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Abstract

Differential privacy allows bounding the influence that training data records have on a

neural network. To use differential privacy in machine learning with neural networks, data

scientists must choose privacy parameter ǫ. Choosing meaningful privacy parameters is

key since differentially private neural networks that have been trained with weak privacy

parameters might result in excessive privacy leakage, while strong privacy parameters

might overly degrade model utility. However, privacy parameter values are difficult

to choose for two main reasons. First, the theoretical upper bound on privacy loss ǫ

might be loose, depending on the chosen sensitivity and data distribution of practical

datasets. Second, legal requirements and societal norms for anonymization often refer to

individual identifiability, to which ǫ is only indirectly related.

Within this thesis, we address the problem of choosing ǫ from two angles. First, we

quantify the empirical lower bound on the privacy loss under empirical membership

inference attacks to allow data scientists to compare the empirical privacy-accuracy trade-

off between local and central differential privacy. Specifically, we consider federated and

non-federated discriminative models, as well as generative models. Second, we transform

the privacy loss under differential privacy into an analytical bound on identifiability map

legal and societal expectations w.r.t. identifiability to corresponding privacy parameters.

The thesis contributes techniques for quantifying the trade-off between accuracy

and privacy over ǫ. The techniques provide information for interpreting differentially

private training datasets or models trained with the differentially private stochastic

gradient descent to improve usability of differential privacy in machine learning. In

particular, we identify preferable ranges for privacy parameter ǫ and compare local and

central differential privacy mechanisms for training differentially private neural networks

under membership inference adversaries. Furthermore, we contribute an implementable

instance of the differential privacy adversary that can be used to audit trained models

w.r.t. identifiability.
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Kurzzusammenfassung

Anonymisierung mit Differential Privacy ermöglicht es den Einfluss einzelner Trainings-

daten auf das Training eines neuronalen Netzes zu begrenzen. Um Differential Privacy

beim Training neuronaler Netze einzusetzen, müssen Datenanalysten den Privatsphäre-

parameter ǫ setzen. Die Wahl von ǫ ist wichtig, da neuronale Netze, die mit schwachen ǫ

trainiert wurden, zu schwacher Anonymisierung und einer damit einhergehenden Iden-

tifizierbarkeit führen können. Starke ǫ hingegen können den Nutzen eines neuronalen

Netzes signifikant verschlechtern. Die Wahl von ǫ ist jedoch aus zwei Gründen schwierig.

Erstens kann die theoretische obere Schranke für Identifizierbarkeit je nach gewähl-

ter Sensitivität und Verteilung im Datensatz weit von einer in der Praxis erreichbaren

unteren Schranke entfernt sein. Zweitens beziehen sich rechtliche Anforderungen und

Normen zur Anonymisierung teils auf individuelle Identifizierbarkeit, die nur indirekt

mit ǫ verbunden ist.

Wir adressieren das Problem der Auswahl von ǫ aus zwei Richtungen. Zuerst quan-

tifizieren wir die empirische untere Schranke für Identifizierbarkeit unter Membership

Inference Angreifern, um einen Vergleich zwischen lokaler und zentraler Differential Pri-

vacy zu ermöglichen. Konkret betrachten wir diskriminative sowie generative neuronale

Netze. Darauf folgend transformieren wir den Privatsphäreparameter in eine analytische,

obere Schranke für Identifizierbarkeit, um rechtliche und gesellschaftliche Erwartungen

für Identifizierbarkeit in entsprechende Privatsphäreparameter übersetzen zu können.

Somit formuliert diese Thesis Techniken zur Quantifizierung des trade-off zwischen

Genauigkeit und Privatsphäre. Wir identifizieren bevorzugte Bereiche für Privatsphärepa-

rameter für lokale und zentrale Differential Privacy Mechanismen. Außerdem formulieren

wir eine implementierbare Instanz des Differential Privacy Angreifers, welche zur Audi-

tierbarkeit von trainierten neuronalen Netzen im Bezug auf die Identifizierbarkeit genutzt

werden kann.
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1. Introduction

Neural networks have successfully been applied to a wide range of learning tasks such

as image and text classification as well as generation [Dev+19; Goo+14; SZ15], and

sequence prediction [Sil+16]. In some learning tasks, data scientists have to handle

personally identifiable or confidential data, which results in two challenges. First, legal

restrictions might not permit collecting, processing, or publishing original personal data,

such as National Health Service data [New17]. Second, membership inference [Hay+19;

NSH19; Sho+17] and model inversion attacks [FJR15; Fre+14] are capable of identifying

and reconstructing training data based on information leakage from a trained, published

neural network model. Potential mitigation to both challenges is offered by anonymized

neural network training with differential privacy, effectively limiting the information that

is revealed about every record in the training data (i.e., the privacy loss).

The application of differential privacy for neural network training has received consider-

able attention from the privacy research community, leading to key contributions such as

the tight estimation of privacy loss under composition a composition differentially private

functions [KOV17; Mir17] and differentially private stochastic gradient descent [Aba+16;

BST14; SS15; SCS13] for training neural networks. Still, data scientists must choose

privacy parameter ǫ to train a differentially private neural network. Setting large ǫ values

will unlikely mitigate privacy attacks such as membership inference, and setting small ǫ

values will reduce model accuracy. Balancing the resulting privacy-accuracy trade-off

is a challenging problem, particularly for data scientists who are not experts in DP.

Furthermore, privacy parameters only formulate a theoretic upper bound on the privacy

loss that might not be reached when training an ML model with differentially private

stochastic gradient descent on real-world data. Furthermore, a data scientist can choose

between two categories of DP mechanisms: local DP [Wan+17] and central DP [Dwo06].

LDP perturbs the training data before any training takes place, whereas CDP perturbs

the gradient update steps during training. The degree of perturbation, which affects the

23



1. Introduction

accuracy of the trained neural network on test data, is calibrated for both DP categories

by adjusting their respective privacy parameter ǫ. However, data scientists might rule

out LDP when designing differentially private neural networks due to concerns raised

by the comparatively higher privacy parameter ǫ in LDP. Thus, appropriate values for

privacy “parameter ǫ for particular contexts, research goals, or datasets is not self-evident

but will be developed through trial and error” [Dwo+11]. In consequence, providing

methods quantifying the trade-off between utility and identifiability over ǫ can thus

provide information for interpreting differentially private datasets or functions.

This thesis addresses two problems in the context of differentially private neural

networks. First, quantification of the empirical lower bound on the privacy loss under

empirical membership inference attacks to allow data scientists to compare the empirical

privacy-accuracy trade-off between local and central differential privacy. Secondly, the

transformation of the privacy loss under differential privacy into an analytical bound on

identifiability, to connect differential privacy guarantees to social norms and regulation.

1.1. Contributions

Comparison of the privacy-accuracy trade-offs in central and local differential privacy

under a white-box membership inference attack. Attacks that aim to identify the training

data of neural networks represent a severe threat to the privacy of individuals in the training

dataset. Possible protection is offered by anonymization of the training data or training

function with differential privacy. Data scientists can choose between local and central

differential privacy, and need to select meaningful privacy parameters ǫ. A comparison

of local and central differential privacy based on the privacy parameters furthermore

potentially leads data scientists to incorrect conclusions, since the privacy parameters are

reflecting different types of mechanisms. Instead, we empirically compare the relative

privacy-accuracy trade-off of central and local differential privacy mechanisms under

a white-box membership inference attack. While membership inference only reflects a

lower bound on inference risk and differential privacy formulates an upper bound, our

experiments with several datasets show that the privacy-accuracy trade-off is similar for

both types of mechanisms despite the large difference in their upper bound. This suggests

that the upper bound is far from the practical susceptibility to membership inference.

24



1.1. Contributions

Thus, small ǫ in central differential privacy and large ǫ in local differential privacy result

in similar membership inference risks, and local differential privacy can be a meaningful

alternative to central differential privacy for differentially private deep learning besides

the comparatively higher privacy parameters.

Extending the privacy-accuracy trade-off to generative networks. Generative networks

for the generation of data complement feedforward neural networks for the classification

of data. We use a novel membership inference attack that outperforms state-of-the-art

against Variational Autoencoders to quantify the privacy-accuracy trade-off for generative

models. Our work complements previous work in two aspects. First, we evaluate the

strong reconstruction MI attack against Variational Autoencoders under differential

privacy. Second, we address the data scientist’s challenge of setting privacy parameter ǫ,

which steers the differential privacy strength and thus also the privacy-accuracy trade-off.

In our experimental study, we consider image and time series data, and three local and

central differential privacy mechanisms. We find that the privacy-accuracy trade-offs

strongly depend on the dataset and model architecture. We do rarely observe favorable

privacy-accuracy trade-off for Variational Autoencoders and identify a case where LDP

outperforms CDP.

Identifiability metrics for transforming privacy parameter ǫ into the posterior Bayesian

belief and expected advantage of the DP adversary with tight bounds. Differential

privacy allows bounding the influence that training data records have on a machine

learning model. To use differential privacy in machine learning, data scientists must

choose privacy parameters (ǫ, δ). Choosing meaningful privacy parameters is key since

models trained with weak privacy parameters might result in excessive privacy leakage,

while strong privacy parameters might overly degrade model utility. However, privacy

parameter values are difficult to choose for two main reasons. First, the theoretical upper

bound on privacy loss (ǫ, δ) might be loose, depending on the chosen sensitivity and

data distribution of practical datasets. Second, legal requirements and societal norms for

anonymization often refer to individual identifiability, to which (ǫ, δ) are only indirectly

related. We transform (ǫ, δ) to a bound on the Bayesian posterior belief of the adversary

assumed by differential privacy concerning the presence of any record in the training

dataset. The bound holds for multidimensional queries under composition, and we show

that it can be tight in practice. Furthermore, we derive an identifiability bound, which
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1. Introduction

relates the adversary assumed in differential privacy to previous work on membership

inference adversaries. We formulate an implementation of this differential privacy

adversary that allows data scientists to audit model training and compute empirical

identifiability scores and empirical (ǫ, δ).

1.2. Publications

This thesis consists of contributions from six peer-reviewed international security and

data management conference publications [Ber+22; Ber+21; BRK22; BBK17; Eib+18;

HHB19]. An additional contribution is available only as a preprint [Wun+21]. While

the author of this thesis substantially contributed to all of these publications, some

of the publication content is not part of this thesis. Please note that the publications

are not sorted by publication date, but by the order in which the author of this thesis

approached the individual problems. While working on the individual problems the

author of this thesis proposed and supervised several Bachelor and Master Theses for

which an overview is presented in Table A.1 in Appendix A.1.

Privacy-Preserving Outlier Detection for Data Streams (DBSec 2017) [BBK17]. The

publication discusses the effect of outliers in the dataset on utility and privacy when

using local differential privacy. The publication suggests Relaxed Sensitivity, a notion

for choosing the sensitivity s.t. differential privacy is preserved for a subgroup of all

possible inputs and weakened for outliers. In addition, the publication formulates a

correction algorithm for outlier detection on differentially private data. The author of

this thesis was joint contributor to the theory, implementation and writing regarding

differentially private algorithms and outlier detection in this publication. The publication

is not discussed within this thesis in detail but motivated the subsequent publications to

model the privacy-accuracy trade-off and compare ǫ between local and central differential

privacy [Ber+21; Eib+18].

The Influence of Differential Privacy on Short Term Electric Load Forecasting (DACH+

Energy Informatics 2018) [Eib+18]. The publication addresses the privacy-accuracy

trade-off between energy consumers and energy providers in energy load forecasting.

Instead of choosing ǫ directly the energy provider sets a maximum Bayesian posterior

belief of the DP adversary which is then transformed to ǫ. While the maximum Bayesian

26



1.2. Publications

posterior belief holds for all energy consumers, we show that many energy consumers

actually enjoy a far smaller factual Bayesian posterior belief since their consumption is

much smaller than the technical maximum against which differential privacy protects.

The author of this thesis contributed was main contributor to the theory and writing

on differential identifiability and interpretation of ǫ in electric load forecasting in the

publication. The author was joint contributor to the implementation of the differential

privacy mechanism and the differential identifiability calculation under k-fold adaptive

composition for achieving a tighter lower bound of the privacy guarantee in electric load

forecasting. The author of this thesis supervised one co-author of the publication. This

publication is not included in this thesis but motivated a later publication on quantifying

identifiability to choose and audit ǫ in differentially private deep learning [Ber+22].

Comparing Local and Central Differential Privacy Using Membership Inference Attacks

(DBSec 2021) [Ber+21]. The publication suggests comparing local and central differ-

ential privacy under black- and white-box membership inference. Under this measure,

CDP mechanisms are not achieving a consistently better privacy-accuracy trade-off on

various datasets and reference models. The trade-off, however, depends on the specific

dataset and for each dataset, there are ranges where the relative trade-off is greater for

protection against MI than accuracy. The author of this thesis designed the study and was

main contributor to theory and writing. The author of this thesis was joint contributor to

the implementation and supervised several co-authors. The publication is contained in

an extended version that also considers federated learning in Chapter 5 within this thesis.

Monte Carlo and Reconstruction Membership Inference Attacks against Generative

Models (PETS 2019) [HHB19]. The publication introduces several membership inference

attacks against generative machine learning models to allow modeling the privacy-

accuracy trade-off in generative machine learning. However, the work does not consider

anonymization during differential privacy but solely regularization techniques against

overfitting during model training. The author of this thesis was joint contributor to the

theory and writing. The author of this thesis co-supervised a co-author of this publication.

Chapter 6 in this thesis extends the publication by quantifying the privacy-accuracy trade-

off for Variational Autoencoders with local and central differential privacy under the

suggested reconstruction attack [BRK22].
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Assessing Differentially Private Variational Autoencoders under Membership Inference

(DBSec 2022) [BRK22]. This work quantifies the privacy-accuracy trade-off under the

reconstruction MI attack against differentially private Variational Autoencoders. The

publication extends the comparison of local and central differential privacy w.r.t. the

privacy-accuracy trade-off in feedforward neural networks [Ber+21]. The CDP mech-

anism offered a more consistent decrease in MI attack performance whereas the LDP

mechanisms showed varying levels of protection against MI depending on chosen privacy

parameter and setting. The relative privacy-accuracy trade-off highlights that protection

against MI often comes at a disproportionately high accuracy drop. The author of this

thesis motivated and designed the study. The publication is a joint effort to which

both the thesis author and the supervised co-author contributed equally to the theory,

implementation and writing. This publication is featured in Chapter 6 within this thesis.

Quantifying Identifiability to Choose and Audit ǫ in Differentially Private Deep Learning

(VLDB 2022) [Ber+22]. This publication contributes two identifiability scores that can

also be transformed into privacy parameter ǫ in central differential privacy. Furthermore,

an implementation for the differential privacy adversary in machine learning is suggested.

The implementation is used to audit trained machine learning models w.r.t. the factual

privacy loss. By this, it becomes possible to check whether the specified DP bound is

reached. We furthermore suggest a heuristic that leads to tight bounds by using local

sensitivity. The author of this thesis motivated the study and suggested identifiability-

based parameter selection with dataset sensitivity and differential identifiability. The

author of this thesis was main contributor to the theory and writing. The author of this

thesis was joint contributor to the implementation and supervised two co-authors. This

publication is the foundation for Chapter 7 in this thesis.

On the Privacy-Accuracy Trade-Off in Differentially Private Hierarchical Text Classi-

fication [Wun+21]. This work uses the methods for quantifying the privacy-accuracy

trade-off from this thesis to compare several differentially private hierarchical text classifi-

cation model architectures to select the model architecture with the best privacy-accuracy

trade-off. Furthermore, potential improvements to white-box membership inference

attacks against hierarchical classification models are discussed. The author of this thesis

was main contributor to the theory. The author of this thesis furthermore was joint con-

tributor to the writing and supervised a co-author. The implementation was performed
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by the supervised co-author. The work is not featured in this thesis, but complementing

this thesis by demonstrating the practical benefits of the thesis contributions.

1.3. Thesis Structure

This thesis is structured as follows. We provide preliminaries for differential privacy

and membership inference in Chapter 2. Related work w.r.t. the scope of this thesis is

presented in Chapter 3. We formalize the problem of choosing and interpreting privacy

parameter ǫ to improve usability of differentially private deep learning in Chapter 4.

In the three subsequent chapters, we present approaches for addressing the problem of

selecting and interpreting privacy parameters in differentially private deep learning. To

this end Chapters 5 and 6 compare the achievable privacy-accuracy trade-off between

local and central differential privacy in feedforward and generative neural networks

under membership inference attacks. Chapter 7 formulates an implementable instance

of the DP adversary for differentially private deep learning to choose and audit privacy

parameters based on achievable (i.e., tight) identifiability bounds. We conclude the thesis

with a summary and outlook on future work in Chapter 8. Selected additional material

is provided in Appendix A.
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2. Preliminaries

In the following, we provide definitions and formalization for differential privacy (Sec-

tions 2.1 and 2.2), neural networks (Section 2.3), and membership inference attacks

(Section 2.4). We furthermore provide definitions for performance metrics that are used

within this thesis (Section 2.5).

2.1. Central Differential Privacy

Central differential privacy (CDP), introduced by Dwork [Dwo06], is a mathematical

definition for the anonymization of data. In contrast to previous anonymization methods

based on generalization (e.g., k-anonymity [SS98]) CDP adds noise to the result of a

query function f(·) over a data set D = d1, . . . , dn. Assuming that every participant

is represented by one element, privacy is provided to participants in the data set D as

their impact of presence (absence) on the query function f(·) becomes bounded. To add

differentially private noise to the result of some arbitrary query f(·), mechanisms M
fulfilling Definition 2.1 are used.

Definition 2.1 ((ǫ, δ)-Central Differential Privacy [Dwo+06]). A mechanism M pre-

serves (ǫ, δ)-differential privacy if for all independently sampled D,D′ ⊆ U , where U is

a finite set, with D and D′ differing in at most one element, and all possible mechanism

outputs S
Pr(M(D) ∈ R) ≤ eǫ · Pr(M(D′) ∈ R) + δ (2.1)

⋄

If the evaluation of a query function f : U → R on a dataset D from domain U yields

a result r ∈ R, r inevitably leaks information about the entries d ∈ D (cf. impossibility

of Dalenius’ desideratum [Dwo06]). In consequence, r could have been produced from
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dataset D or some neighboring dataset D′. A neighboring dataset D′ either differs from

D in the presence of one additional datapoint (unbounded CDP) or the value of one

datapoint when a datapoint from D is replaced by another datapoint (bounded CDP). In

the context of this thesis, we consider w.l.o.g. unbounded CDP where D contains one

datapoint d more than D′ and D \ D′ = d. The impact of a single member d ∈ D on

f(·) is bounded. If this impact is low compared to the noise specified by CDP, plausible

deniability is provided to this member of D, even if D and the members’ properties

d (and thus also D′) are known. For example, a single individual participating in a

private analysis based on a census income dataset such as Adult [Koh96] could therefore

plausibly deny census participation and values of personal attributes. CDP provides a

strong guarantee since it protects against a strong adversary with knowledge of up to all

points in a dataset except one. As Definition 2.1 is an inequality, the privacy parameter ǫ

can be interpreted as an upper bound on privacy loss.

Definition 2.2 (Gaussian Mechanism [DR14]). Let ǫ ∈ (0, 1) be arbitrary. For c2 >

2 ln
(

1.25
δ

)

, the Gaussian mechanism with parameter σ ≥ c∆f
ǫ

gives (ǫ, δ)-CDP, adding

noise scaled to N (0, σ2). ⋄

The Gaussian mechanism of Definition 2.2 is a CDP mechanism for perturbing the

outcome of stochastic gradient descent in machine learning and adds noise independently

sampled from a Gaussian distribution centered at zero. Prior work [DR14] has analyzed

the tails of the normal distributions and found that bounding the standard deviation as

follows fulfills (ǫ, δ)-CDP:

σ > ∆f
√

2 ln(1.25/δ)/ǫ (2.2)

Rearranged to solve for ǫ, this is:

ǫ > ∆f
√

2 ln(1.25/δ)/σ (2.3)

σ depends not only on the privacy parameter ǫ, but also on a scaling factor ∆f . ∆f is

commonly referred to as the sensitivity of a query function f(·). DP holds if mechanisms

are scaled to GSf of Definition 2.3, i.e., the maximum contribution of a record in the

dataset to the outcome of f(·).
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Definition 2.3 (Global Sensitivity). Let D and D′ be neighboring. For a given finite set

U and function f the global sensitivity GSf with respect to a distance function is

GSf = max
D,D′

||f(D)− f (D′) ||

⋄

For the Gaussian mechanism, we use Definition 2.3 with the global ℓ2-sensitivity

GSf2 . Definition 2.4 [NRS07] introduces local sensitivity LSf , a notion related to global

sensitivity, which fixes dataset D.

Definition 2.4 (Local Sensitivity). Let D and D′ be neighboring. For a given finite set

U , independently sampled dataset D ⊆ U , and function f , the local sensitivity LSf (D)

concerning a distance function is

LSf (D) = max
D′

||f(D)− f (D′) ||

⋄

Note that GSf can also be defined relative to local sensitivity by GSf = max
D

LSf (D).

Compared to using GSf , less noise may be added when ǫ is held constant and LSf is

used and ǫ may decrease when the noise distribution is held constant.

The most basic form of accounting for multiple data releases is sequential composition,

which states that for a sequence of k mechanism executions each providing (ǫi, δi)-DP, the

total privacy guarantee is (
∑

i ǫi,
∑

i δi)-DP; however, sequential composition adds more

noise than necessary [Aba+16; Mir17]. A tighter analysis of composition is provided by

Mironov [Mir17]. (α, ǫRDP )-RDP, with α > 1 quantifies the difference in distributions

M(D),M(D′) by their Rényi divergence [EH10]. For a sequence of k mechanism

executions each providing (α, ǫRDP,i)-RDP, the privacy guarantee is (α,
∑

i ǫRDP,i)-

RDP. The (α, ǫRDP )-RDP guarantee converts to
(

ǫRDP − ln δ
α−1

, δ
)

-DP. The Gaussian

mechanism provides RDP by:

ǫRDP = α ·∆f 2/2σ2 (2.4)
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2.2. Local Differential Privacy

We refer to the perturbation of entries d ∈ D as local differential privacy (LDP) [Wan+17].

We adapt the definitions of Kasiviswanathan et al. [Kas+08] to achieve local differential

privacy by using local randomizers LR. In LDP experiments within this thesis, we use

a local randomizer to perturb each record d ∈ D independently. Since a record may

contain multiple correlated features (e.g., items in a preference vector) a local randomizer

must be applied sequentially which results in a linearly increasing privacy loss. A series

of local randomizer executions per record composes a local algorithm according to

Definition 2.6. ǫ-local algorithms are ǫ-local differentially private [Kas+08], where ǫ is

a summation of all composed local randomizer guarantees. We perturb low domain data

(e.g., binary data) with randomized response [War65], a (composed) local randomizer.

Randomized response yields ǫ = ln
(

ρ
1−ρ

)

LDP for a one-time collection of values from

binary domains (e.g., {yes, no}) with two fair coins [EPK14]. That is, retention of the

original value with probability ρ = 0.5 and uniform sampling with probability (1− ρ).

Definition 2.5 (Local Differential Privacy). A local randomizer (mechanism) LR :

DOM → S is ǫ-local differentially private, if ǫ ≥ 0 and for all possible inputs

v, v′ ∈ DOM and all possible outcomes s ∈ S of LR

Pr[LR(v) = s] ≤ eǫ · Pr[LR (v′) = s] (2.5)

⋄

Definition 2.6 (Local Algorithm). An algorithm is ǫ-local if it accesses the database D
viaLRwith the following restriction: for all i ∈ {1, . . . , |D|}, ifLR1(i), . . . ,LRk(i) are

the algorithms invocations of LR on index i, where each LRj is an ǫj-local randomizer,

then ǫ1 + . . .+ ǫk ≤ ǫ. ⋄

Definition 2.7 (Laplace Mechanism [DR14]). Given a numerical query function f :

DOM → R
k, the Laplace mechanism with λ =

∆f

ǫ
is an ǫ-differentially private

mechanism, adding noise scaled to Lap(λ, µ = 0). ⋄

In this thesis, we also evaluate image data for which we rely on the local randomizer by

Fan [Fan18] for LDP image pixelization. The randomizer applies the Laplace mechanism

34



2.3. Machine Learning with Neural Networks

of Definition 2.7 with scale λ = 255·o
b2·ǫ

to each pixel, thus fulfilling Definition 2.5.

Parameter o represents the neighborhood in which LDP is provided. Full neighborhood

for an image dataset would require that any picture can become any other picture. In

general, providing DP or LDP within a large neighborhood will require high ǫ values to

retain meaningful image structure. High privacy will result in random black and white

images.

