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Abstract: Aircraft engine condition monitoring is a key technology for increasing safety and reduc-
ing maintenance expenses. Current engine condition monitoring approaches use a minimum of
one steady-state snapshot per flight. Whilst being appropriate for trending gradual engine deteri-
oration, snapshots result in a detrimental latency in fault detection. The increased availability of
non-mandatory data acquisition hardware in modern airplanes provides so-called full-flight data
sampled continuously during flight. These datasets enable the detection of engine faults within one
flight by deriving a statistically relevant set of steady-state data points, thus, allowing the application
of machine-learning approaches. It is shown that low-pass filtering before steady-state detection
significantly increases the success rate in detecting steady-state data points. The application of
Principal Component Analysis halves the number of relevant dimensions and provides a coordinate
system of principal components retaining most of the variance. Consequently, clusters of data points
with and without engine fault can be separated visually and numerically using a One-Class Support
Vector Machine. High detection rates are demonstrated for various component faults and even
for a minimum instrumentation suite using synthesized datasets derived from full-flight data of
commercially operated flights. In addition to the tests conducted with synthesized data, the algorithm
is verified based on operational in-flight measurements providing a proof-of-concept. Consequently,
the availability of continuously sampled in-flight measurements combined with machine-learning
methods allows fault detection within a single flight.

Keywords: aircraft engine; gas turbine; fault detection; engine health monitoring; engine condition
monitoring; full-flight data; one-class support vector machine; principal component analysis

1. Introduction

About one-third of the direct operating cost of an aircraft engine is related to mainte-
nance, repair, and overhaul [1]. Cutting the maintenance expenses is one primary goal of
airlines to increase profitability. The scope of on-wing and shop maintenance is carefully
considered concerning the cost, downtime, and recovery of fuel efficiency and remaining
useful life. Engine condition monitoring tracks measurable engine parameters during flight
to derive insights into its current health state and trends. Effective maintenance planning is
built on these insights.

As a minimum, only discrete data points gathered during take-off and cruise are
provided for condition monitoring. These data points are called snapshots. Engine con-
dition monitoring systems are applied to the long-term trending of gradual performance
deterioration as well as to the detection, isolation and identification of faults [2]. Gradual
performance deterioration results from minuscule changes caused by erosion, corrosion,
or fouling [3] and accumulates over a large number of flights. Due to this nature, the avail-
ability of one single steady-state snapshot per flight is good enough to determine the
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associated long-term trends in performance parameters. On the other hand, faults are dis-
crete events that occur at a defined point in time during a flight and lead to a step-change
in performance parameters.

Here, the data sparsity related to snapshot data leads to difficulties distinguishing
between faults and random scatter. Depending on the faulty component and the severity
of the fault, it may take multiple data points to detect a fault [4–6]. Consequently, several
flights might be carried out until fault detection increasing the risk of collateral damage.
The increased usage of non-mandatory data acquisition equipment opens up the possibility
of avoiding this latency.

Currently, most airlines adopted Quick Access Recorders for data acquisition, pro-
viding flight data continuously sampled at frequencies of 1 Hz and more, which is also
referred to as full-flight data. The availability of these datasets enables the introduction of
new approaches in engine condition monitoring, which offer the chance to detect engine
faults within one flight. In addition to the application of the well-known engine fault detec-
tion [7,8], a statistically relevant number of steady-state data points allows the application
of state-of-the-art machine-learning methods for fault detection. The latter approach allows
directly analyzing multi-variate datasets based on determined fault-relevant features.

2. Related Research
2.1. Fault Detection

Generally, machine-learning-based fault-detection approaches are categorized as either
supervised or unsupervised. Supervised methods usually directly combine fault detection
and fault isolation. Different approaches are, e.g., Convolutional Neural Networks [9],
Deep Belief Neural Networks [10], and Support Vector Machines [11–14]. These algorithms
require appropriately labeled datasets a priori for training.

As engine faults are rare events, the total number of available training data describing
faulty engine performance is limited and might not cover all possible fault cases [13,15].
Unsupervised learning methods mainly define clustering approaches analyzing a given
dataset for outliers indicating a fault. These algorithms do not require labeled datasets and
are therefore considered best suited for fault detection. The approaches are sometimes also
referred to as anomaly detection or outlier detection.

An approach for fault detection based on steady-state flight regimes of full-flight data
is demonstrated in [16,17]. At first, a linearized state-space model is used to compute the
residuals between the raw measurements and the model predictions. The fault detection is
based on a distance measure utilizing recursively calculated means and standard deviations.
A similar approach utilizing Bayesian hierarchical models and the same fault-detection
scheme is demonstrated in [18] for evaluating gas turbines. A utilization of data-driven
models based on LSTMs in combination with a statistical evaluation of the residuals is
demonstrated in [19] for a three-shaft marine gas turbine.

The k-means clustering method [20] is mainly utilized for defining cluster centers
and allocating data points to these clusters. In general, k-means clustering does not
provide intrinsic outlier detection necessary for fault detection. Utilizing k-means clustering
for fault detection requires additional algorithms, e.g., artificial neural networks [21],
or cluster evaluation [22]. These additional algorithms increase the complexity of the
k-means clustering.

The DBSCAN algorithm [23] defines a clustering approach that can directly identify out-
liers. Possible applications of DBSCAN are anomaly detection for aircraft trajectories [24–26]
or fault detection of wind turbines [27]. In [28], the DBSCAN algorithm is used for identi-
fying anomalies within engine data in order to exclude the corresponding data points from
data-driven model building. One major drawback of DBSCAN is the difficulty to determine
appropriate hyperparameters for multi-variate datasets [24], especially if several clusters exist
with varying densities.

A One-Class Support Vector Machine [29] identifies outliers by defining a boundary
enclosing the data points within a given training dataset. One-Class Support Vector
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Machines are proven frameworks for fault detection with successful applications in various
fields, such as bearing faults [30], process monitoring [31], aircraft trajectory monitoring [32],
and gas turbine monitoring [33,34].

