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Executive Abstract

The ’Exploratory In-orbit Verification of an E/W-band link’ (EIVE) satellite mission demonstrates
broadband data transmission from the low earth orbit to the earth with data rates of up to 15 Gbits−1.
To ensure correct operation of the EIVE satellite and reduce the radiation impacts on EIVE’s
circuitry, radiation mitigation techniques are mandatory for the payload computer. Therefore, this
thesis investigates the radiation mitigation techniques, mechanisms for the protection of the FPGA
configuration memory and implements robust encoding mechanisms of the E/W-band validation
files. The investigations and the implemented approaches are in line with the EIVE mission power
budget limitations.





Zusammenfassung

Die Satellitenmission ’Exploratory In-orbit Verification of an E/W-band link’ (EIVE) demonstriert
die breitbandige Datenübertragung von der niedrigen Erdumlaufbahn zur Erde mit Datenraten von
bis zu 15 Gbits−1. Um den korrekten Betrieb des EIVE-Satelliten sicherzustellen und die Strahlungs-
einwirkungen auf die Schaltung von EIVE zu reduzieren, sind Strahlungsminderungstechniken
für den Nutzlastcomputer erforderlich. Daher untersucht diese Arbeit die Strahlungsminderungs-
techniken, Mechanismen für den Schutz des FPGA-Konfigurationsspeichers und implementiert
robuste Kodierungsmechanismen der E/W-Band-Validierungsdateien. Die Untersuchungen und
die implementierten Ansätze stehen dabei im Einklang mit den Leistungsbeschränkungen der
Mission.
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1 Motivation

The project ’Exploratory In-orbit Verification of an E/W-band link’ (EIVE) explores broadband
satellite communication from the low earth orbit (LEO) to the earth by transmitting data in the
frequency band between 71 GHz and 76 GHz with a data rate of up to 15 GBits−1. During transmis-
sion, atmospheric effects will alter the sent data. For this reason, a key task of the EIVE project is
to send known pseudo-random bit sequences (PRBS) in order to analyze the transmission quality
under different weather conditions and demonstrate the feasibility of the desired radio downlink
throughput. Furthermore, it is possible to take and transmit full-HD pictures and 4K-livestreams
with the on-board high resolution camera to showcase real-world scenarios with the need of high
data rate transmissions [1].

The EIVE satellite represents the joint work of multiple project partners. Figure 1.1 shows a
simplified overview of the subsystems, relevant for this work, as well as the responsible division.
The Institut für Raumfahrtsysteme (IRS) is responsible for the on-board computer (OBC), which
acts as a master circuitry for the multiMIND board and the companion boards. Therefore, the OBC
controls the functionality of all subsystems in the satellite, depending on the satellites position and
scheduled missions. The OBC receives commands and transmits execution log reports and current
state information through a S-band link [2].

In order to execute commands, the on-board computer has to communicate with multiMIND, which
is designed by Thales Alenia Space (TAS) and consists of two separate boards. The processing
board consist of a Xilinx UltraScale+MPSoC, where user-defined logic and software can be placed.
To ensure the MPSoCs functionality, the processing board also contains a supervision circuitry.
This processing board is designed in a way, that users of the multiMIND solution are able to
do computational tasks, such as processing data and interacting with different parts on one or
more companion boards, for instance an E/W-band link or a 4K-camera in the case of EIVE. Also,
the processing board has components which are not accessible by the user. These components
are dealing with supervisory tasks like storing and updating boot images, monitoring power
lines, booting and shutting down the MPSoC, protecting it from latch-up events and observing
the MPSoC with watchdogs. As an interface between processing core, OBC, companion boards
and other electronic components, the mission interface board is an essential part of multiMIND.
Compared to the processing core, it is a mission specific board, because the companion boards and
other used electronic components strongly vary [3], [4].

As a last part of the electronic systems in the EIVE project, there are the already mentioned
companion boards. For EIVE, the companion board is an evaluation board for a digital to analogue
converter. It receives digital data from the FPGA and puts analogue data directly to the E/W-band

1
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Figure 1.1: Electronic subsystems and their contributors in the EIVE project.

link and is part of the research of the Institute of Robust Power Semiconductor Systems (ILH) [2].

It is well established, that radiation present in space may have destructive effects on electronic
components. The effects can differ in severity, since flipped bits may have no effects or can
result in data corruption. There is also a chance to result in more severe injuries, for example
degradation of microelectronics, biasing of instrument reads and damage of the physical circuits.
The consequences of these effects can be wrong calculation results, altered program flows, data
loss, unreliable measurements and total, non-recoverable device failures, which implies the loss
of the mission. Even if some errors are negligible and have no effect at all, they should be found
and fixed because they might have some impact at a later point in time [5]. Since all mentioned
incidents can occur in the EIVE project, a stable radiation mitigation concept is needed. Therefore,
this thesis investigates radiation impacts and basic mitigation techniques, before a solid radiation
mitigation concept is proposed and implemented in order to increase the lifetime and robustness
of the EIVE CubeSat.



2 Radiation Environment and Mitigation
Techniques

This chapter starts with a short, but general overview about radiation environments, followed by
EIVE-specific radiation challenges. Afterwards, radiation impacts on electronic devices, especially
CMOS-based digital circuits and memories, are discussed. Based on this knowledge, techniques
for radiation effects mitigation are investigated.

2.1 Radiation Environment and Effects

Before proceeding to radiation mitigation techniques, the radiation environment must be explained
in a general way, starting from the definition of radiation over an outline of origins until character-
ization of different radiation types.

2.1.1 Environment

Before discussing the radiation environment, it is worth to point out that radiation is defined as any
form of energy, emitted or transmitted by or between energetic sources [6]. For space radiation,
which is considered here, the type of energy is limited to highly energetic particles, almost moving
with light speed, and their corresponding wavelength. In general, this radiation can be found
everywhere on earth. Apart from radiation sources in space, the earth itself is emitting radiation
through natural radiation sources like radioactive elements, and human made ones like mobile
phone networks. In comparison, radiation fluxes from earth sources are magnitudes of order
smaller than from space ones. Additionally, through the existence and shielding functionality of
the each magnetic field, radiation with its origin on earth is negligible in space [6], [7].

Radiation is emitted by sources, which are either galactic cosmic rays (GCR), solar particle events
(SPE) or trapped particles. For a better understanding, these three categories along with their
sphere of influence are schematically depicted in figure 2.1.

Galactic cosmic rays originate from outside the solar system and are typically found in free
space [5]. GCRs consist of nucleus, travelling with nearly the speed of light. These nucleus are
namely 85% protons, 14% helium nucleons and 1% highly charged ions (HZE particles), for instance
highly charged carbon or iron ions [6]. The particle energies are below LETth < 15 MeVcm2 mg−1

for protons, where LETth is the minimum linear transferred energy to cause a particle flux of

3
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Figure 2.1: Space radiation sources and their locations.

1 · 107 ionscm−2. For larger particles, the linear energy transfer threshold is within the range of
15 MeVcm2 mg−1 < LETth < 100 MeVcm2 mg−1, which makes it difficult to shield against such
events [5]. Nevertheless, especially HZE particles are able to produce huge damages which can
yield to problems in electronic components and diseases for humans [8]. Furthermore, the quantity
of galactic cosmic rays varies with solar cycles in an inverted manner: During solar maximum, the
period when more solar flares occur, less GCRs can be observed and vice versa [5], [6].

Another radiation source are solar particle events, which can be coronal mass ejections, where
a billion tons of solar particles are blasted into space, or solar flares. The latter ones eject some
protons and lots of heavy ions which have a comparable amount of energy to corresponding
particles, emitted by GCRs [5]. Therefore, their impact to humans and electronic devices is similar
to those of GCRs. However, since solar flares are temporal events, which are emitting particles,
their particles can just be measured during short periods of time, ranging from a few hours to some
days [8]. Apart from these short-term fluxes, the overall frequentness of SPEs depends strongly
on the current solar cycle. Instead of occurring more frequently during solar minimum like GCRs,
SPEs are more frequent during solar maximum and less frequent during solar minimum [5], [6].
Furthermore, their abundance is correlated with the distance to the sun and decreasing with higher
removal from the sun [5].

As third member of space radiation sources, trapped particles are the least dangerous ones for
missions in the lower earth orbit. They consist of protons and electrons at energy levels below
LETth < 15 MeVcm2 mg−1, which are trapped by the earth magnetic field. These low-energy
particles can mainly be observed in the inner Van Allen belts at altitudes between several hundred
to approximately 6000 kilometres. At altitudes until 60000 kilometres, especially within the outer
Van Allen belt, their energies can raise up to LETth < 100 MeVcm2 mg−1. Apart from the measured
height, there is one cluster with high amounts of trapped particles above the southern Atlantic
region, which is called the south Atlantic anomaly. In there, even low energetic particles at small
altitudes can have impacts to electronic devices due to their quantity [5], [9].
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Radiation, emitted by the three sources can be split up into two different groups. Even though they
all emit electrons, protons, neutrons and ions, the origin of these particles can be entirely different.
On the one hand, they can be sent out directly by a radiation source, which is then referred to
as primary radiation. This case applies for galactic cosmic rays and solar particle events. On the
other hand, primary radiation can hit some other matter and ionize it. Then, electrons are emitted
as secondary radiation in succession. This secondary radiation yields to large radiation doses in
electrical components and can be found in LEO [7], [8].

2.1.2 Radiation Effects

Apart from their origins and particle energies, radiation can be characterized in terms of impacts,
which can concern living organisms, human beings and electronic components. Effects on humans
can be tissue damages and a higher risk to develop cancer [6]. But as the EIVE mission is not crewed,
these effects are not further investigated. Nevertheless, impacts on electronic components are very
important to consider and therefore specified in the remainder of this section. The investigation is
mainly based on [5], [6], [7] and [10]. Wherever additional resources are referenced, they explicitly
denoted.

In a first step, effects on electronic devices can be split up into two separate categories. The first
one are cumulative effects, where long-term changes are considered. They can be observed as
non-reversible degradation and long-term changes of device characteristics. Secondly, there are
short-term effects caused by a single particle, called single-event effects (SEE). On the one hand,
SEEs can be destructive an result in permanent damages of devices. On the other hand, SEEs
can also be non-destructive, yielding from no effects at all, over bit errors in stored data until
modification in operational procedures.

2.1.2.1 Cumulative Effects

Both, single-event effects and cumulative effects, can be split into various subcategories. Cumula-
tive effects are subdivided according to the amount of energy per particle. On the one hand, if the
energy amount is high enough, it can take out electrons from matters’ atoms and molecules. This
process is called ionization, coming from ionizing radiation. The resulting effects are measured
in terms of a total ionizing dose (TID) with the unit of radiation absorbed dose (1 rad). This is
an amount of energy absorbed by a unit mass, defined as 1 rad = 0.01 Jkg−1. Typically, electronic
components for radiation environments are designed to operate properly until a specified total
ionizing dose. If the actual TID exceeds this specified value, the device is not guaranteed to work
properly. Typical observed effects with rising TID are leakage currents in transistors, timing skews
and threshold voltage shifts.

On the other hand, there is also non-ionizing radiation. It is not able to remove electrons due to its
insufficient amount of energy. Non-ionizing radiation can be emitted from natural and ordinary
sources like radio frequencies, visible light, infrared and UV-light. It is measured in terms of
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total non-ionizing dose (TNID), also named displacement damage (DD), with the unit 1 rad. Non-
ionizing radiation can create electrical defects in semiconductors crystal lattice. This affects bipolar
devices, but not CMOS devices like FPGAs or ASICs. Furthermore, it is easy to shield against.

2.1.2.2 Single-Event Effects

For single-event effects, there is a larger space for subdivision. First of all, SEEs can be grouped by
their severity and secondly, they can be characterized by their impact. As shown in table 2.1, the
severity can be either destructive for long-lasting or non-reversible effects, or non-destructive for
errors, which can be repaired. Below, the different types of SEEs are described.

Table 2.1: Subdivision of single-event effects
Destructive Non-destructive

Single-event latch-up (SEL) Single-event transient (SET)
Single-event snap back (SESB) Single-event upset (SEU)
Single-event hard error (SEHE) Multiple-cell upset (MCU)

Single-event burnout (SEB) Multiple-bit upset (MBU)
Single-event gate rupture (SEGR) Single-event functional interrupt (SEFI)

Single-event dielectric rupture (SEDR)

Destructive Single-Error Effects
Single-event latch-ups are the most likely destructive single event effects for modern CMOS-based
electronics. They occur when a single particle triggers a parasitic thyristor, which results in a high
current flow and therefore, an increase in temperature. After some time, the device or some of
its parts can be destroyed by the thermal effects. The only way to protect from SEL events is a
power-reset of the circuit, before thermal damages can occur.

Very similar to SELs, single-event snap backs also yield to high current flows. They just differ by
the underlying semiconductor structure: While SELs need parasitic thyristors to occur, a parasitic
bipolar structure like PNP or NPN is mandatory for SESBs.

Apart from those parasitic structures in devices, radiation is also able to corrupt memories in non-
reversible ways. In this case, charged particles affect the memory structure and damage one or
more cells. Observed effects are stuck bits, whose values cannot be changed any more. Therefore,
this type of radiation impact is called single-event hard error.

Another type of high current flow is called single-event burnout. It occurs when a power transistor
is triggered, which yields to a high current flow and thus a thermal damage of components and
devices. Fortunately, this effect is not common to FPGAs and ASICs.

Finally, there are single-event gate ruptures and single-event dielectric ruptures. For these events,
a single particle strike ruptures a gate oxide or a dielectric layer, respectively. Thus, biases and
leakage currents can be measured. For digital circuits, possible results are stuck bits. Up to now,
there is no possibility to protect against such events, since they occur in a picosecond timescale.
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Figure 2.2: Single-event transient and its effects
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Figure 2.3: Single-event upset

Non-Destructive Single-Error Effects
Unlike destructive SEEs, non-destructive SEEs, also referred to as soft errors, don’t have potential
to destruct electronic devices, since non-destructive SEEs can just lead to flipped bits. Nevertheless,
they are a concern in terms of device functionality and operational safety, depending on the kind
of affected bits. Soft errors can have various impacts, which are briefly described below.

The first non-destructive SEEs are single-event transients, shown in figure 2.2. They are the most
frequent type of SEEs in FPGAs, inferred by particles, hitting a connection wire at a combinatorial
path between two registers. As an effect, a voltage spike on the hit line can be observed. Resulting
effects in the circuit can be wrong data if the SET is captured by a memory, loosely speaking, then
the SET becomes a SEU [11]. Other effects can be wrong signals or SEFIs, if the particle hits the
clock distribution tree or a reset line. But it is also possible, that no effects will occur, especially
when the voltage spike is not captured by a memory element [10].

SETs are not the only way to store wrong data, because particles can affect memories directly.
These events are called single-event upsets. As shown in figure 2.3, SEUs induce single bit errors.
They can have lots of effects, from wrong results in calculations to operational failures, depending
on which memory is affected and the design of the circuit. Fortunately, they can be detected and
corrected by error correction codes. Also, it is important to note that SEUs are more likely for small
technologies and circuits with lower supply voltage, since they have smaller critical charges [11].

Furthermore, SEUs can appear multiple times in parallel. For most devices, the pattern, how bit
errors are aligned, is essential. One possibility is to have multiple SEUs, but at maximum one per
physical memory word. This type is called multiple-cell upset. As most error correction codes are
able to correct one bit error per word, they could be completely recovered.

For multiple upsets in one word, namely multiple-bit upsets, it may not be possible to restore a
fault-free state and the error may distribute across the device. Both of multiple upset effects are
visualized in figure 2.4. With use of smaller technology, multiple upsets are becoming more likely.

As a last type of soft errors, single-event functional interrupts are caused by the same effects than
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Figure 2.4: Multiple-cell upsets and multiple-bit upsets

SETs. The key difference between them are the hit wires. While SETs allow any wires to be affected,
SEFIs require particles to hit either the clock distribution tree or reset lines. Therefore, they can
result in complete or partially resets of the circuit or violation of setup and hold times. SEFIs can
be corrected by a reset of the whole device, either by software or by power cycling.

Since this thesis is only about mitigation of radiation effects in digital devices, table 2.2 briefly
reviles which single-event effects can have influences to different devices. As there is clearly
visible, just SELs, SESBs and SEHEs are possible destructive events for digital devices. SEBs,
SEGRs and SEDRs can be completely ignored in the radiation mitigation process, as they will not
occur. For non-destructive events, any devices with some kind of internal memory can be affected
by upsets and most of them also by multiple upsets and functional interrupts. Furthermore, both
computational parts, FPGAs and microprocessors, are sensitive to transient events as they have
more internal connection lines, where particles may strike.

Table 2.2: Summary of single-event effects and their presence on digital electronics.