We furthermore use a domain-independent LDP mechanism specifically for Variational

Autoencoders which we refer to as VAE-LDP. VAE-LDP by Weggenmann et al. [Weg+22]

allows a data scientist to use Variational Autoencoders (cf. Section 2.3.1) as an LDP

mechanism to perturb data. This is achieved by limiting the encoder’s mean and adding

noise to the encoder’s standard deviation before sampling the latent z during training.

After training, the resulting Variational Autoencoder is used to perturb records with

ǫ =
∆f

√
2 log(1.25/δ)

σ
. We limit the resulting mean of the encoder to [−3, 3] by using the

Hyperbolic tangent activation function. Furthermore, we introduce noise according to

noise bound σ by enforcing a lower bound v on the standard deviation of the encoder,

i.e., setting the standard deviation to max(σ, v).

2.3. Machine Learning with Neural Networks

The term Machine Learning (ML) is referring to the concept of “giving computers the

ability to learn without being explicitly programmed” [Sam59] by using “algorithms that

improve their performance at some task through experience” [Mit97, p. 2]. To this end,

an ML algorithm creates a model h that encodes rules inferred from training data for

later use on test data. Within this thesis, we consider two general types of models for

which we restate and adapt the descriptions provided by Ng and Jordan [NJ01]:

• discriminative models for classification of records X to categories Y after learning

the conditional probability P (Y |X = x),

• generative models for generating records X for categories Y after learning the

distribution P (X|Y = y).

We use feedforward neural networks (NN) to train discriminative and generative models.

Table 2.1 states the set of notations for machine learning with neural networks that
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Table 2.1.: Notations and context
Symbol Description

X Set of vectors x1, . . . ,xj where x1j , . . . , x
i
j denote attribute values (features)

of xj.

Y Set of target variables in y (labels).

m |Y |.
y Vector of target variables (labels) where variable yj ∈ y represents the label

for xj ∈ X .

h(·) Model function (e.g., classifier).

ŷ Predicted target variable, i.e., ŷ = h(d).

p(x) Softmax confidence vector for x.

D Join of X and Y s.t. D| := (xj, yj).

d A record d ∈ D, where d := (x, y).

n |Dtrain|.
L(h(x; θ), y) Losses of the model function with learned weights θ on record d with true

label y.
δL
δθ Gradients of the losses w.r.t. the weights.

is used within this thesis. Neural networks represent a category of algorithms that

were originally introduced to formalize and mimic human networks of neurons in the

brain [Heb49; MP43; WH60]. Feedforward neural networks consist of neurons (nodes),

layers (sets of neurons), and weights θ (edges between neurons of consecutive layers).

The term feedforward is due to the characteristics that input is being passed through the

model to produce output without using any feedback loops from outputs of the model

as inputs [GBC16, p. 164]. We refer to the first and the final layer of a neural network

as the input and output layer. Any layer between the input and output layer is referred

to as a hidden layer. For each neuron in a hidden layer, an activation function receives

the sum of all input weights to compute a scalar output weight for each connection to the

next layer. It has been theoretically demonstrated that neural networks can approximate

any continuous function on any subset of Rn arbitrarily close already with one hidden

layer and a finite number of neurons for nonlinear activation functions (cf. Universal

Approximation Theorem [Cyb89; Hor91]). However, in practice neurons are commonly
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distributed over several layers, and for several image datasets it has been demonstrated

that rearranging a given number of neurons into networks with more layers and fewer

neurons per layer, and vice versa, can for example achieve similar overall model accuracy

while accuracies per category differ [NRK21].

Within this thesis, we train neural networks with gradient descent optimizers such as

Stochastic Gradient Descent (SGD) [KW52] and Adam [KB15], which are dominantly

used in practice [GBC16, pp. 151, 294]. Such optimizers identify weights that minimize

the error of predictions ŷ = h(x; θ) on a training dataset by calculating the vector of

partial derivatives of the loss L w.r.t. weights θ. We quantify the loss L by using Cross-

Entropy as loss function for classification and the evidence lower bound (ELBO; also

variational lower bound) [KW14] for generative models in this thesis. Weight updates

are multiplied with learning rate η > 0 to allow for fine-tuning convergence towards a

minimum. For training we split a training dataset Dtrain ⊆ D into batches, where each

of the datapoints (x, y) ∈ D consists of the i features x1, . . . , xi and the label y. We

optimize the neural network for each batch (i.e., batch gradient descent). We refer to one

pass over the training dataset as one epoch. Within this thesis NNs are commonly trained

for multiple epochs until the loss on the training dataset is no longer decreasing (i.e.,

early stopping [GBC16, p. 241]). A test dataset is used to evaluate the generalization of

the trained model.

We use a variety of layer types for neural networks that we will briefly restate for

convenience in the following:

• Dense layers: A layer in which all neurons are connected to all neurons of the

preceding layer (also called fully connected layer).

• Convolutional layer: A layer that convolves the preceding layer output with a

convolution kernel and passes the convolution result to the next layer. Convolutional

layers have been introduced in the context of image processing to condense input

information for better detection of image features [LB98].

• Max Pooling layer: Max Pooling layers receive the output of a convolutional layer

as input and use a maximum pooling operation that reduces the input dimensions

by a factor of 2 [Ran+07].

• Dropout layer: A layer that randomly that sets inputs to 0 at each batch gradi-
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ent descent weights update during training according to a dropout probability.

The sum of the layer inputs remains unchanged by scaling non-zero inputs by
1

1−dropout rate [Sri+14]. Used to avoid overfitting and foster generalization.

We provide an illustration of an exemplary neural network for image classification with

convolutional and dense layers in Figure 2.1. Goodfellow notes that “in modern neural

networks, the default recommendation is to use the rectified linear unit or ReLU” [GBC16,

p. 174] activation function for training. We follow this advice throughout this thesis

when defining neural network architectures, but deviate in cases where we reuse or

build upon a previously introduced, established neural network architecture with preset

activation functions. For discriminative classification model output layers, we commonly

use softmax [GBC16, p. 180] as an activation function which normalizes the outputs of

the preceding layer to a probability distribution over the categories Y [GBC16, p. 184].

input
layer

θ(1) θ(2) θ(3) θ(4) θ(5) θ(6) θ(7)

convolutional
layers

dense
hidden layers

output
layer

ŷ = [0, 1.0, 0]

Figure 2.1.: Exemplary illustration of a feedforward neural network with input layer for attributes
x1, . . . , x5, convolutional layer, dense layers, output layer with categories y1, y2, y3 and softmax
vector ŷ, and weights θ

2.3.1. Variational Autoencoders

Generative models are trained to learn the joint probability distribution P (X, Y ) of

features X and labels Y of a training dataset Dtrain. We focus on Variational Autoen-

coders (VAE) [KW14] as a generative model. VAE consist of two neural networks:
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encoder E and decoder D. During training a record d is given to the encoder which

outputs the mean Eµ(x) and variance Eσ(x) of a Gaussian distribution. A latent variable

z is then sampled from the Gaussian distribution N(Eµ(x), Eσ(x)) and fed into the

decoder D. After successful training the reconstruction D(z) should be close to x. We

provide an illustration of a VAE in Figure 2.2. During the training a weighted sum

of two terms is minimized. First, the reconstruction error ‖D(z) − x‖. Second, the

Kullback-Leibler divergence KL(N(Eµ(x), Eσ(x))||N(0, 1)) between the distribution of

latent variables z and the unit Gaussian. The KL divergence term prevents the network

from only memorizing certain latent variables since the distribution should be similar to

the unit Gaussian. Kingma et al. [KW14] motivate the training objective as a lower bound

on the log-likelihood and suggest training E and D for a training objective by using

the reparameterization trick. Samples D(z) are generated from the VAE by sampling a

latent variable z = ǫV σx + µx, where ǫV ∼ N(0, I), and passing z through D. Similar

to GAN conditional VAE generate samples for a specific label by utilizing a condition c

as input to E and D.

input
layer

E latent
space

D output
layer

Figure 2.2.: Exemplary illustration of a VAE with input layer for attributes x̂1, . . . , x̂6, encoder
E for inference, latent space with parameters (µ, σ), decoder D for generation, and output layer
with generated data D(z) = x̂1, . . . , x̂6
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2.3.2. Differentially Private Stochastic Gradient Descent

Within this thesis, we use the differentially private stochastic gradient descent to train neu-

ral networks with CDP [Aba+16]. In particular, we use differentially private versions of

the plain SGD and Adam optimizer to which we refer as DPSGD and DP-Adam1. DPSGD

and DP-Adam represent a differentially private neural network training mechanism Mnn

that updates the weights θi per training step i ∈ {1, . . . , k} with θi ← θi−1− η · g̃i, where

g̃ = Mnn (∂L/∂θi−1) denotes a Gaussian perturbed gradient and η is some scaling

function on g̃ to compute an update, i.e., learning rate or running moment estimations.

After k update steps, Mnn outputs a differentially private weight matrix θ which is used

by the prediction function h(·) of a neural network. To limit the sensitivity ∆f , the

length of each per-example gradient is limited to the clipping norm C before perturbation,

and the Gaussian perturbation is proportional to ∆f (cf. Equation (2.2)). A data scientist

has to specify privacy parameter ǫ and clipping norm C for the training independent of

the optimizer. For a dataset D, the unperturbed gradient vector g is analogue to the

output of function f in DP and differential privacy is achieved by perturbing the gradient

g for D at any epoch i, i.e., g̃i = Mi(D).

2.4. Membership Inference

Membership inference (MI) is a threat model for quantifying how accurately an honest-

but-curious membership inference adversary AMI can identify members of the training

dataset in machine learning. MI attacks are of particular interest for members of the

training dataset when the nature of the training dataset is revealing sensitive information.

For example, a medical training dataset containing patients with different types of cancer,

or a training dataset that is used to predict the week of pregnancy based on the shopping

cart [Hil12]. A related attack building upon MI is attribute inference [Yeo+18] where

records in the training dataset are partially known and specific attribute values shall be

inferred. In this thesis, we solely consider MI since protection against MI offers protection

against attribute inference. Yeom et al. [Yeo+18] formalize MI in Experiment 2.1 on

which we will build upon in parts of this thesis.

1We use Tensorflow Privacy optimizers throughout this thesis: https://github.com/tensorflow/
privacy
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2.4. Membership Inference

Experiment 2.1. (Membership Inference ExpMI) Let AMI be an MI adversary, M be

a differentially private learning algorithm, n be a positive integer, and Dist be a

distribution over datapoints (x, y). Sample D ∼ Distn and let r = M(D). The

membership experiment proceeds as follows:

1. Sample zD uniformly from D and zDist from Dist

2. Choose b ← {0, 1} uniformly at random

3. Let

z =







zD if b=1

zDist if b=0

4. AMI outputs b′ = AMI(r, z, Dist, n,M) ∈ {0, 1}. If b′ = b, AMI succeeds and the

output of the experiment is 1. It is 0 otherwise.

In specific, we use black-box and white-box membership inference attacks which differ

in the knowledge that AMI is assumed to possess about an ML model. In black-box

MI AMI is limited to external features of a machine learning model such as the loss

or prediction confidence during inference. In contrast, in white-box MI AMI possesses

also internal features of the model such as gradients. In particular, we consider MI

attacks against central learning by Shokri et al. [SS15], Yeom et al. [Yeo+18], and the

MI attack against both central and federated neural networks by Nasr et al. [NSH19].

MI attacks assume that AMI has access to a trained prediction function h(·), knowledge

about the hyperparameters and DPs mechanisms that were used for training. We refer to

the trained prediction function as target model and the training data as Dtrain
target. Given

this accessible information AMI learns a binary classifier, the attack model, that allows

to classify data into members and non-members w.r.t. the target model training dataset

with high accuracy. The accuracy of an attack model is evaluated on a balanced dataset

including all members (target model training data) and an equal number of non-members

(target model test data), which simulates the worst case where AMI tests membership for

all training records. MI exploits that an ML classifier such as a neural network (NN)

tends to classify a record d = (x, y) from its training dataset Dtrain
target with different

confidence p(x) given h(x) for features x and true label y than a record d 6∈ Dtrain
target.
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Figure 2.3.: Black-box MI with attack features (y∗, p(x)). LDP perturbation on Dtrain (dotted)
and CDP on target model and shadow model training (dashed). Data that was used during target
model training is colored: training (violet) and validation (green)

2.4.1. Black-Box MI Attack

The black-box (BB) MI attack of Shokri et al. [SS15] is limited to external features

of a trained machine learning model. This is for example the case when a model

is exposed through an API. Black-box MI exploits that an ML classifier such as a

neural network (NN) tends to classify a record d from its training dataset Dtrain
target

with different high softmax confidence p(x) given h(x) at its true y in than a record

d 6∈ Dtrain
target. Therefore, AMI follows two steps. First, AMI trains copies of the target model

w.r.t. structure and hyperparameters, so called shadow models, on data statistically similar

to Dtrain
target and Dtest

target. It applies that |Dtrain
shadowi

| = |Dtest
shadowi

| ∧ Dtrain
shadowi

∩ Dtest
shadowi

=

∅ ∧ |Dshadowi
∩ Dshadowj

| ≥ 0 for any i 6= j. After training, each shadow model is

invoked by AMI to classify all respective training data (member records) and test data

(non-member records), i.e., p(x), ∀ d ∈ Dtrain
shadowi

∪ Dtest
shadowi

. Since AMI has full control

over Dtrain
shadowi

and Dtest
shadowi

, each shadow model’s output (p(x), y) is appended with label

“in” if the corresponding record d ∈ Dtrain
shadowi

. Otherwise, its label is “out”. Second,

AMI trains a binary classification attack model per target variable y ∈ Y to map p(x)

to the indicator “in” or “out”. The triples (p(x), y, in/out) serve as the attack model

training dataset, i.e., Dtrain
attack. Thus, the attack model exploits the imbalance between

predictions on d ∈ Dtrain
target and d 6∈ Dtrain

target. An illustration of the BB MI attack is given

in Figure 2.3. The features for attack model training are generated by passing shadow

model training and test data again through the trained shadow model. The attack model

AP is computed on features similarly extracted from the target model.

42



2.4. Membership Inference

Dtrain
target

Dtarget

Dtest
target

Din
target

Dout
target

Dtrain
attack

Dtest
attack

Dattack

target
model

attack
model

training infere
nce

Figure 2.4.: White-box MI with attack features
(

y∗, p(x), L(h(x; θ), y), δLδθ
)

. LDP perturbation
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target (dotted) and DP on target model training (dashed). Target model training is colored:
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2.4.2. White-Box MI Attack

White-box MI [NSH19] makes two assumptions about AMI. First, AMI can observe

internal features of the ML model in addition to external features (i.e., model outputs).

The internal features comprise observed losses L(h(x; θ)), gradients δL
δθ

and the learned

weights θ of h(·). Second, AMI is aware of a portion of Dtrain
target and Dtest

target. These

portions were set to 50% by Nasr et al. [NSH19] and are the same within this thesis to

allow comparison. Second, AMI extracts internal and external features of a balanced set

of confirmed members and non-members. An illustration of the white-box MI attack is

given in Figure 2.4. Again, AMI is assumed to know a portion of Dtrain
target and Dtest

target

and generates attack features by passing these records through the trained target model.

AMI trains a binary classification attack model per target variable y ∈ Y to map p(x) to

the indicator “in” or “out”. The set
(

L(h(x; θ)), δL
δθ
, p(x), y, in/out

)

serves as attack

model training dataset, i.e., Dtrain
attack. Thus, the MI attack model exploits the imbalance

between predictions on d ∈ Dtrain
target and d 6∈ Dtrain

target. Attack model accuracy is computed

on features extracted from the target model likewise.

When a central target model is trained by aggregating models from different parties

over their respective data we speak of federated learning. In federated learning, the

white-box MI attack generally is performed as in central learning setting. However,

since the trained central target model is shared with all parties, AMI can perform the MI

attack as a participating party to learn about the training dataset of other parties (local

MI adversary AMI−L), or as the central aggregator (global MI adversary AMI−G). AMI−L

receives a copy of the central target model after aggregation by the data scientist. AMI−G

leverages the model parameters that have been received by the aggregator from the other

parties.
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2.5. Performance Metrics

Within this thesis, we mostly use performance metrics for neural network classification

tasks. We consider membership inference a binary classification task which is classifying

records into training dataset members and non-members. It follows that True Positives

(TP) are represented by records that were labeled as members and belong to the training

dataset. True Negatives (TN) are records from test dataset that were not labeled as

members of the training dataset. False Positives (FP) and False Negatives (FN) are

represented by records from the test and training dataset that are incorrectly classified

as members and non-members. We measure Accuracy according to Definition 2.8 and

refer to the accuracy on train and test data as train and test accuracy. In addition, we use

Precision and Recall to specifically evaluate the relevancy of the classifications. Correct

identification of training data members is measured by Precision in Definition 2.9 and

complete identification is quantified by Recall as of Definition 2.10.

Definition 2.8 (Accuracy [SW10]).

Accuracy =
TP + TN

TP + TN + FP + FN

⋄

Definition 2.9 (Precision [Tin10a]).

Precision =
TP

TP + FP

⋄

Definition 2.10 (Recall [Tin10a]).

Recall =
TP

TP + FN

⋄

Additionally, we provide definitions for the True Positive Rate (TPR) and False Positive

Rate (FPR) in Definition 2.11 and 2.12 for completeness. We, however, only use TPR and
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FPR indirectly for finally calculating two MI accuracy measures: Average Precision (AP)

under the Precision-Recall Curve to capture in Definition 2.13 the inference accuracy

w.r.t. members and the membership advantage over random guessing w.r.t. members

and non-members in Definition 2.14. Yeom [Yeo+18] demonstrate that membership

advantage is bound by Adv < eǫ − 1.

Definition 2.11 (True Positive Rate [Tin10b]).

True Positive Rate = Sensitivity =
TP

TP + FN

⋄

Definition 2.12 (False Positive Rate [Tin10b]).

False Positive Rate = Specificity =
FP

FP + TN

⋄

Definition 2.13 (Average Precision under the Precision-Recall Curve [sci]).

AP =
∑

n

(Recalln − Recalln−1 ) · Precisionn ,

for classification thresholds n. ⋄

Definition 2.14 (Membership Advantage).

Adv = TPR − FPR = Recall − FPR.

⋄
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3. Related Work

We present related work in this thesis in two steps. First, we discuss related work

w.r.t. to the underlying motivation of this thesis and to the identified research problems

(Section 4.1) that this thesis is addressing. Second, we provide related work for each

approach that we formulate to address the research problems in Chapters 5, 6, and 7.

This thesis is motivated by the work of Abadi et al. [Aba+16] on differentially

private stochastic gradient descent for neural networks. Their work demonstrates two

implications when using differential privacy in machine learning with neural networks:

on the one hand that the privacy loss analysis with sequential composition is not

tight, and instead, advanced composition theorems need to be applied to calculate the

privacy loss in machine learning with neural networks. On the other hand, their work

demonstrates that differentially private neural networks can yield test accuracies quite

close to the test accuracies of non-DP neural networks for the same learning tasks (e.g.,

MNIST and CIFAR-10 image classification). Both implications led us to question the

factual privacy loss that a participant in the dataset is facing at a given upper bound

ǫ, which is not addressed by Abadi et al.: By what means could the factual privacy

loss be quantified, aside from the theoretic upper bound on the privacy loss? Are

differentially private models with a test accuracy close to the original test accuracy also

offering meaningful anonymization? Rocher et al. [RHM19] raise a similar question

for supposedly anonymized, published datasets by focusing on the quantification of

identifiability for assessing whether the datasets should be considered pseudonymous or

truly anonymous. However, their work does not consider differential privacy in machine

learning with neural networks, but instead focuses on techniques for generalization and

sampling.

In close time proximity the implementation of differential privacy for several user rec-

ommendation features in their operating systems iOS and MacOS was announced [WWD16].

Since ǫ was not communicated by Apple in the beginning Tang et al. [Tan+17] performed
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an analysis of the implementation and find the ǫ per datapoint to be up to 2, and for

a system to be up to 16 per day. McSherry notes in this context that “Apple has put

some kind of handcuffs on in how they interact with your data. It just turns out those

handcuffs are made out of tissue paper”, and that “Anything much bigger than one is

not a very reassuring guarantee. Using an ǫ value of 14 per day strikes me as relatively

pointless” [Gre17]. This thesis strives to gather evidence for claims such as raised by

McSherry by quantifying the factual privacy loss.

Complementary to and mostly decoupled from the discussion about ǫ in differentially

private machine learning, threat models for the confidentiality of training data in machine

learning with neural networks received significant attention. While the threat models

generally assume an honest-but-curious adversary with access to the trained model,

they part in their assumption about background knowledge of the training data. Model

inversion attacks assume that the adversary strives for the identification of records that

are highly likely for a given classification label (i.e., not necessarily individual records

of the training dataset, but an idealistic representation of training dataset records). In

contrast, model inference attacks assume an adversary who strives to identify training data

membership or non-membership for specific records [Hay+19; HHB19; NSH18; NSH19;

SS15; Sho+17]. In this thesis we use membership inference attacks for comparison of ǫ

between different mechanisms and model architectures for differentially private training

of neural networks. In contrast, related work [Hay+19; JE19; Yeo+18] in membership

inference attacks considered differential privacy as a means for mitigating membership

inference attacks. We want to note that there are more efficient means available for the goal

of mitigating membership inference attacks such as adversarial regularization [NSH18]

and generalization [LOK21].

Several works also approached the question of differences in lower and upper bounds

for the privacy loss in differentially private machine learning with neural networks

under specific threat models. Yeom et al. [Yeo+18] suggest capturing the lower and

upper bound on privacy loss under a membership inference adversary in a bound called

membership advantage. However, their membership advantage bound is not tight as

Jayaraman and Evans [JE19] demonstrate for the differentially private stochastic gradient

descent. Humphries et al. [Hum+20] derive a bound for membership advantage that is

tighter than the original bound of Yeom et al. [Yeo+18] by analyzing an adversary with

additional information and giving up the i.i.d. assumption. We use the precision and
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recall of the membership inference adversary to quantify and compare the lower bound on

the privacy loss between local and central differential privacy, arguing that membership

in the training data is capturing the privacy loss (i.e., the sensitive information to be

protected). In addition, we formulate an implementation of the strong DP adversary and

transformations of ǫ into identifiability scores. The implementation and score allow a

tight estimation of the privacy loss and auditing of trained models w.r.t. privacy loss.

Nasr et al. [Nas+21] also formulate an implementation of the strong DP adversary in

close time proximity to a similar result of this thesis [Ber+22]. While making similar

observations, Nasr et al. do not consider identifiability bounds and do not suggest a

heuristics for closing the gap between lower and upper bounds on the privacy loss.

Lastly several other works also remark that ǫ is not absolute but rather relative in

the context of specific datasets, functions and mechanisms. Dwork et al. [Dwo+11]

highlight that ǫ is measuring the “cumulative privacy loss suffered by an individual in

a given database”, and note that more research is required on the value of ǫ. To this

end Dwork et al. [DKM19] suggest a public ǫ registry after having performed several

interviews in which “no clear consensus on how to choose ǫ or even how to approach

this” [DKM19] question of choosing ǫ could be identified. The difficulty of choosing ǫ

is further underlined by Garfinkel et al. [GAP18] in the context of releasing differentially

private US Census statistics, since several US states objected to the use of differential

privacy due to potential side effects on redistricting [Wan21]. We provide insights into

the differences in ǫ between LDP and CDP, for different datasets and model architectures,

and to the privacy loss that is encountered under a membership inference adversary and

the strong adversary considered by differential privacy.
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4. Problem Definition

This chapter states the research problem addressed in this thesis in Section 4.1. The

research problem is discussed from two aspects, namely quantification of the privacy-

accuracy trade-off in the presence of a machine learning adversary and quantification of

identifiability in the presence of a differential privacy adversary, in Sections 4.2 and 4.3.

4.1. Interpreting Privacy Parameter ǫ

This thesis addresses the question of how to choose privacy parameter ǫ in differentially

private machine learning of neural networks. Within this thesis, we consider the use of

differential privacy during the training of a neural network along a generic data science

process (e.g., CRISP-DM [WH00]). In a data science process a dataset D of a data

owner DO is (i) transformed (i.e., pre-processed), (ii) used by a data scientist DS to

learn a prediction function h(·) (e.g., classification of a record d to a feature y with a

neural network), (iii) exposed by DS for use by third parties after training (e.g., through

an API). We consider two trust models in this thesis which we depict in Figure 4.1. In

the first trust model, the data owner DO trusts DS w.r.t. obeying the differential privacy

parameters and mechanisms, and that the provided data will only be used for the agreed

purpose (e.g., differentially private training of a neural network). In this trust model,

depicted in Figure 4.1a, CDP can be used while learning h(·). In addition, DS and DO
can choose to perturb each record d ∈ D during the data science process transformation

step by choosing LDP instead of CDP. In the second trust model DO does not trust DS
w.r.t. enforcing differential privacy. In this case, depicted in Figure 4.1b DO and DS are

restricted to LDP mechanisms.

