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Abstract

This thesis can be summarized under the aspect of surrogate modelling for vector-valued
functions and error quantification for those surrogate models. The thesis, in a broad
sense, is split into two different parts. The first aspect deals with constructing surrogate
models via matrix-valued kernels using both interpolation and regularization procedures.
For this purpose, a new class of so called uncoupled separable matrix-valued kernels is
introduced and heavy emphasis is placed on how suitable sample points for the construc-
tion of the surrogate can be chosen in such a way that quasi-optimal convergence rates
can be achieved.
In the second part, the focus does not lie on the construction of the surrogate itself, but

on how existing a-posteriori error estimation can be improved to result in highly efficient
error bounds. This is done in the context of reduced basis methods, which similar to the
kernel surrogates, construct surrogate models by using data acquired from samples of the
desired target function.
Both parts are accompanied by numerical experiments which illustrate the effectiveness

as well as verify the analytically derived properties of the presented methods.
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Zusammenfassung

Diese Arbeit kann unter dem Gesichtspunkt der Ersatzmodellierung vektorwertige Funk-
tionen und deren Fehlerquantifizierung zusammengefasst werden. Die Arbeit ist dabei in
zwei Bereiche geteilt. Der erste Teil beschäftigt sich mit der Konstruktion von Ersatzmod-
ellen mittels matrizenwertigen Kernen interpolatorischen und regularisierenden Approxi-
mationsmethoden. Für diesen Zweck präsentieren wir eine neue Klasse von so genannten
ungekoppelten separablen matrizenwertigen Kernen und setzten einen besonderen Schw-
erpunkt darauf, auf welche Weise geeignete Auswertungspunkte gewählt werden können,
sodass bei der Konstruktion des Ersatzmodells quasi-optimale Konvergenzraten erreicht
werden.
Im zweiten Teil der Arbeit liegt das Hauptaugenmerk nicht mehr auf der Konstruktion

der Ersatzmodelle, sondern darauf, wie bereits existierende a-posteriori Fehlerschranken
verbessert werden können, um gute Effektivitäten zu erreichen. Dies geschieht im Zusam-
menhang mit reduzierten Basis Methoden, welche auf ähnliche Weise zu den Kernersatz-
modellen, Ersatzmodelle aus Auswertungen einer Zielfunktion generieren.
In beiden Teilen wird dabei die Wirksamkeit der dargestellten Methoden durch nu-

merische Experimente sowie durch analytisch hergeleitete Eigenschaften verdeutlicht.
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1 Introduction

1.1 Motivation

Many of the processes in nature and engineering can be modelled via partial differential
equations describing the underlying dynamics of a given problem. For most of these, no
closed analytical solutions are known, and hence numerical solutions for these problems are
sought. This can be done, by discretizing the possibly infinite dimensional space in which
a true solution resides, into a finite dimensional one by posing certain restrictions. Most
commonly, this is achieved by reformulating the problem into a weak formulation and then
searching for weak solutions in smaller spaces. Common examples for this methodology
are for finite element methods [16, 52] or finite volume schemes [56, 31]. Moreover, with
the ever increasing complexity of problems in our modern society, these systems become
increasingly large, as to improve the quality of the numerical solution. Furthermore, many
of these problems are dependent on various input parameters, and hence many of these
high dimensional problems have to be considered. While the computational performance
which can be delivered by today’s hardware seems to be ever increasing, it cannot keep up
with today’s demand. This might cause an issue with regards to the computational time
when multiple solutions for varying parameters of the same problem are considered. This
is referred to as a multi-query scenario and most widespread examples are parameter
studies, parameter optimization and uncertainty quantification. Another aspect is the
availability of high performing computational hardware and many systems might not even
have the ability to execute the necessary computations due to a limit in storage ability. To
circumvent these restrictions, the field of surrogate modelling is in ever increasing demand
and is based on the following principle:
The high fidelity solutions described above can be summarized concisely via a func-

tion f : P → RN mapping from some given parameter space P into a high dimensional
vector space. This function is expensive to evaluate and hence surrogate models, i.e.
alternate functions f̂ : P → RN operating on the same parameter space are desired,
which can be easily evaluated. A classical example for such surrogates are interpolation
polynomials which derive a surrogate by posing interpolatory conditions at certain in-
puts. More sophisticated surrogate modelling approaches include kriging also known as
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1 Introduction

Gaussian process regression [77, 97], support vector machines [99, 23], kernel based ap-
proximations [108, 91], reduced order modelling [11, 7, 8, 9] and artificial neural networks
[45, 51, 73]. The latter of which has been increasing in popularity and a wide variety of
different approaches have been developed in the recent years. The commonality between
all these methods is that they are data driven, i.e. the surrogate is constructed using sam-
ples {f(x) |x ∈ Psample} of the so called target function for some sample set Psample ⊂ P .
The construction of the surrogate can then be divided into the three steps: 1. Selection
of suitable sample parameters and subsequent evaluation of the target function, 2. Con-
struction of the surrogate model and optimization of potential model parameters and 3.
quantification of the quality of the approximation. In particular, step three is of utmost
importance as the surrogate should reflect the target function f in a suitable fashion, i.e.
we do not only want a function that is fast to evaluate, we also want sufficient accuracy
and certification by quantifying this. Since it is a-priori unclear how many sample points
should be selected in the first step in order to generate a sufficiently accurate surrogate,
one might iterate over these three steps using the current surrogate to identify new pa-
rameters that should be included in the sampling process. This is commonly known as
active learning [22].

The two methods we focus on in this thesis are kernel based approximation and reduced
order modelling. For the kernel based surrogate, we mostly focus on step one and three,
whereas for the reduced order modelling surrogate we focus on step three. The basic ideas
behind these two methods can be roughly summarized as follows:

Kernel based surrogate

The kernel based surrogate takes the form

f̂(x) =
n∑
i=1

K(x, xi)αi,

where {x1, . . . , xn} are the chosen sample parameters, k(x, xi) ∈ RN×N is a matrix-valued
function called “kernel” and {α1, . . . , αn} ⊂ RN are coefficient vectors that depend on the
evaluations of the target function at the sample parameters, i.e. αi = αi(f(x1), . . . , f(xn)).
The kernel based surrogate does not care what processes and dynamics underlie the eval-
uation P 3 x 7→ f(x) ∈ RN and thus only the evaluations themselves are required in the
approximation process.
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1.2 Structure of this thesis

Reduced order modelling

Surrogates in the framework of reduced order modelling, on the other hand, often rely
on the inner structure of the evaluation x 7→ f(x). Here, the approach is to use the
information provided in the samples {f(x) |x ∈ Psample} to derive a model of reduced
order but of similar structure. This is commonly done by projecting the original system
using a so called reduced basis V ∈ RN×n with n� N . The corresponding small system
can now be solved fast resulting in a reduced solution fn(x) ∈ Rn and the surrogate is
computed by projecting this reduced solution back into the high dimensional space, i.e.
f̂(x) = V fn(x).

1.2 Structure of this thesis

The thesis is structured as follows.
In Chapter 2 we summarize basic concepts of matrix-valued kernels and extend prop-

erties known for scalar-valued kernels to matrix-valued kernels including approximation
of functions via interpolation and a corresponding error analysis via the so called power
function. We further introduce a new subclass of kernels, called uncoupled separable ker-
nels and show how their structure can be used for efficient computation of the power
function.
In Chapter 3 we study how data points should be selected in the approximation process

by means of different variants of greedy algorithms. In particular, we focus on variants
of the so called P–Greedy algorithm, which relies on the aforementioned power func-
tion and for which we were able to show that, under certain restrictions, quasi-optimal
approximation rates can be achieved.
In Chapter 4 we shift our focus from interpolation based approximation to a regular-

ization based one using matrix-valued weight functions. Similar to the previous chapter
we introduce a novel greedy algorithm, the so called regularized P–Greedy algorithm, for
the selection of suitable data points used in the construction. Likewise, we show that
the point sets generated by the regularized P–Greedy algorithm result in quasi-optimal
approximation rates.
In Chapter 5 we shift gears and switch from kernel based approximation to the topic of

reduced order modelling. In this context we introduce a novel error estimation procedure
based on the introduction of an auxiliary linear problem. Solving this additional problem
allows us to reach highly effective error estimators while only slightly increasing the com-
putational overhead. The effectivity of this error estimation procedure is affirmed both
analytically as well as numerically for a variety of different problems.
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1 Introduction

1.3 Publications
During the course of my PhD studies, I was involved in the publication of following
articles

1 D. Wittwar, G. Santin, and B. Haasdonk. Interpolation with uncoupled separable
matrix-valued kernels. Dolomites Res. Notes Approx., 11:23–29, 2018

2 D. Wittwar and B. Haasdonk. Greedy algorithms for matrix-valued kernels. In
F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, and I. S. Pop, editors, Numerical
Mathematics and Advanced Applications ENUMATH 2017, pages 113–121, Cham,
2019. Springer International Publishing

3 D. Wittwar and B. Haasdonk. Convergence rates for matrix P-Greedy variants. In
Cornelis Vuik Fred J. Vermolen, editor, Numerical Mathematics and Advanced Ap-
plications ENUMATH 2019, pages 1195–1203, Cham, 2021. Springer International
Publishing

4 M. Köppel, F. Franzelin, I. Kröker, S. Oladyshkin, G. Santin, D. Wittwar, A. Barth,
B. Haasdonk, W. Nowak, D. Pflüger, and C. Rohde. Comparison of data-driven
uncertainty quantification methods for a carbon dioxide storage benchmark scenario.
Computational Geosciences, 23(2):339–354, Apr 2019

5 A. Schmidt, D. Wittwar, and B. Haasdonk. Rigorous and effective a-posteriori
error bounds for nonlinear problems – Application to RB methods. Advances in
Computational Mathematics, 46(32), 2020

6 G. Santin B. Haasdonk, B. Hamzi and D. Wittwar. Greedy kernel methods for
center manifold approximation. In J.Peiro P. E. Vincent S. J. Sherwin, D. Moxey
and C. Schwab, editors, Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2018, pages 95–106. Springer International Publishing, 2020

7 B. Haasdonk, B. Hamzi, G. Santin, and D. Wittwar. Kernel methods for center man-
ifold approximation and a weak data-based version of the center manifold theorem.
Physica D: Nonlinear Phenomena, 427:133007, 2021

Article 1. is the basis for Section 2.2 and Section 2.4–2.5 in Chapter 2. Articles 2.–
3. provide the basis for Chapter 3, where parts of article 4. were used in Section 3.5.
Finally, article 5. is the basis of Chapter 5. Articles 6. and 7. are not included in this
thesis. However, they represent first applications of the surrogate scheme presented in
Chapter 4.
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2 Matrix-Valued Kernels

2.1 Motivation

Kernel methods are useful tools for dealing with a wide variety of different tasks ranging
from machine learning e.g. via Support Vector Machines (SVMs) ([13, 86, 100]), function
approximation from scattered data ([33, 62]) and many more. Especially the approxi-
mation aspect can be employed for generating surrogate models to speed up expensive
function evaluation, see [112]. In cases where the given output data or the desired tar-
get function is vector-valued, simple approaches which build individual models for each
function component can still be very costly, if the output is high dimensional and the
component models rely on independent data sets such that the union of those results in
overly large sets. Additionally, approximating a vector-valued function componentwise
with identical ansatz spaces might be the wrong choice, e.g. in case of different frequen-
cies. We thus propose the use of matrix-valued kernels which lead to surrogates that
can deal with correlations between function components, respective structural properties
of the target function, and therefore provide a more suitable model. For divergence-free
kernels, matrix-valued kernel approximations have already been successfully applied, see
e.g. ([32, 59, 69, 35]).

2.2 Basic Definitions and Properties

Definition 2.2.1 (Matrix-valued kernel). Let Ω be a non empty set. A bivariate function
K : Ω× Ω→ Rm×m, m ∈ N, is called a matrix-valued kernel if

K(x, y) = K(y, x)T for all x, y ∈ Ω (2.1)

Definition 2.2.2 (Reproducing kernel Hilbert space (RKHS)). Let H denote a Hilbert
space of Rm-valued functions over a domain Ω with inner product 〈·, ·〉H and induced
norm ‖·‖H. We call H a reproducing kernel Hilbert space, if for all x ∈ Ω and α ∈ Rm

13



2 Matrix-Valued Kernels

the directional point evaluation functional δαx : H → R defined by

δαx (f) := f(x)Tα, for all f ∈ H (2.2)

is bounded, i.e.

‖δαx‖H′ := sup
f∈H\{0}

δαx (f)
‖f‖H

<∞.

We can immediately conclude that the property of being a reproducing kernel Hilbert
space (RKHS) is inherited by any closed subspace of H:

Corollary 2.2.3 (Closed subspaces are RKHS). Let N ⊂ H be a closed subspace. Then
N is a RKHS

Proof. Since N is a closed subspace it is itself a Hilbert space, whose inner product
and norm stem from the restriction of the inner product and norm onto N , respectively.
Therefore, we have for any directional point evaluation functional

‖δαx‖N ′ = sup
f∈N\{0}

δαx (f)
‖f‖N

≤ sup
f∈H\{0}

δαx (f)
‖f‖H

<∞.

Similar to the scalar-valued case which was first presented by Aronszajin in [4], there
exists a one-to-one correspondence between RKHS of vector-valued functions and positive
definite matrix-valued kernels. A necessary concept for this is the notion of positive
definiteness which is a straightforward extension from the scalar-valued case and is given
as follows:

Definition 2.2.4 (Definiteness). Let Ω be non empty and K : Ω × Ω → Rm×m be a
matrix-valued kernel. For any finite set X := {x1, . . . , xn} ⊂ Ω, n ∈ N , we define the
Gramian matrix K ∈ Rmn×mn as the block matrix given by

K := K(X,X) := (K(xi, xj))ni,j=1 =


K(x1, x1) · · · K(x1, xn)

... . . . ...
K(xn, x1) · · · K(xn, xn)

 . (2.3)

The kernel K is denoted as positive definite (p.d.), if for all n ∈ N and arbitrary X =
{x1, . . . , xN} ⊂ Ω, the Gramian matrix K is positive semi-definite, i.e. it holds

αTKα ≥ 0 ∀α ∈ Rmn. (2.4)

14



2.2 Basic Definitions and Properties

The kernel is called strictly positive definite (s.p.d.), if for all n ∈ N and pairwise distinct
X = {x1, . . . , xn} ⊂ Ω the Gramian matrix is positive definite, i.e. we have

αTKα > 0 ∀α ∈ Rmn \ {0}. (2.5)

Definition 2.2.5. Partial ordering on the set of symmetric positive (semi-) definite ma-
trices Let A,B ∈ Rm×m be two symmetric matrices. We write

A � B or equivalently B � A

if the difference B − A is positive semi-definite. In particular, we might denote positive
semi-definite matrices simply via A � 0. In a similar fashion, we write

A ≺ B or equivalently B � A

if the difference B − A is positive definite. Again, we might denote positive definite
matrices via A � 0.

As we have mentioned before, each RKHS corresponds to a unique p.d. matrix-valued
kernel and vice versa. This is a well-known result for scalar-valued kernels and extensions
to the matrix-valued, and even operator valued, case have been made, c.f. [53]. Nonethe-
less, we summarize this correspondence in the following theorem including a proof as it
proves insightful for the structure of RKHS

Theorem 2.2.6 (One-to-one correspondence). LetH be an RKHS consisting of Rm valued
functions over a set Ω. Then there exists a unique positive definite matrix-valued kernel
K : Ω× Ω→ Rm×m, such that for all x ∈ Ω and f ∈ H

K(·, x)α ∈ H and 〈f,K(·, α)〉H = f(x)Tα. (2.6)

Conversely, if K : Ω × Ω → Rm×m is a p.d. matrix-valued kernel, then there exists a
unique Hilbert space H consisting of function f : Ω→ Rm such that (2.6) holds.

Proof. We first prove the direct implication. To this end, we assume thatH is a RKHS. By
Definition 2.2.2 this means that the directional point evaluation functionals δαx as defined
in (2.2) are bounded linear functionals. Hence, each of these functionals has a Riesz
representation in H which we shall denote as Kα

x . Since the directional point evaluation
functionals are by definition linear with respect to their direction α, we know that δαx is
uniquely determined by δeix , where ei ∈ Rm, i = 1, . . . ,m, denote the standard basis of

15



2 Matrix-Valued Kernels

Rm. It follows that the Riesz representation can be written via

Kα
x =

[
Ke1
x · · · Kem

x

]
α =: K(·, x)α (2.7)

where the matrix-valued function K(·, x) : Ω→ Rm×m is defined by

K(·, x) =
[
Ke1
x · · · Kem

x

]
.

Accordingly, we can reinterpret K as a function over Ω × Ω. It is easy to see that by
construction of K the conditions in (2.6) are met. Furthermore for any x, y ∈ Ω and any
distinct pair of standard basis vectors ei, ej ∈ Rm we have

eTi K(x, y)ej = 〈K(·, x)ei, K(·, y)ej〉H = 〈K(·, y)ej, K(·, x)ei〉H = eTj K(y, x)ei

and consequently K(x, y) = K(y, x)T . Furthermore, for any set X = {x1, · · · , xn} ⊂ Ω
the matrix K, as defined in (2.3), is the Gramian matrix for the elements K(·, x1)e1, ...,
K(·, xn)em and therefore it is positive semi-definite. In total we have found a matrix-
valued p.d. kernel, which satisfies (2.6). If K̂ is a second kernel satisfying (2.6) then it
holds by definition for arbitrary x ∈ Ω and all α ∈ Rm

αT K̂(x, x)α = 〈K̂(·, x)α,K(·, x)α〉H = 〈K(·, x)α, K̂(·, x)α〉H = αTK(x, x)α

an thus K = K̂, i.e. the kernel is unique. For the converse claim, let us assume that K is
a p.d. matrix-valued kernel. Let H0 denote the space of functions spanned by

H0 := span{K(·, x)α |x ∈ Ω, α ∈ Rm}. (2.8)

For any two functions f, g ∈ H0 given by

f =
p∑
i=1

K(·, xi)αi and g =
q∑
j=1

K(·, yj)βj

we can define an inner product on H0 by

〈f, g〉H0 :=
p∑
i=1

q∑
j=1

αTi K(xi, yj)βj,

where the positive definiteness of K is used to ensure the positive definiteness of the above
inner product. With this, H0 becomes a pre-Hilbert space and the inner product induces
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2.2 Basic Definitions and Properties

a norm on H0 via

‖f‖2
H0

= 〈f, f〉H0
.

Let (fn)n∈N be a Cauchy-Sequence in H0. Then we have for any n,m ∈ N, x ∈ Ω and
α ∈ Rm

|fn(x)Tα− fm(x)Tα| = |〈fn, K(·, x)α〉 − 〈fm, K(·, x)α〉|
≤ ‖fn − fm‖H0

‖K(·, x)α‖H0
.

Hence (fn(x)Tα)n∈N is a Cauchy sequence in R for any x ∈ Ω, α ∈ Rm and f(x) :=
lim
n→∞

fn(x) is a well-defined function f : Ω→ Rm. We now denote

H := {f : Ω→ Rm | f is the pointwise limit of some Cauchy sequence (fn)n∈N ⊂ H0} .

Then H is a linear space and H0 ⊂ H since each constant sequence is a Cauchy sequence.
We can now equip H with an inner product via

〈f, g〉 := lim
n→∞

lim
m→∞

〈fn, gm〉H0 ,

where (fn)n∈N and (gm)m∈N are Cauchy sequences in H0 such that f(x) = lim
n→∞

fn(x)
and g(x) = lim

m→∞
gm(x). The bilinearity as well as the positive definiteness is directly

inherited from the inner product 〈·, ·, 〉H0 . To see that it is also well-defined let us
consider a second choice of a Cauchy sequence (f̂n)n∈N with f(x) = lim

n→∞
f̂n(x). For

gm =
Mm∑
i=1

βi,mK(·, xi,m)αi,m ∈ H0 we have

〈fn, gm〉 − 〈f̂n, gm〉 = 〈fn − f̂n, gm〉

=
Mm∑
i=1

βifn(xi,m)Tαi,m − f̂n(xi,m)Tαi,m → 0 (n→∞).

Similarly, the same holds for other Cauchy sequences (ĝm)m∈N which converge pointwise
towards g and thus 〈·, ·〉H is well-defined. By construction H is complete and by definition
of the inner product the reproducing property (2.6)

〈f,K(·, x)α〉H = lim
n→∞

fn(x)Tα = f(x)Tα

is satisfied as well. To see that H is in fact unique, let Ĥ denote an alternate Hilbert
space, such that K satisfies (2.6). Then we have H0 ⊂ Ĥ and the inner product on H0
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2 Matrix-Valued Kernels

and the restriction of 〈·, ·〉Ĥ coincide on H0 and therefore H ⊂ Ĥ is a closed subspace by
construction of H. If H 6= Ĥ then there exists some function f ∈ Ĥ \ {0} such that f is
orthogonal to H, i.e. 〈f, g〉Ĥ = 0 for all g ∈ H. In particular, we get

〈f,K(·, x)α〉Ĥ = f(x)Tα = 0

for all x ∈ Ω and α ∈ Rm. However, this implies f(x) = 0 for all x ∈ Ω and therefore
f ≡ 0. Ultimately, we get a contradiction and we have in fact H = Ĥ, i.e. uniqueness.

In the case of such a pairing, we call K the reproducing kernel of H and the conditions
in (2.6) are refered to as the reproducing property of K. In this case, we also write
H = HK to indicate this correspondence.
By Corollary 2.2.3 any subspace N ⊂ HK is again a RKHS. By the above, it has its

own reproducing kernel which can be related to K as follows:

Corollary 2.2.7 (Reproducing kernel for closed subspaces). Let N ⊂ HK be a closed
subspace and let ΠN : HK → N denote the orthogonal projection onto N , then the
reproducing kernel KN of N can be defined via

KN (·, x)α = ΠN (K(·, x)α) (2.9)

for any x ∈ Ω and all α ∈ Rm.

Proof. By Theorem 2.2.6 we know that the reproducing kernel of N is unique. It is
therefore sufficient to show that the kernel defined by (2.9) does satisfy the reproducing
property (2.6). By definition it immediately follows that

KN (·, x)α = ΠN (K(·, x)α) ∈ N

as ΠN is the projection onto N . Furthermore, for any f ∈ N we have

〈f,KN (·, x)α〉N = 〈f,ΠN (K(·, x)α)〉HK = 〈ΠN (f), K(·, x)α〉HK = f(x)Tα,

where we made use of the fact that ΠN is self-adjoint and equal to the identity when
restricted to N itself.

As we have seen in (2.7), the evaluation K(·, x)α can be seen as the Riesz representer
of δαx . At the same time, we can interpret K(·, x)α as having applied the directional point
evaluation functional to the rows of K(·, ·). This can be generalized when considering
more general bounded linear functionals on H:
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2.2 Basic Definitions and Properties

Proposition 2.2.8 (Riesz representer for bounded functionals). Let λ : HK → R be a
bounded linear functional and let rλ ∈ HK denote its Riesz representer. Then rλ is given
by

rλ =
m∑
i=1

λ1(K(·, x)ei)ei,

where the superscript 1 indicates that λ is applied to the function by evaluation in the first
component.

Proof. Let Kei
x := K(·, x)ei ∈ HK , then

rλ(x)T ei = 〈rλ, Kei
x 〉HK = λ(Kei

x ) = λ1(K(·, x)ei).

Therefore, by summing the above for all standard basis vectors ei we get

rλ(x) =
m∑
i=1

(
rλ(x)T ei

)
ei =

m∑
i=1

λ1(K(·, x)ei)ei.

As we have mentioned above, the superscript 1 indicates that we apply the functional
to the function defined by evaluation in the first component. This can be seen as applying
the functional to the columns of K(·, x). However, by Definition 2.2.1 we have K(·, x)ei =(
eTi K(x, ·)

)T
. Thus we can equally apply λ to the rows ofK(x, ·). This leads to the shorter

notation

rλ(x) = λ2K(x, ·),

where the superscript 2 denotes that the function is applied to the second component, i.e.
the rows.
It immediately follows that the inner product of any two bounded linear functionals

can be computed by applying the functionals to the rows and columns of K successively.

Corollary 2.2.9 (Inner product of functionals). Let λ, µ : HK → R be two bounded linear
functionals, then it holds

〈λ, µ〉H′K = 〈λ2K,µ2K〉HK = λ1λ2K.

Furthermore, for any finite collection of functionals {λ1, . . . , λp} ⊂ H′K, the matrix C ∈
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2 Matrix-Valued Kernels

Rp×p defined by

Cij := λ1
iλ

2
jK (2.10)

is positive semi-definite.

Unfortunately, not all operations on HK can be expressed as a single functional. Even
considering straightforward point evaluation, multiple functionals have to be “stacked”
to achieve the desired results. This can be generalized in terms of the so called sampling
operator:

Definition 2.2.10 (Sampling operator). Let Λ := {λ1, . . . , λp} ⊂ H′K be a set of bounded
linear functionals on HK . Then the sampling operator SΛ : HK → Rp is given by

SΛ(f) :=
(
λ1(f) · · · λp(f)

)T
∈ Rp (2.11)

for any f ∈ HK

Similar to what we have seen in Proposition 2.2.8 we can likewise apply the sampling
operator to the rows or colums of K. In these cases we write

S1
ΛK =

[
S1

Λ (K(·, ·)e1) . . . S1
Λ (K(·, ·)em)

]
∈ Rp×m (2.12)

when the sampling operator is applied to the columns, and

S2
ΛK =

(
S1

ΛK
)T
∈ Rm×p

when applied to the rows. In particular, the Gramian matrix C for the set Λ given in
(2.10) now has the compact notation

C = S1
ΛS

2
ΛK. (2.13)

Furthermore, for the special case of ΛX := {δe1x , . . . , δemx |x ∈ X} we may write SΛ = SX

and

f(X) := SX(f), K(X, ·) := S1
XK, K(·, X) := S2

XK, K(X,X) := S1
XS

2
XK. (2.14)

Using the above, we get the following alternative characterization of s.p.d. kernels.

Corollary 2.2.11. Let K be a positive definite kernel with RKHS HK. Then K is strictly
positive if and only if for any set of pairwise distinct points X = {x1, . . . , xn} the set of
directional point evaluation functionals {δe1x , . . . , δemx |x ∈ X} is linearly independent.
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Proof. The above results follow immediately from the definition of strict positive definite-
ness and the fact that the Gram matrix of a linearly independent set is positive definite:

K is s.p.d. ⇔ K(X,X) � 0 ⇔ ΛX is linearly independent.

Using the sampling operator we can now give a succinct definition of the subspaces we
will consider going forward.

Definition 2.2.12. Let Λ = {λ1, . . . , λp} ∈ H′K . Then we define the subspace N (Λ) ⊂
HK via

N (Λ) := span{λ2K |λ ∈ Λ}.

In particular, for Λ = ΛX for some X ⊂ Ω we may also write

N (X) := N (ΛX).

We can immediately conclude that any f ∈ N (Λ) can now be written as

f = S2
ΛKα (2.15)

for some α ∈ Rp. Furthermore, for the above defined subspaces, we obtain that the
orthogonal projection operator onto N (Λ) coincides with the minimal norm interpolation
operator with respect to the functional set Λ:

Theorem 2.2.13 (Orthogonal projection and minimal norm interpolation). Let ΠN (Λ) :
HK → N (Λ) denote the orthogonal projection operator. Then for any f ∈ HK we have

SΛ
(
ΠN (Λ)(f)

)
= SΛ(f) (2.16)

and for all g ∈ HK with SΛ(g) = SΛ(f) we have
∥∥∥ΠN (Λ)(f)

∥∥∥
HK
≤ ‖g‖HK .

Proof. For all α ∈ Rp we have S2
ΛKα ∈ N (Λ) and since ΠN (Λ) is the orthogonal projection

we have for all f ∈ HK

0 =
〈(

id−ΠN (Λ)
)

(f), S2
ΛKα

〉
HK

=
(
SΛ(f)− SΛ

(
ΠN (Λ)(f)

))T
α

and therefore (2.16) follows. Furthermore, for any g ∈ HK satisfying SΛ(g) = SΛ(f) we
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have

g = ΠN (Λ)(f) + g⊥

for some g⊥ in N (Λ)⊥ and thus

‖g‖2
HK =

∥∥∥ΠN (Λ)(f)
∥∥∥2

HK
+
∥∥∥g⊥∥∥∥2

HK
≥
∥∥∥ΠN (Λ)(f)

∥∥∥2

HK
.

As an immediate consequence of the above observation, we have that the for expansion
of f ∈ N (Λ) in the form of (2.15) the coefficient vector must solve the linear system

SΛ(f) = SΛ
(
ΠN (Λ)(f)

)
= S1

ΛS
2
ΛKα.

This is indeed the case, as one can identify the range of the Gram matrix with the
range of the sampling operator:

Lemma 2.2.14 (Range of sampling operator). For any finite collection Λ ⊂ H′K we have

range (SΛ) = range
(
S1

ΛS
2
ΛK

)
Proof. “⊃” Let β ∈ range (S1

ΛS
2
ΛK) and α ∈ Rp such that (S1

ΛS
2
ΛK)α = β. Define f ∈ HK

via
f = S2

ΛKα.

It follows
SΛ(f) =

(
S1

ΛS
2
ΛK

)
α

“⊂” Let f ∈ HK and let ΠN (Λ)f be the orthogonal projection of f onto N (Λ). Then

ΠN (Λ)f = SΛKα

for some α ∈ Rp and therefore

SΛ(f) = SΛ
(
ΠN (Λ)(f)

)
= S1

ΛS
2
ΛKα.

The above provides us with a necessary condition for whether or not a function f :
Ω→ Rm is an element of the RKHS:
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Corollary 2.2.15 (Necessary condition for f ∈ HK). If f ∈ HK, then it holds for any
finite collection Λ ∈ H′K

SΛ(f) ∈ range
(
S1

ΛS
2
ΛK

)
.

Likewise, the converse of the above is true. That is if f : Ω → Rm is a function such
that SΛ(f) is well defined for any Λ ⊂ H′K and SΛ(f) ∈ range (S1

ΛS
2
ΛK), then we have

f ∈ HK . To see this we use the special case Λ = {λ} for any λ ∈ H′K . By the above λ(f)
is well defined and hence we can identify f as an element of the bidual space of HK , i.e.
f ∈ (H′K)′. However, since HK is a Hilbert space itself, it can be identified as its bidual
space and hence f ∈ HK .
Lemma 2.2.14 allows us to give a more compact form for the orthogonal projection onto
N (Λ). However, as we have mentioned in Corollary 2.2.11, the Gram matrix S1

ΛS
2
ΛK is

only positive definite, i.e. invertible, if the set Λ consists of linearly independent elements.
In this case the coefficient vector α of the projection ΠN (Λ)(f) = SΛKα is given by

α =
(
S1

ΛS
2
ΛK

)−1
SΛ(f).

If the set Λ is not linearly independent, we can replace the inverse by the so called
Moore-Penrose-Pseudoinverse which is defined as follows, c.f. [74].

Definition 2.2.16 (Moore-Penrose-Pseudoinverse). Let A ∈ Rm×n be an arbitrary ma-
trix. The Moore-Penrose-Pseudoinverse of A denoted by A+ ∈ Rn×m is the unique matrix
that satisfies the four Moore-Penrose conditions:

(a) AA+A = A

(b) A+AA+ = A+

(c)
(
AA+

)T
= AA+

(d)
(
A+A

)T
= A+A

Remark 2.2.17. If A is invertible, the Moore-Penrose-Pseudoinverse is just given via A+ =
A−1. In the cases where A has full column or row rank, the Moore-Penrose-Pseudoinverse
is the left or right inverse of A, respectively. In particular, the conditions guarantee
that AA+ is the orthogonal projection onto range(A). Likewise, A+A is the orthogonal
projection onto range(A+). Furthermore, if A is symmetric and positive (semi-) definite,
then A+ is also symmetric and positive (semi-) definite.. In practice A+ can be computed
by performing a singular value decomposition for A.
Ultimately, we get the following representation for the orthogonal projection for any

f ∈ HK

ΠN (Λ)(f) = S2
ΛK

(
S1

ΛS
2
ΛK

)+
SΛ(f). (2.17)
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In particular, the reproducing kernel KN (Λ) of the subspace N (Λ) takes the form

KN (Λ) = S2
ΛK

(
S1

ΛS
2
ΛK

)+
S1

ΛK. (2.18)

Remark 2.2.18. Both (2.17) and (2.18) enable us to easily work with p.d. kernels and gen-
eral functionals. In the case of s.p.d. kernels, the Moore-Penrose-Pseudoinverse coincides
with the standard inverse and for the special case of point evaluation, i.e. SΛ = SX for
some X ⊂ Ω we obtain the simplified expressions

ΠN (X)(f) = K(·, X)K(X,X)−1f(X)

and

KN (X)(x, y) = K(x,X)K(X,X)−1K(X, y).

We conclude this section by showing that the elements of HK inherit certain properties
of their reproducing kernel K. Namely, if the the Kernel is 2k-times continuously differen-
tiable over Ω×Ω, then each element f ∈ HK is at least k-times continuously differentiable.
In other words, for K ∈ C2k(Ω × Ω,Rm×m) we get the inclusion HK ⊂ Ck(Ω,Rm). In
particular, we have that if K is continuous so are all functions in the RKHS HK . The
following Theorem and proof are adapted from [108], in which an analogous statement
for scalar-valued kernels was shown.

Theorem 2.2.19 (Embedding into the space of continuously differentiable functions). Let
K ∈ C2k(Ω × Ω,Rm×m) and Ω ⊂ Rd, then any f ∈ HK is at least k-times continuously
differentiable. Furthermore, let Dβ = ∂β1

x1 . . . ∂
βd
xd

be a partial differential operator for some
multiindex β ∈ Nd

0 with |β| ≤ k. Then δαx ◦Dβ ∈ H′ for all x ∈ Ω and α ∈ Rm.

Proof. Due to its inductive nature, and symmetry in the multiindex β, we can restrict
ourselves to the case β = (1, 0, . . . , 0)T ∈ Nd

0. We know that if a function f is continuously
differentiable, then we have for all x ∈ Ω

(∂x1f) (x) = lim
n→∞

f(x+ e1/n)− f(x)
1/n ,

For any x ∈ Ω and α ∈ Rm we can now define a sequence in HK via

gn := 1
n

(K(·, x+ e1/n)α−K(·, x)α) ,

which converges to ∂x1K(·, x)α with respect to the norm on HK . Furthermore, by the
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reproducing property we have

〈f, gn〉HK = f(x+ e1/n)Tα− f(x)
1/n

α

and therefore

〈gm, gn〉HK → αT
(
∂1
x1∂

2
x1K(x, x)

)
α, n,m→∞.

We conclude that (gn)n∈N is a Cauchy sequence, as

‖gm − gn‖2
HK = 〈gm, gm〉HK + 〈gn, gn〉HK − 2 〈gm, gn〉HK
→ αT

(
∂1
x1∂

2
x1K(x, x) + ∂1

x1∂
2
x1K(x, x)− 2∂1

x1∂
2
x1K(x, x)

)
α = 0.

Therefore, there exists a g ∈ HK such that gn → g. For any f ∈ HK it holds

(∂x1f) (x)Tα = lim
n→∞

f(x+ e1/n)Tα− f(x)
1/n

α

= lim
n→∞
〈f, gn〉HK = 〈f, g〉HK ∈ R.

Since x ∈ Ω and α ∈ Rm were arbitrary, this show that ∂x1f exists. In particular, this is
the case for K(·, y)β and by the reproducing property we have

g(y)Tβ = 〈g,K(·, y)β〉HK =
(
∂1
x1K(x, y)β

)T
α =

(
∂2
x1K(y, x)α

)T
β,

where we made use of (2.1) for the last equality. Hence, we can identify g = ∂2
x1K(·, x)α.

To proove that f is differentiable it is sufficient to show that ∂x1f is continuous. Let
x, y ∈ Ω and α ∈ Rm, then we have by the above

|(∂x1f(x)− ∂x1f(y))Tα|2 =
∣∣∣〈f, ∂2

x1K(·, x)α− ∂2
x1K(·, y)α〉HK

∣∣∣2
≤ ‖f‖2

HK

∥∥∥∂2
x1K(·, x)α− ∂2

x1K(·, y)α
∥∥∥2

HK

= ‖f‖2
HK α

T
(
∂1
x1∂

2
x1K(y, y) + ∂1

x1∂
2
x1K(x, x)− 2∂1

x1∂
2
x1K(x, y)

)
α

→ 0 as y → x,

since ∂1
x1∂

2
x1K is continuous by assumption. We conclude that ∂x1f is continuous since

α ∈ Rm was arbitrary.
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2.3 Basic construction methods and invariant kernels

In this section we present different construction methods for matrix-valued kernels. Over
the years a multitude of different approaches to this subject have been presented, see for
example [78, 3, 6, 19, 64, 63, 66, 92, 53], many of which make use of the existing theory for
scalar-valued kernels and extending these to the matrix-valued (or even operator valued)
case. Likewise, many of the following constructions can be seen as extension of different
methods for scalar-valued kernels. However, we focus primarly on basic construction
methods as well as take a closer look at so called translational (and rotational) invariant
kernels on Rd × Rd, which can be characterized via their Fourier transformation.
However, before we start with the basic construction methods, we present some exam-

ples of matrix-valued kernels.

Example 2.3.1 (Matrix-valued kernels). Let Ω ⊂ Rd. The following functions are exam-
ples for matrix-valued kernels.

(a) K(x, y) = xyT is a p.d. kernel and it spans the space of polynomials of degree 1
such that the i-th component is a polynomial in the i-th coordinate xi of x. By
definition it is clear that K(y, x) = K(x, y)T . Furthermore, for any finite set of
points X = {x1, . . . , xn} we have

K(X,X) =


x1
...
xn



x1
...
xn


T

� 0

and thus the kernel is positive definite.

(b) If ω : Ω → Rm×m is a symmetric positive definite function, i.e. ω(x) = ω(x)T � 0
for all x ∈ Ω, then K : Ω× Ω→ Rm×m given by

K(x, y) = ω(x)δx(y) =
ω(x), if x = y

0, else

is a p.d. kernel. Again, we immediately notice that K(y, x) = K(x, y)T , since the
kernel is zero for x 6= 0. Likewise, for any set X = {x1, . . . , xn} we have

K(X,X) =



ω(x1) 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 ω(xn)

 � 0
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(c) The Gaussian kernel K(x, y) = e−ε‖x−y‖
2
is a scalar-valued, i.e. m = 1, s.p.d. kernel.

Matrix-valued kernels come as a natural extension of scalar-valued ones. Hence many
properties and construction methods can be directly transferred. In the following we want
to list some extensions.

Proposition 2.3.2 (Basic kernel construction). In the following let K1, K2 : Ω × Ω →
Rm×m denote two (p.d.) matrix-valued kernels.

(a) K = K1 +K2 is a p.d. kernel. Furthermore, if K1 or K2 is s.p.d., then so is K.

(b) K = c ·K1 is a p.d. kernel for any c ≥ 0.

(c) K = K1 �K2, i.e. the Hadamard product (elementwise product) is a p.d. kernel.

(d) K = K1 ⊗K2 is a p.d. kernel. Here ⊗ denotes the Kronecker product.

Proof. Let X = {x1, . . . , xn} denote a set of (pairwise) distinct points.

(a) It holds

K(X,X) = K1(X,X) +K2(X,X) � 0

and K(X,X) � 0 is achieved, if K1(X,X) � 0 or K2(X,X) � 0.

(b) We have K(X,X) = cK1(X,X) � 0.

(c) By definition we have K(X,X) = K1(X,X) � K2(X,X) � 0. Here we made use
of the well known fact, see [118], that the Hadamard product of positive (semi-)
definite matrices is again positive (semi-) definite.

(d) Since the Kronecker product conserves positive (semi-) definiteness, we know that
K1(X,X)⊗K2(X,X) is positive definite. However, the matrix K(X,X) is a minor
of K1(X,X)⊗K2(X,X), i.e. there exists a matrix P ∈ Rn2m2×nm2 such that

K(X,X) = P T (K1(X,X)⊗K2(X,X))P � 0.

We first want to note that (a) and (b) show that the set of all p.d. matrix-valued
kernels mapping into Rm×m is a cone. Furthermore, we take note of the fact that in
the scalar-valued case (m = 1) the Hadamard and Kronecker product coincide with the
regular multiplication in R. Hence, the product of scalar-valued p.d. kernels is again p.d..
For matrix-valued kernels, this is no longer the case. To this end consider K = K1 ·K2.
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Since both K1 and K2 are kernels, we have by Definition 2.2.1 K1(y, x) = K1(x, y)T and
K2(y, x) = K2(x, y)T for any x, y ∈ Ω. However if we require the same condition for K
we obtain

K1(y, x)K2(y, x) = K(y, x) != K(x, y)T = (K1(x, y)K2(x, y))T

= K2(x, y)TK1(x, y)T = K2(y, x)K1(y, x).

In other words K1 and K2 have to commute for all possible input pairs x, y. In general
this is not even satisfied if we choose K1 = K2 and thus ordinary matrix multiplication
does not result in a new matrix-valued kernel. As we will see in a later example, i.e.
Example 2.4.12, even if the above is satisfied by a p.d. kernel, this does not guarantee
that the positive definiteness is preserved.

While Proposition 2.3.2 gives an insight into the basic construction of matrix-valued
kernels, it provides no information on the structure of the RKHS of the newly formed
kernel or how it relates to the RKHS of the kernels K1 and K2. Thus, we consider
the following construction procedure, which relies on a linear operator and enables us to
directly link the RKHS to the newly constructed kernel to the RKHS of the original kernel
used in the construction. The same concept has already been applied in the framework
of scalar-valued kernels and the following theorem and proof are modified versions of a
result, which can be found in [108] and were updated to the matrix-valued setting.

Theorem 2.3.3. Let HK be an RKHS with reproducing kernel K : Ω× Ω→ Rm×m. Let
L : HK → {f |f : ΩL → RM} be a linear operator mapping from the RKHS into the space
of RM valued functions over ΩL ⊂ Ω such that δαx ◦ L ∈ H′K for all x ∈ ΩL and α ∈ RM .
Then

HKL := L(HK) = {L(f) | f ∈ HK}

is a RKHS with reproducing kernel KL : ΩL → ΩL → RM×M given by

KL := L1L2K (2.19)

and for any g ∈ HKL its norm is given by

‖g‖HKL = min{‖f‖HK |L(f) = g}. (2.20)

Proof. Since δxei ◦ L is a bounded linear operator on HK for every x ∈ ΩL and for each
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standard basis vector ei, i = 1, . . . ,M , we have that

N ei
x := N (δeix ◦ L)⊥ = {f ∈ HK |L(f)(x)T ei = 0}

is a closed subspace of of HK . Consequently, NL ⊂ HK given by

NL :=
⋃
x∈ΩL

⋃
i=1,...,M

N ei
x = {f ∈ HK |L(f) ≡ 0}

is a closed subspace. Therefore,HK = NL⊕N⊥L and T := L|N⊥L : N⊥L → HKL is invertible.
We can now equip HKL with an inner product via

〈g1, g2〉HKL := 〈T−1(g1), T−1(g2)〉HK .

