
Time-Sensitive Traffic and
Time-Triggered Mechanisms:
Traffic Planning and Analysis

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors
der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Jonathan Falk
aus Leonberg, Baden-Württemberg

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Prof. Dr. habil. Michael Menth
Tag der mündlichen Prüfung: 29.09.2022

Institut für Parallele und Verteilte Systeme der Universität Stuttgart

2022

Submitted to the University of Stuttgart

Involved institutions and departments:
Institute for Parallel and Distributed Systems
Chair of Distributed Systems

Jonathan Falk
University of Stuttgart
Stuttgart, Baden-Württemberg
Deutschland

D 93 (dissertation)

Copyright © 2022 Jonathan Falk.

3

“ Every time they try 2 clock u
Tick more than they tock

— Rosie Gaines & Prince (Push)

4

5

Danksagungen

Ich danke meinem Herrn Jesus Christus, in dem Gottes Gnade offenbar wurde und durch dessen
Blut ich erlöst bin, für mein Leben.

Ich danke Kurt Rothermel, der mich während meiner Zeit als Mitarbeiter und bei meinem
Promotionsvorhaben an der Universität Stuttgart begleitet und unterstützt hat. Ebenso danke
ich Michael Menth für seine Unterstützung bei meinem Promotionsvorhaben in der Rolle als
Mitberichter.

Ich danke Frank Dürr, über dessen Schreibtisch meine Paperentwürfe wahrscheinlich stapel-
weise gewandert sind, für alle Hilfe und Unterstützung.

Für die fachübergreifende Zusammenarbeit im Rahmen des DFG-geförderten Projekts „Inte-
grierte Reglerentwurfsverfahren und Kommunikationsdienste für digital vernetzte Regelungssys-
teme“ bedanke ich mich auch bei Frank Allgöwer, Steffen Linsenmayer, Stefan Wildhagen und
Michael Hertneck von der „Regelungsseite“.

Ich bedanke mich bei den Leuten am IPVS, dabei insbesondere denjenigen aus der Abteilung
für verteilte Systeme und der Nachbarabteilung für die gemeinsame Zeit beim Lehren, Forschen
und dazwischen. Ich bedanke mich bei Naresh Nayak und David Hellmanns, mit denen ich jeweils
nicht nur räumlich sondern auch thematisch verbunden war, und bei Sukanya Bhowmik, Ahmad
Slo, Ben Carabelli, Mohamed Abdelaal, Heiko Geppert, Michael Schramm, Johannes Kässinger,
Otto Bibartiu, Saravana Murthy Palanisamy, Christoph Dibak, Zohaib Riaz, Christian Mayer,
Henriette Röger, Ruben Mayer, Thomas Kohler und Michael Behringer unter anderem auch für
den Gedankenaustausch in vielerlei Hinsicht. Ich danke Eva Strähle, die mit den Interna des
Universitätsapparats gut vertraut ist.

Ich danke meiner Familie und meinen Freunden für alle Unterstützung.
Stellvertretend für die vielen Musiker, deren Werke mich während meine Zeit an der Universität

begleitet haben, danke ich den unzähligen Hip-Hop Sprechgesangskünstlern, deren lyrischen
Darbietungen ich viele hilfreiche Vokabeln und Wendungen zum Verfassen englischsprachiger
Texte entnehmen konnte. Weiter danke ich auch einigen stark gitarrenlastigen Musikgruppen,
deren Aufnahmen teilweise meine Gefühle nach Paper-Notifications widerspiegelten.

6

7

Contents

Danksagungen 5

Lists of Figures, Tables, Algorithms, and Theorems 9

List of Acronyms 17

Abstract/Kurzzusammenfassung 19

1 Introduction 23
1.1 Time-Sensitive Communication . 23
1.2 Structure of this Thesis . 25
1.3 Scientific Contributions . 26

2 Background 29
2.1 Why Nodes? . 29
2.2 Transmitting Data Packets via Links . 30
2.3 Selecting Packets for Transmission . 33
2.4 Bridges . 34
2.5 Hosts . 36
2.6 Clocks and Time-Synchronization . 36
2.7 Time-Sensitive Networked Applications . 37
2.8 Architecture: Organizing the Network Functionality 37

3 System Model and Problem Overview 41
3.1 Notational Conventions . 41
3.2 The Network Graph . 41
3.3 Traffic Flows . 42
3.4 Zero-Queuing Principle . 47
3.5 Problem Overview . 50

4 ILP-Based Traffic Planning 53
4.1 Integer Linear Programming . 54
4.2 Joint Scheduling and Route Computation . 56
4.3 Joint Scheduling and Path Selection . 70
4.4 Traffic Planning for Complemental Flows . 78
4.5 Related Work . 95
4.6 Challenges of ILP-Based Traffic Planning . 99

8 CONTENTS

5 Traffic Planning with Conflict Graphs 101
5.1 Fundamental Concepts and Relations for Conflict-Graph-Based Traffic Planning 102
5.2 Conflict-Graph-Based Approach for Traffic Planning 110
5.3 Dynamic QoS-Aware Traffic Planning with Conflict Graphs 127
5.4 Related Work . 153
5.5 Discussion . 155

6 Modeling Time-Triggered Service Intermittence with Network Calculus 157
6.1 Network Calculus Introduction . 159
6.2 Network Elements: System Models . 162
6.3 Deriving Service Curves . 164
6.4 Empirical Evaluation . 176
6.5 Extension to Multi-Hop? . 182
6.6 Related Work . 182
6.7 Summary . 183

7 Conclusion 185
7.1 Summary . 185
7.2 Outlook . 186

A Appendix 189
A.1 Joint Scheduling and Route Computation . 189
A.2 Greedy Flow Heap Heuristic . 197

Bibliography 203

9

Lists of Figures, Tables,
Algorithms, and Theorems

List of Figures
2.1 A node can send and receive packetized data to and from a directly connected

node. 30
2.2 In the temporal domain, we describe the transmission of a packet between two

nodes connected by a link with the transmission delay ttrans and propagation
delay tprop. 32

2.3 The packet scheduler determines which packet is eligible for the next transmission.
In this example, the packet scheduler is composed of multiple packet queues for
different priority levels with time-aware shaping. 34

2.4 Bridges are specialized nodes that enable indirect communication between nodes
by relaying packets. 35

2.5 Network architecture: Networked applications are executed on hosts. All nodes
(hosts and bridges) are equipped with network control and configuration func-
tionality, which can be used to influence how packets are handled. 38

3.1 A reserved window may be used to transmit multiple packets from the same flow
back-to-back, here tresv = 3 · tpkt. 44

3.2 The schedule of a time-triggered traffic flow on a specific link specifies the offset
of the reserved window relative to the start of a transmission cycle. 45

3.3 Time-aware shaper for one port of an IEEE Std 802.1Q compliant switch. We
use one queue (traffic class) exclusively for time-triggered traffic. 47

3.4 With zero-queuing, no runtime-dependent packet retention in the packet scheduler
occurs, and packets are immediately forwarded. 48

3.5 Zero-queuing illustrated for two flows with different values for tresv and with the
source node (on the left) and same destination node (on the right). We assume
that processing delay is independent of the packet size. 49

3.6 With zero-queuing, the offset on a particular link depends on the phase and
amount of delay accumulated so far on the route to the destination. 50

3.7 Example: Appropriately chosen offsets ensure temporal isolation for two flows
with different cycle times. Note that link serialization is implicitly achieved by
temporal isolation. 51

4.1 Equation (4.7) constrains toffset[f, ∗] such that the reserved window does not
cross boundaries of a transmission cycle. 58

10 LISTS OF FIGURES, TABLES, ALGORITHMS, AND THEOREMS

4.2 The routing constraints from Eq. (4.8)–Eq. (4.11) restrict the number of incoming
and outgoing links at the nodes (here: n is a bridge on the path of flow f). . . 59

4.3 Scheduling constraints from Eq. (4.13) and Eq. (4.14): The third reserved window
of flow f1 overlaps with the second reserved window of flow f2 in the hyper-cycle. 60

4.4 The constraints from Eq. (4.17)–Eq. (4.19) relate the reservations along the links
of the path of flow f . 61

4.5 Illustration of the constraint from Eq. (4.18) where the reservation on the outgoing
link `out is shifted by dhop[f] compared to the reservation on the incoming link
`in at node n. 61

4.6 Illustration of the constraint from Eq. (4.19) where the periodicity of the reser-
vation has to be accounted for. The positions of the reservations relative to
the start and end of the transmission cycle from the local perspectives of the
respective link are filled in gray. The striped area right of tcycle[f] is the position
of the reservation on `out from the global perspective. 62

4.7 Example of a scale-free graph with |N | = 36. 64
4.8 Box plot of solver runtimes for problem instances with varying number of flows,

fixed number of nodes |N | = 8, transmission cycles ∈ {1000, 2000, 4000, 8000} . 65
4.9 Comparison of runtimes for problem instances with varying number of flows,

|N | = 8, transmission cycles for HF ∈ {50, 100, 200, 400, 800}, and for LF
∈ {1000, 2000, 4000, 8000}, and runtime limit of 30min. 66

4.10 Comparison of runtimes for problem instances with varying number of nodes,
|F| = 7, transmission cycles for HF ∈ {50, 100, 200, 400, 800} and for LF ∈
{1000, 2000, 4000, 8000}, and runtime limit of 30min. 67

4.11 Average number of ILP constraints and ILP variables for problem instances with
varying number of nodes (cf. Fig. 4.10). 68

4.12 Average number of ILP constraints and ILP variables for problem instances with
varying number of flows (cf. Fig. 4.8B and Fig. 4.9). 69

4.13 Reserved cells in the transmission cycle are expressed by reservation matrices
where rows correspond to scheduling options and columns to different intervals
in the transmission cycle. 72

4.14 Rows of the reservation matrix mresv[f] represent different positions of the
reserved window. Variable s[`, f, c] indicates whether offset c · τ is selected for
flow f on edge `. 74

4.15 Each cell in the hyper-cycle can be reserved for at most one flow. 76
4.16 The offset of the reserved window is adjusted by dhop[f] from hop to hop on the

route used by f . On unused links (here: `3), all components of s[`∗, f, ∗] have
value 0. 77

4.17 A time-dependent traffic metric allows to assign different traffic metric values
to different time intervals. The reference point for the time-dependent traffic
metric sequence is the transmission of the deterministic packet. 81

4.18 Output port with strict-priority scheduling and time-aware shaping. Determinis-
tic and opportunistic packets are enqueued separately. 83

4.19 Example with time-independent (scalar) traffic metric: Computing feasible offsets
for the periodic, deterministic packets of a complemental flow corresponds to
the scheduling of reserved windows. 86

LIST OF FIGURES 11

4.20 Rows of the matrices (mresv[f], mtrf,t.d.[f]) represent the complemental traffic
parts for different offsets. Variable s[`, f, c] indicates whether offset c·τ is selected
for the deterministic part of flow f on link `. 88

4.21 Topology and placement of source nodes and destination nodes used for the
evaluations. 89

4.22 Average solver runtimes with and without traffic-metric objective. 90
4.23 Exit status of solver, varying number of flows. 91
4.24 Exit status of solver, ILP with candidate-path selection for varying number of

precomputed paths. 92
4.25 Average reduction of highest value of aggregated traffic metric for varying number

of precomputed candidate paths. 93

5.1 An independent vertex set in the conflict graph is a solution to the original traffic
planning problem. Vertices in the conflict graph correspond to flow configurations. 103

5.3 Configurations and conflict: Flows must traverse all links without buffering.
There is a conflict between configuration a1 for flow fa and configuration b2 for
flow fb, since the transmission at the source of fb is scheduled too early, and
packets sent with b2 would have to be buffered until the transmission of packets
from fa is finished—which violates the zero-queuing principle. In contrast,
configuration a1 und b1 are conflict-free due to the increased phase for packets of
fb. 105

5.4 Discrete time intervals are modeled via arrays where each entry corresponds to a
time interval in the transmission period. Delay is modeled via a circular shift of
the array. If packets are scheduled such that the same time interval is used by
more than one flow, the temporal isolation constraint is violated. 106

5.5 Overview of the iterative, conflict-graph-based traffic planning (CGTP) algo-
rithm. The green, opaque arrow indicates one iteration. 111

5.6 With each invocation, the configuration generator returns the next, new configu-
ration by incrementing or resetting the values of φ and π, respectively. 113

5.7 Example of the network topology: ring graph with n = 15 nodes and m = 3
neighboring nodes (in each direction) are connected. 120

5.8 Comparison of runtime on compute nodes of type PCsmall. The area marked by
circles indicates a shortage of memory for the RILP. 122

5.9 Comparison of runtime on compute node PCbig. 123
5.10 Behavior for varying ratio of flows to nodes in constant size network with 50 nodes. 124
5.11 Total runtime for increasing problem size with different intermediate ILP settings.

Left plot: after two successive executions of intermediate ILP for at most 5min,
suspend intermediate ILP for 5 iterations, right plot: at most 1 execution of
intermediate ILP every 10 iterations for at most 10min. 125

5.12 Runtime normalized to the number of conflicts (edges) in the conflict graph for
increasing problem sizes. 126

12 LISTS OF FIGURES, TABLES, ALGORITHMS, AND THEOREMS

5.13 The planner computes a sequence of traffic plans. During the first traffic plan
update, out of the two flow requests (ReqF (P ′) = {fd, fe}), only fd can be
admitted (which requires a reconfiguration of fb) and fd is added to the set of
active flows ActiveF (P ′), while fe could not be scheduled and is rejected. The
second update removes fc, which is not needed by the application any more. . 130

5.14 The possibility of transition interference between old packets of flow k from plan
P and new packets of flow f from P ′ is limited to the transition interval. . . . 133

5.15 Scenario: packets from P ′ may interfere with yet-to-be-delivered packets from P . 134
5.16 New candidates are generated by traversing the φ-π-space with ∆φ the stride

width in the φ-dimension. 138
5.17 Example: 1-hop neighbors of active configurations a1, b1 are locked in Gc (P ′),

a2, a3, b2 remain eligible for the active flows. 139
5.18 Reconfiguration of an active flow can temporarily cause jitter and packet re-

ordering. Here, the packets with numbers n+ 1 to n+ k arrive “too early”, that
is, before packet n. 143

5.19 Total runtime per planning round (≈500 active flows). 148
5.20 Runtimes and number of rejected flows per planning round for scenarios with

≈800 active flows. 149
5.21 Defensive versus offensive planning: Cumulative rejected flows (thin lines: per

scenario, bold line: average). 150
5.22 Comparison of schedulability and runtime for varying ratios of non-reconfigurable

(permanently-pinned) active flows. 151
5.23 Average runtime per planning round for different network topologies. 152
5.24 Impact of different network topologies on conflict-graph size. (Note the different

ranges of the axes.) . 152

6.1 Service curve β describes a composite network element comprised of a service
process S with service curve βS manipulated by a time-triggered mechanism. . 164

6.2 Start or end of enabled interval included in (s, t]. 166
6.3 Enabled interval contains (s, t] or vice versa. 167
6.4 Offered service over multiple enabled intervals. 167
6.5 Start or end of enabled interval included in (s, t]. 168
6.6 Enabled interval contains (s, t] or vice versa. 169
6.7 Offered service, if we shift the interval (s, t] from Fig. 6.4 on the time-axis. . . 170
6.8 Artificial (virtual) arrival process Av occupies service process S during disabled

intervals of the actual arrival process A. 171
6.9 Leftover service for cyclic schedule in Tab. 6.4. 173
6.10 Direct, time-invariant service curve for the cyclic schedule from Tab. 6.4. . . . 175
6.11 Different values of offered service resulting from service curve βa and service

curve βb starting at time t1 have no impact on worst-case backlog and delay
bounds. 177

6.12 Different values of offered service resulting from service curve βa and service
curve βb starting at time t1 fully affect the worst-case virtual delay bounds. . . 178

6.13 Different values of offered service resulting from service curve βa and service
curve βb starting at time t1 affect worst-case backlog bounds. 178

LIST OF FIGURES 13

6.14 Evaluation for schedules with enabled intervals and disabled intervals randomly
drawn from [1, 100]. 180

6.15 Evaluation for random schedules with different creation schemes. 181

14 LISTS OF FIGURES, TABLES, ALGORITHMS, AND THEOREMS

List of Tables
3.1 (Minimal) set of parameters in a request for a single time-triggered flow. 46

4.1 ILP parameters for joint scheduling and route computation. 57
4.2 Parameters for ILP formulation for joint scheduling and path selection. 73

5.1 Specification of compute nodes. 121
5.2 Mean and standard deviation of conflict-graph dimensions for increasing problem

sizes (cf. Fig. 5.12). 127
5.3 Overview of evaluation scenario parameters. 147

6.1 Basic Network Calculus operations on Ft.i. /Ft.v.. 160
6.2 Repeating schedule with cycle length tcycle. 163
6.3 Asymptotic behaviors for time-invariant service functions with bounded nv

max. . 172
6.4 Example schedule and corresponding inverse schedule for Av with imax = ivmax = 2

and tcycle = tvcycle = 8. 173

A.1 Varying number of flows, |N | = 8, transmission cycles ∈ {50, 100, 200, 400, 800}
(HF), and runtime limit of 30min. 194

A.2 Varying number of flows, |N | = 8, transmission cycles ∈ {1000, 2000, 4000, 8000}
(LF), and runtime limit of 30min. 194

A.3 Varying number of flows, |N | = 8, transmission cycles ∈ {1000, 2000, 4000, 8000}
(LF), and runtime limit of 60min. 195

A.4 Varying number of nodes, |F| = 7, transmission cycles ∈ {50, 100, 200, 400, 800}
(HF), and runtime limit of 30min. 195

A.5 Varying number of nodes, |F| = 7, transmission cycles ∈ {1000, 2000, 4000, 8000}
(LF), and runtime limit of 30min. 196

A.6 Varying number of nodes, |F| = 7, transmission cycles ∈ {1000, 2000, 4000, 8000}
(LF), and runtime limit of 60min. 196

List of Algorithms
5.1 Checking for conflict between two configurations. 105
5.2 Add a configuration cinsert to the conflict graph. 114
5.3 Adapted Luby’s algorithm for MIVS. 115
5.4 Trigger rule for max-cover algorithm. 117
5.5 Update threshold for completion heuristic. 119

A.1 addConfigPerFlow . 198
A.2 computeShadowRating . 199
A.3 GFH . 200

LIST OF THEOREMS 15

List of Theorems
5.1 Definition (Flow Configuration) . 103
5.2 Definition (Conflict) . 104
5.3 Definition (Conflict Graph) . 107
5.4 Definition (Independent Vertex Set) . 108
5.5 Theorem (Feasible Traffic Plan) . 108
5.6 Corollary (Traffic Planning Solution) . 109
5.7 Definition (Traffic Plan) . 132
5.8 Definition (Transition Interference) . 134
5.9 Definition (Dynamic Traffic Planning Objective) 135
5.10 Theorem (Packet Jitter ∆t) . 144
5.11 Theorem (Number of Packets Affected by Reconfiguration) 145

6.1 Theorem (Time-Variant: Time-Triggered Blocking) 165
6.2 Theorem (Time-Variant: Time-Triggered Halting and Restarting) 168
6.3 Theorem (Time-Invariant: Time-Triggered Service Intermittence) 174

16

17

List of Acronyms

C

CPS Cyber-physical System

F

FIFO First In, First Out

G

GFH Greedy Flow Heap (Heuristic)

I

ILP Integer Linear Program(ing)
IP Internet Protocol

L

LAN Local Area Network

M

MAC Medium Access Control
MIMO Multiple Input and Multiple Output
MIVS Maximal Independent Vertex Set

N

NC Network Calculus
NCS Networked Control System

O

OMT Optimization Modulo Theories

P

PCP Priority-code Point

Q

QoS Quality of Service

S

SAT Satisfiability (Problem)
SDN Software-defined Networking
SFP Small Form-factor Pluggable
SMT Satisfiability Modulo Theories

T

TDMA Time-division Multiple Access
TSN Time-sensitive Networking
TSSDN Time-sensitive Software-defined Net-

working

W

WHRT Weakly-hard Real-time

18

19

Abstract/Kurzzusammenfassung

Abstract
Networked applications increasingly rely on real-time-capable communication networks as the
backbone to connect individual components. Traditionally, we find such applications, for
example, in industrial automation or vehicular on-board networks. As software encroaches
further into infrastructures, for example, in the context of smart grids or connected driving
scenarios, the demand for real-time communication increases. As a result, networks are enhanced
with additional mechanisms that can be used to combine deterministic medium access with
suitable scheduling, routing, and resource reservation mechanisms to guarantee worst-case
bounds, for instance, on latency or delay.

Therefore, in the first part of this thesis, we address the problem of how to synthesize a
traffic plan that provides real-time guarantees by design for a given network and a set of flow
requests. We present approaches for different variations of the traffic planning problem for time-
triggered flows and evaluate them for a wide array of synthetic scenarios using proof-of-concept
implementations. Our approaches differ, for example, with respect to the degrees of freedom in
time (time-discretization) and space (routing), and the method used to compute the traffic plan.

We present two different approaches for traffic planning of time-triggered flows that rely on
constraint-based programming. To be exact, we express the traffic planning constraints via a set
of linear-(in)equalities as integer-linear programs (ILPs) with different granularity regarding the
routing and scheduling decisions. We extend these two approaches for the computation of traffic
plans for complemental flows which consist of a time-triggered part and an event-triggered part.
Here, the event-triggered part is considered for the optimization of the traffic plan. Following
that, we present two different approaches for traffic planning of time-triggered flows that use
conflict-graph-based modeling. First, we show how to iteratively construct the conflict graph
and use a combination of heuristics and exact algorithms to efficiently compute traffic plans for
static scenarios. Then we extend the conflict-graph-based approach to dynamic scenarios. We
identify the additional challenges and provide means to quantify and control the service offered
to flows throughout the traffic plan updates.

In the second part of this thesis, we focus on the analysis of network elements with time-
triggered service intermittence in the framework of Network Calculus. Time-triggered service
intermittence, for instance, occurs if the bridges in the network use a so-called gating mechanism

20 ABSTRACT/KURZZUSAMMENFASSUNG

to enforce such transmission schedules as synthesized in the first part of this thesis. Here, this
gating mechanism can have the effect that some other traffic will not be forwarded during certain
time intervals. However, we can also observe similar effects, that is, some traffic is offered no
(forwarding) service, in network elements with power-cycling for energy conservation reasons.
Therefore, we more generally investigate this phenomenon—referred to as time-triggered service
intermittence—where network elements stop offering service to some traffic according to a given
schedule.

To be able to analyze the worst-case bounds on latency or buffer usage in these scenarios with
Network Calculus, we require a formal description of these systems first. To this end, we identify
two generic archetypes of network elements with time-triggered service intermittence which
require different treatment in the analysis. We provide time-variant as well as time-invariant
service-curve formulations for both types of systems. Service curves capture the forwarding
behavior of these network elements and can be used for the analysis of composite systems using
Network Calculus. We numerically evaluate our service-curve formulations with regard to the
under-approximation of offered service and discuss influencing factors and limitations.

Kurzzusammenfassung

In zunehmendem Maße bilden echtzeitfähige Kommunikationsnetzwerke das Rückgrat, das
einzelne Komponenten von vernetzten Anwendungen verbindet. Herkömmlicherweise finden sich
solche Anwendungen zum Beispiel in Industrieautomationsanlagen oder Fahrzeugbordnetzen.
Je mehr sich Software in Infrastruktursysteme einnistet, beispielsweise im Zusammenhang mit
Smart Grids oder Connected Driving, desto mehr steigt der Bedarf an Echtzeitkommunikation.
In der Folge werden Netzwerke mit zusätzlichen Mechanismen ausgestattet, die durch ein
Zusammenspiel von deterministischem Medienzugriff, zeitlicher Koordination, Pfadberechnung
und Ressourcenreservierung Garantien, zum Beispiel hinsichtlich Latenz oder Verzögerung,
gewährleisten können.

Im ersten Teil dieser Arbeit wird daher das Problem behandelt, wie sich ein Verkehrsplan
erzeugen lässt, der Echtzeitgarantien für ein gegebenes Netzwerk und eine Menge von Daten-
strömen sicherstellt. Dazu werden unterschiedliche Ansätze für verschiedene Ausprägungen
des Verkehrsplanungsproblems für zeitgetriggerte Datenströme vorgestellt und anhand einer
großen Auswahl von synthetischen Szenarien mit prototypischen Implementierungen evaluiert.
Diese Ansätze unterscheiden sich unter anderem hinsichtlich der zeitlichen Auflösung und dem
Freiheitsgrad bei der Pfadberechnung sowie der Methode, die zur Berechnung des Verkehrsplans
genutzt wird.

Zwei dieser Ansätze beruhen auf Constraint Programming. Konkret bedeutet das, dass die un-
terschiedlichen Verkehrsplannungsbedingungen für die Zeitpläne und Pfade von zeitgetriggerten

21

Datenströmen als Integer Linear Programs mit linearen (Un-)Gleichungen formuliert werden.
Diese beiden Ansätze werden für die Planung von sogenannten Complemental Flows erweitert.
Als Complemental Flows werden hierbei Datenströme bezeichnet, die aus einem zeitgetriggerten
Teil und einem sich ergänzenden ereignisgetriggerten Teil bestehen. Weiter werden zwei auf
Konfliktgraphen basierende Verfahren zur Verkehrsplanung vorgestellt. Im zuerst vorgestellten
Verfahren wird dabei der Konfliktgraph schrittweise aufgebaut und die Verkehrspläne für sta-
tische Szenarien werden effizient mit einer Kombination von einem exakten Algorithmus und
einer Heuristik berechnet. Als zweites wird der Konfliktgraphansatz für dynamische Szenarien
erweitert. Die sich dabei ergebenden zusätzliche Herausforderungen werden identifiziert und
Mittel zur Quantifizierung und Steuerung der Dienstgüte bei Verkehrsplanaktualisierungen
vorgestellt.

Im zweiten Teil dieser Arbeit wird die Analyse von Netzwerkelementen mit zeitgetriggerten
Dienstunterbrechungen im Network Calculus-Framework betrachtet. Zeitgetriggerte Dienstun-
terbrechungen treten beispielsweise in Netzwerkbrücken auf, die die Zeitpläne, die im ersten
Teil dieser Arbeit betrachtet wurden, mit Hilfe eines Sperrmechanismus’ durchsetzen. Dieser
Sperrmechanismus wirkt sich so aus, dass ein Teil des Datenverkehrs für bestimmte Zeiträume
nicht weitergeleitet wird. Ein ähnlicher Effekt ergibt sich auch in Netzwerkelementen, die aus
Gründen der Energieeffizienz eine Leistungsabschaltung durchführen. Deshalb wird das verallge-
meinerte Problem der zeitgetriggerten Dienstunterbrechung, bei dem Netzwerkelemente nach
einem festgelegten Zeitplan den Dienst für bestimmte Datenströmen unterbrechen, untersucht.
Eine Voraussetzung, um die Latenzgrenzen und den maximal belegten Zwischenspeicher in
diesen Szenarien mit Network Calculus zu berechnen, ist zuerst einmal eine formale Beschreibung
dieser Systeme. Deshalb werden zwei Grundformen von Netzwerkelementen mit zeitgetriggerter
Dienstunterbrechung identifiziert, die jeweils auch beide unterschiedlich in der Analyse behandelt
werden müssen. Für diese Grundformen werden zeitvariante und zeitinvariante Servicekurven
herausgearbeitet. Eine Servicekurve beschreibt dabei das Weiterleitungsverhalten der unter-
suchten Netzwerkelemente und kann für die Analyse von zusammengesetzten Systemen mit
Network Calculus verwendet werden. Diese Servicekurven werden in Hinblick auf die Unterab-
schätzung des angebotenen (Weiterleitungs-)Dienstes ausgewertet und Einflussfaktoren sowie
Einschränkungen diskutiert.

22

23

1 Introduction

Timely delivery is of ubiquitous importance, be it the delivery of physical goods, or, more
abstractly, the delivery of information. In this thesis, we address the latter, and in particular, we
target the problem domain of information flows in data networks. Usually, a data network does
not exist for its own sake but implements a communication service to facilitate the exchange of
information-carrying data between components of an application which are spread throughout
the data network. We call such an application a networked application. If we were to wish for
the properties of such a communication service, we would like instantaneous delivery of arbitrary
amounts of data at any time for zero cost. Undoubtedly, centuries’ worth of engineering and
research have brought us closer to that ideal. But yet, such an ideal communication service is
unheard of, and, for all that we know about the laws of nature, this is how it will likely stay.
Therefore, it is no surprise that we have to find acceptable trade-offs and compromises which
very much depend on the specifics and requirements of the networked applications.

1.1 Time-Sensitive Communication
One entity that is fundamentally involved in many of these trade-offs and compromises is time.
There exist many concepts that effectively trade in some time to compensate non-ideal behaviors
of a communication service. For example, we can store the data for some time and then send it
again if it appears that it was not delivered successfully. This allows to compensate data loss,
which might occur in a non-ideal communication service, and practically this is implemented
with techniques such as acknowledgments, time-outs, and retransmissions. Similarly, data can
also be stored temporarily to improve the average throughput. This is also known as buffering
and is commonly used.

The peculiarity is that trade-offs or compromises involving time are one-sided: many properties
of a communication service can be improved at the expense of time, but we are not aware of
anything that allows us to create more time. Even worse, time is very much outside of our
control. We cannot stop it, and we lose time even if we cannot use it in a meaningful way.

This matters once we look at networked applications that require data to arrive in time and
where data not arriving when needed or not arriving at all incurs unacceptable costs. Examples
of such applications can be found in many domains, for example, vehicular onboard networks,
industrial manufacturing, or power-grid automation. In more abstract terms: we find such

24 CHAPTER 1: INTRODUCTION

networked applications in the domain of cyber-physical systems where computational processes
directly interact with the physical world. An important class of cyber-physical systems are
networked control systems. In networked control systems, one or multiple parts of the control
loop are closed via the data network and the controller design incorporates assumptions about
the communication service. In cyber-physical networked applications, the physical part of the
application oftentimes much more imposes its rules on the cyber part of the application, and if
it is the other way around, then it is many a time not in the original interest of the user—think
of motion controllers commanding actuators to ignore physical obstacles. To ensure that a
networked control system is able to control a physical process in a meaningful way, we need not
only sufficient information about the state of this process, but we need to have that information
available at the right time, and we need our commands to be applied at the right time—it does
not really help to issue the command to open an overload valve after it blew up.

It takes efforts throughout the whole networked application to get the timing right. Even if
the communication service was ideal and delivers information instantaneously, it is to no avail if
the computation of the control command takes arbitrary time and vice versa. In this thesis,
we consider what happens in the network, and—to some degree—draw the line at the network
interface boundary.

Implementations of data networks offer in many regards only limited resources for the delivery
of data. Most notable among these limitations is probably how much data can be transmitted
in a certain period of time, and how much data can be temporarily buffered in the network. But
these limitations also extend to more subtle aspects such as what computational power does the
data network possess? For example, on which level can the data network differentiate between
data? If the data network can buffer data, which algorithms can it execute on that data, for
instance, to decide which data to deliver next, or which data to modify or discard? We do not
want to go into the specifics of these limitations here, but we want to point out a more general
consequence of these limitations. It is rarely the case that we can make substantial statements
about the communication service by only looking at the properties of the data network alone.
Instead, due to the aforementioned resource limitations—whatever shape they may have—the
communication service also depends on the traffic, that is, the data flows in the network.

In the context of communication services that support the timely delivery of data, there is no
single dominating approach. Yet again, what exactly we mean by timely delivery, what we know
about the data network and the networked applications, what is subject to our control, and
what is imposed externally, makes certain approaches more sensible than others. For example,
if we have a global view on the data network and the networked applications therein and some
amount of influence on the networked applications, then a well-established paradigm to achieve
real-time communication is the combination of time-triggered transmissions with a network-wide
coordinated configuration of routes and schedules. Then the challenge lies in traffic planning

1.2 STRUCTURE OF THIS THESIS 25

that synthesizes these configurations with the required properties.

If we have less influence or less knowledge about the networked applications, another way
to go is to perform an analysis using the information we have and decide whether we can
accept a certain scenario. This is applied, for example, in admission control for scenarios where
information about the network and networked applications is only revealed during runtime, or
when we only have stochastic information about the traffic generated by a networked application.

In this thesis, we will investigate both sides. We start with the synthesis of network configu-
rations, which means that we present different approaches for traffic planning. Traffic planning
is the key enabler of time-triggered real-time communication in distributed systems, and it is
known to be notoriously hard. Then, we turn towards analysis and investigate how to model
service intermittence in the elements of a data network.

1.2 Structure of this Thesis

The technical content of this thesis is organized into two main parts.

The first part (Chap. 2 – Chap. 5) focuses on traffic planning. This means we concern
ourselves with different methods and modeling approaches for the constructive task of computing
a traffic plan for a set of flows in a network. Or, in other words, in the first part of this thesis,
we are given a system and some requirements, and we have to create (or synthesize) the rules
of operation for the application and the network—the so-called traffic plan. We present the
technological background and introduce a reference system model that we will use throughout
the first part of this thesis. Then we give an overview of the traffic planning problem and
common constraints and requirements before delving into the details of the different approaches
and methods.

In the second part (Chap. 6), the perspective flips from synthesis to analysis. This means we
are provided with a system and its operational rules, and our task is to derive certain properties
of interest which allow, for example, to estimate the worst-case backlog that occurs during
runtime. Our work in this second part (Chap. 6) is done in the Network Calculus framework.
Network Calculus already describes methods and means for the composition of systems from
fundamental building blocks such as the service curve models which we derive in the second part
of the thesis. Therefore, we simultaneously take a step back from the strongly technologically
motivated system model and network-wide perspective from the first part and zoom in on the
behavior of a single network element in this second part.

26 CHAPTER 1: INTRODUCTION

1.3 Scientific Contributions
The overarching theme in this thesis is deterministic communication with time-triggered mecha-
nisms. As explained in the previous section, we present concepts for computing traffic plans
which provide service guarantees, and we present concepts for modeling network elements with
time-triggered service intermittence to facilitate the analysis with Network Calculus.

The contributions in this thesis are mainly based on [Fal+18] by Falk, Dürr, and Rothermel,
[Fal+19a] by Falk, Dürr, Linsenmayer, Wildhagen, Carabelli, and Rothermel, [Fal+20] by Falk,
Dürr, and Rothermel, [Fal+22] by Falk, Geppert, Dürr, Bhowmik, and Rothermel, and [Fal+19b]
by Falk, Dürr, and Rothermel:

1. We provide two different integer linear programs (ILPs) for traffic planning of arbitrary
isochronous time-triggered flows with zero-queuing. Here, traffic planning refers to a joint
scheduling and routing problem. If an ILP solver can produce a feasible solution to the
ILP, we can obtain routes and schedules from the solution of the ILP, which could be used,
for example, to configure the hosts and bridges.

• In the ILP formulation for joint scheduling and route computation, each individual
link is modeled with the intent to facilitate the computation of a valid route for each
data flow via dedicated routing constraints in the ILP. This variant is “holistic” in
that we encode the whole problem using the integer linear framework, and it provides
us with a formal description of the traffic planning problem. However, it is possible
to end up with ILP instances that take several days or even weeks to solve.

• Therefore, we present an alternative ILP formulation for joint scheduling and path
selection. In this variant, the computation of a set of candidate paths for each data
flow is performed a priori. Consequently, the routing constraints in this ILP express
the need to decide upon which path to select as the route. This means that the
entities considered for the routing part are candidate paths instead of individual links.
While—in theory—for each flow, every possible candidate path could be included in
the ILP, we can restrict the number of candidate paths to influence the size of the
ILP. On the other hand, the ILP formulation for joint routing and path selection uses
a more powerful method to model the time when links are occupied by scheduled
transmissions.

The ILP formulation for joint scheduling and route computation was published in [Fal+18].
The author of this these contributed an estimated 95% of the content of [Fal+18]. The ILP
formulation for joint scheduling and path computation was published as part of [Fal+19a].

2. We extended the two different ILP formulations in [Fal+19a] to optimize traffic plans for
complemental flows. Complemental flows consist of both, a deterministic real-time part

1.3 SCIENTIFIC CONTRIBUTIONS 27

and a complemental, non-time-triggered part (referred to as opportunistic part). The
deterministic part has to be delivered deterministically within bounded latency and follows
a fixed time schedule, whereas the opportunistic part is transported with relaxed or no
latency guarantees. The basic idea is that the deterministic part of the flow provides the
strictly mandatory guarantees to safely operate the system, whereas the opportunistic
part just improves the system performance beyond the mandatory minimum.

The concept of complemental traffic flows has been jointly developed in the context of
the DFG project “Integrated Controller Design Methods and Communication Services
for Networked Control Systems (NCS)” [Deu], namely, this involved (in alphabetical
order) Allgöwer, Carabelli, Dürr, Falk, Linsenmayer, Rothermel, and Wildhagen. The
formalization of the optimal routing and scheduling problem for complemental flows, which
includes the specific modeling of opportunistic transmissions and traffic metrics, using
(mixed-)integer linear programs for the publication in [Fal+19a] was mainly done by the
author of this thesis who contributed an estimated 85% to the content in [Fal+19a].

3. The next contribution is a conflict-graph-based approach for traffic planning, which was
published in [Fal+20]. We show how to model the traffic planning problem using a conflict
graph and establish the relation between traffic planning for time-triggered flows and
the independent vertex set problem in the conflict graph. In addition to the theoretic
relation between traffic planning and independent set search, we present an algorithm for
conflict-graph-based traffic planning and evaluate its proof-of-concept implementation.

The author of this thesis contributed an estimated 95% of the content in [Fal+20].

4. Building upon the conflict-graph-based modeling, we present a novel approach addressing
traffic planning for time-triggered flows with real-time requirements in scenarios with
dynamic changes in the flow set. Our approach takes advantage of the conflict-graph
modeling where the conflict graph itself embeds a large portion of the knowledge about
the solution space in a way that is mostly reusable for the computation of a new traffic
plan. This work was published in [Fal+22], and the contributions are two-fold:

• It introduces a novel approach for dynamic traffic planning for isochronous and/or
cyclic-synchronous traffic flows using the zero-queuing principle. Our approach
allows for reconfigurations of some active flows when adding new flows. This is
referred to as offensive planning. Compared to defensive planning, which takes
the configuration of active flows for granted and only uses the remaining network
resources for routing and scheduling new flows, offensive planning allows for better
utilization of network resources. While offensive planning obviously has to guarantee
deterministic communication in the long run, it may introduce possible short-term

28 CHAPTER 1: INTRODUCTION

degradations [Li+19] in the quality of service (QoS). Therefore, offensive planning
makes only sense if we can control, both, the degree and duration of a QoS degradation,
and it requires applications that can tolerate controlled fluctuations of QoS, for
example, provide some level of jitter tolerance.

Our approach supports offensive traffic planning where the transitions from the old
traffic plan to the new traffic plan, that is, traffic plan updates, do not require artificial
pauses of sender nodes or dropping packets of active flows. Additionally, we can limit
the QoS degradation during updates according to per-flow user-specified bounds. In
particular, this allows a mixed-operation mode where a subset of active flows (for
example, of jitter-resilient applications) can be reconfigured while the remaining active
flows (for example, jitter-sensitive applications) are exempt from reconfigurations.

• The second contribution is a novel heuristic for a variant of the independent colorful
vertex set problem with weighted colors, which is the underlying optimization problem
for the computation of a new traffic plan.

The contributions concerning the “networking side” of the problem are from the author
of this thesis, whereas the novel heuristic for solving the independent colored vertex set
problem variant is a contribution of Heiko Geppert. The estimated contribution of the
author of this thesis to the content in [Fal+22] amounts to 50%.

5. In the analysis part of this thesis, we address fundamental questions regarding the modeling
of network elements with time-triggered service intermittence in the Network Calculus
(NC) framework. We identify two archetypes of time-triggered network elements with
intermittent service. We present time-variant approaches for deriving service curves in
the NC framework which—in absence of specific restrictions on the service process of
these network elements—differ depending on the archetype. We present approaches for
deriving time-invariant service curves for these two archetypes of network elements, too.
In particular, we show that a leftover service-curve approach is not applicable to obtain
valid time-invariant service curves for both types and provide an alternative approach
to model time-triggered network elements with intermittent service with time-invariant
service curves. We evaluate the differences between time-variant and time-invariant service
curves with respect to the overestimation of worst-case backlog and worst-case delay, and
we identify schedule properties that influence the tightness of the derived bounds.

This contribution was published in [Fal+19b]. The author of this thesis contributed
estimated 95% to the content in [Fal+19b].

In addition to the work covered in this thesis, the author coauthored and contributed to
[Fal+19c; Hel+20a; Hel+20b].

29

2 Background: Moving Packets
Through Space and Time

Technological developments and academic research often mutually influence each other. Our
research was, for example, in some parts motivated by the efforts of the industry and standard-
ization bodies to equip the popular IEEE Std. 802.1Q [IEE18b] compliant Ethernet [IEE18a]
networks with real-time communication capabilities in the context of the Time-sensitive Network-
ing (TSN) initiative. A key mechanism in TSN networks is time-aware shaping as standardized
by IEEE Std. 802.1Qbv[IEE16] (which later got merged into IEEE Std. 802.1Q-2018 [IEE18b]).
Time-aware shaping introduces support for time-triggered (scheduled) forwarding operations in
the bridges in the network according to a cyclic time schedule.

While these technological developments provide some of the context for our work on traffic
planning, we adopt a more general perspective in the following. To this end, we abstract away
some technology-specific implementation details with little qualitative influence to the core
ideas of our traffic planning approaches and give an overview of the fundamental components,
behaviors, and principles that form the backdrop of our traffic planning approaches in this part
of the thesis.

2.1 Why Nodes?

When we usually think of a network, we think of devices such as switches, bridges, routers, and
computers that are somehow connected by links.

All these aforementioned devices are what we refer to as nodes: A node is some kind of
automaton or computing machine which may perform arbitrary operations using locally available
information inside itself. A node can include clocks or timers which allow nodes to execute
certain actions at specific points in time or after a specific time interval has elapsed. A node can
also have other non-network inputs and outputs, for example, user-interfaces, sensor or actuator
interfaces, but our interest lies in the interaction of nodes with the network.

For a node to access information that resides on a different node or to invoke a function
provided by another node, it needs to communicate with that node using its network interface.
For example, one node may have local access to a particular sensor whose sensor data is requested
by another node to compute the command for its local actuator. If the nodes are in a local area

30 CHAPTER 2: BACKGROUND

FIGURE 2.1
A node can send and receive
packetized data to and from

a directly connected node.

Node

outgoing link

packet scheduler

transmitter

network
interface

incoming
link

outgoing packet

received packet

receiver

network (LAN), the visible part of the network interface could be, for instance, an RJ45-socket
or an SFP-slot.

Looking at real-world examples, the predominant reasons to divide an information processing
system into distinct entities are composability and space. In particular, how the nodes are
distributed “in space” influences the constraints that shape the communication service.

2.2 Transmitting Data Packets via Links

Moving information from one node na to another node nb is only possible if there is a link from
the network interface of node na to the network interface of node nb. We consider a link to be a
physical system that allows the directed transmission of a data-carrying signal from one network
interface to another network interface, for example, an Ethernet cable and attached circuitry or
an optical transmitter and optical receiver attached to an optical fiber. This means a link in
the physical layer corresponds to a physical, information-carrying channel in the real world.

If both, the link from na to nb and the link from nb to na, connect the network interfaces of
nodes na and nb, we have a full-duplex link that allows bi-directional communication. In this
case, we call na and nb directly connected. Network interfaces connected by a full-duplex link
contain both, a transmitter and receiver, for the data-carrying signal.

Given two connected nodes, how is data transmitted from one node to another connected

2.2 TRANSMITTING DATA PACKETS VIA LINKS 31

node? In this part of the thesis, data does not liquidly flow through the data layer. Instead,
data is encapsulated in discrete chunks, so-called packets, see Fig. 2.1. The total amount of
data in each packet, the packet size, is commonly expressed in bits. If node na sends a packet
to node nb via the link (na, nb), node nb will not have the packet available immediately, but it
takes some time to transmit the packet via the link.

In this part of the thesis, there is in general no interleaved transmission of bits of different
packets nor parallel transmission of multiple packets over one link. Then, at any time, there can
be at most one packet in transmission on a single link. Consequently, we would consider physical
links that can carry multiple packets at once, for example, an optical fiber in combination with
wavelength division multiplex, as multiple (parallel) links. In this sense, the packet transmission
over a link is a strictly serialized process, and, by default, we disallow the preemption of packet
transmissions. If applicable, we will briefly point out possible relaxations of this restriction later
in this thesis.

In practice, the transmission process that is used to transmit a packet from one node to
another node often operates by mapping data bits to symbols that are represented, for example,
by certain electrical signals. The circuitry that generates and detects these symbols does not
operate arbitrarily fast. Therefore, the amount of data that can be transferred via a link from
one node to another node in a given time interval is limited and is often expressed by a link
property called bandwidth with unit

[
bit
s

]
. Since we assume nodes to be spatially separated, we

also have to account for the fact that the signal which carries our symbols does not propagate
arbitrarily fast, and it takes some time to cover the distance to the other node.

We use two components to model the delay that describes the time after which a packet sent
by node na is available at node nb.

transmission delay The transmission delay ttrans is defined as the time it takes the sender node
to generate the signal which fully represents the packet. Consequently, it depends on the
packet size and the bandwidth of the link via the relation

ttrans =
packet size [bit]

bandwidth
[
bit
s

] . (2.1)

propagation delay The propagation delay tprop is defined as the time it takes the signal generated
at the sender node to propagate across the link to the receiver node. The propagation delay
tprop depends on the physical properties of the transmission process and is independent of
the packet size.

Fig. 2.2 illustrates the temporal relation between the start and end of packet transmission
and the delay components.

32 CHAPTER 2: BACKGROUND

(na,nb)

time

na nb

tt
ra

n
s

tp
ro

p

packet received
and available at nb

start of packet
transmission at na

FIGURE 2.2 In the temporal domain, we describe the transmission of a packet between two nodes
connected by a link with the transmission delay ttrans and propagation delay tprop.

If, for some reason, node na has multiple packets ready for transmission at the same time, the
packet transmissions are serialized, and packets are queued up—stored intermediately—until
they are selected for transmission over the link. We assume that links start with the transmission
of the next available packet as soon as the previous transmission is completed. Since links are
directed, there can be simultaneous packet transmissions in progress in each direction on a
full-duplex link.

Figuratively speaking, we can think of a full-duplex link as two packet pipes attached to a
network interface: one pipe can be used to send packets to the respective neighboring node,
while packets are received from the other pipe. It takes a certain time (ttrans) until the whole
“packet” has been pushed into the pipe, and, depending on the length of the pipe, the packet
will emerge after a certain time (tprop) on the other side. Similar to the real-life example of
physical pipes and packets, we assume that the packet has to be fully received before nodes
access a packet’s content or “do something”—like forwarding—with the packet. In other words,
packets are treated as discrete entities by the network.

It is important to point out that we use the term packet in the generic sense as in “packet-
switched networks”. Therefore, one must not confuse our generic notion of a packet with a
service data unit (SDU), for example, an IP packet, which can be encapsulated by another lower
layer protocol in the classical layer architectures [Bra+87; Bra89; ISO+96]. Instead, packet
refers to the basic unit of operation that occupies the link for a duration of ttrans time-units.

2.3 SELECTING PACKETS FOR TRANSMISSION 33

2.3 Selecting Packets for Transmission

If there is more than one packet ready to be transmitted over a link, the question arises which
one to select and to transmit next. We call the component responsible for this task the packet
scheduler of the outgoing link.

The packet scheduler operates like a packet storage from which the link obtains the next
packet to transmit. We call this packet that will be retrieved next by the link the next eligible
packet. Depending on the features provided by the packet scheduler different rules determine
the next eligible packet.

First-In-First-Out Packet Scheduling In the simplest case, the packet scheduler reduces
to a single FIFO queue. In this case, the link will transmit the packets in the same order in
which they have been passed to the packet scheduler. This means always the head-of-queue
packet is eligible for transmission.

Strict-Priority Packet Scheduling A packet scheduler with priority queuing has multiple
FIFO queues. Priority levels are mapped to these FIFO queues, and packets are inserted into
the appropriate queue according to their priority. The priority of a packet can be embedded in
the packet itself in the form of some datum in the packet’s metadata, or it can be assigned by
the node according to some rules. With strict-priority queuing, the packet scheduler always
returns the head-of-queue packet from the priority queue with the highest—that is, the most
important—priority level.

Time-Aware Shaping A packet scheduler with the time-aware shaping feature has two
additional elements: a shaper module and a controller that changes the gate states according to
a schedule, see Fig. 2.3.

We can think of the shaper module as a packet gate, which is located in-between a packet
queue and the link. If the gate is closed, it interrupts the data path between its packet queue
and the link. As long as the gate is shut, the link cannot retrieve and transmit a packet from the
packet queue behind the closed gate. When the link idles and a packet is inserted into a queue
behind a closed gate, it is still not eligible (available for transmission). If the packet scheduler
contains multiple queues, we can have per-queue gates which can open and close independently.

The gate controller instructs the individual gates when to close and open according to a
cyclic schedule which is also referred to as gate control list. Starting at a given point in time,
the gate controller applies a certain gate control vector, which describes the state for each gate,
by opening and closing the gates accordingly. Each gate control vector is valid for a certain
time. After the corresponding time interval has elapsed, the controller proceeds to the next

34 CHAPTER 2: BACKGROUND

gate
controller

...

P
ri

o
 7

P
ri

o
 6

P
ri

o
 0

Transmission Selection

to link

t0 : CCooCCCC

ti : oCCCCCCC

tn : CCCCoooo

...

...

cyclic gate
control list

active gate
control list
entry

transmission gate
(open)

FIFO packet queuesFIFO packet queuesFIFO packet queues

next
eligible
packet

transmission gate
(closed)
transmission gate
(closed)

FIGURE 2.3 The packet scheduler determines which packet is eligible for the next transmission.
In this example, the packet scheduler is composed of multiple packet queues for
different priority levels with time-aware shaping.

entry in the gate control list. Having reached the end of the gate control list, it loops back to
the beginning. Therefore, the gate-opening and gate-closing operations repeat cyclically.

If time-aware shaping and strict-priority queuing are combined, the gating can override the
priority levels. For example, if the gate of a non-empty queue with high priority level is closed,
the link can still transmit packets from a (non-empty) queue with lower priority level with an
open gate. If multiple gates are open at the same time, the packets are retrieved from those
queues with open gates according to the priority levels.

2.4 Bridges

So far, we discussed how directly connected nodes communicate. In practice, for example, due
to reasons of scalability, nodes often communicate indirectly. Instead of connecting every node
to every other node, there are specialized nodes that work as intermediaries and forward packets
to other nodes. We refer to such nodes as bridges. If two nodes communicate indirectly via
bridges, the end-to-end properties of the packet delivery depend on how these bridges operate.

A simplified bridge structure is depicted in Fig. 2.4.

2.4 BRIDGES 35

Packet Processing
& Switching Fabric

...

Control-Layer Functionality

D
at

a-
La

ye
r

Fu
n

ct
io

n
al

it
y

single link

packet scheduler

medium access

network
interface
(port)

FIGURE 2.4 Bridges are specialized nodes that enable indirect communication between nodes by
relaying packets.

In principle, a bridge operates by passing received packets to the packet scheduler of some
appropriate outgoing link over which the packet then is transmitted towards the destination
node. Packets may be temporarily stored inside the packet schedulers’ queues before they are
transmitted on the corresponding outgoing link. In this context, the network interface of a
bridge is also referred to as port.

The bridge evaluates some priorly installed rules to decide which of its outgoing links it shall
use to forward the packet. These rules are, for example, encoded in routing table entries or
forwarding table entries. In practice, evaluating the forwarding rules usually results in a simple
lookup or table-match operation, for instance, on the identifier of the packet’s destination node.
We assume that these operations are either implemented in hardware or with hardware support
to the effect that the only variable part of the total time it takes a packet to travel through
a bridge is the time the packet has to wait inside the packet scheduler before transmission.
Consequently, the time between the reception of a packet and the start of the transmission on
the outgoing link can be expressed as tqueue + tproc, with the constant processing delay tproc,

36 CHAPTER 2: BACKGROUND

and a variable queueing delay tqueue. The processing delay tproc subsumes the time required to
perform all the processing steps in the bridge. The queueing delay tqueue, in contrast, is the time
a packet is stored in a queue of the packet scheduler at the output link, and its value depends
on the runtime situation at a specific outgoing link.

In the following, we default to the common bridge model with store-and-forward behavior
and output queuing. That means bridges need to have received the complete packet before they
can start sending it.

For completeness’ sake, we want to point out that there exists an optimization referred to as
cut-through switching. With cut-through behavior, a bridge already forwards the so-far received
bits of a packet as soon as it is possible to decide which outgoing link to use. This means with
cut-through switching a packet can pass a bridge “in-flight” with the reception on the incoming
link and the transmission on the outgoing link overlapping in time.

2.5 Hosts

Hosts are nodes that serve as communication endpoints and have identifiers in the network.
These identifiers are often included in the packets. In practice, packets often include the
identifying information of the source node and destination node. Well-known examples of such
identifiers are MAC addresses or IP addresses.

From a networking point of view, hosts act as traffic sources and traffic sinks, respectively.
This means hosts create packets and inject them into the network. Similarly, hosts can consume
packets that they receive from the network—at least those packets which are targeted at them.
In this context, packet consumption at the sink node means that the data from the packet is
used inside the node itself and does not circulate in the network anymore.

For the traffic planning approaches, we assume that traffic sources can control the point
in time when they release a packet into the network. Current commodity network interfaces
already provide hardware support for this feature. Alternatively, depending on the required
timing precision, current operating systems provide software implementations to achieve similar
behavior.

2.6 Clocks and Time-Synchronization

Time-aware shaping is a time-triggered mechanism with each gating event being triggered at a
certain, scheduled point in time. Similarly, packet creation or packet transmission in hosts can
be triggered by a time-driven mechanism, for instance, in networked control applications with
periodic sampling.

Especially in the context of cyber-physical systems, a globally common notion of time is

2.7 TIME-SENSITIVE NETWORKED APPLICATIONS 37

preferable where on every node the duration of a certain time interval measured with the local
clock will result in the same amount of elapsed time measured on an ideal clock. Similarly, at a
certain point in time according to an ideal clock, the current time on all local clocks shall be
the same. Figuratively speaking, we prefer that the hands of all local clocks are in the same
position and move in unison. To achieve this, nodes can run a clock synchronization protocol.

The problem of clock synchronization and clock drift elimination is not in the scope of this
thesis. Instead, we refer to clock synchronization protocols such as IEEE 802.1AS [IEE20a] or
the Precision Time Protocol [IEE20b].

2.7 Time-Sensitive Networked Applications

A particular challenge arises when networked applications require certain (here: mostly temporal)
constraints to be met by the network with regard to packet delivery.

One such important constraint is that the time between packet transmission at the source
node and packet reception at the (final) destination node, the so-called end-to-end delay te2e, is
bounded. We refer to a networked application that requires a bounded end-to-end delay as a
real-time networked application. In this thesis, we consider real-time networked applications
that rely on periodic transmissions with hard real-time guarantees, that is, an end-to-end delay
lower than a threshold and bounded jitter. Jitter refers to the variance with regard to the time
it takes to deliver a packet from its source node to its destination node.

In the following, we primarily focus on end-to-end delay bounds. This has two reasons: 1)
our traffic planning approaches practically eliminate jitter by design, and 2) since we assume a
common notion of time in the network, a time-synchronized play-out buffer can conceptually
compensate jitter for a real-time networked application by releasing each packet in a node at
the latest point in time that meets the end-to-end deadline.

2.8 Architecture: Organizing the Network Functionality

If the network is to provide a communication service for networked applications, nodes usually
need to do more than simply sending a packet out via the network interface, especially if
the support of intermediary nodes is required to deliver a packet to its final destination. We
have hinted at this already in the previous chapter. For example, bridges need to know which
outgoing link to forward a packet on, clocks need to be synchronized, gate schedules need to be
configured, and so on.

