for t′ = −0.16t, U = 2.5t.

In this section, we present numerical results for the spin stiffnesses and Landau damp-

ings of the Goldstone modes in a spiral magnetic state obtained from the two-dimensional

Hubbard model on a square lattice with neatest and next-t-nearest neighbor hopping

amplitudes t and t′. All over this section we employ t as energy unit, that is, we set t = 1.

All calculations have been performed in the ground state, that is, at T = 0, and

with fixed values of the Hubbard interaction U = 2.5t and nearest neighbor hopping

t′ = −0.16t. For this choice of parameters mean-field theory yields a spiral magnetic state

for densities ranging from n ' 0.61 to half filling (n = 1), with ordering wave vector of

the form Q = (π − 2πη, π) and symmetry related. The incommensurability η changes

increases monotonically upon reducing the density, and vanishes continuously for n→ 1.

For filling factors between n = 1 and n ' 1.15, we obtain a Néel state. The transition

between the paramagnetic and the spiral state at n ' 0.61 is continuous, while the one

occurring at n ' 1.15 is of first order with a relatively small jump of the order parameter.

The magnetization and incommensurability curves as functions of the electron density are
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Figure 5.3: Quasiparticle Fermi surfaces in the magnetic ground state at various densities.
The blue (red) lines correspond to solutions of the equation E+

k = 0 (E−k = 0). The gray
dashed lines are solutions of E`

k = E`
k+Q (or, equivalently, ξk = ξk+2Q) for Q 6= (π, π).

For the densities n = 0.84 and n = 0.63 these lines intersect the Fermi surfaces at the
hotspots (black dots), that is the points that are connected to other Fermi surface points
(gray dots) by a momentum shift Q. The numbers indicate a pairwise connection. In the
Néel state obtained for n ≥ 1 all k points satisfy E`

k = E`
k+Q.

Figure 5.4: In-plane and out-of-plane spin stiffnesses as functions of the electron density.
In the Néel state for n ≥ 1 all the stiffnesses take the same value. Notice that for the
spiral magnetic state for n < 1 we have multiplied the out-of-plane spin stiffnesses J⊥xx
and J⊥yy by a factor of 2.

shown in Fig. 5.2.

In Fig. 5.3, we show the quasiparticle Fermi surfaces in the ground state for different

densities. In the electron-doped region (n > 1), these are given by solutions of E+
k = 0

(cf. Eq. (5.74)), while in the hole-doped regime (n < 1) by momenta satisfying E−k = 0. In

principle, for sufficiently small gaps ∆, both equations can have solutions, but we do not

find such a case within our choice of parameters. In the ground state, the lines defined by



150 Low-energy physics of metallic spiral magnets

Figure 5.5: Spectral weights of the in-plane and out-of-plane Goldstone modes as functions
of the electron density n. In the Néel state for n ≥ 1 both weights take the same value.
Notice that in the spiral magnetic state for n < 1 we have multiplied the out-of-plane
spectral weight by a factor 1/2.

Figure 5.6: In-plane and out-of-plane magnon velocities caαα =
√
Jaαα/χ

a
dyn as functions of

the electron density.

E+
k = 0 (E−k = 0) enclose doubly occupied (empty) states, and we therefore refer to them

as electron (hole) pockets. In Fig. 5.3, we also shown the lines along which the equality

E`
k = E`

k+Q (with Q 6= (π, π)) is satisfied. We notice that for small doping these lines

never intersect the Fermi surfaces, implying that the out-of-plane modes are not Landau

damped at all in this parameter region.

In Fig. 5.4, we show the in-plane and out-of-plane spin stiffnesses Jaαβ as functions
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Figure 5.7: Damping term of the in-plane Goldstone mode as a function of |q| at n =
0.84 for two fixed values of ω̂ = ω/|q| and three fixed directions. The parameter θ
parameterizes the angle between q and the qx axis. The values of the prefactor γ of the
leading dependence on ω̂|q|2 are shown in the inset.

Figure 5.8: Damping term of the out-of-plane Goldstone mode as a function of ω for
various fixed wave vectors q near Q = (0.82π, π) and fixed density n = 0.84. The
prefactors γ1 of the linear frequency dependence for q 6= Q and the prefactor Q of the
cubic frequency dependence for q = Q are shown in the inset.

of the electron density. Both in the spiral state for n < 1 and in the Néel state for

n ≥ 1 only the diagonal components Jaxx and Jayy are nonzero. In the Néel state, the

stiffnesses are isotropic (Jaxx = Jayy) and degenerate, as dictated by symmetry. In the

spiral state the in-plane and the out-of-plane spin stiffnesses differ significantly from each
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other. Both exhibit a slight nematicity (Jaxx 6= Jayy), coming from the difference between

Qx and Qy
¶. Both in-plane and out-of-plane stiffnesses exhibits a sudden and sharp

jump upon approaching half filling from the hole-doped side. This discontinuity is due

to the sudden appearance of hole pockets, which allow for intraband excitation processes

with small energies. Conversely, on the electron-doped side no discontinuity is found as

the contributions from the electron pockets are suppressed by vanishing prefactors (see

Eq. (5.153)) at the momenta (π, 0) and (0, π), where they pop up. We remark that we

find positive stiffnesses all over the density range in which a magnetic state appears. This

proves the stability of the spiral magnetic state over smooth and small deformations of

the order parameter, including variations of the wave vector Q.

In Fig. 5.5, we plot the spectral weights of the magnon modes as functions of the

electron density n. The discontinuity in m2/χ⊥dyn is due to the intraband terms coming

from the emergence of the hole pockets. By contrast, m2/χ�
dyn is finite as it only gets con-

tributions from interband processes. The spectral weights vanish near the critical fillings

beyond which the magnetic state disappears, indicating that the dynamical susceptibili-

ties vanish slower than m2. The dip in m2/χ⊥dyn at n ≈ 0.84 is due to the merging of two

electron pockets.

In Fig. 5.6, we plot the magnon velocities caαα =
√
Jaαα/χ

a
dyn. They only exhibit a

mild density dependence and they are always of order t in the entire magnetized regime.

It is worthwhile to remark that they remain finite at the critical fillings beyond which the

paramagnetic state appears.

The in-plane damping term Im[m2/χ̃22(q, ω)] is plotted in Fig. 5.7 as a function of |q|
for two fixed values of ω̂ = ω/|q| and three fixed directions q̂ = q/|q|. The density is set

to n = 0.84. The characteristic quadratic behavior of Eq. (5.108) is clearly visible, with

the prefactors γ(q̂, ω̂) shown in the inset.

In Fig. 5.8, we plot the frequency dependence of the damping term of the out-of-plane

mode Im[m2/χ̃33(q, ω)] for various fixed momenta q at and near Q. For q = Q the

damping is proportional to ω3 in agreement with Eq. (5.120). For q 6= Q, one can see

the linear frequency dependence predicted by Eq. (5.122). The prefactors of the leading

cubic and linear terms are listed in the inset.

¶Note that for a spiral state with Q = (π − 2πη, π − 2πη), or symmetry related, one would have
Jaxx = Jayy but Jaxy = Jayx 6= 0.



Chapter 6

SU(2) gauge theory of the

pseudogap phase

In this Chapter, we derive an effective theory for the pseudogap phase by fractional-

izing the electron field into a fermionic chargon, carrying the original electron charge,

and a charge neutral spinon. The latter is a SU(2) matrix describing position- and time-

dependent (bosonic) fluctuations of the local spin orientation. The fractionalization brings

in a SU(2) gauge redundancy, which is why we dub this theory as SU(2) gauge theory.

We then consider a magnetically ordered state for the chargons, which leads to a re-

construction of the Fermi surface. We remark that symmetry breaking is nonetheless

prevented at finite temperature by the spinon fluctuations, in agreement with Mermin-

Wagner theorem. We compute the magnetic state properties of the chargons, starting

from the 2D Hubbard model, employing the fRG+MF method described in Chapter 3.

We subsequently integrate out the fermionic degrees of freedom, obtaining an effective

non-linear sigma model (NLσM) for the spinons. The NLσM is described by few param-

eters, namely spin stiffnesses J and dynamical susceptibilities χdyn, which we compute

following the formalism derived in Chapter 5. A large-N expansion returns a finite tem-

perature pseudogap regime in the hole-doped and electron-doped regions of the phase

diagram. On the hole-doped side, we also find a nematic phase at low temperatures, in

agreement with the experimentally observed nematicity in cuprate materials [133, 184].

Within our moderate coupling calculation, the spinon fluctuations are found not to be

sufficiently strong to destroy long range order in the ground state. The spectral func-

tion in the hole doped pseudogap regime has the form of hole pockets with suppressed

153
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weight on their backsides, leading to Fermi arcs. The content of this chapter appears in

Ref. [185].

6.1 SU(2) gauge theory

6.1.1 Fractionalizing the electron field

We consider the Hubbard model on a square lattice with lattice spacing a = 1. The action

in imaginary time reads

S[c, c∗] =

∫ β

0

dτ

{∑
j,j′,σ

c∗j,σ [(∂τ − µ) δjj′ + tjj′ ] cj′,σ + U
∑
j

nj,↑nj,↓

}
, (6.1)

where cj,σ = cj,σ(τ) and c∗j,σ = c∗j,σ(τ) are Grassmann fields corresponding to the anni-

hilation and creation, respectively, of an electron with spin orientation σ at site j, and

nj,σ = c∗j,σcj,σ. The chemical potential is denoted by µ, and U > 0 is the strength of the

(repulsive) Hubbard interaction. To simplify the notation, we write the dependence of

the fields on the imaginary time τ only if needed for clarity.

The action in (6.1) is invariant under global SU(2) rotations acting on the Grassmann

fields as

cj → Ucj, c∗j → c∗j U †, (6.2)

where cj and c∗j are two-component spinors composed from cj,σ and c∗j,σ, respectively, while

U is a SU(2) matrix acting in spin space.

To separate collective spin fluctuations from the charge degrees of freedom, we frac-

tionalize the electronic fields as [36, 37, 65, 183]

cj = Rj ψj, c∗j = ψ∗j R
†
j, (6.3)

where Rj ∈ SU(2), to which we refer as “spinon”, is composed of bosonic fields, and the

components of the “chargon” ψj are fermionic. According to (6.2) and (6.3) the spinons

transform under the global SU(2) spin rotation by a left matrix multiplication, while the

chargons are left invariant. Conversely, a U(1) charge transformation acts only on ψj,

leaving Rj unaffected. The transformation in Eq. (6.3) introduces a redundant SU(2)
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gauge symmetry, acting as

ψj → Vj ψj, ψ∗j → ψ∗j V
†
j , (6.4a)

Rj → Rj V†j , R†j → Vj R
†
j, (6.4b)

with Vj ∈ SU(2). Hence, the components ψj,s of ψj carry an SU(2) gauge index s, while

the components Rj,σs of Rj have two indices, the first one (σ) corresponding to the global

SU(2) symmetry, and the second one (s) to SU(2) gauge transformations.

We now rewrite the Hubbard action in terms of the spinon and chargon fields. The

quadratic part of (6.1) can be expressed as [36]

S0[ψ, ψ∗, R] =

∫ β

0

dτ

{∑
j

ψ∗j [∂τ − µ− A0,j]ψj +
∑
j,j′

tjj′ ψ
∗
j e
−rjj′ ·(∇−iAj) ψj

}
,(6.5)

where we have introduced a SU(2) gauge field, defined as

Aµ,j = (A0,j,Aj) = iR†j∂µRj, (6.6)

with ∂µ = (i∂τ ,∇). Here, the nabla operator ∇ is defined as generator of translations on

the lattice, that is, e−rjj′ ·∇ with rjj′ = rj − rj′ is the translation operator from site j to

site j′.

To rewrite the interacting part in (6.1), we use the decomposition [36, 183, 186]

nj,↑nj,↓ =
1

4
(nj)

2 − 1

4
(c∗j ~σ · Ω̂j cj)

2, (6.7)

where nj = nj,↑ + nj,↓ is the charge density operator, ~σ = (σ1, σ2, σ3) are the Pauli

matrices, and Ω̂j is an arbitrary time- and site-dependent unit vector. The interaction

term of the Hubbard action can therefore be written in terms of spinon and chargon fields

as

Sint[ψ, ψ
∗, R] =

∫ β

0

dτ U
∑
j

[
1

4
(nψj )2 − 1

4
(~Sψj · Ω̂R

j )2

]
, (6.8)

where nψj = ψ∗jψj is the chargon density operator, ~Sψj = 1
2
ψ∗j~σψj is the chargon spin

operator, and

~σ · Ω̂R
j = R†j ~σ · Ω̂j Rj. (6.9)
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Using (6.7) again, we obtain

Sint[ψ, ψ
∗, R] =

∫ β

0

dτ U
∑
j

nψj,↑n
ψ
j,↓, (6.10)

with nψj,s = ψ∗j,sψj,s. Therefore, the final form of the action S = S0 + Sint is nothing but

the Hubbard model action where the physical electrons have been replaced by chargons

coupled to a SU(2) gauge field.

Since the chargons do not carry any spin degree of freedom, a global breaking of

their SU(2) gauge symmetry (〈~Sψj 〉 6= 0) does not necessarily imply long range order for

the physical electrons. The matrices Rj describe directional fluctuations of the order

parameter 〈~Sj〉, where the most important ones vary slowly in time and space.

6.1.2 Non-linear sigma model

We now derive a low energy effective action for the spinon fields Rj by integrating out

the chargons,

e−Seff [R] =

∫
DψDψ∗ e−S[ψ,ψ∗,R]. (6.11)

Since the action S is quartic in the fermionic fields, the functional integral must be

carried out by means of an approximate method. In previous works [36, 183, 187] a

Hubbard-Stratonovich transformation has been applied to decouple the chargon interac-

tion, together with a saddle point approximation on the auxiliary bosonic (Higgs) field.

We will employ an improved approximation, which we describe in Sec. 6.2.

