
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Parallel Machine Learning of
Fluid-Structure Interaction

Moritz Widmayer

Course of Study: Informatik

Examiner: Prof. Dr. Miriam Schulte

Supervisor: Amin Totounferoush, M.Sc.

Commenced: February 1, 2022

Completed: August 1, 2022

Acknowledgement

I want to express my gratitude to Prof. Dr. Miriam Schulte for allowing me to complete
and write my master’s thesis at her department of the IPVS. I also want to say thank
you to my thesis supervisor, Amin Totounferoush, for all of his time and work in
helping me complete the thesis. I appreciate my family and friends’ encouragement
to go higher as well as their support during difficult times and want to give special
thanks to my parents for always standing behind me. Finally, I want to thank Tabea
Schoch for inspiring me and providing me with a cause to keep going.

3

Abstract

This thesis applies machine learning (ML) methods to the numerical simulation of
a fluid-structure interaction problem involving an elastic tube containing a liquid.
A neural network, utilizing fully connected and recurrent layers, is trained on the
simulation data such that the prediction during inference generates the subsequent
time step to a given input batch. To make use of the parallelization technique presented
in [1], we partition the tube and train a separate neural network on each partition
independently. Due to low accuracy and continuity of poor quality in the predictions,
we further make use of having adjacent partitions overlap such that information can
be shared.

Our results suggest using multiple layers in the neural network architecture is superior
to only having single layers. Additionally, the application of L2 regularization in
form of weight decay has no detrimental effect on the error of the predictions. The
overlapping technique demonstrates a highly valuable method of increasing the
continuity of the predictions whereas we find no significant difference regarding the
amount of overlap used. Finally, the implemented parallelization approach can make
better use of machines providing a higher number of CPU cores when compared to
the multithreading offered by the used ML library directly.

5

Contents

1 Introduction 9
1.1 Overview . 9
1.2 Motivation . 10
1.3 Objectives . 10

2 Methodology 13
2.1 Data Collection . 13

2.1.1 Fluid-Structure Interaction Simulation 13
2.1.2 Data Preprocessing . 14

2.1.2.1 Data Extraction . 15
2.1.2.2 Normalization . 16
2.1.2.3 Partitioning . 17
2.1.2.4 Batching . 18

2.2 Machine Learning . 18
2.2.1 Single Partition Neural Network 19

2.2.1.1 Neural Network Model Architecture 19
2.2.1.2 Training . 21
2.2.1.3 Sampling . 22

2.2.2 Overlapping Partitions . 23
2.2.2.1 Full Overlap . 24
2.2.2.2 Partial Overlap . 24

2.3 Parallelization . 25

7

Contents

3 Results 27
3.1 Accuracy . 27

3.1.1 Neural Network Hyper-Parameters 27
3.1.1.1 Layers . 28
3.1.1.2 Regularization . 28

3.1.2 Overlapping Partitions . 29
3.1.2.1 MSE & Training Time 30
3.1.2.2 Continuity . 31

3.2 Parallelization . 31

4 Conclusion 39

Bibliography 41

8

1 Introduction

1.1 Overview

In this thesis, we use machine learning (ML) methods to improve the numerical
simulation of a fluid-structure interaction (FSI) problem. While the origins of ML
methods can be traced back to the 1950s [2] truly viable and broad usage of deep
learning has only started to appear in the previous decade [3]. Since then ML methods
have been widely studied and deployed commercially but also in many fields of
science [4].

One of the scientific use cases of ML methods that shows promising results is their
application in physical simulations [5]. Data generated through these simulations can
be used for training of various classes of ML methods such as neural networks [6].
These methods are then used to either completely replace classical simulations [7],
enhance their results [8] or improve their computational performance [9].

Availability of a large amount of data, either from simulations or even directly originat-
ing out of experiments, facilitates using such data-driven ML methods in simulation
science [10]. On the other hand, the introduction of physics-informed neural networks
(PINN) [11] enabled knowledge-driven ML methods to perform well on low data
regime applications.

This thesis aims to improve the numerical simulation of a three-dimensional FSI
problem. To do this, the resulting data of the simulation will be split up and a separate
neural network will be trained on each partition. Parallelization of the training process
will be applied as a speed-up technique. An approach incorporating overlapping of
the partitions will also be examined to improve the prediction accuracy of the neural
networks.

Chapter 2 describes the steps followed to produce the desired predictions of the
simulation data. The results of these methods are analyzed an evaluated in chapter 3.
Lastly, final thoughts and outlook are presented in chapter 4.

9

1 Introduction

1.2 Motivation

Modelling the behavior of physical systems the classical way, i.e., using the mathe-
matical equations that were derived from experiments, poses several drawbacks. For
instance, some insight could be unidentified and therefore missing in these equations.
This would lead to computations that might approximate the results of the performed
experiments but don’t extrapolate well to further simulations due to information that
has not been integrated into these potentially simplified equations. Furthermore, the
mathematical equations can demand complex numerical solvers which is connected
to the issue of available resources not being sufficient to accommodate the required
computational work.

These problems can be mitigated by using strictly data-driven ML methods which
require access to data of physical experiments and simulations. By using all available
information as training data set, all knowledge contained in these results is used to
learn the ML model. This can lead to applications that lie outside of the performed
cases that produced the training data as insight could be learned that wasn’t previously
known. Additionally, while the training of ML models can be very computationally
demanding, the inference of the resulting fully trained models is very cheap. However,
the main difficulty of this approach lies within the training process which has to be
implemented such that it can yield predictions of sufficient accuracy. Consequently, this
might limit the applicability of this method if the prediction accuracy isn’t acceptable.

Lastly, there is the possibility of combining ML methods with classical solvers. While
this approach is the most complex to implement, it also has the possibility to use
the already known physical laws in junction with newly learned knowledge. This
can improve the simulation performance by improving on the prediction accuracy.
Moreover, by introducing an appropriate parallelization technique, we remove one of
the obstacles of combining ML methods with classical parallel solvers.

1.3 Objectives

We use a three-dimensional FSI problem consisting of a fluid and a solid domain [12]
to collect the required data to train the neural network with. The required data will
be collected by solving the system of equations of the coupled FSI problem.

