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Abstract

In cloud computing research, many models are used to predict server power. However, a lot of these
models are not sufficiently tested on industry hardware due to lack of access to this type of hardware
in academia. In this work, we address this need for model evaluation and lack of data from real data
centers.

We obtain a large dataset from a data center of the company AEB SE, located in their headquarters
in Stuttgart. The dataset contains hardware utilisation data on the averages of CPU-frequency, CPU
utilisation, server power consumption, and ambient temperature as well as peak power consumption.
These metrics are measured at five-minute intervals over the span of a year, for all 73 servers.
We use the information on average CPU utilisation and average server power to train four server
power models that use CPU utilisation to predict the power consumption of a given server. Two
of these power models are from literature, and the other two are our own work. We form server
groups, based on a combination of hardware characteristics the servers have, such as CPU models,
server types and storage sizes. We then train the models on them and compare the accuracy the
models have. This answers the question which hardware characteristics should be considered when
grouping servers as a basis for training the power models and which distinctions are unnecessary.

We also compare the models to each other, based on their accuracy, generalisability and speed
of training. We find that one of our models was in all but a few cases the most accurate one. It
also generalises better than the other three models and is one of the two fastest models in training.
However, it does have the issue of predicting inaccurate and sometimes even semantically incorrect
results in higher CPU utilisation areas.

In plotting the server power samples at specific CPU utilisations, we observe that the general shape
of these plots resembles a horizontal asymptote. Therefore we propose a model that tries to imitate
this general shape.

Unfortunately, the dataset we obtain is heavily biased towards lower CPU utilisation areas, which
may introduce an error in our evaluation of the two least accurate models, one of ours and one from
literature, both of which are dependent on using power measurements obtained at full utilisation.

The dataset we obtain is freely available for research and can be used to evaluate other power models,
or in other research that requires hardware utilisation data from a data center.
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1 Introduction

The research on how to schedule tasks in data centers in an energy efficient way is of great interest 
right now because the rising demand for cloud services in the industry leads to ever increasing sizes 
of these facilities [DWF16]. The more hardware is deployed, the more energy is consumed and 
high energy consumption is a concern both from an economical as well as from an ecological point 
of view.

But in developing scheduling algorithms to diminish this consumption, data center researchers 
face the problem of generally not being able to test their architectures and algorithms on industry 
hardware because academia usually does not have the resources needed for building a data center 
which is comparable to industry standard [BVWS14]. Thus, researchers have to rely on models that 
tell them how much energy a data center server consumes in a production environment under a 
given load as a substitute for real-time measurements.

There are many kinds of power models for a data center server, some taking just CPU utilisation as 
their sole input, some taking other components into account, like networking, cooling, storage and 
so on [IM20].

Generally, the lack of data gathered in industry data centers is a problem for evaluating the accuracy 
of these models [BVWS14]. Many cloud companies are reluctant to grant access to their facilities 
and apart from some researchers like Fan et al. [FWB07] or Radovanovic et al. [Rad+22], who 
are allowed to have access, cooperation between academia and industry in this area is lacking 
[BVWS14]. This leaves researchers no choice but to test their ideas on small testbeds, that cannot 
be an adequate substitution for hardware data from an industry size data center [BVWS14].

We are fortunate to get access to a data center at AEB SE for this paper and can obtain data points on 
Average Power, CPU utilisation, Peak Power, Ambient Temperature and CPU Frequency, sampled 
every five minutes, for a period of one year on 73 s ervers. The dataset that we gather here is a 
contribution that addresses the need for real world data and will be published as part of this thesis.

We take two models from literature that reportedly have a high accuracy and evaluate them on this 
large dataset to find out if their reported accuracy can be r eplicated. We also introduce two power 
models of our own here. All models have parameters that need to be fitted to some measurements 
before the models can be used.

We train the models and compare them to each other with the metrics R-squared and Root Mean 
Squared Error (RMSE). We will elaborate further on our methodology in Chapter 5. For a 
definition of these metrics, please see Section 2.2.

Some server types are present with different storage sizes, while having otherwise identical hardware 
characteristics. We will answer the question whether or not these differences in storage size may 
be disregarded, when categorising servers into datasets for power model training. None of the 
power models we evaluate take storage into account but have a single input variable, namely CPU
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1 Introduction

utilisation. If storage size can be disregarded, without losing accuracy, this would make the power
models more generalisable. It would also make them easier to use in practice because retraining the
models whenever a server with a different amount of storage is installed would not be necessary
anymore.

Similarly, there are some server types that share a CPU model but are otherwise different. We
compare the accuracy of the power models when disregarding all differences in the other hardware
of the server types and combining them based on their CPU model. We do this to answer the
question if the distinctions based on CPU models might be enough. Finally, we evaluate the power
models for the speed at which they can be trained.

The structure of our paper is as follows:

First, we will outline some background information necessary for understanding this paper in
Chapter 2. Next, we are going to give an overview of related work in the field of server power models
in Chapter 3. Thereafter, we are going to present the approach that we take to gather and evaluate
the data in chapter three. Subsequently in Chapter 6, we present the evaluation of the trained models
and the dataset that we collect. The results of this Chapter are then discussed in Chapter 7. Finally
in Chapter 8 we will provide our outlook for future work to be done and conclude.

In the next Chapter, some relevant background information on technologies and metrics that we use
is introduced.
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2 Background Information

To make our work more accessible to readers from a broad range of backgrounds, we will now
provide information on technologies and concepts which are important to understand our work.

2.1 Integrated Lights-Out and OneView

In the data center of AEB SE, all servers are manufactured by the Hewlett Packard Enterprise (HP).
This company installs a sensor and remote control unit called Integrated Lights-Out (iLO) [Ilo] on
every recent HP server. This device may be used to remotely power the device on or off, check
server health status, or gather utilisation data, like we are doing in this paper. [Ilo]

The iLO data is aggregated in the OneView Application [Oneb]. This application provides, among
other things, a dashboard, where Server Health status can be checked [Oneb]. It also provides a
REST API, where we call a specific Endpoint [End] to retrieve the utilisation data for an individual
server.

2.2 Metrics

To assess how accurately the power models predict, we use two metrics, which we will introduce in
the next two sections.

2.2.1 R-squared

As a definition of the R-squared value, the authors of [MPP19] write: “In statistics, the coefficient
of determination 𝑅2 is the proportion of the variance in the dependant variable that is predicted
from the independent variable(s).”. This metric can be used to compare how well the four power
models can predict the power consumption of a server at a given CPU utilisation. As Malkina-Pykh
and Pykh [MPP19] note, there are multiple possible ways to calculate an R-squared value that do
not necessarily lead to the same result. We use two functions of the python library scikit to calculate
the R-squared value, namely the score [Scie] function of the Linear regression module and the
r2_score function [Scic], which both calculate the R-squared value as follows:

(2.1) 𝑅2(𝑦, �̂�) = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2∑𝑛
𝑖=1(𝑦𝑖 − �̄�)2
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2 Background Information

Here, 𝑦𝑖 are the actual values, while �̂�𝑖 are the corresponding predictions of the model and �̄� is the
average across all actual values.

In order to assess if a model is a good fit or not, we follow the approach Zhang et al. [ZLQZ13]
took and consider a model a good fit that has an R-squared value of 0.95 or higher. However, as
Malkina-Pykh and Pykh [MPP19] point out, the R-squared value is not suitable for models that are
non-linear in their parameters. This concerns two of the power models we evaluate here. Hence,
we include another metric as well, the root mean squared error. For further discussion on the
inadequacy of the R-squared value, please see Section 7.6 on page 60.

2.3 Root Mean Squared Error

The Root Mean Squared Error is, as the name suggests, the Square Root of the Mean Squared Error.
We again use a utility function from the libray scikit, this time called mean _squared _error, which,
according to the documentation [Scib], calculates the mean _squared _error like this:

(2.2) 𝑀𝑆𝐸 (𝑦, �̂�) = 1
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1∑︁
𝑖=0

(𝑦𝑖 − �̂�𝑖)2

We then take the square root of the result to obtain the root mean squared error (RMSE).

(2.3) 𝑅𝑀𝑆𝐸 (𝑦, �̂�) =
√︁
𝑀𝑆𝐸 (𝑦, �̂�)

This metric represents the average distance the predictions of a model have from the actual values,
disregarding wether that distance is due to overprediction or underprediction. This metric is in the
same unit as the underlying prediction, so watts in the case of the power models we evaluate.

It is important to note that in analysing the values of this metric, they are comparable only on the
same dataset. For example, when a model has an RMSE value of 40 watts, that can be quite a large
error if the underlying servers consume a maximum of 120 watts, but it can be a relatively small
error if the servers consume up to 1500 watts. So the power models can only be compared based on
their RMSE values, if these values originated from training and testing them on the same server
configuration.

2.4 Repeated Kfold cross-validation

In machine learning it is common that models have parameters which are fitted to a portion of the
dataset, called the training-sample. The remainder of the dataset is then used to assess how well
the model can predict values that it was not trained on. This is called the test sample. Depending
on how this splitting into training and test samples is done, a bias can be introduced to how the
model parameters are calibrated. For example, all data points in the training samples might be in
the lower quartil of the dataset, which could introduce a large error when predicting data from the
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2.5 SPEC power benchmark

upper quartil. This problem may be avoided by using a repeated kfold cross-validation approach.
The dataset is randomly split into n samples and n-1 of those are used to train the models, while the
remaining one is used for testing it [Man20]. All n splits become the test sample once [Man20].
This process of splitting and evaluating on each of the splits is then repeated m times. Depending
on the number of splits and repeats, this approach minimises the bias introduced by the splitting
choice as well.

2.5 SPEC power benchmark

When researchers cannot obtain data on the power consumption a server type has at a given CPU
utilisation, they can consult the SPEC benchmark [Spea]. The Standard Performance Evaluation
Corporation (SPEC) was founded “to establish, maintain and endorse standardised benchmarks and
tools to evaluate performance and energy efficiency for the newest generation of computing system”
[Spea]. Their power benchmarks go from zero to 100 percent CPU utilisation for a given server type
in ten percent steps and report, among other things, the power consumed by the server [Speb].
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3 Related Work

When considering the field of server power modeling, we find several other works which evaluate
different server power models in literature. Some of these models take into account multiple
hardware parameters, such as storage size, CPU frequency or network utilisation [IM20]. Others
just take in CPU utilisation, like the models we evaluate in our work.

In a survey, Ismail and Materwala [IM20] provide an extensive overview of different server types,
classify them with a taxonomy and evaluate them for their accuracy on a unified test bed, consisting
of three different server architectures as well as using two SPEC datasets from different servers.
Ismail and Materwala [IM20] evaluate 24 software-based power models in total, using different
benchmarking tools to generate load on hardware components, such as network, storage or CPU. This
article [IM20] provides a good overview of software-power models and compares them in a unified
setup but has the drawback of evaluating the models only on three different server architectures,
using benchmarking tools to generate resource utilisation. The two SPEC Power benchmarks are
added for models that only take in CPU utilisation.

Whether the examined models will perform in a similar manner on different server architectures or
under real load found in data centers remains unclear. So the size of the dataset that Ismail and
Materwala [IM20] used, as well as its origin, being benchmarking data instead load from real users,
are key differences to our work.

A second, big survey by Dayarathna et al. [DWF16] lists over 200 power models and classifies
them according to a taxonomy. Dayarathna et al. [DWF16] not only consider software based server
power models but also hardware based models, models for virtual machine power consumption
and models of larger scale systems, such as data center power models. The authors of [DWF16]
compare the models to each other but do not perform any experimental evaluation themselves. This
is a key difference to our work because we train and evaluate all models that we discuss on data
from a data center. Dayarathna et al. [DWF16] also do not propose a model of their own, whereas
we propose two new models. Dayarathna et al. [DWF16] provide a good overview of the field,
which was the aim of their review.

Möbius et al. [MDS14] conducted a survey, in which they list 20 power models, on subcomponent,
virtual machine and entire server level. Möbius et al. [MDS14] compare seven server power models
and also highlight the different direct measurement techniques available at the time. The authors of
[MDS14] did not compare the models on their own experimental setup but rather cite the estimation
errors from the original papers.

McCullough et al. [McC+11] evaluate five different power models with the use of various
benchmarking tools on an Intel Calpella platform. McCullough et al. [McC+11] compare three
models using lasso regression, one using support vector machines and the MANTIS model proposed
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3 Related Work

by Economou et al. [ERKR06]. McCullough et al. [McC+11] conclude that while the models
performed with low single digit error rates on full system power prediction, they have high mean
error rates of up to 150 percent in predicting subcomponent power consumption.