2.2. Feature Extraction

Applying feature extraction and dimensionality reduction is often required for machine-
learning methods to improve their performance [35]. In general, datasets contain many dif-
ferent variables, of which only a few provide crucial information. Feature extraction derives
features holding relevant information, reducing the dimensionality of the input dataset.
Dimensionality reduction can also be used for visualizing highly dimensional datasets.

Principal Component Analysis [36] defines linear combinations of the input param-
eters resulting in a low-dimensional coordinate system retaining most of the variance.
Principal Component Analysis is based on an eigendecomposition and allows easy execu-
tion. The approach is widely used in monitoring applications, e.g., aircraft engine condition
monitoring [14,37], the monitoring of smart grids [38], and flight path monitoring [26,32].

There are additionally different methods for computing features based on artificial
neural networks, such as autoencoders [11,12]. While these approaches allow the derivation
of highly non-dimensional features, their main drawback is the iterative training process
required for their utilization and the definition of an appropriate network architecture,
which is not known a priori.

2.3. Steady-State Data Filters

Identifying steady-state operating regimes is important for analyzing datasets ac-
quired from test-beds and in-flight. Different data filters for detecting steady-state data
points are either regression-based [39] or variance-based [16,17,40,41]. Regression-based
approaches [39] approximate the underlying measurements by linear functions obtaining
estimations for their slope. Variance-based methods, on the other hand, either compute
the variance [16,17,40] or the min-max-range [41] of the measurements within a given
moving window.

Both regression-based and variance-based methods utilize predefined thresholds on
their parameters to ensure the measurements’ stability. In addition to solely identifying
regimes with stable measurements, the data filter proposed by [40] defines multiple mod-
ules for additionally ensuring thermal stability, consistent operating conditions, and the
reduction of measurement uncertainty.

2.4. Conclusions from the Literature Review

Based on the literature review, the following properties of fault-detection schemes are
considered advantageous:

• Arbitrary Fault Detection: In the first place, fault-detection schemes are required to
identify arbitrary deviations from the nominal engine performance indicating faults
to ensure the engine’s safety and operability.

• Processing Multi-Variate Datasets: Several gas path measurements are available for
fault detection leading to a multi-dimensional dataset to be processed. Some ap-
proaches analyze the different sensors independently, making the definition of alarm-
ing rules more complex and requiring separate thresholds for each sensor.

• Visualizability: The fault-detection schemes should allow visualization of the results
to allow the maintenance engineer to check and reason the results.

• Efficiency: Analyzing full-flight data requires a considerable amount of data to be
processed [42]; therefore, fast and efficient approaches are required for analyzing
the datasets.

None of the approaches mentioned in the previous sections combine all of the afore-
mentioned properties. Therefore, a novel fault-detection approach is presented in this
paper, combining a steady-state data filter with Principal Component Analysis and a
One-Class Support Vector Machine. The steady-state data filter reduces the total number
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of data points to be processed, neglecting non-stationary flight regimes. The Principal
Component Analysis was chosen for dimensionality reduction since it does not require a
training process to determine fault-relevant features.

Therefore, a coordinate system that is most sensitive to a given fault can be determined,
improving visualizability and detectability. In the last step, a One-Clase Support Vector
Machine is used for cluster analysis determining outliers indicating faults. The proposed
fault-detection toolchain is tested based on operational datasets of commercial aircraft.

3. Materials and Methods
3.1. Concept

The flowchart of the proposed fault-detection algorithm is shown in Figure 1. First,
a data filter processes the continuously sampled flight data, detecting steady-state data
points. The residual is the difference of these measured steady-state data points relative to
the predicted values of a reference engine performance model run at the same operating
conditions. In this proof-of-concept, a highly accurate industry-standard thermodynamic
engine model is utilized. However, theoretically different types of engine models, e.g., data-
driven models [28] or hybrid models [43] are also amendable. The model accounts for the
impact of environmental conditions and engine settings, such as bleed extraction or power
offtake [44].

Steady-State 

Data Filter

Full-Flight

Data

Engine Model

Database

of Residuals

Cluster Analysis

Fault

Detection

Measurements

Ambient Conditions

Control Settings

predicted Values

-
Residuals

Figure 1. Flowchart describing the fault-detection algorithm.

In the next step, a database is built comprising the residuals of the current and preced-
ing flights. The residuals of the current flight are compared to those within the database
of preceding flights via cluster analysis. In the case of an engine fault, the corresponding
change in performance parameters directly affects the in-flight measurements [45]. In this
case, the residuals of the current flight will deviate from the dataset of preceding flights
leading to dedicated clusters, which can be detected.

The proposed fault-detection approach allows seamless integration of full-flight data
into existing engine condition monitoring systems and has been filed for patent. Represen-
tative steady-state data points can be sampled from the results of the Steady-State Data
Filter and forwarded to existing engine condition monitoring systems. Here, state-of-the-art
algorithms for long-term trending [46,47] can be utilized for estimating and predicting the
gradual deterioration of the aircraft engine. Additionally, after fault detection, the isolation
and identification of the potential fault can be performed in a postprocessing step with
existing methods [48,49].

3.2. Steady-State Data Filter

The generation of residuals requires the in-flight measurements to fulfill the prereq-
uisites for applying steady-state performance models, i.e., constant flight and ambient
conditions, constant engine control settings, and engine offtakes. Additionally, the engine
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must have reached thermal equilibrium. The first four aspects are summarized as a stable
operating regime, and the latter represents a thermal stability criterion.

Of the approaches presented in Section 2.3, only the approach described by [40]
explicitly covers all of these aspects. In order to meet the prerequisites of stable operating
regimes and thermal stability, the Steady-State Data Filter consists of four building blocks:
a Low-Pass Filter, a Thermal Transient Filter, a Regime Recognition, and a State Transition
Logic. A flowchart of the resulting Steady-State Data Filter is visualized in Figure 2. Since
the algorithm of [40] was derived for identifying steady-state data points for turboshaft
engines of helicopters, some adjustments are needed to apply the approach to turbofan
engines of commercial aircraft.