Device category
Destructive Non-destructive

SE
L,

SE
SB

SE
H

E

SE
B

SE
G

R
,S

ED
R

SE
T

SE
U

M
C

U
/M

BU

SE
FI

SDRAM X X X X
DRAM X X X X X
FPGA X X X X X X

Flash EEPROM X X X X
Microprocessor X X X X X

Finally, some general effects of soft errors in FPGA devices are discussed, as they are the most
important for EIVE. As stated above, all soft errors may yield to flipped bits in storage elements,
but the effects of them are not only dependent on their count. It is relevant, in which type of
storage a bit is flipped. In general, FPGAs consist of five different kinds of memories, shown in
table 2.3. If an error exists inside block memories, distributed memory or flip-flops, wrong data
can be read by following hardware, which then can produce other wrong calculation results. As
a result, this error does not change the device behaviour or circuitry. On the other hand, when



2.2 Analysis of the EIVE Radiation Environment 9

device control registers are affected, there may be impacts on the whole device, like thus, expected
by a SEFI. In the remaining case, when an error is in the CRAM, the consequences are completely
different. Since all internal routing and combinatorial output tables are stored in there, a bit error
can possibly result in rerouted wires, altered functionality or failures in operation [12].

Table 2.3: Memory types in a FPGA and their sizes for the Xilinx UltraScale+ MPSoC XCZU6EG,
used in EIVE mission.

Name Size (from [12], [13])
Configuration memory (CRAM) 17.0 Mb, 48054 frames

Block memory (BRAM) 25.1 Mb, 714 blocks
Distributed memory 6.9 Mb

Flip-Flops 0.429 Mb
Device control registers Few kb

2.2 Analysis of the EIVE Radiation Environment

In this section, the radiation environment of EIVE is briefly summarized in order to provide facts
about the planned mission. At the point this thesis was written, it was clear, that EIVE will
be launched in the end of September 2022. Furthermore, the orbit was specified as LEO, with
an altitude of 450 to 550 km [14]. For comparison purposes, it is worth mentioning that the
International Space Station ISS circles around the earth at 400 km, which is about the same altitude
[15]. In general, the low earth orbit is characterized by high-energy trapped protons, mainly created
by effects of the South Atlantic anomaly. Because the earth magnetic field is able to shield from
space radiation at these altitudes, high energetic particles from galactic cosmic rays or solar particle
events play a minor role for EIVE [8].

For planning and implementing radiation mitigation strategies, it is mandatory to know, how often
single events occur in the targeted orbit during the mission. This makes it possible to decide,
which parts of a design must be protected in a certain way. Such statistics could be calculated with
commercial tools like OMERE. In case of EIVE, these calculations were done by experts from TAS
the IRS for single-event effects and for cumulative doses. Unfortunately, they are not quite up to
date, because the launch date has been postponed.

In a first step, TAS’ data for single-event effects, shown in table 2.4, is discussed. It is grouped into
columns, depending on the type of events. Negligible soft-error types were removed by TAS. In
summary, there will be 11.5 soft-error events per day, whereof 7 ones can be identified as latch-
ups and 4.5 as upsets. However, EIVE’s uptime is limited to ten minutes per day, due to power
consumption limits. Since these soft-errors are able to damage devices, some kind of protection
against them is mandatory. In terms of error effects, there is one event per day which may alter the
MPSoCs functionality and the remaining 10.5 events can alter stored data. Therefore, protection of
important, mission-specific data is essential [14], [16].

Apart from single-event effects, total radiation doses are very important in order to choose electric
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Table 2.4: Number of single-event error expected for EIVE in events per day.
Device Single-event upset Single-event latch-up

MPSoC CRAM 0.04 N/A
MPSoC BRAM 0.02 N/A

MPSoC CLB 0.0003 N/A
MPSoC total 0.0603 1
NOR NVM 0.5 0.0003

NAND NVM 4 6

components in such a way, that they will outlive the missions duration. The results of this calcula-
tion is evinces in table 2.5. Briefly worded, for a satellite, launched in quarter two in 2022 into an
orbit between 490 to 520 km altitude and a mission duration of one year, electric devices must be
radiation tolerant up to a total radiation exposure of 12.6 krad or 5.2 krad, when shielded by 1 mm
or 2 mm aluminium, respectively [14].

Table 2.5: Total ionizing doses expected for EIVE with start in Q2 2022 and sun-synchronous orbit
at 490 to 520 km altitude, calculated with the OMERE tool.

Shielding Mission duration Radiation exposure
1 mm aluminium 1 year 12.6 krad
2 mm aluminium 1 year 5.2 krad

2.3 Mitigation Approaches

One more general example to underline the need for radiation mitigation is based on metrics, called
failure in time (FIT) and mean time between failures (MTBF). FIT is defined by the counted number
of failures occurring in a time interval of 1 ·109 hours and MTBF is the average time, in which one
failure is expected. As an example, a part may have a FIT rate of 600 at sea level and 370000 at
an altitude of 12 km. Thus, the MTBF can be calculated by MTBF = 1e9years

numbero f f ailures as 190 years and
0.31 years, respectively [17]. Since EIVE is orbiting the earth at significant higher altitudes, the FIT
can be expected even higher and therefore, the MTBF will decrease. In order to complete the EIVE
mission successfully, failures during the mission must be reduced by implementing appropriate
radiation mitigation techniques at a suitable level, described in this section.

2.3.1 Available Techniques

In order to ease the discussion about the integration of radiation mitigation techniques, the most
popular radiation mitigation techniques are described in this section. Therefore, mitigation meth-
ods are summarized in table 2.6 in advance, before they are described in the remainder of this
section. All investigated techniques are limited to the scope of digital electronics, which means
that mitigation techniques for analogue or mixed-signal circuits are skipped.
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Table 2.6: Summary of available radiation mitigation techniques.

Name Protected elements
Radiation effects

SET SEU MBU MCU SEL
Information redundancy

Error correction codes Memory, SoC X
Error detection codes SoC X

Spatial redundancy
Duplex architectures DCs, FPGA X

Triple modular redundancy (TMR) DCs, SoC, FPGA X X
Lockstep System X X

Reliability-oriented place and route FPGA X X
Temporal redundancy

Triple temporal redundancy Digital circuits X X
Minimal level sensitive latch Digital circuits X X

Redundancy in software Software X X X X
No redundancy

Use of radiation hardened parts Memory X
Bit interleaving Memory X

Memory Scrubbing Memory, FPGA X X
Hardened finite state machines Digital circuits X

Selective use of resources Digital circuits X X
Watchdog timers SoC X X

SET filtering in data path SoC X
Partial reconfiguration FPGA X

Shielding System X X X
Power cycling System X X

Current monitoring System X X

2.3.1.1 Embedded Memories

As a basic element, almost any digital circuit contains embedded memories to store data. Hence,
a protection mechanism for memories can improve the radiation tolerance for a wide range of
electronic systems. In general, each memory device, as shown in figure 2.5, consists of memory
blocks, which are built out of base units, named memory cells. Each cell is made up of basic electric
components and has the ability to store one bit of information. When a cell is irradiated, the stored
bit could flip and change its value from 0 into 1 or vice-versa. Therefore, the most effective way in
terms of radiation resistance is to harden each single cell. This could be done by adding resistors or
capacitances in a way to increase the critical charge. The drawbacks of this approach are penalties
in used area and speed [7].

Another way to harden cells is to add extra transistors, such that each cell can restore itself if the
data is corrupted. Due to the extra transistors, the drawbacks of this approach are an power- and
area overhead, which varies with the used cell topology. However, in most cells, the overhead in
power consumption is negligible compared to standard COTS-cells [7].

Beside protecting each cell, there are advantages of protecting memories at a block basis. In general,
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Figure 2.5: Schematic structure of a memory device.
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Figure 2.6: SEEs in memory with and without bit interleaving.

block protection is cheaper in production and has the ability to operate on more than one bit of
data. Thus, the concepts of error correction codes (ECC) and bit interleaving can be applied either
in hardware or software. Error correction codes add redundant data to original information in
a way, that correction and detection of a specified amount of bit errors is possible. ECC have
the disadvantage of overhead in used memory and computation time, because the redundant bits
must be calculated and checked at each time, when a write or read operation is performed. For
bit interleaving, shown in figure 2.6, the property of locality of radiation strikes is used: Because
cells are small enough, a single radiation strike will likely affect more than one of them. Since
adjacent data mostly belongs to a single data word, the injected particles will have large impacts
to small numbers of words. Especially when error correction codes are used, many bit errors in
a few words are worse than single bit errors in many words, because they can yield to MBUs.
Therefore, bit interleaving can be used to distribute originally adjacent data across the device to
make neighbouring cells containing data of different words. The only downside of bit interleaving
is an increase in access time, because different memory regions must be activated in order to read
previously cohesive data [7], [18].

The last approach to protect memory cells is called data scrubbing, which periodically rewrites cor-
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rupted memory bits with bits from a golden data location. Scrubbing prevents from accumulation
of erroneous bits and ensures that error correction codes are working properly. As disadvantage, a
secondary memory is needed to store the golden data. The pitfall is, that the golden data must be
stored on a much more radiation hardened memory device. Otherwise, the golden data can also
contain errors and wrong data is scrubbed into the used storage element [7], [18].

2.3.1.2 Digital circuits

In this section, radiation mitigation techniques, related to digital circuits, are investigated. Because
the underlying semiconductor technology is already chosen, all mentioned techniques cannot
mitigate permanent errors, caused by the total ionizing dose. However, almost all of the mitigation
techniques are capable to weaken the effects, caused by transients and upsets. To keep it tidy,
the mitigation methods are grouped in terms of redundancy. Firstly, duplex architectures and
triple modular redundancy (TMR) are belonging to spatial redundancy, i. e. processing the same
task multiple times in parallel and comparing the results by a voting circuitry. Secondly, the
group of temporal redundancy contains triple temporal redundancy and minimal level sensitive
latch approaches. Temporal redundancy is characterized by multiple processing operations, which
are executed at different points in time, but not in parallel. As known from spatial approaches,
temporal redundancy also requires voting logic in order to detect and correct wrong results. The
third group is different, because no redundancy is necessary. Therefore, this last group contains
general designing guidelines to design radiation hardened digital circuits.

Duplex architectures architectures consist of two identical logic blocks and one comparator. As
depicted in figure 2.7, the input data is split up into two separate paths, such that the bottom and
the top module will receive the same data. When both redundant modules are done with their
processing tasks, both results are forwarded to a comparing logic. In the comparator, one of its
input lines is directly connected to the data output signal and the error signal will be set to an error
state, if a mismatch between both input ports is detected. When a mismatch is detected, no assertion
about the correctness of the output signal can be made, since either input one or input two can
be erroneous. Therefore, a reprocessing with the same input data is required to get a valid result.
Apart from weak error correction capabilities, duplex architectures are characterized by doubling
the used area and thus the power consumption. Furthermore, meeting timing requirements can be
difficult, because the total number of recomputation is not determined.

Triple modular redundancy can be seen as an extension of duplex architectures. Instead of two
identical logic blocks, TMR uses three copies of logic. Therefore, the comparator needs to change
into a majority voter. This means, if one of the three voter input signals is changed, the other two
ones will likely remain the same and are therefore valid. The only remaining context to perform a
recomputation is denoted by three disjoint voter inputs. Nevertheless, the voter is a single point
of failure and the output data will be wrong, if the voting logic is affected by radiation. With the
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Figure 2.7: Schematic structure of a duplex architecture with comparator.

Logic

Logic
Out 2Input

Error in one logic cell

Logic

Error in  majority voter

Out 1

Out 3

V
o
te

r
V
o
te

r
V
o
te

r

Figure 2.8: Schematic structure of a full TMR architecture with voter and different errors.

additional triplication of the voter, a basic TMR is transformed into a full TMR with three voters
and the single point of failure is removed. When using full TMR, single event effects can now
occur on computational logic, connection signals and voters, as depicted in figure 2.8. Apart from
strong error detection and correction capabilities, both kinds of TMR come with an area overhead
of factor three and a comparable overhead in power consumption.

Triple temporal redundancy (TTR) is efficient to filter out transient effects from signal lines. Since
transients are short voltage spikes on connection lines, this is done by sampling the processing
blocks output signals at different time instances and storing them into flip-flops. As a final step, the
flip-flops’ values are compared by a majority voter to determine the correct values. A schematic
TTR is given in figure 2.9. On the one hand, TTR needs significantly less space and therefore, the
power consumption is reduced, when compared to duplex architectures or TMR. On the other
hand, flipped bits during data processing cannot be identified.

Minimal level sensitive latch (MLSL) is another technique of temporal redundancy. It consists
of the same ports as TTR-blocks, but MLSL uses latches to store sampled signal data instead of flip-
flops. Unlikely, an instantiation of latches is harder than an instantiation of flip-flops. Therefore,
MLSL is less often used. In summary, MLSLs have the same space usage and power consumption
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Figure 2.9: Schematic structure of a TTR architecture with delay elements, memories and voter.

than triple temporal redundancy.

Radiation hardened finite state machines are ordinary finite state machines (FSM) with more
carefully designed properties. As a first property, state variables are designed in a way, which
prevents accidentally state changes as result of a single flipped bit. The second property makes
sure, that no illegal states can be reached from a valid state, or at least, illegal states will transition to
a valid safe state immediately. Often, synthesis tools can fulfil both of this properties automatically.
When lots of upset events are expected, for example when operating the circuit in interplanetary
space, state coding with additional error correction codes can be considered to maintain the FSMs
functionality. The downsides of radiation hardened FSMs are slightly more consumption of power
and a small overhead in area.

Selective use of resources deals with different types of hardware, used for different tasks. For
instance, some cells or wires in a digital circuit can be more hardened and should therefore be used
for tasks with high reliabilities. More hardened resources could be cells with higher drive strength,
radiation hardened flip-flops or memories, cells synchronous reset and set signals or cells with
larger transistors. The drawbacks of this technique are dependent on the used cells, but it tends to
have an overhead in area and power consumption.

2.3.1.3 System on a Chip

A System on a Chip (SoC) consists of many parts, placed on a single silicon chip. Thus, they can
contain small elements like logic gates, medium sized elements like transceivers and large elements
like processors. Since all parts together form a complex system, error mitigation techniques can
also be applied in SoCs. Two possible techniques are already known from preceding sections.
The first one is error correction coding, briefly described in section 2.3.1.1 and more precisely
investigated in chapter 5. In contrast to error correction codes in memory, ECCs can now be applied
to interconnection wires between parts. The second one is called triple modular redundancy, known
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from section 2.3.1.2. From a SoCs’ perspective, TMR is applied in larger scales, namely at part level.
Because SoCs are at a higher abstraction levels than digital circuits, two new concepts are made
possible. These are watchdog timers and filtering of single-event transients.

Watchdog timers are external or internal timers, which are used to indicate liveness of whole
system or single parts. Once the timer is started, the task for the observed system is to reset the
timer before it expires. As long as the timer is running, the system or part is assumed to be alive.
On the other side, if the timer is expired, an error inside the system or part is assumed. In the
latter case, the watchdog timer will either perform a hard reset on the affected circuitry, or it will
raise error signals in a way, that other external or internal resets can be performed. The only
disadvantage is a small area overhead for the watchdog circuitry.

SET filtering is a set of three techniques to break long transient propagation paths. While all
three techniques can be found in any digital design, they are worth investigating further. The first
technique is called logic masking. There, transient effects are filtered out by logical gates. For
instance, an and-gate’s output will always be low if one input is low. In this case, the second input
can change between low and high arbitrarily or transients can occur there, but the output signal
will not change. The other way around, for or-gates, the output will always stay high if one input is
high. The second technique is called electrical masking. It is based on the transients attenuation, as
it passes through electrical gates. If the electrical path is long enough, SETs will decrease in voltage
amplitude until the voltage is too low to change the digital electric level. The third technique is
temporal masking, which deals with sample intervals of flip-flops: Whenever a transient is at a
flip-flops’ input during a sensitive edge, it will be captured. The other way around, when a SET
affects the input data wire of a flip-flop outside of the capturing interval, the inputs value will not
be stored. Therefore, the transients has no effect.

2.3.1.4 Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) are chips, containing configurable logic. They are built
from configurable logic blocks (CLBs), which consist of lookup tables and flip-flops, external pins,
internal wires, routing blocks for internal connections and hard-wired components like proces-
sors or cells for digital signal processing (DSP). FPGAs are available in three different variants:
Anti-fuse, flash-based and SRAM-based. In anti-fuse-FPGAs, the programmed logic and routing
information is stored within anti-fuse cells. These are cells with initially high resistance, where
electrically conductive paths are created during configuration. Whilst anti-fuse-FPGAs are highly
radiation tolerant, since their configuration is not stored in a memory, they can only be config-
ured once. On the other side, flash-based FPGAs store their configuration inside a non-volatile
flash memory. Therefore, the FPGA starts its tasks whenever it is connected to a power sup-
ply. Although flash-based FPGAs are reprogrammable, they have less configuration cycles than
SRAM-based FPGAs, which are the third variant. As the name suggests, SRAM-based FPGAs store
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their configuration in a volatile SRAM-memory. While SRAM-FPGAs can be configured almost an
infinite number of times, they need to be reconfigured anytime they receive power. Thus, a sec-
ondary memory is mandatory in order to provide the configuration bitstream. Because nowadays,
almost all FPGAs are SRAM-based, the term FPGA will refer to those SRAM-based FPGAs in the
remainder of this thesis [10].

