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ABSTRACT

Detecting and analyzing substances is of crucial relevance in numerous
areas of our modern lives, including industrial process control, environ-
mental monitoring, forensic science, and medical diagnostics. Many of the
above-indicated applications would drastically benefit from improving the
sensitivities compared to what is currently achievable by conventional sens-
ing approaches. In this context, a promising technique that is experiencing
rapidly increasing interest in recent times is nanophotonic sensing. The idea
is to exploit the strong light-matter interactions that can occur in nanopho-
tonic resonators to realize optical sensing schemes with extremely high
sensitivities. The approach has proven to be highly useful for the detection
of gases, biomolecules, and much more. It also has been demonstrated that
one can utilize this scheme for the analysis of specific molecular properties,
such as chirality. Countless kinds of nanophotonic platforms have been and
are investigated, including numerous types of plasmonic nanostructures,
photonic crystals, dielectric resonators, etc.

With the increasing popularity of nanophotonic sensing techniques, it be-
comes more and more important to have a solid understanding of the in-
volved light-matter interactions. This is not only relevant for designing
and optimizing such systems, but also for interpreting optical signals, as
well as for the development of new sensing applications. In this thesis, we
present a thorough theoretical description of the involved light-matter inter-
actions. In particular, we approach the problem via the concept of resonant
states, which denote a specific subset of eigensolutions of Maxwell’s equa-
tions and provide a physically meaningful basis to describe resonant optical
phenomena.

We start by explaining how resonant states are defined and provide a detailed
overview from literature on how they can be used to model all sorts of light-
matter interactions. Then, we explain that in most sensing scenarios, one is
dealing with small material changes in an initial system and thus, a natural
theoretical approach consists in the use of perturbation theories. While
literature already provides a simple perturbation theory that allows for
predicting resonance shifts under local material variations, this theory is
only valid for variations inside a given resonator geometry. However, there

v



are many sensing applications where changes in the resonator’s surrounding
are relevant. Consequently, we present an extended theory that is capable
of handling these kinds of changes. Afterwards, we explain that resonance
shifts are not the only effects that can be important in nanophotonic sensing.
In order to have a more general description, we derive a perturbation theory
that allows for predicting the change of optical far-field spectra. We apply
the theory to many example systems and demonstrate that it allows us to
gain deep fundamental insights in the heart of the light-matter interactions.
In this context, we also extensively discuss a very specific application, which
is experiencing a lot of attention lately: nanophotonic chiral sensing. We use
our theory to clarify the involved enhancement mechanisms and reveal a
surprising finding concerning the relevance of frequency shifts. Furthermore,
we explain that the perturbative approach has many practical benefits for
sensor modeling in terms of computational efficiency.

Finally, we unveil that substance detection and characterization are not
the only nanophotonic sensing applications. Instead, one can also exploit
nanophotonic approaches to track motions on the nanoscale. This motion
sensing is based on the interaction between nanostructures and quantum
emitters. While the idea of exploiting the above interaction for the ma-
nipulation of quantum emitters has become extremely popular in recent
years, the motion-sensing application is less well-known. We provide a
detailed theoretical model of the underlying light-matter interaction and
employ it to describe and elucidate observations from experiments on DNA-
based molecular nanodevices. Furthermore, we show that by combining
the model of the light-matter interactions with a kinetic model of chemical
reactions, one can obtain deep insights into the dynamics of such nanosys-
tems. In the end, we shortly discuss the inclusion of another effect into the
equations, known as Förster resonance energy transfer, and investigate a
complex nanosystem where both effects (Förster resonance energy transfer
and emitter-nanostructure interactions) are occurring simultaneously.
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DEU TSCHE ZUSAMMENFAS SUNG

Die Detektion und Analyse von Substanzen ist in zahlreichen Bereichen
unseres modernen Lebens von entscheidender Bedeutung, z. B. in der in-
dustriellen Prozesskontrolle, der Umweltbeobachtung, der Forensik und
der medizinischen Diagnostik. Viele der oben genannten Anwendungen
würden von einer drastischen Verbesserung der Sensitivität im Vergleich
zu dem, was derzeit mit konventionellen Ansätzen möglich ist, profitieren.
Eine vielversprechende Technik, die in letzter Zeit große Beachtung findet,
ist in diesem Zusammenhang die nanophotonische Sensorik. Die Grundidee
besteht darin, die starken Licht-Materie-Wechselwirkungen, die in nano-
photonischen Resonatoren auftreten können, auszunutzen, um optische
Messverfahren mit extrem hoher Sensitivität zu realisieren. Dieser Ansatz
hat sich als äußerst nützlich für den Nachweis von Gasen, Biomolekülen
und vielem mehr erwiesen. Es wurde auch gezeigt, dass dieses Verfahren für
die Analyse spezifischer Moleküleigenschaften, wie z. B. der Chiralität, ein-
gesetzt werden kann. Unzählige Arten von nanophotonischen Plattformen
wurden und werden untersucht, darunter zahlreiche Arten von plasmoni-
schen Nanostrukturen, photonischen Kristallen, dielektrischen Resonatoren
usw.

Mit der zunehmenden Popularität nanophotonischer Sensortechni-
ken wird es immer wichtiger, die zugrundeliegenden Licht-Materie-
Wechselwirkungen gut zu verstehen. Dies ist nicht nur für den Entwurf
und die Optimierung solcher Systeme von Bedeutung, sondern auch für die
Interpretation optischer Signale sowie für die Entwicklung neuer Sensoran-
wendungen. In dieser Arbeit präsentieren wir eine gründliche theoretische
Beschreibung der zugrundeliegenden Licht-Materie-Wechselwirkungen.
Im Besonderen gehen wir das Problem über das Konzept der sogenannten
Resonanzzustände an. Diese stellen eine spezielle Untermenge von Eigenlö-
sungen der Maxwellschen Gleichungen dar und bieten eine physikalisch
sinnvolle Basis für die Beschreibung resonanter optischer Phänomene.

Zunächst erläutern wir, wie Resonanzzustände definiert sind, und liefern
einen ausführlichen Literaturüberblick, wie diese zur Modellierung aller
möglicher Arten von Licht-Materie-Wechselwirkungen verwendet werden
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können. Dann erklären wir, dass man es bei den meisten Sensoranwen-
dungen mit kleinen Materialänderungen in einem Ausgangssystem zu tun
hat und daher ein natürlicher Beschreibungsansatz in der Verwendung von
Störungstheorien besteht. Zwar gibt es in der Literatur bereits eine einfache
Störungstheorie, mit der sich Resonanzverschiebungen bei lokalen Material-
änderungen vorhersagen lassen, doch gilt diese Theorie nur für Änderungen
innerhalb der vorgegebenen Resonatorgeometrie. Es existieren jedoch viele
Anwendungen in der Sensorik, bei denen Änderungen in der Umgebung
des Resonators von Bedeutung sind. Aus diesem Grund stellen wir eine er-
weiterte Theorie vor, die diese Art von Veränderungen mitberücksichtigen
kann. Anschließend erläutern wir, dass Resonanzverschiebungen nicht die
einzigen Effekte sind, die in der nanophotonischen Sensorik von Bedeutung
sein können. Um eine allgemeinere Beschreibung zu erhalten, leiten wir
eine Störungstheorie für die Änderung von optischen Fernfeldspektren her.
Wir wenden die Theorie auf viele Beispielsysteme an und zeigen, dass sie
tiefe fundamentale Einblicke in die Licht-Materie-Wechselwirkungen er-
möglicht. In diesem Zusammenhang diskutieren wir auch ausführlich eine
sehr spezifische Anwendung, die in letzter Zeit viel Aufmerksamkeit erfährt:
die nanophotonische chirale Sensorik. Wir nutzen unsere Theorie, um die
beteiligten Signalverstärkungsmechanismen aufzuklären und zeigen ein
überraschendes Ergebnis hinsichtlich der Relevanz von Frequenzverschie-
bungen auf. Darüber hinaus erklären wir, dass der störungstheoretische
Ansatz viele praktische Vorteile für die Sensormodellierung hinsichtlich der
Recheneffizienz hat.

Schließlich erläutern wir, dass die Detektion und Charakterisierung von
Substanzen nicht die einzigen nanophotonischen Sensoranwendungen sind.
Stattdessen kann man nanophotonische Ansätze auch nutzen, um Bewe-
gungen auf der Nanoskala zu verfolgen. Diese Bewegungserfassung basiert
auf der Wechselwirkung zwischen Nanostrukturen und Quantenemittern.
Während die Idee, diese Wechselwirkung für die Manipulation von Quan-
tenemittern auszunutzen, in den letzten Jahren große Popularität erreicht
hat, ist ihre Anwendung zur Bewegungsverfolgung weniger bekannt. Wir
stellen ein detailliertes theoretisches Modell der zugrundeliegenden Licht-
Materie-Wechselwirkung vor und wenden dieses an, um Beobachtungen
aus Experimenten an DNA-basierten molekularen Nanobauteilen zu be-
schreiben und zu erläutern. Darüber hinaus zeigen wir, dass man durch
die Kombination des Modells der Licht-Materie-Wechselwirkung mit einem
kinetischen Modell chemischer Reaktionen tiefe Einblicke in die Dynamik
solcher Nanosysteme gewinnen kann. Abschließend erörtern wir kurz, wie
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man einen weiteren Effekt in die Gleichungen miteinbeziehen kann, be-
kannt als Förster-Resonanzenergietransfer, und untersuchen ein komplexes
Nanosystem, in dem beide Effekte (Förster-Resonanzenergietransfer und
Emitter-Nanostruktur Wechselwirkungen) gleichzeitig auftreten.

ix
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1
I N TRODUCT ION

As written in the abstract, detecting and analyzing substances is of crucial
relevance in numerous areas of ourmodern lives, including industrial process
control, environmental monitoring, forensic science, andmedical diagnostics.
One can, for instance, think of the chemical company that needs to monitor
the presence of potentially harmful or explosive gases in its production
plants or of the Diabetes patient who needs to regularly determine his or
her blood-sugar concentration.

In many cases, it is highly practical to carry out the detection optically, i.e.,
to utilize the interaction of the analyte substance with light in order to gain
information about its nature or chemical composition. Depending on the
application, there are several benefits of optical measurements [1–3]: They
are typically very fast, cheap, reliable, easy to handle, and they usually do not
alter the chemical composition of the analyte substance. In some scenarios,
there exist even further specific advantages: For example when dealing with
explosive gases, it is preferable to use purely optical read-out schemes in
order to avoid any direct contact of the gas with electronic circuits, as this
could induce sparking [4].

A lot of optical sensing applications are, however, hampered by the of-
ten intrinsically high detection limits of conventional approaches. A way
to dramatically decrease the detection limits consists in the utilization of
nanophotonic resonators in order to enhance the underlying light-matter
interactions [5]. A typical example scheme for this kind of nanophotonic
substance sensing is displayed in Fig. 1.1. The starting point is a resonant
nanophotonic structure that can be brought in contact with the analyte
substance. As an example, we depict an array of metallic nanoantennas that
is covered by an analyte solution. The optical response of the nanophotonic
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structure is probed before and after adding the analyte. In the example, the
transmittance of the system is measured.

analyte

resonator

detector

light source

Figure 1.1. Typical example setup for resonant nanophotonic substance sensing.
The starting point is a nanophotonic resonator that can be brought in contact with
the analyte substance. In the depicted example, the resonator consists of an array
of plasmonic nanoantennas. The optical response of the nanophotonic structure is
probed before and after adding the analyte. The example sketches a setup that is
made to measure the optical transmittance of the system. The change in the optical
response provides information about the analyte substance. Typically, the signal
strengths (and thus, the sensitivities) that are reached via this approach are orders
of magnitude higher than the ones that would be achieved from measuring the
analyte substance alone, due to the enhanced light-matter interaction that can take
place in nanophotonic resonators. Adapted with permission from Ref. [6], copyright
2016, American Chemical Society.