We also review some smaller surveys smaller surveys, such as the one conducted by Rivoire
et al. [RRK08], in which they train and evaluate five different server power models, four from
literature and one which they propose themselves in this work. The authors of [RRK08] evaluate
the five models on five different hardware platforms, using benchmarks to stress different hardware
components. There is one major drawback to the work of Rivoire et al. [RRK08]: they misrepresent
one of the models they evaluate, namely the non-linear model of Fan et al. [FWB07], which we are
actually evaluating as well in this work. The authors of [RRK08] evaluate the wrong equation here,
making their observations on its accuracy much less valuable.

In the next section, we will introduce the work of Fan et al. [FWB07] in more detail, as their
non-linear equation is one of the two equations from literature we will evaluate alongside our
works.

3.1 “Power Provisioning for a Warehouse-sized Computer” by Fan
et al. [FWB07]

Fan et al. [FWB07] are Google employees and as such are able to obtain access to large scale
industry data centers at Google LLC. In the study "Power Provisioning for a Warehouse-sized
Computer"[FWB07], the authors analyse power usage data from 15,000 servers, and consider three
types of load, namely from the mail-service Gmail, the Google Websearch service and from Map
Reduce Jobs on a subset of 5,000 servers.

The authors of [FWB07] evaluate the size of the gap between the theoretically possible peak
power consumption of a data center and the actual peak power that ends up being consumed. Fan
et al. [FWB07] also discuss a few methods to optimise this utilisation of data center facilities in a
manner that minimises the likelihood of outages, such as power capping or CPU voltage/frequency
scaling.

(3.1) 𝑃(𝑢) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑏𝑢𝑠𝑦 − 𝑃𝑖𝑑𝑙𝑒) × 𝑢

(3.2) 𝑃(𝑢) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑏𝑢𝑠𝑦 − 𝑃𝑖𝑑𝑙𝑒) × (2 × 𝑢 − 𝑢𝑟 )

Relevant to our study is mainly that Fan et al. [FWB07] propose two server power models, one
linear, the other having a parameter in the exponent that needs to be fitted to a training dataset. The
two equations are shown as equation 3.1 and 3.2. 𝑃𝑖𝑑𝑙𝑒 denotes the power drawn by a server around
zero percent CPU utilisation and 𝑃𝑏𝑢𝑠𝑦 at around 100 percent CPU utilisation, while u denotes
the CPU utilisation in percent (though expressed as a value between zero and one) [FWB07]. Fan
et al. [FWB07] compare the two models and come to the conclusion that the non-linear model
fits the data better. The authors of [FWB07] aggregate the predictions of these models to a Power
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3.2 “A high-level energy consumption model for heterogeneous data centers” by Zhang et al.
[ZLQZ13]

Distribution Unit level (several hundreds of servers) in order to dynamically predict power usage.
At this aggregated level, Fan et al. [FWB07] find that the non-linear model has a mean error of
below one percent provided that a fixed offset is removed.

Especially the non-linear model of Fan et al. [FWB07] received alot of attention in subsequent
works by other researchers. In their evaluation of software-based server power models, Ismail and
Materwala [IM20] compared the non-linear model 3.2 to ten other single variable CPU-based power
models, finding it to have an error of around twelve percent both for the servers of the unified setup
that Ismail and Materwala [IM20] used, as well as for the SPEC power benchmark datasets. In
comparison to the other ten single variable CPU-based power models Ismail and Materwala [IM20]
ranked it 6th and 8th most accurate respective to the unified setup and the SPEC dataset. When
compared over all benchmarking tools that Ismail and Materwala [IM20] used, and compared to all
24 other software-based server power models that they evaluated, Ismail and Materwala [IM20]
found the non-linear model 3.2 of Fan et al. [FWB07] to be only the 18th most accurate.

Möbius et al. [MDS14] included the non-linear equation 3.2 in their survey and concluded that
it “stands out in terms of reproducible results and portability” [MDS14]. However, they do not
perform an experimental evaluation as a part of their survey.

Dayarathna et al. [DWF16] also list the non-linear equation 3.2 as part of their study but do not
evaluate it further. The authors of [DWF16] call this work and especially the linear equation 3.1
“highly influential in recent server power modeling research”. As already mentioned, Rivoire et al.
[RRK08] include both the linear model 3.1 as well as the non-linear equation 3.2, but only the
evaluation of the linear equation 3.1 is valid, as they unfortunately misrepresent the non-linear
equation 3.2.

In another study [Rad+22] where the authors have access to Google data centers, Radovanovic et al.
[Rad+22] compare the linear model 3.1 to two models that they propose here, showing that the
newer models outperform 3.1. Radovanovic et al. [Rad+22] refer to the linear model 3.1 as the
“benchmark model” [Rad+22] and state that data center operations at Google used this model for
power prediction previously, but now at Google it is replaced by newer models.

Due to this interest in these equations and the impact the paper of Fan et al. [FWB07] had, we
pick the non-linear equation 3.2 as one of the models we evaluate further in this paper. Model
3.2 sometimes predicted very accurately, like in [FWB07] but sometimes less accurately [IM20]
than other comparable models. This makes another evaluation useful, as this might provide further
insight into how accurately this model 3.2 predicts server-power.

3.2 “A high-level energy consumption model for heterogeneous data
centers” by Zhang et al. [ZLQZ13]

The other model we evaluate here is a work of Zhang et al. [ZLQZ13], from their paper: “A
high-level energy consumption model for heterogeneous data centers”. In this paper [ZLQZ13]
evaluate 3 models on 392 SPEC power benchmark results. Zhang et al. [ZLQZ13] also perform
benchmarking experiments on two servers themselves. Zhang et al. [ZLQZ13] propose linear,
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quadratic and cubic equations, finding that the cubic one 3.3 outperforms the other two. The authors
find that their cubic model performs with an R-squared value greater than 0.98 on all SPEC power
benchmarking results they consider.

The cubic model 3.3 of Zhang et al. [ZLQZ13], which we evaluate further here, is of the form:

(3.3) 𝑃(𝑢) = 𝑎 + 𝑏 × 𝑢 + 𝑐 × 𝑢2 + 𝑑 × 𝑢3

u is again the CPU utilisation in percent, this time not in the range of 0 to 1, but given as integers
though. All other variables need to be fitted to a dataset in the training process.

We choose this model for our evaluation because its reported accuracy is high. Ismail and Materwala
[IM20] compared ten other single variable CPU-based server power models to this one and found it
to be second most accurate, having an error of estimation of below five percent. When compared to
all other 23 models they considered, the cubic model 3.3 of Zhang et al. [ZLQZ13] ranked 13th
most accurate [IM20]. Ismail and Materwala [IM20] also evaluate the other two models proposed
by Zhang et al. [ZLQZ13] and they confirm their relative accuracy to each other, which Zhang et al.
[ZLQZ13] reported, with the cubic model being the most accurate and the linear model the least
accurate.
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4 Models

A major contribution of this paper is the introduction of two new CPU utilisation based server
power models. In this chapter, we will discuss their structure as well as our thought process in their
creation.

4.1 Polynomial Model

Since we evaluate the polynomial model 3.3 of Zhang et al. [ZLQZ13] in this paper and one of their
major findings was, that their cubic model outperformed their quadratic and linear models [ZLQZ13],
we want to inquire whether or not this trend continues to an even higher power. Therefore, we
introduce another power model of the form:

(4.1) 𝑃(𝑢) = 𝑎 + 𝑏 × 𝑢 + 𝑐 × 𝑢2 + 𝑑 × 𝑢3 + 𝑒 × 𝑢4 + 𝑓 × 𝑢5

This new model also needs to be trained to obtain fitting parameters a - f to the server being modeled.
Identically to 3.3 the CPU utilisation u is in percent here, expressed in integer numbers.

4.2 Asymptotic Model

After an initial analysis, we noticed that the general trend of plotting the server power consumption
at a CPU utilisation generally does not have the form of exponential curve, or of odd powered
polynomials but rather that of a horizontal asymptote.

There is a sharp increase in power consumption in the CPU utilisation range of zero to twenty
percent and afterwards the plots flatten off. This is true for figures 7.2, 6.8a, 7.7 as well as in the
ones we include in Appendix B. Because of this general observation, we introduce a server power
model that captures this trend of the plots.

(4.2) 𝑃(𝑢) = 𝑎 + 𝑃𝑖𝑑𝑙𝑒

(𝑢 + 𝑐)2

Here, 𝑃𝑖𝑑𝑙𝑒 is the power that the servers consume when they are at below two percent CPU utilisation.
We average the values of all power consumption samples. All datasets we consider have such low
utilisation samples.
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As an initial guess for a, we give the server-power consumption at full CPU utilisation. Whenever
we cannot average samples out of the dataset for this value because the server was never utilised to
that extent, we use the calibrated maximum power value as reported by the OneView API [Onea]
instead. As we discuss in Section 7.5 on page 56, this might introduce an error to power model 3.2
of Fan et al. [FWB07] but also to our asymptotic model. For c we find that an initial guess of 0.5
delivered good results.

The parameters are then callibrated to the dataset at hand and the training process is closer to model
3.2 of Fan et al. [FWB07], than to that of model 3.3 of Zhang et al. [ZLQZ13] and 4.1 because we
use the python function of curve_fit [Scid] in the training of 3.2 of Fan et al. [FWB07] as well.
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5.1 Data Gathering

As already mentioned, for this work we gather data from a data center at AEB. We got permission
from AEB to query the OneView API, through which we obtain utilisation data like ambient
temperature in celsius, CPU frequency in Mega Hertz, CPU utilisation in percent, peak power in
watts, and average power in watts. All metrics are measured in a five-minute interval and averaged
except in the case of peak power, where iLO records the highest value only. All data was returned
in a JSON format schematically visible in Figure 6.3. We can retrieve a dataset of three days per
request and write a Java Spring Application that repeatedly calls the API Endpoint [End] and stores
each three-day sample in a Mongo Database until we retrieve the full dataset going back one year
for all servers.

The OneView Documentation states that there should be data on the same metrics being averaged
over a one-hour interval as well [End]. This one-hour average should be stored for up to three years
[End]. Unfortunately, this feature did not seem to be available in the servers at AEB.

5.2 Training of the models

All four power models we consider have parameters that need to be fitted to a training dataset
and only then can be used for prediction. For the model 3.3 of Zhang et al. [ZLQZ13] and our
polynomial model 4.1, we use the python library scikit [Scia] with its Polynomial Features and
Linear Regression modules [Scif]. For the two other models, 3.2 of Fan et al. [FWB07] and our
asymptotic model 4.2, we use the curve fit function [Scid] of the python library scikit.

Here, initial guesses for the parameters need to be provided. For the parameter r of the model 3.2 of
Fan et al. [FWB07], we provide the value of 1.4 that they mention in their paper [FWB07]. For our
asymptotic model, the initial guesses are the maximum power consumption for parameter a and a
value of 0.5 for parameter c, which we find brings about the most accurate results.

Model 3.2 of Fan et al. [FWB07] also needs the power consumption at full CPU utilisation as a
constant in the equation. When the servers are ever utilised to that extent, we take the average of all
average power samples that have a corresponding CPU utilisation of above 97 percent. When such
values are not present, however, which is, unfortunately, the rule and not the exception, we take a
value of calibrated maximum power as reported by the OneView API [Onea] instead. How close
this value is to the actual maximum power consumption that we observe in some servers and what
effect the usage of this value might have on the accuracy of models 3.2 of Fan et al. [FWB07] and
model 4.2, is a subject we will discuss further in Section 7.5 on page 56.
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All models are trained on the dataset using a repeated kfold cross-validation approach with five
splits, repeated ten times. So in total, we train and and test the power models on each configuration
fifty times. Every time we calculate the metrics discussed in 2.2 and take the average of them as
the value we report in our evaluation. We did this using the RepeatedKFold [Rep] module of the
sklearn library.
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In this chapter, we will perform a general analysis of the dataset and then show how we train the
four power models with different subsets of the dataset. We call these subsets server configurations
or simply configurations. What we mean by this is a server, or a group of servers, that share certain
hardware characteristics. We categorise the servers into configurations, based on their server type
(e.g. BL460c), storage size, or CPU model (e.g. Intel Xeon E5-2640).

We do this to better understand which hardware characteristics are important to consider in clustering
the servers for power model training and which can be disregarded.

First, we will discuss the structure of the data center of whic we obtain the dataset in Section 6.1.
Then we are going to make a general analysis of the dataset in Section 6.2. In Section 6.3 and
6.4, we compare the accuracy of the power models on configurations that disregard storage size
differences, to their accuracy on those that do not. In Sections 6.5.1 and 6.5.2, we will determine
whether or not it is possible to combine different server types that have the same CPU model into
one configuration for training, or if that leads to too large a loss in power model accuracy.