To implement time-sensitive communication in the network, we use knowledge about and
extensive coordination of the network functionality that is mostly associated with the Physical
Layer and the Data Link layer of the OSI Reference Model [ISO+96]. In IEEE Std. 802-based

38 CHAPTER 2: BACKGROUND

bridgesbridgesbridgesbridges

......

nodes hosting
applications

nodes hosting
applications

n1

n2

n4 n3

nodes hosting
applications

nodes hosting
applications

network
configuration
and control

network
configuration
and control

network
configuration
and control

network
configuration
and control

network
configuration
and control

network
configuration
and control

network
configuration
and control

network
configuration
and control

FIGURE 2.5 Network architecture: Networked applications are executed on hosts. All nodes
(hosts and bridges) are equipped with network control and configuration functionality,
which can be used to influence how packets are handled.

Ethernet networks, the payload is (probably encapsulated in multiple higher level protocols
such as IP, UDP, etc.) sent in an Ethernet frame.

However, instead of looking at the network architecture through the lens of hierarchical
protocol layers, where each layer consumes the service offered by the subjacent layer, we prefer
an SDN-inspired perspective: We consider the network to be organized in three major elements,
a data layer, network control and configuration functionality, and networked applications, see
Fig. 2.5.

The data layer is responsible for sending and receiving packets between nodes, and we use
the control functionality to configure the behavior of the data layer, for example, to install
forwarding rules and scheduling rules. The application components on hosts produce and
consume the payload for the packets transmitted in the data layer and also interact with the
control functionality, for example, to request flows with certain guarantees.

Obviously, each of these elements, data layer, network control and configuration functionality,
and applications, can be detailed further. For example, in practice, we usually do not just “pass
the packet as-is from the wire to the end-users application code”. Instead, the application’s
payload data is obtained with the help of the network stack of the host’s operating system from
within multiple nested protocol levels inside the packet.

Analogously, there are multiple alternatives regarding the network control and configuration
functionality. For example, if the network topology and the networked applications are known
at design time, the traffic planner may exist only during design time, and bridges and hosts can

2.8 ARCHITECTURE: ORGANIZING THE NETWORK FUNCTIONALITY 39

be configured once when building the network. For more dynamic scenarios, a more SDN-like
implementation [Ope16] is needed with network control and configuration functionality available
at runtime. For example, we may implement the traffic planner as a powerful network controller
that communicates with the nodes in the network during runtime, for instance, to receive
requests from applications and to update the behavior of nodes via some network configuration
protocol.

The specifics of each of these elements and the involved protocols—be it for application
payload, or network control and configuration—are necessary to implement and integrate a
concrete instance of such a network and the networked applications. However, here, we are more
interested in the underlying, more general principles of traffic planning and therefore continue
with our more abstract view of the network.

2.8.1 Data Layer

The basic unit of operation of the data layer are packets, and the data layer is an abstraction for
all functions directly involved in sending, receiving, and forwarding packets between the nodes.

Consequently, the data layer is by and large shaped by the actual, physical devices that form
the network. For example, a link between two nodes in the data layer corresponds to some
physical connection between the two nodes in the real world.

We assume that the data layer functionality is mostly cast in hardware, and thus we treat
the capabilities, properties, and mechanisms provided by the data layer as given.

2.8.2 Network Control and Configuration Functionality

Another important element is the set of mechanisms, protocols, and functionality to configure
and manage the data layer to “steer” how the packets move through the network. For example,
we can install the forwarding information in bridges to achieve that packets between two nodes
are forwarded along a certain sequence of bridges. Another part of this network control and
configuration functionality is the ability to compute these paths, which may be subject to
certain additional constraints. In networks where bridges have packet schedulers with different
priority queuing levels, we assume that most packets will include a priority indicator field that is
evaluated in the bridges to enqueue packets accordingly. In such scenarios, we expect to be able
to instruct hosts or network ingress nodes to include a certain priority indicator meta-datum in
the packets.

While the functionality in the data layer is tightly linked to physical devices, the functionality
for network control and configuration is provided on a logical level. However, we assume that
there is no out-of-band communication that can “magically” outpace our payload data in order
to control the data flow through the network. In the style of SDN, we also refer to the totality

40 CHAPTER 2: BACKGROUND

of all components that provide network control and configuration functionality as the control
plane.

2.8.3 Application Components

Finally, from an end user’s perspective, the most important elements are networked applications.
Each networked application consists of multiple application components that are distributed
across multiple hosts in the network. The networked application shall provide some utility
to the end-user, for example, control of a physical plant. To this end, the data layer and the
network control and configuration functionality are mere means whose purpose is to offer a
communication service to transport the application’s payload data. We can therefore say that
the raison d’être of the network is to transport payload data between networked applications on
different nodes.

In this model, the payload data is generated and ultimately consumed in the networked
application’s components. The components of the networked application also interact with the
network control and configuration functionality, for example, to announce their presence and
communication requirements, and in turn receive instructions—meaning, for example, when to
send packets—such that their requirements can be met.

How do packets fit in this architecture? A packet is formed by complementing the application’s
payload data with additional metadata which is, for instance, used by the bridges to make
a forwarding decision. This metadata usually includes identifiers of the source node and the
destination node. If multiple different networked applications are located on the same node,
packets should include additional metadata for the node-internal payload demultiplexing, too.

41

3 System Model and Traffic Planning
Problem Overview

Building on Chap. 2, we provide a more formalized description of our consolidated system model
and our assumptions in this chapter. Subsequently, we state the traffic planning problem in
terms of the consolidated system model in Sec. 3.5. For most of the first part of this thesis
(Chap. 2 – Chap. 5), we operate on the same system model. If we refine or otherwise deviate
from the consolidated system model in this part, we will point this out explicitly in the respective
chapters. In the same vein, we explicitly mention variations or extensions, such as additional
objectives, with regard to the traffic planning problem.

3.1 Notational Conventions

N denotes the set of natural numbers {0, 1, 2, 3, . . .}. We use calligraphic letters (for example,
N ,L) to denote sets. Bold letters are used for indexable data structures. Here, an indexable
data structure is some sort of container which allows us to access a particular datum, which
itself may be another indexable data structure, using an index. The index itself may consist of
multiple components. For example, we consider matrices and vectors as such indexable data
structures. The value of matrix X in row i and column j is then given by X [i, j]. We use ∗ as
a wild card character in expressions where an index i ∈ I may have any possible value from its
domain. For example, X [i, ∗] refers to all values in row i.

3.2 The Network Graph

We model the network by means of a directed graph Gn (N ,L) where we denote the set of nodes
by N and the set of links by L. Network nodes are the vertices in Gn. Generally, we expect
that Gn is not disconnected. A single link ` ∈ L represents the ability for directed data transfer
from node na to nb. If a pair of nodes na, nb ∈ N is directly connected with a full-duplex link,
we represent the two directed links between these nodes by two directed edges in Gn. We define
the two operators nout : L → N and nin : L → N . The expression nout(`) denotes the node
that transmits outgoing packets via link `. Conversely, nin(`) designates the node that receives
incoming packets via link `.

42 CHAPTER 3: SYSTEM MODEL AND PROBLEM OVERVIEW

If the network does not contain any parallel links (think “multiple cables” between the same
nodes), Gn does not have two or more directed edges that point from the same node na to the
same node nb. Without parallel links, we then can equivalently represent each link ` as a tuple
`↔ (nout(`), nin(`)) = (na, nb) ∈ N ×N , and {(na, nb) , (nb, na)} represents a full-duplex link.

We consider a network where all links operate with the same transmission speed. While it is
not necessary for our approach that all nodes and links induce the same processing delay and
propagation delay, respectively, we omit node and link identifiers for the network parameters tproc

and tprop for ease of presentation. This corresponds to the assumption of a network consisting
of homogeneous bridges and links.

3.2.1 Multi-Hop Packet Delivery

If there is no link from node na to node nb, node na can still send packets to node nb if there is a
path from node na to nb, and intermediary nodes forward the packets from node na to node nb.

A path in the network is a sequence of k links (`1, `2, `3, . . . , `k) with the following properties:

• For each pair of subsequent links `i, `i+1, i ∈ [1, k − 1], it holds that nin(`i) = nout(`i+1).
In other words, a path is a sequence of links that follows along adjacent nodes.

• We assume that every link and every node occurs no more than once on a path. This
means a path does not contain any loops.

In absence of parallel links, a list of nodes (n1, n2, . . . nk−1) can equivalently represent a path.

3.3 Traffic Flows
So far, we introduced networked communication on the level of individual packets, stating
that networked applications communicate by transmitting information encapsulated in packets.
However, we assume that a networked application exhibits a sustained need for communication.
Consequently, we expect that a host does not just send a single packet once to other hosts but
repeatedly sends packets to a specific set of other hosts throughout its lifetime. To describe
these repeated packet transmissions between specific pairs of nodes, we use the concept of traffic
flows.

A single traffic flow f represents a directed stream of packets that traverse the network from
the flow’s source node to the flow’s destination node. We restrict ourselves to unicasts where
for each traffic flow there is one source node and one destination node. This means a flow is a
directed communication channel from one source node to one destination node. Bi-directional
communication between a pair of nodes is modeled by two traffic flows.

Packets that belong to a certain traffic flow f do not only share the same source node and
destination node but they are also forwarded along the same path. We call a path that is

3.3 TRAFFIC FLOWS 43

associated with a specific flow the route of the flow. In this sense, a traffic flow (in short: flow)
provides spatial information about a set of packets in a network: packets that belong to a flow
will only appear on the links and nodes on the route of the packet’s flow.

Defining the temporal properties of a set of packets is in general far more difficult, which is
manifested in the multitude of different characterizations of traffic sources that we can find in
the literature.

3.3.1 Time-Triggered Traffic Flows

Of particular interest to us are so-called time-triggered traffic flows. We use the term time-
triggered flow as an umbrella term for traffic flows such as isochronous flows, or cyclic-synchronous
flows [IEE21a] where packet transmissions are controlled by a time-triggered mechanism. We
assume that time-triggered flows carry time-sensitive information, which requires deterministic
QoS and lossless communication under normal operating conditions. That is, we consider
external failures, such as power loss or physical disturbances, out of scope.

For each time-triggered flow, the transmission of packets follows a periodically repeating
pattern where packet transmissions are restricted to certain scheduled time intervals on each
link on the route. We refer to these time intervals as reserved windows and denote their length
by tresv.

For each flow, we allow only uniformly sized packets. The packet size or, equivalently, the
corresponding transmission time tpkt is a flow parameter. This means for all packets sent by the
source node of f we have ttrans = tpkt. In the simplest case, each source node sends one packet
in the reserved window in each cycle, that is, tresv = tpkt = ttrans. In general, a source node may
send more than one packet for the same flow per cycle with

tresv = m · tpkt, m ∈ {1, 2, 3, . . .} (3.1)

such that it fully utilizes the reserved window in each cycle, and packets of the same flow are
transmitted back-to-back in the flow’s reserved window. From the perspective of a link, a “train”
of equally sized packets of f will traverse the link during the window reserved for f , see Fig. 3.1.

The cycle time tcycle of a flow specifies for each flow the frequency of reserved windows and
thereby the frequency of packet transmissions. We expect that tresv � tcycle though strictly
speaking tresv might become as large as tcycle. (If tresv = tcycle, the full link capacity is assigned to
this one time-triggered flow.) Each flow can have a different, individual value for the cycle times
tcycle, but we restrict ourselves to finite integer values. Given a set of flows F = {f1, f2, f2, . . .},
we define the hyper-cycle thyper as the least common multiple (lcm) of the cycle times of the
flows in the flow set F .

44 CHAPTER 3: SYSTEM MODEL AND PROBLEM OVERVIEW

FIGURE 3.1
A reserved window may be

used to transmit multiple pack-
ets from the same flow back-to-

back, here tresv = 3 · tpkt.

(ni-1,ni) ni (ni,ni+1)

time

tpkt

+ tproc

packet 2packet 2packet 2

packet 1packet 1packet 1

packet 3packet 3packet 3

packet 2

packet 1

packet 3

packet 2packet 2packet 2

packet 1packet 1packet 1

packet 3packet 3packet 3

packet 2

packet 1

packet 3

tproc

With an absolute time-origin t0, tcycle also induces a network-wide time-grid for each flow that
divides the time-axis into discrete transmission cycles. In the following, we refer to the interval

[k · tcycle + t0, (k + 1) · tcycle + t0] (3.2)

with k ∈ {0, 1, 2, . . .} as the k-th transmission cycle of the respective flow.
Usually, packets of a time-triggered flow traverse several links until they reach the destination

node. We can use the network-wide time-grid interpretation of the cycle time to “anchor”
the position of the reserved window on each link on its route relative to the start of a new
transmission cycle, see Fig. 3.2. For each flow f , we can specify the positions of the reserved
windows for each link on the route of f in terms of a constant offset to the start of a new
transmission cycle of this flow.

Of particular importance is the offset of the reserved window on the outgoing link of the
source node, the so-called phase denoted by φ. This means the source node of a time-triggered
flow starts to inject the respective amount of packets that it wishes to send in the reserved
window of the k-th transmission cycle into the network at k · tcycle + φ+ t0, k ∈ N. We restrict
the valid range of φ to [0, tcycle − tresv] such that source nodes complete the transmission of
packets from the first reserved window within tcycle. We will detail the relation between the
offsets and φ later.

To summarize, time-triggered flows are an abstraction that describes temporal and spatial
properties of an arbitrarily large set of packets for an arbitrarily large time interval by a few
parameters—the number of packets a flow sent during runtime then effectively depends on the
lifetime of the flow.

3.3 TRAFFIC FLOWS 45

time0

offset relativ to start of cycle

10

tcycle tcycle

tcycle

reserved
window

cycle #0 cycle #1

offset relativ to start of cycle

FIGURE 3.2 The schedule of a time-triggered traffic flow on a specific link specifies the offset of
the reserved window relative to the start of a transmission cycle.

3.3.2 Establishing a Traffic Flow

In practice, it is rarely productive in terms of configuration overhead or network utilization to
operate networks with per-packet individualized forwarding behavior. Instead, traffic flows are
a convenient abstraction to describe large amounts of packets with specific properties. This
property makes them a good candidate to convey the demands and requirements of a networked
application, and they are a reasonable abstraction level for network control and configuration
functionality.

Therefore, we assume that a networked application indicates its communication demand to
the components responsible for network control and configuration functionality in terms of flows.
To this end, networked applications issue a set of flow requests. A flow request usually contains
a subset of flow properties for the requested flow which the networked application needs to be
satisfied to function properly.

In turn, the control plane that receives such a flow request has to figure out whether the
network can accommodate a flow with the given parameters. Provided that it can satisfactorily
meet the networked application’s flow requests—for example, by finding a short path between the
source node and destination node with enough spare capacity—the control plane can establish
the traffic flow by configuring the respective nodes in the data layer.

Requests for Time-Triggered Flows

If not noted otherwise, flow requests from networked applications specify at least the source
node nsrc and the destination node ndst, the transmission cycle tcycle, the time required for a
single packet transmission tpkt, the size of the reserved window tresv, and the end-to-end delay
te2e, see Tab. 3.1. Source, destination, tcycle, tpkt, tresv, and end-to-end delay are flow parameters
that do not change during a flow’s lifetime.

46 CHAPTER 3: SYSTEM MODEL AND PROBLEM OVERVIEW

TABLE 3.1 (Minimal) set of parameters in a request for a single time-triggered flow.
tcycle transmission period
tpkt = ttrans, time to transmit an individual packet of the time-triggered flow
tresv total temporal demand per cycle for packet transmissions
te2e end-to-end delay bound
nsrc source node: the ingress node where packets of the flow enter the network
ndst destination node: the egress node where packets leave the network

As stated by Eq. (2.1), packet sizes and the time tpkt are directly proportional. We default to
specify the packet properties of time-triggered flows (and flow requests) in the temporal domain,
since—given that all links in the network have the same bandwidth—the time that a packet
occupies a certain link will be our major concern during traffic planning.

3.3.3 Regarding Different Types of Traffic Flows

In many cases, we might have different types of traffic flows in the network. Even though our
primary focus lies on time-triggered flows, the network could be used by other types of flows,
for instance, best-effort flows.

Here, we assume that time is our most precious commodity with the consequence that we
want to protect time-sensitive flow types—in particular time-triggered flows—at the expense of
other flow types. To give an example: reserving transmission windows for time-triggered flows
has the potential to incur additional costs in terms of an increased storage time of packets of
non-time-triggered flows inside the packet schedulers.

Depending on the features and configuration of the network, we can achieve a certain degree
of separation between time-triggered flows and other flow types. If not noted otherwise, we use
the following scheme:

We assume that all time-triggered traffic flows have the same priority level that is exclusively
used for time-triggered flows. This means that there is one queue in the packet schedulers which
contains exclusively packets of time-triggered flows, see Fig. 3.3. Additionally, we enforce the
reserved windows by opening the gate of the queue with the priority level of the time-triggered
flows during the reserved window while shutting the gates of all queues containing packets from
other flow types.

Note that since we are ultimately interested in the time-triggered flows, we can relax the
assumption of uninterruptible packet serialization for non-time-triggered packet transmissions
provided that this does not affect time-triggered packets. For example, the transmission of a
non-time-triggered packet may be put on hold during the reserved windows for time-triggered
packets and resumed afterward.

3.4 ZERO-QUEUING PRINCIPLE 47

.....
.

sc
he

du
le

d
tr

af
fi

c

..
.

to link

...

...

ti : CoC...

exclusively used for
time-triggered traffic

transmission
gate

Transmission Selection

FIGURE 3.3 Time-aware shaper for one port of an IEEE Std 802.1Q compliant switch. We use
one queue (traffic class) exclusively for time-triggered traffic.

3.4 Zero-Queuing Principle

In this section, we introduce a particular mode of operation of the network that we will exploit
in our traffic planning approaches. Considering our system model for bridges, we see that the
time tqueue a packet has to wait in a packet scheduler’s queue is the only component that varies
depending on the runtime (traffic) situation in the network. The amount of queuing delay
depends on the number of packets that were enqueued up to this point in time and, even worse,
possible future arrivals of packets with higher priorities. Having to track and consider this
runtime variable causes a lot of headaches during traffic planning. Indeed, we will show in
Chap. 6 that already analyzing and bounding these queuing delays amounts to a non-trivial
problem. Therefore, we want to eliminate this runtime-dependent delay component on a packet’s
path when computing a traffic plan.

One method to achieve this is zero-queuing. With zero-queuing, packets encounter always
empty packet scheduler queues while they traverse the network. If the queues of the packet
scheduler are empty each time a packet is enqueued, we can eliminate the variable queuing delay
(tqueue = 0) because each packet is immediately eligible for transmission. Therefore, the total
amount of time it takes a bridge until it can start transmitting a packet on the corresponding
outgoing link is fixed to tproc. In theory, this makes the packet scheduler superfluous, and
with zero-queuing packets of a flow are by definition oblivious to packets from other flows, see
Fig. 3.5.

48 CHAPTER 3: SYSTEM MODEL AND PROBLEM OVERVIEW

FIGURE 3.4
With zero-queuing, no runtime-

dependent packet reten-
tion in the packet sched-
uler occurs, and packets

are immediately forwarded.

(ni-1,ni)

time

ni

tt
ra

n
s packet fully

received on
incoming link and
available at node ni

start of packet
transmission on

outgoing link to ni+1

(ni,ni+1)

tp
ro

c
tp

ro
c

tt
ra

n
s

time

However, as discussed in Sec. 3.3.3, we protect the zero-queuing packet schedule by opening
and closing the transmission gate in front of the time-triggered traffic queue at the start and
end of the reserved windows, respectively. While this is transparent from the perspective of the
packets of time-triggered flows, it can affect the other traffic types, see Chap. 6.

Time-sensitive networked applications profit twofold from zero-queuing: Firstly, with zero-
queuing packets are delivered as quickly as possible and accumulate only the inevitable delay
which is caused by the implementation of the forwarding process itself. Packets are not delayed by
other traffic. Secondly, given that packet forwarding is a deterministic process itself, zero-queuing
also eliminates queuing-delay induced jitter.

Zero-queuing turns out to be beneficial for network control and configuration functionality,
too: the forwarding behavior of packets of a specific flow can be characterized based only on
that flow’s properties and the parameters of the network. In other words, we do not need to
know the current traffic situation in the network to determine the progress a packet—or a
packet-train—has made on its way to the destination node.

3.4.1 Per-Hop Delay

Zero-queuing allows us to describe all effects that add to the per-hop delay for packets of the
same flow in the network by a single constant per-hop delay dhop, see Fig. 3.5.

The per-hop delay dhop can be interpreted as the time between the start of the packet
transmission on link (ni−1, ni) and the start of the packet transmission on the next link (ni, ni+1)

adjacent to (ni−1, ni). The per-hop delay of flow is given by

dhop = tprop + tpkt + tproc (3.3)

3.4 ZERO-QUEUING PRINCIPLE 49

tc
yc

le
tc

yc
le

tr
es

vtr
es

v tp
ro

c
+

tp
ro

p

processingprocessing

flow faflow fa

flow fbflow fbflow fb

time

d
h

o
p

d
h

o
p

FIGURE 3.5 Zero-queuing illustrated for two flows with different values for tresv and with the
source node (on the left) and same destination node (on the right). We assume that
processing delay is independent of the packet size.

with the flow property tpkt and the network properties tprop and tproc. Note that dhop depends
on the time tpkt required to transmit a single packet. Even if tresv > tpkt, the node can start to
forward fully received packets already even the remaining packets of that reserved window are
yet to be received, see Fig. 3.1.

We want to briefly point out that the zero-queuing principle can also be applied to cut-
through switching in which case the transmission duration of a packet tpkt in Eq. (3.3) has to
be replaced by theader which accounts just for the number of bits that have to be received before
the transmission of the packet can start.

3.4.2 End-To-End Delay

With zero-queuing, packets accumulate only the (inevitable) delay which consists of the time
between receiving a packet and completing the forwarding of the packet on the next link at each
hop, see Fig. 3.5.

Thus, zero-queuing enables transmissions with bounded end-to-end delay

te2e = ttrans + tprop + len (path) · dhop + tsrc + tdst (3.4)

that depends on the number of hops len (path) in-between source and destination (len (path)
is the number of bridges on the route) and processing delays of source and destination node
(denoted by tsrc and tdst), respectively.

50 CHAPTER 3: SYSTEM MODEL AND PROBLEM OVERVIEW

φ

...

φ

time

tcycletcycle

0 time

tcycletcycle

0

accum.
network delay
len(path)· dhop

tcycletcycle tcycletcycle

source node destination node

offset = (accum. network delay + φ)

FIGURE 3.6 With zero-queuing, the offset on a particular link depends on the phase and amount
of delay accumulated so far on the route to the destination.

Figure 3.6 also illustrates that we can derive the positions of the reserved windows on a
particular link—the offsets—from φ by accumulating the per-hop delays along the path. For
example, consider the following scenario with tresv = tpkt, (a single packet is sent per transmission
cycle): assume the source node starts the transmission of the first packet in the 0th-cycle at
t0 + φ. Then at t0 + φ+ tpkt, this transmission of the first packet on this link is complete. The
transmission of the first packet on the next link then starts at t0 + φ+ tpkt + tproc + tprop, that
is, the offset of the reserved window on this link is φ+ dhop. The transmission on the following
link then starts at t0 + φ+ dhop + tpkt + tproc + tprop = t0 + φ+ 2 · dhop, and so on. The source
node then transmits the second packet at t0 + φ+ tcycle, etc.

This means knowing one phase value per flow is sufficient as this one phase value determines
the offsets of the reserved window on the remaining links to the destination node.

3.5 Problem Overview

In general, it requires concerted coordination between the configuration of the network and
the behavior of the source nodes to achieve zero-queuing. In other words, to establish a set
of time-triggered flows in a given network with zero-queuing, we have to ensure that packets
of time-triggered flows do not “interfere” with other packets and with each other. There
are two basic methods to achieve this, namely, spatial isolation and temporal isolation. For
spatial isolation, we assign concurrent packet transmissions to disjoint and independent network
resources (here: links) to prevent interference. Spatial isolation ultimately requires deciding on
the routes of time-triggered flows.

Temporal isolation assigns packet transmissions to disjoint time intervals and leads to a

3.5 PROBLEM OVERVIEW 51

offset

offset

hyper-cyclehyper-cycle

time

tcycletcycle

tcycletcycle

t0

tcycletcycle

FIGURE 3.7 Example: Appropriately chosen offsets ensure temporal isolation for two flows with
different cycle times. Note that link serialization is implicitly achieved by temporal
isolation.

scheduling problem, see Fig. 3.7. Either spatial isolation or temporal isolation can in theory be
used alone but with one significant drawback: the maximally achievable network utilization is
low due to the restriction to disjoint routes or network-wide schedules. To increase the network
utilization, we can combine the two dimensions, space and time. This means we are interested
in schedules and routes, and we refer to a set of schedules and routes as a (global) traffic plan.

Note that the term scheduling is overloaded to a certain extent. The packet schedulers at
each outgoing link decide locally at runtime which packet to transmit next. In the context of
traffic planning, we have a global view of the network. Here, scheduling refers to computing the
network-wide timetable of the reserved windows.

The task of computing such a traffic plan for a given set of requests for time-triggered
flows—in short: traffic planning—will be at the core of the problems discussed in the following
two chapters in the first part of this thesis. We consider the network, that is, the network graph
and the network properties, and the flow requests as input for the traffic planning. With these
inputs, we want to compute a traffic plan for the whole network that satisfies the following
traffic planning constraints.

Packet-switching constraint The network topology constrains the movement of a packet
through the network. Packets are transported between nodes only via links. Each
movement of a packet consumes the corresponding amounts of time, for example, the time
necessary for processing, transmission, and propagation of the respective packet.

Serialization constraint (or: Temporal isolation constraint) At any moment and every out-
put port and link in the network, there is at most one packet (of a time-triggered flow) in
transmission in progress. This means packet transmissions over links are serialized. From
the perspective of traffic planning, this means that at any point in time there is at most
one packet transmission scheduled on each link.

52 CHAPTER 3: SYSTEM MODEL AND PROBLEM OVERVIEW

Routing constraint Packets of a specific flow enter the network at the source node and have to
reach the destination network node where they leave the network. All packets of a flow
are routed along the same route, and a route is a path between the source node and the
destination node.

Delay constraint Every packet of a time-triggered flow has to reach its destination node within
the end-to-end deadline.

Ordering constraint At every node, a packet with a certain priority level can only be transmitted
on an outgoing link if all other packets with the same priority level which have arrived
earlier at the same node and which have to be transmitted on the same outgoing link have
been transmitted before (FIFO property).

Zero-queuing constraint When a packet of a time-triggered flow enters a queue in the packet
scheduler of an outgoing link, it is transmitted immediately (zero-queuing).

These constraints will resurface more formally in the following two chapters, but we can
make the following, general observations: with zero-queuing, the end-to-end deadline effectively
restricts the length of the route. Remember that the zero-queueing constraints allow us for each
time-triggered flow to derive the transmission schedule—or more precisely the position of the
reserved window on the time axis—on each link from the phase φ.

An almost obvious approach for traffic planning is to try to formalize these constraints in
a generic framework for constraint-based programming such as (integer) linear programming
(ILP), SAT, SMT, and leave the computation of the traffic plan to an off-the-shelf solver. Indeed,
this is what we will explore in Sections 4.2 to 4.4 with a focus on ILP. Following that, we explore
a different, conflict-graph-based approach that provides different trade-offs.

Note that the traffic planning problem is NP-hard. Depending on how we model the traffic
planning problem, we can find different well-known NP-complete problems that are easily related
to a specific traffic planning approach. For example, [Dür+16] models the traffic planning
problem as no-wait job-shop instance, with the no-wait job-shop problem being one of the
established NP-complete problems [Gar+79; Mas+02]. For the ILP-based approach in Chap. 4,
we sketch in Sec. 4.2.1 how to reduce Bin-Packing [Gar+79] to the traffic planning problem. The
conflict-graph-based approaches from Chap. 5 can be related to the independent set problem (is
there an independent vertex set with at least a specific number of vertices?) [Gar+79].

53

4 ILP-Based Traffic Planning

Recalling the numerous (verbally expressed) constraints on routes and schedules (see Sec. 3.5),
it seems intuitive to formalize these traffic planning constraints using some kind of constraint-
programming framework. Therefore, in this chapter, we approach the traffic planning task
by formalizing the constraints introduced in Sec. 3.5 as a set of linear (in-)equalities or, more
specifically, as an integer linear program (ILP).

Once we have constructed an ILP instance from our traffic planning problem instance, we can
feed the ILP instance into any ILP solver and let the solver do the computational “heavy-lifting”,
though it is still in our responsibility to map the solution to the ILP instance back to our traffic
planning problem. This means, provided that the solver has even found a feasible solution, we
have to extract the traffic plan, that is, the routes and schedules from the ILP solution.

Using the outlined ILP-based approach has some advantages. Firstly, the ILP formulation
doubles as a formal, declarative description of the traffic planning problem. Secondly, once we
have expressed our problem in the form of an ILP, we may profit from future improvements
in the field of integer-linear programming or computing that make their way into ILP solvers
“for free”. That is, we “only”1 have to exchange the actual ILP solver implementation against
an improved one to take advantage of the benefits of the ongoing research and development of
these general-purpose “problem-solving” frameworks and solvers. Thirdly, we can extend the
ILP formulations from pure constraint satisfaction problems (compute any valid traffic plan) to
optimization problems (compute the best traffic plan).

We briefly introduce integer linear programming in Sec. 4.1. Then we present two different
variants for how to express the traffic planning problem as constraint satisfaction problem with
an integer linear programming formulation. In particular, we provide a formulation for joint
scheduling and route computation in Sec. 4.2 and for joint scheduling and path selection in
Sec. 4.3. We extend both variants with additional constraints and objectives for the computation
of optimized traffic plans for complemental flows. Complemental flows and the extended ILP
formulations are presented in Sec. 4.4. We then discuss related work on traffic planning in
Sec. 4.5 and summarize the challenges of ILP-based traffic planning, which motivated our work
on conflict-graph-based approaches (see Chap. 5) in Sec. 4.6.

1As experience has shown, in practice, swapping out one ILP solver against another often requires adapting a
lot of the implementation for constructing the ILP instance from the traffic planning instance and interfacing
with the ILP solver.

54 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

4.1 Integer Linear Programming

An (integer) linear program consists of an objective function and a set of linear constraints on a
set of variables. Commonly, the ILPs are expressed in matrix-vector-notation.

max cᵀx (objective function)
s.t. A · x ≤ b (constraints)

(4.1)

with

c vector of objective function coefficients
A,b matrix and vector, respectively, of constraint coefficients

x with xi ∈ Si vector of (decision) variables

We typeset variables underlined (variable xi) to distinguish them from the parameters. Parame-
ters are known a priori, whereas we want to find an assignment of values for each variable xi

in x from the respective domain Si. If variables of Eq. (4.1) are restricted to integral values,
we speak of an integer linear program, which is NP-complete [Gar+79]. Some people further
distinguish between integer linear programs and mixed-integer linear programs where the former
contains only integer variables, and the latter has both, integers and rational variables, but
we use the term integer linear program indiscriminately for any problem with some variables
restricted to integer values.

An ILP can appear in two forms, either as an abstract ILP model/formulation or as a concrete
ILP instance. In its abstract form, it describes for a set of problems with a particular structure
how to instantiate an ILP instance for one specific problem. That is, we can think of an abstract
ILP model/formulation as a set of rules for the construction of an ILP instance. In our traffic
planning approaches, for example, we have to know how many flows there are in F , and we need
the numerical values of their parameters to compute the constraint coefficients to construct the
corresponding ILP instance. Note that ILP instances for different problem instances that have
been instantiated from the same ILP model can differ strongly in the number of constraints
and variables. For example, think of one problem instance with few flows in a small network
compared to another problem instance with many flows in a large network—the latter results in
an ILP instance with more constraints and more variables.

In the context of our traffic planning approaches, we present ILP models that we use to
translate traffic planning problem instances or parts thereof into ILP instances. The actual
process of solving these ILP instances is performed by an ILP solver, which is a piece of software
that takes an ILP instance as input, and returns, if it exists, a variable assignment that satisfies
all the constraints, as well as an indication whether a solution is an optimal solution, too. From

4.1 INTEGER LINEAR PROGRAMMING 55

our perspective, the ILP solver and its inner workings are a black-box component, that is, we
do not intervene in the solving process of the ILP solver.

An optimal solution of an ILP instance is an assignment of values to variables such that
all constraints are satisfied, and the objective function assumes its maximum value. For the
purpose of traffic planning, we are also interested in feasible solutions. A feasible solution is
an assignment of values to variables such that all constraints are satisfied but the objective
function need not assume its maximum value. If we are only interested in feasible solutions, we
use integer linear programming as a constraint-programming tool and ignore its optimization
functionality.

There can exist many solutions to a particular ILP instance. It is also possible that no
solution exists for an ILP instance, that is, it is impossible to find an assignment of values to x

that satisfies all constraints, for example, if constraints are contradicting. We refer to an ILP
instance for which no solution exists as infeasible.

Equation (4.1) is a concise way to present an ILP, but we use an alternative, more verbose
format to expose the relations between the traffic planning problem and the constraints in a
more comprehensible manner. To this end, we give many constraints in a row-oriented format∑

i

ai · xi ≤
∑
k

bk. (4.2)

Some aspects of the traffic planning problem are also much easier to understand if expressed
with the help of logical operations:

Implication The implication that linear constraint 2 only applies if linear constraint 1 is satisfied
is expressed with the if-operator in the form

if (lin. constraint 1) then (lin. constraint 2)

Disjunction The disjunction that it is sufficient to satisfy either linear constraint 1 or linear
constraint 2 is expressed with the or-operator in the form

(lin. constraint 1 or lin. constraint 2)

These operators do not comply with the standard form Eq. (4.1) or the canonical form of
ILPs. Nevertheless, expressions containing both of these operators can be transformed into a set
of linear (in-)equalities by the “bigM”-technique if the involved variables are bounded—which
they are for our problems (see Appendix A.1.1). However, since these transformations tend to
obfuscate the constraints, we will sometimes favor presenting our constraints using these logical
operators, and we defer the plain ILP formulations to the appendix.

56 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

The constraints as presented with the logical operators are not just easier to understand but
can also be directly implemented with current tooling. State-of-the-art commercial solvers such
as CPLEX and Gurobi support indicator constraints [Bel+16] to express these logical operators.
Current ILP modeling environments such as zimpl [Koc04], GAMS, AMPL, or OPL support
modeling problems with these operators, too, and can automatically transform expressions with
these operators to a set of linear inequalities that can be processed by ILP solvers.

4.2 Joint Scheduling and Route Computation

The ILP described in this section models the traffic planning problem very close to the individual
elements in the data layer. We express the requirements in terms of the forwarding behavior of
packets of time-triggered flows on individual links in the network. We embed the constraints
that express what we consider a valid route and a valid schedule in the ILP. Then the ILP solver
jointly computes the routes and schedules that satisfy our constraints in one step. Therefore,
the approach described in the following performs traffic planning by joint scheduling and route
computation.

ILP Parameters

Next, we describe the traffic planning parameters.
We represent N ,L, and F as subsets of the natural numbers N where each element (node,

link, flow) is represented by one number. We define the notational shortcut

Lout,n = {` ∈ L| nout(`) = n} (set of outgoing links at node n) (4.3)
and Lin,n = {` ∈ L| nin(`) = n} (set of incoming links at node n) (4.4)

to denote the set of all incoming and outgoing links, respectively, at a specific node n.
The different per-flow properties that constitute a flow request are represented by the integer

components of vectors with each component corresponding to a flow f , see Tab. 4.1. We use f

as an index to retrieve a specific parameter for flow f .

ILP Variables

Next, we introduce the variables for the ILP. Our ILP formulation follows a “constructive”
approach where we can read the solution for the joint scheduling and routing problem directly
from the ILP solution.

Consequently, we introduce a set of binary decision variables ulink[f, `] ∈ {0, 1} with f ∈ F

4.2 JOINT SCHEDULING AND ROUTE COMPUTATION 57

TABLE 4.1 ILP parameters for joint scheduling and route computation.
Gn network graph

N = {0, 1, 2, . . .} ⊂ N set of nodes
L = {0, 1, 2, . . .} ⊂ N set of links
F = {0, 1, 2, . . .} ⊂ N set of flows
nsrc[f] ∈ N , f ∈ F source nodes of flows
ndst[f] ∈ N , f ∈ F destination nodes of flows
tcycle[f] ∈ N, f ∈ F flow cycle times
tpkt[f] ∈ N, f ∈ F transmission time for any packet of flow f
tresv[f] ∈ N, f ∈ F reserved window sizes
te2e[f] ∈ N, f ∈ F maximally allowed end-to-end delay
dhop[f] ∈ N, f ∈ F per-hop delay for packets of flow f

thyper = lcm (tcycle) ∈ N least common multiple of all cycle times

and ` ∈ L with the interpretation

ulink[f, `] =

1→ flow f uses link `

0→ flow f does not use link `
. (4.5)

We can derive the routes of the flows from ulink by following the used links from the source node
after having solved the ILP.

Analogously, we introduce a set of bounded integer variables toffset[f, `] ∈ N with f ∈ F and
` ∈ L. As the name insinuates, we interpret the value toffset[f, `] as the offset of the reserved
window of flow f relative to the start of the flow’s transmission cycle on link `. We can also
think of toffset[f, `] as the point in time modulo the flow period that describes the start of the
reserved window for flow f if ulink[f, `] = 1.

The values of toffset are bounded with the constraints

∀f ∈ F ,∀` ∈ L : toffset[f, `] ≥ 0 (4.6)
∀f ∈ F ,∀` ∈ L : toffset[f, `] ≤ tcycle[f]− tresv[f], (4.7)

to ensure that on every link ` used by flow f the reserved window ends before the next
transmission cycle starts, see Fig. 4.1. From the values of toffset[∗, `], we can then construct the
local schedule for link `.

ILP Constraints

We proceed to explain the constraints that encode the requirements for a transmission pattern
that separates the reserved windows in time (via scheduling) as well as in space (via routing).

58 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

toffset[f, `]

toffset[f, `] + tresv[f] tcycle[f]
t = 0

tcycle[f]− tresv[f]

FIGURE 4.1 Equation (4.7) constrains toffset[f, ∗] such that the reserved window does not cross
boundaries of a transmission cycle.

These constraints can be categorized in three groups: 1) constraints that ensure per-link
compliance of reserved windows, 2) constraints that ensure loop-free routing from flow origin to
flow destination, and 3) constraints that link the routing and scheduling constraints.

Here, we present the constraints using the logical operators as introduced in Sec. 4.1. For the
sake of completeness, Appendix A.1 contains those constraints as plain ILP expressions.

Routing Constraints Constraints (4.8)-(4.10) express the properties of a valid route for each
flow. The route of each flow f starts at the source node nsrc[f]. Therefore the constraint

∀f ∈ F :
∑

`∈Lout,nsrc[f]

ulink[f, `] = 1 (4.8)

ensures that the route of each flow f contains one link that departs from the source node of f .
Analogously, the constraint

∀f ∈ F :
∑

`∈Lin,ndst[f]

ulink[f, `] = 1 (4.9)

ensures that for each flow f one incoming link at the destination node of f is part of the route
of f . The constraint

∀f ∈ F ,∀n ∈ N \ {nsrc[f],ndst[f]} :
∑

`out∈Lout,n

ulink[f, `out] =
∑

`in∈Lin,n

ulink[f, `in] (4.10)

restricts the number of incoming links used by flow f to the number of outgoing links used by
flow f at each node n.

So far, the routing constraints do not prohibit that the set of used links includes cycles. We

4.2 JOINT SCHEDULING AND ROUTE COMPUTATION 59

nulink[f, `in,2] = 1 ulink[f, `out,2] = 1

ulink[f, `in,1] = 0 ulink[f, `out,1] = 0

ulink[f, `in,3] = 0 ulink[f, `out,3] = 0

FIGURE 4.2 The routing constraints from Eq. (4.8)–Eq. (4.11) restrict the number of incoming
and outgoing links at the nodes (here: n is a bridge on the path of flow f).

can rule this out by adding the constraint

∀f ∈ F , ∀n ∈ N \ {nsrc[f],ndst[f]} :
∑

`∈Lin,n

ulink[f, `] ≤ 1 (4.11)

that forbids using more than one incoming link at every node except the source node and the
destination node. But even without this additional constraint, the constraints from the next
section which link the routing and scheduling parts of the problem make it very unlikely that
the ILP solution contains these cycles.

Scheduling Constraints The first scheduling constraint ensures that the reserved windows
for any flows using a particular link do never overlap and is given by

∀f1 ∈ F , f2 ∈ F : f1 6= f2,∀` ∈ L :

∀a ∈ A,∀b ∈ B :

if
(
ulink[f1, `] + ulink[f2, `] ≥ 2

)
then (4.12)

(toffset[f1, `] + a · tcycle[f1] ≥ toffset[f2, `] + b · tcycle[f2] + tresv[f2] (4.13)
or toffset[f2][`] + b · tcycle[f2] ≥ toffset[f1][`] + a · tcycle[f1] + tresv[f1]) (4.14)

with

A =

{
a ∈ N : 0 ≤ a ≤ thyper

tcycle[f1]

}
, (4.15)

B =

{
b ∈ N : 0 ≤ b ≤ thyper

tcycle[f2]

}
. (4.16)

In the formulation of the scheduling constraints, we have to consider that neither do we know
the routes of the flows a priori nor do we know the order of the reserved windows on a given
link a priori.

This is reflected in an implication (if packets of f1 and f2 are routed over link `, ensure

60 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

0 · tcycle[f1]
1 · tcycle[f1]

2 · tcycle[f1]
3 · tcycle[f1]

0 · tcycle[f2] 1 · tcycle[f2] 2 · tcycle[f2]

FIGURE 4.3 Scheduling constraints from Eq. (4.13) and Eq. (4.14): The third reserved window
of flow f1 overlaps with the second reserved window of flow f2 in the hyper-cycle.

temporal isolation of reserved windows of f1 and f2), and a disjunction (ensure window for
f1 is reserved before window of f2 or vice versa). The equivalent constraints using plain ILP
primitives are given in Appendix A.1.2.

If the flows have different transmission cycles, then we have to ensure that the reserved
windows do not overlap in the entire hyper-cycle. For example, in Fig. 4.3 the reserved windows
only overlap in the third transmission cycle of flow f1 and the second transmission cycle of flow
f2, respectively. To prohibit that any overlap occurs ever, we introduce auxiliary sets A and B,
where a · tcycle[f1] denotes the start of the a-th transmission cycle of flow f1, and b · tcycle[f2]

denotes the start of the b-th transmission cycle of flow f2, respectively, in the hyper-cycle. We
then check that for all combinations of a ∈ A and b ∈ B no overlap occurs.

Joint Scheduling and Routing Constraints The constraints presented up to this point
either restricted the values of ulink or the values of toffset, respectively. Now we link the temporal
and spatial domain of the problem. The constraint

∀f ∈ F ,∀n ∈ N :

∀`in ∈ Lin,n,∀`out ∈ Lout,n :

if(ulink[f, `in] + ulink[f, `out] ≥ 2) then (4.17)
(toffset[f, `out] = toffset[f, `in] + dhop[f] (4.18)
or toffset[f, `out] + tcycle[f] = toffset[f, `in] + dhop[f]) (4.19)

specifies that the position of the reserved window on the outgoing link `out at a node n on the
path of a flow f is shifted by dhop[f] compared to the incoming link `in on the path, see Fig. 4.4.

There are two different cases regarding the reservation on the upstream link `out.
In variant 1, see Fig. 4.5, the reservation on the incoming link `in is early enough so that the

reservation on the outgoing link `out is in the same transmission cycle on both links.

4.2 JOINT SCHEDULING AND ROUTE COMPUTATION 61

n

+dhop[f]

`in `out

FIGURE 4.4 The constraints from Eq. (4.17)–Eq. (4.19) relate the reservations along the links of
the path of flow f .

t = 0 tcycle[f]

toffset[f, `in]
toffset[f, `out] = toffset[f, `in] + dhop[f]

FIGURE 4.5 Illustration of the constraint from Eq. (4.18) where the reservation on the outgoing
link `out is shifted by dhop[f] compared to the reservation on the incoming link `in
at node n.

Variant 2, see Fig. 4.6, occurs when the reservation on the incoming link `in is very close to the
end of the transmission cycle. Then the packets which are transmitted in the reserved window
via the incoming link `in in the transmission cycle k of flow f are transmitted on the outgoing
link `out in the next transmission cycle with number k + 1. From a link-local perspective, the
corresponding reservation on the outgoing edge `out is consequently earlier in the transmission
cycle compared to the reservation on the incoming link `in.

The plain ILP equivalent of this constraint set is given in Appendix A.1.3.
Remark: Due to Eq. (4.17)–Eq. (4.19), the aforementioned cycles on the path which could

possibly occur without Eq. (4.11) are such that it takes a packet an integer multiple of tcycle[f] to
traverse the circle. Hence, we can remove any such cycle in post-processing without jeopardizing
the validity of the solution since the offsets of the reserved windows in each cycle remain the
same.

Finally, to incorporate upper bounds on the per-flow end-to-end delay, we introduce the
constraint

∀f :
∑
`∈L

dhop[f] · ulink[f, `] + dconst[f] ≤ te2e[f] (4.20)

with dconst[f] a constant delay component to account for the behavior of the source node and
destination node of f . This constraint limits the number of links on the path of a flow f by

62 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

t = 0 tcycle[f]

toffset[f, `in]

toffset[f, `out] toffset[f, `in] + tcycle[f] + dhop[f]

FIGURE 4.6 Illustration of the constraint from Eq. (4.19) where the periodicity of the reservation
has to be accounted for. The positions of the reservations relative to the start and
end of the transmission cycle from the local perspectives of the respective link are
filled in gray. The striped area right of tcycle[f] is the position of the reservation on
`out from the global perspective.

limiting the delay that can be accumulated. With dconst[∗] = 0, we can interpret Eq. (4.20) such
that we “start the end-to-end delay timer” at the start of the reserved window and include a
processing delay of tproc at the destination node.

(Dummy) Objective In this section, our primary goal is to find a feasible solution, that is,
a solution that satisfies all the constraints. Therefore, we do not have any objective for the ILP
solver to maximize when computing such a solution, and we consider all feasible solutions for
the joint routing and scheduling of the flows to be equally valuable.

Yet, in practice, the solver implementations or modeling frameworks expect an objective to
be present in the ILP instances. Therefore, we introduce a placeholder objective function min q

on a bounded dummy variable q. In Sec. 4.4.3, we will replace this dummy objective to actually
influence the computation of the traffic plan.

4.2.1 Remark on the Complexity

We briefly sketch how we can reduce Bin-Packing [Gar+79] to the traffic planning problem. For
any given Bin-Packing instance b with bin size B ∈ N, finite set of elements U (∀u ∈ U : s(u) ∈ N)
with weight s(u) for element u and K bins (K ∈ N), we can create a special traffic planning
instance j.

The network graph for j consists of source node nsrc and destination node ndst. With parallel
links in the network graph, we can model each of the K bins by a link from nsrc to ndst. Then,
for each element u ∈ U , we add a flow request for a flow from nsrc to ndst with a reserved window
tresv = s(u) and transmission cycle tcycle = B. Iff j has a solution, then U can be partitioned into
K disjoint sets U1,U2, . . . ,UK s.t. ∀Ui :

∑
u∈Ui

s(u) ≤ B. Note that we also could do without
parallel links if we add K intermediate (auxiliary) nodes ni and 2K directed edges (nsrc, ni)

and (ni, ndst) with i ∈ {1 . . . K} between nsrc and ndst, that is, we replace each of the previously

4.2 JOINT SCHEDULING AND ROUTE COMPUTATION 63

parallel links by a segment nsrc, ni, ndst. However, then Eq. (4.7) has to apply only for the
outgoing links at nsrc, not for the intermediate nodes.

4.2.2 Evaluation

The ILP formulation in the previous section models the joint scheduling and routing problem in
a fine-grained manner with per-flow per-link variables toffset and ulink. We evaluated a variety of
problem instances to explore the scalability of this ILP-based formulation using synthetic joint
scheduling and routing problem instances. A problem instance consists of a network graph and
a set of flows defined by their parameters (source node, destination node, transmission cycle,
packet size, reserved window size, and end-to-end deadline).

We explain the evaluation setup next and present some results regarding the solving perfor-
mance which were originally published in [Fal+18].

Evaluation Scenarios

We generated the joint routing and scheduling problem instances in a two-step process. First,
we generated a (random) network graph Gn according to either line, ring, scale-free, or random
graph model followed by the generation of the flow set F . We used the Python libraries
graph-tool [Pei14] and networkX [Hag+08] to generate graphs according to the mentioned
network models. For all topologies, we specified the number of nodes |N |. The number of links
|L| depends on the type of graph model.

The considered network models are of practical relevance (line graphs, ring graphs) and belong
to fundamentally different classes of topologies (random scale-free graphs (Barabási-Albert
network model), and random graphs (Erdős-Rényi network model)). Networks with a line or
ring topology are often found in industrial scenarios, and the number of routes between two
nodes is limited. The network topologies following the Barabási-Albert model [Pri07; Bar+99]
have scale-free, power-law distributed vertex connectivity. In these tree-like structured graphs
(see Fig. 4.7), there exists only one route between any two nodes. Since the graph generator for
network graphs with Erdős-Rényi model does not guarantee to produce a connected random
graph, we selected its largest connected component. Networks with this topology are usually
meshed, and we usually cannot easily determine the exact number of routes between any two
nodes.

The remaining network-related parameters are derived from a 1 Gbit
s

Ethernet network. For
1 Gbit

s
Ethernet networks, we set 1 time-unit in the ILP-formulation to correspond 1 µs. The

numerical value for the propagation delay parameter tprop is derived from links with lengths
of 10m each. The propagation delay is given by tprop = 10m/

(
2
3
· clight

)
= 0.05 µs. The

propagation speed of two-thirds of the speed of light (2
3
· clight) is, for example, in the range

64 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

FIGURE 4.7
Example of a scale-free graph with |N | = 36.

of CAT6-cables. The processing delay of the switches is set to tproc = 5 µs. This value for
the processing delay can be expected from state-of-the-art Ethernet switches [Dür+14]. For
all flows, tpkt has the same value and is derived from a packet size of 368B, which results
in ttrans = tpkt = 368B/1 Gbit

s
= 2.944 µs. While this packet size can be considered small

in terms of the Ethernet MTU (Ethernet allows for packets of roughly four times this size),
closed-loop networked control applications or high-priority traffic [Ste+15] and traditional bus
systems [PRO+16] often utilize smaller packet sizes. We chose a packet size of 368B since it is big
enough to accommodate a generous protocol overhead and a payload consisting of, for example,
several timestamps and numerical sensor values. Consequently, the value of dhop[f] = dhop is
the same for every flow and is set to dhop[f] = dhop = 8 µs ≈ tpkt + tprop + tproc.

After generating a network instance, for each flow f in the F , we select two nodes, the source
node nsrc[f] and the destination node ndst[f], respectively, from the node set N uniformly at
random. We assume that the networked applications request reservation windows tresv which
are approximately integer multiples of tpkt. The reserved window size tresv[f] for each flow f

is drawn from {3, 6, 9}µs uniformly at random. We assume transmission frequencies ranging
from 125Hz = 1 transmission/8000 µs to 20 kHz = 1 transmission/50 µs. This means the values
of tcycle range from 50 µs to 8ms. The end-to-end delay is set depending on the network
topology using the relation te2e[∗] = a · dhop + 1 with a ∈ {1, . . . , |N |}. By default, we used
te2e[∗] = |N | · dhop + 1 which permits routes that visit every node in the network.

Evaluation Setup

We separated the instantiation of a concrete ILP instance for a given problem instance, which is
rendered to a file, and solving the ILP itself. The solver was invoked via the vendor-provided
binary and then read the ILP instance from the file.

4.2 JOINT SCHEDULING AND ROUTE COMPUTATION 65

2 3 4 5 6 7 8 9 10 11 12 13 14 15
|F|

10−1

100

101

102

so
lv

er
ru

nt
im

e
[s]

topology
Line
Ring
Scale-Free
Random

A 2-15 flows, runtime limit is set to 30min.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|F|

102

103

so
lv

er
ru

nt
im

e
[s]

topology
Line
Ring
Scale-Free
Random

B 16-30 flows, runtime limit is set to 60min.

FIGURE 4.8 Box plot of solver runtimes for problem instances with varying number of flows, fixed
number of nodes |N | = 8, transmission cycles ∈ {1000, 2000, 4000, 8000}

For the measurements in this section, we used the Linux version of IBM ILOG CPLEX
Optimization Studio 12.8.0 [IBM17], the modeling language OPL (using oplrun to render the
ILP to .mps-files and .lp-files), and CPLEX as solver. With this tool-chain, the constraints
from Sec. 4.2 involving the sets Lin,n, and Lout,n are implemented using sparse matrices derived
from the Gn. In particular, we use a link-link adjacency matrix ALL and a node-link incidence
matrix BNL so that we can express the routing constraints and the joint scheduling and routing
constraints by summing over matrix components, see Appendix A.1.4. For the reasons mentioned,
we also skipped the constraint from Eq. (4.11) in our ILP implementation.

The “compilation” and solving of the ILP instances were performed on a 4-socket compute
node with four Intel Xeon E7-4850 v4 CPUs with a nominal clock speed of 2.1GHz and a total
amount of 1TB RAM running Linux kernel version 4.15.15.

Evaluation Results

We evaluate the effects of various problem properties (number of flows, network graph, trans-
mission frequency) on the solver runtime in the following.

Number of Flows For the first set of problem instances, we vary the number of flows and
keep the number of nodes |N | = 8 in the network fixed. The values for tcycle[f] are drawn
from {1000, 2000, 4000, 8000} uniformly at random. For problem instance with 2-16 flows (see
Fig. 4.8A), the solver had a runtime 30min and always terminated within the given time limit.

In Fig. 4.8B, we plot a second batch of similar problem instances with more flows (16-30
flows), and the solver runtime limit was increased to 60min. Despite the increased runtime lime,

66 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

2 4 6 8 10 12 14
0

20

40

so
lv

er
ru

nt
im

e
(s

ec
)

Line HF
Line LF

2 4 6 8 10 12 14
0

50

100 Ring HF
Ring LF

2 4 6 8 10 12 14
|F|

0

20

so
lv

er
ru

nt
im

e
[s] Scale-free HF

Scale-free LF

2 4 6 8 10 12 14
|F|

0

50

100

150 Random HF
Random LF

FIGURE 4.9 Comparison of runtimes for problem instances with varying number of flows,
|N | = 8, transmission cycles for HF ∈ {50, 100, 200, 400, 800}, and for LF ∈
{1000, 2000, 4000, 8000}, and runtime limit of 30min.

we could observe two problem instances for networks with random topology where the solver did
not produce a result before the timeout(at scenarios with 21 flows and 30 flows, respectively).

In both cases (Fig. 4.8A, Fig. 4.8B) we considered 10 problem instances per topology and
number of flows. We observe an increase in runtime with an increasing number of flows for our
problem instances. From a technical perspective, this is expected, because more flows will result
in larger ILP instances. From the perspective of the traffic planning problem, this behavior
conforms to our intuition, too, because we expect that putting more flows in the network while
keeping the network size constant (in terms of nodes) increases the load and makes it harder to
find schedules.

Transmission Frequency Regarding the latter aspect, we can also change the frequency of
the transmissions to vary the expected load on the network. The frequency of the transmissions
(the inverse of the transmission cycle tcycle) does not influence the number of the constraints.
It only affects the numerical values in the constraints. Therefore, we evaluate a second set of
problem instances with similar parameters as the problem instances presented in Fig. 4.8A, but
this time the cycle times are much smaller and drawn from set tcycle[f] ∈ {50, 100, 200, 400, 800}
uniformly at random. In the following, we refer to these problem instances with tcycle[f] ∈
{50, 100, 200, 400, 800} as high-frequency (HF) flows in contrast to the low-frequency (LF) flows
with tcycle[f] ∈ {1000, 2000, 4000, 8000}.