The effective action for the spinons can be obtained by computing the response func-

tions of the chargons to a fictitious SU(2) gauge field. Since we assign only low energy

long wave length fluctuations to the spinons in the decomposition (6.3), the spinon field

Rj is slowly varying in space and time. Hence, we can perform a gradient expansion. To

second order in the gradient ∂µRj, the effective action Seff [R] has the general form

Seff [R] =

∫
T
dx
[
BaµAaµ(x) + 1

2
J ab
µνA

a
µ(x)Abν(x)

]
, (6.12)

where T = [0, β] × R2, repeated indices are summed, and we have expanded the gauge
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field Aµ in terms of the SU(2) generators,

Aµ(x) = Aaµ(x)
σa

2
, (6.13)

with a running from 1 to 3. In line with the gradient expansion, the gauge field is now

defined over a continuous space-time. The coefficients in (6.12) do not depend on the

spatio-temporal coordinates x = (τ, r) and are given by

Baµ =
1

2

∑
j,j′

γ(1)
µ (j, j′)〈ψ∗j (0)σaψj′(0)〉, (6.14)

J ab
µν =

1

4

∑
j,j′

∑
l,l′

γ(1)
µ (j, j′)γ(1)

ν (l, l′)

∫ β

0

dτ
〈 (
ψ∗j (τ)σaψj′(τ)

) (
ψ∗l (0)σbψl′(0)

) 〉
c

−1

4

∑
j,j′

γ(2)
µν (j, j′)〈ψ∗j (0)ψj′(0)〉 δab, (6.15)

where 〈•〉 (〈•〉c) denotes the (connected) average with respect to the chargon Hubbard

action. The first and second order current vertices have been defined as

γ(1)(j, j′) = (δjj′ , i xjj′ tjj′ , i yjj′ tjj′) , (6.16a)

γ(2)(j, j′) =−

 0 0 0

0 xjj′xjj′ tjj′ xjj′yjj′ tjj′

0 yjj′xjj′ tjj′ yjj′yjj′ tjj′

 , (6.16b)

where xjj′ and yjj′ are the x and y components, respectively of rjj′ = rj − rj′ .

In Sec. 6.2.4 we will see that the linear term in (6.12) vanishes. We therefore consider

only the quadratic contribution to the effective action.

We now derive an effective theory for the spinon fluctuations, which can be more

convenitently expressed in terms of their adjoint representation

R† σaR = Rabσb. (6.17)

We start by proving the identity

∂µR = −iRΣaAaµ, (6.18)
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Σa are the generators of the SU(2) in the adjoint representation,

Σa
bc = −iεabc, (6.19)

with εabc the Levi-Civita tensor. Rewriting Eq. (6.17) as

Rab =
1

2
Tr
[
R†σaR σb

]
, (6.20)

we obtain the derivative of R in the form,

∂µRab = Tr
[
R†σa (∂µR)σb

]
= Tr

[
R†σaRR†(∂µR)σb

]
= −iRacΣd

cbA
d
µ, (6.21)

which is the identity in (6.18).

We now aim to express the object 1
2
J ab
µνA

a
µA

b
ν in terms of the matrix field R. We write

the stiffness matrix in terms of a new matrix Pµν via

J ab
µν = Tr[Pµν ]δab − Pabµν = Tr

[
PµνΣaΣb

]
. (6.22)

Using RTR = 1, we obtain

1

2
J ab
µνA

a
µA

b
ν =

1

2
Tr
[
Pµν ΣaRTRΣb

]
AaµA

b
ν =

1

2
Tr
[
Pµν(∂µRT )(∂νR)

]
, (6.23)

where we have used Eq. (6.18) in the last line. The above equation yields Eq. (6.24).

Relation (6.22) can be easily inverted using Tr[Jµν ] = 2 Tr[Pµν ].
We have therefore obtained the non-linear sigma model (NLσM) action for the direc-

tional fluctuations

SNLσM =

∫
T
dx

1

2
Tr
[
Pµν(∂µRT )(∂νR)

]
, (6.24)

where Pµν = 1
2

Tr[Jµν ]1− Jµν .
The structure of the matrices Jµν and Pµν depends on the magnetically ordered

chargon state. In the trivial case 〈~Sψj 〉 = 0 all the stiffnesses vanish and no meaningful

low energy theory for R can be derived. A well-defined low-energy theory emerges, for

example, when Néel antiferromagnetic order is realized in the chargon sector, that is,

〈~Sψj 〉 ∝ (−1)rj û, (6.25)
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where û is an arbitrary fixed unit vector. Choosing û = ê1 = (1, 0, 0), the spin stiffness

matrix in the Néel state has the form

Jµν =

 0 0 0

0 Jµν 0

0 0 Jµν

 , (6.26)

with (Jµν) = diag(−Z, J, J). In this case the effective theory reduces to the well-known

O(3)/O(2) ' S2 non-linear sigma model [188, 189]

SNLσM =
1

2

∫
T
dx
(
Z|∂τ Ω̂|2 + J |~∇Ω̂|2

)
, (6.27)

where Ω̂a = Ra1, and |Ω̂|2 = 1.

Another possibility is spiral magnetic ordering of the chargons,

〈~Sψj 〉 ∝ cos(Q · rj)û1 + sin(Q · rj)û2, (6.28)

where Q is a fixed wave vector as obtained by minimizing the chargon free energy, while

û1 and û2 are two arbitrary mutually orthogonal unit vectors. The special case Q = (π, π)

corresponds to the Néel state. Fixing û1 to ê1 and û2 to ê2 ≡ (0, 1, 0), the spin stiffness

matrix takes the form

Jµν =

 J⊥µν 0 0

0 J⊥µν 0

0 0 J2
µν

 , (6.29)

where

(Jaµν) =

 −Z
a 0 0

0 Jaxx Jaxy

0 Jayx Jayy

 . (6.30)

for a ∈ {⊥,2}. In this case, the effective action maintains its general form (6.24) and it

describes the O(3)×O(2)/O(2) symmetric NLσM, which has been previously studied in

the context of geometrically frustrated antiferromagnets [175–178, 190]. This theory has

three independent degrees of freedom, corresponding to one in-plane and two out-of-plane

Goldstone modes.

Antiferromagnetic Néel or spiral orders have been found in the two-dimensional Hub-
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bard model over broad regions of the parameter space by several approximate methods,

such as Hartree-Fock [28], slave boson mean-field theory [29], expansion in the hole den-

sity [30], moderate coupling fRG [81], and dynamical mean-field theory [31, 32]. In our

theory the mean-field order applies only to the chargons, while the physical electrons are

subject to order parameter fluctuations.

6.2 Computation of parameters

In this section, we describe how we evaluate the chargon integral in Eq. (6.11) to compute

the magnetic order parameter and the stiffness matrix Jµν . The advantage of the way we

formulated our theory in Sec. 6.1 is that it allows arbitrary approximations on the chargon

action. One can employ various techniques to obtain the order parameter and the spin

stiffnesses in the magnetically ordered phase. We use a renormalized mean-field (MF)

approach with effective interactions obtained from a functional renormalization group

(fRG) flow. In the following we briefly describe our approximation of the (exact) fRG

flow, and we refer to Refs. [27, 49, 84] and to Chapter 1 for the fRG, and to Refs. [80, 81,

134, 135] and to Chapter 3 for the fRG+MF method.

6.2.1 Symmetric regime

We evaluate the chargon functional integral by using an fRG flow equation [27, 49, 84],

choosing the temperature T as flow parameter [94]. Temperature can be used as a flow

parameter after rescaling the chargon fields as ψj → T
3
4ψj, and defining a rescaled bare

Green’s function,

GT
0 (k, iνn) =

T
1
2

iνn − εk + µ
, (6.31)

where νn = (2n+1)πT the fermionic Matsubara frequency, and εk is the Fourier transform

of the hopping matrix in (6.1).

We approximate the exact fRG flow by a second order (one-loop) flow of the two-

particle vertex V T , discarding self-energy feedback and contributions from the three-

particle vertex [27]. In an SU(2) invariant system the two-particle vertex has the spin
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structure

V T
σ1σ2σ3σ4

(k1, k2, k3, k4) = V T (k1, k2, k3, k4) δσ1σ3 δσ2σ4

− V T (k2, k1, k3, k4) δσ1σ4 δσ2σ3 ,

where kα = (kα, iναn) are combined momentum and frequency variables. Translation

invariance imposes momentum conservation so that k1 +k2 = k3 +k4. We perform a static

approximation, that is, we neglect the frequency dependency of the vertex. To parametrize

the momentum dependence, we use the channel decomposition [46, 47, 52, 138]

V T (k1,k2,k3,k4) = U − φp,Tk1−k2
2

,
k3−k4

2

(k1 + k2)

+φm,Tk1+k4
2

,
k2+k3

2

(k2 − k3) +
1

2
φm,Tk1+k3

2
,
k2+k4

2

(k3 − k1)

−1

2
φc,Tk1+k3

2
,
k2+k4

2

(k3 − k1), (6.32)

where the functions φp,T , φm,T , and φc,T capture fluctuations in the pairing, magnetic, and

charge channel, respectively. The dependences of these functions on the linear combina-

tion of momenta in the brackets are typically much stronger than those in the subscripts.

Hence, we expand the latter dependencies in form factors [46, 152], keeping only the lowest

order s-wave, extended s-wave, p-wave and d-wave contributions.

We run the fRG flow from the initial temperature Tini =∞, at which V Tini = U , down

to a critical temperature T ∗ at which V T diverges, signaling the onset of spontaneous

symmetry breaking (SSB). If the divergence of the vertex is due to φm,T , the chargons

develop some kind of magnetic order.

6.2.2 Order parameter

In the magnetic phase, that is, for T < T ∗, we assume an order parameter of the form

〈ψ∗k,↑ψk+Q,↓〉, which corresponds to Néel antiferromagnetism if Q = (π, π), and to spiral

order otherwise.

For T < T ∗ we simplify the flow equations by decoupling the three channels φP,T ,

φM,T , and φC,T . The flow equations can then be formally integrated, and the formation

of an order parameter can be easily taken into account [80]. In the magnetic channel one
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thus obtains the magnetic gap equation [81]

∆k =

∫
k′
V
m

k,k′(Q)
f(E−k′)− f(E+

k′)

E+
k′ − E

−
k′

∆k′ , (6.33)

where f(x) = (ex/T + 1)−1 is the Fermi function,
∫

k
is a shorthand notation for

∫
d2k

(2π)2 ,

and E±k are the quasiparticle dispersions

E±k =
εk + εk+Q

2
±
√

1

4
(εk − εk+Q)2 + ∆2

k − µ. (6.34)

The effective coupling V
m

k,k′(Q) is the particle-hole irreducible part of V T ∗ in the magnetic

channel, which can be obtained by inverting a Bethe-Salpeter equation at the critical scale,

V m,T ∗

k,k′ (q) = V
m

k,k′(q)−
∫

k′′
V
m

k,k′′(q) ΠT ∗

k′′ (q)V m,T ∗

k′′,k′ (q), (6.35)

where V m,T
k,k′ (q) = V T (k− q/2,k′ + q/2,k′ − q/2,k + q/2), and the particle-hole bubble

is given by

ΠT
k (q) =

∑
νn

GT
0 (k− q/2, iνn)GT

0 (k + q/2, iνn) . (6.36)

Although V m,T ∗

k,k′ (q) diverges at certain wave vectors q = Qc, the irreducible coupling

V
m

k,k′(q) is finite for all q.

The dependence of V
m

k,k′(q) on k and k′ is rather weak and of no qualitative impor-

tance. Hence, to simplify the calculations, we discard the k and k′ dependencies of the

effective coupling by taking the momentum average V
m

(q) =
∫

k,k′
V
m

k,k′(q). The mag-

netic gap then becomes momentum independent, that is, ∆k = ∆. While the full vertex

V m,T
k,k′ (q) depends very strongly on q, the dependence of its irreducible part V k,k′(q) on

q is rather weak. The calculation of the stiffnesses in the subsequent section is consider-

ably simplified approximating V
m

(q) by a momentum independent effective interaction

Um
eff = V

m
(Qc). The gap equation (6.33) therefore simplifies to

1 = Um
eff

∫
k

f(E−k )− f(E+
k )

E+
k − E

−
k

. (6.37)

The optimal ordering wave vector Q is found by minimizing the mean-field free energy of
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the system

F (Q) = −T
∫

k

∑
`=±

ln
(

1 + e−E
`
k(Q)/T

)
+

∆2

2Um
eff

+ µn, (6.38)

where the chemical potential µ is determined by keeping the density n =
∫

k

∑
`=± f(E`

k)

fixed and the gap equation (6.33) fulfilled for each value of Q. The optimal wave vectors

Q at temperatures T < T ∗ generally differ from the wave vectors Qc at which V T ∗

k,k′(q)

diverges.

Eq. (6.33) has the form of a mean-field gap equation with a renormalized interaction

that is reduced compared to the bare Hubbard interaction U by fluctuations in the pairing

and charge channels. This reduces the critical doping beyond which magnetic order

disappears, compared to the unrealistically large values obtained already for weak bare

interactions in pure Hartree-Fock theory (see e.g. Ref. [28]).

6.2.3 Spin stiffnesses

The NLσM parameters, that is, the spin stiffnesses J ab
µν , are obtained by evaluating

Eq. (6.15). These expressions can be viewed as the response of the chargon system

to an external SU(2) gauge field in the low energy and long wavelength limit, and they

are equivalent to the stiffnesses defined by an expansion of the inverse susceptibilities to

quadratic order in momentum and frequency around the Goldstone poles (see Chapter 5).