Notwithstanding whether local or central differential privacy is used DS must be

able to justify that meaningful anonymization and thus privacy is provided to records

in the dataset [Kel20; PE16]. DS steers the anonymization strength and implicitly also
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Figure 4.1.: Trust boundaries in CDP and LDP (dotted lines)

the utility by the privacy parameter ǫ. Rearranging Equations (2.1) and (2.5) for ǫ, we

can make two immediate observations. First, ǫ is formulating an upper bound on the

likely ratio between neighboring datasets from which the result of differentially private

mechanism potentially was produced:

eǫ ≥







Pr[M(D)∈R)]
Pr[M(D′)∈R)]+δ

CDP,
Pr[LR(v)=s]
Pr[LR(v′)=s]

LDP

Taking into consideration that neighboring datasets differ in one entry we refer to

the upper bound as privacy bound w.r.t. an individual in the dataset. Furthermore, we

refer to eǫ as privacy loss in the rest of this thesis. Second, the upper bound on the

privacy loss will not be reached if the sensitivity between datasets D,D′ is smaller

than the assumed GSf . In consequence, ǫ is “typically set after a societal-technical

process during which the mathematical-theoretical understandings are matched with

practical real-life experience, and then reviewed and adjusted periodically” [Nis+18].

To illustrate the effect of smaller and larger values for privacy parameter ǫ Figure 4.2

provides two simplified illustrations of the Gaussian mechanism for ǫ = 3 and ǫ = 0.1

(cf. Equation (2.2)). Note that the upper bound on the privacy loss, i.e., the difference

between the red and blue curve at any point on the x Axis is only reached when the

difference between mechanism outputs is close to GSf .

In addition to setting privacy parameter ǫ, a metric by which the performance of

differentially private neural networks is measured needs to be set (e.g., F1-Score, Mean

Squared Error, or Accuracy). The choice of performance metric depends on the learning

task. In classification tasks and also for evaluation of regularization techniques that

apply noise to the training data to foster generalization, the accuracy of the trained model

over test data is commonly used to evaluate performance [GBC16; GC95; Mat92]. The

privacy loss and the performance metric allow to quantify and compare privacy-accuracy
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Figure 4.2.: Gaussian mechanism for f(D) = 1, f = (D′) = 2, GSf = 1 and ǫ ∈ {0.1, 3}

trade-offs. In summary, this thesis addresses the following research problems.

Problem 1. Quantifying the empirical lower bound on the privacy loss under empirical

attacks to allow data scientists to compare the empirical privacy-accuracy trade-off

between local and central differential privacy. The problem is approached separately

for discriminative and generative models.

(i) Comparing the empirical privacy-accuracy trade-off between local and central

differential privacy for central discriminative neural networks, where training data

is provided to the data scientist by the data owners.

(ii) Extending Problem 1.(i) to federated discriminative neural network where data

owners train local models over their training data and solely share model parame-

ters (e.g., weights) with data scientists.

(iii) Comparison of the privacy-accuracy trade-off between local and central differential

privacy for central generative models.

Problem 2. Transforming the privacy loss under differential privacy into an analytical

bound on identifiability.
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4.2. Trade-Off Quantification Based on Privacy Loss

Under a Machine Learning Adversary

When DO trusts DS differentially private neural networks can be realized by either

perturbing the training data with LDP or the training optimizer with CDP. However, the

upper bound on the privacy loss in LDP and CDP cannot be directly compared between

LDP and CDP (cf. Definition 2.1 and 2.5). Instead, the privacy loss in LDP and CDP

can be compared empirically by implementing an adversary who has access to a trained

neural network and strives for the identification of the training data. The success of such

an adversary then yields a lower bound on the privacy loss and allows to compare LDP

and CDP by their privacy-accuracy trade-off. A desirable trade-off should lower model

test accuracy less than it lowers the success of the adversary.

However, in differentially private machine learningDS can choose to either implement

the strong adversary with unconstrained auxiliary knowledge that differential privacy

is defined to hold against [Dwo06], or to implement potentially inferior adversaries

with constrained auxiliary knowledge. The implementation of the DP adversary with

unconstrained auxiliary knowledge is based on several strong assumptions such as

knowledge of up to all but one record in the original dataset [Dwo06; LC11]. In contrast,

several implementable adversaries with fewer assumptions and general applicability

to machine learning have been suggested by related work [Car+19; FJR15; Fre+14;

Hay+19; HHB19; NSH18; NSH19; SS15; Sho+17; Tra+16; YFJ17; Yeo+18]. In

particular membership inference [Hay+19; HHB19; NSH19; SS15; Sho+17; Yeo+18]

and model inversion [FJR15; Fre+14; Tra+16]. Model inversion adversaries aim for

the reconstruction of training data records based on the output of a trained machine

learning model (e.g., prediction confidences). Membership inference adversaries aim for

identifying specific records based on the output of a trained machine learning model. In

this thesis, we focus on membership inference adversaries to quantify the privacy loss.

An empirical membership adversary AMI allows data scientists DS to quantify a lower

bound on the privacy loss with evaluation metrics such as precision, recall, membership

advantage, and accuracy (cf. Definitions 2.9, 2.10, and 2.14). Prior work considered lower

and upper bounds on the privacy loss for CDP with the differentially private stochastic

gradient descent [JE19], and neglected precision and recall in favor of accuracy and F1-
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score [Rah+18; SS15] which are limited in case of imbalanced train and test data, or the

membership advantage of AMI [Hay+19; YFJ17; Yeo+18]. The specific metric that DS
chooses for quantifying the empirical privacy loss depends on whether membership or

non-membership in the training dataset is considered sensitive, and whether the empirical

lower bound should be compared against the theoretic upper bound (e.g., comparing

empirical membership advantage with upper bound on membership advantage).

Empirical lower bounds on the privacy loss are facing limitations w.r.t. conclusions

that can be drawn. On the one hand, the difference in lower and upper bound will

depend on the dataset and the learning task for which machine learning is performed,

especially if training data is unbalanced which benefits overfitting by leading to poor

generalization of the machine learning model from training to test data [JS02]. On

the other hand, the model architecture might affect the difference in lower and upper

bounds since some model architectures will also introduce regularization effects that

limit overfitting and thus weaken the membership inference in addition to differential

privacy (e.g., federated learning with model averaging is yielding regularization similar

to dropout [McM+17]). We use multiple reference datasets from several domains (e.g.,

images, preference matrices) and multiple reference model architectures to address

concerns w.r.t. limitations of insights and conclusions. Chapters 5 and 6 use membership

inference attacks to choose ǫ based on the privacy-accuracy trade-off. We consider

feedforward neural networks in central and federated learning, and generative networks.

4.3. Bounds on Identifiability

The previous section discussed the opportunities and limitations of using membership

inference adversaries to interpret the privacy-accuracy trade-off for choices of ǫ a pos-

teriori. However, membership inference adversaries are inferior to the strong adversary

with auxiliary information about the training dataset against which differential privacy is

destined to hold [Dwo06]. This is because the differential privacy adversary is assumed

to know the alternative dataset D′ instead of only the distribution from which D′ was

chosen. Thus, the lower and upper bound on the privacy loss under membership inference

adversaries may not be close [JE19]. An implementation of the differential privacy ad-

versary with arbitrary auxiliary knowledge overcomes this limitation and allows audit of

the empirical privacy loss when training a differentially private machine learning model.
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A complementary problem to auditing trained models w.r.t. the empirical privacy

loss is the actual specification of an upper bound on the privacy loss by setting a

target ǫ a priori. This is of particular interest to fulfill societal expectations [Nis16] or

legal requirements [HS10; Kel20; PE16] on identifiability when anonymizing data or

machine learning models. A transformation of privacy parameter ǫ into probabilistic

identifiability scores such as the reidentification likelihood has been demonstrated for

one-dimensional, non-iterative statistical aggregate queries with CDP [LC11; LC12].

However, differentially private machine learning with CDP involves multidimensional,

iterative queries. In addition, the specified overall ǫ for the training of a neural network

should be close to the factual ǫ after training, since otherwise model accuracy is overly

decreased by excessive noise. To this end, we extend and complement prior work with

auditing and transformation means for ǫ.

Chapter 7 addresses the challenges of transforming privacy parameter ǫ to scores that

quantify identifiability and formulates an implementation of the differential privacy to

audit trained neural networks to audit the empirical privacy loss after training. We again

use reference datasets from two domains (images, preference matrices) and two reference

model architectures.
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Membership Inference Attacks

Within this chapter, we compare the empirical privacy protection under the white-box MI

attack of Nasr et al. [NSH19] against LDP and CDP mechanisms for learning problems

from diverse domains: consumer preferences, face recognition and health data. The MI

attack indicates a lower bound on the inference risk whereas DP formulates an upper

bound [JE19; YFJ17; Yeo+18]. However, in practice even high privacy parameters

in LDP may already offer protection against attacks such as membership inference.

Depending on whether a neural network is directly trained by a data scientist on a central

server based on the data of all data owners or indirectly trained by a data scientist based

on the input from several servers that belong to separate data owners, neural networks

are trained central and federated manner. In federated neural network training (i.e.,

federated training) the data scientist’s central neural network is trained iteratively and

collaboratively, by first having data owners train a local neural network on their respective

data and second aggregating the individual neural networks at the central server of the

data scientist [Li+20a]. In consequence, federated learning supports data owners in

keeping the sovereignty of their sensitive or personal training data by sharing neural

network weights that have been computed over a batch of the data owner’s data instead of

individual data with the data scientist [McM+17]. The threat model in federated learning

is thus differing from the threat model in central learning, and we will thus consider

federated learning in addition to central learning within this chapter. This chapter makes

the following contributions:

• Comparing LDP and CDP by the average precision of their MI precision-recall

curve as privacy measure, and show that under this measure LDP and CDP have

similar privacy-accuracy trade-offs despite vastly different ǫ.

57



5. Assessing Differential Privacy under Membership Inference Attacks

• Showing that CDP mechanisms are not achieving a consistently better privacy-

accuracy trade-off on various datasets and reference models. The trade-off rather

depends on the specific dataset.

• Analyzing the relative privacy-accuracy trade-off and showing that it is not constant

over ǫ, but that for each data set there are ranges where the relative trade-off is

greater for protection against MI than accuracy.

• By comparing federated learning and central learning we observe a regularization

effect that leads to DP parameters with larger ǫ in federated learning.

Section 5.1 formulates our approach for comparing LDP and CDP under membership

inference and Section 5.2 discusses the relative privacy-accuracy trade-off. Section 5.3

extends the approach to federated learning. We describe evaluation datasets in Section 5.4.

Findings are presented in Section 5.5. Related work and summary are provided in

Section 5.6 and Section 5.7.

5.1. Evaluating CDP and LDP under MI

DP has been shown to formulate a theoretical upper bound on the accuracy of MI

adversaries [Yeo+18], and thus the use of DP should impact the classification accuracy

of AMI. To illustrate the effect of the privacy parameter ǫ on the MI attack we focus on

two questions related to the identifiability of training data within this work: “How many

records predicted as in are truly contained in the training dataset?” (precision), and

“How many truly contained records are predicted as in?” (recall). For analysis we use

precision-recall curves which depict the precision and recall for various classification

thresholds, and thus reflect the possible MI attack accuracies of AMI. We compare the

precision-recall curves by their average precision (AP) to assess the overall effect of DP

on MI. The AP approximates the integral under the precision-recall curve as a weighted

mean of the precision P per threshold t and the increase in recall R from the previous

threshold, i.e.: AP =
∑

t(Rt − Rt−1) · Pt. We prefer this non-interpolated technique

over interpolated calculations of the area under the curve, since the precision-recall curve

is not guaranteed to decline monotonically and thus the linear trapezoidal interpolation

might yield an overoptimistic representation [DG06; Eve+10]. Good MI attack models
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will realize an AP of close to 1 while poor MI attack models will be close to the baseline

of uniform random guessing, hence AP = 0.5. We will commonly refer to the AP for

MI as MI AP within this thesis. DO and DS have two options to apply DP against MI

within the data science process introduced in Chapter 4. Either in the form of LDP by

applying a local randomizer to the training data and using the resulting LR
(

Dtrain
target

)

for training, or CDP with a differentially private optimizer on Dtrain
target. A discussion

and comparison of LDP and CDP purely based on the privacy parameter ǫ likely falls

short and potentially leads data scientists to incorrect conclusions, since the privacy

parameters are reflecting different types of mechanisms. Furthermore, data scientists

give up flexibility w.r.t. applicable learning algorithms, if ruling out the use of LDP

due to comparatively greater ǫ and instead solely investigating CDP (e.g., DPSGD). We

suggest comparing LDP and CDP by their concrete effect on the MI AP and the resulting

privacy-accuracy trade-off. While we consider a specific MI attack our methodology is

applicable to other MI attacks as well. Models that use CDP are represented by dashed

lines in Figure 2.4. In the LDP setup, the target model is trained with perturbed records

from a local randomizer, i.e., LR
(

Dtrain
target

)

. However, to increase his attack accuracy

AMI needs to learn attack models with high accuracy on the original data from which

the perturbed records stem, i.e., Dtrain
target. Perturbation with LDP is represented by dotted

lines in Figure 2.4.

5.2. Relative Privacy-Accuracy Trade-off

We calculate the relative privacy-accuracy trade-off ϕ below in Equation (5.1) for LDP

and CDP as the relative difference between AMI’s change in MI AP to DS’s change in test

accuracy. Let APorig, APǫ be the MI APs, and ACCorig, ACCǫ be the test accuracies for

the original and DP target model. Furthermore, let ACCbase be the baseline test accuracy

of uniform random guessing 1/m, where m denotes the number of labels in the dataset,

and APbase be the baseline MI AP at 0.5. We fix ACCbase, APbase since AMI and DS
would perform worse than uniform random guessing at lower values. Starting from ϕ′′
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we rearrange and bound the cases where MI AP and ACC increase over ǫ to obtain ϕ′:

ϕ′′ =
(APorig − APǫ)/(APorig − APbase)

(ACCorig − ACCǫ)/(ACCorig − ACCbase)

ϕ′ =
max(0, (APorig − APǫ) · (ACCorig − ACCbase))

max(0, (ACCorig − ACCǫ) · (APorig − APbase))

ϕ = min

(

2,
max(0, (APorig − APǫ) · (ACCorig − ACCbase))

max(0, (ACCorig − ACCǫ) · (APorig − APbase))

)

(5.1)

To prevent ϕ′ from approaching infinitely large values when the accuracy remains

stable while AP decreases significantly, and the undefined case of ACCorig ≤ ACCǫ, we

bound by 2 and finally obtain ϕ. In consequence, when the relative gain in privacy (lower

AP) exceeds the relative loss in accuracy, it applies that 1 < ϕ ≤ 2, and 0 ≤ ϕ < 1 when

the loss in test accuracy exceeds the gain in privacy. Hence, ϕ quantifies the relative loss

in accuracy and the relative gains in privacy for a given privacy parameter ǫ and captures

the relative privacy-accuracy trade-off as a ratio that we seek to maximize.

5.3. Central and Federated learning

In a data science process such as the previously mentioned CRISP-DM, a data scientist

centrally gathers data from data owners, trains and evaluates a machine learning model

(e.g., a neural network). In federated learning (FL) data owners first train individual

models over their respective training data, secondly share their respective weight updates

with the data scientist who then aggregates the weight updates for training a central model,

and thirdly distributes the aggregated model to all participating data owners [McM+17].

By training a local model for each data owner and only sharing local models with the data

scientist instead of individual training data, federated learning with model aggregation

provides data owners sovereignty over their data and offers data scientists scalable training

for central models.

To train local models data owners receive an initialized neural network architecture

from the data scientist. Afterward each data owner sends their neural network parameters,

for example the respective gradients or model weights, in specific interval (e.g., every

other epoch) to the central data scientist for aggregation. The central model is updated

with the aggregated parameters received from all data owners. Data owners replace
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their local model once a new global model is propagated from the data scientist after

aggregation. In contrast to CRISP-DM, there is no single point in time where a model is

being deployed for production, rather the models are constantly updated. Furthermore,

due to the localization constraints, the data scientist cannot preprocess the training data.

Preprocessing can only occur at each data owner.

Several FL algorithms can be used to aggregate local models. We use the Federated

Averaging Algorithm for distributed SGD [Aga+18], specified in Definition 5.1. In the

Federated Averaging Algorithm a global model F (w) is comprised of the averaged local

models of participating data owners K. Furthermore, a communication period represents

one iteration in which data owners train their local models for k epochs [McM+17]. The

fraction of data owners that train in parallel for one communication period is set by

0 ≤ C ≤ 1. Inverse proportional weighting of the share of data that each data owner

possesses in a given communication period ensures that data owners with few samples

still have impact to the training of the global model.

Definition 5.1 (Federated Averaging Algorithm [Aga+18]). Let F (w) : Rd −→ R be

of the form

F (w) =
1

C · |K|
∑C·|K|

i=0
hi(W )

where each fi(x;W ) resides at the i-th data owner. ⋄

5.4. Datasets and Learning Tasks

We consider four datasets for experiments. The datasets have been used in related work

on MI and face recognition. Each dataset is also summarized in Table 5.1. The reference

datasets are mostly unbalanced w.r.t. the amount of training data per training label, a

characteristic that we found to benefit MI attacks. For example, Texas Hospitals Stays

and Purchases Shopping Carts provided by Shokri et al. [SS15] are unbalanced in terms

of records per label, as shown in Figures 5.1 and 5.2.

Texas Hospital Stays. The Texas Hospital Stays dataset [Sho+17] is an unbalanced dataset

and consists of high dimensional binary vectors representing patient health features. Each

record within the dataset is labeled with a procedure. The learning task is to train a

fully connected neural network for classification of patient features to a procedure and
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Table 5.1.: Overview of datasets considered in the evaluation

Dataset Model LDP

Texas Hospital
Stays [Sho+17]

Fully connected NN
with three layers
(512× 128×m) [Sho+17].

19, 125 – 638
(6382× ǫi)

Purchases Shopping
Carts [Sho+17]

Fully connected NN
with two layers (128×m) [Sho+17]
(i.e., logistic regression).

1800 – 60
(600× ǫi)

Labeled Faces
in the Wild [Hua+07]

VGG-Very-Deep-16
CNN [PVZ15]

62.5× 106 – 6, 250
(250× 250× ǫi)

Skewed
Purchases

Fully connected NN
with two layers (128×m) [Sho+17]
(i.e., logistic regression).

1, 800 – 60
(600× ǫi)
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Figure 5.1.: Quantity of records per label for Purchases Shopping Carts

we do not try to re-identify a known individual, and fully comply with the data use

agreement for the original public use data file. We train and evaluate models for a set

of most common procedures m ∈ {100, 150, 200, 300}. Depending on the number of

procedures the dataset comprises 67330 – 89815 records and 6170 – 6382 features. To

allow comparison with related work [NSH19; Sho+17], we train and test the target model

on n = 10000 records respectively.

Purchases Shopping Carts. This dataset is also unbalanced and consists of binary

vectors with 600 features that represent customer shopping carts [Sho+17]. However, a

significant difference to the Texas Hospital Stays dataset is that the number of features

is almost 90% lower. Each vector is labeled with a customer group. The learning

task is to classify shopping carts to customer groups by using a fully connected neural

network. The dataset is provided in four variations with varying numbers of labels

m ∈ {10, 20, 50, 100} and comprises 38551 – 197324 records. We sample n = 8000
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Figure 5.2.: The Quantity of records per Label for the Texas Hospital Stays Dataset

records each for training and testing the target model. Again, this methodology ensures

comparability with related work [NSH19; Sho+17].

Labeled Faces in the Wild. The Labeled Faces in the Wild (LFW) dataset contains

labeled images each depicting a specific person with a resolution of 250×250 pixels (i.e.,

features) [Hua+12; Hua+07]. The dataset has a long distribution tail w.r.t. to the number

of images per label with a minimum of 6 and a maximum of 530 pictures. We thus focus

on learning the topmost labels m ∈ {20, 50, 100} with 1906, 2773 and 3651 overall

records respectively. We start our comparison of LDP and CDP from a pre-trained VGG-

Very-Deep-16 CNN faces model [PVZ15] by keeping the convolutional core, exchanging

the dense layer at the end of the model and training for LFW grayscale faces. For LDP, we

apply differentially private image pixelization within the neighborhood o =
√
250× 250

and avoid coarsening by setting b = 1. We transform all images to grayscale before LDP

and CDP training.
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Skewed Purchases. We specifically crafted this balanced dataset1 to mimic a transfer

learning task, i.e., the application of a trained model to novel data that is similar to the

training data w.r.t. format but following a different distribution. This situation arises

for Purchases Shopping Carts, if for example not enough high-quality shopping cart

data for a specific retailer are available yet. Thus, only few high-quality data (e.g.,

manually crafted examples) can be used for testing and large amounts of low quality

data from potentially different distributions for training (e.g., from other retailers). In

effect the distribution between train and test data varies for this dataset. Similar to

Purchases Shopping Carts the dataset consists of 200000 records with 600 features

and is analyzed for m ∈ {10, 20, 50, 100} labels. However, each vector x in the

training dataset X is generated by using two independent random coins to sample a

value from {0, 1} per position i = 1, . . . , 600. The first coin steers the probability

Pr[xi = 1] for a fraction of 600 positions per record x. We refer to these positions

as indicator bits (ind) which indicate products frequently purchased together. The

second coin steers the probability Pr[xi = 1] for a fraction of 600 −
(

600
|m|

)

positions

per record. We refer to these positions as noise bits (noise) that introduce scatter in

addition to ind. We let Prind[xi = 1] = 0.8 ∧ Prnoise[xi = 1] = 0.2, ∀x ∈ Xtrain and

Prind[xi = 1] = 0.8 ∧ Prnoise[xi = 1] = 0.5,∧x ∈ Xtest, 1 ≤ i ≤ 600. The difference

in information entropy between test and train data is ≈ 0.3.

5.5. Experiments

We perform an experiment that compares the privacy-accuracy trade-off for LDP and

CDP by MI AP instead of privacy parameter ǫ per dataset. We first compare the

privacy-accuracy trade-off for central learning and secondly for federated learning.

The results of each experiment are visualized by three sets of figures. First, we compare

the relative privacy-accuracy trade-off ϕ resulting from test accuracy and MI AP over ǫ.

We present this information for CDP per dataset in Figures 5.3 to 5.9 a,b,c and for LDP

in Figures 5.3 to 5.9 d,e,f. The obtained information serves as a basis to identify privacy

parameters at which the MI AP is converging towards the baseline. Second, we state the

precision-recall curves from which MI AP was calculated to illustrate the slope with which

1We provide this dataset along with all evaluation code on GitHub: https://github.com/
SAP-samples/security-research-membership-inference-and-differential-privacy
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precision and recall are diverging from the baseline for LDP and CDP in Figures 5.3 to 5.9

g,h. Third, we compare the absolute privacy-accuracy trade-offs per dataset for both LDP

and CDP in a scatterplot. We present this information in Figures 5.3 to 5.9i. For each

dataset the model training stops once the test data loss is stagnating (i.e., early stopping)

or a maximum number of epochs is reached. This design avoids excessive overfitting and

increases real-world relevance. For all executions of the experiment CDP noise is sam-

pled from a Gaussian distribution (cf. Equation (2.2)) with scale σ = noise multiplier z×
clipping norm C. We evaluate increasing noise regimes per dataset by evaluating noise

multipliers z ∈ {0.5, 2, 4, 6, 16} and calculate the resulting ǫ at a fixed δ = 1
n
. However,

since the batch size, dataset size and number of epochs are also influencing the Rényi differ-

ential privacy accounting a fixed z will inevitably result in different overall ǫ for different

datasets. For LDP we use the same hyperparameters as in the original training and evaluate

two local randomizers, namely Randomized Response and LDP Image Pixelization with

the Laplace mechanism. For each randomizer we state the individual ǫi per invocation

(i.e., per anonymized value). We apply Randomized Response to all datasets except LFW

with a range of privacy parameter values ǫi ∈ {0.1, 0.5, 1, 2, 3} that reflect retention prob-

abilities ρ from 5% – 90% (cf. Section 2.2). For LFW each pixel is perturbed with Laplace

noise, and also investigate a wide range of resulting noise regimes by varying ǫi. For fed-

erated learning we assume K = 4 data owners and a participation rate of C = 1 to align

with the experimental setup from Nasr et al. [NSH19]. Furthermore, data owners train for

one epoch before propagating their parameters and the data scientist aggregates the weight

matrices after each communication round. We limit our federated learning experiment

to the relative privacy-accuracy trade-off w.r.t. AMI−G (cf. Section 2.4.2). In addition, we

omit the precision-recall curves and do not evaluate the Skewed Purchases dataset, since

highly imbalanced data was incompatible with our experimental framework2.