The change in the optical response contains information about the analyte
substance. Typically, the signals that are obtained via this approach can
be orders of magnitude larger than the ones that would be achieved from
measuring the analyte substance alone. The reason is that nanophotonic
structures – if appropriately designed – can exhibit electromagnetic res-
onances with extremely strong electromagnetic near fields that allow for
drastically enhancing the interaction of the light with the analyte medium.
As a disclaimer, it should be mentioned that in some cases, it is not only
necessary to have particularly strong near fields, but also that they are
specially tailored. To give the reader some impressions about the kinds of
signals that can be produced in this sensing scheme: One can, for instance,
measure intensity changes at a fixed wavelength, track spectral shifts of
resonant features, monitor shape changes of the features, or even look for
new features popping up in the spectrum.
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These nanophotonic-sensing approaches have proven to be highly efficient
for countless applications: Examples include the ultra-sensitive detection
and characterization of various kinds of biomolecules [5, 7–19], gases [20–
22], and much more [23–25]. Even specific molecular properties, such as
the so-called chirality [26–30], can be determined optically. It should also
be emphasized that there are different possibilities to achieve selective
detection of target substances: One option is to functionalize the surface of
the nanostructures such that only the substance of interest can bind to it.
This technique is often used in the case of biomolecules [5]. Another option
is to built the resonator (or parts of it) of materials that selectively absorb
the requested target substance. This technique is often employed in the case
of gas sensing [20–22]. In recent years, a plethora of resonant nanosystems
have been investigated, including whispering-gallery resonators [11, 31–33],
metallic plasmonic structures [9, 10, 12, 13, 17, 18, 20–22, 25, 26, 28], photonic
crystals [8, 14], dielectric nanoresonators [15, 16, 19, 29], and even exotic
systems, such as graphene [34].

With the growing popularity of nanophotonic sensing schemes, it becomes
more and more important to have available a thorough theoretical under-
standing of the underlying light-matter interactions. In this context, an
approach that has started to experience increasing recognition is the theory
of resonant states (also known under the term quasi-normal modes) [35–39].
These states are defined as a specific subset of eigensolutions of Maxwell’s
equation and constitute a physically meaningful basis to characterize res-
onant optical phenomena. The resonant-state approach has proven to be
highly efficient for modeling numerous sorts of light-matter interactions,
such as the interplay of emitters with nanostructures [36, 40–42], light
scattering [43–45], light propagation in fibers [46, 47], and many others [38,
39, 48–52]. By exploiting the power of the above framework, in this thesis,
we present a detailed theoretical description of the specific interactions that
occur in nanophotonic sensing.

The thesis is structured as follows:

• We start in chapter 2 by giving a thorough introduction into the
theory of resonant states as well as a broad literature overview of how
resonant states can be utilized to describe all kinds of resonant optical
phenomena. In this context, we also show that literature provides
a simple perturbation theory that allows for efficiently predicting
frequency shifts and linewidth changes under small local material
variations in nanophotonic systems, as they occur in typical substance
sensing schemes.
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• In chapter 3, we reveal that the above-mentioned perturbation theory
is only valid for material variations inside a given resonator geometry,
but not for changes in the surrounding medium, which are often rele-
vant in sensing as well. To close this gap, we present a generalization
that is capable of rigorously accounting for such exterior changes and
demonstrate its applicability at different example systems.

• Afterwards, in chapter 4, we explain that frequency shifts and
linewidth changes are not the only effects that can be important
in nanophotonic substance sensing. Consequently, we go one step
further and develop a rigorous perturbation theory for predicting
the change in any of the resonator’s far-field under internal material
variations. In order to be as universal as possible, the theory is
formulated in the framework of the so-called optical scattering matrix.
We test the power of the theory at a simple example from the field
of dielectric sensing and show that it allows us to gain deep insights
into the heart of the light-matter interactions.

• Then, in chapter 5, we apply the theoretical framework from the pre-
vious section to rigorously understand the enhancement mechanisms
that occur in a very special sensing application, which has attracted a
lot of attention in resent years: nanophotonic chiral sensing.

• In chapter 6, we unveil that substance detection and characterization
are not the only nanophotonic sensing applications. Instead, one can
also exploit nanophotonic effects for the tracking of movements on
the nanoscale. This movement-sensing scheme is based on the inter-
action between nanostructures and quantum emitters. We present a
detailed theoretical model of the involved interactions and apply it
to understand and elucidate observations from experiments on DNA-
based molecular nanodevices that had been carried out in several
collaboration projects.

• Finally, chapter 7 is devoted to summarizing the main results of this
thesis as well as to providing some suggestions for possible future
works.

4



2
RE SONAN T STATES

A physically meaningful basis to describe resonant phenomena are the so-
called resonant states. In optics, these states are defined as a specific subset
of the eigensolutions of Maxwell’s equations. Their physical meaningfulness
comes from the fact that resonant states allow for a description of resonant
phenomena without relying on any artificial frequency discretization as it
is needed in conventional frequency-domain approaches. In this chapter,
we will provide a detailed introduction into the framework of resonant
states and show how exactly they can be used in practical calculations.
Specifically, we discuss the pole expansion of the near and far field and
outline related theoretical tools such as the resonant-state expansion and
first-order perturbation theories. Furthermore, we will explain how the
resonant-state approach can be employed for efficiently describing countless
sorts of light-matter interactions in nanophotonics. Finally, we will briefly
mention some related approaches.

The main goal of this chapter is to lay the theoretical basis for the rest
of this thesis. However, in addition, it is also intended to give the reader
some general overview on the broader context of works that this thesis is
embedded in.

Parts of this chapter have been published beforehand in the following review
article [P7]:

S. Both and T. Weiss: Resonant states and their role in nanophotonics. Semi-
conductor Science and Technology 1, 013002 (2022).
DOI 10.1088/1361-6641/ac3290.
Reprinted/adapted with permission. Copyright 2021, The Authors.
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resonant states

2.1 introduction

In many fields of physics, we are used to describe systems via their eigen-
modes, i.e, the eigensolutions of the underlying set of differential equations
that characterize the system. In quantum mechanics, for instance, we are
used to look at the eigensolutions of the Schrödinger equation. Similarly,
in resonant mechanical systems, we are used to deal with the eigensolu-
tions of the mechanical equations of motion. It turns out that also in optics,
when investigating resonant phenomena, it is highly useful to approach the
problem via the concept of eigenmodes [35–39]. In this case, the underlying
differential equations are Maxwell’s equations. There is, however, one com-
plication: Many optical systems form so-called open resonators, meaning
that they can leak energy to the environment. This makes the underlying
physics non-Hermitian and complicates the mathematical analysis, as we
will see later.

The eigenmodes of open resonators are typically referred to as resonant
states or quasi-normal modes, in order to emphasize the non-Hermitian
nature. The two expressions can be used equivalently. The term quasi-normal
modes was probably arising the first time for describing tapered fibers [53].
Later, it was reframed in the context of damped mechanical oscillators [54]
and stellar models [55]. In contrast, the term resonant states stems from
quantum theory and scattering at nuclei [56]. Note that throughout this
thesis, we will consistently use the term resonant states.

The strength of the theory of resonant states is to describe resonant phenom-
ena. An overview over typical resonant optical systems is provided in Fig. 2.1.
Common to all systems is some mechanism to confine light in a localized
region in space. It turns out that this confinement becomes significantly
amplified at certain resonance frequencies. Often, it is possible to identify a
scaling behavior of the resonance frequencies with some geometrical param-
eters. In many cases, the scaling is linear and can be interpreted as the result
of constructive interference. A prominent example [cf. panel (a)] is that of
a whispering gallery mode [11], where light is confined inside a material
with high refractive index by total internal reflection at the boundary to
a low-index surrounding. This results in constructive interference of light
at the resonance frequencies after one roundtrip. In spherical whispering
gallery resonators, for instance, the resonance frequency scales linearly with
the radius. Owing to their narrow linewidth, whispering gallery resonances
are often used in sensing devices [11, 31–33]. Another important resonator
type is based on collective electron oscillations, so-called surface-plasmon
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polaritons, see Ref. [57] and references therein. When these surface-plasmon
polaritons are bound to a finite geometry as depicted in panel (b), they
form localized plasmon resonances with very large field enhancements in
localized hotspot regions [58–64]. As an alternative to plasmonic structures,
high-index dielectric nanoresonators have been investigated that support
Mie resonances [65–69]. Their advantage is a reduced loss compared to
plasmonic nanoresonators combined with a high flexibility to tailor the
interaction of different electric and magnetic resonances [cf. panel (c)]. In-
terestingly, very recently, it has been demonstrated that similar phenomena
can be observed in low-index nanoresonators that are embedded into a
high-index surrounding [P14]. Finally, light can also be confined by regions
with photonic bandgaps that arise in photonic crystals [70–73]. An example
of such a photonic crystal cavity is shown in panel (d).

silicon
nanodisk

ED mode

EQ mode

MD mode

MQ mode

Electric field Electron
cloud

Time

Gold
sphere

(c)

(b)

(a)

(d)

Ey

Figure 2.1. Examples of different resonant nanophotonic systems: (a) Dielectric
sphere supporting whispering gallery resonances, reprinted with permission from
Ref. [11], copyright 2003, Optica; (b) Plasmonic resonances in single gold spheres,
reprinted with permission from Ref. [64], copyright 2011, Springer Nature; (c) Elec-
tric dipolar (ED), electric quadrupolar (EQ), magnetic dipolar (MD), and magnetic
quadrupolar (MQ) Mie resonances in dielectric disks, reprinted with permission
from Ref. [69], copyright 2020, American Chemical Society; (d) Photonic crystal
cavity, reprinted with permission from Ref. [73], copyright 2003, Springer Nature.
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As a side note, let us mention that resonant states in such systems can be
categorized by carrying out a multipolar decomposition [74]. This yields
three different contributions with typical near- and far-field properties:
Electric, magnetic, and toroidal multipoles [75–77].1 Often, only the lowest-
order multipoles suffice to gain a better understanding of the underlying
physics. For instance, the interference of toroidal and electric dipoles may
lead to the occurrence of anapoles, which are nonradiating charge-current
configurations that have been described in various systems [79–81].

At the beginning of this section, it was already stated that resonant states
constitute eigensolutions of a non-Hermitian problem. Precisely, they are
defined as the eigensolutions of the underlying differential equations at
complex-valued eigenfrequencies that decay in time while exhibiting outgo-
ing boundary conditions outside the given resonator geometry. One may
wonder about the fact that the eigenfrequencies are in general not real
numbers, while experimental observations are only carried out at real fre-
quencies. What is then the implication of these resonant states at complex
eigenfrequencies? As a picturesque analogy, consider an old alley, where
trees are planted on one side of the road. If the roots of the trees have been
growing below the bitumen, the road is no longer plain. Therefore, one
feels the impact of the nearby trees, albeit staying always on the road. The
same holds for resonant states. They typically occur at frequencies with
negative imaginary parts, with few exceptions such as the exotic bound
states in the continuum that have a real-valued eigenfrequency [82–88].
From a physical perspective, resonant states oscillate in time with the real
part of the eigenfrequency, while twice the magnitude of the imaginary part
corresponds to the decay rate in time domain and the resonance linewidth
in frequency domain. The decay in time happens due to two possible loss
channels: Intrinsic losses in the materials and radiation to the exterior. Par-
ticularly those resonant states with eigenfrequencies close to the real axis
can have significant impact on the optical response at real frequencies.

Before we continue, let us have a short excursion about some interesting
properties of related resonant phenomena: While anapoles suppress the
far-field radiation only at certain frequencies due to the interplay of two res-
onant states, bound states in the continuum are resonant states that do not

1 It should be mentioned that this distinction – although often used in literature – is not truly
physical. The reason is that toroidal multipoles do not form an independent multipolar
faimily. Instead, it has been shown that they are simply higher-order terms of an expansion
of the transversemultipolar coefficients of electric parity with respect to the electromagnetic
size of the source [78].
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couple to the far-field at all. They can be classified as symmetry-protected
and accidental bound states in the continuum [84, 89]. The former can be
found whenever the coupling with the far field is forbidden by symmetry
constraints of the geometry and the incoming light, which can be, e.g.,
achieved in photonic crystal slabs [90]. In the latter case, we can under-
stand the origin of the nonradiative properties by the coupling of two or
more resonant states, which may yield a zero resonant linewidth under
certain “accidental” conditions. Another interesting phenomenon that is
attributed to the coupling of resonant states in open resonators is that of
exceptional points [32, 91–93], where minimum two eigenstates in a system
coalesce in field distribution and frequency. Finally, the arrangement of
several resonators in periodic arrays also yields intriguing effects such as
narrow surface-lattice resonances [94–97]. In that case, the interaction of the
individual resonators is mediated by plane waves close to their diffraction
opening, which is known as Rayleigh-Wood anomalies [98–100]. This inter-
play may result in extremely sharp spectral features, which can be exploited
in optical sensors [62].