The following evaluation is obtained as a simple generalization of the RPA formula derived

in Chapter 5 to a renormalized RPA with effective interaction

Γ̃ab0 (q) = Γab0 (q) = 2 diag [−U c
eff(q), Um

eff , U
m
eff , U

m
eff ] , (6.39)

where Um
eff has been defined before, and the effective charge interaction is given by U c

eff(q) =∫
k,k′

V
c

k,k′(q), where the irreducible coupling V
c

k,k′(q) is obtained by inverting a Bethe-

Salpeter equation similar to Eq. (6.35),

V c,T ∗

k,k′ (q) = V
c

k,k′(q) +

∫
k′′
V
c

k,k′′(q) ΠT ∗

k′′ (q)V c,T ∗

k′′,k′(q), (6.40)
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with

V c,T
k,k′(q) = 2V T (k−q/2,k′+q/2,k+q/2,k′−q/2)

− V T (k−q/2,k′+q/2,k′−q/2,k+q/2).

Here we keep the dependence on q since it does not complicate the calculations. We

remark that the temporal stiffnesses Za of this chapter conincide with the dynamic sus-

ceptibilities χadyn of chapter 5.

6.2.4 Linear term in the gauge field

We now show that the linear term in Eq. (6.12) vanishes. Fourier transforming the vertex

and the expectation value, the coefficient Baµ can be written as

Baµ =
1

2

∫
k

T
∑
νn

γ(1)
µ (k) Tr [σaGk,k(iνn)] . (6.41)

Inserting Gk,k(νn) from Eq. (5.128) (see Chapter 5) one immediately sees that B1
µ = B2

µ =

0 for µ = 0, 1, 2, and B3
0 = 0, too. Performing the Matsubara sum for B3

α with α = 1, 2,

we obtain

B3
α =

1

2

∫
k

∑
`=±

[
(∂kαεk)u`kf(E`

k) + (∂kαεk+Q)u−`k f(E`
k)
]
. (6.42)

One can see by direct calculation that this term vanishes if ∂F (Q)/∂Q with F (Q) given

by Eq. (6.38) vanishes. Hence, B3
α vanishes if Q minimizes the free energy. A similar

result has been obtained in Ref. [190].

6.3 Evaluation of sigma model

To solve the NLσM (6.24), we resort to a saddle point approximation in the CPN−1

representation, which becomes exact in the large N limit [21, 191].

6.3.1 CP1 representation

The matrix R can be expressed as a triad of orthonormal unit vectors:

R =
(
Ω̂1, Ω̂2, Ω̂3

)
, (6.43)
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where Ω̂i · Ω̂j = δij. We represent these vectors in terms of two complex Schwinger bosons

z↑ and z↓ [179]

Ω̂− = z(iσ2~σ)z, (6.44a)

Ω̂+ = z∗(iσ2~σ)†z∗, (6.44b)

Ω̂3 = z∗~σz, (6.44c)

with z = (z↑, z↓) and Ω̂± = Ω̂1∓iΩ̂2. The Schwinger bosons obey the non-linear constraint

z∗↑z↑ + z∗↓z↓ = 1 . (6.45)

The parametrization (6.44) is equivalent to setting

R =

(
z↑ −z∗↓
z↓ z∗↑

)
, (6.46)

in Eq. (6.17). Inserting the expressions (6.43) and (6.44) into Eq. (6.24) and assuming a

stiffness matrix Jµν of the form (6.29), we obtain the CP1 action

SCP1 [z, z∗] =

∫
T
dx
[
2J⊥µν(∂µz

∗)(∂νz)− 2(J⊥µν − J2
µν)jµjν

]
, (6.47)

with sum convention for the spin indices of z and z∗ and the current operator

jµ =
i

2
[z∗(∂µz)− (∂µz

∗)z] . (6.48)

We recall that x = (τ, r) comprises the imaginary time and space variables, and T =

[0, β]× R2.

6.3.2 Large N expansion

The current-current interaction in Eq. (6.47) can be decoupled by a Hubbard-Stratonovich

transformation, introducing a U(1) gauge fieldAµ, and implementing the constraint (6.45)

by means of a Lagrange multiplier λ. The resulting form of the action describes the so-
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called massive CP1 model [192]

SCP1 [z, z∗,Aµ, λ] =

∫
T
dx
[
2J⊥µν(Dµz)∗(Dνz) +

1

2
MµνAµAν + iλ(z∗z − 1)

]
, (6.49)

where Dµ = ∂µ − iAµ is the covariant derivative. The numbers Mµν are the matrix

elements of the mass tensor of the U(1) gauge field,

M = 4
[
1− J2(J⊥)−1

]−1
J2 , (6.50)

where J2 and J⊥ are the stiffness tensors built from the matrix elements J2
µν and J⊥µν ,

respectively.

To perform a large N expansion, we extend the two-component field z = (z↑, z↓) to

an N -component field z = (z1, . . . , zN), and rescale it by a factor
√
N/2 so that it now

satisfies the constraint

z∗z =
N∑
α=1

z∗αzα =
N

2
. (6.51)

To obtain a nontrivial limit N → ∞, we rescale the stiffnesses J⊥µν and J2
µν by a factor

2/N , yielding the action

SN−1
CP [z, z∗,Aµ, λ] =

∫
T
dx
[
2J⊥µν(Dµz)∗(Dνz) +

N

4
MµνAµAν + iλ

(
z∗z − N

2

)]
. (6.52)

This action describes the massive CPN−1 model [193], which in d > 2 dimensions displays

two distinct critical points [191, 192, 194]. The first one belongs to the pure CPN−1 class,

where Mµν → 0 (J2
µν = 0), which applies, for example, in the case of Néel ordering of the

chargons, and the U(1) gauge invariance is preserved. The second is in the O(2N) class,

where Mµν → ∞ (J⊥µν = J2
µν) and the gauge field does not propagate. At the leading

order in N−1, the saddle point equations are the same for both fixed points, so that we

can ignore this distinction in the following.

At finite temperatures T > 0 the non-linear sigma model does not allow for any

long-range magnetic order, in agreement with the Mermin-Wagner theorem. The spin

correlations decay exponentially and the spin excitations are bounded from below by a

spin gap ms =
√
i〈λ〉/Z⊥.
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Integrating out the z-bosons from Eq. (6.52), we obtain the effective action [21]

S[Aµ, λ] = N

∫
T
dx
[

ln
(
−2J⊥µνDµDν + iλ

)
− i

2
λ+

1

4
MµνAµAν

]
. (6.53)

In the large N limit the functional integral for its partition function is dominated by its

saddle point, which is determined by the stationarity equations

δS
δAµ

=
δS
δλ

= 0 . (6.54)

The first condition implies Aµ = 0, that is, in the large N limit the U(1) gauge field

fluctuations are totally suppressed. The variation with respect to λ gives, assuming a

spatially uniform average value for λ,

T
∑
ωn

∫
q

1

Z⊥ω2
n + J⊥αβqαqβ + i〈λ〉

= 1 . (6.55)

Performing the sum over the bosonic Matsubara frequencies ωn = 2nπT , inserting the

identity

1 =

∫ ∞
0

dε δ
(
ε−

√
J⊥αβqαqβ/Z

⊥
)
, (6.56)

and performing the q-integral, we obtain a self-consistent equation for the spin gap

1

4πJ

∫ csΛuv

0

ε dε√
ε2 +m2

s

coth

(√
ε2 +m2

s

2T

)
= 1 , (6.57)

where Λuv is an ultraviolet momentum cutoff. The constant J is an “average” spin stiffness

given by

J =

√√√√det

(
J⊥xx J⊥xy

J⊥yx J⊥yy

)
, (6.58)

and cs =
√
J/Z⊥ is the corresponding average spin wave velocity. In Sec. 6.3.3, we shall

discuss how to choose the value of Λuv. For ms � csΛuv, and T � csΛuv, the magnetic

correlation length ξs = 1
2
cs/ms, behaves as

ξs =
cs

4T sinh−1
[

1
2
e−

2π
T

(J−Jc)
] , (6.59)



168 SU(2) gauge theory of the pseudogap phase

with the critical stiffness

Jc =
csΛuv

4π
. (6.60)

The correlation length is finite at each T > 0. For J > Jc, ξs diverges exponentially for

T → 0, while for J < Jc it remains finite in the zero temperature limit.

At T = 0, Eq. (6.57) may not have a solution for any value of ms. This is due to the

Bose-Einstein condensation of the Schwinger bosons z. One therefore has to account for

this effect by adding a condensate fraction n0 to the left hand side of Eq. (6.57). For later

convenience, we assume that only z bosons with spin index ↑ condense. We obtain

n0 +
1

4πJ

∫ csΛuv

0

ε dε√
ε2 +m2

s

= 1 , (6.61)

where n0 = |〈z↑〉|2. Eq. (6.61) can be easily solved, yielding (if ms � Λuv) ms = 0

n0 = 1− Jc
J

for J > Jc , (6.62a)

 n0 = 0

ms = 2πJ
[
(Jc/J)2 − 1

] for J < Jc. (6.62b)

The Mermin-Wagner theorem is thus respected already in the saddle-point approxi-

mation to the CPN−1 representation of the non-linear sigma model, that is, there is no

long-range order at T > 0. In the ground state, long-range order (corresponding to a z

boson condensation) is obtained for a sufficiently large spin stiffness, while for J < Jc

magnetic order is destroyed by quantum fluctuations even at T = 0, giving rise to a

paramagnetic state with a spin gap.

6.3.3 Choice of ultraviolet cutoff

The impact of spin fluctuations described by the non-linear sigma model depends strongly

on the ultraviolet cutoff Λuv. In particular, the critical stiffness Jc separating a ground

state with magnetic long-range order from a disordered ground state is directly propor-

tional to Λuv. The need for a regularization of the theory by an ultraviolet cutoff is a

consequence of the gradient expansion. While the expansion coefficients (the stiffnesses)

are determined by the microscopic model, there is no systematic way of computing Λuv.
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A pragmatic choice for the cutoff is given by the ansatz

Λuv = C/ξA , (6.63)

where C is a dimensionless number, and ξA is the magnetic coherence length, which is the

characteristic length scale of spin amplitude correlations. This choice may be motivated

by the observation that local moments with a well defined spin amplitude are not defined

at length scales below ξA [36]. The constant C can be fixed by matching results from the

non-linear sigma model to results from a microscopic calculation in a suitable special case

(see below).

The coherence length ξA can be obtained from the connected spin amplitude cor-

relation function χA(rj, rj′) =
〈
(n̂j · ~Sψj )(n̂j′ · ~Sψj′)

〉
c
, where n̂j = 〈~Sψj 〉/|〈~S

ψ
j 〉|. At long

distances between rj and rj′ this function decays exponentially with an exponential de-

pendence e−r/ξA of the distance r. Fourier transforming and using the rotated spin frame

introduced in Chapter 5, the long distance behavior of χA(rj, rj′) can be related to the mo-

mentum dependence of the static correlation function χ̃ab(q, 0) in the amplitude channel

a = b = 1 for small q, which has the general form

χ̃11(q, 0) ∝ 1

JAαβqαqβ +m2
A

. (6.64)

The magnetic coherence length is then given by

ξA =
√
JA/(2mA) , (6.65)

where JA =
(
JAxxJ

A
yy − JAxyJAyx

) 1
2 .

The constant C in Eq. (6.63) can be estimated by considering the Hubbard model with

pure nearest neighbor hopping at half filling. At strong coupling (large U) the spin degrees

of freedom are then described by the antiferromagnetic Heisenberg model, which exhibits

a Néel ordered ground state with a magnetization reduced by a factor n0 ≈ 0.6 compared

to the mean-field value [195]. On the other hand, evaluating the RPA expressions for the

Hubbard model in the strong coupling limit, one recovers the mean-field results for the

spin stiffness and spin wave velocity of the Heisenberg model with an exchange coupling

JH = 4t2/U , namely J = JH/4 and cs =
√

2JH . Evaluating the RPA spin amplitude

correlation function yields ξA = 1/
√

8 in this limit. With the ansatz (6.63), one then
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obtains n0 = 1− 4C/π. Matching this with the numerical result n0 ≈ 0.6 yields C ≈ 0.3

and Λuv ≈ 0.9.

6.4 Results

In this section we present and discuss results obtained from our theory for the two-

dimensional Hubbard model, both in the hole- (n < 1) and electron-doped (n > 1)

regime. We fix the ratio of hopping amplitudes as t′/t = −0.2, and we choose a moderate

interaction strength U = 4t. The energy unit is t in all plots.

6.4.1 Chargon mean-field phase diagram

Figure 6.1: Pseudocritical temperature T ∗ and nematic temperature Tnem functions of
the density n. The labels T ∗m and T ∗p indicate whether the effective interaction diverges
in the magnetic or in the pairing channel, respectively. The black solid line indicates
the magnetic transition temperature if the pairing instability is ignored (see main text).
The labels ”Néel” and ”Spiral” refer to the type of chargon order. The dashed black line
refers indicates a topological transition of the quasiparticle Fermi surface within the spiral
regime. Inset: irreducible magnetic effective interaction Um

eff as a function of density n.

In Fig. 6.1, we plot the critical temperature T ∗ at which the vertex V T (k1,k2,k3,k4)

diverges. In a wide filling window, from n = 0.84 to n = 1.08, the divergence of the

vertex is due to a magnetic instability. At the edges of the magnetic dome in the n-T
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Figure 6.2: Magnetic gap ∆ (left axis) and incommensurability η (right axis) at T = 0 as
functions of the density.

phase diagram, the leading instability occurs in the d-wave pairing channel. Pairing is

expected to extend into the magnetic regime as a secondary instability [80, 81]. Vice versa,

magnetic order is possible in the regime where pairing fluctuations dominate. In Fig. 6.1,

we also show the magnetic pseudocritical temperature (T ∗) obtained by neglecting the

onset of pairing (black solid line). This can be determined by setting the magnetic order

parameter ∆ to zero in the gap equation (6.33) and solving for the temperature. In the

hole-doped part of the n-T phase diagram where the d-wave superconducting instability

is the dominating one, the magnetic critical temperature is only slightly smaller than T ∗p .