To account for mutual interaction of the fluid and the solid domain, and to avoid
iterative solution procedure (in contrast to the approach presented by Totounferoush
et. al [7]), we train only a single neural network for the whole domain. Since the

10

1.3 Objectives

respective problem is time-dependent, using recurrent neural networks (RNN) is
necessary to learn the time dependency. In addition, convolutional layers can be used
to account for the spatial connectivity imposed by the physical system of the problem.
However, since the training data are collected from a simulation using unstructured
grids, applying convolution is not easily feasible. As an alternative, more general fully
connected feed-forward layers (FC) can be used.

There are problems however with FC layers with the main one being the large number
of weights that they use. Since the problem domain is large, the training process does
not fit into the memory of a single CPU. As a remedy, this project aims to use the
parallelization technique introduced in [1] to parallelize the training.

Since this approach involves separating the data into partitions, the continuity on the
interface of these has to be investigated in order to verify the applicability of the results.
Accordingly, the possible discontinuities in partitions’ intefaces must be handled
appropriately. For this, improvements on the means of partitioning and handling
each partition individually or combining several partitions can be implemented. For
this purpose, we will investigate a partitions overlapping technique to avoid such
issues.

11

2 Methodology

This chapter describes the individual steps that are performed for the implementation
of this thesis. The very first procedure is the generation and aggregation of data from
the FSI problem simulation which is specified in section 2.1. Next, in section 2.2,
the architecture design of the deployed neural network is described as well as the
refinements of their particular applications that are performed. Section 2.3 lines out
the means of parallelizing the training of the neural network.

2.1 Data Collection

To train the neural network, training data is required. The steps followed to produce
the training data set outlined in this section. First, section 2.1.1 describes the setup
of the FSI problem simulation. This setup is used to produce the required training
and inference data. Then, in section 2.1.2, the means of extracting the data from the
simulation output as well as how the data is normalized, partitioned, and clustered
into batches are shown to produce the final training data set.

2.1.1 Fluid-Structure Interaction Simulation

The FSI simulation test case provided by [13] is used for the data production. The
tutorial that is used to set up the simulation can be found in [12]. This tutorial follows
a partitioned approach where individual solvers for the fluid and solid sub-domains
are used. In this approach, another library is necessary to couple these single-physics
solvers. In the current test case, the OpenFOAM solver is used for the fluid and CalculiX
for the solid domain. As explained by the tutorial, version 2112 of OpenFOAM is
downloaded and installed from the OpenFOAM Ubuntu repository [14]. The coupling
of the two solvers is performed by preCICE which is installed via its binary packages
as described in [15]. Additionally, the adapters for each solver for preCICE had to be
installed with the installation instructions of the OpenFOAM adapter located at [16]
and the ones for the adapter for CalculiX in [17].

13

2 Methodology

After having all required software installed and properly configured, the FSI simulation
is run. The simulation consists of a total of 100 time steps. Each time step size equals
0.01 seconds which accumulates to a simulation period of 0.1 seconds. Initially, a
pressure is prescribed at the tube inlet boundary that lasts for three time steps and
propagates subsequently throughout the tube. This result can be described as a wave
and visualized by creating an animation showing the deformation of the tube. The
resulting files are in Visualization Toolkit (VTK) file format which is described in [18].
Since the data is arranged in an unstructured grid, the file extension .vtu is used
which however doesn’t change the way we handle the data as compared to vtk files.
In figure 2.1, the 90th time step of the fluid and the solid participant is depicted in
ParaView [19] with a warp by vector filter using a scale factor of ten added to the
displacements of the points and coloring depending on the magnitude of the local
point displacement.

Figure 2.1: The original data of the fluid (left) and solid (right) participant of the FSI
simulation at time step t = 90 with displacements scaled by a factor of
ten and colored depending on the displacements.

2.1.2 Data Preprocessing

To obtain the data required to train the neural network, several steps have to be
performed. These preprocessing steps are made up of data extraction, partitioning,
normalization, and batching. In section 2.1.2.1, the initial way of obtaining the data
from the simulation is described as well as the way we organize this data. Afterward,
in section 2.1.2.2, the normalization of the data is explained which is a common
practice when working with neural networks to speed up the training process. Next,

14

2.1 Data Collection

in section 2.1.2.3, we explain how we implement the partitioning of the data, which is
required later on for the parallelization technique from [1]. Lastly, in section 2.1.2.4,
we describe our way of organizing the training data in batches which is a necessary
step to later use recurrent neural network layers.

2.1.2.1 Data Extraction

For reading and later also writing of the vtk files, the python package meshio [20] is
used. It provides the function meshio.read() that allows reading in the data of the
vtk files as a mesh. This function is called for each time step and both participants,
respectively, resulting in the 200 meshes being read into the memory. From these
meshes, the required point data is extracted where the solid domain provides only
displacement data for each point and the fluid domain produces displacement, force,
and pressure data.

In total, the data is made up of 100 time steps t, each consisting of 14,670 points p with
6598 points coming from the fluid domain and 8072 points of the solid domain. Each
point has an initial location made up of three values for the x, y, and z directions,
respectively.

p = (px, py, pz)⊤.

Displacement data Dt
p is extracted from all points of both domains and since each

point displacement consists of three values, one for each spatial dimension, the data
looks as follows:

Dt
p =

(
(Dx, Dy, Dz)⊤

)t

p
, 0 ≤ p ≤ 14,669, 0 ≤ t ≤ 99.

Force data F t
p is only extracted from the boundary points of the fluid dimension since

the forces inside are not computed and therefore default to zero. Each force data
point consists of three dimensions and with 1986 points used the data is organized as
follows:

F t
p =

(
(Fx, Fy, Fz)⊤

)t

p
, 0 ≤ p ≤ 1985, 0 ≤ t ≤ 99.

Finally, the pressure data P t
p is extracted from each of the 6598 points of the fluid

domain and consists only of single values leading to the following shape:

P t
p, 0 ≤ p ≤ 6597, 0 ≤ t ≤ 99.

15

2 Methodology

In total, there are 5,665,500 data values to train the neural network on with each time
step t of data organized in a single vector:

vt =



Dt
0

Dt
1

...
Dt

14,669
F t

0
F t

1
...

F t
1985
P t

0
P t

1
...

P t
6597


.