For sake of completeness we provide the resulting overall privacy parameters ǫ, z,

hyperparameters and train accuracies for all datasets for LDP and CDP in Table 5.1

and Table A.2 in Appendix A.2. The experiment is repeated five times per dataset to

stabilize measurements and we report mean values with error bars unless otherwise

stated. Precision-recall curves depict all experiment data.

2All code for federated learning experiments is provided under the following link: https://github.
com/SAP-samples/security-research-fed-dp-mia
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Figure 5.3.: Texas Hospital Stays accuracy and privacy (error bars lie within points)

5.5.1. Texas Hospital Stays

Central learning. For Texas Hospital Stays we observe that LDP and CDP are achieving

very similar privacy-accuracy trade-offs under MI. The main difference between LDP and

CDP is observable in a smoother decrease of target model test accuracy for CDP in contrast

to LDP, which are depicted in Figures 5.3a and 5.3d. The smoother decay also manifests

in a slower drop of MI AP for CDP in comparison to LDP as stated in Figures 5.3b

and 5.3e. Texas Hospital Stays represents an unbalanced high dimensional dataset and

both factors foster MI. However, the increase in dataset imbalance by increasing m is

negligible w.r.t. MI AP. The relative privacy-accuracy trade-off for LDP and CDP is also
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Figure 5.4.: FL Texas Hospital Stays accuracy and privacy (error bars lie within points)

close and for example the baseline MI AP of 0.5 is reached at ϕ ≈ 1.5, as depicted in

Figures 5.3c and 5.3f. In the example case of m = 300 DS might prefer to use CDP,

since the space of achievable MI APs in LDP is narrow while CDP also yields MI APs

between original and baseline as illustrated in the precision-recall curves in Figures 5.3g

and 5.3h, and the scatterplot in Figure 5.3i. This observation is similar, though weaker,

for all other m.

Federated learning. In comparison to central learning, we can observe a faster drop in

target model test accuracy both for LDP in Figure 5.4a and CDP in Figure 5.4e. However,

the decline in accuracy still remains smoother for CDP. Noticeable, the MI AP drops
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to baseline already after adding the slightest noise for CDP and LDP as can be seen for

AMI−L and AMI−G in Figures 5.4c, 5.4d, 5.4g and 5.4h. AMI−G has a stronger initial MI

AP than AMI−L, and larger number of classes m slightly improves the MI AP. The relative

trade-off for LDP and CDP in Figures 5.4b and 5.4f suggest that CDP achieves a strictly

better relative trade-off with a maximum of ϕ ≈ 2 for ǫ ≈ 59 awhile LDP achieves a

maximum of ϕ ≈ 1.25 at ǫi ≈ 3. The absolute trade-off in Figure 5.4i underlines this

impression. For all other m the absolute trade-off is similar.

5.5.2. Purchases Shopping Carts

Central learning. CDP and LDP are achieving similar target model test accuracies on

the Purchases dataset as depicted in Figures 5.5a and 5.5d. However, LDP is allowing a

slightly smoother decrease in test accuracy over ǫ. Figure 5.5b illustrates that the CDP

MI AP is somewhat resistant to noise and remains above 0.5 until a small ǫ ≈ 1. The

LDP MI APs are significantly higher and decrease slower than the baseline as depicted by

Figure 5.5e. A comparison of the relative privacy-accuracy trade-offs ϕ in Figures 5.5c

and 5.5f underlines that CDP and LDP achieve similar trade-offs and LDP allows for

smoother drops in the MI AP in contrast to CDP. Thus, LDP is the preferred choice for this

dataset, if DS desires to lower the MI AP to a level between original and baseline. This

is illustrated for example for m = 50 in the precision-recall curves in Figures 5.5g, 5.5h

and the scatterplots in Figure 5.5i. It is noticeable that while the overall ǫ for LDP and

CDP differs by a magnitude of up to 10 times the relative and absolute privacy-accuracy

trade-offs are close to each other. The observations also hold for other m.

Federated learning. The target model test accuracy gradually decays for CDP and LDP

as depicted in Figures 5.6a and 5.6f. Similarly the relative privacy-accuracy trade-off is

favorable for LDP and CDP for all m 6= 50 with φ > 1, and CDP provides a sharp initial

decline in MI AP whereas LDP gradually decreases MI AP when comparing Figures 5.6b

and 5.6e. In summary, the data suggests DO to choose CDP due to the more favorable

privacy-accuracy trade-off as for example depicted in Figure 5.6i for m = 10. However,

the LDP trade-off is only slightly inferior for this dataset in federated learning similar to

central learning.
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Figure 5.5.: Purchases accuracy and privacy (error bars lie within points)

5.5.3. LFW

Central learning. For LFW the target model reference architecture converges for both

CDP and LDP towards the same test accuracy, which is reflecting the majority class.

However, the target model test accuracy decay over ǫ is much smoother for CDP when

comparing Figures 5.7a and 5.7d. Furthermore, the structural changes caused by LDP

Image Pixelization seem to lead to quicker losses in test accuracy. W.r.t. the relative

privacy-accuracy trade-off ϕ in Figures 5.7c and 5.7f CDP outperforms LDP. At MI

AP = 0.5 CDP achieves ϕ ≈ 1.5 for all m while LDP yields ϕ ≈ 1.1 for all m. The

ϕ = 0 observed at ǫi = 10000 for m = 100 is due to an actual increase in MI AP that is
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Figure 5.6.: FL Purchases accuracy and privacy (error bars lie within points)

comparatively larger than the decrease in test accuracy. The exemplary precision-recall

curves for m = 50 in Figures 5.7g and 5.7h furthermore illustrate that CDP can already

have a large effect on MI AP at high ǫ. In addition, we observe from Figure 5.7i that

CDP realizes a strictly better absolute privacy-accuracy trade-off under MI for m = 50.

Federated learning. We do not state results for m = 100 in the federated learning

setting since the dataset was too resource-intensive for our differentially private federated

learning framework. Interestingly the target model test accuracy plots show a similarly

shaped decline for LDP and CDP in Figures 5.8a and 5.8e. We can furthermore see

that AMI−G constitutes a much stronger attack than AMI−L when comparing the MI AP
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between Figure 5.8c and 5.8d for CDP, as well as Figure 5.8g and 5.8h for LDP. The best

relative trade-offs with ϕ ≈ 2 are yield for vastly different overall ǫ considering CDP at

ǫ ≈ 5.6 and LDP ǫi = 1000 for m = 20. For m = 50 CDP achieves superior trade-offs

to LDP. The comparable performance of CDP and LDP for m = 50 is underlined by the

overlapping absolute trade-off in Figure 5.8i, which however favorably separates CDP

from LDP for m = 20. All in all, the observed MI APs are lower for federated learning

compared to central learning at similar target model test accuracies.
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Figure 5.7.: LFW accuracy and privacy (error bars lie within points)
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Figure 5.8.: FL LFW accuracy and privacy(error bars lie within points)

5.5.4. Skewed Purchases

The effects of dimensionality and imbalance of a dataset on MI have been addressed by

related work [NSH19; Sho+17]. However, the effect of a domain gap between training and

test data which is found in transfer learning when insufficient high-quality data for training

is initially available and reference data that potentially follows a different distribution has

not been addressed. For this task, we consider the Skewed Purchases dataset. Figures 5.9a

and 5.9d show that the LDP test accuracy is in fact only decreasing at very small ǫi whereas

CDP again gradually decreases over ǫ. This leads to consistently higher test accuracy in

comparison to CDP. W.r.t. the relative privacy-accuracy trade-off LDP outperforms CDP
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Figure 5.9.: Skewed Purchases accuracy and privacy (error bars lie within points)

as depicted by ϕ in Figures 5.9c and 5.9f. However, we observe several outliers. Most

notably for CDP, the MI AP decreases for m = 100 and large ǫ values but increases for

small ǫ as shown in Figure 5.9b. This is a consequence of the target model resorting

to random guessing for test records. Similarly, for LDP the MI AP for m ∈ {10, 100}
first decreases before recovering again as depicted in Figure 5.9e. We reason about the

cause of these outliers by analyzing the target model’s decisive confidence values. LDP

generalizes the training data towards the test data, however, at ǫi = 1.0LDP leads to nearly

indistinguishable test and train distributions. Thus, the decisive softmax confidence of

the target model increases in comparison to smaller and larger ǫi. For m = 10 the

absolute privacy-accuracy trade-off is also favorable for LDP as depicted in Figure 5.9i.

73



5. Assessing Differential Privacy under Membership Inference Attacks

5.6. Related Work

Our work is related to DP in central and federated learning with neural networks, attacks

against the confidentiality of training data, and performance benchmarking of neural

networks.

CDP is a common means to realize differentially private neural networks by adding

noise to the gradients during model training. Fundamental approaches for CDP perturba-

tion with the differentially private gradient descent during model training were provided

by Song et al. [SCS13], Bassily et al. [BST14], and Shokri et al. [SS15]. Abadi et

al. [Aba+16] formulated the DPSGD that was used in this chapter. Mironov [Mir17]

introduces Rényi DP for measuring the DPSGD privacy loss over composition. Iyengar

et al. [Iye+19] suggest a hyperparameter-free algorithm for differentially private convex

optimization for standard optimizers. Alternatives to the FedAVG algorithm are Matched

Averaging (FedMA) [Wan+20] and FedProx [Li+20b] which focus more on heterogeneous

statistical distributions within the datasets of the data owners (i.e., federated learning

clients). While FedMA computes a layer-wise average, FedAVG a coordinate-wise aver-

age, and FedProx modifies the federated SGD by adding a proximity term. We did not find

any related work in the context of privacy and anonymization for FedMA and FedProx. A

stand-alone differentially private protocol for federated learning (i.e., not modifying the

SGD of an existing federated learning protocol) is represented by PATE [Pap+18]. PATE

considers to each data owner as an individual Teacher providing input to a central aggre-

gate teacher in the form of prediction votes. The aggregate teacher adds Laplacian noise

to the vote histogram and yields the prediction with the highest noisy vote from the ensem-

ble (max-of-Laplacian mechanism). The last step in training with PATE involves a student

model. The student model uses unlabeled and non-sensitive data and combines them with

a prediction label by the aggregate teacher. PATE relies on the assumption that an adver-

sary has no means to directly interact with the aggregate teacher or the teacher ensemble,

but only interacts with the student model. In contrast, the DPSGD in FedAVG used in this

chapter has no such assumption and instead allows to considerAMI−L andAMI−G. Agarwal

et al. [Aga+18] formulate a CDP Binomial mechanism for federated learning. While their

work focuses on identifying favorable trade-offs between privacy and communication

efficiency we focus on identifying favorable privacy-accuracy trade-offs to choose ǫ.

Fredrikson et al. [FJR15; Fre+14] formulate model inversion attacks that use target
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model softmax confidence values to reconstruct training data per label. In contrast, MI

attacks are addressing the threat of identifying individual records in a dataset [Bac+16;

San+09]. Yeom et al. [Yeo+18] have demonstrated that the upper bound on MI risk for

CDP can be converted into an expected bound for MI advantage. We state MI precision

and recall, arguing that in is the sensitive information. Jayaraman and Evans [JE19]

showed that the theoretic MI upper bound and the achievable MI lower bound are far

apart in CDP. We observe, that LDP can be an alternative to CDP as the upper and

lower bounds are even farther apart from each other. Shokri et al. [NSH18] formulate

optimal mitigation against their MI attack [Sho+17] by using adversarial regularization.

By applying the MI attack gain as a regularization term to the objective function of

the target model, a non-leaking behavior is enforced w.r.t. MI. While their approach

protects against their MI adversary, DP mitigates any adversary with arbitrary background

information. Carlini et al. [Car+19] suggest exposure as a metric to measure the extent to

which neural networks memorize sensitive information. Similar to our work, they apply

DP for mitigation. We focus on attacks against machine learning models targeting the

identification of members of the training dataset. Abowd and Schmutte [AS19] describe

an economic social choice framework to choose privacy parameter ǫ. We compare LDP

and CDP mechanisms aside from ǫ. Rahman et al. [Rah+18] applied a black-box MI

attack against DPSGD models on CIFAR-10 and MNIST. They evaluate the severity of

MI attack by the F1-score which results in numerically higher scores but assumes out

labels to be sensitive.

MLPERF [Web18] and DPBench [Hay+16] are frameworks for machine learning

performance measurements and evaluation of DP. We focus on comparing the privacy-

utility trade-off and apply the core principles of both benchmarks.

5.7. Summary

Privacy parameter ǫ alone is unsuited to compare and select and compare DP mechanisms.

We consistently observed that while the theoretic upper bound on inference risk reflected

by ǫ in LDP is higher by a factor of hundreds or even thousands in comparison to CDP,

the practical protection against a white-box MI attack is actually not considerably weaker

at similar model accuracy. For Texas Hospital Stays LDP mitigates white-box MI at

75



5. Assessing Differential Privacy under Membership Inference Attacks

an overall ǫ = 6382 whereas CDP lies between ǫ = 0.9 for m = 100 and ǫ = 0.3 for

m = 300. This observation at the baseline MI AP also holds for Purchases Shopping

Carts where LDP ǫ = 60 and CDP is between ǫ = 0.4 for m = 10 and ǫ = 0.3 for

m = 100, and LFW (LDP ǫ = 62.5× 102, CDP ǫ = 2.1 to ǫ = 1.5). Thus, we note that

assessing privacy solely based on ǫ falls short. Given the results of the previous sections,

we rather encourage data scientists to also quantify privacy under an empirical attack

such as white-box MI in addition to ǫ.

LDP and CDP result in similar privacy-accuracy curves. A wide range of privacy

regimes in CDP and LDP can be compared with our methodology under MI. We

observed for most datasets that similar privacy-accuracy combinations are obtained for

well generalizing models (i.e., use of early stopping against excessive overfitting) that

were trained with LDP or CDP. We also ran the experiments with black-box MI (i.e.,

only model outputs) and observed that the additional assumptions made by white-box

MI (e.g., access to internal gradient and loss information) only yield a small increase

in MI AP (3 – 5%). For sake of completeness we provide plots for these additional

black-box MI experiments in Appendix A.3, but will not discuss them further within

this thesis. The privacy-accuracy scatterplots depict that LDP and CDP formulate

very similar privacy-accuracy trade-offs for Purchases Shopping Carts, LFW, and Texas

Hospital Stays. At two occasions on the smaller classification tasks Purchases Shopping

Carts m = {10, 20} and Skewed Purchases m = {10, 20} LDP realizes a strictly better

privacy-accuracy trade-off w.r.t. the practical inference risk. These observations lead us

to conclude that LDP is an alternative to CDP for differentially private deep learning on

binary and image data since the privacy-accuracy trade-off is often similar at the same

model accuracy despite the significantly larger ǫ. Thus, data scientists should consider

using LDP especially when required to use optimizers without CDP implementations

or when training ensembles (i.e., multiple models over one dataset), since the privacy

loss will accumulate overall ensemble target models when assuming that training data

is reused between ensemble models. Here, we see one architectural benefit of LDP:

flexibility. LDP training data can be used for all ensemble models without increasing the

privacy loss in contrast to CDP.

The relative privacy-accuracy trade-off is favorable within a small interval. We observed

that the privacy-accuracy trade-off as visualized in the scatterplots throughout this
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work allows identifying whether CDP or LDP achieve better test accuracy at similar

APs. However, the scatterplots do not reflect whether the target model test accuracy is

decreasing slower, similar, or stronger than MI AP decreases over the privacy parameter

ǫ. For this purpose, we introduced ϕ. We found that ϕ allows us identifying ǫ intervals

in which the MI AP loss is stronger than the test accuracy loss for all datasets. On the

high dimensional datasets, Texas Hospital Stays and LFW CDP consistently achieves

higher ϕ than LDP. In contrast, ϕ values are similar for LDP and CDP on Purchases and

superior for LDP on Skewed Purchases.

Federated Learning adversary localization. We observe that AMI−G is strictly stronger

than AMI−L in federated learning with FedAVG. To assess the lower bound on the privacy

loss in MI we thus recommend implementing AMI−G. However, in case the data scientist

is trusted by all participants and the data owners do not trust each other AMI−L formulates

a lower bound on the privacy loss.

Federated Learning provides an inherent privacy gain. We observed a slight gain in

privacy for federated learning when we compare the MI AP between the central and

federated learning experiments. For instance, the MI adversary AMI in central learning

on LFW has an average precision close to 0.9 in Figure 5.7b, while AMI−G in federated

learning achieves only about 0.75 in Figure 5.8c. We assume that the lower MI attack

performance in federated learning is coupled with the generalization effect of FedAVG.

By averaging the weights a similar effect as dropout can be achieved, which minimizes

the risk of overfitting and to that end limits membership inference [McM+16]. However,

our experiments do not allow to conclude that federated learning generally prevents

MI attacks, since AMI−G and AMI−L achieve MI precisions well above the baseline in

all experiments. Thus, the use of DPSGD in FedAVG is slightly improving protection

against MI adversaries in comparison to central learning. Our experiment results show

that federated learning achieves similar privacy-accuracy trade-offs to central learning for

larger ǫ. Thus the gap between the upper and lower bound on the privacy loss is actually

larger in federated learning. While this thesis generally does not discuss the use of

cryptographic techniques, we want to note that the membership inference attack against

federated learning would remain feasible even if secure aggregation is used to protect

individual updates at the aggregator (e.g., Segal et al. [Seg+17]). However, without

the use of cryptographic techniques stronger attacks than MI are feasible (such as the
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Differential Identifiability attack described in Chapter 7 of this thesis).

In conclusion, this chapter addressed Problem 1.(i) and 1.(ii). The chapter quantified

the lower bound on the privacy loss in LDP and CDP for central and federated differentially

private deep learning under a white-box MI attack. The lower bound was quantified as

the average precision of the MI precision-recall curve, a metric that particularly quantifies

the privacy of members in the training data. The accuracy was measured by the target

model test accuracy. Taken together, MI AP and target model test accuracy support data

scientists in choosing among available DP mechanisms and selecting privacy parameter ǫ.

Our experiments for diverse learning tasks and datasets show that neither LDP nor CDP

yields a consistently better privacy-accuracy trade-off. While MI only yields a lower

bound on the privacy loss whereas ǫ in DP formulates an upper bound on the privacy loss,

we observed that the lower bounds for LDP and CDP are close at similar model accuracy

despite the large differences in their upper bound. This suggests that the upper bound

is far from the practical susceptibility to MI attacks and that data scientists should also

consider applying LDP despite the large privacy parameter values. Especially, since LDP

does not require privacy accounting when training multiple models and offers flexibility

w.r.t. optimizers. We consider the relative privacy-accuracy trade-off for LDP and CDP

as the ratio of losses in accuracy and privacy over ǫ, and show that it is only favorable

within a small interval. We find that federated learning decreases the performance of MI

adversaries due to a generalization effect. When using DPSGD in federated learning the

gap between the upper and lower bound on the privacy loss for both LDP and CDP is

larger than for central learning.
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Membership Inference for

Variational Autoencoders

Generative machine learning models such as Variational Autoencoders (VAE) and

Generative Adversarial Networks (GAN) infer rules about the distribution of training

data to generate new images, tables, or numeric datasets that follow the training data

distribution. The decision whether to use GAN or VAE depends on the learning task and

dataset. However, similar to machine learning models for classification [Car+19; FJR15;

NSH19; Sho+17; ZLH19] trained generative models leak information about individual

training data records [Che+20; Hay+19; HHB19]. Anonymization of the training data or

a training optimizer with differential privacy (DP) can reduce such leakage by limiting

the privacy loss that an individual in the training would encounter when contributing their

data [Aba+16; Ber+21; JE19]. Depending on the privacy parameter ǫ differential privacy

has a significant impact on the accuracy of the generative model since the perturbation

affects how closely generated samples follow the training data distribution. Balancing

privacy and accuracy for differentially private generative models is a challenging task

for data scientists since privacy parameter ǫ states an upper bound on the privacy loss.

In contrast, quantifying the privacy loss under a concrete attack such as membership

inference allows quantifying and comparing the accuracy-privacy trade-off between

differentially private generative models. This chapter compares the privacy-accuracy

trade-off for differentially private VAE. This is motivated by previous work that has

identified VAE are more prone to membership inference attacks than GAN [HHB19].

Hence, data scientists may want to particularly consider the use of differential privacy

when training VAE. In particular, we formulate an experimental study to validate whether

our methodology allows identifying sweet spots w.r.t. the privacy-accuracy trade-off in
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VAE. We conduct experiments for two datasets covering image and activity data, and for

three different local and central differential privacy mechanisms. We make the following

contributions.

• Quantifying the privacy-accuracy trade-off under membership inference attacks

for differentially private VAE.

• Comparing local and central differential privacy w.r.t. the privacy-accuracy trade-

off for image and motion data VAE.

This chapter is structured as follows. The reconstruction attack against Variational Auto

Encoders is introduced in Section 6.1. We formulate our approach for quantifying and

comparing the privacy-accuracy trade-off for differentially private VAE in Section 6.2.

Section 6.3 introduces reference datasets and learning tasks. Section 6.4 presents the

evaluation. We introduce related work in Section 6.5 and Section 6.6 provides a summary.

A preliminary version of the results of this chapter was published in a master thesis that

the author of this thesis proposed and supervised [Rob21].

6.1. Reconstruction Attack Against Variational

Autoencoders

The reconstruction attack is solely applicable to Variational Autoencoders. During

training, reconstructions D(z) close to the current training data record x are rewarded.

Hence, for training data more precise reconstructions of the VAE can be expected.

However, the outputs D(z) are not deterministic. They depend on the latent variable

z which is sampled from the distribution N (Eµ(x), Eσ(x)) whose parameters are the

output of the encoder network E. Hence, we repeat this process n times and set

f̂rec(x) = − 1

n

n
∑

i=1

‖D (zi)− x‖ (6.1)

where zi (i = 1, . . . , n) are samples from the distributionN (Eµ(x), Eσ(x)). This term is

frequently used in practice as part of the loss function of VAE. One of the contributions of

a paper that was published during this thesis [HHB19] is to apply this loss to the problem
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of membership inference. Specifically, the function f̂rec(x) is applied in the attack types

as the discriminating function f̂(x). This induces the reconstruction attack. Note that

this attack considers the white-box MI adversary AMI with access to the VAE model.

The reconstruction MI attack assumes that a reconstructed training record will have a

smaller reconstruction loss than a reconstructed test record and repeatedly computes the

reconstruction x̂ = D(z) for a record x by drawing the latent variable z. The mean

reconstruction distance for N = 300 samples is then calculated with Equation (6.1).

Furthermore, the reconstruction MI attack depends on the availability of a distance

measure d. In this chapter, we use the generic Mean Squared Error (MSE) and the image

domain-specific Structural Similarity Index Measure (SSIM) as distance measures. A

record x is likely a training record in case of small mean reconstruction distances for

MSE or a similarity close to 1 for SSIM.

6.2. Accuracy and Privacy for Variational Autoencoders

We compare the privacy-accuracy trade-off for differentially private VAE to support a

data scientistDS in choosing privacy parameters ǫ. For this, we formulate a framework to

quantify privacy and accuracy as well as the privacy-accuracy trade-off for differentially

private VAE with local or central differential privacy. The framework is depicted in

Figure 6.1. The framework first splits a dataset D into three distinct subsets: training

data Dtrain, validation data Dval and test data Dtest. The target model VAE is trained

on Dtrain and optimized on Dval. After training, we use the target model to generate

a new dataset Dgen with the same distribution as Dtrain. We use Dgen as input for the

target classifier, a feedforward neural network for classification, to quantify the accuracy

of the target model by the target classifier accuracy on Dtest. Our framework quantifies

privacy using a MI adversary AMI performing a MI attack (cf. Section 2.3.1). The MI

attack dataset Datk for training and evaluating the MI attack model is sampled equally

from Dtrain and Dtest. We use the framework to calculate the baseline trade-off, as well

as CDP and LDP trade-off. The baseline trade-off is calculated from the baseline target

classifier test accuracy and the MI attack without any DP mechanism. For the CDP

trade-off the target model is trained with DP-Adam (cf. Section 2.1).

The LDP trade-off can be computed in three settings to which we refer as LDP-Train,

LDP-Full, and VAE-LDP. In LDP-Train a LDP mechanism is applied solely to Dtrain,
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D
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Datk attack

model
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Figure 6.1.: Data flow for the framework

but not Dval and Dtest. This scheme is similar to Denoising Autoencoders [Vin+10].

However, we evaluated the LDP-Train setting and observed it to be mostly impractical

for VAE since it introduces a transfer learning task. In particular, working on two

different data distributions for Dtrain and Dtest leads to distant latent representations and

contrasting reconstructions. This neither benefits the target classifier test accuracy nor

reduces MI attack performance in comparison to perturbing both training and test data.