6.1 Data center structure

At AEB the data center is deployed on two floors of their headquarters in Stuttgart. Both floors have
uninterruptible power supply in the form of a battery backup and a diesel generator that is used in
case of longer outages. They use both blade servers and normal rack servers, and the heat generated
by the servers is partially used to heat the headquarters of AEB. AEB handles storage externally
from the servers, so most of them only have minimal storage capacity installed.

6.2 General analysis of the data

We obtain data from 73 different servers, all produced by HP. In total, we collected 7,604,756
five-minute samples, 7,308,761 of which we analyse further, after filtering out the null values. We
display a histogram of the CPU utilisation of the entire dataset in Figure Figure 6.1. Note that the
y-axis is in millions.

In analysing the histogram, we observe that almost half of all data points are in the range of zero to ten
percent CPU utilisation, with another smaller peak in the range of forty to sixty percent. The dataset
is very sparse when it comes to CPU utilisations above 90 percent. We will discuss this characteristic
of the dataset further in Section 7.4. The configurations vary in size. Some configurations have
only a single server that has these hardware characteristics. The largest configuration, where no
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Figure 6.1: Histogram of all data points

hardware distinctions are made, has 73 servers in it. From an individual server we obtain around
100,000 data points. The oldest server type we obtain data from is the ProLiant BL460c, an HP
blade server of the eighth generation.

In Figure 6.2, we display the number of occurrences (in millions) of a given power consumption.
These come from 73 servers, measured in 5-minute intervals over one year. We observe that the
range of power consumed by the servers reaches from around 50 watts to around 600 watts. The
bulk of the power consumed by the servers across all data points lies between 200 and 350 watts,
with well over four million data points lying in that range.

Figure 6.3 showcases the general format of he JSON Response delivered by the OneView API. We
leave out the metadata to highlight the structure of the actual metrics we analyse. Each data point
has a timestamp - given as the number of milliseconds since midnight January first, 1970 - and the
value of the metric. As mentioned, one such response contains an array of metrics, which are each
sampled every five minutes. The OneView API returns in one response the equivalent of around
three days of samples. This time range can then be adjusted by the parameters sliceStartTime and
sliceEndTime, which the script we use for data collection does automatically for us. The time range
between newestSampleTime and oldestSample Time is the range in which samples are currently
stored on the server. Whenever new samples are added, this time range shifts, and the oldest samples
are deleted.

The metricCapacity property, which we leave out due to space restrictions in all but the AmbientTem-
perature metric, displays the maximum value the metric took in this three-day interval. The metric
PowerCap is always null in our dataset because AEB does not use a power capping scheme.
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6.3 Models without storage consideration

Figure 6.2: Histogram of power consumption

Since AEB deploys several layers of virtualisation in their operations, it is unfortunately not possible
for us to link any of the hardware utilisations we observe here to business processes. The processes
are automatically shifted to the machines that have free resources and it is not possible for us to
reconstruct this behaviour for the historical dataset we obtain from the OneView API.

We train all four power models on different portions of the data, to test their accuracy as well as their
generalisability. First, we focus on server types that are present as servers with different amounts
of storage. We aggregate these servers and train the power models on this aggregation in the next
Section. In Section 6.4, we then split these servers by their storage size and retrain the power models
on each partition. This is all to see if storage size consideration makes a difference in their accuracy
or if these differences can be disregarded.

6.3 Models without storage consideration

Some servers at AEB have the same server type and CPU model but are present with different
amounts of storage installed on them. The main persistence of data is handled in dedicated units by
AEB, not in the servers we analyse here. Nonetheless, the comparatively small amounts of storage
installed on the servers vary.

Since all four power models that we evaluate do not consider storage, we first train them on every
server type, without consideration for how much storage is installed on the individual servers. In
Section 6.4, we consider this difference and compare the accuracy of the power models.
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Figure 6.3: General Schema of the JSON Response
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6.3 Models without storage consideration

To avoid introducing a bias, we do consider every other difference in hardware, such as server type,
CPU model, number of cores, et cetera, as its own configuration for training. This allows us to
answer the question whether or not it is possible to disregard the storage sizes in training the power
models, without losing too much accuracy of prediction.

Server models that are only present in the data center with one amount of storage installed are
excluded as well here. Therefore, we only display the five server configurations here, for which
there are servers that have different storage sizes. These results can be seen in table Table 6.1.

server-
type

cpu-model cpu-freq core-
count

server-
count

r-sq rmse power-
model

BL460c X.E5-2660v3 2.6GHz 10 7 0.969 9.13 Polynomial
BL460c X.E5-2660v3 2.6GHz 10 7 0.930 13.62 Zhang et al
BL460c X.E5-2660v3 2.6GHz 10 7 0.609 32.28 Fan et al
BL460c X.E5-2660v3 2.6GHz 10 7 0.907 15.7 Asympt.

BL460c X.E5-2667v4 3.2GHz 8 6 0.936 12.86 Zhang et al
BL460c X.E5-2667v4 3.2GHz 8 6 0.956 10.65 Polynomial
BL460c X.E5-2667v4 3.2GHz 8 6 0.902 15.84 Asympt.
BL460c X.E5-2667v4 3.2GHz 8 6 0.197 45.47 Fan et al

BL460C X.E5-2640 2.50 GHz 6 3 0.941 8.95 Polynomial
BL460C X.E5-2640 2.50 GHz 6 3 0.887 12.34 Zhang et al
BL460C X.E5-2640 2.50 GHz 6 3 0.687 20.59 Fan et al
BL460C X.E5-2640 2.50 GHz 6 3 0.870 13.25 Asympt.

SY480 X.G.6132 2.6GHz 14 21 0.866 11.84 Zhang et al
SY480 X.G.6132 2.6GHz 14 21 0.945 7.61 Polynomial
SY480 X.G.6132 2.6GHz 14 21 0.032 31.81 Fan et al
SY480 X.G.6132 2.6GHz 14 21 0.711 17.39 Asympt.

SY480 X.G.6248 3GHz 24 15 0.996 6.68 Polynomial
SY480 X.G.6248 3GHz 24 15 0.993 8.23 Zhang et al
SY480 X.G.6248 3GHz 24 15 0.961 19.8 Fan et al
SY480 X.G.6248 3GHz 24 15 0.957 20.77 Asympt.

Table 6.1: Server configurations split by server type, CPU model, frequency and core-count,
disregarding storage

We train all four power models on each server configuration, making their relative performance
easily comparable. We observe that our polynomial power model 4.1 predicts most accurately in
every one of these five cases - achieving an R-squared value that is always above ninety-three percent
- with the best value being 0.996. The RMSE reflects this accuracy as well, with power model 4.1
predicting with the least average distance to the actual value in all the five server configurations.

Power model 3.3 of Zhang et al. [ZLQZ13] predicts very accurately as well. It has R-squared values
higher than 0.87 in all cases, with one almost perfect score of 0.99. With these values, power
model 3.3 of Zhang et al. [ZLQZ13] is the second most accurate of the four models in the five
configurations of Table 6.1. The RMSE values confirm this relatively high accuracy.

Our asymptotic power model 4.2 performs reasonably well in all cases as well, with the R-squared
values ranging between 0.87 and 0.96. The highest RMSE value is 20.77 here. These results make
it the third most accurate model in these configurations.
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The predictions of model 3.2 of Fan et al. [FWB07] lack accuracy in many server configurations
with one R-squared value as low as 0.03. It is important to note here that the R-squared value is,
as further discussed in Section 7.6 on page 60, not a good metric to use when comparing models
that are non-linear in their parameters. However, the RMSE values of 3.2 and the plotting of the
predicted graphs also indicate a big discrepancy between the predictions of 3.2 and the actual values.
This inadequacy of the R-squared metric is important to keep in mind for the remainder of the
evaluation, but we will not mention it every time we discuss the R-squared metric going forward.
We display the predicted values of all four power models (blue) as well as the true values (red) for
two of the five server configurations in Figure 6.6 and 6.7.

Figure 6.6 is particularly interesting as it showcases that all power models except our asymptotic
model 4.2 do not inherently follow the asymptotic shape that the power curve has here. They just
try to fit the dataset as accurately as possible instead. This leads to better metric results but also to
sometimes semantically incorrect results. Our polynomial power model as seen in Subfigure 6.6c
and the power model 3.3 of Zhang et al. [ZLQZ13] as seen in Subfigure 6.6d both perform well as
far as the metrics are concerned (an R-squared value of 0.96 and 0.94 respectively), but their curves
predict a power consumption that takes a sharp, almost exponential, increase the closer the server
comes to one-hundred percent utilisation. This does not lead to a high error in this case since the
dataset is very sparse in the range of over sixty percent utilisation.

This sparseness of the dataset can be observed in Figure 6.4. We notice that for the majority of the
samples, the server is idle. As already indicated, this is a trend that is consistent with the general
CPU utilisation distribution of the entire dataset across all servers, which we display in Figure 6.1.
We will discuss what effect this sparseness has on the accuracy of the power models in Section
7.4.

Our polynomial power model 4.1 predicts that the power consumption will decrease from forty
percent utilisation to around eighty percent utilisation. After that point, it predicts a sharp increase in
server-power consumption when approaching full CPU utilisation. That the power would decrease
for a period while utilisation increases is not consistent with any of the power curves we observe (the
ones that we do not include in the paper are displayed in Appendix B). This semantically incorrect
prediction may be due to the dataset being sparse in higher utilisation ranges.

Our asymptotic power model 4.2, however, does follow the general shape of the power curve, leading
to predictions that are at least semantically valid throughout the utilisation range. So although this
power model has, on average, a higher error than model 3.3 of Zhang et al. [ZLQZ13] and our
polynomial model 4.1, it delivers sensible results in the face of a sparse dataset. We will analyse the
performance of all power models on sparse datasets more in Section 7.4. Although the shapes of
the predicted power curve and the general trend of the samples are similar to that of our asymptotic
power model, it overpredicts the consumed power in this server configuration by roughly fifty
watts, diverging at around twenty percent utilisation. This still leads to a relatively low accuracy as
expressed in the metrics, with an R-squared value of 0.902 and an RMSE of 15.84.

The power model 3.2 of Fan et al. [FWB07] does not predict the first, sharp increase of power
consumption in the range of zero to fifteen percent of CPU utilisation, a curve shape that is very
common for the server-power curves we display in this paper, as well as in those included in
Appendix B. Rather, the power model of Fan et al. [FWB07] predicts a roughly linear increase
of power consumption until around the eighty percent utilisation mark, after which the predicted
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6.3 Models without storage consideration

Figure 6.4: Histogram of CPU utilisation samples in BL460c gen9, CPU X.E5-2667, without
storage consideration.

power declines. This misses the general shape of the curve for most of the curve and also delivers a
semantically incorrect result with the predicted power consumption decreasing as CPU utilisation
increases in the range of eighty to ninety percent utilisation.

We also include the plots of the power models trained on the server type SY480 in the configuration
where Xeon Gold 6248 is installed as the CPU. We do this because it is the server configuration
of the five out of 6.1, where all equations performed best. We can see that the tendency of 3.2 to
disregard the initial spike in power consumption and subsequently predict an almost linear curve fits
the dataset better here.

The observation that both our polynomial model 4.1 as well as the model 3.3 of Zhang et al.
[ZLQZ13] tend to predict a sharp increase - or, in this case, decrease - in power consumption
when approaching full CPU utilisation can once more be seen here, with model 3.3 of Zhang et al.
[ZLQZ13] predicting diminishing power draw near maximum utilisation, while our polynomial
model 4.1 predicts a sharp increase in power drawn when nearing maximum utilisation. This
tendency might be due to their shared nature of being odd polynomials.

Our asymptotic model 4.2 performs reasonably well but predicts the increase of power consumption
to flatten off while nearing one-hundred percent utilisation, which it does not in this case, or at least,
not as strongly as predicted. Figure 6.7 corresponds to the last four entries in Table 6.1.
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Figure 6.5: Histogram of CPU utilisation samples in SY480 CPU model X.Gold 6248, without
storage consideration.

We include the histogram 6.5 of this server configuration here as well because with fifteen servers
it is one of the largest server configurations we analyse and its dataset is less sparse in high CPU
utilisations than other configurations as seen for example in the histograms 6.4 or 7.3.

In the next section, we will compare the accuracy of the four power models when trained on the
same server types as in Table 6.1 but this time making a distinction each time this same server type
is present with a different amount of storage installed on the server.

6.4 Power models trained with storage consideration

Four of the five server configurations we analyse in the last section are present with two different
storage sizes, while one, BL460c with CPU model Xeon E5-2640, has three different storage sizes.
Storage sizes range from 1536 gigabytes to 32 gigabytes. We now will treat each different storage
size on each server type as a different server configuration for training and evaluation. In total,
this amounts to eleven configurations. In Table 6.2 we list all the accuracy metrics resulting from
training the power models on these configurations. The configurations are ordered first by server
type and then by storage size.