2.1.2.2 Normalization

Normalization of the data is performed linearly on all data points over all time steps.
We used separate normalization maximums for displacement, force, and pressure data,
respectively. Since the displacement data is made up of positive and negative values,
normalization is carried out to the interval [−1, 1] by dividing each value of each
displacement Dt

p of partition p and time step t by the displacement maximum Dmax

which yields the normalized displacement data D̂t
p.

Dmax = max
({∣∣∣(Dd)t

p

∣∣∣ ∣∣∣ d ∈ {x, y, z}, 0 ≤ t ≤ 99, 0 ≤ p ≤ 14,669
})

D̂t
p =

(Dx)t
p

Dmax
,

(Dy)t
p

Dmax
,

(Dz)t
p

Dmax

⊤

Normalization of the force data is performed in the same manner as previously outlined
for the displacement data with its separate maximum value and a smaller number of
points.

Fmax = max
({∣∣∣(Fd)t

p

∣∣∣ ∣∣∣ d ∈ {x, y, z}, 0 ≤ t ≤ 99, 0 ≤ p ≤ 1985
})

F̂ t
p =

(Fx)t
p

Fmax
,

(Fy)t
p

Dmax
,

(Fz)t
p

Fmax

⊤

16

2.1 Data Collection

Finally, pressure data is normalized to the interval [0, 1] as this data doesn’t contain
any negative values but the general normalization computations stay the same.

Pmax = max
({

P t
p

∣∣∣ 0 ≤ t ≤ 99, 0 ≤ p ≤ 6597
})

P̂ t
p =

(
P t

p

Pmax

)

2.1.2.3 Partitioning

The partitioning of the data is required to utilize the parallelization technique described
in [1].

The approach of partitioning the data is based on the idea of cutting up the tube with
its solid and fluid domain into slices and treating each slice as its separate partition
that a neural network is assigned to. A visual example of this partitioning technique is
depicted in figure 2.2. To achieve this, first, the partition allocation has to be created,
which holds a value for each data point containing the assigned partition for that
point. Each partition spans the same length in space along the z-axis of the tube, i.e.,
the direction the tube is oriented in. Due to the unstructured nature of the grid in
that the data points are arranged, the partitions have differing numbers of values. In
particular, the first and last partitions contain the highest number of data points.

To create the partition allocation, first the values of only the z-axis of the data points
is extracted. From this array, the physical length in the z-direction of a partition lpart is
calculated by dividing the difference of the greatest and the smallest z-axis value by
the number of partitions npart.

lpart = (pz)max − (pz)min

npart

Now, the partition allocation ap for each point p is calculated as

ap = min
(

⌊pz − (pz)min⌋
lpart

, npart − 1
)

.

This results in each point p being allocated to a partition ap such that

ap ≤ pz

lpart
≤ ap + 1.

17

2 Methodology

Figure 2.2: A visual example of the partitioned tube at t = 90 with four spatially
separated partition slices. Each point is plotted with its displacement
scaled by a factor of ten and colored according to the respective magnitude
of the displacement.

2.1.2.4 Batching

The final step of the preprocessing of the data is batching which creates the batches
Bn consisting of multiple subsequent time steps. This is required for the recurrent
neural network layer as the input is made up of three time steps (t − 2, t − 1, t)
whereas the output is only the following time step (t + 1). This yields a total of 97
batches of the following shape:

Bn =


Dn Dn+1 Dn+2

F n F n+1 F n+2

P n P n+1 P n+2

 =
(
Bn

0 Bn
1 Bn

2

)
, 0 ≤ n ≤ 97.

2.2 Machine Learning

After preparing the training data, the neural network can start the learning process.
For the ML element of this thesis, we use the open-source ML framework PyTorch [21].
This section covers the architecture of the used neural network as well as the optimiza-
tions that are performed to improve the accuracy of the predictions. In section 2.2.1,

18

2.2 Machine Learning

the general neural network model that is deployed for each partition is described.
After that, in section 2.2.2, we specify the technique of using overlapping partitions as
input to the neural network to enhance the predictions.

2.2.1 Single Partition Neural Network

This section covers the implementation of the neural network model and training. In
section 2.2.1.1, the architecture of the neural network is described and the process of
how data is inferred through the network is detailed. Afterward, in section 2.2.1.2, the
training process is shown. Lastly, in section 2.2.1.3, the inference method is described,
as well as the postprocessing steps.

2.2.1.1 Neural Network Model Architecture

The general outline of the architecture used for the neural network model is depicted
in figure 2.3. All hidden layers are of the same number of dimensions as the length
of the desired final output vector. We first pass the input data batch B0 through five
fully connected layers ℓ ∈ [0, 4] using torch.nn.Linear() [22]. As activation function
we apply the rectified linear unit (ReLU) with torch.nn.relu() [23] which is defined
as

ReLU(x) = (x)+ = max(0, x).
This yields B5 with weights Wℓ and biases bℓ.

Bℓ+1 = ReLU
(
BℓW

⊤
ℓ + bℓ

)
, 0 ≤ ℓ ≤ 4.

Afterward, the data gets passed through the recurrent neural network layer using
torch.nn.RNN() [24]. Here, PyTorch deploys a multi-layer Elman recurrent neural
network that was first proposed in [25]. We’re using three recurrent layers ℓ ∈ [5, 7],
i.e., three recurrent neural networks stacked together where each layer takes the
output of the previous one as input. Again, we apply ReLU as non-linearity between
layers. Each layer takes the three time steps of each batch time stepwise and computes
the hidden states h1, h2, h3, for the next layer or as the output of the recurrent neural
network. This procedure is depicted in figure 2.4 where the handling of a batch of
three time steps by a recurrent neural network is shown. This yields B8 with weights
on the input Wi, weights on the hidden state Wh, biases on the input bi, and biases on
the hidden state bh.

ht+1
ℓ+1 = ReLU

(
Bt

ℓW
⊤
i + bi + ht

ℓW
⊤
h + bh

)
, 5 ≤ ℓ ≤ 7, 0 ≤ t ≤ 2

B8 =
(
h1

8 h2
8 h3

8

)
.

19

2 Methodology

To get the output of the recurrent layer into the desired output shape of one single
time step, we deploy a final single fully connected layer ℓ = 8. Prior to this however,
we reshape B8, a two-dimensional matrix containing a vector for each time step, into
B̂8, a single vector with the three time steps stacked on top of one another, using
torch.reshape [26].