The main concerns of radiation strikes hitting an FPGA are injuries of the configuration mem-
ory (CRAM). Because the CRAM contains all information about cell functionalities and routing
resources, a flipped bit in there is potentially able to affect the functionality. On the one hand,
malfunctions can occur when wires are rerouted or cut and thus, logic blocks are not connected
any more or electric shorts are created. On the other hand, the functionality can be affected if bits
of lookup tables are flipped. The latter case results in wrong calculation results. Therefore, reliable
mitigation techniques are needed to protect FPGAs [10].

CRAM protection can be achieved in three different ways. Since CRAM is equivalent to any
other memory devices in terms of radiation protection, memory scrubbing can be applied. This
protects the configuration memory from accumulation of errors. A slightly different approach of
CRAM scrubbing is called partial reconfiguration. The main purpose of partial reconfiguration
is to exchange parts of the devices functionality during operation. Therefore, some tasks can be
done faster or with less power consumption. However, partial configuration can also be seen as
an approach of partial CRAM scrubbing. Compared to complete scrubbing approaches, where the
whole memory is scrubbed, partial reconfiguration has the same effects within a defined CRAM
region. The third approach to protect the configuration memory are ECC codes. Error correction
codes can be used to correct single or multiple bit errors. In order to improve their efficiency, bit
interleaving becomes reasonable.

Spatial redundancy, especially triple modular redundancy, is also a popular radiation mitigation
technique when protecting FPGAs. TMR can be applied at different granularities. On small scales,
flip-flops can be triplicated and their output signals can be voted locally. This prevents wrong data
at the input of combinatorial paths and thus wrong calculation results. However, local TMR can
just mitigate upset events in flip-flops, no transient errors in combinatorics. At a global scale, TMR
can triplicate the functionality, including pins, reset lines and clock distribution trees. Since pins
are also triplicated, an external voter is needed. The disadvantage of global TMR is, that replicas
of internal logic are not placed into distinct areas of the FPGA.

The reliability oriented place and route algorithm (RoRA) can be used to fill the gap of global
TMR. RoRA routes the replicas of configured logic into distinct areas of the chip with no inter-
connections, except for the input signals. Thus, radiation strikes are only able to impact one out
of three logic structures. As a result, the external voter is always able to find a majority. Another
advantage of RoRA is, that the algorithm prefers short connection wires, because they are less
likely to be affected by transient effects. As the only disadvantage, the constraint of distinct area
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Figure 2.10: Schematic structure of instruction-level redundancy.

prevents the routing algorithm from optimum routing. Thus, the overall performance is reduced
[19].

2.3.1.5 Software

Apart from hardware-based radiation mitigation approaches, software can also be designed in a
radiation tolerant way. In all cases, software-based techniques are using temporal redundancy as
a basis. In general, three approaches are possible, based on the abstraction level.

Instruction redundancy is at the lowest abstraction level. As shown in figure 2.10, any instruction
is executed multiple times in sequence, but each instruction execution has its own distinct set of
variables. Thereafter, all results are compared by a majority voter. Apart from a massive overhead
in computation time and RAM usage, instruction redundancy is not transparent for software
developers. During software development, the programmer is in charge of caring about data
copies and multiplication of instructions. Furthermore, this approach is not applicable when
interrupts are used, because an interrupt service routine is just called once. On the other side,
instruction redundancy has nearly 100 % coverage for data and execution flow faults.

Task-level redundancy works on a higher abstraction level. Instead of re-executing each in-
struction separately, tasks are split up into three execution stages and consistency checks, during
software design. As seen in figure 2.11, each task starts with data acquisition, where input data is
collected (red incoming arrows). Afterwards, computations are separated into a data processing
stage. Finally, during data presentation, computation results are emitted to other tasks, depicted
by red outgoing arrows. In order to check for errors, data consistency checks are applied after ac-
quisition and processing of data. The error detection and correction rate of task-level redundancy
is, as for instruction redundancy, nearly 100 %. However, drawbacks are impairments in system
architecture design, compatibility issues with available libraries and loss of performance.
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Figure 2.11: Task-level redundancy by separating tasks into three execution stages and performing
consistency checks.

Redundancy at application level uses the concept of hypervisors, which are also used for virtual
machines on personal computers. By using hypervisors, a whole application can be executed
multiple times in parallel. The functionality of application is ensured by watchdogs and mon-
itoring of memory interfaces. Application-level redundancy is therefore completely transparent
for software engineers, but the error detection and correction capabilities are below 100 %. As for
all software-based approaches, hypervisor-based techniques have high overheads in computation
time.

2.3.1.6 System Protection

In contrast to software- or hardware-based radiation mitigation techniques, there are also strate-
gies on system architectural level. System-based mitigation techniques can contain redundancy
approaches, internal or external supervisions, or physical protection from radiation. For redun-
dancy approaches, duplex architectures, TMRs, temporal- and software-bases redundancies and
mixtures of them are possible. Supervisions can be realized as watchdogs at system or component
level or by placing current monitoring circuits.

Shielding is the most simple technique. It can not only protect electronic components from
latch-ups, transients and upsets, but also improve their lifetime by increasing the total ionizing
dose. Suitable materials are aluminium or hydrogenous materials for light shielding and tungsten
for heavy shielding. Their use and thickness are highly dependent on the expected radiation
environment. If more radiation is expected, mainly materials for heavy shielding will be used with
an increase in thickness. On the other hand, for less irradiated environments, a thin aluminium
layer can be used. Apart from putting the whole system into a shielded box, more vulnerable
components can have extra shields. In any case, an increase in weight can be denoted as the only
disadvantage [14].

Watchdog timers, as known from 2.3.1.3, can also be used on system level. Additionally, the
entire system or system parts can be power cycled, when a corresponding watchdog timer exceeds.
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Power cycling has the ability to remove malfunctions, induced by single-event effects by with-
drawing the power sources. At the moment, when power lines are cut, all volatile memories will
be erased.When turning the power back on, the system is restarted in a defined initial state. In
case of FPGAs, power cycling yields to erasure of the CRAM, and therefore, the logic must be
reconfigured.

Current monitoring is used to protect from latch-up events. When single-event latch-ups are
induced into a circuit, high current flows occur. High currents need to be mitigated, since they
yield to thermal effects, which can destroy the device. As high current flows can be detected by
current monitoring circuits, mitigation can be done by immediately removing all power supplies
[3].

Lockstep architectures are a special kind of software redundancy, which is applied at system level.
As advantages, all software-based faults are detected without constraints on software design. Thus,
software needs no modification and usage of third-party libraries and interrupts is possible. Instead,
the error detection is based on a second processor, called backup processor, and a consistency
checker. Each processor has read access to the memory and runs the same software, but just the
main CPU is allowed to write data. Thus, the consistency check will compare memory addresses
and data at both memory buses. The disadvantages of lockstep architectures are area and power
overhead of one CPU and one checker and a small overhead in processing time.

2.3.2 Possible Levels for Radiation Mitigation

A newly created system goes through several stages of development and production, before it can
fulfil its desired purpose. During this development and production process, radiation mitigation
techniques can be applied at almost all stages. In figure 2.12, these stages are denoted together
with more specific resources for these stages and an overall radiation hardening manner. The latter
one can either be radiation hardening by process (RHBP), where special techniques are applied at
manufacturing process level, or radiation hardening by design (RHBD), where other techniques
are used during the design process [7], [18].

During manufacturing process, radiation can be mitigated by selection of process parameters.
This includes modifications of doping profiles, usage of specific materials and optimization of
deposition processes. Changes of the manufacturing process refereed to the RHBP group.

At the lowest level of electronics design, the physical layout level, radiation hardening can be
achieved in two ways. On the one hand, the physical layout of transistors can be changed in order
to mitigate selected effects. On the other hand, the transistor’s placement can be changed to reduce
radiation sensitivity. For instance, less transient events will be observed, as the total wire length
becomes smaller. Since physical layout is optimized during circuit designing, layout optimization
belongs to the group of RHBD [7].
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Figure 2.12: Overview of stages, where radiation mitigation is possible.

One level higher, at the circuit architecture level, radiation mitigation techniques are specific to
the circuits nature or family. The nature can be either digital, analogue or mixed signal, while
ASIC, FPGA and memory are values for the family property. At the architecture level, intellectual
property (IP) is used to ease the design process. The majority of mitigation approaches for the
architecture level make use of error detection and correction (EDAC) and redundancy [7].

The electronic system level is the highest level, where radiation mitigation can take place. Mitigation
techniques for electronic systems are mostly applied at component level, unit level or software level.
Even across multiple chips, radiation mitigation techniques can be applied. Most approaches at
the electronic system level are based on spatial redundancy. It is also possible to apply current
monitors, power cycling and watchdog timers.





3 Selected Radiation Mitigation Techniques for
the EIVE Project

The EIVE mission has specific requirements towards radiation tolerance, leading to mission-specific
constraints. These requirements and constraints are investigated in this chapter. Thereafter, known
radiation mitigation techniques from section 2.3 are assessed due to those requirements and con-
straints.

3.1 Mission Requirements

The operational duration for satellites is mainly governed by battery recharging cycles and radiation
effects. Especially the total ionizing dose limits the total lifetime, because unrecoverable effects are
induced by the TID. Furthermore, since batteries will slowly use their capacity and in some cases
their functionality, they also have an impact on EIVE’s lifetime. By regarding both limitations,
EIVE is designed to be operative for one year in LEO and will hopefully operate for a longer time.
In any case, the EIVE PLOC shall remain operative at least during the planned satellite lifetime of
one year.

Because received data will be compared to known sent data, the correctness of downlink sample
data and accurate functionality of the payload computer must be guaranteed. For the case, that
incorrect data is sent through E/W-band link, a comparison to original data on ground will not be
meaningful. Therefore, error correction and indication of data corruption is required for EIVE. Due
to this argument and additional possible destruction of electronic devices, the case of inaccurate
functionality must be completely avoided. Therefore, an error-free operation during uptime is
desired.

Another functional requirement deals with single-event error observation. All errors in the MPSoC,
induced by SEEs, should be logged into the housekeeping report and written to a file in the eMMC-
memory. This requirement is proposed by TAS, because the multiMIND-platform in the satellite
was recently developed and therefore, no in-space radiation data is available. Thus, error logging
will enable product improvements and can additionally be evaluated to regard transmission errors.

23



24 3 Selected Radiation Mitigation Techniques for the EIVE Project

3.2 Mission Constraints

Beside mission requirements, constraints must be fulfilled, when contributing to the EIVE payload
computer. These constraints are divided up into three groups. The first group contains global
constraints, which are important for any contributor. Secondly, there are constraints for radiation
mitigation techniques, which are important for developers of the radiation subsystem. The third
group contains MPSoC-specific constraints.

3.2.1 Global Constraints

The first global constraint deals with lifetime. As EIVE is designed to operate for one year, no
missions tasks at later points in time can be reliably scheduled. Loosely spoken, any component
may have been damaged after this duration. Of course, if EIVE is still able to operate, it can perform
tasks after the expected lifetime.

Secondly, mission and system planning need to take care of the overall power budget. Since one
battery charge is needed to perform one E/W-band transmission, other tasks during the same time
are very limited in terms of power consumption. Therefore, it must be carefully considered, which
tasks are necessary during an E/W-band downlink. Power characteristics are briefly summarized
in table 3.1.

Table 3.1: Available and consumed power in the EIVE project.
Name Available power Source

Power needed by MPSoC 6.4 W (0.8 W static, 5.6 W dynamic) Xilinx power report
Power needed by DAC approximately 5 W Measurements

Power needed by downlink approximately 10 W Measurements
Total power needed 19.1 W at −20 ◦C, 22.5 W at 50 ◦C Measurements

Total available power 25 W Fixed by IRS

Finally, operational time slots for the payload computer are limited by two constraints. On the
one side, transits over the E/W-band receiving station, located in Stuttgart, are limited by EIVE’s
trajectory. In numbers, EIVE will pass Stuttgart two times per day, at about 10 o’clock AM and
PM. Since the transmission duration is limited by the elevation angle to a 10 minutes time interval
[20] and other mission tasks are less likely, the per-day uptime could only be as high as 20 minutes.
On the other side, one transmission interval will drain the whole battery and a following charging
process will take one day. Thus, the per-day uptime is upper-bounded to 10 minutes in most cases.

3.2.2 Constraints for Radiation Mitigation Techniques

The necessity and selection of radiation mitigation strategy is highly dependent on the radiation
environment and thus, the selected orbit. EIVE’s orbit is constrained between 450 km and 550 km
altitude. Therefore, EIVE needs to face radiation challenges as expected in the lower earth orbit.
Typically, these radiation events are mainly caused by high-energy trapped protons, created by
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effects of the South Atlantic anomaly. Because the orbit is already set, no radiation mitigation tasks
for other radiation environments need to be considered.

Next, radiation impacts can be effectively reduced by shielding either the whole satellite completely
or important components separately. Since EIVE is a six space-unit large nano-satellite, its space
is already tightly packed by essential parts. Thus, room for shielding elements is limited and
radiation effects will be more likely. As a consequence, radiation effects must be mitigated within
the electronic system.

As known from section 3.2.1, power is a limited resource in EIVE. Therefore, radiation mitigation
techniques must be selected and implemented in a way, that planned operations are not affected.
Concretely, they should not be affected in terms of available power and operation duration.

3.2.3 Constraints for the MPSoC

FPGA-specific constraints are applying for the EIVE mission, because the payload computer is
implemented and synthesized into a Xilinx UltraScale+MPSoC.

The first such constraint applies to any FPGA-based project and has direct impacts on the function-
ality. Any flip-flop requires setup- and hold-times for its input signals. If those times are violated,
wrong data will be captured at sensitive edges. In order to avoid storage of incorrect data, setup-
and hold-times must not be violated.

Secondly, resources on the MPSoC are limited. These are lookup-tables, distributed RAM, block
memories (BRAM), gigabit-transceivers, integrated processor cores and other hard-wired compo-
nents. Therefore, a synthesized design cannot exceed the limit of available resources. Otherwise,
the design will not fit into the FPGA and cannot be implemented. Table 3.2 is showing the available
and the occupied resources of the MPSoC for the EIVE project. This logic constraint also applies to
any FPGA-based project.

Table 3.2: Available and used resources in the Xilinx UltraScale+MPSoC for the EIVE mission from
Xilinx utilization report.

Resource Used Available Used %
Lookup-tables (LUT) 86474 214604 40.29

LUTRAM 5179 144000 3.60
Flip-flops 89970 429208 20.96

BRAM 186 714 26.05
DSP 1 1973 0.05

Gigabit transceivers 9 16 56.25
Global clock buffers 28 404 6.93

Mixed-mode clock managers 2 4 50.00

The third constraint is EIVE-mission specific. The configuration of all hard-wired components,
especially the processor system, is stored within a board support package (BSP). In case of EIVE,
the BSP is provided by TAS. Hence, there are less degrees of freedom available to configure the
MPSoC.
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3.3 Consideration of Radiation Mitigation Techniques

In this section, radiation mitigation techniques form section 2.3 will be assessed in terms of con-
straints, known from section 3.2.

3.3.1 Techniques with Information Redundancy

Information redundancy is available in two different flavours. On the one hand, redundancy can be
added at the granularity of files, done by saving the same file multiple times. For EIVE, duplicated
or triplicated storage of files is possible, because 32 GB are available and the majority of files is not
larger than approximately 99kB. To improve the reliability, file copies can be distributed across
two distinct memory chips. These redundant memory chips are also possible, but due to time
constraints, both techniques will not be realized in this thesis. However, redundant memories will
be implemented before launch.

On the other hand, redundancy can be added at bit- and byte-granularity. Therefore, a stored file
will contain the original content and additional bits, needed by error correction and detection codes
(EDAC). Due to the fine granularity, it is possible to use different EDAC codes for different groups
of files. For EIVE, data files are split up into three groups. The most important data group contains
E/W-band validation data. This group is important, because their content is known on ground
and will be compared to received data. Therefore, all samples are protected by a heavy EDAC
technique, as explained in chapter 5. The second-most important group contains log files. They
contain performance and soft-error statistics, recorded during operation. If log files are corrupted,
past metrics can be lost. Consequently, they should be protected by EDAC codes, but there is
no need for ultimate protection. However, log-file protection is not implemented, because of its
additional latency and increased power consumption during log-writing operations. The least
protected category contains pictures, taken by the on-board camera. When pictures are lost, new
ones can be taken with almost no effort. Also, as they have the largest size, EDAC codes will further
strongly increase the picture size and power consumption for decoding. Therefore, taken images
are not protected by any error codes. Another advantage of EDAC codes is the ability to correct
a specified amount of bit errors. Thus, errors during reading of encoded files can be detected and
corrected data can be written back to avoid accumulation of incorrect bits.