Hence, we only mention LDP-Train for sake of completeness but will not discuss LDP-

Train in the rest of this chapter. In LDP-Full, D is perturbed and the training objective

of the target model and the target classifier is changed implicitly (i.e., performance on

perturbed data). VAE-LDP perturbs generated data Dgen by training a perturbation

model that follows the target model architecture to enforce LDP.

The use of LDP also leads to MI attack variations. In particular, the MI attack

can either be evaluated against perturbed or unperturbed records in Datk. We argue

that in the LDP-Full setting the MI attack performance against unperturbed records is

particularly relevant from the viewpoint of DS , since the unperturbed records represent

the actual sensitive information and otherwise the attack model would solely learn the to

differentiate two distributions by the perturbation skew. Hence, within this chapter for

the LDP settings, we exclusively consider the MI attack performance against unperturbed

records from Dtrain.

We evaluate the accuracy of the VAE target model based on the performance of a

subsequent target classifier on Dtest after training on Dgen. This is a common approach

to evaluate the accuracy of generative models [Fri+19; JYS19; TKP19]. To evaluate the

accuracy of the MI attack we again use the Average Precision of the Precision-Recall

curve (MI AP) which considers membership as sensitive information (i.e., neglecting

non-membership; cf. Section 5.1). The MI AP quantifies the integral under the precision-
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recall curve as a weighted mean of the precision P per threshold and the increase in

recall R from the previous threshold. Using the accuracy of such a curve instead of a

singular value allows us to measure the MI attack performance under optimal conditions.

For example, the MI adversary AMI could decide to increase the assumed certainty

by raising the threshold closer to 1. Independently on the target model accuracy, DS
might be interested in lowering MI AP below a predefined threshold that is motivated by

legislation (similar to the HIPAA requirement on group sizes [HS10]). We again quantify

the relative trade-off between accuracy and privacy by ϕ which considers the relative

difference between the change in test accuracy for DS and the change in MI AP for AMI.

6.3. Datasets and Learning Tasks

Within this chapter, we use two reference datasets for image and activity data.

Labeled Faces in the Wild (LFW). LFW is a reference dataset for image classification that

we already introduced and used in Section 5.4 in the previous chapter for a classification

task. In this chapter, we pursue generative models and will limit our description to

information that is relevant to the generative task in this chapter. We resize the 250× 250

images to 64× 64 by using a bilinear filter and normalizing pixels to [0, 1] for improved

accuracy. We consider the most frequent 20 and 50 labels to which we again refer as

LFW20 and LFW50. 50% of the data is allocated to Dtrain, 20% to Dval, and 30% to

Dtest. Our VAE target model is an extension of the architecture by Hou et al. [Hou+17]

and is depicted in Figure 6.2a. E consists of four convolutional layers with 4× 4 kernels,

a stride of two, and Leaky ReLU as an activation function. D comprises a dense layer

followed by four convolutional layers with 3× 3 kernels, a stride of one and Leaky ReLU

as an activation function. Before each convolutional layer, we perform upsampling on

a scale of two with the nearest neighbor method. New data is generated by randomly

drawing z from a multivariate Gaussian distribution which is passed through the decoder

to create a new record. The target classifier is built upon a pre-trained VGG-Very-Deep-

16 (VGG16) model [SZ15]. The first part of VGG16 consists of multiple blocks of

convolutional layers and max-pooling layers for feature extraction. The second part of

VGG16 is a fully-connected network for classification. After loading the pre-trained
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weights1 we keep the convolutional core and train the classification part.

MotionSense (MS). MS is a reference dataset for human activity recognition with 70610

accelerometer and gyroscope sensor measurements [Mal+18]. Each measurement con-

sists of twelve datapoints. Measurements are labeled with activities such as walking

downstairs, jogging, and sitting. The associated learning task is to label a time series

of measurements collected at 50 Hz with the corresponding activity. The VAE target

model shall reconstruct such a time series. We normalize the data to [−1, 1] and group

the measurements into series of 10 seconds. 10% of the data is allocated to Dtrain and

Dval each, and the remaining 80% is allocated to Dtest. Using 10% of data for training is

in line with previous work on MI against generative models [Che+20; Hay+19; HHB19].

For the target model, we use a multitask approach in which E consists of a simple LSTM

layer with 164 cells followed by two dense layers for µ and σ. D starts with a repeat vector

unit for z. This allows us to create sequences and pass z to an LSTM layer. Furthermore,

a second LSTM layer with twelve units is used to output sequences for each sensor. To

support the reconstruction task we input µ to a classifier. Figure 6.2b shows the target

model architecture. New data is generated by passing training records of a given label

through E to obtain z, and subsequently passing z through D. We have to sample z from

the label-specific latent distribution since the latent space is clustered as a consequence of

the multitask classifier. The overall loss is balanced with λ1 = 0.01, λ2 = 50, λ3 = 0.5

for KL-loss, reconstruction loss and classifier loss respectively. The target classifier is

based on the Human Activity Recognition Convolutional Neural Network (HARCNN)

architecture for time series data by Saeed [Sae16]. In HARCNN each convolutional layer

is followed by a dropout layer which we set to 0.3 to learn a more general representation

of the data. The final two fully-connected layers are used for classification.

6.4. Evaluation

Instead of comparing privacy parameter ǫ we designed and performed an experiment

to compare the privacy-accuracy trade-off in different DP settings. The experiment is

somewhat similar to the Experiment performed in Section 5.5 for discriminative models.

quantifies the target classifier test accuracy and MI AP by using the framework depicted

1https://github.com/rcmalli/keras-vggface
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Figure 6.2.: VAE target model architectures

in Figure 6.1 (cf. Section 6.2). We discuss the experiment for each dataset in four

parts. First, we state the baseline test accuracy of the target classifier on non-generated

data to provide information on the general drop in test accuracy between generated and

non-generated data. Second and Third, we discuss CDP and LDP results. Fourth, the

results for VAE-LDP are presented. For CDP, LDP, and VAE-LDP the experiment results

are depicted in two figures each, stating target classifier accuracy over ǫ and MI AP over

ǫ. In each figure, we also state the original target classifier test accuracy and MI AP for

unperturbed data.

6.4.1. Setup

For each dataset, the target model is trained for 1000 epochs after which the target model

test loss did not decrease significantly while the target classifier accuracy did not increase

anymore. The target classifier is trained on generated samples from the VAE until the

target classifier test data loss is stagnating (i.e., early stopping). This experiment design

avoids overfitting and increases the real-world relevance of our results. For CDP we
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again use DP-Adam which samples noise from a Gaussian distribution (cf. Definition 2.2)

with scale σ = noise multiplier z × clipping norm C. We use the heuristic of Abadi et

al. [Aba+16] and set C as the median of norms of the unclipped gradients throughout

100 training epochs. We evaluate increasing CDP noise regimes for the target model

by evaluating noise multipliers z ∈ {0.001, 0.01, 0.1, 0.5, 1} and state the resulting ǫ

values. The noise levels cover a wide range from baseline accuracy to naive majority

vote. Similar to related work and previous experiments in this thesis we set δ = 1
|D|

in

our experiments [Aba+16; Ber+21]. Due to the varying LDP mechanisms we again state

the privacy parameter ǫi for a single mechanism execution for feature i per dataset in

the next sections. VAE-LDP perturbation models are trained with various noise bounds

σ ∈ {0.1, 1, 10, 100, 1000}. The overall (ǫ, δ) values for CDP, LDP, and VAE-LDP are

presented in Table A.4 in Appendix A.4. For the MI attack, we randomly draw 1000

records both from Dtrain and Dtest for Datk. The experiments were run on Amazon Web

Services Elastic Compute Cloud instances of type “p2.xlarge”2 with 64 GiB RAM. This

instance type is optimized for GPU computing. We implemented3 our experiments in

Python 3.8 and use TensorFlow Privacy4. We identify hyperparameter values for batch

size, epochs, and learning rate for all target classifiers with Bayesian optimization and

provide an overview of the used parameters in Table A.3 in Appendix A.4.

6.4.2. LFW

On non-generated baseline images, the target classifier achieves baseline test accuracies

of 0.78 and 0.66 for LFW20 and LFW50. For generated images, we provide two accuracy

metrics. Namely, the SSIM of the images generated by the target model and the test

accuracy of the target classifier. Figure 6.3a states the accuracy metrics for unperturbed

and CDP perturbed VAE. The figure illustrates that the unperturbed VAE does not

generate images in close proximity to the baseline images. However, the images still

suffice to produce target classifier test accuracies well above majority voting. Shapes of

the head, hair, and some facial expressions as well as the background can be observed

for reconstructed images in Figure A.6 in Appendix A.4. We also use SSIM as a domain-

specific distance metric for the reconstruction MI attack. Figure 6.3b illustrates that the

2https://aws.amazon.com/ec2
3We provide code: https://github.com/SAP-samples/security-research-vae-dp-mia
4https://github.com/tensorflow/privacy
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reconstruction MI attack yields a perfect MI AP of 1 for unperturbed VAE. This high MI

AP is due to the large gap between train and test SSIM.

Figure 6.3a states CDP test accuracy over ǫ. The steady accuracy decrease is due to

the closing target model train-test gap, which we state in Table A.4 in Appendix A.4.

The resulting regularization also lowers the SSIM of the generated images. A particular

sharp drop in SSIM is observable for z = 0.5 (ǫ ≈ 350). For this datapoint posterior

collapse occurs when E produces noisy µ and σ leading to unstable latent codes z which

in turn are ignored by D. In consequence, D produces reconstructions independently of z

leading to an increased reconstruction loss, while µ and σ become constant and minimize

the KL-loss [Luc+19]. As a consequence, the target classifier resorts to a majority vote.

The CDP MI AP over ǫ is stated in Figure 6.3b. The increased regularization caused

by CDP is at the same time lowering MI AP. In addition, due to the inherent label

imbalance in LFW, the VAE reconstruction of loosely populated labels is worse than

the reconstruction for labels with more records. Still, the resulting privacy-accuracy

trade-off leaves space for compromise. When DS would for example be willing to accept

an MI AP of up to 0.6 this would require setting z ≤ 0.1 (ǫ ≈ 105). z = 0.1 leads to

target classifier test accuracy of 0.31. However, if DS its their threshold to 0.75 this

would allow for z = 0.01 (ǫ ≈ 108) and a target classifier test accuracy of 0.52.

For LDP we use differentially private image pixelization (cf. Section 2.2) to create

LDP training and test datasets within neighborhood o =
√
64× 64. Figure 6.3c presents

the LDP test accuracy and SSIM over ǫi. In contrast to the CDP experiments the target

classifier test accuracy and the target model SSIM do not show a regularization effect

caused by the introduced noise for LDP. The train-test gap narrows only slightly and

the random noise introduced in the dataset makes the reconstruction task for the VAE

more difficult. Thus, the reconstruction attack MI AP in Figure 6.3d remains nearly

unchanged until ǫi ≤= 500 at which point the target model SSIM and the target classifier

test accuracy are already at poor levels and little room for compromise is existing.

VAE-LDP accuracy over ǫ is presented in Figure 6.3e. Counterintuitively, the test

accuracy even rises over ǫ and the train-test gap and SSIM gap narrow. This is due to

the VAE-LDP perturbation model which reconstructs only essential facial features and

leaves the background grey when faced with small ǫ. Hence the learning task for the

target classifier and the reconstruction task for the VAE are simplified. Figure A.6 in

Appendix A.4 underlines this observation by showing the same image for VAE-LDP
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Figure 6.3.: LFW accuracy and privacy

with increasing noise. The reconstruction attack against VAE-LDP in Figure 6.3f also

decreases as the SSIM gap closes. All in all, the results point towards an advantage

of the VAE-LDP mechanism over the LDP image pixelization mechanism. The main

disadvantage of the VAE-LDP mechanism over image pixelization is the increased effort

to optimize perturbation model hyperparameters.
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6.4.3. MotionSense

Due to the absence of a domain specific accuracy metric, we solely consider test accuracy

as an accuracy metric for this dataset. The target classifier for MS achieves a baseline test

accuracy of 0.99 for non-generated data. Figure 6.4a states the test accuracy for original

and CDP perturbed data over ǫ. The test accuracy is dropping to 0.71 for generated data,

which is due to the target model being unable to reconstruct time series for all activities

equally well. The reconstruction MI attack has not been used for a time series data in

previous work and we suggest to use MSE as the reconstruction MI attack distance metric.

The original MI attack performance is depicted in Figure 6.4b and achieves an MI AP

0.52. We see three main reasons for the low MI AP in comparison to LFW. First, MS is

more balanced in comparison to LFW. Second, there are significantly more records in MS

than in LFW and thus more records per label allow to learn a more general representation.

Third, sensor measurements exhibit ambiguities and thus the target model tends to learn

more general trends instead of absolute values.

The CDP target classifier test accuracy only slightly worsens with increasing noise as

illustrated in Figure 6.4a. This is mostly due to the target classifier resorting to a majority

vote for particular activities with increasing noise. Figure A.7 in Appendix A.4 shows

the confusion matrix for the target classifier at z = 1 (ǫ ≈ 16). The target classifier

resorts to a majority vote for labels 0 to 3 which represent different types of movements,

but is still able to distinguish labels 4 and 5 which represent standing and sitting. The

latter two activities are of different nature than the movements and remain distinguishable

under noise. The MI AP illustrated in Figure 6.4b shows again the ineffectiveness of the

reconstruction MI attack against the MS time series data.

For LDP we use the Laplace mechanism to perturb each measurement (cf. Section 2.2)

and specify the sensitivity per sensor as the maximum of all corresponding observed

values to create differentially private time series. Figure 6.4c shows the target classifier

accuracy over ǫi. Notably, the target classifier test accuracy increases slightly before

dropping sharply over ǫi. Here, small noise levels are actually positively influencing

the target model training and hence also allow the target classifier to better distinguish

between different labels. In general, the simple LDP mechanism used within this

experiment seems to prevent the target model to infer structural information and in turn

limits the reconstruction and meaningful generation of records. Figure 6.4d presents the

89



6. AssessingDifferential Privacy underMembership Inference forVariational Autoencoders

Orig. 108 106 104 102 15
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(a) MS CDP accuracy

Orig. 108 106 104 102 15
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Pr
ec

isi
on

(b) MS CDP MI

0.010.10.5110Orig.
i

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(c) MS LDP accuracy

0.010.10.5110Orig.
i

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Pr
ec

isi
on

(d) MS LDP MI

Orig. 100 10 1 0.04
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(e) MS VAE-LDP accuracy

Orig. 100 10 1 0.04
0.00

0.25

0.50

0.75

1.00
Av

er
ag

e 
Pr

ec
isi

on

(f) MS VAE-LDP MI

Figure 6.4.: MS accuracy and privacy

MI attack performance. The MI AP decreases to 0.5 already at the largest ǫi and remains

close to the baseline for all further ǫi.

VAE-LDP test accuracy over ǫ is depicted in Figure 6.4e. In comparison to LFW the

MS perturbation models do not focus on the essential features of the data and in turn, the

target classifier cannot benefit from increased perturbation. Due to this the predictions

also shift to a majority vote for label 5 and lower the test accuracy significantly. The

VAE-LDP MI AP over ǫ is illustrated in Figure 6.4f. Note that at σ = 0.1 (ǫ ≈ 40) an

outlier is present where the target model did not learn a continuous latent space and thus

the reconstruction of records from Dtest suffered. However, the VAE-LDP results show

similar trends as the above LDP results.
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6.5. Related Work

We discuss related work from three categories. First, we briefly discuss generative

models and accuracy metrics for generative models. Second, we provide background

on differential privacy in generative models. Third, we introduce related work on

membership inference attacks against generative models.

Generative Adversarial Networks by Goodfellow et al. [Goo+14] represent an alterna-

tive to VAE. We focus on VAE since VAE in comparison to GAN were observed to be

more prone to MI attacks [HHB19]. Salimans et al. [Sal+16] introduce the Inception

Score to automatically evaluate the utility of sampled images from generative models.

The main advantage of the Inception Score over other metrics such as SSIM is the corre-

lation with human judgments. However, Barrat et al. [BS18] point out that the Inception

Score is foremost meaningful for the ImageNet dataset due to pre-training. Therefore,

we consider the test accuracy of a target classifier to evaluate the VAE accuracy.

Torkzadehmahani et al. [TKP19] propose the DP-cGAN framework to generate dif-

ferentially private data and labels. Similar to our work they train target classifiers on

the generated data to evaluate model accuracy. We consider VAE with LDP and CDP.

Jordon et al. [JYS19] extend the differentially private federated learning architecture

PATE [Pap+18] to GAN. Similar to us, they analyze the accuracy of a target classifier for

various privacy parameters, yet Jordon et al. do not discuss privacy aside from privacy

parameter ǫ. Frigerio et al. [Fri+19] evaluate a CDP GAN for time series data also

w.r.t. MI attacks. We also consider LDP and quantify the trade-off between privacy and

accuracy. Takahashi [Tak+20] proposes an enhanced version of the DP-SGD for VAE

by adjusting the noise that is injected to the loss terms. We use DP-Adam where their

improvement is not applicable.

Hayes et al. [Hay+19] propose the LOGAN framework for MI attacks against GAN

under various assumptions for the knowledge of AMI. For their black-box attacks, they

train a separate discriminator model to distinguish between members and non-members.

In contrast, we consider statistical MI attack models, allowing for MI attacks against

generative models without the need to train a separate attack model. Hilprecht et

al. [HHB19] propose Monte-Carlo MI attacks against GAN and VAE. We use their

reconstruction MI attack and are the first to consider this attack under differential privacy.

Chen et al. [Che+20] extend the reconstruction MI attack to a partial black-box setting
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where AMI solely has access to the latent space z but not the internal parameters of the

generative model. Their attack composes different losses targeting various aspects of a

model and takes the reconstruction as well as the latent representation into consideration.

We ran all experiments within this chapter also for their attack and the consideration of

latent representation did lead to strictly weaker MI AP. The gradient matching attack of

Zhu et al. [ZLH19] strives for the reconstruction of training data from publicly available

gradients. In contrast, we focus on the identification of training data.

6.6. Summary

Image data yields higher MI attack performance than time-series data. The reconstruction

MI attack has been shown effective for image data in prior work [Che+20; HHB19],

despite being fairly simple and only takes one metric for disparate behaviour of the target

model into consideration. This is in line with the identified gap in image reconstruction

for LFW and the gap was exploited by using SSIM as a distance measure for the

reconstruction MI attack. For MS we were not able to identify a measure that provides

equal success. Since activity measurements exhibit many ambiguities the target model

learns to reconstruct relative trends instead of concrete measurements that represent a

specific movement. Therefore, the target model generalizes more and is less prone to MI

attacks. Additionally, previous research [NSH19; Sho+17] has shown that large datasets

with few labels are generally less vulnerable to MI attacks.

Small noise yields a favorable relative privacy-accuracy trade-off for image data. For

CDP and image data we recommend using as little noise as possible. The relative

accuracy drop for DS largely exceeds the performance loss for AMI throughout the CDP

experiments for LFW. This trend is illustrated in Figure 6.5a which highlights that the

drop in target classifier test accuracy is always larger than the privacy gain by reduced MI

AP. For MS the reconstruction MI attack only achieves a performance close to random

guessing already against original data. Hence, small DP noise is already sufficient to

push the MI AP to random guessing. This is reflected in Figure 6.5d, where we see an

optimal ϕ already for z = 0.001. Similarly for LDP Figures 6.5b and 6.5e show only

a few favorable ϕ for both datasets. These few favorable trade-offs again indicate that

differentially private image pixelization and the Laplace mechanism disproportionately
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Figure 6.5.: ϕ for CDP, LDP and VAE-LDP, for LFW and MotionSense

harm model accuracy over protecting privacy. Compared to CDP, LDP shows better

trade-offs for small privacy parameter. However, DS generally gives up more accuracy

compared to the gain in privacy.

VAE-LDP outperforms LDP and CDP w.r.t. the relative privacy-accuracy trade-off. In

our experiments, the VAE-LDP yielded the best trade-off between target classifier test

accuracy and MI AP. This finding is supported by ϕ depicted in Figures 6.5c and 6.5f.

We identified the interaction between the perturbation models, that retain essential image

features, and the targeted classification task as the primary reason for the superior trade-

off. ϕ for the VAE-LDP experiments highlight that small noise bounds are protecting

from the reconstruction MI attack. For larger noise bounds however, ϕ only offers

limited informative value since the MI AP pivots around random guessing while the

target classifier test accuracy is bound by the overall classification baseline.

VAE are highly susceptible to noise introduced during training. Our results indicate

that CDP leads to a regularization effect and directly addresses a key driver for MI

AP. However, CDP also required additional hyperparameter optimization and increases

computational cost. LDP mechanisms consume information within the data to foster

protection and hence the test accuracy decreases heavily depend on how the LDP

mechanism alters the training data. For example, differentially private image pixelization
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damages the structures of images to preserve privacy. The more information consumed

by the LDP mechanism, the worse the target classifier test accuracy becomes. This effect

is clearly visible in the MS dataset, where the decrease in target classifier accuracy is

similar to the overall classification baseline. When this characteristic is present MI is

affected mostly as a consequence of diminishing model performance. This is facilitated

by the lack of regularization effect which keeps a present relative gap for the MI attacks

to exploit. The VAE-LDP mechanism preserves essential features of the LFW dataset

during perturbation. The preservation of essential features are beneficial to the overall

classification task as the test accuracy remains high while the MI AP decreases.

In summary, within this chapter, we addressed Problem 1.(iii) by formulating a

validation framework for quantifying the relative privacy-accuracy trade-off for VAE.

We used the framework to evaluate and compare two LDP and one CDP mechanism for

image and time series data w.r.t. their privacy-accuracy trade-off. In particular, the LFW

image recognition dataset was very susceptible to the reconstruction MI attack whereas

the MotionSense activity recognition dataset with more records and fewer labels was

mostly resistant to MI. The CDP mechanism offered a more consistent decrease in MI

attack performance whereas the LDP mechanisms showed varying levels of protection

depending on chosen privacy parameter and setting. The relative privacy-accuracy trade-

off highlights that protection often comes at a disproportionately high accuracy cost.
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and Audit ǫ

Several privacy regulations [HS10; PE16] consider individual identifiability to gauge

anonymization strength. Therefore, scores that quantify reidentification risk to individuals

can strongly affect the widespread implementation of anonymization techniques [Nis16].

In consequence, if DP shall be used to comply with privacy regulations and find

widespread adoption [NW18; Par14], quantifying the resulting identifiability from

privacy parameters (ǫ, δ) is required [CT13; NW18]. Multiple approaches for choosing

privacy parameters have been introduced, yet they do not reflect identifiability [AS19;

Hsu+14], part from the original DP definition [Ber+21; LC12; Rah+18; Yeo+18], or lack

applicability to common DP mechanisms for ML [LC11]. Especially in ML, practical

membership inference attacks have been used to measure identifiability [Ber+21; Che+20;

Hay+19; JE19; Jay+20; Rah+18; Sho+17; Yeo+18]. However, AMI is not assumed to

have auxiliary information about the members of datasets that they aim to differentiate,

which DP adversaries are assumed to possess. MI attacks thus offer intuition about

the outcome of practical attacks; nonetheless, bounds on MI attacks in terms of ǫ are

not tight [JE19], and consequently MI can only represent an empirical lower bound on

identifiability.

Rather than analyzing AMI, we consider a DP adversary with arbitrary auxiliary

knowledge and derive maximum Bayesian posterior belief ρβ as an identifiability bound

related to (ǫ, δ), which bounds the adversary’s certainty in identifying a member of the

training data. Furthermore, we define the complementary score expected membership

advantage ρα, which is related to the probability of success in a Bernoulli trial over the

posterior beliefs. ρα depends on the entire distribution of observed posterior beliefs, not

solely the worst-case posterior belief, and allows direct comparison with the membership

advantage bound of Yeom et al. [Yeo+18] for AMI. We will show that the DP adversary
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achieves a greater membership advantage than AMI, implying that while both adversaries

can be used to evaluate the protection of DP in machine learning, our implementable

instance of the DP adversary comes closer to DP bounds.

A subsequent question is whether our identifiability bounds are tight in practice

since the factual guarantee (ǫ, δ) depends on the difference between possible input

datasets [NRS07]. In differentially private stochastic gradient descent, noise is scaled to

global sensitivity, the maximum change that any single record in the training dataset is

assumed to cause on the gradient during any training step. However, since all training

data records are likely to be within the same domain (e.g., pictures of cars vs. pictures

of nature scenes), global sensitivity might far exceed the difference between gradients

over all training steps. We propose scaling the sensitivity to the difference between the

gradients of a fixed dataset and any neighboring dataset and show for three reference

datasets that we can indeed achieve tight bounds. Our main contributions are:

• Identifiability bounds for the posterior belief and expected membership advantage

that are mathematical transformations of privacy parameters (ǫ, δ) and used in

conjunction with RDP composition.