We will now compare the accuracy that the power models have in Table 6.2 to each other as well as
to the accuracy they have on the five configurations of Section 6.3.
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server-
type

cpu-model cpu-freq core-
count

storage server-
count

r-sq rmse power-
model

BL460c X.E5-2640 2.50GHz 6 128GB 1 0.997 2.33 Asympt.
BL460c X.E5-2640 2.50GHz 6 128GB 1 0.968 7.37 Fan et al.
BL460c X.E5-2640 2.50GHz 6 128GB 1 0.998 1.91 Polynomial
BL460c X.E5-2640 2.50GHz 6 128GB 1 0.997 2.39 Zhang et al.

BL460c X.E5-2640 2.50GHz 6 64GB 1 0.739 5.9 Fan et al.
BL460c X.E5-2640 2.50GHz 6 64GB 1 0.875 4.08 Polynomial
BL460c X.E5-2640 2.50GHz 6 64GB 1 0.867 4.22 Zhang et al.
BL460c X.E5-2640 2.50GHz 6 64GB 1 0.808 5.07 Asympt.

BL460c X.E5-2640 2.50GHz 6 48GB 1 0.905 0.87 Asympt.
BL460c X.E5-2640 2.50GHz 6 48GB 1 0.900 0.89 Fan et al.
BL460c X.E5-2640 2.50GHz 6 48GB 1 0.907 0.86 Polynomial
BL460c X.E5-2640 2.50GHz 6 48GB 1 0.952 0.62 Zhang et al.

BL460c X.E5-2660v3 2.6GHz 10 1024GB 6 0.961 4.69 Asympt.
BL460c X.E5-2660v3 2.6GHz 10 1024GB 6 0.011 23.45 Fan et al.
BL460c X.E5-2660v3 2.6GHz 10 1024GB 6 0.970 4.1 Zhang et al.
BL460c X.E5-2660v3 2.6GHz 10 1024GB 6 0.993 1.94 Polynomial

BL460c X.E5-2660v3 2.6GHz 10 512GB 1 0.871 17.23 Asympt.
BL460c X.E5-2660v3 2.6GHz 10 512GB 1 −0.395 56.64 Fan et al.
BL460c X.E5-2660v3 2.6GHz 10 512GB 1 0.997 2.49 Polynomial
BL460c X.E5-2660v3 2.6GHz 10 512GB 1 0.973 7.83 Zhang et al.

BL460c X.E5-2667v4 3.2GHz 8 768GB 3 0.908 11.2 Asympt.
BL460c X.E5-2667v4 3.2GHz 8 768GB 3 0.751 18.46 Fan et al.
BL460c X.E5-2667v4 3.2GHz 8 768GB 3 0.947 8.49 Polynomial
BL460c X.E5-2667v4 3.2GHz 8 768GB 3 0.929 9.85 Zhang et al.

BL460c X.E5-2667v4 3.2GHz 8 384GB 3 0.851 5.28 Asympt.
BL460c X.E5-2667v4 3.2GHz 8 384GB 3 0.566 9.01 Fan et al.
BL460c X.E5-2667v4 3.2GHz 8 384GB 3 0.929 3.65 Polynomial
BL460c X.E5-2667v4 3.2GHz 8 384GB 3 0.916 3.97 Zhang et al.

SY480 X.G.6132 2.6GHz 14 1536GB 8 0.893 12.26 Asympt.
SY480 X.G.6132 2.6GHz 14 1536GB 8 0.183 33.87 Fan et al.
SY480 X.G.6132 2.6GHz 14 1536GB 8 0.977 5.65 Polynomial
SY480 X.G.6132 2.6GHz 14 1536GB 8 0.951 8.26 Zhang et al.

SY480 X.G.6132 2.6GHz 14 1024GB 13 0.925 7.48 Asympt.
SY480 X.G.6132 2.6GHz 14 1024GB 13 0.920 7.71 Fan et al.
SY480 X.G.6132 2.6GHz 14 1024GB 13 0.978 4.06 Polynomial
SY480 X.G.6132 2.6GHz 14 1024GB 13 0.972 4.57 Zhang et al.

SY480 X.G.6248 3GHz 24 1536GB 5 0.954 8.51 Asympt.
SY480 X.G.6248 3GHz 24 1536GB 5 0.953 8.59 Fan et al.
SY480 X.G.6248 3GHz 24 1536GB 5 0.999 1.49 Polynomial
SY480 X.G.6248 3GHz 24 1536GB 5 0.997 2.2 Zhang et al.

SY480 X.G.6248 3GHz 24 512GB 10 0.984 1.88 Asympt.
SY480 X.G.6248 3GHz 24 512GB 10 0.976 2.32 Fan et al.
SY480 X.G.6248 3GHz 24 512GB 10 0.990 1.46 Polynomial
SY480 X.G.6248 3GHz 24 512GB 10 0.990 1.49 Zhang et al.

Table 6.2: server types split by CPU model, frequency and core-count, considering storage.
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(a) Asymptotic power model (b) Power model of Fan et al.

(c) Our Polynomial power model. (d) Power model 3.3 of Zhang et al. [ZLQZ13]

Figure 6.6: Power model Performance on BL460c gen 9, Xeon E5-2667 v4 3.2 GHz, 8 core, no
storage size consideration.

6.4.1 Our Polynomial power model 4.1

Our polynomial power model 4.1 once again predicts very accurately, with five R-squared values
being equal to or above 0.99 and with the best value being 0.999. In the server configuration where
it is least accurate, it has an R-squared value of 0.875 but still is the most accurate of the power
models in this case. It is the most accurate power model when both the R-squared value and the
RMSE value are considered in all but one case, where the model 3.3 of Zhang et al. [ZLQZ13] was
the most accurate.

In total, when we compare these results to the accuracy without storage consideration, the accuracy
of our polynomial power model 4.1 improves unambiguously in six of the eleven configurations.
Unambiguously here means, that the R-squared value increases while the RMSE decreases. In
the remaining five configurations, however, the R-squared value decreases, while the RMSE value
simultaneously increases. This indicates that power model 4.1 can explain less of the variance
in the power consumption, while at the same time predicting with a smaller error. We discuss
how this seemingly contradictory development can arise in Section 6.4.5. We note that there is no
unambiguously less accurate prediction in these eleven configurations for our polynomial power
model 4.1.
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6.4 Power models trained with storage consideration

(a) Asymptotic power model. (b) Power model of Fan et al. [FWB07]

(c) Our Polynomial power model. (d) Power model 3.3 of Zhang et al. [ZLQZ13]

Figure 6.7: Power model Performance on SY480 gen 10, Xeon Gold 6248 v4 3 GHz, 24 core, no
storage size consideration.

6.4.2 Power model 3.3 of Zhang et al. [ZLQZ13]

The power model 3.3 of Zhang et al. [ZLQZ13] has an R-squared value of 0.99 or greater in three
of the eleven configurations that we analyse here. In the configuration, where it predicts most
accurately, it has an R-squared value of 0.997 and 0.867 when it is least accurate. It is the most
accurate power model in one case and comes very close to our polynomial power model 4.1 in most
other cases.

When we compare the accuracy 3.3 has here to its accuracy when no storage is considered, it
improves in seven out of eleven configurations, while having a decreased R-squared value with
a simultaneously decreased RMSE value in the remaining four cases. It does not perform less
accurately in any of the eleven configurations when compared to being trained without storage
consideration.

6.4.3 Asymptotic power model 4.2

Our asymptotic power model has an R-squared value of greater or equal to 0.99 in one case and
when we also consider the RMSE values, the asymptotic power model is the second most accurate
power model in this configuration. In all other configurations, it predicts less accurately than our

37



6 Evaluation

polynomial power model, and the power model 3.3 of Zhang et al. [ZLQZ13] but more accurately
than the power model 3.2 of Fan et al. [FWB07]. When the prediction of the asymptotic power
model is least accurate, the R-squared metric is at 0.808.

When compared to training our asymptotic model 4.2 without storage consideration, it improves its
accuracy in seven cases. In 3 configurations, we observe an ambiguous result again, with both the
R-squared value and the RMSE value decreasing. One configuration leads to an unambiguously
less accurate prediction of the asymptotic model - namely the BL460c with CPU model Xeon
E5-2660v3 with 512 gigabyte of storage installed.

6.4.4 Power model 3.2 of Fan et al. [FWB07]

The power model 3.2 of Fan et al. [FWB07] predicts in these configurations with a R-squared value
between 0.976 and -0.395. We already mentioned the inadequacies of the R-squared metric here,
which we will further discuss in Section 7.6, but the RMSE value is also the highest here, with a
value of 56.64 watts.

Indeed, model 3.2 of Fan et al. [FWB07] predicts least accurately in all eleven cases, when comparing
both the RMSE and the R-squared value to the other power models. However, the differences to our
asymptotic power model 4.2 are only in the ranges of the second or third digit behind the decimal
point in several cases.

When comparing the results of training model 3.2 of Fan et al. [FWB07] on these eleven configurations
with storage consideration, to training it on the same servers but without storage consideration, we
observe that the accuracy of prediction unambiguously improves in eight cases. In two cases the
already mentioned ambiguous result with a lower RMSE value but also a lower R-squared value
appears. In the remaining case, the accuracy unambiguously decreased, with the RMSE increasing
and the R-squared value decreasing.

Why would the metric values develop in these apparently contradictory ways? This is a question we
want to explore in the next subsection.

6.4.5 Ambiguous Metric Results

We will analyse now the ambiguous results where the power models have a lower R-squared value
while also having a lower RMSE value. This seems counter-intuitive because when the error (the
RMSE) goes down, we expect that the R-squared value should go up.

To explain this, it is important to remember the definition of the R-squared metric, which we
referenced in Section 2.2. In our case, this means that the R-squared value is a metric which
determines which proportion of the variance of the server-power consumption (in watts) can be
predicted by the changes in CPU utilisation. This proportion changes when the way this relationship
of CPU utilisation to power consumption is expressed changes (that is to say, a different power
model is used). But it also changes when the proportion of variance that can be predicted by changes
in CPU-utilisation in the dataset itself changes.
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6.4 Power models trained with storage consideration

Therefore the R-squared value decreases in some of the power models trained on a specific
configuration because the variance that cannot be explained by the power models using CPU
utilisation alone increases. The RMSE decreases as well because the distance of the prediction to
the actual value decreases. So the overall error of prediction, the RMSE, decreases here, while the
proportion of the variance explainable by the power models also decreases.

This behaviour of the metrics is best illustrated by the following Figure 6.8 of a configuration in
which we observe this result for our polynomial model 4.1. In Subfigure 6.8b, we display our
polynomial power model 4.1 trained on the server type BL460c with Xeon E5-2640 and 48 gigabytes
of storage installed. In Subfigure 6.8a it is the same server type, but this time combining all three
different storage sizes that servers of this server type have.

The dataset in Subfigure 6.8b is notably more sparse than the one in 6.8a. This can be seen by
the gap in between data points and the fact that the largest data point is at a utilisation of around
twenty-five percent. The largest value for power consumption is 85 watts, while the maximum
power drawn in 6.8a is around 250 watts.

We can explain the difference in RMSE by the example of Figure 6.8 as well. In Figure 6.8a, our
polynomial power model 4.1 first predicts a value that is at a maximum around 50 watts below the
actual value, in the range from 60 percent utilisation to around 90 percent utilisation. Then the
prediction crosses the actual power curve with a steep incline and predicts at its maximum around
150 watts more than was drawn by the servers.

These huge distances have a considerable effect when we calculate the average distance in the
RMSE. Meanwhile, in 6.8b, the power consumed by the servers is much lower in the dataset and the
power model has a maximum difference between prediction and actual value of around seven watts.
This explains the decrease in RMSE when comparing the accuracy of the power model in 6.8a with
the one in 6.8b.

The difference in the R-squared value can likewise be explained here, simply by observing how the
data points are plotted in 6.8. In 6.8a, the power curve does not seem to have a large variation when
compared to the scope of the power being consumed.

In Figure 6.8b, we see more variance that does not correlate well with CPU utilisation. From ten to
fifteen percent utilisation, the amount of power drawn remains constant, only to sharply increase by
10 watts near 16 percent utilisation. On the same utilisation percentage (which are integers and
individually visible here due to the small scale), some data points vary in power consumption by
five to ten watts. These variations are also present in 6.8a but masked by the large scale of the power
consumption and the bigger amount of data points (data from three servers instead of only one), so
these variations make a smaller proportional difference.

These are the explanations for the seemingly contradictory development of the two metrics. The
answer to the question of whether or not the power model is a better fit in 6.8a or in 6.8b is still
ambiguous though. In 6.8b there is a larger percentage of variance that cannot be predicted by
the power model but the overall error is smaller. In 6.8a a larger proportion of the variance can
be predicted by the power model, but the overall error is larger, especially when approaching full
utilisation.
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(a) Our Polynomial power model without storage
consideration.