The average runtimes for problem instances with low transmission frequencies (LF) are
plotted with the dashed lines in Fig. 4.9. The solid lines in Fig. 4.9 are the average runtimes
for the equally sized set of problem instances with higher transmission frequencies (HF). We

4.2 JOINT SCHEDULING AND ROUTE COMPUTATION 67

6 8 10 12 14 16 18 20
0

10

20

30

so
lv

er
ru

nt
im

e
[s]

Line HF
Line LF

6 8 10 12 14 16 18 20
0

10

20

30

40 Ring HF
Ring LF

6 8 10 12 14 16 18 20
|N |

0

10

20

30

40

so
lv

er
ru

nt
im

e
[s]

Scale-Free HF
Scale-Free LF

6 8 10 12 14 16 18 20
|N |

0

250

500

750

1000

1250 Random HF
Random LF

FIGURE 4.10 Comparison of runtimes for problem instances with varying number of nodes,
|F| = 7, transmission cycles for HF ∈ {50, 100, 200, 400, 800} and for LF ∈
{1000, 2000, 4000, 8000}, and runtime limit of 30min.

observe that the solver requires increasingly more time to solve problem instances with higher
transmission frequencies compared to problem instances with lower transmission frequencies the
more flows have to be considered.

Since the range of the size of the reserved windows is fixed (tresv[∗] ∈ {3, 6, 9}) while the
transmission cycle was varied, we effectively changed the fraction of the transmission period
that is reserved. That supports the observations that a higher traffic demand increases the
runtime since with a higher fraction of reservations per cycle there are fewer possibilities to
place the reservations of different flows.

Network Graph Size Next, we keep the number of flows fixed |F| = 7 and vary the number of
nodes. As before, we also vary the transmission frequencies. In Fig. 4.10, we compare the average
solver runtimes for the problem instances with low and high transmission frequencies. The
dashed lines in Fig. 4.10 are the average runtimes for problem instances with low transmission
frequencies (LF) with tcycle[f] drawn from ∈ {1000, 2000, 4000, 8000}. Solid lines in Fig. 4.10
correspond to the averages of problem instances with higher transmission frequencies (HF) with
tcycle[f] ∈ {50, 100, 200, 400, 800}

Overall, we again observed increasing runtimes for an increasing number of nodes in the
network. There are a few irregularities, that is, decreasing runtimes, for line and scale-free
graphs visible in Fig. 4.10. These may be introduced by the random placement of the source

68 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

6 8 10 12 14 16 18 20
0.0

0.5

1.0

#
ele

m
en

ts

1e6

Line: Constraints
Line: Variables

6 8 10 12 14 16 18 20

Ring: Constraints
Ring: Variables

6 8 10 12 14 16 18 20
|N |

0.0

0.5

1.0

#
ele

m
en

ts

1e6

Scale-Free: Constraints
Scale-Free: Variables

6 8 10 12 14 16 18 20
|N |

Random: Constraints
Random: Variables

FIGURE 4.11 Average number of ILP constraints and ILP variables for problem instances with
varying number of nodes (cf. Fig. 4.10).

nodes and destination nodes or due to scenarios where the solver quickly discovered infeasibility.
Striking is the steep rise of the runtime in HF problem instances with random topology for 19
and 20 vertices where runtimes up to more than 1000 s were observed.

For reference, Fig. 4.11 shows the average size of the ILP instances.
As expected, the ILP instances become larger, since the number of constraints depends (via

BNL and ALL) on the size of the network graph Gn. Additionally, in a larger graph with
random placement of the flow origins and destinations, the routes for the flows can be longer
which increases the number of edges where the scheduling constraints have to be applied.

We can observe that the high runtimes from Fig. 4.10 are unlikely to be caused by the size of
the ILP alone, since, for example, ILP instances with 20 nodes resulted in overall comparable
ILP dimensions, and yet runtimes are different. Instead, this behavior could be due to the
NP-hard character of the problem where particular “difficult” problem instances require much
more runtime to solve than the average case.

Topology In Fig. 4.8B (and to a lesser degree in the other plots) it is also noticeable that
the runtime for ring and random topology almost consistently exceeds those of the remaining
topologies, and the runtime of problem instances with random topology exceeds those of the
ring topology.

In Fig. 4.12, we plot the average dimension of the ILP (in terms of the number of constraints
and variables) for the problem instances from Fig. 4.8B and Fig. 4.9 where we varied the number

4.2 JOINT SCHEDULING AND ROUTE COMPUTATION 69

5 10 15 20 25 30
0

1

2

#
ele

m
en

ts

1e6

Line: Constraints
Line: Variables

5 10 15 20 25 30

Ring: Constraints
Ring: Variables

5 10 15 20 25 30
|F|

0

1

2

#
ele

m
en

ts

1e6

Scale-Free: Constraints
Scale-Free: Variables

5 10 15 20 25 30
|F|

Random: Constraints
Random: Variables

FIGURE 4.12 Average number of ILP constraints and ILP variables for problem instances with
varying number of flows (cf. Fig. 4.8B and Fig. 4.9).

of flows.
Our results indicate that more routing options also increase the solver runtime since we

observed that instances with ring topology took longer to solve compared to instances with line
topology and scale-free topology in relation to the size of the ILP instances. Other than in ring
topologies where we know that there exist two paths between any pair of nodes, there exists
only a single path between any pair of nodes in line topologies and scale-free topologies.

We want to remark that we encountered a series of infeasible problem instances in these topolo-
gies without routing alternatives for HF problem instances with tcycle ∈ {50, 100, 200, 400, 800}
in our evaluations. In contrast, the solver produced a feasible solution for all ILP instances with
ring topologies, and only a single problem instance with random topology was infeasible.

Evaluation Summary

In our evaluations, we made the following three main observations: Firstly, the solver runtime is
more sensitive to an increase in the number of flows than to an increase of the network graph
size. In our evaluations, additional flows increased the dimension (number of variables and
number of constraints) more than increasing the network graph size which is one reason for this
behavior. Secondly, the solver runtime is influenced by how much of the transmission cycle is
occupied by the reserved window. Thirdly, the graph topology does impact the solver runtime.
In our measurements, the solver runtime depended on how many paths exist between any two
nodes which can be interpreted such that additional routing decisions slow down the solving
process.

70 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

4.3 Joint Scheduling and Path Selection

In our evaluation scenarios from Sec. 4.2.2, the runtime to solve ILP instances varied for the
different network topologies. This motivated another ILP formulation where we do not leave it
up to the solver to compute a valid route on a per-link granularity. Instead, we pre-compute a set
of so-called candidate paths for each flow and let the solver select a suitable one. Therefore, we
have ILP-based joint scheduling and path selection. From an architectural perspective, we assume
that this candidate path computation is performed as part of traffic planning. Alternatively, we
could think of an architecture where the candidate paths are part of the flow requests and thus
are provided by the issuer of the flow requests.

Originally, the ILP formulation for joint routing and path selection has been introduced
in [Fal+19a] in conjunction with complemental flows. It was also re-used in [Fal+20], as an
exemplary ILP-based reference to evaluate the conflict-graph-based traffic planning method.
Therefore, we defer the evaluation of the ILP formulation for joint scheduling and path selection
to the later sections, Sec. 4.4 and Sec. 5.2.

However, since the ILP formulation for joint scheduling and path selection provides an
alternative for computing feasible traffic plans in its own right, we chose to apportion it with its
own section.

4.3.1 Candidate Paths

Next, we explain candidate paths, which will also resurface in the context of conflict-graph-based
traffic planning in Sections 5.1 to 5.3, in more detail.

Encoding just the constraints of a valid route as done in Sec. 4.2 with per-link granularity
provides all the freedom with regard to the routing decision, but we have to pay for this with
many variable assignments which the solver has to discard because they do not even result in
valid routes. In contrast, with candidate paths, we include for each flow a set of sensible routing
options, so-called candidate paths, in the traffic planning process. This means we take the
burden of computing valid paths from the generic solver and use dedicated routing algorithms
for the task of computing valid paths.

In theory, we could capture all routing options, for example, by using some breadth-first-search
technique to compute for each flow a candidate path set that contains every loop-free path.
Since the number of loop-free paths in a network of finite size is finite, there is only a finite
amount of candidate paths for each flow, to begin with.

Without losing any feasible traffic plan, we can also safely discard all paths between the source
node and the destination node of a flow that are “too long” in the sense that the end-to-end
delay bound would be exceeded. As explained in Sec. 3.4, zero-queuing provides a simple relation
between path length and end-to-end delay te2e, which we can exploit here. It follows that we do

4.3 JOINT SCHEDULING AND PATH SELECTION 71

not need explicit end-to-end delay constraints if we ensure that all candidate paths are short
enough to meet the end-to-end delay bound of the respective flow.

Yet, depending on the scenario, for example, in highly meshed networks and with large end-
to-end delay bounds, we might still end up with impractical many candidate paths. Therefore,
we usually upper-bound the number of candidate paths and use an algorithm, for example,
k-shortest paths algorithms or path enumeration techniques such as breadth-first search with a
path-length cut-off, which, by design, are more likely to produce “short enough” paths.

In summary, the idea of traffic planning with candidate paths is to pre-compute a set of
sensible candidate paths for each flow such that only valid routing choices need are considered
from that point on. Each candidate path must not only be loop-free but is also restricted in
length by the end-to-end delay constraint for each flow.

4.3.2 Integer Linear Program

Next, we present a second ILP formulation with joint scheduling and path selection, which uses
candidate paths.

Enhanced Modeling of Temporal Properties

Again, we use a discrete representation of time. For each flow, we represent each transmission
cycle as a sequence of discrete cells. A cell denotes a time interval with length τ . To find a
suitable mapping of cell length τ to seconds, we can for example use the greatest common
divisor of all values for tpkt and the delay parameters of the network.

We can use cells to model temporal properties by assigning certain attributes or properties
to them. In this section, each cell has an attribute that represents whether a cell is part of a
reserved window. We will make extended use of this additional expressiveness in Sec. 4.4 to show
how to compute an optimized traffic plan for complementary traffic flows with time-varying
traffic metrics.

ILP Parameters

Before we express the ILP for joint-scheduling and path-selection, we explain how we map the
traffic planning parameters (see Tab. 4.2) to the ILP.

For each flow f , we may have a different number of candidate paths. Each candidate
path is assigned a path index. We store the available path indices for flow f denoted by
npath[f] = (0, 1, 2, . . .) with f ∈ F . Pcand[f, π] = (`1, `2, `3, . . .) denotes the candidate path for
flow f ∈ F with the path index π ∈ npath[f]. Pcand[f, π] = (`1, `2, `3, . . .) is a sequence of links
`i ∈ L from the source node to the destination node of flow f . As a notational shortcut for
all links that appear on any candidate path of flow f , we define Lf =

⋃
π∈npath[f]

Pcand[f, π].

72 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

FIGURE 4.13
Reserved cells in the trans-
mission cycle are expressed

by reservation matrices
where rows correspond

to scheduling options and
columns to different intervals

in the transmission cycle.
time0

tcycle

reserved window

1 1 0 0 ... 0

0 1 1 0 ... 0

...

0 0 0 1 ... 0

row 2

each column represents a cell in tcycle

ro
w

s
re

p
re

se
nt

sc
he

du
lin

g
o

p
ti

o
ns

τ

This means once we know the candidate paths, we only need to consider the links in Lf when
scheduling reserved time intervals for flow f .

We express reservations for each flow on a per-cell level with the help of reservation matrices.
In the reservation matrix mresv[f] for flow f ∈ F , each row is associated with a specific scheduling
option. Each column in mresv[f] represents a cell in the transmission cycle where the column
index is related to the position of that cell relative to the start of the cycle, see Fig. 4.13.

The components of the reservation matrix are binary values where mresv[f][i, j] = 1—the
value in the ith row at the jth column—indicates that the jth cell is reserved if we choose the
ith scheduling option. Conversely, a value of zero for mresv[f][i, j] indicates that the jth cell is
not reserved if we choose the ith scheduling option.

Theoretically, the reservation matrix for each flow supports arbitrary patterns. However, we
restrict ourselves to quasi-feature-parity with the ILP from the previous section: each scheduling
option corresponds to a specific offset—now in multiples of τ . This means each row represents a
reserved window of length tresv[f] (given in multiples of τ , too) for a different offset.

In this case, the reservation matrix mresv[f] ∈ {0, 1}tcycle[f]×tcycle[f] for each flow f ∈ F can be
constructed iteratively from the flow parameters with the roll-operator.

The operator roll(x, i) rotates the components of the row vector x by i positions to the right,
overflowing components being appended on the left. The first tresv[f] cells in mresv[f][0, ∗] have
value 1—indicating the reserved window—and the remaining cells have value 0.

The remaining rows are then defined as

mresv[f][coffset, ∗] = roll (mresv[f][0, ∗], coffset) (4.21)

4.3 JOINT SCHEDULING AND PATH SELECTION 73

TABLE 4.2 Parameters for ILP formulation for joint scheduling and path selection.
Gn network graph

N = {0, 1, 2, . . .} ⊂ N set of nodes
L = {0, 1, 2, . . .} ⊂ N set of links
F = {0, 1, 2, . . .} ⊂ N set of flows

nsrc ∈ N |F| nsrc[f] is the source node of flow f

ndst ∈ N |F| ndst[f] is the destination node of flow f

tcycle ∈ N|F| tcycle[f] · τ is the cycle time for flow f ∈ F
tpkt ∈ N|F| tpkt[f] · τ is the time it takes to transmit a packet of f
tresv ∈ N|F| tresv[f] · τ is the length of the reserved window for flow f

te2e ∈ N|F| te2e[f] · τ is the maximal end-to-end delay for flow f

dhop ∈ N|F| dhop[f] · τ is per-hop delay for packets of flow f
thyper = lcm (tcycle) least common multiple of all cycle times in multiples of τ

with

coffset ∈ {0, 1, 2, . . . , (tcycle[f]− 1)} .

ILP Variables

We use a binary variable πpath[f, π] ∈ {0, 1} to indicate whether path π ∈ npath[f] is selected
as route for flow f ∈ F . We also use the binary variable ulink[f, `] ∈ {0, 1} with f ∈ F and
` ∈ L. Although this time, ulink[f, `] is more of a helper variable that is used to map the selected
candidate path to the respective links on that candidate path.

The variables and the method which we use to encode the scheduling decision in the ILP with
joint scheduling and path selection differ from Sec. 4.2. Instead of directly representing the offset
for each flow in an (integer) variable, we use binary variables s[`, f, c] ∈ {0, 1} to represent the
selected scheduling option with ` ∈ L, f ∈ F , and c is in the range of row-indices of mresv[f].

If s[`, f, c] = 1, then the c-th scheduling option–which in turn corresponds to the c-th row of
mresv[f]—is selected for flow f on link `, see Fig. 4.14. In our case, each row in mresv[f] (each
scheduling option) corresponds to a specific offset of the reserved window. If we consider

s[`, f, ∗] =
[
s[`, f, 0] s[`, f, 1] s[`, f, 2] · · ·

]
as another row vector, then the offset for the reserved window of flow f on link ` is equal to the
(zero-based) index c of that variable s[`, f, c] which has value 1 multiplied by τ .

74 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

FIGURE 4.14
Rows of the reservation ma-

trix mresv[f] represent differ-
ent positions of the reserved
window. Variable s[`, f, c] in-
dicates whether offset c · τ is
selected for flow f on edge `.

re
sv

.

re
sv

.

1 0 0 0 0 0

re
sv

.

re
sv

.

1 0 0 0 00

re
sv

.

1 0 0 00 0

mresv[f][0,]

...

s[l,f,0]
= 0

s[l,f,1]
= 1

s[l,f,2]
= 0

vector
s[l,f,]

offset:

offset:
(selected on link

l for flow f)

offset:

...

mresv[f][1,]

mresv[f][2,]

tcycle[f] cells

Path Selection Constraints

Since we have candidate paths, the path selection constraint

∀f ∈ F :
∑

π∈npath[f]

πpath[f, π] = 1 (4.22)

ensures that for each flow one candidate path out of the set of all candidate paths is selected.
Consequently, we can easily retrieve the route of f from the ILP solution.

Next, we want to set ulink[f, `] to one for all links on the selected candidate path of flow f .
We define the constraint

∀f ∈ F : ∀`f ∈ Lf : ulink[f, `f] =
∑

π∈Pcand,`f

πpath[f, π] (4.23)

with

Pcand,`f = {π ∈ npath[f]|`f ∈ Pcand[f, π]}. (4.24)

In Eq. (4.23), `f is a link that appears in at least one candidate path for flow f—different
candidate paths may share identical sub-paths—, and Pcand,`f is the set of all path indices where
the associated candidate path contains link `f .

4.3 JOINT SCHEDULING AND PATH SELECTION 75

Scheduling Constraints

As in Eq. (4.7), we restrict the selectable offsets by forcing some entries of s[`, f, c] to zero with

∀f ∈ F : ∀`f ∈ Lf :

∀c ∈ {c ∈ {0, 1, 2, . . . (tcycle[f]− 1)}|c > (tcycle[f]− tresv[f])} : s[`f , f, c] = 0. (4.25)

If we use Lf =
⋃

π∈npath[f]
Pcand[f, π], Eq. (4.25) is equivalent to the restriction from Eq. (4.7)

where the reserved window may not cross the transmission cycle bounds on every link that is
part of any candidate path of flow f .

However, the representation of the reserved windows with the reservation matrix allows
replacing Lf in Eq. (4.25) with

L′
f = {` ∈ L| nout(`) = nsrc[f]}. (4.26)

With L′
f we restrict only the phase. In other words, only on the outgoing links of the source

nodes of the flows, the reserved windows must not cross over the transmission cycle boundaries.
Next, we present the scheduling constraint in matrix-notation

∀` ∈ L :

0
...
0

 ≤ ∑
f`∈F`

(Mresv[f`]
ᵀ · s[`, f`, ∗]ᵀ) ≤

1
...
1

 (4.27)

with

F` = {f ∈ F|∃π ∈ npath[f] : ` ∈ Pcand[f, π]} (4.28)

denoting the set of all flows whose candidate paths contain link `. The matrix Mresv[f`] is
defined as

Mresv[f`] =
[
mresv[f`] · · · mresv[f`]

]
︸ ︷︷ ︸

thyper
tcycle[f`]

times

. (4.29)

This means we can interpret Mresv[f`] as the extension of mresv[f`] to cover the whole hyper-cycle
by means of horizontal concatenation.

The term s[`, f`, ∗] ·Mresv[f`] yields a row vector indicating which cells in the hyper-cycle
are reserved for flow f` on link ` and the selected phase which is encoded in s[`, f`, ∗]. This
idea is illustrated in Fig. 4.15 for two flows. Since element-wise inequalities are more commonly
expressed for column-vectors, we use the relation (AB)ᵀ = BᵀAᵀ and sum over all flows on link
`. The expression

∑
f`
(Mresv[f`]

ᵀ · s[`, f`, ∗]ᵀ) thus returns a column vector which indicates for

76 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

FIGURE 4.15
Each cell in the hyper-cycle can

be reserved for at most one flow.

0 1 0 0 0 1 0 0 0 1 0 0

01 00 0 0 01 00 0 0
tcycle[f1]

tcycle[f2]

s[l,f1,] Mresv[f1]

s[l,f2,] Mresv[f2]

hyper-cycle

each cell in the hyper-cycle how many flows would reserve it. The right-hand side of Eq. (4.27)
adds the constraint that for link ` each cell in the hyper-cycle is reserved for at most one
flow. Note that the link-local schedule for the reserved windows at ` can be recovered from the
solution by evaluating this sum term from Eq. (4.27).

Equation (4.27) ensures temporal isolation for arbitrary patterns of reserved cells. More
specifically, wrap-arounds of the reserved window at transmission cycle boundaries are supported
“for free” by the ILP formulation in this section. In contrast, the approach from Sec. 4.2 would
require more complex scheduling constraints due to the additional disjunctions introduced by
non-continuous reserved intervals.

Joint Scheduling and Path Selection Constraints

We need one offset for the reserved window on each link on the route of a flow in the traffic plan.
Consequently, s[`, f, ∗] contains at most one component with s[`, f, c] = 1. If ` is a link on

the selected candidate path, exactly one entry in s[`, f, ∗] has value one. If ` is not a link on
the selected candidate path, all entries of s[`, f, ∗] have value zero. This is expressed with the
constraint

∀f ∈ F : ∀`f ∈ Lf :
∑

cshift∈nprd[f]

s[`f , f, cshift] = ulink[f, `f]. (4.30)

To express the relation of the selected phases on subsequent links of the candidate path, we
first define a helper matrix mshift[f] = roll

(
Itcycle[f]×tcycle[f],dhop[f]

)
where roll(I, x) rotates the

columns of the identity matrix I with tcycle[f] rows and columns by x positions to the right.
The constraints

∀f ∈ F : ∀π ∈ npath[f] : (`in, `out) ⊆ Pcand[f, π] :

mshift[f]
ᵀ ∗ s[`in, f, ∗]ᵀ −

(
1− 1 · ulink[f, `in]

)
≤ s[`out, f, ∗]ᵀ −

(
1− 1 · ulink[f, `out]

)
(4.31)

mshift[f]
ᵀ ∗ s[`in, f, ∗]ᵀ +

(
1− 1 · ulink[f, `in]

)
≥ s[`out, f, ∗]ᵀ +

(
1− 1 · ulink[f, `out]

)
(4.32)

4.3 JOINT SCHEDULING AND PATH SELECTION 77

FIGURE 4.16
The offset of the reserved window
is adjusted by dhop[f] from hop to

hop on the route used by f . On
unused links (here: `3), all com-

ponents of s[`∗, f, ∗] have value 0.

00 1 0 0 0 1 0

phase increment
dhop[f]=1

s[l2,f,]s[l1,f,]

s[l3,f,] 0 0 0 0

adjust the position of the reserved cells along the path according to the per-hop delay for flow
f . In Equations (4.31) and (4.32), (`in, `out) are the pairs of subsequent links of the candidate
path Pcand[f, π], and 1 is a column vector with tcycle[f] ones. Again, there is no need for a
disjunction, since the wrap-around of the offset is implicitly accounted for by the roll-operation.

To break down Equations (4.31) and (4.32), let us first ignore the routing aspect. If the route
of a flow f is fixed, then Equations (4.31) and (4.32) simplify to

∀f ∈ F : ∀ subsequent edges `in, `out on the route of f :

s[`in, f, ∗] ·mshift[f] = s[`out, f, ∗]

or, equivalently, mshift[f]
ᵀ ∗ s[`in, f, ∗]ᵀ = s[`out, f, ∗]ᵀ. This means the offset encoded in s[e, f, ∗]

is advanced along the links on the chosen path for flow f according to the respective per-hop
delay as depicted in Fig. 4.16.

But since we solve the scheduling problem and allow path selection, Equations (4.31) and (4.32)
contain the additional auxiliary terms

(
1− 1 · ulink[f, `∗]

)
to satisfy the constraints if not both

links, `in and `out, are part of the chosen candidate path.

(Dummy) Objective

As described for the ILP formulation for joint scheduling and routing in Sec. 4.2, we can use a
dummy objective on an uninvolved dummy variable (maximize or minimize q) if we are only
interested in obtaining any valid traffic plan.

We replace this placeholder objective in Sec. 4.4.4, where we want the ILP solver to compute
optimized traffic plans.

4.3.3 Comparison and Relation to Joint Scheduling and Routing

Compared to the ILP with joint scheduling and routing from Sec. 4.2, the ILP formulation
presented in this section makes different trade-offs in the modeling of the traffic planning
problem.

78 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

If we take a step back, we make the following observation: In the spatial domain—with a
path being a sequence of links—the basic unit of operation (path) in the ILP formulation in
this section is a higher-level abstraction compared to the basic unit of operation in the ILP
formulation from Sec. 4.2, which is the individual link. Similarly, in the temporal domain, if
we think of a reserved window as composed of a set of one or more adjacent reserved cells, the
basic unit of operation (reserved window) in the ILP formulation from Sec. 4.2 is a higher-level
abstraction compared to the basic unit of operation in the ILP formulation in this section, which
is the cell.

As a consequence of using a basic unit of operation on a higher level of abstraction for the
ILP formulation, we can move decisions from the phase of actually solving the traffic planning
problem to the phase of modeling and creating the problem instance. For example, while it
is the responsibility of the ILP solver to select links that form a path from source node to
destination node in the ILP formulation for joint scheduling and routing, it is our responsibility
to ensure that only valid paths are presented as candidate paths to the solver. Conversely, we
could possibly construct a reservation matrix mresv with “gaps” in the reserved window and
present it to the solver—this is not possible with the ILP formulation from Sec. 4.2.

4.4 Traffic Planning for Complemental Flows

From Sec. 4.2 and Sec. 4.3, we now have two different ILP formulations available for computing
feasible traffic plans. Since we have a rather trivial dummy objective in place in Sec. 4.2 and
Sec. 4.3, it is reasonable to expect that the solver returns the first solution that satisfies all
constraints. That is, the ILP solver will compute “some” solution that corresponds to a traffic
plan that satisfies all of our traffic planning constraints—provided that there exists a solution
to the traffic planning problem, and the solver does not run out of memory (or we run out of
patience).

Now, we want the solver to search among the set of traffic plans that satisfy all constraints
for (one or more) traffic plans that are the best with regard to some objective. In our case, the
objective function is not defined just in terms of the time-triggered traffic flows. Instead, we
build on top of the ILP formulations from the previous section to compute optimal traffic plans
for complemental flows.

Compared to time-triggered traffic flows (see Sec. 3.3.1), complemental traffic flows equip
applications with more freedom with regard to when they are allowed to send a packet. To
this end, complemental flows consist of a deterministic real-time part and a complemental
non-time-triggered part. For the deterministic real-time part, the application has to comply with
the time schedule prescribed by the traffic plan when sending deterministic packets. In turn,
the network delivers the deterministic real-time part deterministically with bounded latency. In

4.4 TRAFFIC PLANNING FOR COMPLEMENTAL FLOWS 79

contrast, the complemental non-time-triggered part is transported with relaxed or no latency
guarantees and therefore is called the opportunistic part in the following. The relaxed guarantees
“buy” the application the freedom to transmit opportunistic packets at will, that is, at any
time when no deterministic packet is scheduled already. The basic idea of this scheme is that
the deterministic part of the flow provides the strictly mandatory guarantees to safely operate
the networked application, whereas the opportunistic part improves the networks application’s
performance beyond the mandatory minimum. In other words, the deterministic part ensures
that nothing “bad” will ever happen, whereas the opportunistic part is “nice to have” and used
to further optimize the performance.

Networked control systems are a prime example of a class of networked applications that
would benefit from such complemental flows as, for example, outlined in [Lin+19]. In [Lin+19],
the deterministic part is used to guarantee the stability of the control system by enforcing
latency bounds for a base rate of periodically transmitted sensor values or actuator commands.
The opportunistic part transports additional sensor values and actuator commands that allow
the controller to improve the control system performance, for example, by staying closer to the
set-point, whenever there is extra bandwidth available.

It is important to see that the value of the opportunistic part is not completely independent of
the deterministic part. For instance, an opportunistically transmitted sensor value transmitted
immediately after a deterministically transmitted sensor value might carry only little additional
information since both values are almost the same. In contrast, an opportunistic value with
a greater temporal distance to the previous deterministic value might provide really new(er)
information. This example shows that complemental flows should be considered when it comes
to planning schedules and routes if we strive for maximum performance. More generally, we
assume that the deterministic traffic part and the opportunistic traffic part of complemental
flows are coupled by some internal state of the sending application.

Since existing routing and scheduling approaches for real-time networks in general do not
have a notion of complemental flows, they miss the opportunity of optimizing opportunistic
parts in relation to deterministic parts during scheduling and routing, ultimately resulting in
lower application performance. Therefore, we propose joint routing and scheduling algorithms
for networks explicitly supporting complemental flows.

Next, we introduce the concept of complemental flows consisting of time-triggered, periodic
transmissions with deterministic real-time requirements and interspersed opportunistic transmis-
sions. We propose different generic models to model opportunistic transmissions which serve as
bases for defining optimization objectives. We then formalize the optimal routing and scheduling
problem for complemental flows using the ILPs from Sections 4.2 and 4.3 as stepping stones.

80 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

4.4.1 Complemental Flows and Application Model

In this section, we describe the concept of complemental flows in the context of real-time
networked applications.

Deterministic and Opportunistic Messages

We consider real-time applications that, on the one hand, require the time-triggered, cyclic
transmission of packets that need to be delivered within deterministic time bounds and limited
jitter. We refer to these packets in the following as deterministic packets. The deterministic
communication pattern can be found in many real-time applications where timely delivery is a
safety requirement. Consider, for example, the diverse applications found in modern cars where
controllers, networked sensors, and actuators (servo motors) form several control loops. Here,
sensor values need to be delivered from the sensors to the controller within time bounds. The
same is required for actuator commands from the controller which have to be delivered to the
actuators in time, else the car might be damaged or passengers’ lives endangered. Depending
on the specifications of the car (engine power, speed, accuracy of sensors, etc.), some minimum
update (packet) rate and cycle time can be defined a priori guaranteeing that the car will be
operational with (at least) a minimum required quality (safety condition).

On the other hand, additional updates might increase the accuracy and efficiency (quality) of
the operation beyond the safe minimum. Here, quality is a performance metric that should be
optimized, and quality is related to transmitted packets.

The problem is that network bandwidth is a shared resource since different applications
might use the same onboard-network at the same time. Reserving more bandwidth beyond the
minimum required bandwidth for one application makes it unavailable for other applications.
Moreover, not all applications might require additional bandwidth at all times. Therefore,
reserving excessive bandwidth in a time-triggered fashion at all times seems to be unjustified.
Instead, we propose to use residual network resources opportunistically—when available—to
optimize performance. We refer to packets transmitted outside the a priori defined time-triggered
window for the deterministic traffic as opportunistic packets.

Our model distinguishing between deterministic and opportunistic packets has relevance
beyond this example. For instance, it can be used to implement the well-known class of weakly-
hard real-time (WHRT) systems. WHRT systems [Ber+01; Gaï+08] can tolerate a certain
number of packets missing their deadline within a time window. We can ensure this using
deterministic packets at a minimum rate, such that enough deterministic packets are part of
each time window, and all other packets within the window are sent as opportunistic packets.

4.4 TRAFFIC PLANNING FOR COMPLEMENTAL FLOWS 81

det.
pkts.

det.
pkts.

time-dependent traffic metric sequence

renewal points for
traffic metric cycle length

FIGURE 4.17 A time-dependent traffic metric allows to assign different traffic metric values to
different time intervals. The reference point for the time-dependent traffic metric
sequence is the transmission of the deterministic packet.

Optimizing Application Performance: Traffic Metric

Complemental flows consist of the aforementioned deterministic packets and opportunistic
packets that guarantee safety, for instance, stability on the one hand, and optimize performance
on the other hand. Considering the performance optimization through opportunistic packets,
a traffic metric is required that relates opportunistic packets to their utility. The term traffic
metric is therefore always tied to the opportunistic part of a complemental flow, and traffic
metric refers to the traffic metric for opportunistic packets in the following. Based on this
metric, we would like to schedule and route complemental flows such that performance is
maximized—resulting in an optimization problem. Here, we strive for an offline scheduling and
routing approach. Thus, we need to define traffic metrics that also can be estimated offline.
These metrics are application-specific, therefore we cannot provide an exhaustive list of concrete
metrics. Instead, we focus on the generic properties of metrics.

We distinguish between time-independent metrics and time-dependent metrics. For time-
independent metrics, the utility of an opportunistic packet is not related to the schedule of the
deterministic traffic. This means the temporal distance between the emission of an opportunistic
packet and a deterministic packet does not influence the utility of the opportunistic packet.
For instance, the average bandwidth (rate) of opportunistic packets is such a time-independent
traffic metric following the reasonable assumption: the more packets, for example, containing
sensor values, the higher the performance.

However, this simplifying assumption is neglecting the fact that not all packets might have
equal utility, but the utility of a packet also depends on its value and time. For instance, a
sensor value deviating significantly from the previous deterministically reported value might be
more useful than sending the same value again. The problem is that for an offline approach, it
is impossible to predict the concrete sensor values transmitted at runtime—which obviously

82 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

depend on the situation (otherwise, one would not need to send the predicted messages at all).
Therefore, depending on the networked application, it is reasonable to make some assumptions.

These assumptions draw from the particular characteristics of the networked application, the
meaning of the data that is sent, and therefore require domain knowledge. For instance, in a
network control application sensor readings taken immediately after each other might have almost
the same value depending, for example, on the controlled plant’s inertia. Here, opportunistic
packets sent at a larger time distance to the previous or next deterministic packet might provide
more useful information than packets sent immediately after or before deterministic packets. As
another example, we could also think of applications where each deterministic packet contains
strictly necessary information, but can possibly be followed by “a trailer” of a varying number
of opportunistic packets which carry an enhanced set of information. In this case, the value of
each subsequent opportunistic packet would be decreasing after each deterministic transmission
with the gradient depending on, for example, the expected lengths of the “opportunistic trailers”
and the relative occurrences of different “trailer lengths”. That is to say, for different networked
applications, the relation between the point in time of the transmission of a deterministic packet
and the point of time of the transmission of an opportunistic packet can differ strongly.

This motivates the introduction of time-dependent traffic metrics that incorporate the relation
of opportunistic packets to the time schedule of deterministic packets. In other words, a time-
dependent metric can be interpreted as an a priori given function over time defining for each
point in time the traffic metric value of an opportunistic packet sent at that time. Since we
assume that utility is defined in relation to the previous and/or next deterministic packet, this
function only needs to be defined over the time period of one cycle of the deterministic traffic
and then repeats for every cycle, see Fig. 4.17.

4.4.2 System Model Amendments and Specifics

For the implementation of complemental flows, we pick up on the multi-paradigm nature
of converged networking. Converged networks support multiple communication paradigms
ranging from time-triggered real-time communication to simple best-effort communication with
class-based priority scheduling.

Network and Bridges

For complemental flows, we explicitly require bridges to provide both, strict-priority packet
scheduling and time-aware shaping.

By assigning different priority values to opportunistic packets and deterministic packets, each
bridge uses FIFO queuing for the aggregate of deterministic traffic as well as for the aggregate
of opportunistic traffic, see Sec. 2.3. Hence, the packet schedulers in the bridges need not
distinguish between the individual complemental flows.

4.4 TRAFFIC PLANNING FOR COMPLEMENTAL FLOWS 83

to link

t0 : ...oC...

ti : ...Co...

......

d
et

er
m

in
.

...

o
p

po
rt

u
n

.

Transmission Selection

transmission
gates

FIGURE 4.18 Output port with strict-priority scheduling and time-aware shaping. Deterministic
and opportunistic packets are enqueued separately.

Complemental Flows

If a networked application issues a flow request for a complemental flow, we need additional
information for the traffic planning. In particular, flow requests have to be extended with the
traffic metric for opportunistic packets for the computation of the optimal traffic plan.

Both parts of a complemental flow are forwarded through the network along the same static
route. Hosts, or rather the networked applications themselves, are aware of the distinction
between deterministic and opportunistic packets and annotate packets in a suitable manner
which allows the bridges to enqueue the packets in the corresponding output queue, see Fig. 4.18.
For example, in IEEE Std 802.1Q, this can be achieved by setting different PCP values for
deterministic and opportunistic packets.

It is easy to see that the “hard” requirements and constraints for the deterministic parts of the
complemental flows correspond to reserved windows as previously introduced for time-triggered
flows. With the equivalence deterministic packet↔ reserved window, we can map the scheduling
problem for the deterministic packets to the computation of suitable offsets relative to the start
of the transmission cycles, see Fig. 4.19. This means for each flow, we again use the start of a
transmission cycle (see Eq. (3.2)) as reference point for the computation of the transmission
schedule for deterministic packets. For each flow, the time intervals following the transmission
of the deterministic packets can be used for the transmission of opportunistic packets.

We yet have to detail the traffic metric for the opportunistic packets. We expect that for
a given traffic planning problem instance, the traffic metric is given in the same “unit” or

84 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

measure for all complemental flows, or can be converted to a suitable proxy metric. For instance,
the traffic metric could be equal to the average bandwidth for the opportunistic traffic part.
Obviously, if we cannot relate the traffic metrics of different flows, for example, if one metric is
given in terms of network load, the other metric in terms of (electrical) energy, we have a hard
time computing an optimized traffic plan.

As an additional restriction, we expect traffic metrics that are additive in nature, that is to
say, the addition of the traffic metric values of different complemental flows “makes sense”. For
example, a categorical traffic metric, which consists of labels (“unimportant traffic”, “medium
urgency”, “priority”, “express”), is not suitable as is (it would have to be mapped to an algebraic
metric with concrete numerical values). Additive traffic metrics are also an established concept
to describe traffic flows in the context of quality-of-service, for example, in admission control
schemes [Jam+97].

Additionally, we require that the traffic metric value does not change significantly from hop to
hop. In other words, the traffic metric should be chosen such that it can remain stable throughout
the network, and is not changed, for example, by cross-traffic or the bridges themselves. To
give a counter-example, a bridge with an aggressive traffic limiter that drops lots of packets
could change the time-invariant traffic metric average bandwidth of a flow passing through this
limiter and therefore violates this requirement.

This implies that the traffic metric is actually a property of the networked application or,
to be more exact, a property of the process generating opportunistic packets. This has the
practical advantage that the traffic metrics could be obtained for example by analyzing the
application’s sending behavior either analytically, or with a priori runtime measurements.

These requirements for the traffic metric also have a more pragmatic background. They
facilitate solving the problem with ILPs, which require that we can model our problem only
with linear inequalities and a linear objective function.

To model the time-independent traffic metric of complemental flows, we use a single scalar
value that contains the aggregated information about the opportunistic transmissions for flow f .

For the time-dependent traffic metric, we again discretize the transmission cycle into a
sequence of cells and assign the respective traffic metric value to each cell.

Note that depending on the actual implementation and the actual meaning of the traffic
metric, the queuing of opportunistic packets has the potential to influence the temporal relation
of the traffic metric. Here, we assume that this influence is negligible in relation to the overall
uncertainty regarding the generation of opportunistic packets. We would like to remark that
there are approaches in the literature to limit message queuing for opportunistic transmissions,
for example, Controlled Load Services [Wro97] or bufferless statistical multiplexing [Rei+02].

In summary, a complemental flow models a stream of both, deterministic packets and
opportunistic packets, that is generated from a shared, application-internal state of a networked

4.4 TRAFFIC PLANNING FOR COMPLEMENTAL FLOWS 85

application. For the time-independent traffic metric, the modeling of a complemental flow, for
example, eliminates the possibility that the networked application simultaneously generates a
deterministic packet and an opportunistic packet. Similarly, this shared state of the networked
application manifests itself in the temporal linkage between the time-dependent metric and the
phase of the deterministic packets.

It is a valid alternative to treat the deterministic packets and opportunistic packets of a
complemental flow separately. We could, for example, replace a complemental flow with a pair
of flows consisting of a deterministic flow and an opportunistic flow. However, this would add
complexity to the traffic planning: we would have to consider twice as many routing decisions,
and we would have to explicitly model the dependencies between deterministic and opportunistic
packets, for example, matching the length of the routes and matching the offsets with additional
constraints.

Therefore, we extend the ILPs from Sections 4.2 and 4.3 for traffic planning for complemental
flows. We use a min-max objective function that minimizes the highest accumulated value of the
traffic metric in the network. The ILP formulation from Sec. 4.2 lends itself for traffic planning
in scenarios with time-independent traffic metric, whereas the ILP formulation from Sec. 4.3 is
the starting point for traffic planning with time-dependent traffic metric.

4.4.3 ILP: Route Computation and Time-Independent Traffic Metric

The ILP formulation in this section is based on the ILP with route computation from Sec. 4.2.
We have to incorporate the time-independent traffic metric and replace the dummy objective
with the optimization objective for complemental flows.

Remember, the ILP formulation most notably uses the two variables ulink[f, `] and toffset[f, `].
From ulink[f, `] (meaning: flow f uses link `)) we can obtain the route a flow, and toffset[f, `]

denotes the offset of the deterministic packet transmission of flow f on link ` relative to the
start of the transmission cycle of f , see Fig. 4.19.

The time-independent traffic metric value of flow f is represented by an additional parameter
mtrf,t.i.[f] ∈ R+ with f ∈ F .

Analogously, we introduce the set of variables at.i.[`] ∈ R+ to capture the accumulated value
of the traffic metric on a particular link ` ∈ L. With the constraint

∀` ∈ L :
∑
f∈F

mtrf,t.i.[f] · ulink[f, `] = at.i.[`] (4.33)

the variable at.i.[`] is set to the sum of the traffic metric values of all flows which are routed via
link `.

For example, if the time-independent traffic metric corresponds to the expected average

86 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

de
t.

time-
independent

traffic metric for
opp. packets

offset for det.
packets

(reference points)

de
t.

de
t.

de
t.

de
t.

de
t.

de
t.

hyper-cycle

cycle time:

cycle time:

FIGURE 4.19 Example with time-independent (scalar) traffic metric: Computing feasible offsets
for the periodic, deterministic packets of a complemental flow corresponds to the
scheduling of reserved windows.

bandwidth consumed by opportunistic packets, we have to add mtrf,t.i.[f] to the expected
average bandwidth consumed on every link that is part of the route of f , and at.i.[`] captures
the total bandwidth consumed by opportunistic packets on a specific link ` in the network.

To formulate the optimization objective, we additionally use a scalar variable aobj,t.i. ∈ R+.
To avoid an extremely uneven distribution of the opportunistic traffic metric, we can replace
the dummy objective from Sec. 4.2 with a min-max objective. To this end,

∀` ∈ L : at.i.[`] ≤ aobj,t.i. (4.34)

in combination with the objective
minimize aobj,t.i. (4.35)

ties the auxiliary variable aobj,t.i. to the globally highest value of the accumulated traffic metric
on any individual link which then shall be minimized. This combination of constraints for the
traffic metric reduces the highest value of the accumulated values of the traffic metric in the
whole network. Due to flow conservation—packets are only created or consumed by the source
and destination nodes—, this can distribute the traffic more evenly as long as the constraints
for the deterministic packets remain satisfied.

We want to remark that the ILP can easily be adapted using the exposed variables and
parameters. For example, if our traffic metric relates to the average bandwidth, we could impose
bandwidth restrictions for the opportunistic traffic parts by adding constraints in the form
at.i.[`] ≤ bandwidth limit.

4.4 TRAFFIC PLANNING FOR COMPLEMENTAL FLOWS 87

4.4.4 ILP: Candidate Path Selection and Time-Dependent Traffic
Metric

Next, we extend the ILP formulation from Sec. 4.3 to optimize traffic plans for complemental
flows with a time-dependent metric for the opportunistic part. Remember, the ILP formulation
uses πpath[f, π] and ulink[f, `] to indicate path selection and used links, respectively, and variable
s[`, f, c] is used in the constraints for the selection of a scheduling option (= offset).

Here, we re-apply the concept of cell matrices, previously introduced to indicate the reserved
cells (mresv) to represent the time-dependent traffic metric. In the time-dependent traffic metric
matrix mtrf,t.d.[f] ∈ R+

tcycle[f]×tcycle[f] with f ∈ F , each row mtrf,t.d.[f][coffset, ∗] describes the
corresponding traffic metric sequence for scheduling option coffset.

In the context of complemental flows, mresv[f] and mtrf,t.d.[f] have the same number of rows
and columns for a given flow f , and each scheduling option (row) corresponds to a different
offset. In other words, both matrices use the same time-discretization of the cycle with the same
cell duration of τ . The coffset-th row in both matrices mresv[f][coffset, ∗] and mtrf,t.d.[f][coffset, ∗]
shall refer to the same actual value of the offset. This can be implemented again by using the
roll-operator to construct mtrf,t.d.[f] analog to the construction of the reservation matrix as
described before in Eq. (4.21):

mtrf,t.d.[f][coffset, ∗] = roll (mtrf,t.d.[f][0, ∗], coffset) (4.36)

with coffset ∈ {0, 1, 2, . . . , (tcycle[f]− 1)}. To summarize, if flow f is scheduled with offset
coffset, then mresv[f][coffset, cindex] = 1 if the corresponding cell cindex is reserved for determin-
istic packets, else mresv[f][coffset, cindex] = 0. The value of the traffic metric in cell cindex is
mtrf,t.d.[f][coffset, cindex], see Fig. 4.20.

Similar to the variables introduced in Sec. 4.4.3, we introduce the variables at.d.[`, chyper] ∈ R+.
Variable at.d.[`, chyper] describes the accumulated values of the traffic metric for the link ` ∈ L in
a specific cell chyper in the hyper-cycle, that is, chyper ∈ {0, 1, 2, . . . thyper − 1} ⊂ N.

The constraint
∀` ∈ L :

∑
f`∈Lf

(Mtrf,t.d.[f]
ᵀ · s[`, f`, ∗]ᵀ) = at.d.[`, ∗]ᵀ (4.37)

computes the value of the accumulated value of the traffic metric for each cell chyper in the
hyper-cycle on link ` by summing over the contributions of each flow f using a candidate
path that includes `. In Eq. (4.37) Lf = {` ∈ L|` = nout(nsrc of f)} as before in Eq. (4.26).
Structurally, Eq. (4.37) is similar to Eq. (4.27), but we consider the traffic metric instead of

88 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

de
t.

de
t.

1 0 0 0 0 0
0 .2 0 .5 .8 0

de
t.

de
t.

1 0 0 0 00
0 .2 0 .5

de
t.

1 0 0 00 0
0 .2 0 .5.8 0

mtrf,t.d.[f][0,]
mresv[f][0,]

.80

...

s[l,f,0]
= 0

s[l,f,1]
= 1

s[l,f,2]
= 0

vector
s[l,f,]

offset:

offset:
(selected on link

l for flow f

offset:

...

mtrf,t.d.[f][1,]
mresv[f][1,]

mtrf,t.d.[f][2,]
mresv[f][2,]

tcycle[f] cells

FIGURE 4.20 Rows of the matrices (mresv[f], mtrf,t.d.[f]) represent the complemental traffic parts
for different offsets. Variable s[`, f, c] indicates whether offset c · τ is selected for
the deterministic part of flow f on link `.

reservations. Consequently, Mtrf,t.d.[f] is constructed by

Mtrf,t.d.[f`] =
[
mtrf,t.d.[f`] · · · mtrf,t.d.[f`]

]
︸ ︷︷ ︸

thyper
tcycle[f`]

times

(4.38)

with the same horizontal concatenation of the per-cycle traffic-metric matrices.
As was the case in Sec. 4.4.3, we introduce a scalar variable aobj,t.d. ∈ R+ and give the

constraints and the objective function for the min-max-optimization. The main difference is
that we want to minimize the maximum value aobj,t.d. in any cell on any link via

∀` ∈ L : ∀chyper ∈ {0, 1, 2, . . . thyper − 1} : at.d.[`, chyper] ≤ aobj,t.d. (4.39)

minimize aobj,t.d. (4.40)

Remark: Variable at.d.[`, chyper] exposes the accumulated values of the traffic metric, which
facilitates the adaption of the objective function or the addition of extra constraints to account
for traffic-metric related bounds, for instance, to limit the accumulated time averages on any
link or to limit per-cell peak-values, etc.

4.4 TRAFFIC PLANNING FOR COMPLEMENTAL FLOWS 89

FIGURE 4.21
Topology and placement of source nodes and

destination nodes used for the evaluations.
source
nodes

destination
nodes

4.4.5 Evaluation

In Sec. 4.2 we evaluated one particular ILP formulation on a wide range of evaluation scenarios.
In this section, we want to evaluate and compare different ILP formulations against each other.
Therefore, we deliberately limit the variations regarding evaluations scenarios.

Evaluation Scenarios and Setup

Each evaluation scenario consists of a network (graph) and a set of flows. We use a 4-by-
4 grid (see Fig. 4.21) as underlying network topology for all the measurements throughout
this section. In this network topology, we can be sure that there exist multiple paths for
each source-destination pair. For all flows, the source nodes are located on one side, and the
destination nodes are located on the opposite side of the grid. To achieve an approximately
similar number of flows per node on either side of the grid, we assign flows to the nodes on
the source and destination side in a round-robin fashion, and each node may serve as source or
destination for multiple flows, respectively. In other words, the source and destination nodes are
placed deterministically in the network. The values of propagation delay and processing delay
are 1 cell length for all links and nodes, respectively. For each flow, the number of cells per
transmission cycle is randomly drawn from the set {10, 20, 40}, transmissions of deterministic
messages require a reservation of 1 cell length, and the deadline (length of pre-computed paths,
respectively) is such that up to two-thirds of all vertices may be traversed by each flow.

Due to the different granularity of routing and the traffic metric descriptions in the ILPs from
Sec. 4.4.3 and Sec. 4.4.4, we have “pseudo-equivalent” twins for every flow in the evaluation
scenarios. For each flow ft.i. in the set of flows for the route computation approach, there is a
“pseudo-equivalent” twin ft.d. in the set of flows for the candidate-path selection approach which
differs only with respect to routing and the traffic metric. The twins ft.i. and ft.d. have the same
source node and destination node, but we pre-compute a set of candidate paths for ft.d. using the
graph-tool library (version 2.27) [Pei14]. Similarly, for each flow ft.d. with time-dependent traffic
metric, we created random sequences by assigning the absolute values of normally distributed

90 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

10 12 14 16 18
flows

0

250

500

750

1000

1250

1500

1750

ru
nt

im
e

[s]

A Varying number of flows.

2 5 10 20 30 w/routing
paths

0

250

500

750

1000

1250

1500

1750

ru
nt

im
e

[s] path., no obj.
path, min-max
link, no obj.
link, min-max

B Varying number of precomputed paths.

FIGURE 4.22 Average solver runtimes with and without traffic-metric objective.

random numbers to the cells of mtrf,t.d.[ft.i.][0, ∗]. Then, the time-independent traffic metric
value mtrf,t.i.[ft.i.] of the corresponding twin ft.i. is set to the average of mtrf,t.d.[ft.d.][0, ∗].

In addition to the ILP with route computation and time-independent traffic metric from
Sec. 4.4.3 (abbr.: link, min-max) and the ILP with candidate-path selection and time-independent
traffic metric from Sec. 4.4.4 (abbr.: path, min-max), we additionally use a version of both ILPs
without objective. The ILP with route computation and time-independent traffic metric and
no objective function (abbr.: link, no-obj.) lacks Constraint (4.34). Similarly, the ILP with
candidate-path selection and time-dependent traffic and no objective (abbr.: path., no-obj.)
metrics lacks Constraint (4.39). Note that the ILPs without objective effectively correspond to
the ILPs from Sections 4.2 and 4.3.

We implemented the ILPs with Pyomo [Har+11; Har+17] and used Gurobi 8.1.0 [Gur19] to
solve the ILPs for our evaluation scenarios in a containerized environment on a computing node
(4× Intel Xeon E7-4850, 2.1GHz, 1TB RAM) running Linux 4.19.4.

In our evaluations, we limit the solver runtime to 30min. For the evaluated scenarios, this
did not affect the schedulability, only the optimality of the routes and schedules.

Evaluation Results

Figure 4.22A and Fig. 4.23 show the results for evaluation scenarios where the number of flows
ranges from 10 to 18 flows with four candidate paths per flow for the ILPs with candidate-path
selection.

In Fig. 4.22A, we plot the average runtime in seconds for evaluation scenarios with different
numbers of flows. For 10 and 12 flows the ILPs with route computation and time-independent
traffic metrics are solved faster on average, even though the sizes of the ILPs with route

4.4 TRAFFIC PLANNING FOR COMPLEMENTAL FLOWS 91

0 1 2 3 4 5 6 7 8
ILP instances

(link, no obj., 10)
(link, no obj., 12)
(link, no obj., 14)
(link, no obj., 16)
(link, no obj., 18)

(link, min-max, 10)
(link, min-max, 12)
(link, min-max, 14)
(link, min-max, 16)
(link, min-max, 18)

(path, no obj„ 10)
(path, no obj„ 12)
(path, no obj„ 14)
(path, no obj„ 16)
(path, no obj„ 18)

(path., min-max, 10)
(path., min-max, 12)
(path., min-max, 14)
(path., min-max, 16)
(path., min-max, 18)

flo
ws

maxTimeLimit optimal infeasible

FIGURE 4.23 Exit status of solver, varying number of flows.

computation are in general a magnitude larger compared to the ILPs with candidate path
selection in our evaluation scenarios (route computation: from ∼ 1.1 · 105 constraints and
∼ 1.3 · 105 variables for 10 flows up to ∼ 3.4 · 105 constraints and ∼ 3.5 · 105 variables for 18
flows; candidate-path selection: from ∼ 2 · 104 constraints and ∼ 8 · 103 variables for 10 flows
up to ∼ 2.7 · 104 constraints and ∼ 1.1 · 104 variables for 18 flows). However, the solver hits
the run-time limit of 30min for two instances of evaluation scenarios with only 10 flows for the
candidate-path selection min-max ILP, whereas all instances of evaluation scenarios with 10
and 12 flows for the route computation min-max ILP are solved optimally in less than 30min.

In Fig. 4.22A, we also observe an at a first glance counter-intuitive decrease of the average
runtime of the candidate-path selection min-max ILPs for 16 and 18 flows. The reason why
the solver appears to require less runtime to solve the presumably harder problems with more
flows is indicated in Fig. 4.23, which shows the solver status for the different instances of the
evaluation scenarios.

Starting at 16 flows, there are evaluation scenarios that result in infeasible ILPs with candidate-
path selection (irregardless of whether or not we have an objective function). Since infeasibility
is detected relatively quickly by state-of-the-art solvers, these ILP “solutions”–which actually
indicate the absence of a traffic plan that satisfies all constraints—skew the runtime observations.

This interpretation is supported by the runtime results in Fig. 4.22B. For the evaluation
scenarios depicted in Fig. 4.22B, we fixed the number of flows to 16 flows and varied the number

92 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

0 2 4 6 8 10
ILP instances

(path, no obj„ 2)

(path, no obj„ 5)

(path, no obj„ 10)

(path, no obj„ 20)

(path, no obj„ 30)

(path., min-max, 2)

(path., min-max, 5)

(path., min-max, 10)

(path., min-max, 20)

(path., min-max, 30)

pr
e-

co
m

pu
te

d
pa

th
s

Solver Status
maxTimeLimit
optimal
infeasible

FIGURE 4.24 Exit status of solver, ILP with candidate-path selection for varying number of
precomputed paths.

of precomputed paths. The corresponding solver statuses for these ILP with candidate-path
selection are given in Fig. 4.24.

The required runtime for the candidate-path selection min-max ILPs for different numbers
of pre-computed paths correlates with the number of infeasible evaluation scenarios since we
observe a monotonically decreasing number of infeasible evaluation instances from five infeasible
scenarios with only two precomputed paths to zero infeasible scenarios. That is, 10 out of 10
evaluation scenarios are schedulable for evaluation scenarios with 20 or more paths. Or, in
other words, the schedulability of our evaluation scenarios increases (as expected) with the
number of precomputed paths if we use the approach with candidate-path selection. As before
(Fig. 4.22A and Fig. 4.23), all evaluation scenarios with the route computation variant of the
flow parameters are schedulable with the ILPs with route computation. All ILPs with route
computation and no objective terminate with a solution for these evaluation scenarios, and all
route computation min-max ILPs yield a (possibly) non-optimal feasible solution within 30min.

Considering only the ILPs without objective, then for our evaluation scenarios the candidate-
path selection approach results not only in smaller ILPs but also much faster execution. In
both, Fig. 4.22A and Fig. 4.22B, the ILPs with candidate-path selection without objective are
solved in a few seconds (Fig. 4.22A: ≤ 4.1 s; Fig. 4.22B: ≤ 17.1 s for 30 paths) which is much
faster compared to the average runtime of the ILPs with route computation and no objective
(Fig. 4.22A: ≤ 99 s for 10 flows, ≤ 14.7min for 18 flows; Fig. 4.22B: ≤ 12min). In turn, the
additional degrees of freedom in the route computation massively improve the schedulability.