Conversely, in the same region on the electron doped side it vanishes. In Fig. 6.1, we also

plot the nematic temperature Tnem, below which the magnetic chargon state transitions

from the Néel one to the spiral one, breaking the C4 lattice rotational symmetry. At

small hole dopings we first find a Néel antiferromagnetic phase at higher temperatures

and the system undergoes a second transition to the spiral phase at lower T . Conversely,

for fillings smaller then n = 0.88, even right below T ∗m we find a nematic state. Within the

spiral regime there is a topological transition of the quasiparticle Fermi surface (indicated

by a black dashed line in Fig. 6.1), where hole pockets merge. The single-particle spectral

function develops Fermi arcs on the right hand side of this transition, while it resembles

the large bare Fermi surface on the left (see Sec. 6.4.3).

In the inset in Fig. 6.1, we also show the irreducible effective magnetic interaction Um
eff
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defined in Sec. 6.2.2. The effective interaction Um
eff is strongly reduced from its bare value

(U = 4t) by the non-magnetic channels in the fRG flow.

From now on we ignore the pairing instability and focus on magnetic properties. We

compute the magnetic order parameter ∆ together with the optimal wave vector Q in

the ground state (at T = 0) as described in Sec. 6.2.2. In Fig. 6.2, we show results for

∆ as a function of the filling. We find a stable magnetic solution extending deep into

the hole doped regime down to n ≈ 0.73. On the electron doped side magnetic order

terminates abruptly already at n ≈ 1.08. This pronounced electron-hole asymmetry

and the discontinuous transition on the electron doped side has already been observed in

previous fRG+MF calculations for a slightly weaker interaction U = 3t [81]. The magnetic

gap reaches its peak at n = 1, as expected, although the pseudocritical temperature T ∗

and the irreducible effective interaction Um
eff exhibit their maximum in the hole doped

regime slightly away from half-filling.

The magnetic states are either Néel type or spiral with a wave vector of the form

Q = (π − 2πη, π), or symmetry related, with an “incommensurability” η > 0. In Fig. 6.2

results for η are shown as a function of the density. At half-filling and in the electron doped

region only Néel order is found, as expected and in agreement with previous fRG+MF

studies [81]. Hole doping instead immediately leads to a spiral phase with η > 0. Whether

the Néel state persists at small hole doping depends on the hopping parameters and the

interaction strength. Its instability toward a spiral state is favored by a larger interaction

strength [30]. Indeed, in a previous fRG+MF calculation at weaker coupling the Néel

state was found to survive up to about 10 percent hole doping [81].

6.4.2 Spinon fluctuations

Once the magnetic order parameter ∆ of the chargons and the wave vector Q have been

computed, we are in the position to calculate the NLσM parameters from the expressions

presented in Sec. 6.2.3.

In Fig. 6.3, we plot results for the spatial and temporal spin stiffnesses Jaαα and Za in

the ground state. In the spiral state (for n < 1) out-of-plane and in-plane stiffnesses are

distinct, while in the Néel state (for n ≥ 1) they coincide. Actually, the order parameter

defines an axis, not a plane, in the latter case. All the quantities except Z2 exhibit

pronounced jumps between half-filling and infinitesimal hole-doping. These discontinuities

are due to the sudden appearance of hole pockets around the points (π
2
, π

2
) in the Brillouin



SU(2) gauge theory of the pseudogap phase 173

Figure 6.3: Out-of-plane (left panel) and in-plane (right panel) spatial (J) and temporal
(Z) spin stiffnesses in the ground state (T = 0) as functions of the filling n. In the Néel
state (for n ≥ 1) out-of-plane and in-plane stiffnesses coincide.

Figure 6.4: Magnetic coherence length ξA (left axis) and average spin wave velocity cs in
the ground state as functions of the filling n.

zone [169]. The spatial stiffnesses are almost constant over a broad range of hole-doping,

with a small spatial anisotropy Jaxx 6= Jayy. The temporal stiffnesses Za exhibit a stronger

doping dependence. The peak of Z⊥ at n ≈ 0.79 is associated with a van Hove singularity

of the quasiparticle dispersion [169]. On the electron doped side all stiffnesses decrease

almost linearly with the electron filling. The off-diagonal spin stiffnesses Jaxy and Jayx
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Figure 6.5: Fraction of condensed z-bosons n0 at T = 0 for two distinct choices of the
ultraviolet cutoff Λuv as a function of the filling.

vanish both in the Néel state and in the spiral state with Q = (π−2πη, π) and symmetry

related.

In Fig. 6.4, we show the magnetic coherence length ξA and the average spin wave

velocity cs in the ground state. The coherence length is rather short and only weakly

doping dependent from half-filling up to 15 percent hole-doping, while it increases strongly

toward the spiral-to-paramagnet transition on the hole-doped side. On the electron-doped

side it almost doubles from half-filling to infinitesimal electron doping. This jump is due

to the sudden appearance of electron pockets upon electron doping. Note that ξA does

not diverge at the transition to the paramagnetic state on the electron doped side, as this

transition is first order. The average spin wave velocity exhibits a pronounced jump at

half-filling, which is inherited from the jumps of J⊥αα and Z⊥. Besides this discontinuity

it does not vary much as a function of density, remaining finite at the transition points

to a paramagnetic state, both on the hole- and electron-doped sides.

We now investigate whether the magnetic order in the ground state is destroyed by

quantum fluctuations or not. To this end we compute the boson condensation fraction

n0 as obtained from the large-N expansion of the NLσM. This quantity depends on the

ultraviolet cutoff Λuv. As a reference point, we may use the half-filled Hubbard model at

strong coupling, as discussed in Sec. 6.3.3, which yields Λuv ≈ 0.9, and the constant in
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the ansatz Eq. (6.63) is thereby fixed to C ≈ 0.3.

In Fig. 6.5 we show the condensate fraction n0 computed with two distinct choices

of the ultraviolet cutoff: Λuv = Λuv(n) = C/ξA(n) and Λuv = C/ξA(n = 1). For the

former choice the cutoff vanishes at the edge of the magnetic region on the hole-doped

side, where ξA diverges. One can see that n0 remains finite for both choices of the cutoff

in nearly the entire density range where the chargons order. Only near the hole-doped

edge of the magnetic regime, n0 vanishes slightly above the mean-field transition point,

if the ultraviolet cutoff is chosen as density independent. The discontinuous drop of

n0 upon infinitesimal hole doping is due to the corresponding drop of the out-of-plane

stiffness. In the weakly hole-doped region there is a substantial reduction of n0 below

one, for both choices of the cutoff. Except for the edge of the magnetic region on the

hole-doped side, the choice of the cutoff has only a mild influence on the results, and the

condensate fraction remains well above zero. Hence, we can conclude that the ground

state of the Hubbard model with a moderate coupling U = 4t is magnetically ordered

over wide density range. The spin stiffness is sufficiently large to protect the magnetic

order against quantum fluctuations of the order parameter.

6.4.3 Electron spectral function

Fractionalizing the electron operators as in Eq. (6.3), the electron Green’s function as-

sumes the form

[Gejj′(τ)]σσ′ = −〈cj′σ′(τ)c∗jσ(0)〉

= −〈[Rj′(τ)]σ′s′ [R
∗
j (0)]σs ψj′s′(τ)ψ∗js(0)〉 .

(6.66)

To simplify this expression, one can decouple the average 〈RR∗ψψ∗〉 as 〈RR∗〉〈ψψ∗〉,
yielding [36, 37, 65]

[Gejj′(τ)]σσ′ ' −〈[Rj′(τ)]σ′s′ [R
∗
j (0)]σs〉 〈ψj′s′(τ)ψ∗js(0)〉. (6.67)
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Figure 6.6: Quasiparticle Fermi surfaces defined as zeros of the chargon quasiparticle
energies E±k (left column) and momentum dependence of electron spectral function at zero
frequency (right column) for various electron densities. The temperature is T = 0.05t.

The spinon Green’s function can be computed from the NLσM in the continuum limit.

Using the Schwinger boson parametrization (6.46), we obtain in the large-N limit

〈[Rj′(τ)]σ′α′ [R
∗
j (0)]σs〉 = −D(rj − rj′ , τ)δσσ′δss′ + n0δσsδσ′s′ . (6.68)

The boson propagator D(r, τ) is the Fourier transform of

D(q, iωm) =
1/Z⊥

ω2
m + (Jαβ⊥ qαqβ)/Z⊥ +m2

s

, (6.69)
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with ωm = 2πmT a bosonic Matsubara frequency. Fourier transforming Eq. (6.67), we

obtain the electron Green’s function in momentum representation

Geσσ′(k,k′, iνn) = −T
∑
ωm

∫
q

tr [Gk−q,k′−q(iνn − iωm)]D(q, ωm)δσσ′ + n0 [Gk,k′(iνn)]σσ′ ,

(6.70)

where Gk,k′(iνn) is the mean-field chargon Green’s function, given by Eq. (5.128). We see

that when n0 = 0, the electron Green’s function is diagonal in momentum, that is, it is

translational invariant, as the diagonal components of the chargon one entering the trace

are nonzero only for k = k′. Furthermore, in this case there is no spontaneous symmetry

breaking, because Ge is proportional to the identity matrix in spin space.

The first term in Eq. (6.70) describes incoherent excitations and it is the only contribu-

tion to the electron Green’s function at finite temperature and in the quantum disordered

regime, where n0 = 0. Performing the bosonic Matsubara sum and analytically continuing

to real frequencies (iνn → ω + i0+), the first term in (6.70) becomes

Ge(k, ω) =
∑
`,p=±

∫
|q|≤Λuv

1

4Z⊥ωsp
q

(
1 + `

hk−q

ek−q

)
f(pE`

k−q) + nB(ωsp
q )

ω + i0+ − E`
k−q + p ωsp

q
+ {k→ −k},

(6.71)

where we have defined the spinon dispersion ωsp
q =

√
(J⊥αβqαqβ)/Z⊥ +m2

s, and nB(x) =

(ex/T − 1)−1 is the Bose distribution function. The electron spectral function is computed

from

Ae(k, ω) = − 1

π
Im
{
Ge(k, ω) + n0

[
Gk(ω) +Gk−Q(ω)

]}
, (6.72)

where Gk(ω) and Gk−Q(ω) are obtained by analytically continuing (that is, by replacing

iνn → ω + i0+) Eqs. (5.129a) and (5.129b), respectively.

In the right column of Fig. 6.6, we show the spectral function Ae(k, ω) at zero fre-

quency as a function of momentum for various electron densities in the hole-doped regime.

The temperature T = 0.05t is below the chargon ordering temperature T ∗ in all cases.

Because of the finite temperature, only the first term in Eq. (6.72) contributes to the

spectral function. The Fermi surface topology is the same as the one obtained from a

mean-field approximation of spiral magnetic order [116]. At low hole doping, it originates

from a superposition of hole pockets (see left column of Fig. 6.6), where the spectral
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weight on the back sides is drastically suppressed by coherence factors, so that only the

front sides are visible. The spinon fluctuations lead to a broadening of the spectral func-

tion, smearing out the Fermi surface. Since the spinon propagator does not depend on

the fermionic momentum, the broadening occurs uniformly in the entire Brillouin zone.

Hence, the backbending at the edges of the ”arcs” obtained in our theory for n = 0.9 is

more pronounced than experimentally observed in cuprates. This backbending can be fur-

ther suppressed by including a momentum dependent self-energy or scattering rate with

a larger imaginary part in the antinodal region [196]. For fillings smaller than n ≈ 0.82

the chargon hole pockets merge and the spectral function resembles the large bare Fermi

surface (see last row of Fig. 6.6).



Conclusion

In this Thesis, we have dealt with two main problems. The first one was the identifica-

tion of collective bosonic fluctuations in interacting systems, independent of the coupling

strength, where the vertex function may exhibit an intricate dependence on momenta

and frequencies. For the symmetric phase, we have combined the single-boson exchange

(SBE) parametrization of the vertex function [82] with the functional renormalization

group (fRG) and its fusion with dynamical mean-field theory (DMF2RG). This allows not

only for a clear and physically intuitive identification of the bosonic modes at play in the

many-particle system, but also for a substantial simplification of the complexity of the

vertex function. In the symmetry-broken phases, this identification permits the explicit

introduction of a bosonic field, describing order parameter fluctuations, and it therefore

facilitates the study of fluctuation effects on top of mean-field solutions.

The second problem we dealt with was the development of a theory for the pseudogap

phase able to reconcile features typical of a magnetically ordered state, such as Fermi

arcs in the spectral function [116] and charge carrier drop [32, 78], with the experimen-

tally observed absence of long-range order. This is realized by fractionalizing the electron

into a fermionic chargon, carrying the original electron charge, and a bosonic spinon,

carrying the electron spin [183]. The resulting theory acquires a SU(2) gauge redun-

dancy [37]. While the chargon degrees of freedom can be treated within a mean-field-like

(MF) approximation, giving some kind of magnetic order (often Néel or spiral antiferro-

magnetism), the computation of the spinon dynamics requires to study the fluctuations

on top of the MF. We have therefore analyzed the long-wavelength and low-frequency

properties of the directional fluctuations (Goldstone modes) of the spins in an itinerant

spiral magnet and studied their damping rates due to their decay into particle-hole pairs.

We have also proven that a computation of the low-energy coefficients of the propagators

of the Goldstone modes performed by expanding their relative susceptibilities is equiv-
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alent to computing the system’s response to a fictitious SU(2) gauge field. Finally, we

have applied the SU(2) gauge theory to the two-dimensional Hubbard model at moderate

coupling and derived an effective non-linear sigma model (NLσM) describing the slow

and long wavelength dynamics of the spinons, which enabled us to study the pseudogap

regime.

In the following, we summarize the key results of each chapter.