B̂8 =


h1

8
h2

8
h3

8


B9 = B̂8W

⊤
8 + b8.

.
.
.

.
.
.

.
.
.

.
.
.

Input
Initial

fully connected
layer

Recurrent layer
Final

fully connected
layer

Output

Figure 2.3: A general outline of the architecture of the neural network model. First,
the input data is passed through several fully connected layers. Then, the
batch of three time steps is given to the recurrent layer time step by time
step. Finally, the data gets reshaped to the desired output dimensions in
the last fully connected layer.

20

2.2 Machine Learning

Bt Bt+1 Bt+2

RNN

1.
1.

ht+1 ht+2 ht+3

ht 1.

2.
2.2.

3.

3.

3.

Input
Batch

Output
Batch

Figure 2.4: Method of processing data through a recurrent neural network (RNN).
The input batch B with time steps t, t + 1, t + 2 is provided to the
RNN time stepwise with their respective hidden states h and ht being the
initial hidden state. The colors of the arrows signal the recurrent steps
performed by the RNN layer. The output batch is constructed from the
three predicted hidden states ht+1, ht+2, ht+3.

2.2.1.2 Training

For the training of the single partition neural network we use torch.nn.MSELoss() as
the criterion, which computes the loss L(x, y) as the mean squared error (MSE) of
input x and target y.

L(x, y) = 1
n

n−1∑
i=0

(xi − yi)2 .

21

2 Methodology

The Adam algorithm, as introduced in [27] and implemented via torch.optim.Adam() [28],
is used as the chosen optimizer of the training process. Here, we also define the
learning rate lr and the L2 regularization as weight_decay.

lr = 10−5

weight_decay = 10−6.

The training is executed with a set number of epochs. Since we use different machines
to perform the training, we adapt the number of epochs depending on the time it takes
to carry out the entire training. For training runs that test the accuracy of the results,
we use a CUDA-enabled [29] machine and used 104 epochs, while for training runs
testing the parallelization implementation, we use the neon machine (s. table 2.1)
with a significantly lower number of training epochs.

CUDA-enabled machine neon
CPU AMD Ryzen 5 3600X Intel Haswell
GPU Nvidia GeForce RTX 2070 Super -
RAM 16GB 504GB

Table 2.1: The specifications of the machines used in the training runs.

2.2.1.3 Sampling

After the training on each partition of data is completed, the inference step of the
implementation is launched. For this, the very first batch of time step data for a given
partition is given to the trained neural network model of that respective partition.
The model now produces the succeeding time step of that partition. This time step
data is then appended to the used batch, while the first time step is omitted such that
the batch consists of three consecutive time steps again. Figure 2.5 visualizes the
method of inference. This process is now repeated until all time steps are predicted.
To return the data to the non-normalized domain, we post-process each data point p

of every time step t by multiplying its predicted normalized values by the respective
data maximum.

Dt
p =

(ˆ(Dx)t
p · Dmax, ˆ(Dy)t

p · Dmax, ˆ(Dz)t
p · Dmax

)
F t

p =
(ˆ(Fx)t

p · Fmax, ˆ(Fy)t
p · Fmax, ˆ(Fz)t

p · Fmax

)
P t

p =
(
P̂ t

p · Pmax

)

22

2.2 Machine Learning

During this normalization process, the data for each point is also returned to their
original location in the data array that was previously lost due to the partitioning step.
Finally, the predicted values are written out as vtk files using meshio.Mesh() to create
the mesh and meshio.write() to write the mesh to the vtk file.

Bt Bt+1 Bt+2 NN Bt+3 Bt+1 Bt+2 Bt+3

t = t + 1

Figure 2.5: Depicted is the inference of one time step t+3 through the neural network
given the batch consisting time steps t, t + 1, t + 2. The resulting time
step is then appended to the latter two time steps of the input batch.

2.2.2 Overlapping Partitions

Due to the partitioning and especially separate and isolated handling of each partition
on their own, the neural networks don’t share any information with one another. This
doesn’t act as a problem for partitions close to the inlet of the tube, as the first three
time steps of the simulation already introduce the initial impulse. However, partitions
further down the tube, that lie outside of that range, don’t receive any information
as to when, i.e., at which time step, they’re meant to continue the pressure wave. To
combat this issue of missing information on the propagating wave, we explore the
concept of implementing overlapping partitions. First, in section 2.2.2.1, we detail the
initial approach of fully overlapping adjacent partitions to train the neural network.
Afterward, in section 2.2.2.2, we describe the more sophisticated approach of only
partially overlapping partitions.

23

2 Methodology

2.2.2.1 Full Overlap

For the implementation of fully overlapping partitions, we increase the size of the
input tensor given to each neural network. This is done by stacking the vectors of
the preceding (ap − 1) and following (ap + 1) partition of each partition ap with the
vectors of its partition. For the first (ap = 0) and last (ap = npart) partitions, only the
following or preceding partitions are added, respectively.

B0 =
(

B0
0 B0

1 B0
2

B1
0 B1

1 B1
2

)

Bp =


B

ap−1
0 B

ap−1
1 B

ap−1
2

B
ap

0 B
ap

1 B
ap

2
B

ap+1
0 B

ap+1
1 B

ap+1
2

 , 1 ≤ ap < npart

Bnpart =
(

B
npart−1
0 B

npart−1
1 B

npart−1
2

B
npart
0 B

npart
1 B

npart
2

)

Doing this significantly increases the number of values in the input tensor and therefore
also the size of the neural network model. Also, since this approach doesn’t treat each
partition completely separate from one another anymore, it’s not possible to compute
inference for just one partition at a time. Rather, we have to calculate the predictions
time stepwise, such that each partition can receive the results of their neighbors to
compute the next time step.