For both (route computation and candidate-path selection) ILPs with no objective, we keep the

4.4 TRAFFIC PLANNING FOR COMPLEMENTAL FLOWS 93

FIGURE 4.25
Average reduction of highest value of ag-
gregated traffic metric for varying num-

ber of precomputed candidate paths.
w/routing 2 5 10 20 30

paths

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

re
du

ct
io

n
ac

c.
tr

affi
c

m
et

ric

constraints to compute the accumulated values of the traffic metric per link (Eq. (4.33)) or per
cell per link (Eq. (4.37)). Despite our method for generating the traffic metrics, simply comparing
the traffic metric values of the approach with route computation to those of the approach with
candidate path selection is unfair, since they have different objectives (accumulated traffic metric
value per-link vs. accumulated value per-link per-cell). Instead, we calculate the respective
reduction of the objective value (highest value of the accumulated traffic metric values per
link/per cell per link)

reduction route computation, t.i.:
(
max
`∈L

at.i.[`]

)
/aobj,t.i. − 1 (4.41)

reduction candidate path-selection, t.d.:

 max
c∈{0,1,2,...thyper−1}

`∈L

at.d.[`, c]

 /aobj,t.d. − 1 (4.42)

yielded by the min-max ILPs over the no-obj. ILPs.

In Fig. 4.25, the reduction is depicted for the evaluation scenarios with a varying number of
paths from Fig. 4.22B and Fig. 4.24. In other words, Fig. 4.25 shows the improvement over the
case where a traffic planning approach that ignores the opportunistic packets is used for traffic
planning for complemental flows. The approach with route computation reduces the highest
accumulated value of the traffic metric on any link on average by 32.4%, with the extrema
ranging from a reduction of as little as 15.5% up to a reduction of 50.8%. The approach with
candidate-path selection yielded an average reduction of the highest accumulated value of the
traffic metric in any cell on any link in the range of 18.3% (for 5 paths) to 44.2% (30 paths).

94 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

The (feasible) evaluation scenarios from Fig. 4.22A and Fig. 4.23 yielded similar results with
an average reduction of 23.9% for the approach with candidate-path selection and an average
reduction of 30.8% for the approach with route computation.

Evaluation Summary

In the evaluations in this section, we performed a four-way comparison that addresses two
different aspects.

On the one hand, we compared the effects of extending our traffic planning ILP formulations
to ILP formulations for the computation of optimized traffic plans for complemental flows. We
have seen in our evaluations that the integration of the opportunistic traffic metric and the
traffic planning objective for complemental flows could generate noticeably improved traffic
plans in terms of the traffic planning objective at the cost of longer runtimes of the ILP solver.
For our evaluation scenarios, we also observed that there is often a noticeable improvement
with regard to the traffic planning objective shortly after the solver has found the first feasible
solution. Thus, even if we abort the traffic planning for complemental flows after the solver
found a feasible (non-optimal) solution, these solutions usually compare favorably to pure
constraint-based traffic planning, which ignores the opportunistic traffic part.

On the other hand, we also compared the ILP with route computation against the ILP
path selection. Our evaluations showed that the ILP with path selection is an alternative to
the ILP with route computation, which was oftentimes solved faster, and we could improve
the schedulability and optimality of the results with an increasing number of candidate paths.
Picking up on the earlier discussion from Sec. 4.3.3, the evaluations in this section underline
that the modeling decisions play an important role for the ILP formulation with path selection.
For example, if we use ILP formulation with path selection and consider too few candidate
paths, we might prevent the solver from finding a feasible solution that the solver might have
discovered if we had included more candidate paths or used the ILP formulation with route
computation instead.

In other words, the ILP from Sec. 4.3 provides more explicit handles to influence the size
of an ILP instance via modeling decisions. We can influence the temporal resolution (time-
discretization) for both ILP formulations, but Sec. 4.3 explicitly requires us to specify the spatial
granularity in the form of candidate paths when modeling the traffic planning problem. However,
we have to keep in mind that a larger ILP instance does not automatically translate to “more
work”, and, in practice, may not automatically translate into higher runtimes, for example, if
the ILP instance contains structures that can be efficiently exploited by pre-solving heuristics.

In general, we have to be aware and distinguish between the given parameters of the traffic
planning instance, how we render this traffic planning instance to an ILP instance (which
candidate paths to consider, time-discretization), and, finally, how we solve this ILP instance, if

4.5 RELATED WORK 95

we want to compare traffic planning evaluations. Therefore, a direct comparison between the
evaluations from Sec. 4.2.2 and this section may be misleading, since we used different network
topologies, flow requests, and changed the ILP modeling framework and ILP solver.

4.5 Related Work

In general, the problem of “how to get packets from source to the destination in bounded
time” reoccurs in different variations throughout the literature. In this thesis, we focus on
approaches targeting multi-hop networks with directed links and deterministic, time-triggered
packet-transmission schemes.

We organize the discussion of related work on traffic planning using different categories. In
this section, we present the first part of our discussion of the related work on traffic planning
with an emphasis on the different scopes regarding scheduling and route computation or path
selection, and the various assumptions for different aspects of the system model. Since the next
chapter continues with the overall theme of traffic planning, we defer the second part of the
discussion of related work on traffic planning to Sec. 5.4.

A related approach may share some traits with our approaches in one category but differ in
other categories. Therefore, we may reference the same work multiple times.

Scheduling Including Route Computation or Path Selection? We can differentiate
traffic planning approaches depending on their “input” and the degrees of freedom during the
computation of the traffic plan, especially with regard to routing.

On one end of the spectrum, routes are already fixed before the computation of the traffic plan,
eliminating the spatial aspect. This reduces the task of traffic planning to a scheduling task.
The scheduling problem, that is, the temporal component of traffic planning, is, for example,
considered in [Ste10; Ste11; Dür+16; Cra+16b; Poz+16; Cra+17; Oli+18]. Unless the network
provides but a single route between source node and destination node, including the routing
decision in the computation of the traffic plan can improve schedulability, see Sec. 4.4.5.

There is some work on scheduling-aware routing [Nay+18b; Ata+19] where routes are
computed a priori using heuristics that take the expected traffic load in form of the flow requests
into account. The so-obtained routes are then used as input for a pure scheduling algorithm.
Ideally, the effort spent on these scheduling-aware routing heuristics is more than compensated
by a speed-up or improvement in solution quality in the following scheduling step.

The other end of the spectrum is occupied by joint scheduling and routing approaches where
both, the transmission schedules and routes for the flows, are computed from scratch. Few
approaches integrate the actual route computation on a per-link granularity and the scheduling
in the same step as our approach from Sec. 4.2.

96 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

In one of the early approaches [Nay+16] (later extended in [Nay+18a] to support dynamic
addition or removal of flows), the authors address scheduling of periodic transmissions in SDN
networks. Their approach is limited to uniform transmission lengths, a network-wide base-period,
and does not use the gating mechanism in the network. Instead, packets are scheduled by the
source node for transmission in a time slot during which all links on the route of a packet
are reserved simultaneously. In contrast, the ILP from Sec. 4.2 supports arbitrary lengths of
reservations for transmissions, arbitrary periods of transmissions, and per-port schedules for the
time-aware shapers in the bridges.

In [Smi+17], a 0-1 ILP formulation is presented for the joint message routing and scheduling
problem which builds on an existing model of automotive communication networks. The authors
do not consider the end-to-end delay of messages for the routing decision and employ a binary
coding that directly relates the granularity of the schedules to the number of variables. The ILP
formulation in [Smi+17] is targeted at a very specific use-case, since the authors aim to utilize
their ILP as a component in a multi-objective optimization for automotive communication
networks, which influences, for example, their choice of variables and encoding.

Another ILP formulation that addresses joint routing and scheduling is presented in [Sch+17].
The ILP in [Sch+17] shares many features with our approach from Sec. 4.2 such as support
for per-flow transmission cycle-times but does not use zero-queuing. In a later work [Sch+20],
the approach from [Sch+17] is enhanced to support joint route computation and scheduling for
multicast flows, too.

Outside of constraint-programming approaches, there are heuristics which “interleave” the
computation of routes and schedules. For example, [Pah+18; Pah+19b] describe a dedicated
routing step that produces (as per the authors) all valid paths between source node and
destination node of a flow which are then referred to during scheduling.

Interweaving scheduling constraints and routing constraints can quickly become very expensive
in terms of computational resources. Similarly, “compiling” these routing constraints (if even
possible) to a list of all valid routes may quickly exhaust the available memory. Therefore,
some approaches try to cut down the degrees of freedom with respect to routing to achieve a
compromise between the schedulability and computational effort.

With route computation on a per-link granularity as starting point, [Sch+17; Hel+21] propose
various pre-processing techniques that reduce the search space for the route computation. For
example, one idea is to ignore those links which will never be part of any path between source
and destination node or to aggregate the constraints for line segments in the network.

Alternatively, instead of cutting down on routing decisions, some approaches start from the
opposite side by exposing only a limited amount of routing decisions, to begin with. For example,
pathsets routing is proposed in [Nay+16] for TSSDN to reduce the traffic planning runtime.
Similar to the concept of candidate-path selection as used in Sec. 4.3, for each flow a number

4.5 RELATED WORK 97

(≥ 1) of valid routes between source node and destination node are pre-computed, and the
decision of which candidate path is chosen is performed jointly with scheduling. A similar idea
is described in [Ata+19] in the context of redundant paths where only a subset of sets of disjoint
paths is taken into account during the computation of the global traffic plan.

All of our approaches, including the conflict-graph-based approaches from the next chapter,
are designed to include the spatial aspect either in the form of route computation (constraints)
or by offering routing decisions and thereby cover a wide range of the discussed spectrum for
routing. Our approaches are also generic in the sense that we are not restricted to any specific
network topology or network structure. We can easily adapt the approaches with path decision
by swapping out the routing algorithm that produces the candidate paths. This also includes the
conflict-graph-based approaches from Chap. 5 that reuse concept of candidate-path selection.

System Model From a bird’s-eye-view, we compute a traffic plan for periodic, real-time
transmissions between pairs of nodes in a packet-switched network where packets have to be
fully received prior to being forwarded to the next node. This is commonly referred to as
store-and-forward behavior. If we look closer, there are many, seemingly subtle differences in
the system model that restrict the transferability of traffic planning approaches to another than
the originally targeted scenario. Of particular relevance are queuing constraints and capabilities
of the bridges: traffic plans where packets can be arbitrarily reordered in bridges may not work
for networks with FIFO policies.

Nodes Focusing on the capabilities of a single node, it makes a difference, what—if anything
at all—a node can do to control the point in time when a message is forwarded. For example,
pre-TSN Ethernet and TSSDN [Nay+18a] bridges are work-conserving and will forward a frame
as soon as it is at the head of the highest-priority non-empty FIFO queue at its outgoing port.

Nodes that support, for example, time-aware shaping as specified in [IEE18b] can block
transmissions for some time on the level of traffic classes or priority levels. This is exploited
by schemes where reserved windows are planned for multiple frames, possibly belonging to
different flows [Oli+18; Hel+20a; Hel+20b]. Depending on the behavior of source nodes, these
approaches may introduce some (bounded) jitter for individual frames caused by the shared
gate event (opening, closing of the gate).

Closely related are models with cyclic queuing and forwarding [Kro+21]. Here, nodes also
have a limited amount of outgoing queues which alternatingly become eligible. However, in
these scenarios, the mapping frame-to-queue is usually performed on a per-node basis, which
requires more management effort than a static priority-to-queue mapping.

Another commonly found assumption is that nodes have the ability to select any available
frame from their internal buffers for transmission at a certain point in time. In this model,

98 CHAPTER 4: ILP-BASED TRAFFIC PLANNING

commonly found in the context of time-triggered traffic in TTEthernet [Ste+09; Ste+13], the
arrival time and scheduled departure time of frames are effectively decoupled. “Newer” frames
overtaking “older” frames is not bound to the number of outgoing priority queues but is limited
by the available buffer space. This model is adopted for traffic planning, for example, in [Ste10;
Cra+16a; Sch+17]. Traffic plans (or schedules) generated by these approaches therefore usually
allow queuing but do not constrain the reordering of messages belonging to different flows in
the bridges. Consequently, it is not guaranteed that the traffic plans are applicable to networks
with TSN-style gating mechanism. The commonalities and differences between scheduling with
gating mechanism and per-frame transmission scheduling are briefly pointed out in [Cra+17;
Ste+18], too.

In contrast, zero-queuing is very attractive because it requires very little in terms of node
capabilities. For example, in [Nay+15; Nay+16; Nay+18a], a method for deterministic traffic
in plain SDN networks is presented where the source nodes are tasked with the time-triggered
scheduling, that is, the schedule is the scheduling is performed at the network ingress.

But even for more “powerful” nodes, for example, with time-aware shaping, zero-queuing is
attractive. There are multiple works on schedule synthesis for TSN networks with time-aware
shaping which use the zero-queuing principle. In the context of TSN scheduling, an early
approach is [Dür+16], which maps the temporal dimension of the traffic planning task to the
no-wait job-shop problem. The heuristics from [Pah+18; Pah+19b] similarly do not allow
buffering of frames once they have been sent by the source nodes. In [Ata+19], which adds the
consideration of frame replication to the joint scheduling and routing problem, zero-queuing is
used, too.

Similarly, all of our traffic planning approaches exploit the zero-queuing principle, too, making
them comparably technology-agnostic.

Integration There are multiple works which—in contrast to us—consider task scheduling
and traffic planning for networked real-time applications in conjunction [Cra+16a; Sye+19]
or incorporate flow inter-dependencies originating from applications into the traffic plan-
ning [Pah+19b].

Another form of integration is the integration of time-triggered traffic and other traffic types
which co-exist in the same network, often referred to as converged networking. A reoccurring
theme are approaches to reduce the negative impact of the reservations for time-triggered traffic
in terms of jitter and delay experienced by non-time-triggered traffic. For example, [Ste11]
proposes to explicitly incorporate “gaps” into the transmission schedule for time-triggered
messages. Integrating other, shaped traffic, for example, rate-constrained traffic or AVB streams
into traffic planning for time-triggered flows is addressed in [Lau+16; Pop+16; Gav+18].

However, in the aforementioned approaches time-triggered and non-time-triggered traffic are

4.6 CHALLENGES OF ILP-BASED TRAFFIC PLANNING 99

treated as separate entities. In our approach for complemental flows in Sec. 4.4, we consider the
inter-dependency of the two traffic parts with different criticality that compose a complemental
flow. Other than from the traffic planning perspective, complemental flows themselves have
been addressed in [Lin+19].

4.6 Challenges of ILP-Based Traffic Planning
In this chapter, we presented different ways to model and solve the traffic planning problem for
time-triggered flows with integer linear programming. These ILP formulations allow to easily
integrate various objective functions to compute not just any feasible (Sections 4.2 and 4.3) but
an optimal traffic plan (Sec. 4.4), too. However, we also face some challenges with ILP-based
approaches for traffic planning.

Firstly, we sometimes have to “work around” the limited expressiveness of integer linear
programs, for example, to express traffic planning constraints that involve conditions (if link is
used...) or alternatives (before or after reserved window...). Resolving these limitations, either
by using notational shortcuts (if, or), or by using the “bigM”-technique directly, introduces
additional auxiliary variables and constraints. We see this effect in the ILP formulation for
joint scheduling and route computation, where we end up with several auxiliary variables (and
constraints) in addition to toffset to express the scheduling constraints in the temporal domain.
Similarly, in the ILP formulation for joint scheduling and path-selection, we have per-link
variables ulink (see Eq. (4.23)) in addition to πpath, even though the solver cannot make routing
decisions on a per-link basis.

Secondly, the size of the constraint sets in these ILPs can also become a limiting factor, not
only for the solver, but also during construction of the ILP instance itself. We have seen that
the number of variables and constraints can increase strongly if the network size grows, or the
cycle times get larger.

Thirdly, our ILP-based approaches suffer from the high degree of coupling between the route
and schedule of an individual flow and the global (network-wide) traffic plan. This means that
the requirements for a single flow are scattered over many individual constraints, for example,
consider the scheduling constraints in Sections 4.2 and 4.3. This is not limited to our particular
ILP formulations but applies too many similar approaches that use constraint-programming
methods and operate on constraints formulated at the level of when to reserve a certain link for
an individual flow. This high coupling makes it hard for the solver to find a valid traffic plan
because a small variation of a variable for a single flow can result in a cascade of constraint
violations that ripples through the whole constraint set.

In the next chapter, we meet these challenges by introducing conflict-graph-based approaches
for traffic planning.

100

101

5 Traffic Planning with Conflict Graphs

In the previous chapter, we presented and evaluated ILP-based approaches for traffic planning,
and we identified some challenges of ILP-based traffic planning in Sec. 4.6. Some of these
challenges are due to the properties and limitations of the underlying method of integer linear
programming. Other challenges result from formulating the traffic planning problem directly as
a set of constraints on the routing variables and scheduling variables. In particular, the large
constraint set and a high coupling of the traffic planning constraints make it hard to develop
heuristics or to decompose the traffic planning problem at this level because we need to satisfy
a very large set of constraints at once. Otherwise, we might end up with an invalid traffic plan
where packets might not arrive at the destination node at all (if some routing constraints are not
satisfied), or reserved windows are overlapping (if some scheduling constraints are not satisfied).

Therefore, in this chapter, we present conflict-graph-based approaches that use a different
modeling of the traffic planning problem and also allow for replacing the ILP solver with
heuristics. Conflict graphs have been employed in scheduling problems, for example, in the
domain of rail traffic control [DAr+07], sensor networks [Hsu+09], and flow-shop scheduling
[Tel+16]. For the purpose of traffic planning, we find conflict graphs also commonly applied
to wireless scenarios [Dju+07; Li+10; Jia+10; Kon+18], where conflicts often model (spectral)
transmission interference on links.

For our particular traffic planning problem, the basic idea is as follows: For each flow, possible
schedule-route combinations, so-called flow configurations, and their relations to other flow
configurations are represented as vertices and edges, respectively, in the (configuration-)conflict
graph. We then compute a traffic plan by searching an independent vertex set in the conflict
graph. An independent vertex set is a subset of vertices in the conflict graph where none of
the vertices in the independent vertex set is connected by an edge to any other vertex in the
independent vertex set. We will see that the conflict graph allows intuitive reasoning about
the relation of individual (flow) configurations to the global traffic plan for all flows which
makes it easier to develop heuristics. In simplified terms, we just have to pick the “right” flow
configurations from the conflict graph to obtain a traffic plan. Additionally, conflict-graph-based
traffic planning allows for iterative approaches with a progressively expanding search space.

We present the principles and fundamental concepts of our conflict-graph-based approach
for traffic planning in Sec. 5.1. In Sec. 5.2, we then present a traffic planning algorithm built

102 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

on these principles and evaluate a proof-of-concept implementation in comparison against
ILP-based traffic planning. In our evaluations, our proof-of-concept implementation of the
conflict-graph-based approach outperforms the ILP-based traffic planning and is more memory
efficient making it a promising alternative to constraint-based traffic planning approaches. As
in the previous chapter, we consider scenarios where all flows are known a priori, and schedule
and route are not changed during the flow’s lifetime in Sec. 5.2.

Then, we relax the restriction regarding a fixed set of a priori known flow requests. In
Sec. 5.3, we consider scenarios where the set of currently active flows can change at runtime.
This means we have to compute an updated traffic plan when flow requests arrive. We show,
that conflict-graph-based traffic planning is suitable for dynamic scenarios and present our
conflict-graph-based approach for dynamic, QoS-aware traffic planning in Sec. 5.3.

We continue the discussion on related work on traffic planning in Sec. 5.4, and sum up the
features of conflict-graph-based traffic planning in Sec. 5.5.

5.1 Fundamental Concepts and Relations for
Conflict-Graph-Based Traffic Planning

Remember that the input or parameters for the traffic planning consist of the network with
its topology and specification (processing delay, transmission speed, propagation delay on a
link) and the flow requests for a flow set F . The degrees of freedom (variables) for the traffic
planning are the transmission schedule (phases) and the routes of the flows.

In the following, we show how to translate the traffic planning problem into the problem of
finding an independent vertex set problem in a conflict graph. Figure 5.1 visualizes the idea
of the conflict-graph approach. We represent a “valid” configuration of a flow as vertex in the
conflict graph, and edges between configurations in the conflict graph encode a violation of the
traffic planning constraints. The traffic plan can then be obtained from an independent vertex
set in the conflict graph. Every flow has to be represented by at least one configuration in the
traffic plan if we want to have any chance of finding a traffic plan for all flows.

Next, we discuss and formalize these concepts in more detail.

Flow Configuration

Previously, the traffic plan—referring to schedules and routes that satisfy the traffic planning
constraints for a set of flows—was laid out in full in the ILP solution. For each flow, we could
directly obtain the information which links to use at which time from the variable assignment
produced by the ILP solver. While this is convenient, it is also redundant: with zero-queuing,
we can derive the complete transmission schedule for each flow from the value of phase φ at the
source node provided that we know the path, see Sec. 3.4.

5.1 FUNDAMENTAL CONCEPTS AND RELATIONS FOR CONFLICT-GRAPH-BASED TRAFFIC
PLANNING

103

FIGURE 5.1
An independent vertex set

in the conflict graph is a so-
lution to the original traffic
planning problem. Vertices
in the conflict graph corre-

spond to flow configurations.

original traffic planning
problem

conflict graph

In the spatial domain, Sec. 4.3 introduced the idea of candidate paths where we pre-compute
and label possible routes for each flow. This allows us to capture the routing decision on a
path-granularity with a path index variable π. Ultimately, due to the traffic planning constraints,
for each flow, the phase value φ, and path index π fully determine when and where the packets
will be transmitted. With this in mind, we arrive at a more concrete definition of a flow
configuration:

DEFINITION 5.1 (Flow Configuration)
The tuple (f, φ, π) represents a flow configuration.

In other words, a flow configuration for flow f is the tuple of all scheduling variables and routing
variables that fully define the source node behavior and the network behavior for packets of
flow f such that all constraints on the routes and schedules of the traffic planning problem are
satisfied in the empty network. Or, we could also say that a flow configuration for flow f is
a valid solution for the traffic planning problem for a single flow. To solve the actual traffic
planning problem for F , we then have to find a combination of flow configurations which for
each flow maintains “the illusion” that there is no other traffic.

Similar to Sec. 4.3, for each flow f we once pre-compute a set of candidate paths from source
node to destination node subject to the routing constraints and the delay constraints. For each
flow, paths that are too long such that packets traversing them do not reach the destination
node within their flow’s te2e must not be candidate paths. Remember, zero-queuing allows us to
discard such paths by checking the hop-count, see Sec. 3.4. It follows that we only need a finite
amount of path indices—in our case, path indices are integer numbers—to capture the “routing
decision”.

Since a continuous-time variable φ yields infinitely many flow configurations, we make some
practical assumptions. As before, we use discrete time with appropriately mapped granularity,
for example, with 1µs resolution. This means that a flow configuration is nothing but a tuple of

104 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

FIGURE 5.2
Relation between flows, config-
urations, and candidate paths.

flowflow

flow parameters

configurationconfiguration

sched./rout. var.

*1

candidate pathcandidate path

[..., pathi, ...],

1

1
1

*

integers from a finite set, which depends only on the properties of the network and the respective
flow f itself.

Note that once we have computed the candidate paths, we can generate a new flow configuration
simply by assigning valid values to f , φ, and π. We do not need to perform any costly routing
or scheduling operation, nor do we need to know anything about other flows at this point. In
general, for each flow, there exists a surjective mapping from configurations to flows, see Fig. 5.2.

Conflict

Conceptually, there exists a conflict between two configurations c1 and c2 if applying both
configurations to the network and the source nodes of the flows of c1 and c2 violates the
constraints for the routes and schedules of the traffic planning problem.

More intuitively, we have a conflict between two configurations if packets would have to be
transmitted simultaneously on the same link to arrive at their respective destination without
queuing. Since packet transmissions are serialized at each output port, we define configuration
conflicts as a violation of the zero-queuing constraint.

DEFINITION 5.2 (Conflict)
Let c1 and c2 be two different configurations. The two configurations are in conflict if any
packet sent with c1 would be buffered due to a packet sent with c2 or vice versa.

This is illustrated in Fig. 5.3. There is a conflict between configuration a1 for flow fa and
configuration b2 for flow fb. The transmission at the source of fb is scheduled too early, and
packets sent with b2 would have to be buffered until the transmission of packets from fa is
finished—which violates the zero-queuing principle. In contrast, configurations a1 and b1 are
conflict-free due to the increased phase value for packets of fb.

The zero-queuing constraint allows us to conflict-check pairs of configurations independently

5.1 FUNDAMENTAL CONCEPTS AND RELATIONS FOR CONFLICT-GRAPH-BASED TRAFFIC
PLANNING

105

fb

tt
ra

n
s

tp
ro

c
+
tp

ro
p

time

fa

a1

b1

b2

conflict
graph

processingprocessing

FIGURE 5.3 Configurations and conflict: Flows must traverse all links without buffering. There
is a conflict between configuration a1 for flow fa and configuration b2 for flow fb,
since the transmission at the source of fb is scheduled too early, and packets sent
with b2 would have to be buffered until the transmission of packets from fa is
finished—which violates the zero-queuing principle. In contrast, configuration a1
und b1 are conflict-free due to the increased phase for packets of fb.

in parallel. To compute whether two configurations conflict, we have to check if the scheduled
packet transmissions are always temporally isolated on common edges, see Alg. 5.1.

Due to the cyclic property of the packet transmissions, we only check an interval of the
length of the least-common multiple of the two flows, not the global hyper-cycle. However,
packets may take longer than the hyper-cycle to reach the destination. Therefore, we have to
use either modulo-arithmetics or array-rotations to account for transmissions that are crossing
the hyper-cycle bounds.

One possibility to check for temporal isolation is illustrated in Fig. 5.4. This implementation
closely resembles the idea of the reservation matrices from Sec. 4.3. Time is again represented

Algorithm 5.1: Checking for conflict between two configurations.
input : c1, c2
output : true, if c1 and c2 conflict, else false

1 Lcommon ← common links on candidate paths of c1 and c2 ;
2 if Lcommon = ∅ then return false;
3 else if ∀` ∈ Lcommon : reserved windows of c1 and c2 occupy mutually exclusive time intervals

on ` then return false;
4 else return true;

106 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

0 1 0 0 0 1 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 0 1 1 0 0 0 0
... ...

delay-
induced cell-

array shift

FIGURE 5.4 Discrete time intervals are modeled via arrays where each entry corresponds to a
time interval in the transmission period. Delay is modeled via a circular shift of the
array. If packets are scheduled such that the same time interval is used by more
than one flow, the temporal isolation constraint is violated.

by arrays, and each array entry that corresponds to a time interval where the corresponding
link is occupied by a transmission is marked (here: by value 1). If the φ-values of c1 and c2,
respectively, are such that on any link that is part of both candidate paths the same interval is
marked as reserved for both flows, c1 and c2 conflict.

Alternatively, we can represent the reserved windows by their start and end relative to
the transmission cycle boundaries and use modulo arithmetic. Note that this requires proper
handling of the wrap-around since on links other than the outgoing link of the source node the
reserved interval may cross over the boundary of a transmission cycle. In this case, the reserved
window is effectively represented by one part at the end of the transmission cycle and another
part which “wrapped” back around to the start of the transmission cycle.

The effort to check whether two configurations conflict, scales—in principle—with the length
of the candidate paths and the least common multiple of the cycle times of the two flows (not
the global hyper-cycle). Since for each pair of flows fa, fb, we expect to encounter the same
candidate-path pair πa, πb for many different phase-values φa, φb, we can use caching to store
the common links of candidate-path pairs of two different flows. In practice, the effort depends
on the shared sub-paths of the candidate paths and the relative primeness of the cycle times.
Additionally, the computation of a conflict (see Alg. 5.1) allows for early exits. For example,
if the candidate paths of two configurations are disjoint, we can be sure that there will be no
conflict due to spatial isolation of the packets, and we need not even check the reserved windows.

Note that the existence (or non-existence) of a conflict is a commutative relation between
two configurations. For its computation, we only require the network parameters and the
configurations themselves. This is an important feature that allows the parallelization of a large
portion of the traffic planning.

5.1 FUNDAMENTAL CONCEPTS AND RELATIONS FOR CONFLICT-GRAPH-BASED TRAFFIC
PLANNING

107

Conflict Graph

We encode the relations and constraints between the configurations in a conflict graph denoted
by Gc. A flow configuration is represented by a vertex in the conflict graph, and conflicts
between configurations of different flows are represented by edges in the conflict graph. For
example, in Fig. 5.3 there is an edge between configuration a1 and configuration b2.

The conflict graph includes for each flow a set of potential configurations, which we will
call the flow’s candidate configurations or candidates for short. We will use cand(f) to denote
the candidate set of flow f in Gc, and we can interpret Gc as a colored graph. Given that—
depending, for instance, on the granularity of the time-discretization or the number of candidate
paths—for each flow, there might exist millions or even more of such configurations, we will
later discuss strategies for a non-exhaustive conflict-graph construction such that the cand(f)
need not contain every single possible configuration of f .

DEFINITION 5.3 (Conflict Graph)
The conflict graph Gc is an undirected vertex-colored graph where all configuration vertices
in cand(f) are colored by f . Two configuration vertices in Gc are connected by an undirected
edge if and only if they belong to different flows, and there is a conflict between the two
corresponding configurations.

To insert a configuration c into Gc, we add c to the vertex set of Gc and add an edge to
every other configuration in of another flow in Gc which conflicts with c. To remove a single
configuration c from Gc, we delete all edges between c and the remaining configurations that
exist in Gc and remove c from the vertex set of Gc. Obviously, if c is the first configuration of
a flow f to be added to Gc, this introduces a new color f . Likewise, with the removal of the
last configuration of a flow f , we remove the color f from Gc. We detail a possible method to
construct the conflict graph in Sec. 5.2.

Note that the conflict graph is not to be confused with the graph Gn representing the network
topology. Gc is undirected, and an edge between two configurations indicates a mutual conflict
between the two configurations. In other words, two configurations in Gc are connected with
an edge if one or multiple of the constraints of the original traffic planning problem would be
violated if we place the two flows with conflicting configurations into the network.

Relation between Traffic Planning and the Independent Colored Vertex Sets in the
Conflict Graph

If we revisit the original traffic planning constraints from Sec. 3.5, we can roughly distinguish
between intra-flow constraints and inter-flow constraints.

108 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

In this context, intra-flow constraints express, for example, that the route starts and ends
at the appropriate nodes, or that the reserved window is scheduled appropriately regarding
the reserved window on the preceding and/or the following link. These intra-flow constraints
therefore only affect a single flow. Note that by design, a flow configuration already satisfies all
flow-internal constraints.

The remaining inter-flow constraints, for example, temporal isolation and packet reorderings,
can be violated due to interactions of packets of different flows. If we want to schedule more
than one flow, we also have to make sure that we guarantee the remaining traffic planning
constraints. But these inter-flow constraints are encoded as the priorly defined conflicts in the
conflict graph!

DEFINITION 5.4 (Independent Vertex Set)
Denote by V the vertices and denote by E the edges in Gc, respectively. C ⊆ V is an
independent subset of vertices in the conflict graph Gc iff ∀u, v ∈ C : (u, v) /∈ E .

This has two implications. A), we can compute a traffic plan by searching for configurations
that are not connected or, in graph-theoretic terms, configurations that form an independent
vertex set in Gc. B), a traffic plan is equivalent to a set of flow configurations, because a flow
configuration defines when packets of that flow are traversing along which path through the
network.

More formally, this is expressed in the following theorem.

THEOREM 5.5 (Feasible Traffic Plan)
Let Gc be a conflict graph for a flow set F in a network. Denote by V the candidate
configurations for the flows in F in Gc, and denote by C ⊆ V a set of independent vertices
in Gc. Then P ⊆ C is a traffic plan for the flows in Ffeasib(P) ⊆ F , iff ∀f ∈ Ffeasib : P
contains exactly one configuration c which belongs to f .

PROOF (By construction.) Since C is an independent vertex set in Gc, any subset of C is an
independent vertex set in Gc, too. In particular, any subset P ⊆ C which contains at most one
configuration for each flow from F is an independent vertex set in Gc.

If P 6= ∅, then Ffeasib(P) = {f ∈ F|∃c ∈ P : (c belongs to f)} 6= ∅, that is, the set Ffeasib(P)
which contains all flows with at least one or more configurations in P, is not empty, because
each configuration belongs to exactly one flow. From the definition of the independent vertex set
property and the definition of Gc, it follows directly that all configuration c ∈ P are mutually
conflict-free. Thus, by configuring every flow f ∈ Ffeasib(P) according to the configuration
c ∈ P, it is guaranteed that none of the constraints on the routes, and schedules of Ffeasib are
violated.

5.1 FUNDAMENTAL CONCEPTS AND RELATIONS FOR CONFLICT-GRAPH-BASED TRAFFIC
PLANNING

109

If P = ∅, all traffic planning constraints are trivially satisfied since Ffeasib(P) = ∅. �

Remark: We say a set of conflict-free configurations C covers a flow set Ffeasib if ∀f ∈ Ffeasib :

∃c ∈ C with c belonging to f .
Thm. 5.5 is the basis for heuristics which provide partial solutions to the traffic planning

problem. A partial solution to the traffic planning problem is a traffic plan for a subset of
flows ∈ F . According to Thm. 5.5, any (for practical purposes: non-empty) independent set C
provides us with a valid traffic plan for at least those flows which it covers.

The special case where C covers all flows F is equivalent to the solution for the traffic planning
problem from Sections 4.2 and 4.3 where we want to find a traffic plan for all flows.

COROLLARY 5.6 (Traffic Planning Solution)
Let Gc be a conflict graph for a flow set F in a network. Denote by V the candidate
configurations for the flows in F in Gc. Computing a set of independent vertices C in
Gc such that for each flow in F there exists at least one configuration c ∈ C solves traffic
planning problem for Ffeasib.

PROOF Follows directly from Thm. 5.5: For F = ∅, C = ∅. If F 6= ∅, then ∀f ∈ F : ∃c ∈ C :
(c belongs to f), and all c ∈ C are mutually conflict-free because C is an independent vertex set
in Gc, that is, ∀(c1, c2) ∈ C × C : @(c1, c2) ∈ E with E the conflicts in Gc.

Thus, we can trivially obtain a traffic plan P which guarantees that none of the traffic planning
constraints are violated for F by selecting exactly one c ∈ C for every flow f �

This means we can solve the traffic planning problem by searching for a set of independent
vertices C which covers F . If such a C contains multiple configurations for the same flow, we
have to pick a single one that is included in the traffic plan P , because we need one route and
one phase (schedule) for each flow. If we have no particular traffic planning objective, we can
make an arbitrary choice with respect to which configuration from C we select for a flow with
multiple options in C because every choice will result in a feasible traffic plan for all flows.

The concept of conflict-graph-based traffic planning is generic in the sense that it can be applied
to problems beyond our specific system model, provided that the following two conditions hold.
Firstly, configurations of individual plannable entities need to be “additive” in the sense that it is
possible to apply multiple configurations to individual nodes in the network without “destroying”
the previously applied configurations, and secondly, it has to be possible to independently detect
conflicts between any pair of configurations for the plannable entities. In our case, configurations
are additive for both, routes—“addition” means adding a routing entry—and schedules. For the
schedules, the additivity results from the temporal isolation constraint which allows us to merge
the individual schedules on each bridge.

110 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

5.2 Conflict-Graph-Based Approach for Traffic Planning

In this section, we present an exemplary conflict-graph-based algorithm that exploits the
advantages of the conflict-graph modeling to solve the original traffic planning problem. Fig-
ure 5.5 sketches the steps of this proof-of-concept conflict-graph-based traffic planning (CGTP)
algorithm.

5.2.1 Overview

Our CGTP algorithm is iterative. In each iteration, we first grow the conflict graph, which
means that we add additional configurations for each flow to the conflict graph. Our method to
grow the conflict graph is discussed in Sec. 5.2.2.

After growing the conflict graph, we use a combination of different algorithms to try to find
an independent vertex set C that covers all flows in F in the current conflict graph Gc.

By default, we use a fast algorithm (here: a modified maximal independent vertex set
algorithm) in every iteration. This default algorithm (see Sec. 5.2.3) is computationally cheap,
but its speed comes at the cost of giving no guarantee regarding the number of flows covered.

Therefore, the execution of a second, slower algorithm (here: intermediate ILP) to try to
compute C can be triggered. The second algorithm is computationally much more expensive,
but it will find an independent vertex set in the current graph that covers the maximum amount
of flows given enough time. Hence, we call it max-cover algorithm. However, intermediate
executions of the max-cover algorithm have a runtime limit. We discuss this second algorithm
and its trigger condition in Sec. 5.2.4.

Both, the fast algorithm and the max-cover algorithm can be followed up by the completion
heuristic, see Sec. 5.2.5. When the completion heuristic is triggered, it tries to complete an
almost complete independent vertex set C by generating new configurations only for those flows
which have not been covered by the preceding algorithms.

In each iteration, we track the number of flows covered in the independent vertex set in
a history hfound. This history hfound is a list that is evaluated by the trigger rules to decide
whether the max-cover algorithm or the completion iteration is to be executed in the current
iteration, see Algorithms 5.4 and 5.5. While iterating, we also store the previously computed
maximal independent vertex set which covers the most flows. This set is used to initialize the
ILP and can be returned as partial solution if the CGTP algorithm is aborted.

We expect that, in practice, we will encounter scenarios where time-triggered traffic makes up
only a fraction of the network load, for example, in converged networking scenarios. We assume
that these scenarios will often be “easier to solve” compared to, for instance, scenarios where we
saturate the network with the flows in F , and F contains many flows with different cycle times
and packet sizes. For an “easier to solve” traffic planning instance, we should be able to find a

5.2 CONFLICT-GRAPH-BASED APPROACH FOR TRAFFIC PLANNING 111

FIGURE 5.5 Overview of the iterative, conflict-graph-based traffic planning (CGTP) algorithm.
The green, opaque arrow indicates one iteration.

112 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

traffic plan after a few iterations and before we have added all configurations. In other words,
“easier” traffic planning instances should result in earlier exits of the main loop (see Fig. 5.5) of
the CGTP algorithm.

However, the underlying problem is known to be inherently NP-hard. Therefore, we can, in
any case, end up with “difficult” instances that ultimately require something alike an exhaustive
search. We consider a traffic planning instance for which we did not find a C that covers F
during any of the iterations, even if the conflict graph finally contains all configurations, that
is, encodes the whole configuration space, a “difficult” traffic planning instance. To handle
these difficult instances, we execute the max-cover algorithm (here: intermediate ILP) one final
time with a relaxed runtime limit compared to the intermediate executions of the max-cover
algorithm.

Optionally, the final run of the max-cover algorithm can be executed without runtime limit.
Without runtime limit, the max-cover algorithm is guaranteed to provide a solution covering
the maximum amount of flows (except maybe for practical problems such as running out of
memory). This means that we can modify the parameters of the algorithm to guarantee that
the CGTP algorithm yields an exact solution, that is, a traffic plan for as many flows as possible
for a particular problem instance.

After this overview, we present the details of the components of the CGTP algorithm. We
start by breaking down how the conflict graph is built. Then, we explain the two algorithms to
find independent vertex sets and the completion heuristic.

5.2.2 Building and Expanding the Conflict Graph

For the initial generation and the subsequent growth of the conflict graph in the CGTP algorithm,
we define one stateful generator “function” per flow. Every time we invoke such a generator, it
returns a new configuration for its flow—provided there still exists a new configuration for the
respective flow (a configuration is “new” if it has not been returned previously by the generator).
The generator state tracks which parts of the feasible configuration space of the associated flow
it has already traversed, and it is updated whenever the generator function generates a new
configuration.

Here, the state of our generator function implementation comprises most importantly the path
index and the phase of the last generated configuration. On each invocation, a new configuration
is returned with an incremented π until all candidate path indices for the current value of φ are
covered. If all candidate paths for the current φ have been covered, φ is incremented and the
candidate path index is reset to π = 0. This way, the generator functions sweep over the range
of feasible values for their respective flow.

Remember that we have a discrete time representation, so every generator returns a finite
amount of configurations. We call the discrete domain of these values the φ-π-space, see Fig. 5.6.

5.2 CONFLICT-GRAPH-BASED APPROACH FOR TRAFFIC PLANNING 113

FIGURE 5.6
With each invocation, the configuration generator
returns the next, new configuration by increment-

ing or resetting the values of φ and π, respectively.

0
1
2
3
4

.3210

...

...

p
at

h
 π

phase φ

Here, the configuration generators traverse the φ-π-space, “from left to right”.
In the CGTP algorithm, we start with an initial conflict graph that contains a single

configuration for each flow in the flow set. This means we invoke every per-flow generator
function once and construct the initial conflict graph from those configurations by adding the
corresponding conflicts between those configurations. In theory, there is a non-zero probability
that there are no conflicts between these initial configurations, which means that is possible
that we might construct an initial conflict graph that is already an independent vertex set.

Unless we have to schedule a few flows in a giant network such that the candidate paths do
not even use common links, this is very unlikely, though. Therefore, we grow the conflict graph
during the iterations of the CGTP algorithm. This exploits the property that it is possible to
obtain a solution to the original traffic planning problem without a conflict graph including all
configurations for all flows.

We grow the conflict graph at the beginning of each iteration by invoking the configuration
generator functions for all flows in the flow set and inserting the so obtained configurations
into the existing conflict graph. Note that much of the work to check whether a conflict exists
between a configuration cinsert, which has to be added to the conflict graph, and a configuration
c, which is already part of the conflict graph, can be executed in parallel, see Alg. 5.2.

5.2.3 Fast Algorithm: Adapted Maximal Independent Vertex Set
Computation

According to Cor. 5.6, any independent vertex set C that covers all flows F solves the traffic
planning problem. After some CGTP iterations, the conflict graph Gc contains many configura-
tions per flow in F , and thus the number of configurations |V| in the Gc is much larger than the
number of flows in F . With |V| � |F|, there is a chance for any independent vertex set C with
|C| ≥ |F| to cover all flows in F . In other words, any algorithm which finds a sufficiently large
independent vertex set in the conflict graph may possibly solve the traffic planning problem.

114 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

Algorithm 5.2: Add a configuration cinsert to the conflict graph.
input :Gc, cinsert
output :Gc

1 V ← configurations (vertices) in Gc ;
2 foreach c ∈ V do
3 f1 ← flow of cinsert ;
4 f2 ← flow of c ;
5 if f1 6= f2 and conflict(cinsert, c) then
6 add edge (cinsert, c) to Gc ;
7 end
8 end
9 add configuration c to vertex set of Gc ;

Therefore, we adapt Luby’s algorithm for the computation of the maximal independent vertex
set (MIVS) [Lub85]. Luby’s algorithm is intuitive to understand and can be parallelized. Our
adapted version is given in Alg. 5.3.

Luby’s algorithm is an iterative algorithm, which terminates with high probability in O(log |V|)
rounds with V the number of configurations in the conflict graph [Lub85]. Each iteration of the
algorithm consists of two steps.

In the first step (see line 5ff., Alg. 5.3), the algorithm randomly selects some contending
configurations. In our adapted algorithm (changes are highlighted in Alg. 5.3), the probability of
a configuration c to become a contender depends on two factors, 1) the degree of the configuration,
and 2) how many configurations that belong to the same flow as c are already part of the
result set C. For this, we track for each flow f the number of configurations from f which were
previously included in C in the variable fc[f]. The final probability accounts for both, the degree
and the already included configurations, weighted by a factor a with 0 ≤ a ≤ 1 and thus can
raise the probability of configurations of flows not yet covered in the result set C to become
contenders.

In step 2 (see line 11ff., Alg. 5.3), configurations from the set of contenders are selected
to be included in the maximal independent vertex set. These steps repeat until a maximal
independent vertex set is found. This means we stop when all configurations are either part of
the result set C or neighbor configurations in C.

Unfortunately, the adapted MIVS algorithm returns “only” a maximal independent vertex set.
This means the fast algorithm returns any of the possibly multiple independent vertex sets in
the conflict graph to which no additional configuration can be added. There is no guarantee that
the maximal independent vertex set obtained by the fast algorithm is the maximum independent
vertex set, that is, out of all maximal independent vertex set a set that contains the largest

5.2 CONFLICT-GRAPH-BASED APPROACH FOR TRAFFIC PLANNING 115

Algorithm 5.3: Adapted Luby’s algorithm for MIVS.
input :Gc, weighting factor a (default a =0.7)
output : independent vertex set C

1 C ← ∅ ;
2 G′

c(V ′, E ′)← copy(Gc(V, E)) ;
3 while V ′ 6= ∅ do
4 X ← ∅; // candidate set
5 foreach c ∈ V ′ do
6 pdeg ← 1

(2·deg(c)) ;
7 psc ← 1− fc[f]

max(fc) ;
8 add to X with probability p = a · pdeg + (1− a) · psc ;
9 end

10 C′ ← X ;
11 foreach (c1, c2) ∈ C′ × C′ : (c1, c2) ∈ E ′ do
12 if deg(c1) ≤ deg(c2) then
13 C′ ← C′ − {c1}
14 else
15 C′ ← C′ − {c2}
16 end
17 update(fc) ;
18 end
19 C ← C ∪ C′ ;
20 Y ← C′ ∪ neighborhood(C′) ;
21 G′

c(V ′, E ′)← subgraph on V ′ − Y ;
22 end

amount of configurations. There is also no guarantee that the configurations in the maximal
independent vertex set produced by the fast algorithm will ever cover all flows.

5.2.4 Max-Cover Algorithm: Finding Independent Vertex Sets
Covering As Many Flows As Possible

Since the fast algorithm may not produce an independent set that covers all flows and thereby
(fully) solves our problem, we employ another ILP as an alternative method. This ILP is
guaranteed to find an independent vertex set that covers as many flows as possible, albeit it
may take very long.

Therefore, this max-cover algorithm is only executed in two cases, a) if it appears that the fast
algorithm does not make any progress over multiple iterations, that is, the number of covered
flows is not increasing, or b) when the conflict graph contains all configurations for all flows and
still no solution has been found.

116 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

Next, we explain the ILP formulation for finding an independent vertex set that covers as
many flows as possible. Then we explain the trigger rule for the max-cover algorithm.

Integer-Linear Program for the Flow-aware Independent Vertex Set Problem The
ILP to compute the independent vertex set that covers as many flows as possible is different
from the ILP-based traffic planning in the related work and the previous chapter. It is much
simpler and can be stated in the three lines:

max
∑

xf∈XF

xf (5.1)

subject to

∀(x1
c , x

2
c) ∈ edges(Gc) : x

1
c + x2

c ≤ 1 (5.2)

∀xf ∈ XF :
∑

xc∈Xcand[f]

xc ≥ xf (5.3)

The ILP uses two sets of binary decision variables.
Every decision variable xc ∈ {0, 1} in the decision variable set XV represents one configuration

in the conflict graph. The set edges(Gc) contains all edges in the conflict graph Gc. If xc = 1,
then the associated configuration c is part of the independent vertex set. Conversely, if xc = 0,
then the associated configuration c is not part of the independent vertex set. Additionally, we
define the helper sets Xcand[f] ⊆ XV which includes all decision variables xc ∈ XV which belong
to the candidate configurations of a specific flow f .

Similarly, every decision variable xf ∈ {0, 1} in the second decision variable set XF represents a
flow f ∈ F . If xf = 1, the respective flow is covered by the independent vertex set. Consequently,
if xf = 0 the associated flow f is not covered by the independent vertex set.

With the given objective function, the ILP solver searches for a variable assignment that
returns an independent vertex set that covers as many flows as possible. If there exists such
an independent vertex set that covers all flows, an ILP solver will find it—if it is provided
with enough computing resources. Note that the NP-hard maximum independent vertex set
problem [Gar+79] is reduced to this ILP if there is one vertex per flow.

Intermediate ILP Execution

Even though the ILP is “just three lines” long, solving this ILP may take an unknown, large
amount of time which may be spent better by growing the graph and executing the fast algorithm.
Therefore, we do not execute the max-cover algorithm in every iteration of the CGTP.

Instead, the max-cover algorithm is executed conditionally. For example, it may happen that

5.2 CONFLICT-GRAPH-BASED APPROACH FOR TRAFFIC PLANNING 117

the fast algorithm fails over the course of multiple iterations to return independent vertex sets
which cover more flows even though the conflict graph has been growing. This can be caused,
for example, if there is an “unfortunate” vertex degree distribution in the conflict graph such
that the fast algorithm yields independent sets with many vertices of the same few flows. If the
number of flows that are covered by the independent vertex set found with the fast algorithm
stagnates or even decreases over time, then we want to execute the max-cover algorithm. This
rationale is encoded in Alg. 5.4.

Algorithm 5.4: Trigger rule for max-cover algorithm.
input : history hfound, window size wILP,
output : trigger variable rILP, window size wILP

1 window← slice of wILP last entries of hfound;
2 dpast ←

∑
diff(window) ;

3 if dpast > 0 then
4 rILP ← false ;
5 window size wILP ← wILP + 1 ;
6 else
7 rILP ← true ;
8 wILP ← minimal window size ;
9 end

10 return rILP, wILP;

Algorithm 5.4 evaluates how the amount of covered flows developed during a certain amount
of past iterations. For this matter, we use a variable-sized window of the history which contains
how many flows have been covered in the wILP last iterations. Alg. 5.4 returns a boolean rILP

and an updated window size for the next iteration. The boolean rILP indicates whether to
execute the max-cover algorithm in this iteration. The window grows when the fast algorithm
“makes progress”. The trigger rule evaluates if the number of covered flows has increased over
the course of the iterations that are included in the window of the history. If the number of
covered flows stagnates or decreases, we take this as an indication to execute the max-cover
algorithm. To avoid that a single “bad” outlier, for example, caused by an unlucky random
selection of contenders in the fast algorithm can cause the execution of the max-cover algorithm
we increase the window size.

If the trigger condition is satisfied, we reset the window size to make it more sensitive to
changes again and execute the max-cover algorithm. In our case, we invoke the max-cover
algorithm—the ILP solver—with a runtime limit (default 5min).

Additionally, there is a limiter to suspend the execution of the max-cover algorithm for a
certain number of iterations if the max-cover algorithm has been triggered back-to-back for a
certain number of past iterations. The limiter rule is motivated by the following two reasons

118 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

that can cause the max-cover algorithm to fail to find a better independent vertex set—meaning
covering more flows— in the current conflict graph:

In the first case, the conflict graph contains a solution, but it is very difficult to find, for
example, if there is only one independent vertex set that covers all flows in the conflict graph.
Then the max-cover algorithm may hit the time-out just because the problem is so difficult (but
it could be solved given more time).

In the second case, the conflict graph does not even contain any independent vertex set which
covers all flows at all (yet), for example, if we would have to schedule one or more flows with
a phase for which we yet have not added configurations to the conflict graph (see Fig. 5.6: a
required configuration may be “too far on the right side” of the φ-π-space). Then executing the
max-cover algorithm is a waste of time, since we cannot find what does not exist—though the
max-cover algorithm may still produce a partial solution, which may be of some value to the
user.

Unfortunately, we do not know which of these two cases applies. Therefore, if we observe that
even the max-cover algorithm struggles to make progress (else it would not have been triggered
successively in the past iterations), spending the time which would otherwise be consumed by
the execution of the max-cover algorithm instead on growing the graph (and spending only a
moment to search for a solution with the fast algorithm) may resolve the problem in any case.
The newly added configurations may make the problem easier to solve or even contain that
particular configuration which we need to find an independent vertex set that covers all flows.

Therefore, the default setting (the limiter can be parameterized) is to suspend the max-cover
algorithm for five iterations if it has been triggered twice in succession.

5.2.5 Completion Heuristic

The completion heuristic can be triggered after running either, the fast algorithm and the
max-cover algorithm. It is triggered if the result produced by the preceding algorithm in this
iteration leaves only a few flows uncovered. How close we have to be to cover all flows to execute
the completion heuristic is governed by a threshold.

The idea behind the completion heuristic can be summarized as follows: Since we have
come very close to the solution—an independent vertex set that covers all flows—using the
configurations which are currently in the conflict graph, can’t we just generate some more “new”
extra configurations for the missing flows and see if they complete the solution?

Practically, the completion heuristic invokes the generator functions to get a limited set of
new configurations for the missing flows. These extra configurations are added to the current
conflict graph in the hope of finding among them some configurations which do not conflict with
all configurations that are part of the current independent vertex set.

A fixed threshold regarding the number of missing flows may result in an excessive execution

5.2 CONFLICT-GRAPH-BASED APPROACH FOR TRAFFIC PLANNING 119

of the completion heuristic and is difficult to determine a priori. Therefore, we use a dynamic
threshold. To adjust this threshold, we again evaluate how the number of covered flows developed
in the past, see Alg. 5.5.

Algorithm 5.5: Update threshold for completion heuristic.
input : history hfound, window size wcplt., threshold pthresh.
output : window size wcplt., threshold pthresh.

1 windowold ← slice of wcplt. entries up to (including) the penultimate entry of hfound;
2 windownew ← slice of wcplt. last entries of hfound;
3 n̄old

found ← round(mean(windowold)) ;
4 n̄new

found ← round(mean(windownew)) ;
5 if n̄new

found < n̄old
found then

6 reduce pthresh.;
7 reduce wcplt. linearly ;
8 else if n̄new

found > n̄old
found then

9 increase pthresh.;
10 increase wcplt. by (wmax,cplt. − wcplt.)/2 ;
11 else reduce pthresh.;
12 return pthresh., wcplt.;

To this end, we use a sliding window approach that compares two windows of the history
hfound. The windownew contains the number of flows covered in the wcplt. most recent iterations.
The windowold is shifted one iteration such that it contains the number of flows covered in the
penultimate wcplt. iterations. For both windows, we compute the mean of covered flows and
round it off to the next integer. If we observe a higher value for the newer window, the threshold
pthresh. is raised which means that more flows have to be covered before the completion heuristic
is triggered. In this case, the window-size wcplt. is increased, too, such that a single iteration
where comparatively few flows have been covered has less impact. If the number of covered
flows is decreasing, that is, the average of covered flows for the more recent iterations (after
rounding) is less, we do the opposite. That is, the threshold is lowered to the effect that the
completion heuristic is triggered with more missing flows, and the window size is reduced such
that the threshold adjustment becomes more responsive. If the change is too small such that
it is not registered after the rounding in line 3 and line 4 in Alg. 5.5, this indicates a lack of
progress, and the threshold is lowered, too.

Considering the case that the completion heuristic is triggered but fails to cover the remaining
flows, we can interpret the completion heuristic and its trigger rule as a secondary, optional
growth phase of the conflict graph in an iteration. This second growth phase is restricted to
flows which were left uncovered in the preceding conflict-checking step whereas the conflict-graph
growth at the beginning of each iteration treats all flows indiscriminately. In this sense, the

120 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

FIGURE 5.7
Example of the network topology:

ring graph with n = 15 nodes
and m = 3 neighboring nodes

(in each direction) are connected.

completion heuristic also is a feedback mechanism inside the CGTP to “guide” the conflict-
graph growth towards those flows which appear to be difficult due to being not covered by the
independent vertex set produced by the fast algorithm and/or the max-cover algorithm.

5.2.6 Evaluation

Next, we quantitatively evaluate our conflict-graph-based traffic planning algorithm. Before
we discuss the evaluation results, we explain the generation of evaluation scenarios and the
evaluation method.

Evaluation Scenarios

We obtain problem scenarios by first generating a network topology and then creating a set of
flows. The network topology is a ring graph where the nearest m-neighbors are connected (see
Fig. 5.7). This topology is closely related to ring topologies, which are often found in industrial
environments or in sensor arrays for direction-of-arrival tracking [Che+04]. This ring(n,m)
topology combines several interesting features in comparison to the network topologies used
in Sections 4.2.2 and 4.4.5. It is well characterized by its two properties, the number of nodes
n, and the number of connected neighbors m in each direction, and we can be sure that there
exist multiple different candidate paths for every pair of flows for m > 1. On the other hand,
by varying the ratio of n to m, we can cover a spectrum between network topologies where
many flows traverse are routed over a common set of links (large n, small m) and highly meshed

5.2 CONFLICT-GRAPH-BASED APPROACH FOR TRAFFIC PLANNING 121

TABLE 5.1 Specification of compute nodes.