Charge carrier drop driven by spiral antiferromagnetism

In this chapter, we have performed a dynamical mean-field theory (DMFT) calculation

in the magnetically ordered phase of the two-dimensional Hubbard model on a square

lattice at strong coupling and finite temperature. We have found that over a broad doping

regime spiral magnetic states have a lower energy than the Néel solution, and have a wave

vector of the form Q = (π−2πη, π) (or symmetry related) with the incommensurability η

increasing monotonically as the hole doping p is increased. The magnetic order parameter

∆ decreases with p and vanishes at a critical doping p∗. A zero temperature extrapolation

gives an approximate linear dependence ∆(p) ∝ p∗ − p in a broad doping region below

p∗. Spiral magnetic ordering leads to a Fermi surface reconstruction for p < p∗ that is

responsible for the abrupt change in the charge carriers.

We have computed the longitudinal and Hall conductivities by inserting the mag-

netic gap ∆, the wave vector Q, and the quasiparticle renormalization Z (extracted from

the diagonal component of the DMFT self-energy) into transport equations for mean-

field spin-density wave states with a phenomenological scattering rate [78]. Calculations

have been performed with band parameters mimicking the real compounds YBa2Cu3Oy

(YBCO), and La2-xSrxCuO4 (LSCO). We found a pronounced drop in both the longitu-

dinal conductivity and the Hall number in a narrow doping range below p∗, in agreement

with experiments performed at high magnetic fields [79]. For p > p∗ the calculated Hall

number nH(p) is close to the näıvely expected value 1 + p for YBCO, while for LSCO

parameters it deviates significantly. This is due to the fact that in this regime the band

structure in the vicinity of the Fermi surface cannot be approximated by a simple parabolic

dispersion (in which the 1 + p behavior has been derived). For p < p∗ and sufficiently

far away from p∗, we find that nH(p) ∼ p, in agreement with the fact that the density of

charge carriers is given be the volume of the Fermi pockets. The zero temperature ex-

trapolation of our results as functions of the doping yields p∗ = 0.21 for LSCO parameters
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and p∗ = 0.15 for YBCO. Both values are in the correct range. To better reproduce the

experimentally observed critical dopings one would probably need a modeling that goes

beyond the single-band Hubbard model.

(Bosonized) fRG+MF approach to symmetry broken states

In this chapter, we have performed a dynamical fRG analysis of magnetic and supercon-

ducting ordering tendencies in the 2D Hubbard model at moderate coupling U = 3t. We

have combined a one-loop flow with coupled charge, magnetic and pairing channels in the

symmetric phase above the critical fRG scale Λc with a mean-field approximation with de-

coupled channels in the symmetry-broken regime below Λc. All along the calculation, the

full frequency dependence of the two-particle vertex has been retained, therefore method-

ologically improving the results of Ref. [81]. For the parameters chosen, magnetism is the

leading instability at Λc in the hole doping range from half filling to about 20%. Between

10% and 20% hole doping, also a robust d-wave pairing gap has been found, allowing for

a computation of the superfluid phase stiffness and the Berezinskii-Kosterlitz-Thouless

transition temperature TKT.

In order to go beyond the mean-field approximation, one needs to account for order

parameter fluctuations. This can be conveniently achieved by introducing a bosonic field

by means of a Hubbard-Stratonovich transformation. However, this task may become dif-

ficult when the two-particle vertex at the critical scale exhibits an intricate dependence on

momenta and frequencies. We have therefore devised a technique to factorize the singular

part of the vertex at Λc to introduce a bosonic field. We have subsequently reformulated

the fRG+MF equations for a mixed boson-fermion system and proven that they reproduce

the results of the ”fermionic” framework and they fulfill fundamental constraints such as

the Goldstone theorem and the Ward identities associated with global symmetries. As

a practical example of the feasibility of the method, we have studied the attractive 2D

Hubbard model at half filling, and computed the superconducting order parameter. We

have then computed and analyzed frequency dependencies of the longitudinal and trans-

verse Yukawa couplings, describing the interaction between the electron and collective

amplitude and phase fluctuations of the order parameter, respectively, as well as those of

the so-called residual two-fermion interactions, representing all the non factorizable (bot

not singular) contributions to the two-particle vertex.
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SBE decomposition of the fRG

In this chapter, we have applied the single-boson exchange (SBE) representation of the

vertex function [82] to the fRG and DMF2RG. This representation relies on a diagram-

matic decomposition in contributions mediated by the exchange of a single boson in the

different channels. We have recast the fRG flow equations for the two-particle vertex into

SBE contributions and a residual four-point vertices, which we label as rest functions.

This formulation leads to a substantial reduction of the numerical effort required

to compute the vertex function. In fact, the SBE contributions consist of one screened

interaction, representing the propagator of an effective boson, and two Yukawa couplings,

describing the interaction between the electrons and the boson. If on the one hand the

vertex function is a challenging object to compute, as it depends on three variables k1, k2

and k3, each of them combining momentum and frequency, on the other hand the Yukawa

coupling and the screened interaction require a smaller memory cost, as they depend on

two and one variable, respectively. Furthermore, we have shown that the rest functions

are localized objects in frequency space, particularly at strong coupling, and one can

therefore significantly restrict the total number of frequencies taken into account or even

neglect all the non-SBE terms. The reduced numerical effort facilitates the applicability

of the fRG and DMF2RG to the physically most interesting regime of low temperatures.

We have demonstrated the advantage of the implementation of the SBE decomposition

by means of DMF2RG calculations for the 2D Hubbard model performed up to very large

interactions U = 16t at and away from half filling. We have specifically analyzed the

impact of neglecting the rest function and observed a marginal effect from weak to strong

coupling. Moreover, the SBE decomposition allows for a physical identification of the

collective modes at play in the system, and we have therefore employed it to diagnose

the mechanism for d-wave pairing formation in the doped regime in terms of processes

involving the exchange of magnetic and charge bosons.

Collective modes of metallic spiral magnets

In this chapter, we have derived Ward identities for fermionic systems in which a gauge

symmetry is globally broken. In particular, we have shown that the zero-energy and

long-wavelength components of the gauge kernels are connected to the transverse suscep-

tibilities of the order parameter by exact relations. We have analyzed several examples,
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namely a superconductor, a Néel antiferromagnet, and a spiral magnet.

In the latter case, we have performed a random phase approximation (RPA) analysis

and identified three Goldstone poles in the susceptibilities, one associated with in-plane,

and two associated with out-of-plane fluctuations of the order parameter. Expanding

the susceptibilities near their poles, we have derived expressions for the spin stiffness and

spectral weights of the magnons (corresponding to the Goldstone modes) and checked that

they coincide with those derived by computing the response of the system to a fictitious

SU(2) gauge field, as predicted by the Ward identities. Moreover, we have determined the

form and the size of the decay rates of the magnons due to Landau damping. The Landau

damping of the in-plane mode has the same form as that of a Néel antiferromagnet [179]

and is of the same order as the energy ω of the mode. By contrast, the out-of-plane modes

possess a parametrically smaller Landau damping, of the order ω3/2, implying that they

are asymptotically stable excitations in the low-energy limit.

In the Néel antiferromagnet, we have also shown that the hydrodynamic relation for

the magnon velocities cs =
√
J/χ⊥, with J the spin stiffness and χ⊥ the static transverse

susceptibilities, does not hold in presence of gapless fermionic excitations. In fact, it must

be replaced by cs =
√
J/χ⊥dyn, where χ⊥dyn is obtained from the transverse susceptibility

χ⊥(q, ω) by taking the ω → 0 limit after letting q→ 0, that is, the limits are taken in the

reverse order compared to χ⊥. The equality χ⊥ = χ⊥dyn only holds for insulating magnets

at low temperatures. Similar relations hold for a spiral magnet, too.

We have complemented our analysis with a numerical evaluation of the spin stiffnesses,

spectral weights, and decay rates for a specific two-dimensional model system. Some of

the quantities exhibit peaks and discontinuities as a function of the electron density which

are related to changes of the Fermi surface topology and special contributions in the Néel

state.

SU(2) gauge theory of the pseudogap phase

In this chapter, we have presented a SU(2) gauge theory of fluctuating magnetic order in

the two-dimensional Hubbard model. The theory is based on a fractionalization of the

electron field in fermionic chargons and bosonic spinons [36, 37, 183]. We have treated

the chargons within a renormalized mean-field theory with effective interactions obtained

by a functional renormalization group flow, as described in Chapter 3. We have found a

broad density range in which they undergo Néel or spiral magnetic order below a density-
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dependent temperature T ∗. We have treated the spinons, describing fluctuations of the

spin orientation, within a gradient expansion, and found that their dynamics is governed

by a non-linear sigma model (NLσM). The parameters of the NLσM, namely the spin

stiffnesses, have been computed on top of the magnetically ordered chargon state using a

renormalized RPA, closely following the formulas of Chapter 5. At any finite temperature

the spinon fluctuations prevent long-range order, in agreement with the Mermin-Wagner

theorem, while at zero temperature they are not strong enough to destroy the magnetic

order. Our approximations are valid for a weak or moderate Hubbard interaction U .

It is possible that at strong coupling spinon fluctuations get enhanced, thus destroying

long-range order even in the ground state.

Despite the moderate interaction strength chosen in our calculations, the phase below

T ∗, where the chargon magnetically order, displays all important feature typical of the

pseudogap regime in high-Tc cuprates. Even though spinon fluctuations destroy long-range

order at any finite T , they do not strongly affect the electron spectral function, which

remains similar to that of a magnetically ordered state, thus displaying Fermi arcs. They

also do not affect charge transport significantly, that is, quantities like longitudinal or

Hall conductivities can be computed within the ordered chargon subsystem, yielding [32,

78, 116–120] the drastic charge carrier drop observed at the onset of the psedogap regime

in hole-doped cuprates [4, 79, 115]. Spiral order of the chargons entails nematic order

of the electrons. At low hole doping, the chargons form a Néel state at T ∗, and a spiral

state below Tnem. Thus, the electrons undergo a nematic phase transition at a critical

temperature below the pseudogap temperature T ∗. Evidence for a nematic transition at

a temperature Tnem < T ∗ has been found recently in slightly underdoped YBCO [197].

For large hole doping, instead, the nematic transition occurs exactly at T ∗. For electron

doping nematic order is completely absent.

Outlook

The results presented in this thesis showed methodological advances and raised further

questions beyond the scope of this thesis. In the following, we shortly present several

paths for extensions.

First of all, the parametrization of the vertex function in terms of single boson ex-

change processes and rest functions allows for a substantial reduction of the computational
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cost. In fact, the Yukawa coupling and the bosonic propagator depend on less arguments

than the full two-particle vertex, while the rest function is shown to display a fast decay

with respect to all its three frequency variables, especially in the strong coupling regime.

The reduced numerical effort facilitates the applicability of the fRG and DMF2RG to

the most interesting regime of strong correlations and low temperatures. The SBE de-

composition also offers the possibility to explicitly introduce bosonic fields and therefore

study the flow of mixed boson-fermion systems. This extension is particularly interest-

ing to analyze the impact of bosonic fluctuations on top of mean-field solutions below

the (pseudo-) critical scale, where symmetry breaking occurs. The reformulation of the

fRG+MF approach with the explicit introduction of a bosonic field offers, in this respect,

a convenient starting point. The generalization of the SBE decomposition to other mod-

els with different lattices or non-local interactions, where the higher degree of frustration

reduces the pseudo-critical temperatures, is also an interesting extension.

A second path for extensions is given by refinements of the SU(2) gauge theory for the

pseudogap regime. In this thesis, we have considered only Néel or spiral ordering of the

chargons. In the ground state of the two-dimensional Hubbard model, however, there is a

whole zoo of possible magnetic ordering patterns, and away from half filling Néel or spiral

order do not always minimize the energy. One possible competitor is stripe order, where

the spins are antiferromagnetically ordered with a unidirectional periodic modulation

of the amplitude of the order parameter and of the electron density. If we treat the

chargon stripe phase with the same formalism developed in this thesis, magnetic long-

range order would be destroyed by directional fluctuations of the spins, while the charge

density wave (CDW) may survive. In the, actually quite general, case of incommensurate

stripe order wave vector, also charge order can become fluctuating due to a soft sliding

mode that acts as a Goldstone mode and destroys the CDW at finite temperatures, thus

explaining the experimental observation of fluctuating charge order within the pseudogap

phase [198]. Another refinement of our SU(2) gauge theory to make it more quantitative

is to circumvent the need of a ultraviolet cutoff by formulating it on the lattice, that is,

by avoiding the long-wavelength expansion. The weak coupling calculation presented in

this thesis has revealed that quantum fluctuations of the spinons are not strong enough

to destroy long-range order in the ground state, giving rise to exponentially small spin

gaps at low temperatures. This is due to the large value of the magnetic coherence length

ξA that makes the ultraviolet cutoff Λuv small, thereby weakening quantum fluctuations.



186 Conclusion

At strong coupling, the situation might change, as ξA gets drastically reduced and Λuv

enhanced, thus possibly disordering the ground state. Furthermore, our theory does

not take into account topological defects in the spin pattern, as we expect them to be

suppressed at low temperatures and deep in the pseudogap phase. However, at higher

values of T or near the critical doping at which the chargon order parameter vanishes,

they may proliferate, potentially making the sharp metal-to-pseudogap-metal transition

more similar to a crossover, similarly to what is observed in experiments.
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Appendix A

Symmetries and flow equation of the

vertex function

In this Appendix, we present the symmetries and the explicit flow equation of the vertex

function V .

A.1 Symmetries of V

we start by considering the effect of the following symmetries on V : SU(2)-spin, lattice-,

and time reversal (TRS) symmetries, translational invariance, remnants of anti-symmetry

(RAS), and complex conjugation (CC). More detailed discussions can be found in [46, 102,

153].