Apart from files and stored data, the concept of error correction and detection codes can also be
applied to signal wires and data buses, either local on one chip or between chips. For EIVE, error
detection codes without correction capabilities are used for communication between OBC and
supervisor, and between OBC and MPSoC. These codes are implemented in terms of a one-byte-
sized cyclic redundancy checks (CRC). Because CRC codes cannot correct errors, the retransmission
of data is indicated by the receiver, if an error is detected. However, this usage of error detection
code was determined by implementing the space-packet standard for communication between
chips [21], which was implemented, before this thesis started.

To close the assessment of information redundancy techniques, the above investigated techniques
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are summarized in table 3.3.

Table 3.3: Summary of information-redundancy based radiation mitigation techniques.
Granularity Memory

overhead
Time overhead Expected mitigation capabilities

Memory
chips

2× almost none, only com-
parison logic

high, but error source remains un-
known without additional concepts

File level n× for n
copies

n times if on one chip, n
2

times if on two chips for
reading, O(n2) for com-
paring

high, if minority of copies is corrupted,
the original can be reconstructed

Bit level codeword_bits
in f ormation_bits high, dependent on the

used code
high, if code is designed for expected
errors

Signals None Small if no error was de-
tected, additional trans-
mission latency on error

Low, but increased by retransmission
in case of errors

3.3.2 Spatial Redundancy

Spatial redundancy is characterized by multiple instances of the same component. Thus, more
chip area is needed and computations are done multiple times in parallel, before the results
are compared. Hence, for spatial redundancy, the power consumption increases linearly with the
number of redundant instances. Since the power budget for EIVE is limited and power consumption
is close to the limit, spatial redundancy in only possible for small parts of the complete system. This
constraint holds for duplex architectures, triple modular redundancy and lockstep architectures.

For this thesis, there are two reasonable places, where spacial redundancy can be implemented.
On the one hand, duplex architectures, TMR or lockstep architectures can be implemented in the
MPSoC. However, global approaches are not possible, as the utilization will be increased to more
than 100 % for gigabit transceivers or clock managers. Local spatial redundancy approaches might
be possible in some cases, for example in data filtering tasks. Nevertheless, local approaches come
along with partial software redundancy, since the processor system (PS) controls the programmable
logic (PL) and almost all PL parts are connected to the PS by an AXI-bus system. Because of the
added complexity to already existing and tested software and hardware, redundancy approaches
in the MPSoC are not used.

TMR can be extended by the reliability place and route algorithm. There, all logic is triplicated and
routed into different, distinct parts of a FPGA. Additionally, the minimum wire distance is used as
routing constraint, because transient events are less likely on short wires. Although the concept is
reliable, RoRA is not used in the EIVE project, because of the massive overhead in area and power
consumption. Furthermore, the pricing and complexity of the needed routing tool Precision Hi-Rel
are to high.

On the other hand, a duplex architecture can be implemented around the two eMMC-memory chips,
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which are accessible by the MPSoC. In this case, the voting logic can be implemented in software,
since both memory controllers are pinned to the PS. As stated in 3.3.1, redundant memories will
not be part of this thesis, due to time constraints. Anyhow, they will be implemented before launch.

At the end of this section, all three spatial redundancy approaches will be compared in table 3.4.
In there, overhead values are compared to a system without spatial redundancy.

Table 3.4: Summary of spatial-redundancy-based radiation mitigation techniques.
Name Space and power overhead Used for

Duplex architecture 2× + comparison logic eMMC-memory redundancy
Triple modular redundancy 3× + comparison logic Not used

Lockstep architecture 1 processor + comparison logic Not used
RoRA 3× + comparison logic Not used

3.3.3 Temporal Redundancy

Temporal redundancy can be implemented either by hardware or by software. Since the electronic
system is based on TAS’ multiMIND, the only place for custom circuitry is the integrated MPSoC.
Therefore, the minimal level sensitive latch (MLSL) approach is not applicable. This is because
MLSL is based on a latch structure and latches have to be avoided in FPGA designs [22]. The
other hardware-based technique, triple temporal redundancy (TTR), can be theoretically applied
in the MPSoC. Practically, critical paths length will be increased and therefore, the desired clock
frequency cannot be reached. Apart from these timing issues, TTR faces the same issues as TMR
regarding power consumption. Therefore, TTR is not used in the EIVE project.

Beside MLSL and TTR, the concept of temporal redundancy can also be applied to software on
different levels of abstraction. The approach at the highest abstraction layer, application-level
redundancy, is based on the concept of virtual machines. Therefore, a hypervisor software is
necessary. For EIVE, a hypervisor-based temporal redundancy approach is not possible, because
hypervisors are scheduling applications according to their metrics. By implication, EIVEs software
is interrupted in undefined places, which makes it impossible to perform tasks like filling the
transmission buffer.

One abstraction level lower, task-level based temporal redundancy differentiates between data
acquisition, data processing and data presenting. Hence, software must be designed in a way to
make this differentiation possible throughout the whole planning and implementation process.
Because task-level redundancy was never introduced or considered at the beginning of EIVE, it
is hard to integrate task-level temporal redundancy afterwards, as it would change the whole
implemented software. Therefore, task-level redundancy is not used by EIVE.

At the lowest abstraction level, instruction redundancy executes each instruction a defined number
of times in sequence, before a consistency check is applied. Beside the added latency, power
consumption and memory usage, instruction redundancy is not compatible with interrupt-based
programming paradigms. As interrupts are used by the UART transceiver and the SEM-IP in the
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EIVE-project, it is impossible to apply instruction-based redundancy.

To summarize this section, EIVE is not using any temporal-redundancy based radiation mitigation
approaches. This is reasoned by the use of FPGAs, which disables the usage of MLSL and TTR
techniques, and the software design, which makes implementations of software-based approaches
impossible.

3.3.4 No redundancy

Apart from already investigated approaches, there are also techniques without need of redundancy.
The most basic technique is physical shielding against radiation. EIVE is shielded by a aluminium
shell. Because the available space inside is limited to six space units, i. e. six units of 10×10×10
cm3, there is no space left for additional shielding of individual components. The concept for
physical shielding was done during physical design of the EIVE satellite and is thus not in the
scope of this work.

During electrical design, TAS selected all components for multiMIND. Therefore, components were
not only selected by their electrical characteristics and high efficiency, but also with respect to their
reliability and radiation tolerance. The only digital hardware component, selected by the ILH is the
DAC-board. Because all components were chosen before the start of this thesis, the part selection
will not be investigated further. The same applies to selective use of resources.

The MPSoC in multiMIND is listed as non space-grade part. Therefore, extra protection is needed
to guard the MPSoC from radiation effects, especially from SELs. Since latch-up events yield to
current spikes, they could be detected by a current monitoring circuit. In the EIVE-project, a current
monitoring circuit for the MPSoC is implemented in multiMIND by TAS. After current spikes are
detected, power is withdrawn from the MPSoC within 100µs [3]. The power cycling is completed
by reconnecting the power lines to the MPSoC. Thereafter, the MPSoC will start booting and can
operate in a safe and defined state.

When other single-event effects occur in the MPSoC, they might not be detected by multiMIND.
This is the case, when upsets affect the MPSoCs expected internal behaviour, more precisely, if
data in flip-flops or BRAMs is damaged. However, such errors can yield to altered functionality of
software in the PS or hardware in the PL. In order to detect these SEE-induced errors, multiMIND
observes the PS and PL by connecting them to distinct watchdogs. In case one watchdog is expired,
the MPSoC will also be power-cycled and continue from the well-defined initial state [3]. As a
slightly modified version of watchdogs, the used SEM-IP core in the MPSoC emits a heartbeat
signal, which is observed by additional logic. Whenever the heartbeat goes out of specification,
the MPSoC will request a power-cycle for itself. More information about the heartbeat observation
can be found in section 4.2.2 [12].

As stated by the requirements in section 3.1, the MPSoC must operate highly reliable, especially
during E/W-band transmission. Since malfunctions of FPGAs are mainly caused by single-event
upsets, which induce flipped bits into the configuration memory, it is mandatory to find and
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correct those errors. The applied concepts can be error correction codes, golden images and
memory scrubbing. While error correction codes are already investigated in section 3.3.1, the
remaining two concepts are not assessed up to now. Any memory scrubbing technique starts at
the beginning of a memory and reads it word by word. If an error is detected in one word, either
by EDAC codes or by comparison to a golden image, the damaged data is corrected. Afterwards,
the corrected data will be written back into the memory. Once a read and correction cycle has been
finished, the next cycle will start. For EIVE, memory scrubbing techniques are used for the FPGAs
configuration memory are and implemented by the SEM-IP core, described in chapter 4. However,
the board support package is delivered by TAS and the possibility to correct the CRAM from a
golden image is not provided there. Nevertheless, since bitstreams for the MPSoC are stored in
redundant NOR-memories, one of them can be considered as golden image, when the FPGA is
completely reprogrammed.

Additionally, the whole configuration memory can be reloaded by power-cycling the FPGA. In
EIVE, power-cycling is used when watchdog timers exceed, high currents are detected in the MPSoC
or uncorrectable errors are detected in the configuration memory. Furthermore, only chunks of
the configuration memory can be refreshed, by using the technique of partial reconfiguration.
Because partial reconfiguration implies massive changes in the PL design and have impacts to PL
performance, partial reconfiguration is not used for EIVE.

The concept of bit interleaving spreads multi-bit errors into distinct and distributed data words.
Therefore, EDAC-codes are able to mitigate more errors without an increasing complexity. Because
the concept of interleaving and EDAC-codes is very powerful, Xilinx uses bit interleaving and
error correction codes in the CRAM of MPSoCs from the UltraScale+ series [12]. Furthermore, bit
interleaving is used to protect E/W-band sample files, because they must not be corrupted during
flight.

To ensure accurate internal state changes in finite state machines, FSM states can be coded in robust
ways. In theory, this technique is easy to implement. On the other side, in practice, realization
of safely coded states is not possible, because EIVE’s FPGA design is IP-based. Since IP-based
design mainly deals with closed-source IP blocks, finite state machines inside IPs are not visible to
designers and therefore, coding of FSM states is impossible.

As described in section 2.3.1.3, SET filtering in data paths can be used to mitigate transient event
effects. Beside consciously implemented elements for filtering SET pulses, the majority of them is
filtered out, if the design contains and- and or-gates, long data paths and edge-triggered storage
elements. Therefore, EIVE uses the SET filtering technique in an implicit way.

3.3.5 Implemented Radiation Mitigation Techniques in EIVE

To close this chapter, all radiation mitigation techniques, implemented in EIVE are summarized in
table 3.5. There, the contributing institutions for each technique and references to other sections
of this thesis are given as additional information. Table 3.5 reveals, that temporal and spatial
redundancy approaches are not possible in EIVE, due to the power and timing constraints. The
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only exception is a duplex architecture, where two eMMC memory chips are configured in a
redundant way. Almost all other radiation mitigation techniques are possible and thus applied, in
order to extend EIVE’s lifetime.

Table 3.5: Radiation mitigation techniques for EIVE.
Technique State Contributors References

Redundant files Done in future ILH 3.3.1
Redundant memory chips Done in future ILH 3.3.1

EDAC in files Done This thesis 2.3.1.1, 3.3.1, 5
EDAC on signals Done TAS, IRS 2.3.1.1, 3.3.1

Duplex architectures in MPSoC Not possible 2.3.1.2, 3.3.2
TMR in MPSoC Not possible 2.3.1.2, 3.3.2

Lockstep architectures in MPSoC Not possible 2.3.1.6, 3.3.2
Duplex architecture for eMMC Done in future ILH 2.3.1.2, 3.3.2

RoRA Not possible 2.3.1.4, 3.3.2
MLSL Not possible 2.3.1.2, 3.3.3
TTR Not possible 2.3.1.2, 3.3.3

Application redundancy Not possible 2.3.1.5, 3.3.3
Task redundancy Not possible 2.3.1.5, 3.3.3

Instruction redundancy Not possible 2.3.1.5, 3.3.3
Shielding Done IRS 2.3.1.6, 3.3.4

Use of hardened parts Done IRS, TAS 2.3.1.2, 3.3.4
Current monitoring Done TAS 2.3.1.6, 3.3.4

Watchdogs Done TAS 2.3.1.3, 3.3.4
Heartbeat observation Done This thesis 3.3.4

Memory scrubbing in CRAM Done This thesis 2.3.1.1, 2.3.1.4, 3.3.4
Golden image Done TAS 3.3.4
Power cycling Done TAS 2.3.1.6, 3.3.4

Partial reconfiguration Not possible 3.3.4
Bit interleaving in CRAM Done Xilinx 2.3.1.1, 3.3.4

Bit interleaving for samples Done This thesis 2.3.1.1, 3.3.4
Hardened FSMs Not possible 2.3.1.2, 3.3.4

SET filtering Done implicitly This thesis 2.3.1.3, 3.3.4





4 Integration of the SEM-IP Core into EIVE

In chapter 4, the process of integrating the SEM-IP core is shown. Therefore, the need of the
SEM-IP is motivated in section 4.1, before the the SEM-IP is described in section 4.2. Afterwards,
the position in EIVE’s programmable hardware system is outlined and two different approaches
of integration are depicted. In addition, the selection of one integration approach is justified. The
chapter is closed by a showing the processor system’s side of SEM-IP integration and the testing
results.

4.1 Necessity of the SEM-IP Core

Since EIVE operates in the lower earth orbit, effects caused by radiation, are more likely than
on earth. For digital electronics, these effects can be high current flows, damage of devices or
components, flipped bits in data and wrong voltages on signal wires. While high-currents and
damages must be prevented by external devices, provided by TAS, and wrong voltages on signal
wires will almost always have no effects on digital circuits, flipped data bits can have various
effects. If user data is affected, wrong calculation results can be observed. When configuration bits
of FPGA devices are flipped, either no effects, design malfunctions or changed pin behaviours can
be noticed. In the worst case, the FPGA itself or external, connected components can be destroyed,
because their device register contents are altered.

Indeed, the soft error mitigation (SEM) IP-core is not able to remove radiation from the FPGA, but it
is able to mitigate, and in most cases also to eliminate radiation-caused effects in the configuration
memory (CRAM). As result, changed circuit and pin behaviours, as well as corruption on external
devices can be avoided in most cases. In order to increase the lifetime of EIVE and ensure 100 %
uptime during E/W-band transmission, the use and integration of the SEM-IP core is indispensable.

4.2 The Soft-Error Mitigation IP Core

CRAM in all Xilinx FPGAs, and thus also in the used Xilinx UltraScale+MPSoC, is organized as an
array of frames, as shown in figure 4.1. In the used XCZU6EG MPSoC, the array of configuration
frames has 48054 elements. Each configuration frame itself consists of 93 words with a size of 4
bytes or 32 bit. In sum, the configuration memory for EIVE has a size of 17.048 MB, uniformly
distributed across the whole chips space [12].

The MPSoC uses three mechanisms to enable the SEM-IP core to detect and correct errors. For
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Figure 4.1: Configuration memory layout of the Xilinx UltraScale+ XCZU6EG.

detection, a CRC code is applied to the entire frame array. These CRC code enables robust error
detection with low computational effort. To enable error correction, an error correction code (ECC)
is applied to each configuration frame. Xilinx does not specify, which code is used, but the used
ECC is able to correct four bit errors per frame, more precisely, four bit errors per 2976 bits. In
order to effectively correct more errors, bits from one configuration frame are not stored next
to each other. They are stored next to bits from other configuration frames. This technique is
called bit interleaving. For the case, that a multi-bit error cannot be corrected, the SEM-IP can be
configured to fetch whole configuration frames from external memory devices and write them to
the corresponding corrupted frame [12].

Anytime, an error is detected by the SEM-IP, two different behaviours can be configured. On the
one side, the error can be corrected immediately, regardless of the caused effects. On the other side,
if the configuration frame is not used by the implemented design, or the flipped bit is known to
have no effects, a correction can be omitted. This second behaviour is desired, when only small
parts of the configuration memory are relevant for the design.

Like any VHDL component, the SEM-IP core must be tested as a single component during its
development. More important for users, it must pass integration tests. Typically, both tests are
done by using a simulation testbench, including a signal generator, device under test and an output
signal analyzer. Since simulations are independent of the later used device, they are unaware of
configuration memories. Thus, there is no chance to simulate the SEM-IP core during integration
tests. Consequently, the only possibility to test the integration is to run the design on existing
hardware. Therefore, the SEM-IP core provides the ability to inject errors, read the content of
configuration frames during testing periods, read configuration registers and send ASCII-coded
reports via an UART interface.