Full-Flight

Data

Thermal

Transient Filter

Regime

Recognition

1

2

3

State

Transition

Logic

Steady-State

Data

Low-Pass

Filter

Figure 2. Flowchart of the Steady-State Data Filter according to [40].

3.2.1. Low-Pass Filter

Due to measurement noise, the total number of detected steady-state data points
might significantly differ from engine to engine, even if they are both mounted on the same
aircraft [40]. A low-pass filter is proposed for alleviating the effect of high-frequency noise
in the input signal. In general, the response of a low-pass filter can be characterized by
its cut-off frequency and order. The cut-off frequency defines the beginning of the signal
attenuation, and the magnitude of the attenuation is directly dependent upon the order of
the filter [50].

The filter has to be designed such that mostly the high-frequency measurement noise is
attenuated, leaving the remaining frequency spectrum unaffected. The measurement noise
depends on the type of sensors used, their dynamics, and the data acquisition. Since the
measurement systems in turboshaft engines and turbofan engines for commercial aircraft
are expected to be similar, the filter defined by [40] is directly adopted. Hence, a second-
order low-pass filter is implemented where y(s) is the raw and ỹ(s) is the corresponding
low-pass filtered measurement.

ỹ(s)
y(s)

=
ω2

n
s2 + 2ζωns + ω2

n
(1)

An adjustment concerning the position of the low-pass filter is proposed. In the
original algorithm, the Low-Pass Filter works in parallel with both the Thermal Transient
Filter and the Regime Recognition. A low noise level is expected to be advantageous for
determining thermally stable flight segments and the definition of valid flight segments.
Hence, utilizing the Low-Pass Filter as a preprocessing step is considered more suitable.

3.2.2. Thermal Transient Filter

The Thermal Transient Filter is used to assure the thermal equilibrium of the engine.
Since the time required to heat through an engine generally correlates with its mass [51],
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the definition of the Thermal Transient Filter has to be adjusted in order to account for the
application in commercial turbofan engines.

For approximating the heat fluxes of the engine, a simplified thermal model is evalu-
ated approximating the multi-stage components by representative single-stage modules
according to [52]. Such a simplified module is visualized in Figure 3. The thermal model
takes the heat fluxes between fluid and casing Q̇FC, fluid and blade Q̇FB, and disk and blade
Q̇DB into account. Single elements approximate all structural elements, and the module is
approximated as adiabatic. The heat fluxes between the structural elements and the fluid
Q̇FC and Q̇FB are modeled assuming convective heat transfer. A conductive heat transfer
is assumed for the heat fluxes between disk and blade Q̇DB. The heat fluxes are defined
based on the heat transfer coefficients α, the wetted area A, and the temperatures of the
fluid and structural elements T.

Q̇FC = αFC AFC
(
TFluid − TCasing

)
Q̇FB = αFB AFB(TFluid − TBlade)

Q̇DB = αDB ADB(TDisk − TBlade) .

(2)

Insulation

Figure 3. Heat transfer model according to [52].

Conductive heat transfer within the structural elements is neglected, assuming an
instantaneously uniform temperature distribution within the material. The corresponding
temperature changes of the structures can be evaluated via conservation of energy using
the mass of the structure m, and the heat capacity of the material c

cCasingmCasingṪCasing = Q̇FC

cDiskmDiskṪDisk = −Q̇DB

cBlademBladeṪBlade = Q̇FB + Q̇DB .

(3)

Substituting Equation (2) into Equation (3) finally yields a system of first-order differ-
ential equations for the temperatures of the casing, disks, and blades of the module.

cCasingmCasing

αFC AFC
ṪCasing + TCasing = TFluid (4)

cDiskmDisk
αDB ADB

ṪDisk + TDisk = TBlade (5)

cBlademBlade
γFBD

ṪBlade + TBlade =
αFB AFB

γFBD
TFluid +

αDB ADB
γFBD

TDisk (6)

γFBD = αFB AFB + αDB ADB (7)
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Applying a Laplace transformation to the first-order differential equation of the casing
in Equation (4) results in

TCasing(s)
TFluid(s)

=
1

cCasingmCasing
αFC AFC

s + 1
. (8)

Equation (8) is of similar form as the first-order filter proposed by [40] for approxi-
mating thermal equilibrium within the Thermal Transient Filter. Here, a similar first-order
filter is used to describe the correlation between the filtered exhaust gas temperature ẼGT
and its raw measurement EGT with a given time constant τth

ẼGT(s)
EGT(s)

=
1

τths + 1
. (9)

Comparing Equation (8) and Equation (9) shows that τth characterizes the heat transfer.
In general, the lower τth, the faster the temperature response of the material to a step change
of the fluid temperature.

For utilizing the Thermal Transient Filter a representative time constant τth has to be
defined approximating the heat exchange of a particular engine model. The time constants
are computed based on Equations (4)–(7). The mass m, heat capacity c, and wetted area
A are approximated from drawings and material datasheets. In general, the heat transfer
coefficient α depends on the geometry, fluid properties, and flow properties. Consequently,
the time constant τth is not fixed but varies with power-setting. Here, a Nusselt-Correlation
is used for approximating the heat transfer coefficients α [53] with the Reynolds-Number
Re, the Prandtl-Number Pr, the characteristic length l, and the thermal conductivity of the
fluid λF.

Nu =
αl
λF

=
ζ/8(Re− 1000)Pr

1 + 12.7
√

ζ/8(Pr2/3 − 1)

ζ = (1.8log10Re− 1.5)−2
(10)

In order to avoid the necessity to recompute the heat transfer coefficients α constantly
for changing power settings, the slowest possible heat transfer encountered during oper-
ation is used as a conservative estimate. Simplifying Equation (10) yields approximately
α ∼ Re0.8. Hence, a low-idle power-setting results in the highest time constants τth due to
the low corresponding Reynolds-Numbers. For evaluating the thermal model, the material
properties and dimensions of the components are derived based on an existing and vali-
dated model by [52]. The resulting time constants τth for the different modules in a low
idle-setting are summarized in Table 1. No thermal model is utilized for the fan and LPC
since the heat fluxes are considered negligible. Based on Table 1, the largest time constant
is selected for the Thermal Transient Filter as τth = 160 s.