• The practical implementation of an adversary that meets all assumptions on worst-

case adversaries against DP and allows us to audit DPSGD model instances w.r.t. to

the empirical privacy loss besides enabling comparison with membership inference

adversaries.

• A heuristic for scaling sensitivity in differentially private stochastic gradient descent.

This heuristic leads to tight bounds on identifiability.

This chapter is structured as follows. We discuss the relation of differential identi-

fiability to differential privacy in Section 7.1. In Sections 7.2 and 7.3 we formulate

identifiability scores and provide upper bounds on them. Section 7.4 specifies the appli-

cation of these scores for a deep learning scenario, and we evaluate the scores for three

deep learning reference datasets in Section 7.5. We present related work in Section 7.6.

Section 7.7 discusses the practical relevance of our findings and summarizes the chapter.
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7.1. Differential Identifiability and the Relation to the DP

Adversary

Lee et al. [LC11; LC12] introduce differential identifiability (DI) as a strong inference

threat model. DI assumes that the adversary calculates the likelihood of all possible

input datasets, so-called possible worlds in a set Ψ, given a mechanism output r. Li et

al. [Li+13] show that the DI threat model maps to the worst-case against which bounded

DP protects when |Ψ| = 2, since DP considers two neighboring datasets D, D′ by

definition. The DI experiment ExpDI is similar to ExpMI (cf. Experiment 2.1) since

the adversary must decide whether the dataset contains the member that differs between

the known D′ and D, or not. For comparison, we reformulate DI as a cryptographic

experiment in Experiment 7.1.

Experiment 7.1. (Differential Identifiability ExpDI) Let ADI be an adversary, M be

a differentially private learning algorithm, D and D′ be neighboring datasets drawn

mutually independently from distribution Dist, using either bounded or unbounded

definitions. The differential identifiability experiment ExpDI proceeds as follows:

1. Set rD := M(D) and rD′ := M(D′)

2. Choose b ← {0, 1} uniformly at random

3. Let

r =







rD, if b = 1

rD′ , if b = 0

4. ADI outputs b′ = ADI(r,D,D′,M, Dist) ∈ {0, 1}. If b′ = b, ADI succeeds and

the output of the experiment is 1. It is 0 otherwise.

Since Experiment 7.1 precisely defines an adversary with access to arbitrary back-

ground knowledge of up to all but one record in D and D′, ADI is an implementable

instance of the DP adversary [DR16]. Compared to the MI adversary, the DI adversary

is stronger, since ADI knows the alternative dataset D′ instead of only the distribution

Dist from which D′ was chosen. The experiment defined above is general and applies

to deep learning using gradient descent as follows: the knowledge of the mechanism M
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implies knowledge about the architecture of the NN and the learning parameters η, C, as

well as the number of iterations k. The experiment is formulated s.t. it could be applied

for a single iteration, and the output r of the mechanism is the perturbed gradient g̃i

from iteration i of the NN training. However, after the entire learning process, consisting

of k iterations, ADI has more information Rk = (r0, r1, . . . , rk) and therefore a higher

chance to win Experiment 7.1. In this case, the same value of b is chosen in every round,

since the training data is kept constant over all learning steps. This is the standard case

considered in this chapter and motivates the need for composition theorems. According

to Experiment 7.1, the DI adversary could know almost all of the training data from a

public dataset of census data, for example, and observe the NN gradient updates at every

training step. The assumption that ADI has access to all gradients during learning may

seem overly strong; however, this setting is of theoretical interest, since the bounds that

we prove for the DI adversary ADI will also hold for weaker adversaries. Furthermore,

the assumptions can be fulfilled in federated learning, for example. In federated learning,

multiple data owners jointly train a global model by sharing gradients for their individual

subsets of training data with a central aggregator. The aggregator combines the gradients

and shares the aggregated update with all data owners. If ADI participates as a data

owner, ADI can observe the joint model updates.

7.2. Identifiability Scores for DP

We will prove in Section 7.2.1 that if AdvDI is bounded, then this bound also holds for

AdvMI. Equivalently, we prove that ADI is stronger than AMI due to additional available

auxiliary information. In addition, we formulate two scores for the identifiability

of individual training records when releasing a differentially private NN. The scores

are compatible with DP under multidimensional queries and composition. First, we

define posterior belief β, which quantifies identifiability for iterative mechanisms in

Section 7.2.2. Second, we define membership advantage AdvDI for ADI in Section 7.2.3,

which is a complementary identifiability score offering a scaled quantification of the

adversary’s probability of success.
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7.2.1. Relation of Membership Inference and Differential

Identifiability

ADI knows both neighboring datasets D and D′ instead of only receiving one value d

and the size n of the dataset from which the datapoints are drawn.

Proposition 7.1. DI implies MI: if AMI wins ExpMI, then one can construct ADI that

wins ExpDI.

Proof. We prove the proposition by contradiction: assume that the mechanism M
successfully protects against ADI, but that there exists an adversary AMI that wins ExpMI.

Again, we assume w.l.o.g. that D \ D′ 6= {}. We construct an adversary ADI that also

wins ExpDI as follows:

1. On inputs D,D′,M, r, Dist, ADI calculates n = |D| and let d = D \ D′.

2. ADI gives (d, r, n, Dist) to AMI.

3. AMI gives b′′ = AMI(d, r, n, Dist) to ADI in response.

4. ADI outputs b′ = b′′.

By the definition of ExpDI, ADI wins if b′ = b, and thus succeeds in the following cases:

Case 1: b = 1, which means r = M(D). Since d ∈ D, this is exactly the case where

AMI correctly outputs b′′ = 1. Therefore b′ = b.

Case 2: b = 0, which means r = M(D′). Since d /∈ D′, this is exactly the case where

AMI correctly outputs b′′ = 0. Therefore b′ = b. For both cases ADI wins (b′ = b), which

contradicts the assumption that the mechanism M successfully protects against ADI. It

is at least as difficult for a mechanism to protect against ExpDI as against ExpMI, which

is equivalent to the statement that if AMI wins ExpMI, then ADI wins ExpDI as well.

7.2.2. Posterior Belief in Identifying the Training Dataset

To quantify individual identifiability from privacy parameters (ǫ, δ), we use the Bayesian

posterior belief. After having observed gradients Rk, the adversary ADI can update the

probabilities for both the training dataset D and the alternate dataset D′, which differs

from D in an individual record d = D \ D′. The posterior belief quantifies the certainty
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with which ADI can identify the training dataset used by a NN and consequently the

presence of the individual record d. This belief is formulated as a conditional probability

depending on observations Rk during training in Definition 7.1. For a census dataset

such as Adult, the posterior belief measures the probability that a particular individual

d participated in the census after observing training using data D. Since this belief

has an upper bound for each possible member d of the dataset, no member of D can

be identified. Posterior belief, therefore, relates theoretical DP privacy guarantees to

privacy regulations and societal norms through its identifiability formulation, since the

noise, and therefore the posterior belief, depends on (ǫ, δ).

Definition 7.1 (Posterior Belief). Consider the setting of Experiment 7.1 and denote

Rk = (r0, r1, . . . , rk) as the result matrix, comprising k multidimensional mechanism

results. The posterior belief in the correct dataset D is defined as the probability

conditioned on all the information observed during the adaptive computations

βk := Pr(D|Rk) =
Pr(D, Rk)

Pr(D, Rk) + Pr(D′, Rk)

where the probability Pr (D|Rk) is over the random iterative choices of the mechanisms

up to step k. ⋄

Each βk can be computed from the previous βk−1. The final belief can be computed

using Lemma 7.1, which we will use to further analyze the strongest possible adversary

ADI of Experiment 7.1.

Lemma 7.1 (Calculation of the posterior belief). Assuming uniform priors and inde-

pendent mechanisms Mi (more precisely, the noise of the mechanisms must be sampled

independently), the posterior belief on dataset D can be computed as

βk =

∏k
i=1 Pr(Mi(D) = ri)

∏k
i=1 Pr(Mi(D) = ri) +

∏k
i=1 Pr(Mi(D′) = ri)

=
1

1 +
∏k

i=1
Pr(Mi(D′)=ri)

∏k
i=1

Pr(Mi(D)=ri)
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Proof. We prove the lemma by iteration over k.

k = 1: We assume the attacker starts with uniform priors Pr(D) = Pr(D′) = 1
2
. Thus,

β1(D|R1) can be directly calculated by dividing both numerator and denominator of β

by the numerator:

β1(D|R1) =
Pr(M1(D) = r1)

Pr(M1(D) = r1) + Pr(M1(D′) = r1)

=
1

1 + Pr(M1(D′)=r1)
Pr(M1(D)=r1)

k − 1 → k: In the second step βk−1(D|Rk−1) is used as the prior, using the shorthand

notations βk := βk(D|Rk), and in the last step pk := Pr(Mk(D) = rk) and p′k :=

Pr(Mk(D′) = rk) the calculation of βk(D|Rk) starts as for the induction start k = 1

βk =
Pr(Mk(D) = rk) · βk−1

Pr(Mk(D) = rk) · βk−1 + Pr(Mk(D′) = rk) · (1− βk−1)

=
1

1 + Pr(Mk(D′)=rk)−Pr(Mk(D′)=rk)·βk−1

Pr(Mk(D)=rk)·βk−1

=
1

1 +
p′k−p′kβk−1

pkβk−1

Now the induction assumption can be substituted for the right term of the denominator

and then multiplying the numerator and denominator with
∏k−1

i=1 pi +
∏k−1

i=1 p
′
i leads to

p′k − p′kβk−1

pkβk−1

=
p′k − p′k

∏k−1

i=1
pi

∏k−1

i=1
pi+

∏k−1

i=1
p′i

pk
∏k−1

i=1
pi

∏k−1

i=1
pi+

∏k−1

i=1
p′i

=
p′k

(

∏k−1
i=1 pi +

∏k−1
i=1 p

′
i

)

− p′k
∏k−1

i=1 pi

pk
∏k−1

i=1 pi

=

∏k
i=1 p

′
i

∏k
i=1 pi

where in the last step the first and the third term in the denominator cancel and can be

inserted back into the last form of βk above.

In our analysis, ADI is a binary classifier that chooses the label with the highest

posterior probability βk. If prior beliefs are uniform, this decision process can be

simplified. Consider X1 := M(D) andX0 := M(D′). Since ADI knows D,D′ and M,
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Figure 7.1.: The decision boundary of ADI

ADI also knows the corresponding probability densities gX1
and gX0

. The densities are

identical and defined by M, but are centered at the different results f(D) and f(D′),

respectively, as visualized in Figure 7.1a with f(D) = 0, f(D′) = 1. When ADI has

equal prior beliefs, ADI decides whether Rk is more likely to stem from X1 or X0 and

therefore chooses

ADI(Rk,D,D′,M, Dist) = argmax
D∈{D,D′}

β(D|Rk) = argmax
b∈{0,1}

gXb
(Rk) (7.1)

β(D) and β(D′) for our example are visualized in Figure 7.1b. ADI acts like a naive

Bayes classifier whose decision is depicted by the background color. The input features

are the perturbed results Rk, and the exact probability distribution of each label is

known. The distributions are entirely defined by D, D′, and M, so ADI does not use

the knowledge of Dist. The posterior belief quantifies the probability of Rk; however,

in another instance, Rk could differ. In Section 7.3.1, we will therefore define an upper

bound on β(D).
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7.2.3. Advantage in Identifying the Training Dataset

The posterior belief βk quantifies the probability of inferring membership of a single

record d. For example, when βk is low for a census dataset, the individual d can plausibly

deny presence in D, and thus presence in the census. In practice, it is also important to

know how often ADI makes a correct guess, which only occurs when βk > 0.5. This

is quantified by the advantage Adv, which is the success rate normalized to the range

[−1, 1], where Adv = 0 corresponds to random guessing. Membership advantage was

introduced to quantify the success of AMI [Yeo+18]; however, Adv can also be used for

ADI of ExpDI by generalizing Definition 2.14 to Definition 7.2.

Definition 7.2 (Advantage). Given an experiment Exp the advantage is defined as

Adv = 2Pr(Exp = 1)− 1

where the probability is over the random iterative choices of the mechanisms up to step k.

The advantage in ExpDI is denoted AdvDI, while the advantage in ExpMI is AdvMI. ⋄

7.3. Derivation of Upper Bounds

Within this section, we use the DP guarantee to derive upper bounds for posterior belief

and advantage in Sections 7.3.1 and 7.3.2. In Section 7.3.3, we define the expected

membership advantage for the Gaussian mechanism, since the original bound is loose.

7.3.1. Upper Bound for the Posterior Belief

We formulate a generic bound on the Bayesian posterior belief that is independent

of datasets D and D′, the mechanism M, and the result matrix R = (r0, r1, . . . , rk)

comprising k multidimensional mechanism outputs. The proposed bound solely assumes

that the DP bound holds and makes no further simplifications, which results in an

identifiability-based interpretation of DP guarantees. Theorem 7.1 shows that ADI

operates under the sequential composition theorem, for both ǫ-DP and (ǫ, δ)-DP.

Theorem 7.1 (Bounds for the Adaptive Posterior Belief). Consider experiment ExpDI

with neighboring datasets D and D′. Let M1, . . . ,Mk be a sequence of arbitrary but
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independent differentially private learning algorithms.

(i) Each Mi provides ǫ1, . . . , ǫk-DP to functions fi with multidimensional output. Then

the posterior belief of ADI is bounded by

βk(D|Rk) ≤ ρβ =
1

1 + e−
∑k

i=1
ǫi

(ii) Each Mi provides (ǫi, δi)-DP to multidimensional functions fi. Then the same bound

as above holds with probability 1−∑k
i=1 δi.

Proof. (i) The adversary with unbiased prior (i.e., 0.5) has a maximum posterior belief

of 1/(1 + e−ǫ) when the ǫ-differentially private Laplace mechanism is applied to a

function with a scalar output [LC12]. This upper bound holds also for arbitrary ǫ-

differentially private learning algorithms with multidimensional output. We bound the

general belief calculation by the inequality of Definition 2.1. Analogously, Pr(M(D) =

r) ≤ eǫ Pr(M(D′) = r) + δ. Assuming equal priors, the posterior belief can be

calculated as follows:

β(D|R) =
1

1 +
∏k

i=1
Pr(Mi(D′)=ri)

∏k
i=1

Pr(Mi(D)=ri)

≤ 1

1 +
∏k

i=1
Pr(Mi(D′)=ri)

∏k
i=1

eǫi Pr(Mi(D′)=ri)+δi

For δ = 0, the last equation simplifies to:

β(D|R) ≤ 1

1 +
∏k

i=1
Pr(Mi(D′)=ri)

∏k
i=1

eǫi Pr(Mi(D′)=ri)

=
1

1 +
∏k

i=1 e
−ǫi

=
1

1 + e−
∑k

i=1
ǫi
= ρβ

(ii) We use properties of RDP to prove the posterior belief bound for multidimensional
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(ǫi, δi)-differentially private mechanisms.

βk(D|R) =
1

1 +
∏k

i=1
Pr(Mi(D′)=ri)
Pr(Mi(D)=ri)

(7.2)

=
1

1 +
∏k

i=1
Pr(Mi(D′)=ri)

(eǫRDP,i ·Pr(Mi(D′)=ri))
1−1/α

(7.3)

=
1

1 +
∏k

i=1 e
−ǫRDP,i(1−1/α) · Pr(Mi(D′) = ri)1/α

(7.4)

In the step from Equation (7.2) to Equation (7.3), we use the probability preservation

property, Pr(M(D) = r) ≤ (eǫRDP Pr(M(D′) = r))1−1/α, which appears in Langlois

et al. [LSS14] and generalizes Lyubashevsky et al. [LPR13]. This same property was

used by Mironov [Mir17] to prove that RDP guarantees can be converted to (ǫ, δ) guar-

antees. In the context of this proof, Mironov also implies that ǫ-DP holds when

eǫRDP Pr(M(D′) = r) > δα/(α−1), since otherwise Pr(M(D) = r) ≤ δ. We, therefore,

assume eǫRDP Pr(M(D′) = r) > δα/(α−1), which occurs in at least 1 − δ cases. We

continue from Equation (7.4):

βk(D) ≤ 1

1 +
∏k

i=1 e
−ǫRDP,i(1−1/α) ·

(

δ
α/(α−1)
i · e−ǫRDP,i

)1/α

=
1

1 +
∏k

i=1 e
−ǫRDP,i · δ1/(α−1)

i

=
1

1 +
∏k

i=1 e
−ǫRDP,i · e−1/(α−1) ln(1/δi)

=
1

1 +
∏k

i=1 e
−(ǫRDP,i+(α−1)−1 ln(1/δi))

(7.5)

=
1

1 +
∏k

i=1 e
−ǫi

=
1

1 + e−
∑k

i=1
ǫi
= ρβ (7.6)
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Note that we use the conversion from RDP to DP in the step from Equation 7.5 to

Equation 7.6 (cf. Section 2.1). Equivalently one can specify a desired posterior belief

and calculate the overall ǫ, which can be spent on composition of differentially private

queries:

ǫ = ln

(

ρβ
1− ρβ

)

(7.7)

The value for δ can be chosen independently according to the recommendation that

δ ≪ 1
N

with N points in the input dataset [DR14].

7.3.2. Upper Bound for the Advantage in Identifying the Training

Dataset for General Mechanisms

We now formulate an upper bound for the advantage AdvDI of ADI in Proposition 7.2.

The membership advantage of AMI has been bounded in terms of ǫ and defines AMI’s

success [Yeo+18]. The general bound forAMI also holds forADI based on Proposition 7.1.

Proposition 7.2 (Bound on the Expected Membership Advantage forADI). For any ǫ-DP

mechanism the identification advantage of ADI in experiment ExpDI can be bounded as

AdvDI ≤ (eǫ − 1) Pr(ADI = 1|b = 0)

Proof. First, the definition is rewritten by separating true positives and true negatives.

Then using that both datasets are equally likely to be chosen by the adversary (Pr(b =

1) = Pr(b = 0) = 0.5). We substitute Pr(b′ = 0 |b = 0) by the probability of the

complementary event 1 − Pr(b′ = 1 |b = 0)) and b′ = 1 by ADI = 1, which leads to

Equation (7.8)‚ of Yeom et al. [Yeo+18]

AdvDI = 2(Pr(b = 1)Pr(b′ = 1 |b = 1)

+ Pr(b = 0)Pr(b′ = 0 |b = 0))− 1

= Pr(ADI = 1|b = 1)− Pr(ADI = 1|b = 0) (7.8)

which is the difference between the probability for detecting D and the probability of

incorrectly choosing D. Now we use the fact that the mechanism M turns r into random

variables X1 := M(D) and X0 := M(D′) for the cases b = 1 and b = 0, respectively.

106



7.3. Derivation of Upper Bounds

We formulate the probability density functions as gX1
and gX0

. Additionally, A(r) is

introduced as a shorthand for ADI(r,D,D′,M, Dist)

AdvDI = Pr(ADI = 1|r = M(D))− Pr(ADI = 1|r = M(D′))

= Er=M(D)(ADI(r,D,D′,M, Dist))−
Er=M(D′)(ADI(r,D,D′,M, Dist))

=

∫

gX1
(r)A(r)dr−

∫

gX0
(r)A(r)dr (7.9)

=

∫

(gX1
(r)− gX0

(r))A(r)dr (7.10)

Since ǫ-DP formulated as Pr(M(D) ∈ S) ≤ eǫPr(M(D′) ∈ S) holds for all S it

yields the same inequality gX1
≤ eǫgX0

for the densities at each point

AdvDI ≤ (eǫ − 1)

∫

gX0
(r)A(r)dr

= (eǫ − 1) Pr(ADI = 1|b = 0)

≤ eǫ − 1

Bounding Pr(ADI = 1|b = 0) by 1 results in AdvDI ≤ eǫ − 1. When ADI acts like

a naive Bayes classifier, only a complete lack of utility from infinite noise results in

Pr(ADI = 1|b = 0) = 0.5. Otherwise, Pr(ADI = 1|b = 0) ≪ 0.5; therefore, the

membership advantage bound is usually not tight. This is in line with Jayaraman et

al. [JE19] who expect that this would be the case for MI.

7.3.3. Upper Bound for the Advantage in Identifying the Training

Dataset for Gaussian Mechanisms

In practice, ADI will be faced with a specific DP mechanism, and we focus on the

mechanism used in DPSGD to find a tighter bound than the generic bound described in

the previous section. We use the notation ADI,Gau and AdvDI,Gau to specify the adversary

and advantage of an instantiation of ADI against the Gaussian mechanism with (ǫ, δ)-DP.
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Figure 7.2.: Error regions for varying ǫ, MGau

We now derive a tighter bound ρα on AdvDI,Gau and continue from Equation (7.10).

Note that under the assumption of equal priors, the strongest possible adversary of

Equation (7.1) maximizes Equation (7.10) by choosing b = 1 if (gX1
(r)− gX0

(r)) > 0

and b = 0 otherwise. The resulting bound on AdvDI,Gau is constructed from ADI,Gau’s

strategy; however, the bound holds for all weaker adversaries, including AMI. Since we

argue that ADI,Gau precisely represents the assumptions of DP, the bound should hold

for other possible attacks in the realm of DP and the Gaussian mechanism under the

i.i.d. assumption.

Since ADI,Gau is a naive Bayes classifier with known probability distributions, we

use the properties of normal distributions (we refer to Tumer et al. [TG96] for full

details). We find that the decision boundary does not change under MGau with different

(ǫ, δ) guarantees as long as the probability density functions (PDF) are symmetric.

Holding M(D) = r constant and reducing (ǫ, δ) solely affects the posterior belief of

ADI,Gau, not the choice of D or D′. For illustration, consider the example in Figure 7.2.

If a (6, 10−6)-DP MGau is used for perturbation, ADI,Gau has to choose between the two

PDFs in Figure 7.2a. Increasing the privacy guarantee to (3, 10−6)-DP in Figure 7.2b

squeezes the PDFs and belief curves. The corresponding regions of error are shaded in

Figures 7.2a and 7.2b, where we see that a stronger guarantee reduces AdvDI,Gau.

We assume throughout this chapter that ADI,Gau has uniform prior beliefs on the
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7.3. Derivation of Upper Bounds

possible databases D and D′. This distribution is iteratively updated based on the

posterior resulting from the mechanism output r. If MGau is used to achieve (ǫ, δ)-DP,

we can determine the expected membership advantage of the practical attacker ADI,Gau

analytically by the overlap of the resulting Gaussian distributions [MKB79, p. 321].

We thus consider two multidimensional Gaussian PDFs (i.e., M(D), M(D′)) with

covariance matrix Σ and means (without noise) µ1 = f(D), µ2 = f(D′). This leads us

to Theorem 7.2.

Theorem 7.2 (Tight Bound on the Expected Adversarial Membership Advantage).

For the (ǫ, δ)-differentially private Gaussian mechanism, the expected membership

advantage of the strong probabilistic adversary on either dataset D,D′.

AdvDI ≤ ρα = 2Φ

(

ǫ

2
√

2 ln(1.25/δ)

)

− 1

where Φ is the cumulative density function of the standard normal distribution.

Proof. We start from Equation (7.9) where the Gauss distributions are gX1
and gX0

. Since

both distributions arise from the same mechanism they have the same Σ but different

means µ1 = f(D) and µ0 = f(D′). Since the strongest adversary is the Bayes adversary

that chooses according to Equation (7.1) and we assume equal priors, the decision

boundary between D and D′ is the point of intersection of the densities (see Figure 7.2a

for the 1D-case). We use linear discriminant analysis where the boundary is a hyperplane

halfway between µ1 and µ0. This plane is halfway (∆/2) between the two centers, where

∆ is the Mahalanobis distance ∆ =
√

(µ1 − µ2)TΣ−1(µ1 − µ2) [Mah36]. Notably, the

decision boundary between D and D′ does not depend on Σ, but on the possible distance

between µ1 and µ0 (i.e., sensitivity). As we add independent noise in all dimensions

Σ = σ2
I, we simplify all calculations from Equation (7.9) to the one-dimensional case

and simplify ∆ = ‖µ1−µ2‖2
σ

. Thus,

AdvDI,Gau = Φ(∆/2)− Φ(−∆/2) = 2Φ(∆/2)− 1

= 2Φ

(‖µ1 − µ2‖2
2σ

)

− 1 (7.11)
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Figure 7.3.: ρβ and ρα for various (ǫ, δ) when using MGau

Inserting the standard deviation needed for (ǫ, δ)-DP from Equation (2.2) then yields

AdvDI,Gau = 2Φ

(

‖µ1 − µ2‖2
2GSf2(

√

2 ln(1.25/δ)/ǫ)

)

− 1

≤ 2Φ

(

ǫ

2(
√

2 ln(1.25/δ))

)

− 1 = ρα

We can calculate ǫ from a chosen maximum expected advantage

ǫ =
√

2 ln(1.25/δ) Φ−1

(

ρα + 1

2

)

(7.12)

(ǫ, δ) guarantees with δ > 0 can be expressed via a scalar value ρα. In summary, we now

have complementary interpretability scores, where ρβ represents a bound on individual de-

niability and ρα relates to the expected probability of reidentification. While ρβ holds for

all mechanisms, ρα was derived solely for the Gaussian mechanism. We provide example

plots of ρβ and ρα for different (ǫ, δ) in Figure 7.3. To compute both scores, we use The-

orems 7.1 and 7.2. We set f(D) = (01, 02, . . . , 0k) and f(D′) = (11, 12, . . . , 1k) for all

dimensions k, soGSf2 =
√
k. Figure 7.3a illustrates that there is no significant difference

for ρβ between ǫ-DP and (ǫ, δ)-DP. In contrast, ρα strongly depends on the choice of δ.
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7.3. Derivation of Upper Bounds

7.3.4. RDP Instead of Sequential Composition

In iterative settings, such as NN training, the data scientist will have to perform multiple

mechanism executions, which necessitates the use of composition theorems to split the

total guarantee into guarantees per iteration (ǫi, δi). Sequential composition only offers

loose bounds in practice [DRV10; KOV17]; we suggest using RDP composition, which

allows a tight analysis of the privacy loss over a series of mechanisms. Therefore, we

adapt both ρβ and ρα to RDP.