Compared to the whole EIVE design, the SEM-IP’s overhead in used hardware is almost negligible.
Only 425 LUTs, 490 flip-flops and 4 BRAMs are used.

4.2.1 Latency Times of the SEM-IP Core

Apart from the mentioned correction and detection capabilities, bit errors are existent until they are
corrected. During this time, all negative effects, caused by flipped bits can potentially be observed.
Therefore, quickly detected errors may have less impacts on the design than errors, which lasts in
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the CRAM for longer time. To calculate the latencies, two global parameters are set by the used
XCZU6EG device. The first parameter is the maximum possible frequency ICAP_FMax, to access
the internal configuration via the internal configuration access port (ICAP), provided in [12], and
the second one is the error detection time at this frequency.

ICAP_FMax = 200MHz (4.1)

One more parameter is given by the actually used ICAP access frequency, which is set in the Vivado
project. This is determined by the designed system and can differ between projects. For EIVE, the
actual used frequency was read from the PL configuration in Vivado and is given below.

FrequencyACTUAL = 100MHz (4.2)

To simplify further calculations, a slowdown factor is introduced. It is defined as the ratio of
maximum ICAP access frequency, defined in (4.1), to the actually used frequency from (4.2).

FrequencySlowdown =
ICAP_FMax

FrequencyACTUAL
=

200MHz
100MHz

= 2 (4.3)

To calculate the latencies for start-up, detection, correction and classification, Xilinx provides values
for UltraScale+ devices at ICAP_FMax, as shown in (4.4), in [12].

BootTime_FMax = 127ms (4.4a)

InitializationTime_FMax = 71ms (4.4b)

DetectionTime_FMax = 28ms (4.4c)

CorrectionLatencyCorrectable,FMax = 44µs (4.4d)

CorrectionLatencyUncorrectable,FMax = 22µs (4.4e)

Classi f icationLatencyCorrectable,FMax = 154µs (4.4f)

Classi f icationLatencyUncorrectable,FMax = 5µs (4.4g)

From these values, the startup latency at ICAP_FMax is determined by the sum of boot- and initial-
ization time from (4.4a) and (4.4b), respectively. However, the actual startup latency considered
the desired ICAP frequency and the actual startup latency is determined by multiplying with
FrequencySlowdown. As result, the SEM-IP core takes 396 ms to start. During this time, no errors
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can be mitigated.

StartupLatency_FMax = BootTime_FMax+ InitializationTime_FMax

= 127ms+71ms

= 198ms (4.5a)

StartupLatencyACTUAL = StartupLatency_FMax ·FrequencySlowdown

= 198ms ·2

= 396ms (4.5b)

To calculate latencies for detection, correction and classification, only a multiplication with
FrequencySlowdown is necessary. For correction and classification, a differentiation between cor-
rectable and uncorrectable errors is necessary, since they are treated in different ways. The reason
is explained in section 4.2.3. From the calculations, all results are given in (4.6).

DetectionTimeACTUAL =DetectionTime_FMax ·FrequencySlowdown

= 28ms ·2 = 56ms (4.6a)

CorrectionLatencyCorrectable,ACTUAL = CorrectionLatencyCorrectable,FMax ·FrequencySlowdown

= 44µs ·2 = 88µs (4.6b)

CorrectionLatencyUncorrectable,ACTUAL = CorrectionLatencyUncorrectable,FMax ·FrequencySlowdown

= 22µs ·2 = 44µs (4.6c)

Classi f icationLatencyCorrectable,ACTUAL = Classi f icationLatencyCorrectable,FMax ·FrequencySlowdown

= 154µs ·2 = 308µs (4.6d)

Classi f icationLatencyUncorrectable,ACTUAL = Classi f icationLatencyUncorrectable,FMax ·FrequencySlowdown

= 5µs ·2 = 10µs (4.6e)

Any error correction cycle contains the sequence of detection, correction and classifica-
tion. If classification is disabled, the state changes will take the time, determined by
Classi f icationLatencyUncorrectable,ACTUAL. Therefore, the cycle durations can be calculated as sum
of DetectionTimeACTUAL, CorrectionLatencyACTUAL and Classi f icationLatencyACTUAL. The results are
given in table 4.1. As visible, the detection time with 56 ms is the major part of the total durations.

Table 4.1: Error mitigation durations for different error types and SEM-IP configurations.
Error type

Correctable Uncorrectable

Classification
Enabled 56.396 ms 56.054 ms
Disabled 56.098 ms 56.054 ms
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Figure 4.2: Interfaces of the SEM-IP core.

4.2.2 Structure and Submodules

The SEM-IP core consists of one controller, which is the central element, and eleven interfaces,
depicted in figure 4.2. There, the interfaces are grouped by their purpose. At the top, the ICAP,
ICAP arbitration and FRAME_ECC interfaces are directly connected to the MPSoCs configuration
memory or CRAM control registers. Interfaces, used for communication with the SEM-IP are
grouped to the left side. Through the command and monitor interfaces, instructions can be sent,
while the status and monitor interfaces are used to track the overall operation. At the bottom,
three interfaces to simplify the integration process are shown. Each of the remaining interfaces
its own group. Through the auxiliary interface, the SEM-IP can be notified of SEEs, which were
observed in other parts of the design and not visible to the controller. The last remaining interface,
the fetch interface, is used to get data from external sources and forward it to the controller. This
data contains information of essential configuration bits. The remainder of this section briefly
summarizes the purpose of each component, to make the integration more intelligible [12].

As central component of the SEM-IP core, the controller deals not only with error correction and
detection. The controller also communicates with the system, where the SEM-IP core is integrated.
Therefore, the controller can interact with the command, status and monitor interfaces for low-level
communication and with the UART interface to communicate at a higher level. If an external data
source is enabled, the controller also initiates the fetch of data, needed for error classification. As
with command interfaces, a low-level fetch interface and a high-level master SPI flash interface are
provided to request data. Since the SEM-IP core can be used to control the overall system error
mitigation strategy, external detected errors can be forwarded to the SEM controller via an auxiliary
interface. Therefore, the controller is also in charge of processing external errors. To prevent the
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user from wrong wiring, the controller is hidden inside the IP core.

In order to enable CRAM error detection and correction, the controller needs access to the MPSoCs
configuration memory. That access is controlled by the ICAP arbitration interface. In there, logic
for sharing the internal configuration access port (ICAP) is implemented. Thus, also other systems
in the design are allowed to access the CRAM. As a side effect, the controller can be paused, when
ICAP access is withdrawn. Since the user has to hand-off access, the ICAP arbitration interface is
always visible and mandatory to use.

Whenever ICAP access is granted, the ICAP interface is used to access the CRAM. More precisely,
data can by read from and written to the configuration memory. Because the read and written data
should not be used outside of the controller, the ICAP interface is hidden in the SEM-IP core.

UltraScale+ MPSoCs use native mechanisms to correct errors. Their state is exposed to PL users
via an MPSoC-internal FRAME_ECC interface. To notify the controller when errors are corrected
or uncorrectable errors are found, the SEM-IP-local FRAME_ECC interface is present. Since other
design parts can be connected to the MPSoC-internal FRAME_ECC interface, there is no need for
the SEM-IP to expose its ports.

The status interface contains two signal groups. The first group contains a heartbeat signal, which
can be used to ensure liveness of the controller. In the second group contains one signal for
each state of the internal controller state machine. This group can be used to ensure correct state
changes, which are meeting the specified timing requirements. The state machine is more precisely
explained in section 4.2.3.

For debugging purposes, the command interface can be used to perform various operations
on the controller. As the command interface receives the commands by logic values on wires,
only an essential subset of all commands is available. These are error injection and reset of the
controller. Since there is a more powerful interface to send instructions, the command interface can
be completely removed by tying all input wires to low and leaving the output wires open.

For more detailed status information and a larger set of commands, the monitor interface can be
used. When the monitor interface is used, instructions and status information are coded as ASCII
strings. Therefore, it is more convenient and powerful than the status and command interfaces
together. Thus, the monitor interface is always existent and exposed to the user. More details on
the set of commands and structure of status information is given in section 4.4

To integrate the SEM-IP core on even higher abstraction levels, the monitor interface can be extended
by the optional UART interface. In the UART interface, output from the monitor interface is
serialized and inputs from the UART side are parallelized. Since UART is a widely used low-speed
communication standard, which only needs two wires, the UART interface is suitable to observe
the SEM-IP from external chips.

If error classification is enabled, the controller needs additional data, in order to detect errors as
essential or not essential. Since this information must be stored at an external storage device, the
controller needs access to this data via the fetch interface. This interface acts mainly as wrapper
between the controller and external memory devices. Therefore, the user can implement an own
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Figure 4.3: Start-up procedure of the controller.

memory access logic. Nevertheless, the fetch interface is only generated, if error classification is
enabled.

Comparable to the UART block for the monitor interface, the master SPI flash interface is a specific
implementation of memory access logic for the fetch interface. Thus, the master SPI flash interface
implements a standard SPI bus protocol for the most commonly used type of memory. As this
interface requires the existence of the fetch interface, it is only generated, when error classification
is enabled.

In the case an error is detected in data or in external devices, the SEM-IP core offers the auxiliary
interface. It can be used to notify the controller about these external issues. Indeed, the controller
cannot correct these errors, but it can perform the same actions as for essential, non-essential or
uncorrectable errors. Furthermore, external errors will result in a message on the monitor interface,
which makes consistent data logs possible.

Finally, when integrating the SEM-IP core at system level, the master clock interface is used to
derive all needed clocks. Whenever SEM-IP is integrated at lower levels, the clocks must be
assigned manually and the master clock interface is not generated.

4.2.3 Operational Concept

Before the SEM-IP can begin its initialization process, ICAP access must be granted. As seen in
figure 4.3, the controller sets the ICAP request signal cap_req to high, before the boot process is
started. Then, the controller waits until the ICAP release signal cap_rel is reset to low and the
ICAP access signal cap_gnt is high, which means, the controller is now in charge to use the internal
configuration access port exclusively. When this condition is satisfied, the controller transitions to
the initialization state [12].

The state after initialization as well as the set of valid states are determined by the SEM-IP con-
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figuration. All six possible configurations modes are shown in table 4.2 [12]. Both mitigation
modes start in observation mode and are compatible with error classification. Mitigation modes
should be used, if errors should be detected and corrected automatically. They are just different in
terms of error injection. If mitigation is not required, but errors should be detected, for example
when characterizing a device according to its radiation environment, the detection modes can be
used. For system testing, errors can be injected into the design without capabilities of detection
or correction, in other words, test cases can be constructed. This can be done by operation the
SEM-IP core in emulation mode. Finally, the monitoring mode can be used, if no errors should
be detected, corrected, classified or injected. However, all debug features, namely commanding,
frame address and register reads, external memory reads and address translations, are available.
In addition, error detection on purpose and diagnostic scans can be performed, as they are grouped
under on-demand detection.

Table 4.2: Configurations of the SEM-IP core.

Feature
Configuration modes

Mitigation
and testing

Mitigation
only

Detect and
testing

Detect
only

Emulation Monitoring

State after ini-
tialization

Observation Observation Detection Detection Idle Idle

Classification Optional Optional N/A N/A N/A N/A
Error injection Yes N/A Yes N/A Yes N/A
Debug fea-
tures

Enabled

On-demand
detection

Enabled

For EIVE, error mitigation is mandatory. Thus, either mitigation only or mitigation and testing
modes are reasonable. As they only differ in their error injection functionality, which is important
for testing, the mitigation and testing mode is used during implementation and validation. In space,
the mitigation only mode is preferred, because error injection is neither necessary nor suggestive,
since errors, induced by radiation impacts should be eliminated.

With the mode selected to mitigation, a state transition diagram during operation can be deduced.
As visible in figure 4.4, the SEM controller will transition to observation state after the initialization
is completed. It remains there, until an idle command is received or an error is detected. In the
latter case, an error mitigation cycle, consisting of a sequence of correction state with unconditional
transition to classification state, is performed. Then, the controller moves into the idle state if
the error was uncorrectable, or otherwise back to observation. In the former case, when an idle
command was received, the SEM controller immediately changes its state to idle. From idle, all other
commands can be executed. Therefore, a reset command let the controller move to initialization
and a diagnostic scan command moves the controller into diagnostic scan state. During a diagnostic
scan, the configuration memory will be scanned exactly once, before the controller transitions back
to the idle state. Another command moves the controller to the detect only state, which will return
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Figure 4.4: State transition diagram of the SEM controller in mitigation mode.

to idle whenever an idle command is received or a CRAM error is detected. The last command,
accepted during idle, is error injection. As the name suggests, exactly one bit error will be injected
into the MPSoCs configuration memory, before a transition back to idle takes place.

4.3 Hardware Integration

When integrating the SEM-IP core, some general design constraints, specific to EIVE and depicted
in figure 4.5, must be fulfilled. As a first constraint, the use of SEM-IP is anticipated by the designers
of multiMIND. Therefore, an UART interface for communication between the supervisor from TAS
and the SEM-IP core is provided. Consequently, the UART interface is used with the SEM’s transmit
port connected to the supervisors receive port. Nevertheless, SEM observation is not implemented
in the supervisor at the time, when this thesis was written. Thus, the SEM receive port is tied to
ground and the supervisors transmit port remains unconnected. In addition, the SEM supervisory
software must be implemented in the MPSoCs processor system, described in detail in section 4.4,
which is possible, but not ideal in terms of radiation resistance.

Especially for testing purposes, the SEM-IP must be able to receive commands like error injection or
directed state changes. In an intuitive approach, these commands can be sent to SEM via the UART
interface, because this interface is already available. However, this approach is not possible, because
the SEM-to-supervisor UART is routed to pins of the MPSoC and connected to the supervisor on the
multiMIND chip. This problem is solved by transmitting specially designed telecommands (TC)
and receiving telemetry (TM) through the TM/TC subsystem, which is connected to the on-board
computer during flight and the lab computer for testing. The TM/TC subsystem then filters out all
SEM-specific commands and forwards their data to the SEM-IP core.
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Depending on the used SEM-interfaces and intermediate connection components, different integra-
tion approaches are available. At first, the low-level approach will be investigated. In there, only
the most basic interfaces are used and wired to the processor system via GPIO pins. Thereafter,
a high-level approach is developed. In contrast, the high-level approach makes also use of the
more complex monitor interface and uses an AXI-based intermediate component to perform signal
preprocessing and allows a register-based control of the SEM-IP core. Both approaches are using
the mandatory ICAP and FRAME_ECC interfaces to access the configuration memory. Therefore,
these two interfaces are not further mentioned in the remainder of this section.

4.3.1 Low-Level Integration Approach

Figure 4.6 shows the low-level SEM-IP integration concept, which makes use of the status, ICAP
arbitration, command and UART interfaces. As already known, the UART interface provides
SEM’s log and status data to the supervisor without receiving instructions. Loosely speaking, the
UART interface is used for simplex communication. Next, the ICAP arbitration interface is used to
control SEM’s access to the MPSoCs configuration memory. Since the SEM-IP core does not enter
its initialization state before ICAP access is granted, the ICAP arbitration interface is used to start
and disarm the SEM-IP. Since observation tasks always need information about current states and
liveness, the status interface is used to provide those information. In the opposite direction, for
sending commands to the SEM-IP, the command interface is used, since the basic command subset
is sufficient for the low-level approach [23].

The signal preprocessing block, shown in figure 4.7 gets all output wires from the SEM status inter-
face as its input signals and computes additional output signals. It is required to make some effects
of SEMs operation visible in software. Since both, the PS and PL are running with a clock frequency
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Figure 4.6: Low-level SEM-IP core integration.

of 100 MHz and one software instruction takes multiple clock cycles, short signal pulses cannot be
observed in software. However, the status_heartbeat signal is specified to be high for one clock cycle
and then low for at most 250000 cycles [12]. Therefore, the heartbeat_timeout signal is computed
in the preprocessing block. The heartbeat_timeout signal goes high, whenever the status_heartbeat
violates its specification and goes low, when the heartbeat is in or is returning back to specifica-
tion. Furthermore, three additional status signals are computed. The SEM controller is in idle
state, if status_initialization, status_observation, status_correction, status_classification, status_injection,
status_detect_only and status_diagnostic_scan are low. In this case, idle is high. When all of these
seven signals are high at the same time, the SEM controller is in fatal error state and fatal_error is
asserted to high. In all other cases, exactly one out of these seven status signals is allowed to be
asserted. However, if more than one and less than seven status signals are high, an internal error is
detected and therefore, internal_error will be set. These three computations are done in hardware,
because they result in almost no hardware overhead and the software is not slowed down. Since
errors or heartbeat timeouts are sporadic events and the SEM controller may recover to ordinary
operation, sticky signals are created to notify whether an error occurred at any time in the past.
With these sticky signals, the SEM controller can manually be restarted in an organized way if
desired.