As already mentioned, resonant states exhibit complex eigenfrequencies
with typically nonzero imaginary parts. If the negative imaginary part of
the eigenfrequencies is partially correlated with radiative losses, this re-
sults in the peculiar behavior that the eigensolutions grow with distance
to the resonator. The physical explanation is that light further away from
the resonator has left the resonator at the time when more energy had been
stored inside the resonator. As a consequence, conventional normalization
schemes for these eigensolutions fail. However, the absence of a suitable
normalization would render any theory of resonant states to be purely phe-
nomenological. Several alternative approaches have been developed to solve
this problem for quantummechanics [101–103] and later applied to propagat-
ing modes in optical waveguides [46, 104–106] and resonant states in optical
resonators [35–37, 41, 49, 50, 52, 107–115]. Owing to this plethora of different
formulations, the question of how to correctly normalize resonant states
was debated a lot in recent years [115–117]. Predominantly two normalization
schemes became widely accepted: (i) Analytic normalizations and (ii) the
application of complex coordinate transformations, which is equivalent to
using so-called perfectly-matched layers for the mode normalization [36].
Interestingly, it appears that those authors who are using the term quasi-
normal modes prefer the latter approach. In contrast, the term resonant
states is mainly used in the context of analytic normalization schemes [35,
37]. While there are two reviews in literature that have been written from
the perspective of quasi-normal modes [38, 39], in this chapter, we approach
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the topic mainly from the perspective of resonant states. More specifically,
we focus on the analytic normalization schemes and the derivation of the
resonant expansion via the Mittag-Leffler theorem, which can be applied to
the Green’s dyadic.

Another relevant aspect that deserves to be discussed is how to derive the
resonant states of a perturbed system based on the resonant states of an
unperturbed reference system, which is known as the resonant-state expan-
sion. Originally, the term resonant-state expansion was used in quantum
mechanics for a general expansion of functions or operators in terms of
resonant states [118, 119], but later refined to a perturbation theory in all
orders by the Muljarov group [35, 37, 120]. In general, this perturbative
approach can be applied to arbitrarily large perturbations, provided that
enough basis states of the unperturbed system are taken into account. It
results in a simple eigenvalue equation that can be solved much faster than
conventional numerical schemes for determining the resonant states. Under
certain simplifications such as the consideration of few modes, it boils down
to the so-called coupled-mode theory [121]. However, care has to be taken, be-
cause the resonant states cannot be used as a complete set of basis functions
far outside the resonator [39], so that the considered perturbations should
be in general localized in the resonator. In the limit of a single resonant
state, the resonant-state expansion yields a simple first-order perturbation
theory. Thus, it is possible to describe the sensitivity of resonantly enhanced
refractive-index sensors [51, 52, 111, 122, 123] and define a figure of merit that
can be used for optimizing such systems [25].

The rest of the chapter is organized as follows: We begin with the derivation
of the constitutive equation for resonant states, which requires searching for
solutions of Maxwell’s equations in the absence of sources and with outgoing
boundary conditions. Afterwards, we show how the Green’s dyadic can be
expanded in terms of the resonant states. Then, we address the question
of mode normalization, including a more general derivation of the analytic
normalization (compared to Refs. [37, 45]) that is valid even for nonreciprocal
materials. The next subsection is devoted to orthogonality relations, followed
by an overview on how to expand the near fields in terms of the resonant
states and a discussion of the completeness of the basis of resonant states.
Section 2.2 concludes with the pole expansion of the optical scattering
matrix. The next section contains an overview of the different applications:
Resonant-state expansion, first-order perturbation theory and sensing, as
well as Purcell enhancement. In the last section before the conclusion, we
provide a brief introduction to related theories such as the expansion in
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terms of permittivity eigenmodes or propagating modes. Finally, we discuss
how to use these theories to describe nonlinear optical phenomena.
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2.2 theory

We start with Maxwell’s equations in frequency domain, which we obtain
from time domain by using the Fourier transform

𝑓 (r;𝜔) =
∞∫

−∞

𝑑𝑡 e𝑖𝜔𝑡 𝑓 (r, 𝑡). (2.1)

Here, 𝜔 is the angular frequency. By making use of the compact matrix-
vector notation introduced in Ref. [37], the resulting curl Maxwell’s equa-
tions (Gaussian units) can be written as[

𝜔

𝑐

(
𝜀 (r;𝜔) −𝑖𝜉 (r;𝜔)
𝑖𝜁 (r;𝜔) 𝜇 (r;𝜔)

)
︸                      ︷︷                      ︸

P̂(r;𝜔)

−
(
0 ∇×
∇× 0

)
︸        ︷︷        ︸

D̂(r)

]

︸                                                 ︷︷                                                 ︸
M̂(r;𝜔)

(
E(r;𝜔)
𝑖H(r;𝜔)

)
︸      ︷︷      ︸

F(r;𝜔)

=

(
JE (r;𝜔)
𝑖JH (r;𝜔)

)
︸       ︷︷       ︸

J(r;𝜔)

. (2.2)

Here, 𝑐 is the vacuum speed of light, while 𝜀, 𝜇, 𝜉 and 𝜁 represent the material
parameters, namely permittivity, permeability, and possible bi-anisotropic
contributions, respectively. In general, 𝜀, 𝜇, 𝜁 , and 𝜉 are 3 × 3 tensors. It
should be mentioned that in the special case of reciprocal materials, the
material parameters obey 𝜉T = −𝜁 , 𝜀T = 𝜀, and 𝜇T = 𝜇, with the superscript T
denoting the matrix transpose [124]. The vectors E and H denote the electric
and magnetic fields, respectively, while the vectors JE and JH represent
generalized external electric and magnetic currents, respectively. Note that
the generalized electric current is defined as JE = −4𝜋𝑖j/𝑐 , with the electric
current density j, while JH has only been introduced for symmetry purposes.
In order to write the equations in a more compact form, we summarize
all material parameters in a material operator P̂. In analogy, all curls are
included in a generalized curl operator D̂. Furthermore, we introduced
two six-dimensional supervectors F and J that consist of the fields and the
generalized currents, respectively. By further abbreviating M̂ = 𝜔/𝑐 P̂ − D̂,
the curl Maxwell’s equations become a simple operator equation:

M̂(r;𝜔)F(r;𝜔) = J(r;𝜔). (2.3)

In the following, we will refer to M̂ as the Maxwell operator. For the sake of
completeness, we want to remark that other authors have defined alternative
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matrix-vector notation of Maxwell’s equations [38, 39, 125], which are from
a conceptual point similar to the above, but differ in the details, as they for
instance do not contain a factor 𝑖 in the definition of the field supervector.

One can introduce the so-called Green’s dyadic Ĝ of Eq. (2.3). This is defined
as the solution of

M̂(r;𝜔)Ĝ(r, r′;𝜔) = Î𝛿 (r − r′), (2.4)

where Î is the six-dimensional unit matrix and 𝛿 (r) represents the delta
function. If Ĝ of a system is known, one can immediately calculate the
fields F for a given source J as

F(r;𝜔) =
∫

𝑑𝑉 ′ Ĝ(r, r′;𝜔)J(r′;𝜔). (2.5)

This equation will be relevant at several places within this thesis.

2.2.1 Constitutive equation of resonant states

In the following, we want to find an equation that defines the resonant
states. To motivate this, we consider that our system experiences a very
short excitation at time 𝑡0 by a source J0 (r)𝛿 (𝑡 − 𝑡0). The resulting time-
dependent electric field is given by

E(r, 𝑡) = 1
2𝜋

∞∫
−∞

𝑑𝜔 e−𝑖𝜔 (𝑡−𝑡0)E(r;𝜔), (2.6)

where E(r;𝜔) is the frequency-dependent electric field generated by
J(r;𝜔) = J0 (r). Now, we assume that Ĝ and, thus, E(r;𝜔) has a countable
number of simple poles at complex frequencies𝜔𝑛 in the negative imaginary
frequency half plane: 𝜔𝑛 = 𝛺𝑛 − 𝑖𝛤𝑛 with 𝛺𝑛 , 𝛤𝑛 ∈ R,𝛤𝑛 > 0. Furthermore,
we restrict our considerations to times 𝑡 > 𝑡0. We note that Eq. (2.6) can be
interpreted as a line integral in the complex frequency plane along a path𝐶1
that coincides with the real frequency axis. We now extend the integration
path as indicated in Fig. 2.2 by adding a second section 𝐶2 such that we
obtain a closed loop that encompasses the negative imaginary frequency
half plane. We can assume that the integral over 𝐶2 vanishes [note that the
integrand is exponentially damped for Im(𝜔) → −∞]. Therefore, the result
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of Eq. (2.6) is not influenced by the change of the integration path. Since we
have a closed contour, we can apply the residue theorem and obtain:

E(r, 𝑡) = 𝑖
∑︁
𝑛

e−𝑖𝜔𝑛 (𝑡−𝑡0)Res[E(r;𝜔),𝜔𝑛]. (2.7)

This result allows us to draw some important conclusions: First, the
time-dependent field oscillates with frequencies 𝛺𝑛 while decaying in
time as exp[−𝛤𝑛 (𝑡 − 𝑡0)]. Second, the optical response of the system is
solely determined by the fields at the complex poles 𝜔𝑛 . Third, since the
time-dependent field E(r, 𝑡) must be real-valued, we infer that for every
pole at a frequency 𝜔𝑛 , there must be another pole at −𝜔∗

𝑛 with residue
Res[E(r;𝜔),−𝜔∗

𝑛] = −Res[E(r;𝜔),𝜔𝑛]∗.
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Figure 2.2. Change of the integration path in Eq. (2.6). The original path 𝐶1
resembles a straight line along the real frequency axis. We add a second path
𝐶2, such that we obtain a closed loop that encompasses the negative imaginary
frequency half plane.We can assume that the integral over𝐶2 vanishes and therefore,
the result of Eq. (2.6) is not altered. Note that for visualization, the sketch shows
a loop of finite dimension; however, in reality the loop is meant to be infinitely
extended such that it encloses the entire half plane.

A closely related visualization that indicates how the behavior of a function at
real-valued arguments is determined by the poles in the complex argument
plane can be found in Fig. 2.3. Plotted is the transmittance of a planar
dielectric slab as a function of the complex wavenumber 𝑘 = 𝜔/𝑐 . As it
can be seen, the transmittance at real wavenumbers (orange solid line) is
governed by the nearest poles on the complex wavenumber plane [45]. The
depicted situation is somewhat analog to the situation in Eq. (2.7).

Equation (2.7) is quite descriptive. It means that a short excitation will store
a finite amount of energy in the system, which will allow the resonator
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Figure 2.3. Analytic continuation of the transmittance of a planar dielectric slab
of thickness 𝑑 to the complex normalized wavenumber plane 𝑘𝑑 . The slab has a
refractive index of𝑛 = 2.5 and is surrounded by air. The incidence direction is normal
to the slab. It can bee seen that the transmittance maxima at real wavenumbers are
manifestations of the poles at complex wavenumbers, which can be associated with
Fabry-Perot modes of different orders. Reprinted with permission from Ref. [45],
copyright 2018, American Physical Society.

to oscillate at the excited resonance frequencies. While doing that, it can
lose energy via different loss channels, resulting in an exponential decay
of the oscillations in time with a decay rate of 𝛤𝑛 . This is exactly the same
process as in acoustic resonators, e.g., in a bell or guitar string that is excited
by a short strike. Direct experimental observations of this decay are often
hampered in optics by the large decay rate of typical resonances, i.e., a rather
short lifetime compared to the excitation pulse. However, for long-lived
resonances, the exponential decay in time can be observed, as shown by
Hergert et al. [126].

Let us now address the consequences of Eq. (2.4). If the Green’s dyadic Ĝ

has poles at frequencies 𝜔𝑛 but the right-hand side of Eq. (2.4) does not
depend on frequency, we can infer that the operator M̂ must have roots at
these complex frequencies:

M̂(r;𝜔𝑛)F𝑛 (r) = 0. (2.8)
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Since this equation formally resembles an eigenvalue problem, we will
from now on refer to 𝜔𝑛 as the eigenfrequencies. Equation (2.8) denotes the
constitutive equation for resonant states. Since the Green’s dyadic yields only
outgoing fields for spatial regions outside a given source J, it follows that
the resonant fields F𝑛 in Eq. (2.8) must possess purely outgoing boundary
conditions outside the resonator. This is the reason why the above equation
can be fulfilled only for a discrete set of eigenfrequencies 𝜔𝑛 . Without that
restriction, there exist solutions of Eq. (2.8) for any frequency with a given
incident field, which resembles the typical situation of a scattering problem
in optics with a known incident field and the resulting scattered field [39].