2.2.2.2 Partial Overlap

To decrease the size of the input tensor while still maintaining the additional infor-
mation, we explore the idea of partially overlapping the partitions. The visualization
of this approach is depicted in figure 2.6, where 4 partitions are shown with the
overlapping areas colored in red for the back and blue for the front of the partition’s
first and last 20% of length in the z-direction. This is achieved by first computing
separate partition allocations for the front and back parts of each partition. Thus, we
calculate for each point p by its z-value pz whether it’s either part of the front (af) or
back (ab) of its partition with the overlapping percentage o and partition length lpart.

pz mod lpart

lpart
≤ o → af = ap

pz mod lpart

lpart
≥ 1 − o → ab = ap

24

2.3 Parallelization

After these additional partition allocations are computed, the batches are assembled
similarly as for the fully overlapping partitions. The difference is, that only points of
the previous and following partition are used, if they are in the front or back of their
partition slice, respectively.

Figure 2.6: Visualization of partial overlapping of 20% on four partitions where red
points are in the overlapping area for the previous partition and blue
points are overlapped to the succeeding partition.

2.3 Parallelization

For the parallelization implementation of this thesis, we use the Python package MPI
for Python (MPI4py) [30]. Due to the initial partitioning of the data, parallelization is
implemented in a very straightforward way. First, the main process, where rank = 0,
reads, normalizes, and allocates all the data in the same manner as previously realized.
For the partition allocation, we use the same number of partitions as there are
threads.(size):

npart = size.

Then, the partition data is distributed across the threads by calling comm.scatter()

for the displacement, force, and pressure data, respectively. Figure 2.7 depicts this
distribution for four partitions, where each partition 1 ≤ a ≤ 4 is given to its own
thread pa. Now, each thread carries out the training in parallel on its given partition

25

2 Methodology

data in the same way as it was done sequentially. After the training, the inference and
the subsequent postprocessing of the prediction data are performed by each thread
in parallel. Only now the implementation returns to sequential actions, as the main
thread collects the prediction data of each sub-thread by using comm.gather(). Finally,
it returns the data to the order it was in before the partitioning step, such that it can
write out the predictions in vtk files.

Figure 2.7: Distribution of four partitions to their respective thread pn, 1 ≤ n ≤ 4.

Since this concurrent implementation requires the entire data, including input and
target batches together with the neural network models, to be held in memory at the
same time, it is not possible to use the CUDA-enabled machine shown in table 2.1.
Instead, for testing this parallelization, we use the neon machine which provides
plenty of memory space to carry out the training in parallel.

26

3 Results

This chapter covers and discusses the results that are produced by our applied meth-
ods. First, section 3.1 describes the achieved accuracy of the machine learning and
partitioning approaches. Section 3.2 evaluates the outcome of our implementation for
parallelizing the training process.

3.1 Accuracy

This section details the results of the neural network predictions in terms of the
achieved accuracy. Section 3.1.1 compares neural networks of different hyper-
parameters to justify the neural network structure used. Afterward, in section 3.1.2,
we compare the achieved improvements in prediction accuracy when utilizing various
percentages of overlap between partitions.

3.1.1 Neural Network Hyper-Parameters

For the comparison of hyper-parameters, we focus on two aspects of the neural
network. First, there is the number of layers used for each part of the network which
will be detailed in section 3.1.1.1. Secondly, in section 3.1.1.2, we look at the L2
regularization introduced via the weight_decay parameter of the PyTorch optimizer
class Adam. Figure 3.1 depicts the comparison of these aspects of the neural network.
Each combination of layering and regularization utilization is measured by the final
MSE (blue) and total training time in seconds (orange). The training runs for these
comparisons were performed on the CUDA-enabled machine (table 2.1). Each training
run is performed for 1000 epochs and uses a learning rate of 10−5.

27

3 Results

3.1.1.1 Layers

As previously established, the neural network is structured into three parts (fig-
ure 2.3).

1. initial fully connected layers

2. recurrent layers

3. final fully connected layers

For the layering of the neural network, we first have the single layer setup, where each
part of the network only contains one layer. The setup using multiple layers contains
five layers for the first, three layers for the second, and one layer for the final part.

For the single layer variant, we achieve an MSE of about 2.01 × 10−4 with an average
training time of around 334 seconds. In contrast, using multiple layers, the final
MSE is circa 0.82 × 10−4 and the required training time is roughly 661 seconds. The
observation in consideration of the different layering we can make is the inverse
correlation of MSE and training time, i.e., the training runs that took more time to
complete the 1000 epochs achieved a lower MSE and vice versa. This is to be expected,
as the multiple layer setup of the neural network performs more optimization steps per
epoch and thereby takes more time while lowering the MSE to a greater extent than
the single layer variant. Our later training runs perform more epochs than these tests,
which promises to approach convergence more closely. As we expect the minimum
achievable MSE to be lower with multiple layers for each part of the neural network,
we use this setup for later training runs.

3.1.1.2 Regularization

The tested regularization parameters are weight_decay = 0 for no regularization and
weight_decay = 10−6 for the runs utilizing regularization. If regularization proves to
be applicable for the data used, it has the potential to reduce overfitting and, in our
case, reduce high local error occurring in some points of the predictions.

The training time appears to be slightly affected detrimentally by the use of reg-
ularization as it increased the total training time by about 4.7%. As for the MSE,
regularization doesn’t seem to be influential in any consistent way. Due to these
findings, we chose to keep using regularization because the effect in training time is
only marginal while the potential to avoid local spikes in error is promising for later
training runs.

28

3.1 Accuracy

single layers
no regularization

single layers
with regularization

multiple layers
no regularization

multiple layers
with regularization

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
SE

1e 4

0

100

200

300

400

500

600

700

tra
in

in
g

tim
e

[s
]

Figure 3.1: Comparison of the final MSE (blue) and total training time (orange) of
neural networks using various hyper-parameters. Layering is differenti-
ated by either only involving a single layer for the initial fully connected,
the recurrent, and the final fully connected parts, respectively, or con-
sisting of five initial fully connected layers, three recurrent layers, and
one final fully connected layer. For runs with or without regularization a
weight decay of 10−6 or 0 is used, respectively.

3.1.2 Overlapping Partitions

This section covers the results produced by the approach utilizing overlapping parti-
tions in comparison to the initial method of keeping the partitions completely separate
from one another. All training runs are performed with 10,000 epochs and a learning
rate of 10−5 As detailed in section 3.1.1.2, L2 regularization is deployed by setting
weight_decay = 10−6. The used percentages to determine the overlapping area are
5%, 10%, 20%, and 100%, respectively. Here, 100% is the initial technique of working
with overlapping partitions, which uses the entire data set of neighboring partitions as
input to the neural network. Figure 3.2 depicts the comparison in terms of MSE (blue)
and total training time (orange) of different percentages of overlap. This is more
closely explored in section 3.1.2.1. Afterward, in section 3.1.2.2, the predictions of the
different overlapping percentages are compared by the continuity of the displacements
from partition to partition.