We first demonstrate that RDP composition results in stronger (ǫ, δ) guarantees than

sequential composition for a fixed bound ρβ . We start from Equation (7.5):

βk(D|R) ≤ 1

1 +
∏k

i=1 e
−(ǫRDP,i+(α−1)−1 ln(1/δi))

=
1

1 + ek(α−1)−1 ln(δi)−
∑k

i=1
ǫRDP,i

(7.13)

=
1

1 + e(α−1)−1 ln(δki )−
∑k

i=1
ǫRDP,i

=
1

1 + e−(
∑k

i=1
ǫRDP,i−(α−1)−1 ln(δki ))

= ρβ (7.14)

We assume the same value of δi is used during every execution and can therefore

remove it from the sum in Equation (7.13). Equation (7.14) and the conversion (α, ǫRDP )-

RDP to
(

ǫRDP − ln δ
α−1

, δ
)

-DP imply that an RDP-composed bound can be achieved with

a composed δ equal to δki . We know that sequential composition results in a composed δ

value equal to kδi. Since δk < kδ, RDP offers a stronger (ǫ, δ) guarantee for the same

ρβ , and results in a tighter bound for ρβ under composition. This behavior can also be

interpreted as the fact that holding the composed (ǫ, δ) guarantee constant, the value of

ρβ is greater when the sequential composition is used compared to RDP.

A similar analysis of the expected membership advantage under composition is

required when considering a series of mechanisms M. We restrict our elucidations to

the Gaussian mechanism. The k-fold composition of MGaui
, each step guaranteeing

(α, ǫRDP,i)-RDP, can be represented by a single execution of MGau with k-dimensional

output guaranteeing (α, ǫRDP = kǫRDP,i)-RDP. We start from Equation (7.11), and use

Equation (2.4) and the fact that GSf2 bounds ‖µ1,i − µ2,i‖.
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AdvDI,Gau = 2Φ

(‖µ1 − µ2‖2
2σi

)

− 1 = 2Φ

( √
k‖µ1,i − µ2,i‖2

2GSf2

√

α/(2ǫRDP,i)

)

− 1

≤ 2Φ

( √
k

2
√

α/(2ǫRDP,i)

)

− 1 = 2Φ

(

√

kǫRDP,i

2α

)

− 1

= 2Φ

(
√

ǫRDP

2α

)

− 1 = ρα

The result shows that ADI,Gau fully takes advantage of the RDP composition properties

of ǫRDP,i and α; as expected, ρα takes on the same value, regardless of whether k

composition steps with ǫRDP,i or a single composition step with ǫRDP is carried out.

Therefore, we can calculate the final ρα for functions with multiple iterations, such as the

training of deep learning models, and ρα can be decomposed into a privacy guarantee

per composition step with RDP.

7.4. Application to Deep Learning

In DPSGD, the stochastic gradient descent optimizer adds Gaussian noise with standard

deviation σ to the computed gradients. The added noise ensures that the learned NN is

(ǫ, δ) differentially private w.r.t. the training dataset. This section illustrates our method

for choosing DPSGD privacy parameters. Data scientists may first choose upper bounds

for the posterior belief, from which ǫ is obtained using Equation (7.7). From ǫ and the

sensitivity, the standard deviation σ of the Gaussian noise is determined.

We discuss a heuristic for estimating the local sensitivity in Section 7.4.1. Then,

Section 7.4.2 formulates an algorithm for implementing ADI,Gau, and discusses how this

algorithm is used to empirically quantify the posterior belief and the advantage. Finally,

using the implemented adversary ADI,Gau a method for auditing the privacy loss ǫ and the

bounds derived in Section 7.3 is provided in Section 7.4.3.

7.4.1. Setting Privacy Parameters and Determining the Sensitivity

Based on the recommendation to set C to the median of the norms of unclipped gradi-

ents [Aba+16] we set C = 3 in all our experiments. In the following, we describe how to
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7.4. Application to Deep Learning

set up the system in order to determine the standard deviation of Gaussian noise σ. We

want to limit ADI,Gau’s belief of distinguishing a training dataset differing in any chosen

person by setting the upper bound for the posterior belief ρβ . We then transform ρβ to

an overall ǫ for the k update steps in DPSGD using Equation (7.7), which in turn leads

to σ for the DPSGD using Equation (2.2). In Equation (2.2) two parameters need to be

set: ∆f and δ. While we set δ to 1/|D| for all experiments, the choice of ∆f is more

challenging. The upper bound for the privacy loss ǫ can only be reached when ∆f is set

specifically to the sensitivity of the dataset at hand. We can calculate the local sensitivity

for bounded DP as

LSĝi(D) = n · ||ĝi(D′)− ĝi(D)‖,

and for unbounded DP as

LSĝi(D) = ||(n− 1) · ĝi(D′)− n · ĝi(D)‖,

where ĝi(D) and ĝi(D′) represent the average of all clipped, unperturbed per-example

gradients ḡi(d)∀d ∈ D and d ∈ D′, respectively.

Since clipping is done before perturbation, the global sensitivity GSf in DPSGD is set

to the clipping norm for unbounded DP, i.e., GSf = C. The sensitivity bounds the impact

of a datapoint on the total gradient, equivalent to the difference between the gradients

differing between D and D′, which is artificially bounded by C for unbounded DP. For

bounded DP where one record is instead replaced with another in D′, the lengths of the

clipped gradients of these two records could each be C and point in opposite directions

resulting in n · ||ĝi(D′)− ĝi(D)‖2 ≤ 2C.

Although C bounds the influence of a single training record on the gradient, C may well

be loose, since C does not necessarily reflect the factual difference between the training

dataset and possible neighboring datasets. When C is loose, the DP bound on privacy

loss ǫ is not reached, and the identifiability metrics ρα and ρβ will not be reached either.

Nissim et al. [NRS07] proposed local sensitivity LSf to specifically scale noise to the

input data. The use of LSf decreases the noise scale by narrowing the DP guarantee

from protection against inference on any possible adjacent datasets to inference on the

original dataset and any adjacent dataset. In ML projects training and test data are often

sampled from a static holdout, where all datapoints stem from a domain of similar data.

If the holdout is a very large dataset, only the specific neighboring datasets possible in
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this domain need to be protected under DP. To reach the DP bound, we suggest fixation

of the training dataset D and considering only neighboring datasets D′ adjacent to D.

However, approximating LSĝi for NN training is difficult because the gradient function

output depends not only onD andD′ but also on the architecture and current weights of the

network. To ease this dilemma, we propose dataset sensitivity in Definition 7.3. Dataset

sensitivity is a heuristic with which we strive to consider the neighboring dataset D̂′ with

the largest difference to D within the overall ML dataset U in an effort to approximate

LSĝi . We assume that similar datapoints will result in similar gradients. While this

assumption does not necessarily hold under crafted adversarial examples [GSS15], for

which privacy protection cannot be guaranteed, the malicious intent renders the necessity

for their protection debatable.

Definition 7.3 (Dataset Sensitivity). Consider a given dataset U , a training dataset D ⊆
U , all neighboring datasets D′ ⊆ U and a dissimilarity measure γ. The dataset sensitivity

DS(D) w.r.t. dissimilarity measure γ is then defined as

DS(D) = max
D′

γ(D,D′)

and consequently

D̂′ := argmax
D′

γ(D,D′)

⋄

In Definition 7.3 the dissimilarity measure of specific datasets is not further specified.

In practice, if a dissimilarity or distance measure γ of individual datapoints is available,

it can be used to find the most dissimilar neighboring dataset D̂′ that maximizes the

dataset sensitivity. The computation of D′ depends on the neighboring datasets and is

different for unbounded and bounded DP. More precisely, for unbounded DP one forms

D̂′ = D \ {d′} by removing the most dissimilar datapoint d̂ from the training data:

d̂ = argmax
d1∈D

∑

d2∈D\d1

γ(d1, d2). (7.15)
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The dataset D̂′ is then used to approximate the local sensitivity LSĝi by

LSĝi(D) ≈ L̂S ĝi(D) := ‖ḡi(d̂)‖, (7.16)

where ḡi(d) is the clipped gradient of datapoint d in iteration i. The simplification from

LSĝi to DS allows us to bypass the complex gradient calculations to identify dissimilar

D and D′. The computational complexity of computing the dataset sensitivity only

depends on the dataset size n, but not the number of iterations k, as the local sensitivity

does. For bounded DP where a neighboring dataset is formed by replacing an element

{d} ∈ D with an element d′ ∈ U \ D one searches for

(d̂, d̂′) = argmax
d∈D,d′∈U\D

γ(d, d′), (7.17)

and approximates the local sensitivity as

LSĝi(D) ≈ L̂S ĝi(D) := ‖ḡi(d̂)− ḡi(d̂
′)‖. (7.18)

7.4.2. Empirical Quantification of Posterior Beliefs and Advantages

In Section 7.4.1 the noise scale σ limits the upper bound for the posterior belief of ADI on

the original datasetD. According to Theorem 7.1 this upper bound holds with probability

1− δ. For a given dataset, the posterior belief might be much smaller than the bound, so

it is desirable to determine the empirical posterior belief on D. The same holds for the

advantage AdvDI and the upper bound ρα from Theorem 7.2 w.r.t. identifying dataset D.

We formulate an implementation of the adversary ADI,Gau which allows us to assess the

empirical posterior belief β and membership advantage AdvDI, and thus the empirical

privacy loss of specifically trained models. The adversary ADI,Gau strives to identify the

training dataset, having the choice between neighboring datasets D and D′. In addition

to D and D′, ADI,Gau is assumed to have knowledge of the NN learning parameters and

updates after every training step i ≤ k: learning rate η, weights θi, perturbed gradients

g̃i, privacy mechanism Mi, parameters (ǫ, δ), C, the resulting standard deviation σ of

the Gaussian distribution and the prior beliefs. The implementation of ADI for DPSGD

is provided in Algorithm 7.1.
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Algorithm 7.1: ADI,Gau in Deep Learning for Unbounded DP

Require: Neighboring datasets D,D′ with n,n′ records, respectively, k, θ0, η, g̃i per training
step i ≤ k, Mi, (ǫi, δi), prior beliefs β0(D) = β0(D′) = 0.5,

1: for i ∈ [k] do

2: Calculate clipped Batch gradients

3: ĝi(D) ← Mi(D, σ = 0)
4: ĝi(D′) ← Mi(D′, σ = 0)
5: Calculate Sensitivity and σ
6: ∆f ← GSĝ = C

7: σi = ∆f
√

2 ln(1.25/δi)/ǫi
8: Calculate Belief

9: βi+1(D) ← βi(D)·Pr[Mi(D,σ=σi)=g̃i]
βi(D)·Pr[Mi(D,σ=σi)=g̃i]+βi(D′)·Pr[Mi(D′)=g̃i]

10: βi+1(D′) ← 1− βi+1(D)
11: Compute weights

12: θi+1 ← θi − ηg̃i
13: end for

14: Output D if βk(D) > βk(D′), D′ otherwise

In each learning step ADI first computes the unperturbed, clipped batch gradients for

both datasets based on the resulting weights from the previous step of the perturbed

learning algorithm (Steps 3 and 4). Then ADI,Gau calculates the sensitivity. The ǫi

and δi for each iteration are calculated using RDP composition (cf. Equation (2.4)).

Consequently, the Gaussian mechanism scale σ is calculated from (ǫ, δ) and ∆f using

Equation (2.2). Using the standard deviation σ, the posterior belief βi is updated in

Step 9 based on the observed perturbed clipped gradient g̃i and the unperturbed gradients

from Steps 3 and 4. The calculation is based on Lemma 7.1. After the training finished,

ADI,Gau tries to identify the used dataset based on the final posterior beliefs βk on the

two datasets. ADI,Gau wins the identification game, if ADI,Gau chooses the used dataset

D. The advantage to win the experiment is statistically estimated from several identical

repetitions of the experiment. AdvDI,Gau and δ are empirically calculated by counting

the cases in which βk for D exceeds 0.5 and ρβ , respectively.

One pass over all records in D (i.e., one epoch), can comprise multiple update steps.

In mini-batch gradient descent, a number of b records from D is sampled for calculating

an update, and one epoch results in |D|/b update steps. In batch gradient descent, all

records in D are used within one update step, and one epoch consists of a single update

step. We operate with batch gradient descent since it reflects the auxiliary side knowledge
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Table 7.1.: Time complexity for DS, β and Adv

Algorithm
Time

complexity
Comment

DS O(n2)
One-time effort for

training dataset.

β O(nk)
Computing belief from
clipped Batch gradients.

Adv O(1)
Computing Adv for individual

training (cf. 14 in Algorithm 7.1)

of ADI; thus k denotes the overall number of epochs and training iterations. In some of

the following experiments we will set ∆f = LSĝi(D) in Step 6 by calculating the local

sensitivity LSĝi for the clipped gradients ĝi (cf. Definition 2.4). These assumptions are

similar to those of white-box MI attacks against federated learning [NSH19].

The time complexities for calculating dataset sensitivity, posterior belief, and advantage

are stated in Table 7.1. Note that the calculation effort will either lie with ADI or the data

scientist, depending on whether an audit or an actual attack is performed. The calculation

of dataset sensitivity is well parallelizable for the considered dissimilarity measures.

7.4.3. Method for Auditing ǫ

In this section, we introduce a method to empirically determine the privacy loss ǫ. This

empirical loss is denoted ǫ′ and is relevant for data scientists. If ǫ′ is close to ǫ, the DP

perturbation does not add more noise than necessary. However, if ǫ′ is far below ǫ, too

much noise is added, and utility is unnecessarily lost. We repeat the training process

multiple times and use the set of results to calculate ǫ′. The empirical loss ǫ′ can be

calculated from observed LSĝ, βk, and AdvDI,Gau during model training:

• From LSĝ1 , . . . , LSĝk , the empirical ǫ′ is calculated as follows: (i) calculate

σ1, . . . , σk as σi = 2C/LSĝi · σ (cf. Equation (2.3)) for each repetition of the

experiment, (ii) calculate ǫ′ with RDP composition with target δ, epochs k, and σ

using Tensorflow privacy accountant1, and (iii) choose the maximum value ǫ′max

over all repetitions of the experiment.

1https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/

analysis/rdp_accountant.py
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• From posterior beliefs β, ǫ′ is calculated by (i) choosing the maximum final

posterior belief βmax
k for all experiments and (ii) setting ǫ′ = βmax

k /(1 − βmax
k )

using Equation (7.7).

• From AdvDI,Gau: (i) counting the number of wins nwin, i.e., how often βk > 0.5

over all nExp experiments, (ii) estimate AdvDI,Gau = 2nwin/nExp− 1, and (iii) cal-

culate

ǫ′ =
√

2 ln(1.25/δ) Φ−1
(

AdvDI,Gau+1
2

)

using Equation (7.12).

This empirical loss ǫ′ will only be close to ǫ if noise is added according to the sensitivity

of the dataset. Of the three variants above, the calculation from the sensitivities is the

most direct method. The calculation from the posterior belief is less direct. Since the

identification advantage ignores the size of the belief it is expected to be the least accurate

way to estimate ǫ.

Furthermore, we also implement the MI adversaryAMI defined by Yeom et al. [Yeo+18]

and compare the resulting advantage to the advantage achieved by ADI,Gau. This instance

of AMI uses the loss L of a neural network prediction in an approach similar to ADI,Gau,

who analyzes the gradient updates instead.

7.5. Evaluation

We empirically show that we can train models that yield an empirical privacy loss ǫ′ close

to the specified privacy loss bound ǫ. We achieve an advantage equal to ρα and tightly

bound posterior belief ρβ when the sensitivity is set toLSĝi for the clipped batch gradients

at every update step i. Privacy is specified by setting the upper bound for the belief,

e.g., to ρβ = 0.9. Together with the sensitivity (cf. Section 7.4.1), this determines the

noise of the Gaussian mechanism and yields ǫ. The posterior belief β and the advantage

AdvDI,Gau are then empirically determined using the implemented adversary2 ADI,Gau as

described in Section 7.4.2. The empirical privacy loss ǫ′ is determined as described in

Section 7.4.3. We evaluate ADI,Gau for three ML datasets: the MNIST image dataset3,

the Purchase-100 customer preference dataset [Sho+17], and the Adult census income

2We provide code and data for this chapter: https://github.com/SAP-samples/

security-research-identifiability-in-dpdl.
3Dataset and detailed description available at: http://yann.lecun.com/exdb/mnist/

118

https://github.com/SAP-samples/security-research-identifiability-in-dpdl
https://github.com/SAP-samples/security-research-identifiability-in-dpdl
http://yann.lecun.com/exdb/mnist/


7.5. Evaluation

dataset [Koh96]. To improve training speed in our experiments, we set training dataset

D to a randomly sampled subset of size 100 for MNIST and 1000 for both Purchase-100

and Adult. Multiple trainings and perturbations are evaluated on the sampled D.

The MNIST NN consists of two convolutional layers with kernel size (3, 3) each, batch

normalization, and max pooling with pool size (2, 2), and a 10-neuron softmax output

layer. For Purchase-100, the NN comprises a 600-neuron input layer, a 128-neuron hidden

layer, and a 100-neuron output layer. Our NN for Adult consists of a 104-neuron input

layer due to the use of dummy variables for categorical attributes, two 6-neuron hidden

layers, and a 2-neuron output layer. We used ReLU and softmax activation functions

for the hidden layers, and the output layer. For all experiments, we chose the learning

rate η = 0.005 and set the number of iterations k = 30 which led to converging models.

Preprocessing comprised the removal of incomplete records, and data normalization.

7.5.1. Evaluation of Sensitivities

While local sensitivity is favored when striving to reach the privacy bound, we evaluate

and compute both ∆f = L̂S ĝi(D) and ∆f = GSĝ, as described in Section 7.4.1. In

addition, we consider bounded and unbounded DP in our experiments. In order to find

the most dissimilar datapoint for the construction of D̂′ in Equations (7.15) and (7.17)

we require a dissimilarity measure. We considered domain-specific candidates for the

dissimilarity measures: the negative structural similarity index measure (SSIM) and

Euclidean distance for MNIST, and the Hamming, Euclidean, Manhattan, and Cosine

distance for the datasets Purchase-100 and Adult. We chose these metrics because we

expect them to contain information relevant to the gradients of datapoints. However, for

example, we quickly noticed for the Euclidean distance on MNIST image data that it

does not capture the meaning or shapes pictured and thus falls short. Instead, the SSIM

captures structure in images, and images with a small SSIM dissimilarity values resulted

in similar gradients, while images with greater dissimilarity resulted in very different

gradients. This observation supports the hypothesis that an appropriate domain-specific

measure can be used to estimate local sensitivity LSĝi from dataset sensitivity DS. For

Purchases-100 the Hamming distance was clearly superior to the Cosine distance as

illustrated in Figures 7.4b and 7.4c. The Manhattan distance fit best for the Adult dataset.

For the sensitivity experiments, the bound for the posterior belief is set to ρβ = 0.9.
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Figure 7.4.: Distribution of the local sensitivity LSĝi(D) computed by ADI,Gau using Equa-
tion (7.15) from max to min difference in D and D′ for k = 30 and 250 experiment repetitions
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Figure 7.5.: Sensitivities over the course of the training for ρβ = 0.9 (ǫ = 2.2) and C = 3

To confirm that maximizing dataset sensitivity from Definition 7.3 allows us to

approximate LSĝi , we train with several differing D′ and evaluate the sensitivities for all

k = 30 iterations. For the MNIST dataset, the top three choices of D′ that maximize

DS and the three choices that minimize DS are used. As expected, the resulting local

sensitivities LSĝi shown in Figure 7.4a are clearly larger for the three top choices. The

outliers for the second and third smallest dataset sensitivities only account for 1.6%

and 5.2% of the 7500 overall observed sensitivity norms. More importantly, no far

outliers occur for the largest and smallest sensitivities. The same general trend holds

for Purchase-100 and Adult in Figures 7.4b and 7.4d, which we limit to the maximum

and minimum DS due to space constraints. If the chosen global sensitivity is too large
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compared to the local sensitivity of a specific dataset too much noise will be added when

using GSĝ, as described in Section 7.4.1. Global sensitivity GSĝ and local sensitivity

LSĝi are determined for bounded and unbounded DP over 1000 repetitions for ρβ = 0.9

(ǫ = 2.2) according to Equation (7.16) and Equation (7.18). Both can be compared in

Figure 7.5.

7.5.2. Quantification of Identifiability for DPSGD

For each of the 1000 experiment repetitions, the posterior belief βk and the membership

advantage AdvDI,Gau are experimentally determined using the implementation of ADI,Gau

for DPSGD. We set ρβ = 0.9 (ǫ = 2.2) and compare bounded and unbounded DP.

Table 7.2 shows the analytically obtained values for privacy loss ǫ, and the bound ρα for

the advantage. The parameters ǫ, δ, and ρα for ρβ = 0.9 can be read from Table 7.3; ǫ is

determined from Equation (7.7), whereas ρα is calculated from ǫ from Theorem 7.2.

Table 7.2.: Empirical AdvDI,Gau and δ′ for ρβ = 0.9 using LSĝi and GSĝ with bounded (B)
and unbounded (U) DP

MNIST Purchase-100 Adult
AdvDI,Gau δ′ AdvDI,Gau δ′ AdvDI,Gau δ′

LS B 0.24 2e-3 0.25 0 0.17 0
LS U 0.23 2e-3 0.23 0 0.22 0
GS B 0.18 0 0.1 0 0.13 0
GS U 0.27 4e-3 0.24 1e-3 0.18 0

Table 7.3.: Experiment setting for posterior belief ρβ and δ with analytically determined privacy
loss ǫ and advantage bound ρα

MNIST Purchase-100 Adult
ρβ 0.52 0.75 0.9 0.99 0.53 0.75 0.9 0.99 0.53 0.75 0.9 0.99
δ 0.01 0.001 0.001
ǫ 0.08 1.1 2.2 4.6 0.12 1.1 2.2 4.6 0.12 1.1 2.2 4.6
ρα 0.01 0.14 0.28 0.54 0.01 0.12 0.23 0.46 0.01 0.12 0.23 0.46

First, we verify that the upper bound ρβ on the posterior belief holds. The posterior

beliefs βk of these experiments are described in Figures 7.6a, 7.6b, and 7.6c. For a single

experiment, the posterior belief on the training dataset D is on average only slightly above

0.5. While for most cases the posterior belief is far below the bound of 0.9 (specified by
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(b) Purchase-100
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(c) Adult
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Figure 7.6.: Distribution of empirical posterior beliefs βk (panels a to c) and an example for test
accuracy after training with ρβ = 0.9 (ǫ = 2.2) (panel d)

the blue, dashed line), the upper bound is violated with a small probability. The relative

frequency of these violations is denoted as δ′. Since the DP bound, and thus ρβ , only

holds with probability 1− δ according to Theorem 7.1 violations are acceptable as long

as δ′ ≤ δ. Indeed, the experimentally obtained δ′ for ρβ = 0.9 in Table 7.2 is always

smaller than the corresponding δ in Table 7.3. Similarly, the advantage should be close

to the estimate ρα stated in Table 7.3. The advantage is experimentally estimated as the

relative frequency of experiments where the implemented adversary ADI,Gau correctly

chooses D and is stated in Table 7.2.