It remains to show, that KL given by (2.19) satisfies the reproducing property (2.6) and
that the above inner product induces the norm defined in (2.20). By definition of KL we
have

KL(·, x)α = L1L2K(·, x)α = L(L2K(·, x)α) ∈ HKL

since L2K(·, x)α ∈ HK as it is the Riesz representer of δαx ◦ L by Proposition 2.2.8. Let
hαx := T−1(KL(·, x)α), then hαx ∈ NL and hαx − L2K(·, x)α ∈ N⊥L . It follows for any
g ∈ HKL

〈g,KL(·, x)α〉HKL = 〈T−1(g), h〉HK = 〈T−1(g), h− L2K(·, x)α + L2K(·, x)α〉HK
= 〈T−1(g), h− L2K(·, x)α〉HK + 〈T−1(g), L2K(·, x)α〉HK
= 〈T−1(g), L2K(·, x)α〉HK = L(T−1(g))(x)Tα = g(x)Tα.

Hence KL is the reproducing kernel. That the norm (2.20) is induced by the inner product
follows from the observation that L−1({g}) = T−1(g) +NL and thus

〈g, g〉HKL = 〈T−1(g), T−1(g)〉HK =
(
min{‖f‖HK |L(f) = g}

)2
.

As a direct consequence, we can relate the RKHS of various combinations or modifica-
tions of kernels to the individual RKHS.

Corollary 2.3.4.

(a) Let K1, K2 : Ω×Ω→ Rm×m be p.d. kernels with RKHS HK1 and HK2, respectively.
Then HK := HK1 +HK2 is a RKHS with reproducing kernel K = K1 +K2 and with
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norm

‖f‖2
HK = min

{
‖f1‖2

HK1
+ ‖f2‖2

HK2
| f = f1 + f2

}

(b) Let K be a p.d. kernel with RKHS HK. For any matrix S ∈ RM×m the kernel
KS : Ω× Ω → RM×M defined by KS(x, y) = SK1(x, y)ST is the reproducing kernel
of HKS := SHK = {Sf | f ∈ HK}, equipped with the norm

‖f‖HKS = min
{
‖g‖HK |Sg = f

}
.

(c) Let K : Ω × Ω ⊂ Rd × Rd → Rm×m be a p.d. kernel with RKHS HK. If K is
twice continuously differentiable, then HK∇ := {∇f | f ∈ HK} is an RKHS with
reproducing Kernel K∇ : Ω× Ω→ Rdm×dm given by

K∇ = ∇1∇2K

and norm

‖f‖HK∇ = min
{
‖g‖HK | ∇g = f

}
.

Here, ∇ denotes the stacked gradient operator, i.e.

∇(f) = ∇((f1, . . . , fm)T ) =
(
∂x1f1 · · · ∂xdfm

)T
∈ Rdm.

(d) Let K : Ω × Ω ⊂ Rd × Rd → Rm×m be a p.d. kernel with RKHS HK. Let Ωr ⊂ Ω
be a subset. Then the kernel Kr : Ωr × Ωr → Rm×m given by Kr = K|Ωr×Ωr is p.d.
and its RKHS is given by HKr = {f |Ωr | f ∈ HK} equipped with the norm

‖f‖HKr = min
{
‖g‖HK | g|Ωr = f

}
.

Proof. (a) H = HK1 ×HK2 is a RKHS when equipped with the inner product

〈(f1, f2), (g1, g2)〉H = 〈f1, g1〉HK1
+ 〈f2, g2〉HK2

and reproducing kernel

K(x, y) =
K1(x, y) 0

0 K2(x, y)

 ∈ R2m×2m.
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2.3 Basic construction methods and invariant kernels

We define L : HK → {f : Ω→ Rm} via

L((f1, f2)) = f1 + f2.

It is easy to see that δeix ◦ L ∈ H′K for any x ∈ Ω and each standard basis vector
ei ∈ R2m. By Theorem 2.3.3 it holds that

HKL = {L(f) | f ∈ HK} = {f1 + f2 | f1 ∈ HK1 , f2 ∈ HK2} = HK1 +HK2

is a RKHS with reproducing kernel KL = L1L2K = K1 +K2 and with norm

‖g‖2
HKL

= min
{
‖f‖2

HK |L(f) = g
}

= min
{
‖f1‖2

HK1
+ ‖f2‖2

HK2
| f1 + f2 = g

}
.

(b) The result follows by applying Theorem 2.3.3 to HK , where L(f) = Sf .

(c) Using Theorem 2.2.19, we know that δeix ◦ ∇ ∈ H′K . Hence the result follows from
Theorem 2.3.3 for the choice L = ∇.

(d) This also follows from Theorem 2.3.3, where L is the restriction operator from Ω
onto Ωr.

2.3.1 Translational and rotational invariant kernels

Similar to what we have seen in Theorem 2.2.19, all elements of the RKHS inherit certain
properties of their reproducing kernel. Conversely, properties that hold for any f ∈ HK

can be traced back to the reproducing kernel. One class of such a property is the invariance
under certain transformations.

Lemma 2.3.5 (Behaviour of the reproducing kernel under isometric transformation). Let
HK be a RKHS with reproducing kernel K : Ω × Ω → Rm×m. Then T : HK → HK is
an isometry if and only if K = T 1T 2K, where the superscript denote whether the T is
applied to the colums or rows of the matrix-valued function K.

Proof. By assumption we have that δαx ◦ T ∈ H′K since

‖(δαx ◦ T ) (f)‖ ≤ ‖δαx‖H′K ‖(T (f))‖ = ‖δαx‖H′K ‖f‖HK .

Since T is an isometry, we have 〈Tf, Tg〉HK = 〈f, g〉HK for all f, g ∈ HK . In particular,
this holds for Kα

x = K(·, x)α for any x ∈ Ω and α ∈ Rm. By the above and Propos-
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tion 2.2.8 we thus have

αT
(
T 1T 2K(x, y)

)
β =

〈
TKα

x , TK
β
y

〉
HK

=
〈
Kα
x , K

β
y

〉
HK

= αTK(x, y)β,

which gives us the desired results since x, y ∈ Ω and α, β ∈ Rm were arbitrary. Conversely
if T 1T 2K = K, then T defines an isometry on the space H0 = span{K(·, x)α |x ∈ Ω, α ∈
Rm}. However, this space is dense in HK by Theorem 2.2.6 and hence we can extend it
to an isometry on all of HK .

Corollary 2.3.6 (Translational invariance). Let HK be an RKHS with reproducing kernel
K : Rd × Rd → Rm×m. If the translation operator Ty : Rd → Rd, Ty(x) = x + y induces
an isometry on HK via Ty(f) := f(· + y) for any y ∈ Rd, then there exists a function
Φ : Rd → Rm×m such that K(x, y) = Φ(x−y) for all x, y ∈ Rd. The converse is also true.

Proof. Let HK be an RKHS with reproducing kernel K, such that for any y ∈ Rd Ty

induces an isometry on HK . By Lemma 2.3.5 we now have

K(x− y, 0) = T 1
−yT

2
−yK(x, y) = K(x, y)

for all x ∈ Rd. Since y ∈ Rd was arbitrary, the above holds for any x, y ∈ Rd, hence we
have K(x, y) = Φ(x − y), where Φ : Rd → Rm×m is given by Φ := K(·, 0). Conversely, if
K(x, y) = Φ(x − y), then we have T 1

y T
2
yK = K and by Lemma 2.3.5 it holds that Ty is

an isometry on HK onto itself.

Similar to the above, one can infer further structure on K if, in addition to the trans-
lational invariance, a rotational invariance is also stipulated in the sense that every or-
thogonal matrix O ∈ Rm×m induces an isometry on HK via O(f)(x) := f(OxOT ). In this
case the function Φ is only dependent on the norm of its argument. For more detail on
this and on matrix-valued translational (rotational) invariant kernels we defer to [66]. We
only summarize the above in the following definition

Definition 2.3.7 (Translational (rotational) invariant kernels). A matrix-valued kernel
K : Rd × Rd → Rm×m is called translational invariant, if there exists a matrix-valued
function Φ : Rd → Rm×m such that K(x, y) = Φ(x − y). It is further called translation
rotational invariant, if Φ only depends on the norm of its argument, i.e. K(x, y) = Φ(x−
y) = φ(‖x− y‖) for some φ : [0,∞) → Rm×m. In the latter, we call Φ a radial basis
function (RBF) andK an RBF kernel. Moreover, the function Φ is called positive definite,
if its corresponding matrix-valued kernel is positive definite.

From the above definitions we can immediately conclude property of the function Φ:
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2.3 Basic construction methods and invariant kernels

Corollary 2.3.8. Let Φ : Rd → Rm×m a matrix-valued function such that K : Rd×Rd →
Rm×m given by K(x, y) = Φ(x− y), then it holds for all x ∈ Rd

Φ(x) = Φ(−x)T .

Proof. Since K is a matrix-valued kernel it holds for all x, y ∈ Rd

Φ(x− y) = K(x, y) = K(y, x)T = Φ(y − x)T .

Choosing y = 0 gives the desired identity.

2.3.2 Native space for RBF kernels

In the following, we give an alternate representation of the native space if the kernel
is translational invariant. In this case, the native space HK can be expressed via the
Fourier transformation of the underlying Φ for which K(x, y) = Φ(x − y) holds. For
scalar-valued kernels, this representation is well-known and we will extend these results
to the matrix-valued case. For this purpose we follow the structure outlined in [108].

Definition 2.3.9 (Lebesgue spaces). For p ≥ 1 the set Lp(Ω,Rm) defined by

Lp(Ω,Rm) :=
{
f : Ω→ Rm | fi is Lebesgue-measurable and

∫
Ω
‖f(x)‖p dx <∞

}

is a vector space such that ‖·‖Lp(Ω,Rm) given by

‖f‖Lp(Ω,Rm) =
(∫

Ω
‖f(x)‖ dx

)1/p

defines a semi-norm. Here we use the Euclidean norm on Rm for the pointwise norm
‖f(x)‖. Let N = {f ∈ Lp(Ω,Rm) | f ≡ 0 almost everywhere}. Then the Lebesgue space
Lp(Ω,Rm) is given as the quotient space

Lp(Ω,Rm) = Lp(Ω,Rm)/N

and equipped with the norm

‖f‖Lp(Ω,Rm) := min
{
‖g‖Lp(Ω,Rm) | g ≡ f a.e.

}
.

it becomes a Banach space. Likewise, we can define L∞(Ω,Rm) via L∞(Ω,Rm) where

L∞ =
{
f : Ω→ Rm | fi is Lebesgue-measurable and ‖f‖L∞(Ω,Rm) = ess sup

x∈Ω
‖f(x)‖ <∞

}
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Analogous definitions hold, if we allow complex valued functions, i.e. f : Ω→ Cm.

In the case of p = 2 the Lebesgue space is a Hilbert space. Furthermore, we make use of
matrix-valued functions, hence we identify Lp(Ω,Rm×m) with Lp(Ω,Rm2). In particular,
the Euclidean norm on Rm2 is then equivalent to the Forbenius norm on Rm×m.

Definition 2.3.10 (Fourier transformation). For f ∈ L1(Rd,Cm) the Fourier transform
f̂ of f is given via

F(f)(x) := f̂(x) := 1
(2π)d/2

∫
Rd
f(ω)e−ixTωdω

and the inverse Fourier transform is given by

F−1(f)(x) := 1
(2π)d/2

∫
Rd
f(ω)eixTωdω

In case of m ≥ 2 the above integrals operate on each individual component.

Please note, that we defined the Fourier and inverse Fourier transform for complex
valued functions. This is more practical, as the Fourier transform F(f) is in general not
real-valued even if f itself was real-valued to begin with.
The following lemma provides us with basic properties of the Fourier and inverse Fourier

transform. We will omit the proofs and refer to the literature, such as [96].

Lemma 2.3.11 (Properties of the Fourier transform). The Fourier transform and inverse
Fourier transform as given in Definition 2.3.10 satisfy

(a)
∫
Rd
f̂(x)g(x)dx =

∫
Rd
f(x)ĝ(x)dx for all f ∈ L1(Rd,Rm), g ∈ L1(Rd).

(b) F(f(· − y))(ω) = e−iyTωf̂(ω), for all f ∈ L1(Rd,Rm)

(c) F(f) and F−1(f) are continuous and bounded for all f ∈ L1(Rd,Rm).

The next lemma also gives us the necessary tools to prove the main result of this
subsection. A proof can be found in [108]:

Lemma 2.3.12. There exists a sequence (gn)n∈N of positive functions in L1(Rd,R), such
that

(a)
∫
Rd
gn(x)dx = 1

(b) F(F(gn)) = gn

(c) lim
n→∞

ĝn(x) = 1
(2π)d/2
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2.3 Basic construction methods and invariant kernels

(d) Φ(x) = lim
n→∞

∫
Rd Φ(ω)gn(ω − x)dω if Φ : Rd → Rm×m is continuous and bounded.

In [67] it was shown that any translational invariant positive definite matrix-valued
kernel can be identified as the Fourier transform of a positive definite, matrix-valued Borel
measure. For the sake of completeness, we will list this fact in the following Lemma.

Lemma 2.3.13 (Bochner characterization). A continuous function Φ : Rd → Rm×m is
positive definite if and only if it is the Fourier transform of a finite positive semi-definite
self-adjoint matrix-valued Borel measure µ on Rd.

As a direct consequence of the above, we can observe the following property for the
Fourier transformation of any continuous p.d. Φ.

Lemma 2.3.14. If Φ ∈ L1(Rd,Rm×m) is continuous and positive definite, then Φ̂(ω) � 0
for all ω ∈ Rd and the Fourier transform does not vanish, i.e. it is never identical to the
zero matrix. Furthermore, Φ̂ ∈ L1(Rd,Cm×m) is self-adjoint

Proof. By Lemma 2.3.11 we now that Φ̂ is continuous and bounded. Thus by Lemma 2.3.12,
Lemma 2.3.11 and Lemma 2.3.13 we have

Φ̂(ω) = lim
n→∞

∫
Rd

Φ̂(x)gn(x− ω)dx

= lim
n→∞

∫
Rd

Φ(x)ĝn(x)e−iωT xdx

= lim
n→∞

1
(2π)d/2

∫
Rd

∫
Rd
e−ixT ydµ(y)ĝn(x)e−iωT xdx

= lim
n→∞

1
(2π)d/2

∫
Rd

∫
Rd
ĝn(x)e−ixT (ω+y)dxdµ(y)

= lim
n→∞

∫
Rd
gn(ω + y)dµ(y) � 0

where we used the fact that µ is a positive semi-definite matrix-valued measure and gn

is positive for all n ∈ N. Since µ is self-adjoint due to Lemma 2.3.13 and since gn
is real-valued, we immediately conclude that Φ̂(ω) is self-adjoint as well. To see that
Φ̂ ∈ L1(Rd,Cm×m) we again make use of the afforementioned Lemmata and get

Φ(0) = lim
n→∞

∫
Rd

Φ(x)gn(x)dx = lim
n→∞

∫
Rd

Φ̂(ω)ĝn(ω)dω

=
∫
Rd

Φ̂(ω) lim
n→∞

ĝn(ω)dω = 1
(2π)d/2

∫
Rd

Φ̂(ω)dω.

Here we can exchange taking the limit and integration, as Φ̂ is bounded. Since Φ̂(ω) is
positive semi-definite by the above, we have

∥∥∥Φ̂(ω)
∥∥∥ ≤ m tr(Φ̂(ω))
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and thus by the linearity of the trace operator tr(·)
∥∥∥Φ̂∥∥∥

L1(Rd,Rm×m)
=
∫
Rd

∥∥∥Φ̂(ω)
∥∥∥ dω ≤

∫
Rd

tr
(
Φ̂(ω)

)
dω

=≤ tr
( ∫

Rd
Φ̂(ω)dω

)
= (2π)d/2 tr(Φ(0)) <∞.

Furthermore, since the norm does not vanish neither does Φ̂.

Finally, we are able to prove the main theorem of this subsection which gives us an
alternative characterization of the native space HK for K(x, y) = Φ(x− y).

Theorem 2.3.15 (Characterization ofHK via Fourier transform). Let K(x, y) = Φ(x−y)
be a continuous, p.d. and translation invariant kernel. Furthermore for any ω ∈ Rm let
Φ̂(ω)+/2 denote a square root of the Moore-Penrose-Pseudoinverse of Φ̂(ω). We define the
space H of functions mapping from Rd into Rm via

H :=
{
f ∈ L1(Rd,Rm) | Φ̂(ω)+/2f̂(ω) ∈ L2(Rd,Rm) and f̂(ω) ∈ range(Φ̂(ω))a.e.

}
and equip it with the inner product

〈f, g〉H :=
∫
Rd
f̂(ω)∗Φ̂(ω)+ĝ(ω)dω,

where f̂(w)∗ denotes the transposed and complex conjugate of f̂(ω), i.e. f̂(ω)∗ = f̂(ω)
T

.

Then H = HK and the inner products coincide. In particular, K is the reproducing kernel
of H.

Proof. We start by showing that 〈·, ·, 〉H does in fact denote an inner product on H. From
Lemma 2.3.14 we already now that Φ̂(ω) is self-adjoint and positive (semi-) definite. By
definition of the Moore-Penrose-Pseudoinverse this also holds true for Φ̂(ω)+. Hence 〈·, ·〉H
is at least positive semi-definite sesquilinear. Let f ∈ H such that 〈f, f〉H = 0 then

f̂(ω)∗Φ̂(ω)+f̂(ω) = 0 a.e.,

i.e. f̂ ∈ null(Φ̂+/2). Since Φ̂ is self-adjoint we have

f̂(ω) ∈ null(Φ̂(ω)+/2) = null(Φ̂(ω)1/2) ⊂ null(Φ̂(ω))

almost everywhere. However, by definition of H we also have f̂(ω) ∈ range(Φ̂(ω)) almost
everywhere, and therefore f̂(ω) = 0 almost everywhere. Consequently we already have
f = 0 and thus 〈·, ·〉H is an inner product. We now show that H is in fact a Hilbert
space, to this end it is sufficient to show that H is closed under the norm induced by

36



2.3 Basic construction methods and invariant kernels

〈·, ·〉H. Let (fn)n∈N be a Cauchy-sequence in H. Then gn(ω) := Φ̂(ω)+/2f̂n(ω) defines a
Cauchy-sequence in L2(Rd,Rm) since

‖gn − gm‖2
L2(Rd,Rm) =

∫
Rd

(f̂n(ω)− f̂m(ω))T Φ̂(ω)+(f̂n(ω)− f̂m(ω))dω = ‖fn − fm‖2
H .

Thus there exists a g ∈ L2(Rd,Rm) such that gn → g. Then Φ̂1/2g ∈ L1(Rd,Rm) ∩
L2(Rd,Rm) since

∫
Rd

∥∥∥Φ̂(ω)1/2g(ω)
∥∥∥ dω ≤

∫
Rd

(
λmax

(
Φ̂(ω)

))1/2
‖g(ω)‖ dω

≤
(∫

Rd
λmax

(
Φ̂(ω)

)
dω
)(∫

Rd
‖g(ω)‖2 dω

)
≤
∥∥∥Φ̂∥∥∥

L1(Rd,Rm×m)
‖g‖L2(Rd,Rm) ,

where λmax
(
Φ̂(ω)

)
denotes the largest eigenvalue of Φ̂(ω), and

∫
Rd

∥∥∥Φ̂(ω)1/2g(ω)
∥∥∥2

dω ≤
∫
Rd

(
λmax

(
Φ̂(ω)

))
‖g(ω)‖2 dω

≤
∥∥∥Φ̂∥∥∥

L∞(Rd,Rm×m)
‖g‖L2(Rd,Rm) .

In the last inequality we made use of the fact that Φ̂(ω) is self-adjoint and therefore the
largest eigenvalue of Φ̂(ω) is smaller than its Frobenius norm. Hence, we can apply the
inverse Fourier transform and get f := F−1(Φ̂1/2g). It now follows with Lemma 2.3.11

‖f(x)− fn(x)‖L∞(Rd,Rm) ≤
1

(2π)d/2
∫
Rd

∥∥∥Φ̂(ω)1/2g(ω)− f̂n(ω)
∥∥∥ dω

= 1
(2π)d/2

∫
Rd

∥∥∥Φ̂(ω)1/2g(ω)− Φ̂(ω)1/2Φ̂(ω)+/2f̂n(ω)
∥∥∥ dω

≤ 1
(2π)d/2

∥∥∥Φ̂∥∥∥
L1(Rd,Rm×m)

∥∥∥g − Φ̂(ω)+/2f̂n(ω)
∥∥∥
L2(Rd,Rm)

.

The above tends to 0 as n → ∞ and hence f is real-valued. Furthermore, we have by
definition that f̂(ω) = Φ̂(ω)1/2g(ω) ∈ range(Φ̂(ω)).

‖f‖2
H =

∫
Rd
f̂(ω)∗Φ̂(ω)+f̂(ω)dω =

∫
Rd
g(ω)T Φ̂(ω)1/2Φ̂(ω)+Φ̂(ω)1/2g(ω)dω

≤
∫
Rd
λmax

(
Φ̂(ω)1/2Φ̂(ω)+/2

)
‖g(ω)‖2 dω ≤ ‖g‖L2(Rd,Rm) .

Therefore, f ∈ H. We now only have to show that fn → f with respect to the norm on
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H:

‖f‖2
H =

∫
Rd

∥∥∥Φ̂(ω)+/2
(
f̂(ω)− f̂n(ω)

)∥∥∥2
dω

=
∫
Rd

∥∥∥Φ̂(ω)+/2Φ̂(ω)1/2
(
g − Φ̂(ω)+/2f̂n(ω)

)∥∥∥2
dω

=
∫
Rd
λmax

(
Φ̂(ω)+/2Φ̂(ω)1/2

)2 ∥∥∥g − Φ̂(ω)+/2f̂n(ω)
∥∥∥2

dω

≤
∥∥∥g − Φ̂+/2f̂n

∥∥∥→ 0, as n→∞.

We now show that K satisfies the reproducing property (2.6) for the above inner product.
It then follows that H = HK by Theorem 2.2.6. Let α ∈ Rm and x ∈ Rd. Let Kα

x =
K(·, x)α = Φ(· − x)α. Since the Fourier transform operates elementwise, we have with
Lemma 2.3.11

K̂α
x (ω) = Φ̂(ω)e−ixTω.

Therefore K̂α
x (ω) ∈ range(Φ̂(ω)) and

∫
Rd
K̂α
x (ω)∗Φ̂(ω)+K̂α

x (ω)dω =
∫
Rd
eixTwαT Φ̂(ω)αe−ixTwdω =

∫
Rd
eixTwαT K̂α

x (ω)

= αTKα
x (x) = αTK(x, x, )α.

Consequently K(·, x)α ∈ H. For any f ∈ H we have similar to the above

〈f,Kα
x 〉H =

∫
Rd
f̂(ω)∗Φ̂(ω)+Φ̂(ω)αe−ixTwdω

=
∫
Rd
f̂(ω)∗αe−ixTwdω

= f(x)∗α = f(x)Tα

since f(x) is real-valued.

Depending on the choice of the translational invariant kernel K and its underlying
function Φ, the native space can coincide with a Sobolev space which is given as follows.

Definition 2.3.16 (Sobolev spaces). The Sobolev space of order s ≥ 0 over Rd is defined
by

W s(Rd,Rm) :=
{
f ∈ L2(Rd,Rm) | (1 + ‖·‖2)s/2f̂ ∈ L2(Rd,Rm)

}
.
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This is a Hilbert space when equipped with the inner product

〈f, g〉2W s =
∫
Rd

(
1 + ‖ω‖2

)s
f̂(ω)∗ĝ(ω)dω.

Likewise, we define W s(Rd, V ) for any subspace V ⊂ Rm.

In the case that we restrict ourselves to the condition s ∈ N an alternative characteriza-
tion of the Sobolev space can be made by requiring that all weak derivatives up to order s
are contained in L2(Rd,Rm). For more details on the theory of Sobolev spaces we refer to
[61]. We only want to remark that in the case s ∈ N the Sobolev space can be defined for
subsets Ω ⊂ Rd using the aforementioned weak derivatives. We can immediately see from
the similarity of the definition of W s(Rd,Rm) and the alternate characterization of the
native space, that the native space coincides with W s(Rd,Rm) if the Fourier transform of
Φ meets certain conditions.

Corollary 2.3.17 (Sobolev spaces as RKHS). Let Φ ∈ L1(Rd,Rm×m) be a continuous
p.d. function such that there exists a symmetric positive semi-definite matrix B ∈ Rm×m

with

c
(
1 + ‖ω‖2

)−s
B � Φ̂(ω) � C

(
1 + ‖ω‖2

)−s
B (2.21)

for some constants C > c > 0 and s > d/2. Then the RKHS for the kernel given by
K(x, y) = Φ(x− y) is the Sobolev space W s(Rd, range(B))

Proof. We first note that the chain of inequalities in (2.21) guarantees that range(Φ̂(ω)) =
range(B) for all ω ∈ Rd. To see this, we note that since B and Φ̂(ω) are symmetric we
have

Rm = range(B)⊕ range(B)⊥ = range(Φ̂(ω))⊕ range(Φ̂(ω))⊥. (2.22)

Let b ∈ range(B)⊥ then we have by (2.21)

0 = c
(
1 + ‖ω‖2

)−s
bTBb � bT Φ̂(ω)b � C

(
1 + ‖ω‖2

)−s
bTBb = 0

and hence b ∈ range(Φ̂(ω))⊥, i.e. range(B) ⊂ range(Φ̂(ω))⊥. Analogously we get range(Φ̂(ω))⊥ ⊂
range(B) and therefore with (2.22) we have range(B) = range(Φ̂(ω)). In particular both
matrices have the same rank and therefore (cf. [116])

1
C

(
1 + ‖ω‖2

)s
B+ � Φ̂(ω)+ � 1

c

(
1 + ‖ω‖2

)s
B+.

By definition of the Sobolev space W s(Rd, range(B)) we have f(x) ∈ range(B) and
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therefore f̂(ω) ∈ range(B) = range(Φ̂(ω)) for all ω ∈ Rd. Furthermore, we have for any
f ∈ W s(Rd, range(B))

‖f‖2
HK =

∫
Rd
f̂(ω)∗Φ̂(ω)+f̂(ω)∗dω ≤

∫
Rd

1
c

(
1 + ‖ω‖2

)s
f̂(ω)∗B+f̂(ω)∗dω

≤ λmax(B+)
c

‖f‖2
W s(Rd,range(B))

And therefore W s(Rd, range(B)) ⊂ HK by Theorem 2.3.15. For the converse inclusion we
first note that the assumption f̂(ω) ∈ range(Φ̂(ω)) = range(B) leads to

f̂(ω)∗B+f̂(ω) ≥ λmin(B+)
∥∥∥f̂(ω)

∥∥∥2
,

where λmin(B+) denotes the smallest non-zero eigenvalue of B+. Therefore

‖f‖2
HK =

∫
Rd
f̂(ω)∗Φ̂(ω)+f̂(ω)∗dω ≥

∫
Rd

1
C

(
1 + ‖ω‖2

)s
f̂(ω)∗B+f̂(ω)∗dω

≥ λmin(B+)
C

‖f‖2
W s(Rd,range(B))

and consequently HK ⊂ W s(Rd, range(B)).

The above equivalency only holds for kernels which are defined on the entire Rd. How-
ever, using Theorem 2.3.3 we can determine conditions on the domain Ω ⊂ Rd such that
the equivalency carries over.

Corollary 2.3.18. Let Φ satisfy the assumptions of Corollary 2.3.17 for some s ∈ N and
some symmetric positive semi-definite B ∈ Rm×m. Let Ω ⊂ Rd and K : Ω × Ω → Rm×m

be given by K(x, y) = Φ(x− y). Then

HK = W s(Ω, range(B)) (2.23)

and the norms are equivalent, if and only if there exists a continuous extension operator
E : W s(Ω, range(B)) → W s(Rd, range(B)), i.e. E(f)|Ω = f and ‖E(f)‖W s(Rd,range(B)) ≤
CE ‖f‖W s(Ω,range(B)).

Proof. Let HΦ denote the RKHS of Theorem 2.3.15. By Theorem 2.3.3 we get

HK = HΦ|Ω = W s(Rd, range(B))
∣∣∣
Ω
⊂ W s(Ω, range(B)).

As we have mentioned before, in the case of s ∈ N the Sobolev spaces can alterna-
tively be characterized by having weak derivatives up to order s which all have a fi-
nite L2(Ω, range(B)) norm. Thus the restriction of f ∈ W s(Rd, range(B)) results in
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f |Ω ∈ W s(Ω, range(B)). Unfortunately, depending on the domain Ω, not every element
is given by this restriction operator. However, the existence of a continuous extension
operator guarantees equality in the last case. Conversely, let (2.23) hold and the norms
be equivalent. Then by Theorem 2.3.3 we have

‖f‖HK = min
{
‖g‖HΦ

| g|Ω = f, g ∈ HΦ
}
.

We now define E : HK → HΦ via

E(f) = arg min
{
‖g‖HΦ

| g|Ω = f, g ∈ HΦ
}

and obviously we have E(f)|Ω = f . Furthermore, due to the equivalency of norms it
holds

‖E(f)‖W s(Rd,range(B)) ≤ c1 ‖E(f)‖HΦ
= c1 ‖f‖HK ≤ c1c2 ‖f‖W s(Ω,range(B))

and hence E is a continuous extension operator.

The existence of such an extension operator is given if the domain Ω is sufficiently nice,
for example if it has a Lipschitz boundary, see [1].
One open question that remains is if there exist closed expressions for a function Φ whose

Fourier transform satisfies (2.21). Fortunately, we can positively answer this question. In
the scalar-valued case, Wendland gave construction formulas for compactly supported ra-
dial functions, so called Wendland functions, for any d, k ∈ N, see [107], such that the
corresponding native space is norm equivalent to the Sobolev space W k(Rd,R). Using
the fact that the Fourier transformation as given in Definition 2.3.10 operates compo-
nentwise, we can thus infer that this property carries over if we consider matrix-valued
linear combinations of these Wendland functions. Kernels which take this form are called
separable and will be the focus of the next section.

2.4 Uncoupled separable kernels

In the following we summarize, modify and extend our prior work on uncoupled separable
kernels which were first introduced in our preliminary work [115]. In particular, we added
further characterization of uncoupled separable kernels as well as sufficient conditions that
guarantee the existence of these types of kernels.

Definition 2.4.1 (Separable kernels). A matrix-valued kernel K : Ω × Ω → Rm×m

is called separable if there exist scalar-valued kernels ki : Ω × Ω → R and symmetric
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matrices Qi ∈ Rm×m, i = 1, . . . , p such that

K(x, y) =
p∑
i=1

ki(x, y)Qi for all x, y ∈ Ω. (2.24)

In this case, the set of tuples {(ki, Qi)}pi=1 is called a decomposition of K and p is called
the length. If p is minimal, i.e. there exists no decomposition of length q < p, we also
refer to it as the order of K.

To guarantee the (strict) positive definiteness of the kernel K, further assumptions have
to be made on both the scalar-valued kernels ki and the symmetric matrices Qi. Taking
a closer look at the Gram matrix K(X,X) for a point set X = {x1, . . . , xn} ⊂ Ω one sees
that

K(X,X) =
p∑
i=1

ki(X,X)⊗Qi,

where ⊗ denotes the Kronecker product. Since sums and Kronecker product of positive
(semi-) definite matrices are again positive (semi-) definite, we can conclude that it is
sufficient to assume that ki are p.d. and that the Qi are positive semi-definite to guarantee
the positive definiteness of K. Alternatively, one can apply Corollary 2.3.4 to see that
Ki := kiQi is a positive definite kernel, since

Ki =
m∑
j=1

qjkiq
T
j

where qj are scaled eigenvectors of Qi such that ∑m
j=1 qjq

T
j = Qi. In order to guarantee

that K is also s.p.d. further assumptions have to be made. Obviously it is sufficient that
all ki are s.p.d. and all Qi are positive definite. This is a rather tight restriction, however,
we can loosen it a bit to still maintain strict positive definiteness.

Lemma 2.4.2. Let K be a separable kernel and {(ki, Qi)}pi=1 a decomposition. If the
kernels ki are s.p.d. and Qi � 0 such that

p∑
i=1

Qi � 0, then K is s.p.d..

Proof. Let X = {x1, . . . , xn} ⊂ Ω be a set of pairwise distinct points. Furthermore, let
K = K(X,X) and Ki = ki(X,X). As mentioned before, we have

K =
p∑
i=1

Ki ⊗Qi.

Since each ki is s.p.d. the matrices Ki are positive definite. Let λ = min{λmin(Ki) | i =
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1, . . . , p} > 0. Then we have

K =
p∑
i=1

Ki ⊗Qi �
p∑
i=1

λIn ⊗Qi = λIn ⊗
( p∑
i=1

Qi

)
� 0,

where we made use of the fact that the Kronecker product commutes with matrix addition.

Remark 2.4.3. We want to mention that the assumption ∑p
i=1Qi � 0 has the further

benefit that it guarantees the universality of the Kernel K provided that the scalar-
valued kernel ki were universal to begin with. This means that for every compact subset
Ωc ⊂ Ω the subspace

N = span{K(·, x)α |x ∈ Ωc, α ∈ Rm}

is dense in the set of continuous functions C(Ωc,Rm). For further details on the concept
of universality as well as for a proof of the above assertion, we refer to [18, 65, 98].

Lemma 2.4.4 (Sufficient and necessary minimality condition). Let K be separable kernel
such that there exists a decomposition of length p. The the following statements are
equivalent

(a) p is minimal, i.e. no decomposition of shorter length exist

(b) For any decomposition {(ki, Qi)}pi=1 of length p both sets {k1, . . . , kp} and
{Q1, . . . , Qp} are linearly independent, respectively.

Proof. “⇒” Let {(ki, Qi)}pi=1 be a decomposition of length p. Assume that either
{k1, . . . , kp} or {Q1, . . . , Qp} is linearly dependent, i.e. we can assume without loss of
generality that

k1 =
p∑
i=2

αiki or Q1 =
p∑
i=2

βiQi.

Therefore

k =
p∑
i=1

kiQi =
p∑
i=2

ki(Qi + αiQ1) or k =
p∑
i=1

kiQi =
p∑
i=2

(ki + βik1)Qi.

In either case we have found a smaller decomposition, which contradicts the minimality
of p.
“⇐” Let {(ki, Qi)}pi=1 be a decomposition such that {k1, . . . , kp} and {Q1, . . . , Qp} are
linearly independent. Assume there exists a second decomposition {(k̂i, Q̂i)}qi=1 with
length q < p. Let vec : Rm×m → Rm2 be the vectorization operator stacking the columns
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of a matrix A ∈ Rm×m on top of one another. By assumption it holds

p∑
i=1

kiQi = K =
q∑
j=1

k̂jQ̂j

and therefore
p∑
i=1

ki vec(Qi) = K =
q∑
j=1

k̂j vec(Q̂j). (2.25)

We define Q ∈ Rm2×p and Q̂ ∈ Rm2×q via

Q :=
[
vec(Q1) · · · vec(Qp)

]
and Q̂ :=

[
vec(Q̂1) · · · vec(Q̂q)

]
.

By assumption we have rank(Q) = p and hence there exists a left inverse of Q, i.e. a
matrix A ∈ Rp×m2 such that AQ = Ip. Multiplying both sides of (2.25) with A we get


k1
...
kp

 = AQ̂


k̂1
...
k̂q

 .

This shows that span{k1, . . . , kp} ⊂ span{k̂1, . . . , k̂q} which contradicts the linear inde-
pendence of the first set.

Unfortunately, the minimality assumption on the length p of the decomposition is not
sufficient to guarantee the uniqueness of the decomposition in the sense that for any two
decompositions of length p coincide up to permutation of {1, . . . , p} and scaling of ki and
Qi, respectively. We illustrate this by the following example:

Example 2.4.5. Let k1, k2 : Ω × Ω → R denote two linear independent scalar-valued
kernels. We define K : Ω× Ω→ R2×2 via

K(x, y) =
k1(x, y) 0

0 k2(x, y)


for all x, y ∈ Ω. However, this kernel has infinitely many decompositions of length 2. Let
λ ∈ [0, 1], then it holds

K(x, y) = k1(x, y)Q1(λ) + ((1− λ)k1(x, y) + k2(x, y))Q2
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where

Q1(λ) =
1 0

0 λ

 and Q2 =
0 0

0 1

 .
However, we notice that there exists just one decomposition such that the subspaces of

R2 spanned by the columns of Q1(λ) and Q2 only intersect in {0}. This leads us to the
definition of a new subclass of separable kernels which we denote as uncoupled.

Definition 2.4.6 (Uncoupled separable kernels). Let K : Ω×Ω→ Rm×m be a separable
kernel. If there exists at least one decomposition {(ki, Qi)}pi=1 such that

rank
( p∑
i=1

Qi

)
=

p∑
i=1

rank(Qi) (2.26)

we say K is an uncoupled separable kernel.

While the above formulation differs slightly from the previous observation that the
spaces spanned by the matrices Qi should only intersect in {0}, we will see in the following
lemma that this is in fact equivalent to (2.26).

Lemma 2.4.7. Let Q1, . . . , Qp ∈ Rm×m be symmetric matrices. The the following state-
ments are equivalent.

(a) rank
( p∑
i=1

Qi

)
=

p∑
i=1

rank(Qi)

(b) range(Qi) ∩ range(Qj) = {0} for i 6= j

(c) range
( p∑
i=1

Qi

)
=

p⊕
i=1

range(Qi).

Proof. “(a) ⇒ (b)” It is sufficient to inspect the case i = 1, j = 2 as all other cases work
analogously. We first note that by definition rank(Q) = dim(range(Q)) for any matrix
Q ∈ Rm×m and furthermore assume, that (b) is not satisfied. Otherwise, there is nothing
to show. In this case it follows that

rank (Q1 +Q2) = dim(range(Q1 +Q2))
= dim(range(Q1)) + dim(range(Q2))− dim(range(Q1) ∩ range(Q2))
< rank(Q1) + rank(Q2).

Consequently, we have

rank
( p∑
i=1

Qi

)
<

p∑
i=1

rank(Qi)
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which is a contradiction.
“(b) ⇒ (c)” This follows from the definition of the direct sum of vector spaces, i.e. their
intersection has to be the zero space {0}.
“(c) ⇒ (a)” Since the sum is direct we immediately get

rank
( p∑
i=1

Qi

)
= dim

(
range

( p∑
i=1

Qi

))
= dim

( p⊕
i=1

range(Qi)
)

=
p∑
i=1

dim(range(Qi)) =
p∑
i=1

rank(Qi).

Remark 2.4.8. Please note that if we consider a separable kernel K with a decomposition
{(ki, Qi)}pi=1 then the positive definiteness of ki and positive semi-definiteness of Qi guar-
antee that the kernel K is itself p.d. (see Lemma 2.4.2). The converse, however, is no
longer true as we could extend the decomposition by adding the pairs (−k1, Q1), (k1, Q1).
This still results in the same kernel, however −k1 does not have to be p.d.. However, if
we consider uncoupled kernels this still holds.

Theorem 2.4.9 (Positive definite uncoupled separable kernels). Let K be a p.d. uncou-
pled separable kernel. Furthermore, let {(ki, Qi)}pi=1 be an uncoupled decomposition. Then
ki is p.d. for any i = 1, . . . , p and Qi � 0 for all i = 1, . . . , p. Moreover, if K is s.p.d.,
then so are the ki and we have ∑p

i=1 rank(Qi) = m.

Proof. Without loss of generality we can assume that k1 is not positive definite. Thus
there exists a set X = {x1, . . . , xn} ⊂ Ω such that k1(X,X) has a negative eigenvalue.
Let v ∈ Rn be an eigenvector for this negative eigenvalue. Furthermore, let w ∈ Rm be a
vector such that wTQ1w = 1 and wTQiw = 0 for i = 2, . . . , p. Such a vector exists due to
Lemma 2.4.7. We can now define a vector α ∈ Rmn via the Kronecker product α = v⊗w.
For this vector we have

αTK(X,X)α = αT
( p∑
i=1

ki(X,X)⊗Qi

)
α =

p∑
i=1

(v ⊗ w)T (ki(X,X)⊗Qi) (v ⊗ w)

=
p∑
i=1

(
vTki(X,X)v

) (
wTQiw

)
= vTk1(X,X)v < 0

and thus K is not p.d.. Analogously it follows that all ki are s.p.d. if K is s.p.d.. Let
us now assume without loss of generality that Q1 is not positive semi-definite, i.e. there
exists a w ∈ Rp×p such that wTQ1w = −1 and wTQiw = 0 for i = 2, . . . , p. This can
again be concluded from Lemma 2.4.7 since the matrices are uncoupled. Let x ∈ Ω such
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that k1(x, x) > 0. We conclude

wTK(x, x)w =
p∑
i=1

ki(x, x)wTQiw = −k1(x, x) < 0,

i.e. K is not p.d.. If ∑p
i=1 rank(Qi) 6= m, then there exists a vector w ∈ Rm that lies in

the null space of all Qi. Analogous to above this would lead to K(x, x)w = 0 for all x ∈ Ω
and thus the kernel would not be s.p.d..

The RKHS have a particular structure. In in a certain sense they decompose into the
RKHS of the scalar-valued kernels ki, albeit projected into higher dimensions via the
matrices Qi. The previous theorem just guarantees the existence of the RKHS for the
scalar-valued kernels.

Theorem 2.4.10 (RKHS for uncoupled separable kernels). Let K be an uncoupled sep-
arable p.d. kernel with decomposition {(ki, Qi)}pi=1. Let Ki denote the uncoupled separa-
ble kernel with decomposition Ki = kiQi. Furthermore, let qi1, . . . , qiri denote a basis of
range(Qi) and ri = rank(Qi). Then we have

HKi =
ri⊕
j=1
Hkiq

i
j (2.27)

for all i = 1, . . . , p. Furthermore, it holds

HK =
p⊕
i=1
HKi . (2.28)

Proof. We first note that by assumption qi1, . . . , qiri are linearly independent and thus the
sum in the right hand side of (2.27) is direct. It remains to show that it spans the entire
space. One easily sees that Hkiq

i
j ⊂ HKi for each j = 1, . . . , ri and thus the sum is

a subspace. For the converse inclusion we simply note that Ki(·, x)α ∈
ri⊕
j=1
Hkiq

i
j since

the Hkiq
i
j ⊂ HKi form a basis of range(Qi). Hence, the span and subsequent closure of

all such element lies in the right hand side of (2.27). However, this is precisely HKi by
Theorem 2.2.6. In an analogous fashion (2.28) can be concluded from the uncoupledness
of the matrices Qi.

With this notion of uncoupledness we can now impose a sufficient condition for the
uniqueness of a minimal decomposition.