(b) Our Polynomial power model with 48GB of
storage considered.

Figure 6.8: Illustration of simultaneous decrease of R-squared and RMSE on BL460c gen8.

6.5 Combination based on CPU Model

In categorising the different servers into configurations, we notice that there are several different
server types that have the same CPU model installed on them. For example, we observe server types
DL380 and ML350, which both have the CPU model Xeon E5-2620 version three.

In the next two sections, we first train the server power models on the individual server types and
then on a combination based on CPU model. If training the models on such a combination would
not lead to a loss in accuracy, then the power models would me more generalisable. They would
require no retraining for a new server type with a CPU model, which they were already trained on.

6.5.1 Server models treated as individual configurations

In total, we find four pairs of server types that have the same CPU model installed. We first
display in Table 6.3 how accurate the power models are when they are trained on each server type
individually. In the case of servers with different amounts of storage installed, we combine them
into one configuration here, to avoid introducing a bias. The two servers BL460c with CPU Xeon
E5-2640 and SY480 with CPU Xeon Gold 6132 fall into this category - we already analysed them
in Table 6.1 on page 31.

When we analyse the metrics, we observe that our polynomial power model is once again the most
accurate in both metrics in seven out of eight configurations. In the one in which it is not the most
accurate, it is the least accurate with an unsensible, negative R-squared of over 190 watts, which,
if we recall the power histogram 6.2, is an incredibly large discrepancy. We display this result in
Figure 7.2. The most accurate R-squared metric for our polynomial power model 4.1 is 0.996 with
an RMSE value of 2.41 watts.

However, while being generally more accurate than the other three models, our polynomial power
model 4.1 has an R-squared value of greater than 0.95 in only three out of eight cases. The threshold
of 0.95 is the value after which the prediction of a model can be considered useful.
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The power model 3.3 of Zhang et al. [ZLQZ13] is once again the second most accurate power
model in all but the case in which our polynomial model 4.1 also predicted less accurately. In the
configuration in which it predicts most accurately, it has an R-squared value of 0.981 and an RMSE
value of 5.15 watts. This is the same configuration that 4.1 also performs the most accurately in.
The two power models 3.3 and 4.1 often correlate in their accuracy. In general, the two power
models performed at their best on the same server configuration and at their worst on the same one
as well. This is possibly due to their nature of being odd polynomials. The power model 3.3 has an
R-squared value greater than 0.95 in three out of eight configurations as well.

Our asymptotic power model 4.2 predicts the third most accurately when compared to the other
power models in seven out of eight cases. It predicts more accurately than 3.2 in each case. In the
configuration where model 3.3 of Zhang et al. [ZLQZ13] and our polynomial model 4.1 produce
the already mentioned exceptionally inaccurate prediction, it is the most accurate power model. The
R-squared values for 4.2 have a range from 0.521 to 0.974. The lowest RMSE value is 1.52 watts,
the highest is 18.16. While individual results are not very accurate here, our asymptotic model 4.2
does not have a configuration in which its predictions lead to R-squared values in the negative or
with an RMSE of above 20, like all other power models do. So it makes more stable predictions
than the other power models while having only two configurations where it has an R-squared value
of over 0.95.

The power model 3.2 of Fan et al. [FWB07] again performs least accurately in all but the exceptional
configuration that was already mentioned. In this configuration, it ranks second in terms of accuracy.
R-squared values range from -0.605 to 0.939. RMSE values range from 4.4 watts to 31.81 watts.

We need to point out that in all the server configurations with the exception of: BL460c Xeon
E5-2640, SY480 Xeon Gold 6132, and DL380 Xeon E5-2690v4, we have to resort to using the
maximum power as reported by the OneView API instead of averaged samples from the dataset.
We do this because the servers that we consider here were never fully utilised. As we discuss in
Section 7.5 on page 56, taking the maximum power from the OneView API might introduce a
significant error to this power model’s prediction. Nonetheless, the relative accuracy of 3.2 to the
other power models remains the same in the three configurations, in which we did obtain power
data with corresponding CPU utilisations of above 97 percent.

6.5.2 Training on server types combined based on their CPU model

Next, we combine the sever models presented in the last section based on their CPU model and
retrain the models on these combinations. We do this to provide insight into how generalisable
these power models are and which hardware characteristics of the servers can be disregarded when
clustering them into configurations for power model training. We display these four configurations
in Table 6.4.

Our polynomial power model

Our polynomial power model 4.1 predicts reasonably accurately in these configurations, with
R-squared values ranging from 0.866 to 0.988 and RMSE values from 4.17 to 28.81 watts. This
makes it the most accurate power model in each configuration again, purely judging by the two
metrics. However, it makes one semantically invalid prediction again, whereas the other power
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server-
type

cpu-model cpu-freq core-
count

storage server-
count

r-sq rmse power-
model

DL380 X.E5-2620v3 2.4GHz 6 64GB 2 0.950 3.98 Asympt.
DL380 X.E5-2620v3 2.4GHz 6 64GB 2 0.939 4.4 Fan et al.
DL380 X.E5-2620v3 2.4GHz 6 64GB 2 0.978 2.65 Polynomial
DL380 X.E5-2620v3 2.4GHz 6 64GB 2 0.974 2.87 Zhang et al.

Ml350 X.E5-2620v3 2.4GHz 6 32GB 2 0.882 1.52 Asympt.
Ml350 X.E5-2620v3 2.4GHz 6 32GB 2 −0.605 5.6 Fan et al.
Ml350 X.E5-2620v3 2.40GHz 6 32GB 2 0.972 0.74 Polynomial
Ml350 X.E5-2620v3 2.4GHz 6 32GB 2 0.966 0.82 Zhang et al.

BL460c X.E5-2640 2.50GHz 6 Without 3 0.870 13.25 Asympt.
BL460c X.E5-2640 2.50GHz 6 Without 3 0.687 20.59 Fan et al.
BL460c X.E5-2640 2.50GHz 6 Without 3 0.941 8.95 Polynomial
BL460c X.E5-2640 2.50GHz 6 Without 3 0.887 12.34 Zhang et al.

DL360p X.E5-2640 2.5GHz 6 32GB 1 0.521 4.94 Asympt.
DL360p X.E5-2640 2.5GHz 6 32GB 1 0.247 6.2 Fan et al.
DL360p X.E5-2640 2.5GHz 6 32GB 1 0.663 4.14 Polynomial
DL360p X.E5-2640 2.5GHz 6 32GB 1 0.654 4.2 Zhang et al.

BL460c X.E5-2690v4 2.6GHz 14 512GB 1 0.819 12.67 Asympt.
BL460c X.E5-2690v4 2.6GHz 14 512GB 1 0.471 21.65 Fan et al.
BL460c X.E5-2690v4 2.6GHz 14 512GB 1 −39.927 190.35 Polynomial
BL460c X.E5-2690v4 2.6GHz 14 512GB 1 −0.014 29.97 Zhang et al.

DL380 X.E5-2690v4 2.6Ghz 14 384GB 1 0.665 18.16 Asympt.
DL380 X.E5-2690v4 2.6Ghz 14 384GB 1 0.354 25.21 Fan et al.
DL380 X.E5-2690v4 2.6Ghz 14 384GB 1 0.878 10.94 Polynomial
DL380 X.E5-2690v4 2.6Ghz 14 384GB 1 0.814 13.52 Zhang et al.

BL460c X.G.6132 2.6GHz 14 1024GB 4 0.974 5.93 Asympt.
BL460c X.G.6132 2.6GHz 14 1024GB 4 0.388 29.04 Fan et al.
BL460c X.G.6132 2.6GHz 14 1024GB 4 0.996 2.41 Polynomial
BL460c X.G.6132 2.6GHz 14 1024GB 4 0.981 5.15 Zhang et al.

SY480 X.G.6132 2.6GHz 14 Without 21 0.711 17.39 Asympt.
SY480 X.G.6132 2.6GHz 14 Without 21 0.032 31.81 Fan et al.
SY480 X.G.6132 2.6GHz 14 Without 21 0.945 7.61 Polynomial
SY480 X.G.6132 2.6GHz 14 Without 21 0.866 11.84 Zhang et al.

Table 6.3: Server models with same CPU, treated as different configurations.

models do not, as depicted in Figure 6.9. We will discuss the behaviour of the different power
models when trained on sparse datasets more in Section 7.4. Our polynomial power model 4.1 has
only one good fit with an R-squared value of above 0.95. It is the only power model to obtain such a
high R-squared value in these configurations.

How did the accuracy of our polynomial power model 4.1 change in this combination, compared
to its predictions on the individual server types in Table 6.3? We observe that in one of the four
configurations, power model 4.1 predicts unambiguously less accurately than in the underlying two
server types in Table 6.3. In the three other configurations of Table 6.4, our polynomial power
model 4.1 is more accurate than it is in one of the underlying server types in Table 6.3 and less
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cpu-model gen cpu-freq core-
count

server-
count

r-sq rmse power-
model

X.E5-2640 gen8 2.5GHz 6 4 0.928 10.49 Polynomial
X.E5-2640 gen8 2.5GHz 6 4 0.862 14.57 Zhang et al.
X.E5-2640 gen8 2.5GHz 6 4 0.642 23.48 Fan et al.
X.E5-2640 gen8 2.5GHz 6 4 0.836 15.87 Asympt.

X.E5-2620 gen9 2.5GHz 6 4 0.746 39.65 Asympt.
X.E5-2620 gen9 2.5GHz 6 4 0.822 33.23 Zhang et al.
X.E5-2620 gen9 2.5GHz 6 4 0.866 28.81 Polynomial
X.E5-2620 gen9 2.5GHz 6 4 0.074 75.76 Fan et al.

X.E5-2690v4 gen9 2.6GHz 14 2 0.811 22.15 Zhang et al.
X.E5-2690v4 gen9 2.6GHz 14 2 0.906 15.58 Polynomial
X.E5-2690v4 gen9 2.6GHz 14 2 0.615 31.58 Asympt.
X.E5-2690v4 gen9 2.6GHz 14 2 0.108 48.11 Fan et al.

X.G.6132 gen10 2.6GHz 14 25 0.924 10.43 Zhang et al.
X.G.6132 gen10 2.6GHz 14 25 0.988 4.17 Polynomial
X.G.6132 gen10 2.6GHz 14 25 0.837 15.27 Asympt.
X.G.6132 gen10 2.6GHz 14 25 0.357 30.34 Fan et al.

Table 6.4: server types with same CPU, treated as one configuration.

accurate than it is in the other. In these cases, we take the averages of both RMSE and R-squared
for the two underlying server types in Table 6.3. We then compare this average to the metrics we
obtained for the corresponding combined server configuration in Table 6.4.

In the case of the CPU model Xeon E5-2640, the average of the R-squared values of power model 4.1
in the two server types with this CPU in Table 6.3 is 0.802 and the averaged RMSE is 6.545, which
compares to an R-squared value of 0.928 and an RMSE of 10.49 in the combined configuration in
Table 6.4. So a larger portion of the variance in the dataset is explainable by the CPU utilisation
to power consumption as expressed in power model 4.1, but the overall average distance of the
prediction to the actual values increased slightly. So this result remains ambiguous.

In the configuration for CPU model Xeon E5-2690v4, we again take the average of the accuracy
of power model 4.1 in the underlying two server types of Table 6.3. The averaged R-squared
value is negative 39.108 because in one of the two server configurations power model 4.1 predicts
very inaccurately. This also leads to an average RMSE value of 100.645 watts. Here, because
the predictions of the power model 4.1 in one of the underlying two server configurations is so
inaccurate, the accuracy of the same power model on the configuration that combines these server
types is more accurate. Power model 4.1 has an R-squared value of 0.906 here and an RMSE value
of 15.58 watts, so in Table 6.4, the accuracy of the polynomial model 4.1 improved.

In the configuration with CPU model Xeon Gold 6132, the averaged metrics for power model 4.1
are 0.9705 as the R-squared value and 5.01 watts as the RMSE. This compares to 0.988 and 4.17 in
the combined configuration in Table 6.4. So here the accuracy also went up, when compared to the
average of the accuracy metrics that power model 4.1 has on the two individually considered server
types.
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Summing up, when compared to the average of the accuracy metrics our polynomial power model
4.1 has in the server configurations in Table 6.3, the accuracy of our polynomial power model 4.1
improves in two cases, diminished in one case and sees mixed results in the remaining case.

Power model 3.3 of Zhang et al. [ZLQZ13]

The power model 3.3 of Zhang et al. [ZLQZ13] predicts the second most accurately in each
configuration again, judging by the metrics. The R-squared values for this power model range from
0.811 to 0.924 and the RMSE values are in the range from 10.43 to 33.23 watts. It does not predict
power consumption to be negative in any of the four configurations.