Figure 7.6 illustrates the influence of sensitivity in the bounded and unbounded DP

settings. In Figures 7.6a, 7.6b and 7.6c, the chosen upper bound ρβ = 0.9 (blue line) is

clearly not reached for the bounded case when global sensitivities are used. Similarly,

the advantage of ADI,Gau in Table 7.2 is smaller when the global sensitivity is used. Here

it holds that LSĝi(D) < 2C = ∆f , which implies that the examples differing between D′
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and D do not point in opposite directions in the bounded setting. For the unbounded DP

case, this effect is not observed with the MNIST and Purchase-100 datasets. Instead, the

use of local and global sensitivity leads to the same distribution of posterior beliefs and

approximately the same advantage. This result stems from the fact that the per-example

gradients throughout all epochs were close to or greater than C = 3, i.e., the differentiating

example in D must have the gradient magnitude C = 3. However, in the Adult dataset,

LSĝi(D) < C = 3, so too much noise is added using GSĝ in the unbounded DP setting

as well.

From a practical standpoint, these observations are critical, since unnecessary noise

degrades the utility of the model when the global sensitivity is too large, as shown

in Figure 7.6d. While all experiments were done with C = 3, we expect a similar

relationship between LSĝi and GSĝ for different values of C, since we observed the

unclipped gradients to usually be greater than C = 3.

7.5.3. Auditing DPSGD

This section details the audit of ǫ. As shown in Section 7.4.3, the calculation of the

empirical loss ǫ′ can be based on (i) the local sensitivity, (ii) the posterior beliefs βk or

(iii) on the advantage AdvDI,Gau. To validate that the empirical loss ǫ′ is close to the

target privacy loss ǫ we use the setting described in Section 7.5.2 and Table 7.3.

The resulting empirical loss ǫ′ is compared to the target privacy loss ǫ for the bounded

case in Figures 7.7 to 7.9. As expected Figures 7.7a, 7.8a, and 7.9a support that the

privacy loss ǫ can be best estimated from the local sensitivity: the red curve lies on the

ideal green curve. The estimation from the posterior beliefs is less precise as shown in

Figures 7.7b, 7.8b, and 7.9b. The estimation is worst from the advantage in Figures 7.7c,

7.8c and 7.9c, where the red curve deviates most from the ideal green curve for all datasets.

It is evident that the use of global sensitivity (blue lines) results in an underestimation

of ǫ for all datasets. When local sensitivity is used, the small deviation from the ideal

curve confirms that ADI,Gau comes close to the theoretical privacy guarantees offered by

DP. A data scientist who specifies ǫ via the identifiability bounds ρα and ρβ can audit ǫ

using the implementation of ADI,Gau. We see that in some cases ǫ′ > ǫ, or equivalently

βk(D) > ρβ . These variations are due to the probabilistic nature of the estimation and

the bound only holds with probability 1-δ. Furthermore, we observe on some occasions
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that AdvDI,Gau > ρα which stems from the fact that AdvDI,Gau is an expected value for a

series of experiments, which falls within a confidence interval around ρα.
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(d) Comparison to MI

Figure 7.7.: Audit of ǫ (a-c) and comparison with AMI (d) for MNIST data (bounded case)

To enable comparison with membership inference we implemented AMI by expanding

the implementation of Jayaraman and Evans [JE19], which implements the attack sug-

gested by Yeom et al. [Yeo+18]. Figures 7.7d, 7.8d, and 7.9d visualize the advantage

resulting from both ADI,Gau and AMI for our setting, as well as the bounds provided by the

DP guarantee and the MI bound of Yeom et al. [Yeo+18]. We see that the MI bound is

very loose for all evaluated datasets, as previously noted by Jayaraman and Evans [JE19].

Furthermore, we see that our implementation of ADI,Gau significantly outperforms AMI

on all datasets and values of ǫ.
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(b) ǫ′ from posterior belief βk
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Figure 7.8.: Audit of ǫ (a-c) and comparison with AMI (d) for Purchase-100 data (bounded case)
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Figure 7.9.: Audit of ǫ (a-c) and comparison with AMI (d) for Adult data (bounded case)
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7.6. Related Work

Choosing and interpreting DP privacy parameters has been addressed from several

directions.

Lee and Clifton [LC11; LC12] proposed DI as a Bayesian privacy notion that quantifies

ǫw.r.t. an adversary’s maximum posterior belief ρβ on a finite set of possible input datasets.

Yet, both papers focus on the scalar ǫ Laplace mechanism without composition, while

we consider the (ǫ, δ) multidimensional Gauss mechanism under RDP composition. Li

et al. [Li+13] demonstrate that DI matches the DP definition when an adversary decides

between two neighboring datasets D,D′. Kasiviswanathan et al. [KS14] also provide

a Bayesian interpretation of DP. While they also formulate posterior belief bounds and

discuss local sensitivity, they do not cover expected advantage and implementation

aspects such as dataset sensitivity.

The choice of privacy parameter ǫ has been tied to economic consequences. Hsu et

al. [Hsu+14] derive a value for ǫ from a probability distribution over a set of negative

events and the cost for compensation of affected participants. Our approach avoids

the ambiguity of selecting bad events. Abowd and Schmutte [AS19] describe a social

choice framework for choosing ǫ, which uses the production possibility frontier of the

model and the social willingness to accept privacy and accuracy loss. We part from their

work by choosing ǫ w.r.t. the advantage of the strong DP adversary. Eibl et al. [Eib+18]

propose a scheme that allows energy providers and energy consumers to negotiate DP

parameters by fixing a tolerable noise scale of the Laplace mechanism. The noise scale

is then transformed into the individual posterior belief of the DP adversary per energy

consumer. We part from their individual posterior belief analysis and suggest using the

local sensitivity between two datasets that are chosen by the dataset sensitivity heuristic.

The evaluation of DP in a deep learning setting has largely focused on MI at-

tacks [Ber+21; Che+20; Hay+19; JE19; Jay+20; Rah+18; Sho+17]. From Yeom et

al. [Yeo+18] we take the idea of bounding membership advantage in terms of DP privacy

parameter ǫ. However, while MI attacks evaluate the DP privacy parameters in practice,

DP is defined to offer protection from far stronger adversaries, as Jayaraman et al. [JE19]

empirically validated. Humphries et al. [Hum+20] derive a bound for membership

advantage that is tighter than the bound derived by Yeom et al. [Yeo+18] by analyzing an

adversary with additional information. Furthermore, they analyze the impact of giving
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up the i.i.d. assumption. Their work does not suggest an implementation of the strong

DP adversary, whereas our work suggests a DP adversary implementation.

Jagielski et al. [JUO20] estimate empirical privacy guarantees based on Monte Carlo

approximations. While they use active poisoning attacks to construct datasets D and D′

that result in maximally different gradients under gradient clipping, we define dataset

sensitivity, which does not require the introduction of malicious samples.

7.7. Summary

This chapter presented an implementation of the differential privacy adversary ADI that

allows data scientists to audit ǫ when training a differentially private neural network.

Furthermore, we present a transformation of the privacy parameter ǫ to identifiability

bounds. ADI diverges from other attacks against DP or neural networks, such as

membership inference, which necessitates a discussion of ADI’s properties in relation to

alternative approaches. Our goal is to construct an adversary that most closely challenges

DP, and can be connected to societal norms and legislation via identifiability scores. To

this end, ADI knows all but one element of the training data and the gradients at every

update step. Since the DP guarantee must hold in the presence of all auxiliary information,

both of these assumptions relate the attack model ADI directly to the DP guarantee. Since

ADI has knowledge of all but one element instead of only the distribution, ADI possesses

significantly more information than AMI. A natural question arises w.r.t. ADI’s practical

relevance. We see this work relevant for the federated learning setting in which ADI

receives the gradients during every update step as a participating data owner. If the data

owner would not receive frequent gradient updates but solely a trained model, the attack

by ADI would be mitigated. Furthermore, ADI could realistically obtain knowledge

of a significant portion of the training data, since public reference data is often used in

training datasets and only extended with some custom training data records, necessitating

the notion of DP in general.

To further comment on the utility that can be achieved from a differentially private

model, we note that the optimal choice for C may stray from the original recommendation

of Abadi et al. [Aba+16]. We follow this recommendation and set C = 3, which limits

the utility loss that results when C is too large (unnecessary noise addition) and too

small (loss of information about the gradient). Since this balance holds for unbounded
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DP and does not consider the notion of local sensitivity, we expect that a different C

may yield better utility than what we report. Varying C may also change the balance

between local sensitivity and global sensitivity from Figures 7.7 to 7.9. Furthermore,

since gradients change throughout training, the optimal value of C at the beginning of

training may no longer be optimal toward the end of training according to McMahan

et al. [McM+18]. Setting the clipping norm adaptively as suggested by Thakkar et

al. [TAM19] may improve utility by changing C as training progresses. We expect that

doing so might bring ǫ′ closer to ǫ when auditing the DP guarantee, and achieve similar

by using local sensitivity.

In summary, we defined two identifiability bounds for the DP adversary in ML with

DPSGD: maximum posterior belief ρβ and expected membership advantage ρα. These

bounds can be transformed into privacy parameter ǫ. In consequence, with ρα and ρβ ,

data owners and data scientists can map legal and societal expectations w.r.t. identifiability

to corresponding DP privacy parameters. Furthermore, we implemented an instance of

the DP adversary for ML with DPSGD and showed that it allows us to audit parameter

ǫ. We evaluated the effect of sensitivity in DPSGD and showed that our upper bounds

are reached under multidimensional queries with composition. To reach the bounds,

sensitivity must reflect the local sensitivity of the dataset. We approximate the local

sensitivity for DPSGD with a heuristic, improving the utility of the differentially private

model when compared to the use of global sensitivity. The chapter thus extends our

previous work on research Problem 1 in Chapter 5 by considering the DP adversary ADI

instead of AMI, and addresses research Problem 2 by introducing the identifiability scores

expected membership advantage ρα and maximum posterior belief ρβ .
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This chapter draws conclusions based on the addressed research problems and observed

results. We will furthermore discuss possibilities for future work. This thesis addressed

the question of how to balance the privacy-accuracy trade-off in differentially private

machine learning with neural networks. In particular, two problems were approached.

First, Problem 1 regarding quantification of the empirical lower bound on the privacy

loss under membership inference attacks to allow data scientists to compare the privacy-

accuracy trade-off between local and central differential privacy. Secondly, Problem 2

regarding the transformation of the privacy loss under differential privacy into an

analytical bound on identifiability, to connect differential privacy guarantees to social

norms and regulation. We provide the following contributions to ease Problem 1.

• Comparing the lower bound on privacy loss in LDP and CDP by the average

precision of their MI precision-recall curve, and showing that under this measure

LDP and CDP have similar privacy-accuracy trade-offs despite vastly different ǫ.

• Demonstrating that CDP mechanisms are not achieving a consistently better

privacy-accuracy trade-off on various datasets and reference models. The trade-off

rather depends on the specific dataset.

• Quantifying the relative privacy-accuracy trade-off and showing that it is not

constant over ǫ, but there are dataset specific ranges where the relative trade-off is

greater for protection against MI than target model test accuracy.

For Problem 2 on measuring the lower and upper bound on the privacy loss in terms of

identifiability, this thesis provides the following contributions.

• Identifiability bounds for the posterior belief and expected membership advantage

that are mathematical transformations of privacy parameters (ǫ, δ) and used in

conjunction with RDP composition.
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• Practical implementation of an adversary that meets all assumptions on worst-case

adversaries against DP and allows us to audit DPSGD model instances w.r.t. to the

lower bound privacy loss.

• A heuristic for scaling sensitivity in differentially private stochastic gradient descent.

This heuristic leads to tight bounds on identifiability.

Overall, we see evidence that methods for quantifying the trade-off between utility

and privacy over ǫ provide information for interpreting differentially private datasets

or functions, and hence ease the problem of choosing ǫ. However, the findings of

this thesis face similar constraints as those found in interpretable machine learning

in general. Namely data specific insights and explanations that underlay statistical

uncertainty. We reduced the issue by considering datasets from multiple domains and

repeating experiments. However, if extending the experiments of this study to more

datasets per domain the trade-offs could be validated w.r.t. similarity per domain, and

domain-specific implications on the privacy parameter ǫ.

We see three questions arising for further research which we discuss in the follow-

ing. First, while differential privacy is a technique that offers a data scientist to create

anonymized data from a legal perspective [Par14], anonymization might not always be

required (i.e., when processing non-personal data). In such cases, mitigations against

attacks such as membership inference can also be achieved by using regularization

techniques [LOK21; NSH18]. A comparison of the experiments within this thesis for

differential privacy and regularization under ϕ would contribute towards this research

direction w.r.t. discriminative and generative models. Second, several model architec-

tures with comparable accuracy are available for some learning tasks (e.g., plain neural

networks, deep convolutional neural networks, and transformer based networks for text

classification). Similar to the central and federated learning experiments in Chapter 5

we observed these varying model architectures to yield quite different privacy-accuracy

trade-offs in a related study that we did not include in this thesis [Wun+21]. Taking

into consideration the scale of the training data required for meaningful test accuracy for

available models, and the model’s robustness towards noise when choosing a model archi-

tecture for differentially private machine learning with neural networks can hence lead to

smaller privacy losses at comparable accuracy to alternative model architectures. Third,

we discuss two particular adversaries in this thesis, namely the membership inference
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adversary AMI and the differential identifiability adversary ADI. These adversaries differ

significantly in the assumptions they make about adversarial knowledge of the training

data. Such differences can also be found between white-box and black-box MI adversaries

and between membership inference and model inversion adversaries. We observed at

least for membership inference adversaries that the significant increase in assumptions

of the adversary on training data only leads to a small increase in membership inference

attack performance, at a large increase in computational effort. Hence, recommendations

for the practitioner w.r.t. computationally efficient estimations of lower bound would

support the use of such simulations in practice.
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A. Appendix

A.1. Supervised Theses

The theses stated in Table A.1 have been suggested to thesis candidates and were also

supervised by the author of this thesis.

Table A.1.: Proposed and supervised theses

Name Thesis Institution
2nd Supervisor
at Institution

Year

Wasilĳ
Beskorovajnov

General-Purpose Anonymization
with Differential Privacy and

Randomized Response

Karlsruhe
Institute of Technology

Prof. Dr.
Joern Müller-Quade

2017

Philip-William
Grassal

Evaluation of an Attacker-Based
Approach to Rationally Parameterize
Differentially Private Mechanisms

Baden-Württemberg
Cooperative State University

Karlsruhe

Prof. Dr.
Thomas Freytag

2017

Jonas
Robl

Evaluating Membership Inference
Attacks on Differentially Private

Neural Networks

Baden-Württemberg
Cooperative State University

Karlsruhe
Dr. Svetlana Meissner 2018

Hannah
Keller

Risk-based Metrics for
Differentially Private

Deep Learning

Ludwigshafen
University of Applied Sciences

NA 2019

Steffen
Schneider

Membership Inference Attacks on
Differentially Private Neural Networks

Maastricht University
Prof. Dr.

Siamak Mehrkanoon
2020

Dominik
Wunderlich

Differentially Private Hierarchical
Text Classification

Karlsruhe
Institute of Technology

Prof. Dr.
Thorsten Strufe

2020

Tom
Ganz

Assessing and Selecting ǫ for
Differentially Private Federated
Learning with Inference Attacks

Karlsruhe
University of Applied Sciences

Prof. Dr.
Astrid Laubenheimer

2020

Jonas
Robl

Balancing Privacy and Utility in
Differentially Private Generative

Models by Inference Attacks
Heidelberg University

Prof. Dr.
Vincent Heuveline

2021
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A. Appendix

A.2. White-Box MI Experiment Hyperparameters

Table A.2.: Target model training accuracy (from orig. to smallest ǫ), CDP ǫ values (from z = 0.5
to z = 16) and hyperparameters

Texas Hospital Stays Purchases Shopping Carts LFW Skewed Purchases
m 100 150 200 300 10 20 50 100 20 50 100 10 20 50 100

LDP

0.86
1.0
1.0
1.0
0.99
0.82

0.92
1.0
1.0
1.0
0.95
0.71

0.83
1.0
1.0
0.98
0.86
0.59

0.81
1.0
1.0
0.92
0.72
0.53

0.99
0.97
0.88
0.64
0.58
0.44

1.0
0.97
0.85
0.58
0.47
0.38

1.0
0.95
0.86
0.69
0.62
0.49

0.99
0.94
0.90
0.79
0.75
0.51

1.0
1.0
1.0
0.22
0.24
0.25

1.0
1.0
0.96
0.18
0.17
0.17

1.0
1.0
1.0
0.13
0.13
0.13

1.0
1.0
1.0
1.0
0.93
0.52

1.0
1.0
1.0
0.99
0.98
0.55

1.0
1.0
1.0
0.97
0.9
0.71

1.0
0.99
0.97
0.89
0.80
0.45

CDP

0.86
0.74
0.57
0.35
0.22
0.05

0.92
0.75
0.54
0.31
0.19
0.04

0.83
0.69
0.48
0.26
0.16
0.03

0.81
0.62
0.42
0.22
0.13
0.02

1.0
0.95
0.91
0.80
0.69
0.28

1.0
0.91
0.84
0.69
0.51
0.14

1.0
0.82
0.71
0.46
0.28
0.05

0.99
0.63
0.51
0.27
0.14
0.02

1.0
0.99
0.76
0.44
0.36
0.32

1.0
0.87
0.5
0.28
0.23
0.19

1.0
0.79
0.35
0.25
0.18
0.13

1.0
1.0
1.0
0.92
0.89
0.66

1.0
1.0
0.96
0.8
0.64
0.24

1.0
0.97
0.6
0.25
0.12
0.03

1.0
0.58
0.1
0.02
0.02
0.01

ǫ

222.6
6.3
2.3
0.9
0.3

259.8
6.6
2.0
1.1
0.2

251.5
7.3
2.2
1.0
0.3

259.8
7.4
2.1
1.1
0.3

88.1
4.6
2.0
1.3
0.4

88.1
4.1
1.8
1.2
0.4

88.1
4.1
1.8
1.2
0.4

88.1
4.1
1.8
1.2
0.3

84.3
4.8
2.1
1.3
0.5

70.4
3.9
1.7
0.8
0.4

62.4
3.4
1.5
1.0
0.3

28.9
1.6
0.7
0.9
0.4

29.8
1.7
1.6
0.9
0.4

42.2
3.5
1.3
0.7
0.3

73.5
2.1
1.3
0.6
0.3

Learning
rate

Orig. 0.01 0.01 0.01 0.01 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
CDP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1e-3 8e-4 8e-4 1e-3 1e-3 1e-3 1e-3
LDP 0.01 0.01 0.01 0.01 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Batch
size

Orig. 128 128 128 128 128 128 128 128 32 32 32 100 100 100 100
CDP 128 128 128 128 128 128 128 128 16 16 16 100 100 100 100
LDP 128 128 128 128 128 128 128 128 32 32 32 100 100 100 100

Epochs
Orig. 200 200 200 200 200 200 200 200 30 30 30 200 200 200 200
CDP 1000 1000 1000 1000 200 200 200 200 110 110 110 200 200 200 200
LDP 200 200 200 200 200 200 200 200 30 30 30 200 200 200 200

Clipping
Norm

CDP 4 4 4 4 4 4 4 4 3 3 3 4 4 4 4

134



A.3. Black-Box MI Experiments
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Figure A.1.: Texas Hospital Stays accuracy and privacy (error bars lie within most points)
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Figure A.2.: Purchases accuracy and privacy (error bars lie within most points)

136
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Figure A.3.: LFW accuracy and privacy (error bars lie within most points)
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Figure A.4.: Skewed Purchases accuracy and privacy (error bars lie within most points)
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Figure A.5.: COLLAB accuracy and privacy (error bars lie within most points)
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A.4. VAE MI Experiments

Table A.3.: Target classifier hyperparameters
Orig.,
CDP

LDP VAE-LDP
10000 5000 1000 500 100 0.1 1 10 100 1000

LFW20

learning rate 2.4e-05 2.44e-4 8.58e-05 3.66e-05 2.35e-4 1.43e-05 4.03e-4 1.42e-4 9.34e-05 1.39e-4 1.38e-3
batch size 16 16 16 16 16 64 16 64 64 16 64

epochs 33 100 10 97 16 24 49 34 50 45 46
test accuracy 0.98 0.97 0.97 0.82 0.55 0.28 0.94 0.93 0.98 1 1

LFW50

learning rate 1e-05 3.5e-05 4.41e-4 1.85e-4 1.72e-4 1e-05 9.24e-05 3.29e-05 7.39e-05 9.76e-4 1.27e-4
batch size 16 16 64 64 64 64 16 16 16 64 32

epochs 100 96 100 35 90 21 49 37 10 32 20
test accuracy 0.95 0.94 0.93 0.7 0.41 0.2 0.9 0.91 0.97 1 1

MS

ǫi 10 1 0.5 0.1 0.01 0.1 1 10 100 1000
learning rate 9.8e-4 9.37e-4 7.26e-4 7.72e-4 9.87e-05 1.08e-05 1.09e-3 6.75e-4 1.14e-4 2.48e-3 3.71e-05
batch size 64 64 64 16 16 16 256 128 32 32 64

epochs 25 25 25 25 25 6 21 9 23 16 24
test accuracy 0.99 0.98 0.93 0.8 0.29 0.25 0.68 0.53 0.39 0.3 0.24

(a) Reconstructed training records

(b) Reconstructed test records

image original 0.1 1 10 100 1000

(c) VAE-LDP generated samples for LFW20

Figure A.6.: Comparison of reconstructed records and generated samples
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A.4. VAE MI Experiments
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Figure A.7.: Confusion matrix for the target classifier for MotionSense CDP z = 1
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A. Appendix

Table A.4.: Target model hyperparameters, CDP and VAE-LDP (ǫ, δ), and LDP ǫ
Orig. CDP

z 0.001 0.01 0.1 0.5 1

LFW20

learning rate 5.57e-4 4.67e-4 1.82e-4 1.1e-4 5.62e-4 4.01e-05
batch size 16 32 16 64 16 32

epochs 1000 1000
C, microbatch - 0.03, 4

(ǫ, δ) -
(15948925900.96,

1.08e-03)
(321853746.70,

1.08e-03)
(372950.22,
1.08e-03)

(295.07,
1.08e-03)

(56.41,
1.08e-03)

train-test gap 260.3 210.6 62.5 13.8 17.9 10.5

LFW50

learning rate 5.88e-4 2.15e-4 1.04e-4 5.14e-05 1.93e-4 6.86e-4
batch size 16 16 32

epochs 1000 1000
C, microbatch - 0.02, 4

(ǫ, δ) -
(47295786259.73,

7.27e-04)
(468786259.73,

7.27e-04)
(681781.38,
7.27e-04)

(353.74,
7.27e-04)

(43.31,
7.27e-04)

train-test gap 259.4 195.4 29.4 9.2 7.1 33

MS

learning rate 1e-3
batch size 32

epochs 1000
C, microbatch - 3.4e-5, 4

(ǫ, δ) -
(120986947509.93,

1.42e-04)
(1196947509.93,

1.42e-04)
(1093201.38,

1.42e-04)
(137.57,
1.42e-04)

(15.73,
1.42e-04)

train-test gap 0.7 0.4 0.3 0.1 0.1 0
LDP

ǫi 10000 5000 1000 500 100

LFW20

learning rate 9.22e-4 1.52e-4 2.13e-4 1.14e-4 1e-3
batch size 32 16 64 32 16

epochs 1000
ǫ 5.718e+07 2.859e+07 5.718e+06 2.859e+06 571800

train-test gap 267 265 224 160 123

LFW50

learning rate 4.61e-4 2.41e-4 4.31e-4 1.19e-05 1e-05
batch size 16 64

epochs 1000
ǫ 8.319e+07 4.1595e+07 8.319e+06 4.1595e+06 831900

train-test gap 272 264 204 21 5
ǫi 10 1 0.5 0.1 0.01

MS

learning rate 1e-3
batch size 32

epochs 1000
ǫ 706190 70619 35309.5 7061.9 706.19

train-test gap 0.7 0.9 2.7 4.4 4.8
VAE-LDP

σ 0.1 1 10 100 1000

LFW20

learning rate 5.57e-4
batch size 16

epochs 1000

(ǫ, δ)
(2366.15,
5.25e-04)

(236.61,
5.25e-04)

(23.66,
5.25e-04)

(2.37,
5.25e-04)

(0.24,
5.25e-04)

train-test gap 156 145 64 3 2

LFW50

learning rate 5.88e-4
batch size 16

epochs 1000

(ǫ, δ)
(2422.52,
3.61e-04)

(242.25,
3.61e-04)

(24.23,
3.61e-04)

(2.42,
3.61e-04)

(0.24,
3.61e-04)

train-test gap 168 158 68 4 3

MS

learning rate 1e-3
batch size 32

epochs 1000

(ǫ, δ)
(404.96,
1.42e-05)

(40.50,
1.42e-05)

(4.05,
1.42e-05)

(0.40,
1.42e-05)

(0.04,
1.42e-05)

train-test gap 0.1 0 0.2 0.1 0
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