Theorem 2.4.11 (Uniqueness of minimal uncoupled decomposition). Let K be an uncou-
pled separable kernel and let {(ki, Qi)}pi=1 be an uncoupled decomposition. If p is minimal,
then the decomposition is unique up to permutations and scaling.
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Proof. Let {(ki, Qi)}pi=1 and {(k̂j, Q̂j)}pj=1 be two uncoupled decompositions. Let Q =∑p
i=1Qi. Since the first decomposition is uncoupled we have by the previous Lemma

range(Q) = range(Qi) + range(Q−Qi)

for all i = 1, . . . , p. Thus there exist vectors ci ∈ Rm such that Qici 6= 0 and Qjci = 0 for
all i 6= j. Therefore,

kiQici = Kci =
p∑
i=1

k̂jQ̂jci,

i.e. we can write each ki as a linear combination of k̂1, . . . , k̂p. Let A = (ai,j)pi,j=1 be the
coefficient matrix such that 

k1
...
kp

 = A


k̂1
...
k̂p

 .

Since p is minimal, the scalar-valued kernels of each decomposition are linearly indepen-
dent by Lemma 2.4.4 and thus

Q̂j =
p∑
i=1

aijQi

holds as well. By Lemma 2.4.7 it now holds

range(Q̂j) =
p⊕
i=1

aij range(Qi).

However, we have for any j 6= j′ that range(Q̂j) ∩ range(Q̂j′) = {0} and consequently
aij or aij′ are equal to 0. Since this holds for all i, j = 1, . . . , p, we have that for any
i there exists exactly one j = j(i) such that aij(i) 6= 0. In other words ki = ai(ji)k̂j(i).
Furthermore, we have

0 = K −K =
p∑
i=1

kiQi −
p∑
j=1

k̂jQ̂j

=
p∑
i=1

kiQi −
p∑
i=1

k̂j(i)Q̂j(i)

=
p∑
i=1

k̂j(i)
(
aij(i)Qi − Q̂j(i)

)
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which leads to aij(i)Qi = Q̂j(i). Ultimately, the decompositions coincide up to the permu-
tation i 7→ j(i) and the scalings described by the coefficients of A.

In general, the existence of an uncoupled or even minimal uncoupled decomposition
cannot be guaranteed, since (2.26) necessitates that the length of any uncoupled decom-
position is at mostm. Hence, any separable kernel of order p ≥ m+1 cannot be uncoupled.
In the following we present sufficient and necessary conditions for the existence of an un-
coupled decomposition. For this purpose we want to recall that in the scalar-valued case
the product of p.d. kernels is again a p.d. kernel. As we have seen in the matrix-valued
case, this is only possible if the kernels commute for any input pairs (x, y) ∈ Ω× Ω, i.e.

K1(x, y)K2(x, y) = K2(x, y)K1(x, y), for all x, y ∈ Ω.

Unfortunately, the above is not sufficient to guarantee positive definiteness in the matrix-
valued case which we illustrate with the following example.

Example 2.4.12. Let k1, k2 : R× R→ R be the kernels given by

k1(x, y) = e−
1
10 (x−y)2 and k2(x, y)e−(x−y)2

.

Furthermore let Q1, Q2 ∈ R2×2 be the symmetric matrices

Q1 =
1 1

1 1

 and Q2 =
0 0

0 1

 .
Let K be a separable kernel with decomposition {(k1, Q1), (k2, Q2)} and X = {0, 1}. By
Lemma 2.4.2 the kernel is s.p.d. and obviously the kernel commutes with itself. However
the kernel K2 is not even p.d. as

K2(X,X) =


5 3 2e− 1

5 + 2e− 11
10 + e−2 2e− 1

5 + e−
11
10

3 2 2e− 1
5 + e−

11
10 2e− 1

5

2e− 1
5 + 2e− 11

10 + e−2 2e− 1
5 + e−

11
10 5 3

2e− 1
5 + e−

11
10 2e− 1

5 3 2


has a negative eigenvalue λ ≈ −0.044.

Upon further inspection of the Gram matrix K2(X,X) we see that it can be written
via the block-Hadamard product

K2(X,X) = K(X,X)�K(X,X) := (K(xi, xj)K(xi, xj))i,j.
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As it was shown in [37], the block Hadamard product of two positive (semi-)definite block
matrices A = (Aij) and B = (Bij) is in general only positive definite if each block of A
commutes with each block of B. If we apply this restriction to the Gram matrix K(X,X)
for any finite collection of points X ⊂ Ω, this results in the condition

K(x, y)K(x′, y′) = K(x′, y′)K(x, y) for all x, y, x′, y′ ∈ Ω.

If the above is satisfied by some p.d. kernel K we obtain the following characterization.

Theorem 2.4.13 (Orthogonally uncoupled kernels). Let K : Ω × Ω → Rm×m be a p.d.
kernel such that K(x, y) = K(y, x) for all x, y ∈ Ω, then the following statements are
equivalent

(a) K(x, y)K(x′, y′) = K(x′, y′)K(x, y) for all x, y, x′, y′ ∈ Ω.

(b) There exists an orthogonal matrix Q ∈ Rm×m such that QTK(x, y)Q is diagonal for
all x, y ∈ Ω.

(c) K is uncoupled separable and there exists an uncoupled decomposition {(ki, Qi)}pi=1

with length p ≤ m, symmetric Qi and for which QiQj = 0 for i 6= j.

Proof. “(a) ⇒ (b)” Let A1, . . . , AD denote a basis of span{K(x, y)|x, y ∈ Ω}. Then
the Ai are symmetric and commute with one another. Hence they are simultaneously
diagonalizable, i.e. there exists an orthogonal matrix Q ∈ Rm×m such that QTAiQ is
diagonal. It follows that K(x, y) ∈ span{A1, . . . , Ad} is diagonalizable via Q for any
x, y ∈ Ω.
“(b) ⇒ (c)” By assumption we have

QTK(x, y)Q =



k1(x, y) 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 km(x, y)

 ,

where k1, . . . , km : Ω × Ω → R are scalar-valued kernels. For i = 1, . . . ,m let J(i) :=
{j | ki = aijkj for some aij > 0}. Then there exist i1, . . . , ip with minimal p such that

p⋃
l=1

J(il) = {1, . . . ,m} and J(il) ∩ J(ik) = ∅ for il 6= ik.
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We now have

K =
m∑
i=1

ki(Qei)(Qei)T =
p∑
l=1

kil
∑

j∈J(il)
ail,j(Qej)(Qej)T =

p∑
l=1

kilQil ,

where

Qil =
∑

j∈J(il)
ail,j(Qej)(Qej)T .

Since the columns of Q are orthogonal and the sets J(il) have empty intersection, one
easily verifies QilQik = 0 for il 6= ik.
“(c) ⇒ (a)” It holds

K(x, y)K(x′, y′) =
( p∑
i=1

ki(x, y)Qi

) p∑
j=1

kj(x′, y′)Qj

 =
p∑

i,j=1
ki(x, y)kj(x′, y′)QiQj

=
p∑

i,j=1
kj(x′, y′)ki(x, y)QjQi

=
 p∑
j=1

kj(x′, y′)Qj

( p∑
i=1

ki(x, y)Qi

)
= K(x′, y′)K(x, y).

As an immediate consequence of the above, we may apply analytical functions to any
K satisfying one of the above conditions.

Corollary 2.4.14. Let h : Rm×m → Rm×m be an analytical function such that the coeffi-
cients in the analytical expansion are positive. If K : Ω×Ω→ Rm×m satisfies any one of
the conditions in Theorem 2.4.13, then h ◦K is a p.d. kernel.

Proof. By Theorem 2.4.13 Kn is a p.d. kernel for all n ∈ N. Therefore h ◦K is p.d. since
h is analytical.

In the case that none of the conditions of Theorem 2.4.13 are satisfied we can still pose
sufficient and necessary conditions for a p.d. kernel to be uncoupled.

Theorem 2.4.15. Let K : Ω×Ω→ Rm×m be a p.d. kernel. Then the following statements
are equivalent.

(a) K is uncoupled separable.

(b) There exists an invertible P ∈ Rm×m such that P TK(x, y)P is diagonal for all
x, y ∈ Ω.
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Proof. “⇒” Let {(ki, Qi)}pi=1 be an uncoupled decomposition of K. By assumption K is
p.d. and therefore the symmetric matrices Qi are positive semi-definite. Hence we can
write

Qi =
ri∑
j=1

qij
(
qij
)T

where ri = rank(Qi) and qi1, . . . qiri are linearly independent scaled eigenvectors of Qi such
that

(
qij
)T
Qiq

i
j = 1. Furthermore, we have r = ∑p

i=1 ri ≤ m and therefore the matrix
P ′ ∈ Rm×r given by

P ′ =
(
q1

1 · · · qprp

)
has rank r. Hence we can extend P ′ to an invertible matrix P ∈ Rm×m, such that the
first r columns coincide with P ′. For this P we now have that Di := P TQiP is diagonal
such that (Di)jj = 1 if ∑i

l=1 ri + 1 ≤ j ≤ ∑i+1
l=1 ri and zero otherwise. Consequently

P TK(x, y)P =
p∑
i=1

kiP
TQiP =

p∑
i=1

kiDi

is diagonal.
“⇐” The proof is analogous to the one of Theorem 2.4.13 implication “(b) ⇒ (c)”.

Unfortunately, there is no easy way to check if condition (b) of Theorem 2.4.15 is
satisfied. Even when we consider a separable kernel K with decomposition {(ki, Qi)}pi=1

the condition still translates to the matrices Qi being simultaneously diagonalizable albeit
with a possibly non orthogonal matrix P . This is still an open problem if more than two
matrices are considered, and the existence and computation of a respective diagonalization
matrix P has many applications in the field of signal processing [117].
As an immediate consequence, we can deduce that any separable kernel of order 2 is

uncoupled provided one of the matrices in its decomposition has full rank.

Corollary 2.4.16. Let K : Ω × Ω → Rm×m be a separable p.d. kernel of order 2 such
that there exists a decomposition {(k1, Q1), (k2, Q2)} with p.d. kernels ki and positive
semi-definite matrices Qi such that rank(Q2) = m. Then there exists an uncoupled de-
composition of at most length p = rank(Q1) + 1.

Proof. Since Q2 has full rank, it is positive definite. Hence there exists a Cholesky decom-
position LLT = Q2, where L is an invertible lower triangular matrix. Let A := L−1Q1L

−T ,
then A is symmetric and positive semi-definite and hence there exists an orthogonal ma-
trix Q such that D = QTAQ is diagonal such that Dii 6= 0 for i ≤ rank(Q1) and zero
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otherwise. The matrix P := L−TQ is invertible and guarantees that P TKP is diagonal
for all x, y ∈ Ω. By Theorem 2.4.15 it follows that K is uncoupled. Likewise, P TKP is
an uncoupled kernel that has the decomposition

P TKP = k1D + k2I =
rank(Q1)∑
i=1

k1diieie
T
i + k2I

=
rank(Q1)∑
i=1

(diik1 + k2)eieTi + k2

 m∑
i=rank(Q1)+1

eie
T
i


which is of length rank(Q1) + 1. Consequently K = P−TP TKPP−1 is uncoupled with a
decomposition of at most length p = rank(Q1)+1. This follows since for any matrices Q, Q̂
with range(Q) ∩ range(Q̂) = {0} we have range(P−TQP−1) ∩ range(P−T Q̂P−1) = {0}.
Thus we can see that uncoupledness is preserved by using Lemma 2.4.7.

We now describe a general procedure by which suitable uncoupled separable kernels
can be constructed, if sufficient data on the inputs and outputs of the target function is
provided. For this purpose, let X = {x1, . . . , xN} ⊂ Ω and Y = {y1, . . . , yN} ⊂ Rm be a
sufficient amount of input and output data. We then compute the empirical covariance
matrix Cov(Yn) ∈ Rm×m for a smaller subset Yn = {y1, . . . , yn} ⊂ Y via

Cov(Yn) = 1
n− 1

n∑
i=1

(yi − µ)(yi − µ)T ,

where µ ∈ Rm denotes the arithmetic mean of the output data Yn. By definition, the
empirical covariance matrix Cov(Yn) is symmetric and positive (semi-) definite. Hence
there exists a spectral decomposition

Cov(Yn) = U(Yn)TΣ(Yn)U(Yn)

with orthogonal matrix U(Yn) =
[
u1(Yn) . . . un(Yn)

]
∈ Rm×m and diagonal matrix

σ(Yn) = diag(σ1(Yn), . . . , σm(Yn)) ∈ Rm×m sorted in descending order, i.e. σ1(Yn) ≥
σ2(Yn) ≥ · · · ≥ σm(Yn). By choosing suitable kernels k1, . . . , kp, suitable index sets
I1, . . . , Ip, with

Ii ∩ Ij = ∅ and
p⋃
i=1
Ii = {1, . . . , n}

and computing their corresponding matrices

Qi =
∑
j∈Ij

uj(Yn)uj(Yn)T , i = 1, . . . , p
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we obtain an uncoupled separable decomposition {(ki, Qi)}pi=1 via Theorem 2.4.13. Un-
fortunately, the selection of the scalar-valued kernels ki and index sets Ii is extremely
sensitive with respect to the provided data. Hence, trying to optimize the selection pro-
cedure is exceptionally expensive and in general practice infeasible. Nonetheless, one can
try heuristic approaches based on the eigenvalues σi(Yn). Since large values σi(Yn) � 1
corresponds to high variance in the given data in the direction ui(Yn) and small values
σi(Yn) � 1 likewise correspond to small variance along the direction ui(Yn), it is sen-
sible to group indices for which the eigenvalues have similar magnitude. Furthermore,
index sets representing small values can be handled using simpler scalar-valued kernels
ki, whereas the sets representing larger values should be coupled with more sophisticated
kernels. This is advisable, as these indexes will have the most impact on the quality of
the resulting kernel approximation. Both the index and kernel selection procedure can be
described via corresponding selection methods, which depent on the eigenvalues Σ(Yn),
directions U(Yn) and the previously unused output data Y \ Yn. In the case of scalar-
valued kernels, the latter is commonly required for validation processes that are used to
fine tune certain parameters in the kernels [101]. We summarize the above procedure into
the following algorithm

Algorithm 1: Generation of uncoupled separable kernels from functional data
Data: Output data Yn ⊂ Y ⊂ Rm generated by some unknown function

f : Ω ⊂ Rd → Rm, suitable index set selection method indselect, suitable
kernel selection method kernelselect.

Result: Uncoupled separable decomposition {(ki, Qi)}pi=1 for a matrix-valued
kernel K.

1 Compute the empirical covariance matrix Cov(Yn)
2 Compute the eigenvalues and eigenvectors of the empirical covariance matrix

Cov(Yn) = U(Yn)TΣ(Yn)U(Yn)
3 Determine the index sets via the chosen selection methods

(I1, . . . , Ip) = indselect(Σ(Yn), U(Yn))
4 Determine the scalar kernel functions via the kernel selection method

(k1, . . . , kp) = kernelselect(Σ(Yn), I1, . . . , Ip, Y )

Remark 2.4.17. Performing a spectral decomposition of the covariance matrix Cov(Yn)
to extract information about the target function from the given data, is not the only
way in which uncoupled kernels can be constructed. One might use other methods such
as directly performing a singular value decomposition on the data Yn to obtain matrices
U(Yn) and Σ(Yn) and then continue with step 3 and 4 as outlined in Algorithm 1.

54



2.4 Uncoupled separable kernels

We conclude this section with a small numerical example, which illustrates how uncou-
pled separable kernels can be more beneficial than a componentwise approach.

3-dimensional Example

Let Ω = [−2, 2] ⊂ R. We consider the target function f : Ω→ R3 given by

f(x) =


1√
3

1√
3

1√
3

0 1√
2 −

1√
2

−
√

2√
3

1√
6
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e−2.5(x−0.5)2 + e−2.0(x+0.5)2

e−3.5(x−0.7)2

1


Making use of Algorithm 1, we obtain the following two kernels K1, K2 : Ω × Ω → R3×3

given by

K1(x, y) = e−ε11(x−y)2
I3,

K2(x, y) = e−ε21(x−y)2
u1u

T
1 + e−ε22(x−y)2 (

u2u
T
2 + u3u

T
3

)
with parameters ε11, ε21, ε22 ∈ (0,∞). The vectors u1, u2, u3 correspond to the eigenvalues
of the empirical covariance matrix for output data Y generated by 401 random evaluations
of f .
The kernel K1 reflects a global approach, i.e. the index selection method results in a

single index set containing all components. This is not the case for the kernel K2. The
approximation is computed as the interpolant/best approximation in the spaces N1(XN)
and N2(XN), respectively, where XN ⊂ Ω consists of N = 35 equidistantly spaced points.
The parameters are determined by minimizing the maximum pointwise error on a val-

idation set ΩM ⊂ Ω consisting of 40 randomly chosen points and for 50 logarithmic
equidistantly distributed parameters in [0.1, 100]. The parameters selected by the above
are depicted in Table 2.1.

Parameter ε11 ε21 ε22
Value 1.931 0.244 3.393

Table 2.1: Results of the parameter selection for the different kernels.

The pointwise error measured in the Euclidean norm is depicted in Figure 2.1. We
can see a maximum pointwise error in the order of magnitude 10−7 for K1 and 10−9 for
K2. These occur near the boundary of the domain. However, even for the interior of the
domain we obtain an improvement in the approximation quality by roughly a factor of 10,
which showcases that a more sophisticated approach using (uncoupled) separable kernels
with non diagonal matrices, i.e. no componentwise approach, might prove to be beneficial,
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but we want to note that since the kernel K2 is dependent on two parameters, the problem
of optimal parameter selection is exacerbated. For higher dimensional problems this can
be a limiting factor if the length p of the separable decomposition is too large.

−2 −1 0 1 2

10−11

10−10

10−9

10−8

10−7

domain

Er
ro
r

K1
K2

Figure 2.1: Pointwise error over the domain Ω = [−2, 2] measured in the Euclidean norm.

2.5 Error bounds on the best approximation

In this section we present bounds on the error between a function f and its best ap-
proximation in a closed subset N . Similar to section 2.4, the core of the following error
analysis was previously performed in [115]. However, this was strictly done in the setting
of directional point evaluations and is hence generalized for the use of arbitrary bounded
linear functionals that operate in the RKHS of the individual kernels. The error analysis
relies heavily on the so called Power function that is given as follows.

Definition 2.5.1 (Power function). Let N ⊂ HK be a closed subspace. Then the Power
function PN ,K : H′K → R corresponding to N is given by

PN ,K(λ) = sup
f∈HK\{0}

λ (f − ΠN (f))
‖f‖HK

= ‖λ ◦ (id−ΠN )‖H′K . (2.29)

In the last equality we made use of the fact that λ ∈ H′K implies λ ◦ (id−ΠN ) ∈ H′K
which one can easily conclude as

|λ ◦ (id−ΠN ) (f)| = |λ (f − ΠN (f))| ≤ ‖λ‖H′K ‖f − ΠN (f)‖HK ≤ ‖λ‖H′K ‖f‖HK (2.30)

Due to (2.30) we can alternatively represent the Power function as follows.
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2.5 Error bounds on the best approximation

Lemma 2.5.2. Let N ⊂ HK be a closed subspace. Then for any λ ∈ H′K we have

PN ,K(λ)2 = λ1λ2KN⊥

where KN⊥ is the reproducing kernel of N⊥. In particular, if N = N (Λ) for some finite
set Λ ∈ H′K we have

PN ,K(λ)2 = λ1λ2K − λ1S2
ΛK

(
S1

ΛS
2
ΛK

)+
S1

Λλ
2K. (2.31)

Proof. By Proposition 2.2.8 the Riesz representer of λ ◦ (id−ΠN ) is given by
(λ ◦ (id−ΠN ))2K, i.e. the operator is applied to the second component. Furthermore, we
have by Corollary 2.2.9

PN ,K(λ)2 = ‖λ ◦ (id−ΠN )‖2
H′K

= (λ ◦ (id−ΠN ))1 (λ ◦ (id−ΠN ))2K = λ1λ2KN⊥ ,

(2.32)

where we made us of the identity id−ΠN = ΠN⊥ and Corollary 2.2.7. Let now N = N (Λ)
for some finite Λ ∈ H′K . We first note that due to the identity id−ΠN = ΠN⊥ we have

KN⊥ = K −KN

and thus by using the representation (2.18) for KN we get

KN⊥ = K − S2
ΛK

(
S1

ΛS
2
ΛK

)+
S1

ΛK.

Finally, the result follows by using (2.32).

By definition of the Power function it is clear that we can bound the error between any
f ∈ HK and its best approximation in the subspace N as follows.

Theorem 2.5.3 (General error bound on best approximation). Let N ⊂ HK be a closed
subset and let PN ,K denote the Power function corresponding to N . Then we have for
any λ ∈ H′K

|λ(f)− λ (ΠN (f))| ≤ PN ,K(λ) ‖f − ΠN (f)‖HK ≤ PN ,K(λ) ‖f‖HK . (2.33)

Proof. For any f ∈ HK we have ‖f‖HK ≤ ‖f − ΠN (f)‖HK = ‖ΠN⊥(f)‖HK , hence the
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supremum in (2.29) is actually realized over N⊥, i.e.

PN ,K(λ) = sup
f∈HK\{0}

λ (f − ΠN (f))
‖f‖HK

= sup
f∈HK\{0}

λ (f − ΠN (f))
‖f − ΠN (f)‖HK

which gives the desired result.

As we have mentioned in previous sections, in the matrix-valued case even point-wise
evaluation of elements in the RKHS can not be represented by a single functional. Hence,
we want to introduce the concept of the so called Power function matrix, which better
suits our setting.

Definition 2.5.4 (Power function Matrix). Let Λ ⊂ H′K andN ⊂ H be a closed subspace.
Then the Power function matrix corresponding to Λ = {λ1, . . . , λp} is given by

PN ,K(Λ) = S1
ΛS

2
ΛKN⊥ ∈ Rp×p

In the case where Λ = {δe1x , . . . , δemx } we may simply write

PN ,K(x) = KN⊥(x, x) = K(x, x)−KN (x, x)

instead.

It is easy to see that by definition the Power function matrix is positive (semi-) definite
and for any functional that can be written as

λ =
(
λ1 · · · λp

)
α

for some α ∈ Rp we have the following identity

PN ,K(λ)2 = αTPN ,K(Λ)α. (2.34)

In particular for any directional point evaluation we have

PN ,K(δαx )2 = αTPN ,K(x)α.

With the above and Theorem 2.5.3 we can now give estimates on the pointwise error
f(x)− ΠN (f)(x) in various norms.

Corollary 2.5.5 (Bounds on the pointwise error). Let N ⊂ HK be a closed subset. Then
the following bounds hold for all x ∈ Ω.

(a) ‖f(x)− ΠN (f)(x)‖2
2 ≤ λmax(PN ,K(x)) ‖f − ΠN (f)‖2

HK
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(b) ‖f(x)− ΠN (f)(x)‖2
∞ ≤ max diag(PN ,K(x)) ‖f − ΠN (f)‖2

HK

(c) ‖f(x)− ΠN (f)(x)‖2
1 ≤ tr(PN ,K(x)) ‖f − ΠN (f)‖2

HK

Proof. (a) For fixed f ∈ HK and x ∈ Ω let

α = f(x)− ΠN (f)(x)
‖f(x)− ΠN (f)(x)‖2

.

By definition we have ‖α‖2 = 1. For λ := δαx we thus have

‖f(x)− ΠN (f)(x)‖2
2 = λ(f − ΠN (f)) ≤ αTPN ,K(x)α ‖f − ΠN (f)‖2

HK

≤ λmax(PN ,K(x)) ‖f − ΠN (f)‖2
HK .

(b) For the choice α = ei and λ := δαx we get

(f(x)− ΠN (f)(x))2
i = λ(f − ΠN (f)) = (PN ,K(x)))ii ‖f − ΠN (f)‖2

HK .

Hence the result directly follows from the definition of ‖·‖∞ on Rm.

(c) This follows from the above results, since we take the sum over all i = 1, . . . ,m in
the above, resulting in the trace on the right hand side.

By definition PN ,K(λ) is the smallest value such that a bound of the form (2.33) holds
for any f ∈ HK . Consequently any bound of the form

|λ(f)− λ (ΠN (f))| ≤ C(λ) ‖f‖HK ,

provides a bound PN ,K(λ) ≤ C(λ) on the Power function. In the case of scalar-valued
kernels, i.e. m = 1, and for functionals of the form δx ◦Dα many such bounds have been
derived over the years, [57, 59, 58, 34]. The most notably bounds where achieved for
subspaces of the form N = N (X) for some finite point set X = {x1, . . . , xn} and are for
the most part formulated in terms of the so called fill distance defined as follows.

Definition 2.5.6 (Fill distance). Let Ω ⊂ Rd be bounded and let X ⊂ Ω be a finite set
of pairwise distinct points. The fill distance hX,Ω corresponding to X ⊂ Ω is given by

hX,Ω = sup
x∈Ω

min
x′∈X
‖x− x′‖ .

Depending on the smoothness of the scalar-valued kernel k a large selection of uniform
bounds on PN (X),k in terms of hX,Ω can be found in [108], all of which rely on estimates
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stemming from polynomial reproduction. For cases in which the kernel k stems from a
scalar-valued radial basis function φ whose RKHS is isomorphic to Sobolev spaces, similar
bounds were achieved using so called sampling inequalities [109, 81, 79, 80]. In the case
of matrix-valued kernels, bounds are also available depending on the specific properties of
the kernel. Under the assumption of sufficient smoothness similar bounds to the ones in
[108] where achieved in [57, 59, 58] which also rely on the same polynomial reproduction.
Extensions to divergence-free and curl-free kernels for Ω ⊂ Rd, with d = 2, 3 can be found
in [34].
In the following we want to extend the results of [109] to the matrix-valued case. To

this end, we make use of the sampling inequalities provided in [81], which rely on the fact
that the domain Ω ⊂ Rd satisfies the so called interior cone condition:

Definition 2.5.7 (Interior cone condition). We say that Ω ⊂ Rd satisfies an interior cone
condition if there exists a radius r > 0 and an angle θ ∈ (0, π/2) such that for every x ∈ Ω
one can find a unit vector u ∈ Rd such that the cone

C(x, u, θ, r) := {x+ λy | y ∈ Rd, ‖y‖2 = 1, yTu ≥ cos(θ), λ ∈ [0, r]}

is contained in Ω, i.e. we can always find a cone with radius r and angle θ and cone tip x
which fits into Ω in its entirety.

Theorem 2.5.8. Assume that Ω ⊂ Rd is bounded and satisfies an interior cone condition.
Let α ∈ Nd

0 be a multiindex and k > |α|+ d
2 . Then there exists a constant C such that for

every set X ⊂ Ω with sufficiently small fill distance h := hX,Ω it holds

‖Dαu‖L∞(Ω,R) ≤ C
(
hk−|α|−d/2 ‖f‖Wk(Ω,R) + h−|α| ‖u(X)‖∞

)
for all u ∈ W k(Ω,R).

While the above is formulated for function mapping into the real numbers R, the results
still hold true when vector-valued outputs are considered. This follows immediately from
the fact that by definition of the vector-valued Sobolev space, each individual function
component lies in a corresponding real-valued Sobolev space and hence the above theorem
is applicable. Therefore, we can combine the above result with Corollary 2.3.18 to obtain
the following bounds on the pointwise error:

Theorem 2.5.9. Suppose Ω ⊂ Rd is bounded and satisfies an interior cone condition.
Let Φ : Ω → Rm×m be a continuous p.d. function, such that the assumptions of Corol-
lary 2.3.17 are satisfied for some s > d/2 and B ∈ Rm×m, and let K(x, y) = Φ(x − y)
denote the p.d. kernel induced by Φ. Then there exists a constant C > 0 such that for any

60



2.5 Error bounds on the best approximation

set X ⊂ Ω with sufficiently small fill distance h := hX,Ω and for any multiindex α ∈ Nd
0

with 0 ≤ |α| < k − d/2 we have

∥∥∥Dα
(
f(x)− ΠN (X)f(x)

)∥∥∥
2
≤ C ‖f‖HK h

k−|α|−d/2

for all f ∈ HK.

Proof. By Corollary 2.3.18 we know that HK = W s(Ω, range(B)) and the norms are
equivalent, i.e. there exist constants c1, c2 such that

c1 ‖f‖W s(Ω,range(B)) ≤ ‖f‖HK ≤ c2 ‖f‖W s(Ω,range(B))

for any f ∈ HK . Let f ∈ HK be fixed and u = f − ΠN (X)f . Then u ∈ HK and
in particular, u ∈ W s(Ω, range(B)). Since the orthogonal projection operator coincides
with the interpolation operator we further have u(X) = 0 and therefore it follows with
Theorem 2.5.8 that

‖Dαu‖L∞(Ω,range(B)) ≤ C̃hk−|α|−d/2 ‖u‖W s(Ω,range(B))

≤ Chk−|α|−d/2 ‖u‖HK ,

where C = C̃c2. We note that the norm on L∞(Ω, range(B)) is given by

‖Dαu‖L∞(Ω,range(B)) = sup
x∈Ω
‖u(x)‖2 ,

where ‖·‖2 denotes the Euclidean norm.

It now immediately follows that the above gives us an upper bound on the Power
function (matrix):

Corollary 2.5.10. Let the assumptions of Theorem 2.5.9 hold. Then for any X ⊂ Ω
such that h := hX,Ω is sufficiently small, we have for all functionals Dα ◦ δβx with ‖β‖ ≤ 1,
x ∈ Ω and α ∈ Nd

0, |α| < k − d/2

P(Dα ◦ δβx) ≤ hk−|α|−d/2C.

Proof. By definition of the Power function it is the smallest value such that an inequality
of the form

|Dα ◦ δβx(f − ΠN (X)f)| ≤ P(Dα ◦ δβx) ‖f‖HK
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holds for all f ∈ HK . And since

|Dα ◦ δβx(f − ΠN (X)f)| = |Dα(f − ΠN (X)f)(x)Tβ| ≤
∥∥∥Dα(f − ΠN (X)f)(x)

∥∥∥
2

the claim follows from Theorem 2.5.9.

In [115] we have provided alternate bounds compared to the ones mentioned in the
references above. These bounds apply to uncoupled kernels and function on the principle
that due to the assumption of uncoupledness, the Power function matrix and hence the
Power function as well, can be linked to the Power functions of the scalar-valued kernels of
the uncoupled decomposition. This is possible since Theorem 2.4.9 guarantees that each
scalar-valued kernel of the decomposition is p.d.. To this end, we first consider separable
kernels of order 1 as these are uncoupled by definition.

Lemma 2.5.11 (Power function matrix for separable kernels of order 1). Let K = kQ

be an (uncoupled) separable p.d. kernel with decomposition {(k,Q)}. Let λ ∈ H′k, then
αTSλ ∈ H′K for any α ∈ Rm , where Sλ denotes the Sampling operator applying λ com-
ponentwise. Let Λ ⊂ Hk and define the subspaces NK(Λ), Nk(Λ) as in 2.2.12 and let
PNK(Λ),K and PNk(Λ),k denote their corresponding Power functions. Then it holds

PNK(Λ),K(λ · α)2 = PNk(Λ),k(λ)2αTQα.

In particular this holds for any directional point evaluations δαx .

Proof. By (2.34) this is equivalent to

PNK(Λ),K(Sλ) = PNk(Λ),k(λ)2Q,

which in turn is equivalent to

KNK(Λ)⊥ = kN
k(Λ)⊥

Q

by definition of the Power function matrix. Using Corollary 2.2.7 and (2.18) we get

KNK(Λ)⊥ = K −KNK(Λ) = K − S2
ΛK

(
S1

ΛS
2
ΛK

)+
S1

ΛK

= kQ−
(
S1

Λk ⊗Q
) (
S1

ΛS
2
Λk ⊗Q

)+ (
S1

Λk ⊗Q
)

= kQ−
(
S2

Λk
(
S1

ΛS
2
Λk
)+
S1

Λk
)
⊗Q

=
(
k − S2

Λk
(
S1

ΛS
2
Λk
)+
S1

Λk
)

= kN
k(Λ)⊥

Q,
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where we made use of the fact that if one of the factors is scalar, the Kronecker product
coincides with the regular (matrix) multiplication.

This result can be extended in the case of uncoupled decompositions of higher order.

Lemma 2.5.12 (Power function matrix for uncoupled separable kernels of order p). Let
K be an uncoupled separable p.d. kernel with decomposition {(ki, Qi)}pi=1. Let Ki = kiQi.
Furthermore let Λ be a finite collection of functionals such that µ ∈ ⋂p

i=1H′Ki for all
µ ∈ Λ. Let Ni(Λ) := NKi(Λ) and N (Λ) = NK(Λ). Then it holds for any λ ∈ ⋂pi=1H′Ki

PN (Λ),K(λ)2 =
p∑
i=1
PNi(Λ),Ki(λ)2.

Proof. By Theorem 2.4.10 we have HK = ⊕p
i=1HKi . Due to the assumption of uncou-

pledness it now also follows that N (Λ) = ⊕p
i=1Ni(Λ). In particular, both sides have

the same reproducing kernel. The reproducing kernel of the left hand side is given via
Corollary 2.2.7 as KN (Λ). For the right hand side, we can combine this previous Corollary
with the results of Corollary 2.3.4 to obtain

K⊕p

i=1Ni(Λ) =
p∑
i=1

KNi(Λ)

which concludes the proof.

Remark 2.5.13. If we consider functionals of the form λ = αTSΛ′ for a finite set of func-
tionals Λ′ ⊂ HK satisfying the assumptions of Lemma 2.5.12 we can generalize the above
equality to the corresponding Power function matrices, i.e. we have

PN (Λ),K(Λ′) =
p∑
i=1

PNi(Λ),Ki(Λ′).

If instead of the above we consider a separable kernel K with decomposition
{(ki, Qi)}pi=1, it does not necessarily hold that each Ni(Λ) ⊂ N (Λ) since we can recover
kiQiα from Kβ for a suitable β ∈ Rm. However, we still have N (Λ) ⊂ ⊕p

i=1Ni(Λ).
Similar to the above we can make use of Corollary 2.2.7 to obtain

p∑
i=1
PNi(Λ),Ki(λ)2 ≤ PN (Λ),K(λ)2,

i.e. we can only find a lower bound on the Power function in terms of the Power functions
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2 Matrix-Valued Kernels

of the scalar-valued kernels. Similarly, we only have

p∑
i=1

PNi(Λ),Ki(λ)2 � PN (Λ),K(λ)2,

for the Power function matrices.
The above does not make use of the special structure of the kernels Ki = kiQi or the

separability of K in general. As such, the above inequality does hold for arbitrary matrix-
valued kernels Ki and for any kernel K with K = ∑p

i=1Ki. Furthermore, bounds of the
form

PN (Λ),K(λ)2 ≤ C

( p∑
i=1
PNi(Λ),Ki(λ)2

)

for some constant C ≥ 1 do not exist in general. To illustrate this, we consider the
following example.

Example 2.5.14. Let K1, K2 : Ω× Ω→ R be the polynomial kernels given by

K1(x, y) = xTy and K2(x, y) = (xTy)2.

Then HK1 is the space of multivariate polynomials of degree 1 and HK2 is the space
of multivariate polynomials of degree 2. In particular we have dim(HK1) = d and
dim(HK2) = d(d+1)

2 . If we choose X = {xi}d(d+1)/2
i=1 such that {K2(·, xi)}d(d+1)/2

i=1 is lin-
early independent, then N1(X) and N2(X) are equal to the respective RKHS. Hence
PN1(X),K1 and PN2(X),K2 vanish. However, for K = K1 + K2 the RKHS HK contains
the multivariate polynomials of both degree 1 and 2 and therefore dim(HK) = d(d+3)

2 .
Consequently, N (X) 6= HK and therefore PN (X),K does not vanish.
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3 Greedy Algorithms for Matrix-Valued
Kernels

3.1 Greedy Kernel Algorithms

While we mostly dealt with a collection of (arbitrary) functionals λ ∈ HK in the pre-
vious sections in order to construct an approximant of a function f ∈ HK , we now fo-
cus on (directional) point evaluation functionals and their respective sampling operators.
Nonetheless, many of the following methods can be generalized to non point evaluation
functionals as well.
As one might expect, the selection of interpolation points X = {x1, . . . , xn} ∈ Ω and

consequently the choice if a suitable approximation subspace N = N (X), is essential for
the quality of the interpolant. Hence, the question arises how a suitable, or possibly opti-
mal, choice can be made. Recalling standard result from approximation with polynomials
in one dimension, it is known that the Chebyshev nodes provide the optimal set of inter-
polation points in the sense, that the Lebesgue constant has logarithmic growth, when
intervals [a, b] are considered. Similarly, in two dimensions, the minimal growth rate can
be obtained by making use of the so called Padua points [14]. However, in higher dimen-
sion the problem of choosing optimal points for polynomial interpolation is in general not
solved. Likewise, no optimal choice for the interpolation process using (matrix-valued)
kernels is known to this author.
The method we present here, is to choose the interpolation points using a greedy al-

gorithm. Its structure in the frame of kernel approximation are outlined in Algorithm 2
and works as follows: We assume to have a given finite sampling ΩN ⊂ Ω of the input
space, an initial set of centers X ⊂ Ω, this may be empty, a tolerance ε > 0 and an error
indicator function E. Now, we iteratively select a point maximizing E, add it to the set
of centers and compute the next approximant by interpolation on the small set of chosen
points. This is repeated until the tolerance ε is reached. The following extends the known
greedy selection rules for scalar-valued kernels [26, 85] and are named analogously. Anal-
ogous ideas are used in the case of polynomial interpolation to define the approximate
Leja points and the approximate Fekete points [15].
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3 Greedy Algorithms for Matrix-Valued Kernels

Algorithm 2: General Kernel Greedy Algorithm
Data: finite sampling of the input domain ΩN ⊂ Ω, kernel K : Ω× Ω→ Rm×m,

target function f : Ω→ Rm, initial set of centers X, error indicator
function E, tolerance ε > 0.

Result: Set of interpolation points X.
1 while max

x∈ΩN
E(K, f,X, x) ≥ ε do

2 x∗ = arg max
x∈ΩN

E(K, f,X, x);

3 Extend set of interpolation points X = X ∪ {x∗};
4 end

Depending on the choice of the error indicator function E we can divide Algorithm 2
into three major categories. To this end, we first recall the pointwise error bounds of
Corollary 2.5.5: If N ⊂ HK is a closed subspace, then we have for any x ∈ Ω

‖f(x)− ΠN (f)(x)‖2
2 ≤ λmax(PN ,K(x)) ‖f − ΠN (f)‖2

HK .

Using the greedy algorithm, we now try to minimize the pointwise error on the residual.
Using the above bound, this can be achieved in atleast three different ways. First, by
trying to minimize the left-hand side directly, second, by trying to minimize the error
in the native space norm, and third, by trying to minimize the maximum eigenvalue of
the Power function matrix. These three different types are called f–Greedy, f/P–Greedy
and P–Greedy, respectively. The contents of the following subsections were previously
published in [113] and were only slightly modified to better fit into the context of this
thesis as well as to include more detailed proofs of mathematical statements.

3.1.1 f–Greedy

For the f–Greedy, the error indicator function Ef is given by

Ef (K, f,X, x) :=
∥∥∥f(x)− ΠN (X)(f)(x)

∥∥∥2

2
. (3.1)

One can see that the indicator relies heavily on the evaluation of the target function
and hence f(x) has to be available for all x ∈ ΩN , which might prove computationally
expensive, if the target function f itself is expensive to evaluate. However, one can expect
that the set of interpolation points selected with this error indicator should be well suited
for approximating the target function. We note that as we iteratively progress through the
steps in the greedy algorithm, the values of the indicator function Ef do not necessarily
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3.1 Greedy Kernel Algorithms

decrease, i.e. in general the inequality

Ef (K, f,X, x) ≤ EF (K, f, Y, x)

for x ∈ ΩN and Y ⊂ X is not satisfied. Nonetheless, we have Ef (K, f,X, x) = 0 for all
x ∈ X and hence, no point is selected twice. Furthermore, since ΩN ⊂ Ω is finite, the
algorithm terminates after a finite number of steps.

3.1.2 f/P–Greedy

For the f/P–Greedy, the error indicator function is given by

Ef/P (K, f,X, x) =
(
f(x)− ΠN (X)(f)(x)

)T
PN (X),K(x)+

(
f(x)− ΠN (X)(f)(x)

)
.

The motivation for the f/P–Greedy was the minimization of the error in the native space
norm, i.e. the minimization of

∥∥∥f − ΠN (X)(f)
∥∥∥2

HK
in each iteration. The following lemma,

which extends a result in [87] to the matrix-valued case, connects the chosen indicator to
the error in the native space norm.

Lemma 3.1.1 (Local optimality of the f/P–Greedy selection rule). Let K : Ω × Ω →
Rm×m be a positive definite matrix-valued kernel with native space HK. Furthermore, let
f ∈ HK and X = {x1, . . . , xn} ⊂ Ω be a finite set of pairwise distinct points. Then it
holds for all x ∈ Ω
∥∥∥ΠN (X∪{x})(f)

∥∥∥2

HK
=
∥∥∥ΠN (X)(f)

∥∥∥2

HK

+
(
f(x)− ΠN (X)(f)(x)

)T
PN (X),K(x)+

(
f(x)− ΠN (X)(f)(x)

)
.

Proof. We first note that the columns of K(·, x) are functions in HK . Therefore, we have
by Corollary 2.2.15 that the colums of K(X, x) are in the range of K(X,X). We now
consider the block matrix A B

BT D

 =
K(x, x) K(x,X)
K(X, x) K(X,X)

 = K({x} ∪X, {x} ∪X)

This matrix now has a Schur-like decomposition A B

BT D

 =
Im BD+

0 Inm

 A−BD+BT 0
0 D

 Im 0
D+BT Inm
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3 Greedy Algorithms for Matrix-Valued Kernels

and therefore

K({x} ∪X, {x} ∪X)+ =
 Im 0
−D+BT Inm

(A−BD+BT
)+

0
0 D+

Im −BD+

0 Inm

 .
Please note, that in general, the Moore-Penrose-Pseudoinverse does not satisfy (CE)+ =
E+C+. However, in this particular case, the above holds sinceD and thusD+ is symmetric
and the outer matrices are invertible and satisfy

Im BD+

0 Inm

T =
 Im 0
D+BT Inm

 .
One can then easily verify the four conditions in the definition of the Moore-Penrose-
Pseudoinverse. Due to Lemma 2.2.14 we have that

ΠN (X)(f)(x) = K(x,X)K(X,X)+f(X) = BD+f(X)

and therefore  Im 0
D+BT Inm

 f(x)
f(X)

 =
f(x)− ΠN (X)(f)(x)

f(X)

 .
Furthermore, by definition of the Power function matrix we have

PN (X),K(x) = K(x, x)−K(x,X)K(X,X)+K(X, x) = A−BD+BT .

It now follows that

∥∥∥ΠN (X∪{x})(f)
∥∥∥2

HK
=
(
f(x)T f(X)T

)
K({x} ∪X, {x} ∪X)+

 f(x)
f(X)


=
(
f(x)T f(X)T

)  A B

BT D

+ f(x)
f(X)


=
(
f(x)− ΠN (X)(f)(x)

)T
PN (X),K(x)+

(
f(x)− ΠN (X)(f)(x)

)
+ f(X)TD+f(X)

=
(
f(x)− ΠN (X)(f)(x)

)T
PN (X),K(x)+

(
f(x)− ΠN (X)(f)(x)

)
+
∥∥∥ΠN (X)(f)

∥∥∥2

HK
.