Of course, the question is what outgoing boundary condition mean at com-
plex frequencies. At real frequencies, we can use the Silver-Müller radiation
condition [127] for isolated resonators embedded in a homogeneous and
isotropic surrounding, which specify outgoing boundary conditions as

lim
𝑟→∞

e𝑟 × E = 𝑍H, (2.9)

lim
𝑟→∞

e𝑟 ×𝑍H = −E, (2.10)

where e𝑟 is the radial unit vector and 𝑍 is the impedance of the surrounding
medium. At complex frequencies, the situation is, however, more sophisti-
cated. Most importantly, the Silver-Müller radiation condition does not hold
for resonant states at complex frequencies [115]. Hence, it can be regarded
for modal expansions in terms of resonant states only as the limiting case at
real frequencies [39].

A straightforward way to extend the definition of outgoing boundary condi-
tions to complex frequencies is to consider localized sources: If a source J

is completely localized in a certain volume, then the fields generated by
this source are purely outgoing outside that volume. The problem is that
Eq. (2.8) does not contain any sources. Still, it is possible to test the boundary
conditions of solutions of Eq. (2.8) by introducing a localized source that
vanishes in the limit 𝜔 → 𝜔𝑛 , i.e., J ∝ O(𝜔 −𝜔𝑛). The fields F generated by
this source then have to obey F → F𝑛 for 𝜔 → 𝜔𝑛 . Note that this approach
is also used for deriving the analytic normalization in the next section. Of
course, one needs to clarify, where possible sources are located in this case.
For this purpose, we separate our system into a background system with a
trivial material distribution P̂BG that should be free of resonant states, and
a localized non-trivial variation 𝛥P̂ that constitutes the resonator:

P̂(r;𝜔) = P̂BG (r;𝜔) +𝛥P̂(r;𝜔). (2.11)
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Possible test sources for outgoing boundary conditions should be located in
regions with 𝛥P̂ ≠ 0.

Still, there can be some ambiguity about the optimal set of resonant states.
For instance, in planar periodic structures, Rayleigh-Wood anomalies [98–
100] arise in the spectra. They occur spectrally, whenever a plane wave
in the super- or substrate changes between propagating and decaying per-
pendicular to the planar system. In that case, the wavevector component
perpendicular to the slab, which we denote here as 𝑘𝑧 , approaches zero.
As discussed later, this yields cuts in the complex frequency plane for the
expansion of the Green’s dyadic [109, 128]. The exact path of these cuts
is not unique [106], but can be chosen in dependence of the selection of
Riemann sheets in the square root function that relates 𝑘𝑧 with the vacuum
wavenumber 𝑘 = 𝜔/𝑐 via

𝑘𝑧 = ±
√︃
𝑛2𝑘2 − k2| | , (2.12)

where 𝑛 is the refractive index in the super- or substrate and k | | is the
projection of the wavevector parallel to the planar structure. A common
selection for the Riemann sheet with outgoing plane waves, i.e., when to use
the positive or negative sign in Eq. (2.12), is to warrant Re(𝑘𝑧) + Im(𝑘𝑧) > 0,
but other definitions may be better suited. In some cases, it even turns out
that a description of the optical response in terms of complex propagation
constants 𝑘𝑧 is favorable over an analytic continuation to complex frequen-
cies [109, 128]. In that case, it is then possible to account for modes on
both Riemann sheets simultaneously, while the related cut contribution is
removed.

Finally, let us briefly address the question on how to obtain solutions of
Eq. (2.8). In the cases of planar slabs, spherical particles, or infinitely long
cylinders, we can derive the resonant states and their complex resonance
frequencies by reducing Maxwell’s equations to a transcendental equation
that can be solved exactly up to machine precision. In very specific cases
such as planar slabs consisting of homogeneous and isotropic non-dispersive
materials, it is even possible to write down closed expressions for the reso-
nance frequencies and fields [38, 109, 129]. In general, however, numerical
methods are required to determine solutions of Eq. (2.8). This is probably
the most important case in practice. Typical numerical methods that are
commonly used in this context are the finite difference method, the finite-
element method and the Fourier-modal method. In this thesis, we will make
use of the latter two. An overview and benchmark of different numerical
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schemes for determining resonant states can be found in Ref. [130]. It should
be mentioned that as an alternative to the numerical approach, the resonant
states of a complex system can also be calculated from simpler systems
with known analytic solutions via a perturbative approach, known as the
resonant-state expansion [35, 37], which will be explained in subsection 2.3.1.

2.2.2 Pole expansion of the Green’s dyadic

In the following, we derive an expansion of the Green’s dyadic in terms of
the resonant states. For this purpose, we will make use of the Mittag-Leffler
theorem [35, 37]. Let us briefly summarize this theorem: If 𝑓 (𝑧) is a complex
function that is analytic except for a countable number of poles 𝑎𝑛 and
exhibits the asymptotic behavior lim𝑧→∞ 𝑓 (𝑧)/𝑧𝑝 = 0, it can be expanded
as [129, 131]

𝑓 (𝑧) = 𝑓𝑝 (𝑧) +
∑︁
𝑛

𝑏𝑛

(𝑧 − 𝑎𝑛)
, (2.13)

where 𝑏𝑛 are the residues at the poles and

𝑓𝑝 (𝑧) =
𝑝−1∑︁
𝑚=0

[
𝑓 (𝑚) (0)
𝑚!

+
∑︁
𝑛

𝑏𝑛

𝑎𝑚+1
𝑛

]
𝑧𝑚 (2.14)

with 𝑓0 (𝑧) = 0. That means the function 𝑓 (𝑧) can be written as a pole contri-
bution of the form

∑
𝑛 𝑏𝑛/(𝑧 − 𝑎𝑛), accompanied for 𝑝 > 0 by a polynomial

of order 𝑝 − 1.

Let us now consider Eq. (2.3) with a particular source term chosen as
J𝑛 (r;𝜔) = (𝜔 − 𝜔𝑛)S𝑛 (r)/𝑐 , where S𝑛 (r) represents an arbitrary vector
function that is localized inside the resonator. This particular source term
is selected, since it vanishes at the eigenfrequency 𝜔𝑛 . Equation (2.3) then
reads:

M̂(r;𝜔)F(r;𝜔) = 𝜔 −𝜔𝑛

𝑐
S𝑛 (r). (2.15)

We note that in the limit of 𝜔 → 𝜔𝑛 , the right side vanishes and the above
equation translates to the constitutive equation of resonant states. Therefore,
the fields have to obey lim𝜔→𝜔𝑛

F(r;𝜔) = F𝑛 . Applying Eq. (2.5) to solve
Eq.(2.15) for F(r;𝜔) gives

F(r;𝜔) = 𝜔 −𝜔𝑛

𝑐

∫
𝑑𝑉 ′ Ĝ(r, r′;𝜔)S𝑛 (r′). (2.16)
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Utilizing the limiting behavior of the fields, assuming that Ĝ is analytic
except for a countable number of poles and that it has the asymptotic
behavior lim𝜔→∞ Ĝ = 0, and furthermore, using the Mittag-Leffler theorem,
one can show that the Green’s dyadic must be of the following form [37,
111]:

Ĝ(r, r′;𝜔) = 𝑐
∑︁
𝑛

F𝑛 (r) ⊗ X𝑛 (r′)
𝜔 −𝜔𝑛

, (2.17)

where X𝑛 are some yet unknown fields that we will determine in the fol-
lowing.

Let us now begin our journey to find an expression for X𝑛 . We will do
the derivation in a very detailed manner, since on the way we will obtain
some further relations that will be useful later in this thesis. Inspired by
the generalization of the reciprocity theorem from Ref. [124], we define a
transposed system (indicated by the superscript ‡)

M̂‡ (r;𝜔)F‡ (r;𝜔) = J‡ (r;𝜔). (2.18)

Compared to the original system, the transposed system contains two dif-
ferences: First, the material operator P̂ is replaced by its matrix-transposed
counterpart P̂T, resulting in the Maxwell operator M̂‡ = 𝜔/𝑐 P̂T − D̂. As
a side note it should be mentioned that in the special case of reciprocal
materials, this replacement does not make any change, since for reciprocal
materials, one finds P̂T = P̂ [cf. explanation under Eq. (2.2)]. Second, if the
original systems has external symmetry constraints on the solution space of
Maxwell’s equations that one is interested in, these symmetry constraints
are supposed to be reversed. An example are systems with a planar periodic
symmetry where one is interested at solutions of Maxwell’s equations at
fixed in-plane wavevectors k | | . Here, reversing the symmetry constraint
means going from k | | to −k | | [111]. Another example are rotationally sym-
metric systems where one is interested at solutions of Maxwell’s equations
with a fixed angular dependency of the form exp(𝑖𝑚𝜑), where𝑚 is an inte-
ger number and 𝜑 denotes the azimuthal angle. In this case, reversing the
symmetry constraint means going from𝑚 to −𝑚. For completeness, we want
to mention that in some literature works [45–47, 129, 132, 133], the reversal of
the external symmetry constraints is referred to as “reciprocal conjugation”
and denoted by a superscript R, because the considered systems therein are
composed of purely reciprocal materials.

In the following, we want to find further relations between the fields of the
original system and the fields of the transposed system. For this purpose,
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we assume arbitrary sources J1 and J
‡
2 that are extended over a finite region

in space and generate fields F1 and F
‡
2 . Then, we multiply Eq. (2.3) and

Eq. (2.18) from the left with F
‡
2 and F1, respectively, and subtract the results,

which yields:

F1 · D̂F
‡
2 − F

‡
2 · D̂F1 = F

‡
2 · J1 − F1 · J

‡
2 . (2.19)

Integrating this equation over a finite volume 𝑉 and using the integral
identity [45]∫

𝑉

𝑑𝑉 (FA ·D̂FB−FB ·D̂FA)= 𝑖

∮
𝜕𝑉

𝑑S· (EB×HA−EA×HB) (2.20)

to transform the volume integral on the left side into a surface integral
results in

𝑖

∮
𝜕𝑉

𝑑S· (E‡2×H1−E1×H‡
2)=

∫
𝑉

𝑑𝑉 (F‡
2 ·J1−F1 ·J‡2). (2.21)

In their tutorial [39], Kristensen et al. derived a suitable bi-orthogonal basis
for the Green’s dyadic expansion by using the condition that a similar surface
integral as that on the left-hand side of Eq. (2.21) must vanish. We follow this
idea, but approach it from a different direction. More specifically, we make
use of generalized reciprocity relations: We note that in the special case
of reciprocal systems, the Green’s dyadic fulfills ĜT (r, r′;𝜔) = Ĝ(r′, r;𝜔)
[52, 124]. Using the Onsager-Casimir relation that is based on the work of
Onsager and Casimir [134–136], one can generalize this relation to [124]:

Ĝ‡ (r, r′;𝜔) = ĜT (r′, r;𝜔), (2.22)

where Ĝ‡ is the Green’s dyadic of the transposed system.

Taking the right-hand side of Eq. (2.21), expressing the fields F1 and F
‡
2 via

Eq. (2.5) and its transposed counterpart, respectively, and using the relation
in Eq. (2.22), we obtain zero:∫

𝑉

𝑑𝑉

∫
𝑉

𝑑𝑉 ′[(Ĝ‡J
‡
2) · J1 − J

‡
2 · ĜJ1] = 0. (2.23)
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In other words: The right-hand side of Eq. (2.21) vanishes. If the right-hand
side vanishes, the left-hand side must vanish as well. Hence, we deduce:∮

𝜕𝑉

𝑑S · (E‡2 ×H1 − E1 ×H‡
2) = 0. (2.24)

This is a necessary condition for pairs of fields that obey the prerequisites
of the Onsager-Casimir relation [124] and are generated by sources that are
completely localized inside the volume 𝑉 . Since the above fields are gener-
ated by localized sources, they are inherently outgoing on the surface 𝜕𝑉 .
Note that Eq. (2.24) also holds in the case that both sources J1 and J

‡
2 are

located outside the volume𝑉 , in which case F1 and F
‡
2 are pairs of incoming

fields; however, there are scenarios – such as the definition of the basis
functions we will introduce in subsection 2.2.7 – where one wants to have a
pair of fields F1 and F

‡
2 for which the above surface integral is nonzero. In

this case, the solution is to combine an incoming with an outgoing field.