29

3 Results

no overlap 5% overlap 10% overlap 20% overlap 100% overlap
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
SE

1e 6

0

1000

2000

3000

4000

5000

6000

7000

tra
in

in
g

tim
e

[s
]

Figure 3.2: Comparison of the final MSE (blue) and total training time (orange) of
neural networks using different percentages of overlap.

3.1.2.1 MSE & Training Time

Concerning training time, there is no significant change in any direction when increas-
ing the overlap. This could be attributed to the number of dimensions in the hidden
layers of the neural networks. Since these are set equal to the size of the output
vector, the size of the vectors in the input batch does not pose a serious growth in the
number of calculations performed per epoch. For example, the input batch of the fully
overlapping approach is about three times as big as the input batch of the method
using no overlap. This only affects the very first layer of the neural network, as here
three times as many weights and biases are required now, but all other layers stay of
the same size. With this possible explanation, the fluctuation in training time might
be attributed mainly to inconsistencies in load or scheduling.

On the other hand, regarding the MSE, there is a visible decline as the overlap
percentage increases. In fact, MSE is decreasing strictly monotonous with a greater
overlap, i.e., each training run using more overlapping area produced a lower MSE
than any run with less overlap. Especially when comparing the 20% to the full overlap
approach, the difference in MSE is visible. As MSE is not subjected to fluctuations of
load on the machine, in contrast to training time, the increase in neuron connections
in the very first layer of the network might influence the resulting MSE directly in a
positive way. These results indicate that increasing the number of dimensions in the
hidden layers could prove to be helpful to lower the MSE further.

30

3.2 Parallelization

3.1.2.2 Continuity

Due to the partitioning of the data set, we also examine for possible discontinuities
at the interface of partitions, since each partition is handled separately. Figure 3.3
depicts plots for comparison created with ParaView of the original simulation data
(top left), as well as predictions using the various overlapping percentages of 0% (top
right), 5% (center left), 10% (center right), 20% (bottom left), and 100% (bottom right.
For these, only the solid domain is used at time step t = 90 and a warp by vector filter
of a scale factor of 10 is applied to the displacements. What can be noticed, is the poor
prediction when using no overlap in contrast to the greatly improved accuracy of the
plots using even small overlap amounts. While there is a visible jump in quality going
from 0% to 5% overlap, there is only a very marginal improvement noticeable when
increasing the overlapping area further. This suggests that some overlap is required to
train the neural network appropriately.

Figures 3.4, 3.5, and 3.6 show a comparison of the various overlapping prediction
variants (0%, 5%, 10%, 20%, 100%) against the original simulation data for time
steps t ∈ {10, 50, 90}, respectively. On these plots, it’s clear that the non-overlapping
predictions are vastly inferior to any overlapping prediction. Especially when moving
forward in time, the discrepancy becomes greater while, in contrast, the predictions
with overlap only differ slightly from the original data. Furthermore, there’s only very
little difference in the predictions with overlap. This again suggests that some overlap
may be necessary for predictions of high quality in accuracy.

3.2 Parallelization

For parallelization, we compare three variants of deploying multithreading in the
training process. On the one hand, we use our parallel implementation which handles
the concurrency with MPI4py [30] and treats each partition of the tube as its thread.
Then, there is the multithreading provided by PyTorch which can be controlled
through torch.set_num_threads() [31]. Lastly, we also take a hybrid approach to
the comparison where parallel partitions and PyTorch’s multithreading are used to
the same degree, i.e., using n parallel partitions each with n threads available to
PyTorch resulting in n2 threads in total. All training runs are performed on the neon
machine 2.1 with 1000 epochs.

Figure 3.7 shows the total training time each parallelization variant required to finish.
We can see that for PyTorch’s multithreading there seems to be a limit as to the number
of CPU cores that can be utilized to decrease the training time. For the runs using

31

3 Results

up to 16 threads the time gets lowered but increasing the number of available cores
does not further reduce the training time. For the parallel partitions and the hybrid
approach, this does not occur, as each training run using more threads also required
less time for the training.

In figure 3.8, the speedup s = t1
tn

of each variant is plotted for the various numbers
of threads, where tn is the training time using n threads. The multithreading of
PyTorch is seen to gain only for a small number of threads and then flattens off when
making more threads available. For the other two variants, there is also a non-linear
relationship of speedup to the number of threads, however, even for a greater number
of threads, an increase in speedup can be observed with only a little difference between
them.

Finally, figure 3.9 compares the efficiency e = sn

n
of each parallel implementation

where sn is the speedup for n threads. Again, PyTorch’s multithreading shows a weaker
capability of scaling well for a higher number of threads, as the efficiency drops to
only about 8% when using 64 threads. On the other hand, the parallel partitions and
hybrid approach achieve efficiencies of 32% and 34%, respectively.

32

3.2 Parallelization

Figure 3.3: ParaView plots of original data (top left), 0% (top right), 5% (center left),
10% (center right), 20% (bottom left), and 100% (bottom right) overlap
area, respectively. All plots are of the solid domain at time step t = 90
with a warp by vector filter using a scale factor of 10 on the displacements.

33

3 Results

0 20 40 60 80 100
partition

0

1

2

3

4

5

6

7

m
ax

im
um

 d
isp

la
ce

m
en

t m
ag

ni
tu

de
1e 5

original
fully overlapping prediction

0 20 40 60 80 100
partition

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
ax

im
um

 d
isp

la
ce

m
en

t m
ag

ni
tu

de

1e 4
original
non-overlapping prediction
fully overlapping prediction
5% partially overlapping prediction
10% partially overlapping prediction
20% partially overlapping prediction

Figure 3.4: Comparison of displacements at time step t = 10 for the original simula-
tion data and the non-overlapping, fully overlapping, and 5%, 10%, and
20% partially overlapping predictions, respectively. The top plot shows
only the original and fully overlapping prediction data while the bottom
one compares all variants. Partitions of the tube lie on the x-axis with the
highest absolute displacement of any point per partition plotted against
on the y-axis.