Using the previous result and the fact that the interpolant is the best approximation,
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3.1 Greedy Kernel Algorithms

see Theorem 2.2.13, we have
∥∥∥f − ΠN (X∪{x})(f)

∥∥∥2

HK
= ‖f‖2

HK −
∥∥∥ΠN (X∪{x})(f)

∥∥∥2

HK

= ‖f‖2
HK −

∥∥∥ΠN (X)(f)
∥∥∥2

HK
− Ef/P (K,X, x)

=
∥∥∥f − ΠN (X)(f)

∥∥∥2

HK
− Ef/P (K,X, x).

Therefore, maximizing Ef/P (K,X, x) is equivalent to minimizing
∥∥∥f − ΠN (X∪{x})(f)

∥∥∥2

HK
.

Similar to the f–Greedy, the f/P–Greedy is dependent on the target function and
generates a point set which is tailored to one specific target function. Moreover, the
f/P–Greedy not only requires the evaluations of f on ΩN but it furthermore requires the
computation of

(
f(x)− ΠN (X)(f)(x)

)T
PN (X),K(x)+

(
f(x)− ΠN (X)(f)(x)

)
,

i.e. solving an m–dimensional linear system, for all x ∈ ΩN in each iteration. Hence-
forth, it is more expensive than the f–Greedy. The indicator Ef/P further satisfies that
Ef/P (K, f,X, x) = 0 if x ∈ X and it is also not monotonically decreasing in general.
The name f/P greedy stems from the scalar-valued case, where the indicator can

equiavently be written as

Ef/P (K, f,X, x) = |f(x)− ΠN (X)(f)(x)
PN (X),K(x) ,

i.e. a fraction of function dependent quantity and the Power function (matrix).
In the case of separable kernels of order one, i.e. K = k · I for some scalar-valued kernel

k, the above coincides withe the vectorial kernel orthognal greedy algorithm (VKOGA),
which was introduced in [111].

3.1.3 P–Greedy

For the P–Greedy, the error indicator function EP is given by

EP (K, f,X, x) = EP (K,X, x) := λmax(PN (X),K(x)) =
∥∥∥PN (X),K(x)

∥∥∥
2
. (3.2)

Unlike the f–Greedy and f/P–Greedy, the P–Greedy is independent of the target function
f itself and therefore no (expensive) evaluation of the target function is required, which
speeds up the point selection process for this indicator function. Furthermore, the selected
points are not tailored towards a specific target function and thus one should expect a less
accurate approximation of any target function, when compared to the f–Greedy and f/P–
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3 Greedy Algorithms for Matrix-Valued Kernels

Greedy. However, this instance of the greedy algorithm leads to point sets which provide
good approximation for all functions in the native space HK . This generalizability cannot
be seen in the f–Greedy and f/P -Greedy. Similar to the f–Greedy and f/P -Greedy, we
have EP (K,X, x) = 0 if x ∈ X. This follows immediately from Definition 2.5.4, since we
have

PN (X),K(x) = K(x, x)−KN (X)(x, x)

and K and KN (X) coincide on N (X). Furthermore, as a direct consequence of Defi-
nition 2.5.4 and Corollary 2.2.7 we have EP (K,X, x) ≤ EP (K,Y, x) for all x ∈ ΩN and
Y ⊂ X, since in this case we have N (Y ) ⊂ N (X). In particular, the algorithm terminates
after a finite number of steps and no point is chosen a second time.

3.1.4 Numerical investigation

We now investigate the different error indicators with respect to their effect on the quality
of the approximation and the distribution of the selected points. To this end, we consider
the unit disc segment Ω = {x = (r cos(ϕ), r sin(ϕ)) ∈ R2 | (r, ϕ) ∈ Ω̃}, where Ω̃ =
[0, 1]× [1

3π,
5
3π], and the target function f = (fi)8

i=1 : Ω→ R8 given by

fi(x) :=
10∑
j=1

e−b(i+1)/2c‖x−xj‖2 , i = 1, . . . , 8,

with x1 = (0, 0)T and xj = 0.1(cos( j6π), sin( j6π))T , j = 2, . . . , 10. For the kernel we use
K : Ω× Ω→ R8×8 given by a diagonal Gaussian with decaying widths

Ki,j(x, y) :=
e
−b(i+1)/2c‖x−y‖2 , i = j

0, i 6= j.

One easily sees that f(x) = K(x, Y )1 where Y = {x1, . . . , x10} and 1 ∈ R80 is the vector
containing only ones. Therefore, we have ‖f‖HK = 1TK(Y, Y )1 ≈ 768.295. For the
greedy algorithm we choose ΩN by transforming 50×50 uniformly distributed points in Ω̃
to Euclidean coordinates, which results in |ΩN | = 2451 points. For the tolerance we choose
ε = 10−7. The sets of interpolation points generated by different greedy algorithms are
denoted by Xtype, where type ∈ {f, f/P, P} and each type corresponds to the respective
error indicator Etype.
In Figure 3.1 the decay of the error indicators, i.e. the maximum of Etype over the

training set ΩN , and the maximum training error measured in the Euclidean norm are
depicted for increasing size of the set Xtype. As we can see, the P–Greedy algorithm
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Figure 3.1: Error indicator decay (left) and maximum training error decay in the Eu-
clidean norm (right) for increasing set size.

terminates after 114, whereas the f–Greedy terminates after 35 and the f/P–Greedy
terminates after 29 iterations. This slower decay for EP is likely caused by the narrow
Gaussians which model the last target function components. In Figure 3.2 the maximum
test error in the Euclidean norm on the test set ΩTest generated by transforming 100×100
uniformly distributed points in Ω̃ and the error in the native space norm are shown. As we
have conjectured in the subsections 3.1.1 – 3.1.3 both f– and f/P–Greedy generate sets
which are tailored towards the target function f which leads to a better approximation
when compared to the sets of the same size generated by the P–Greedy. For example,
to reach a test error of 10−3 in the Euclidean norm, the sets generated by f–, f/P–
and P–Greedy have sizes 34, 19 and 55, respectively. However, this benefit in terms of
approximation quality is counteracted by a poorer conditioning of the linear system

K(Xtype, Xtype)α = f(Xtype)

which has to be solved in order to construct the approximant. The condition of the linear
system for the respective type is depicted in Figure 3.3. And we can see that the condition
for the f/P–Greedy has the sharpest increase, where we already have a condition number
of ≈ 1, 4 · 1014 for |Xf/P | = 10. In contrast the f– and P–Greedy only lead to condition
numbers of ≈ 3, 8 · 1010 and 2, 9 · 1011, respectively. This rapid increase for the condition
number when using the f/P–Greedy is tightly connected to the distribution of the selected
points, which are depicted in Figure 3.4. We can see that the points selected by the f/P–
Greedy algorithm are not well distributed over Ω and tend to cluster next to each other,
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Figure 3.2: Test error decay in the Euclidean norm (left) and in the Hilbert space norm
(right) for increasing set size

which leads to a bad conditioning of the respective linear system.
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Figure 3.3: Condition number of the linear system required in the approximation process
for increasing set size.

3.2 Matrix P–Greedy Variants

In this section we will take a closer look at the P–Greedy algorithm, as it is function
independent and therefore applicable to a wider variety of problems. Furthermore, it is
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Figure 3.4: Point distribution of the sets XP , Xf and Xf/P (black) and the centers making
up the target function (red).

computationally less demanding than the f– and f/P–Greedy, if the evaluation of f is ex-
pensive, or if the target function is high dimensional and hence expensive (pseudo) inverses
have to be computed. For the same reason we present further variants of the P–Greedy,
which rely on a different indicator function than the one presented in (3.2), as it requires
the solution of an eigenvalue problem for each point in the training set ΩN . Moreover, we
take a closer look at different extension strategies for enriching the approximation space,
where we do not necessarily include all columns of K(·, x) if the point x is selected during
the greedy iteration. A first version of this and the two subsequent subsections where first
published in [114]. However, here the contents were significantly extended by including
new mathematical analysis, more detailed proofs and further numerical experiments.
The basic principle for these P–Greedy variants is outlined in Algorithm 3.

Algorithm 3: Matrix P-greedy Algorithm
Data: finite sampling of the input domain ΩN ⊂ Ω, kernel K : Ω× Ω→ Rm×m,

initial approximation space N , error indicator function E, tolerance ε > 0,
space extension routine “extend”.

Result: Approximation space N
1 while max

x∈ΩN
E(PN (x)) ≥ ε do

2 x∗ = arg max
x∈ΩN

E(PN ,K(x));

3 N = extend(N , K(·, x∗));
4 end

Similar to the indicator functions that where introduced in Section 3.1, we again make
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use of Corollary 2.5.5 to derive further indicator functions. Recalling the results of Corol-
lary 2.5.5, we have the bounds

‖f(x)− ΠN (f)(x)‖2
2 ≤ λmax(PN ,K(x)) ‖f − ΠN (f)‖2

HK

‖f(x)− ΠN (f)(x)‖2
∞ ≤ max diag(PN ,K(x)) ‖f − ΠN (f)‖2

HK

‖f(x)− ΠN (f)(x)‖2
1 ≤ tr(PN ,K(x)) ‖f − ΠN (f)‖2

HK ,

which naturally lead to the following three indicator functions Ei : Rm×m → R, i ∈
{1, 2,∞} given by

E1(B) := 1
m

tr(B), E2(B) := λmax(B), E∞(B) := max diag(B). (3.3)

Here E2 is just the indicator EP used in the previous section. However, we included
it again with the change of notation to make the distinction between the three variants
easier.

For the extension routine we propose

extendfull(N , K(·, x)) := N + colspan(K(·, x)),
extendeig(N , K(·, x)) := N + span(K(·, x)αmax),
extenddiag(N , K(·, x)) := N + span(K(·, x)emax),

where αmax denotes an eigenvector to the largest eigenvalue and emax the standard basis
vector to the largest diagonal value of PN ,K(x), respectively.

As the name suggests, extendfull enriches the approximation space N with all columns
of K(·, x). In other words, the dimension of N increases by m in every iteration, which
might lead to a rapid increase in the overall dimension of the approximation space, if
m is large. However, all components of the target function value f(x) will be used in
the subsequent approximation process. In contrast, extendeig and extenddiag increase the
approximation space dimension by 1 in every iteration. Therefore, one might expect the
final approximation space N to be smaller, when compared to the full extension routine,
as potentially unnecessary columns of K(·, x) are not included. Nevertheless, we might
require a larger number of individual target function evaluations in the approximation
process, which is in turn expensive if the evaluation of f is computationally demanding.
We will consider all possible combinations of the above indicator and extension routines
and shall denote them via greedyi,type with i ∈ {1, 2,∞} and type ∈ {full, eig, diag}.

Similar to what was outlined in Section 3.1, the above three methods coincide in the
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scalar-valued case, i.e. m = 1 and represent the well known P–Greedy algorithm [26]. An
efficient way to implement the different P–Greedy variants is available by making use of
the so called Newton basis [68]

Definition 3.2.1 (Newton basis). Let Λ = {λ1, . . . , λn} ⊂ H′K be a set of linearly
independent functionals. Furthermore, let LLT = S1

ΛS
2
ΛK be a Cholesky factorization

and denote as l1, . . . , ln the columns of L−T . Then the Newton basis {v1, . . . , vn} of N (Λ)
is given by

vi := S2
ΛK(·, ·)li, for i = 1, . . . , n

The Newton basis now has the following properties

Proposition 3.2.2 (Properties of the Newton basis). Let Λ = {λ1, . . . , λn} be a set of
linearly independent functionals and {v1, . . . , vn} the corresponding Newton basis of N (Λ).
Then it holds

(a) λj(vi) = 0 for all j < i.

(b) The set {v1, . . . , vn} is an orthonormal basis and can be generated by applying the
Gram-Schmidt orthonormalization procedure to the set {λ2

1K, . . . , λ
2
nK}.

Proof. We only need to show the second property, as the first follows from the fact that
λj(vi) = 〈λ2

jK, vi〉HK . For the second property it is sufficient to note, that performing the
Gram-Schmidt orthonormalization is equivalent to computing the Cholesky factorization
of

LLT = S1
ΛS

2
ΛK =

(
〈λ2

jK,λ
2
iK〉HK

)n
i,j=1

.

The basis generated by the Gram-Schmidt procedure can then be expressed via

vi = S2
ΛKL

−T ei

which is exactly the definition of the Newton basis.

The name Newton basis stems from the fact that the first property in Proposition 3.2.2
mimics the classical Newton basis used in polynomial interpolation. The second property
allows us to efficiently update the Newton basis, if a further functional λn+1 is added to
Λ. This follows from the fact that the Cholesky factorization of S1

Λ∪{λ}S
2
Λ∪{λ}K can be

computed by updating the Cholesky factorization of S1
ΛS

2
ΛK. This updatability carries

over to the Power function (matrix) as follows.
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3 Greedy Algorithms for Matrix-Valued Kernels

Theorem 3.2.3 (Representation of the Power function (matrix) via the Newton basis).
Let Λ = {λ1, . . . , λn} be a collection of linearly independent functionals and {v1, . . . , vn}
be the corresponding Newton basis. Let Γ = {γ1, . . . , γp} be a second set of functionals.
Then the Power function matrix is given by

PN (Λ),K(Γ) = S1
ΓS

2
ΓK −

n∑
i=1

SΓ(vi)SΓ(vi)T .

Proof. Let KN (Λ) be the reproducing kernel of N (Λ). By definition of the Power function
matrix we have

PN (Λ),K(Γ) = S1
ΓS

2
ΓK − S1

ΓS
2
ΓKN (Λ).

Hence, it is sufficient to show that

KN (Λ)(x, y) =
n∑
i=1

vi(x)vi(y)T . (3.4)

However, this is equivalent to showing that the right hand side of (3.4) satisfies the
reproducing property (2.6) on N (Λ). Since v1, . . . , vn are a basis of N (X) we have for
any x ∈ Ω and α ∈ Rm

n∑
i=1

vivi(x)Tα ∈ N (Λ).

Let f ∈ N (Λ), then

f =
n∑
j=1

βjvj

for some β ∈ Rn. Since the Newton basis is orthonormal it follows that〈
f,

n∑
i=1

vivi(x)Tα
〉

=
n∑

i,j=1
〈vj, vi〉βjvi(x)Tα =

n∑
i=1

βivi(x)Tα = f(x)Tα.

The Power function (matrix) is therefore updatable since by the above we have for any
λn+1 that

PN (Λ∪{λn+1})(Γ) = PN (Λ)(Γ)− SΓ(vn+1)SΓ(vn+1)T . (3.5)

Remark 3.2.4. In Theorem 3.2.3 we only used the fact that the Newton basis is orthonor-
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mal. Hence, the theorem can be generalized if we replaceN (Λ) with an arbitrary subspace
N which has an orthonormal basis.

As it was shown in [83], the P–Greedy algorithm generates a sequence of sets which
provide quasi-optimal approximation rates in the case of scalar-valued kernels. This was
further extended in [84], where a wider variety of functionals, not just point evaluations,
where considered. Both of the two previous results are based on the work presented
in [27, 12], in which the approximation quality of spaces selected by greedy algorithms
in the context of reduced basis where considered. Likewise, we also make use of these
foundations to show how quasi optimal convergence rates can be achieved when the greedy
variants greedyi,type are used in the non scalar-valued case, i.e. m > 1. Since the work in
[27] is not framed in the context of kernel based approximations, we similarly use a more
general approach which also extends the result for multi-dimensional greedy extensions
in different fields.

3.3 Convergence Rates for k–dimensional Greedy Space
Extensions

In order to apply the techniques employed in [27] we first have to extend to notion of a
weak greedy algorithm in the context a multi-dimensional space extension procedure. For
this purpose, we assume for this section that H is a Hilbert space and F ⊂ H is a compact
subset, which we want to approximate by a suitable subspace spanned by elements f ∈ F .
A more abstract version of the greedy algorithm is outlined in Algorithm 4.

Algorithm 4: k–dimensional greedy space extension.
Data: F ⊂ H compact set, initial approximation space V0 ⊂ H, indicator function

E, maximum number of iterations nmax ∈ N and greedy extension
dimension k ∈ N.

Result: Approximation space Vnmax

1 Initialize n = 1;
2 while n ≤ nmax do
3 Wn := arg max

W⊂span{F}
dim(W )=k

E(W,Vn−1);

4 Vn := Vn−1 +Wn;
5 end

The only requirement we now have, is that the indicator function E produces a so called
weak greedy algorithm:
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Definition 3.3.1 (Weak Greedy Algorithm). Let {Wn}nmax
n=1 and {Vn}nmax

n=0 be the sequence
of subspaces chosen as outlined Algorithm 4. The algorithm is called a weak greedy
algorithm if there exist a constant 0 < γ ≤ 1 such that

max
f∈Wn

∥∥∥f − ΠVn−1f
∥∥∥
H

= max
f∈Wn

∥∥∥ΠV ⊥n−1
f
∥∥∥
H
≥ γmax

f∈F

∥∥∥f − ΠVn−1f
∥∥∥
H

= γmax
f∈F

∥∥∥ΠV ⊥n−1
f
∥∥∥
H

(3.6)

In other words, the algorithm is called a weak greedy algorithm if in every iteration,
the subspace chosen to enrich the approximation space contains an element such that
the ratio of the error of the best approximation in said subspace, and the maximum best
approximation error over all of F is bounded by a constant strictly bigger than 0. It is
clear that whether or not Algorithm 4 is a weak greedy algorithm, soley depends on the
choice of the error indicator function E. For example the choice

E(W,V ) = max
f∈W
‖f − ΠV f‖H

results in a weak greedy algorithm with γ = 1. Albeit, in the case of γ = 1, one usually
refers to the algorithm as a so called strong greedy algorithm.
We now want to compare the quality of the approximation in the subspaces Vn to the

best possible approximation spaces of the same dimension. This is quantified in terms of
the Kolmogorov n-width dn(F) which is given by

dn(F) = inf
V⊂H

dim(V )=n

sup
f∈F
‖f − ΠV f‖H . (3.7)

Moreover, let Hm denote an m-dimensional Kolmogorov subspace such that

sup
f∈F
‖f − ΠHmf‖H = dm(F).

Analogous to (3.7) we can quantify the approximation quality of the subspaces Vn
generated by a weak greedy algorithm via

σn(F) := max
f∈F
‖f − ΠVnf‖H .

In order to relate the above two quantities, we need the following lemma.

Lemma 3.3.2 (Lemma 2.1 from [27]). Let G ∈ RK×K be a lower triangular matrix
with rows g1, . . . ,gK ∈ RK. Let W ⊂ RK be an m–dimensional subspace and ΠW the
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orthogonal projection from RK onto W . Then it holds

K∏
i=1

g2
i,i ≤

(
1
m

K∑
i=1
‖ΠWgi‖2

2

)m ( 1
K −m

K∑
i=1
‖gi − ΠWgi‖2

2

)K−m
.

With this we are able to extend the results for the scalar-valued P–Greedy algorithm.
However, we have to be careful, as σn(F) represent the approximation quality of the space
Vn which is n · k–dimensional, whereas dn(F) represents the approximation quality of the
best n–dimensional subspace. Here we implicitly assume that the initial subspace V0 is
0–dimensional, i.e. V0 = {0}.

Theorem 3.3.3. Let {Wn}n∈N and {Vn}n∈N be the sequence of spaces generated by a weak
greedy algorithm with constant 0 < γ ≤ 1. Furthermore, let σn = σn(F) and dn = dn(F),
then we have for any N ≥ 0, K ≥ 1 and 1 ≤ k < K:

K−1∏
i=0

σ2
N+i ≤ γ−2K

(
K

m

)m ( K

K −m

)K−m
σ2m
N d2K−2m

m .

Proof. For n ∈ N, let

g1
n := arg max

f∈Wn

∥∥∥f − ΠVn−1f
∥∥∥
H

and g2
n, . . . , g

k
n such that g1

n, . . . , g
k
n form a basis of Wn. Let now {ĝin | n ∈ N, i = 1, . . . , k}

denote the orthonormal system generated by applying the Gram-Schmidt orthonormal-
ization procedure to {g1

1, g
2
1, . . . , g

k
1 , g

1
2, . . . }. We now define the infinite lower-triangular

matrix A by

A := (aij)∞i,j=1,m aij = 〈g1
i , ĝ

1
j 〉H.

By construction we have

ĝ1
n = 1∥∥∥g1

n − ΠVn−1g1
n

∥∥∥
H

(
g1
n − ΠVn−1g

1
n

)

and therefore

ann = 〈g1
n, ĝ

1
n〉H =

∥∥∥g1
n − ΠVn−1g

1
n

∥∥∥
H

= max
f∈Wn

∥∥∥g1
n − ΠVn−1g

1
n

∥∥∥
H
.
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In particular, we have γσn−1 ≤ ann ≤ σn−1. Furthermore, we have for any M ≥ n that

M∑
j=n

a2
Mj =

M∑
j=n
〈g1
M , ĝ

1
j 〉2H ≤

M∑
j=n

m∑
i=1
〈g1
M , ĝ

i
j〉2H

=
∥∥∥g1

M − ΠVn−1g
1
M

∥∥∥2

H
≤ max

f∈F

∥∥∥f − ΠVn−1f
∥∥∥2

H
= σ2

n−1. (3.8)

Let G ∈ RK×K be the lower triangular matrix which is formed by taking the submatrix
of A with column and row indices N + 1, . . . , N + K, i.e. G = (aij)N+K

i,j=N+1. Each row gi
of G is now the restriction of g1

N+i to the coordinates N + 1, ·, N +K. From (3.8) it now
follows, that

‖gi‖2 =
N+i∑

j=N+1
a2
N+i,j ≤ σ2

N ,

where we used that the i + 1–th to K–th component of gi are zero, since G is lower
triangular. Let Hm denote the m-dimensional Kolmogorov subspace of H. Then we have
dist(g1

N+i,Hm) ≤ dm for i = 1, . . . , K. Let W̃ be the linear space which is the restriction
of Hm onto the coordinates N + 1, . . . , N + K and let W̃ ⊂ W be the space for the
coordinates N + 1, . . . , N +K. Then we have

‖ΠW̃gi‖2 ≤ ‖gi‖2 ≤ σN

and

‖gi − ΠW̃gi‖2 ≤ ‖gi − ΠWgi‖2 = dist(gi, W̃ ) ≤ dist(g1
N+i,Hm) ≤ dm, i = 1, . . . , K.

Using Lemma 3.3.2 we now get

γ2K
K−1∏
i=0

σ2
N+i ≤

(
1
m

K∑
i=1

σN

)m ( 1
K −m

K∑
i=1

dm

)K−m

which is equivalent to

K−1∏
i=0

σ2
N+i ≤ γ−2K

(
K

m

)m ( K

K −m

)K−m
σ2m
N d2K−2m

m .

From [27] we take the following corollary. However, we include a proof for the sake of
completeness as some of the steps were unclear to us without further clarification.
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Corollary 3.3.4. Let F ⊂ H be compact such that dn(F) ≤ C0n
−α, then

σn(F) ≤ C1n
−α, where C1 := 25α+1γ−2C0.

Proof. First, we can assume without loss of generality that F is scaled in such a way that

sup
f∈F
‖f‖H = σ1 = 1.

Furthermore, by definition we have that {σn}n∈N is a monotonically decreasing sequence.
Using N = n+ 1, K = n and any 1 ≤ m < n in Theorem 3.3.3 we thus get

σ2n
2n ≤

K∏
i=1

σ2
n+i ≤ γ−2n

(
n

m

)m ( n

n−m

)n−m
σ2m
n+1d

2n−2m
m .

Making use of σn+1 ≤ σn we can solve for σ2n and get

σ2n ≤ γ−1
((

n

m

)m
n
(

n

n−m

)n−m
n

) 1
2

σ
m
n
n d

n−m
n

m . (3.9)

Now, let h : (0, 1)→ R be the function given by

h(x) = x−x(1− x)x−1.

Then h(x) is positive and has the derivative

h′(x) = x−x(1− x)x−1 (ln(1− x)− ln(x)) .

And the derivative vanishes if ln(1−x) = ln(x) which is the case for x = 1
2 . Furthermore,

we have

ln(1− x)− ln(x) > 0 for x < 1
2 and ln(1− x)− ln(x) < 0 for x > 1

2 .

Hence h assumes its maximum value for x = 1
2 , i.e.

max
0<x<1

h(x) = h(1/2) = 2.

With the choice x = m
n
we get

(
n

m

)m
n
(

n

n−m

)n−m
n

= h(m/n) ≤ 2.
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Combining this with (3.9) results in

σ2n ≤
√

2γ−1σ
m
n
n d

n−m
n

m , for m = 1, . . . , n. (3.10)

For the special case n = 2s and m = s for some s ∈ N, (3.10) simplifies to

σ4s ≤
√

2γ−1
√
σ2sds. (3.11)

Finally, we can proove our claim via contradiction. For this letM ∈ N be the first number
such that σM(F) > C1M

−α. We first consider the case M = 4s for some s ∈ N. Using
(3.11) it follows

σ4s ≤
√

2γ−1
√
C1(2s)−αC0s−α =

√
21−αC0C1γ

−1s−α.

Here we used, that σ2s ≤ C
(
12s)−α by assumption on M . It follows that

C1(4s)−α < σ4s ≤
√

21−αC0C1γ
−1s−α.

Therefore by solving for C1

C1 < 23α+1γ−2C0 < 25α+1γ−2C0 = C1

and we have reached a contradiction. Let now M = 4s+ q for some q ∈ {1, 2, 3}, then we
have similarly

C12−3αs−α = C12−α(4s)−α ≤ C1(4s+ q)−α < σ4s+q ≤ σ4s ≤
√

21−αC0C1γ
−1s−α.

Solving for C1 once again, we obtain

C1 < 25α+1γ−2C0 = C1

which is the desired contradiction.

The comparison between dn(F) and σn(F) in Corollary 3.3.4 is somewhat ill suited,
as dn(F) deals with n–dimensional subspaces, whereas σn(F) pertains to N = n · k–
dimensional subspaces. In order to make the two quantities more comparable, we have to
express the latter in terms of the dimension of its approximation space:

Corollary 3.3.5. Let {Vn}n∈N and {Wn}n∈N be the sequence of spaces generated by a
weak greedy algorithm with constant γ and equip each Wn with a basis {g1

n, . . . , g
k
n} such
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that

gin = max
g∈Wn

∥∥∥g − ΠVn+span{g1
n,...,g

i−1
n }g

∥∥∥
H
.

Let N = k · n + l for some n ∈ N and some 1 ≤ l ≤ k − 1 and denote as UN ⊂ H the
subspaces given by

UN = span{g1
1, . . . , g

l
n}.

Furthermore, let σ̃N(F) = sup
f∈F
‖f − ΠUNf‖H. Then it holds that if dn(F) ≤ C0n

−α, then

σ̃N ≤ C2N
−α, for all N ≥ 2k − 2,

where C2 := 26α+1kαγ−2C0.

Proof. First let N = n ·k. Then we have σ̃N(F) = σn(F) and therefore by Corollary 3.3.4

σ̃N(F) ≤ 25α+1γ−2n−α = 25α+1γ−2kαN−αC0 ≤ 26α+1γ−2kαN−αC0.

Let now N = n · k + l for some 1 ≤ l ≤ k − 1. Then we have due to the monotonicity of
{σ̃m}m∈N

σ̃N(F) ≤ σ̃nk ≤ 25α+1γ−2n−α. (3.12)

Solving N = nk + l for n we get n = N−l
k

and therefore (3.12)

σ̃N(F) ≤ 25α+1γ−2C0

(
N − l
k

)−α
≤ 25α+1γ−2kαC0

(
N − l
N

)−α
N−α

≤ 25α+1γ−2kαC0

(1
2

)−α
N−α = 26α+1γ−2kαC0N

−α

As we can see, the bound deteriorates by a factor of 2α if we also want to consider
dimensions that are not a multiple of k. Nonetheless, we maintain the same asymptotic
behaviour and thus the weak greedy algorithm generates a sequence of subspaces which
provide a quasi optimal approximation rate.
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3.4 Convergence Rates for the P–Greedy Variants

We now show how the P–Greedy variants that were introduced in Section 3.2 fit into the
framework described in Section 3.3. In this case, the Hilbert space is just given as the
RKHS of the kernel K : Ω × Ω → Rm×m, i.e. H = HK . Furthermore, the set F is given
by

F = {K(·, x)α | x ∈ Ω, α ∈ Rm, ‖α‖2 = 1}.

In the following we will assume that the kernel K is continuous and Ω ⊂ Rd is compact.
We can now conclude that the set Ω × {α ∈ Rm | ‖α‖2 = 1} is compact as a product of
compact sets. Therefore F is compact as the image of the continuous mapping

Ω× {α ∈ Rm | ‖α‖2 = 1} 3 (x, α) 7→ K(·, x)α.

With this, we can now show that the different routines described in Algorithm 3 are
weak greedy algorithms as defined in Definition 3.3.1.

Proposition 3.4.1 (P–Greedy Variants are weak greedy algorithms). The P–Greedy
variants of Algorithm 3 are all weak (or strong) greedy algorithms and the weak greedy
constant are given by Table 3.1.

Indicator E1 E2 E∞

extension full eig diag full eig diag full eig diag
constant γ 1/m 1/m 1/m 1 1 1/m 1/m 1/m 1/m

Table 3.1: Weak Greedy constants for the P–Greedy variants

Proof. Let {Vn}n∈N denote the sequence of spaces generated by any of the P–Greedy
variants. Then it holds

σn(F)2 = max
f∈F
‖f − ΠVnf‖

2
HK = max

(x,α)∈Ω×Rm
‖α‖2=1

‖K(·, x)α−KVn(·, x)α‖2
HK

= max
(x,α)∈Ω×Rm
‖α‖2=1

αT (K(x, x)−KVn(x, x))α

= max
x∈Ω

λmax(P Vn,K(x)).

We can immediately conclude that both greedy2,full and greedy2,eig lead to a strong greedy,
i.e. γ = 1. For the remaining combinations we use the following inequality for symmetric
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positive semi-definite matrices A ∈ Rm×m:

max diag(A) ≤ λmax(A) ≤ tr(A) ≤ mmax diag(A) ≤ mλmax(A). (3.13)

To finish off the variants using the indicator E2, we immediately conclude from (3.13)
that greedy2,diag is a weak greedy with constant γ = m−1. We now consider the indicator
function E1. For every n ∈ N let xn ∈ Ω denote the point selected by E1, i.e.

xn = arg max
x∈Ω

E1(P Vn−1,K(x)).

Furthermore, let x∗n denote the point chosen by the indicator E2, i.e the point such that

E2(P Vn−1,K(x∗n)) = λmax(P Vn−1,K(x∗n)) = σn−1(F).

By definition of xn, x∗n and by (3.13) it now follows that

mλmax(P Vn−1,K(xn)) ≥ mmax diag(P Vn−1,K(xn))
≥ tr(P Vn−1,K(xn)) = E1(P Vn−1,K(xn))
≥ E1(P Vn−1,K(x∗n)) = tr(P Vn−1,K(x∗n))
≥ λmax(P Vn−1,K(x∗n)) = σn−1(F).

Therefore, the spaces selected by either extension routine result in a weak greedy with
constant γ = m−1. Finally, we consider the indicator function E∞. Let {yn}n∈N be the
sequence of points selected by this indicator. Then we have by (3.13) and definition of
yn, x

∗
n

λmax(P Vn−1,K(yn)) ≥ max diag(P Vn−1,K(yn)) ≥ max diag(P Vn−1,K(x∗n))

≥ 1
m
λmax(P Vn−1,K(x∗n)) = 1

m
σn−1(F).

Consequently, all routines result in a weak greedy algorithm with constant γ = m−1.

Remark 3.4.2. As we have mentioned before in Section 3.3, the work in [12, 27] on the
convergence rates of weak greedy algorithms was done with the application to reduced
basis methods in mind. Likewise, we note some similarities between the results of Propo-
sition 3.4.1 and existing work in the reduced basis context. In particular, the routine
greedy1,eig is equivalent to the POD-Greedy introduced in [41] for which analogous rates
were proven [38].

We now consider kernels which stem from p.d. RBF which satisfy the conditions of
Corollary 2.3.17 for some s > d/2. As we have seen in Theorem 2.5.9 and Corollary 2.5.10
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bounds on the Power function are available. These bounds translate into upper bounds
on the Kolmogorov n–width.

Lemma 3.4.3 (Kolmogorov n–width for p.d. RBF kernels). Let Φ be a p.d. RBF that
satisfies the assumptions of Theorem 2.5.9 for some s > d/2 and let K denote the kernel
induced by Φ, then for sufficiently large n ∈ N we have

dn(F) ≤ Cn−
s−d/2
d (3.14)

for some C > 0.

Proof. Let {Xn}n∈N with Xn ⊂ Ω be a sequence of sets, such that the points in each set
are asymptotically uniformly distributed in Ω, i.e. there exists a constant c > 0 such that
the fill distance satisfies

hn := hXn,Ω ≤ cn−
1
d .

For sufficiently large n the fill distance hn can therefore be arbitrarily small. From Corol-
lary 2.5.10 we can conclude, that

dn(F)2 ≤ sup
f∈F

∥∥∥f − ΠN (Xn)f
∥∥∥2

HK
= sup

x∈Ω
λmax(PN (Xn),K(x)) ≤ C̃h2s−d

n ≤ cC̃n−
2s−d
d

for some C̃ > 0. Taking the root gives the desired result. for C =
√
cC̃.

The above shows, that the Kolmogorov n–width asymptotically behaves like n−α with
α = 2s−d

2d . However, because N (Xn) is n · m–dimensional, the constant in (3.14) scales
withm 1

d . Combining Corollary 3.3.5, Proposition 3.4.1 and Lemma 3.4.3, we can conclude
the following.

Corollary 3.4.4. Let Φ be a p.d. RBF that satisfies the assumptions of Theorem 2.5.9
for some s > d/2 and let K denote the kernel induced by Φ. Then each of the P–Greedy
variants described in Algorithm 3 generates a sequence of subspaces {VN}N∈N such that

σN(F) ≤ CN−
2s−d

2d .

for some constant C > 0 and for N sufficiently large.

While the previous corollary guarantees that the pointwise error for the interpolation
process behaves like N− 2s−d

2d asymptotically, it does not give any insight to the pointwise
error if derivatives are considered. Nonetheless, this can be remedied by the following
observation, which for scalar-valued kernels can be found in [110, 25] and which carries
over to the matrix-valued case.
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Lemma 3.4.5. Let K be a p.d. kernel, such that HK is norm equivalent to W s(Ω) for
some s > d/2. If for X ⊂ Ω there exists a bound of the form

∥∥∥f − ΠN (X)f
∥∥∥
L∞(Ω)

≤ ε ‖f‖HK

for all f ∈ HK, then the fill distance is bounded by

hX,Ω ≤ Cε
2

2s−d .

If we combine this with the results of Corollary 3.4.4 we get the following result on the
fill distance, if the full extension routines are used in the P–Greedy algorithm.

Lemma 3.4.6. Let K be a p.d. Kernel, such that HK is norm equivalent to W s(Ω) for
some s > d/2. Then the P–Greedy variants of Algorithm 3 using the full extension routine
generate a sequence {Xn}n∈N of sets such that their respective fill distance is bounded by

hXn,Ω ≤ Cn
1
d

for some constant C > 0 and for sufficiently large n.

Proof. By Corollary 3.4.4 we have for sufficiently large n
∥∥∥f − ΠN (Xn)f

∥∥∥
L∞(Ω)

≤ sup
x∈Ω

λmax(PN (Xn),K)(x)) ‖f‖Hk ≤ Cn−
2s−d

2d ‖f‖HK

and we conclude using the previous lemma, that

hXn,Ω ≤ c
(
Cn−

2s−d
2d
) 2

2s−d = cC
2

2s−dn
1
d . (3.15)

Consequently, we can use (3.15) in Theorem 2.5.9 to obtain:

Corollary 3.4.7. Let K be a p.d. kernel such that HK is norm equivalent to W s(Ω)
for some s > d/2. Then the P–Greedy variants of Algorithm 3 using the full extension
routine generate a sequence {Xn}n∈N of sets such that for any multiindex α ∈ Nd

0 with
|α| < s− d/2 we have

∥∥∥Dα
(
f(x)− ΠN (Xn)f(x)

)∥∥∥
2
≤ Cn−

k−|α|−d/2
d .

for some C > 0 and n sufficiently large.
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3.4.1 Numerical investigation

We now want to investigate the effect of the different P–Greedy variants on the quality of
the approximation. For this purpose we consider the following two matrix-valued kernels.
For the first, let Ω1 = [−1, 1] and K1 : Ω1 × Ω1 → R10×10 be a separable kernel given by

K1(x, y) = e−4‖x−y‖2A1 + e−10‖x−y‖2A2

for two random but fixed symmetric matrices A1, A2 ∈ R10×10. As a target function we
consider

f1(x) =
10∑
i=1

K1(x, xi)αi,

where x1, . . . , x10 and α1, . . . , α10 are randomly chosen in Ω1 and R10, respectively. For
the second kernel, let Ω2 = [−1, 1]3 and the kernel K2 : Ω2 × Ω2 → R3×3 be given
as K2(x, y) = (∇∇Tk)(x, y), with the scalar-valued kernel k(x, y) = e−‖x−y‖

2 . Here ∇
denotes the application to the columns, whereas ∇T denotes the application to the rows.
For a target function we also consider

f2(x) =
10∑
i=1

K2(x, xi)αi,

where x1, . . . , x10 and α1, . . . , α10 are randomly chosen in Ω2 and R3, respectively.
All of the following experiments were implemented in MATLAB 2018a and run on a

machine with an Intel Core i7-7500U CPU with 16GB Ram.
For a first test, we run the P–Greedy algorithm with the different indicator functions

and the “full” extension routine until we reach an approximation space dimension of 300.
The decay of the maximum indicator function values are depicted in Figure 3.5 and we can
see that the maximum values decay at similar rates for both examples. However, using
E2 is computationally more expensive, as we have to solve multiple eigenvalue problems
in every iteration. Furthermore, this requires the evaluation of the entire Power function
matrix, whereas for E1 and E∞ we only need the diagonal values. In Figure 3.6 the
distribution of the selected point sets for the different variants is displayed. In the case of
K1 we can see that the initial three points are identical for all three variants. Afterwards,
we can observe that the same points might still be chosen, but not necessarily at the same
step during the algorithm. In the case of K2 we can not display both the points as well
as the step in which each point was selected due to a lack of dimensionality. Nonetheless,
we can make similar observation as all variants start by selecting the eight corners of
Ω2 = [−1, 1]3.
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Figure 3.5: Decay of the maximum indicator function value with respect to the number
of iterations for the three P–Greedy variants.

In the following we chose E1 for further testing the different extension routines. For
both examples we compute the sequence of interpolants, which we denote as

(
sn1,full

)
1≤n≤30

,
(
sn1,eig

)
1≤n≤300

and
(
sn1,diag

)
1≤n≤300

for the kernel K1 and

(
sn2,full

)
1≤n≤100

,
(
sn2,eig

)
1≤n≤300

and
(
sn2,diag

)
1≤n≤300

for the kernel K2 as well as the sequences of the error in the squared native space norm

∆n
i,type :=

∥∥∥f − sni,type

∥∥∥2

HKi
, i = 1, 2, type ∈ {full, eig, diag}.

The sequences for the “full” extension routine are shorter than their respective counter-
part, since the dimension of the approximation space increases faster. The decay in the
error with respect to the dimension of the approximation space is depicted in Figure 3.7
and we can easily conclude that all P–Greedy extension routines result in approximations
of the same quality. However, taking a closer look at the number of unique function evalu-
ations which are required, we can see that the “full” extension routine clearly outperforms
the other two. For our two examples this is shown in Figure 3.8 and we can infer larger
dimensions, it seems to be the best choice.
As the final part of this subsection we want to verify the results of Lemma 3.4.6, i.e. if
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Figure 3.6: Point distribution for the different P–Greedy variants
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Figure 3.7: Error decay in the squared native norm with respect to the dimension of the
approximation space
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Figure 3.8: Error decay in the squared native norm with respect to the number of function
evaluations
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Figure 3.9: Decay of the fill distance in one and two dimensions.
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the RKHS of the chosen kernel is norm equivalent toW s for s > d/2, then the fill distance
for the sets generated by all variants decay with a rate of n1/d if the full extension routine
was used. To this end we consider the following four RBF

φw,1(r) = (1 + 3r)(1− r)3
+, φw,2(r) = (1 + 18r + 35r2)(1− r)6

+

φm,1(r) = e−r, φm,2(r) = (1 + r)e−r

and the kernels K3 : [−1, 1]× [−1, 1]→ R3×3 and K4 : [0, 1]2 × [0, 1]2 → R3×3 given by

K3(x, y) = φw,1(‖x− y‖2)B1 + φm,1(‖x− y‖2)B2

K4(x, y) = φw,2(‖x− y‖2)C1 + φm,2(‖x− y‖2)C2.

Here B1, B2, C1, C2 are randomly chosen but fixed symmetric positive definite matrices.
It follows that both K3 and K4 are strictly positive definite kernels and by our choice of
the Wendland functions φw,1, φw,2 and the Matérn kernels φm,1, φm,2 their RKHS are norm
equivalent to W 1([0, 1]) and W 2([0, 1]2), respectively. In Figure 3.9 the decay of the fill
distance for 300 greedy steps is displayed for both kernels and all three greedy variants.
In grey, the area between 1/n and 2/n as well as 1/

√
n and 2/

√
n is plotted. As we can

see, the decay for all variants verifies the results of Lemma 3.4.6.