When comparing the accuracy of the power model 3.3 in Table 6.4 to the accuracy it has in the
corresponding server types in Table 6.3, we observe that the accuracy diminished in two cases,
while having results that need to be further analysed in the remaining two cases.

In one of these two cases, namely the CPU model Xeon E5-2640, the averaged metric values that
power model 3.3 of Zhang et al. [ZLQZ13] has on the corresponding server types in Table 6.3 are
0.7705 as the R-squared value and 8.27 as the RMSE value. We compare this to the R-squared value
of 0.862 and the RMSE value of 14.57 that power model 3.3 has in the corresponding combined
configuration in Table 6.4. This result remains ambiguous.

In the other case, where the CPU model Xeon Gold 6132 is concerned, the averaged metrics are
0.9235 as R-squared and 8.495 as the RMSE value. In Table 6.4, power model 3.3 of Zhang et al.
[ZLQZ13] has an R-squared value of 0.924 and an RMSE value of 10.43 on the corresponding
configuration. So the power model 3.3 predicts unambiguously less accurately in the combined
configuration in Table 6.4, than it did in the average of the two corresponding configurations in
Table 6.3.

In conclusion, the power model 3.3 of Zhang et al. [ZLQZ13] predicts less accurately when server
types are combined in three cases and sees mixed results in the remaining case.

Asymptotic power model

Our asymptotic power model 4.2 has relatively low accuracy in most of the four configurations,
with the R-squared values being in the range from 0.615 to 0.837. The RMSE values are in the
range of 15.27 to 39.65 watts. This makes the asymptotic power model 4.2 the third-most accurate
model in these configurations, based on a comparison of the two metrics. However, the power
model 4.2 does not predict semantically incorrect values in any of the configurations. That is to
say, no negative values are predicted by 4.2 and the power is also not predicted to decrease with
increasing CPU utilisation.

When comparing the accuracy that our asymptotic power model 4.2 has here to its accuracy in Table
6.3, we observe that in two of the four configurations, power model 4.2 predicts unambiguously less
accurately than in the underlying two server types in Table 6.3.

In the two remaining configurations of Table 6.4, the already mentioned results appear, where power
model 4.2 is more accurate here than on one of the underlying server types but less accurate than it
is on the other.
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6.5 Combination based on CPU Model

(a) Our Polynomial power model 4.1 (b) Our Asymptotic power model 4.2

(c) Power model 3.3 of Zhang et al. [ZLQZ13]
equation: 3.3.

(d) Power model of Fan et al. [FWB07] equation
3.2.

Figure 6.9: Semantically incorrect prediction of Power model 4.1 on combined dataset of CPU
model Xeon E5-2620.

In the case of the CPU model Xeon E5-2640, the average of the R-squared values of the two server
types with this CPU in Table 6.3 is 0.6955 and the averaged RMSE is 12.96, which compares to
an R-squared value of 0.836 and an RMSE of 15.87 in the combined configuration in Table 6.4.
So a larger portion of the variance in the dataset is explainable by the CPU utilisation to power
consumption as expressed in power model 4.2, but the overall average distance of the prediction to
the actual values increases slightly. This result remains ambiguous.

In the two servers with CPU Xeon Gold 6132, we average the two metrics for our asymptotic power
model 4.2 as well. The averaged R-squared value is 0.8425, while the averaged RMSE is 11.66.
When comparing this to the corresponding combined server configuration in Table 6.4, we observe
that the R-squared value is 0.837 and the RMSE is 15.27. So both metrics indicate a less accurate
prediction by the power model 4.2 in the combined configuration.

In three out of four configurations the accuracy of power model 4.2 diminished and sees a mixed
result in the remaining configuration when compared to the corresponding results out of Table
6.3.
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Power model of Fan et al. [FWB07]

The power model 3.2 of Fan et al. [FWB07] has R-squared values in the range from 0.074 to 0.642
and RMSE values in the range of 23.48 to 75.76 watts. This makes it the least accurate model again.
However, like power models 4.2 and 3.3, it does not predict semantically incorrect values in any of
the four configurations.

When comparing the accuracy of prediction of the power model 3.2 of Fan et al. [FWB07] in Table
6.4 to those in Table 6.3, we observe that it predicts unambiguously less accurately in one instance,
while the other three configurations need to be analysed further.

When considering the CPU model Xeon E5-2640, the averaged metrics of model 3.2 out of Table
6.3 are 0.467 as R-squared and 13.395 as RMSE value. We compare this to the metric values of
0.642 as R-squared and 23.48 that power model 3.2 of Fan et al. [FWB07] has on the corresponding
combined configuration in Table 6.4. This comparison does not allow for a clear assessment, in
which case the power model 3.2 of Fan et al. [FWB07] predicts more accurately.

In the case of the CPU model Xeon E5-2620, the averaged metrics are 0.167 as the R-squared value
and five watts as the RMSE. This indicates a more accurate prediction than power model 3.2 of Fan
et al. [FWB07] makes in the corresponding combined configuration in Table 6.4, in which it has an
R-squared value of 0.074 and an RMSE value of 75.76 watts.

The third CPU model that - at first glance- leads to ambiguous result for power model 3.2 of Fan
et al. [FWB07] is Xeon Gold 6132. Here, the averaged metric values are 0.21 as the R-squared value
and 30.425 watts as the RMSE value. This indicates that power model 3.2 of Fan et al. [FWB07]
makes a more accurate prediction in the corresponding combined configuration in Table 6.4 because
the R-squared value is 0.357 here and the RMSE value is 30.34 watts.

In conclusion, out of the four configurations in which we combine server types based on their
CPU model, power model 3.2 of Fan et al. [FWB07] makes less accurate predictions in one
case, on average more accurate predictions in two other cases, while the remaining case remains
ambiguous.

6.6 Training on the full dataset

To further test the power models on their generalisability, in this section, train and test the power
models on the entire dataset of 73 servers. So no categories of servers are made here whatseover.
All differences within the servers like server type, CPU model, storage size, core count, and so on
are disregarded.

If the power models predict accurate results here, it would point towards greater generalisability
and to the potential of being able to apply the power models on different hardware, particularly
when they were trained on large datasets, without requiring retraining.

We display the accuracy metrics of the four power models on the entire dataset in Table 6.5 and the
corresponding graphical representations of the predictions in Figure 6.10.
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We observe that our polynomial power model 4.1 is the most accurate in its predictions once again
with an R-squared value of 0.971 and an average error of only 16.89 watts. These metrics are
confirmed when analysing Figure 6.10b. This time power model 4.1 does not predict semantically
incorrect values.

The next most accurate power model is again 3.3 of Zhang et al. [ZLQZ13]. It has an R-squared
value of 0.871 and an RMSE value of 35.95 watts. In Figure 6.10a, we see that the power model
3.3 drastically overpredicts the power consumption in the range from 80-100 percent utilisation
with the maximum difference being almost 1500 watts. In the lower CPU utilisations, it is almost
perfectly accurate though. As we recall, the dataset is much denser in lower CPU utilisation ranges,
as visible in Figure 6.1. This might be the reason why the high discrepancy between predicted
values and actual measurements in the higher utilisation ranges has not such a big influence on the
overall accuracy of the power model 3.3 by Zhang et al. [ZLQZ13].

Our asymptotic power model 4.2 seems to be having a smaller error at first glance in the graph
in Figure 6.10d but comes in as the third most accurate power model again in Table 6.5. This is
probably due to power model 4.2 not following the actual power curve as well as power models 4.1
and 3.3 do in the lower percentage utilisations.

This is also true for the power model 3.2 of Fan et al. [FWB07], which seems more accurate than
ou asymptotic model 4.2 and model 3.3 of Zhang et al. [ZLQZ13] when we consider the graph in
Subfigure 6.10c. The higher utilisation ranges from 60 to 100 percent utilisation are followed very
well by power model 3.2 of Fan et al. [FWB07]. However, in the lower percentage utilisation ranges,
the power model 3.2 by Fan et al. [FWB07] has a larger discrepancy than the other models and due
to the already mentioned makeup of the dataset, as displayed in 6.1, this leads to the undesirable
metric results for 3.2.

server-
count

r-sq rmse power-
model

73 0.971 16.89 Polynomial
73 0.871 35.95 Zhang et al.
73 0.785 46.32 Asympt.
73 0.609 62.5 Fan et al.

Table 6.5: Power models trained on the entire dataset, making not distinctions whatsoever.
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6 Evaluation

(a) Power model 3.3 of Zhang et al. [ZLQZ13]
equation 3.3. (b) Our Polynomial power model 4.1.

(c) Power model of Fan et al. [FWB07] equation
3.2 (d) Asymptotic Model 4.2.

Figure 6.10: Predictions of the power models on the entire dataset of 73 servers.
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In the last chapter, we displayed the results of our evaluation. In this chapter, we want to discuss
how accurately the power models predict in comparison to each other, to what extent they are
generalisable, and how fast they can be trained.

Thereafter in Section 7.4, we discuss the way the models behave when the dataset is very sparse,
which is very often the case in our analysis. Subsequently, we discuss what influence our usage of
the calibrated maximum power value from the OneView API in training the power model 3.2 of Fan
et al. [FWB07] and our asymptotic model 4.2 might have on their accuracy in Section 7.5. And
finally, in Section 7.6 we discuss the inadequacy of the R-squared metric when it is used to compare
the fit of models which are non-linear in their parameters.

7.1 Power model accuracy

In the previous chapter we showed our evaluation of the four server power models 3.2, 3.3, 4.2 and
4.1. We now want to discuss their accuracy in some more depth. As a first observation, the accuracy
the four power models have relative to each other remains surprisingly consistent throughout our
analysis. Generally our polynomial model 4.1 predicts most accurately, power model 3.3 of Zhang
et al. [ZLQZ13] predicts second most accurately, our asymptotic model 4.2 third most accurately
and power model 3.2 of Fan et al. [FWB07] predicts least accurately. However, our polynomial
model 4.1 and model 3.3 of Zhang et al. [ZLQZ13] sometimes predict nonsensical results in high
utilisation ranges, which we will analyse further in Section 7.4.

7.1.1 Accuracy of our Polynomial Model 4.1

The polynomial model 4.1 we propose here predicts most accurately when considering the accuracy
metrics in almost every case but occasionally predicts nonsensical results in higher CPU utilisation
ranges that we will discuss further in Section 7.4. This accuracy relative to the other power models
is generally true for the configurations we analyse in our evaluation but also for the ones we include
in our Appendix A.

However, it is important to note that, while our polynomial power model 4.1 is ,in general, the most
accurate model in our analysis when compared to the other three power models, it does have many
configurations, on which it does not have an R-squared value of greater than 0.95. We take this
value to be an indicator for when a model is a "good fitänd our polynomial power model 4.1 is not a
good fit in many of the configurations.

This could be influenced by the sparseness of the dataset in higher utilisation ranges as seen in the
histogram of the dataset 6.1, but we cannot be sure of this.
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So while the relative accuracy of this model is remarkable, when we compare it to the other
three, the predictions of this model need to be checked for their semantic correctness and in many
configurations, it is not a good fit for the dataset.

7.1.2 Accuracy of model 3.3 of Zhang et al. [ZLQZ13]

As already mentioned, the power model 3.3 of Zhang et al. [ZLQZ13] is generally the second most
accurate model. In some configurations, it does predict a sharp increase or decrease in power
consumption when approaching full utilisation. This makes the predictions of this power model
less accurate in this range. But this result may be different if the underlying utilisation dataset were
to be more evenly distributed.

7.1.3 Accuracy of our asymptotic model 4.2

Our asymptotic model 4.2 does not predict as accurately as the two other models already mentioned
here but does not have the same semantic problems. It generally follows the trend of the power
curves well, predicting no sharp increase or decrease of power consumption at full utilisation, which
is the trend we usually observe in the plots of our server configurations.

But due to its frequent over- or underprediction, this model is less accurate in general. Our
asymptotic model also depends on power consumption measurements at full utilisation as an initial
guess, which might influence its accuracy negatively. We will discuss this further in Section 7.5.

7.1.4 Accuracy of model 3.2 of Fan et al. [FWB07]

In general, the power model 3.2 of Fan et al. [FWB07] predicts least accurately. This is true, both
when RMSE and R-squared are considered. It has only a few configurations where it predicts
with an R-squared value of above 0.95. However, as already mentioned, we have to resort in most
configurations to take the maximum power consumption as reported by the OneView API as the
maximum power value that power model 3.2 of Fan et al. [FWB07] requires. This is not how the
authors of [FWB07] trained their model and it might be the source of an error, which we will discuss
more in Section 7.5.

7.2 Power model generalisability

In our evaluation 6, we train the power models on different subsets of the entire dataset, to find out
which hardware characteristics are important to consider when categorising servers into groups for
training.