34

3.2 Parallelization

0 20 40 60 80 100
partition

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
ax

im
um

 d
isp

la
ce

m
en

t m
ag

ni
tu

de

1e 4
original
fully overlapping prediction

0 20 40 60 80 100
partition

0.0

0.5

1.0

1.5

2.0

2.5

m
ax

im
um

 d
isp

la
ce

m
en

t m
ag

ni
tu

de

1e 4
original
non-overlapping prediction
fully overlapping prediction
5% partially overlapping prediction
10% partially overlapping prediction
20% partially overlapping prediction

Figure 3.5: Comparison of displacements at time step t = 50 for the original simula-
tion data and the non-overlapping, fully overlapping, and 5%, 10%, and
20% partially overlapping predictions, respectively. The top plot shows
only the original and fully overlapping prediction data while the bottom
one compares all variants. Partitions of the tube lie on the x-axis with the
highest absolute displacement of any point per partition plotted against
on the y-axis.

35

3 Results

0 20 40 60 80 100
partition

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
ax

im
um

 d
isp

la
ce

m
en

t m
ag

ni
tu

de
1e 4

original
fully overlapping prediction

0 20 40 60 80 100
partition

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

m
ax

im
um

 d
isp

la
ce

m
en

t m
ag

ni
tu

de

1e 4
original
non-overlapping prediction
fully overlapping prediction
5% partially overlapping prediction
10% partially overlapping prediction
20% partially overlapping prediction

Figure 3.6: Comparison of displacements at time step t = 90 for the original simula-
tion data and the non-overlapping, fully overlapping, and 5%, 10%, and
20% partially overlapping predictions, respectively. The top plot shows
only the original and fully overlapping prediction data while the bottom
one compares all variants. Partitions of the tube lie on the x-axis with the
highest absolute displacement of any point per partition plotted against
on the y-axis.

36

3.2 Parallelization

0 10 20 30 40 50 60
threads

0

10

20

30

40

50

60

tim
e

[s
]

parallel partitions
PyTorch multithreading
both

Figure 3.7: Training time in seconds of training partitions in parallel, multithreading
of PyTorch, and using both implementations to the same degree.

0 10 20 30 40 50 60
threads

0

5

10

15

20

sp
ee

du
p

parallel partitions
PyTorch multithreading
both

Figure 3.8: Speedup s = t1
tn

, with the training time using a single thread t1 and
the training time using n threads tn, of training partitions in parallel,
multithreading of PyTorch, and using both implementations to the same
degree.

37

3 Results

0 10 20 30 40 50 60
threads

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y

parallel partitions
PyTorch multithreading
both

Figure 3.9: Efficiency e = sn

n
, with the speedup sn using n threads, of training parti-

tions in parallel, multithreading of PyTorch, and using both implementa-
tions to the same degree.

38

4 Conclusion

In this thesis, we deployed neural networks to enhance the numerical simulation of
a three-dimensional FSI problem. We collected and prepared data produced by the
original simulation such that a recurrent neural network could use it as training data.
To apply parallelization to the training process, we partitioned the tube such that each
partition was able to be trained independently and therefore in parallel. Furthermore,
we improved the prediction accuracy of the neural networks by implementing overlap
to the partitions whereby information was shared between them.

Our results in terms of neural network architecture revealed that using multiple layers
for the initial fully-connected and recurrent parts increases the training time but also
achieves a lower error. Using L2 regularization by adding weight decay during training
didn’t increase the MSE while only adding to the training time marginally. We used
these findings for further tests concerning partitioning.

For comparisons of partitioning methods, we found that training time didn’t change
when deploying any amount of overlap compared to the non-overlapping variant.
However, MSE was reduced the more overlap was used. When comparing continuity
between partitions, we found a considerable improvement for even little overlap in
contrast to using no overlap, especially for later time steps of the simulation.

Finally, we tested the implementation of parallelization for the partitioned tube and
compared the results to the multithreading provided by PyTorch directly. Our results
showed that for a higher number of available threads, using parallel partitions or a
hybrid approach achieved a greater speedup and efficiency compared to utilizing only
PyTorch’s multithreading.

Our results show promise for the approach of using ML methods on FSI simulation
data, however, there is the possibility for better results when using neural networks
of an even greater number of hidden layers or dimensions of the hidden layers.
Overlapping of partitions turned out to be considerably necessary to achieve favorable
results of predictions, yet it’s not entirely clear what the precise amount of overlap
required is. The use of parallel partitions proved to be able to decrease training time

39

4 Conclusion

when compared to multithreading of PyTorch. Based on these results, further research
can build upon the presented methods to improve the accuracy of predictions and
reduce training time by optimizing parallelization.

40

Bibliography

[1] A. Totounferoush, N. E. Pour, S. Roller, M. Mehl. “Parallel Machine Learning
of Partial Differential Equations.” In: 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE. 2021, pp. 698–
703 (cit. on pp. 5, 11, 15, 17).

[2] A. L. Samuel. “Some studies in machine learning using the game of checkers.
II—recent progress.” In: Computer Games I (1988), pp. 366–400 (cit. on p. 9).

[3] Y. LeCun, Y. Bengio, G. Hinton. “Deep learning.” In: nature 521.7553 (2015),
pp. 436–444 (cit. on p. 9).

[4] M. I. Jordan, T. M. Mitchell. “Machine learning: Trends, perspectives, and
prospects.” In: Science 349.6245 (2015), pp. 255–260 (cit. on p. 9).

[5] F. Noé, A. Tkatchenko, K.-R. Müller, C. Clementi. “Machine learning for molec-
ular simulation.” In: arXiv preprint arXiv:1911.02792 (2019) (cit. on p. 9).

[6] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto,
L. Zdeborová. “Machine learning and the physical sciences.” In: Reviews of Mod-
ern Physics 91.4 (2019), p. 045002 (cit. on p. 9).

[7] A. Totounferoush, A. Schumacher, M. Schulte. “Partitioned Deep Learning of
Fluid-Structure Interaction.” In: arXiv preprint arXiv:2105.06785 (2021) (cit. on
pp. 9, 10).