3.5 Surrogate Modelling for uncertainty quantification
for a carbon dioxide storage scenario

We conclude this chapter on approximation of vector-valued functions via interpolation
by looking at a carbon dioxide storage scenario where multiple function evaluations are
necessary for uncertainty quantification. The example stems from the collaborative work
[54] in which multiple different data-driven surrogate modelling approaches were com-
pared. For a more detailed look into the modelling of the carbon dioxide storage scenario
as well as the remaining data-driven methods which were used, namely non-intrusive
arbitrary polynomial chaos expansion [71], spatially adaptive sparse grids [75] and Hy-
brid stochastic Galerkin methods [55], we refer to the original paper as well as references
therein. In this section, we will only focus on the surrogate modelling via matrix-valued
kernels, as it comprises elements of all previous sections and chapters. In particular, we
include further comparisons with uncoupled separable kernels which were constructed by
the method described in Algorithm 1. All numerical computations were redone for this
section and slightly modified to allow for better comparison between the kernel approx-
imations themselves. For our purposes, it is enough to know that the desired quantity,
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namely the saturation S of carbon dioxide in the respective reservoir at final time, can
be modelled via a function S : X ⊂ R3 → R250, where the three random input param-
eters relate to the injection rate, reservoir porosity and the relative permeability of the
reservoir, respectively.
In the context of uncertainty quantification, it is now required to perform a large

sampling of the saturation function S for different input parameter combinations. In
order to quantify the performance of the surrogate model, the function S is evaluated on
the set Xeval consisting of 10000 randomly selected parameters and the mean and variance
are computed.
The evaluation of the target function S is implemented in C++, whereas the remaining

implementations were done using MATLAB 2018a. All computations were run on a
machine with an Intel Core i7-7500U CPU with 16GB RAM.
The construction of our kernel surrogate models are now achieved as follows. First,

we split our set Xeval into the disjoint subsets Xtrain, Xbuild, Xval, Xtest ⊂ Xeval consisting
of 3000, 1000, 1000 and 5000 points, respectively. As outlined in Algorithm 1 we then
compute the empirical covariance matrix of S(Xbuild). The index sets are then selected by
grouping all indexes for which the corresponding eigenvalue in the spectral decomposition
Cov(S(Xbuild)) = U(S(Xbuild))Σ(S(Xbuild))U(S(Xbuild))T are of the same magnitude, up
to a magnitude of 10−4. This results in the following 6 index sets

I1 = {i |100 ≤ σi(S(Xbuild))) < 101} = {1, . . . , 2},
I2 = {i |10−1 ≤ σi(S(Xbuild))) < 100} = {3, . . . , 6},
I3 = {i |10−2 ≤ σi(S(Xbuild))) < 10−1} = {7, . . . , 20},
I4 = {i |10−3 ≤ σi(S(Xbuild))) < 10−2} = {21, . . . , 57},
I5 = {i |10−4 ≤ σi(S(Xbuild))) < 10−3} = {58, . . . , 127},
I6 = {i |σi(S(Xbuild))) < 10−4} = {127, . . . , 250}

and their corresponding matrices Qi. The scalar-valued kernels are selected as follows.
We start with the Wendland function

φw(r) = 1
3(3 + 18r + 35r2)(1− r)6

+

and then consider the three kernels

k1(x, y) = φw(0.2 ‖x− y‖2), k2(x, y) = φw(0.35 ‖x− y‖2),
k3(x, y) = φw(0.5 ‖x− y‖2).
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We now construct all possible pairings of these three kernels with the first 5 index sets,
which results in a total of 35 = 243 combinations. For each of these combinations, the
index set I6 is paired with the kernel k3, as the influence on the approximation quality is
deemed negligible. We then run the P–Greedy algorithm with the trace indicator function
and the full extension routine on the set Xtrain until 500 points are selected. We then
evaluate the corresponding 243 surrogate models in the validation set Xval and compute
their respective mean. Likewise, we compute the mean of S(Xval) and then select the
two index combinations that maximize, i.e. (1, 2, 1, 1, 1), and minimize, i.e. (1, 1, 3, 3, 3),
the error in the Euclidean norm. These kernels are then joint by the three matrix-valued
kernels, for which all index sets are paired with the same scalar-valued kernels. This
results in the following 5 uncoupled separable kernels

K1(x, y) = k1(x, y)(Q1 +Q3 +Q4 +Q5) + k2(x, y)Q2 + k3(x, y)Q6

K2(x, y) = k1(x, y)(Q1 +Q2) + k3(x, y)(Q3 +Q4 +Q5 +Q6),
K3(x, y) = k1(x, y)I, K4(x, y) = k2(x, y)I, K5(x, y) = k3(x, y)I.

Finally, we generate a set Xgreedy by intersecting the minimum box enclosing Xeval with
a 50×50×50 grid of uniformly spaced points. This results in |Xgreedy| = 86021 points. We
then run the P–Greedy algorithm for the five kernels on the set Xgreedy generating five sets
of 500 points each. The surrogate models are then built using 10, 20, 50, 100, 200 and 500
of these points, respectively and are evaluated on the test set Xtest. the Euclidean errors
in the mean and the variance of the surrogate and the target function are depicted in
Figure 3.10. We can notice no improvement in the test error for the mean of the function,
when using the kernel K2, compared to the kernels K3 and K4. In the variance, on the
other hand we can notice a slight improvement in the quality of the approximation for K2,
compared to the other 4 kernels. However, compared to the additional number of function
evaluations that were necessary to construct the surrogate models for the kernels K1 and
K2, the benefit in approximation quality is negligible. Nonetheless, this does not mean
that the ansatz using matrix-valued uncoupled separable kernels cannot result in better
surrogate models, see the example in Section 2.4, but that more sophisticated methods
for parameter validation are required. By definition of uncoupled separable kernels, both
the choice of scalar-valued kernels ki, as well as the choice of the matrices Qi can bee seen
internal parameters of the surrogate model, the latter of which scale quadratically with
respect to the output dimension of the target function. In other words, the parameter
validation becomes increasingly complex as the dimension of the problem increases.
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Figure 3.10: Error in the mean and variance on the test set Xtest for the five different
kernel models.
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In the previous section we have only considered approximation via interpolation, i.e. best
approximation in certain subspaces. In the following we want to focus on a regularized
approach. This approach has some advantages over exact interpolation. Namely, as we
have seen in Section 3.1, the condition of the linear systems which have to be solved be-
come increasingly worse, as the number of interpolation points is increased. This problem
can be alleviated using a regularized method. It is well suited for noisy data values, for
which exact interpolation is not meaningful. Furthermore, in the case of positive definite
kernels, the approximation procedure can be extended also to data, that does not corre-
spond to a function in the RKHS, since the involved linear system is always solvable due
to the influence of the regularization.

4.1 The regularized kernel interpolant

Definition 4.1.1 (Weighted loss function and cost functional). Let ω : Ω → Rm×m be
a strictly positive definite weight function, i.e. ω(x) � 0 for all x ∈ Ω. Furthermore, let
X = {x1, . . . , xn} ⊂ Ω be a set of pairwise distinct points, Y = {y1, . . . , yn} ⊂ Rm. Then
the weighted loss functional LωX,Y : HK → R is given by

LωX,Y (g) :=
n∑
i=1

(g(xi)− yi)T ω(xi)−1 (g(xi)− yi) . (4.1)

We further define a cost functional J ω
X,Y : HK → R via

J ω
X,Y (g) := LωX,Y (g) + ‖g‖2

HK . (4.2)

In the following, we will just refer to ω : Ω→ Rm×m as a weight function. If one neglects
the second summand in the cost functional (4.2), the kernel interpolant corresponding to
the data minimizes the loss functional. In a similar fashion, we will later on define the
regularized interpolation as the minimizer of the cost functional. Here, the purpose of the
second summand ‖·‖HK becomes apparent, as it punishes a potentially high norm in the
interpolant. ‖·‖HK is thus referred to as a regularization functional. Of course, there are
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a wide variety of choices for the loss and regularization functional and one is not limited
to the two above. In the case of scalar-valued kernels, the cost functional usually takes
the form

1
n

n∑
i=1
L(g(xi), yi) + ω0 ‖g‖2

HK

with the most common loss functions given by a least square loss function L(g(xi), yi) =
|g(xi) − yi|2 or the ε–insensitive loss function L(g(xi), yi) = max(0, |g(xi) − yi| − ε) and
a constant scalar the so called penalization parameters ω0 > 0. In the case of the least
square loss function this is also known as kernel ridge regression [106].
We can immediately see that compared to the scalar-valued ansatz, we shifted the con-

stant penalization parameter ω0 from the regularization functional to the loss functional,
and further allow it to depend on the inputs xi as well. While this provides us with more
flexibility when constructing the surrogate, it also increases the number of parameters
inside the surrogate model. Similar, to the scalar-valued case, our cost functional can be
seen as a special case of the so called Tikhonov regularization [102], but tailored to the
case of kernel based approximation.
For our specific choice a minimizer of the cost functional can be explicitly computed.

In order to show this, the following lemma provides us with the necessary tool.

Lemma 4.1.2. Let A,B ∈ Rm×m be two symmetric and positive semi-definite matrices.
Then it holds

(i) null(A+B) = null(A) ∩ null(B),

(ii) range(A+B) = range(A) + range(B).

Proof. (a) The inclusion null(A) ∩ null(B) ⊂ null(A + B) is trivial. For the other
direction let v ∈ null(A+B), then

0 = vT (A+B)v = vTAv︸ ︷︷ ︸
≥0

+ vTBv︸ ︷︷ ︸
≥0

And therefore Av = Bv = 0.

(b) Since A,B and A + B are symmetric, it holds range(A + B) = null(A + B)⊥,
range(A) = null(A)⊥ and range(B) = null(B)⊥. Furthermore it holds for general
subspaces U, V ⊂ Rm, that

(U + V )⊥ = U⊥ ∩ V ⊥
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and hence

(U⊥ + V ⊥)⊥ = (U⊥)⊥ ∩ (V ⊥)⊥ = U ∩ V.

Thus, we have by (i)

range(A+B) = null(A+B)⊥ = (null(A) ∩ null(B))⊥ = range(A) + range(B).

The existence of a unique minimizer can now be shown. As mentioned before, one can
use different regularization functionals and it is well known [90] that unique minimizers
exist, as long as the regularization functional is convex. We present the proof for our
specific choice of functionals which also includes a direct way to compute the regularized
approximant.

Theorem 4.1.3 (Representer Theorem). Let ω : Ω → Rm×m be a weight function,
X = {x1, . . . , xn} ⊂ Ω a set of pairwise distinct points, Y = {y1, . . . , yn} ⊂ Rm,
Λ = {λ1, . . . , λp} ⊂ H′K and z ∈ Rp. If z ∈ range (S1

ΛS
2
ΛK), this is equivalent to the

condition that the set {g ∈ HK | SΛ(g) = z} is non-empty, then the minimization prob-
lem

min
g∈HK
SΛ(g)=z

J ω
X,Y (g) (4.3)

has a uniqe solution s ∈ N (X) +N (Λ). Furthermore, the solution is given by

s = K(·, X)α + S2
ΛKβ (4.4)

where the coefficient vectors α ∈ Rmn, β ∈ Rp solve the linear systemA+W B

BT C


︸ ︷︷ ︸

=:M

α
β

 =
y
z

 (4.5)
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with the quantities given as follows

A := K(X,X) ∈ Rmn×mn

W := diag(ω(x1), . . . , ω(xn)) ∈ Rmn×mn

B := S2
ΛK(X, ·) ∈ Rmn×p

C := S1
ΛS

2
ΛK ∈ Rp×p

y := (yT1 , . . . , yTn )T ∈ Rmn.

Proof. Due to the assumption z ∈ range(C) the minimization problem is well posed by
Corollary 2.2.15. Let

N1 :=
 A B

BT C

 and N2 :=
W 0

0 0

 .
Then both N1 and N2 are symmetric and positive semi-definite. By Lemma 4.1.2 we
have range(M) = range(N1) + range(N2). Thus, there exists a vector u ∈ Rmn such
that (uT , zT )T ∈ range(N1) and since W is invertible, we have range(N2) = Rmn × {0}p.
We can conclude that (yT , zT )T ∈ range(M), i.e. the linear system (4.5) has a solution.
Furthermore, we have by Lemma 4.1.2 that null(M) = null(N1)∩null(N2) = {0}mn×(C).
Let (0, γT )T ∈ null(M) and set

sγ := S2
ΛKγ

and since SΛ(sγ) = Cγ = 0, we have sy = 0. In other words, every solution of (4.5) results
in the same function s as given in (4.4). We now show that s is the unique minimizer of
(4.3). To this end, let g ∈ HK , g 6= 0 with SΛ(g) = 0. It follows

J ω
X,Y (s+ g) =

n∑
i=1

(s(xi) + g(xi)− yi)T ω(xi)−1 (s(xi) + g(xi)− yi) + ‖s+ g‖2
HK

= (s(X) + g(X)− y)T W−1 (s(X) + g(X)− y) + ‖s+ g‖2
HK

= (s(X)− y)T W−1 (s(X)− y) + 2 (s(X)− y)T W−1g(X)
+ g(X)TW−1g(X) + ‖s‖2

HK + 2〈s, g〉HK + ‖g‖2
HK .

= J ω
X,Y (s) + 2 (s(X)− y)T W−1g(X) + g(X)TW−1g(X)

+ 2〈s, g〉HK + ‖g‖2
HK

> J ω
X,Y (s) + 2 (s(X)− y)T W−1g(X) + 2〈s, g〉HK .
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It is thus sufficient to show that

(s(X)− y)T W−1g(X) = −〈s, g〉HK .

On the one hand, we have

s(X)− y = Aα +Bβ − y = (A+W )α +Bβ − Y −Wα = Wα

and consequently

(s(X)− y)T W−1g(X) = −αTg(X).

On the other hand, we have by the reproducing property that

〈s, g〉HK = 〈K(·, X)α + S2
ΛKβ, g〉HK = g(X)Tα + SΛ(g)Tβ = g(X)Tα.

Since the approximant s includes both an interpolation condition for the functionals in
Λ, as well as a regularization via J ω

X,Y , we shall denote it as a regularized interpolant.
Furthermore, the uniqueness of s enables us to summarize the above procedure in terms
of an operator, if the data in y stem from the evaluation of a target function f ∈ HK on
X:

Definition 4.1.4 (Regularized Interpolation Operator). Let X = {x1, . . . , xn} ⊂ Ω,
Λ = {λ1, . . . , λp} ⊂ H′K and ω : Ω → Rm×m be a weight function. The regularized
interpolation operator IωX,Λ : HK → N (X) +N (Λ) is defined by

IωX,Λ(f) := arg min
g∈HK

SΛ(g)=SΛ(f)

J ω
X,f(X)(g).

As we mentioned before, the regularized interpolant IωX,Λ(f) consists of an interpolation
and a regularizing part. This becomes even more apparent when we consider the following
split of IωX,Λ:

Proposition 4.1.5 (Alternative representation of IωX,Λ). We denote by IωX : N (Λ)⊥ →
N (X) a pure regularization operator, i.e. an empty interpolation set with respect to Defi-
nition 4.1.4, when applied to the kernel KN (Λ)⊥. It now holds

IωX,Λ(f) = ΠN (Λ)(f) + IωX(ΠN (Λ)⊥f).
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Proof. Using the same notations as in the proof of Theorem 4.1.3 we have by (2.17)

ΠN (Λ)f = S2
ΛKC

+SΛ(f).

Likewise, applying Theorem 4.1.3 for IωX and using the representation of KN (Λ)⊥ as given
in (2.18) yields

IωX(ΠN (Λ)⊥f) = KN (Λ)⊥(·, X)
(
KN (Λ)⊥(X,X) +W

)−1
ΠN (Λ)⊥f(X)

= KN (Λ)⊥(·, X)
(
A−BC+BT +W

)−1 (
f(X)−BC+SΛ(f)

)
=
(
K(·, X)− S2

ΛKC
+BT

) (
A−BC+BT +W

)−1 (
f(X)−BC+SΛ(f)

)
.

Therefore

ΠN (Λ)f + IωX(ΠN (Λ)⊥f) = K(·, X)
(
A−BC+BT +W

)−1 (
f(X)−BC+SΛ(f)

)
+ S2

ΛK
(
C+SΛ(f)− C+BT

(
A−BC+BT +W

)−1 (
f(X)−BC+SΛ(f)

))

Thus, it is sufficient to show that

α
β

 :=


(
A−BC+BT +W

)−1
(f(X)−BC+SΛ(f))(

C+SΛ(f)− C+BT
(
A−BC+BT +W

)−1
(f(X)−BC+SΛ(f))

)


solve the linear system A+W B

BT C

α
β

 =
f(X)
SΛ(f)

 .
However, one easily verifies that

α
β

 =
A+W B

BT C

+f(X)
SΛ(f)


by making use of the Schur-like decomposition which was also used in the proof of
Lemma 3.1.1:A+W B

BT C

+

=
 Inm 0
−C+BT Ip

 (A+W −BC+BT
)−1

0
0 C+

 Ip −BC+

0 Inm

 .

Proposition 4.1.5 shows that the interpolatory constraints on the set Λ can be circum-

102



4.1 The regularized kernel interpolant

vented by computing the interpolant in N (Λ) and then performing the regularization
part on the orthogonal complement N (Λ)⊥. Therefore, we only focus on the pure regu-
larization part in the following, i.e. we assume that Λ = ∅. However, we want to remark
that all subsequent results also hold for Λ 6= ∅ and one only has to replace RKHS H
with N (Λ)⊥ and the the kernel K with the corresponding reproducing kernel KN (Λ)⊥ . As
mentioned in the beginning of this chapter, in case of noisy data, one usually wants to
avoid exact interpolation if possible. Nonetheless, interpolation at certain points or for
certain functionals is still of interest, if certain properties of the function underlying the
noisy data is known or required for the approximant. For example, one might know the
position of maxima/minima or inflection points and hence prescribing zero values in the
first or second order derivative guarantees these properties.
We conclude this subsection by introducing a pseudo Lagrangian basis and connecting

it to a weighted version of the l2–Lebesgue function:

Proposition 4.1.6 ((Pseudo) Lagrange Basis). Let X = {x1, . . . , xn} ⊂ Ω, ω : Ω →
Rm×m a weight function and denote W = diag(ω(x1), . . . , ω(xn)). Then there exists a
generating set {lωX,1, . . . , lωX,nm} of N (X) such that

IωX(f) = LωXf(X) =
n∑
i=1

m∑
j=1

lωX,(i−1)n+jf(xi)T ej. (4.6)

The generating set is given by the columns of

LωX = K(·, X) (K(X,X) +W )−1 . (4.7)

Furthermore, the weighted l2–Lebesgue function Ψω
X satisfies

Ψω
X(λ) := sup

f∈HK

|λ(IωX(f))|
‖W−1/2f(X)‖2

=
(
λ(LωX)Wλ(LωX)T

)1/2
(4.8)

for any λ ∈ H′K and W−1/2 is the inverse of a symmetric positive definite root W 1/2 of
W .

Proof. It follows from (4.7) that the columns of LωX are a generating set of N (X), since
the columns of K(·, X) are a generating set by definition. From (4.6) we can infer that

IωX(f) = LωXf(X) = LωXW
1/2W−1/2f(X)

and consequently by Cauchy-Schwarz inequality

|λ(IωX(f))| ≤
(
λ(LωX)Wλ(LωX)T

)
(4.9)
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for any f ∈ HK . To reach equality, we just need to show that there exists a f ∈ HK such
that W 1/2λ(LωX))T and W−1/2f(X) are linearly dependent. This is equivalent to

Wλ(LωX))T = f(X)

for some f ∈ HK . By Lemma 2.2.14 we already know that f(X) ∈ range(K(X,X)) and
we can further conclude for A = K(X,X)

Wλ(LωX)T = Wλ
(
K(·, X)(A+W )−1

)T
= W (A+W )−1 λ2K(X, ·)

= (A+W − A)(A+W )−1λ2K(X, ·)
= (λ2K)(X)− A(A+W )−1(λ2K)(X) ∈ range(A).

Therefore, there exists a function f such that equality holds in (4.9).

In the case of ω = 0 and for a strictly positive definite kernel K, the functions l0X,i are
in fact a basis of N (X) and satisfy

lX,(i−1)n+j(xk)T ep =
1, if (i, j) = (k, p)

0, else

which is the reason why the name “pseudo Lagrangian basis” was chosen in the case of
nonzero ω.

4.1.1 Regularization and Interpolation with a modified Kernel

We again want to emphasize, that as a direct consequence of Proposition 4.1.5, we can
absorb the interpolation part stemming from Λ into the regularization part by replacing
the RKHS HK with the orthogonal complement N (Λ)⊥ and changing the kernel accord-
ingly. In this new space, the interpolation condition is always satisfied and thus we will
proceed under the assumption that Λ = ∅ to avoid unnecessarily convoluted adaptions
to the notation. Under these assumption, we can observe that, by Theorem 4.1.3, the
coefficients α ∈ Rmn in the expansion of IωX(f) for the generating system given by the
columns of K(·, X) solve the linear system

(A+W )α = (K(X,X) + diag(ω(x1), . . . , ω(xn)))α = f(X).

The matrix A+W can be interpreted as the Gramian Kω(X,X) of the modified kernel

Kω(x, y) := K(x, y) + ω(x)δx(y).
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4.1 The regularized kernel interpolant

The kernel δω ::= ω(x)δx(y) is strictly positive definite, as was shown in Example 2.3.1.
Consequently, the kernel Kω is strictly positive definite as the sum of a p.d. and s.p.d.
kernel, see Proposition 2.3.2. Furthermore, we have the following properties for the RKHS
of Kω:

Proposition 4.1.7. Let ω : Ω→ Rm×m, ω � 0 be a weight function and assume that K
is continuous.

(a) Then the native space Hω := HKω of the modified kernel Kω = K + δω is given by

Hω = HK ⊕Hδω .

(b) For all f ∈ Hω there exist unique g ∈ HK and h ∈ Hδω such that

f = g + h and ‖f‖2
Hω = ‖g‖2

HK + ‖h‖2
Hδω

.

Proof. By Corollary 2.3.4 we know that Hω = HK +Hδω and the norm on Hδ is given by

‖f‖2
Hω = min{‖g‖2

HK + ‖h‖2
Hδω
| f = g + h}.

The RKHS Hδω consists of elements of the form

h =
∑
i∈I

ω(xi)αiδxi(·)

for some countable set I ⊂ N. Since Ω is uncountable, it follows that Hδω contains no
continuous function except for h = 0. Since K is continuous by assumption, we have that
all g ∈ HK are continuous by Theorem 2.2.19. Therefore we haveHK∩Hδω = {0}. Hence,
the sum of the two RKHS is direct and every element f ∈ Hω has a unique decomposition
f = g + h with g ∈ HK , h ∈ Hδω .

For any finite setX = {x1, . . . , xn} ⊂ Ω, we can now connect the regularized interpolant
IωX(f) with the best approximation, i.e. interpolant, of f ∈ HK ⊂ Hω in the subspace
Nω := NKω(X).

Corollary 4.1.8.

(a) Let α ∈ Rmn be given by Kω(X,X)−1f(X), then we have

IωX(f) = K(·, X)α and ΠNω(X)f = Kω(·, X)α.
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4 Weighted Regularized Interpolation

(b) It holds for any x /∈ X

IωX(f)(x) = ΠNω(X)f(x).

Proof. The first statement follows directly from the definition of the regularized inter-
polant IωX(f) and the best approximation ΠNω(X)f . The second statement can easily be
concluded from

K(x,X) = K(x,X) + δω(x,X)︸ ︷︷ ︸
=0

= Kω(x,X), for allx /∈ X.

4.2 Error estimation for regularized interpolation

4.2.1 The regularized Power function

Analogous to the Power function (matrix) of Section 2.5, the error in the approximation
via the regularized interpolation can be quantified by a modified version of the Power
function.

Definition 4.2.1 (Regularized Power Function). Let X ⊂ Ω, ω � 0 be a weight function
and IωX : HK → N (X) the regularized interpolation operator. Then the regularized
Power function QωN (X),K : H′K → R is given by

QωN (X),K(λ) = sup
f∈HK

λ (f − IωX(f))
‖f‖HK

= ‖λ ◦ (id−IωX)‖H′K . (4.10)

For the Power function, we have seen in Lemma 2.5.2 that it can be expressed via K
and the reproducing kernel KN (X) of the subspace N (X). One essential ingredient for
this observation is the fact that the orthogonal projection operator ΠN (X) : HK → HK is
self-adjoint. The same holds true for the regularized interpolation operator IωX . To see
this, let f, g ∈ HK . By Theorem 4.1.3 and the reproduction property we have

〈IωX(f), g〉HK = 〈K(·, X)(A+W )−1f(X), g〉HK = g(X)T (A+W )−1f(X)
= 〈f,K(·, X)(A+W )−1g(X)〉HK = 〈f, IωX(g)〉HK ,

where we used the abbreviations A = K(X,X) and W = δω(X,X). This leads to an
alternative representation of QωN (X),K involving the weighted l2–Lebesgue function given
in (4.8).
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4.2 Error estimation for regularized interpolation

Lemma 4.2.2. For the regularized Power function QωN (X),K : H′K → R it holds

QωN (X),K(λ)2 = λ1λ2K − λ1K(·, X)(A+W )−1λ2K(X, ·)−Ψω
X(λ)2

where A = K(X,X) and W = δω(X,X).

Proof. Due to the self-adjointness of IωX it follows that

QωN (X),K(λ)2 =
∥∥∥λ2K − IωX(λ2K)

∥∥∥2

HK

= λ1λ2K − 2λ1K(·, X)(A+W )−1λ2K(X, ·)
+ λ1K(·, X)(A+W )−1A(A+W )−1λ2K(X, ·)

= λ1λ2K − λ1K(·, X)(A+W )−1λ2K(X, ·)
− λ1K(·, X)(A+W )−1W (A+W )−1λ2K(X, ·)

= λ1λ2K − λ1K(·, X)(A+W )−1λ2K(X, ·)− λ(LωX)Wλ(LωX)T

= λ1λ2K − λ1K(·, X)(A+W )−1λ2K(X, ·)−Ψω
X(λ)2

Using Lemma 4.2.2, we can now define an extension analogous to the Power function
matrix, which we likewise name regularized Power function matrix.

Definition 4.2.3 (Regularized Power Function Matrix and weighted Lebesgue Matrix).
Let Λ ⊂ H′K be a finite collection of linear functionals, |Λ| = p. The weighted Lebesgue
matrix Ψω

X(Λ) ∈ Rp×p corresponding to Λ is the unique symmetric matrix such that for
all functionals of the form λ = αTSΛ with α ∈ Rp we have

Ψω
X(λ)2 = αTΨω

X(Λ)α.

The regularized Power function matrix corresponding to Λ is then given by

Qω
N (X),K(Λ) = S1

ΛS
2
ΛK − S1

ΛK(·, X)(A+W )−1S2
ΛK(X, ·)−Ψω

X(Λ).

In the case where the sampling operator SΛ coincides with a point evaluation, i.e. SΛ(f) =
f(x) for some x ∈ Ω, we might also use the abbreviations

Ψω
X(x) := Ψω

X(Λ) and Qω
N (X),K(x) := Qω

N (X),K(Λ).

Analogously we can now express the error between any function f and its regularized
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4 Weighted Regularized Interpolation

interpolant by means of the regularized Power function (matrix) by following the same
steps as in the proofs of Theorem 2.5.3 and Corollary 2.5.5.

Theorem 4.2.4 (Bounds on the regularized interpolation error). For any λ ∈ H′K we
have

|λ(f − IωX(f))| ≤ QωN (X),K(λ) ‖f‖HK . (4.11)

Furthermore, for any x ∈ Ω it holds

(a) ‖f(x)− IωX(f)(x)‖2
2 ≤ λmax(Qω

N (X),K(x)) ‖f‖2
HK

(b) ‖f(x)− IωX(f)(x)‖2
∞ ≤ max diag(Qω

N (X),K(x)) ‖f‖2
HK

(c) ‖f(x)− IωX(f)(x)‖2
1 ≤ tr(Qω

N (X),K(x)) ‖f‖2
HK

Remark 4.2.5. For scalar-valued kernels, constant weight function ω(x) = ω0, i.e. kernel
ridge regression, and point evaluation, the bound on the regularized Power function matrix
reduces to

QωN (X),K(x)2 = K(x, x)−K(x,X)(A+ ω0I)−1K(X, x)− ω0K(x,X)(A+ ω0)−2K(X, x)

from which we recover the previously known bound presented in [29].
Next we want to study the relation between the Power function matrices PN (X),K ,

PNω(X),Kω and the regularized Power function matrix Qω
N (X),K . While both PN (X),K and

Qω
N (X),K operate over the functional space H′K , for the Power function matrix PNω(X),Kω

it is in general not obvious if arbitrary sets of functionals Λ ⊂ H′K can be used. This
stems from the fact that not all functionals are applicable to the delta kernel δω, for
example any functional involving derivation. Fortunately, by Proposition 4.1.7 we have
Hω = HK ⊕Hδω and therefore

H′ω = H′K ⊕H′δω .

Consequently, we can identify each λ ∈ H′K with λ /∈ Hδω as an element of H′ω as follows.
Let f = g + h ∈ Hω with g ∈ HK and h ∈ Hδω . By Proposition 4.1.7 this decomposition
is unique and hence we can define an extension λ̃ ∈ H′ω of λ via

λ̃(f) = λ(g).

In other words, we can apply any functional λ ∈ H′K with λ /∈ H′δω by setting

λ(h) = 0
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4.2 Error estimation for regularized interpolation

for all h ∈ Hδω . With this we can order the different (regularized) Power function matrices
as follows.

Theorem 4.2.6 (Ordering of (regularized) Power function matrices).
Let Λ = {λ1, . . . , λp} ⊂ H′K be a finite collection of functionals such that for any α ∈ Rp,
λ = αTSΛ the kernel satisfies

λ2K /∈ N (X). (4.12)

Then it holds

PN (X),K(Λ) � Qω
N (X),K(Λ) � PNω(X),Kω(Λ). (4.13)

Furthermore, we have

PNω(X),Kω(Λ) = Qω
N (X),K(Λ) + S1

ΛS
2
Λδω + Ψω

X(Λ). (4.14)

Proof. Let λ = αTSΛ for some α ∈ Rp. By definition of the Power function and the regu-
larized Power function, and the self-adjointness of the respective approximation operators
we have

PN (X),K(λ)2 =
∥∥∥λ ◦ (id−ΠN (X))

∥∥∥
H′K

=
∥∥∥∥(λ ◦ (id−ΠN (X))

)2
K
∥∥∥∥2

HK
=
∥∥∥(id−ΠN (X))λ2K

∥∥∥2

HK

≤
∥∥∥(id−IωX)λ2K

∥∥∥2

HK
=
∥∥∥(λ ◦ (id−IωX))2K

∥∥∥2

HK

= ‖λ ◦ (id−IωX)‖H′K = QωN (X),K(λ).

This gives us the left inequality in (4.13). For the right hand side it is sufficient to show
the identity given in (4.14), since

S1
ΛS

2
Λδω + Ψω

X(Λ) � 0.

By assumption on Λ we have S2
Λδω(X, ·) = 0 and therefore

S2
ΛK(X, ·) = S2

ΛKω(X, ·).

Combining this with the result of Lemma 4.2.2 we have, for A = K(X,X) and W =
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δω(X,X),

Qω
N (X),K(Λ) = S1

ΛS
2
ΛK − S1

ΛK(·, X)(A+W )−1S2
ΛK(X, ·)−Ψω

X(Λ)
= S1

ΛS
2
ΛK + S1

ΛS
2
Λδω − S1

ΛKω(·, X)(A+W )−1S2
ΛKω(X, ·)

−
(
S1

ΛS
2
Λδω + Ψω

X(Λ)
)

= PNω(X),Kω(Λ)−
(
S1

ΛS
2
Λδω + Ψω

X(Λ)
)
.

Solving for PNω(X),Kω(Λ) gives the desired result.

The condition (4.12) is necessary, since the Power functions PN (X),K and PN (X),Kω

vanish for every λ ∈ H′K such that λ2K ∈ N (X). However, this is in general not the case
for the regularized Power function. In the case of function evaluation, i.e. SΛ(f) = f(x),
the condition simplifies to x /∈ X.

4.2.2 Bounds on the regularized Power function and weighted
Lebesgue function

By definition, the regularized Power function gives the smallest value C(λ) such that a
bound of the form

|λ(f − IωX(f))| ≤ C(λ) ‖f‖HK (4.15)

is satisfied for all functions f ∈ HK . Therefore, any function C(λ) which provides a
bound of the form (4.15) results in an upper bound on QωN (X),K(λ). This mimics the
same behaviour we have seen for the Power function and we will use similar ideas as in
Section 2.5 to derive bounds on QωN (X),K(λ). For this purpose, we now again consider
kernels for which the native space is norm equivalent to a Sobolev space W k(Ω) for some
k > d/2. We once again make use of sampling inequalities to derive bounds on the error
for the regularized approximation. These bounds extend the result in [81, 109] in which
scalar-valued kernels and constant weight functions were considered.

Theorem 4.2.7. Let X ⊂ Ω and assume that Ω satisfies an interior cone condition.
Then there exists a constant C > 0 such that for all f ∈ HK and for any multiindex
β ∈ Nd

0 such that k > |β|+ d/2 it holds

sup
x∈Ω

∥∥∥Dβ(f − IωX(f))(x)
∥∥∥

2
≤ Ch

−|β|
X,Ω

(
h
k−d/2
X,Ω +√ωmax

)
‖f‖HK

for sufficiently small fill distances hX,Ω, where ωmax = sup
x∈Ω

λmax(ω(x)).
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Proof. Using Theorem 2.5.8 we get

sup
x∈Ω

∥∥∥Dβ(f − IωX(f))(x)
∥∥∥

2
≤ Ch

−|β|
X,Ω

(
h
k−d/2
X,Ω ‖f‖HK .+ ‖f(X)− IωX(f)(X)‖∞

)

It is therefore sufficient to show that

‖f(X)− IωX(f)(X)‖∞ ≤
√
ωmax ‖f‖HK .

By definition of the regularized interpolation operator we have

J ω
X,f(X)(IωX(f)) = min

g∈HK
J ω
X,f(X)(g) ≤ J ω

X,f(X)(f) = ‖f‖2
HK .

and therefore

‖f(X)− IωX(f)(X)‖2
∞ ≤ ‖f(X)− IωX(f)(X)‖2

2 =
∥∥∥W 1/2W−1/2(f(X)− IωX(f)(X))

∥∥∥2

2

≤ ωmax

∥∥∥W−1/2(f(X)− IωX(f)(X))
∥∥∥2

2

≤ ωmaxJ ω
X,f(X)(IωX) ≤ ωmax ‖f‖2

HK

This immediately translates into a bound on the regularized Power function.

Corollary 4.2.8. Let the assumptions of Theorem 4.2.7 hold, then we have for λ = δαx ◦Dβ

QN (X),K(λ) ≤ Ch
−|β|
X,Ω

(
h
k−d/2
X,Ω +√ωmax

)
‖α‖2 .

Using the identity (4.14), we can now bound the Power function PN (X),Kω . However,
since (4.14) involves the weighted Lebesgue function, we first derive a bound for it as in
intermediate step.

Lemma 4.2.9. Le the assumptions of Theorem 4.2.7 hold. For λ = δαx ◦Dβ the bound

Ψω
X(λ) ≤ Ch

−|β|
X,Ω

(
h

2k−d
2

X,Ω + 2√ωmax

)
‖α‖

holds.

Proof. Since IωX minimizes J ω
X,f(X) we have

∥∥∥W−1/2 (f(X)− IωX(f)(X))
∥∥∥2

2
+ ‖IωX(f)‖2

HK = J ω
X,f(X) ≤ J ω

X,f(X)(0) =
∥∥∥W−1/2f(X)

∥∥∥2

2
.
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In particular, both terms on the outer left hand side are bounded by the term on the
outer right hand side. It follows that

‖IωX(f)(X)‖∞ ≤
√
ωmax

∥∥∥W−1/2IωX(f)(X)
∥∥∥

2

≤
√
ωmax

(∥∥∥W−1/2(IωX(f)(X)− f(X))
∥∥∥

2
+
∥∥∥W−1/2f(X)

∥∥∥
2

)
≤ 2√ωmax

∥∥∥W−1/2f(X)
∥∥∥

2
.

Using Theorem 2.5.8 we get

|Dβ(IωX(f))(x)Tα| ≤ Ch
−|β|
X,Ω

(
h

2k−d
2

X,Ω ‖IωX(f)‖HK + ‖IωX(f)(X)‖∞
)

≤ Ch
−|β|
X,Ω

(
h

2k−d
2

X,Ω + 2√ωmax

) ∥∥∥W−1/2f(X)
∥∥∥

2
.

Since this holds true for all f ∈ HK , we get the desired result via the definition of the
weighted Lebesgue function

Ψω
X(λ) = sup

f∈HK

|Dβ(IωX(f))(x)Tα|
‖W−1/2f(X)‖2

≤ Ch
−|β|
X,Ω

(
h

2k−d
2

X,Ω + 2√ωmax

)
.

Finally, we can conclude from Theorem 4.2.6, Corollary 4.2.8 and Lemma 4.2.9:

Corollary 4.2.10. Let the assumptions of Theorem 4.2.7 hold. Then we have for any
x ∈ Ω:

(
λmax

(
PN (X),Kω(x)

))1/2
≤ 2C

(
h

2k−d
2

X,Ω + 2√ωmax

)
.

If ω is chosen such that ωmax ≤ h2k−d
X,Ω for all x ∈ Ω, then we recover the same approxi-

mation rates as for a pure interpolation procedure, albeit with a slightly bigger constant.

4.3 Greedy Point Selection for Regularized Interpolation

Similar to the approximation based on interpolation on the data sites X ⊂ Ω which where
considered in Chapter 3, one can ask the question how a suitable set of points X can be
selected. While Theorem 4.2.7 provides us with a bound on the error with respect to the
fill distance hX,Ω of the set X, it is in general not clear how the points should be selected
if the domain Ω is oddly shaped. Taking Section 3.4 into consideration, we have already
seen how greedy algorithms can be used to select suitable sequences {Xn}n∈N such that
we can reach the same asymptotic rates as provided by the Kolmogorov n–width, see
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(3.7), of the set F = {K(·, x)α | x ∈ Ω, α ∈ Rm, ‖α‖2 = 1}. In the following we will use
similar methods as in Section 3.2 to achieve slightly modified results.
Unfortunately, a direct approach, where we simply substitute the Power function matrix

with the regularized Power function matrix in Algorithm 3 does not work. From The-
orem 4.2.6 equation (4.14) we already know that the regularized Power function matrix
satisfies

Qω
X(x) = PN (X),Kω(x)− ω(x)−Ψω

X(x).

While ω(x) is easy to evaluate and PN (X),Kω(x) can be efficiently updated via the Newton
basis, see Theorem 3.2.3, when enriching the setX, we were not able to find a way to easily
update Ψω

X(x). Therefore, the regularized Power function matrix needs to be computed
from scratch in every iteration of the greedy algorithm. The second reason as to why
a straightforward substitution is not a good choice is the fact that we are unable to
show that the resulting greedy algorithm is weak in the sense of Definition 3.3.1. Hence,
we lack an underlying theoretical basis to indicate whether this greedy procedure would
perform well or not. Nonetheless, Theorem 4.2.6 gives us a bound on Qω

X(x) in terms of
PN (X),Kω(x) and since Kω is a s.p.d. kernel, we can formulate a regularized P–Greedy
algorithm by making use of the Power function matrix for Kω:

Algorithm 5: Regularized P-greedy Algorithm
Data: finite sampling of the input domain ΩN ⊂ Ω, kernel K : Ω× Ω→ Rm×m,

empty initial set X = ∅, weight function ω : Ω→ Rm×m, error indicator
function E, tolerance ε > 0.

Result: Point set X
1 while max

x∈ΩN
E(PNω(X),Kω(x)) ≥ ε do

2 x∗ = arg max
x∈ΩN

E(PNω(X),Kω(x));

3 X = X ∪ {x∗};
4 end

In other words, the regularized P–Greedy algorithm is just a P–Greedy algorithm for
the modified kernel Kω. However, since we add each maximizer x∗ to the set X in each
iteration, the Algorithm 5 employs the “full” extension routine. One might also consider
the “eig” or “diag” extension routine, which would in general result in approximation
space that do not have the form N (X) and the regularized interpolation operator can be
modified to cover these cases. For the indicator function E each function Ei, i ∈ {1, 2,∞}
of (3.3) can be used since they all result in a weak greedy, as was seen in Proposition 3.4.1.

113



4 Weighted Regularized Interpolation

We now consider sequences of sets (Xn)n∈N which are generated by the regularized P–
Greedy algorithm. Making use of the results in Theorem 3.3.3 and Corollary 3.3.4 we can
obtain bounds on the decay of λmax(PNω ,Kω(x)). To apply the afforementioned results,
we first need to bound the Kolmogorov n–width of the set

Fω := {Kω(·, x)α | x ∈ Ω, α ∈ Rm, ‖α‖2 = 1}.

Unlike in the setting of Section 3.4, the kernel Kω is not continuous and therefore the set
Fω is not compact. Consequently, the Kolmogorov n–width does not converge to 0 as n
tends to infinity. Nonetheless, we can obtain bounds similar to Lemma 3.4.3 by adding a
constant term which depends only on the weight function ω.

Lemma 4.3.1. Let K : Ω × Ω → Rm×m be the reproducing Kernel of a Hilbert space
HK which is norm equivalent to W k(Ω) for some k > d/2 and let ω : Ω → Rm×m be a
weight function. Then there exists a constant C such that the Kolmogorov n–width of Fω
is bounded by

dn(Fω) ≤ C
(
n−

2k−d
2d +√ωmax

)
.

Proof. Let X = {x1, . . . , xn} ⊂ Ω be a set of quasi uniformly distributed points, i.e. there
exists a constant c1 > 0 such that

hX,Ω ≤ c1n
−1/d.

By Corollary 4.2.10 we have

dnm(Fω) ≤ sup
x∈Ω

(
λmax(PNω(X),Kω)(x)

)
≤ c2h

(2k−d)/2
X,Ω + c2

√
ωmax

≤ c1c2n
− 2k−d

2d + c2
√
ωmax.

Proceeding analogous as in the proof of Corollary 3.3.5 we get

dn(Fω) ≤ c1c2(2m) 2k−d
2d n−

2k−d
2d + c2

√
ωmax ≤ C

(
n−

2k−d
2d +√ωmax

)
.

In summary, we have bounds of the form

dn(Fω) ≤ C(n−(2k−d)/2d + η), (4.16)

where η depends on the weight function and the constant C scales with the output space
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4.3 Greedy Point Selection for Regularized Interpolation

dimension via the factor m(2k−d)/2d. A modified version of Corollary 3.3.4 shows that
the same rates can be achieved, when using weak greedy algorithms. This gives us the
following results on the sequence of sets which are selected by the regularized P–Greedy
algorithms and consequently on the error for the regularized interpolation procedure.

Corollary 4.3.2. The regularized P–Greedy algorithm generates a sequence of sets
(Xn)n∈N such that

sup
x∈Ω

(
λmax(Qω

(Xn)(x))
)
≤ sup

x∈Ω

(
λmax(PNω(Xn),Kω)(x)

)
≤ C

(
n−

2k−d
2d +√ωmax

)

Proof. Let γ denote the weak greedy constant for the respective indicator function ac-
cording to Proposition 3.4.1 and let

σn = σn(Fω) =
(
λmax(PNω(Xn),Kω)(x)

)
.

Furthermore, let α,C0, η > 0 such that dn = dn(F) ≤ C0 (n−α + η) and define C =
25α+1γ−2C0. Proceeding analogously to Corollary 3.3.4 it is sufficient to show that

σn ≤ C
(
n−α + η

)
. (4.17)

Let us now assume to the contrary that M ∈ N is the smallest natural number such
that σM > CmαM−α + Cη. We first consider the case M = 4s. Following the proof of
Corollary 3.3.4 we know from (3.11) that

σ4s ≤
√

2γ−1
√
σ2sds

and therefore

C
(
(4s)−α + η

)
<
√

2
√
C ((2s)−α + η)C0 (s−α + η).

Solving for C we obtain

C <
2C0γ

−2 (2−α + ηsα) (1 + ηsα)
(4−α + ηsα)2 =: h(s).

However, since

h′(s) = −C0γ
−2 23α+1(2α − 1)αηsα−1 (4αηsα + 2α+1ηsα + 2α+1 + 1)

(4αηsα + 1)3 < 0
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4 Weighted Regularized Interpolation

for s ≥ 0 we have

C < h(0) = 2C0γ
−22−α42α = 23α+1γ−2C0 ≤ C

and we reached a contradiction. In the case of M = 4s + q with q ∈ {1, 2, 3} one can
analogously reach a contradiction.