PCsmall PCbig
CPU 1 Intel Xeon E5-1650v3, 3.50GHz 4 Intel Xeon E7-4850 v4, 2.1GHz
RAM 16GB 1TB
host OS CentOS Linux 7.7.1908, Kernel 3.10.0-1062, Arch Linux, Kernel 5.2.5

software
container docker v19.03, Fedora 30-based container image
SW (CGTP) Julia 1.2.0, LightGraphs, JuMP with Gurobi 8.1.0
SW (RILP) Python 3.7, graph_tool, Pyomo with Gurobi 8.1.0

networks.
Unless specified differently, m = 3 neighboring nodes are connected. The processing delay is

set to 2 µs (here: time is discretized in 1µs-intervals). Propagation delay is neglected.
In each evaluation scenario, the flow parameters cycle time tcycle and the size of the reserved

window tresv = tpkt are the same for all flows, and we have the same number of candidate paths
per flow. By default, we consider 3 candidate paths per flow. Source node and destination node
for each flow are randomly selected among the nodes of the network. This keeps the number
of parameters low and reduces the probability of infeasible scenarios, for example, caused by
relative prime tcycle. We write the network properties and the flow parameters to plain-text files,
which are ingested by the traffic planning programs.

Evaluation Setup

We implemented the conflict-graph-based traffic planning algorithm from Sec. 5.2 in Ju-
lia [Bez+17] and refer to this implementation of the conflict-graph-based traffic planning
program as CGTP. CGTP uses the LightGraphs library [Bro+17] to compute for each flow
the candidate paths via a k-shortest path routing algorithm and interfaces with the ILP solver
Gurobi [Gur19] via JuMP [Dun+17].

Additionally, we also implemented an adapted version of the ILP with path selection from
Sec. 4.3 to compare the conflict-graph-based traffic planning approach to a constraint-based
approach. Here, we refer to this constrained-based approach as reference ILP (short, RILP, not
to be confused with the ILPs used for the max-cover algorithm in CGTP). To run the RILP,
we use a Python program and the modeling library Pyomo [Har+11] to build the RILP model
for the traffic planning problem. Pyomo also interfaces with the ILP solver Gurobi, and we
compute the k-shortest-paths for each flow using the graph-tool library [Pei14].

Tab. 5.1 summarizes the computing setup of our evaluations.

122 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

FIGURE 5.8
Comparison of runtime on

compute nodes of type PC-
small. The area marked by
circles indicates a shortage

of memory for the RILP.
50 60 70 80 90 100

flows

0

200

400

600

800

ru
nt

im
e

[s]

setup, I/O ILP solver CGTP-kernel

CGTP
RILP

Evaluation Results

Next, we present the evaluation results, starting with a performance comparison of CGTP and
RILP before looking at different properties of CGTP. For all results in our evaluations, the
CGTP-algorithm yielded optimal results in the sense that we obtained a traffic plan covering all
flows.

Comparison CGTP vs. RILP For the comparison of CGTP and RILP, we use a network
with 50 nodes. We increase the number of flows in steps of 10, starting at 50 flows, with
tcycle = 300 µs and tresv = tpkt = 5 µs for all flows. We solve 20 problems per step, and each
problem is solved once with CGTP and once with RILP on compute nodes of type PCsmall, see
Tab. 5.1.

For these scenarios, the wall clock total runtime, that is, the time from importing the problem
from the files to writing the solution to disk, is divided into the time for setup and I/O, and
the time for the actual solving process. In the case of CGTP, setup and I/O includes the
time to read and write the files and to pre-compute the candidate paths for the flows. Time
spent in the CGTP-kernel consists of the time for growing the conflict graph and searching for
independent vertex sets. For RILP, setup and I/O includes, besides file operations and path
pre-computations, the time required for the construction of the ILP model. The time spent on
solving the ILP is measured around the function call, which interfaces with the solver.

The average runtimes are depicted in Fig. 5.8. The vertical line on top of each composite bar
indicates the standard deviation of the total runtime.

While it is apparent that CGTP solves the problem in much shorter time, for example, the
average total runtime of CGTP for 100 flows with 103.2 s is almost five times less compared
to the average total runtime of RILP (493.4 s) for only 50 flows, we want to highlight another

5.2 CONFLICT-GRAPH-BASED APPROACH FOR TRAFFIC PLANNING 123

FIGURE 5.9
Comparison of runtime

on compute node PCbig.
50 60 70 80 90 100 110 120 130 140 150

flows

0

500

1000

1500

2000

ru
nt

im
e

[s]

setup, I/O ILP solver CGTP-kernel

CGTP
RILP

advantage of CGTP over constraint-based implementations. On the PCsmall compute nodes,
the RILP software stack quickly hit the “memory bound”. For already 70 flows, RILP could not
solve 5 of 20 scenarios due to a shortage of memory, and for 80 or more flows no scenario was
solved as indicated by the missing bars in Fig. 5.8. Constraint-based approaches which solve the
traffic planning problem in the network domain inherently result in a large set of constraints
(see Sections 4.2 and 4.3), and solvers often occupy a large chunk of memory for tracking the
already covered solution space.

In contrast, CGTP runs to completion for the same evaluation scenarios on the PCsmall
compute nodes. CGTP is more memory efficient during the solving process because the
configurations in the conflict graph have a high information density compared to the individual
variables in the RILP. To solve the flow-aware independent vertex problem, we only need the
configurations and the edges in Gc which can be encoded using “a few” integers and adjacency
lists. All the details in the network domain are only necessary when constructing or growing
the graph or when finally assembling the solution. Thus, the conflict-graph-based approach has
the very practical advantage of pushing out the borders of tractable problems in scenarios with
limited memory. Admittedly, out-of-core implementations can extend the memory bound for
both approaches.

We re-ran the evaluations on a compute node of type PCbig (see Tab. 5.1) with much more
RAM. The results (averaged over 20 scenarios per step) are depicted in Fig. 5.9.

Up to 130 flows, the whole runtime of CGTP is on average faster than the time spent for just
calling the ILP solver (excluding setup and I/O), even though the ILP solver is able to make
use of all processor cores, whereas CGTP is implemented mostly single-threaded. While CGTP
still outperforms RILP by a significant margin for all evaluation scenarios, we observe a steep
increase in runtime and the variance of the total runtime for CGTP from 130 flows on. The

124 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

FIGURE 5.10
Behavior for varying ratio

of flows to nodes in constant
size network with 50 nodes.

0 5000 10000 15000 20000
configurations

0

1000

2000

3000

4000

5000

6000

to
ta

l r
un

tim
e

[s
]

ratio | |:| |
1:2
1:1
3:2
2:1

5:2
3:1
7:2
4:1

average total runtime more than triples for CGTP from 130 flows (177.1 s) to 140 flows (625.0 s)
and reaches 812.4 s for 150 flows.

In our evaluations, CGTP outperforms RILP, but we also observe that the region of scenarios
that can be solved in practice with RILP is limited by the sheer size of the ILP model and the
time spent on its construction. The iterative approach of CGTP does not exhibit this drawback.

Network Density Next, we investigate the performance of CGTP and the previously observed
increase in runtime and runtime variance for larger flow sets. We use the same network topology
with 50 nodes and with the same properties as in the previous section. We vary the number
of flows from 25 to 200 with an increment of 25 flows per step (each with tcycle = 1000 µs,
tresv = tpkt = 5 µs), effectively changing the total ratio of flows to nodes in the data network
from 1:2 to 4:1. We generate and solve 40 problem instances per step on the PCsmall compute
nodes.

In Fig. 5.10, we plot the total runtime over the number of vertices of the conflict graph
at the time when the solution was found. Each point in Fig. 5.10 represents an individual
scenario. Points are colored according to the ratio of flows to nodes in the network. We observe
comparably short mean runtimes for scenarios with 25 flows (12.0 s) to 100 flows (86.9 s) which
form almost a line in the lower-left corner of the plot. However, from 125 flows (ratio 5:2) on,
individual runtimes increase strongly and spread farther apart, indicating also an increasing
variance of the runtimes. From 125 flows (ratio 5:2) on, we measured the following average
runtimes: 297.5 s for 125 flows, 851.1 s for 150 flows, 1982.3 s for 175 flows, and 3134.7 s for 200
flows.

Two factors contribute to this behavior. Firstly, by increasing the number of flows while
maintaining the network size, the network load and thus the difficulty of the traffic planning
problem is increasing since conflicts become more likely. Secondly, we also see implementation-

5.2 CONFLICT-GRAPH-BASED APPROACH FOR TRAFFIC PLANNING 125

50 100 200 300 400
flows (# nodes)

0

2000

4000

6000

8000

10000

to
ta

l r
un

tim
e

[s
]

exec.2, p.5

50 100 200 300 400
flows (# nodes)

exec.1, p.10

FIGURE 5.11 Total runtime for increasing problem size with different intermediate ILP settings.
Left plot: after two successive executions of intermediate ILP for at most 5min,
suspend intermediate ILP for 5 iterations, right plot: at most 1 execution of
intermediate ILP every 10 iterations for at most 10min.

specific effects. As explained in Sec. 5.2, our proof-of-concept implementation of CGTP is an
iterative approach which by default uses the adapted maximal independent vertex set algorithm
in each iteration and, depending on the trigger condition, also executes an intermediate ILP.
For scenarios with 100 or more flows, the intermediate ILP executions did not only get triggered
multiple times, but we also observed several instances where the intermediate ILP solving had
to be aborted due to hitting the runtime limit. The higher the number of flows, the more often
this happened. Every intermediate ILP execution which was aborted due to the runtime limit
adds 300 s to the total runtime. Therefore, for similar-sized conflict graphs, the number of
unsuccessful intermediate ILP executions can cause strongly varying total runtimes.

Scaling Finally, we keep the ratio of flows to nodes in the network fixed to 1:1, that is, the
more flows, the larger the network. We vary the number of flows (and nodes in the network)
from 50 to 400, (each with tcycle = 1000 µs, tresv = tpkt = 5 µs). We generate and solve in total
80 problem instances per step on PCsmall compute nodes.

This time, we use two different settings for the ILP trigger limiter. Half of the problem
instances (left plot in Fig. 5.11) use the default setting where the intermediate ILP can be
executed at most twice in succession, and the ILP solver runtime is limited to 5min before ILP
triggering pauses for five iterations (labeled exec.2, p.5). For the other half of the problem
instances (right plot in Fig. 5.11), the intermediate ILP can be triggered at most once every ten
iterations and is allowed to run at most 10min (labeled exec.1, p.10).

Despite the different settings for the ILP trigger limiter, we observe similar values for the

126 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

FIGURE 5.12
Runtime normalized to the
number of conflicts (edges)

in the conflict graph for
increasing problem sizes.

0 2000 4000 6000 8000 10000 12000 14000
configurations

0.00

0.05

0.10

0.15

0.20

ru
nt

im
e

pe
r c

on
fli

ct
 [s

]

ILP limiter
exec.2, p.5
exec.1, p.10

average runtimes as well as the variance of the runtime. The increase in runtime is dominated
by two factors, namely, the time it takes to grow the graph and the time it takes to search
for the independent vertex set. The growing of the conflict graph, or more exact, the time it
takes to insert a single configuration into the conflict graph grows with an increasing number of
configurations in the conflict graph. The time required for searching the independent vertex
set also grows with an increasing conflict graph but has the possibility to vary much stronger,
depending on the actual structure of the conflict graph, the rounds in the fast algorithm, and
the time spent in the max-cover algorithm.

In Fig. 5.12, we plot the total runtime normalized to the number of conflicts in Gc over
the size of Gc. Also, here the two settings for the intermediate ILP behave similarly. For
small numbers of configurations (∼ 102 to 103 vertices), the overhead (I/O, path computation)
dominates, hence we see a decline for increasing number of configurations for these problem
instances. For larger conflict graphs, the time spent for growing the conflict graph and finding
the solution dominates, and we observe a similar clustering (visible, for example, around the
average number of configurations for 200 and more flow, see Tab. 5.2) as in Fig. 5.10. The
average size of the conflict graph is similar for both settings (see Tab. 5.2), and there are few
outliers in Fig. 5.12. This indicates that the combination of the fast algorithm, the max-cover
algorithm, and the respective trigger rules succeed in consistently finding solutions without
“over-growing the graph”.

5.2.7 Evaluation Summary

We have seen in our evaluations that the conflict graph-based modeling of the traffic planning
problem allows for an efficient implementation. Compared to the ILP-based approaches, our
CGTP implementation could solve larger scenarios on less powerful machines in less time.

In particular, the combination of fast algorithm and max-cover algorithm and assorted

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 127

TABLE 5.2 Mean and standard deviation of conflict-graph dimensions for increasing problem
sizes (cf. Fig. 5.12).

|F|,|N | 50 100 200 300 400
configurations (mean) 1.297·103 3.043·103 6.256·103 9.438·103 1.267·104
configurations (std) 824 616 464 762 584
conflicts (mean) 1.445·104 3.633·104 8.368·104 1.333·105 1.838·105
conflicts (std) 1.338·104 1.038·104 1.187·104 2.293·104 2.000·104

triggering heuristics and completion heuristics can exploit the fact that we can find a traffic plan
without constructing the conflict graph that contains every possible configuration for each flow.

This means the conflict graph and its reasonably intuitive representation of the traffic-planning
problem provide an appropriate concept to explore the search space for traffic planning with
the zero-queuing principle.

5.3 Dynamic QoS-Aware Traffic Planning with Conflict
Graphs

So far, we have focused solely on offline traffic planning with a separation between the traffic
planning phase and the runtime phase of the network. Once we have computed a valid traffic
plan, traffic planning was done. Then, during runtime, all nodes simply act according to the
computed traffic plan. This is what we refer to as static traffic planning in the sense that we
compute a traffic plan for an a priori known, fixed set of flows once.

However, a general trend which is postulated, for example, for the domain of industrial
automation, in both, industry white-papers [KUK16] and research articles [Raa+17; Pri+18], is
a trend away from static environments towards dynamic, reconfigurable scenarios, for example,
when attaching or physically moving a sensor or machine in a smart factory. The term plug-
and-produce is frequently used in the context of Industry 4.0 to describe the need for flexible
production facilities where devices can be added quickly and configured automatically, which
also includes the adaption of network schedules and routes to integrate new devices into the
network.

Similar challenges might arise in the future in the backbone of vehicular communication
scenarios [Kar+11; Sad+20] where data flows have to be re-configured once a mobile node is
handed over from one access point to another.

Some foundations for network management in such dynamic environments are already laid
out in the form of concepts such as an SDN-like centralized network controller and associated

128 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

management abstractions that provide a centralized view onto the network and can also be used
to automate and deploy network configurations. Thus, the basic primitives for dynamically
changing routes and schedules of nodes in a softwareized time-sensitive network exist. However,
another required functionality is traffic planning that supports dynamic scenarios where flows
can be added dynamically—which is more than just “static planning done fast”.

In addition to the general challenges of network updates [Rei+12], we also have to consider
the QoS requirements of the time-triggered flows during the transitions between traffic plans.
For example, if we naively execute static traffic planning again from scratch each time new
flows are to be added, this provides no control over the service degradation experienced by an
individual flow. Furthermore, we usually cannot even guarantee that the new plan still includes
all priorly active flows. Worse yet, we might even have to suspend the emission of new packets
for some time to ensure that there is no interference induced by old packets—resulting in a
“stop-and-go”-reconfiguration, or, if technically possible, we have to drop old packets. All of
this boils down to the insight that dynamic traffic planning requires taking the current traffic
flows into account when computing a new traffic plan.

We can identify two paradigms for how to accomplish this, namely, defensive planning and
offensive planning.

Defensive planning does not change the configuration of active flows in order to add new flows.
In other words, defensive planning takes the configuration of active flows as granted and uses
the remaining network resources for routing and scheduling new flows. While defensive planning
never affects the quality of service (QoS) of active flows, it might utilize network resources in
a suboptimal way. For example, defensive planning might result in scenarios where new flows
have to be rejected simply because the active flows have “fragmented” the remaining network
resources, and we cannot “correct” past scheduling and routing decisions.

Obviously, this issue can be mitigated by what amounts to offensive planning where (some)
active flows can be reconfigured when adding new flows. However, this introduces additional
challenges: While offensive planning allows for better utilization of network resources, the
transitory effects of reconfigurations possibly introduce short-term QoS degradation [Li+19], and
the transition phase has to be temporally bounded to guarantee deterministic communication in
the long run. This means offensive planning makes only sense if we can control, both the degree
and duration of a QoS degradation, and it requires applications that can tolerate controlled
QoS fluctuations. Such applications, for instance, correspond to the cyclic-synchronous traffic
pattern where the emphasis is on latency and some jitter is acceptable.

Next, we propose a dynamic traffic planning approach that considers both, the temporal
(scheduling) and spatial (routing) aspects of traffic planning. Our approach allows reconfiguring
active flows (offensive planning) without packet drops or pausing of active flows while also
providing bounded QoS degradation in terms of packet timings and packet-reorderings during

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 129

the transition to the new traffic plan. These bounds can be given on a per-flow basis. This allows
differentiating between a subset of active flows (belonging to jitter-resilient applications) that
can be reconfigured, while the remaining active flows (belonging to jitter-sensitive applications)
are exempt from reconfigurations.

As we will see, the conflict-graph representation from the previous sections turns out to be
advantageous for dynamic traffic planning, too.

5.3.1 Dynamic Traffic Planning: What Changes?

We can interpret dynamic traffic planning as a generalization of the traffic planning task discussed
in the previous section and chapter. In particular, we extend the conflict-graph concepts from
Sec. 5.1 where the basic idea of representing flow configurations and their relations by vertices
and edges in the conflict graph remains.

In the dynamic traffic planning task, there will be different sets of flows active in the network
at different points in time. This requires us to be able to distinguish between different versions
for active flows, and we have to deal with the transition from one traffic plan to the next traffic
plan, which was not needed for static traffic planning. We define this additional terminology
and concepts next.

Flow Dynamics

When we talk about dynamic traffic planning, we assume that there are already some flows that
are active in the network according to some traffic plan. Whenever a set of new flows are to be
added to the network, the planner computes a new traffic plan. Therefore, over time the planner
computes a sequence of traffic plans, where a newly computed traffic plan becomes the current
plan, which replaces the old one, see Fig. 5.13. In the following, we denote the current traffic
plan by P (which becomes the old traffic plan after the update) and the new traffic plan by P ′.

We know that a traffic plan P describes when and along which routes the packets of a flow set
are transmitted. In the dynamic case, the set of flows that transmit packets changes too with
every new traffic plan. Therefore, we will use ActiveF (P) to denote the set of active flows where
an active flow is covered or admitted by P . For example, in Fig. 5.13, ActiveF (P) = {fa, fb, fc},
ActiveF (P ′) = ActiveF (P) ∪ {fd}.

For the exposition of our approach, we concentrate on the case that the planner only attempts
to add new flows to the network. Active flows can also be removed (see fc in Fig. 5.13), which
means that the source node stops sending packets and the planner is notified that it can reassign
the resource previously reserved for that flow when computing the next traffic plan update.
Removing active flows is trivial from the perspective of the planner, see Sec. 5.3.4.

Let ReqF (P) be the set of flows that the applications request to be added to the network,
that is, ReqF (P) are the requests received by the planner while P is valid. By processing

130 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

ActiveF(P‘‘)ActiveF(P‘)ActiveF(P) time

new flow request remove flow

fb
fa

fc
fd

fe
ff

reconfiguration

traffic plan update

FIGURE 5.13 The planner computes a sequence of traffic plans. During the first traffic plan
update, out of the two flow requests (ReqF (P ′) = {fd, fe}), only fd can be admitted
(which requires a reconfiguration of fb) and fd is added to the set of active flows
ActiveF (P ′), while fe could not be scheduled and is rejected. The second update
removes fc, which is not needed by the application any more.

these requests, the planner generates the new traffic plan P ′ with ActiveF (P ′) \ActiveF (P) ⊆
ReqF (P) where P is the plan preceding P ′.

Not only do the flows in the set of active flows change, but offensive planning allows reconfig-
uring active flows while a new plan is established (see fb in Fig. 5.13). Consequently, a flow may
have different configurations over time. The notion config (f,P) identifies the configuration of
flow f while P is valid. If the planner decides to reconfigure f in a succeeding plan P ′, then
config (f,P) 6= config (f,P ′). We say that each reconfiguration of a flow generates a new version
of this flow, where each version exists as long as the corresponding plan is valid. To be able to
distinguish the various flow versions, we will use the notion 〈f,P〉, where flow f is associated
with plan P . This means config (f,P) is the configuration of the flow version 〈f,P〉.

In general, it can happen that a flow in ReqF (P) may not be admitted due to network
resource limitations (see fe in Fig. 5.13). However, once a flow f has been admitted into the set
of active flows, the end-to-end deadline constraints, and jitter-bounds are guaranteed until the
end of its lifetime. This explicitly includes all future traffic plans and possible reconfigurations of
f . For example, fb in Fig. 5.13 is an active flow whose lifetime spans over the two depicted traffic
plan updates: during the whole time, the source node of fb can send packets that are guaranteed
to arrive at the destination node in time. We expect a once established time-triggered flow to be
“relatively” long-lived, that is, it persists for thousands or even millions of transmission cycles.

We focus specifically on the problem of computing the traffic plan. However, ultimately our
traffic planning approach is only one building block of the controller, which likely will need to
incorporate additional application-specific logic and interfaces. For instance, the event that
triggers the computation of a new traffic plan might depend on the application. The traffic

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 131

plan update could be initiated by applications issuing a flow request or a batch of flow requests.
Alternatively, the planner could collect incoming flow requests and decide itself when to compute
a new traffic plan, for example, periodically, or when the number of flow requests reaches a
certain threshold. Consequently, we do not give any guarantees on the response time for flow
requests. In other words, our goal is a real-time data plane, not a real-time control plane,
although we strive for fast processing of requests through efficient planning. We will show
later that we can parameterize our approach with regard to the trade-off between runtime and
schedulability.

We assume that we do not have any prior knowledge as to how the flow set changes over
time, else we could pre-compute a sequence of traffic plans. In the following, we assume that
the planner processes a flow request only once, that is, either admits the new flow or rejects it.
In principle, we can also implement other strategies. For example, rejected flow requests could
be retained and each flow removal might then trigger re-admission attempts for those pending
flow requests until admission is possible or the flow requests expires.

Additional Node Capabilities

Similar to the static case, the necessary flow information corresponding to config (f,P) has
to be made available to the source node and the bridges along the route of f in the network
before a node sends or forwards packets of a particular flow f or flow version. Here, we assume
that this flow information is propagated by a network controller. Different from the static case,
the flow information in the nodes, in particular routes and schedules, now are expected to be
updated at runtime by the controller.

However, flow information updates shall not affect in-flight packets to prevent network update
issues such as black-holing. This means bridges temporarily may have multiple sets of flow
information for each version of a reconfigured flow and deliver each packet according to the
flow configuration that was used by the source node when sending the packet. To this end, the
network provides a mechanism that allows distinguishing packets not only on the level of a flow
but also on the level of a flow version. This can be achieved, for example, by tagging packets
with additional metadata or using address schemes [Rei+12].

The controller lazily purges obsolete flow information sets from the nodes once all old packets
have been received by the destination nodes. In this context, obsolete flow information sets
refers to flows that either have been removed from ActiveF (P ′) or have been reconfigured.
In the latter case, while the flow itself remains active, the flow information sets for old flow
versions 〈f,P〉 are not used anymore. To perform this “garbage collection”, the controller has
to track the flow information sets associated with each traffic plan and then has to delete the
corresponding routing entries, drop now unused scheduling entries, etc.

132 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

Conflict Graph Versions

As before, we encode the relations and constraints between the configurations in a conflict graph.
Now, a new version of the conflict graph is generated by modifying the old one whenever a new
traffic plan is to be computed.

A new version of the conflict graph is generated by adding/removing configurations to the
previous version and locking or unlocking configurations as explained below. In the following,
Gc (P) identifies the version of the conflict graph that is associated with plan P , that is, Gc (P)
has been used to compute P. Analogously, we use cand (f,P) to denote the candidate set of
flow f in Gc (P).

We will see that the modifications that we perform on the conflict graph for dynamic traffic
planning far exceed the expansion of the conflict graph in Sec. 5.2. Indeed, the expansion of the
conflict graph in the iterations of the CGTP will become a suboperation in the construction of
the conflict graph.

Relation: ActiveF (P) and Global Traffic Plan P

In Thm. 5.5, we established the relation between the independent vertex in the conflict graph
and the global traffic plan. In dynamic scenarios, the traffic plan and the active flows change in
lockstep.

DEFINITION 5.7 (Traffic Plan)
A traffic plan P is a set of conflict-free configurations for ActiveF (P) in Gc (P) that contains
exactly one configuration for each flow in ActiveF (P).

We say that traffic plan P admits flow f if P contains a configuration for f , that is,

admits (f,P) =

1 : if ∃ configuration for f ∈ P

0 : if @ configuration for f ∈ P
. (5.4)

As before, any Gc (P) possibly contains many different sets of conflict-free configurations. We
specify the objective that guides the search for the configurations forming the new traffic plan
P ′ in Sec. 5.3.2.

Transition Interference

Assume that we have a new traffic plan P ′ and want to replace the traffic plan P with P ′. We
call the time a new traffic plan P ′ becomes valid its activation time tact. To ensure that no
source node is in the middle of a packet transmission at tact and since the flows in ActiveF (P ′)

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 133

time0

<f,P'>

<k,P>

P is valid

P' is valid

start of hyper-cycle:
tact: P' becomes valid

cycle n

source node of <k,P>
emits last packet

old packets of <k,P>
still in transit

cycle 0 cycle 1

source node of <f,P'>
emits first packet

transition intervaltransition interval

FIGURE 5.14 The possibility of transition interference between old packets of flow k from plan P
and new packets of flow f from P ′ is limited to the transition interval.

may have different cycle times, we choose the start of a fresh hyper-cycle of all active flows in
ActiveF (P) as activation time, that is,

tact = t0 + k · lcmf∈ActiveF(P) (tcycle(f)) . (5.5)

From the perspective of an active flow, it is perfectly fine for tact to be many transmission cycles
in the future because all flows in ActiveF (P) remain active with their established configurations
from P until tact.

Then at tact the new traffic plan P ′ becomes valid. This means, from tact on, we would like
all the packets of each flow f in ActiveF (P ′) to be transmitted according to config (f,P ′) =

(f, φ′, π′). If all packets sent according to the old plan P are delivered to the destination nodes
before tact, this would simplify our problem a lot. It implies that the network would be empty
at tact which would allow us to compute each new traffic plan P ′ independently of P . In other
words, under these circumstances computing a new traffic plan is equivalent to solving a new
static traffic planning instance.

However, this simplified “solution” is inadequate, because it severely restricts the network
utilization. Ultimately, for each packet to arrive within the transmission cycle it was sent by
the source node, φ ≤ tcycle − te2e − tresv has to hold. This means the transmission frequency and
network utilization are inherently coupled to the network size.

Therefore, we provide a solution for the general case where there can be remaining yet-to-
be-delivered packets from 〈k,P〉, k ∈ ActiveF (P) in the network when the new traffic plan P ′

becomes valid. In the general case, we have to account for the possibility of transition interference,
that is, flow interference between the remaining old packets from 〈k,P〉, k ∈ ActiveF (P),

134 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

temporal isolation?

FIGURE 5.15 Scenario: packets from P ′ may interfere with yet-to-be-delivered packets from P.

and the first packets from 〈f,P ′〉, f ∈ ActiveF (P ′), when computing the new traffic plan
P ′.

DEFINITION 5.8 (Transition Interference)
Let P denote the traffic plan valid before tact, and let P ′ denote the new traffic plan with
activation time tact. Transition interference is defined to be between 〈k,P〉, k ∈ ActiveF (P)
and 〈f,P ′〉, f ∈ ActiveF (P ′) if any packet sent by the source node of 〈k,P〉 prior to tact is
buffered due to a packet sent by the source node of 〈f,P ′〉 from tact on, or vice versa.

We can algorithmically check whether transition interference occurs between 〈k,P〉 and 〈f,P ′〉:
If the route of 〈k,P〉 and the route of 〈f,P ′〉 have common links, and any packet from 〈k,P〉
sent before tact is scheduled for transmission at any point in time when any packet sent by
〈f,P ′〉 from tact on is scheduled on a common link, transition interference occurs, see Fig. 5.15.

Transition interference is restricted to a possible zero-length time interval, the transition
interval ttransit, which starts at tact and is upper-bounded by the end-to-end delay of 〈k,P〉, see
Fig. 5.14. Now we can also clarify the “purging” of obsolete flow information sets. It is easy to
see that once the transition intervals of all flows in ActiveF (P) have expired, the controller can
safely delete all unused flow information sets associated with P from the nodes in the network.

In the following, we only consider the case where transition intervals of different traffic plan
updates are mutually exclusive, that is, we only consider one traffic plan P and its immediate
successor P ′.

5.3.2 Problem Statement

From a high-level view, the dynamic traffic planning task can be described as follows: Let P be
the traffic plan for the flows in ActiveF (P) computed from Gc (P), that is, the packets of flows

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 135

in ActiveF (P) are transmitted according to P. Now applications request that a set of flows
ReqF (P) be added to the network. Compute a new traffic plan P ′.

To compute P ′, we have to construct the new conflict graph Gc (P ′) and search for a set of
conflict-free configurations (that is, independent vertices in the Gc (P ′)). Previously, we were
ultimately searching for any traffic plan that admits all flows which would mean a traffic plan
that admits ActiveF (P) ∪ ReqF (P). Likewise, we would prefer to find a set of conflict-free
configurations that admits all flows in ActiveF (P) ∪ ReqF (P) in the dynamic case, but this
may not always be possible or not desirable if it may take too long. Different from the ILP
formulations, we can exploit Thm. 5.5 in the conflict-graph-based approaches to try to efficiently
compute a traffic plan for “as many as flows as possible” with a heuristic.

Here, we want to ensure that once the planner adds a flow to ActiveF (P), this flow remains
active until the application itself indicates the flow can be removed. This means the planner
shall not unsolicitedly evict any flow from ActiveF (P). Consequently, the new traffic plan
shall include a configuration for every flow in ActiveF (P) and as many new flows as possible
from ReqF (P). The difference in the importance of active flows and new flows results in the
following objective.

DEFINITION 5.9 (Dynamic Traffic Planning Objective)
Let Gc (P ′) be a conflict graph that contains candidate configurations for all flows in
ActiveF (P) ∪ ReqF (P) with ActiveF (P) ∩ ReqF (P) = ∅. We want to find a new traffic
plan P ′ ⊆

⋃
f cand (f,P ′) that maximizes the objective

max
P ′

∑
f∈ActiveF(P)

admits (f,P ′) +
∑

f∈ReqF(P)

admits (f,P ′)

|ActiveF (P) ∪ ReqF (P)|
. (5.6)

The factor 1
|ActiveF(P)∪ReqF(P)| in Eq. (5.6) discounts the relative importance of flows in ReqF (P).

This means any flow in ActiveF (P) is more “valuable” than all flows ReqF (P) taken together.
From a graph-theoretic perspective, this is a specific colorful independent vertex set problem

where we want to find a set of independent vertices and each color has either unit weight or a
weight inversely proportional to the total amount of colors.

5.3.3 Constructing a New Version of the Conflict Graph

Next, we explain how the planner constructs the new conflict graph Gc (P ′) when processing
ReqF (P). With offensive planning, the planner has to consider both flow versions 〈f,P〉 and
〈f,P ′〉 for each active flow f where P ′ indicates the new plan replacing P .

136 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

Overview

Remember that after installing P ′, packets from both 〈f,P〉 and 〈f,P ′〉 may be in the network
for some time. Therefore, it is not sufficient to only avoid conflicts between any new flow
versions 〈f,P ′〉, which would suffice in the static case. Instead, the planner additionally has to
ensure that any 〈k,P〉 does not interfere with any other flow 〈f,P ′〉. This leads to the following
requirements:

R1 For all k, f ∈ ActiveF (P ′), 〈k,P ′〉 does not interfere with 〈f,P ′〉 for k 6= f . That is, active
flows of the new plan do not interfere.

R2 For all k ∈ ActiveF (P) and f ∈ ActiveF (P ′) \ActiveF (P), 〈k,P〉 does not interfere with
〈f,P ′〉. That is, the active flows of the old plan do not interfere with the flows added to
the new plan.

R3 For all k, f ∈ ActiveF (P), 〈k,P〉 does not interfere with 〈f,P ′〉. That is, the active flows
of the old plan do not interfere with their versions in the new plan. Note, if f = k, then
we consider the old and new version of the same flow, 〈f,P〉 and 〈f,P ′〉. Since packets
from 〈k,P〉 and 〈f,P ′〉 may populate the network at the same time, we have to ensure
that no transition interference occurs.

R1 is a basic requirement, which is sufficient for defensive planning. Allowing for reconfigura-
tions of active flows, however, we must add R2 and R3 to ensure the zero-queuing constraint.
In order to fulfill R1, the planner has to make sure that the configurations associated with flows
in ActiveF (P ′) are not in conflict. To this end, the planner first of all has to add candidate
configurations for each flow in ReqF (P) to the conflict graph. The expanded conflict graph is
the basis for solving the planning problem as stated above.

Now let us see, how additionally R2 and R3 can be guaranteed. Note that the interference of
two flows/flow versions implies that their configurations are conflicting, while the opposite is
not true. For example, if we ensure that the packets of one flow or flow version only enter the
network after all packets of another flow have already left the network, these two flows do not
interfere even if their configurations are conflicting. Therefore, we can fulfill R2 by delaying the
activation of the added flows until all packets that belong to flow versions of P have died out.
Assume the transmission of packets of each flow 〈k,P〉 with k ∈ ActiveF (P) is stopped at time t.
All packets sent by these flows have left the network by t+ τ , where τ ≥ maxk(te2e(k)− tcycle(k))

is greater or equal to the largest transition interval ttransit of any flow k ∈ ActiveF (P). If
the transmission of each 〈f,P ′〉 with f ∈ ActiveF (P ′) \ ActiveF (P) does not start before
t + τ , then no flow 〈k,P〉 interferes with any flow added to P ′ even if their configurations
conflict. Hence, we prevent transition interference between flows from k ∈ ActiveF (P) and
f ∈ ActiveF (P ′) \ ActiveF (P) ⊆ ReqF (P) from ever happening by adjusting the activation

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 137

time of new flows, that is, outside of the actual computation of P ′. Roughly speaking: the
controller tells the source nodes of the new flows that their actual activation time is not tact

but tact + d ttransit
tcycle
e · tcycle with ttransit the duration of the longest transition interval of any flow

in ActiveF (P). In the example in Fig. 5.14, the first “useable” transmission cycle for 〈f,P ′〉
is cycle 1. For the source node of a new flow, this has the same effect as if it took a few
transmission cycles more to compute P ′. Therefore, fulfilling R2 requires no special treatment
when constructing the conflict graph.

Note that this only applies to transition interference involving flows that are newly added to
ActiveF (P ′). Fulfilling R3 the same way as R2 is definitely not desirable since delaying data
packets of an active flow might degrade QoS substantially. In simplified terms, our solution
for R2—“turning on the machines a little bit later”—does not work for R3, because “the
machines are already running”. Therefore, we have to make sure that the planner cannot select
configurations for active flows which conflict with the old configurations of these flows. We
achieve this by locking those configurations that the planner must not select for the new plan.
Note that the configurations to be locked depend on the old configuration of the active flows.
Since the configuration of an active flow may change from plan to plan, configurations are
unlocked each time after the new plan has been computed.

Adding Candidate Configurations

Since Gc (P) only contains candidates for flows in ActiveF (P), the planner has to generate
and insert new candidate configurations for all flows in ReqF (P) to Gc (P ′). In principle, the
planner could add all candidates for each flow to Gc (P ′). However, we know from the previous
section that we can find a traffic plan for all flows even if the conflict graph contains just a
subset of all possible candidates of each flow. We exploit this and add only a limited number
(upper-bounded by a parameter nub) of candidate configurations for each flow in ReqF (P) to
the conflict graph. From a graph-theoretic perspective, we are now also adding new colors to
Gc (P) with each new flow.

Due to the nature of the traffic planning problem, it is often inherently difficult to identify
promising candidate configurations a priori. We again use a heuristic where for each flow the
planner has a stateful configuration generator that returns a new configuration each time it is
invoked. Here, the generator walks through the φ-π-space in a more complex pattern: Starting
at φ = 0, π = 0, π is incremented until all configurations for a particular value of φ have been
covered, before increasing φ by ∆φ. If φ+∆φ exceeds the allowed range for φ, φ is reset to the
next, lowest uncovered phase-value, see Fig. 5.16. In our case, the planner sets ∆φ to the 75-th
percentile of the transmission duration of all flows with candidate configurations in Gc (P ′).
Hence, we expect that one to two phase increments suffice to resolve a possible interference on a
single link.

138 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

FIGURE 5.16
New candidates are generated by traversing the φ-π-
space with ∆φ the stride width in the φ-dimension.

0
1
2
3
4

.3210

...

...

Δφ

p
at

h
 π

phase φ

While it is obvious that we have to add candidates for flows in ReqF (P), we can also increase
the set of candidates for flows in ActiveF (P) in Gc (P ′), which is equivalent to the conflict-graph
growth step in the CGTP from Sec. 5.2. The larger cand (f,P ′), the more of the solution space
is covered, and the more alternatives for an active flow “to make way” for flow in ReqF (P)
exist. Here, we add more configurations for each flow in ActiveF (P) when processing ReqF (P)
until the configuration generator has traversed the φ-range of a flow for the first time. After
that point, new configurations for active flows are only added if the planner could not admit
all flows from the previous request, that is, a simple feedback loop controls the growth of the
conflict graph.

In principle, we are free to choose to traverse the φ-π-space when adding configurations to
the conflict graph. This means that the number of available configurations in the φ-π-space
is decoupled from the size of the conflict graph. For example, if we want a time resolution of
1 ns instead of 1 µs, we can scale ∆φ accordingly. Then, instead of advancing three steps in the
φ-direction, we advance 3000 steps and end up with a similarly sized conflict graph.

This decoupling is an important feature because the effort to add a single configuration c to
Gc (P ′) scales with the number of configurations V already in the conflict graph (O(V)) since
we have to check for each existing configuration already in Gc (P ′) whether it conflicts with
c. However, we usually do not have to pay the total cost of constructing a conflict graph with
V configurations, which scales with O(V2) unless all active flows are replaced by new flows in
one update. When constructing Gc (P ′), we start with Gc (P). Hence, the cost of adding a
configuration effectively gets distributed over the lifetime of a flow. The planner could also add
the additional configurations for flows in ActiveF (P) when idle, that is, while no ReqF (P) has
to be processed, to further accelerate the flow-request response time. Since the lifetime of active
flows may differ, the planner should balance the number of candidates per flow in the long term,
for example, by adding more configurations for younger flows.

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 139

FIGURE 5.17
Example: 1-hop neigh-

bors of active configura-
tions a1, b1 are locked in

Gc (P ′), a2, a3, b2 remain el-
igible for the active flows. a5

a2

a1

a3

b1

b3

b2a4

c1

 flows in ActiveF(P)

flow in ReqF(P)

locked config.

 (old) config(f,P)

(new) config(f,P')

Locking Configurations

Gc (P ′), generated as described in the previous section, may include configurations that cause
interference between the old and new versions of active flows, violating R3. We yet have to
make sure that the planner cannot select configurations for active flows that violate R3. In
detail, the following two conditions have to hold:

1. For all f ∈ ActiveF (P), there exists no configuration c ∈ cand (f,P ′) that results in a
new version 〈f,P ′〉 that interferes with 〈f,P〉. That is, the planner cannot assign a new
configuration to f , such that the old and new version of f interfere.

2. For all f, k ∈ ActiveF (P), k 6= f there exists no configuration c ∈ cand (f,P ′) that results
in a new version 〈f,P ′〉 which interferes with 〈k,P〉. That is, the planner cannot assign a
new configuration to f which results in interference with an old version of any other active
flow k.

We achieve both conditions by locking all those configurations in Gc (P ′) which would violate
one of the conditions if selected by the planner. A locked configuration must not be selected by
the planner.

To fulfill the first condition, for each f ∈ ActiveF (P), we have to visit each c ∈ cand (f,P ′) in
Gc (P ′) to check whether a new version of f that uses the visited candidate c results in transition
interference with the old version that uses config (f,P). If transition interference would occur,
we have to lock the candidate. Obviously, this ensures that the planner cannot select a candidate
c for config (f,P ′) that could cause interference with 〈f,P〉. Note that the configuration graph
includes only edges for conflicting configurations of different flows. Therefore, we maintain an
additional data structure that allows efficient access to the candidates of a particular flow.

To fulfill the second condition, for each k ∈ ActiveF (P), we have to visit all 1-hop neighbors
of config (k,P) in the conflict graph, that is, all candidate configurations of any flow other
than k that conflict with config (k,P). If a visited neighbor c is a configuration of another flow
f in ActiveF (P), the planner checks for transition interference between a new version of f

140 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

with configuration c and 〈k,P〉. If there would be interference, this configuration c is locked.
Obviously, this prevents the planner from selecting for any other f ∈ ActiveF (P) a candidate
configuration c for config (f,P ′) that would cause interference. Note, here we just have to follow
the edges of config (k,P) to access the candidates potentially to be locked, see Fig. 5.17.

(Permanently) Pinning Flows

To prevent the planner from ever reconfiguring an active flow f , we can permanently remove
all configurations of f other than config (f,P) from Gc (P)—pinning f to its configuration for
its whole lifetime. Obviously, this ensures config (f,P) = config (f,P ′) for future updates. In
contrast, locking only temporarily excludes some candidates from P ′.

5.3.4 Computing the New Traffic Plan

Once the new conflict graph has been constructed by adding additional configurations and
locking currently “forbidden” candidate configurations, we have to compute the traffic plan.
From a graph-theoretic perspective, we can reduce the maximum (colorful) independent vertex
set problem to the problem of finding a traffic plan which maximizes Eq. (5.6). This means
computing a new traffic plan remains an NP-hard problem [Gar+79]. Since both, the adapted
Luby’s algorithm and the ILP formulation from Sec. 5.2 do not natively consider the objective
from Eq. (5.6), we use a newly developed heuristic, the Greedy Flow Heap Heuristic (GFH).
The name GFH draws from the fact that the objective Eq. (5.6) improves with every additional
flow included in the new traffic plan. Next, we give a brief overview of the GFH and explain
our strategy to compute the new traffic plan.

Greedy Flow Heap Heuristic

From a birds-eye view, GFH is an iterative greedy approach that in each iteration computes
ratings for the configurations in Gc (P ′) and adds the configurations with the best ratings to an
intermediary set of conflict-free configurations C. We say that C admits a flow f if C contains a
configuration for f . When selecting the configuration to add to C, GFH distinguishes between
flows in ActiveF (P) and ReqF (P) and prioritizes the former accordingly. During the GFH
execution, C is always an independent vertex set in Gc (P ′).

The GFH has a re-run mechanism. The re-run mechanism can be used to improve the number
of flows admitted by C by re-running the configuration selection steps with different starting
conditions, for example, if not all flows are in C after the first run. The number of re-runs
(default nre-runs = 3) can be parameterized.

For the same flow f , there may be multiple configurations in the final C returned by the GFH,
but we can only include one of these (we need only one route and phase) in a traffic plan. In

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 141

this case, we arbitrarily select one configuration for every flow with multiple configurations in C
since all configurations in C are conflict-free. In other words, P ′ ⊆ C.

The GFH was presented first in [Fal+21] and has been developed by Heiko Geppert. For a
more detailed explanation of the GFH, we refer to Appendix A.2.

Rejecting and Removing Flows

If ReqF (P) contains flows that are not admitted by C, the planner rejects the corresponding
flows. All candidate configurations for a rejected flow are consequently purged from Gc (P ′).
Similarly, applications could indicate to the planner that active flows shall be removed from the
network. In this case, the planner also purges the corresponding candidate configurations from
the conflict graph.

Optimization: Progressive Strategy for Offensive Planning

The planner employs locking and GFH in a two-phase meta-strategy for offensive planning:
In the first, defensive phase, for each flow in ActiveF (P) every configuration in cand (f,P ′) \

config (f,P) is locked in Gc (P ′). That is, we conserve the configuration of all active flows.
Then Gc (P ′) exposes only one configuration per active flow and all candidates for new flows
to the GFH. If we already find a traffic plan P ′ for ActiveF (P) ∪ ReqF (P), we are done and
usually will have saved computation time, since the GFH considers fewer configurations.

Only if we cannot admit all new flows, we release the conservative locks (configurations that
cause transition interference remain locked) and expose the “full” conflict graph to the GFH.
This second phase widens the search space for the GFH at the expense of longer runtime, and
active flows may now be reconfigured. If the GFH rejects any active flows in the second phase,
we revert to the result from the first phase which is guaranteed to include all active flows in the
new traffic plan P ′.

5.3.5 Installing the Plan

After having computed the new plan, the controller propagates the sub-plans to the nodes in
the network. The sub-plan sent to a particular bridge defines how the nodes are supposed to
route incoming packets, when to reserve transmissions windows for these packets and when
the new plan becomes active, that is, the traffic plan’s activation time tact. In other words,
after having computed the new plan, it is installed in two steps: Firstly, we send the sub-plans,
flow-information sets, and the activation time for the new plan to all the nodes in the network
while the old traffic plan is still active. Secondly, at the respective tact, the nodes switch over
to the new flow information sets. Such a time-based two-step update pattern is, for example,
specified for TSN bridges in [IEE18b].

142 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

A transition to the new traffic plan shall only happen if all nodes have agreed that they have
received the new sub-plans and will put their sub-plan into action at tact. This means each
traffic plan update requires to solve the well-known consensus problem with a deadline that
equals tact (minus the time nodes need to process update-protocol packets in the worst-case).
However, it is well-known that is impossible to solve the consensus problem in asynchronous
systems [Fis+85]. In particular, termination within bounded time cannot be guaranteed in such
systems.

From a practical perspective, though, our specific network update problem has some properties
which make this less of an issue:

Firstly, as soon as nodes or links fail, our network may not fulfill its primary function anymore
because such errors can interrupt the service provided to already active flows. This means,
before addressing the secondary problem of how to update a traffic plan in a network with
failures, we have to decide and specify how to react to these failures with regard to the active
networked applications themselves. For example, we could shut everything down in face of a
failure and restart the network only after resetting it to a correct state. In this case, we do not
update a failed network. For more involved strategies with more fault tolerance, we need not
only address the consensus problem, but we also need additional concepts or countermeasures
that have to be incorporated into the modeling and computation of the traffic planning, too.
This could include built-in redundancy or fail-over on the networking level, as well as support
for operation in a partially degraded network on a subset of unaffected candidate paths, which
is out of the scope of this thesis.

Secondly, we can implement static real-time control channels between the controller and
each network node. These channels could be established when the network is initialized. For
example, we can even use the traffic planning approach described in this section to set up
these channels—before processing any flow requests issued by “regular” applications—as pinned
time-triggered flows such that their associated QoS is not subject to degradation. With real-time
channels and bounded update-protocol processing times in the nodes, we effectively execute the
network update in a synchronous system. Therefore, agreeing on the update within a deadline
is possible. Instead of using time-triggered flows, we could also turn to real-time control channel
implementations that occupy fewer network resources at the cost of increased deadlines, for
example, non-time-triggered flows with bandwidth guarantees. We can safely handle longer
deadlines of the real-time control channels since the controller can set the activation time to
a hyper-cycle boundary in the future where the consensus protocol has terminated with the
given real-time control channels and the worst-case update-packet processing duration in the
nodes has elapsed. Obviously, the control-channel implementation choice involves a compromise
between network resources spent on control channels and the time it takes to install an update
in the network.

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 143

P is valid P‘ is valid

trx scheduled start of

reception n+1-th packet
without reconfiguration

trx scheduled start of

reception n+1-th packet
without reconfiguration

at source node

at destination
node

time

time
tact, P‘ becomes valid

......

......

trx' start of reception

of actual n+1-th
packet

trx' start of reception

of actual n+1-th
packet

Δt

tcycle

tref=t0+(n-1)·tcycle

n+1n n+k

n+k nn-1n+1

ntransition packets

tref=t0+(n-1)·tcycle

cycle n

FIGURE 5.18 Reconfiguration of an active flow can temporarily cause jitter and packet reordering.
Here, the packets with numbers n+ 1 to n+ k arrive “too early”, that is, before
packet n.

As discussed in Sec. 5.3.3, the controller has to postpone the activation time for sources
of new flows after the transition interval whereas this is not necessary (and it would also be
impractical) for bridges that forward packets of new flows. This means there is one activation
time for the source nodes of flows from ActiveF (P) and the bridges. The activation time for
the source nodes of new flows however is delayed by d ttransit

tcycle
e · tcycle with ttransit the duration of

the longest transition interval. While the flows from ActiveF (P) already use the new traffic
plan, which has also been deployed to all bridges by that time, the source nodes of new flows
have to wait a little longer before they are allowed to start sending packets.

5.3.6 QoS Considerations

The reconfiguration of active flows can degrade the QoS by introducing jitter. Since we aim for
deterministic real-time communication, we must also quantify and possibly contain the QoS
degradation caused by reconfigurations to a level acceptable for the applications. Next, we study
how the reconfiguration of an active flow can degrade QoS. The level of degradation depends on
the “distance”, that is, the phase shift and the difference in the lengths of the routes, of the
flow’s old and new configuration. After showing how these properties affect QoS degradation,
we present a way how applications can control the degree of degradation.

Computing QoS Degradation

Without reconfiguration, the destination node of an active flow receives the next packet every
tcycle seconds after the reception of the previous packet, and packets are received in the order
they were sent from the source node. Now assume, a new traffic plan P ′ supersedes P , and an

144 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

active flow f ∈ ActiveF (P) is reconfigured, that is, config (f,P) 6= config (f,P ′). Without loss
of generality, let the activation time of the new traffic plan P ′ be the start of the n+ 1-th cycle
of f .

Consequently, the point in time t′rx when the destination node receives the n+ 1-th packet,
which is sent with config (f,P ′), may differ from the point in time trx when the destination
would have received the n+ 1-th packet without reconfiguration, that is, if the n+ 1-th packet
would have been sent with the old config (f,P), see Fig. 5.18. We call the magnitude of this
deviation ∆t = t′rx − trx the (reconfiguration) jitter.

THEOREM 5.10 (Packet Jitter ∆t)
After a reconfiguration of flow f from (f, φ, π) = config (f,P) to (f, φ′, π′) = config (f,P ′),
the arrival of the new packets at the destination node deviates by

∆t = (φ′ − φ) + (len (π′)− len (π)) · dhop (5.7)

from their respective scheduled arrival according to previous config (f,P) with len (∗) denoting
the number of bridges on the candidate path with index ∗.

This means ∆t is composed of a term (φ′ − φ) expressing the phase-difference, and a term
(len (π′)− len (π)) · dhop that expresses the difference between the traversal times of a packet on
the old route and the new route, respectively.
PROOF W.l.o.g., we use the start n-th cycle as reference time tref. In the n-th cycle, the
source node starts transmitting the n-th packet at tref + φ. The reception of this packet by
the destination node starts at tref + φ + tsrc + ttrans + tprop + len (π) · dhop + tdst, see Sec. 3.4.
If P remained valid, the reception of the n + 1-th packet then would start tcycle later at
trx = tref + φ+ tsrc + ttrans + tprop + len (π) · tperhop + tdst + tcycle.

However, the new plan P ′ and thus config (f,P ′) becomes valid at tref + tcycle, which is the
start of the n+ 1-th cycle. The reception of the n+ 1-th packet sent by the source node with
config (f,P ′) starts at t′rx = tref + tcycle + φ′ + tsrc + ttrans + tprop + len (π′) · dhop + tdst at the
destination node. By inserting these values, we get

∆t = t′rx − trx = (φ′ − φ) + (len (π′)− len (π)) · dhop (5.8)

�

If ∆t > 0, there is an additional delay between the last packet of 〈f,P〉 and the first packet
of 〈f,P ′〉. Intuitively, a reconfiguration that results in either a longer path or a phase increment
(that is, φ′ > φ), or both, results in ∆t > 0.

If ∆t < 0, the new packets from 〈f,P ′〉 arrive too early. This happens, if either the

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 145

reconfiguration results in phase decrement (φ′ < φ), or a shorter route `(π′) < `(π), or both
of these. Potentially, this can lead to a situation where packets from 〈f,P ′〉 overtake the last
packets from 〈f,P〉 in the network if the relative end-to-end deadline is allowed to be greater
than the cycle time.

We can quantify the number of the affected packets, which possibly arrive in a different order
than the order in which they were sent and do not have an inter-arrival time tcycle, with the
following theorem.

THEOREM 5.11 (Number of Packets Affected by Reconfiguration)
The number of packets affected by a specific reconfiguration of flow f is

ntransition =

1 if ∆t > 0 (new packets arrive “late”),⌊
|∆t|
tcycle

⌋
+
⌈

|∆t|
tcycle

⌉
if ∆t ≤ 0 (new packets arrive “early”)

. (5.9)

PROOF W.l.o.g., we use the start of the reception of a (virtual) n + 1-th packet sent with
config (f,P) as reference time point tref, see Fig. 5.18. The reception of the actual n + 1-th
packet, which is the first packet sent with the new config (f,P ′), starts at tref + ∆t at the
destination node.

If the reconfiguration results in ∆t = 0, for example, if the new configuration has the same
φ and a route of the same length, there is no jitter visible at the destination node, hence
ntransition = 0. Due to tcycle ≥ ttrans, a reconfiguration that results in ∆t > 0 affects only a single
packet.

If the n+1-th packet arrives too early (that is, ∆t < 0), there are
⌊

|∆t|
tcycle

⌋
packets from 〈f,P〉

in the time interval from tref +∆t which are received immediately after the start of the reception
of a new packet from 〈f,P ′〉 at the destination node.

Conversely, from time tref + ∆t on, there are
⌈

|∆t|
tcycle

⌉
packets of 〈f,P ′〉 which are received

immediately after the start of the reception of an old packet from 〈f,P〉. This means each of
these new packets follows right after an old packet (with inter-arrival time 6= tcycle) and therefore
is counted into ntransition. �

It is easy to see that we can upper bound the number of packets that possibly arrive in a
different order than the order in which they were sent, and do not have an inter-arrival time
tcycle by ntransition ≤ 2 ·

⌈
|∆t|
tcycle

⌉
. The term 2 ·

⌈
|∆t|
tcycle

⌉
approximates the worst-case where old and

new packets arrive interleavingly at the destination node until all old packets are delivered.
It is important to note that any individual packet that is sent by a source node will always arrive

within the end-to-end deadline bounds. Reconfigurations only affect the relative inter-arrival
times in a packet train.

146 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

Restricting QoS Degradation

Applications can provide the planner with QoS degradation constraints in the form of thresholds
on |∆t| and the number of affected packets. If the destination node has no facilities to handle
packet reorderings, for example, has no buffer, then such constraints can be used to ensure that
all packets are received in the sending order. The QoS degradation constraint results in the
following condition for Gc (P ′):

QoS condition For each f ∈ ActiveF (P), there exists no configuration c ∈ cand (f,P ′), where
the reconfiguration from config (f,P) to c exceeds the threshold for |∆t| or ntransition.

Analog to Condition 1 for locking configurations (see Sec. 5.3.3), we can prevent reconfigurations
that violate the QoS condition by locking. This can be achieved with minimal overhead since
the planner anyway traverses c ∈ cand (f,P ′) and only needs to check the QoS condition for
each candidate c of f that is not locked already due to transition interference.