A.1.1 Antisymmetry properties

The two-particle vertex enters the effective action as

1

(2!)2

∑
x′1,x

′
2,

x1,x2

V (x′1, x
′
2, x1, x2)ψ(x′1)ψ(x′2)ψ(x2)ψ(x1), (A.1)

where x = (k, ν, σ) is a collective variable enclosing the lattice momentum k, a fermionic

Matsubara frequency ν and the spin quantum number σ. From now on we label as k the

pair (k, ν). From Eq. (A.1), we immediately see that exchanging the dummy variables

x′1 and x′2 or x1 and x2 the effective action gets a minus sign because of the Grassmann
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algebra of the fields ψ and ψ. To keep the effective action invariant, the vertex must

therefore obey

V (x′1, x
′
2, x1, x2) = −V (x′2, x

′
1, x1, x2) = −V (x′1, x

′
2, x2, x1). (A.2)

A.1.2 SU(2)-spin symmetry

The SU(2)-spin symmetry acts on the fermionic fields as

ψk,σ →
∑
σ′

Uσσ′ ψk,σ, (A.3a)

ψk,σ →
∑
σ′

U †σσ′ ψk,σ, (A.3b)

with U ∈ SU(2). A vertex that is invariant under (A.3b) can be expressed as (see also

Eq. (1.41))

Vσ′1σ′2σ1σ2
(k′1, k

′
2, k1, k2) = V (k′1, k

′
2, k1, k2)δσ′1σ1

δσ′2σ2
+ V (k′1, k

′
2, k1, k2)δσ′1σ2

δσ′2σ1
, (A.4)

where Eq. (A.2) forces the identity

V (k′1, k
′
2, k1, k2) = −V (k′2, k

′
1, k1, k2) = −V (k′1, k

′
2, k2, k1). (A.5)

From now on we only consider symmetry properties of the vertex function V = V↑↓↑↓.

A.1.3 Time and space translational invariance

The invariance of the system under time and space translations implies energy and mo-

mentum conservation, respectively. If these symmetries are fulfilled, then the vertex

function can be written as

V (k′1, k
′
2, k1, k2) = V (k′1, k

′
2, k1) δ (k′1 + k′2 − k1 − k2) . (A.6)
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A.1.4 Remnants of antisymmetry

The vertex function V is not antisymmetric under the exchange of the pair (k′1, k
′
2) or

(k1, k2). It is however invariant under a simultaneous exchange of them, that is,

V (k′1, k
′
2, k1, k2) = V (k′2, k

′
1, k2, k1). (A.7)

We call this symmetry remnants of antisymmetry (RAS).

A.1.5 Time reversal symmetry

A time reversal transformation exchanges the fermionic creation and annihilation opera-

tors. It acts on the Grassmann variables as

ψk,σ → iψk,σ, (A.8a)

ψk,σ → iψk,σ. (A.8b)

Since this is a symmetry of the bare action, the vertex function must obey

V (k′1, k
′
2, k1, k2) = V (k1, k2, k

′
1, k
′
2). (A.9)

A.1.6 Lattice symmetries

The square lattice considered in this Thesis is invariant under transformations belonging

to the discrete group C4. The latter are implemented on the fermionic fields as

ψ(k,ν),σ → ψ(Rk,ν),σ, (A.10a)

ψ(k,ν),σ → ψ(Rk,ν),σ, (A.10b)

with R ∈ C4. If the lattice symmetries are not spontaneously broken, the vertex function

obeys

V (k′1, k
′
2, k1, k2) = V (Rk′1, R k

′
2, R k1, R k2), (A.11)

with Rk = (Rk, ν). For a more detailed discussion see Ref. [199].
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A.1.7 Complex conjugation

The complex conjugation (CC) transformation acts as

ψk,σ → iKψk̃,σ, (A.12a)

ψk,σ → iKψk̃,σ, (A.12b)

where k̃ = (k,−ν), and the operator K transforms scalars into their complex conjugate.

Since CC is a symmetry of the Hubbard action, the vertex function fulfills

V (k′1, k
′
2, k1, k2) =

[
V (k̃′1, k̃

′
2, k̃1, k̃2)

]∗
. (A.13)

A.1.8 Channel decomposition

Let us now analyze how the above described symmetries act on the physical channels in

which the vertex function can be decomposed (see also Eq. (1.48))

V Λ(k′1, k
′
2, k1) =λ(k′1, k

′
2, k1)

+
1

2
MΛ

kph,k
′
ph

(k1 − k′1)− 1

2
CΛ
kph,k

′
ph

(k1 − k′1)

+MΛ
kph,k

′
ph

(k′2 − k1)

− PΛ
kpp,k′pp

(k′1 + k′2),

(A.14)

with kph, k
′
ph, kph, k

′
ph

, kpp, and k′pp defined as in Eq. (1.46). Combining RAS, TRS, CC,

and, among the lattice symmetries, only the spatial inversion, we can prove that

Mk,k′(q) =Mk′,k(q), (A.15a)

Mk,k′(q) =Mk,k′(−q), (A.15b)

Mk,k′(q) = [M−k+qm2,−k′+qm2(q)]∗ , (A.15c)
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with qm2 = (0, 2(jmod 2)πT ), j ∈ Z. The same relations can be obtained for the charge

channel

Ck,k′(q) = Ck′,k(q), (A.16a)

Ck,k′(q) = Ck,k′(−q), (A.16b)

Ck,k′(q) = [C−k+qm2,−k′+qm2(q)]∗ , (A.16c)

Differently, for the pairing channel, we have

Pk,k′(q) = P−k+qm2,−k′+qm2(q), (A.17a)

Pk,k′(q) = Pk′,k(q), (A.17b)

Pk,k′(q) = [Pk,k′(−q)]∗ . (A.17c)

A.1.9 SBE decomposition

It is also useful to apply the symmetries described above to the SBE decomposition of

the vertex function, introduced in Chap. 4. In more detail, we study the symmetry

properties of screened interactions and Yukawa couplings, as the rest functions obey the

same relations as their relative channel, as described above.

Magnetic channel

The symmetries in the magnetic channel read as

hmk (q) = hmk (−q), (A.18a)

hmk (q) =
[
hm−k+qm2(q)

]∗
, (A.18b)

Dm(q) = Dm(−q), (A.18c)

Dm(q) = [Dm(q)]∗ . (A.18d)
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Charge channel

Similarly, in the charge channel we have

hck(q) = hck(−q), (A.19a)

hck(q) =
[
hc−k+qm2(q)

]∗
, (A.19b)

Dc(q) = Dc(−q), (A.19c)

Dc(q) = [Dc(q)]∗ . (A.19d)

Pairing channel

In the pairing channel we obtain

hpk(q) = hp−k+qm2(q), (A.20a)

hpk(q) = [hpk(−q)]
∗ , (A.20b)

Dp(q) = [Dp(−q)]∗ . (A.20c)

A.2 Explicit flow equations for physical channels

In this section, we explicitly express the flow equations for the physical channels within

the form factor expansion introduced in Sec. 3.2.1. The flow equation for the s-wave

projected magnetic channel reads as

∂ΛMν,ν′(q) = −T
∑
ω

V m
νω(q)

[
∂̃Λχ

0,ph
ω (q)

]
V m
ων(q), (A.21)

with the bubble reading as

χ0,ph
ν (q) =

∫
k

G
(

(k, ν) +
⌊q

2

⌋)
G
(

(k, ν)−
⌈q

2

⌉)
, (A.22)
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and the vertex V m as

V m
νν′(q,Ω) =U +Mνν′(q,Ω)

+

∫
k

{
− 1

2
Cd ν+ν′

2 e−dΩ
2 e,d ν+ν′

2 e+bΩ
2 c(k, ν

′ − ν)

+
1

2
Md ν+ν′

2 e−dΩ
2 e,d ν+ν′

2 e+bΩ
2 c(k, ν

′ − ν)

− Sd ν−ν′−Ω
2 e,d ν′−ν−Ω

2 e(k, ν + ν ′ − Ωm2)

−Dd ν−ν′−Ω
2 e,d ν′−ν−Ω

2 e(k, ν + ν ′ − Ωm2)
cos kx + cos ky

2

}
.

(A.23)

Similarly, in the charge channel, we have

∂ΛCν,ν′(q) = −T
∑
ω

V c
νω(q)

[
∂̃Λχ

0,ph
ω (q)

]
V c
ων(q), (A.24)

with

V c
νν′(q,Ω) =U − Cνν′(q,Ω)

+

∫
k

{
1

2
Cd ν+ν′

2 e−dΩ
2 e,d ν+ν′

2 e+bΩ
2 c(k, ν

′ − ν)

+
3

2
Md ν+ν′

2 e−dΩ
2 e,d ν+ν′

2 e+bΩ
2 c(k, ν

′ − ν)

− 2Sd ν−ν′−Ω
2 e,d ν−ν′+Ω

2 e(k, ν + ν ′ − Ωm2)

+ Sd ν−ν′−Ω
2 e,d ν′−ν−Ω

2 e(k, ν + ν ′ − Ωm2)

− 2Dd ν−ν′−Ω
2 e,d ν−ν′+Ω

2 e(k, ν + ν ′ − Ωm2)
cos kx + cos ky

2

+Dd ν−ν′−Ω
2 e,d ν′−ν−Ω

2 e(k, ν + ν ′ − Ωm2)
cos kx + cos ky

2

}
.

(A.25)

The flow equation for the s-wave pairing channel reads as

∂ΛSν,ν′(q) = T
∑
ω

V p
νω(q)

[
∂̃Λχ

0,pp
ω (q)

]
V p
ων(q), (A.26)
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with the particle-particle bubble given by

χ0,pp
ν (q) =

∫
k

G
(⌊q

2

⌋
+ (k, ν)

)
G
(⌈q

2

⌉
− (k, ν)

)
, (A.27)

and the vertex V p as

V p
νν′(q,Ω) =U − Sνν′(q,Ω)

+

∫
k

{
− 1

2
CbΩ

2 c−d ν+ν′
2 e,dΩ

2 e−d ν+ν′
2 e(k, ν

′ − ν)

+
1

2
MbΩ

2 c−d ν+ν′
2 e,dΩ

2 e−d ν+ν′
2 e(k, ν

′ − ν)

+Md ν−ν′+Ω
2 e,d ν′−ν+Ω

2 e(k,−ν − ν
′ + Ωm2)

}
.

(A.28)

Finally, in the d-wave pairing channel, we have

∂ΛDν,ν′(q) = T
∑
ω

V d
νω(q)

[
∂̃Λχ

0,pp,d
ω (q)

]
V d
ων(q), (A.29)

where the d-wave pairing bubble is

χ0,pp,d
ν (q) =

∫
k

d2
kG
(⌊q

2

⌋
+ (k, ν)

)
G
(⌈q

2

⌉
− (k, ν)

)
, (A.30)

with dk = cos kx − cos ky, and the vertex V d is given by

V d
νν′(q,Ω) =−Dνν′(q,Ω)

+

∫
k

cos kx + cos ky
2

{
+

1

2
CbΩ

2 c−d ν+ν′
2 e,dΩ

2 e−d ν+ν′
2 e(k, ν

′ − ν)

− 1

2
MbΩ

2 c−d ν+ν′
2 e,dΩ

2 e−d ν+ν′
2 e(k, ν

′ − ν)

−Md ν−ν′+Ω
2 e,d ν′−ν+Ω

2 e(k,−ν − ν
′ + Ωm2)

}
.

(A.31)
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Bosonized flow equations in the SSB

phase

B.1 Derivation of flow equations in the bosonic for-

malism

In this section we will derive the flow equations used in Chap. 3.

We consider only those terms in which the dependence on the center of mass mo-

mentum q is fixed to zero by the topology of the relative diagram or that depend only

parametrically on it. These diagrams are the only ones necessary to reproduce the MF

approximation.

The flow equations will be derived directly from the Wetterich equation (1.25), with

a slight modification, since we have to keep in mind that the bosonic field φ acquires a

scale dependence due to the scale dependence of its expectation value. The flow equation

reads (for real αΛ):

∂ΛΓΛ =
1

2
∂̃ΛStr ln

[
Γ(2)Λ +RΛ

]
+

δΓΛ

δσq=0

∂Λα
Λ, (B.1)

where Γ(2)Λ is the matrix of the second derivatives of the action with respect to the fields,

the supertrace Str includes a minus sign when tracing over fermionic variables. The first

equation we derive is the one for the flowing expectation value αΛ. This is obtained by

requiring that the one-point function for σq vanishes. Taking the σq derivative in Eq. (B.1)
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and setting the fields to zero, we have

∂ΛΓ(0,1,0)Λ(q = 0) ≡ ∂Λ
δΓΛ

δσq=0

∣∣∣∣
Ψ,Ψ,σ,π=0

= −
∫
k

hΛ
σ (k; 0) ∂̃ΛF

Λ(k) +mΛ
σ (0) ∂Λα

Λ = 0,

(B.2)

where we have defined

Γ(2n1,n2,n3)Λ =
δ(2n1+n2+n3)ΓΛ(

δΨ
)n1

(δΨ)n1 (δσ)n2 (δπ)n3
. (B.3)

From Eq. (B.2) we get the flow equation for αΛ.