Theorem 4.2.7 gives us a bound in terms of the fill distance. Likewise, we can infer
information about the fill distance from an error bound, similar to what was done in
Lemma 3.4.5:

Lemma 4.3.3. Let X ⊂ Ω. If there exists a constant C > 0 such that

sup
x∈Ω
‖f(x)− IωX(f)(x)‖2 ≤ ε ‖f‖HK

for all f ∈ HK and, then the fill distance is bounded by

hX,Ω ≤ Cε
2

2k−d .

Proof. The proof follows the one in [110] with slight modification to account for the altered
approximation operator IωX and the constant η. From [25] we know, that there exist a
bump function f with support in the unit ball and sup

x∈Ω
‖f(x)‖2 = 1, such that

∥∥∥∥∥f
(
·

hX,Ω

)∥∥∥∥∥
HK

≤ ch
d−2k

2
X,Ω ‖f‖HK .

Let fh := f
(
·

hX,Ω

)
, then we can place fh between the points in X such that fh(X) = 0

and consequently IωX(f) = 0. We now conclude that

1 = sup
x∈Ω
‖fh(x)‖2 = sup

x∈Ω
‖fh(x)− IωX(fh)(x)‖2 ≤ ε ‖fh‖HK ≤ cεh

d−2k
2

X,Ω ‖f‖HK .

Solving for the fill distance we get

hX,Ω ≤
(
c ‖f‖HK

1− η

) 2
2k−d

ε
2

2k−d ≤
(
2c ‖f‖HK

) 2
2k−d ε

2
2k−d ≤ Cε

2
2k−d .

Combining Corollary 4.3.2 and Lemma 4.3.3 we ultimately get

Corollary 4.3.4. The sequence of sets (Xn)n∈N generated by the regularized P–Greedy
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algorithm satisfies for any β ∈ Nd
0 such that |β| < k − d/2

sup
x∈Ω

∥∥∥Dβ(f − IωX(f))(x)
∥∥∥

2
≤ C

(
n−

2k−d
2d +√ωmax

)−2|β|
2k−d

(
n−

2k−d
2d +√ωmax

)
‖f‖HK .

Proof. Corollary 4.3.2 and Lemma 4.3.3 we have

hXn,Ω ≤ C
(
n−

2k−d
2d +√ωmax

) 2
2k−d

.

Using this fill distance in Theorem 4.2.7 we obtain the claim.

4.4 Numerical Investigation

We consider the so called thermal block example, which is well known in the reduced
basis community (cf. [39, 72]). It consist of a stationary heat transfer problem on the
unit square D = (0, 1)2 which is divided into a number of subblocks, here D =

4⋃
i=1

Bi as
illustrated in Figure 4.1, with possibly different heat conductivities on each subblock. In
our case we consider the same conductivity µ1 ∈ [1, 10] for B1 and B4 and µ2 ∈ [1, 10] for
B2 and B3, i.e. the square is divided into a 2× 2 checkered grid. We prescribe a unit flux
into the domain on the bottom boundary, which is denoted as ΓN,1 with unit outward
normal n(ξ), where ξ ∈ D indicates the spatial variable. The left and right boundary part
ΓN,0 is insulated, which is modeled by a zero Neumann boundary condition and the top
Dirichlet boundary ΓD has constant 0 temperature.

ΓN,0
ΓN,1

B1 B2

B3 B4

ΓD

Figure 4.1: Illustration of the thermal block model.
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4 Weighted Regularized Interpolation

The problem is then governed by the the equations

−∇ · (κ(ξ;µ)∇u(ξ;µ)) = 0, ξ ∈ Ω,
u(ξ;µ) = 0, ξ ∈ ΓD,

(κ(ξ;µ)∇u(ξ;µ)) · n(ξ) = i, ξ ∈ ΓN,i, i = 0, 1,

where we define the heat conductivity function

κ(·;µ) : D → R+, κ(ξ;µ) :=
B∑
i=1

µiχBi(ξ),

using the indicator function χBi for the subblocks Bi ⊂ D . The above system is now
discretized by linear finite elements, which results in a 420× 420 dimensional system. We
now want to approximate the target function f : Ω = [1, 10]2 → R420, which maps a pair
of heat conductivities to its corresponding finite element solution.

All of the following experiments were implemented in MATLAB 2018a and run on a
machine with an Intel Core i7-7500U CPU with 16GB Ram.

We then consider the two kernels

K1(x, y) = φ3,2(0.125 ‖x− y‖2)I420 and K2(x, y) = φ3,2(0.125 ‖x− y‖2)ZZT ,

where the columns of Z ∈ R420×8 contains the 8 singular vectors corresponding to the 8
largest singular values for a singular value decomposition of 1000 random random target
function evaluations and φ3,2 denotes the Wendland function

φ3,2(r) = 1
3(3 + 18r + 35r2)(1− r)6

x.

By Corollary 2.3.18, the RKHS can then be identified with W 2(Ω,R420) and
W 2(Ω, range(Z)), respectively. We further consider the following three weight functions

ωi(x) = 10−7 log
(

1 + 5000
x1x2

)
Qi,

where Q1 = I420, and Q2, Q3 are the L2 and H1
0 gramian matrix, respectively. We further

discretize our input domain into a 200 × 200 uniform grid resulting in a set ΩN ⊂ Ω
consisting of 40000 points. We then run the P–Greedy algorithm with a trace indicator
function and a full extension routine for the kernelK1, as well as the regularized P–Greedy
algorithm for the kernel K1 + ω1 on the set ΩN until 500 points are selected, resulting
in the greedy point set XK1 and XK1,ω1 . The decay of the respective indicator functions
is depicted in Figure 4.2 and we can observe that they behave roughly in the same way
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4.4 Numerical Investigation

with only slight differences. This is due to the fact, that the value of the indicator for
the regularized P–Greedy is larger than the maximum value of the weight function at
ω1.max ≈ 8.5 · 10−7.

0 100 200 300 400 500

10−4

10−3

10−2

10−1

100 P -Greedy
regularized P -Greedy

Figure 4.2: Decay of the indicator function for the P–Greedy and regularized P–Greedy.

Using the point set XK1 and XK1,ω1 , we compute both the the interpolant as well as
the regularized interpolant and evaluate the L2 and H1

0 errors on the discrete set ΩN .
The pointwise maximum errors are shown in Table 4.1. In both cases, we can see that
greedy set XK1,ω1 generated by the regularized P–Greedy algorithm results in smaller
errors. This is most likely caused by the subtle influences of the weight function which
puts larger emphasis on smaller heat conductivities for which the stationary heat transfer
problem is more difficult.

Point set Approximation L2 error H1
0 error

XK1 Interpolation 2.89E-03 5.50E-03
Reg. Interpolation 7.56E-03 1.36-02

XK1,ω1 Interpolation 1.26E-03 3.51E-03
Reg. Interpolation 6.79E-03 1.23E-02

Table 4.1: Maximum Pointwise L2 and H1
0 error for the different Greedy point sets and

approximation schemes.

Similar to the above, we also perform the regularized P–Greedy algorithm on the set
ΩN for all combinations of the second kernel K2 and the three weight functions ω1, ω2, ω3.
This results in three point sets XK2,ω1 , XK2,ω2 and XK2,ω3 of size 500, respectively. Please
note, that by Corollary 2.4.16 there exists an uncoupled separable decomposition for the
modified kernels K2(x, y) + ωi(x)δx(y). Consequently, the regularized P–Greedy algo-
rithm can be performed efficiently. The decay of the corresponding indicator functions is
depicted in Figure 4.3 and we can observe a clear difference in the behaviour of the decay.
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0 100 200 300 400 500

10−3

10−2

10−1

100

101 K2 and ω1
K2 and ω2
K2 and ω3

Figure 4.3: Decay of the indicator function for the regularized P–Greedy for the kernel
K2 in combination with the three weight functions

By Theorem 4.2.6, in particular equation (4.14), we know that each indicator function
is bounded from below by tr(ωi) and thus, the indicator function will start to plateau at
some point. For our specific choice of weight functions, we have

1.6 · 10−4 ≤ tr(ω1(x)) ≤ 3.6 · 10−4

1.9 · 10−7 ≤ tr(ω2(x)) ≤ 4.2 · 10−7

6.1 · 10−4 ≤ tr(ω3(x)) ≤ 1.4 · 10−3.

We can observe the plateauing effect for the weight function ω3. The closer the indicator
value gets to the trace of the weight function, the larger the influence of the weight function
on the selected points is. We can see this in Figure 4.6 as the points begin to cluster in the
lower left corner, the region in which ω3 takes its largest values. The distributions of the
greedy points XK2,ω1 and XK2,ω2 are displayed in Figure 4.4 and Figure 4.5, respectively.
In contrast to XK2,ω3 , no clustering occurs for the former two as the indicator function
value is still sufficiently far away from the trace of the weight function.

By Lemma 3.4.6 we know, that the P–Greedy algorithm applied to the kernelK1 results
in greedy point sets, for which the fill distance decays with a rate of n−1/2. Hence, in
light of Theorem 4.2.7, using the points XK1 for constructing the regularized interpolant
should already provide quasi-optimal results. Thus, one may ask the question if using the
regularized P–Greedy provides additional benefit compared to the P–Greedy. For this
purpose, we compute the regularized interpolant for the point sets XK1 and XK2,ωi and
evaluate the maximum error in both the L2 and H1

0 norm on the set ΩN . The maximum
pointwise errors are displayed in Table 4.2. On the one side, for the weight functions ω1

and ω2, we can observe an improvement in the quality of the approximation, with errors
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Figure 4.4: Distribution of the greedy point set XK2,ω1
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Figure 4.5: Distribution of the greedy point set XK2,ω2

2 4 6 8 10
0

2

4

6

8

10

Figure 4.6: Distribution of the greedy point set XK2,ω3
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Weight Points L2 error H1
0 error

ω1 XK2,ω1 1.02E-03 3.27E-03
XK1 2.57E-03 4.67E-03

ω2 XK2,ω2 9.91E-04 3.22E-03
XK1 3.50E-03 6.41E-03

ω3 XK2,ω3 9.91E-04 3.22E-03
XK1 6.41E-03 2.22E-03

Table 4.2: Maximum L2 and H1
0 error for the regularized approximant with different

weights and on different point sets.

improving upto a factor of 2 in both norms. On the other side, for the weight function
ω3, the quality of the approximant slightly deteriorates. However, this is reasonable, as
we observed clustering of the points in XK2,ω3 .
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5 Rigorous and effective a-posteriori
error bounds for nonlinear problems

Most of this chapter has previously been published in [89]. However, we present further
analysis of the presented bounds. In particular, we were able to find improved bounds on
the effectivity of our estimators (see Lemma 5.3.6) without further requirements than the
original ones. Consequently the following analytical results were modified to include this
improved bound on the effectivity. Furthermore, we extend the methodology presented
in the original work to linear time invariant systems.

5.1 Motivation

In many disciplines of applied mathematics, a-posteriori error estimates, i.e. error esti-
mates which depend on the approximation itself, are important tools. Such estimates can
be used to assess the quality of a numerical approximation scheme and to indicate whether
or not the corresponding approximation is feasible for the respective problem. A common
use of such a-posteriori error bounds are adaptive refinement strategies, where the error
estimates are used to judge if further refinement, i.e. improvement of the approximation,
is required. Examples include temporal or spatial discretization refinement when solving
partial differential equation (PDE) with a numerical scheme [2, 70, 28]. In most cases
such an estimator should satisfy two conditions: First, the estimator should be rigorous,
i.e. it should be a valid upper bound on the error. In this case, we call it an error bound
instead of an error estimator. This difference is visualised in Figure 5.1.
The second property is called effectivity. This notion stipulates that the factor of

overestimation should be computable. In particular, an effective error bound detects if
the error is zero, as otherwise, the quotient between error bound and actual error is not
defined. In the context of the finite element method (FEM), these properties are also
refered to as reliability and efficiency.
When dealing with numerical approximation schemes for PDEs, the corresponding nu-

merical schemes quickly become computationally complex as they involve the solution of a
high-dimensional system of equations. Several techniques have emerged which try to cir-
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error
estimate
bound

Figure 5.1: Illustration of the conceptual difference between an error estimate and an error
bound.

cumvent the corresponding rise in computational cost for these high-dimensional system.
The techniques we focus on in this part of the thesis can be encompassed by the frame-
work of reduced-order modelling. Here the main idea is to replace the high-dimensional
problem with a low-dimensional surrogate which should be computationally less expen-
sive to solve. This is usually achieved by projecting the high-dimensional problem onto
a low-dimensional subspace. The question then arises how the error introduced by this
surrogate can be quantified. This is precisely where rigorous and effective a-posteriori
error bounds are indispensable.
Giving a complete overview over the available methods and corresponding results for

the error estimation is not the focus of this thesis. Instead, we refer to [10] and [11] for
recent overviews of model (order) reduction in the parametric and non-parametric cases.
Based on these techniques, approximate solutions can be calculated cheaply and in a com-
putationally efficient manner. One framework that is particularly suitable for parametric
problems is the reduced basis (RB) method. The essential idea of RB methods is to iden-
tify low-dimensional subspaces in the high-dimensional solution spaces by exploring the
parameter domain which can for example be achieved by RB greedy algorithms. In this
thesis we will demonstrate that classical error bounds, which are well-established within
RB methods, can be significantly improved by introducing an auxiliary linear problem
and subsequently computing its corresponding RB approximation. By the proposed pro-
cedure, we show that almost optimal effectivities, i.e. effectivities close to 1 and hence
almost exact error prediction, can be reached both theoretically as well as verifiable in
many numerical examples. Additionally, the necessity for good lower bounds on the inf–
sup constant, which is commonly used in many of the standard error estimation theory
for RB problems, can be alleviated, which allows the use of rougher (and thus computa-
tionally less expensive) lower bounds. Furthermore, the quality of the error bound can
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be tuned according to the application requirements.

In this work, we improve a residual-based error estimation technique, developed in [17],
that has been used frequently during the last decades. We illustrate the essential idea
of the improvement that enables highly accurate error estimates by the following simple
example: Consider the system of linear equations

Ax = f, for A =
 1 0

10 1

 and f =
0

1

 .
The above equation has the unique solution x∗ = (0, 1)T . Let us now assume that we have
a numerical scheme that is provides us with an approximation x̂ that satisfies x̂ = 1.01x∗.
This results in an error of ‖x̂− x∗‖2 = 0.01, when measured in the Euclidean norm.
Generally, the true solution x∗ is not available and hence we require an error bound. The
standard approach for this is by defining a residual r = Ax̂ − f and realizing that the
error e = x̂− x∗ satisfies the equation

Ae = r.

We can now conclude that the error is bounded via

‖e‖2 ≤
∥∥∥A−1

∥∥∥
2
‖r‖2 ≈ 10.1 · 0.01 = 0.101.

Compared to the actual error this is an overestimation of around factor 10. To obtain a
bound of higher quality we first note, that we can obtain the error by solving the equation
Ae = r. Unfortunately, an exact computation of this error equation is as expensive as
the original problem and therefore should be avoided. However, similar to the original
problem, we assume that a numerical scheme is available which provides an approximation
ê that also satisfies ê = 1.01e. We can now bound the error in terms of this approximation
by using the triangle inequality, i.e.

‖e‖2 ≤ ‖ê‖2 + ‖ê− e‖2 .

The second term can now be bounded analogously to the first bound by introducing a
second residual R = Aê − r. However, the norm of the second residual is much smaller
than the norm of the original residual and we easily verfy that

‖e‖2 ≤ ‖ê‖2 +
∥∥∥A−1

∥∥∥
2
‖R‖2 ≤ 0.0101 + 10.1 · 0.0001 = 0.0111. (5.1)

We can easily see that this second bound only overestimates the actual error by a factor
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of 1.111. Hence, the error bound was improved by a factor of almost 10.
In this chapter, we show how the key idea behind the above example can be generalized

to a large class of linear, nonlinear as well as time-dependent problems. In particular,
we study the applicability in the context of RB methods. The chapter is structured as
follows:
In Section 5.2 we introduce the problem setting which we will use in the subsequent

sections. In Section 5.3 we introduce a generic error bound for both linear and nonlinear
problems, which arises as a refinement of results given in [17]. In Section 5.4 we show how
highly effective error bounds can be reached by introducing an auxiliary linear problem
that has to be solved or approximately solved, respectively. In Section 5.5 we investigate
how our error bound fits into the RB framework and how our bound constitutes a signifi-
cant improvement on previous results in this field. In Section 5.6 we validate our previous
theoretical results for a well-known linear test problem, the thermal block model, as well
as a nonlinear problem stemming from a nonlinear reaction-diffusion-advection equation.
In Section 5.7 we extend our previous results to the case of linear time-invariant (LTI)-
systems including a numerical analysis of the theoretical results.

5.2 Rigorous and effective error bounds

For this section we always assume that X and Y are Banach spaces with norm ‖ · ‖X
and ‖ · ‖Y , respectively. We further denote as L(X ,Y) the space of all bounded linear
operators mapping from X into Y , and equip it with the norm given by

‖A‖L(X ,Y) := sup
06=x∈X

‖Ax‖Y
‖x‖X

for any A ∈ L(X ,Y).
In this part we are interested in problems which can be described as a root finding prob-

lem of some continuously differentiable operator G : X → Y . Specifically, the problem
takes the form

Find x ∈ X such that G(x) = 0 ∈ Y . (P )

An element x∗ ∈ X is now called a (true) solution of the problem (P ), if G(x∗) = 0.
In the following, we always assume that at least one solution of (P ) exists. We are

interested in estimating the error e := x̂ − x∗ between the (true) solution x∗ ∈ X and
a fitting approximation x̂ ∈ X using reliable a-posteriori error bounds, which can be
represented by functions ∆ : X → R. The estimate is then given by evaluating the
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a-posteriori bound at the approximate solution, i.e.

‖e‖X = ‖x̂− x∗‖X ≤ ∆(x̂). (5.2)

The quality of an upper bound ∆ can be assessed in term of its effectivity, which – for
x̂ 6= x∗ – is given by

eff∆(x̂) := ∆(x̂)
‖x∗ − x̂‖X

. (5.3)

By definition it is clear that a reliable error bound satisfies eff(x̂) ≥ 1. Since eff(x̂) = 1 is
equivalent to exact error prediction we aim for error bounds whose effectivities are close
to one.

A general framework for providing such error estimates for problems of the type (P )
can be found in [17]. However, the presented results might lead to large overestimations
of the actual error similar to what we have seen in the toy problem at the beginning of
this section.

5.3 Rigorous, effective and computable a-posteriori error
estimates with effectivity bounds

In this section we refine the results derived in [17] and show how significant improvements
can be achieved. We want to emphasize that these derivations are independent of the
specific approximation method used to compute an approximate solution x̂. Due to the
assumption G ∈ C1(X ,Y), G has a bounded Fréchet-derivative DG|x ∈ L(X ,Y) for
any x ∈ X . In particular, this is the case for x = x̂. We further assume, that the
derivate DG|x̂ is invertible, which implies by means of the bounded inverse theorem that
DG|−1

x̂ ∈ L(Y ,X ). Therefore, we are able to define the following three quantities, where
Bα(x̂) = {x ∈ X | ‖x− x̂‖X ≤ α} denotes the closed ball in X with radius α around x̂

ε(x̂) :=
∥∥∥DG|−1

x̂ (G(x̂))
∥∥∥
X
, (non-split residual)

γ(x̂) :=
∥∥∥DG|−1

x̂

∥∥∥
L(Y,X)

, (stability constant)

L(α) := sup
x∈Bα(x̂)

‖DG|x − DG|x̂‖L(X ,Y) , (local nonlinearity indicator).
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Please note that ε(x̂) is not a residual of the problem (P ) in the classical sense. Nonethe-
less, we call it the non-split residual, as it is the residual of a modified problem

Find x ∈ X such that DG|−1
x̂ (G(x)) = 0 ∈ X

that has the same solution as the original problem.
These three quantities make the main ingredients for the following fundamental error

estimate:

Theorem 5.3.1 (Rigorous a-posteriori error estimation). Let x̂ ∈ X be an approximate
solution and assume that DG|x̂ : X → Y is invertible.

(a) If the validity criterion

τ(x̂) := 2γ(x̂)L(2ε(x̂)) ≤ 1

is met, then the problem G(x) = 0 has a unique solution x∗ ∈ X in the closed ball
B2ε(x̂)(x̂) and the following upper bound for the error e = x̂− x∗ ∈ X holds

‖e‖X = ‖x̂− x∗‖X ≤ ∆(x̂) := 1
1− τ(x̂)/2ε(x̂) ≤ 2ε(x̂). (5.4)

(b) If L(α) ≤ Cα for some C > 0 and if the modified validity criterion

τ̂(x̂) := 4γ(x̂)Cε(x̂) ≤ 1

is satisfied, then the problem G(x) = 0 has a unique solution x∗ ∈ X in the closed
ball B2ε(x̂)(x̂) and the error e = x̂− x∗ ∈ X is bounded by

‖e‖X = ‖x̂− x∗‖X ≤ ∆̂(x̂) :=
1−

√
1− τ̂(x̂)

2γ(x̂)C = 2
1 +

√
1− τ̂(x̂)

ε(x̂). (5.5)

Proof. We first note, that if L(α) ≤ Cα for some C > 0, we have

τ(x̂) := 2γ(x̂)L(2ε(x̂)) ≤ 4γ(x̂)Cε(x̂) = τ̂(x̂).

Therefore, if the modified validity criterion is met, the same holds for the validity criterion.
In particular, we have

2γ(x̂)L(2ε(x̂)) ≤ 1
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in both cases.

By applying the fundamental theorem of calculus we derive the identity

G(x)−G(x′) =
1∫

0

DG|x′+t(x−x′) (x− x′)dt, x, x′ ∈ X . (5.6)

Let H : X → X be defined via

H(x) := x− DG|−1
x̂ (G(x)).

It is easy to see that

G(x) = 0 ⇐⇒ H(x) = x

and thus it remains to show, that H has a fix-point in M := B2ε(x̂)(x̂). Hence, it is
sufficient to show that H(M) ⊂M and that the restriction H|M is a contraction. To this
end let x ∈ X and it now holds by (5.6) that

‖H(x1)−H(x2)‖X =
∥∥∥DG|−1

x̂ (DG|x̂ (x1 − x2)− (G(x1)−G(x2)))
∥∥∥
X

=
∥∥∥∥DG|−1

x̂

(∫ 1

0
(DG|x̂ − DG|x1+t(x2−x1))(x1 − x2)dt

)∥∥∥∥
X

≤ γ(x̂)L(2ε(x̂)) ‖x1 − x2‖ ≤
1
2 ‖x1 − x2‖ , (5.7)

which proves the contraction property. Furthermore, it holds

‖H(x)− x̂‖X =
∥∥∥x− DG|−1

x̂ (G(x))− x̂
∥∥∥
X

=
∥∥∥DG|−1

x̂ [DG|x̂ (x− x̂)− (G(x)−G(x̂))]− DG|−1
x̂ (G(x̂))

∥∥∥
X

=
∥∥∥∥DG|−1

x̂

[∫ 1

0
(DG|x̂ − DG|x̂+t(x−x̂))(x− x̂)dt

]
− DG|−1

x̂ (G(x̂))
∥∥∥∥
X

and since x̂+ t(x− x̂) ∈M for t ∈ [0, 1] we get the estimate

‖H(x)− x̂‖X ≤ γ(x̂) sup
z∈M
‖DG|x̂ − DG|z‖L(X,Y ) ‖z − x̂‖X + ε(x̂)

≤ 2γ(x̂)L(2ε(x̂))ε(x̂) + ε(x̂).

(a) If the validity criterion is met, we can immediately conclude that

‖H(x)− x̂‖X ≤ 2γ(x̂)L(2ε(x̂))ε(x̂) + ε(x̂) ≤ 2ε(x̂)
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and H|M is a self-mapping. We can now apply Banach’s fixed-point theorem which
proves the existence of an x∗ ∈M with G(x∗) = 0. Furthermore, for any x ∈M we
get

‖x∗ − x‖X = ‖H(x∗)− x‖X

=
∥∥∥∥∥∥DG|−1

x̂

−G(x) +
1∫

0

(DG|x̂ − DG|x∗+t(x−x∗))(x− x
∗) dt

∥∥∥∥∥∥
X

.

≤
∥∥∥DG|−1

x̂ (G(x))
∥∥∥
X

+ γ(x̂)L(2ε(x̂)) ‖x∗ − x‖X .

The choice of x = x̂ and solving for x∗ ultimately results in

‖x∗ − x̂‖ ≤ ε(x̂)
1− γ(x̂)L(2ε(x̂) ≤ 2ε(x̂).

(b) If the modified validity criterion is met, the set M can be replaced by the set
Mα = Bα(x̂) and we can now try to find the minimal α, such that H is a self-
mapping on Mα. Continuing the previous series of inequalities we get

‖H(x)− x̂‖ ≤ γ(x̂) sup
z∈Mα

‖DG|x̂ − DG|z‖L(X,Y ) ‖z − x̂‖X + ε(x̂)

≤ γ(x̂)L(α)α + ε(x̂) ≤ γ(x̂)Cα2 + ε(x̂)
!
≤ α.

Solving the resulting quadratic inequality, we have that α is cointained in the interval
[α−, α+], where

α± =
1±

√
1− 4γ(x̂)Cε(x̂)
2γ(x̂)C = 2

1∓
√

1− 4γ(x̂)Cε(x̂)
ε(x̂) = 2

1∓
√

1− τ̂(x̂)
ε(x̂).

Hence, the smallest α for which H is a self-mapping is given by α−. Finally, it
follows that

‖x∗ − x̂‖X ≤ α− = 2
1−

√
1 + τ̂(x̂)

ε(x̂).

Remark 5.3.2. Note that similar bounds have been derived by various authors ([88, 103,
95]). However, in the bounds in literature known to us, the non-split residual ε(x̂) is
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replaced by the upper bound

εsplit(x̂) := γ(x̂) ‖G(x̂)‖Y ≥
∥∥∥DG|−1

x̂ (G(x̂))
∥∥∥
X

= ε(x̂), (5.8)

which we call split residual for obvious reasons. As we have seen in the introduction and as
we will see in the numerical results, this splitting can induce a very large overestimation.
This is not the case when the quantity ε(x̂) or other, more accurate approximations to
it, are used. Hence, the results in this thesis might improve many of the aforementioned
existing results.

As the name suggests, the local nonlinearity indicator L(α) can be interpreted as a
measure for the nonlinearity of the function G in a neighbourhood of the approximate
solution x̂ ∈ X . In particular, for affine linear problems G(x) = Ax + b for some A ∈
L(X ,Y) and b ∈ Y we get DG|x̂ = A and therefore

L(α) = sup
x∈Bα(x̂)

‖DG|x − DG|x̂‖L(X ,Y) = ‖A− A‖L(X ,Y) = 0.

Hence, L detects the linearity of the problem. As a consequence, we get τ(x̂) = τ̂(x̂) = 0,
i.e. unconditional validity, which results in exact error prediction as stated in the following
corollary.

Corollary 5.3.3 (Exact error prediction for affine linear problems). Let G be affine linear
in x. Then it holds

‖e‖X = ‖x̂− x∗‖X = ∆(x̂), and eff(x̂) = 1.

Proof. SinceG is affine linear in x it can be written asG(x) = Ax+b for some A ∈ L(X, Y )
and g ∈ Y . We then obtain G(x̂) = G(x̂) − G(x∗) = A(x̂ − x∗) = Ae or equivalently
e = A−1(G(x̂)). We further infer

‖e‖X =
∥∥∥A−1(G(x̂))

∥∥∥
X

=
∥∥∥DG|−1

x̂ (G(x̂))
∥∥∥
X

= ε(x̂) = ∆(x̂),

since DG|x = A for all x ∈ X and τ(x̂) = 0.

As we have mentioned in the introduction, the key quantity that assesses the quality
of the error bound is the effectivity eff(x̂). The assumptions made in Theorem 5.3.1 are
already sufficient to obtain bounds on the effectivity of our approximates which depend
on the condition number

κ(x̂) :=
∥∥∥DG|−1

x̂

∥∥∥
L(Y,X )

‖DG|x̂‖L(X ,Y) = γ(x̂) ‖DG|x̂‖L(X ,Y)
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of the linearization around the approximate solution.

Theorem 5.3.4 (Generic effectivity bound). Let the assumptions of either Theorem 5.3.1
(a) or Theorem 5.3.1 (b) hold. Then the effectivity eff(x̂) of the error bound is bounded
as follows

(a) eff∆(x̂) ≤ κ(x̂)
1− τ(x̂)/2 + τ(x̂)

2− τ(x̂)

(b) eff∆̂(x̂) ≤ 2κ(x̂)
1 +

√
1− τ̂(x̂)

+ τ̂(x̂)
2 + 2

√
1− τ̂(x̂)

Proof. Since G is continuously differentiable on X we have by the mean-value theorem
for Fréchet-differentiable functions

ε(x̂) =
∥∥∥DG|−1

x̂ (G(x̂))
∥∥∥
X

=
∥∥∥DG|−1

x̂ (G(x̂)−G(x∗))
∥∥∥
X

≤
∥∥∥DG|−1

x̂

∥∥∥
L(Y,X )

‖G(x̂)−G(x∗)‖Y ≤ γ(x̂) sup
x∈Bα(2ε(x̂))

‖DG|x‖L(X ,Y) ‖x̂− x
∗‖X

≤ γ(x̂)
(
‖DG|x̂‖L(X ,Y) + L(2ε(x̂)

)
‖x̂− x∗‖X

=
(
γ(x̂) ‖DG|x̂‖L(X ,Y) + γ(x̂)L(2ε(x̂)

)
‖x̂− x∗‖X .

We conclude

(a)

ε(x̂) ≤
(
γ(x̂) ‖DG|x̂‖L(X ,Y) + γ(x̂)L(2ε(x̂)

)
‖x̂− x∗‖X

≤
(
γ(x̂) ‖DG|x̂‖L(X ,Y) + τ(x̂)

2

)
‖x̂− x∗‖X

and therefore

eff∆(x̂) = ∆(x̂)
‖x∗ − x̂‖X

= 1
1− τ(x̂)/2

ε(x̂)
‖x∗ − x̂‖X

≤ 1
1− τ(x̂)/2

(
γ(x̂) ‖DG|x̂‖L(X ,Y) + τ(x̂)

2

)

= κ(x̂)
1− τ(x̂)/2 + τ(x̂)

2− τ(x̂) .

(b)

ε(x̂) ≤
(
γ(x̂) ‖DG|x̂‖L(X ,Y) + γ(x̂)L(2ε(x̂)

)
‖x̂− x∗‖X

≤
(
γ(x̂) ‖DG|x̂‖L(X ,Y) + τ̂(x̂)

2

)
‖x̂− x∗‖X
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and therefore

eff∆̂(x̂) = ∆̂(x̂)
‖x∗ − x̂‖X

= 2
1 +

√
1− τ̂(x̂)

ε(x̂)
‖x∗ − x̂‖X

≤ 2
1 +

√
1− τ̂(x̂)

(
γ(x̂) ‖DG|x̂‖L(X ,Y) + τ̂(x̂)

2

)

= 2κ(x̂)
1 +

√
1− τ̂(x̂)

+ τ̂(x̂)
2 + 2

√
1− τ̂(x̂)

.

Unfortunately, these generic bounds on the effectivity are rather coarse as one can easily
see when once again inspecting the (affine) linear case. As was shown in Corollary 5.3.3
we have exact error prediction for the (affine) linear case which, in terms of the effectivity,
can be expressed via eff(x̂) = 1. However, the bounds in Theorem 5.3.4 give the upper
bound

eff∆(x̂), eff∆̂(x̂) ≤ κ(x̂)

which, even in the case of nonlinear problems, is often much larger than the actual value.
As we have seen in the proof of Theorem 5.3.4, the ability to bound the effectivity

traces back to being able to bound the difference DG|−1
x̂ (G(x̂))−DG|−1

x̂ (G(x∗)). For this
purpose, we assume that the function DG|−1

x̂ ◦G : X → X is locally Lipschitz-continuous
around x̂. By this we mean that there exists a constant CG(x̂) ≥ 0 such that

∥∥∥DG|−1
x̂ (G(x))− DG|−1

x̂ (G(x̂))
∥∥∥
X
≤ CG(x̂) ‖x− x̂‖X , ∀x ∈ B2ε(x̂)(x̂). (5.9)

Please note that this assumption slightly weakens the conventional definition of local
Lipschitz-continuity as we only require this property in a neighbourhood of the approx-
imation. However, based on this property we can provide a (possibly) sharper estimate
on the effectivity.

Lemma 5.3.5 (Lipschitz based effectivity estimate). Let DG|−1
x̂ ◦G be locally Lipschitz-

continuous around x̂ with constant CG(x̂) and let the error estimate from Theorem 5.3.1
(a) or (b) hold true. Then it holds

(a) eff∆(x̂) ≤ CG(x̂)
1− τ(x̂)/2 (b) eff∆̂(x̂) ≤ 2CG(x̂)

1 +
√

1− τ̂(x̂)
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Proof. (a) The proof follows directly from the fact that G(x∗) = 0 and

∆(x̂) = 1
1− τ(x̂)/2

∥∥∥DG|−1
x̂ (G(x̂))

∥∥∥
X

= 1
1− τ(x̂)/2

∥∥∥DG|−1
x̂ (G(x̂)−G(x∗))

∥∥∥
X

≤ CG(x̂)
1− τ(x̂)/2 ‖x̂− x

∗‖X .

(b) Likewise, using the fact that x∗ is a solution of the problem (P ), we get

∆̂(x̂) = 2
1 +

√
1− τ̂(x̂)

∥∥∥DG|−1
x̂ (G(x̂))

∥∥∥
X

= 2
1 +

√
1− τ̂(x̂)

∥∥∥DG|−1
x̂ (G(x̂)−G(x∗))

∥∥∥
X

≤ 2CG(x̂)
1 +

√
1− τ̂(x̂)

‖x̂− x∗‖X .

Please note that unlike the generic bounds of Theorem 5.3.4 the above maches with the
result of Corollary 5.3.3, since for (affine) linear problems we have τ(x̂) = τ̂(x̂) = 0 and
CG(x̂) = 1, thus resulting in eff(x̂) = 1.
We furthermore note that the assumption of local Lipschitz-continuity around x̂ is

satisfied for a large class of problems. Taking a closer look at the proof of Corollary 5.3.3
one can see that it was in fact proven, that

∥∥∥DG|−1
x̂ (G(x̂))− DG|−1

x̂ (G(x))
∥∥∥
X
≤ (κ(x̂) + γ(x̂)L(2ε(x̂)) ‖x̂− x‖X .

In other words, under the assumption of Theorem 5.3.4 (a) or (b) we get the constants

(a) CG(x̂) = κ(x̂) + τ(x̂)
2 (b) CG(x̂) = κ(x̂) + τ̂(x̂)

2

which, as mentioned above, are often a gross overestimate. However, we will see that
under the same assumption a much sharper bound, i.e. a much smaller constant CG can
be achieved.

Lemma 5.3.6 (General local-Lipschitz continuity). Let the assumptions of Theorem 5.3.1
hold. Then the function DG|−1

x̂ ◦G : X → X is locally Lipschitz-continuous around x̂ and
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the Lipschitz-constant is bounded by

CG(x̂) ≤ 3
2 . (5.10)

Proof. Analogous to the proof of Theorem 5.3.1 let H : X → X be the function defined
by

H(x) := x− DG|−1
x̂ (G(x̂)).

As it was shown in (5.7), H is a contraction in the Ball B2ε(x̂)(x̂) with constant 1
2 , which

leads to

‖H(x̂)−H(x)‖X ≤
1
2 ‖x̂− x‖X for x ∈ B2ε(x̂)(x̂).

Using the triangle inequality we now get
∥∥∥DG|−1

x̂ (G(x̂))− DG|−1
x̂ (G(x))

∥∥∥
X

= ‖H(x̂)−H(x)− (x̂− x)‖X
≤ ‖H(x̂)−H(x)‖X + ‖x̂− x‖X

≤ 3
2 ‖x̂− x‖X .

Combining the results of Lemma 5.3.5 and Lemma 5.3.6 we achieve the following refined
effectivity bound.

Corollary 5.3.7 (Refined generic effectivity bound). Let the assuptions of Theorem 5.3.1
hold. Then the effectivities for the error bounds ∆(x̂) and ∆̂(x̂) are bounded by

(a) eff∆(x̂) ≤ 3
2− τ(x̂) ≤ 3 (b) eff∆̂(x̂) ≤ 3

1 +
√

1− τ̂(x̂)
≤ 3

Proof. As mentioned above, using Lemma 5.3.5, Lemma 5.3.6 and the fact that the (mod-
ified) validity criterion is met, i.e. τ(x̂), τ̂(x̂) ≤ 1, we get

(a)

eff∆(x) ≤ CG(x̂)
1− τ(x̂)/2 ≤

3
2− τ(x̂) ≤ 3
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(b)

eff∆̂(x) ≤ 2CG(x̂)
1 +

√
1− τ̂(x̂)

≤ 3
1 +

√
1− τ̂(x̂)

≤ 3

The bounds of Lemma 5.3.6 on the Lipschitz-constant and the resulting bounds on
the effectivity display a vast improvement, especially since they are independent of the
stability constant γ(x̂). However, for problems of polynomial type we can further reduce
the Lipschitz-constants. In particular, we will have a closer look at quadratic problems
which encompass problems such as the Navier-Stokes equation, Burgers equation, nonlin-
ear reaction-diffusion equations or the algebraic Riccati equation (ARE).

Proposition 5.3.8 (Local Lipschitz-continuity for quadratic problems). Let G be qua-
dratic, i.e. there exists a y0 ∈ Y , A ∈ L(X ,Y) and a continuous bilinear mapping B :
X × X → Y such that

G(x) = y0 + Ax+ 1
2B(x, x).

Then DG|−1
x̂ ◦G : B2ε(x̂)(x̂) :→ X is locally Lipschitz-continuous around x̂ with

CG(x̂) ≤ 1 + 1
2γ(x̂)cB ‖x̂− x∗‖X

where cB := sup
x,x′∈X\{0}

‖B(x,x′)‖Y
‖x‖X ‖x′‖X

is the continuity constant of B.

Proof. It holds

DG|x̂ (x) = Ax+ 1
2 (B(x, x̂) +B(x̂, x)) and D2G

∣∣∣
x̂

(x, x′) = 1
2(B(x, x′) +B(x′, x)).

By direct computation we get the Taylor expansion

G(x) = G(x̂) + DG|x̂ (x− x̂) + 1
2 D2G

∣∣∣
x̂

(x− x̂, x− x̂)

136



5.3 Rigorous, effective and computable a-posteriori error estimates with effectivity bounds

and therefore

DG|−1
x̂ (G(x))− DG|−1

x̂ (G(x̂)) = DG|−1
x̂ (G(x)−G(x̂))

= DG|−1
x̂

(
DG|x̂ (x− x̂) + 1

2 D2G
∣∣∣
x̂

(x− x̂, x− x̂)
)

= x− x̂+ 1
2 DG|−1

x̂ (D2G
∣∣∣
x̂

(x− x̂, x− x̂))

= x− x̂+ 1
2 DG|−1

x̂ (B(x− x̂, x− x̂).

Taking the norm on both sides, applying the definition of the continuity constant cB and
using the triangle inequality we get

‖ DG|−1
x̂ (G(x))− DG|−1

x̂ (G(x̂))‖Y ≤ ‖x− x̂‖X + 1
2γ(x̂)cB‖x− x̂‖2

X .

The claim now follows for the choice x = x∗.

Depending on the choice of error indicator, we can replace ‖x̂− x∗‖ by ∆(x̂) or ∆̂(x̂),
respectively. In all cases we get that CG(x̂)→ 1 as x̂→ x∗. Since this is also accompanied
by τ(x̂), τ̂(x̂)→ 0 we can expect that

eff∆(x̂), eff∆̂(x̂) 5.3.5→ 1 as x̂→ x∗,

i.e. the quality of the effectivity bound improves with the quality of our approximation.
On the contrary, the bounds of Corollary 5.3.7 only result in

eff∆(x̂), eff∆̂(x̂) ≤ 3
2 as x̂→ x∗.

In the infinite-dimensional settings, i.e. dim(X ), dim(Y) = ∞, the calculation of the
necessary quantities is often impossible. Even in a finite-dimensional setting the compu-
tation of the quantities can be demanding or outright infeasible. In particular, this is true
for very high-dimensional problems arising for example when dealing with semi-discretized
PDEs. Nonetheless, one often has access to computable upper bounds, i.e.

ε(x̂) ≤ εub(x̂), γ(x̂) ≤ γub(x̂), L(α) ≤ Lub(α). (5.11)

In this case a slightly altered version of Theorem 5.3.1 can be formulated, where the
quantities are replaced by their upper bounds:

Theorem 5.3.9 (Computable error bound). Let x̂ ∈ X be an approximate solution of the
problem (P ) and assume that DG|x̂ is invertible.
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(a) If the validity criterion

τub(x̂) := 2γub(x̂)Lub(2εub(x̂)) ≤ 1. (5.12)

is met, then there exists a unique solution x∗ ∈ X of (P ) in the closed ball B2εub(x̂)(x̂).
Furthermore, the error e = x̂− x∗ ∈ X is bounded by

‖e‖X = ‖x̂− x∗‖X ≤ ∆ub(x̂) := 1
1− τub(x̂)/2εub(x̂) ≤ 2εub(x̂). (5.13)

(b) If Lub(α) ≤ Cubα for some Cub > 0 and if the modified validity criterion

τ̂ub(x̂) := 4γub(x̂)Cubεub(x̂) ≤ 1 (5.14)

is satisfied, then there exists a unique solution x∗ ∈ X of (P ) in the closed ball
B2εub(x̂)(x̂). Furthermore, the error e = x̂− x∗ ∈ X is bounded by

‖e‖X = ‖x̂− x∗‖X ≤ ∆̂ub(x̂) := 2
1 +

√
1− τ̂ub(x̂)

εub(x̂). (5.15)

Proof. The proof is identical to that of Theorem 5.3.1 if all of the key quantities are
replaced by their corresponding upper bounds.

Analogous to the results of Corollary 5.3.7, we can bound the effectivity of the com-
putable error bounds in (5.13) and (5.15) if we further assume that the upper bound
εub(x̂) is sufficiently well behaved.

Corollary 5.3.10 (Refined generic effectivity bound for computable quantities). Let the
assumptions of Theorem 5.3.9 hold. If εub(x̂) ≥ ε(x̂) is an upper bound such that there
exists a constant Cε with

εub(x̂) ≤ Cεε(x̂),

then the effectivities of the error bounds ∆ub(x̂) and ∆̂ub(x̂) are bounded as follows

(a) eff∆ub(x̂) ≤ 3
2− τub(x̂)Cε ≤ 3Cε

(b) eff∆̂ub
(x̂) ≤ 3

1 +
√

1− τ̂ub(x̂)
Cε ≤ 3Cε

Proof. Using Lemma 5.3.6 and the assumption on εub(x̂) we get

εub(x̂) ≤ Cεε(x̂) ≤ 3
2Cε ‖x̂− x

∗‖X (5.16)
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Substituting (5.16) for εub(x̂) in the error bounds ∆ub(x̂) and ∆̂ub(x̂) we get the desired
results.