5.3.7 Evaluation

In this section, we evaluate dynamic traffic planning using a prototypical C++-implementation
of the planner. The dynamics in the set of active flows over time add an dimension to the
evaluation scenarios. Whereas previously the traffic planner computed a single traffic plan
for each evalation scenario, here each evalation scenario consists of a sequence of planning
rounds. In each round, the planner processes a set of flow requests which can include requests
for new flows as well as requests for the removal of active flows. Besides the conflict graph
adjustments and the computation of the new traffic plan P ′, the planner also validates the
absence of configuration conflicts in the new traffic plan in each round.

Evaluation Scenarios and Parameters

Table 5.3 gives an overview of the evaluation scenario parameters which have been derived from
typical industrial use cases [Ind19; IEE21a]. For each flow, we draw the values for tresv and tcycle

uniformly at random from the respective set. The number of new flows to add |ReqF (P)| and
the number of flows to remove is either drawn from a truncated Poisson distribution (poiss.)
with averages as stated in Tab. 5.3 or is deterministic (det.) for each planning round. We
place/remove the flows in clusters in the network to simulate control units connected to multiple
sensors and actuators, where all flows in a cluster start at or target one common “cluster” node.
The cluster sizes correspond to commonly found configurations of I/O bays of industrial control
units. For example, to add 25 new flows the request may contain three clusters of one, eight,
and 16 flows, respectively, or any other combination that adds up to 25 flows. By default, 20%
of the new flows are pinned permanently, and we limit ∆t for each remaining active flow to

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 147

TABLE 5.3 Overview of evaluation scenario parameters.
Figure |ActiveF (P)| |ReqF (P)| flows to remove nub tcycle [µs] npath network
5.19 500 25 (poiss.) 25 (poiss.) ≤ {50,100} {250,500,1000,2000} 3 ring(64,3)
5.20A 800 50 (poiss.) 50 (poiss.) ≤ {50,100} {250,500,1000,2000} 3 ring(64,3)
5.21,5.22 250 25 (det.) 25 (det.) ≤ 100 {200,250,500} 3 ring(64,3)
5.23,5.24A 500 50 (det.) 50 (det.) ≤ 100 {250,500} 5 var., 49 nodes
5.23,5.24B 500 50 (det.) 50 (det.) ≤ 100 {250,500} 5 var., 81 nodes

tresv = tpkt (packet size) ∈ {1 µs,3 µs,5 µs,12 µs}, i.e., packets sizes: 125B – 1500B on links with 1 Gbit
s

flow clusters ∈ {1, 2, 4, 8, 16, 32} (constrained by |ReqF (P)| and amount of flows to remove)
network parameters processing delay tproc = 2 µs, propagation delay tprop = 1 µs

tcycle − tresv such that packets arrive in order at the destination node. We omit to specify an
explicit value for te2e. Instead, we use a k-shortest path algorithm which provides us with the
candidate paths with the lowest end-to-end delays that are possible within the given topology.

For the evaluations of runtime and schedulability, we consider circular networks with n nodes
where each node is connected to the next m nodes in both directions (denoted by ring(n,m)).
With this network topology, we can expect similar behavior for the flow placements since each
node in the network has the same degree, and there is an equal number of alternative paths
between any pair of nodes. Then, we specifically investigate the effects of different network
topologies.

In Tab. 5.3, column nub denotes the upper bound on how many new candidates per flow the
planner may add at most to the existing candidates of that flow in Gc (P ′). Likewise, npath

is the upper bound on the number of candidate paths per flow. Both, nub and npath, can be
considered parameters of our planner which result in different trade-offs with regard to runtime
and schedulability. For example, for meshed networks, it is intuitive to expect better results
with more candidate paths at the price of longer runtimes (see Sec. 4.4.5), but we expect a
diminishing return with regard to the number of candidate paths due to shared sub-paths on
the k-shortest paths. Therefore, we use 3-5 candidate paths per flow, which already yielded a
very high schedulability in our evaluations (see Sec. 5.2.6).

Evaluation Results

Next, we present the evaluation results with a focus on “how fast can we obtain a new traffic
plan” (runtime), “how good are the solutions” in terms of schedulability (comparison), and
the effects of different network topologies. If not indicated otherwise, we used a desktop-grade
computer with Intel i7-10700K (8 cores) and 16GB RAM for the evaluations.

148 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

FIGURE 5.19
Total runtime per

planning round
(≈500 active flows).

0 5 10 15 20 25 30 35
round no.

0

10

20

30

40

ru
nt

im
e

[s
]

nub
 50.0
 100.0

Runtime For each combination of average active flows (500, 800) and per-flow candidate set
increment limit (nub: 50, 100), we evaluated 60 scenarios with regard to the runtime. Figures 5.19
and 5.20 show the results for 35 planning rounds.

We plot the total runtime for each planning round in Fig. 5.19 and Fig. 5.20A. The total
runtime includes the time to compute the candidate paths for new flows, all the operations on
the conflict graph (adding, locking, pinning, and removing candidate configurations), and the
GFH runtime. For these scenarios, we measured up to 9.072GB RAM usage by the planner.

In the first 10 (16) rounds, we always issued requests to add 50 flows (no flow-removals) to
initialize the conflict graph from scratch until ActiveF (P) contains ≈ 500 (800) flows. During
these initialization rounds, we observe an increasing total runtime. After the initialization
rounds, the planner receives requests to remove and add flows.

In the smaller scenarios with ≈500 flows (see Fig. 5.19), the runtime per round plateaus
(avg: 8.24 s±3.58 s for nub=50; 9.2 s±4.03 s for nub=100) after the initialization rounds. In
other words, here, it takes on average less than 10 s to exchange 25 active flows (and their
configurations) against 25 new flows (and the respective new configurations) even though the
planner can reconfigure ≈400 active flows. Here, we also have a quite “stable” conflict graph
size in the post-initialization rounds which results in the comparatively constant runtimes per
round.

In Fig. 5.20A, the runtimes for the bigger scenarios with ≈ 800 active flows are depicted.
Here, the runtime continues to grow after the 16 initialization rounds (max: 146.83 s for nub=50;
307.72 s for nub=100). This behavior can be explained with Fig. 5.20B where we plot for each
scenario how many new flows the planner rejected in each round. As discussed in Sec. 5.3.3, after
the first pass over the φ-π-space the planner adds more candidates for active flows if flows from
the previous request had to be rejected. This means we actually observe the desired expansion
of the solution-space since we have to fit ≈300 more flows in the same network as for the smaller
scenarios, which causes the planner to grow the conflict graph more aggressively—resulting in
longer runtimes per round.

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 149

0 5 10 15 20 25 30 35
round no.

0

50

100

150

200

250

300

ru
nt

im
e

[s
]

nub
 50.0
 100.0

A Total runtime per round.

0 5 10 15 20 25 30 35
round no.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

re

je
ct

ed
 fl

ow
s

nub
 50.0
 100.0

B Rejected new flows per round.

FIGURE 5.20 Runtimes and number of rejected flows per planning round for scenarios with ≈800
active flows.

The effects of varying nub can also be observed. If the planner can add up to 100 (additional)
candidates per flow in a round, it can admit more new flows but processing times increase.
In the scenarios with ≈800, flows the planner rejected on average 0.84 flows per request set
after the initialization rounds for nub = 50, whereas on average only 0.23 flows per round were
rejected for nub = 100.

Comparison Next, we compare defensive and offensive traffic planning with regard to schedu-
lability and show that new algorithms such as the GFH are required to make offensive traffic
planning feasible.

The evaluation scenarios vary with respect to how many active flows are on average perma-
nently pinned to their configuration. We increased the ratio of pinned flows from 0% to 100%
in 20%-increments and evaluated 40 scenarios for each round and pinning-setting. Here, there is
no QoS restriction on ∆t for each active flow that can be reconfigured.

In Fig. 5.21, we plot the cumulative number of flows rejected by the planner over 14 rounds.
By pinning every active flow (labeled w/o reconfiguration, permanently pinning 100% of flows
in Fig. 5.21), our approach performs defensive traffic planning, which results in a total of 62.5
rejected new flows on average. In comparison, if the planner performs offensive traffic planning,
less than half as many flows—30.4 flows on average—are rejected (labeled w/ reconfiguration,
permanently pinning 0% of flows in Fig. 5.21).

Since the GFH is a heuristic, the question arises of how “optimal” the GFH results are. To
answer this, we compare the GFH against a drop-in integer linear programming implementation,
which is given the same input as the GFH, namely, the conflict graph Gc (P ′) and the flow sets

150 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

0.0 2.5 5.0 7.5 10.0 12.5
round no.

0

20

40

60

80

 re
j.

re
qs

.

w/o reconf.

0.0 2.5 5.0 7.5 10.0 12.5
round no.

w/ reconf.

FIGURE 5.21 Defensive versus offensive planning: Cumulative rejected flows (thin lines: per
scenario, bold line: average).

ActiveF (P) and ReqF (P), and has to compute P ′ which optimizes Eq. (5.6). To make it clear,
this ILP, which is based on the max-cover algorithm from Sec. 5.2.4, does not encode the whole
traffic planning problem itself but requires the planner to encode the traffic planning constraints
in Gc (P ′).

For this comparison, we saved the conflict graph instances from the last four planning rounds
from Fig. 5.21—presumably the largest conflict graphs in each scenario—to disk, and solved
the corresponding ILP instances with a tool-chain using Julia [Bez+17], JuMP [Dun+17], and
Gurobi v9.1.1 [Gur21]. The ILP solver had a runtime limit of 5min (for comparison, the
maximal GFH runtime was 8.3 s). Due to the higher memory requirements (up to 56.694GB)
of the ILP toolchain, we used a server-grade computer with two AMD EPYC 7401 processors
(each 24 cores) and 256GB RAM, but both, GFH and ILP solver, were limited to using max.
16 threads as in the other evaluations.

Figure 5.22A plots for each planning round the relative difference in the number of rejected
new flows

∆rejects = rejects GFH− rejects ILP
new flows (total) (5.10)

over the number of candidate configurations in the conflict graph. If the ILP solver rejected fewer
flows, that is, computed a better result, we have ∆rejects > 0 and vice-versa. In Fig. 5.22A,
the ILP solver could provide better solutions for small conflict graphs, and, except for a few
outliers where GFH reverted to the result from the first phase, the advantage of the ILP over
GFH is small. Yet, once conflict graphs contain 30’000 or more candidate configurations, the
ILP solver frequently hits the time limit (for 0% pinned flows: GFH avg=4.9 s±1.8 s; ILP
avg=290.7 s±71.4 s) and would reject most new flows. This means even if we factor in the
performance benefits of the conflict graph modeling itself (see Sec. 5.2), the GFH algorithm

5.3 DYNAMIC QOS-AWARE TRAFFIC PLANNING WITH CONFLICT GRAPHS 151

0 20000 40000 60000 80000 100000 120000
total candidates in G(′)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

 re
je

ct
s

p.pin
0%
20%
40%
60%

80%
100%
ILP
timeout
compl.

A GFH vs. ILP: Relative difference wrt. rejected new flows
for varying ratio of permanently-pinned active flows and
5min runtime-limit.

0.0 0.2 0.4 0.6 0.8 1.0
permanent. pin.

0

5

10

15

20

25

30

ru
nt

im
e/

ro
un

d
[s

]

22.82

13.05

8.92

5.07
2.29

0.22

search. ′

constr. G(′)

B Runtimes per planning round for sce-
narios from Fig. 5.22A with GFH.

FIGURE 5.22 Comparison of schedulability and runtime for varying ratios of non-reconfigurable
(permanently-pinned) active flows.

pushes the boundaries for offensive traffic planning further out compared to state-of-the-art
exact approaches (in our case, integer linear programming) which are limited to either small
scenarios or a small fraction of reconfigurable flows (pinning 80% of all flows).

For reference, we also depict the average runtimes of the planner using the GFH for each
round of the scenarios from Fig. 5.22A for the different ratios of permanently pinned flows in
Fig. 5.22B (error-bars indicating the variance of the total runtime per round). Figure 5.22B
highlights the flexibility of our approach: if we “re-interpret” flow pinning as a tuning parameter,
for example, used for probabilistic pinning of new flows by the planner, we can cover the full
range between offensive planning with high schedulability and extremely fast defensive planning
(see Fig. 5.22B: max. 250ms for processing rounds with ≈250 active flows on the server-grade
machine).

Network Topology To investigate the effects of network topology and network size, we
generated scenarios for networks with 49 nodes and 81 nodes for different graph models, namely,
Waxman, Price, ring(n,m), and Erdős-Rényi, using graph generators from [Hag+08; Pei14].
We evaluated 60 scenarios for each size-topology combination with 500 active flows on average.
After the initialization, the planner tries adding 50 new flows and removing 50 active flows in
each planning round.

The average runtimes after initialization and warm-up rounds are plotted in Fig. 5.23. In
Fig. 5.24, we plot for all traffic planning rounds (including initialization and warm-up rounds)

152 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

FIGURE 5.23
Average runtime per planning round

for different network topologies. waxman
price ring

erdos
0

20

40

60

to
ta

l p
ro

ce
ss

. [
s] nodes

49
81

0.0 0.5 1.0 1.5 2.0 2.5
total candidates in G(′) 1e5

0

1

2

3

4

co
nf

lic
ts

 in
 G

(
′)

1e8
topology
waxman
price
ring
erdos

A Conflict graph (49 nodes).

0.0 0.5 1.0 1.5 2.0
total candidates in G(′) 1e5

0.0

0.5

1.0

1.5
co

nf
lic

ts
 in

 G
(

′)

1e8
topology
waxman
price
ring
erdos

B Conflict graph (81 nodes).

FIGURE 5.24 Impact of different network topologies on conflict-graph size. (Note the different
ranges of the axes.)

the number of conflicts (edges in Gc (P ′)) over the number of configurations (vertices in Gc (P ′))
of the conflict graphs constructed by the planner. We observe that a network with more nodes
does not per se result in higher runtimes or bigger conflict graphs suggesting that our approach
scales with the actual difficulty rather than just the network size.

Waxman networks with 49 nodes result in the largest conflict graph sizes overall and highest
average (60.5 s) and maximal (283.72 s) total runtime per round. In Price networks with only
one path between every two nodes, the planner cannot resolve conflicts via routing. Compared
to the other topologies, on average more than ten times as many new flows were rejected per
round (49 nodes: avg=10.4±5.12 rej./round; 81 nodes: avg=11.6±5.19 rej./round) in scenarios
with Price network topologies. In scenarios with Price networks, GFH often required all re-runs,
and we measured the third-highest total runtimes.

Evaluation Summary

Our evaluations show that the conflict graph approach can efficiently compute updated traffic
plans for scenarios with hundreds of active flows using the GFH algorithm. Our modeling of the

5.4 RELATED WORK 153

problem in combination with the GFH heuristic is efficient because we can reuse most of the
state which encodes the solution space from the previous step. It also makes offensive planning
computationally feasible compared to ILP-based approaches and thus allows to improve the
quality of new traffic plans in terms of the number of rejected flows.

Therefore, our approach is a step towards true online-reconfiguration capabilities in terms of
traffic planning. As discussed, true online-reconfiguration capabilities are not just a matter of
traffic planning, but we also need to deploy the new traffic plans to the running network using a
network control and configuration protocol stack with low processing latencies, too.

5.4 Related Work

In this section, we continue the discussion of our traffic planning contributions in the context of
the related work, which we started in Sec. 4.5.

We organize this discussion of related work using new categories that also address the
differences between our ILP-based approaches from the previous chapter and our conflict-graph-
based approaches from this chapter. Namely, we discuss our approaches and the related work in
terms of the traffic planning objectives, the dynamic aspects of traffic planning, and the traffic
planning method.

Objective In this category, we are concerned with the actual traffic planning objective: Is
traffic planning considered as a matter of pure constraint-satisfaction, that is, is it sufficient to
compute any feasible plan for all flows? Or is traffic planning an optimization problem where we
have to find the “best” possible traffic plan among the feasible traffic plans? And if yes, what is
the objective? For example, is it merely a relaxation of the constraint-satisfaction problem (if
you cannot find a feasible traffic plan for all flows, at least find a traffic plan for as many flows
as possible) [Nay+16]?

Or is the objective added “on top” of the constraint-satisfaction problem? We can find many
variants of the latter. For example, [Sch+17; Sch+20] formulate an objective to minimize
the maximal end-to-end delay. In [Cra+16b], an objective to minimize the number of queues
reserved for time-triggered flows is proposed, [Dür+16; Pah+19a] aim for short schedules, and
[Oli+18] describes an objective for weighted per-flow jitter minimization.

Our ILP-based approaches from Sections 4.2 and 4.3 primarily fall into the category of
constraint-satisfaction, but we have shown how to “add the optimization” of complemental flows
(see Sec. 4.4) on top to obtain an optimized traffic plan for all flows.

On the other hand, the conflict-graph-based approaches more or less implicitly incorporate
the objective to find traffic plans with as many flows as possible (for example, in the iterative
CGTP-algorithm, Sec. 5.2). For dynamic traffic planning with conflict graphs (see Sec. 5.3) the

154 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

objective Eq. (5.6) itself is a weighted maximization of the number of admitted flows—though
practically, we consider a solution only acceptable if it admits all active flows.

Dynamics We can differentiate between traffic planning for static or dynamic scenarios. We
addressed static planning in Sec. 4.2 – Sec. 5.2 and dynamic planning in Sec. 5.3. Out-of-the-
box, most static planning approaches cannot be used for dynamic traffic planning, since—by
nature—they do not account for old packets from a previous traffic plan which results in timing
violations and/or packet reorderings during reconfigurations.

In principle, incremental approaches [Raa+17; Nay+18a] can be used for static scenarios and
defensive planning in dynamic scenarios: “Freezing” the configurations of active flows ensures
that “nothing bad” happens when new flows are added because the configurations of active flows
from each previous step remain immutable for the future. However, defensive traffic planning
prohibits adjustments of any past decision that may turn out to have been sub-optimal with
respect to schedulability when facing new flows. This can result in low network utilization if a
flow, which has been added early on, obstructs new flows.

This could be overcome by offensive planning that allows reconfiguring active flows. Re-
configurations of time-triggered flows are addressed in [Li+19; Pan+21]. An enhancement for
two-phase network updates [Rei+12] with schedule-aware per-flow update times was presented
in [Li+19]. The proposed update mechanism aims to reduce packet loss—caused by missed
timings due to the reconfiguration—when transitioning from the current traffic plan to a given,
new traffic plan. While [Li+19] considers traffic planning as an external step, [Pan+21] presents
an ILP-based approach for the computation/modification of schedules which eliminates the
possibility of missed timings altogether. Two algorithms are described in [Pan+21] that both
allow packet-drop-free reconfigurations of active flows (offensive planning), by either computing
the new schedule directly, or modifying an otherwise obtained, given schedule.

In contrast, our approach from Sec. 5.3 considers routing and scheduling (albeit for fixed
topologies) when computing the new traffic plan. The existing approaches provide service
guarantees during a reconfiguration either by prohibiting reconfigurations (defensive planning)
or only in terms of packet drops. In contrast, our approach allows incorporating application-
specific per-flow bounds on the (temporary) QoS degradation in terms of jitter and packet
reorderings. That is, our approach enables offensive traffic planning for time-triggered flows
with inhomogeneous QoS requirements, for instance, with regard to jitter-tolerances.

Method The method used to compute a traffic plan is often inseparable from the actual
definition of the traffic planning problem. For example, once problem formulation or constraints
cannot be expressed with linear expressions alone, integer-linear programming becomes a kludge
at best. In any case, we can roughly identify two large “camps” with regard to the methods

5.5 DISCUSSION 155

that are used to compute traffic plans.
On one hand, we have constraint-programming approaches, most prominently ILP and

SMT/OMT (Optimization Modulo Theories). These constraint-programming approaches operate
at the core by mapping the traffic planning constraints to constraints in the respective constraint-
programming framework and then passing the constraint set to a general-purpose solver [Ste10;
Nay+16; Poz+16; Cra+16a; Sch+17; Smi+17; Ste+18].

Later approaches enhance this scheme with additional pre-processing steps or heuristics to
reduce the scope of the problem presented to the constraint-solver [Poz+16; Nay+18a; Nay+18b;
Ata+19; Jin+19]. Examples of this are the aforementioned topology pruning or candidate path
(pre-)computation. In some cases, this reduction will come at the cost of losing some solutions or
optimality, and in many cases, this loss is not quantified. This applies, for example to iterative
approaches which decompose the problem into sub-problems and then “freeze” the previously
computed results.

The other “camp” does not rely on general-purpose constraint-programming frameworks or
uses them only as fallback [Dür+16; Raa+17; Pah+19b; Sye+19]. Instead, the traffic plan is
computed by a custom algorithm. Greedy algorithms are often used and in many cases provide
great speed-ups, though this may be paid for by the (theoretic) sub-optimality of the discovered
solutions. Similar to heuristics that build on constraint-programming approaches, a prematurely
chosen, sub-optimal configuration for any individual flow can later on obstruct the placement of
other flows.

Usually, these heuristics and most constraint-programming approaches operate on a level of
abstraction which directly corresponds to the entities in the data plane such as individual links or
packet timings. In contrast, we can interpret our conflict graph as some kind of transformation
of the traffic-planning solution space which—via the notion of flow configurations—facilitates
searching for feasible (partial) traffic plans.

Our conflict-graph-based approaches bridge the gap between constraint-programming and
custom algorithms. With a complete conflict graph and a max-cover algorithm, it shares many
similarities with constraint-programming approaches in that it will find a traffic plan if it exists.
With an incomplete conflict graph that contains only a subset of candidate configurations for
each flow paired with the adapted Luby’s algorithm or the GFH, it is effectively a heuristic.
With regard to the method, our approaches cover the whole range—from exact, constraint-based
approaches to fast heuristics.

5.5 Discussion

In this chapter, we presented conflict-graph-based traffic planning approaches.
Viewed through the lens of the ILP-based approaches from Chap. 4), our conflict-graph

156 CHAPTER 5: TRAFFIC PLANNING WITH CONFLICT GRAPHS

modeling continues the idea of aggregating the traffic planning choices, which emerged in
Sec. 4.3. In Sec. 4.3, the candidate paths served as a proxy for the fine-grained route computation
constraints from Sec. 4.2 in the sense that a specific candidate path selection “toggled” the
remaining link variables. A flow configuration can be interpreted as a replacement of all the
individual scheduling and routing variables of a single flow. Aggregating all choices with regard
to one possible “placement” of a flow reduces the interactions between traffic planning decisions
for different flows to pairwise configuration conflicts under zero-queuing. This has the advantage
that we need no knowledge about the global traffic plan when identifying these conflicts.

This does not only have the potential to speed up the solving process, for example, by
parallelization, but allows to quickly obtain feasible solutions for a subset of the flows if the
solving process is aborted prematurely. We also need not build a conflict graph that covers or
considers the whole solution space, that is, all possible flow placements, right from the beginning.
Instead, we can start with a small conflict graph, built from a small set of initial configurations,
and continuously grow the graph until a solution is found. We also exploit this for dynamic
scenarios, for instance, with dynamically changing flow sets, see Sec. 5.3, where we continuously
adapt the conflict graph in response to the flow requests.

Another advantage of the conflict-graph-based approaches is the relative simplicity of the
conflict graph itself. From an algorithmic view, it is intuitively easier to develop a custom
heuristic to search independent colorful vertex sets in the conflict graph than it is to write an
efficient algorithm that tries to find a valid variable assignment for several thousand variables in
a constraint-based approach—which is supported by the performance of the GFH, see Sec. 5.3.7.

The ease of comprehension of the conflict-graph modeling facilitates enhancing the conflict-
graph-based traffic planning to incorporate additional consideration into the traffic planning
phase. In Sec. 5.3, for example, we added prioritization (active flows are more important). With
locking and pinning, we introduced two mechanisms that can be combined with different rules
for which configurations to lock/pin to implement other traffic-planning policies, too.

In summary, in conflict-graph-based approaches, we can manipulate the conflict graph and its
construction to control which flow placements are up for selection in the first place, and we can
encode our own strategies into algorithms to search for a traffic plan in the conflict graph, too.

157

6 Modeling Time-Triggered Service
Intermittence with Network Calculus

In the previous part of the thesis, we have presented different methods for the synthesis of traffic
plans for time-triggered flows where the traffic plans satisfy the desired end-to-end delay and
jitter bounds by design. In particular, these traffic plans rely on the fact that packet emissions
by traffic sources of time-triggered flows are synchronized to the reserved windows. In other
words, the schedule for when a source node emits a packet and when gates of the time-aware
shapers in the bridges open and close were computed jointly. In this case, it is not too difficult
to reason about the service offered to the (time-triggered) traffic, and zero-queuing simplifies it
even further.

But, for example, in converged networks, we may additionally have asynchronous traffic, for
instance, shaped real-time traffic as known from IEEE 802.1 AVB or rate-constrained traffic
in TTEthernet [Boy+16], which is also subject to real-time requirements. The bandwidth
available to these flows on a particular link varies over time according to the schedule of the
reserved windows for the time-triggered flows. In these scenarios, it is not so easy anymore
to obtain guarantees for the non-time-triggered traffic, since all data flows, including the
non-time-triggered, asynchronous flows, can be affected by time-aware shaping.

Generally speaking, bridges with time-aware shapers (see Chap. 3) are one example of network
elements that intermit service according to a repeating schedule. Here, we refer to the forwarding
and transmission of data as the service offered by the network elements (bridges). Service
intermittence refers to the effect that there is some service for some intervals, for example, when
the gate of the time-aware shaper is open, and no service for other intervals, for example, when
the gate of the time-aware shaper is closed. Since service intermittence is controlled by a cyclic
and deterministic schedule, we also speak of time-triggered service intermittence.

Time-triggered service intermittence in network elements is not always necessarily primarily
motivated by real-time constraints. Schedules for service intermittence can also be incorporated
into cyber-physical systems to increase their (power-)efficiency. Usually, we do not want to
offer service when it is not required, not demanded, or when it is useless. For instance, if we
can anticipate that there is negligible vehicular traffic outside rush hours, we could turn the
communication link of a traffic sensor off for these time periods. More generally, this motivation
can be found in applications where transmission schedules in the network elements are applied

158
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

with the goal of power-conservation in energy-constraint devices [Pal+13; He+18; Bec+19], for
instance, in wireless applications where data is buffered when the link is turned off. While for
these wireless applications with time-triggered transmission intervals microsecond timings are
not the primary objective, there are many scenarios that require bounds on the time of data
delivery [Fat+15] and the buffer usage, for example, to avoid packet loss.

Taken to its conclusion, we get the very generic class of network elements that are controlled
by a repeating schedule such that the schedule entries trigger intermittence or resumption of
the service process at specific times. Compared to the first part of this thesis, we adopt a
broader and more high-level view that abstracts different systems with time-triggered service
intermittence.

Instead of pursuing a “constructive” task where we have to synthesize a traffic plan, we rather
do the opposite in this chapter. We are given a system with time-triggered service intermission
(and its configuration) and a traffic description, and we want to analyze the service and service
guarantees offered in this scenario.

The service offered by these network elements does not only depend on the offered traffic load
and the properties of the network (for example, link bandwidth, cyclic schedule) but additionally
on the current time. Thus, these network elements, and by extension the whole network, exhibit
a time-varying behavior.

Since it is non-trivial to give deterministic, provable real-time guarantees for the asynchronous
traffic in these scenarios, formal frameworks are highly useful, because they provide a systematic
way to prove guarantees on the end-to-end delay and other metrics such as the maximum queue
length in network elements. Envelope-based approaches such as Network Calculus [Bou+01],
which describe data flows with cumulative functions and network elements with service curves,
are commonly used to analyze real-time systems. Thus, it is no surprise that Network Calculus
has already been applied not only to analyze networks implementing non-time-triggered QoS
mechanisms such as Weighted Fair Queuing of Integrated Services (IntServ) or TSN credit-based
shaping as used, for instance, in multimedia communication [Bou98; Die+12; De +14] but
also for time-triggered network elements with intermittent service (see Sec. 6.6). However, the
research, often targeted at very specific technologies, is predominantly considering scenarios
where the underlying service process ultimately offers constant-rate service, which means that
the data is forwarded with constant rates during service intervals.

But what happens if you abandon the assumption of service processes with ultimately
constant-rate service (for example, in case of wireless MIMO links where the number of active
antennas [IEE+18; IEE21b] is changed)? And how bad is it, to use time-invariant functions to
model time-variant systems?

In the following, we focus on the fundamental implications of modeling time-triggered network
elements with service intermittence and provide multiple service curve formulations to facilitate

6.1 NETWORK CALCULUS INTRODUCTION 159

the analysis in the Network Calculus framework.

6.1 Network Calculus Introduction

Deterministic Network Calculus [Bou96; Cru91] is a modeling framework to derive worst-case
bounds on performance metrics such as backlog and delay. One of the core concepts of Network
Calculus is the description of properties of the arrival processes by arrival curves and the
description of queuing network elements by service curves. Arrival curves and service curves are
cumulative, non-decreasing functions in

Ft.i. = {f : f(t) ≥ f(τ) ≥ 0, ∀t ≥ τ ≥ 0; else f(t) = 0} (6.1)

for time-invariant (t.i.) functions [Fid10], and respectively we have

Ft.v. = { f : f(s, t) ≥ 0,∀t ≥ s; else f(s, t) = 0

∧ ∀u ≤ v ≤ w : f(u, v) + f(v, w) = f(u,w) }
(6.2)

for time-variant (t.v.) functions [Bou14; Dan+13]. We consider a continuous time-domain with
(s and) t ∈ R.

Arrival curves indicate the accumulated amount of arriving traffic for a time interval. Con-
versely, service curves describe the accumulated amount of offered service for a time interval. In
the following, arrival curves and service curves are left-continuous in each time variable.

Network Calculus defines operations such as convolution and deconvolution (using min-
plus / max-plus algebra) on arrival and service curves and allows concatenating systems in a
way similar to common system theory [Bou+01].

We derive both, time-variant service curves and time-invariant service curves for time-triggered
network elements. The time-variant service curve can be expected to provide higher fidelity
regarding the modeled system. However, this comes at a price: a) evaluating properties of a
system with a time-variant description is more difficult (compare Equations (6.7) to (6.9) in
Sec. 6.1.4), and b) important algebraic properties are lost with time-variant analysis compared
to time-invariant analysis. Most prominently, the convolution operation is not commutative
anymore, which would simplify the analysis of multi-hop scenarios.

Moreover, regarding the literature, time-invariant Network Calculus has attracted far more
attention. This has the practical consequence that none of the major toolboxes and libraries for
Network Calculus (DiscoDNC [Bon+14], CyNC [Sch+07], RTC [Wan+06b], RTaW Pegase [Rea],
etc.) advertise support for time-variant formulations. The prevalence of time-invariant service
curves in the literature and in the tooling is one more reason to investigate time-invariant service
curves, too, and to compare them against time-variant service curves.

160
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

TABLE 6.1 Basic Network Calculus operations on Ft.i. /Ft.v..
operation time-invariant f, g ∈ Ft.i.

pointwise minimum ⊕ f ⊕ g(t) = inf [f(t), g(t)]
convolution ⊗ f ⊗ g(t) = inf0≤τ≤t [f(t− τ) + g(τ)]

left-deconvolution � f � g(t) = supτ≥0 [f(t+ τ)− g(τ)]+

operation time-variant f, g ∈ Ft.v.

pointwise minimum ⊕ f ⊕ g(s, t) = inf [f(s, t), g(s, t)]
convolution ⊗ f ⊗ g(s, t) = infs≤τ≤t [f(s, τ) + g(τ, t)]

left-deconvolution � f � g(s, t) = supτ≤s≤t [f(τ, t)− g(τ, s)]+

Next, we provide formal definitions for arrival curves and service curves, and the Network
Calculus operations.

6.1.1 Min-Plus Operations

Network Calculus uses the algebraic structure {F ,⊕,⊗} [Cha+99; Bac+01; Bou+01; Dan+13].
The basic operations on functions in F used in this section (see Tab. 6.1, with [x]+ = max(0, x))
comprise the pointwise-minimum ⊕, the convolution ⊗, and the left-deconvolution � [Cha+99;
Dan+13].

6.1.2 Arrival Curves

Assume that the cumulative arrivals at time t are given by A(t). Then the arrivals are constrained
by arrival curve α iff

∀s ≤ t : A(t)− A(s) ≤

α(t− s) α is time-invariant

α(s, t) α is time-variant
, (6.3)

or, alternatively, using the convolutionA(t) ≤ A⊗ α(t) time-invariant

At.v.(s, t) = [A(t)− A(s)]+ ≤ A⊗ α(s, t) time-variant
. (6.4)

6.1 NETWORK CALCULUS INTRODUCTION 161

6.1.3 Service Curves

Assume that the cumulative departures of a particular system are given by R(t). Then that
system offers a (simple) service curve β to the flow with arrivals A(t) iff

∀t ≥ 0 ∃s ≤ t : R(t)− A(s) ≥

β(t− s) β is time-invariant

β(s, t) β is time-variant
. (6.5)

An important, more restrictive type of service curve is the so-called strict service curve [Bou+09;
Bou+10]. A strict service curve has to satisfy

∀ backlogged intervals (s, t] : R(t) ≥ R(s) +

β(t− s) β is time-invariant

β(s, t) β is time-variant
. (6.6)

The strict service curve definition is related to the work-conserving property since it provides
service guarantees over every continuously backlogged time interval, that is, intervals where
continuously R(t) < A(t). In contrast, a system with the more general, simple service curve
might idle during such time intervals.

6.1.4 Deterministic Worst-Case Bounds

The goal of Network Calculus analysis is to calculate system properties such as worst-case
bounds on delay and the amount of backlog. Arrival curve and service curve are required to this
end (except for some special cases, such as the availability of minimum and maximum services
curves [Bou+01]). Given arrival curve α and service curve β, the maximum backlog (the biggest
amount of data being buffered in the system) [Fid10] can be computed by

backlog(α, β) ≤

α� β(0) α,β time-invariant

supt≥0 [α� β(t, t)] α,β time-variant
. (6.7)

The maximum backlog can be thought of as the maximal vertical distance between the arrival
curve constraining the arrivals in the system and the service curve of the system.

Equivalently, in the time-invariant case, the maximum virtual delay [Fid10] is given by

v.delay(α, β) ≤ inf [w ≥ 0 : α� β(−w) ≤ 0]

= inf

[
w ≥ 0 : sup

τ≥0
{α (τ)− β (τ + w)} ≤ 0

]
,

(6.8)

162
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

and in the time-variant case by

v.delay(α, β) ≤ sup
t≥0

[inf {w ≥ 0 : α� β(t+ w, t) ≤ 0}]

= sup
t≥0

[
inf

{
w ≥ 0 : sup

τ≤t+w
[α (τ, t)− β (τ, t+ w)] ≤ 0

}]
.

(6.9)

The maximum virtual delay can be visually interpreted as the maximal horizontal distance
between arrival curve and service curve, which is the maximal time needed for the value of the
departures to reach the same value as the arrivals [De +14]. In case of FIFO, that is, data is
serviced in the order of its arrival, the maximal virtual delay becomes the maximum waiting
time for data in the system.

6.2 Network Elements: System Models

Next, we will introduce the system models for the two different time-triggered network elements
with intermittent service (see Fig. 6.1). We will use them to highlight the fundamental principles
and capabilities of the different service curve approaches in Sec. 6.3. In the remainder of
this chapter, we use the fluid model where data can arrive and receive service in arbitrarily
sized quantities. Therefore, different from the first part of this thesis (Chap. 2 – Chap. 5),
packetization is ignored and data can arrive and receive service in arbitrarily sized quantities.
We assume initially empty systems with no prior arrivals before t = 0 and no queue overflow.

We focus on a single network element and defer the discussion regarding multi-hop scenarios
to Sec. 6.5. Nevertheless, the special case of a single network element can already be used to
model an idealized communication bus or a network where every host is directly attached to
one central bridge.

Data arriving at the network element is modeled by arrival process A with arbitrary, known
arrival curve α. We consider arrival process A externally given, that is, we assume that we have
no influence on arrival process A in the following. Data from arrival process A can be queued at
the network element. We assume that enqueuing and dequeuing at the network element occur
instantaneously. During times controlled by the time-triggered controller, service process S

(defined by βS) offers service to the arrivals of arrival process A. Cumulative departures at the
network element are denoted by R.

The service curve βS of the service process S (in isolation) is not to be confused with the
service curve β of the complete network element. The service curve β describes the service offered
to arrivals from arrival process A and depends on βS, the type of time-triggered mechanism,
and the schedule.

The time-triggered mechanism operates according to a cyclic schedule which contains entries

6.2 NETWORK ELEMENTS: SYSTEM MODELS 163

TABLE 6.2 Repeating schedule with cycle length tcycle.
Interval i: tenabling tdisabling

0 ter,0 tdr,0
1 ter,1 tdr,1

.

for the time instances when the controller enables the service process S to offer service to
the arrivals of arrival process A (enabling time) and the corresponding time instances when
the controller disables service process S from offering service to arrivals of arrival process A

(disabling time). To this end, the time-triggered mechanism queries the current time tcurr from
the clock of the network element. Before explaining the meaning of enabling and disabling for
the two types of network elements, we first specify the parameters of the repeating schedule
(see Tab. 6.2), with

ter,i := ith enabling time of S relative to the start of the cycle,
tdr,i := ith disabling time of S relative to the start of the cycle,
tcycle := period of the schedule (cycle length).

The number of enabled intervals per cycle is given by (imax + 1). The enabled intervals must
not overlap, and we require 0 ≤ ter,0 < tdr,0 < ter,1 and tdr,imax ≤ tcycle. Service process S is
enabled at tcurr if ∃i ∈ [0, imax] such that

(tcurr mod tcycle > ter,i)
∧

(tcurr mod tcycle ≤ tdr,i) (6.10)

and disabled otherwise.
Regarding the time-triggered mechanisms, we consider two cases (see Fig. 6.1) where enabling

and disabling of service process S are implemented differently.

6.2.1 Blocking

In the first case (Fig. 6.1A), there is an additional element—a gate—in between queue and
service process S. The service process S has a strict, time-invariant service curve βS and starts
operating, that is, is powered on at time t = 0 and runs continuously. Starting at each enabling
time, the gate controller opens the gate, which means that data in the queue is transparently
passed through to the service process S until the next disabling time. At each disabling time,
the gate controller closes the gate which means that the service process S is blocked from
accessing the arrivals of arrival process A until the next enabling time. We will refer to this
type of network element as a time-triggered network element with blocking. Note that the
service process S is only disabled from the perspective of the arrival process A. While the

164
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

gate controller
t1: pass
t2: block
. . .

Queue

β
βSA R

A Time-triggered blocking.

power controller
t1: on
t2: off
. . .

Queue

β
βSA R

B Time-triggered halt and restart.

FIGURE 6.1 Service curve β describes a composite network element comprised of a service process
S with service curve βS manipulated by a time-triggered mechanism.

service process is blocked for arrivals from A, the service process S could service data from other
arrival processes, that is, βS(τ) is the total amount of service the service process S has offered
up to time τ = t of which only the fraction inside enabled intervals is available to arrivals from
arrival process A, and t is the time in the domain of the network element. This behavior can,
for example, occur in the bridges with time-aware shaping from Chap. 3, where gates restrict
access of the different queues of an output port to the link.

6.2.2 Halt and Restart

In the second case (Fig. 6.1B), the service process S is manipulated directly by a so-called power
controller. At each enabling time, the power controller (re-)starts the service process S. If the
service process S is active, it offers the strict, time-invariant service curve βS to the arrivals
of arrival process A until the next disabling time when the power controller halts the service
process S. If the service process S is disabled, it offers no service at all. We will refer to this type
of network element as a time-triggered network element with halt-restart behavior. Here, βS has
only temporary meaning, because βS(τ) is the amount of service the service process S can offer
τ = t− tenabling time units into an enabled interval. Thus, in case of halt-restart behavior, time
instances where the service process S is restarted can be considered as renewal-points [Bec+15]
of the service process S.

6.3 Deriving Service Curves

After presenting the basic Network Calculus background and introducing the system models in
the previous sections, we derive time-variant service curves for time-triggered network elements
with intermittent service in Sec. 6.3.1. The time-invariant service curves are subsequently

6.3 DERIVING SERVICE CURVES 165

introduced in Sec. 6.3.2.
In the remaining sections, we will use the following notation: the corresponding index

in the cyclic schedule that belongs to the overall n-th enabled interval is given by ϕ(n) =

n mod (imax + 1). For each enabled interval n, we introduce the symbols

and
te,n = ter,ϕ(n)

td,n = tdr,ϕ(n)

}
+

⌊
n

imax + 1

⌋
· tcycle

where te,n is the start, and td,n is the end of the overall n-th enabled interval. In other words,
ter,i, tdr,i are relative to the beginning of a schedule cycle, whereas te,n, td,n are absolute times.

6.3.1 Time-Variant Service Curve

The service offered to incoming data in a certain time interval depends on the position of that time
interval on the time axis. This observation suggests using a time-variant formulation [Cha+99;
Cha+02].

Depending on the type of time-triggered network element (see Sec. 6.2), the time-variant
direct service curve is either given by the formula in Thm. 6.1 or Thm. 6.2.

THEOREM 6.1 (Time-Variant: Time-Triggered Blocking)
Let βS(t) be the time-invariant, strict service curve of the continuously running service
process S. In a time-triggered queuing system where access to this service process S is
blocked outside of enabled intervals according to a given repeating schedule, the time-variant
service curve is given by

β (s, t) =
∞∑
n=0

[βS (min (t, td,n))− βS (max (s, te,n))]
+ . (6.11)

PROOF It holds that β (s, t) ∈ Ft.v., since β (s, t) is the sum of f(t), f ∈ Ft.i.. Let A(t) and
R(t) be the arrival function and departure function, respectively. Considering an arbitrary
backlogged interval (s, t], we show that R(t)− A(s) ≥ β(s, t). We can distinguish the following
cases, starting with those cases where the interval intersects with at most one gate open interval,
before we cover the case where (s, t] intersects with multiple gate open intervals of the flow of
interest.

If no enabled interval is included in (s, t] at all, then for all enabled intervals before (s, t], we
have [βS(td,n)− βS(s)]

+ and, conversely, for all enabled intervals after (s, t], we have

[βS(t)− βS (te,n)]
+ = [βS (min (t, td,n))− βS (max (s, te,n))]

+ = 0.

166
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

FIGURE 6.2
Start or end of enabled in-

terval included in (s, t].
t = 0

n = 0

te,0 td,0

n = 1

te,1 td,1 tcycle

n = 2

te,2 = ter,0 + tcycle

s1 t1

βS(s1)

βS(td,0)

βS(td,0)− βS(ts1)

s2

t2

βS(te,2)

βS(t2)

βS(t2)− βS(te,2)

Since for (s, t] which do not intersect with any enabled interval min (t, td,n) ≤ max (s, te,n) and
βS ∈ Ft.i., R(t)− A(s) ≥ 0. Thus, enabled intervals not included in (s, t] contribute nothing to
β(s, t).

We need [·]+ in Eq. (6.11), since it is possible that βS (min (t, td,n))− βS (max (s, te,n)) < 0.
If the interval (s, t] starts in the enabled interval, but the enabled interval ends before t (see

enabled interval n = 0, (s1, t1] in Fig. 6.2), we have

R(t)− A(s) ≥ βS (td,n)− βS (s) .

In case, the interval (s, t] starts before the enabled interval but ends before the enabled
interval ends again (see enabled interval n = 2, (s2, t2] in Fig. 6.2), we have

R(t)− A(s) ≥ βS (t)− βS (te,n) .

If the enabled interval includes the interval (s, t] (see enabled interval n = 0, (s1, t1] in Fig. 6.3),
we have

R(t)− A(s) ≥ βS (t)− βS (s) .

If the interval (s, t] includes the enabled interval (see enabled interval n = 2, (s2, t2] in Fig. 6.3),
we have

R(t)− A(s) ≥ βS (td,n)− βS (te,n) .

If the interval (s, t] intersects with multiple enabled intervals (see Fig. 6.4, where (s, t] intersects
with three enabled intervals), we define ns = max {n : td,n ≤ s} + 1 the first enabled interval
intersecting with (s, t], likewise, the last intersecting interval is nt = min {n : te,n > t} − 1.
According to the behavior of the time-triggered element with blocking, the value of R increases
only when the service process S is enabled to offer service to the arrivals of A. For every

6.3 DERIVING SERVICE CURVES 167

FIGURE 6.3
Enabled interval con-

tains (s, t] or vice versa.
t = 0

n = 0

te,0 tc,0

n = 1

te,1 td,1 tcycle

n = 2

te,2 = ter,0 + tcycle

s1
t1

βS(s1)

βS(t1)

βS(t1)− βS(s1)

s2
t2

βS(te,2)

βS(td,2)

βS(tdr,0)− βS(ter,0)

FIGURE 6.4
Offered service over mul-

tiple enabled intervals.
t = 0

n = 0

te,0 td,0

n = 1

te,1 td,1 tcycle

n = 2

te,2 = ter,0 + tcycle

β (s, td,0) β (s, t)

β (te,1, td,1)

β (te,2, t)

n ∈ [ns, nt] the lower bound of the amount of departures (that is, arrivals which have received
service from S) is given by [βS (min (t, td,n))− βS (max (s, te,n))]

+, and the lower bound of
departures over the whole interval (s, t] is then given by accumulating the amount of service

R(t)− A(s) ≥
nt∑

n=ns

[βS (min (t, td,n))− βS (max (s, te,n))]
+

in the individual enabled intervals in [ns, nt]. Considering that

ns−1∑
n=0

[βS (min (t, td,n))− βS (max (s, te,n))]
+ = 0,

and
∞∑

n=nt+1

[βS (min (t, td,n))− βS (max (s, te,n))]
+ = 0,

we can write
R(t)− A(s) ≥

∞∑
n=0

[βS (min (t, td,n))− βS (max (s, te,n))]
+ ,

thus R(t)− A(s) ≥ β(s, t). �

168
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

FIGURE 6.5
Start or end of enabled in-

terval included in (s, t].
t = 0

n = 0

te,0 td,0

n = 1

te,1 td,1 tcycle

n = 2

te,2 = ter,0 + tcycle

s1 t1

βS (td,0 − s1)

s2 t2

βS (t2 − te,2)

THEOREM 6.2 (Time-Variant: Time-Triggered Halting and Restarting)
Let βS(t) be the time-invariant, strict service curve of a service process S. In a time-triggered
queuing system where service process S is restarted at the beginning of each enabled interval
and halted at the end of each enabled interval according to a given repeating schedule, the
time-variant service curve is given by

β (s, t) =
∞∑
n=0

βS (min (t, td,n)−max (s, te,n)) . (6.12)

PROOF We prove Thm. 6.2 analogously to Thm. 6.1. Again, it holds that β (s, t) ∈ Ft.v..
Considering an arbitrary backlogged interval (s, t], we show that R(t)−A(s) ≥ β(s, t) with A(t)

and R(t) the arrival function and departure function, respectively. We can distinguish the same
cases as before:

If no enabled interval is included in (s, t] at all, then for all enabled intervals before (s, t], we
have td,n − s ≤ 0. For all enabled intervals after (s, t], we have t− te,n ≤ 0. Therefore,

R(t)− A(s) ≥ βS (min (t, td,n)−max (s, te,n)) = 0,

since βS ∈ Ft.i..
If the interval (s, t] starts in the enabled interval, but the enabled interval ends before t (see

enabled interval n = 0, (s1, t1] in Fig. 6.5), we have

R(t)− A(s) ≥ βS (td,n − s) .

If the interval (s, t] starts before the enabled interval but ends before the enabled interval
ends again (see enabled interval n = 2, (s2, t2] in Fig. 6.5), we have

R(t)− A(s) ≥ βS (t− te,n) .

6.3 DERIVING SERVICE CURVES 169

FIGURE 6.6
Enabled interval con-

tains (s, t] or vice versa.
t = 0

n = 0

te,0 tc,0

n = 1

te,1 td,1 tcycle

n = 2

te,2 = ter,0 + tcycle

s1 t1

βS (t1 − s1)

s2
t2

βS (td,2 − te,2)

If the enabled interval includes the interval (s, t] (see enabled interval n = 0, (s1, t1] in Fig. 6.6),
we have

R(t)− A(s) ≥ βS (t− s) .

If the interval (s, t] includes the enabled interval (see enabled interval n = 2, (s2, t2] in Fig. 6.6),
we have

R(t)− A(s) ≥ βS (td,n − te,n) = βS
(
tdr,ϕ(n) − ter,ϕ(n)

)
.

If the interval (s, t] intersects multiple enabled intervals (see Fig. 6.4, where (s, t] (partially)
covers three enabled intervals), the argumentation is analogous to the proof of Thm. 6.1. The
main difference is that during each enabled interval n in (s, t] the service process S of the network
element with halt-restart can generate at least βS (min (t, td,n)−max (s, te,n)) units of departing
traffic. The lower bound of the total departures in any interval (s, t] is the accumulated amount
of the departures in the enabled intervals, hence

R(t)− A(s) ≥
∞∑
n=0

βS (min (t, td,n)−max (s, te,n)) = β(s, t).

�

In Eq. (6.11) and Eq. (6.12), respectively, the summands[βS (min (t, td,n))− βS (max (s, te,n))]
+ ,

βS (min (t, td,n)−max (s, te,n))

describe the service that can be offered by server S with service curve βS during the n-th enabled
interval in the time interval (s, t]. For βS(t) = [C · t]+ the two theorems yield the same service
curve β, since βS(t− s) = βS(t)− βS(s). Therefore, we will use this choice of βS in Figures 6.4
and 6.7 to illustrate the construction of β(s, t) for (s, t] overlapping more than one enabled
interval and the time-variant property for both cases.

170
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

FIGURE 6.7
Offered service, if we shift

the interval (s, t] from
Fig. 6.4 on the time-axis.

t = 0

n = 0

te,0 td,0

n = 1

te,1 td,1 tcycle

n = 2

te,2 = ter,0 + tcycle

β (s, td,0)

β (s, t)

β (te,1, td,1)
β (te,2, t)

We get the dashed curve depicted in Fig. 6.4 by evaluating β (s, t) with a fixed s and an
increasing value of t in s ≤ t ≤ s+∆trange. Shifting the whole interval (s, t] from Fig. 6.4 on
the time axis yields a differently shaped (not just shifted) service curve as shown in Fig. 6.7.

We can see that the static time-triggered scheduling results in a time-variant service curve,
even if βS is time-invariant since ∃δ for non-trivial schedules such that β(s, t) 6= β(s+ δ, t+ δ).
This means the service offered over intervals of equal length may be different.

We want to point out that in general, the service offered by time-triggered network elements
with blocking differs massively from time-triggered network elements with halt-restart even if
the service process S has the same service curve βS. For example, consider a service process S

with some kind of initialization “cost” such as some latency or lower service rate at t = 0. For
network elements with blocking, this initialization has to be accounted for only once, whereas
for network elements with halt-restart, this initialization has to be accounted for each enabled
interval. This necessitates the distinction between blocking behavior and halt-restart behavior
in general.

6.3.2 Time-Invariant Service Curves

After having developed formulations for the time-variant service curve, we are going to provide
two formulations for time-invariant service curves. Firstly, we use a leftover approach, and
secondly, we use a direct approach.

Leftover Service Curve with Instant Arrivals

The key idea of the leftover service curve involves the subtraction of the amount of service
that is offered to another arrival process Av (which might be an aggregate of multiple arrival
processes) from the total service offered to the arrival process A by the service process S. Thus,
arrival process A can receive only that amount of service from S that is “left-over” by Av (and
hence the name).

The leftover service approach is well-known in Network Calculus and has been used in [Zha+17;
Zha+18b] to model time-triggered blocking behavior. The particular leftover service curve

6.3 DERIVING SERVICE CURVES 171

FIGURE 6.8
Artificial (virtual) arrival

process Av occupies ser-
vice process S during dis-
abled intervals of the ac-

tual arrival process A.

βS

St
ri

ct
 P

ri
o

ri
ty

Av

A

high prio.

low prio.

R

approach we present here follows the principles of the approach presented in [Zha+17; Zha+18b].
However, we will show that, in general, the leftover service curve approach is not applicable to
time-triggered network elements with halt-restart (see Thm. 6.2).

For the leftover service curve approach, an additional (virtual) arrival process Av is constructed,
which is prioritized by the service process S over the arrival process A (see Fig. 6.8). The
arrivals of the (virtual) arrival process Av are scheduled according to the inverse schedule of the
network element. This means at each disabling time in the schedule of the network element
there are arrivals for Av. The amount of arrivals of the virtual arrival process Av is chosen to
occupy the service process S (at least) until the corresponding disabling time for arrival process
Av, which is equivalent to the next enabling time in the schedule of the network element for the
actual arrival process A. Thus, Av effectively disables the service process S from servicing any
data of arrival process A during the disabled intervals of the original schedule for arrivals from
arrival process A—simply by keeping the service process busy servicing the virtual arrivals.

To construct Av in accordance with our system model (see Sec. 6.2), we construct the arrival
curve for the arrival process Av from a set of intermediate arrival curves avimd,n. The intermediate
arrival curve

avimd,n(t) =
∞∑
k=n

β
(
tve,k, t

v
d,k

)
· 1{

t>tve,k

} (6.13)

with 1{t>T} = {1 : t > T ; 0 : otherwise} and

β
(
tve,k, t

v
d,k

)
with

tve,k = tver,ϕ(k)

tvd,k = tvdr,ϕ(k)

}
+

⌊
k

ivmax + 1

⌋
· tvcycle (6.14)

models the instantaneous arrival of the maximum amount of data from arrival process Av that
can receive service during the k-th enabled interval of the arrival process Av in the inverse
schedule, immediately at the beginning of the k-th enabled interval of the arrival process Av.
The first enabled interval to be included in each intermediate arrival curve avimd,n is the overall
n-th interval in the inverse schedule.

172
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

TABLE 6.3 Asymptotic behaviors for time-invariant service functions with bounded nv
max.

const. rate [Bou14] ∃σ, ρ ∈ R, ∀t : f(t) = ρt+ σ or ∀t : f(t) =∞
ultimately const. rate [Bou14] ∃T, ∃σ, ρ ∈ R, ∀t > T : f(t) = ρt+ σ or ∀t > T : f(t) =∞
pseudo-periodic [Bou14] ∃c,∃d ∈ R \ 0, ∀t : f(t+ d) = f(t) + c
ult. pseudo-periodic [Bou14] ∃T, ∃c,∃d ∈ R \ 0, ∀t > T : f(t+ d) = f(t) + c
accelerating ∀a, d ∈ R+, ∀t : f(t+ d)− f(t) ≤ f(t+ d+ a)− f(t+ a)
ult. accelerating ∃T, ∀a, d ∈ R+, ∀t > T : f(t+ d)− f(t) ≤ f(t+ d+ a)− f(t+ a)

We construct the artificial arrival curve for arrival process Av

αv(t) = sup
n∈[0,nv

max]

(
avimd,n

(
t+ tve,n

))
, (6.15)

by taking the supremum of the shifted intermediate arrival curves. To account for the worst-case
over all times when the service process S is disabled for the actual arrival process A, each
intermediate arrival curve used in the construction of the arrival curve for the (virtual) arrival
process Av is shifted such that the first arrival of data of the respective intermediate arrival
curve occurs at the time-origin.

This artificial arrival curve av thus emulates the effect of the service process S being not
available during disabled intervals. The arrival curve av for Av given in Eq. (6.15) is artificial in
the sense that it is introduced only for modeling purposes and does not necessarily reflect the
actual arrival curve of any other arrival process. In practice, there could be other traffic flows
at time-triggered network elements with blocking which use other queues and actually receive
service.

Note that if we do not know anything about the behavior of βS, then nv
max = ∞. For

nv
max =∞, it is infeasible to evaluate Eq. (6.15) computationally. However, if βS conforms to

one of the asymptotic behaviors1 given in Tab. 6.3, nv
max can be bounded by⌊

nv
max

ivmax + 1

⌋
· tvcycle ≥ T + tcycle. (6.16)

Subtracting the arrival curve αv(t) from the service curve of the service process βS yields the
leftover service curve

β(t) =

[
sup
s≤t

(βs(s)− αv(s))

]+
. (6.17)

1[Bou14] uses the term affine instead of constant-rate. In the related work, usually an affine or ultimately affine
service function is chosen for βS for which Eq. (6.17) can be used in practice since nv

max is finite.