[8] T. M. Deist, A. Patti, Z. Wang, D. Krane, T. Sorenson, D. Craft. “Simulation-
assisted machine learning.” In: Bioinformatics 35.20 (2019), pp. 4072–4080
(cit. on p. 9).

[9] B. Lattimer, J. Hodges, A. Lattimer. “Using machine learning in physics-based
simulation of fire.” In: Fire Safety Journal 114 (2020), p. 102991 (cit. on p. 9).

[10] M. Buchanan. “The power of machine learning.” PhD thesis. Nature Publishing
Group, 2019 (cit. on p. 9).

[11] M. Raissi, P. Perdikaris, G. E. Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations.” In: Journal of Computational physics
378 (2019), pp. 686–707 (cit. on p. 9).

41

Bibliography

[12] Elastic tube 3D. URL: https ://precice .org/ tutorials - elastic - tube - 3d .html.
(accessed: Jun 6, 2022) (cit. on pp. 10, 13).

[13] Elastic tube 3D. URL: https://github.com/precice/tutorials/tree/master/elastic-
tube-3d. (accessed: Jun 6, 2022) (cit. on p. 13).

[14] OpenFOAM debian. URL: https : / / develop . openfoam . com / Development /
openfoam/-/wikis/precompiled/debian#openfoam-ubuntu-repository. (ac-
cessed: Jun 6, 2022) (cit. on p. 13).

[15] Installing preCICE. URL: https://precice.org/installation-overview.html. (ac-
cessed: Jun 6, 2022) (cit. on p. 13).

[16] Get the OpenFOAM adapter. URL: https://precice .org/adapter- openfoam-
get.html. (accessed: Jun 6, 2022) (cit. on p. 13).

[17] Get the CalculiX adapter. URL: https : / /precice . org/adapter - calculix - get -
adapter.html. (accessed: Jun 6, 2022) (cit. on p. 13).

[18] VTK file formats. URL: https://vtk.org/wp-content/uploads/2015/04/file-
formats.pdf. (accessed: Jun 6, 2022) (cit. on p. 14).

[19] ParaView. URL: https://www.paraview.org/. (accessed: Jun 6, 2022) (cit. on
p. 14).

[20] meshio. URL: https://pypi.org/project/meshio/. (accessed: Jun 6, 2022) (cit. on
p. 15).

[21] PyTorch. URL: https://pytorch.org/. (accessed: Jul 7, 2022) (cit. on p. 18).

[22] PyTorch Linear. URL: https://pytorch.org/docs/stable/generated/torch.nn.
Linear.html. (accessed: Jul 7, 2022) (cit. on p. 19).

[23] PyTorch ReLU. URL: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.
html. (accessed: Jul 7, 2022) (cit. on p. 19).

[24] PyTorch RNN. URL: https://pytorch.org/docs/stable/generated/torch.nn.RNN.
html. (accessed: Jul 7, 2022) (cit. on p. 19).

[25] J. L. Elman. “Finding structure in time.” In: Cognitive science 14.2 (1990),
pp. 179–211 (cit. on p. 19).

[26] PyTorch torch.reshape. URL: https://pytorch.org/docs/stable/generated/torch.
reshape.html. (accessed: Jul 7, 2022) (cit. on p. 20).

[27] D. P. Kingma, J. Ba. “Adam: A method for stochastic optimization.” In: arXiv
preprint arXiv:1412.6980 (2014) (cit. on p. 22).

[28] PyTorch Adam. URL: https://pytorch.org/docs/stable/generated/torch.optim.
Adam.html. (accessed: Jul 7, 2022) (cit. on p. 22).

42

https://precice.org/tutorials-elastic-tube-3d.html
https://github.com/precice/tutorials/tree/master/elastic-tube-3d
https://github.com/precice/tutorials/tree/master/elastic-tube-3d
https://develop.openfoam.com/Development/openfoam/-/wikis/precompiled/debian#openfoam-ubuntu-repository
https://develop.openfoam.com/Development/openfoam/-/wikis/precompiled/debian#openfoam-ubuntu-repository
https://precice.org/installation-overview.html
https://precice.org/adapter-openfoam-get.html
https://precice.org/adapter-openfoam-get.html
https://precice.org/adapter-calculix-get-adapter.html
https://precice.org/adapter-calculix-get-adapter.html
https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://www.paraview.org/
https://pypi.org/project/meshio/
https://pytorch.org/
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html
https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

Bibliography

[29] CUDA. URL: https://developer.nvidia.com/cuda-zone. (accessed: Jul 7, 2022)
(cit. on p. 22).

[30] MPI for Python. URL: https://mpi4py.readthedocs.io/en/stable/. (accessed: Jul
7, 2022) (cit. on pp. 25, 31).

[31] torch.set_num_threads. URL: https://pytorch.org/docs/stable/generated/torch.
set_num_threads.html. (accessed: Jul 7, 2022) (cit. on p. 31).

43

https://developer.nvidia.com/cuda-zone
https://mpi4py.readthedocs.io/en/stable/
https://pytorch.org/docs/stable/generated/torch.set_num_threads.html
https://pytorch.org/docs/stable/generated/torch.set_num_threads.html

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen
als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen
Werken übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentlich Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das
elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Datum und Unterschrift:

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not
use any other sources and references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination procedure. I have
not published this work in whole or in part before. The electronic copy is consistent
with all submitted copies.

Date and Signature:

	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Objectives

	2 Methodology
	2.1 Data Collection
	2.1.1 Fluid-Structure Interaction Simulation
	2.1.2 Data Preprocessing
	2.1.2.1 Data Extraction
	2.1.2.2 Normalization
	2.1.2.3 Partitioning
	2.1.2.4 Batching

	2.2 Machine Learning
	2.2.1 Single Partition Neural Network
	2.2.1.1 Neural Network Model Architecture
	2.2.1.2 Training
	2.2.1.3 Sampling

	2.2.2 Overlapping Partitions
	2.2.2.1 Full Overlap
	2.2.2.2 Partial Overlap

	2.3 Parallelization

	3 Results
	3.1 Accuracy
	3.1.1 Neural Network Hyper-Parameters
	3.1.1.1 Layers
	3.1.1.2 Regularization

	3.1.2 Overlapping Partitions
	3.1.2.1 MSE & Training Time
	3.1.2.2 Continuity

	3.2 Parallelization

	4 Conclusion
	Bibliography