In the above corollary we made use of Lemma 5.3.6 which provides the Lipschitz-
constant CG = 3

2 . In cases where a better Lipschitz-constant is available, the upper
bound can of course be refined resulting in

eff∆ub(x̂) ≤ CG(x̂)Cε
1− τub(x̂)/2

and

eff∆̂ub
(x̂) ≤ 2CG(x̂)Cε

1 +
√

1− τ̂ub(x̂)
,

respectively.

5.4 Sharp effectivities through auxiliary linear problems

In this subsection, we show how a very sharp bound for ε(x̂) which satisfies the assump-
tions of Corollary 5.3.10 can be obtained with low additional computational overhead.
As it was illustrated in the introduction by a simple two-dimensional linear problem, the
effectivity of the a-posteriori error bound deteriorates heavily if the calculation of ε(x̂) is
split according to equation (5.8). This can be seen when considering that

εsplit(x̂) := γ(x̂) ‖G(x̂)‖Y ≥
∥∥∥DG|−1

x̂ (G(x̂))
∥∥∥
X

= ε(x̂),

constitutes an upper bound of ε(x̂) satisfying Corollary 5.3.10 with the constant Cε = κ(x̂),
as we have

εsplit(x̂) = γ(x̂)
∥∥∥DG|x̂ DG|−1

x̂ (G(x̂))
∥∥∥
Y
≤ κ(x̂)

∥∥∥DG|−1
x̂ (G(x̂))

∥∥∥
X

= κ(x̂)ε(x̂). (5.17)

Hence, the quality of the error bounds deteriorate by the factor κ(x̂) which is usually
much larger than one. Therefore, the key towards highly effective (i.e. eff(x̂) ≈ 1) error
bounds lies in finding highly effective approximations or bounds to ε(x̂).
For this reason, we shall first note, that ε(x̂) can be calculated by solving the following

linear equation

DG|x̂ (E(x̂)) = G(x̂) (5.18)

for E(x̂) ∈ X and then taking the norm ε(x̂) = ‖E(x̂)‖X . While the above equation
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computes the exact error for (affine) linear problems (P ), i.e. for (affine) linear G, this
no longer is the case for non-linear G. Hence, we shall refer to (5.18) as the auxiliary
linear problem (ALP) and will consequently denote the here presented error bounds as
ALP-based error bounds. While linear problems of the form (5.18) can often be solved
relatively easy, it can be laborious in a high-dimensional or multi-query scenario. With
the goal of a computationally efficient scheme in mind, we shall therefore replace E(x̂)
by an approximation Ê(x̂) ∈ X , which is itself computed via a suitable approximation
method.

Remark 5.4.1. Equation (5.18) can be interpreted as Newton-update as follows:
For the problem G(x) = 0, the Newton-iteration iteratively computes an approximation

by starting from an initial guess x0 ∈ X and setting

xn+1 = xn + ∆xn, with DG|xn (∆xn) = −G(xn), n ≥ 0.

In this sense, the computation of E(x̂) is equal to computing the Newton-update ∆xn.
Likewise, any approximation Ê(x̂) can be interpreted as a quasi Newton update. However,
unlike for the Newton iteration where the additional computational effort is used for
improved approximation by setting ˆ̂x = x̂ − E(x̂) or ˆ̂x = x̂ − Ê(x̂), respectively, we use
the addition effort for improving the error estimate.

This idea, to invest further computational resources in order to improve the quantifi-
cation of the error is also explored in [43]. Instead of solving an auxiliary linear problem,
the authors assume to have two approximations x̂1 and x̂2 available, where the latter is
of higher quality. The error can then be bounded by

‖x̂1 − x∗‖X ≤ ‖x̂2 − x̂1‖X + ‖x̂2 − x∗‖X ≤ ‖x̂2 − x̂1‖X + γub(x̂2) ‖G(x̂2)‖Y ,

which should result in highly effective error bounds provided the second approximation
x̂2 is of sufficient quality.
As we will see in the following lemma, the strength of the method proposed here lies in

the simple fact that it enables us to easily derive a rigorous error bound for the quantity
ε(x̂), when an approximation Ê(x̂) is available:

Lemma 5.4.2 (Upper bound for ε(x̂)). Let Ê(x̂) ∈ X be an approximate solution to the
ALP (5.18) and define the ALP residual R(x̂) := DG|x̂ (Ê(x̂)) − G(x̂). Then the upper
bound

ε(x̂) ≤ εub(x̂) :=
∥∥∥Ê(x̂)

∥∥∥
X

+ γub(x̂) ‖R(x̂)‖Y . (5.19)

holds true, where γ(x̂) ≤ γub(x̂) is an upper bound of the stability constant.
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Proof. The proof follows immediately from the triangle inequality as we have

ε(x̂) = ‖E(x̂)‖X =
∥∥∥E(x̂) + Ê(x̂)− Ê(x̂)

∥∥∥
X
≤
∥∥∥Ê(x̂)

∥∥∥
X

+
∥∥∥Ê(x̂)− E(x̂)

∥∥∥
X
.

For the difference Ê(x̂) − E(x̂), we make use of the linearity of the ALP and obtain the
relation DG|x̂ (Ê(x̂)− E(x̂)) = R(x̂), from which we get

∥∥∥Ê(x̂)− E(x̂)
∥∥∥
X

=
∥∥∥DG|−1

x̂ (R(x̂))
∥∥∥
X
≤ γ(x̂) ‖R(x̂)‖Y ≤ γub(x̂) ‖R(x̂)‖Y . (5.20)

Under the assumption that an efficient approximation scheme for the computation of Ê
is available, the computational overhead for the calculation of εub(x̂) is relatively small as
it only requires the calculation of

∥∥∥Ê(x̂)
∥∥∥
X
and ‖R(x̂)‖Y . The latter of these two quantities

is itself often used as an abortion criterion, when iterative solvers for large-scale linear
systems are considered. Additionally, no further computation of quantities is required, as
γub(x̂) already has to be calculated to check the validity criterion.
At this point, we want to emphasize that the numerical results presented in the later

parts of this thesis reveal very accurate error predictions when using ∆ub(x̂) from Theorem
5.3.9 with the choice εub(x̂) according to Lemma 5.4.2. One possible explanation for this
observation can be deduced from

‖x̂− x∗‖X ≤ ∆(x̂) ≤ 2ε(x̂) ≤ 2εub(x̂),

and the fact that εub(x̂) is a very accurate estimate of ε(x̂). In contrast to the original
splitting of ε(x̂) in equation (5.8), the splitting in (5.20) does not deteriorate the bound
εub(x̂) significantly since ‖R(x̂)‖Y is often much smaller than

∥∥∥Ê(x̂)
∥∥∥
X
. To quantify this

observation rigorously, we use the following lemma.

Lemma 5.4.3 (Relation of ε(x̂) and εub(x̂)). Assume

2γub(x̂) ‖R(x̂)‖Y ≤
∥∥∥Ê(x̂)

∥∥∥
X

(5.21)

Then the following inequality holds true for εub(x̂) chosen as in (5.19).

εub(x̂) ≤ Cε(x̂)ε(x̂), with Cε(x̂) :=
1 + 4γub(x̂) ‖R(x̂)‖X∥∥∥Ê(x̂)

∥∥∥
X

 ≤ 3.

Proof. Note that the following proof is similar to a proof for the effectivity of relative RB
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error bounds [72]: The proof follows with E(x̂) = DG|−1
x̂ (G(x̂)) and ‖E(x̂)‖X 6= 0

εub(x̂) =
∥∥∥Ê(x̂)

∥∥∥
X

+ γub(x̂) ‖R(x̂)‖Y
≤ ‖E(x̂)‖X +

∥∥∥Ê(x̂)− E(x̂)
∥∥∥
X

+ γub(x̂) ‖R(x̂)‖Y

=
1 +

∥∥∥Ê(x̂)− E(x̂)
∥∥∥
X

‖E(x̂)‖X
+
γub(x̂) ‖R(x̂)‖Y
‖E(x̂)‖X

 ‖E(x̂)‖X . (5.22)

From the triangle inequality and (5.20) we infer
∣∣∣∣∣∣
‖E(x̂)‖X −

∥∥∥Ê(x̂)
∥∥∥
X∥∥∥Ê(x̂)

∥∥∥
X

∣∣∣∣∣∣ ≤
∥∥∥Ê(x̂)− E(x̂)

∥∥∥
X∥∥∥Ê(x̂)

∥∥∥
X

≤
γub(x̂) ‖R(x̂)‖Y∥∥∥Ê(x̂)

∥∥∥
X

≤ 1
2 .

We now have to consider the following two cases

(a) if
∥∥∥Ê(x̂)

∥∥∥
X
> ‖E(x̂)‖X , we get

∥∥∥Ê(x̂)
∥∥∥
X
− ‖E(x̂)‖X ≤

1
2
∥∥∥Ê(x̂)

∥∥∥
X

and hence

1
2
∥∥∥Ê(x̂)

∥∥∥
X
≤ ‖E(x̂)‖X

(b) if
∥∥∥Ê(x̂)

∥∥∥
X
≤ ‖E(x̂)‖X , it immediately follows

1
2
∥∥∥Ê(x̂)

∥∥∥
X
≤ ‖E(x̂)‖X

Ultimately, we obtain∥∥∥Ê(x̂)− E(x̂)
∥∥∥
X

‖E(x̂)‖X
≤
γub(x̂) ‖R(x̂)‖Y
‖E(x̂)‖X

≤ 2
γub(x̂) ‖R(x̂)‖Y∥∥∥Ê(x̂)

∥∥∥
X

.

Inserting this twice into (5.22) yields the final result.

Combining the results of Theorem 5.3.9, Corollary 5.3.10 and Lemma 5.4.3 we conclude
this subsection with the following corollary:

Corollary 5.4.4. Let the assumptions of Theorem 5.3.9 and Lemma 5.4.3 hold. Then
the effectivity of the error bounds ∆ub(x̂) and ∆̂ub(x̂) is bounded by

(a) eff∆ub(x̂) ≤ 9
2− τub(x̂) ≤ 9
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(b) eff∆̂ub
(x̂) ≤ 9

1 +
√

1− τ̂ub(x̂)
≤ 9.

Remark 5.4.5. Similar to the results of Proposition 5.3.8 we also have, that Cε(x̂) tends
towards 1 as the approximation Ê(x̂) tends towards the true solution E(x̂). In other words,
in practice we often experience effectivities much smaller than 9 once the approximation
Ê(x̂) is good enough for inequality (5.21) to be satisfied.

5.5 Highly accurate error bounds in the reduced basis
context

In this section, we apply the proposed error bound within the RB framework. In par-
ticular, we explain how the a-posteriori error bound derived in Section 5.2 can be ap-
plied to parametric and nonlinear problems within the RB context. Additionally, we will
give a short summary of the basic ideas of RB methods, but we refer to literature, e.g.
[39, 46, 72, 76, 82] for a more detailed introduction into the topic.

5.5.1 Parametric nonlinear problems and the reduced basis
method

In the following, we study parametric problems. For this purpose, let µ ∈ P be a param-
eter vector living in the compact set of admissible parameters P ⊂ RP for some P ∈ N.
We now consider problems which take the form

For µ ∈ P find x∗(µ) ∈ X : G(x∗(µ);µ) = 0, (P (µ))

for some parameter-dependent operator G(·;µ) : X → Y . Furthermore, we shall as-
sume that for every parameter µ ∈ P at least one solution exists. The main idea be-
hind RB methods is to determine a suitable low-dimensional subspace XN ⊂ X with
N = dim(XN) � dim(X ) = d ≤ ∞ and to find approximate solutions in this sub-
space by solving an N -dimensional so-called reduced problem. To this end, we equip the
approximation space XN with a so called reduced basis {φ1, . . . , φN} ⊂ X , of linearly
independent basis elements φi ∈ X . The approximation x̂(µ) ∈ XN is then given as a
linear combination

x̂(µ) :=
N∑
i=1

xN,iφi = ΦxN(µ),
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where the coefficient functions xN,i : P → R are called reduced coordinates of the reduced
coordinate vector xN = (xN,i)Ni=1 ∈ RN and where we introduce Φ := (φ1, . . . , φN) as
the row vector of basis functions. We now restrict the set of all possible solutions of
the problem (P (µ)) to the subspace XN and by projecting the correpsonding residual
G(x̂(µ);µ) ⊂ Y onto another low dimensional subspace YN ⊂ Y with dim(YN) = N , we
ultimately arrive at the reduced problem

For µ ∈ P find x̂(µ) = ΦxN(µ) ∈ XN : GN(x̂(µ);µ) = 0, . (PN(µ))

Here the operator GN(·;µ) : XN → YN is given by

GN(·;µ) = ΠYN
(
G(·;µ)|XN

)
where ΠYN : Y → YN denotes a projection onto the subspace YN . This procedure is
commonly referred to as Petrov-Galerkin projection and it is widely used for projection-
based model order reduction (MOR) methods. The solvability of the reduced problem
(PN(µ)) can typically be ensured by a careful construction of the spaces XN and YN .
Once again, we refer to literature, [21, 24, 30, 47, 105] for a more detailed view into the
different construction methods that have been proposed over the years. In the context
of this work, we will henceforth assume that both, the reduced and the non-reduced
problem, are solvable and, in particular, that we can compute true solutions x∗(µ) ∈ X
and approximations x̂(µ) ∈ XN for any given parameter µ ∈ P . However, we still do not
require uniqueness of the solutions.

5.5.2 Effective error prediction for the RB method

A fundamental question which arises when using RB methods is the following: given an
approximation x̂(µ) ∈ XN of a (true) solution x∗(µ) ∈ X , are we able to quantify the
error e(µ) = x̂(µ) − x∗(µ) rigorously and with good effectivity. With the previous work
of Section 5.2, we can give a positive answer to this question. To this end, we will apply
Theorem 5.3.1 or rather its refinement Theorem 5.3.9. In a parametric problem setting,
such as described in (P (µ)), we require an efficient way for calculating the quantities

γ(µ) := γ(x̂(µ)) =:=
∥∥∥DG(·;µ)|−1

x̂(µ)

∥∥∥
L(Y,X )

,

ε(µ) := ε(x̂(µ)) =
∥∥∥[DG(·;µ)|−1

x̂(µ)](G(x̂(µ);µ))
∥∥∥
X
,

L(α;µ) := sup
x∈Bα(x̂(µ))

∥∥∥DG(·;µ)|x̂(µ) − DG(·;µ)|x
∥∥∥
L(X ,Y)

.
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In the following, we omit the explicit dependency of x̂(µ) for the sake of readability,
however, we keep the dependency on the parameter µ ∈ P .

Since a direct computation of the above quantities is often to computationally expensive,
we assume to have access to rapidly computable upper bounds analogous to the non-
parametric case of (5.11)

ε(µ) ≤ εub(µ), γ(µ) ≤ γub(µ), L(α;µ) ≤ Lub(α;µ).

While all of these quantities are important for the error quantification, we will primarily
focus on the efficient calculation of εub(µ). Efficient calculations for Lub(α, µ) for most
of the problems can be reduced to finding a suitable constant Cub(µ) > 0 such that
Lub(α;µ) ≤ Cub(µ)α. However, such a bound is for the most part rather problem specific
and we will not go into further detail. In contrast, the literature is rich with methods
for bounding the stability constant γ(µ) for a wide variety of parametric problems, and
henceforth we refer to the existing literature, e.g. [93, 49, 50].

We recall that ε(µ) can be calculated explicitly by solving the (parametric) ALP for
E(µ) ∈ X

For µ ∈ P find E(µ) ∈ X : [DG(·;µ)|x̂(µ)](E(µ)) = G(x̂(µ);µ). (PE(µ))

and consequently taking the norm ε(µ) = ‖E(µ)‖X . In Lemma 5.4.2 we have already
seen how a suitable upper bound for the non-split residual ε(µ) can be calculated, provided
that we have access to an approximation Ê(µ) ∈ X of the solution E(µ). In the context
of RB methods, the idea to obtain such an approximation is to once again employ a
Petrov-Galerkin projection of the parametric ALP (PE(µ)). For this purpose, we consider
secondary reduced spaces XE

M ⊂ X and YEM ⊂ Y with dim(XE
M) = dim(YEM) = M � d =

dim(X). We equip both subspaces with bases {φE1 , . . . , φEM} ⊂ X and {ψE1 , . . . , ψEM} ⊂ Y
consisting of linear independent basis functions. The approximation Ê(µ) is then given
as a linear combination

Ê(µ) :=
M∑
i=1

EM,i(µ)φEi ∈ XE
M , with EM(µ) := [EM,1(µ), . . . , EM,M(µ)]T ∈ RM .

By projecting the parametric ALP (PE(µ)) in an analogous fashion to the original problem
(P (µ))

ΠYEM
(
[DG(·;µ)|x̂(µ)](Ê(µ))

)
= ΠYEM (G(x̂(µ);µ)) . (PE

M(µ))

we obtain a reduced parametric ALP, whose solution provides us with the reduced co-
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ordinate functions EM,i : P → R. Please note that analogously to the reduced problem
for the approximation x̂(µ) the above problem ist M -dimensional and therefore can be
solved efficiently, provided M is chosen sufficiently small. To get a rigorous upper bound
εub(µ) ≥ ε(µ) we define the residual R(µ) ∈ Y of the approximation to the ALP via

R(µ) := [DG(·;µ)|x̂(µ)](Ê(µ))−G(x̂(µ);µ).

Applying Lemma 5.4.2 we achieve the upper bound

ε(µ) ≤ εub(µ) =
∥∥∥Ê(µ)

∥∥∥
X

+ γub(µ) ‖R(µ)‖Y . (5.23)

Remark 5.5.1. Analogously to the original parametric problem (P (µ)), one requires a
careful construction of the spaces XE

M and YEM . While the choice XE
M = XN seems reason-

able to avoid the secondary construction of a reduced space, the same principle cannot be
applied to the space YEM . Since, based on the definition of the approximation x̂(µ), the
choice YEM = YN would lead to the reduced ALP

ΠYEM
(
[DG(·;µ)|x̂(µ)](Ê(µ))

)
= ΠYEM (G(x̂(µ);µ))

= ΠYN (G(x̂(µ);µ)) = GN(x̂(µ);µ) = 0

which results in the approximation Ê(µ) = 0 and consequently in the residual R(µ) =
G(x̂(µ);µ). Combined with Lemma 5.4.2, the upper bound

εub(µ) =
∥∥∥Ê(µ)

∥∥∥
X

+ γub(µ) ‖R(µ)‖Y = γub(µ) ‖G(x̂(µ);µ‖Y = εsplit(µ)

is reduced to the split-bound εsplit(µ) which we tried to avoid in the first place as the
resulting error bounds have poor effectivity in general.

In the following, we denote as ∆ub(µ) and ∆̂ub(µ) the parametric computable error
bounds stemming from Theorem 5.3.9 where we use εub(µ) given by equation (5.23). The
rigorousness of the upper bound can then be guaranteed by stipulating a parametrized
version of the condition in Lemma 5.4.3 equation (5.21). Consequently this leads to
rigorous error bounds as summarized in the following Theorem.

Theorem 5.5.2 (Rigorous error bounds for the parametric problem (P (µ))). For µ ∈
P, let γub(µ) and Lub(α;µ) be upper bounds and let εub(µ) be given by equation (5.23).
Furthermore, let the assumptions of Theorem 5.3.9, in particular the (modified) validity
criterion (5.12) : τub(µ) := τub(x̂(µ)) ((5.14) : τ̂ub(µ)) := τ̂ub(x̂(µ))), be met for the above
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quantities and denote as ∆ub(µ) and ∆̂ub(µ) the resulting error bounds. If the inequality

2γub(µ) ‖R(µ)‖Y ≤
∥∥∥Ê(µ)

∥∥∥
X

(5.24)

holds than the error bounds ∆ub(µ) and ∆̂ub(µ) are rigorous and their effectivities are
bounded by

(a) eff∆ub(µ) := eff∆ub(x̂(µ)) ≤ 9
2− τub(µ) ≤ 9

(b) eff∆̂ub
(µ) := eff∆̂ub

(x̂(µ)) ≤ 9
1 +

√
1− τ̂ub(µ)

≤ 9

Proof. The bounds follow immediately by applying Corollary 5.4.4 when considering the
above upper bounds to the required quantities.

We conclude this section by showing that the error bounds ∆ub(µ) and ∆̂ub(µ) satisfy
another desired property of error bounds in the RB context. Namely the identification
of true solutions x∗(µ) ∈ XN . While this is guaranteed to hold if the assumptions of
Theorem 5.5.2 are met and the error bounds are rigorous, this is no longer immediately
evident, if the inequality (5.24) does not hold.

Proposition 5.5.3 (Identification of solutions in the reduced space XN). Let the assump-
tions of Theorem 5.3.9 be met. If x∗(µ) = x̂(µ) ∈ XN for some parameter µ ∈ P then it
holds

∆ub(µ) = ∆̂ub(µ) = 0.

The converse also holds, i.e. if ∆ub(µ) = ∆̂ub(µ) = 0, then x∗(µ) = x̂(µ) ∈ XN .

Proof. If x∗(µ) = x̂(µ) ∈ XN , then G(x̂(µ);µ) = 0 and therefore ΠYEM (G(x̂(µ);µ)) = 0.
Hence, the reduced ALP (PE

M(µ)) has the solution Ê(µ) = 0 which in turn leads to
R(µ) = 0 and εub(µ) = 0. In total, this leads to ∆ub(µ) = ∆̂ub(µ) = 0. The converse
follows immediately, as by assumption we have that ∆ub(µ) and ∆̂ub(µ) are upper bounds
on the error which therefore vanishes.

5.5.3 Improvement of classical RB bounds for linear elliptic problems

Classically the RB method is applied in the context of parametric PDE. In this section
we recall the standard RB error estimation results for linear elliptic problems and relate
them to the bounds presented in the previous section.
For this purpose, we shall now assume that X is a suitable Hilbert. We now consider

the following weak formulation of a parametrized PDE:
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For µ ∈ P find u(µ) ∈ X : a(u(µ), v;µ) = f(v;µ), ∀v ∈ X . (5.25)

We assume that a(·, ·;µ) : X × X → R is a continuous bilinear form and f(·;µ) ∈ Y ,
where Y := X ′ denotes the dual space of X . Furthermore, we assume the following
properties which ensure that the weak formulation (5.25) is well-posed for any µ ∈ P :

sup
u∈X

sup
v∈X

|a(u, v;µ)|
‖u‖X ‖v‖X

=: c(µ) ≤ cub(µ) <∞, (continuity),

inf
u∈X

sup
v∈X

|a(u, v;µ)|
‖u‖X ‖v‖X

=: β(µ) ≥ βlb(µ) > 0, (inf-sup stability),

and for each v ∈ X \ {0} there exists a u ∈ X such that a(u, v;µ) does not vanish. Under
the aforementioned assumptions it is a well-know result that there exists a unique solution
x∗(µ) ∈ X to the problem (5.25) (cf. [16]).
This problem can be incorporated into the general framework (P ) by defining the

parameter dependent operator G(·;µ) : X → Y via

G(u;µ)(v) := a(u, v;µ)− f(v;µ), ∀v ∈ X .

Since a(·, ·;µ) is bilinear, we easily conclude that G(·;µ) is continuously differentiable and
that its Fréchet-derivative DG|x ∈ L(X ,Y) at the point x ∈ X is given by

DG|x (v) = a(x, v;µ).

The assumptions on a(·, ·;µ) now guarantee, firstly, that DG|x is bounded as

‖DG|x‖L(X ,Y) = c(µ) ≤ cub(µ) (5.26)

and, secondly, that DG|x has a bounded inverse for any x ∈ X for which the norm can
be bounded by

∥∥∥DG|−1
x

∥∥∥
L(Y,X )

= 1
β(µ) ≤

1
βlb(µ) . (5.27)

Furthermore, since G(·;µ) is affine linear the (modified) validity criterion is always satis-
fied and the bounds of Theorem 5.3.1 and Theorem 5.3.9 hold, respectively.
Let us assume that we have a RB approximation x̂(µ) ∈ XN for a suitable reduced basis

space XN ⊂ X with dim(XN) = N � d = dim(X ). The classical RB error bound then
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establishes a relation between the error e(µ) = x̂(µ)− x∗(µ) ∈ X and the residual of the
approximation via the following expression

‖e(µ)‖X = ‖x̂(µ)− x∗(µ)‖X ≤ ∆RB(µ) :=
‖G(x̂(µ);µ)‖Y

β(µ) ≤
‖G(x̂(µ);µ)‖Y

βlb(µ) .

As we have seen in (5.27) the inf-sup constant corresponds to the stability constant in
the abstract formulation of this thesis by taking the reciprocal value. Recalling that for
linear problems we get that the split bound

‖e(µ)‖X = ε(µ) ≤ εsplit(µ) = γ(µ) ‖G(x̂(µ);µ)‖Y = ∆RB(µ) (5.28)

coincides with the standard RB error bound. Furthermore, using (5.17) as well as (5.26)
and (5.27) we obtain the bound

eff∆RB(µ)
(5.17)
≤

∥∥∥DG|−1
x

∥∥∥
L(Y,X )

‖DG|x‖L(X ,Y)
(5.26)= c(µ)

β(µ)
(5.27)
≤ cub(µ)

βlb(µ) (5.29)

which also coincides with the standard bound on the effectivity for the RB error bound
∆RB, c.f. [76, 39]. Therefore, by not splitting the calculation of the residual and by
directly applying an approximation scheme for finding a sharp, rigorous bound on ε(µ),
we expect to have more accurate error predictions, i.e. smaller effectivity.

To apply the improved error estimation technique we first setup the ALP, which takes
the following weak form

a(e(µ), v;µ) = a(x̂(µ), v;µ)− f(v;µ), ∀v ∈ X . (5.30)

Since the above equation is equally expensive to solve as the original problem, we perform
the additional RB approximation for the ALP according to the method described in
Section 5.5.2. Accordingly, we assume to have another reduced basis space XE

M ⊂ X with
dim(XE

M) = M � dim(X ), which is used to reduce the ALP.

a(ê(µ), vM ;µ) = a(x̂(µ), vM ;µ)− f(vM ;µ), ∀vM ∈ XE
M .

We emphasize once more, that this equation is M -dimensional and can be solved com-
putationally efficient, similarly to how the RB approximation of the main problem (5.25)
is calculated. Consequently, we get the improved error bound by applying Lemma 5.4.2
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∆ub(µ) = ‖ê(µ)‖X + 1
βlb(µ) ‖R(µ)‖Y ,

where the residual R(µ) ∈ Y is given by

R(µ)(v) = a(ê(µ)− x̂(µ), v;µ) + f(v; .µ). (5.31)

In practice, one computes the norm ‖R(µ)‖Y via the Riesz-representer of the residual.

For many problems, the calculation of the inf-sup constant β(µ) poses difficulties when it
comes to an efficient implementation. To circumvent this, one often employs pessimistic
lower bounds βlb(µ) ≤ β(µ) which can be calculated rapidly. For certain problems,
lower bounds can be computed by employing standard estimation techniques in the RB
framework. Some examples are the min–θ scheme or the successive constraint method
(SCM) (cf. [49, 72]). However, these methods are either not applicable, computationally
involved or deliver highly imprecise results which render the classical RB error bounds
useless. Once again, this is due to the fact that the error bound scales linearly with
the inverse of the inf-sup constant (the stability constant in the general framework). To
further highlight this, we consider the following scenario:

Let λ � 1 and set βlb(µ) := β(µ)
λ

as a lower bound of the inf-sup constant. We then
get the following error bounds when using the classical RB error bound ∆RB(µ) and the
improved version ∆ub(µ).

∆RB(µ) = λ
‖G(x̂(µ);µ)‖Y

β(µ)

and

∆ub(µ) = ‖ê(µ)‖X + λ
‖R(µ)‖Y
βlb(µ) .

As mentioned before, the effectivity eff∆RB(µ) now directly scales linearly with the
underestimation factor λ which further degrades the quality of the classical RB bound.
On the contrary, for the improved error bound ∆ub(µ), the scaling factor λ is counteracted
by the residual norm ‖R(µ)‖Y . Recalling the results of Lemma 5.4.3, as long as the
inequality

2λ
‖R(µ)‖Y
βlb(µ) ≤ ‖ê(µ)‖X
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still holds, the effectivity eff∆ub(µ) is still bounded by 3 and since we expect ‖R(µ)‖Y �
‖G(x̂(µ);µ)‖Y , even severe underestimations have a lesser impact. The assumption that
the norm of the residual R(µ) is (much) smaller than the residual of the original problem
is not unfounded. Recalling Remark 5.4.1 we can interpret −ê(µ) as a quasi Newton-
update. Hence x̂(µ) − ê(µ) should provide a better estimate. Using (5.31) we can see
that

R(µ) = a(x̂(µ)− ê(µ), v;µ)− f(v; .µ) = G(x̂(µ)− ê(µ);µ)

and consequently ‖R(µ)‖Y � ‖G(x̂(µ);µ)‖Y seems reasonable, provided the approxima-
tion ê(µ) is of sufficient quality.
In total, the better absorbability of underestimation in the inf-sup constant might be

useful in cases for which a (possibly pessimistic) global lower bound β(µ) ≥ β̄ > 0 for
all parameters µ ∈ P is available, as expensive estimations techniques for pointwise lower
bounds β(µ) ≥ βlb(µ) can be avoided. We will study the influence of underestimation
in the inf-sup constant, i.e. overestimation of the stability constant, experimentally in
Section 5.6.

5.5.4 Offline/Online efficient implementation

In this section, we address how an efficient implementation of the proposed error quan-
tification can be realised. Similar to the structure of the approximation methods using
matrix-valued kernels, which were discussed in the first part of this thesis, we apply the
same principle here. Namely, we can split the computation into two phases:

(a) the offline phase, in which all quantities necessary for the computation of the ap-
proximation and the error quantification are precomputed

(b) an online phase, in which the reduced problem (PN(µ)) and the reduced ALP
(PE

M(µ)) are solved, the approximation x̂(µ) is constructed and the error bounds
are evaluated.

Before going into further detail, as to what each of these phases contain, we first want
to introduce the notion of parameter separability of the problem, which is a classical
assumption in the RB framework.

Definition 5.5.4 (Parameter separability). We say a parametric dependent function
G(·; ·) : X × P → Y is parameter separable, if there exist a Q ∈ N and parameter
dependent coefficient functions Θq : P → R, q = 1, . . . , Q and parameter independent
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5 Rigorous and effective a-posteriori error bounds for nonlinear problems

operators Gq : X → Y , q = 1, . . . , Q such that

G(·;µ) =
Q∑
q=1

Θq(µ)Gq(·). (5.32)

In this case, we call the set of tuples {(Θ1, G1), . . . , (ΘQ, GQ)} a parameter separable
decomposition of G.

Obviously, such a decomposition does not necessarily exist for any given operator G and
even if one does exist, this does not mean that we have ready access to it. In this case
one can employ interpolation techniques, such as the (discrete) empirical interpolation
method ((D)EIM) (cf. [60, 20]) to generate an approximation of G which is parameter
separable. We further note, that the approximations provided by the DEIM result in
(affine) linear operators Gq : X → Y . Hence, we assume in the context of this section
that G is parameter separable and that the operators Gq are (affine) linear. This property
is now inherited by both its derivative DG as well as the reduced problem operator GN .

Lemma 5.5.5. If G is parameter-separable with a decomposition {(Θ1, G1), . . . , (ΘQ, GQ)},
then both DG and GN are parameter separable with the same coefficient functions Θq and
operators given by

GN,q := ΠYN (Gq|XN ) and (DG)q := DGq.

Proof. For GN the above follows directly from the definition of the reduced problem
operator, the linearity of the restriction on XN and the linearity of the projection onto
YN . For DG the result is a direct consequence of the linearity of the differentiation
operator.

In a similar fashion one can show that the residual R(µ) of the ALP and the projection
ΠYEM [DG(·;µ)|x̂(µ)]

∣∣∣
XEM

possess a parameter separable decomposition.
In the context of the RB approximation procedure and our improved error quantification

method, these results enable us to efficiently compute the relevant quantities. To this end
we assume now that X is a finite but high-dimensional vector space. Hence we can identify
X = Rd and the elements of the reduced spaces XN and XE

M can be represented via

x = VXNxN and x = VXEMx
E
M ,

where xN ∈ RN , xEM ∈ RM and matrices VXN ∈ Rd×N , VXEM ∈ Rd×M representing a basis of
XN and XE

M , respectively. Similarly, we can represent YN and YEM as coefficient matrices
VYN ∈ Rd×N and VXEM ∈ Rd×M pertaining to (orthogonal) basis of the respective spaces.
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5.5 Highly accurate error bounds in the reduced basis context

The operators in the parameter separable decomposition of GN then take the form

GN,q = V T
YNGqVXN ∈ RN×N

and since they are parameter independent, and small, they can be precomputed in the
offline phase and stored for later use during the online phase. In total, we can now
provide a more detailed overview of how the different parts of the approximation and
error quantification procedure can be split into an offline and online phase:

(a) offline phase:

• If necessary: Compute a parameter separable decomposition of G via DEIM

• Compute a reduced space XN with suitable representation via VXN as well as
YN and VYN

• Compute the low-dimensional matrix representations of the parameter inde-
pendent operators in the decomposition for GN

• Compute a reduced space XE
M with representation VXEM as well as YEM and VYEM

• Compute the low-dimensional matrix representations of the parameter inde-
pendent operators for both the reisudal R(µ) and the problem operator
ΠYEM [DG(·;µ)|x̂(µ)]

∣∣∣
XEM

of the reduced ALP

• If possible: compute global lower (upper) bounds for the inf-sup constant (sta-
bility constant)

(b) online phase (for a given parameter µ ∈ P):

• Assemble GN via its parameter separable decomposition

• Solve the reduced problem and obtain the approximation x̂(µ)

• Assemble the reduced ALP for the current approximation x̂(µ) using the pa-
rameter separable decomposition

• Solve the reduced ALP to obtain Ê(µ).

• Compute εub(µ) using the parameter separability of the residual R(µ)

• Evaluate the error bound

5.5.5 Basis generation

In this section we take a closer look at how suitable reduced bases XN can be constructed.
Furthermore, we set the projection space YN to be qual to the reduced spaces, i.e. YN =
XN . We focus on snapshot based techniques [8]. In this case the subspace is contained
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5 Rigorous and effective a-posteriori error bounds for nonlinear problems

in the span of several true solutions, i.e. XN ⊂ span({x∗(µ1), . . . , x∗(µN)}), so called
snapshots, for suitable parameters µ1, . . . , µN ∈ P . Two popular methods which make use
of this principle are the proper orthogonal decomposition (POD) method [105] and those
contained under the framework of greedy algorithms [104]. We will roughly summarize
these two approaches, however, we refer to the existing literature for a more detailed
introduction into the topic. The POD works as follows:

Given a set of snapshots S = {x∗(µ1), . . . , x∗(µn)}) ⊂ X we can construct the corre-
sponding empirical correlation operator R : X → X via

R(x) = 1
n

n∑
i=1

x∗(µi)〈x∗(µi), x〉X .

It immediately follows that R is self-adjoint and since it has a finite-dimensional range,
it is also compact. Thus, by the spectral theorem, there exists an orthornomal basis
{φ1, . . . , φn} for the range range(R) = span(S) of the empirical correlation operator, such
that φi is an eigenvector of R to the real eigenvalue λi, where the eigenvalues are in
descending order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The subspaces VN := span({φ1, . . . , φN})
stemming from this procedure now possess a best-approximation property with respect
to the squared error, i.e.

inf
V⊂X ,dim(V )=N

1
n

n∑
i=1
‖x∗(µi)− ΠV x

∗(µi)‖2
X = 1

n

n∑
i=1
‖x∗(µi)− ΠVNx

∗(µi)‖2
X =

n∑
i=N+1

λi.

In other words, VN is the subspace of dimension N , that provides an optimal approxima-
tion of the given data with regards to the sum of squared errors. Furthermore, the quality
of the approximation is quantified by summing the remaining eigenvalues of eigenfunctions
not included in the approximation space VN . If we now assume x∗(µ) ∈ span(S), then
VN is a suitable choice for an approximation space, provided that N is chosen sufficiently
large such that ∑n

i=N+1 λi is small. Unfortunately, the empirical correlation operator R
acts on the high- or even infinite-dimensional space X and therefore, the calculation of the
basis elements φi by solving a corresponding eigenvalue problem is infeasible. Fortunately,
this can be circumvented as each eigenvector φi can be related to the eigenvectors of the
gram-matrix corresponding to the snapshots in S, given by

AS = (〈x∗(µi), x∗(µj)〉X )ni,j=1 ∈ Rn×n.

The gram-matrix AS now has the eigenvalues λi·n and let vi = (vi,1, . . . , vi,n)T ∈ Rn denote
the eigenvector for the eigenvalue λi ·n. Then we have the following representation of the
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eigenvector φi of R:

φi =
n∑
j=1

vi,jx
∗(µj).

In contrast to the eigenvalue problem for R, the eigenvalue problem for the gram-matrix
AS is only of dimension n and therefore more readily solvable. To further illustrate the
above connection, let us consider that X is a finite (albeit high-dimensional) Hilbert-
space, i.e., we can represent X via Rd for some d ∈ N. Combining the snapshots
x∗(µ1), . . . , x∗(µn) into a matrix

XS =
(
x∗(µ1) · · · x∗(µn)

)
∈ Rd×n,

the correlation operator R and the gram-matrix then take the form

R = 1
n
XSX

T
S ∈ Rd×d and AS = XT

SXS ∈ Rn×n.

By the above, we can observe that the optimal approximation spaces VN can be computed
by performing a singular value decomposition for the snapshot-matrix XS, where the
singular values σi correspond to σ2

i = λin.
Please note, that the procedure outlined above works quite well if n � d, i.e. if the

snapshot-matrix XS is skinny. In cases where much more snapshots are available one
might have to consider more sofisticated methods such as the hierarchical approximate
POD [48].
We summarize the POD procedure in the following algorithm

Algorithm 6: Proper orthogonal decomposition
Data: Snapshots S = {x∗(µ1), . . . , x∗(µn)}, tolerance ρ > 0.
Result: Subspace XN .

1 Compute singular values σ1, . . . , σn and corresponding singular vectors v1, . . . , vn

of the snapshot matrix XS corresponding to the snapshot set S, initialize N = 0
and X0 = {};

2 while ∑n
i=N+1 σ

2
i > ρ do

3 Extend subspace XN+1 = XN
⊕ span(vN+1);

4 Increment N := N + 1;
5 end

Greedy procedures for the construction of a subspace XN are based on the same principle
as the greedy algorithms outlined in the first part of this dissertation. However, we
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shall recall the specific structure in the context of the RB framework: Starting from
an initial subspace X0 ⊂ X and a finite set of training parameters Ptrain ⊂ P , the
maximum approximation error is sought by evaluating an error indicator δ(·;µ) : X → R+

for all approximation with parameters in the training set Ptrain. The subspace is then
incrementally extended with the element that maximizes the error indicator until a certain
tolerance is met. The procedure is outlined in the following algorithm

Algorithm 7: Greedy algorithm(Ptrain,ρ,δ,X0)
Data: Training set Ptrain, greedy tolerance ρ, error indicator δ, initial subspace X0.

Result: Subspace XN .
1 Initialize N = 0, solve the full problem for x∗0 ∈ X0 while

maxµ∈Ptrain δ(x∗N(µ);µ) > ρ do
2 Set µ∗ := arg maxµ∈Ptrain δ(x∗N(µ);µ);
3 Solve the full problem G(x;µ∗) = 0 for x∗N+1(µ∗) ∈ X ;
4 Extend subspace XN+1 := XN

⊕ span(x∗N+1(µ∗));
5 Increment N := N + 1;
6 end

Please note that the error indicator δ(·;µ) is just that; an indicator. This means
that δ(·;µ) does not necessarily have to be a (rigorous) bound on the approximation
error, however, it should still capture the behaviour of the (true) error. This relaxation
is allowed, as the computation of high quality error bounds is often computationally
expensive, i.e. time consuming, or infeasible. Nonetheless, it can be favourable to use a
more expensive error indicator δ(·;µ), since they should lead to an approximation space
XN of superior quality.
For the approximation of the ALP, we have to identify another reduced space XE

M . We
proceed analogously to the construction of XN = YN by first restricting ourselves to the
case XE

M = YEM . The RB space is then constructed by another greedy algorithm, where
the original problem (P (µ)) is replaced by the ALP (PE(µ)). In a similar fashion, we
have to chose a suitable tolerance and a suitable error indicator. In our case we use

δ(Ê(µ);µ) := ∆E
RB =

‖R(µ)‖Y
βlb(µ)

which corresponds to the standard RB error bound for the reduced basis generation of
the ALP.
Preferably, we would like to use our improved error bounds ∆ub(µ) or ∆̂ub(µ) as error

indicators in the construction of the reduced space XN via the greedy algorithm. However,
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the ALP (PE(µ)), and henceforth, the space XE
M are conditional on the reduced space XN .

Therefore, we would need to reconstruct individual spaces XE
M in each iteration during the

construction of XN , i.e. in each greedy-step a separate full greedy algorithm would have
to be performed. Unfortunately, this proves to be highly computationally expensive and
thus we defer to a sequential computation of the spaces which makes the construction of
both spaces computationally feasible. The pseudocode for this sequential double greedy
algorithm is outlined in Algorithm 8.

Remark 5.5.6. The computational efficiency of our a-posteriori estimator is directly in-
fluenced by dim(XE

M). Thus, if one wants to achieve a fast online phase including error
quantification, one might have to make sacrifices in the quality of the error space such
that the computational overhead is comparable to the computational demands required
for solving the reduced problem (PN(µ)).

Algorithm 8: Sequential Double Greedy algorithm(Ptrain, PEtrain, ρ, ρE, δ, δE, X0,
XE

0 ).
Data: Training sets Ptrain,PEtrain, greedy tolerances ρ, ρE, error indicators δ, δE,

initial subspaces X0,XE
0 .

Result: Subspaces XN and XE
M .

1 Initialize N = 0, x∗0 ∈ X0. while maxµ∈Ptrain δ(x∗N(µ);µ) > ρ do
2 Set µ∗ := arg maxµ∈Ptrain δ(x∗N(µ);µ);
3 Solve full problem G(x;µ∗) = 0 for x∗N+1(µ∗) ∈ X ;
4 Extend subspace XN+1 := XN

⊕ span(x∗N+1(µ∗));
5 Increment N := N + 1;
6 end
7 Initialize M = 0, E0 ∈ XE

0 . while maxµ∈PEtrain
δE(EM(µ);µ) > ρE do

8 Set µ∗ := arg maxµ∈PEtrain
δE(EM(µ);µ);

9 Compute the approximation x̂(µ∗) ∈ XN ;
10 Solve the full problem DG|x̂(µ∗) (E;µ∗) = G(x̂(µ∗);µ∗) for EN+1(µ∗) ∈ X ;
11 Extend subspace XE

M+1 := XE
M

⊕ span(EN+1(µ∗));
12 Increment M := M + 1;
13 end

5.6 Experimental validation for RB approximations

In this section we evaluate the proposed a-posteriori error estimation theory in the context
of the RB method. The first example is a well-known thermal-block test case, modelling a
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ΓN,0
ΓN,1

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

ΓD

Figure 5.2: Illustration of the thermal block setting used in the examples.

parametric heat conduction problem on the unit square. Here we will see that by making
use of the proposed method, we are able to reach effectivities arbitrarily close to one. The
second example shows the application of the framework to a nonlinear finite-dimensional
problem that stems from a semi-discretized parametric PDE with a non-variational finite
difference (FD) discretization. All examples are implemented in the toolbox RBmatlab1

and were run on a machine with an Intel Core i7-6700 CPU with 16GB RAM in MATLAB
2019a. In all experiments, the test parameters are distinct from the training parameters.