To bring signals from the SEM-IP or preprocessing block to the processor system or vice versa, some
sort of communication between them is necessary. Since signal wires are used at the programmable
logic side and the Advanced eXtensible Interface (AXI) is used as primary data protocol in the Xilinx
world, AXI GPIO blocks are used. They work like GPIO pins on a microcontroller. At the one
side, AXI GPIO blocks offer GPIO pins, where signal wires can be connected, at the other side, they
implement an AXI interface for connection to the processor system. However, if more than one AXI
block should be connected, an AXI interconnect is mandatory to coordinate data transmissions.
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For the low-level approach, two AXI GPIO blocks are necessary, because one block can only offer
64 GPIO pins. In sum, the command interface uses 46 signals, the status interface 10, the ICAP
arbitration interface 3 and the preprocessing block 7 signals, which results in a total of 66 needed
GPIO pins. To make both AXI GPIO blocks distinguishable, one block is entirely used to send
commands to the SEMs command interface. The other block receives information from the status
interface and interacts with the ICAP arbitration interface. In summary, the SEM-IP core together
with preprocessing logic is directly connected to both AXI GPIO blocks, which are connected to
the processor system via an AXI interconnect block.

4.3.2 High-Level Integration Approach

Apart from the low-level integration approach, the SEM-IP core can be integrated at a higher level.
As depicted in figure 4.8, the SEM-IP core is connected to the external supervisor via the UART
interface, like in section 4.3.1. For receiving status information and accessing arbitration to the
configuration memory, the status and ICAP arbitration interfaces are used. The only difference in
the SEM-IP configuration is the replacement of the command interface with the monitor interface.
Thus, the set of commands is extended and an ASCII-based log is available.

The high-level integration approach is built around the AXI2SEM module. This module takes the
input from SEMs status, monitor and ICAP arbitration interface, processes the data and writes
computed data to defined memory addresses in the processor system. In the AXI2SEM module,
data processing refers to three tasks. First, signals from the status interface are processed and
stored to a Status Register, which contains values of all status wires, except for the heartbeat signal.
The heartbeat is replaced by a heartbeat_present field, which is 0, when the heartbeat was not high
in the last second and 1 if the heartbeat is in its specification. In a similar way, signal values
from the ICAP arbitration interface are mapped into the ICAP Register by the second task. As
for all registers, a write of a value with a corresponding outgoing wire changes the value of this
wire in hardware. For example, the AXI2SEM has an outgoing wire, called icap_release. If the
corresponding icap_release field in the ICAP Register is set to 1, the wire will change its value to
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Figure 4.8: High-level SEM-IP core integration.

high. The third task deals with analysis of the log, provided by the monitor interface. After booting
the SEM-IP core, the initialization log is analyzed by an ASCII parser. All information from this
initialization log will be provided to software in the SEM Status Register. Apart from successful
initialization or an error during initialization, the SEM Status Register allows the user to get more
information about the context. After successful initialization, the entered state is shown to draw
conclusions about the mode, in which SEM was configured. Afterwards, the log is continuously
parsed for error messages and error correction reports, which are stored into the Error Register. In
addition, the whole log is available to the user in a Log FIFO Data register with additional FIFO
flags in the Log FIFO Status register. The other way around, commands can be sent to the monitor
interface. Therefore, their instruction codes and data must be written into Command Register, which
contains the command, Command Base Register for up to 32 bit of additional data and the Command
Extend Register for 12 more bits of additional data. In order to tell the processor system about the
moments for register readouts, interrupts are emitted by the AXI2SEM interface. Thus, whenever
an error occurs, the controller’s state is changed, the heartbeat times out or log data is available, an
interrupt is raised to advise the processor system about new data [24].

In order to recognize interrupts in the processor system, an AXI interrupt controller is necessary.
The interrupt controller takes the interrupt signal from the AXI2SEM block and translates this
level-based interrupt into a edge-based interrupt, which is required by the processor system. At
any interrupt the PS receives, the interrupt service routine (ISR) is executed and desired operations
are processed.

4.3.3 Implemented hardware

While the low-level approach was well-suited to understand operational concepts, it yields to
many problems during implementation. First, the 66 pins and two AXI GPIO blocks (see 4.3.1),
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together with different behaviours between sticky and ordinary signals leads to confusion during
hardware and software development. Also, this comes along with huge potential for accidentally
errors, for example when a wire is accidentally connected in a wrong way or the wrong number
for a GPIO pin is used. Secondly, the range of functions is restricted to the subset of commands,
possible by the command interface. Not possible commands are for instance translations between
physical and linear CRAM addresses or readouts of configuration frame s. The high-level approach
has its main strength in testability. Because values of all wires from the status and ICAP interface
are written into registers, ordinary software debugging tools can be used to view SEMs execution
sequences. Furthermore, the monitor interface produces ASCII-based log reports, which can be
directly written into a file. The same arguments applies to commands, which can now be sent
as ASCII strings. These ASCII strings increase the readability and understanding of the SEM-
IP operation further. One last advantage is caused by the interrupt based approach. While the
low-level integration needs active polling for software monitoring, the high-level approach uses
ISRs to execute code, whenever an interrupt is raised. By considering the ISR-based program
flow to observe the SEM-IP core, the observation progress can be separated into an independent
subsystem without any interactions to remaining PLOC software. In summary, the high-level and
interrupt-based approach is much more suitable for EIVE and therefore implemented.

4.4 Software Integration

Since the SEM-IP core needs to be observed to ensure correct functionality, the observation needs to
be implemented. For the most radiation tolerant implementation, possible in EIVE, the observation
logic is implemented on a hard-wired processor in the MPSoC. As stated in 4.3.3, EIVE uses the
high-level and interrupt-based SEM-integration approach. Therefore, the software integration
investigates only this selected integration technique.

Most software require an initialization. This also applies to the SEM observing software. The first
task, done during initialization, is determining a name for the log file. Therefore, the folder /SEM is
opened and the number of contained files is determined. Afterwards, the filename of the new file is
created as concatenation of /SEM and the number of contained files. For example, if /SEM contains
exactly three files when the PLOC is started, the SEM log file will be named /SEM/3. At the next
reboot, when four files already exist, the new file would be name /SEM/4, and so on. Since these
files are stored on the eMMC memory, ordinary telecommands for deleting and downloading can
be used. However, SEM log files are typically smaller than 1 kB and therefore, at most 500 kB of log
data are expected within the planned lifetime. Thereafter, the second task enables the AXI2SEM
interrupts in order to make the interrupt-based approach working. The third and final step sets
MPSoC internal ICAP access registers to grant ICAP access to the SEM controller. After this step,
the SEM controller switches to initialization state.

During operation, interrupts are raised by the AXI2SEM module at following conditions:

• The log FIFO contains valid data, is full or in an overflow condition occurs
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Figure 4.9: Interrupt-based integration of the SEM-IP in PLOC software.

• The heartbeat is out of its specification

• An error occurred during initialization

• The SEM controller changes to correction, initialization or uncorrectable state

• The SEM controller is ready to operate after initialization

All of these interrupts are caught in the same way, but they are threatened different. As seen
in figure 4.9, there are four different ways of interrupt-based action. If log data is available, the
log FIFO is full or an overflow condition is indicated, the valid data is read from the Log FIFO
Data register and appended to the log file, determined during initialization. Whenever an error is
detected, the error statistic fields in the housekeeping report are updated. These are the number of
correctable and the number of uncorrectable errors since the MPSoC was powered on. Afterwards,
the program execution is continued, if the error was corrected or the MPSoC is restarted, when the
error was uncorrectable. In the third case, when the heartbeat is out-of-specification, the conclusion
is an error in the SEM-IP core. Consequently, the MPSoC is rebooted immediately by setting the
reboot flag in the housekeeping report. Thereafter, the MPSoC will be power-cycled by the on-
board computer. Apart from errors during runtime, the SEM controllers initialization can also fail.
In this case, the PLOC software tries to reset the SEM controller three times, before the MPSoC is
restarted.

4.5 Testing

Testing of the SEM-IP core and its integration is very difficult, because the SEM controller cannot
be simulated in a VHDL testbench. Therefore, hardware test data can be measured by integrated
logic analyzers (ILA) or the overall behaviours can be carefully investigated. For EIVE, ILA testing
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was only done when absolutely necessary, for example for finding bugs in the PL design. System
testing was preferred, because it could be done at software level in the PS. Therefore, a debugger
was used. Since the SEM-IP core is not interesting to debug and test for functionality when no
CRAM errors occur, errors were injected into the configuration memory. As briefly mentioned in
section 4.3, telecommands and telemetry packages are used to view into the soft error mitigation
solution. The set of TM/TC consists of two telecommands and one telemetry package, summarized
in table 4.3. As result, errors can be injected by using the TC_SEMSendCommand command and
correct functionality can be observed by reading the log with the TC_SEMGetUARTLog command.

Table 4.3: Telecommands and telemetry packages used for system-level testing of the SEM integra-
tion.
Name Type Description

TC_SEMGetUARTLog Telecommand Request the new log data since the last log was
requested.

TC_SEMSendCommand Telecommand Sends one or more commands, which should be
executed by the SEM controller. If more than one
command is sent, commands are separated by a
semicolon.

TM_SEMUARTLog Telemetry Answer telemetry package for
TM_SEMGetUARTLog. This TC returns at
maximum 255 characters of the log.

In order to avoid failures during testing procedures, the EIVE test environment was extended by
a radiation toolbox. This toolbox enables input of all SEM commands by either pressing buttons
in a graphical user interface or entering them as text. Furthermore, the log can be automatically
requested after each command and the log will be automatically processed and annotated for better
readability. Available commands are listed in table 4.4. To get the whole SEM log of a test, the
log file can be downloaded from memory. A screenshot of the radiation toolbox is given in 4.10.
In the top row, the basic operations are aligned. These are requesting a log, requesting a status
report and sending entered text commands. The second row contains the directed state changes
to idle, observation, detect only and diagnostic scan, as well as a button for a software reset of the
SEM controller. Error injection, frame reads and address translations can be performed within the
third group. In addition, address parameters for these operations can be safely entered there. The
last functionality, register reads, can be performed by entering the register number and pressing
the read register button in the fourth row. Below, the SEM controller’s log and sent operations are
grouped by time and processed for better readability. Thus, any row contains exactly one line of
log or one instruction, the corresponding length in characters and a brief description of the log line
or instruction. During flight, the SEM-log can be downloaded from the eMMC memory like any
other file.
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Table 4.4: Commands for the SEM controller.
Command Arguments Description

O - Directed state change to observation
I - Directed state change to idle
D - Directed state change to detect only
U - Directed state change to diagnostic scan
S - Request status report
N LFA Inject error by using a linear frame address (LFA) with 11 hex-

adecimal digits
Q LFA/PFA Read configuration frame at linear/physical frame address with

11 hexadecimal digits
P REG Reads the SEM configuration register with name REG
R XX Software reset of the SEM controller. XX are two don’t care hex-

adecimal digits
T LFA/PFA Translate LFA to PFA or PFA to LFA

4.5.1 Test Scenario 1: Initialization

In a first test scenario, the SEM initialization should be evaluated. If a valid SEM log arrives in
the test environment, the conclusions are successful initialization of the SEM-IP core, a working
S-command and a well-implemented TM_SEMUARTLog telemetry package. The output of the
SEM-IP core after this test is shown in table 4.5. Since the initialization report contains the same
data as printed in the IP documentation [12], it can be concluded, that the SEM controller initializes
and the S-command works as intended.

Table 4.5: SEM initialization report.
Log line Description

SEM_ULTRA_V3_1 SEM version string
SC 01 State change to initialization
FS 04 Core configuration information (not further documented)
AF 01 Additional core configuration information (not further documented)

ICAP OK Access to ICAP granted
RDBK OK Frame read-back is active
INIT OK Initialization was successful

SC 02 State change to observation
O> Command prompt for observation state

4.5.2 Test Scenario 2: Injection and Correction of a Correctable Error

In this second test, a correctable error is injected into the CRAM. Therefore, the SEM controller is
directed into idle mode by an I-command. In idle mode, it is possible to read the configuration
frame before injecting an error, by sending a Q-command. Thereafter, the error is injected by a
N-command, before the frame is read again. A comparison of the read frame before and after
error injection makes sure, that the error was injected. In order to start a correction cycle, the SEM
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Figure 4.10: Radiation toolbox in the EIVE test environment.

controller is directed back into observation mode by sending the O-command. By requesting the
SEM log by a S-command, the error correction report, visible in 4.6, can be read and analyzed. The
correction report in table 4.6 indicates, that exactly one error at word 0, bit 0 in the configuration
frame A098 was corrected. This test scenario is repeated at ten different configuration memory
frames. Since all the tests result in exactly one corrected error, the conclusions are working I, Q, N,
O and S commands as well as precisely working error correction, and thus a working integration.

Table 4.6: SEM correction report for exactly one correctable error.
Log line Description

O> Command prompt for observation state
RI 00 Reserved information
SC 04 State change to correction
ECC An ECC error was detected

TS 0000171D Timestamp
PA 00180200 Physical frame address of the detected error
LA 0000A098 Linear frame address of the detected error

COR Begin of the correction report
WD 00 BT 00 The error was at word 0, bit 0

END End of the correction report
FC 00 The error was correctable and non-essential (initial value)
SC 08 State change to classification
FC 40 The error was correctable and essential
SC 02 State change to observation

O> Command prompt for observation state
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4.5.3 Test Scenario 3: Injection and Correction of a Uncorrectable Error

The third test deals with injected and uncorrectable errors. In order to make this test, five errors are
injected into one configuration frame. As in the second scenario, the controller is commanded into
idle state before the configuration frame is read. Thereafter, five one-bit errors are injected by five
N-commands. Then, the frame is read once again to make sure, that all errors are existent. Finally,
the SEM controller is directed back into observation state and the log is requested. Clearly visible
in the correction report in table 4.7, there is an uncorrectable CRC error. In addition, the reboot
flag in the housekeeping report is now required to be set. Since this is the case, the conclusion is a
successful handling of uncorrectable errors.

Table 4.7: SEM correction report for an uncorrectable CRC error.
Log line Description

O> Command prompt for observation state
RI 00 Reserved information
SC 04 State change to correction
CRC A CRC error was detection (error position unknown)

TS 00002143 Timestamp
FC 60 The error was uncorrectable and essential (initial value)
SC 08 State change to classification
FC 60 The error was uncorrectable and essential
SC 00 State change to idle

I> Command prompt for idle state

4.5.4 Testing Summary

The last two test are repeated for ten different frames, words and bit positions. Since all repeated
tests for same test cases yield to equal results, the SEM-IP core works well in conclusion. Fur-
thermore, all other commands are executed at least once. Because there are no problems with
any commands, the inference is the proper integration of the SEM-IP core into the EIVE payload
computer.
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Errors can be introduced into data by a variety of effects. For example, during transmission, the
channel can induce flipped bits or for single-event upsets, stored data can be corrupted. In order
to mitigate these errors, two different approaches are possible. For data transmission purposes,
errors can be detected and thus retransmitted by the sender without the need of correction. Such
codes are named error detection codes. However, stored data cannot be retransmitted. Therefore,
error correction codes (ECC) are required.

5.1 Theory of EDAC

To describe and compare EDAC codes, a mathematical concept, based on Hamming weight and
Hamming distance is used. For any given bit vector x⃗ = [x1,x2, ...,xN] of length N with xi ∈ {0,1},
the Hamming weight can be defined as WH(x⃗) = |{i|xi , 0}|. In words, the Hamming weight is the
number of all non-zero bits in a given bit vector. If an additional and equally defined bit vector
y⃗ is given, the Hamming distance between x⃗ and y⃗ is defined as dH(x⃗, y⃗) =WH(x⃗+ y⃗) = |{i|xi , yi}|.
Thus, the Hamming distance is the number of different bits between two bit vectors. In addition,
the minimum Hamming distance dmin of a set of bit vectors C = {x⃗1, x⃗2, ..., x⃗M} can be determined as
dmin = min

∀x⃗,y⃗∈C,x⃗,y⃗
dH(x⃗, y⃗). With this minimum distance, the number of detectable errors is s = dmin−1

and the number of correctable errors is t = ⌊dmin−1
2 ⌋ [25].

In figure 5.1, a block diagram of the encoding and decoding process is given. There, source bits
are split up into blocks U⃗ of size k. Then, the encoder generates one codeword X⃗ of length n from
each block U⃗ by adding exactly n− k redundant bits. Thereafter, the codeword passes a channel, for
example a transmission channel or an irradiated storage element. In this channel, errors can affect
the codeword. Hence, a modified codeword Y⃗ is received. As a last step, the received codeword Y⃗
is decoded to data V⃗ of length k and passed to the destination [25].