∂Λα
Λ =

1

mΛ
σ (0)

∫
k

hΛ
σ (k; 0) ∂̃ΛF

Λ(k). (B.4)

The MF flow equation for the fermionic gap reads

∂Λ∆Λ(k) =

∫
k′
AΛ(k, k′; 0) ∂̃ΛF

Λ(k′) + ∂Λα
Λ hΛ

σ (k; 0), (B.5)

with AΛ being the residual two fermion interaction in the longitudinal channel. The

equation for the inverse propagator of the σq boson is

∂Λm
Λ
σ (q) =

∫
p

hΛ
σ (p; q)

[
∂̃ΛΠΛ

11(p; q)
]
hΛ
σ (p; q)+

∫
p

Γ(2,2,0)Λ(p, 0, q) ∂̃ΛF
Λ(p)

+∂Λα
Λ Γ(0,3,0)Λ(q, 0),

(B.6)

where we have defined the bubble at finite momentum q as

ΠΛ
αβ(k; q) = −1

2
Tr
[
ταGΛ(k)τβGΛ(k − q)

]
, (B.7)

Γ(0,3,0)Λ is an interaction among three σ bosons and Γ(2,2,0)Λ couples one fermion and 2

longitudinal bosonic fluctuations. The equation for the longitudinal Yukawa coupling is

∂Λh
Λ
σ (k; q) =

∫
p

AΛ(k, p; q)
[
∂̃ΛΠΛ

11(p; q)
]
hΛ
σ (p, q)+

∫
k′

Γ(4,1,0)Λ(k, p, q, 0) ∂̃ΛF
Λ(p)

+∂Λα
Λ Γ(2,2,0)Λ(k, q, 0),

(B.8)
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where Γ(4,1,0)Λ is a coupling among 2 fermions and one σ boson. The flow equation for

the coupling AΛ reads instead

∂ΛAΛ(k, k′; q) =

∫
p

AΛ(k, p; q)
[
∂̃ΛΠΛ

11(p; q)
]
AΛ(p, k′; q)

+

∫
p

Γ(6,0,0)Λ(k, k′, q, p, 0) ∂̃ΛF
Λ(p) + ∂Λα

Λ Γ(4,1,0)Λ(k, k′, q, q),

(B.9)

with Γ(6,0,0)Λ the 3-fermion coupling. We recall that in all the above flow equations, we

have considered only the terms in which the center of mass momentum q enters paramet-

rically in the equations. This means that we have assigned to the flow equation for AΛ

only contributions in the particle-particle channel and we have neglected in all flow equa-

tions all the terms that contain a loop with the normal single scale propagator ∂̃ΛG
Λ(k).

Within a reduced model, where the bare interaction is nonzero only for q = 0 scattering

processes, the mean-field is the exact solution and one can prove that, due to the reduced

phase space, only the diagrams that we have considered in our truncation of the flow equa-

tions survive [90]. In order to treat the higher order couplings, Γ(0,3,0)Λ, Γ(2,2,0)Λ, Γ(4,1,0)Λ

and Γ(6,0,0)Λ, one can approximate their flow equations in order to make them integrable

in way similar to Katanin’s approximation for the 3-fermion coupling. The integrated

results are the fermionic loop integrals schematically shown in Fig. B.1. Skipping any

calculation, we just state that this approximation allows for absorbing the second and

third terms on the right hand-side of Eqs. (B.6), (B.8) and (B.9) into the first one just

by replacing ∂̃ΛΠΛ
11 with its full derivative ∂ΛΠΛ

11. In summary:

∂Λm
Λ
σ (q) =

∫
p

hΛ
σ (p; q)

[
∂ΛΠΛ

11(p; q)
]
hΛ
σ (p; q), (B.10a)

∂Λh
Λ
σ (k; q) =

∫
p

AΛ(k, p; q)
[
∂ΛΠΛ

11(p; q)
]
hΛ
σ (p; q), (B.10b)

∂ΛAΛ(k, k′; q) =

∫
p

AΛ(k, p; q)
[
∂ΛΠΛ

11(p; q)
]
AΛ(p, k′; q). (B.10c)
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Figure B.1: Feynman diagrams describing the Katanin-like approximation higher order
correlation functions. The conventions are the same as in Figs. 3.5 and 3.6.

With a similar approach, one can derive the flow equations for the transverse couplings:

∂Λm
Λ
π (q) =

∫
p

hΛ
π (p; q)

[
∂ΛΠΛ

22(p; q)
]
hΛ
π (p; q), (B.11a)

∂Λh
Λ
π (k; q) =

∫
p

ΦΛ(k, p; q)
[
∂ΛΠΛ

22(p; q)
]
hΛ
π (p; q), (B.11b)

∂ΛΦΛ(k, k′; q) =

∫
p

ΦΛ(k, p; q)
[
∂ΛΠΛ

22(p; q)
]

ΦΛ(p, k′; q). (B.11c)

B.2 Calculation of the irreducible vertex in the bosonic

formalism

In this appendix we provide a proof of Eq. (3.63) by making use of matrix notation. If

the full vertex can be decomposed as in Eq. (3.44)

V = Q+
h[h]T

m
, (B.12)
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we can plug this relation into the definition of the irreducible vertex, Eq. (3.35). With

some algebra we obtain

Ṽ = [1 + VΠ]−1 V =

[
1 +

h̃[h]T

m
Π

]−1 [
Q̃+

h̃[h]T

m

]
, (B.13)

where in the last equality we have inserted a representation of the identity,

1 = [1 +QΠ] [1 +QΠ]−1 , (B.14)

in between the two matrices and we have made use of definitions (3.56) and (3.58). With

a bit of simple algebra, we can analytically invert the matrix on the left in the last line

of Eq. (B.13), obtaining [
1 +

h̃[h]T

m
Π

]−1

= 1− h̃[h]T

m̃
Π, (B.15)

Where m̃ is defined in Eq. (3.60). By plugging this result into Eq. (B.13), we finally

obtain

Ṽ = Q̃+
h̃[h̃]T

m̃
, (B.16)

that is the result of Eq. (3.63).

B.3 Algorithm for the calculation of the superfluid

gap

The formalism described in Sec. 3.3.2 allows us to formulate a minimal set of closed

equations required for the calculation of the gap. We drop the Λ superscript, assuming

that we have reached the final scale. The gap can be computed using the Ward identity,

so we can reduce ourselves to a single self consistent equation for α, that is a single scalar

quantity, and another one for hπ, momentum dependent. The equation for α is Eq. (3.66).

The transverse Yukawa coupling is calculated through Eq. (3.61b). The equations are

coupled since the superfluid gap ∆ = αhπ appears in the right hand side of both.

We propose an iterative loop to solve the above mentioned equations. By starting with the
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initial conditions α(0) = 0 and h
(0)
π (k) = 0, we update the transverse Yukawa coupling at

every loop iteration i according to Eq. (3.61b), that can be reformulated in the following

algorithmic form:

h(i+1)
π (k) =

∫
k′

[
M (i)(k, k′)

]−1
h̃Λs(k′), (B.17)

with the matrix M (i) defined as

M (i)(k, k′) = δk,k′ − Q̃Λs(k, k′) Π
(i)
22 (k′;α(i)), (B.18)

and the 22-bubble rewritten as

Π
(i)
22 (k;α) =

1

G−1(k)G−1(−k) + α2
[
h

(i)
π (k)

]2 , (B.19)

with G(k) defined in Eq. (3.11). Eq. (B.17) is not solved self consistently at every loop

iteration i, because we have chosen to evaluate the r.h.s with hπ at the previous iteration.

α(i+1) is calculated by self consistently solving

1 =
1

m̃Λs

∫
k

h̃Λs(k) Π
(i+1)
22 (k;α)h(i+1)

π (k) (B.20)

for α. The equation above is nothing but Eq. (3.66) where the solution α = 0 has been

factorized away. The loop consisting of Eqs. (B.17) and (B.20) must be repeated until

convergence is reached in α and, subsequently, in hπ. This formulation of self consistent

equations is not computationally lighter than the one in the fermionic formalism, but

more easily controllable, as one can split the frequency and momentum dependence of the

gap (through hπ) from the strength of the order (α). Moreover, thanks to the fact that

hπ is updated with an explicit expression, namely Eq. (B.17), that is in general a well

behaved function of k, the frequency and momentum dependence of the gap is assured to

be under control.



Appendix C

Alternative derivation of the SBE

flow equations

In this Appendix, we present an alternative derivation of the flow equations presented

in Chap. 4, obtained by the introduction bosonic fields via three Hubbard-Stratonovich

transformations (HST). We re-write the bare interaction as

Un↑n↓ = 3Un↑n↓ − 2Un↑n↓, (C.1)

and apply three different HST on each of the first three terms, one for physical channel.

In formulas this can be expressed as

ZHubbard =

∫
D
(
ψ, ψ̄

)
e−SHubbard[ψ,ψ̄] =

∫
DΦD

(
ψ, ψ̄

)
e−Sbos[ψ,ψ̄,Φ], (C.2)
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where Φ = (~φm, φc, φp, φ
∗
p) collects all three bosonic fields, SHubbard is the bare Hubbard

action, and the bosonized one is given by

Sbos

[
ψ, ψ̄,Φ

]
=−

∫
k,σ

ψ̄k,σ (iν + µ− εk)ψk,σ

− 1

2

∫
q

φc(−q)
1

U
φc(q)−

1

2

∫
q

~φm(−q) · 1

U
~φm(q)

+

∫
q

φ∗p(q)
1

U
φp(q) +

∫
k,q,σ

φc(q) ψ̄k+ q
2
,σψk− q

2
,σ

+

∫
k,q

∑
σ,σ′

~φm(q) · ψ̄k+ q
2
,σ~σσσ′ψk− q

2
,σ′

+

∫
k,q

[
φp(q) ψ̄ q

2
+k,↑ψ̄ q

2
−k,↓ + φ∗p(q)ψ q

2
−k,↓ψ q

2
+k,↑

]
− 2U

∫ β

0

dτ
∑
j

nj,↑(τ)nj,↓(τ).

(C.3)

The remaining (not bosonized) −2U term in Sbos, avoids double counting of the bare

interaction.

We then introduce the RG scale via a regulator acting on the fermions. The regularized

generating functional reads as

WΛ [η, η̄,J ] = − ln

∫
DΦ

∫
D
(
ψ, ψ̄

)
e−S

Λ
bos[ψ,ψ̄,Φ]+(ψ̄,η)+(η̄,ψ)+(Φ,J), (C.4)

with

SΛ
bos

[
ψ, ψ̄,Φ

]
= Sbos

[
ψ, ψ̄,Φ

]
+

∫
k,σ

ψ̄k,σ R
Λ(k)ψk,σ. (C.5)

The initial conditions at Λ = Λini depend on the formalism used. In the plain fRG, we

impose RΛ→Λini(k)→∞, so that at the initial scale the effective action must equal Sbos.

Differently, within the DMF2RG, the regulator must fulfill

RΛini(k) = εk −∆AIM (ν) , (C.6)

so that we have

SΛini
[
ψ, ψ̄,Φ

]
= SAIM

[
ψ, ψ̄,Φ

]
, (C.7)

where SAIM

[
ψ, ψ̄

]
is the action of the self-consistent AIM, where (local) bosonic fields



Appendix 205

have been introduced via HST. The initial conditions for the effective action therefore

read as

ΓΛini
[
ψ, ψ̄,Φ

]
= ΓAIM

[
ψ, ψ̄,Φ

]
, (C.8)

with ΓAIM

[
ψ, ψ̄,Φ

]
the effective action of the self-consistent AIM. Expanding it in terms

of 1PI functions, one recovers the initial conditions given in Sec. 4.2.2, where the screened

interactions DX and the Yukawa couplings hX at the initial scale equal their local coun-

terpart of the AIM.

The above defined formalism allows for a straightforward inclusion of the bosonic

fluctuations that, among other things, are responsible for the fulfillment of the Mermin-

Wagner theorem. In fact, the present formalism can be extended by adding some boson-

boson interaction terms [45, 147, 148] which can suppress the divergence of the bosonic

propagators at a finite scale.
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Appendix D

Details on the RPA for spiral

magnets

In this Appendix, we report some details on the RPA calculation of the collective excita-

tions in spiral magnets.

D.1 Coherence factors

The coherence factors entering the bare susceptibilities χ̃0
ab(q, ω) in Eq. (5.88) are defined

as

Aab``′(k,q) =
1

2
Tr
[
σau`kσ

bu`
′

k+q

]
, (D.1)

with u`k given by (see Eq. (5.76))

u`k = σ0 + `
hk

ek

σ3 + `
∆

ek

σ1. (D.2)

Here, ` and `′ label the quasiparticle bands, and a and b correspond to the charge-

spin indices. Performing the trace, we get the following expression for the charge-charge

coherence factor

A00
``′(k,q) = 1 + ``′

hkhk+q + ∆2

ekek+q

, (D.3)
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while for the mixed charge-spin ones we have

A01
``′(k,q) = `

∆

ek

+ `′
∆

ek+q

, (D.4)

A02
``′(k,q) = −i``′∆hk − hk+q

ekek+q

, (D.5)

A03
``′(k,q) = `

hk

ek

+ `′
hk+q

ek+q

. (D.6)

The diagonal spin coherence factors are given by

A11
``′(k,q) = 1− ``′ hkhk+q −∆2

ekek+q

, (D.7)

A22
``′(k,q) = 1− ``′ hkhk+q + ∆2

ekek+q

, (D.8)

A33
``′(k,q) = 1 + ``′

hkhk+q −∆2

ekek+q

, (D.9)

and the off-diagonal ones by

A12
``′(k,q) = −i` hk

ek

+ i`′
hk+q

ek+q

, (D.10)

A13
``′(k,q) = ``′∆

hk + hk+q

ekek+q

, (D.11)

A23
``′(k,q) = −i` ∆

ek

+ i`′
∆

ek+q

. (D.12)

The remaining off-diagonal coherence factors can be easily obtained from the above ex-

pressions and the relation Aba``′(k,q) = [Aab``′(k,q)]∗. The Aab``′(k,q) are purely imaginary

if and only if one of the two indices equals two, and real in all other cases. Thus, the

exchange of a and b gives

Aba``′(k,q) = papbAab``′(k,q) (D.13)

with pa = +1 for a = 0, 1, 3 and pa=2 = −1.

Using ξk = ξ−k, one obtains h−k−Q = −hk, g−k−Q = gk, e−k−Q = ek and u`−k−Q =

σ1u`kσ
1. From Eq. (D.1), one sees that

Aab`′`(−k−Q− q,q) =
1

2
Tr
[
σ̃bu`k+qσ̃

au`
′

k

]
, (D.14)
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with σ̃a = σ1σaσ1 = saσa, where sa = +1 for a = 0, 1, and sa = −1 for a = 2, 3. Using

Eq. (D.13), one obtains

Aab`′`(−k−Q− q,q) = sasbAba``′(k,q) = sabAab``′(k,q), (D.15)

where

sab = sasbpapb = (1− 2δa3)(1− 2δb3). (D.16)

D.2 Symmetries of the bare susceptibilities

In this Section, we prove the symmetries of the bare bubbles listed in Table 5.1.