5.6.1 Linear test case: Thermal block model

We consider the thermal block example, which was previously used in Section 4.4. We re-
capitulate the problem description in the following and make slight alterations to describe
it in a more general setting. An Illustration of the specific setting used in the numerical
experiments is given in Figure 5.2. It consists of a steady linear heat equation on the
unit square Ω = (0, 1)2, which is divided into B := B1 · B2 subblocks, where B1, B2 ∈ N
describe the number of subblocks per dimension. We denote the subblocks by Ωi for
i = 1, . . . B, counted row-wise starting from the left bottom. We prescribe a unit flux into
the domain on the bottom boundary, which is denoted as ΓN,1 with unit outward normal
n(ξ), where ξ ∈ Ω indicates the spatial variable. The left and right boundary part ΓN,0 is
insulated, which is modeled by a zero Neumann boundary condition and the top Dirichlet
boundary ΓD has constant 0 temperature. The parametric PDE for the temperature field

1http://www.morepas.org
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u(·;µ) : Ω→ R for this example is given as

−∇ · (κ(ξ;µ)∇u(ξ;µ)) = 0, ξ ∈ Ω,
u(ξ;µ) = 0, ξ ∈ ΓD,

(κ(ξ;µ)∇u(ξ;µ)) · n(ξ) = i, ξ ∈ ΓN,i, i = 0, 1,

where we define the heat conductivity function

κ(·;µ) : Ω→ R+, κ(ξ;µ) :=
B∑
i=1

µiχΩi(ξ),

using the indicator function χA for sets A ⊂ Ω . The parametric domain for this problem is
given as P := [1/µmax, µmax]B for some µmax > 1. With the function space X = H1

D(Ω) :=
{v ∈ H1(Ω) | v|ΓD = 0} and its dual X ′, we can define a weak formulation of the above
PDE via

For µ ∈ P find u(µ) ∈ X : a(u(µ), v;µ) = f(v;µ), ∀v ∈ X ,

where the bilinear form a(·, ·;µ) : X × X → R and the right-hand side f : X → R are
given by

a(u, v;µ) =
∫

Ω
κ(ξ;µ)∇u(ξ) · ∇v(ξ)dξ

f(v;µ) =
∫

ΓN,1
v(ξ)dξ.

Following the results of Section 5.5.3, the parametrized problem operatorG(·;µ) : X → X ′

is now given by

G(u;µ)(v) = a(u, v;µ)− f(v;µ).

Please note, that by definition, we have

a(u, v;µ) =
∫

Ω
κ(ξ;µ)∇u(ξ) · ∇v(ξ)dξ =

∫
Ω

(
B∑
i=1

µiχΩi(ξ)
)
∇u(ξ) · ∇v(ξ)dξ

=
B∑
i=1

µi

∫
Ωi
∇u(ξ) · ∇v(ξ)dξ =

B∑
i=1

µiai(u, v).

Hence a and consequently G are parameter-separable as defined in equation (5.32).
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We further equip the space X with the norm

‖u‖X = ‖u‖H1
D(Ω) =

(∫
Ω
∇u(ξ) · ∇u(ξ)dξ

)1/2
.

It is a well-known fact that for every µ ∈ P this problem possesses a unique solution
u∗(µ) ∈ X . In the later analysis, we also consider the so-called energy norm which, for a
fixed parameter µ̄ ∈ P , is given by

‖u‖µ̄ = (a(u, u; µ̄))1/2 .

We remark, that the above norm is well-defined as the bilinear form a is coercive for every
µ ∈ P with respect to the norm on X i.e.

a(u, u, µ) ≥ β(µ) ‖u‖2
X ≥ βlb(µ) ‖u‖2

X

Recalling the results of Section 5.5.3, namely equation (5.27), this guarantees the in-
vertibility of DG at every point and provides a bound on the stability constant via
γub(µ) ≤ βlb(µ)−1. We further remark, that the standard norm we chose on X is just a
special case of the energy norm, where µ̄ is a vector whose components are all 1.

For our first test we pick B1 = B2 = 3 which leads to a total of 9 different parameters.
Furthermore, we choose µmax = 10 resulting in P = [0.1, 10]. For the truth-approximation
we apply a finite-element approximation of the PDE using piecewise linear elements. This
results in a d = 3721 dimensional problem. The basis VXN of the RB space XN is then
computed via the greedy algorithm (Algorithm 7), where we have chosen a tolerance
ρ = 10−3 and a training set Ptrain consisting of 1000 randomly selected parameters. For
the error indicator we use the standard RB error bound, i.e.

δ(û(µ)) := ∆RB(µ) = ‖a(û(µ), ·;µ)− f(·;µ)‖X ′
βlb(µ) ≤ γub(µ) ‖G(û;µ)‖X ′

which yields a basis of size N = 62.

As described in Algorithm 8, we again employ a greedy algorithm for the construction
of the reduced space XE

M for the approximation of the ALP

DG|û(µ) (E(µ)) = G(û(µ);µ),

where û(µ) ∈ XN denotes the RB-approximation using the RB space XN . For the greedy
algorithm, we again choose the standard RB error bound for the ALP as an error indicator,
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i.e.

δE(µ) :=

∥∥∥DG|û(µ) (Ê(µ))−G(û(µ))
∥∥∥
X ′

βlb(µ) .

As a training set, we again choose Ptrain consisting of 1000 randomly selected parameters.
For the tolerance, we chose ρE = 10−8. Such a small tolerance is required, as an empty
initialization, i.e. Ê(µ) = 0 already leads to

δE = ‖G(û(µ))‖X ′
βlb(µ) = δ(µ) ≤ ρ = 10−3.

In other words, we can interpret the above as a continuation of the greedy for the original
problem. We can observe this in the decay of the maximum error indicator for increasing
basis size, which is depicted in Figure 5.3. This basis construction results in a subspace
XE
M of dimension M = 118
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Figure 5.3: Decay of error indicator for the primal greedy and the greedy for the ALP.

In the following, we compare the improved error estimation techniques, that were pre-
sented in the previous sections of this thesis, to the standard error bounds, that are very
widely used in the RB context. As a first test, we use the H1

D(Ω)-norm for the evalua-
tion of the error bound and pick 20 random test parameters for the evaluation. For this
test, we calculate the exact value of the stability constant γub(µ) := γ(µ) by solving a
d-dimensional eigenvalue problem. While this is obviously not online efficient, we still
make use of the explicit calculation of the stability constants as the purpose of this first
test is to solely demonstrate the improved quality of the error estimates. The results are
presented in Figure 5.4, where we plotted the error, the standard RB bound, as well as
our improved bounds for various sizes of the approximation space XE

M corresponding to
different thresholds in the greedy tolerance ρE.
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Figure 5.4: Test 1: Absolute error measured in the H1
D(Ω)-norm for 20 random test pa-

rameters.

We recall, as shown in (5.28), that the standard RB bounds corresponds to the split
bound. The results in Figure 5.4 show a very large overestimation in the range of 10−100
for all test parameters. Which confirms our theoretical findings in (5.29) where we saw
that the effectivity of the standard RB bound is bounded by

∥∥∥DG|−1
û(µ)

∥∥∥
L(X ′,X )

∥∥∥DG|û(µ)

∥∥∥
L(X ,X ′)

≤ max(µ)
min(µ) ≤ 100.

For the above we made use of the fact, that

inf
u∈X

sup
v∈X

a(u, v;µ) ≥ min(µ) ≥ 1
10

sup
u∈X

sup
v∈X

a(u, v;µ) ≤ max(µ) ≤ 10

which follows directly from the parameter-separable decomposition of the bilinear form.
In the same figure, we can see that the approximation of the residual ε(µ) =

∥∥∥DG|−1
û(µ) (G(û(µ)))

∥∥∥
X
,

is improved for larger space dimensions M , which leads to an increased quality of the im-
proved error bounds. In particular, for the tolerances ρE ∈ {10−6, 10−7, 10−8} (M ∈
{74, 101, 118}), we get an almost exact error prediction.
To verify the bounds on the effectivity derived in Lemma 5.4.3, we compute the bounds

as well as the actual effectivites for the reduced spaces relating to the tolerances ρE ∈
{10−5, 10−6, 10−7}. The results are plotted in Figure 5.5. We can see that for increasing
space dimension, the quality of the effectivity bounds improves and all theoretical bounds
are verified.
We recall that for the effectivity bound to hold, we need the inequality

2γ(µ) ‖R(µ)‖X ′ = 2γ(µ)
∥∥∥DG|û(µ) (Ê(µ))−G(û(µ))

∥∥∥
X ′
≤
∥∥∥Ê(µ)

∥∥∥
X
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Figure 5.5: Test 1: Effectivity of the H1
D(Ω)-norm error bound for 20 random test param-

eters.

to be satisfied. The values of the left- and right-hand side for varying RB space dimensions
of XE

M are displayed in Figure 5.6. We can see, that once the space XE
M is sufficiently rich,

here M ≥ 40 (ρE ≤ 10−5), the bounds of Lemma 5.4.3 apply. Furthermore, for increasing
basis size, the quotient between the left- and right-hand side tends to 0, which in turn
leads to effectivities, and bounds on the effectivities, that are close to 1.
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Parameter index

∥∥∥Ê∥∥∥
X2γ(µ) ‖R(µ)‖X ′ (M = 20)

2γ(µ) ‖R(µ)‖X ′ (M = 40)
2γ(µ) ‖R(µ)‖X ′ (M = 60)
2γ(µ) ‖R(µ)‖X ′ (M = 80)
2γ(µ) ‖R(µ)‖X ′ (M = 100)
2γ(µ) ‖R(µ)‖X ′ (M = 118)

Figure 5.6: Comparison of the non-split residual approximation and the weighted error
residual for approximation space size N = 62 and varying error space sizes
M .

For the next test, we pick a larger test set Ptest ⊂ P consisting of 100 randomly
selected parameters. We compare the error estimation for the H1

D(Ω) and energy norm
‖·‖µ̄, where we pick the parameter µ̄ = (1, 2, 1, 2, 1, 2, 1, 2, 1)T ∈ P . Furthermore, we
artificially worsen our stability constant by multiplying them with λ ∈ {1, 10, 100}. This
represents an overestimation of the stability constant by the corresponding factor λ, i.e.
γ(µ) ≤ γub(µ) := λ · γ(µ), and is used to quantify the influence of possible overestimation
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5 Rigorous and effective a-posteriori error bounds for nonlinear problems

on the quality of our error bounds. The mean and maximum value of the effectivities for
varying space dimensions M are displayed in Table 5.1. The first row corresponds to the
classic RB error bounds, which can be interpreted as using an approximation space XE

M of
dimension 0. In all cases we can observe a decay for decreasing tolerances ρE, i.e. richer
subspaces XE

M for the ALP. In particular, we obtain exact error prediction for the largest
basis (ρ = 10−8) and for λ = 1 for both, the H1

D(Ω) and the energy norm. As expected,
the influence of the overestimation factor λ has significantly less impact on the improved
error bounds than on the classical RB error bounds. We recall that the RB error bounds
scale linearly with λ, hence for λ = 100 the mean effectivity would increase from 64.27 to
6427 in the H1

D(Ω) norm, whereas for the improved error bound (for M = 118), we only
observe an increase from 1 to 1.22, i.e. a factor of 1.22.

Maximum Mean
ρE M λ ‖·‖H1

D(Ω) ‖·‖µ̄ ‖·‖H1
D(Ω) ‖·‖µ̄

1 64.27 42.83 9.22 9.24
1 · 10−4 21 1 9.94 7.02 2.29 2.28
1 · 10−5 45 1 2.86 2.25 1.19 1.18
1 · 10−6 74 1 1.31 1.21 1.02 1.02
1 · 10−7 101 1 1.03 1.02 1 1
1 · 10−8 118 1 1 1 1 1
1 · 10−8 118 10 1.02 1.01 1 1
1 · 10−8 118 100 1.22 1.15 1.02 1.02

Table 5.1: Test 1: Maximum and mean effectivity of the error estimate for the thermal
block example in three different norms. The first row shows the results for the
standard RB bound ∆RB, the remaining rows for the proposed improved error
estimate.

Finally, we want to investigate the relation between the dimesnion of the RB spaces XN
and XM when a certain effectivity is prescribed. To this end, we run the sequential double
greedy algorithm (Algorithm 8) for N ∈ {10, 20, 30, 40, 50, 60}. We then select the basis
size M of XM in such a way that the effectivity of the error bound ∆ub is smaller than
8, 4, 2 or 1.1 on a test set of 50 randomly chosen parameters. The results are depicted in
Figure 5.7. For the cases eff ≤ 4, 2, 1.1, we notice an initial linear correlation between N ,
M . However, for larger values of N , a decay in the value of M can be observed. This
can be attributed to the qualitatively better approximation Ê of E for larger values of
N . For the same pairs of N,M we average the computation time for the calculation of
the approximation uN and the classical error bound, and the computation time for the
calculation of uN combined with the improved error bound ∆ub. The computation time is
then averaged over 200 random parameters. The relative computational overhead, i.e., the
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Figure 5.7: Basis size M(N) required to achieve prescribed effectivities.
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Figure 5.8: Relative overhead in the computation of the improved error bound compared
to the standard RB bound.

quotient between the standard error quantification and the improved error quantification
is plotted in Figure 5.8. In the cases eff ≤ 8, 4, 2 we observe a relative overhead between
1.5 and 3 for all combinations of N and M . For the case eff ≤ 1.1, however, we observe
a drastic increase in the relative overhead as both, N and M increases. This can be
attributed to two reasons. First, as N increases the number of elements in the parameter-
separable decomposition for the ALP increases, which makes the evaluation of the residual
R(µ) more computationally expensive. Second, as both N and M increase, the majority
of the computation time is spent on solving the reduced problem and the reduced ALP.
Hence we can see a decline in the computational overhead after N,M cross a certain
threshold.
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5 Rigorous and effective a-posteriori error bounds for nonlinear problems

5.6.2 Nonlinear finite-dimensional parametric problem

As a second example we consider the infinite-dimensional problem described by a nonlinear
reaction-diffusion-advection equation in a one-dimensional domain Ω := (0, 1). The PDE
is given by

−µ1∂ξξu(ξ;µ) + ∂ξu(ξ;µ)− µ2u(ξ;µ)2 = f(ξ), ξ ∈ Ω.
u(0;µ) = u(1;µ) = 0,

with parameters µ = (µ1, µ2)T ∈ P := [0.1, 1] × [1, 10]. Here µ1 controls the diffusivity
of the problem, whereas µ2 changes the influence of the nonlinearity. The source term
is given by f(ξ) = sin(ξπ)2 for ξ ∈ Ω. To arrive at a finite-dimensional problem, we
discretize the above PDE in space with a simple finite-difference scheme with upwind
flux. This results in a d = 400 dimensional nonlinear problem of the form G(x;µ) = 0
with G(·;µ) : Rd → Rd given by

G(x;µ) := A(µ1)x+ µ2g(x)− f,

with A(µ1) ∈ Rd×d, g : Rd → Rd and f ∈ Rd. In this case, the Banach spaces are given by
X = Y = Rd which we equip with the standard Euclidean norm. We construct a subspace
XN of dimension N = 6 by applying the POD algorithm (Algorithm 6) to a collection
of snapshots computed for 50 randomly selected parameters in the parameter domain P .
Note that this does not yield very accurate results when computing the RB-approximation.
Nonetheless, it is sufficient to show the benefit of the improved error bound theory pre-
sented in Section 5.2. In Figure 5.9, the solutions and RB-approximations for three
different parameters are depicted.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

ξ

u
(ξ

;µ
)

µ = (0.1, 10)T
µ = (0.1, 1)T
µ = (0.3, 4)T

Figure 5.9: Example solutions for three different parameters.
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Error bound Effectivity bound
M % valid max mean % valid max mean

0 67 0.87 0.16
5 67 0.83 0.15 0

10 74 0.93 9.24 · 10−2 0
15 82 0.27 1.58 · 10−2 59 2.93 2.23
20 83 0.59 1.28 · 10−2 100 1.86 1.02
25 83 0.59 1.27 · 10−2 100 1.84 1.01

Table 5.2: Percentage of parameters for which the error bound and effectivity bound are
valid including their respective maximum and mean values.

For evaluating the error bound we have to calculate DG|x̂(µ), which yields

DG|x̂(µ) (y) = A(µ1)y + 2µ2(x̂(µ) ◦ y),

where (a ◦ b)i := aibi for a, b ∈ Rd denotes the component-wise product. From the
explicit formula we immediately get L(α;µ) ≤ 2µ2α =: Lub(α). In all of the following
computations the stability constant γ(µ) =

∥∥∥DG(·;µ)|−1
x̂

∥∥∥ is calculated exactly by solving
a high-dimensional eigenvalue problem.
For the application of the error bound, we need to construct a RB space XE

M for the ALP.
For this, we compute snapshots of the ALP for 100 random parameters and subsequently
use the POD algorithm.
We recall, that for the error bound to hold, a validity criterion of the form

τ(µ) = 2γ(µ)Lub(εub(µ)) ≤ 1

has to be satisfied. Hence, we will investigate the influence of the improved error estima-
tion on the validity criterion. For this purpose, we evaluate the validity criterion for 200
random parameters and for varying dimensions M ∈ {0, 5, 10, 15, 20, 25} of the reduced
space XE

M . The choice M = 0 reflects the standard RB choice of εub(µ) = εsplit(µ), i.e.
the standard RB bound. The percentage of parameters for which the validity criterion
holds, as well as the maximum and mean value of τ(µ) on these admissible parameters, is
shown in Table 5.2. Furthermore, the combination of Corollary 5.3.10 and Lemma 5.4.3
provides us with a bound on the effectivity, if a second validity criterion (see equation
(5.21)) is met. The percentage of parameters for which, on top of the error bound, this
additional bound on the effectivity holds are displayed alongside the mean and maximum
effectivity bound in Table 5.2
As we can see, the percentage of parameters for which the error bound is valid increases
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with the dimension of the RB space XE
M as we generate tighter bounds on ε(µ) which in

turn leads to smaller values of L(εub) and subsequently to smaller values of τ(µ) as seen
in the columns reflecting the mean and max value of τ(µ). In total we were able to
increase the number of admissible parameters by 16%. However, we are not able to
reach 100% for all parameters as the space XN is too coarse, thus we will eventually
reach a bottleneck regardless of the dimension of XE

M . For the effectivity bound, we
can see that the percentage of parameters for which the bound holds, increases with the
dimension of XE

M as well. Here the percentage does not represent the percentage of all 200
random parameters but only the percentage for which the respective error bound already
holds. Similar to what we have seen in Section 5.6.1, we reach excellent effectivities for
increasingly richer approximation spaces.

5.7 ALP Estimator for LTI-systems

In this section we apply the methodology developed in Section 5.2 to linear time invariant
(LTI) systems. To this end let I = [0, T ] ⊂ R, T > 0 denote a time interval, let A ∈ Rn×n

be a system matrix and b : I → Rn be an input. We now consider the following initial
value problem (IVP)

x′(t) = Ax(t) + b(t), x(0) = x0 = 0 ∈ Rn (5.33)

which can be reformulated as the integral equation (IE)

x(t) =
t∫

0

Ax(s) + b(s)ds. (5.34)

Note that initial values x0 6= 0 are possible, however, we can transform any LTI-system
into the above form simply by setting replacing x(t) with x(t) − x0. Furthermore, both
the IVP and IE share the same unique solution.
In order to apply the method developed in Section 5.2, we first have to reformulate the

IVP (5.33) or the IE (5.34) to a zero value problem

G(x) = 0

for a suitable operator G : X → Y and suitable Banach spaces X , Y . Since x(t) needs to
be continuously differentiable for (5.33) to be fulfilled, the choice

X1 := C1(I,Rn) = {f : I → Rn | f is continuosly differentiable and f(0) = 0}
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paired with the norm

‖x‖X1
:= sup

t∈I
‖x(t)‖2 + sup

t∈I
‖x′(t)‖2

seems to be a reasonable choice. Note that X1 paired with the above norm is in fact a
Banach space. On the other hand, we can drop the assumption of differentiability for the
IE (5.34) and therefore the choice

X2 := C(I,Rn) = {f : I → Rn | f is continuous}

paired with the norm

‖x‖X2
:= sup

t∈I
‖x(t)‖2

provides us with a suitable Banach-space. In both cases, ‖·‖2 refers to the Euclidean-norm
on Rn. Based on the IVP and IE, we select the functions G1 : X1 → Y1 and G2 : X2 → Y2

defined by

G1(x)(t) = x′(t)− Ax(t)− b(t) ∈ Y1 := C(I,Rn).

and

G2(x)(t) = x(t)−
t∫

0

Ax(s) + b(s)ds ∈ Y2 := X2 = C(I,Rn).

In other words Y1 = Y2 = X2 and all spaces are equipped with the same norm ‖·‖X2
.

As mentioned before, any solution x∗ of G1(x) = 0 is a solution of G2(x) = 0 and vice
versa, provided b is a continuous function. However, X1 provides us with a stronger norm
in the sense that for a given approximation x̂ any bound on the error e = x̂− x∗

‖e‖X1
≤ ∆(x̂)

gives us information on both, the difference in the values as well as the derivatives. This
is not the case for X2. Of course, this also requires that any approximation procedure that
generates a suitable x̂ has to guarantee that this is both, differentiable and satisfies x̂(0) =
x0. In this sense, both problem settings described by G1 and G2 have their individual
benefits and drawbacks In order to apply the error bound given in Theorem 5.3.1, we first
need to show that both, DG1|x̂ and DG2|x̂, are invertible.

Lemma 5.7.1 (Regularity of DG1 and DG2). For any approximation x̂1 ∈ X1 and x̂2 ∈
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X2, the Fréchet derivatives DG1|x̂1
and DG2|x̂2

are invertible and the respective inverse is
given by

DG1|−1
x̂1

(y) =
t∫

0

eA(t−s)y(s)ds (5.35)

and

DG2|−1
x̂2

(y) = y(t) +
t∫

0

eA(t−s)Ay(s)ds (5.36)

where eA denotes the matrix-exponential.

Proof. Since both G1 and G2 are (affine) linear, their derivatives are given by

DG1|x̂1
(x)(t) = x′(t)− Ax(t)

and

DG2|x̂2
(x)(t) = x(t)−

t∫
0

Ax(s)ds.

As mentioned before, the IVP and IE are equivalent formulations of the same problem.
The same holds true for the equations for the problems DG1|x̂1

(x) = 0 and DG2|x̂2
(x) =

0. In particular, both share the same unique solution x = 0. Therefore, both derivatives
are injective. For the surjectivity, we get by direct computation for any y ∈ Y1,Y2,
respectively

DG1|x̂

 t∫
0

eA(t−s)y(s)ds
 = A

t∫
0

eA(t−s)y(s)ds+ y(t)− A
 t∫

0

eA(t−s)y(s)ds


= y(t)

for DG1 and

DG2|x̂

y(t) +
t∫

0

eA(t−s)Ay(s)ds
 = y(t) +

t∫
0

eA(t−s)Ay(s)ds

−
t∫

0

A

 u∫
0

eA(s−u)Ay(u)du
 ds

= y(t)
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since

t∫
0

A

 u∫
0

e(s−u)Ay(u)du
 ds =

t∫
0

t∫
s

AeAuduAy(s)ds =
t∫

0

eA(t−s)Ay(s)ds.

The functions G1 and G2 are both (affine) linear which is why the (modified) validity
criterion of Theorem 5.3.1 is always satisfied. We still require (bounds on) the stability
constants if we want to apply the improved and computable error bounds of Theorem 5.3.9,
where the upper bound on the (non-split) residual is computed according to Lemma 5.4.2.
For this purpose, we make use of the logarithmic norm νA (cf. [94, 44]) of the matrix A
which satisfies

∥∥∥eAt∥∥∥
2
≤ eνAt (5.37)

and which, in case of the spectral norm, can be computed by

νA = λmax

(
A+ AT

2

)
.

Lemma 5.7.2 (Bound on the stability constants for G1 and G2). The stability constant
of G1 and G2 can be bounded as follows

γ1(x̂1) =
∥∥∥DG1|−1

x̂1

∥∥∥
L(Y1,X1)

≤ 1 + sup
t∈I

t∫
0

‖eA(t−s)‖2ds

≤ γ1,ub(x̂) := 1 + eνAT − 1
νA

and

γ2(x̂2) =
∥∥∥DG1|−1

x̂2

∥∥∥
L(Y2,X2)

≤ 1 + sup
t∈I

t∫
0

‖AeA(t−s)‖2ds

≤ γ2,ub(x̂) := 1 + ‖A‖2
eνAT − 1
νA

.
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Proof. Using (5.35) and (5.37) we get

∥∥∥DG1|−1
x̂1

(y)
∥∥∥
X1

= sup
t∈I

∥∥∥∥∥∥
t∫

0

eA(t−s)y(s)ds
∥∥∥∥∥∥

2

+ sup
t∈I

∥∥∥∥∥∥ d
dt

t∫
0

eA(t−s)y(s)ds
∥∥∥∥∥∥

2

≤ sup
t∈I

t∫
0

∥∥∥eA(t−s)ds
∥∥∥

2
‖y‖Y1

+ ‖y‖Y1
≤ sup

t∈I

t∫
0

eνA(t−s)ds ‖y‖Y1
+ ‖y‖Y1

= ‖y‖Y1

(
1 + eνAT − 1

νA

)

Using (5.36) we get

∥∥∥DG2|−1
x̂2

(y)
∥∥∥
X2

= sup
t∈I

∥∥∥∥∥∥y(t) +
t∫

0

eA(t−s)Ay(s)ds
∥∥∥∥∥∥

2

≤ ‖y‖Y2
+ sup

t∈I

t∫
0

∥∥∥eA(t−s)A
∥∥∥

2
ds ‖y‖Y2

≤ ‖y‖Y2

1 + ‖A‖2 sup
t∈I

t∫
0

eνA(t−s)ds
 = ‖y‖Y2

(
1 + ‖A‖2

eνAT − 1
νA

)

Depending on the system matrix A, the above bounds might be rather pessimistic. In
particular, the second bound for γ2(x̂2) can have a devastating effect on the quality of the
error bound as it scales linearly with the largest singular value of A. Furthermore, they
are still expensive to evaluate as the computation of the logarithmic norm requires the
computation of the largest eigenvalue of the symmetric part of A.

In practice, we expect that γ1,ub(x̂) ≤ γ2,ub(x̂), and infer in light of Lemma 5.4.3,
tighter error bounds for the problem setting G1. We, however, stress again that this
direct comparison might be unsuited, as the norm ‖·‖X2

is weaker than the norm ‖·‖X1
.

In specific, the approach using G1 provides us with a bound on the sum of the error and
its derivative, and hence we can not infer any bound on just the error e = x̂− x∗, unless
we compute the (potentially worse) bound provided by using G2.

This is due to the fact that the setting of our original problem (P ) is quite restrictive
as we require the problem spaces X and Y to be Banach spaces. However, in view of
Theorem 5.3.1 this assumption was only necessary to guarantee the existence of a solution
G(x∗) = 0 in a neighbourhood of the approximation x̂. In case of the IVP (5.33) or the
equivalent IE (5.34), the existence of a (unique) solution x∗ is already guaranteed by the
Picard-Lindelöf-Theorem and consequently, we can achieve an error bound derived from
the same principle as using an ALP. For this purpose, let x̂ be such that x̂(0) = x0, then
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x̂ itself solves the IVP

x̂′(t) = Ax̂(t) + b(t) + r(x̂)(t), x̂(0) = x0

where the residual is given by

r(x̂)(t) = x̂′(t)− Ax̂(t)− b(t) (= G1(x̂)(t)).

The error e = x̂− x∗ now satisfies the IVP

e′(t) = Ae(t) + r(x̂)(t), e(0) = 0. (5.38)

Which has the unique solution

e(t) =
t∫

0

eA(t−s)r(x̂)(s)ds.

The above is precisely the ALP we derived in the case of G1. However, for this case we
now applied the norm of e in the space X1. However, using the above representation we
immediately get the following bound in the weaker norm on X2:

‖e(t)‖X2
≤

sup
t∈I

t∫
0

∥∥∥eA(t−s)
∥∥∥

2
ds
 ‖r(x̂)‖X2

This bound now corresponds to the bound, where we used the split-residual, and can
therefore be improved by yet again applying the key principle of the ALP framework to
the IVP (5.38). To see this, let ê be an approximation to (5.38) and let re(ê) denote the
corresponding residual given by

re(ê)(t) = e′(t)− Ae(t)− r(x̂)(t).

Then the error in the X2–norm is bounded by

‖e‖X2
≤ ‖ê‖X2

+
sup
t∈I

t∫
0

∥∥∥eA(t−s)
∥∥∥

2
ds
 ‖re(ê)‖X2

.

Once again, the above bound should be sharper, since we expect ‖re(ê)‖X2
� ‖r(x̂)‖X2

.

Please note that the process described above is analogous to the methodology we derived
in Section 5.2. The only difference is that we already assume the solvability of the given
problem and that the spaces X and Y are no longer Banach spaces but only normed
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spaces. Furthermore, many of the results of Section 5.2 have an analogue in the above
setting. We will summarize this in the following theorem

Theorem 5.7.3 (Error Bound using a generalized ALP). Let X , Y be two normed spaces
and G : X → Y a (problem) operator, such that the problem

Find x ∈ X such that G(x) = 0 ∈ Y

has a (unique) solution x∗ ∈ X . Furthermore, let A ∈ L(X ,Y) be an invertible linear
operator such that the error e = x∗ − x̂ for a given approximation x̂ ∈ X is bounded by

‖e‖X ≤ ∆̄(x̂) :=: C(x̂)
∥∥∥A−1(r(x̂))

∥∥∥
X
≤ C(x̂)

∥∥∥A−1
∥∥∥
L(Y,X )

‖r(x̂)‖Y (5.39)

where C(x̂) > 0 is a positive constant and r(x̂) is a residual depending on the approxima-
tion x̂. If Ê ∈ X is an approximation for the solution of the generalized ALP

A(E) = r(x̂),

with residual

R(Ê) = A(Ê)− r(x̂)

such that

2
∥∥∥A−1

∥∥∥
L(Y,X )

∥∥∥R(Ê)
∥∥∥
Y
≤
∥∥∥Ê∥∥∥

X
,

then the upper bound given by

∆̄ub(x̂) =
∥∥∥Ê∥∥∥

X
+
∥∥∥A−1

∥∥∥
L(Y,X )

∥∥∥R(Ê)
∥∥∥
Y

satisfies

∆̄(x̂) ≤ ∆̄ub(x̂) ≤ 3∆̄(x̂).

Proof. The proof is analogous to the proof of Lemma 5.4.3, where the upper bound on
the stability constant is replaced by the norm

∥∥∥A−1
∥∥∥
L(Y,X )

.

Remark 5.7.4. (a) We infer from Theorem 5.7.3 that the effectivity of the error bound
∆̄ub(x̂) is at most worsened by a factor 3, if the approximation for the generalized
ALP is of sufficient quality.
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5.7 ALP Estimator for LTI-systems

(b) Similar to the results in Section 5.2, we can replace
∥∥∥A−1

∥∥∥
L(Y,X )

by a suitable upper
bound.

(c) In the context of Section 5.2, we haveA = DG|x̂ and r(x̂) = G(x̂) and
∥∥∥A−1

∥∥∥
L(Y,X )

≤
γ1,ub(x̂) − 1. The above, however, shows that the principle behind the ALP is
applicable and beneficial whenever one has a bound of the form (5.39) where the
splitting step is executed.

(d) One can easily derive an extension of the above, if the bound takes the form

∆̄ub(x̂) =
m∑
i=1

Ci(x̂)
∥∥∥A−1

i (ri(x̂))
∥∥∥
Xi
,

i.e. the bound is in terms of multiple different linear operators Ai and residuals
ri(x̂) ∈ Yi, where Xi ⊂ X and Yi ⊂ Y are subspaces with (potentially different)
norms ‖·‖Xi and ‖·‖Yi .

5.7.1 RB approximations for LTI-systems

In the subsequent numerical experiment, we again want to make use of the RB frame-
work to derive suitable approximations to both, the problem, in its IVP or IE form, and
their corresponding (generalized) ALP. For this purpose, we roughly cover the essential
elements required for the approximation procedure, we will be using later. For a more
general overview of the different techniques developed for time-dependent problems, we
refer to [36, 42, 41].
For a parameter µ ∈ P we consider the parametric IVP

x′(t;µ) = A(µ)x(t;µ) + b(t;µ), x(0;µ) = x0 (5.40)

and its equivalent parametric IE

x(t;µ) = x0 +
t∫

0

eA(µ)(t−s)b(s;µ)ds. (5.41)

for t ∈ I := [0, T ], A(µ) ∈ Rn×n, b(t;µ), x0 ∈ Rn. Furthermore, we shift the problem
into a time-discrete setting, i.e. we discretize the time-interval I into K + 1 points and
the solution is then represented by its discrete trajectory x∗ = {x∗(k · ∆t)}Kk=0, where
∆t = T

K
. In this case, the problem space can be represented by X = Rn×(K+1). Similar

to the basis generation techniques presented in Section 5.5.5, we construct a reduced
basis by applying the POD-algorithm (Algorithm 6) to a collection snapshots, i.e. a
collection of discrete trajectories for different parameters. This results in a reduced basis
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represented by VXN ∈ Rn×N consisting of the orthogonal columns. The correpsonding
reduced basis space is given by all discrete trajectories, whose elements can be represented
as linear combinations of the columns of VXN . In other words XN = colspan(VXN ). If
x0 /∈ range(VXN ), we extend the basis accordingly. An approximation x̂ = VXNxN is then
computed by solving the reduced IVP

xN(t;µ) = V T
XNA(µ)VXNxN(t;µ) + V T

XN b(t;µ), xN(0, µ) = V T
XNx0

with the same (discrete-time) integrator which was used to obtain the snapshots for the
basis construction. In an analogous fashion, we construct the reduced space for the ALP

e′(t;µ) = A(µ)e(t;µ) + r(x̂(µ))(t), e(0) = 0.

Because of the equivalence of the parametric IVP (5.40) and the parametric IE (5.41), we
can use the same construction method for both settings.
As was already mentioned in Section 5.2, if the system matrix A(µ) and the input b(·;µ)

are parameter-separable this is inherited by all occurring residuals and therefore efficient
computations of the RB approximations and evaluation of the error bounds is possible.

5.7.2 Numerical Example

As an example we consider the parameter-dependent LTI system with parameter values
µ ∈ P = [0.01, 0.1], which is obtained by semi-discretizing the PDE

∂tu(ξ, t;µ) = µ∂ξξu(ξ, t;µ)− ∂ξu(ξ, t;µ) + cos(2πξ)t, (ξ, t) ∈ I × Ω := (0, 1)× (0, 1).
u(ξ, 0;µ) = sin(2πξ)2.

with central finite differences for ∂ξξ and forward finite differences for ∂ξ, where we dis-
cretize the spacial domain Ω = (0, 1) with 100 equidistant points. The LTI system then
takes the form

x′(t;µ) = A(µ)x(t, µ) + b(t), x(0;µ) = x0

with A(µ) = µA1+A2 ∈ R100×100 and b(t), x0 ∈ R100, where the matrices A1, A2 ∈ R100×100

correspond to the discrete partial derivatives ∂ξξ and ∂ξ, respectively. For the computation
of the discrete-time trajectories, we employ the backward Euler method with a time-step
size ∆t = 1

99 , i.e. the trajectories consist of K + 1 = 100 individual elements. We
construct a reduced basis space XN for building the approximant by applying the POD
algorithm to the trajectories of the discrete solution x∗(µ0) for the parameter µ0 = 0.04.
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The reduced basis is then represented by the first 19 left singular vectors of the matrix
containing the trajectories which we further enrich via x0 resulting in a 20-dimensional
space, i.e. VXN ∈ R100×20. Similarly, we construct an approximation space for the ALP
(in differential form)

e′(t;µ) = A(µ)e(t;µ), e(0;µ) = 0

by computing the trajectories for the parameters µ ∈ {0.01, 0.025, 0.05, 0.075, 0.1} and
once again running the POD algorithm. We construct 4 different reduced basis spaces
with this approach which are represented by the first 25, 30, 35 and 40 left singular vectors.
We denote the corresponding reduced basis via VXE25

, VXE30
, VXE35

and VXE40
, respectively.

Furthermore, we denote by ∆M
1,ub(µ), ∆M

2,ub(µ) and ∆̄M
ub(µ) the error bounds when using

the the problem setting described by G1, G2 of Section 5.7, the generalized setting of
Theorem 5.7.3 and when using the reduced basis VXEM for the ALP. We recall that in this
case, the error measured by ∆M

1,ub entails the the maximum value of the pointwise error
e(t;µ) = x̂(t;µ)− x∗(t;µ) and the maximum value of its derivative e′(t;µ), whereas ∆M

2,ub

and ∆̄M
ub only measure the maximum pointwise error. Upper bounds for the stability

constants γ1,ub(µ) and γ2,ub(µ) are computed following the results of Lemma 5.7.2 and
the fact, that for the setting of ∆̄ub(µ), the corresponding stability constant is given by

γ̄(µ) =
∥∥∥DG1|−1

x̂(µ)

∥∥∥
L(Y2,X2)

and therefore, it can, similar to the stability constant of G1, be bounded by

γ̄(µ) ≤ γ̄ub(µ) := γ1,ub(µ)− 1.

Furthermore, we shall denote as effM1 (µ), effM2 (µ) and effM(µ) the effectivities of the above
bounds and as effM1,ub(µ), effM2,ub(µ) and effMub(µ) the bounds on the effecitivites according
to Corollary 5.3.10 combined with Lemma 5.4.3 and Theorem 5.7.3, respectively. The
error and bounds measured in the X1–norm, i.e. the standard C1–norm, for 20 random
parameters in the parameter set P are displayed in Figure 5.10, while the error and
bounds measured in the X2–norm , i.e. the standard C0–norm, are shown in Figure 5.11.
Similar to what we have seen in Section 5.6, the quality of the error bounds improves as
the dimension M of the reduced basis for the ALP increases. This is further showcased
in Figure 5.12, where the effectivities and the bounds on the effectivites for the richest
approximation space (dimension M = 40), are displayed. Here we can see, that the the-
oretical results already guarantee effectivities of less than 1.3 and the actual effectivities
are closer to 1. Taking a closer look at Figure 5.11 we can see that the bounds ∆̄M

ub
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are significantly better than the bounds ∆M
2,ub, as the former matches the error visually

already for basis size M = 30, whereas the latter requires a larger space of dimension
M = 40. This is due to the fact, that the bound on stability constant of G2 scales linearly
with the norm of the system matrix ‖A(µ)‖2. Computing the mean value of all bounds
γ2,ub(µ) on the stability constant for the 20 random parameters, we obtain approximately
1680, whereas the mean for γ̄ub turns out to be only 0.77. In other words, on average
γ2,ub(µ) is approximately 2180 times larger than γ̄ub(µ) for a given parameter. Nonethe-
less, we can achieve effectivities close to one, if M is sufficiently large, as is highlighted in
Table 5.3. We once again want to emphasize that this shows that the error bounds using
the methodology presented in this work can counteract large stability constants, which in
the case of classical RB approximation would lead to severe overestimation of the error.
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Figure 5.10: Error and error bounds for the C1–norm for 20 random parameters.
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Figure 5.11: Error and error bounds for the C0–norm for 20 random parameters.
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Figure 5.12: Effectivities and bound on the effectivities for the richest RB space XE
40 and

for 20 random parameters.

Mean effectivity Maximum effectivity
M ∆1,ub ∆2,ub ∆̄ub ∆1,ub ∆2,ub ∆̄ub

25 5.23 134.87 1.93 5.69 355.28 3.57
30 2.22 4.23 1.06 2.55 17.22 1.26
35 1.16 1.13 1.01 1.24 2.18 1.02
40 1.04 1.01 1 1.07 1.05 1

Table 5.3: Maximum and mean effectivity for the different error bounds and different
dimension of the RB space for the ALP.
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6 Conclusion

In the first part of this thesis, consisting of Chapters 2 through 4, we extended several
known properties of scalar-valued kernels to the case of matrix-valued kernels. We in-
troduced the new subclass of uncoupled separable kernels and were able to show that
their specific structure can be exploited to efficiently evaluate the Power function as-
sociated with the kernel. Furthermore, we developed several variants of the P–Greedy
algorithm all of which generate point sets that result in quasi-optimal approximation rates
if RBF kernels whose native space can be identified with a Sobolev space, are used. This
was done in a more generalized setting, in which the greedy space is enriched with a k-
dimensional space in every iteration. This may be applied to other weak greedy scenarios
not covered in this thesis. Moreover, we generalized the classical regularization ansatz for
scalar-valued kernels, by replacing the more commonly used penalization parameter in
front of the regularization functional with a positive definite weight function. While this
allows for more flexibility in the approximation procedure, it also increases the number
of parameters used and hence the selection of optimal parameters is made more difficult.
Nonetheless, we were able to show that this increased flexibility can be exploited in or-
der to improve the quality of the kernel approximation. In particular, we introduced a
regularized greedy algorithm, which generates point sets that are better suited for the
regularization approach and still maintain quasi-optimal rates.
Future work should investigate how to better train the internal parameters for the

kernel approximations, as the number of parameters scale quadratically with the output
dimension of the target function. We also want to further investigate the effect the
matrix-valued weight function has on the point selection process during the regularized
P–Greedy.
In the second part, consisting of Chapter 5, we presented a novel improvement of error

bounding techniques for problems which can be expressed in terms of a root finding prob-
lem for some differentiable operator between two Banach spaces. We achieved this by
introducing and solving an additional auxiliary linear problem (ALP) which counteracts
the often severe overestimation that occurs when applying standard error bounding tech-
niques. This resulted in the here presented ALP-based error bounds. These a-posteriori
error bounds show significant improvements in their effectivity. In particular, we could

181



6 Conclusion

show that if a certain validity criterion is met, the resulting error bound deviates from
the actual error by at most a factor of 3. Furthermore, one can control the quality of the
error prediction by tuning the quality of the approximation Ê of the ALP. We applied
the technique in the context of RB methods, where we compared our new bounds to the
existing standard error bounding methods. Numerical examples for both, linear and non-
linear as well as (linear) time-dependent problems highlight the benefit of the presented
technique and showcase that ALP-based error estimation enables us to reach excellent
effectivities, i.e. effectivities close to 1.
In future work, we would like to extend the presented bounds to non-linear time depen-

dent problems. We also want to study the quality of these bounds when approximation
techniques, other than the reduced basis method, are considered.
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