6.3 DERIVING SERVICE CURVES 173

0 1 2 3 4 5 6 7 8 9 10 11

time

−2

0

2

4

6

8

10

da
ta

(a
cc

.)

new cycle

βS

αv

service curve β

βS − αv

shift. arrival envelope (tve,0 = 1)
shift. arrival envelope (tve,1 = 4)
shift. arrival envelope (tve,2 = 7)

FIGURE 6.9 Leftover service for cyclic schedule in Tab. 6.4.

TABLE 6.4 Example schedule and corresponding inverse schedule for Av with imax = ivmax = 2
and tcycle = tvcycle = 8.

Interval i:
0
1
2

Original Sched.
tenabling tdisabling

0 1
2 4
6 7

Inverse Sched. for Av

tvenabling tvdisabling

1 2
4 6
7 8

The [. . .]+ expression is necessary because due to the model with instantaneous arrivals, it can
happen that βs(t)− αv(t) /∈ Ft.i.

In Fig. 6.9, we plotted the shifted intermediate arrival curves, the artificial arrival curve, and
the leftover service curve using the exemplary cyclic schedules from Tab. 6.4. In Fig. 6.9, the
difference βs(t)− αv(t) (cf. the red dotted line) starts below zero and is not non-decreasing (cf.
decreases at t = 3, t = 5, and t = 8) and therefore βs(t)− αv(t) is not a function in Ft.i.

A proof for the leftover service curve has already been provided in [Zha+18b; Zha+17] and
can be similarly applied to our modified arrival curve for the (virtual) arrival process Av.

However, in the context of time-triggered network elements with intermittent service, the
leftover service curve approach from Eq. (6.17) is in general not applicable to time-triggered
network elements with halt-restart (see Thm. 6.2). Consider a scenario with βS(t) = {t2 :

174
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

t ≥ 0, 0 otherwise} and a schedule where disabled intervals and enabled intervals of length 1
alternate, starting with a disabled interval for arrival process A. Then, according to Eq. (6.14)
and Thm. 6.2, we get β

(
tve,k, t

v
d,k

)
= 1 per disabled interval of arrival process A. However, for

instance, for t = 3 the arrival process A will have been offered at least β(3) = βS(3) − 2 = 7

units of service according to Eq. (6.17).
This is a contradiction. Even in the best case, arrival process A will have observed only two

complete, enabled intervals in each of which it would have been offered 1 unit of service. While
this choice of βS(t) is quite contrived, with current wireless technology it is possible to vary
the bandwidth per time interval in a controlled way, for instance, by adjusting the number of
streams of MIMO links [IEE+18; IEE21b] or 5G resource blocks assigned to a connection.

Direct Service Curve

Here, we provide an alternative to the leftover service curve approach from the previous section
that yields a valid time-invariant service curve for time-triggered network elements with halt-
restart. For this approach, we again reuse the time-variant service curve, more precisely Eq. (6.11)
and Eq. (6.12), respectively, to “directly” construct a time-invariant service curve.

The main distinction between a time-variant service curve and a time-invariant service curve
is that the former describes the lower bound of offered service in any specific interval, whereas
the latter describes the lower bound of offered service irrespective of the position of the interval.
Therefore, the basic idea to derive the direct time-invariant service curve from the time-variant
service curve is to get the overall lower bound of offered service by considering all intervals of
the time-variant service curve.

THEOREM 6.3 (Time-Invariant: Time-Triggered Service Intermittence)
The time-invariant, direct service curve for a time-triggered network element is given by the
infimum

β(t) = inf
n∈[0,nmax]

β (0, t) n = 0

β ((toffset,n) , (t+ toffset,n)) n > 0

 , (6.18)

with toffset,n = tdr,ϕ(n)−1 +

⌊
n− 1

imax + 1

⌋
· tcycle (6.19)

where β(s, t) is the time-variant, direct service curve for the time-triggered network element
with given repeating schedule and service process S with service curve βS. For time-triggered
network elements with halt-restart (see Eq. (6.12)), nmax can be set to imax + 1, since in all
cycles the same amount of service is being offered. For time-triggered network elements with
blocking (see Eq. (6.11)), we have nmax =∞ in general.

6.3 DERIVING SERVICE CURVES 175

0 1 2 4 6 7 8 9 10 12

time

0

1

2

3

4

5

6

da
ta

(a
cc

.)

new cycle

shift. serv. envelope, (t = 0)
shift. serv. envelope, (td,0 = 1)
shift. serv. envelope, (td,1 = 4)
shift. serv. envelope, (td,2 = 7)
aggregate service curve β

FIGURE 6.10 Direct, time-invariant service curve for the cyclic schedule from Tab. 6.4.

PROOF Recalling the definition of the service curves from Sec. 6.1.3, the infimum of offered
service in any backlogged interval of length t equals the value of the time-invariant service curve
at time t. Due to the cyclic properties of the time-triggered mechanisms, this lower bound can
be found by evaluating the time-variant direct service curve β(s, s+ t) for nmax intervals with
length t using properly chosen starting points s. If the starting point s of the interval with
length t for which we evaluate the time-variant service curve β(s, s + t) is equal to the time
when an enabled interval has just ended, no service is offered until the next enabled interval.
This is potentially a worst-case. As an intermediate step, we define the intermediate service
curves

bimd,n(t) =

β (0, t) n = 0

β ((toffset,n) , (t+ toffset,n)) n > 0
. (6.20)

The values of bimd,n(t) are obtained by evaluating β(s, t) for a fixed s starting at the disabling
times of the different enabled intervals n. To make the step from the intermediate service curves
to the time-invariant service curve, each intermediate service curve bimd,n(t) is first shifted in the
time domain (see Fig. 6.10) to the left by the distance of the last disabling time before te,n from
the origin. In the second step, we apply the infimum over all shifted intermediate service curves.
Thus, given arrival function A(t) and departure function R(t), R(t) ≥ A(s) + β(t− s). �

Note that for network elements where the service process S gets blocked according to the
cyclic schedule (see Thm. 6.1) this service curve is again infeasible to evaluate computationally
since nmax =∞. But for asymptotic behaviors of βS as defined in Tab. 6.3, nmax can be bounded

176
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

to a finite value similarly as in the leftover service curve approach, see Eq. (6.16).
The basic idea of taking the lower bound of several intermediate service curves can be recovered

from [Zha+18a], which considers the special case where the intermediate service curves are
derived from the traditional TDMA service curve with constant-rate service.

In Fig. 6.10, we illustrate the construction of the direct, time-invariant service curve for the
schedule from Tab. 6.4. Fig. 6.10 already indicates that the cost for reducing the bivariate
time-variant service curve function to a univariate time-invariant service curve is an under-
approximation of the offered service due to the inf-term in Eq. (6.18).

6.4 Empirical Evaluation

Here, we investigate the difference between time-variant and time-invariant service curves with
respect to the underestimation of offered service. We think this aspect is worth exploring
because both—time-variant and time-invariant Network Calculus—have their own merits and
drawbacks. Since the derivation of the time-invariant service curves (see Eq. (6.17)-Eq. (6.18))
involves the combinatorial problem of finding extrema of the respective intermediate curves, we
use a numerical approach to assess the impact of the schedule on the difference between the
time-variant and time-invariant service curves for the time-triggered network elements.

Since service processes with ultimately constant-rate service are used the most often, we use
the most simple service curve βS = t with constant-rate behavior for the service process S of
the time-triggered network elements to figure out “how bad it is, to use time-invariant functions
to model time-variant systems”, focusing on the tightness of the worst-case bounds. Before
continuing, we explain the performance metrics, which we use for the comparison of the service
curve formulations.

6.4.1 Arrival-Curve-Oblivious Metrics

Since service curves can be interpreted as lower bounds on the actually offered service, the less
under-approximation of offered service a service curve exhibits, the less worst-case bounds on
backlog and delay are overestimated. Assume service curve βa and service curve βb are both
supposed to model the same system. We consider service curve βb more pessimistic than service
curve βa if βa exceeds βb for some time, and βa never rises above βb. More precisely, βb is more
pessimistic than βa if∀t : βb(t) ≤ βa(t) and ∃t : βb(t) < βa(t) (time-invariant)

∀s, t : βb(s, t) ≤ βa(s, t) and ∃s, t : βb(s, t) < βa(s, t) (time-variant)
. (6.21)

The service curve can be regarded as means to describe the system, whereas the arrival curve

6.4 EMPIRICAL EVALUATION 177

FIGURE 6.11
Different values of offered

service resulting from
service curve βa and ser-

vice curve βb starting
at time t1 have no im-

pact on worst-case back-
log and delay bounds. time

data
service curve βa

service curve βb

t1

arrival curve

v.delay(α, βa) = v.delay(α, βb)

ba
ck

lo
g(
α
,β

a
)

=
ba

ck
lo

g(
α
,β

b
)

is foremost a description of the arriving data traffic. The definition of the arrival curve is tied
to a specific application and network scenario and is not in our scope here. However, the shape
of the arrival curve determines how much the different ways of modeling the service impact the
computed delay and backlog bounds:

For the given arrival curve in Fig. 6.11, the maximum delay and backlog are the same for
both service curves even though service curve βb under-approximates the offered service starting
at time t1 more than βa.

Figure 6.12 depicts an example where v.delay(α, βb)− v.delay(α, βa) = ∆h. In this scenario,
the largest horizontal distance between the two service curves is the difference in the derived
worst-case delay and can be computed with the equations for the virtual delay (Equations (6.8)
and (6.9)), replacing the actual arrival curve α with the less pessimistic service curve βa, and β

with the more pessimistic service curve βb, that is,

∆h = v.delay(βa, βb). (6.22)

If, for example, a networked application requires that the worst-case (virtual) delay is less than
a certain value (indicated by the dashed arrow in Fig. 6.12), we might come to the conclusion
that this requirement is not met if we use the more pessimistic modeling that results in βb,
whereas the less pessimistic modeling confirms that the worst-case (virtual) delay is actually
less than what is maximally allowed for this application. This means, here, the more pessimistic
modeling might result in unnecessary modifications of the system to address this apparent delay
requirement violation.

Analogously, we have backlog(α, βb)− backlog(α, βa) = ∆v in Fig. 6.13. If we use βb instead
of βa, then we overestimate the worst-case backlog of the system by ∆v. In this case we compute

178
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

FIGURE 6.12
Different values of offered
service resulting from ser-
vice curve βa and service
curve βb starting at time
t1 fully affect the worst-

case virtual delay bounds. time

data
service curve βa

service curve βb

t1

arrival curve

v.delay(α, βa)

max. allowed

∆h

FIGURE 6.13
Different values of offered

service resulting from
service curve βa and ser-

vice curve βb starting
at time t1 affect worst-

case backlog bounds. time

data service curve βb

service curve βa

t1

arrival curve

ba
ck

lo
g(
α
,β

a
)

∆v

the difference in the derived worst-case backlog with the backlog equation (Eq. (6.7)), replacing
α with the less pessimistic service βa curve and β with the more pessimistic service curve βb,
that is,

∆v = backlog(βa, βb). (6.23)

Similarly, depending on the arrival curve there exist scenarios where the maximum delay and
backlog are equal for both service curves even though service curve βb is more pessimistic than
service curve βa. Using ∆h and ∆v, we can express the possible difference of the delay and
backlog bounds of two service curves in absence of any specific arrival curve. Therefore, our
evaluation is not subject to a particularly “good” or “bad” choice of the arrival curve or limited
to a specific scenario.

6.4 EMPIRICAL EVALUATION 179

6.4.2 Results

With the ∆h and ∆v metric, we compare the following two combinations of pairs of service
curves that can be mapped to the two types of network elements:

Time-triggered blocking We compare the time-variant service curve from Eq. (6.11) to the
time-invariant leftover service curve from Eq. (6.17).

Time-triggered halt-restart We compare the time-variant service curve from Eq. (6.12) to the
time-invariant direct service curve from Eq. (6.18).

Equation (6.18) can also be used for time-triggered network elements with blocking [Zha+18a].
Nevertheless, we use the network element types to label the combinations throughout this section.
To compare a time-variant service curve with a time-invariant service curve, we artificially
extend each time-invariant service curve to a time-variant function βpseudo t.v.(s, t) = βt.i(t− s).
The evaluation of ∆h and ∆v is done as described previously with the time-variant versions of
the equations for backlog bound (Eq. (6.7)) and virtual delay bound (Eq. (6.9)). Considering the
derivation of the time-invariant service curve formulations for both types of network elements,
the time-invariant service curves are either equally or more pessimistic than the time-variant
service curves (see Figures 6.11 to 6.13: βa equals the time-variant service curve, βb equals the
time-invariant service curve).

We used our own prototype implementation of Network Calculus operations in Python for the
evaluations in this section. For the computation of ∆h and ∆v, we apply a time discretization
with 100 steps per time unit and evaluate the service curve functions with randomly created
schedules with a granularity of one time unit. The service curves are evaluated over a window
of length tcycle since the offered service per cycle is equal for all service curves for our choice of
βS = t.

Schedules with Varying Number of Enabled Intervals of Random Length

The schedules for the evaluations presented in Figures 6.14A and 6.14B are created by randomly
drawing the length of the enabled intervals and disabled intervals from the discrete range [1, 100]

with uniform probability. The cycle time is set to the sum of the lengths of the enabled intervals
and disabled intervals.

The number of enabled intervals ranges from 2 to 20, and we evaluate 20 unique schedules for
each number of enabled intervals and each type of network element. Due to the random length
of the individual enabled intervals, it is not meaningful to interpret the absolute values of ∆h

and ∆v. Therefore, we normalize ∆h to the average interval length per schedule. Analogously,
we normalize ∆v to the amount of data that can be served in the average schedule interval.
This normalization is applied per schedule.

180
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

2 3 4 5 6 8 9 10 12 14 17 20
Number of enabled intervals

0

2

4

6

8

10

12

∆
h

/(
av

g.
in

te
rv

al
len

gt
h)

Comparison
halt-restart: t.v. vs. t.i. direct
blocking: t.v. vs. t.i. leftover

A ∆h relative to average schedule interval length:
different imax.

2 3 4 5 6 8 9 10 12 14 17 20
Number of enabled intervals

0

1

2

3

4

5

6

∆
v
/(
C
·(a

vg
.

in
te

rv
al

len
gt

h)
)

Comparison
halt-restart: t.v. vs. t.i. direct
blocking: t.v. vs. t.i. leftover

B ∆v relative to data transmittable in the average
schedule interval: different imax.

FIGURE 6.14 Evaluation for schedules with enabled intervals and disabled intervals randomly
drawn from [1, 100].

In both figures (Figures 6.14A and 6.14B) we can observe that overall the difference—the
normalized values of ∆h and ∆v—between the time-variant and time-invariant service curve
increases with the number of entries of the cyclic schedule. For the evaluated schedules, ∆h is
on average bigger than the size of an average interval. The outliers in Fig. 6.14A where ∆h

exceeds the average interval multiple times are from schedules where the enabled intervals are
shorter than the difference of the lengths of the disabled intervals.

Thus, the time-invariant service curves can possibly lead to over-estimating the worst-case
delay in the order of multiple interval lengths. The different modeling approaches have a larger
impact on ∆h than on ∆v because here all service curves have the same slope in the enabled
intervals, which is determined by βS.

Schedules with Varying Ratio of Enabled Intervals to Cycle Time

While the evaluations in the previous section used random schedules where only the number
of schedule entries is fixed, we now fix the percentage pe.d. of the cycle time when the service
process is enabled. To be exact, we create 20 unique schedules per pe.d. =

∑
i(tdr,i − ter,i)/tcycle

with pe.d. ∈ {0.1, 0.2, 0.4, 0.8}, each with tcycle = 400 and 10 enabled intervals.
The results are presented in Fig. 6.15A and show that the mean of ∆h reduces with increasing

pe.d.. This means the less time the enabled intervals take up per cycle, the bigger the benefit
of employing the time-variant service curve instead of the time-invariant service curve. The
behavior shown in Fig. 6.15A supports the observation from the evaluation with random interval
length in the previous section that the time-invariant approaches perform worse if the schedule
consists of long disabled intervals with short interspersed enabled intervals such as pe.d. = 0.1.

6.4 EMPIRICAL EVALUATION 181

FIGURE 6.15
Evaluation for random

schedules with differ-
ent creation schemes.

0.1 0.2 0.4 0.8
pe.d.

50

100

150

200

250

300

350

∆
h

h.r.: t.v.-t.i. dir.
bl.: t.v.-t.i. l.o.

A ∆h for schedules with different per-
cycle enabled interval ratio.

BLV BHV

Distribution

125

150

175

200

225

250

275

300

∆
h

h.r.: t.v.-t.i. dir.
bl.: t.v.-t.i. l.o.

B ∆h for schedules with differ-
ent interval-length variance.

Schedules with Equal Mean Interval Length and Varying Variance of the Interval
Lengths

To evaluate the effect of the variance of the enabled intervals, we compute ∆h for schedules
where all interval lengths are drawn from one of the two binomial distributions, BHV (N =

1000, p = 0.1), or BLV (N = 125, p = 0.8). The parameters are chosen such that the interval
lengths have equal mean value µHV = µLV = 100 but different variance σ2

HV = 90 and σ2
LV = 20.

Effectively, BHV yields schedules with 4.5 times higher variance of the interval lengths compared
to BLV . Each schedule comprises 20 enabled intervals for each gate, and we evaluate 16 schedules
per configuration.

The results are shown in Fig. 6.15B. The values of ∆h are much higher for the data sets
with higher variance of the interval lengths. Therefore, we conclude that not only the length of
the schedule intervals but also the variance of the schedule intervals influences the differences
between the service curves.

6.4.3 Summary of the Evaluation

In all of our evaluations, the time-invariant service curve approaches can lead to vast overestima-
tions of the worst-case delay bounds and the worst-case backlog bounds. The more entries the
cyclic schedule contains and the more the interval lengths vary, the stronger can the difference
with regards to the worst-case bounds emerge in the analysis of a system. This can be attributed
to the construction of the time-invariant service curves where a large variance of the schedule
intervals can increase the under-approximation of offered service (see Figures 6.9 and 6.10).

This is intuitive to see if we look at the extreme case where all schedule intervals have the same
length. Then the variance of the lengths of the schedule intervals is zero, and the schedule can be

182
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

reduced to a schedule with just one enabled interval and a cycle length of two enabled intervals.
In this case, the difference between the time-variant and the time-invariant service curve is
limited to one interval length which is much smaller than the values observed in Figures 6.14
and 6.15.

In the evaluations, the overall difference between the time-variant service curve and the
time-invariant service curve for the time-triggered elements with blocking is larger than the
difference between the time-variant service curve and the time-invariant service curve for the
time-triggered elements with halt-restart. This is caused by the modeling with instantaneous
arrivals of the data (see Eq. (6.13)) that emulate the disabled intervals for the actual arrival
process A in the construction of the time-invariant leftover service curve. The instantaneous
arrivals can result in service being attributed to the virtual arrival process Av too early. Due to
our particular choice of βS = t, which is less affected by the cyclic schedule compared to other
service curves (for example, rate-latency, where latency ≥ interval length), we expect these
effects to be even more pronounced for most other service processes.

6.5 Extension to Multi-Hop?

“In theory”, Network Calculus already provides the means to evaluate multi-hop scenarios,
because we can compute the service curve of a series of network elements with β1 ⊗ β2 ⊗ . . .

(βx being the single-hop service curve of the x-th network element). However, in practice, an
analytic (symbolic) approach is required to evaluate expressions with multiple steps or operands
unless the expression can be computed by pointwise evaluation of the operands. This is due
to the search for extrema (inf, sup) over large time intervals as required for operations such as
⊗ which, if no analytic knowledge can be exploited, becomes computationally very expensive,
effectively limiting a numerical approach to a single hop.

While for time-invariant Network Calculus (restricted to piecewise-linear, ultimately pseudo-
periodic functions), at least the algorithms are published [Bou14] research yet has to provide
similarly powerful algorithms for time-variant Network Calculus to make the evaluation of
multi-hop scenarios feasible.

6.6 Related Work

Network Calculus has been applied to some time-triggered network elements with intermittent
service. TDMA systems have been targeted in [Wan+06a; Gol+07; Kha+14]. In [Wan+06a;
Gol+07], insights from the Network Calculus analysis of a TDMA system (distributed embedded
system with bus-interconnection [Wan+06a], wireless sensor network [Gol+07]) are used as
input for the optimization of the TDMA schedule. In [Kha+14], the tightness of worst-case

6.7 SUMMARY 183

bounds is improved, taking into account various scheduling policies and packetization of data.
More recently, Ethernet-based real-time networks (TTEthernet, IEEE 802.1 TSN) have been

subject to Network Calculus analysis [Zha+17; Zha+18a; Zha+18b]. Concerning the analysis
of Ethernet-based real-time networks, the goal is to derive worst-case bounds for the traffic
factoring in the impact of various, implementation-specific integration effects. For example,
for the analysis of IEEE 802.1 TSN networks, the integration effects of Credit-based Shapers,
Time-aware Shapers, and Frame-preemption are considered in [Zha+18b], and in [Zha+18a] the
combination of Time-aware Shapers, Length-aware Scheduling, and strict-priority frame-selection
policy is considered.

All of the work above has in common that the service curve formulations presented in
these papers assume one service interval per cycle and all of the service curve formulations
are time-invariant, and can—eventually—be traced back to a peak-rate service process with
constant service rate. Besides explicitly anticipating more intricate schedules with multiple
service intervals per cycle in our service curve formulations, we show that these approaches are
not sufficient for service curves for time-triggered network elements with intermittent service
processes with ultimately non-constant service rate.

A different approach is pursued in [Bec+19] where stochastic, time-variant Network Calculus
is combined with a measurement-based approach to model cellular sleep scheduling. Service
intermittence due to “sleeping” is considered a random process in [Bec+19], whereas we assume
a repeating, deterministic schedule for service intermittence. In [Bec+15; Bec+19], also the
notion of regenerative service processes, where the service process is restarted at regeneration
points, is explicitly mentioned. While we started with time-variant service curve formulations
(albeit using deterministic Network Calculus with cyclic schedules), we covered systems with
and without “restarting” service processes and compared them to time-invariant service curve
formulations.

6.7 Summary

In this chapter, we investigated service curves for network elements with service intermittence
and resumption triggered at times derived from a cyclic schedule. We identified two archetypes
of such network elements, namely, time-triggered network elements with blocking, and time-
triggered network elements with halt-restart behavior.

The type of the network element and the service curve are tightly coupled. Therefore, we
presented distinct time-variant formulations for each type of time-triggered network element
and also showed how to obtain the respective time-invariant service curves. We show that for
a generic service process S, the computation of the actual values of the time-invariant service
curve of the network element might involve evaluating an arbitrary number of expressions. In

184
CHAPTER 6: MODELING TIME-TRIGGERED SERVICE INTERMITTENCE WITH

NETWORK CALCULUS

our numerical evaluations, we observed that the time-invariant service curves result in large
over-estimations of the worst-case bounds compared to the time-variant service curve formulation
and we identified influencing factors.

Ultimately, our findings highlight some challenges for analyzing time-triggered network
elements with intermittent service with NC: time-invariant service curves suffer from under-
approximation when compared to the time-variant service curve and, depending on βS, might
even be infeasible to evaluate computationally. Time-variant service curves offer tighter bounds,
but their use, for example, for large multi-hop scenarios, is impeded by the lack of efficient
algorithms for time-variant Network Calculus.

185

7 Conclusion

In this thesis, we have presented different methods for traffic planning—considering scheduling
and routing—for time-triggered flows in the first part of this thesis (Chap. 2 – Chap. 5), and we
have developed service curves for network elements with time-triggered service intermittence to
facilitate the analysis of complex networking scenarios within the Network Calculus framework
in the second part of this thesis (Chap. 6).

7.1 Summary

In more detail: We have presented an ILP formulation for joint scheduling and route computation
in Sec. 4.2. Traffic planning instances where the number of flows and the number of nodes in the
network are in the double-digit range, respectively, result in ILPs with millions of constraints
and variables. Despite the NP-hardness of the problem, these problem instances can often be
solved within reasonable time (seconds to hours) with state-of-the-art equipment.

Our second ILP formulation for joint scheduling and path selection (see Sec. 4.3) uses candidate
paths and represents the reserved window in terms of discrete, occupied cells in the transmission
cycle. Restricting the set of pre-computed candidate paths can be used to influence the size of
the ILP instances and thereby allows trading off between solver runtime and coverage of the
solution space.

We introduced the concept of complemental flows for applications in converged networks
and extended our ILP formulations to jointly compute optimized routes and schedules for
applications with complemental flows in Sec. 4.4. These approaches can be used, for example,
for better placement of complemental flows in the network compared to approaches that treat
the time-triggered part and then non-time-triggered traffic part separately even with limited
solver runtime.

Then we proceeded from a method relying on constraint-programming (ILP) to a conflict-
graph-based approach. We presented an approach for solving the traffic planning problem for
time-triggered traffic in data networks with conflict graphs in Sections 5.1 and 5.2. We explained
how to construct a conflict graph for a given traffic planning problem, and we showed how to
solve the traffic planning problem by finding independent vertex sets which cover all flows. With
the conflict-graph-based approach, it is comparably cheap to get feasible (partial) solutions,

186 CHAPTER 7: CONCLUSION

since there exist efficient algorithms for finding independent sets even in large graphs. We
presented a proof-of-concept implementation for the conflict-graph-based approach.

We extended the conflict-graph approach for scenarios with dynamic changes in the flow set.
To this end, we presented an approach for offensive dynamic traffic planning, which allows
reconfiguring active flows to achieve better network utilization in Sec. 5.3. This dynamic traffic
planning approach allows us to quantify and control the QoS degradation a flow may suffer
during such reconfigurations.

Finally, we investigated service curves for network elements with service intermittence and
resumption triggered by a cyclic schedule in Chap. 6. We derived time-variant and time-invariant
service-curve formulations for the different types of network elements with time-triggered
service intermittence. These service curves can be interpreted as descriptions of the system
characteristics. We evaluated the different service curve formulations numerically, using a traffic
independent method that allows a more general comparison of the pessimism caused by the
different modeling. In our evaluations, we observed that the time-invariant service curves can
result in large over-estimations of the worst-case bounds compared to the time-variant service
curves.

7.2 Outlook

There are two main arcs along which our work on the traffic planning problem from the first
part of this thesis (Chap. 2 – Chap. 5) could be extended: improving the methods for traffic
planning and extending the traffic planning problem itself.

Improving the methods for traffic planning is especially promising for the conflict-graph
approaches. Interesting directions for future work include investigating memory-access optimized
conflict-graph data structures which take into account the dynamic nature of the conflict graph,
meta-heuristics that exploit the conflict-graph properties as well as different strategies for the
conflict-graph growth.

Developing new exact or approximate algorithms for the maximum colorful independent
vertex set problem in the conflict graph is interesting, too. Here, it is especially interesting to
investigate algorithms that can be aborted at any time and still yield a valid partial solution,
and algorithms for dynamic graph structures which can efficiently exploit the changes in the
graph and do not require a complete re-execution.

Another interesting problem in the context of conflict graphs is the question of how to compute
optimal traffic plans. This requires us to think about how to formulate an objective in terms of
flow configurations, too.

When thinking about the traffic planning problem itself, there is a multitude of possible
extensions. We could account for artifacts such as synchronization errors, non-constant delays,

7.2 OUTLOOK 187

etc., which could be mitigated by additional safety margins in the reservation windows. Failures
of links and nodes may require us to compute traffic plans with in-built redundancy and add
additional requirements on the update protocol for dynamic traffic planning. Relaxations of
the zero-queuing assumption will also add new challenges to the traffic planning process, not
only with regard to the quality of service guarantees but also with regard to the representation
of buffered packets in a feasible way. Finally, an additional degree of freedom can be gained
by allowing for more dynamics in the traffic plan, for example, dynamic routing with different
packets of an application being forwarded along different paths depending on the current time.
Here, it will be interesting how to make traffic planning with these additional degrees of freedom
computationally tractable.

It would be also interesting to tie the Network Calculus modeling from Chap. 6 to the
traffic planning itself, for example, in an extension to our work on optimized traffic plans for
complemental flows. Given that time-variant service curves offer tighter bounds, but their use,
for example, for large multi-hop scenarios, is hampered due to the lack of efficient algorithms
for time-variant Network Calculus the development of efficient computational methods for
time-variant Network Calculus operations is well-motivated, too.

During the course of our work, we also often encountered a seemingly fundamental challenge
in networking with regards to the three properties: quality (of the communication service),
utilization (of the network resources), and dynamics (of the traffic). Analogously to other
results for distributed systems, this insinuates the formulation of the QUD-conjecture: We can
optimize networking designs for any two of the three properties quality of service, resource
utilization, and traffic dynamics, at the cost of the respective third property. We think that
expressing this conjecture in more concrete terms and trying to prove or disprove it can result
in interesting insights for the design of future communication networks.

188

189

A Appendix

A.1 Joint Scheduling and Route Computation

A.1.1 Plain ILP Formulation

To express implications in the form

if (lin. constraint 1) then (lin. constraint 2) (A.1)

we used the if-operator. Eq. (A.1) expresses that the linear constraint 2 only has to be satisfied
if linear constraint 1 is satisfied. Similarly, to express disjunctions in the form

(lin. constraint 1 or lin. constraint 2) (A.2)

where only one of the constraints needs to apply, we used the or-operator.
In case of bounded variables, the expressions from Eq. (A.1) and Eq. (A.2) can be expressed

with a set of plain integer linear inequalities and additional auxiliary variables and parameters.
The key idea in resolving the if-operator and the or-operator is to introduce a large enough
parameter—commonly referred to as bigM—which can be used in combination with an auxiliary
variable to force any linear constrain to a true statement. We will not go into the details of ILP
modeling here, but we want to give at least some intuition with an example:

Assume that (∑
i

aixi

)
− b ≤ 0 (A.3)

shall only be satisfied, if the binary variable w has value 1. This can be expressed with the
constraint ((∑

i

aixi

)
− b

)
− ((1− w) ·Maux) ≤ 0. (A.4)

If w = 1, then Eq. (A.4) reduces to Eq. (A.3). This means the ILP solver has to assign values
to the xi-variables that satisfy Eq. (A.3). However, if w = 0, then we have((∑

i

aixi

)
− b

)
−Maux ≤ 0. (A.5)

190 APPENDIX A: APPENDIX

It is easy to see that we can a priori compute a large enough value for Maux such that Eq. (A.5)
will be true for any assignment to the xi-variables if we know the range of the values for each xi.

If we apply this principle, we can express the ILP formulation from Sec. 4.2 using only linear
inequalities.

A.1.2 Scheduling Constraints

To express if and or from Eq. (4.12)–Eq. (4.14) with linear integer inequalities, we need additional
auxiliary variables.

We introduce the binary variable wlink[f1, f2, `] ∈ {0, 1} with f1, f2 ∈ F and ` ∈ L. The
constraints (A.6)-(A.8) force wlink[f1, f2, `] = 1 if link ` is used by both, f1 and f2, else
wlink[f1, f2, `] = 0.

∀f1 ∈ F ,∀f2 ∈ F : f1 6= f2,∀` ∈ L :

wlink[f1, f2, `] ≤ ulink[f1, `] (A.6)
wlink[f1, f2, `] ≤ ulink[f2, `] (A.7)

wlink[f1, f2, `] ≥ ulink[f1, `] + ulink[f2, `]− 1 (A.8)

In other words, wlink[f1, f2, `] indicates whether the condition from Eq. (4.12) holds.
To model the disjunction for the order of the reserved windows, we introduce another auxiliary

variable wresv[f1, f2, `, a, b] ∈ {0, 1} with f1, f2 ∈ F , ` ∈ L and a ∈ A, b ∈ B as defined in
Equations (4.15) and (4.16). Then we can constrain the offsets of all flows whose packets traverse
an link ` such that the reservation windows are placed in mutually exclusive time intervals with

∀f1 ∈ F ,∀f2 ∈ F : f1 6= f2,∀` ∈ L,∀a ∈ A,∀b ∈ B :(
toffset[f2, `] + b · tcycle[f2] + tresv[f2]−

(
toffset[f1, `] + a · tcycle[f1]

))
−
((
1−wresv[f1, f2, `, a, b]

)
+
(
1−wlink[f1, f2, `]

))
·Maux ≤ 0 (A.9)(

toffset[f1, `] + a · tcycle[f1] + tresv[f1]−
(
toffset[f2, `] + b · tcycle[f2]

))
−
(
wresv[f1, f2, `, a, b] +

(
1−wlink[f1, f2, `]

))
·Maux ≤ 0 (A.10)

We can set the big constant Maux, for instance, to (Maux = 2 · thyper).

A.1.3 Joint Scheduling and Routing Constraints

To express the constraints that link the routing and scheduling constraints from Eq. (4.17)-Eq. (4.19)
in plain integer linear inequalities, we similarly need two sets of additional auxiliary binary
variables.

A.1 JOINT SCHEDULING AND ROUTE COMPUTATION 191

The variable wseq[f, `in, `out] ∈ {0, 1} with f ∈ F and `in, `out ∈ L is used as helper variable
to model the implication from Eq. (4.17). The constraints

∀f ∈ F ,∀n ∈ N :

∀`in ∈ Lin,n,∀`out ∈ Lout,n :

wseq[f, `in, `out] ≤ ulink[f, `in] (A.11)

wseq[f, `in, `out] ≤ ulink[f, `out] (A.12)

wseq[f, `in, `out] ≥ ulink[f, `in] + ulink[f, `out]− 1 (A.13)

can be interpreted as follows: if `in is followed by `out on the route of flow f—the route of flow
f contains the sequence `in, `out—, then wseq[f, `in, `out] = 1, else wseq[f, `in, `out] = 0.

If (`in, `out) is a part of the route of flow f , then we have to enforce the relation of the offsets
for the reserved windows on subsequent links on the route of each flow f .

The disjunction from Equations (4.18) and (4.19) which, in simplified terms, is required since
a reserved window may either occur on the next link `out later in the same cycle or (modulo
tcycle) earlier in a later cycle is modeled with another binary auxiliary variable wcycle[f, `in, `out]

with f ∈ F and `in, `out ∈ L.

Combining implication, disjunction, and the equality from Eq. (4.17)–Eq. (4.19), we end up
with the four linear inequality constraints

∀f ∈ F ,∀n ∈ N :

∀`in ∈ Lin,n,∀`out ∈ Lout,n :(
toffset[f, `out]− toffset[f, `in]− dhop[f]

)
−
(
wcycle[f, `in, `out] +

(
1−wseq[f, `in, `out]

))
·Maux ≤ 0 (A.14)(

toffset[f, `out]− toffset[f, `in]− dhop[f]
)

+
(
wcycle[f, `in, `out] +

(
1−wseq[f, `in, `out]

))
·Maux ≥ 0 (A.15)(

toffset[f, `out] + tcycle[f]− toffset[f, `in]− dhop[f]
)

−
((

1−wcycle[f, `in, `out]
)
+
(
1−wseq[f, `in, `out]

))
·Maux ≤ 0 (A.16)(

toffset[f, `out] + tcycle[f]− toffset[f, `in]− dhop[f]
)

+
((

1−wcycle[f, `in, `out]
)
+
(
1−wseq[f, `in, `out]

))
·Maux ≥ 0. (A.17)

Again, Maux = 2 · thyper is a reasonable choice.

192 APPENDIX A: APPENDIX

A.1.4 Implementation of ILP Model with Matrices

Depending on the toolchain, it is more natural to implement the ILP model from Sec. 4.2 using
matrices derived from the Gn, namely, the link-link adjacency matrix ALL and the node-link
incidence matrix BNL, for example, if it is not straightforward to express Lin,n,Lout,n otherwise.

The value of an element of the link-link adjacency matrix ALL ∈ {0, 1}|L|×|L| in row `in ∈ L
and column `out ∈ L is defined by

ALL[`in, `out] =

1, if nin(`in) = nout(`out)

0, otherwise
. (A.18)

In words, ALL[`in, `out] = 1, if a packet that is received via the link `in at node n ∈ N can be
transmitted via link `out from the same node n.

The value of an element of the node-link incidence matrix BNL ∈ {−1, 0, 1}|N |×|L| in row
n ∈ N and column ` ∈ L is defined by

BNL[n, `] =

1, if nout(`) = n

−1, if nin(`) = n

0, otherwise

. (A.19)

In words, BNL encodes whether the link ` is an outgoing link at node n (then BNL[n, `] = 1),
or if the link ` is an incoming link at n, (then BNL[n, `] = −1).

Note that we only need to store the non-zero components of ALL and BNL, that is, we can
use a sparse matrix representation for ALL and BNL.

With these two matrices, we can replace the sum of elements in Lin,n and Lout,n in the ILP
constraints from Sec. 4.2 by sums over matrix components:

Routing Constraint Eq. (4.8)

∀f ∈ F :
∑
`∈L

BNL [nsrc[f], `] · ulink[f, `] = 1 (A.20)

Routing Constraint Eq. (4.9)

∀f ∈ F :
∑
`∈L

BNL [ndst[f], `] · ulink[f, `] = −1 (A.21)

A.1 JOINT SCHEDULING AND ROUTE COMPUTATION 193

Routing Constraint Eq. (4.10)

∀f ∈ F : ∀n ∈ N \ {nsrc[f],ndst[f]} :∑
`out∈{`∈L|BNL[n,`]=1}

BNL[n, `out] · ulink[f, `out] (A.22)

= −
∑

`in∈{`∈L|BNL[n,`]=−1}

BNL[n, `in] · ulink[f, `in] (A.23)

Joint Routing and Scheduling Constraints Eq. (4.17)–Eq. (4.19)

∀f ∈ F ,∀`in, `out ∈ {L × L|`in 6= `out andALL[`in, `out] = 1} :

if(ulink[f, `in] + ulink[f, `out] ≥ 2) then (A.24)
(toffset[f, `out] = toffset[f, `in] + dhop[f] (A.25)

or toffset[f, `out] + tcycle[f] = toffset[f, `in] + dhop[f]) (A.26)

A.1.5 Evaluation Results

Here, we provide the numerical data for the evaluations in Sec. 4.2.2.
Each table contains the average runtime (column “mean”), and the standard deviation of the

runtimes (column “std”). The columns labeled “fin” contain the number of problem instances,
where the solver finished in time, that is, either the solver found a solution or declared infeasibility
of the problem within the allowed time limit. The columns labeled “infs” contain the number
of infeasible problem instances, that is, where no solution exists. The columns labeled “tot”
contain the total number of problem instances that the solver attempted to solve. Subtracting
the number of finished problem instances from the number of total problem instances yields the
number of unsolved problem instances.

The irregular amount of problem instances with random topology is an artifact of the
graph generation, which may return disconnected graphs. If the graph generators produced
disconnected graphs, we selected the largest connected component.

194 APPENDIX A: APPENDIX

TABLE A.1 Varying number of flows, |N | = 8, transmission cycles ∈ {50, 100, 200, 400, 800} (HF),
and runtime limit of 30min.

|F| Line Ring Scale-Free Random
mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot

2 0.03 0.02 10 0 10 0.06 0.06 10 0 10 0.03 0.01 10 0 10 0.08 0.11 10 0 10
3 0.20 0.23 10 0 10 0.70 0.85 10 0 10 0.14 0.19 10 0 10 0.59 0.70 10 0 10
4 0.46 0.50 10 0 10 1.63 1.15 10 0 10 0.39 0.29 10 0 10 1.57 1.84 10 0 10
5 1.39 0.76 10 0 10 3.34 2.24 10 0 10 1.04 0.58 10 0 10 4.57 2.87 10 0 10
6 2.05 1.31 10 0 10 6.54 3.70 10 0 10 1.49 0.99 10 0 10 7.14 4.95 10 0 10
7 3.55 2.06 10 0 10 10.35 1.79 10 0 10 4.27 2.48 10 0 10 11.86 4.29 10 0 10
8 3.17 1.00 10 0 10 13.19 9.36 10 0 10 7.78 4.34 10 0 10 16.80 3.82 10 0 10
9 7.66 3.26 10 0 10 22.62 7.75 10 0 10 7.84 5.44 10 0 10 26.92 9.23 10 0 10
10 7.68 4.77 10 1 10 28.67 7.42 10 0 10 10.88 4.73 10 0 10 33.18 16.78 10 0 10
11 16.83 7.35 10 0 10 31.59 12.46 10 0 10 12.29 3.49 10 0 10 38.41 5.55 10 0 10
12 18.09 6.08 10 0 10 35.32 14.55 10 0 10 18.04 8.93 10 0 10 69.20 26.69 10 0 10
13 21.23 10.58 10 0 10 64.56 22.18 10 0 10 31.70 18.24 10 0 10 70.46 27.18 10 0 10
14 30.63 11.46 10 1 10 82.12 36.09 10 0 10 22.47 6.78 10 0 10 118.91 51.36 10 0 10
15 36.47 20.20 10 0 10 98.23 36.66 10 0 10 29.87 12.32 10 0 10 154.37 37.26 10 0 10

TABLE A.2 Varying number of flows, |N | = 8, transmission cycles ∈ {1000, 2000, 4000, 8000}
(LF), and runtime limit of 30min.

|F| Line Ring Scale-Free Random
mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot

2 0.02 0.00 10 0 10 0.06 0.04 10 0 10 0.05 0.07 10 0 10 0.16 0.12 10 0 10
3 0.12 0.16 10 0 10 0.19 0.12 10 0 10 0.13 0.18 10 0 10 0.31 0.23 10 0 10
4 0.44 0.32 10 0 10 1.23 0.51 10 0 10 0.24 0.20 10 0 10 1.84 0.92 10 0 10
5 1.17 0.65 10 0 10 2.47 0.91 10 0 10 1.47 1.25 10 0 10 4.68 1.64 10 0 10
6 2.86 1.30 10 0 10 3.71 0.93 10 0 10 2.68 1.53 10 0 10 5.10 2.17 10 0 10
7 2.23 1.00 10 0 10 5.12 1.24 10 0 10 2.70 1.82 10 0 10 8.44 2.05 10 0 10
8 4.37 1.39 10 0 10 8.97 2.20 10 0 10 3.42 2.67 10 0 10 11.05 3.98 10 0 10
9 5.47 1.16 10 0 10 11.82 4.68 10 0 10 6.56 2.00 10 0 10 14.29 3.17 10 0 10
10 6.64 2.11 10 0 10 15.73 5.58 10 0 10 8.43 2.74 10 0 10 20.91 4.17 10 0 10
11 10.26 2.84 10 0 10 20.86 3.35 10 0 10 10.29 3.27 10 0 10 25.29 3.74 10 0 10
12 14.47 3.82 10 0 10 29.00 8.70 10 0 10 12.79 2.90 10 0 10 39.51 21.06 10 0 10
13 14.13 3.36 10 0 10 34.57 11.21 10 0 10 17.30 4.92 10 0 10 47.91 8.08 10 0 10
14 16.79 4.56 10 0 10 48.49 14.34 10 0 10 17.80 4.94 10 0 10 52.08 12.49 10 0 10
15 27.02 7.32 10 0 10 56.36 11.48 10 0 10 19.91 2.69 10 0 10 70.42 14.59 10 0 10

A.1 JOINT SCHEDULING AND ROUTE COMPUTATION 195

TABLE A.3 Varying number of flows, |N | = 8, transmission cycles ∈ {1000, 2000, 4000, 8000}
(LF), and runtime limit of 60min.

|F| Line Ring Scale-Free Random
mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot

16 31.84 6.68 10 0 10 76.63 21.54 10 0 10 32.99 7.47 10 0 10 104.51 14.60 10 0 10
17 39.08 8.08 10 0 10 103.94 41.51 10 0 10 44.40 12.22 10 0 10 120.71 45.96 10 0 10
18 44.60 10.57 10 0 10 126.88 67.88 10 0 10 47.88 8.20 10 0 10 149.06 36.33 10 0 10
19 49.25 10.30 10 0 10 152.60 68.84 10 0 10 57.01 12.11 10 0 10 179.70 41.53 10 0 10
20 58.21 11.47 10 0 10 191.83 33.25 10 0 10 61.51 16.95 10 0 10 241.87 71.28 10 0 10
21 70.53 15.92 10 0 10 185.89 22.57 10 0 10 62.11 16.91 10 0 10 254.20 141.58 9 0 10
22 87.40 13.19 10 0 10 232.19 40.95 10 0 10 101.42 16.14 10 0 10 370.90 170.34 10 0 10
23 86.84 20.50 10 0 10 247.50 69.91 10 0 10 106.02 22.26 10 0 10 400.43 307.67 10 0 10
24 111.76 26.96 10 0 10 334.76 91.93 10 0 10 119.64 22.37 10 0 10 420.31 202.31 10 0 10
25 116.74 19.19 10 0 10 428.97 224.16 10 0 10 149.12 27.43 10 0 10 449.60 152.85 10 0 10
26 147.02 25.24 10 0 10 354.06 68.11 10 0 10 148.77 30.43 10 0 10 643.39 237.89 10 0 10
27 169.85 25.60 10 0 10 502.09 165.25 10 0 10 203.17 34.09 10 0 10 543.48 134.24 10 0 10
28 196.12 36.78 10 0 10 432.13 92.62 10 0 10 206.94 22.74 10 0 10 937.55 378.95 10 0 10
29 223.86 51.63 10 0 10 564.75 141.50 10 0 10 221.54 40.19 10 0 10 1020.50 356.87 10 0 10
30 245.73 61.84 10 0 10 776.78 269.99 10 0 10 283.55 63.72 10 0 10 1056.51 303.14 9 0 10

TABLE A.4 Varying number of nodes, |F| = 7, transmission cycles ∈ {50, 100, 200, 400, 800} (HF),
and runtime limit of 30min.

|N | Line Ring Scale-Free Random
mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot

5 1.17 0.53 10 0 10 5.06 2.76 10 0 10 1.62 0.87 10 0 10 3.93 3.90 8 0 8
6 1.54 0.95 10 0 10 7.77 3.10 10 0 10 2.12 1.10 10 0 10 5.79 3.03 12 0 12
7 2.10 0.90 10 0 10 7.72 2.73 10 0 10 2.33 1.33 10 0 10 6.07 6.24 5 0 5
8 2.38 1.58 10 0 10 9.89 5.15 10 0 10 2.42 1.24 10 0 10 10.26 4.89 11 0 11
9 3.53 1.98 10 0 10 11.40 3.43 10 0 10 4.20 1.78 10 0 10 17.48 8.02 10 0 10
10 2.94 2.66 10 0 10 13.12 4.52 10 0 10 4.10 2.50 10 0 10 12.58 7.03 20 0 20
11 3.77 1.56 10 0 10 16.20 7.27 10 0 10 6.14 4.52 10 0 10 13.71 10.30 6 0 6
12 3.96 2.86 10 2 10 18.56 7.29 10 0 10 6.25 2.62 10 0 10 20.68 8.20 12 0 12
13 7.54 3.74 10 0 10 17.98 6.49 10 0 10 5.47 2.95 10 0 10 18.29 8.50 8 0 8
14 7.64 3.74 10 1 10 23.63 11.21 10 0 10 6.47 3.89 10 0 10 27.13 9.46 14 0 14
15 9.77 5.30 10 3 10 22.11 6.92 10 1 10 15.11 5.61 10 0 10 23.59 16.99 10 0 10
16 8.06 3.44 10 1 10 18.71 7.86 10 1 10 9.93 4.37 10 0 10 30.21 18.50 12 1 13
17 12.53 5.93 10 3 10 26.05 10.53 10 1 10 13.30 6.10 10 0 10 32.34 23.98 4 0 4
18 7.20 3.53 10 1 10 28.80 8.59 10 1 10 16.30 10.68 10 0 10 40.30 17.46 10 0 10
19 13.78 9.85 10 2 10 25.55 8.81 10 2 10 17.47 11.89 10 0 10 267.98 462.89 7 0 7
20 15.20 13.01 10 5 10 24.60 7.92 10 1 10 14.41 8.98 10 0 10 579.91 771.72 2 0 2

196 APPENDIX A: APPENDIX

TABLE A.5 Varying number of nodes, |F| = 7, transmission cycles ∈ {1000, 2000, 4000, 8000}
(LF), and runtime limit of 30min.

|N | Line Ring Scale-Free Random
mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot

5 1.02 0.50 10 0 10 2.43 0.87 10 0 10 1.09 0.70 10 0 10 2.03 2.18 10 0 10
6 1.59 0.90 10 0 10 3.44 0.94 10 0 10 1.61 1.16 10 0 10 3.84 1.45 12 0 12
7 2.13 1.07 10 0 10 4.94 2.04 10 0 10 2.40 1.48 10 0 10 3.26 2.45 5 0 5
8 2.46 1.53 10 0 10 4.28 1.51 10 0 10 2.92 1.12 10 0 10 10.06 3.87 12 0 12
9 3.93 1.89 10 0 10 5.86 1.46 10 0 10 2.84 0.93 10 0 10 10.76 3.54 15 0 15
10 5.23 2.36 10 0 10 9.14 4.56 10 0 10 3.34 1.86 10 0 10 7.96 4.06 13 0 13
11 4.93 1.87 10 0 10 8.15 2.66 10 0 10 3.97 1.48 10 0 10 12.37 6.07 12 0 12
12 5.53 2.52 10 0 10 9.47 3.60 10 0 10 5.42 2.44 10 0 10 16.75 4.24 7 0 7
13 4.91 2.58 10 0 10 10.42 4.35 10 0 10 6.99 2.13 10 0 10 17.60 7.28 10 0 10
14 6.69 3.70 10 0 10 12.68 3.13 10 0 10 8.34 3.65 10 0 10 23.56 11.10 16 0 16
15 7.48 2.45 10 0 10 14.06 3.91 10 0 10 7.03 4.04 10 0 10 18.80 7.96 14 0 14
16 8.88 3.50 10 0 10 14.21 6.13 10 0 10 7.78 3.74 10 0 10 25.36 10.55 7 0 7
17 9.24 4.29 10 0 10 15.68 5.84 10 0 10 10.23 4.41 10 0 10 27.51 22.11 3 0 3
18 10.85 4.13 10 0 10 17.42 4.65 10 0 10 9.21 4.21 10 0 10 40.37 10.31 10 0 10
19 11.19 3.86 10 0 10 18.97 7.45 10 0 10 10.09 3.93 10 0 10 45.91 13.02 5 0 5
20 13.56 4.35 10 0 10 21.46 9.00 10 0 10 10.39 6.55 10 0 10 54.48 10.05 4 0 4

TABLE A.6 Varying number of nodes, |F| = 7, transmission cycles ∈ {1000, 2000, 4000, 8000}
(LF), and runtime limit of 60min.

|N | Line Ring Scale-Free Random
mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot mean [s] std [s] fin infs tot

21 11.88 5.10 10 0 10 24.47 5.67 10 0 10 13.16 5.74 10 0 10 41.93 16.31 12 0 12
22 11.84 6.32 10 0 10 29.31 14.83 10 0 10 19.09 5.37 10 0 10 62.66 20.97 8 0 8
23 13.81 3.83 10 0 10 23.97 7.74 10 0 10 15.01 7.25 10 0 10 64.87 29.10 7 0 7
24 15.70 8.27 10 0 10 24.02 6.03 10 0 10 15.68 7.86 10 0 10 102.07 70.18 15 0 15
25 16.72 5.64 10 0 10 31.57 6.42 10 0 10 12.94 5.74 10 0 10 94.52 88.72 13 0 13
26 16.59 5.24 10 0 10 27.50 14.98 10 0 10 15.04 6.79 10 0 10 52.22 25.84 10 0 11
27 17.38 7.09 10 0 10 35.31 7.13 10 0 10 23.08 10.05 10 0 10 80.31 72.07 10 0 10
28 15.70 10.20 10 0 10 39.21 24.98 10 0 10 24.13 11.18 10 0 10 258.12 434.34 8 0 8
29 19.04 7.63 10 0 10 35.95 9.02 10 0 10 20.39 9.24 10 0 10 109.70 22.44 4 0 4
30 24.79 7.77 10 0 10 45.12 15.22 10 0 10 20.99 12.23 10 0 10 339.23 409.29 9 0 9
31 17.12 5.39 10 0 10 38.67 10.35 10 0 10 28.87 11.78 10 0 10 238.52 312.44 10 0 10
32 22.10 8.99 10 0 10 46.43 16.13 10 0 10 22.67 12.87 10 0 10 138.26 35.99 9 0 9
33 24.99 11.63 10 0 10 55.61 22.75 10 0 10 30.29 13.91 10 0 10 313.89 238.65 7 0 7
34 23.48 9.38 10 0 10 53.57 20.63 10 0 10 27.49 14.50 10 0 10 145.48 77.56 6 0 7
35 24.59 7.53 10 0 10 55.90 17.79 10 0 10 33.87 12.15 10 0 10 267.12 198.14 7 0 8
36 26.03 10.95 10 0 10 64.76 42.79 10 0 10 44.53 8.51 10 0 10 361.76 426.08 3 0 4

A.2 GREEDY FLOW HEAP HEURISTIC 197

A.2 Greedy Flow Heap Heuristic
The Greedy Flow Heap Heuristic (GFH) is a heuristic that searches for an independent vertex
set in a vertex-colored graph. The GFH has been developed by Heiko Geppert in the context of
the joint work on dynamic traffic planning [Fal+22]. The GFH is employed to compute a traffic
plan that maximizes the objective given in Def. 5.9.

Here, we give a more detailed description of the GFH. Remember, GFH is an iterative greedy
approach. It splits ActiveF (P) and ReqF (P) into flow subsets and successively processes
the different subsets in an order that is supposed to maximize the objective function (see
Eq. (5.6)). For every flow set, GFH iteratively selects the next flow, computes ratings for
the flow’s configurations in Gc (P ′), and adds the configuration with the best rating to an
intermediary set of conflict-free configurations C. During the GFH execution, C is always an
independent vertex set in Gc (P ′). For the same flow f , there may be multiple configurations in
the final C returned by the GFH, but we can only include one of these (we need only one route
and phase) in a traffic plan. In this case, we arbitrarily select one configuration for every flow
with multiple configurations in C since all configurations in C are conflict-free.

Before explaining the greedy strategy and how configurations are rated, we (re-)introduce
some terminology:

• C admits flow f if it contains at least one candidate configuration for f .

• A configuration c ∈ Gc (P ′) is shadowed if at least one of its neighbors is included in C.
Thus, adding a configuration to C shadows all its neighbors. Shadowed configurations are
excluded from being added to C since they conflict, that is, are connected by an edge, with
at least one of the configurations in C.

• A configuration is solitary if it has no neighbors in c ∈ Gc (P ′) and thus cannot conflict
with any other configuration.

• A configuration c is eligible for selection by the GFH algorithm if and only if c is neither
shadowed nor c ∈ C.

In each run, the GFH attempts to find a C that admits all flows as follows: First, C is initialized
by adding all solitary configurations. Thus, C already admits all flows with solitary configurations
without reducing the solution space. Then, configurations for the remaining flows are iteratively
added to C. We will discuss the configuration selection strategy in Appendix A.2.1 and the
configuration rating in Appendix A.2.2. If C does not admit all flows after its first run, the
GFH has a re-run mechanism which attempts to find a C that admits more flows by additional
re-runs with modified starting conditions. The number of re-runs (default nre-runs = 3) can be
parameterized. We discuss the re-run technique in Appendix A.2.3. Finally, the complexity of
GFH is briefly stated in Appendix A.2.4.

198 APPENDIX A: APPENDIX

A.2.1 Configuration Selection Strategy

GFH being a greedy algorithm, the quality of the solution, that is, how many flows can ultimately
be admitted, relies on the strategy we use to add configurations to C. GFH uses a hierarchical,
iterative strategy, first deciding on the next flow to process and then selecting a configuration
for that flow. Remember that any active flow contributes more to the objective than all new
flows taken together. To prevent that any configuration of a new flow shadows any active flow’s
configuration such that an active flow may not be admitted to C, we thus first process all flows
in ActiveF (P), before searching for a configuration for new flows from ReqF (P).