The encoder uses a codebook, which consists of all M = 2k distinct data blocks and their corre-
sponding codewords. An example codebook for k = 2 is given in table 5.1. The code C(n,k) itself is
characterized by the codeword length n and source block size k. Hence, the efficiency of the code
can be expressed by the coding rate R = k

n ≤ 1. For coding rates near 1, almost no redundancy is
added and therefore, huge amounts of data can be transmitted with low correction capabilities. For
coding rates near zero, almost no information is contained, but the original information can be re-
constructed in almost any case. This trade-off between transmission and correction capabilities can
be solved by selecting a suitable code. However, there is the upper singleton bound dmin < n− k+1,

53
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Figure 5.1: Block diagram for encoding and decoding.

which cannot be exceeded by any code [25].

Table 5.1: Example codebook for a code with k = 2 and n = 3.
Index Source U⃗ Codeword X⃗

U1 U2 X1 X2 X3

1 0 0 0 0 0
2 0 1 0 1 1
3 1 0 1 0 1
4 1 1 1 1 0

Since not all possible codewords are valid, the decoder has degrees of freedom. These degrees of
freedom are used, when the received codeword Y⃗ is not valid in the used and known codebook.
Therefore, the decoder divides the set of all possible, maybe invalid codewords, Y⃗ = [Y1,Y2, ...,Yn]
into exactly M = 2k decision regions {D1,D2, ...,DM}. The decision regions must satisfy two prop-
erties: First, they must be disjoint and second, the union of all decision regions must fill the
complete space, spanned by all possible codewords. Thus, Di is a subset of the space spanned by
Y⃗1, Y⃗2, ..., Y⃗2k . For decoding a received codeword, the source bits U⃗i are chosen, if Y⃗ ∈Di. In words,
if the received codeword is contained in the i-th decision region, the i-th source bits are chosen.
For illustration purposes, an example for k = 2 and n = 3 is given in figure 5.2. There, all possible
2n = 23 = 8 possible codewords are plotted in a Karnough map. Since there are more codewords
than possible source bit combinations, at least one decision region must contain more than one
codeword. If a codeword Y⃗ = [Y1,Y2,Y3] = [0,1,0] is received, it belongs to the decision region D4.
According to the codebook in table 5.1, the decoded bits will be determined to V⃗ = [V1,V2] = [1,1],
because they are at index 4 [25].

5.1.1 Error Detection Codes

Error detection codes can be split up into three groups: Parity check, checksum and cyclic redun-
dancy check (CRC). In addition, error correction codes are also able to detect errors, but they are
covered in section 5.1.2.

A parity check is the most simple error detection code. It is applied on a data block U⃗ with a
fixed length k. Then, the encoder calculates the number of ones a =

∑
i Yi, contained in Y⃗ and adds
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Figure 5.2: Illustration of decoding regions.

one extra bit E. For an even parity check, the extra bit is 0, if a is even and 1, if a is odd. For an
odd parity check and odd a, the extra bit is 0, otherwise 1. Thus, the codeword is determined by
X⃗ = [X1,X2, ...,Xk,E] with a length n = k+1 and therefore, the code rate is determined to R = k

n =
k

k+1 .

During decoding, the parity bit F for the sub-vector ˆ⃗Y = [Y1,Y2, ...,Yk] is calculated. When E = F
holds, the received data is assumed to be correct. In the other case, wrong data was received. Parity
checks are able to detect one bit error per one data block [26].

Checksums are applied across data blocks. Therefore, the incoming set of data U⃗ is divided
into K segments S⃗i with i ∈ {1,K} of size l. Then, a defined operation ⊙ is applied to deter-
mine the checksum c⃗ = S⃗1⊙ S⃗2⊙ ...⊙ S⃗K of length l. In the last encoding step, the codeword of
size n = (K+1) · l is assembled by Y⃗ = [Y1,Y2, ...,Y(K+1)·l] = [S⃗1, S⃗2, ..., S⃗K, c⃗]. Thus, the code rate is
R = k

n =
K·l

(K+1)·l =
K

K+1 . For decoding, the same concept, used by parity checks is applied. First, the

checksum of ˆ⃗Y = [Y1,Y2, ...,YK∗l] is calculated and compared to c⃗ in a second step. For equality, the
received data is assumed to be correct, for inequality, an error was induced [26].

Cyclic redundancy checks, (CRC) are extending parity checks by using more than
one check bit. CRC is based on polynomial division. Therefore, the input vector
U⃗ = [U1,U2, ...,Uk] is represented as polynomial U(x) =Uk ·xk−1+Uk−1 ·xx−2+ ...+U2 ·x+U1 and
extended by l 0-bits to Û(x). Afterwards, Û(x) is divided by the l-th order CRC polynomial
P(x) = pl ·xl+pl−1 ·xl−1+ ...+p2 ·x2+p1 ·x+1. The remainder c(x) = cl−1 ·xl−1+ ...+ c2 ·x2+ c1 ·x+ c0 is
the CRC polynomial. Since all coefficients are either 0 or 1, the can be written as binary vector.
Thus, the n = k+ l bits long codeword is X⃗ = [U1,U2, ...,Uk,c0,c1, ...,cl−1]. Hence, the coding rate is

R = k
n =

k
k+l . When decoding, again the CRC of ˆ⃗Y = [Y1,Y2, ...,Yk] is calculated and compared for

equality to [Yk+1,Yk+2, ...,Yk+l]. The received data is corrupted, if the comparison fails, otherwise,
the data is assumed to be right. An example calculation for encoding is given in the remainder of
this paragraph [26].
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Source data block of length k = 8

U⃗ = [1,0,0,1,0,1,0,1]

U(x) = 1 ·x7+0 ·x6+0 ·x5+1 ·x4+0 ·x3+1 ·x2+0 ·x+1

= x7+x4+x2+1

Used CRC polynomial of length l = 5

P(x) = 1 ·x5+0 ·x4+0 ·x3+1 ·x2+0 ·x+1

= x5+x2+1

Extended source data of length k̂ = k+ l

ˆ⃗U = [1,0,0,1,0,1,0,1,0,0,0,0,0]

Û(x) = x12+x9+x7+x5

Remainder of Û(x) by P(x)
x12 +x9 +x7 +x5 rem x5+x2+1
x12 +x9 +x7

x5

c(x) = x2 +1

Generating codeword X⃗

X⃗ = [X1,X2, ...,X13]

= [U1,U2, ...,U8,c1,c2, ...,c5]

= [1,0,0,1,0,1,0,1,0,0,1,0,1]

5.1.2 Error Correction Codes

Error correction codes are divided up, according to their encoding principle. On the one hand, block
codes are able to encode a fixed length data vector. Block codes are mainly used for applications,
where data can be divided without performance loss. For example, electronic memory devices use
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block codes to protect their stored data. On the other hand, convolutional codes are mainly used
for data transfer applications, since the output bit is described as function of the preceding input
bits. Because the scope of this thesis is radiation mitigation and not data transfer, only block codes
are investigated in this section [25].

5.1.2.1 Repetition Codes

The most simple code family in block codes are repetition codes. Repetition codes encode any
source bit separately, by copying the bit value l times. Therefore, exactly two source symbols, 0
and 1, exist and k can be determined as k = 1. All other parameters are dependent on the number of
repetitions l. Since k = 1, the codeword length n and the minimum Hamming distance dmin are fixed
to n = dmin = l. Thus, repetitions codes have a code rate of R = k

n =
1
l , can detect up to dmin−1 = l−1

errors and correct ⌊ dmin−1
2 ⌋ = ⌊ l−1

2 ⌋ errors. For example, if one error should be corrected, the minimum
distance must be three. Consequently, every bit is triplicated, and an increase in memory usage of
200 % for two extra bits can be observed. The decoding process is as simple as the block code itself.
Because the decoded codeword V⃗ can either be 0 or 1, its value can be determined by majority
voting of the received bits Y⃗ [27].

5.1.2.2 Parity Check Codes

All error correction codes add redundancy in a specific way. While repetition codes are copy-
ing bits, parity check codes are adding one or more single parity check bits for distinct sub-
sets of the information bits. For example, two redundant bits p⃗ = [p1,p2] can be added to four
information bits U⃗ = [1,0,0,1] by the parity equations p1 = u1⊕u3 = 1 and p2 = u1⊕u2⊕u4 = 0.
The ⊕-operator is used for a single-bit exclusive-or (xor) operation. As result, the codeword is
X⃗ = [U⃗, p⃗] = [1,0,0,1,1,0], with a length of n = k+m = 4+2 = 6. The calculation of parity bits can
be extended to codebooks by introducing a parity check matrix H ∈ Bm×n with the binary space
B ∈ 0,1. H has n columns, each containing a valid sequence of m = n− k bits. To calculate parity
check equations, columns can be swapped until H gets the systematic shape

H = [PT;I]

=


P11 P21 · · · Pk1 1 0 . . . 0
P12 P22 · · · Pk2 0 1 . . . 0
...

...
. . .

...
...
...
. . .

...

P1m P2m · · · Pkm 0 0 . . . 1


However, this reshaping is only possible, if all columns of the parity check matrix are dis-
tinct. In a next step, the parity check equation can be directly read from the matrix by row-
wise xor-operations of the first k columns. For instance, the first parity check equation is
P11 ·U1⊙P21 ·U2⊙ ...⊙Pk1 ·Uk = p1 and the second one is P12 ·U1⊙P22 ·U2⊙ ...⊙Pk2 ·Uk = p2 [25].

For encoding, two different approaches can be taken. The first one uses a generator matrix



58 5 Error Detection and Correction Codes for EIVE

G = [Ik×k;P] ∈ Bk×n. With this generator matrix, the codewords can be directly calculated as
X⃗ = U⃗ ·G. The second approach deals with the parity check matrix H itself. Since k source bits out
of n bits per codeword are known, they can be directly inserted into the parity check equations.
Therefore, a further reshaping of H into the upper triangle matrix is convenient, because the com-
putational complexity to solve the equation system is reduced. This reshaped parity check matrix
is

H′ =


1 H12 H13 H14 . . . H1n

0 1 H23 H24 . . . H2n
...
. . .

. . . H14
...

0 0 0 1 . . . Hmn


According to the H′, a Tanner Graph with input nodes X⃗ = [X1,X2, ...,Xn] and check nodes
C⃗ = [C1,C2, ...,Cm] can be drawn. The Tanner Graph connects the input node i to the check
node j, whenever H′ ji = 1. To encode data, all known source bits are assigned to the input
nodes [Xn−k+1,Xn−k+2, ...,Xn]. Then, the unknown values for [X1,X2, ...,Xn−k] are calculated with
xl = −

∑n−k
j=l+1 Hl, j ·x j−

∑k
j=l+1 Hl, j−n+k ·x j, starting from l = n− k. This second approach has perfor-

mance benefits for large codewords, but takes more time than multiplying data with a generator
matrix for small codewords [25], [28], [29].

In order to decode received data, it is not sufficient to perform the inverse operation, because the
data might be affected by the channel. For parity check codes, multiple ways of decoding exist,
but not all decoding algorithms are working with all parity check matrices. First, an iterative
approach is outlined. It consists of a Tanner graph with input nodes Y⃗ = [Y1,Y2, ...,Yn] and check
nodes C⃗ = [C1,C2, ...,Cm]. The edges connect input nodes at position i to check nodes at position
j, if the known parity check matrix H contains an one at row j and column i. To initialize the
Tanner graph, bit values of the received codeword are assigned to input nodes. Next, the decoding
algorithm starts by passing all bit values to the connected check nodes. In the check nodes, the
parity is calculated and compared to the known parity value. Then, unknown bit values are set to
satisfy the parity constraint, before the new signal values are propagated back to the input nodes.
After that, the cycle restarts and continues, until the values in input nodes do not change [25], [29].

The second approach for decoding is called syndrome decoding. Unlike the first method, syndrome
decoding is not iterative and can thus be performed in a constant time. The idea of syndrome
decoding is, that all correctable errors are spanning a new set of modified codewords. If a codeword
of a such coset is received, it can be decoded as the corresponding entry in the not modified set
[25]. As example, a code with a Hamming distance of dmin = 3, which encodes k = 4 source bits into
n = 7 codeword bits is used. Thus, the parity check matrix is computed to

Hex =


1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1
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Because the Hamming distance is three, exactly one error can be corrected. Therefore, the coset
leaders e⃗ can only differ from the zero-codeword in one bit. All other elements in each coset can
be calculated by performing a xor-operation of the unaffected codeword with the leader of the
corresponding set. To avoid searching and calculation of the whole coset contents, syndromes
are introduced as coset indices. Each syndrome is calculated by s⃗ =H · e⃗T. For the example, the
syndrome-coset-leader table is shown in table 5.2. If a codeword Y⃗ is received, its syndrome
is calculated by s⃗ =H · y⃗T. In the next step, the corresponding coset leader e⃗ is determined by
searching the syndrome-coset-leader table. Since the coset leader corresponds to the induced error,

the sent codeword can be restored by ˆ⃗X = Y⃗+ e⃗, before the data is decoded to V⃗ by removing the m

redundant bits from ˆ⃗X [25], [28].

Table 5.2: Syndrome-coset-leader table of dmin = 3, n = 7 and k = 4.
Syndrome Coset leader

000 0000000
110 1000000
101 0100000
011 0010000
111 0001000
100 0000100
010 0000010
001 0000001

Apart from encoding and decoding algorithms, parity check codes have most degrees of freedom
in the selection of the parity check matrix H. For Hamming codes, H is designed in a way, such that
the parameter l ≥ 3 determines the dimensions to H ∈ Bm×n = Bn−k×n = Bl×2l

−1 and dmin = 3. Thus,
Hamming codes are able to detect two and correct one error in a transmitted codeword of size
n = 2l

−1, regardless of the parameter l. The code rate is increasing with increasing block size and
determined by R = k

n =
2l
−l−1

2l−1 . Nevertheless, more errors per fixed number of bits can be corrected
and the encoding and decoding efficiency is higher for small block sizes. Furthermore, direct
encoding with a generator matrix and syndrome decoding are applicable for all Hamming codes
[25], [30].

The Golay code is the only known code, which can correct three or less errors at random locations.
It takes k = 12 information bits and generates codewords of size n = 23 with a minimum Hamming
distance of dmin = 7. In contrast to Hamming codes, which are a code family, the Golay code is one
single code. Therefore, there is no need to know the construction process of H, because is can be
copied [30], [31].

Low-density parity check (LDPC) codes are another parity check based code family. The low-
density term in the name comes from the fact, that the parity check matrix is sparse. They are
characterized by three parameters from the equation m = n · l

r , with the number of redundant bits
m, the codeword length n, the number of 1’s in each column l and the number of 1’s in each row
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r. The coding rate is defined as R = 1− m
n = 1− l

r . Since the general layout is not much constrained,
LDPC codes can be designed to fulfil special needs, for example a specific minimum Hamming
distance. LDPC-codes are exclusively used in combination of iterative encoding and decoding
algorithms. This is due to the sparse nature of the parity check matrix and hence a dense generator
matrix, which is not efficient for longer codewords [25], [29], [31].

5.2 Choosing EDAC Approach for EIVE

In EIVE, EDAC codes are used at two different locations. First, CRC codes are used to ensure
correct transmission of telecommands and telemetry packages between the on-board computer
and the MPSoC. This code was already used before this research thesis was started. The second
code is used to protect E/W-band sample files in the eMMC flash memory and was implemented
in the scope of this thesis. Therefore, it was necessary to select the used code and the way, in which
one or more codes are applied.

5.2.1 Selection of Error Correction Code

The most important constraint is an excellent error correction capability. To compare the codes from
above, table 5.3 shows the percentage of correctable bits in one codeword. As seen there, repetition
codes have the highest error correction capabilities, but they need by far the most additional
redundancy bits. In terms of error correctability, a Hamming code with l = 3 can correct only 14.3 %
of all errors on average, but the size increase is much lower than for repetition or Golay codes.
Furthermore, Hamming codes are not able to correct more errors if the codeword size increases.
The Hamming distance for these codes remains exactly three, regardless of the parameter l. The
last one, the Golay code can detect the most errors in one codeword, but because the codewords
are comparably long, the correction percentage is not as good as for Hamming codes with l = 3.
LDPC codes are omitted in table 5.3, because there is no general calculation for the minimum
Hamming distance and thus for the number of correctable errors. However, LDPC codes can have
arbitrary error correction capabilities, but with higher numbers of correctable errors, the codeword
size increases fast.