Finally, we can infer from Eq. (2.22) that Ĝ and Ĝ‡ have the same poles,
i.e., the operators M̂ and M̂‡ possess the same spectrum. The constitutive
equation for the transposed resonant states is

M̂‡ (r;𝜔𝑛)F‡
𝑛 (r) = 0. (2.25)

Note that in general F𝑛 ≠ F
‡
𝑛 . We may now follow the same steps as for

deriving Eq. (2.17) to obtain the pole expansion of Ĝ‡, where F𝑛 and X𝑛 are
replaced by F

‡
𝑛 and an unknown field X

‡
𝑛 . Then, using Eq. (2.22), we obtain

the analytic pole expansion of the Green’s dyadic:

Ĝ(r, r′;𝜔) = 𝑐
∑︁
𝑛

F𝑛 (r) ⊗ F
‡
𝑛 (r′)

𝜔 −𝜔𝑛

, (2.26)

which represents the main result of this subsection.

For completeness, it should be mentioned that an alternative way of deriving
this relation is to expand the operator M̂ in a suitable basis, in which Eq. (2.8)
yields a nonlinear matrix-eigenvalue equation. In numerical calculations,
this is done via a discretization of the computational domain, resulting in a
finite-sized nonlinear eigenvalue problem [38, 137–139]. Then, using Keldysh
theorem [140, 141], the expansion of the resolvent is straight-forward [137],
with the representation of F

‡
𝑛 being a left eigenvector of the nonlinear

eigenvalue equation.
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At the end of the subsection, let us use the pole expansion of the Green’s
dyadic to derive some further relations, which are of general usefulness. By
inserting Eq. (2.26) into Eq. (2.4), we obtain the closure relation [37]∑︁

𝑛

𝜔P̂(r;𝜔)−𝜔𝑛P̂(r;𝜔𝑛)
𝜔 −𝜔𝑛

F𝑛 (r) ⊗ F‡
𝑛 (r′) = Î𝛿 (r−r′). (2.27)

Assuming material distributions of the form

P̂(r;𝜔) = P̂(r) +
∑︁
𝑗

Q̂𝑗

𝜔 −𝛺 𝑗

, (2.28)

where 𝛺 𝑗 are complex poles of the material response with residues Q̂𝑗 [142],
it is furthermore shown in Ref. [37] how to derive the following sum rules:

Q̂𝑗 (r)
∑︁
𝑛

F𝑛 (r) ⊗ F
‡
𝑛 (r′)

𝜔𝑛 −𝛺 𝑗

= 0. (2.29)

Other forms of sum rules can be found in Refs. [41, 118], and a combination
of the sum and closure relation yields [37]∑︁

𝑛

P̂(r;𝜔𝑛)F𝑛 (r) ⊗ F‡
𝑛 (r′) = Î𝛿 (r − r′). (2.30)

The implications of the sum rules and closure relations are discussed later
in the context of the completeness of the basis of resonant states. Further-
more, the sum rules can be used to obtain the connection between different
formulations of the resonant expansion [129].

2.2.3 Normalization of resonant states

Equation (2.8) specifies the resonant field distributions F𝑛 only up to a
complex scalar factor. While we can infer from Eq. (2.7) that it should be
possible to decompose arbitrary fields into their resonant contributions,
such an expansion requires to fix the arbitrariness of this complex scalar
factor. In other words: a unique normalization is needed.
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For bound eigenstates𝜓𝑛 , as they appear, for instance, in quantummechanics
and lossless waveguides, defining a normalization is quite trivial: One can
derive a simple orthogonality relation that reads as∫

𝑑𝑉 𝜓 ∗
𝑛𝜓𝑚 = 𝛿𝑛𝑚 , (2.31)

where the integral is meant to cover the whole space. Inserting 𝑚 = 𝑛

provides the normalization condition:
∫
𝑑𝑉 𝜓 ∗

𝑛𝜓𝑛 = 1.

For resonant states, the situation is, however, more sophisticated. The dif-
ference is that, as already indicated, resonant states are the eigenstates of
non-Hermitian systems (recall that the absence of Hermiticity is caused by
the occurrence of radiation leakage or absorption). In general, if a resonant
state radiates to the far-field and experiences loss, it will exhibit fields that
grow with distance to the resonator and diverge at infinity.2 Consequently,
a normalization similar to Eq. (2.31) is not possible, because the integral over
the entire space will diverge.

To understand better why the fields grow with distance to the resonator, one
can, for instance, have a look at the resonant states of spherical particles.
Since the resonant states exhibit outgoing boundary conditions, their fields
must scale as exp(𝑖𝜔𝑛𝑟/𝑐)/𝑟 for large distances to the particle (where 𝑟

represents the radial distance to the center of the particle). From the consid-
erations around Eq. (2.7), we recall that as soon as there is loss in the system,
the time-dependent fields must exponentially decay over time, leading to
resonant states with complex eigenfrequencies that exhibit a negative imag-
inary part. Hence, the eigenfrequencies can be written as 𝜔𝑛 = 𝛺𝑛 − 𝑖𝛤𝑛

with 𝛤𝑛 > 0. Plugging this result in the above spatial dependence gives
exp(𝑖𝛺𝑛𝑟/𝑐 + 𝛤𝑛𝑟/𝑐)/𝑟 , i.e., the fields grow exponentially with 𝑟 . Of course,
one may ask if the growing character of resonant field distributions is un-
physical. However, there is a simple physical explanation: The fields further
away from the resonator have left the resonator at an earlier time at which
more energy had been stored in it. The energy is then lost via radiative and
non radiative processes. The radiative processes carry energy away with
the speed of light, which is fully consistent with causality [143]. The diver-
gent nature of the resonant states can be thus interpreted as if an infinite

2 For completeness, we want to mention that there is a theoretical scenario, where a resonant
state can radiate to the far-field but does not exhibit growing fields. This is the case if the
system contains active gain materials and if the gain is strong enough to overcompensate
the loss, such that the eigenfrequency exhibits a positive imaginary part. In that case, the
field intensities grow as a function of time.
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amount of energy had been stored in the resonator at 𝑡0 → −∞ and is now
distributed over all space.

In early works related to first-order perturbation theories [122] and Purcell
factors [144] of resonant states in open cavities, the divergence of resonant
states was either ignored or overlooked, and the integration over the fields
was restricted to a finite volume. While this may work out reasonably well
for some cases, it has been noted already by Koenderink in 2010 [145] that
the divergence of such integrals cannot provide accurate results in general.
However, the simplicity of the incorrect theory and its good agreement with
many expectations and observations has prevented the derivation of a more
advanced theory for nanophotonics for more than a decade. In the follow-
ing, let us now explain how one can define a rigorous and mathematically
correct normalization of resonant states. We will distinguish two different
approaches.

2.2.3.1 Perfectly-matched layer normalization

Solutions for a correct normalization of growing fields were available – either
in quantum mechanics [102, 103, 146] or waveguide theory [104, 105]. Most
common is to regularize the functions [102] or to make the system finite by
a complex coordinate transformation [104, 105]. It is the merit of Sauvan
and Lalanne to reinvent the latter method for applications in nanophotonics
and to formalize it in the framework of the theory of perfectly-matched
layers [36, 38]: An infinite system can be mapped via a complex coordinate
transformation to an equivalent finite system, in which there is no diver-
gence of fields at the boundaries if all parameters are chosen appropriately.
This is equivalent to surrounding a given geometry by perfectly-matched
layers [147], which is therefore the most common implementation of this
normalization in numerical calculations. Mathematically, the resulting nor-
malization can be written as3∫

𝑉̃

𝑑𝑉 F̃‡
𝑛 · (𝜔P̃) ′F̃𝑛 = 1, (2.32)

where 𝑉 denotes a finite volume including the region of the perfectly-
matched layers and the prime in (𝜔P̃) ′ was introduced as an abbreviation
for the derivative with respected to 𝜔 evaluated at 𝜔𝑛 . While the above

3 For consistency with the rest of this thesis, we have generalized the original result from
Refs. [36, 38] to systems containing nonreciprocal and bi-anisotropic materials.
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approach is quite versatile, it is a bit problematic that the important fact that
𝑉 is not the entire infinite space often just shows up as a footnote. Hence,
equation (2.32) makes the impression of a divergent integral. Moreover,
the fields inside the region of perfectly-matched layers are related to the
original fields in real space only by the corresponding complex coordinate
transformation, and the original material parameters have to be replaced
there by those artificial quantities of the perfectly-matched layers, see Sup-
plementary Material of Ref. [36]. That is why we have added a tilde on top
of the fields and the material operator in Eq. (2.32). Finally, note that the
selection of appropriate parameters for the perfectly-matched layers can be
rather delicate in some cases. Therefore, it has to be carefully checked that
Eq. (2.32) has converged.

2.2.3.2 Analytic normalization

As an alternative to the perfectly-matched layer normalization, one can
also formulate analytic normalization approaches that do not rely on the
usage of these layers. One option is to consider the divergent integrals in
a distribution sense [148]. Another possibility – the one that we will focus
on here – is to introduce a surface term that compensates for the divergent
nature of the volume integral. This approach is based on assigning the
correct weight to the residues in the Mittag-Leffler expansion of the Green’s
dyadic provided in Eq. (2.26).

The starting point is Eq. (2.16). Inserting the Green’s dyadic expansion from
Eq. (2.26) gives

F(r;𝜔) =
∑︁
𝑚

𝜔 −𝜔𝑛

𝜔 −𝜔𝑚

F𝑚 (r)
∫

𝑑𝑉 ′F‡
𝑚 (r′) · S𝑛 (r′). (2.33)

We recall that in the limit 𝜔 → 𝜔𝑛 , F(r;𝜔) should result in F𝑛 . The only
way for this to make sense is that the function S𝑛 (r), which was so far
assumed to be arbitrary, is selected such that

∫
𝑉
𝑑𝑉 F

‡
𝑛 · S𝑛 = 1. Using this

condition and following the derivations in Ref. [37] and references therein,
we obtain:

1 =
∫
𝑉

𝑑𝑉 F‡
𝑛 · (𝜔P̂) ′F𝑛︸                    ︷︷                    ︸
𝑉𝑛

+ 𝑖𝑐
∮
𝜕𝑉

𝑑S ·
(
E‡𝑛 ×H′

𝑛 − E′
𝑛 ×H‡

𝑛

)
︸                                  ︷︷                                  ︸

𝑆𝑛

, (2.34)
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where the prime is again used as an abbreviation to indicate the derivative
with respect to 𝜔 at 𝜔𝑛 (how exactly this is supposed to be interpreted for
the case of E′

𝑛 and H′
𝑛 will be discussed further down). Equation (2.34) is the

analytic normalization condition for resonant states. The right-hand side
contains two terms: A volume integral 𝑉𝑛 and a surface integral 𝑆𝑛 . The
former is supposed to be carried out over a volume 𝑉 that surrounds the
scattering geometry, while the latter one is meant to cover the surface 𝜕𝑉 of
this volume. Note that, while 𝑉𝑛 and 𝑆𝑛 both depend on the exact choice of
the integration volume 𝑉 , it can be shown that their sum does not [110, 111].
Therefore, the choice of 𝑉 is completely arbitrary, as long as it completely
encompasses the scattering geometry. Note that the volume term 𝑉𝑛 is
formally identical to the volume term appearing in the perfectly-matched
layer normalization fromEq. (2.32). There are, however, two differences: First,
there is the aforementioned arbitrariness in the choice of the integration
volume. Second, for the analytic normalization, no perfectly-matched layers
are required. A visual comparison of the two approaches can be found in
Fig. 2.4.

volume-integration domains volume-integration domain

surface-integration area

perfectly-matched layers

(a) (b)

Figure 2.4. Visual comparison of the two normalization approaches. (a) Perfectly-
matched layer normalization. The resonator (in our example ametallic nanoantenna)
is surrounded by perfectly-matched layers. The volume integral of the normalization
is evaluated over the whole calculation domain, including the region of perfectly-
matched layers. (b) Analytic normalization. One chooses an arbitrary volume that
contains the resonator. A volume integral is evaluated over this volume and addi-
tionally, a surface integral is evaluated over the surface of this volume.
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Let us now have a closer look at the frequency derivatives E′
𝑛 andH′

𝑛 appear-
ing in the surface term 𝑆𝑛 from Eq. (2.34). These derivatives are meant to be
understood as the electric and magnetic field components of the supervector
F′
𝑛 = 𝜕F𝑛 (𝜔)/𝜕𝜔 |𝜔=𝜔𝑛

, where F𝑛 (𝜔) represents an analytic continuation
of the resonant state’s field F𝑛 in the complex frequency plane. How can
one define this analytic continuation? One may be tempted to take F(r;𝜔)
from Eq. (2.33) and consider this quantity as an analytic continuation of F𝑛

to the complex frequency plane. However, this approach is problematic for
two reasons: First, it results in an expression that depends on all resonant
states and on the specific form of S𝑛 . Second, as it will be discussed later (cf.
subsection 2.2.6), it is questionable if Eq. (2.33) is valid everywhere in the
exterior of the resonator. To resolve the issues, we will present two methods
for defining the analytic continuation and evaluating the field derivative
F′
𝑛 that do not suffer from the above problems. Method 1 is well-known

from literature [35, 37, 41, 52, 111] and relatively easy to implement, but
restricted to the special case of resonators that are embedded in a rather
simple surrounding where one can analytically write down a complete set
of basis functions that allow us to decompose the resonant field. Method 2
is a bit more sophisticated, but – in principle – applicable to any type of
surrounding without any back reflection from outside the resonator. The
prerequisite is that the Green’s dyadic of the background system is known.

method 1: decomposition into basis functions.