Table 1. Time constants τth of the engine model evaluated at low-idle.

HPC Burner HPT LPT

τBlade [s] 2 - 15 10

τCasing [s] 6 7 37 82

τDisk [s] 96 - 160 82

Since Equation (9) defines a first-order differential equation, appropriate initial con-
ditions have to be defined for the filtered EGT. The initial thermal state of the engine is
directly dependent upon its flight history [52]. Therefore, it cannot be determined without
analyzing the preceding flight. In order to avoid such an extensive analysis, the filtered
EGT is initialized with the ambient temperature resulting in a conservative estimate of the
material temperature, assuming the engine was completely cooled down.
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According to [40] a thermally stabilized state is defined if the difference between the
filtered and unfiltered EGT is below a threshold of ∆EGTmax = 5 K, selected to be at the
same order of magnitude as the EGT measurement uncertainty [16,17].∣∣∣ẼGT − EGT

∣∣∣ ≤ ∆EGTmax (11)

3.2.3. Regime Recognition

The Regime Recognition restricts the detection of steady-state data points to certain
flight phases. The Regime Recognition can be set up such that steady-state data points are
only derived in flight phases where the engine model used for computing the predicted
values shows the highest accuracy. Therefore, such a regime filter lowers the uncertainty
of the engine model predictions leading to a decrease in variance within the residuals,
enhancing the detection rates and sensitivity of the fault detection.

3.2.4. State Transition Logic

The State Transition Logic defines a steady-state regime if the low-pass filtered data
fulfill the requirements of the Thermal Transient Filter as well as the Regime Recognition,
and the variance of the filtered data is below a threshold value within a given moving
window of length ∆tWindows. Its primary purpose is to ensure that the steady-state data
points fulfill the requirements of a steady-state performance synthesis calculation, i.e., the
stability of the flight conditions, power-setting, thermal state, and mechanical state. The ap-
proach defined by [41] is used, which allows the direct definition of limits on the relevant
measurements. The maximum variations D of the measurements y are defined as the
min-max range

Dy = max(y)−min(y) . (12)

The maximum variations of the parameters summarized in Table 2 are monitored for
ensuring stable flight conditions. The values are application-dependent and were chosen to
limit the difference of both net thrust and stored energy. The maximum variation chosen
for the parameters related to stable flight conditions ensures that the net thrust in altitude
varies with less than 0.5%. The maximum variation of parameters related to the mechanical
equilibrium ensures that the power stored in rotating structures varies with less than
5%. The maximum variation of the power setting parameter can be defined based on the
measurement uncertainty of aircraft fuel meters [54].

Table 2. Variables monitored for ensuring stable flight conditions.

Requirements Parameter

const. flight condition

Altitude

Total Air Temperature

Mach-Number

thermal equilibrium Exhaust Gas Temperature

mechanical equilibrium
Shaft Speed Fan

Shaft Speed Core

const. power setting Fuelflow

If all stability conditions are met, the corresponding data points within the moving
window are arithmetically averaged, resulting in a steady-state data point. The population
of the residuals between those steady-state data points and the corresponding predicted
values of an engine model forms the input to the following clustering approach.
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3.3. Clustering
3.3.1. Principal Component Analysis

In case of a system fault, the residuals of the current flight dataset will deviate from
the residuals of the datasets of preceding flights resulting in separated clusters of data
points. Clustering algorithms are applied to detect such separated clusters. The nominal
and faulty system performance can best be differentiated by deriving a set of not necessarily
physically interpretable input parameters pointing in the directions with the most variance.

The Principal Component Analysis [36] defines an approach for such a transformation.
An example for the orientation of the axes in the case of a dataset with two dedicated
clusters is visualized in Figure 4. The required reduction of input parameters to the
clustering algorithm is achieved by restricting the Principal Component Analysis to a
subset of axes explaining most of the variance of the original dataset.

Cluster 1

Cluster 2

Principal Components

Figure 4. Example for the orientation of the Principal Components for a dataset with two dedi-
cated clusters. The length of the Principal Components correlates with the variance explained by
the direction.

Principal Component Analysis requires the input data to be independent in time [55].
For aircraft engines, there are different root causes for time dependency acting on different
time scales. The short-term temporal correlation is related to transient effects and depends
upon the operating history of the flight [56]. The long-term temporal correlation is caused by
gradual engine deterioration and manifests slowly over multiple flight cycles. Only steady-
state data points are utilized in the presented fault-detection approach, diminishing the
transient effect and the related short-term temporal correlation. Additionally, the gradual
deterioration can be neglected by restricting the flight data analysis to a limited number of
preceding flights.

The starting point of the Principal Component Analysis is a given dataset Y ∈ Rk×n

comprised of n parameters and k independent observations. In this particular case,
the dataset Y holds the measurement residuals ∆y of both the dataset of the current flight
and preceding flights.

Y =

 ∆y1,1 . . . ∆y1,n
...

. . .
...