Algorithm A.1: addConfigPerFlow
input : flows set SearchF (P ′), conflict-free configurations C

1 ∀f ∈ SearchF (P ′) : check admits(f, C) ;
2 create heap of not admitted flows ;
3 while heap 6= ∅ do
4 fmin ← pop fmin with least eligible configurations from heap ;
5 csel ← eligible c of color fmin with smallest result from computeShadowRating(c) ;
6 add csel to C, update eligibility of neighbors of csel;
7 update heap (remove completely shadowed flows and reorder) ;
8 end
9 return updated C ;

The pseudo-code to process a particular (sub-)set of flows, say SearchF (P ′) ⊆ ActiveF (P)∪
ReqF (P), is given in the method addConfigPerFlow in Alg. A.1. We start by creating a
min-heap that contains all flows from SearchF (P ′) not already admitted by C (see Alg. A.1,
line 1). The flows in the min-heap are sorted according to the number of remaining eligible
configurations such that flows with less eligible configurations are on top of the heap. Ties are
broken by the higher total degree of the configurations in cand (f,P ′), because a high total
degree suggests a high chance that all configurations of the flow will soon become ineligible.
The unique flow identifier is used as final tie-breaker to get a deterministic algorithm.

Next, the heap is iteratively processed: The flow on top of the heap—the one with the least
remaining eligible configurations—is removed from the heap, and we add the flow’s best-rated
(see Appendix A.2.2) configuration to C. When a configuration is added to C, the heap is
updated. Besides the flow fmin which gets admitted by adding csel to C, we remove any flow
which has become completely shadowed from the heap, too. In other words, in each iteration of
the while-loop the heap contains only flows with more than one remaining eligible configuration,
and—because we remove at least one flow from the heap in each iteration of the while-loop—
addConfigPerFlow is guaranteed to terminate. The remaining flows in the heap might be
reordered (see Alg. A.1, line 7) since the number of eligible configurations could have changed.

A.2 GREEDY FLOW HEAP HEURISTIC 199

A.2.2 Rating Configurations

The shadowRating value of a configuration is intended to capture the “cost” of selecting that
configuration in terms of the remaining solution space. For example, adding a configuration
to C that shadows huge portions of the conflict graph is “expensive”. Conversely, the cost is
lower, the fewer neighbors are shadowed. If neighbors are shadowed, it is preferable to shadow
configurations of those flows with lots of remaining eligible configurations. This intuition is
encoded in the computeShadowRating pseudo-code given in Alg. A.2.

Algorithm A.2: computeShadowRating
input : configuration c

1 shadowRating = 0 ;
2 Fneig ← set of flows of all neighbors of c ;
3 foreach fn ∈ Fneig do
4 shadowCount ← number of eligible configurations of flow fn in neighborhood of c ;
5 eligibleCount ← total number of eligible configurations for fn ;
6 δ ← shadowCount / eligibleCount ;
7 if δ = 1 then
8 shadowRating+=α ;
9 else

10 shadowRating+=δ ;
11 end
12 end
13 return shadowRating of c ;

We compute for each flow fn with a configuration in the 1-hop neighborhood of c the share δ of
this flow’s remaining eligible configurations that would be shadowed by picking c. Configurations
that are already shadowed are not taken into account. The shadowRating ordinarily amounts to
the sum over the δ values of c’s neighborhood. If adding c to C shadows all remaining eligible
configurations of a flow (δ = 1), a very large constant α (default α = 1000) is added instead to
discourage the selection of a configuration c which shadows the remaining configuration(s) of
another flow. Note that the method computeShadowRating can be executed in parallel since
we only have to read the neighbors of c. Further, the eligibleCount calculation (see Alg. A.2,
line 5) can be optimized via caching so that eligibleCount has to be determined only once for
each execution of Alg. A.2.

A.2.3 Re-run Mechanism

The re-run mechanism provided by the GFH (see Alg. A.3) can be used to improve the number
of flows admitted by C if C does not admit all flows after the first run. In principle, a single

200 APPENDIX A: APPENDIX

run in the GFH corresponds to executing the body of the loop in Alg. A.3 (starting at line 3)
once. In each run, we call addConfigPerFlow once for every flow subset, using it as parameter
SearchF (P ′).

Algorithm A.3: GFH
input : active flow set ActiveF (P), new flow set ReqF (P), nre-runs

1 C ← ∅ ; // init. C (first run)
2 cache← ∅ ;
3 for i = 0; i ≤ nre-runs; i++ do
4 naActiveF ← ActiveF (P) \ C ;
5 aActiveF ← ActiveF (P)

⋂
C ;

6 naReqF ← ReqF (P) \ C ;
7 aReqF ← ReqF (P)

⋂
C ;

8 C ← {v ∈ V : deg(v) = 0} ; // C ← solitary configurations
9 C ← addConfigPerFlow(naActiveF , C) ;

10 C ← addConfigPerFlow(aActiveF , C) ;
11 C ← addConfigPerFlow(naReqF , C) ;
12 C ← addConfigPerFlow(aReqF , C) ;
13 if C admits (ActiveF (P) ∪ ReqF (P)) then
14 return C ;
15 else
16 store C in cache ;
17 end
18 end
19 return argmaxC∈cache TrafficPlanningObjective (C) ;

Remember that the order of the flow subsets for which we execute addConfigPerFlow implicitly
assigns priorities to those subsets. Due to the greedy strategy, the earlier we include a flow f

from Gc (P ′) in SearchF (P ′) the likelier it is that a configuration for f is added to C. We take
advantage of this in the re-run mechanism to prioritize those flows which were not admitted to
C in the previous run. Note that we still have to account for the higher importance of active
flows compared to new flows, see Eq. (5.6). To account for this, we split both, ActiveF (P) and
ReqF (P), into two subsets each: one subset contains all flows which were admitted by C in
the previous run (prefixed by “a”: aActiveF , aReqF in Alg. A.3), and another subset contains
those flows which could not be admitted previously (prefixed by “na”: naActiveF , naReqF
in Alg. A.3). Before each run, we reset C (see Alg. A.3, line 8). Then, we first process the
two subsets corresponding to ActiveF (P), before processing the two subsets corresponding to
ReqF (P) (see Alg. A.3 lines 9–12). To be exact, we call addConfigPerFlow on the four flow
subsets in the following order: 1) flows from ActiveF (P) previously not admitted by C, 2) flows
from ActiveF (P) previously admitted by C, 3) flows from ReqF (P) previously not admitted
by C, and 4) flows from ReqF (P) previously admitted by C.

A.2 GREEDY FLOW HEAP HEURISTIC 201

The first run constitutes a special case where the flows admitted by C are not the result of a
previous run but contain only those flows with solitary configurations. Solitary configurations
do not shadow any eligible configuration and consequently cannot affect the results during the
re-runs. Therefore, by convention, we do not count the first run as a re-run. Hence, the loop
can be executed up to nre-runs + 1 times. Re-runs are performed either until C admits all flows,
or we run out of re-runs (default nre-runs = 3). This can improve the objective value, but it is
not guaranteed. If we use up all re-runs, the GFH algorithm returns the C with the highest
objective value seen so far.

A.2.4 Complexity

The worst-case runtime complexity of a single GFH run, that is, adding the solitary configurations
to C and performing a single run of addConfigPerFlow for all subsets, can be stated as O(E+V·F).
Here, E is the number of conflicts, V is the number of configurations in the conflict graph, and
F represents the number of flows.

The re-run mechanism adds another factor r′ = nre-runs + 1 resulting in a simplified overall
complexity of O(r′ · E + r′ · VF).

For more details, refer to [Fal+22].

202

203

Bibliography

[Ata+19] A. Atallah, G. Bany Hamad, and O. Ait Mohamed. “Routing and Scheduling of
Time-Triggered Traffic in Time Sensitive Networks.” In: IEEE Transactions on
Industrial Informatics (2019), pp. 1–1. issn: 1941-0050. doi: 10.1109/TII.201
9.2950887.

[Bac+01] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and
Linearity An Algebra for Discrete Event Systems. Web. 2001. url: https://www
.rocq.inria.fr/metalau/cohen/documents/BCOQ-book.pdf.

[Bar+99] A.-L. Barabási and R. Albert. “Emergence of Scaling in Random Networks.”
In: Science 286.5439 (1999), pp. 509–512. issn: 0036-8075, 1095-9203. doi:
10.1126/science.286.5439.509. pmid: 10521342.

[Bec+15] N. Becker and M. Fidler. “A Non-stationary Service Curve Model for Performance
Analysis of Transient Phases.” In: 2015 27th International Teletraffic Congress.
2015 27th International Teletraffic Congress. 2015, pp. 116–124. doi: 10.1109
/ITC.2015.21.

[Bec+19] N. Becker and M. Fidler. “A Non-Stationary Service Curve Model for Estimation
of Cellular Sleep Scheduling.” In: IEEE Transactions on Mobile Computing 18.1
(2019), pp. 28–41. issn: 1558-0660. doi: 10.1109/TMC.2018.2821133.

[Bel+16] P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gómez, and
D. Salvagnin. “On Handling Indicator Constraints in Mixed Integer Programming.”
In: Computational Optimization and Applications 65.3 (2016), pp. 545–566. issn:
0926-6003, 1573-2894. doi: 10.1007/s10589-016-9847-8.

[Ber+01] G. Bernat, A. Burns, and A. Liamosi. “Weakly Hard Real-Time Systems.” In:
IEEE Transactions on Computers 50.4 (2001), pp. 308–321. issn: 0018-9340.
doi: 10.1109/12.919277.

[Bez+17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A Fresh Approach
to Numerical Computing.” In: SIAM Review 59.1 (2017), pp. 65–98. doi: 10.113
7/141000671. eprint: https://doi.org/10.1137/141000671.

https://doi.org/10.1109/TII.2019.2950887
https://doi.org/10.1109/TII.2019.2950887
https://www.rocq.inria.fr/metalau/cohen/documents/BCOQ-book.pdf
https://www.rocq.inria.fr/metalau/cohen/documents/BCOQ-book.pdf
https://doi.org/10.1126/science.286.5439.509
10521342
https://doi.org/10.1109/ITC.2015.21
https://doi.org/10.1109/ITC.2015.21
https://doi.org/10.1109/TMC.2018.2821133
https://doi.org/10.1007/s10589-016-9847-8
https://doi.org/10.1109/12.919277
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671

204 BIBLIOGRAPHY

[Bon+14] S. Bondorf and J. B. Schmitt. “The DiscoDNC - A Comprehensive Tool for Deter-
ministic Network Calculus.” In: Proceedings of the 8th International Conference on
Performance Evaluation Methodologies and Tools (VALUETOOLS 2014). 2014.

[Bou+01] J.-Y. L. Boudec and P. Thiran. Network Calculus A Theory of Deterministic
Queuing Systems for the Internet. Lecture Notes in Computer Science 2050. Springer
Berlin Heidelberg, 2001.

[Bou+09] A. Bouillard, L. Jouhet, and E. Thierry. Service Curves in Network Calculus: Dos
and Don’ts. RR-7094. INRIA, 2009. url: https://hal.inria.fr/inria-00431
674/document.

[Bou+10] A. Bouillard, L. Jouhet, and É. Thierry. “Comparison of Different Classes of
Service Curves in Network Calculus.” In: IFAC Proceedings Volumes. 10th IFAC
Workshop on Discrete Event Systems 43.12 (2010), pp. 306–311. issn: 1474-6670.
doi: 10.3182/20100830-3-DE-4013.00051.

[Bou14] A. Bouillard. “Algorithms and Efficiency of Network Calculus.” Habilitation à
diriger des recherches. Ecole Normale Supérieure (Paris), 2014. url: https://ha
l.inria.fr/tel-01107384.

[Bou96] J.-Y. L. Boudec. Network Calculus Made Easy. Technical Report EPFL-DI 96/218.
ECOLE POLYTECHNIQUE FEDERALE, LAUSANNE (EPFL), 1996.

[Bou98] J.-Y. L. Boudec. “Application of Network Calculus to Guaranteed Service Net-
works.” In: IEEE Transactions on Information Theory 44.3 (1998), pp. 1087–1096.
issn: 0018-9448. doi: 10.1109/18.669170.

[Boy+16] M. Boyer, H. Daigmorte, N. Navet, and J. Migge. “Performance Impact of the In-
teractions between Time-Triggered and Rate-Constrained Transmissions in TTEth-
ernet.” In: 8th European Congress on Embedded Real Time Software and Systems.
TOULOUSE, France, 2016. url: https://hal.archives-ouvertes.fr/hal-01
255939.

[Bra+87] R. Braden and J. Postel. Requirements for Internet Gateways. Request for Com-
ments RFC 1009. Internet Engineering Task Force, 1987. 54 pp. doi: 10.17487
/RFC1009.

[Bra89] R. T. Braden. Requirements for Internet Hosts - Communication Layers. Request
for Comments RFC 1122. Internet Engineering Task Force, 1989. 116 pp. doi:
10.17487/RFC1122.

[Bro+17] S. Bromberger, J. Fairbanks, and o. contributors. “JuliaGraphs/LightGraphs.Jl:
An Optimized Graphs Package for the Julia Programming Language.” In: (2017).
doi: 10.5281/zenodo.889971.

https://hal.inria.fr/inria-00431674/document
https://hal.inria.fr/inria-00431674/document
https://doi.org/10.3182/20100830-3-DE-4013.00051
https://hal.inria.fr/tel-01107384
https://hal.inria.fr/tel-01107384
https://doi.org/10.1109/18.669170
https://hal.archives-ouvertes.fr/hal-01255939
https://hal.archives-ouvertes.fr/hal-01255939
https://doi.org/10.17487/RFC1009
https://doi.org/10.17487/RFC1009
https://doi.org/10.17487/RFC1122
https://doi.org/10.5281/zenodo.889971

BIBLIOGRAPHY 205

[Cha+02] C. S. Chang, R. L. Cruz, J. Y. Le Boudec, and P. Thiran. “A Min, + System
Theory for Constrained Traffic Regulation and Dynamic Service Guarantees.”
In: IEEE/ACM Transactions on Networking 10.6 (2002), pp. 805–817. issn:
1063-6692. doi: 10.1109/TNET.2002.804824.

[Cha+99] C.-S. Chang and R. L. Cruz. “A Time Varying Filtering Theory for Constrained
Traffic Regulation and Dynamic Service Guarantees.” In: Proceedings of the 18th
Annual Joint Conference of the IEEE Computer and Communications Societies
(IEEE INFOCOM ’99). INFOCOM ’99. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Vol. 3. 1999, pp. 63–70. doi:
10.1109/INFCOM.1999.749253.

[Che+04] R. Chellappa, G. Qian, and Q. Zheng. “Vehicle Detection and Tracking Using
Acoustic and Video Sensors.” In: 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing. 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Vol. 3. 2004, pp. III-793 –III-796. doi: 10.1109
/ICASSP.2004.1326664.

[Cra+16a] S. S. Craciunas and R. S. Oliver. “Combined Task- and Network-Level Scheduling
for Distributed Time-Triggered Systems.” In: Real-Time Systems 52.2 (2016),
pp. 161–200. issn: 0922-6443, 1573-1383. doi: 10.1007/s11241-015-9244-x.

[Cra+16b] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner. “Scheduling Real-Time
Communication in IEEE 802.1Qbv Time Sensitive Networks.” In: Proceedings of
the 24th International Conference on Real-Time Networks and Systems. RTNS ’16.
2016, pp. 183–192. isbn: 978-1-4503-4787-7. doi: 10.1145/2997465.2997470.

[Cra+17] S. S. Craciunas and R. S. Oliver. An Overview of Scheduling Mechanisms for
Time-sensitive Networks. École d’Été Temps Réel 2017. Paris, France, 2017, p. 7.

[Cru91] R. L. Cruz. “A Calculus for Network Delay. Part I.+II.” In: IEEE Transactions on
Information Theory 37.1 (1991), pp. 114–141.

[Dan+13] M. Daniel-Cavalcante and R. Santos-Mendes. “Modular Methodology for the Net-
work Calculus in a Time-Varying Context.” In: IEEE Transactions on Information
Theory 59.10 (2013), pp. 6342–6356. issn: 0018-9448. doi: 10.1109/TIT.2013
.2272870.

[DAr+07] A. D’Ariano, M. Pranzo, and I. A. Hansen. “Conflict Resolution and Train Speed
Coordination for Solving Real-Time Timetable Perturbations.” In: IEEE Trans-
actions on Intelligent Transportation Systems 8.2 (2007), pp. 208–222. issn:
1524-9050, 1558-0016. doi: 10.1109/TITS.2006.888605.

https://doi.org/10.1109/TNET.2002.804824
https://doi.org/10.1109/INFCOM.1999.749253
https://doi.org/10.1109/ICASSP.2004.1326664
https://doi.org/10.1109/ICASSP.2004.1326664
https://doi.org/10.1007/s11241-015-9244-x
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1109/TIT.2013.2272870
https://doi.org/10.1109/TIT.2013.2272870
https://doi.org/10.1109/TITS.2006.888605

206 BIBLIOGRAPHY

[De +14] J. A. R. De Azua and M. Boyer. “Complete Modelling of AVB in Network Calculus
Framework.” In: Proceedings of the 22Nd International Conference on Real-Time
Networks and Systems. RTNS ’14. New York, NY, USA: ACM, 2014, 55:55–55:64.
isbn: 978-1-4503-2727-5. doi: 10.1145/2659787.2659810.

[Deu] Deutsche Forschungsgemeinschaft. DFG - GEPRIS - Integrierte Reglerentwurfsver-
fahren Und Kommunikationsdienste Für Digital Vernetzte Regelungssysteme. url:
https://gepris.dfg.de/gepris/projekt/285825138.

[Die+12] J. Diemer, D. Thiele, and R. Ernst. “Formal Worst-Case Timing Analysis of Ether-
net Topologies with Strict-Priority and AVB Switching.” In: 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12). 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12). 2012, pp. 1–10. doi:
10.1109/SIES.2012.6356564.

[Dju+07] P. Djukic and S. Valaee. “Link Scheduling for Minimum Delay in Spatial Re-Use
TDMA.” In: IEEE INFOCOM 2007 - 26th IEEE International Conference on
Computer Communications. IEEE INFOCOM 2007 - 26th IEEE International
Conference on Computer Communications. 2007, pp. 28–36. doi: 10.1109/INFC
OM.2007.12.

[Dun+17] I. Dunning, J. Huchette, and M. Lubin. “JuMP: A Modeling Language for Mathe-
matical Optimization.” In: SIAM Review 59.2 (2017), pp. 295–320. doi: 10.1137
/15M1020575.

[Dür+14] F. Dürr and T. Kohler. Comparing the Forwarding Latency of OpenFlow Hardware
and Software Switches. TR 2014/04. Stuttgart: Institute of Parallel and Distributed
Systems, University of Stuttgart, 2014, p. 2014.

[Dür+16] F. Dürr and N. G. Nayak. “No-Wait Packet Scheduling for IEEE Time-sensitive
Networks (TSN).” In: Proceedings of the 24th International Conference on Real-
Time Networks and Systems. RTNS ’16. Brest, France: ACM, 2016, pp. 203–212.
isbn: 978-1-4503-4787-7. doi: 10.1145/2997465.2997494.

[Fal+18] J. Falk, F. Dürr, and K. Rothermel. “Exploring Practical Limitations of Joint
Routing and Scheduling for TSN with ILP.” In: 2018 IEEE 24th International
Conference on Embedded and Real-Time Computing Systems and Applications.
RTCSA 2018. Hakodate, Japan, 2018, pp. 136–146. doi: DOI10.1109/RTCSA.201
8.00025.

[Fal+19a] J. Falk, F. Dürr, S. Linsenmayer, S. Wildhagen, B. Carabelli, and K. Rothermel.
“Optimal Routing and Scheduling of Complemental Flows in Converged Networks.”

https://doi.org/10.1145/2659787.2659810
https://gepris.dfg.de/gepris/projekt/285825138
https://doi.org/10.1109/SIES.2012.6356564
https://doi.org/10.1109/INFCOM.2007.12
https://doi.org/10.1109/INFCOM.2007.12
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
https://doi.org/10.1145/2997465.2997494
https://doi.org/DOI 10.1109/RTCSA.2018.00025
https://doi.org/DOI 10.1109/RTCSA.2018.00025

BIBLIOGRAPHY 207

In: Proceeding of the 27th International Conference on Real-Time Networks and
Systems. RTNS’19. Toulouse, France, 2019. doi: 10.1145/3356401.3356415.

[Fal+19b] J. Falk, F. Dürr, and K. Rothermel. “Modeling Time-Triggered Service Intermit-
tence in Network Calculus.” In: Proceedings of the 27th International Conference
on Real-Time Networks and Systems (Toulouse, France). RTNS ’19. New York,
NY, USA: ACM, 2019, pp. 90–100. isbn: 978-1-4503-7223-7. doi: 10.1145/335
6401.3356411.

[Fal+19c] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and K. Rothermel.
“NeSTiNg: Simulating IEEE Time-sensitive Networking (TSN) in OMNeT++.” In:
2019 International Conference on Networked Systems (NetSys). 2019 International
Conference on Networked Systems (NetSys). 2019, pp. 1–8. doi: 10.1109/NetSy
s.2019.8854500.

[Fal+20] J. Falk, F. Dürr, and K. Rothermel. “Time-Triggered Traffic Planning for Data
Networks with Conflict Graphs.” In: 2020 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS). 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). Sydney, Australia: IEEE, 2020.
doi: 10.1109/RTAS48715.2020.00-12.

[Fal+21] J. Falk, H. Geppert, F. Dürr, S. Bhowmik, and K. Rothermel. Dynamic QoS-Aware
Traffic Planning for Time-Triggered Flows with Conflict Graphs. Technical report
computer science Technical Report No. 1. University of Stuttgart, Institute of
Parallel and Distributed Systems, Distributed Systems: University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and Information Technology,
Germany, 2021, p. 23. url: http://www2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=TR-2021-01&engl=1.

[Fal+22] J. Falk, H. Geppert, F. Dürr, S. Bhowmik, and K. Rothermel. “Dynamic QoS-Aware
Traffic Planning for Time-Triggered Flows in the Real-Time Data Plane.” In: IEEE
Transactions on Network and Service Management 19.2 (2022), pp. 1807–1825.
issn: 1932-4537. doi: 10.1109/TNSM.2022.3150664.

[Fat+15] B. Fateh and M. Govindarasu. “Joint Scheduling of Tasks and Messages for
Energy Minimization in Interference-Aware Real-Time Sensor Networks.” In: IEEE
Transactions on Mobile Computing 14.1 (2015), pp. 86–98. issn: 1536-1233. doi:
10.1109/TMC.2013.81.

[Fid10] M. Fidler. “Survey of Deterministic and Stochastic Service Curve Models in the
Network Calculus.” In: IEEE Communications Surveys Tutorials 12.1 (2010),
pp. 59–86. issn: 1553-877X. doi: 10.1109/SURV.2010.020110.00019.

https://doi.org/10.1145/3356401.3356415
https://doi.org/10.1145/3356401.3356411
https://doi.org/10.1145/3356401.3356411
https://doi.org/10.1109/NetSys.2019.8854500
https://doi.org/10.1109/NetSys.2019.8854500
https://doi.org/10.1109/RTAS48715.2020.00-12
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2021-01&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2021-01&engl=1
https://doi.org/10.1109/TNSM.2022.3150664
https://doi.org/10.1109/TMC.2013.81
https://doi.org/10.1109/SURV.2010.020110.00019

208 BIBLIOGRAPHY

[Fis+85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility of Distributed
Consensus with One Faulty Process.” In: Journal of the ACM 32.2 (1985), pp. 374–
382. issn: 0004-5411. doi: 10.1145/3149.214121.

[Gaï+08] M. E. M. B. Gaïd, D. Simon, and O. Sename. “A Design Methodology for Weakly-
Hard Real-Time Control.” In: 17th IFAC World Congress (IFAC WC 2008). 2008,
p. 7. url: https://hal.inria.fr/inria-00269209/document.

[Gar+79] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-completeness. New York, NY: Freeman, 1979. isbn: 0-7167-1044-7.

[Gav+18] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop. “AVB-Aware Routing and
Scheduling of Time-Triggered Traffic for TSN.” In: IEEE Access 6 (2018), pp. 75229–
75243. issn: 2169-3536. doi: 10.1109/ACCESS.2018.2883644.

[Gol+07] N. Gollan and J. Schmitt. “Energy-Efficent TDMA Design Under Real-Time Con-
straints in Wireless Sensor Networks.” In: Proceedings of the 2007 15th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems. MASCOTS ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 80–87. isbn: 978-1-4244-1854-1. doi: 10.1109/MASCOTS.2007.23.

[Gur19] L. Gurobi Optimization. “Gurobi Optimizer Reference Manual.” In: (2019). url:
http://www.gurobi.com.

[Gur21] L. Gurobi Optimization. “Gurobi Optimizer Reference Manual.” In: (2021). url:
http://www.gurobi.com.

[Hag+08] A. A. Hagberg, D. A. Schult, and P. J. Swart. “Exploring Network Structure,
Dynamics, and Function Using NetworkX.” In: Proceedings of the 7th Python in
Science Conference. Ed. by G. Varoquaux, T. Vaught, and J. Millman. Pasadena,
CA USA, 2008, pp. 11–15.

[Har+11] W. E. Hart, J.-P. Watson, and D. L. Woodruff. “Pyomo: Modeling and Solving
Mathematical Programs in Python.” In: Mathematical Programming Computation
3.3 (2011), pp. 219–260.

[Har+17] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L.
Nicholson, and J. D. Siirola. Pyomo–Optimization Modeling in Python. 2nd ed.
Vol. 67. Springer Science & Business Media, 2017.

[He+18] Q. He, D. Yuan, and A. Ephremides. “Optimal Link Scheduling for Age Mini-
mization in Wireless Systems.” In: IEEE Transactions on Information Theory 64.7
(2018), pp. 5381–5394. issn: 0018-9448. doi: 10.1109/TIT.2017.2746751.

https://doi.org/10.1145/3149.214121
https://hal.inria.fr/inria-00269209/document
https://doi.org/10.1109/ACCESS.2018.2883644
https://doi.org/10.1109/MASCOTS.2007.23
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/TIT.2017.2746751

BIBLIOGRAPHY 209

[Hel+20a] D. Hellmanns, J. Falk, A. Glavackij, R. Hummen, S. Kehrer, and F. Dürr. “On
the Performance of Stream-based, Class-based Time-aware Shaping and Frame
Preemption in TSN.” In: 2020 IEEE International Conference on Industrial Tech-
nology (ICIT). 2020 IEEE International Conference on Industrial Technology
(ICIT). 2020, pp. 298–303. doi: 10.1109/ICIT45562.2020.9067122.

[Hel+20b] D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer, and F. Dürr. “Scaling
TSN Scheduling for Factory Automation Networks.” In: 2020 16th IEEE Interna-
tional Conference on Factory Communication Systems (WFCS). 2020 16th IEEE
International Conference on Factory Communication Systems (WFCS). 2020,
pp. 1–8. doi: 10.1109/WFCS47810.2020.9114415.

[Hel+21] D. Hellmanns, L. Haug, M. Hildebrand, F. Dürr, S. Kehrer, and R. Hummen.
“How to Optimize Joint Routing and Scheduling Models for TSN Using Integer
Linear Programming.” In: Proceedings of the 29th International Conference on
Real-Time Networks and Systems. Ed. by ACM. Nantes,France: ACM (Online),
2021. doi: 10.1145/3453417.3453421.

[Hsu+09] C.-C. Hsu, K.-F. Lai, C.-F. Chou, and K. C.-J. Lin. “ST-MAC: Spatial-Temporal
MAC Scheduling for Underwater Sensor Networks.” In: IEEE INFOCOM 2009.
IEEE INFOCOM 2009. 2009, pp. 1827–1835. doi: 10.1109/INFCOM.2009.50621
03.

[IBM17] IBM Corporation. “IBM ILOG CPLEX Optimization Studio CPLEX User’s
Manual Version 12 Release 8.” In: (2017), p. 596.

[IEE+18] IEEE Computer Society and IEEE Microwave Theory and Techniques Society.
“IEEE Standard for Air Interface for Broadband Wireless Access Systems.” In:
IEEE Std 802.16-2017 (Revision of IEEE Std 802.16-2012) (2018), pp. 1–2726.
doi: 10.1109/IEEESTD.2018.8303870.

[IEE16] IEEE Computer Society. “IEEE Standard for Local and Metropolitan Area Net-
works – Bridges and Bridged Networks - Amendment 25: Enhancements for
Scheduled Traffic.” In: IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-
2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and
IEEE Std 802.1Q-2014/Cor 1-2015) (2016), pp. 1–57. doi: 10.1109/IEEESTD.2
016.7440741.

[IEE18a] IEEE Computer Society. “IEEE Standard for Ethernet.” In: IEEE Std 802.3-2018
(Revision of IEEE Std 802.3-2015) (2018), pp. 1–5600. doi: 10.1109/IEEESTD.2
018.8457469.

https://doi.org/10.1109/ICIT45562.2020.9067122
https://doi.org/10.1109/WFCS47810.2020.9114415
https://doi.org/10.1145/3453417.3453421
https://doi.org/10.1109/INFCOM.2009.5062103
https://doi.org/10.1109/INFCOM.2009.5062103
https://doi.org/10.1109/IEEESTD.2018.8303870
https://doi.org/10.1109/IEEESTD.2016.7440741
https://doi.org/10.1109/IEEESTD.2016.7440741
https://doi.org/10.1109/IEEESTD.2018.8457469
https://doi.org/10.1109/IEEESTD.2018.8457469

210 BIBLIOGRAPHY

[IEE18b] IEEE Computer Society. “IEEE Standard for Local and Metropolitan Area Net-
work–Bridges and Bridged Networks.” In: IEEE Std 802.1Q-2018 (Revision of IEEE
Std 802.1Q-2014) (2018), pp. 1–1993. doi: 10.1109/IEEESTD.2018.8403927.

[IEE20a] IEEE Computer Society. “IEEE Standard for Local and Metropolitan Area Net-
works–Timing and Synchronization for Time-Sensitive Applications.” In: IEEE
Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011) (2020), pp. 1–421. doi:
10.1109/IEEESTD.2020.9121845.

[IEE20b] IEEE Instrumentation and Measurement Society. “IEEE Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Systems.”
In: IEEE Std 1588-2019 (Revision of IEEE Std 1588-2008) (2020), pp. 1–499.
doi: 10.1109/IEEESTD.2020.9120376.

[IEE21a] IEEE 802.1 Working Group. IEC/IEEE 60802 TSN Profile for Industrial Au-
tomation |. IEC/IEEE 60802 TSN Profile for Industrial Automation. 2021. url:
https://1.ieee802.org/tsn/iec-ieee-60802/.

[IEE21b] IEEE Computer Society. “IEEE Standard for Information Technology–Telecommu-
nications and Information Exchange between Systems - Local and Metropolitan
Area Networks–Specific Requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications.” In: IEEE Std 802.11-
2020 (Revision of IEEE Std 802.11-2016) (2021), pp. 1–4379. doi: 10.1109
/IEEESTD.2021.9363693.

[Ind19] Industrial Internet Consortium. Time Sensitive Networks for Flexible Manufactur-
ing Testbed Characterization and Mapping of Converged Traffic Types. 2019. url:
https://www.iiconsortium.org/pdf/IIC_TSN_Testbed_Char_Mapping_of_Co
nverged_Traffic_Types_Whitepaper_20180328.pdf.

[ISO+96] ISO/IEC JTC 1, Information Technology and ITU-T. “ISO/IEC 7498-1:1994(E).”
In: ISO (1996). url: https://www.iso.org/cms/render/live/en/sites/isoo
rg/contents/data/standard/02/02/20269.html.

[Jam+97] S. Jamin, S. J. Shenker, and P. B. Danzig. “Comparison of Measurement-Based
Admission Control Algorithms for Controlled-Load Service.” In: , Proceedings
IEEE INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Driving the Information Revolution. , Proceedings
IEEE INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Driving the Information Revolution. Vol. 3. 1997,
973–980 vol.3. doi: 10.1109/INFCOM.1997.631035.

https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9120376
https://1.ieee802.org/tsn/iec-ieee-60802/
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1109/IEEESTD.2021.9363693
https://www.iiconsortium.org/pdf/IIC_TSN_Testbed_Char_Mapping_of_Converged_Traffic_Types_Whitepaper_20180328.pdf
https://www.iiconsortium.org/pdf/IIC_TSN_Testbed_Char_Mapping_of_Converged_Traffic_Types_Whitepaper_20180328.pdf
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/02/20269.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/02/20269.html
https://doi.org/10.1109/INFCOM.1997.631035

BIBLIOGRAPHY 211

[Jia+10] L. Jiang, D. Shah, J. Shin, and J. Walrand. “Distributed Random Access Algorithm:
Scheduling and Congestion Control.” In: IEEE Transactions on Information Theory
56.12 (2010), pp. 6182–6207. issn: 0018-9448, 1557-9654. doi: 10.1109/TIT.20
10.2081490.

[Jin+19] X. Jin, A. Saifullah, C. Lu, and P. Zeng. “Real-Time Scheduling for Event-Triggered
and Time-Triggered Flows in Industrial Wireless Sensor-Actuator Networks.” In:
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications. Paris, France:
IEEE, 2019, pp. 1684–1692. isbn: 978-1-72810-515-4. doi: 10.1109/INFOCOM.2
019.8737373.

[Kar+11] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil.
“Vehicular Networking: A Survey and Tutorial on Requirements, Architectures,
Challenges, Standards and Solutions.” In: IEEE Communications Surveys Tutorials
13.4 (Fourth 2011), pp. 584–616. issn: 1553-877X. doi: 10.1109/SURV.2011.06
1411.00019.

[Kha+14] D. D. Khanh and A. Mifdaoui. “Timing Analysis of TDMA-Based Networks
Using Network Calculus and Integer Linear Programming.” In: 2014 IEEE 22nd
International Symposium on Modelling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS). Paris, France: IEEE, 2014, pp. 21–
30. isbn: 978-1-4799-5610-4. doi: doi.ieeecomputersociety.org/10.1109
/MASCOTS.2014.12.

[Koc04] T. Koch. “Rapid Mathematical Programming.” Technische Universität Berlin, 2004.
217 pp. url: https://opus4.kobv.de/opus4-zib/frontdoor/index/index/d
ocId/834.

[Kon+18] O. Kondrateva, H. Döbler, H. Sparka, A. Freimann, B. Scheuermann, and K.
Schilling. “Throughput-Optimal Joint Routing and Scheduling for Low-Earth-
Orbit Satellite Networks.” In: 2018 14th Annual Conference on Wireless On-
demand Network Systems and Services (WONS). 2018 14th Annual Conference
on Wireless On-demand Network Systems and Services (WONS). 2018, pp. 59–66.
doi: 10.23919/WONS.2018.8311663.

[Kro+21] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen, X. Chang, and X.
Geng. “Joint Routing and Scheduling for Large-Scale Deterministic IP Networks.”
In: Computer Communications 165 (2021), pp. 33–42. issn: 0140-3664. doi:
10.1016/j.comcom.2020.10.016.

https://doi.org/10.1109/TIT.2010.2081490
https://doi.org/10.1109/TIT.2010.2081490
https://doi.org/10.1109/INFOCOM.2019.8737373
https://doi.org/10.1109/INFOCOM.2019.8737373
https://doi.org/10.1109/SURV.2011.061411.00019
https://doi.org/10.1109/SURV.2011.061411.00019
https://doi.org/doi.ieeecomputersociety.org/10.1109/MASCOTS.2014.12
https://doi.org/doi.ieeecomputersociety.org/10.1109/MASCOTS.2014.12
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/834
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/834
https://doi.org/10.23919/WONS.2018.8311663
https://doi.org/10.1016/j.comcom.2020.10.016

212 BIBLIOGRAPHY

[KUK16] KUKA. Hello Industrie 4.0 _we Connect You. 2016. url: https://www.kuka.c
om/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3
/kukaindustrie40en.pdf?rev=a1e19f08c4fc4f9ebacdb8ba748c1d46.

[Lau+16] S. M. Laursen, P. Pop, and W. Steiner. “Routing Optimization of AVB Streams in
TSN Networks.” In: SIGBED Rev. 13.4 (2016), pp. 43–48. issn: 1551-3688. doi:
10.1145/3015037.3015044.

[Li+10] H. Li, Y. Cheng, C. Zhou, and P. Wan. “Multi-Dimensional Conflict Graph Based
Computing for Optimal Capacity in MR-MC Wireless Networks.” In: 2010 IEEE
30th International Conference on Distributed Computing Systems. 2010 IEEE 30th
International Conference on Distributed Computing Systems. 2010, pp. 774–783.
doi: 10.1109/ICDCS.2010.58.

[Li+19] Z. Li, H. Wan, Z. Pang, Q. Chen, Y. Deng, X. Zhao, Y. Gao, X. Song, and M. Gu.
“An Enhanced Reconfiguration for Deterministic Transmission in Time-Triggered
Networks.” In: IEEE/ACM Transactions on Networking 27.3 (2019), pp. 1124–1137.
issn: 1558-2566. doi: 10.1109/TNET.2019.2911272.

[Lin+19] S. Linsenmayer, B. W. Carabelli, F. Dürr, J. Falk, F. Allgöwer, and K. Rothermel.
“Integration of Communication Networks and Control Systems Using a Slotted
Transmission Classification Model.” In: 2019 16th IEEE Annual Consumer Com-
munications Networking Conference (CCNC). 2019 16th IEEE Annual Consumer
Communications Networking Conference (CCNC). 2019, pp. 1–6. doi: 10.1109
/CCNC.2019.8651811.

[Lub85] M. Luby. “A Simple Parallel Algorithm for the Maximal Independent Set Prob-
lem.” In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of
Computing (Providence, Rhode Island, USA). STOC ’85. New York, NY, USA:
ACM, 1985, pp. 1–10. isbn: 978-0-89791-151-1. doi: 10.1145/22145.22146.

[Mas+02] A. Mascis and D. Pacciarelli. “Job-Shop Scheduling with Blocking and No-Wait
Constraints.” In: European Journal of Operational Research (2002), p. 20.

[Nay+15] N. G. Nayak, F. Dürr, and K. Rothermel. “Software-Defined Environment for
Reconfigurable Manufacturing Systems.” In: 2015 5th International Conference on
the Internet of Things (IOT). 2015 5th International Conference on the Internet
of Things (IOT). 2015, pp. 122–129. doi: 10.1109/IOT.2015.7356556.

[Nay+16] N. G. Nayak, F. Dürr, and K. Rothermel. “Time-Sensitive Software-defined Network
(TSSDN) for Real-time Applications.” In: Proceedings of the 24th International
Conference on Real-Time Networks and Systems. RTNS ’16. 2016, pp. 193–202.
isbn: 978-1-4503-4787-7. doi: 10.1145/2997465.2997487.

https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kukaindustrie40en.pdf?rev=a1e19f08c4fc4f9ebacdb8ba748c1d46
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kukaindustrie40en.pdf?rev=a1e19f08c4fc4f9ebacdb8ba748c1d46
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kukaindustrie40en.pdf?rev=a1e19f08c4fc4f9ebacdb8ba748c1d46
https://doi.org/10.1145/3015037.3015044
https://doi.org/10.1109/ICDCS.2010.58
https://doi.org/10.1109/TNET.2019.2911272
https://doi.org/10.1109/CCNC.2019.8651811
https://doi.org/10.1109/CCNC.2019.8651811
https://doi.org/10.1145/22145.22146
https://doi.org/10.1109/IOT.2015.7356556
https://doi.org/10.1145/2997465.2997487

BIBLIOGRAPHY 213

[Nay+18a] N. G. Nayak, F. Dürr, and K. Rothermel. “Incremental Flow Scheduling and
Routing in Time-Sensitive Software-Defined Networks.” In: IEEE Transactions
on Industrial Informatics 14.5 (2018), pp. 2066–2075. issn: 1941-0050. doi:
10.1109/TII.2017.2782235.

[Nay+18b] N. G. Nayak, F. Dürr, and K. Rothermel. “Routing Algorithms for IEEE802.1Qbv
Networks.” In: SIGBED Rev. 15.3 (2018), pp. 13–18. issn: 1551-3688. doi:
10.1145/3267419.3267421.

[Oli+18] R. S. Oliver, S. S. Craciunas, and W. Steiner. “IEEE 802.1Qbv Gate Control
List Synthesis Using Array Theory Encoding.” In: 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). 2018, pp. 13–24.
doi: 10.1109/RTAS.2018.00008.

[Ope16] Open Networking Foundation. SDN Architecture 1.1. TR (Technical Reference).
Palo Alto, CA 94303: Open Networking Foundation, 2016, p. 59. url: https:
//opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architec
ture_issue_1.1.pdf.

[Pah+18] M. Pahlevan and R. Obermaisser. “Genetic Algorithm for Scheduling Time-
Triggered Traffic in Time-Sensitive Networks.” In: 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA). 2018 IEEE
23rd International Conference on Emerging Technologies and Factory Automation
(ETFA). Vol. 1. 2018, pp. 337–344. doi: 10.1109/ETFA.2018.8502515.

[Pah+19a] M. Pahlevan, J. Schmeck, and R. Obermaisser. “Evaluation of TSN Dynamic
Configuration Model for Safety-Critical Applications.” In: 2019 IEEE Intl Conf
on Parallel Distributed Processing with Applications, Big Data Cloud Computing,
Sustainable Computing Communications, Social Computing Networking (ISPA/BD-
Cloud/SocialCom/SustainCom). 2019 IEEE Intl Conf on Parallel Distributed Pro-
cessing with Applications, Big Data Cloud Computing, Sustainable Computing
Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/Sus-
tainCom). 2019, pp. 566–571. doi: 10.1109/ISPA-BDCloud-SustainCom-Socia
lCom48970.2019.00086.

[Pah+19b] M. Pahlevan, N. Tabassam, and R. Obermaisser. “Heuristic List Scheduler for
Time Triggered Traffic in Time Sensitive Networks.” In: ACM SIGBED Review 16.1
(2019), pp. 15–20. issn: 1551-3688, 1551-3688. doi: 10.1145/3314206.3314208.

[Pal+13] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler, and T.
Engel. “On Optimal Scheduling in Duty-Cycled Industrial IoT Applications Using

https://doi.org/10.1109/TII.2017.2782235
https://doi.org/10.1145/3267419.3267421
https://doi.org/10.1109/RTAS.2018.00008
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://doi.org/10.1109/ETFA.2018.8502515
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00086
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00086
https://doi.org/10.1145/3314206.3314208

214 BIBLIOGRAPHY

IEEE802.15.4e TSCH.” In: IEEE Sensors Journal 13.10 (2013), pp. 3655–3666.
issn: 1530-437X, 1558-1748. doi: 10.1109/JSEN.2013.2266417.

[Pan+21] Z. Pang, X. Huang, Z. Li, S. Zhang, Y. Xu, H. Wan, and X. Zhao. “Flow Scheduling
for Conflict-Free Network Updates in Time-Sensitive Software-Defined Networks.”
In: IEEE Transactions on Industrial Informatics 17.3 (2021), pp. 1668–1678. issn:
1941-0050. doi: 10.1109/TII.2020.2998224.

[Pei14] T. P. Peixoto. “The Graph-Tool Python Library.” In: figshare (2014). doi: 10.60
84/m9.figshare.1164194.

[Pop+16] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner. “Design Optimisation of
Cyber-Physical Distributed Systems Using IEEE Time-Sensitive Networks.” In:
IET Cyber-Physical Systems: Theory Applications 1.1 (2016), pp. 86–94. issn:
2398-3396. doi: 10.1049/iet-cps.2016.0021.

[Poz+16] F. Pozo, G. Rodriguez-Navas, W. Steiner, and H. Hansson. “Period-Aware Seg-
mented Synthesis of Schedules for Multi-hop Time-Triggered Networks.” In: 2016
IEEE 22nd International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). 2016 IEEE 22nd International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA). 2016,
pp. 170–175. doi: 10.1109/RTCSA.2016.42.

[Pri+18] F. Prinz, M. Schoeffler, A. Lechler, and A. Verl. “Dynamic Real-time Orchestration
of I4.0 Components Based on Time-Sensitive Networking.” In: Procedia CIRP.
51st CIRP Conference on Manufacturing Systems 72 (2018), pp. 910–915. issn:
2212-8271. doi: 10.1016/j.procir.2018.03.174.

[Pri07] D. D. S. Price. “A General Theory of Bibliometric and Other Cumulative Advantage
Processes.” In: Journal of the American Society for Information Science 27.5 (2007),
pp. 292–306. issn: 0002-8231. doi: 10.1002/asi.4630270505.

[PRO+16] PROFIBUS Nutzerorganisation e. V. (PNO) and PROFIBUS & PROFINET
International (PI). PROFIBUS System Description - Technology and Application.
2016. url: https://www.profibus.com/index.php?eID=dumpFile&t=f&f=523
80&token=4868812e468cd5e71d2a07c7b3da955b47a8e10d.

[Raa+17] M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner. “Runtime Reconfiguration
of Time-Sensitive Networking (TSN) Schedules for Fog Computing.” In: 2017
IEEE Fog World Congress (FWC). 2017 IEEE Fog World Congress (FWC). 2017,
pp. 1–6. doi: 10.1109/FWC.2017.8368523.

https://doi.org/10.1109/JSEN.2013.2266417
https://doi.org/10.1109/TII.2020.2998224
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.1049/iet-cps.2016.0021
https://doi.org/10.1109/RTCSA.2016.42
https://doi.org/10.1016/j.procir.2018.03.174
https://doi.org/10.1002/asi.4630270505
https://www.profibus.com/index.php?eID=dumpFile&t=f&f=52380&token=4868812e468cd5e71d2a07c7b3da955b47a8e10d
https://www.profibus.com/index.php?eID=dumpFile&t=f&f=52380&token=4868812e468cd5e71d2a07c7b3da955b47a8e10d
https://doi.org/10.1109/FWC.2017.8368523

BIBLIOGRAPHY 215

[Rea] RealTime-at-Work (RTaW). RTaW-Pegase Helps Design Safe and Optimized
Critical Embedded Networks. RealTime-at-Work (RTaW). url: http://www.rea
ltimeatwork.com/software/rtaw-pegase/.

[Rei+02] M. Reisslein, K. W. Ross, and S. Rajagopal. “A Framework for Guaranteeing
Statistical QoS.” In: IEEE/ACM Transactions on Networking 10.1 (2002), pp. 27–
42. issn: 1063-6692. doi: 10.1109/90.986511.

[Rei+12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. “Abstractions
for Network Update.” In: Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication. SIGCOMM ’12. New York, NY, USA: ACM, 2012, pp. 323–334. isbn:
978-1-4503-1419-0. doi: 10.1145/2342356.2342427.

[Sad+20] O. Sadio, I. Ngom, and C. Lishou. “Design and Prototyping of a Software Defined
Vehicular Networking.” In: IEEE Transactions on Vehicular Technology 69.1 (2020),
pp. 842–850. issn: 1939-9359. doi: 10.1109/TVT.2019.2950426.

[Sch+07] H. Schioler, H. P. Schwefel, and M. B. Hansen. “CyNC: A MATLAB/SimuLink
Toolbox for Network Calculus.” In: Proceedings of the 2Nd International Conference
on Performance Evaluation Methodologies and Tools. ValueTools ’07. ICST, Brus-
sels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2007, 60:1–60:10. isbn: 978-963-9799-00-4.
url: http://dl.acm.org/citation.cfm?id=1345263.1345340.

[Sch+17] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Mühl. “ILP-
based Joint Routing and Scheduling for Time-triggered Networks.” In: Proceedings
of the 25th International Conference on Real-Time Networks and Systems. RTNS
’17. 2017, pp. 8–17. isbn: 978-1-4503-5286-4. doi: 10.1145/3139258.3139289.

[Sch+20] E. Schweissguth, D. Timmermann, H. Parzyjegla, P. Danielis, and G. Mühl. “ILP-
Based Routing and Scheduling of Multicast Realtime Traffic in Time-Sensitive Net-
works.” In: 2020 IEEE 26th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). 2020 IEEE 26th International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). 2020, pp. 1–11. doi: 10.1109/RTCSA50079.2020.9203662.

[Smi+17] F. Smirnov, M. Glaß, F. Reimann, and J. Teich. “Optimizing Message Routing
and Scheduling in Automotive Mixed-Criticality Time-Triggered Networks.” In:
Proceedings of the 54th Annual Design Automation Conference 2017. DAC ’17.
Austin, TX, USA: ACM, 2017, 48:1–48:6. isbn: 978-1-4503-4927-7. doi: 10.114
5/3061639.3062298.

http://www.realtimeatwork.com/software/rtaw-pegase/
http://www.realtimeatwork.com/software/rtaw-pegase/
https://doi.org/10.1109/90.986511
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1109/TVT.2019.2950426
http://dl.acm.org/citation.cfm?id=1345263.1345340
https://doi.org/10.1145/3139258.3139289
https://doi.org/10.1109/RTCSA50079.2020.9203662
https://doi.org/10.1145/3061639.3062298
https://doi.org/10.1145/3061639.3062298

216 BIBLIOGRAPHY

[Ste+09] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan. “TTEthernet
Dataflow Concept.” In: 2009 Eighth IEEE International Symposium on Network
Computing and Applications. 2009 Eighth IEEE International Symposium on
Network Computing and Applications (NCA). Cambridge, MA, USA: IEEE, 2009,
pp. 319–322. doi: 10.1109/NCA.2009.28.

[Ste+13] W. Steiner and B. Dutertre. “The TTEthernet Synchronisation Protocols and
Their Formal Verification.” In: International Journal of Critical Computer-Based
Systems 4.3 (2013), p. 280. issn: 1757-8779, 1757-8787. doi: 10.1504/IJCCBS.2
013.058398.

[Ste+15] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt, D. Herrscher, and A. Wolisz.
“Beware of the Hidden! How Cross-Traffic Affects Quality Assurances of Competing
Real-Time Ethernet Standards for in-Car Communication.” In: 2015 IEEE 40th
Conference on Local Computer Networks (LCN). 2015 IEEE 40th Conference on
Local Computer Networks (LCN). 2015, pp. 1–9. doi: 10.1109/LCN.2015.7366
277.

[Ste+18] W. Steiner, S. S. Craciunas, and R. S. Oliver. “Traffic Planning for Time-Sensitive
Communication.” In: IEEE Communications Standards Magazine 2.2 (2018),
pp. 42–47. issn: 2471-2825. doi: 10.1109/MCOMSTD.2018.1700055.

[Ste10] W. Steiner. “An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered
Multi-hop Networks.” In: 2010 31st IEEE Real-Time Systems Symposium. 2010
31st IEEE Real-Time Systems Symposium. 2010, pp. 375–384. doi: 10.1109
/RTSS.2010.25.

[Ste11] W. Steiner. “Synthesis of Static Communication Schedules for Mixed-Criticality Sys-
tems.” In: 2011 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops. 2011 14th IEEE Interna-
tional Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops. 2011, pp. 11–18. doi: 10.1109/ISORCW.2011.12.

[Sye+19] A. Syed and G. Fohler. “Efficient Offline Scheduling of Task-Sets with Complex
Constraints on Large Distributed Time-Triggered Systems.” In: Real-Time Systems
55.2 (2019), pp. 209–247. issn: 1573-1383. doi: 10.1007/s11241-018-9320-0.

[Tel+16] N. E. H. Tellache and M. Boudhar. “The Two-Machine Flow Shop Problem with
Conflict Graphs.” In: IFAC-PapersOnLine. 8th IFAC Conference on Manufacturing
Modelling, Management and Control MIM 2016 49.12 (2016), pp. 1026–1031. issn:
2405-8963. doi: 10.1016/j.ifacol.2016.07.577.

https://doi.org/10.1109/NCA.2009.28
https://doi.org/10.1504/IJCCBS.2013.058398
https://doi.org/10.1504/IJCCBS.2013.058398
https://doi.org/10.1109/LCN.2015.7366277
https://doi.org/10.1109/LCN.2015.7366277
https://doi.org/10.1109/MCOMSTD.2018.1700055
https://doi.org/10.1109/RTSS.2010.25
https://doi.org/10.1109/RTSS.2010.25
https://doi.org/10.1109/ISORCW.2011.12
https://doi.org/10.1007/s11241-018-9320-0
https://doi.org/10.1016/j.ifacol.2016.07.577

BIBLIOGRAPHY 217

[Wan+06a] E. Wandeler and L. Thiele. “Optimal TDMA Time Slot and Cycle Length Alloca-
tion for Hard Real-Time Systems.” In: Asia and South Pacific Conference on Design
Automation, 2006. Asia and South Pacific Conference on Design Automation, 2006.
2006, pp. 479–484. doi: 10.1109/ASPDAC.2006.1594731.

[Wan+06b] E. Wandeler and L. Thiele. Real-Time Calculus (RTC) Toolbox. 2006. url:
http://www.mpa.ethz.ch/Rtctoolbox.

[Wro97] J. Wroclawski <jtw@lcs.mit.edu>. RFC 2211: Specification of the Controlled-Load
Network Element Service. 1997. url: https://tools.ietf.org/html/rfc2211.

[Zha+17] L. Zhao, P. Pop, Q. Li, J. Chen, and H. Xiong. “Timing Analysis of Rate-
Constrained Traffic in TTEthernet Using Network Calculus.” In: Real-Time Systems
53.2 (2017), pp. 254–287. issn: 0922-6443, 1573-1383. doi: 10.1007/s11241-01
6-9265-0.

[Zha+18a] L. Zhao, P. Pop, and S. S. Craciunas. “Worst-Case Latency Analysis for IEEE
802.1Qbv Time Sensitive Networks Using Network Calculus.” In: IEEE Access 6
(2018), pp. 41803–41815. issn: 2169-3536. doi: 10.1109/ACCESS.2018.2858767.

[Zha+18b] L. Zhao, P. Pop, Z. Zheng, and Q. Li. “Timing Analysis of AVB Traffic in TSN
Networks Using Network Calculus.” In: 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 2018 IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS). 2018, pp. 25–36. doi:
10.1109/RTAS.2018.00009.

https://doi.org/10.1109/ASPDAC.2006.1594731
http://www.mpa.ethz.ch/Rtctoolbox
https://tools.ietf.org/html/rfc2211
https://doi.org/10.1007/s11241-016-9265-0
https://doi.org/10.1007/s11241-016-9265-0
https://doi.org/10.1109/ACCESS.2018.2858767
https://doi.org/10.1109/RTAS.2018.00009

218

The End.

This document was compiled from LATEX sources in October 2022.

	Danksagungen
	Contents
	Lists of Figures, Tables, Algorithms, and Theorems
	List of Acronyms
	Abstract/Kurzzusammenfassung
	Introduction
	Time-Sensitive Communication
	Structure of this Thesis
	Scientific Contributions

	Background
	Why Nodes?
	Transmitting Data Packets via Links
	Selecting Packets for Transmission
	Bridges
	Hosts
	Clocks and Time-Synchronization
	Time-Sensitive Networked Applications
	Architecture: Organizing the Network Functionality

	System Model and Problem Overview
	Notational Conventions
	The Network Graph
	Traffic Flows
	Zero-Queuing Principle
	Problem Overview

	ILP-Based Traffic Planning
	Integer Linear Programming
	Joint Scheduling and Route Computation
	Joint Scheduling and Path Selection
	Traffic Planning for Complemental Flows
	Related Work
	Challenges of ILP-Based Traffic Planning

	Traffic Planning with Conflict Graphs
	Fundamental Concepts and Relations for Conflict-Graph-Based Traffic Planning
	Conflict-Graph-Based Approach for Traffic Planning
	Dynamic QoS-Aware Traffic Planning with Conflict Graphs
	Related Work
	Discussion

	Modeling Time-Triggered Service Intermittence with Network Calculus
	Network Calculus Introduction
	Network Elements: System Models
	Deriving Service Curves
	Empirical Evaluation
	Extension to Multi-Hop?
	Related Work
	Summary

	Conclusion
	Summary
	Outlook

	Appendix
	Joint Scheduling and Route Computation
	Greedy Flow Heap Heuristic

	Bibliography