If the surrounding is rather trivial with a known set of basis functions, any
field distribution generated by sources inside the resonator can be expanded
in terms of outgoing basis functions ON of the surrounding system [45].
Here, N is a vector that summarizes all labels to distinguish the outgoing
basis functions. Consequently, one can define the analytic continuation of
F𝑛 as [45]:

F𝑛 (r;𝜔) =
∑︁
N

𝛼
(𝑛)
N (𝜔)ON (r;𝜔), (2.35)

where 𝛼
(𝑛)
N (𝜔) represent frequency-dependent expansion coeffi-

cients. Differentiating this expression with respect to 𝜔 at 𝜔𝑛 gives
F′
𝑛 (r) =

∑
N (𝛼

(𝑛)
N ) ′ON (r;𝜔𝑛) +

∑
N 𝛼

(𝑛)
N (𝜔𝑛)O′

N (r). The first sum does not
contribute to the surface integral 𝑆𝑛 from Eq. (2.34). This follows from
facts that both F

‡
𝑛 and the first sum do only contain outgoing fields at the
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frequency 𝜔𝑛 and that the integral between such fields vanishes, as shown
by Eq. (2.24). Therefore, we can ignore the first sum, and may define

F′
𝑛 (r) =

∑︁
N

𝛼
(𝑛)
N (𝜔𝑛)O′

N (r). (2.36)

where O′
N is the frequency derivative of ON at 𝜔𝑛 , which can be expressed

analytically. This approach for calculating F′
𝑛 has been used, e.g., for nor-

malizing resonant states in planar periodic systems [52, 111]. For isolated
nanostructures in a homogeneous and isotropic surrounding, it is possible to
convert the frequency derivative into a spatial derivative [35, 37, 41], which
simplifies the calculation of F′

𝑛 significantly.

method 2: using the green’s dyadic of the background
system

We start with Eq. (2.15) and separate the material distribution P̂ that occurs
in M̂ into a background system P̂BG and a resonator contribution 𝛥P̂. This
gives

M̂BGF = −𝜔
𝑐
𝛥P̂F + 𝜔 −𝜔𝑛

𝑐
S𝑛 , (2.37)

where we have introduced the Maxwell operator of the background system
as

M̂BG =
𝜔

𝑐
P̂BG − D̂. (2.38)

Let us assume that we know the Green’s dyadic Ĝ0 of the background system.
This allows us to reformulate Eq. (2.37) via Eq. (2.5) as

F =

∫
𝑉

𝑑𝑉 Ĝ0
(
−𝜔
𝑐
𝛥P̂F + 𝜔 −𝜔𝑛

𝑐
S𝑛

)
. (2.39)

For the interested reader, we want to remark that for S𝑛 = 0, this formulation
is equivalent to the regularized resonant fields in Ref. [149].

Differentiating Eq. 2.39 with respect to 𝜔 at 𝜔𝑛 provides:

F′ =−𝜔𝑛

𝑐

∫
𝑉

𝑑𝑉 Ĝ′
0𝛥P̂(𝜔𝑛)F𝑛 +

1
𝑐

∫
𝑉

𝑑𝑉 Ĝ0
[
S𝑛−(𝜔𝛥P̂) ′F𝑛−𝜔𝑛𝛥P̂(𝜔𝑛)F′] .

(2.40)
The second part contains only sources located inside the resonator, so that
it yields purely outgoing fields outside the resonator. Hence, we infer from
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the condition given by Eq. (2.24) that the fields generated by this source
do not contribute to the surface integral in Eq. (2.34). The first part, how-
ever, contains the derivative Ĝ′

0 instead of the Green’s dyadic, so that we
must assume that this results in a nonvanishing contribution to Eq. (2.34).
Therefore, we may define F′

𝑛 via

F′
𝑛 = −𝜔𝑛

𝑐

∫
𝑉

𝑑𝑉 Ĝ′
0𝛥P̂(𝜔𝑛)F𝑛 , (2.41)

which is solely given by the underlying differential equation and the corre-
sponding resonant field distribution F𝑛 . This method is expected to work for
any kind of background system, as long as its Green’s dyadic Ĝ0 is known
and warrants outgoing boundary conditions outside the resonator.

2.2.3.3 Further remarks on the normalization

It should be mentioned that in earlier works on analytic normalizations
with surface terms, the starting point was the wave equation instead of the
curl Maxwell’s equations [35, 41, 50, 52, 109–111]. It has been shown that for
nonmagnetic materials, these normalizations are equivalent to Eq. (2.34),
except for an artificial factor of

√
2 [37]. However, they cannot be used for

magnetic, bi-isotropic, and bi-anisotropic materials.
Comparing the normalization via perfectly-matched layers with the analytic
normalization, the advantage of the perfectly-matched layers is that this
approach can be used for any sort of resonator geometry. However, care has
to be taken regarding the proper definition of the perfectly-matched layers.
If they do not suppress back-reflection sufficiently or their discretization is
not selected appropriately, the normalization via perfectly-matched layers
will provide inaccurate results. Furthermore, as noted above, in systems
such as planar slabs, the definition of incoming and outgoing fields may
be not straight-forward on the complex frequency plane in the vicinity of
Rayleigh-Wood anomalies. It may then happen that certain resonant states
cannot be found numerically. Finally, not all numerical methods include
perfectly-matched layers. In the case of the analytic normalization, the
advantage is that we can obtain fully analytic equations in some cases such
as slabs [109] or spheres [50]. Furthermore, it is possible to restrict the
computational domain to a minimal volume surrounding the resonator. The
main requirement is that the fields are calculated accurately enough at the
surface and in the interior. The disadvantage of the analytic normalization
is, however, that there is only a limited number of systems with known
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surface integrals. Most importantly, the practically relevant case of a single
resonator on top of a substrate is yet not solved analytically.

At the end, it should be mentioned that an alternative numerical normaliza-
tion procedure is described in Refs. [112, 150]. In this approach, the system
is driven by a source that oscillates at a complex frequency in the vicin-
ity of the pole 𝜔𝑛 . Then, it is assumed that the resulting field distribution
resembles the correctly normalized resonant state F𝑛 multiplied by some
proportionality factor, which can be deduced easily. In some sense, this can
be considered as a numerical variant of assigning the correct weight to the
residues of the Green’s dyadic.

2.2.4 Orthogonality relation

Let us now derive an orthogonality relation for resonant states. When
considering Eq. (2.8) for a resonant state with index 𝑛 and Eq. (2.25) for a
resonant state with index𝑚, we maymultiply Eq. (2.8) with F

‡
𝑚 and Eq. (2.25)

with F𝑛 to obtain:

F‡
𝑚 ·

[𝜔𝑛

𝑐
P̂(𝜔𝑛) −

𝜔𝑚

𝑐
P̂(𝜔𝑚)

]
F𝑛 − F‡

𝑚 · D̂F𝑛 + F𝑛 · D̂F‡
𝑚 = 0. (2.42)

Integrating over a volume 𝑉 and using the vector identities in Eq. (2.20)
results in the following orthogonality relation:∫
𝑉

𝑑𝑉F‡
𝑚 ·

[
𝜔𝑛P̂(𝜔𝑛) −𝜔𝑚P̂(𝜔𝑚)

]
F𝑛 + 𝑖𝑐

∮
𝜕𝑉

𝑑S · (E‡𝑚×H𝑛−E𝑛×H‡
𝑚) = 0.

(2.43)
Similar expressions are given in Ref. [50] for non-dispersive and non-
magnetic systems. In the case that we enclose the system by perfectly-
matched layers, one may argue that the surface integral vanishes at the
outermost interfaces of the perfectly-matched layers, resulting in the fol-
lowing orthogonality relation [38]:∫

𝑉̃

𝑑𝑉 F̃‡
𝑚 ·

[
𝜔𝑛P̃(𝜔𝑛) −𝜔𝑚P̃(𝜔𝑚)

]
F̃𝑛 = 0. (2.44)
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2.2.5 Near-field expansion

In the following, we will discuss how the fields inside the resonator can
be expanded in terms of the resonant states. Using the Green’s dyadic
expansion from Eq. (2.26) in Eq. (2.5), it is possible to write the fields F that
are generated by an internal source J in the resonator as

F(r;𝜔) = 𝑐
∑︁
𝑛

F𝑛 (r)
𝜔 −𝜔𝑛

∫
𝑑𝑉 ′F‡

𝑛 (r′) · J(r′;𝜔). (2.45)

This yields a suitable near-field expansion for local sources that can be used
in many practical applications [36, 38, 41]. Often, one is not interested in the
fields that are generated by a local source J, but in the scattered field that is
generated by a given incident field. Following the derivations of Ref. [129],
we now derive an expression for this scattered field.

Let us consider a region in space that is free of sources, i.e., the right-hand
side of Eq. (2.3) is zero. In that case, the electromagnetic fields usually
consist of incoming and outgoing parts. As described in Ref. [38, 45], we
first separate the total system into a background system with material
distribution P̂BG and a local scattering part 𝛥P̂ = P̂− P̂BG for the resonator,
see Eq. (2.11). Then an arbitrary incoming field IBG may be regarded as the
incoming part of a background field FBG = IBG + OBG, where OBG is the
corresponding outgoing field. The background field FBG is a solution of the
following Maxwell’s equations:

M̂BG (r;𝜔)FBG (r;𝜔) = 0. (2.46)

Here, M̂BG is the Maxwell operator of the background system, see Eq. (2.38).
Thus, the total field supervector can be expressed as a superposition of
the background and a scattered field as Ftot = FBG + Fscat. Although it is
common to consider homogeneous and isotropic background material dis-
tributions P̂BG, it is as well possible to introduce more complex background
systems such as planar interfaces between two materials to account, e.g.,
for the presence of substrates. After some algebra, we obtain [38, 45]:

M̂(r;𝜔)Fscat (r;𝜔) = −𝜔
𝑐
𝛥P̂(r;𝜔)FBG (r;𝜔). (2.47)
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The right-hand side can be interpreted as an internal source for the scattered
field, which allows us to construct the total field via Eq. (2.45) as [129]

Ftot (r;𝜔) = FBG (r;𝜔) −
∑︁
𝑛

𝐼𝑛 (𝜔)
𝜔 −𝜔𝑛

F𝑛 (r), (2.48)

where we have introduced the overlap integral

𝐼𝑛 (𝜔) = 𝜔

∫
𝑑𝑉F‡

𝑛 (r) · 𝛥P̂(r;𝜔)FBG (r;𝜔). (2.49)

Equation (2.48) defines a pole expansion of the total field. This approach is
broadly used as a semi-analytical method to expand the near fields for a given
resonator system [38, 45, 112]. However, it has been noted that such an expan-
sion is not unique [38, 129, 139, 151, 152]. For instance, several formulations
are benchmarked numerically for Lorentz-dispersive materials [152], and
a whole family of possible expansions with different frequency-dependent
weight functions is discussed in Ref. [139]. Unger and coworkers suggest
an independent expansion of electric and magnetic fields [151], which pro-
vides more degrees of freedom and can be applied efficiently for certain
geometries and materials with 𝜁 = 𝜉 = 0.