∆yk,1 . . . ∆yk,n

 (13)

The principal components of the given dataset Y are linear combinations of the given
parameters that decouple the covariance matrix resulting in a system of uncorrelated
parameters. Without a loss of generality, the means of the parameters are assumed to be
zero. In this case, the covariance matrix can be computed using
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C =
YTY

k
. (14)

The matrix of principal components P = (p1, p2, . . . , pn) and the corresponding diago-
nal matrix of eigenvalues Λ = diag(λ1, λ2, . . . , λn) can now be derived by diagonalizing
the covariance matrix

C = PΛPT . (15)

The magnitude of the eigenvalue λi is a measure for the portion of the total covariance
described by its principal component pi. It is assumed that principal components with
large eigenvalues contain more information. Therefore, dimensionality reduction can be
achieved by omitting eigenvectors with small eigenvalues. By choosing a smaller subset of
principal components with dPCA < n, a transformation matrix with T = (p1, p2, . . . , pdPCA)
can be derived for switching between the physical subspace Y and the subspace spanned
by the principal components Y

Y = YTT . (16)

Different physical units of the measurement can bias the resulting principal compo-
nents since their magnitude is not directly comparable. Therefore, the measurements have
to be normalized for direct comparison. The measurements are standardized, scaling them
to a zero mean and unit variance. Given the mean µ and variance σ of the i-th parameter,
the standardization is defined by

yi,j =
yi,j − µi

σi
. (17)

In the previously derived formulation of the Principal Component Analysis, all data
points are weighted equally. In the present use case, the test data of the current flight are
compared to a historical dataset of preceding flights. Hence, the dataset of the current
flight contains fewer data points than the dataset containing several preceding flights.
This imbalance in the available data points results in a possibly diminishing change in
variance caused by a fault leading to difficulties in fault detection. In order to account for
the potentially higher information content of the current flight, its data points are weighted
to give both datasets the same magnitude. This approach leads to the Weighted Principal
Component Analysis [57].

3.3.2. One-Class Support Vector Machine

The One-Class Support Vector Machine is an algorithm for cluster analysis. It models
the nominal system performance by defining a hypersphere with center C and radius R,
fully enclosing the provided training data [29]. A visualization of the One-Class Support
Vector Machine is displayed in Figure 5.

x

R

PCA 1

PCA 2

C

Figure 5. Visualization of the One-Class Support Vector Machine.
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The radius and correspondingly the volume of the hypersphere are minimized in order
to identify outliers best. The given requirements are cast into an optimization problem:

Objective function: minR,χ,C R2 + 1
νN ∑N

i=1 χi
Constraint 1: ||xi − C||2 ≤ R2 + χi
Constraint 2: χi ≥ 0 für i ∈ N .

(18)

The second term in the objective function is a penalty term that handles statistical out-
liers allowing a certain number of data points to lie outside the boundary of the hypersphere.
The distance between the outliers and the hypersphere is defined as χ. The magnitude of
the penalty can be tuned using the regularization parameter ν.

In general, the smaller the regularization parameter ν, the larger the volume of the hy-
persphere since the optimization encloses more outliers due to the heavy penalty. The first
constraint ensures that all data points except for a few lie within the hypersphere, and the
second constraint defines the distance between outliers and the boundary. After defining
the hypersphere, the set of outliers is defined by the decision function:

f (x) = sgn
(

R2 − ||x− C||2
)
=

{
+1 if x is nominal
−1 if x is an outlier

(19)

The hypersphere is defined based on the dataset of preceding flights. In the next step,
the data of the current flight are evaluated utilizing the decision function in Equation (19).
A fault is detected based on the total number of outliers found. In general, there will always
be a certain amount of statistical outliers. However, if the total number of outliers exceeds
a predefined threshold nlim, the outliers are considered systematic, and a fault is detected.
The total number of outliers tolerated directly influences the algorithm’s sensitivity and
must be defined based on a trade-off between fault-detection sensitivity and false positives.

Finding an appropriate hypersphere with a minimum volume might be difficult
for an arbitrary nonlinear multi-dimensional problem. In such cases, the dataset can be
transformed into a subspace with higher dimensionality where a simple hypersphere
enclosing the dataset can be defined [58]. A radial basis function kernel is utilized in the
given implementation for such a transformation.

3.4. Data Synthesis

In order to test the detection rates of the developed algorithm on a variety of fault cases,
a database of synthetic data was generated using a transient engine model. The engine
model was built using NPSS [59] and resembles a two-spool turbofan engine of the 140 kN
thrust class. The main components of the turbofan engine are the fan, the low-pressure
compressor (LPC), the high-pressure compressor (HPC), the burner, the high-pressure
turbine (HPT), and the low-pressure turbine (LPT). A schematic diagram of the engine
under consideration, including the available measurements and their position, is visualized
in Figure 6.

LPC HPC HPT LPT

Fan

Burner

Figure 6. Scheme of the modeled engine, including the measurements considered for fault detection.
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The measurements are chosen according to [16,17]. In order to model the transient
engine performance, shaft inertias, heat fluxes, and tip clearances due to thermal expansion
are considered. The heat fluxes are modeled according to Section 3.2.2. The model of the
tip clearances is based on existing publications [60]. Volume packing effects were neglected
since they cannot be resolved with the sampling rates provided.

The Mach-Number (Ma), the total ambient pressure (pt0), the total ambient tempera-
ture (Tt0), and the relative shaft speed of the fan (N1/N1max) are used as input parameters
for the engine model.

In order to mimic the variations and the scatter experienced during operation, the in-
put time series were derived based on published continuously sampled flight data of a
commercially operated regional jet [61]. The raw measurements within the published
database are acquired with different sampling rates. In order to utilize them for data
synthesis, all data were interpolated to a common sampling rate of 1 Hz. Additionally, only
complete flight missions were derived from the dataset, and the start-up and shut-down of
the engine were cut-off since the engine model used is not calibrated for these operations.

The published dataset contains some short-haul flights with limited cruise segments
since it was acquired from regional jets. The proposed fault-detection algorithm requires
a statistically relevant number of steady-state data points. It is expected to work well
for flights with extended cruise segments experienced in medium- and long-haul flights.
In order to exclude extreme short-haul flights, only flights with cruise segments of at least
one hour were considered. The time series of input parameters for an example flight
is visualized in Figure 7. Altogether, 100 flights were sampled and synthesized from
the dataset.
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Figure 7. Example time series for the input parameters used for data synthesis.
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For each of the 100 sampled flights, transient datasets for the nominal and faulty
engine performance were generated. For simulating the component faults, the capacities
QMap and efficiencies ηMap derived from the component maps were adjusted by scaling
factors defined by Equations (20) and (21).