D.2.1 Parity under frequency sign change

We decompose expression (5.88) into intraband and interband contributions

χ̃0
ab(q, z) =− 1

8

∑
`

∫
k

Aab`` (k,q)
f(E`

k)− f(E`
k+q)

E`
k − E`

k+q + z

− 1

8

∑
`

∫
k

Aab`,−`(k,q)
f(E`

k)− f(E−`k+q)

E`
k − E

−`
k+q + z

,

(D.17)

with z a generic complex frequency. Splitting the difference of the Fermi functions, and

making the variable change k→ −k−Q−q in the integral in the second term, we obtain

for the intraband term

[χ̃0
ab(q, z)]intra =− 1

8

∑
`

∫
k

Aab`` (k,q)
f(E`

k)

E`
k − E`

k+q + z

− 1

8

∑
`

∫
k

Aab`` (k,q)
f(E−`−k−Q−q)

E`
−k−Q − E`

−k−Q−q − z
.

(D.18)

Using Eq. (D.15) and E`
−k−Q = E`

k, we obtain

[χ̃0
ab(q, z)]intra = −1

8

∑
`

∫
k

Aab`` (k,q)f(E`
k)

(
1

E`
k − E`

k+q + z
+

sab

E`
k − E`

k+q − z

)
.

(D.19)
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Similarly, we rewrite the interband term as

[χ̃0
ab(q, z)]inter =− 1

8

∑
`

∫
k

Aab`,−`(k,q)
f(E`

k)

E`
k − E

−`
k+q + z

− 1

8

∑
`

∫
k

Aab−`,`(−k− q−Q,q)
−f(E`

−k−Q)

−(E`
−k−Q − E

−`
−k−Q−q − z)

,

where in the second term we have made the substitution `→ −`. Using again Eq. (D.15),

we get

[χ̃0
ab(q, z)]inter = −1

8

∑
`

∫
k

Aab`,−`(k,q)f(E`
k)

(
1

E`
k − E

−`
k+q + z

+
sab

E`
k − E

−`
k+q − z

)
.

(D.20)

Summing up the interband and intraband terms, we obtain

χ̃0
ab(q,−z) = sabχ̃0

ab(q, z). (D.21)

In the physical case of retarded suscecptibilities, that is, z = ω + i0+, we get

χ̃0r
ab(q,−ω) = sabχ̃0r

ab(q, ω), (D.22a)

χ̃0i
ab(q,−ω) = −sabχ̃0i

ab(q, ω), (D.22b)

with χ̃0r
ab and χ̃0i

ab defined in the main text.

Parity under momentum sign change

Performing the variable change k → k − q/2 in the definition of the bare susceptibility,

we get

χ̃0
ab(q, z) = χ̃ab0 (q, z) = −1

8

∑
``′

∫
k

Aab``′
(
k− q

2
,q
) f(E`

k−q
2
)− f(E`′

k+q
2
)

E`
k−q

2
− E`′

k+q
2

+ z
. (D.23)

Using

Aab`′`

(
k +

q

2
,−q

)
= Aba``′

(
k− q

2
,q
)

= papbAab``′
(
k− q

2
,q
)
, (D.24)

we immediately see that

χ̃0
ab(−q,−z) = papb χ̃0

ab(q, z). (D.25)
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Combining this result with Eq. (D.21), we obtain

χ̃0
ab(−q, z) = pab χ̃0

ab(q, z), (D.26)

with pab defined as

pab = papbsab = sasb = (1− 2δa2)(1− 2δb2)(1− 2δa3)(1− 2δb3). (D.27)

In the case of retarded susceptibilities, that is, z = ω + i0+, we get

χ̃0r
ab(−q, ω) = pabχ̃0r

ab(q, ω), (D.28a)

χ̃0i
ab(−q, ω) = −pabχ̃0i

ab(q, ω). (D.28b)

D.3 Calculation of χ̃0
33(±Q, 0)

In this Appendix we prove the relation (5.94) for χ̃0
33(−Q, 0). The corresponding relation

for χ̃0
33(Q, 0) follows from the parity of χ̃0

33(q, ω) under q→ −q. Using the general expres-

sion (5.89) for the bare susceptibility, and Eq. (D.9) for the coherence factor A33
``′(k,q),

one obtains

χ̃0
33(−Q, 0) = −1

8

∫
k

[
1 +

hkhk−Q −∆2

ekek−Q

](
f(E+

k )− f(E+
k−Q)

E+
k − E

+
k−Q

+
f(E−k )− f(E−k−Q)

E−k − E
−
k−Q

)

−1

8

∫
k

[
1− hkhk−Q −∆2

ekek−Q

](
f(E+

k )− f(E−k−Q)

E+
k − E

−
k−Q

+
f(E−k )− f(E+

k−Q)

E−k − E
+
k−Q

)

= −1

4

∑
`=±

∫
k

{[
1− hkh−k + ∆2

eke−k

]
f(E`

k)

E`
k − E`

−k

+

[
1 +

hkh−k + ∆2

eke−k

]
f(E`

k)

E`
k − E

−`
−k

}

=
∑
`=±

∫
k

(−`)f(E`
k)

4ek

{
2`ek(gk − g−k) + 2hk(hk − h−k)

(E`
k − E

−`
−k)(E`

k − E`
−k)

}
. (D.29)

In the second equation we have used hk−Q = −h−k, ek−Q = e−k, and E±k−Q = E±−k. It is

easy to see that the linear combinations g−k = gk−g−k, h±k = hk±h−k, and e±k = ek±e−k

obey the relations h−kh
+
k = h2

k − h2
−k = e2

k − e2
−k = e−k e

+
k , and h−k = −g−k . Using these
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relations, we finally get

χ̃0
33(−Q, 0) =

∑
`=±

∫
k

(−`)f(E`
k)

4ek

{
2`ekg

−
k + 2hkh

−
k

(g−k + `e+
k )(g−k + `e−k )

}
=

∑
`=±

∫
k

(−`)f(E`
k)

4ek

{
2`ekg

−
k + e−k e

+
k + (g−k )2

(g−k + `e+
k )(g−k + `e−k )

}
=

∑
`=±

∫
k

(−`)f(E`
k)

4ek

=

∫
k

f(E−k )− f(E+
k )

4ek

. (D.30)

D.4 Expressions for κ30
α (0) and κ31

α (0)

In this appendix, we report explicit expressions for the off-diagonal paramagnetic contri-

butions to the spin stiffness, namely κ30
α (0), and κ31

α (0).

For κ30
α (0), we have, after having made the trace in (5.127) explicit,

κ30
α (0) = lim

q→0
K31

para,α0(q,q′, 0) =

= −1

4

∫
k

T
∑
νn

{[
G2

k(iνn) + F 2
k(iνn)

]
γαk −

[
G

2

k(iνn) + F 2
k(iνn)

]
γαk+Q

}
δq′,0

= −1

4

∫
k

T
∑
νn

{
∂k

[
Gk −Gk

]
+ 4F 2

k ∂kαhk

}
δq′,0,

(D.31)

where we have made use of properties (5.151) in the last line. The first term vanishes

when integrated by parts, while the Matsubara summation for the second yields

κ30
α (0) = −∆2

4

∫
k

[
f(E−k )− f(E+

k )

e3
k

+
f ′(E+

k ) + f ′(E−k )

e2
k

]
(∂kαhk). (D.32)

For κ31
α (0) we have

lim
q→0

K31
para,α0(q,q′, 0) =

= −1

4

∫
k

T
∑
νn

[
Gk(iνn)Fk(iνn)γαk −Gk(iνn)Fk(iνn)γαk+Q

]
(δq′,Q + δq′,−Q) .

(D.33)

Defining κ31
α (0) = 2K31

para,α0(0,Q, 0) (see Eq. (5.133b)), and performing the Matsubara
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sum, we obtain

κ31
α (0) = −∆2

4

∫
k

{[
hk

ek

(∂kαgk) + (∂kαhk)

]
f ′(E+

k )

ek

+
[hk

ek

(∂kαgk)− (∂kαhk)
]f ′(E−k )

ek

+
hk

e2
k

(∂kαgk)
f(E−k )− f(E+

k )

ek

}
.

(D.34)

Furthermore, it is easy to see that K31
α0(0,±Q, 0) = ∓iK32

α0(0,±Q, 0), which, together

with Eq. (5.133c) proves κ31
α (0) = κα32(0). We remark that in the Néel limit both κ30

α (0)

and κ31
α (0) vanish as their integrands are odd under k→ k + Q.

D.5 Expressions for χ̃−a0 (Q)

We report here the RPA expressions for the off-diagonal bare susceptibilities χ̃−a0 (Q),

with a = 0, 1, 2. They can all be obtained by computing the trace and the Matsubara

summation in Eq. (D.5). We obtain

χ̃−0
0 (Q) = − 1

16

∫
k

∑
`,`′=±

[
`

∆

ek

+ `′
∆

ek+Q

+ ``′
∆(hk+Q − hk)

ekek+Q

]
F``′(k,Q, 0), (D.35a)

χ̃−1
0 (Q) = − 1

16

∫
k

∑
`,`′=±

[
1 + `

hk

ek

− `′hk+Q

ek+Q

− ``′hkhk+Q −∆2

ekek+Q

]
F``′(k,Q, 0), (D.35b)

χ̃−2
0 (Q) = +

i

16

∫
k

∑
`,`′=±

[
1 + `

hk

ek

− `′hk+Q

ek+Q

− ``′hkhk+Q + ∆2

ekek+Q

]
F``′(k,Q, 0). (D.35c)

with F``′(k,q, ω) defined as in Eq. (5.90).
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State, Phys. Rev. Lett. 50, 1153 (1983).

[189] F. Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identifi-

cation with the O(3) nonlinear sigma model, Physics Letters A 93, 464 (1983).

[190] S. Klee and A. Muramatsu, SO(3) nonlinear σ model for a doped quantum helimag-

net, Nucl. Phys. B 473, 539 (1996).

[191] A. V. Chubukov, S. Sachdev, and T. Senthil, Quantum phase transitions in frus-

trated quantum antiferromagnets, Nuclear Physics B 426, 601 (1994).

[192] P. Azaria, P. Lecheminant, and D. Mouhanna, The massive CPN−1 model for frus-

trated spin systems, Nuclear Physics B 455, 648 (1995).

[193] M. Campostrini and P. Rossi, The 1/N expansion of two-dimensional spin models,

Riv. Nuovo Cim. 16, 1 (1993).

[194] A. V. Chubukov, T. Senthil, and S. Sachdev, Universal magnetic properties of frus-

trated quantum antiferromagnets in two dimensions, Phys. Rev. Lett. 72, 2089

(1994).

[195] E. Manousakis, The spin-½ Heisenberg antiferromagnet on a square lattice and its

application to the cuprous oxides, Rev. Mod. Phys. 63, 1 (1991).

[196] J. Mitscherling and W. Metzner, Non-Hermitian band topology from momentum-

dependent relaxation in two-dimensional metals with spiral magnetism, Phys. Rev.

B 104, L201107 (2021).

[197] G. Grissonnanche, O. Cyr-Choinière, J. Day, R. Liang, D. A. Bonn, W. N. Hardy,

N. Doiron-Leyraud, and L. Taillefer, No nematicity at the onset temperature of the

pseudogap phase in the cuprate superconductor YBCO (2022), arXiv:2205.05233 .

[198] A. Frano, S. Blanco-Canosa, B. Keimer, and R. J. Birgeneau, Charge ordering in

superconducting copper oxides, J. Phys.: Condens. Matter 32, 374005 (2020).

https://doi.org/10.1103/PhysRevB.92.224502
https://doi.org/10.1103/PhysRevB.92.224502
https://arxiv.org/abs/2204.04132
https://doi.org/10.1103/PhysRevB.43.3790
https://doi.org/10.1103/PhysRevB.65.245118
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1016/0550-3213(96)00232-5
https://doi.org/https://doi.org/10.1016/0550-3213(94)90023-X
https://doi.org/https://doi.org/10.1016/0550-3213(95)00514-S
https://doi.org/https://doi.org/10.1007/BF02730034
https://doi.org/10.1103/PhysRevLett.72.2089
https://doi.org/10.1103/PhysRevLett.72.2089
https://doi.org/10.1103/RevModPhys.63.1
https://doi.org/10.1103/PhysRevB.104.L201107
https://doi.org/10.1103/PhysRevB.104.L201107
https://arxiv.org/abs/2205.05233
https://doi.org/10.1088/1361-648x/ab6140


230

[199] C. Platt, W. Hanke, and R. Thomale, Functional renormalization group for multi-

orbital Fermi surface instabilities, Adv. Phys. 62, 453 (2013).

https://doi.org/10.1080/00018732.2013.862020


Acknowledgments

I want to thank here all the people who have helped and supported me during the real-

ization of this thesis.

I am indebted to my supervisor, Walter Metzner for having given me the opportunity

to work in his group in the Max Planck Institute for Solid State Research, which allowed

me to live a wonderful scientific and human experience. I am grateful to him for sharing

with me his deep knowledge on condensed matter physics and his mathematical rigor. I

also thank him for his constant support along my PhD and for being available to discuss

at any moment I needed it. Finally, I have appreciated how he has helped me to develop

my scientific independence. Maria Daghofer is also thanked for co-refereeing this thesis.

A very special thanks goes also to my colleague, office mate and friend Demetrio

Vilardi, for having accompanied me during my PhD as an ”older brother” and for having

shared with me his enormous experience in matter of physics, computer programming

and, on top of all, life. I have enjoyed the several and long discussions that we have had

along the years on topics of all kind.

I also want to thank all people in the quantum many-body department for having

contributed to a friendly and stimulating environment. In particular, I want to thank

”the old generation” of PhD students: Moritz Hirschmann, Andreas Leonhardt, Oleksii

Maistrenko, Johannes Mitscherling, Lukas Schwarz, and Jachym Sýkora for enlightening
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