We train the power models with storage size consideration and without, to find out if this difference can
be disregarded within the same server type. Likewise, we train the power models on a combination
of server types that have the same CPU model and on each of those server types individually. Finally,
we train the models on the entire dataset, disregarding all hardware characteristics.
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7.2 Power model generalisability

In this section, we want to discuss how the power model accuracy develops when some or all hardware
characteristics are disregarded. The less fine-grained the distinctions between configurations need
to be, for the power models to predict accurate results, the better.

If all hardware characteristics of the servers need to be considered for the power models to predict
accurately, then each new server that is deployed with a slight difference in hardware characteristics
requires new data gathering and power model retraining. Also, the power model predictions probably
need to be aggregated in some way, maybe for optimisation of scheduling algorithms, or in the form
of a dashboard. This becomes increasingly difficult, when the number of trained power models
rises.

So if the power models were to be generalisable in this sense, it would make their application in
data centers where there is a lot of diversity in the hardware deployed, for example the one in AEB,
much less labour intensive. The broader the categories for forming configurations can be while
maintaining an acceptable accuracy in power model prediction, the better.

We will discuss the possibility of disregarding each hardware characteristic in the order that they
appear in our evaluation, starting with storage size.

7.2.1 Can storage size be disregarded?

In all power models, the amount of configurations that result in improved accuracy when storage is
considered is significantly larger than the amount of less accurate and ambiguous results combined.
So it is reasonable to say that it generally improves the accuracy of the four power models when
storage is considered in categorising servers into configurations for power model training. This is
especially true, if the resulting configurations are not too sparse, as the configurations where only
three or fewer servers of this kind are left in the dataset, are more often subject to worsened or
ambiguous results than those with more servers in the dataset.

While the models deliver more accurate results in most cases where storage size is considered, they
still deliver useful predictions in some cases where these differences are disregarded. Especially
our polynomial power model 4.1 delivers accurate results in the configurations of Table 6.1, with all
its R-squared values being equal to or greater than 0.941 and with three configurations with a value
greater than 0.95. Power model 3.3 delivers quite accurate results as well, with only two R-squared
values beneath 0.9 and one configuration with an R-squared value greater than 0.95. Power models
4.2 and 3.2 each do have one good fit with an R-squared value of above 0.95 but are in general less
accurate than the other two models.

These results point towards especially our polynomial power model 4.1 being useful even if it
is not trained individually on each server model and storage size combination but rather just on
server models, disregarding storage differences. We argue that 3.3 also shows promise for being
generalisable in this sense, but power models 4.2 and 3.2 of Fan et al. [FWB07] seem to require
storage consideration to deliver more accurate results.
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(a) Configuration with CPU model X.E5-2620. (b) Configuration with CPU model X.E5-2490v4.

(c) Configuration with CPU model X.E5-2640. (d) Configuration with CPU model X.G.6132.

Figure 7.1: Histograms of the configurations in Table 6.4.

7.2.2 Can server types be combined based on their CPU?

When the server types are combined into one dataset based on their CPU model, the accuracy of
the model 3.3 of Zhang et al. [ZLQZ13] and that of our asymptotic power model 4.2 diminish.
The results for the remaining two power models 4.1 and 3.2 are mixed, with in each case two
configurations where the accuracy went up, one where it went down, and one where the results
remained ambiguous.

I conclusion: if the power models can be trained on sufficiently large datasets for individual server
types, they should be trained separately. For power models 3.2 and 4.1 it might be a possibility
to combine the server types based on their CPU model, but this needs to be evaluated in each
individual case.

However, it is good to note that the datasets are heavily biased towards low CPU utilisation. In a
dataset that has more data points across all CPU utilisation ranges, the power models might predict
more accurate results. This bias in the datasets is displayed in Figure 7.1, where the CPU utilisation
histograms of the configurations in Table 6.4 on page 43 are visible.
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7.2.3 Can all hardware characteristics be disregarded?

In Section 6.6 on page 46, we train the power models on the entire dataset of over seven million data
points. Although the results of the previous two sections do not indicate that hardware characteristics
can be disregarded, this might be due to the relatively small datasets, which are also heavily biased
towards lower utilisation ranges.

While the results of training the power models on the entire dataset are not perfect, they are much
better than we anticipated and point towards high generalisability of especially our polynomial
power model 4.1. When it is trained on large datasets, its predictions seem to be useful for a
great variety of server types. If the dataset were to be more evenly distributed, judging by the
graph in Figure 6.10 on page 48, power model 3.2 of Fan et al. [FWB07] would have made quite
useful predictions as well here. Our asymptotic power model 4.2 and the power model 3.3 of
Zhang et al. [ZLQZ13] both do not generalise well to the entire dataset, with the asymptotic model
underpredicting and the model of Zhang et al. [ZLQZ13] overpredicting the consumed power in
higher CPU utilisation ranges.

7.3 Speed of model training

Two of the models, namely our polynomial power model 4.1 and model 3.3 of Zhang et al. [ZLQZ13]
can be trained quite quickly, even when using cautious k-fold cross-validation, as we do. The k-fold
cross-validation step takes only fifteen to twenty minutes when training the models on the entire
dataset of 7,308,761 non-null values.

On the same dataset, our asymptotic model 4.2 and 3.2 of Fan et al. [FWB07] both take over two
hours to be trained. We train these power models with the curve_fit [Scid] function of the python
library scikit learn and apparently this function has a much higher runtime than the simple linear
regression function called fit [Scif] that we use in the training of our polynomial model 4.1 and 3.3
of Zhang et al. [ZLQZ13].

7.4 Performance in the presence of sparse data

When judged by the metrics, generally the two power models 4.1 and 3.3 are the two most accurate,
but when analysing the graphical representation of their predictions, we sometimes notice semantic
problems. Models 3.3 and especially 4.1 predict a negative power consumption for higher CPU
utilisations in some server configurations.

While in general, these semantically incorrect predictions do not prevent these two power models
from being the most accurate models purely judging from the metrics, in one case they do. In Table
6.3 we find the configuration BL460c with Cpu Xeon Ej5-2690 v4, that sees negative R-squared
values for both 4.1 and 3.3, as well as high RMSE values, with our polynomial power model 4.1
having an error of 190.35 watts.

We will now take a look at this exceptional configuration, where power model 4.1 predicts least
accurately, while our asymptotic model 4.2 predicts most accurately of all four power models. The
predictions of all four models as well as the actual power data at a given CPU utilisation are depicted
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in Figure 7.2. The underlying dataset is again very sparse, with the majority of the data points
being in the range from zero to twenty percent CPU utilisation, followed by a gap ranging from
twenty-three percent to 40 percent utilisation. No data above 45 percent CPU utilisation is available
as depicted in the histogram of this configuration in Figure 7.3.

Both our polynomial power model 4.1 and model 3.3 of Zhang et al. [ZLQZ13] predict a negative
power consumption. This is a semantic problem, as servers are not a power source. And it also
leads to a high error because the small part of the dataset which is at a CPU utilisation of around 40
percent has a large distance to the predicted values.

In the case of our polynomial model 4.1 the predicted graph would be at a value of a few negative
thousand watts at that point, should the trajectory of the graph continue after the point where the
Figure 7.2 cuts off. In the case of 3.3 the prediction of power consumption would be in the scope
of negative 1000 watts at 40 percent utilisation, again assuming the trajectory remains the same.
These results are significant outliers that influence the result a lot when an average is taken. Thus
the exceptional metric results can be explained for models 4.1 and 3.3 of Zhang et al. [ZLQZ13] .

The power model 3.2 of Fan et al. [FWB07] predicts a linearly increasing power consumption here,
with the highest predicted value being around 360 watts and the lowest predicted value being 175
watts. The prediction of the power model 3.2 is very close to the actual values in the range from
three to fifteen percent. Before that the power at idle CPU is over-estimated by power model 3.2 of
Fan et al. [FWB07] by 50-75 watts and the highest value at 40 percent CPU utilisation over-estimates
the actual value by approximately 50 watts. While the prediction may not be very accurate in some
portions of the dataset, it is semantically valid.

It is not immediately obvious that our asymptotic power model 4.2 is more accurate than model 3.2
of Fan et al. [FWB07] in this case, as the asymptotic model 4.2 starts to over-estimate the actual
consumed power at around five percent utilisation and keeps on doing so for the remainder of
the dataset. However, when considering the histogram of CPU utilisation in this configuration as
depicted in Figure 7.3, the reason becomes clearer.

Over 90 percent of the total dataset is in the range of zero to five percent CPU utilisation. Here,
judging by the graphs in Figure 7.2, asymptotic power model 4.2 predicts the power consumption
quite accurately, while model 3.2 of Fan et al. [FWB07] over-estimates the consumed power in this
range. Like power model 3.2 of Fan et al. [FWB07], our asymptotic power model 4.2 predicts
semantically correct values in this configuration.

Both our polynomial power model and the model 3.3 of Zhang et al. [ZLQZ13] are prone to
predicting sharp increases in power consumption, when approaching full CPU utilisation and, in two
instances, also a sharp decrease. Both datasets, where the semantic problem of predicted sharply
decreasing power consumption occurs are very sparse as seen in 7.3 and 7.4

We display examples of these semantic errors in prediction of especially our polynomial power model
4.1 in Figure 7.5, where our polynomial model predicts a sharply decreasing power consumption,
while power model 3.3 of Zhang et al. [ZLQZ13] predicts a sharp increase. Also note Figure 7.6,
where both models predict a sharp increase, with our polynomial model also briefly predicting a
decrease in power consumption.

It is important to note, that while the graphs look inaccurate, due to the bias in the datasets towards
low percentage CPU utilisation, models 4.1 and 3.3 are generally still more accurate than the other
two models in these cases, judging by the two metrics R-squared and RMSE. This is explainable
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7.4 Performance in the presence of sparse data

(a) Our Polynomial power model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]
equation: 3.3.

(d) Power model of Fan et al. [FWB07] equation
3.2.

Figure 7.2: Model predictions trained on BL460c with CPU model X.E5-2690.

Figure 7.3: Histogram of the CPU utilisation in BL460c X.E5-2690v4.
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Figure 7.4: Histogram of the CPU utilisation in Ml350 with CPU model X. E5-2620v3.

because their inaccuracies in the high percentage utilisation ranges have only a small impact. If the
power models are accurate in low percentage utilisation ranges and the dataset is biased towards
that range, then this has the bigger impact on the average.

We also want to stress here that, while nonsensical predictions do occur, they generally do so on
very sparse datasets and they are the exception, not the rule. To showcase that all models have
configurations, where they are a "good fit", we include Figure 7.7, where the models are trained on
a configuration with a non-sparse dataset. All models predict with R-squared values greater than
0.95 (as seen in Table 6.2) and no nonsensical values appear. In our Appendix B, we also include
the graphs of configurations we cannot discuss here, which include several such good fits.

Nonetheless, these inaccuracies in higher utilisation areas are a problem for power models 3.3
and especially for our polynomial model 4.1. This needs to be addressed by visually checking
the predictions that these models make because trusting the metrics is not enough here. The fact
that our polynomial power model 4.1 predicts sharply decreasing power consumption on more
configurations than 3.3 might be an indication of overfitting caused by the higher degree of 4.1.

7.5 Training with calibrated maximum power consumption

Fan et al. [FWB07] observe in their study that the maximum power consumption the manufacturers
of the servers specify is significantly higher than the power actually measured at maximum CPU
utilisation. Therefore, Fan et al. [FWB07] instead take the power observed at maximum CPU
utilisation as the value 𝑃𝑏𝑢𝑠𝑦 in their power model. We follow this approach, when we have data
points close enough to 100 percent CPU utilisation, and otherwise take the calibrated maximum
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(a) Power model 3.2 of Fan et al. [FWB07]. (b) Our Polynomial power model 4.1.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Our Asymptotic power model 4.2.

Figure 7.5: On the sparse dataset of the server Ml350 with CPU model X.E5-2620v3, our polynomial
power model 4.1 makes semantically incorrect predictions.

power consumption that the OneView API reports [Onea] as this value. This is not the same as the
“nameplate power” Fan et al. [FWB07] talk about. The value of calibrated maximum power that the
OneView API provides is calculated as follows:

“The calibrated maximum power.

Calibrated Maximum Power is defined as the maximum potential power that the device can consume,
subject to the following requirements and constraints:

1. The value reported MUST be the maximum which can be sustained for greater than 1/2 second
(i.e., in-rush currents and other spikes that may persist for less than a 1/2 second are not to be
included).

2. The value reported MUST represent the maximum total AC input across all power supplies

3. The value reported MUST represent the maximum AC input the device can sustain as configured
at the time this metric is reported. If additional components are added later or if it is discovered at a
later time that more power can be used, the larger number MUST be reported when the device is
next queried for this metric.