∆Q =
(
Q−Qmap

)/
Qmap (20)

∆η = η − ηmap (21)

The scaling factors ∆Q and ∆η are based on the OBIDICOTE test cases [62] summa-
rized in Table 3. Additionally, for taking measurement uncertainty into account, the output
of the engine model was superposed by Gaussian white noise and a constant sensor bias
according to [16,17]. The corresponding sensor noise and biases are summarized in Table 4.

Table 3. Definition of the OBIDICOTE test cases according to [62].

Label
Fault Description

Faulty Component
∆Q ∆η

a ∆QFan = −1.0% ∆ηFan = −0.5% Fan
∆QLPC = −1.0% ∆ηLPC = −0.4% LPC

b − ∆ηFan = −1.0% Fan

c ∆QHPC = −1.0% ∆ηHPC = −0.7%

HPCd − ∆ηHPC = −1.0%

e ∆QHPC = −1.0% −
f ∆QHPT = +1.0% −

HPTg ∆QHPT = −1.0% ∆ηHPT = −1.0%

h − ∆ηHPT = −1.0%

i − ∆ηLPT = −1.0%

LPT
j ∆QLPT = −1.0% ∆ηLPT = −0.4%

k ∆QLPT = −1.0% −
l ∆QLPT = +1.0% ∆ηLPT = −0.6%

Table 4. Standard deviation σ and bias of the measurement uncertainty [16,17].

Measurement σ Bias Units

N1 5.0× 10−3 +1.7× 10−1 1/s

N2 2.5× 10−2 +3.3× 10−1 1/s

pt0 1.4× 10+3 +0.0× 10+0 Pa

pt25 3.4× 10+3 −2.1× 10+3 Pa

ps3 1.9× 10+4 +1.4× 10+4 Pa

pt5 2.1× 10+3 +2.8× 10+3 Pa

Tt0 5.6× 10−1 +0.0× 10+0 deg·K
Tt25 1.2× 10+0 −2.8× 10+0 deg·K
Tt3 1.7× 10+0 −1.1× 10+1 deg·K
Tt5 1.2× 10+0 +8.3× 10+0 deg·K
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4. Results
4.1. Test and Verification of the Steady-State Data Filter
4.1.1. Test of the Steady-State Data Filter with Synthetic Datasets

In the first step, the Steady-State Data Filter was tested based on the 100 synthesized
flights. As described in Section 3.2.1, an adjustment concerning the position of the low-
pass filter is proposed. The adjusted design leads to a significant increase in identified
steady-state data points.

For the synthetic flights, on average, 36 steady-state datapoints could be derived apply-
ing the Steady-State Data Filter defined by [40]. Using the low-pass filter as a preprocessing
step nearly doubled the average number of detected stable flight segments resulting in
approximately 65 identifications per flight. The steady-state flight conditions were solely
detected during cruise and taxi, with on average 60 out of 65 data points sampled during
cruise. For most flights, there were no detections during taxi-in and taxi-out. A compari-
son of both algorithms is visualized in Figure 8 for an example flight. For this particular
flight, eight steady-state data points were derived by the original algorithm [40], whilst
37 detections were achieved by the approach proposed in this paper.
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Figure 8. Comparison of the original and adjusted Steady-State Data Filter for an example flight.

4.1.2. Verification of the Steady-State Data Filter with In-Flight Measurements

The implemented Steady-State Data Filter was additionally verified based on three con-
tinuously sampled flights of a commercially operated medium-range aircraft. The datasets
were acquired with sampling rates of 1 Hz. The shaft speed of the fan as well as the
identified steady-state data points are visualized in Figure 9. The steady-state data points
are only detected during cruise. The lack of detection during taxiing is mainly attributed to
the short timespans spent while taxiing.

Due to the conservative definition of the Thermal Transient Filter, a thermal equilib-
rium could not be reached during taxi. In general, the longer the taxi phase, the higher the
chance of detecting steady-state data points. Compared to the dataset of the regional jet in
the previous section, the cruise segment is more stable as can be seen comparing the fan
shaft speed N1. Combined with the longer time spent in cruise, this significantly increases
identified steady-state data points. In total, between 185 and 241 stable data points were
detected leading to a statistically significant amount of data points, making fault detection
within one flight possible.
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Figure 9. N1-Setting and identified steady-state data points for continuously sampled flights of a
commercial medium-range aircraft. (a) Flight 1, (b) Flight 2, and (c) Flight 3.

4.2. Parameter Study Clustering

The proposed clustering toolchain is controlled via four hyperparameters affecting
the algorithms’ ability to distinguish between nominal and faulty engine performance:
the number of principal components retained dPCA, regularization parameter of the One-
Class Support Vector Machine ν, the number of flights comprising the training dataset
nTraining and the number of outliers tolerated until fault detection nlimit. The parameters
were derived based on analysis of the synthetic database and selected operational in-flight
measurements of commercial flights. As described in the previous section, no steady-state
datapoints could be detected during taxi for most flights. Therefore, the corresponding
data points during taxi were neglected, ensuring a consistent database of cruise data points
for each flight.

4.2.1. Definition of the Principal Components Retained dPCA

Dimensionality reduction is always related to a certain degree of information loss.
In the case of Principal Component Analysis, this information loss can be quantified by
evaluating the Cumulative Percent Variance CPV. Since the magnitude of the eigenvalue λi
is related to the variance described by its corresponding eigenvector pi, the Cumulative Per-
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cent Variance CPV defines the portion of the original variance retained after dimensionality
reduction from n dimensions to dPCA.

CPV(dPCA) =
dPCA

∑
i=0

λi

/
n

∑
i=0

λi (22)

The mean Cumulative Percent Variance CPV computed over all available flights
and fault cases is visualized in Figure 10 for different numbers of principal components
retained dPCA. The Cumulative Percent Variance CPV is low for the nominal case since this
case is dominated by random scatter without a distinct characteristic. Similarly, the poor
observability of fault case b results in a comparably low level of Cumulative Percent
Variance CPV as for the nominal case. For the remaining fault cases, the Cumulative
Percent Variance CPV indicates the formation of clusters influencing the variance and the
direction of the principal components.