While Eq. (2.47) and most other formulations contain weight functions
of the poles that depend on frequency, Ref. [129] provides an alternative
formulation with constant weight functions. The idea is to consider Eq. (2.47)
as a function that is analytic except for a countable number of poles and to
apply the Mittag-Leffler theorem once more. However, care has to be taken
because the asymptotic behavior is usually more sophisticated than that of
the Green’s dyadic. This means that one has to check if the prerequisites
for the Mittag-Leffler theorem are fulfilled. Often, higher-order versions of
the Mittag-Leffler theorem have to be applied, i.e., 𝑝 > 0 in Eq. (2.13). If the
background field is free of poles, such as in the case of a homogeneous and
isotropic background material, the 𝑝 th-order Mittag-Leffler expansion of the
total field yields

Ftot (r;𝜔) = F𝑝 (r;𝜔) −
∑︁
𝑛

𝐼𝑛 (𝜔𝑛)
(𝜔 −𝜔𝑛)

F𝑛 (r), (2.50)
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where F0 = 0, while F𝑝 is a polynomial of order 𝑝 − 1:

F𝑝 (r;𝜔) =
𝑝−1∑︁
𝑚=0

𝑎𝑚𝜔
𝑚 , (2.51)

𝑎𝑚 =
F

(𝑚)
tot (r; 0)
𝑚!

−
∑︁
𝑛

𝐼𝑛 (𝜔𝑛)
𝜔𝑚+1
𝑛

F𝑛 (r). (2.52)

Here, F
(𝑚)
tot denotes the 𝑚th derivative of F with respect to 𝜔 . Evidently,

the pole contribution in Eq. (2.50) is much simpler than that in Eq. (2.48),
since it requires calculating the overlap integral in Eq. (2.49) only once at
the complex frequencies 𝜔𝑛 of the poles. The drawback is that we need to
account for a more complex background. A comparison of Eq. (2.48) with
the zeroth- and first-order version of Eq. (2.50) is displayed in Fig. 2.5 for
the example of a planar dielectric slab. It can be seen that the zeroth-order
version fails at the top interface, because the asymptotic behavior of the
total field at the top interface prevents the application of the zeroth-order
Mittag-Leffler expansion [129].

At the end of this subsection, we would like to sketch an alternative deriva-
tion for the pole contribution in Eq. (2.50) from Eq. (2.47) that does not
require the pole expansion of the Green’s dyadic and yields directly the
correct normalization. First, we multiply Eq. (2.47) from the left with F

‡
𝑛 .

Then, we subtract a zero in the form Fscat · M̂‡ (𝜔𝑛)F‡
𝑛 , which yields:

F‡
𝑛 ·

[𝜔
𝑐

P̂(𝜔) − 𝜔𝑛

𝑐
P̂(𝜔𝑛)

]
Fscat

−F‡
𝑛 · D̂Fscat + Fscat · D̂F‡

𝑛 =−
𝜔

𝑐
F‡
𝑛 · 𝛥P̂(𝜔)FBG. (2.53)

The expression in the first line vanishes at𝜔𝑛 . In order to obtain finite results
for the scattered field, we therefore assume that the scattered field can be
expanded as4

Fscat = −𝑐
∑︁
𝑛

𝑏𝑛 (𝜔)
𝜔 −𝜔𝑛

F𝑛 . (2.54)

4 The factor −𝑐 has been introduced for the sake of consistency with an expressions for the
far field that we will provide in subsection 2.2.7.
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Figure 2.5.Near field in a dielectric slab with refractive index𝑛 = 3.5 and thickness
1 µm in air. Panel (a) displays the analytic near field as a function of photon energy.
In panel (b), the comparison of different formulations for the pole expansion of
the near field is shown at a photon energy of 650 meV [red dashed line in (a)]: The
results on the left have been calculated via Eq. (2.48). The other results have been
obtained using Eq. (2.50) in its first- (middle) and zeroth-order (right) formulation.
From top to bottom, the number of poles is increased from 9 over 17 to 33. The
dotted lines denote the analytic results. All approaches converge to the analytic
result, except for the zeroth-order formulation, which cannot be applied at the top
interface. Reprinted with permission from Ref. [129], copyright 2020, Optica.

By integrating over Eq. (2.53) and using the orthogonality relation in
Eq. (2.43), we then obtain in the limit 𝜔 → 𝜔𝑛 :

𝑏𝑛 (𝜔𝑛) =
1
𝑐

𝐼𝑛 (𝜔𝑛)
𝑉𝑛 + 𝑆𝑛

. (2.55)
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The expressions𝑉𝑛 and 𝑆𝑛 in the denominator are defined in Eq. (2.34). In the
case that the resonant field distributions are normalized, their sum equals
unity, see Eq. (2.34).

This derivation is closely related to that of the so-called orthogonality de-
composition [38]. Here, the starting point is to perform the calculations in
a system that is surrounded by perfectly-matched layers. In this case, the
scattered field can be decomposed everywhere in the calculation domain
in terms of the resonant states F̃𝑛 of this system. Then, the modal expan-
sion is introduced as Fscat =

∑
𝑛 𝑎𝑛 (𝜔)F̃𝑛 , and an integral over Eq. (2.53)

is carried out that spans over the entire calculation domain 𝑉 , including
the perfectly-matched layers, so that any occurring surface integrals vanish
in that limit. Then, one obtains a matrix operator that needs to be regular-
ized for dispersive media and inverted in order to calculate the coefficients
𝑎𝑛 [36]. However, it is important to note that this expansion is only ap-
propriate if one adds numerical solutions to the set of resonant states that
are predominantly localized in the region of perfectly-matched layer (often
referred to as perfectly-matched-layer modes) and do not have any physical
counterpart in a system without these layers [153].

2.2.6 Completeness

The question arises if any of the aforementioned modal expansions con-
verges properly and what are the limitations. Most importantly: Is the basis
of resonant states actually complete? Regarding the spatial domain of com-
pleteness, it is obvious that Eq. (2.45) cannot be correct over the entire space.
The reason is that fields generated by a local source at a real-valued fre-
quency remain in general finite – particularly far away from the source.
However, the resonant field distributions growwith distance to the resonator.
The attempt of expressing a finite field by using only exponentially growing
functions is condemned to fail. Therefore, strictly speaking, the pole expan-
sion of the Green’s dyadic in Eq. (2.26) is only valid inside the resonator
and at its outermost interfaces. Nevertheless, Kristensen and coworkers
identify a so-called region of consistency in the vicinity of the resonator,
in which the expansion in terms of resonant states still gives reasonably
accurate results [39]. When calculating in a system that is surrounded by
perfectly-matched layers, the situation is slightly different: In this case, the
modal expansion and therefore Eq. (2.26) can be assumed to be complete
over the whole calculation domain. However, it is important to note that
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this is only true if the non-physical modes that are localized in the regions
of perfectly-matched layers are included [153].

Another question is the completeness in the interior. While the closure
relation given by Eq. (2.27) yields the necessary condition for a complete
basis, the sum rules in Eq. (2.29) indicate that the basis of resonant states
can be overcomplete. This fact was already noted in the context of resonant
states in quantum mechanics [118, 154]. An open question in this context
is the completeness in the presence of exceptional points, where we find
fewer linear independent resonant field distributions than eigenfrequencies.

It should be also mentioned that there is often another contribution to
the pole expansion of the Green’s dyadic. More specifically, the analytic
continuation of the Green’s dyadic to the complex frequency plane may
contain cuts5 that arise, e.g., due to selecting appropriate Riemann sheets in
the case of complex square roots [106, 128]. In this general case, the Green’s
dyadic can be expanded as [49, 106, 111]

Ĝ(r, r′;𝜔)=𝑐
∑︁
𝑛

F𝑛 (r)⊗F
‡
𝑛 (r′)

𝜔 −𝜔𝑛

+
∑︁
𝑚

Ĝ𝑚 (r, r′;𝜔), (2.56)

where𝑚 labels the individual cut contributions with

Ĝ𝑚 (r, r′;𝜔) = 1
2𝜋𝑖

∫
𝐶𝑚

𝑑𝜔 ′𝛥Ĝ(r, r′;𝜔 ′)
𝜔 −𝜔 ′ , (2.57)

in which 𝐶𝑚 denotes a path along the𝑚th cut and 𝛥Ĝ represents the dif-
ference between the Green’s dyadic on the different Riemann sheets. In
numerical calculations, these cut contributions can be discretized [49], and
single cuts can be circumvented by using analytic continuations over other
parameters than complex frequency [109, 128]. Furthermore, in systems sur-
rounded by perfectly-matched layers, these cut contributions disappear and
are replaced by a bunch of numerical modes [38, 153]. However, a general
analytical treatment of arbitrary cut contributions is still to be developed.

Additionally, there is another issue arising due to the discontinuities of
the electric and magnetic fields. Whenever it is required to expand quan-
tities with discontinuities by basis functions that exhibit no appropriate
discontinuities, the convergence of this expansion will suffer from the Gibbs

5 For the mathematically less experienced reader, it should be noted that a cut can be un-
derstood as a curve in the complex plane across which an (otherwise) analytic function is
discontinuous.
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phenomenon, which is well-understood in the framework of numerical cal-
culations via the Fourier-modal method [155–158]. When using resonant
states as basis, a possible solution is to include so-called static modes [120],
which are not solutions of Maxwell’s equations in a physical sense. This
aspect will be discussed later in section 2.3.1. Finally, for the interested reader,
it should be mentioned that a very recent review on the completeness of
resonant state in different systems can be found in Ref. [159].

2.2.7 Far-field expansion

In the following, we show how the optical far-field response of a resonator
can be calculated from its resonant states. Owing to its high practical rele-
vance, we focus on the calculation of the optical scattering matrix [43–45,
125, 160]; however, it should be noted that the presented approach can be
extended to other quantities, such as the radiation diagram of emitters that
are located inside the resonator [161].

V∂Scatterer

Figure 2.6. Illustration of the basis functions. We choose a surface 𝜕𝑉 that sur-
rounds our resonator. On this surface, one can construct complete and orthogonal
sets of incoming {IN} and outgoing {ON} basis functions that allow us to decom-
pose any arbitrary field. Indicated is the case of a resonator that is made up of
a single scatterer, for which it is convenient to select 𝜕𝑉 as a sphere and to use
vector spherical harmonics as basis functions. Note that the above illustration is
only meant symbolically, since in reality, vector spherical harmonics are defined
over all solid angles instead of only a specific angular range.

Let us now assume we have a local inhomogeneity of materials that defines
our resonator. We then choose a surface 𝜕𝑉 that surrounds the resonator.
On this surface, one can construct complete and orthogonal sets of incoming
{IN} and outgoing {ON} basis functions [45, 162] that allow us to decompose
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an arbitrary field. For a visualization, see Fig. 2.6. The vector N is the same
as introduced in section 2.2.3 and summarizes all labels needed to specify
the basis functions (e.g., their polarization and propagation direction). Note
that every incoming basis function IN has an outgoing counterpart ON
that describes the same field patterns, but with a reversed propagation
direction. The ideal choice of the basis functions depends on the geometry
of interest [45]: For resonators consisting of single scatterers, it is convenient
to take 𝜕𝑉 as a sphere around the resonator and to select vector spherical
harmonics as basis functions. For planar periodic resonators, it is convenient,
to take 𝜕𝑉 as two planes, one above and one below the resonator, and to
choose plane waves as basis functions.

With the help of the basis functions, any arbitrary incoming field Fin (r;𝜔)
on the surface 𝜕𝑉 can be decomposed as

Fin (r;𝜔) =
∑︁
N

𝛼 in
N (𝜔)IN (r;𝜔). (2.58)

where 𝛼 in
N (𝜔) are some frequency-dependent expansion coefficients. In an

analogous manner, every arbitrary outgoing field Fout (r;𝜔) on this surface
can be decomposed as

Fout (r;𝜔) =
∑︁
N

𝛼out
N (𝜔)ON (r;𝜔), (2.59)

with expansion coefficients 𝛼out
N (𝜔).