4. The value reported does not represent potential input power in the case of error conditions such
as short circuits.
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(a) Power model 3.2 of Fan et al. [FWB07]. (b) Our Polynomial power model 4.1.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Our Asymptotic power model 4.2.

Figure 7.6: On the sparse dataset of the server type DL360p with CPU model X.E5-2640, power
models 4.1 and 3.3 make semantically incorrect predictions.

5. The actual power used by the device MUST NOT exceed the reported Calibrated Maximum
Power by greater than 1%.

6. The Calibrated Maximum Power SHOULD NOT exceed the actual maximum power that the
device is capable of using by more than 5 %.

This value will be calculated automatically for managed/monitored device.” [Onea]

With servers yielding data close to 100 percent CPU utilisation, we observe a quite wide discrepancy
between the calibrated maximum power value and the actual, averaged maximum power consumption
of our measurements. We display this observation in Table 7.1. In the most striking case, the
difference between the calibrated maximum power value and the actual average of the highest
measured values is 826.25 watts. On average it overpredicts the actual value by 234.32 watts.

Apart from one outlier, our asymptotic power model makes predictions with an R-squared value
of above 0.924 in all cases here. The power model 3.2 of Fan et al. [FWB07] also predicts quite
accurately here, with three out of six configurations leading to a useful prediction with an R-squared
value of over 0.95. Because of two outliers, the average R-squared is still quite low though, with a
value of 0.694.

These six configurations contain some of the most accurate predictions of these two models, so
it is fair to say, that the general lack in accuracy we observe in the case of the model 3.2 of Fan
et al. [FWB07] is, at least in part, due to the bias we have in our dataset and the resulting use of the
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(a) Our Polynomial power model without storage
consideration. (b) Our Asymptotic power-mode.l

(c) Power model 3.3 of Zhang et al. [ZLQZ13]
equation: 3.3.

(d) Power model of Fan et al. [FWB07] equation
3.2.

Figure 7.7: A less sparse dataset in higher utilisation area. Server configuration: BL460c X.E5-2640
with 128 gigabyte of storage.

calibrated maximum power value instead of real measurements. However, the two very inaccurate
results this model produces even here, suggest that this might not be the only cause of this lack in
accuracy that we observe.

There was one server type where the calibrated maximum power value was even further off. It
comes in at 6000 watts for the model XL450, which we include in our Appendix A. If we recall
the histogram of all power measurements 6.2, this means a ten-fold overestimation of the highest
power consumption observed by us. We include the plots on this configuration in Figure 7.8 and
want to especially highlight the trend towards a very high power consumption that the model 3.2 of
Fan et al. [FWB07] predicts in the Subfigure 7.8d. Please note, that this is not one of the server
types of Table 7.1, or a combination of server types where one of these is included, so we do use
this high calibrated maximum power value to train power model 3.2 of Fan et al. [FWB07] and our
asymptotic model.

It seems that this high value has a bigger impact on the prediction of the power model 3.2 of Fan
et al. [FWB07] than it has on our asymptotic model. This is probably because this value is only an
initial guess for the training of our asymptotic model 4.2 and gets readjusted during training. In the
training of power model 3.2 of Fan et al. [FWB07] however, the power at maximum utilisation is
taken to be a constant that is not further refined.
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Some of the configurations of Table 7.1 are contained in the combined configurations when storage
size is disregarded in Table 6.1 on page 31. These are the server types SY480 with CPU model
Xeon Gold 6132, BL460c with CPU model Xeon E5-2640, and BL460c with CPU model Xeon
E5-2660v3. The evaluation on these particular configurations is thus more valid than the remaining
ones, where we resort to using calibrated maximum power.

Likewise, server types BL460c with CPU model Xeon E5-2640, SY480 with CPU model Xeon
Gold 6132, and DL380 with CPU model Xeon E5-2690 version four are present in the table where
they are combined based on their CPU model in Table 6.4 on page 43. Our evaluation on these
configurations might likewise be more valid as well than on the remaining configurations, where we
have to use the calibrated maximum power value of the OneView API.

server-
type

cpu-model storage measured-
power

OneView-
power

metrics-
asymptotic

metrics-
Fan-et-al

DL380 X.E5-2690v4 384GB 360.89 627 [0.665|18.16] [0.354|25.21]

DL380 X.E5-2630v3 384GB 365.96 561 [0.963|7.48] [0.902|12.12]

BL460c X.E5-2660v3 1024GB 380.52 363.66 [0.961|4.686] [0.011|23.45]

BL460C X.E5-2640 128GB 250.6 291 [0.997|2.33] [0.968|7.37]

SY480 X.G.6132 1024GB 444 471 [0.925|7.48] [0.954|5.82]

DL360 X.G.6128 64GB 173.75 1,000 [0.974|1.80 ] [0.977|1.69]

Table 7.1: The discrepancy of measured power versus the power the One View API reports. Metrics
are [R-squared|RMSE]

7.6 Suitability of 𝑅2 for non-linear parameters

While evaluating the power models discussed, we notice that scipy, the library we use to train the
power models, which are non-linear in their parameters, namely the one of Fan et al. [FWB07] 3.2
and our asymptotic model 4.2, does not provide an R-squared metric. Upon searching how to obtain
this metric, we discover that the scipy community left this feature out intentionally [Int] because it is
a poor basis for model comparison in the case of models that are non-linear in their parameters.

Several scientific articles note this problem with the R-squared metric like Spiess and Neumeyer
[SN10] or Malkina-Pykh and Pykh [MPP19]. We include this value in our evaluation anyway, but
the RMSE value might be a better basis for comparison between all four power models. For a
comparison between 3.3 by Zhang et al. [ZLQZ13] and our polynomial model4.1 the R-squared
value is still a good basis because these two equations are linear in their parameters. And generally,
the trend that the R-squared value suggests is confirmed by the RMSE value in our evaluation even
for the power model 3.2 of Fan et al. [FWB07] and our asymptotic model 4.2.
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(a) Our Polynomial on XL450. (b) Our Asymptotic power model on XL450.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]
on XL450.

(d) Power model 3.2 of Fan et al. [FWB07] on
XL450.

Figure 7.8: The most inaccurate calibrated maximum power value.
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8 Conclusion and Outlook

In this work, we train and analyse four server power models on a large dataset, which we obtain
from a data center at the company AEB SE.

Two of those models are our contributions, the remaining two are from literature. The power models
predicted in the following order from most accurate to least accurate: Our polynomial model 4.1,
the power model 3.3 of Zhang et al. [ZLQZ13], our asymptotic model 4.2 and finally, power model
3.2 of Fan et al. [FWB07].

We find that our polynomial model shows the most promise in being generalisable. For this model, it
seems to be an option to disregard storage size differences in categorising servers into configurations
for training and even to disregard all differences. This does not seem to be the case for combining
server types based on their CPU model though. Its speed of training is also comparatively good, on
one level with the power model 3.3 of Zhang et al. [ZLQZ13]. Power model 3.3 of Zhang et al.
[ZLQZ13] also shows promise to be generalisable, when it comes to storage size differences and is
quite accurate. The other two models show less promise to be generalisable and should be trained
with as fine-grained categories for training as possible in order to obtain accurate results.

In analysing and comparing the four models for their accuracy, generalisability, and their speed, we
answer our research questions. The two new models that we introduce, especially our polynomial
model 4.1, form another important contribution of this work.

With the dataset that we acquire here, we address a need for data from a real data center in research.
In future work, this dataset can be analysed further by other researchers. It could, for example, be
used to evaluate other power models.

CPU frequency, ambient temperature, and peak power are also included in the dataset and although
we do not use these metrics for our power model evaluation, these could provide a basis for further
research on server behaviour under real load.

Our finding that the power curves of the servers we analyse generally have the shape of a horizontal
asymptote could be further analysed for its validity. Maybe this is just a feature of the HP Servers
we analyse here and it does not apply to servers of other manufacturers.

If it does apply, it might be a good idea to refine the asymptotic power model we propose here. The
shape of the curve is generally met by our model, but with some adjustments to the formula, a better
fit might be possible.

Our idea of just increasing the degree of the cubic model that Zhang et al. [ZLQZ13] introduced to
degree five could potentially be further explored in future work. Maybe the polynomial model 4.1
does not overfit the dataset yet and it is possible to increase the highest degree to seven or even
higher. Since our polynomial power model 4.1 is quite accurate in many of the servers we analyse
here, it might also be interesting to evaluate it further on servers from other manufacturers, since we
only have access to data from servers of HP in this work and this might introduce a bias.
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A Table of unincluded Configurations

Here, we display the accuracy of the models on the server types that we have not included in our
evaluation and discussion.

server-
type

cpu-model cpu-freq core-
count

server-
count

r-sq RMSE power-
model

SY480 X.G.+6342 2.8GHz 24 1 0.939 8.96 Zhang et al
SY480 X.G.+6342 2.8GHz 24 1 0.956 7.59 Own Poly
SY480 X.G.+6342 2.8GHz 24 1 0.755 17.93 Fan et al
SY480 X.G.+6342 2.8GHz 24 1 0.935 9.26 Asympt.

DL360p X.E5-2640 0 2.5GHz 6 1 0.663 4.14 Own Poly
DL360p X.E5-2640 0 2.5GHz 6 1 0.654 4.2 Zhang et al
DL360p X.E5-2640 0 2.5GHz 6 1 0.247 6.2 Fan et al
DL360p X.E5-2640 0 2.5GHz 6 1 0.521 4.94 Asympt.

DL380 X.E5-2630v3 2.4GHz 8 1 0.998 1.66 Own Poly
DL380 X.E5-2630v3 2.4GHz 8 1 0.988 4.28 Zhang et al
DL380 X.E5-2630v3 2.4GHz 8 1 0.902 12.13 Fan et al
DL380 X.E5-2630v3 2.4GHz 8 1 0.963 7.48 Asympt.

XL450 X.G.6230R 2.1GHz 26 1 0.982 2.77 Own Poly
XL450 X.G.6230R 2.1GHz 26 1 0.974 3.33 Zhang et al
XL450 X.G.6230R 2.1GHz 26 1 −34.511 122.6 Fan et al
XL450 X.G.6230R 2.1GHz 26 1 0.931 5.4 Asympt.

DL360 X.G.6128 3.4GHz 6 3 0.980 1.58 Zhang et al
DL360 X.G.6128 3.4GHz 6 3 0.981 1.55 Own Poly
DL360 X.G.6128 3.4GHz 6 3 0.977 1.69 Fan et al
DL360 X.G.6128 3.4GHz 6 3 0.974 1.8 Asympt.

Table A.1: The accuracy of the power models on server configurations that we did not include
already
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B Unincluded Plots

In this chapter of the Appendix, we shall include all plots, corresponding to the sections in the
evaluation and discussion, that were not already included in the main paper.

(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.1: Plots of BL460c CPU model Xeon E5-2660v3 without Storage Consideration.



(a) Our Asymptotic power model. (b) Power model 3.3 of Zhang et al. [ZLQZ13].

(c) Power model 3.2 of Fan et al. [FWB07].

Figure B.2: Plots of BL460c CPU model Xeon E5-2640 without Storage Consideration, Own
polynomial model included in Figure 6.8 on page 40.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.3: Plots of BL460c CPU model Xeon E5-2660v3 without Storage Consideration.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.4: Plots of SY480 with CPU model 6132 without Storage Consideration.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.5: Plots of BL460c CPU model Xeon E5-2640 with 64 GB Storage.



(a) Our Asymptotic power model. (b) Power model 3.3 of Zhang et al. [ZLQZ13].

(c) Power model 3.2 of Fan et al. [FWB07].

Figure B.6: Plots of BL460c CPU model Xeon E5-2640 with 48 GB Storage. Figure of polynomial
model included in Figure 6.8 on page 40



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.7: Plots of BL460c CPU model Xeon E5-2660v3 with 1024 GB Storage.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.8: Plots of BL460c CPU model Xeon E5-2660v3 with 512GB of Storage.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.9: Plots of SY480 CPU model Xeon Gold 6132 with 1536 GB Storage.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.10: Plots of SY480 CPU model Xeon Gold 6132 with 1024 GB Storage.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.11: Plots of SY480 CPU model Xeon Gold 6248 with 512GB Storage.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.12: Plots of SY480 CPU model Xeon Gold 6248 with 1536GB Storage.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.13: Plots of models on combined configuration for CPU model Xeon E5-2640.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.14: Plots of models on combined configuration for CPU model Xeon E5-2690v4.



(a) Our Polynomial model. (b) Our Asymptotic power model.

(c) Power model 3.3 of Zhang et al. [ZLQZ13]. (d) Power model 3.2 of Fan et al. [FWB07].

Figure B.15: Plots of models on configuration SY480 with CPU model Xeon Gold Plus 6342, 4096
GB of storage
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