The observed difference between two or four principal components retained dPCA is
small. Choosing three principal components ensures a Cumulative Percent Variance of
CPV ≥ 0.9 and increases the computational effectiveness. Furthermore, retaining three
dimensions after dimensionality reduction allows the data to be visualized, providing
maintenance engineers the means to check the fault-detection results.
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Figure 10. Cumulative Percent Variance CPV for fault cases a to l (Table 3).

4.2.2. Definition of the Regularization Parameter ν and Number of Flights nTraining
Comprising the Training Dataset

The regularization parameter ν controls the extent of the boundary defining the
nominal system performance. The volume of the hypersphere enclosing the nominal data
points grows when lowering the regularization parameter ν. While a small volume of
the hypersphere enhances the detectability of faults, it also increases the probability of
detecting statistical outliers of nominal data points. Potential faults can best be identified if
the ratio Q between detected outliers for faulty and nominal system performance is highest.
The outlier ratio Q, therefore, serves as a quality parameter.

Qj =
Number of outliers for fault case j

Number of outliers for nominal system performance
(23)

The average ratio Q for all flights and all possible fault cases was evaluated for deter-
mining the regularization parameter ν. The relation between the regularization parameter
ν, the number of flights comprising the training dataset nTraining and the outlier ratio Q
is visualized in Figure 11. The outlier ratio Q improves with reducing the regularization
parameter ν until a plateau is reached. The results indicate that increasing the volume of
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the hypersphere improves the representation of the nominal system performance without
including regions related to faulty system performance.

The regions of faulty and nominal system performance are therefore well separated.
The outlier ratio Q is also dependent on the number of flights comprising the training
dataset nTraining. In general, the data-driven representation of the nominal system perfor-
mance improves when increasing the number of data points, as more combinations of
environmental conditions and power settings are included. On the other hand, the com-
putational effort required for evaluating the datasets additionally increases. However,
the improvement in the outlier ratio Q diminishes with increasing nTraining.

10−1 100 101 102
ν/νref

2

4

6

8

10

12

Q

nTraining/nTraining, ref=0.75
nTraining/nTraining, ref=1.00
nTraining/nTraining, ref=1.25

Figure 11. Outlier ratio Q evaluated for the synthetic datasets.

4.2.3. Definition of the Threshold nlimit for Fault Detection

In the last step, the detection rates of the proposed fault-detection approach are
evaluated concerning the number of outliers tolerated until fault-detection nlimit. The re-
maining parameters of the cluster analysis are prescribed as derived in the previous sections.
For quantifying the detection rates for the different faults, the true positives (TP) and false
positives (FP) are computed defined as

TPj =
Number of faults detected for fault case j
Total number of flights with fault case j

(24)

FP =
Number of faults detected for nominal flights

Total number of nominal flights
. (25)

In order to analyze the effect of observability on the fault-detection rates, two different
measurement suites were analyzed. The first measurement suite is referred to as extensive
measurement suite and covers the temperatures and pressures in most sections of the aircraft
engine based on the instrumentation defined by [16,17]. The second measurement suite
defines the minimum instrumentation provided by most aircraft engines and is therefore
referred to as minimum measurement suite.

4.2.4. Detection Rates for the Extensive Measurement Suite

The first measurement suite covers all measurements displayed in Figure 6 as defined
in [16,17]. The measurements for Tt0, pt0, Ma and N1 are used to define the environmental
conditions and power-setting for the reference engine model representing nominal engine
performance. Therefore, these measurements are not available for fault detection, and only
the remaining sensors N2, Tt25, Tt3, Tt5, pt25, ps3, and pt5 are analyzed via the proposed
clustering approach.

The detection rates for the extensive measurement suite are summarized in Table 5.
In general, the total number of statistical outliers rises with the total number of available
data points. Hence, the presented results are based on the number of outliers counted
until the fault-detection nlimit related to the average number of steady-state data points
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detected per flight ∅nFlight. Except for fault case b, all the different faults can be detected
with similar confidence.

Table 5. Detection rates of the proposed fault-detection scheme for the extensive measurement suite
comprising N2, Tt25, Tt3, Tt5, pt25, ps3, and pt5.

nLimit
∅nFlight

TP FP

a b c d e f g h i j k l Nominal

0.05 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.41

0.10 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07

0.15 0.99 0.55 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.02

0.20 0.95 0.38 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.01

0.25 0.85 0.27 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.01

0.30 0.74 0.21 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.00

0.35 0.67 0.15 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.00

0.40 0.58 0.11 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.00

0.45 0.54 0.07 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.00

0.50 0.48 0.05 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.00

The decrease in true-positives with increasing nlimit can largely be attributed to the
total number of steady-state data points available for a single flight. Fault detection is not
possible if nlimit exceeds the number of steady-state data points available for a single flight.
Fault case b is in general more difficult to detect, with detection rates decreasing more
rapidly with increasing nlimit. The exchange rates for the different fault cases are displayed
in Figure 12. The exchange rates of fault case b show the limited observability of this fault.
The comparably low exchange rates of fault case b cause the low detection rates of fault
case b.

This particular fault mainly affects the bypass and cannot be detected using the given
measurements. The overall detection rates lead to the conclusion that fault detection is
possible within one flight. For example choosing nlimit/∅nFlight = 0.15 results in an overall
detection rate of 99% for the fault cases a and c-l while keeping false positives below 2%.

4.2.5. Detection Rates for the Minimum Measurement Suite

Apart from the measurements defining the environmental conditions Tt0, pt0, and Ma,
only the spool-speeds N1, N2 as well as the exhaust-gas temperature Tt5 are provided
underlying the minimum measurements suite. These are the measurements displayed in
the cockpit and are covered by all aircraft data acquisition systems. Taking into account
the required input variables for the reference engine model, only N2 and Tt5 remain for
fault detection. Due to the limited number of measurements available for the clustering, no
dimensionality reduction is necessary to analyze the dataset, and Principal Component
Analysis is omitted.