Table 5.3: Comparison of relative amount of correctable errors.
Code Parameters n dmin Correctable bits Correctable [%] Overhead [32]

Repetition code l = 2 2 2 0 0 % 100 %
Repetition code l = 3 3 3 1 33.3 % 200 %
Repetition code l = 4 4 4 1 25 % 300 %
Hamming code l = 3 7 3 1 14.3 % 75 %
Hamming code l = 4 15 3 1 6.7 % 36.4 %

Golay code 23 7 3 13 % 91.7 %

When comparing all four types of error correction codes to encoding and decoding speed, repetition
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codes will be the fastest group. This is due to their simple majority voting logic. LDPC codes are
again strongly depended on their design, but for huge source block sizes, they are faster than
Hamming or Golay codes. This is, because LDPC codes are computed iteratively and expensive
matrix computations are thus avoided. However, for small block sizes, LDPC codes are slower,
because matrix computations on small blocks are faster than iterative algorithms. If the parameter
l of Hamming codes is constrained to l ≤ 4, Hamming codes are faster than Golay codes, because
their parity check matrix is smaller. Vice versa, if l ≥ 5, the parity check of Hamming codes will be
larger. Hence, Golay codes are faster than Hamming codes for l ≥ 5.

A problem for all error correction codes are burst errors. These are multiple bit errors in one
codeword. To avoid their impacts on stored data, bit interleaving, known from section 2.3.1.1, is
mandatory.

For EIVE, Hamming codes with n = 7, k = 4 and dmin = 3 are used as basis for encoding and decoding.
This decision was made, because Hamming codes have the best relative error correction rate (14.3 %)
over size overhead (75 %) quotient of 1,907 and the highest decoding speed, compared to other
codes [33]. Therefore, Hamming codes are the best compromize between error correction and space
overhead. Furthermore, Hamming codes can be encoded by a generator matrix and decoded by
syndrome decoded in a constant time. This is important for EIVE, because decoding of samples is
instructed by a telecommand, which has a specified timeout. Also, for a block size of four source
bits and a codeword length of seven bits, encoding and decoding by iterative methods will be
slower and will thus increase the power consumption.

5.2.2 Selection of Coding Sequence

In this section, encoding and decoding is performed by Hamming codes and bit interleaving
is applied to some approaches. In total, five different encoding and decoding approaches were
implemented in the scope of this thesis and compared according to their error correction capabilities
and processing time. The five approaches are explained in table 5.4.

To evaluate all five approaches, they are simulated in the testbench, depicted in figure 5.3. There, a
sample file is read, before small blocks of four bits are created for encoding. Then, the code under
test (CUT) is used to encode the blocks and random errors, according to defined probabilities, are
injected. Finally, the affected data is decoded and compared to the small data blocks for error
correction analysis. To analyze the computation time, stopwatches are applied to the encoding
and decoding steps. Because the computers cache is not hot at the beginning and other running
programs may affect the runtime, the execution times may vary from try to try. Therefore, timing is
averaged over ten encoding/decoding cycles. For evaluation purposes, timing statistics and error
statistics, which contain the number of injected and corrected i-bit errors, are written to a CSV-file.
To identify test runs, additional testbench configuration information like error probabilities for i-bit
errors, the sample file name and the approach name are also written to the CSV file.

Figures 5.4, 5.5 and 5.6 show the simulation results of all five approaches with an base bit error
probability of B = 0.05, B = 0.1 and B = 0.2, respectively. In all three figures, the two subplots on
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Table 5.4: Hamming code based coding approaches for E/W-band sample protection.
Number Encoding Decoding
1 Blockwise Hamming encoding Blockwise syndrome decoding

2
Blockwise Hamming encoding
Interleaving

Deinterleaving
Blockwise syndrome decoding

3
Blockwise Hamming encoding
Interleaving
Blockwise Hamming encoding

Blockwise syndrome decoding
Deinterleaving
Blockwise syndrome decoding

4

Make blocks of size 4 by 4
Row-wise Hamming encoding
Column-wise Hamming encoding
Interleaving
Blockwise Hamming encoding

Blockwise syndrome decoding
Deinterleaving
Make blocks of size 7 by 7
Column-wise syndrome decoding
Row-wise syndrome decoding
Comparison

5

Make blocks of size 4 by 4
Row-wise Hamming encoding
Column-wise Hamming encoding
Interleaving

Deinterleaving
Make blocks of size 7 by 7
Column-wise syndrome decoding
Row-wise syndrome decoding
Comparison

the top are showing the percentage off corrected errors on the y-axis over the error probabilities
for i-bit errors on the x-axis. The higher the percentage, the more induced errors were corrected.
The two subplots at the bottom share the same x-axis, but the y-axis shows the sum of averaged
measured encoding and decoding time. Below, the x-axis is labelled with probabilities for error
injection. For instance, if in 10 % of all coded words an 1-bit error and in 2.5 % a 2-bit error was
injected during simulation, the corresponding x-label row contains the values 10.00, 2.50 and five
time 0.00 from top to bottom. However, for the plots on the left side, only on kind of errors was
induced with the base error probability B, while the right side shows statistics of combinations of
induced errors with probabilities b = B

i2 for i-bit errors.

The figures 5.4, 5.5 and 5.6 are looking similar in a first view. Especially the bottom subplots are
nearly identical. Thus, the computation time can be considered as constant, except for the two
outliers at approach four and the small outlier at approach three. From a timing perspective, the
approach one is the best, closely followed by approach two, where additional bit interleaving is
applied. Furthermore, these two lines point out, that the computational complexity is mainly
caused by encoding and decoding, not by interleaving and deinterleaving. When adding a second
encoding step in approaches three and four, the execution time is doubled up. Because both of
these approaches are using bit interleaving, no difference in execution time can be measured. Since
the fifth approach encodes and decodes all data a third time, its computation time is multiplied by
four, compared to the first and second approaches.

By comparing the error correction rate, an 100 % correction of zero- and one-bit errors can be
observed for all approaches, except for the second approach with one-bit errors. This is caused
by the final interleaving, because injected errors can now affect multiple interleaved bits of one
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Figure 5.3: Testbench to compare coding approaches.

word. Thus, deinterleaving takes this distributed errors and may move them into one single
code word. For all higher numbers of bit errors per codeword, none of the used code has a
guarantee to correct them. Nevertheless, approach one has the worst performance, followed by
approach two. Approaches three and four are equally good and approach five has the best error
correction capabilities. While the error correction rate curves have the same overall tendencies and
behaviours, their values are decreasing with and increasing base error probability B.

One advantage of approach four and five, which is not visible in the plots is the comparably
high error detection capability. While the used Hamming code can only detect two bit errors in a
codeword of seven bits length, approaches four and five are able to effectively detect more flipped
bits, depending on their alignment. This is, because the blocks are two-dimensional with row-wise
and column-wise encoded data, like schematically shown in figure 5.7. If the comparator detects a
mismatch between row-decoded and column-decoded source bits, an error is captured [34].

By weighting all advantages and disadvantages, the approach four is the most suitable code. This
is caused by the encoding and decoding speed, which is not as slow as for approach five, and the
high error detection capabilities of two-dimensional data blocks.

5.3 Software Design

All error correction code approaches were implemented in the scope of this thesis. The program-
ming language was determined to C, because C is used for the whole software system. Since the
PLOC software is bare metal, conversion of MATLAB code into C-code is error-prone and therefore,
all five approaches were directly implemented in C.
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Error probabilities for n injected bit errors in a 7-bit word [%]

Figure 5.4: Error correction capabilities against computation time at B = 0.05.
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Error probabilities for n injected bit errors in a 7-bit word [%]

Figure 5.5: Error correction capabilities against computation time at B = 0.1.
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Error probabilities for n injected bit errors in a 7-bit word [%]

Figure 5.6: Error correction capabilities against computation time at B = 0.2.
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Figure 5.7: Decoding of two-dimensional blocks.

5.3.1 Modularization

For efficient and rapid implementation of all five coding approaches, modularization into building
blocks was necessary. In general, the whole E/W-band sample coding system is built from data
conditioners, interleavers, hamming codes, matrices and file interfaces. All five approaches can
be easily implemented, by following the steps in table 5.4, since the building blocks must only be
concatenated.

Matrices are not only necessary for encoding and decoding. They are used throughout the whole
coding system to represent data and abstract from raw bit handling. Furthermore, they reduce
the potential of errors, because each matrix has a defined interface and well-tested functions are
used to access data and perform operations. Needed operations are listed in table 5.5. However,
the matrix blocks are not visible to the user of encoding or decoding approaches. They only exist
for internal representation of data. The matrix library inside the coding system is also the largest
building block.

Hamming codes are the core for encoding and decoding. The Hamming code module requires an
initialization to generate the parity check matrix H, generator matrix G and the syndrome lookup
table. For encoding, 8-bit wide integers, where only the least significant four bits are valid, are
required as source bits U⃗. After encoding, one 8-bit wide integer value, with the least significant
seven bits valid, is returned as codeword. For decoding, an 8-bit wide integer value with seven
valid bits is required and a 8-bit wide integer with four valid bits together with an error indication
variable is returned.

Interleavers are used to distribute neighbouring bits to distinct codewords, to avoid burst errors.
They get a data matrix and the interleaving distance and return a matrix with interleaved data of
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Table 5.5: Needed matrix operations for the coding subsystem.
Operation Description

Horizontal concatenation Concatenate matrices of dimensions n×m and n× l into n× l+m
Copy Copy matrix

Create matrix Allocate space for new matrix and fill it with 0
Identity matrix Create identity matrix
Multiply matrix Matrix multiplication of two matrices

Number to row vector Copy n least significant bits of an integer to a 1×n bit matrix
Row vector to number Generate number with n valid bits from a 1×n bit matrix

Sub-matrix Generate a sub-matrix from a defined area of a larger matrix
Transpose Transpose matrix
Equality Check two matrices or a scalar and a bit matrix for equality

Elementwise modulo Perform modulo operation to any matrix element
Print Print matrix to console

Swap rows Swap rows in a matrix

exactly the same size. The same applies for deinterleaving, which needs an interleaved data matrix
and a deinterleaving distance and returns the original data matrix.

Data conditioners can extend 8-bit integers matrices with eight valid bits per element into larger
matrices, where less bits per 8-bit integer are valid. Conditioners are needed to prepare data
for encoding and decoding, since there are four or seven bits expected, respectively. Also, after
encoding or decoding, fully populated 8-bit integers are required to use the disk space efficiently or
to make the coding transparent for further data processing. For example, after decoding, integers
with four valid bytes must be transformed into fully populated 8-bit integers, to get valid data.

File interfaces are used to read files from a storage into a matrix or to write data from a matrix
into a file. They abstract from basic I/O and basic byte copying from and to matrices.

Testing blocks are not part of the payload software. They are just used offline for testing. In sum,
there are three testing blocks available. The approach wrapper, already known as code testbench,
is introduced to automate testing and gain performance and error correction statistics of the used
codes. To induce errors, the random error injection block is used. It is possible to give probabilities
for one to seven bit errors per codeword. The last testing block is an ordinary timer, which is used
to precisely measure time of encoding and decoding.

5.3.2 Integration

Integrating the coding system into the EIVE payload software is much more simple than integrating
the SEM-IP core. This is caused by the software-design of the payload software, which is split up
into an initialization stage and a while-loop for waiting until an UART interrupt is received. In
contrast to the SEM-IP core, the coding system does not require any additional interrupts. The
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coding system or more precisely the Hamming code is initialized during the initialization stage.
Whenever an UART interrupt is received, the message is read by the exception handler and
transformed into a telecommand structure. Thereafter, the telecommand is processed. The only
telecommand, which is important for the coding system is TC_ReplayWriteSeq, which loads a file
from the eMMC flash memory and writes it into the downlink memory buffer. When the samples
are encoded, the file needs to be opened and additionally decoded, before the decoded content
is written to the downlink memory buffer. If the file cannot be decoded, an error is returned by
the TM_TcExeFailure telemetrie package and another file can be tried. In summary, the integration
of the coding system only needs one change in the initialization routine and one change in the
TC_ReplayWriteSeq routine.





6 Conclusion and Further Work

This thesis started with research of radiation environments, to define tasks related to radiation,
which are faced by the EIVE mission. Then, in order to get an overview of possibilities to deal with
the defined radiation tasks, an exhaustive research of radiation mitigation techniques was done.
This research includes techniques, based on information-, spatial- and temporal redundancy, as
well as techniques without need or redundancy and general designing guidelines. Based on
this knowledge, all investigated radiation mitigation techniques were evaluated, according to
the requirements of EIVE. Furthermore, the techniques are assigned to design stages, where
they are applied and thus, assigned to an implementing institution. In sum, two techniques are
implemented in the scope of this theses. The first implemented technique is the integration of
the SEM-IP core into the EIVE hardware and software design, which prevents the MPSoC from
malfunctions and potential damages. As a second technique, error correction codes were further
investigated and Hamming codes with bit interleaving were implemented to prevent changes in
the E/W-band validation samples.

However, not all selected techniques could be implemented in the scope of this thesis. Therefore,
possible future works can implement information redundancy for all data files. This can be done
by a global use of error correction codes for file reads and file writes. Another possibility will be to
store each file three times, majority vote the contents on file reads and write the correct data back to
the corrupted file. In a third solution, the two available eMMC memory chips can be configured in
a redundant way. This will neither prevent from errors, nor enable majority voting, but in case of
the E/W-band validation samples, the correct copy can be determined by the used error correction
code.

For the case, when both eMMC memories have irreversible damages and no data can be read from
or written to these storages, EIVE’s mission is over. To cover this case, the payload software should
be extended to not only use samples from memory. The software must gain the ability to generate
a subset of the stored samples without the need for memory reads.

Another possibility to make the payload more robust against radiation impacts is to introduce more
watchdog timers or heartbeat signals. For example, each subsystem, like the camera subsystem
or the downlink subsystem, can be observed by a dedicated watchdog timer or generate its own
heartbeat signal. In case of timeouts, partial reconfiguration can be used to rewrite the configuration
memory contents of the defective subsystem.

Furthermore, partial software redundancy can be implemented, because the MPSoC’s application
processing unit contains four processor cores. Therefore, interrupts can be processed on one core

71



72 6 Conclusion and Further Work

and forwarded to two other cores, which are running the same payload software, but without
interrupt processing routines. In addition, to detect execution errors, the memory bus must be ob-
served and in case of mismatches, the software must be reset to the latest checkpoint. However, this
approach is very hard to implement, because the entire existing software must be reimplemented
and comparison hardware must be built.
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List of Abbreviations

AM Ante Meridiem
ASCII American Standard Code for Information Interchange
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface
BRAM Block Random Access Memory
BSP Board Support Package
CLB Configurable Logic Block
CMOS Complementary Metal-Oxide-Semiconductor
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CRAM Configuration Random Access Memory
CRC Cyclic Redundancy Check
CSV Comma Separated Value
CUT Code Under Test
DAC Digital to Analogue Converter
DCs Digital Circuits
DD Displacement Damage
DRAM Dynamic Random Access Memory
DSP Digital Signal Processing
ECC Error Correction Code
EDAC Error Detection and Correction Code
EEPROM Electrically Erasable Programmable Read-Only Memory
EIVE Explanatory In-orbit Verification of an E/w-band link
eMMC Embedded MultiMediaCard
FIFO First-In First-Out
FIT Failures In Time
FPGA Field Programmable Gate Array
FSM Finite State Machine
full-HD Full High Definition
GCR Galactic Cosmic Ray
GPIO General Purpose Input Output
HZE Highly-charged and Energetic Particle
ICAP Internal Configuration Access Port
ILA Institut für Luftfahrtantriebe
ILH Institut für robuste LeistungsHalbleitersysteme
IP Intellectual Property
IRS Institut für Raumfahrtsysteme
ISR Interrupt Service Routine
ISS International Space Station
LDPC Low Density Parity Check
LEO Low Earth Orbit
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LFA Linear Frame Address
LUT LookUp Table
MBU Multiple Bit Upset
MCU Multiple Cell Upset
MLSL Minimal Level Sensitive Latch
MPSoC MultiProcessor System-On-Chip
MTBF Mean Time Between Failures
NAND Not AND
NOR Not OR
NVM Non-Volatile Memory
OBC On-Board Computer
PFA Physical Frame Address
PL Programmable Logic
PLOC PayLoad On-board Computer
PM Post Meridiem
PRBS Pseudo-Random Bit Sequence
PS Processor System
RAM Random Access Memory
RHBD Radiation Hardening By Design
RHBP Radiation Hardening By Process
RoRA Reliability-Oriented place and Route Algorithm
SDRAM Synchronous Dynamic Random Access Memory
SEB Single-Event Burnout
SEDR Single-Event Dielectric Rupture
SEE Single-Event Effects
SEFI Single-Event Functional Interrupt
SEGR Single-Event Gate Rupture
SEHE Single-Event Hard Error
SEL Single-Event Latch-up
SEM Soft Error Mitigation
SESB Single-Event Snap Back
SET Single-Event Transient
SEU Single-Event Upset
SPE Solar Particle Event
SPI Serial Peripheral Interface
TAS Thales Alenia Space
TC TeleCommand
TID Total Ionizing Dose
TM Telemetry
TMR Triple Modular Redundancy
TNID Total Non-Ionizing Dose
TTR Triple Temporal Redundancy
UART Universal Asynchronous Receiver Transmitter
UV UltraViolet
VHDL Very high-speed integrated circuits Hardware Description Language
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