The resulting detection rates for the dataset assuming a minimum measurement suite
are summarized in Table 6. The true positive detection rates are similar to those presented
in the previous section with an extended measurement suite. The only significant differ-
ence is fault case f for which the detection rate significantly drops with increasing nlimit.
Considering the exchange rates in Figure 12, fault case f mainly affects the pressure pt3
and temperature Tt3 after the HPC. Hence, it is not observable based on the available mea-
surements of the minimum measurements suite. Since fewer measurements are available,
the random scatter within the dataset is reduced, resulting in lower false positives than
the analysis based on the extensive measurement suite. The analysis proves that fault
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detection is even possible, providing a minimum measurement suite covered by a wide
variety of aircraft.
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Figure 12. Exchange rates for fault cases a to l (Table 3).

Table 6. Detection rates of the proposed fault-detection scheme for the minimum measurement suite
comprising N2 and Tt5.

nLimit
∅nFlight

TP FP

a b c d e f g h i j k l Nominal

0.05 1.00 0.75 1.00 1.00 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00 0.05

0.10 1.00 0.37 1.00 1.00 1.00 0.58 1.00 1.00 1.00 1.00 1.00 1.00 0.01

0.15 0.99 0.23 0.99 0.99 0.99 0.37 0.99 0.99 0.99 0.99 0.99 0.99 0.01

0.20 0.95 0.12 0.95 0.95 0.95 0.22 0.95 0.95 0.95 0.95 0.95 0.95 0.01

0.25 0.83 0.06 0.85 0.85 0.85 0.17 0.85 0.85 0.85 0.85 0.85 0.85 0.01

0.30 0.74 0.06 0.74 0.74 0.74 0.13 0.74 0.74 0.74 0.74 0.74 0.74 0.01

0.35 0.67 0.05 0.67 0.67 0.67 0.06 0.67 0.67 0.67 0.67 0.67 0.67 0.01

0.40 0.58 0.05 0.58 0.58 0.58 0.04 0.58 0.58 0.58 0.58 0.58 0.58 0.00

0.45 0.54 0.05 0.54 0.54 0.54 0.03 0.54 0.54 0.54 0.54 0.54 0.54 0.00

0.50 0.47 0.03 0.48 0.48 0.48 0.01 0.48 0.48 0.48 0.48 0.48 0.48 0.00

4.3. Verification of the Clustering Toolchain

Some simplifications were made for the synthetic datasets, e.g., no gradual deteriora-
tion was considered. In order to verify the chosen parameters for the clustering workflow
consisting of Principal Component Analysis and One-Class Support Vector Machine, two
datasets containing operational data with an HPC and an LPC fault are provided. The scope
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of measurements differs from the one in the previous section as the fuel flow is additionally
included. Altogether, the datasets contain the measurement residuals of eight sensors:
∆W f uel , ∆N1, ∆N2, ∆P25, ∆P3, ∆T25, ∆T3, and ∆T5.

Since the data were derived from state-of-the-art engine condition monitoring systems,
only a few steady-state cruise snapshots per flight are available. In order to resemble
the multitude of data points expected from the proposed approach, several flights were
combined to represent the dataset of preceding flights and the dataset of the current flight.

Since there is no information concerning the point in time of fault initiation, the time
series were visually separated. Selected measurement residuals are visualized in Figure 13a
for the HPC fault and Figure 14a for the LPC fault. The data shown document a sufficiently
low level of engine deterioration.
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Figure 13. Results of the cluster analysis applied to operational data of an HPC fault. (a) Examples
for time series of measurement residuals for the HPC fault case. (b) Outlier ratio Q. (c) PCA
representation with three principal components.

The outlier ratio Q in Figure 13b,c indicates that the chosen regularization parameter ν
results in optimum detectability of the faults. Additionally, the visualization of the space of
principal components of the HPC fault in Figure 13c and the LPC fault in Figure 14c shows
that the clusters defining the nominal and faulty engine performance are well separated and
are therefore distinguishable leading to the conclusion that the fault cases can be detected
utilizing the proposed clustering approach.

For the LPC fault, there is some overlap between the two clusters. This overlap is
mainly caused by the fault initiation of the LPC fault. Considering the time series in
Figures 13a and 14a, the HPC fault occurs nearly instantaneously, whereas the LPC fault
manifests over several cycles.
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Figure 14. Results of the cluster analysis applied to operational data of an LPC fault. (a) Examples for
time series of measurement residuals for the LPC fault case. (b) Outlier ratio Q. (c) PCA representation
with three principal components.

5. Discussion

A novel approach for detecting faults utilizing continuously sampled flight data
was developed. The algorithm can detect arbitrary faults and requires only datasets
representing the nominal engine performance. The detection scheme was tested based
on synthetic datasets utilizing the full-flight data of commercial regional jets, ensuring
realistic variations of the environmental conditions and control settings. The detection
rates of various component faults showed high overall detection rates indicating that fault
detection was achievable after a single flight, removing the existing latency of state-of-the-
art methods.

Fault detection could even be achieved utilizing minimal instrumentation of commer-
cial aircraft. In addition to testing the detection scheme with synthetic datasets, the individ-
ual components of the algorithm were verified with in-flight measurements of commercial
flights. The results of this verification provide a proof-of-concept for the applicability of the
proposed detection approach.

Since steady-state data points are mainly derived during cruise, the method is expected
to work well, especially for flights that spend a significant time in cruise and allow the
generation of a statistically significant amount of steady-state data points. For flights with
limited cruise segments, the number of identified steady-state datapoints might not be
sufficient. In order to analyze such flights, either the stability criteria defining stable flight
segments have to be adjusted or alternative fault-detection approaches taking additional
flight segments into account have to be developed.
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