One can define the basis functions IN (𝜔) = [EI,N (𝜔); 𝑖HI,N (𝜔)]T and
ON (𝜔)= [EO,N (𝜔); 𝑖HO,N (𝜔)]T such that they fulfill the following orthogo-
nality relations [45]:

𝑖

∮
𝜕𝑉

𝑑S ·(E‡
I,N×HO,M−EO,M×H‡

I,N) = 𝛿NM, (2.60)

𝑖

∮
𝜕𝑉

𝑑S ·(EI,N×H‡
O,M−E

‡
O,M×HI,N) = 𝛿NM, (2.61)

𝑖

∮
𝜕𝑉

𝑑S ·(E‡
I,N×HI,M−EI,M×H‡

I,N) = 0, (2.62)

𝑖

∮
𝜕𝑉

𝑑S ·(E‡
O,N×HO,M−EO,M×H‡

O,N) = 0, (2.63)
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where we have suppressed the argument 𝜔 in the fields for reasons of
compactness. In this case, the expansion coefficients from Eqs. (2.58) and
(2.59) become:6

𝛼 in
N (𝜔) = −𝑖

∮
𝜕𝑉

𝑑S·
[
E‡

O,N (𝜔)×Hin (𝜔)−Ein (𝜔)×H‡
O,N (𝜔)

]
(2.64)

𝛼out
N (𝜔) = 𝑖

∮
𝜕𝑉

𝑑S·
[
E‡

I,N (𝜔)×Hout (𝜔)−Eout (𝜔)×H‡
I,N (𝜔)

]
, (2.65)

We would like to mention that the normalized resonant field distributions
F𝑛 have units m−3/2, while Eqs. (2.60) and (2.61) imply that IN and OM have
units m−1. For the sake of consistency, we assume now that all fields except
F𝑛 are given in units m−1. The results can be translated to any other units
by multiplying the fields with an appropriate factor.

Let us now introduce the concept of the optical scattering matrix. A typical
problem in nanophotonics is that one has a given incident field Fin (r;𝜔) that
is impinging on a resonator, and is interested in the outgoing field Fout (r;𝜔)
that the resonator is responding with. This interaction can be described
via the optical scattering matrix: If the optical scattering matrix 𝑆 (𝜔) of a
resonator is known, and the resonator is excited by a particular incident field
Fin (r;𝜔) [represented as a decomposition according to Eq. (2.58)], one can
express the resulting output field Fout (r;𝜔) [represented as a decomposition
according to Eq. (2.59)] via:

𝛼out
M (𝜔) =

∑︁
N

𝑆MN (𝜔)𝛼 in
N (𝜔), (2.66)

where 𝑆MN (𝜔) denote the corresponding elements of the scattering matrix.
In other words: The optical scattering matrix is a formal way to summarize
all possible far-field interactions of a resonator with the outside world. From
now on – as it is often done in the context of the scattering matrix – we will
refer to the indicesM and N as channels.

In the following, we will show how the optical scattering matrix of a res-
onator can be calculated from its resonant states. Let us assume that the
resonator is excited via the basis function IN (𝜔). This generates the follow-
ing fields in the resonator (cf. subsection 2.2.5):

Ftot,N (𝜔) = FBG,N (𝜔) + Fscat,N (𝜔). (2.67)

6 Note that a missing minus sign from Ref. [45] is corrected for in Eq. (2.64.)
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The subscriptN is used to emphasize that the fields are the result of excitation
via channel N. As in subsection 2.2.5, we assume that the background field is
known (its exact relation to the basis function depends on the background
system, but this relation is usually trivial [45, 125]), while the scattered field
is unknown. By applying Eq. (2.65) for channel M to Eq. (2.67), the element
𝑆MN of the scattering matrix can then be formally expressed as:

𝑆MN (𝜔) = 𝑆BGMN (𝜔) + 𝑆
scat
MN (𝜔), (2.68)

with the scattering matrix of the background system

𝑆BGMN (𝜔)=𝑖
∮
𝜕𝑉

𝑑S·
[
E‡

I,M (𝜔)×HBG,N (𝜔)−EBG,N (𝜔)×H‡
I,M (𝜔)

]
, (2.69)

which only contains known fields and can hence directly be calculated, and
a contribution

𝑆scatMN (𝜔)=𝑖
∮
𝜕𝑉

𝑑S·
[
E‡

I,M (𝜔)×Hscat,N (𝜔)−Escat,N (𝜔)×H‡
I,M (𝜔)

]
, (2.70)

which contains the yet unknown scattered field and will be evaluated in the
following. We will present two alternative approaches for this evaluation,
resulting in two alternative representations of the scattering matrix.

2.2.7.1 Asymmetric representation

The first representation will be referred to as the asymmetric one. To obtain
it, we take Eq. (2.70), then use the expansion of the scattered field given by
Eq. (2.54), and insert the result back into Eq. (2.68). This yields the following
scattering-matrix expansion [45]:

𝑆MN (𝜔) = 𝑆BGMN (𝜔) − 𝑐
∑︁
𝑛

𝛼
(𝑛)
M (𝜔)𝑏 (𝑛)

N (𝜔)
𝜔 −𝜔𝑛

, (2.71)

with the quantities

𝛼
(𝑛)
M (𝜔)=𝑖

∮
𝜕𝑉

𝑑S·
[
E‡

I,M (𝜔)×H𝑛−E𝑛×H‡
I,M (𝜔)

]
(2.72)
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and
𝑏
(𝑛)
N (𝜔)= 𝜔

𝑐

∫
𝑉

𝑑𝑉F‡
𝑛 · 𝛥P̂(𝜔)FBG,N (𝜔), (2.73)

which can be interpreted as the emission and excitation coefficients of
resonant state F𝑛 , respectively. Note that these coefficients depend on the
frequency 𝜔 . The Greek letter 𝛼 (𝑛)

M for the emission coefficient is used in
contrast to the Latin letter 𝑏 (𝑛)

N for the excitation coefficient, to emphasize
that the former contains a surface integral, while the latter contains a volume
integral. Owing to this asymmetry, we refer to Eq. (2.71) as the asymmetric
representation.

2.2.7.2 Symmetric representation

We now come to the second representation, which will be referred to as the
symmetric one. Note that, while the above derivation of the asymmetric
representation is known from literature [45], the following derivation for the
symmetric representation was specifically developed in the context of this
thesis and is contained in publication [P6].Wewill later, namely in chapters 4
and 5, use the derivation as a starting point to develop a perturbation theory
for far-field quantities, which is then applied to understand the light-matter
interaction in different nanophotonic sensors. Let us now start the derivation.
As a first step, we take Eq. (2.70) and replace the basis function I

‡
M therein

by the background field F
‡
BG,M that this basis function would generate when

being launched into the resonator. One can easily verify that this replacement
is possible by noting that on the surface 𝜕𝑉 , the scattered field Fscat,N is a
superposition of outgoing basis functions, while F

‡
BG,M is a superposition

of the incoming basis function I
‡
M with some outgoing basis functions, and

by further using the orthogonality relations from Eqs. (2.61) and (2.63). This
gives

𝑆scatMN (𝜔) =𝑖
∮
𝜕𝑉

𝑑S·
[
E‡BG,M (𝜔)×Hscat,N (𝜔)−Escat,N (𝜔)×H‡

BG,M (𝜔)
]
, (2.74)

For the second step, we take Eq. (2.74) and use Eq. (2.20) to convert the
surface integral into two volume integrals containing the operator D̂. Fur-
thermore, we insert D̂ = 𝜔/𝑐 P̂‡ − M̂‡ into the first volume integral and
D̂ = 𝜔/𝑐 P̂ − M̂ into the second one, replace M̂‡ = M̂

‡
BG +𝜔/𝑐𝛥P̂‡, use

Eqs. (2.46) and (2.47) (the former in its transposed version), and utilize the
identities P̂‡ = P̂T and 𝛥P̂‡ = 𝛥P̂T, which allow us to invert the order of
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the quantities under the integrals as Fscat,N · P̂‡F
‡
BG,M=F

‡
BG,M · P̂Fscat,N and

Fscat,N · 𝛥P̂‡F
‡
BG,M=F

‡
BG,M · 𝛥P̂Fscat,N. Altogether, this gives

𝑆scatMN (𝜔) = − 𝜔

𝑐

∫
𝑉

𝑑𝑉

[
F
‡
BG,M (𝜔) · 𝛥P̂(𝜔)FBG,N (𝜔)

]
− 𝜔

𝑐

∫
𝑉

𝑑𝑉

[
F
‡
BG,M (𝜔) · 𝛥P̂(𝜔)Fscat,N (𝜔)

]
. (2.75)

Finally, we take the above result, insert the expansion of the scattered field
from Eq. (2.54), and plug everything into Eq. (2.68). Consequently, we end
up with the following scattering-matrix representation:

𝑆MN (𝜔)=𝑆BGMN (𝜔) + 𝑆
Born
MN (𝜔) +𝑐

∑︁
𝑛

𝑎
(𝑛)
M (𝜔)𝑏 (𝑛)

N (𝜔)
𝜔 −𝜔𝑛

. (2.76)

Comparing this representation with the asymmetric representation from
Eq. (2.71), we note that there is an additional background term

𝑆BornMN (𝜔)= −𝜔
𝑐

∫
𝑉

𝑑𝑉F
‡
BG,M (𝜔) · 𝛥P̂(𝜔)FBG,N (𝜔), (2.77)

and a modified numerator with the excitation coefficient 𝑏 (𝑛)
M (𝜔) known

from Eq. (2.73) and an emission coefficient

𝑎
(𝑛)
M (𝜔)= 𝜔

𝑐

∫
𝑉

𝑑𝑉F
‡
BG,M (𝜔) · 𝛥P̂(𝜔)F𝑛 . (2.78)

Since Eq. (2.76) contains emission and excitation coefficients 𝑎 (𝑛)M and 𝑏 (𝑛)
M ,

respectively, that are both defined via volume integrals, we refer to it as
the symmetric representation. To emphasize the symmetry, both the emis-
sion and excitation coefficients are written with Latin letters. In contrast
to the asymmetric representation, the symmetric representation contains
the additional term 𝑆BornMN , which comprises an overlap integral between
the two background fields and can be interpreted as a Born-like scattering
interaction [125]. Note that in Ref. [125], an alternative derivation of the
symmetric representation is provided, which is based on the orthogonality-
decomposition approach (for an explanation, see subsection 2.2.4). In this
work, it is claimed that the asymmetric representation derived in Ref. [45] is
incomplete. However, this appears to be a misinterpretation, since, as shown
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above, both representations are equally valid and can be converted from
one to the other. Furthermore, it should be mentioned that the two repre-
sentations that were presented here, are not the only ones that are possible.
For instance, instead of expanding only Fscat in terms of the resonant states
while keeping FBG as it is, one can also expand the total field Ftot, which
provides another valid scattering-matrix representation [44]. However, a
detailed discussion of this latter representation is beyond the scope of this
work.

2.2.7.3 Simplified 𝜔 dependence

All the scattering-matrix representations mentioned so far have the draw-
back that they contain 𝜔-dependent overlap integrals. This may slow down
practical computations, since the integrals have to be evaluated repeatedly.
In analogy to the near-field case from subsection 2.2.5, it is possible to
remove the 𝜔 dependence. The idea is to consider 𝑆MN (𝜔) as a function
that is analytic in 𝜔 , except for a countable number of poles, and applying
the Mittag-Leffler theorem once more. Note that, as in the near-field case,
the prerequisites have to be checked, especially regarding the asymptotic
behavior of 𝑆MN (𝜔) for 𝜔 → ∞.

We will now show the application of the Mittag-Leffer theorem for the
example of the asymmetric representation from Eq. (2.71). An analogous
procedure can be applied to the other representations (a detailed procedure
for the case of the symmetric representation can be found in Ref. [125]). We
start with Eq. (2.71) and apply the Mittag-Leffler theorem. Then, we replace
the volume integral in Eq. (2.73) via simple algebra by a surface integral
using [45]

𝑏
(𝑛)
N (𝜔𝑛) = 𝛽

(𝑛)
N (𝜔𝑛), (2.79)

with
𝛽
(𝑛)
N (𝜔)=𝑖

∮
𝜕𝑉

𝑑S·
[
E‡𝑛 (𝜔)×HI,N−EI,N×H‡

𝑛 (𝜔)
]
. (2.80)

Assuming a resonance-free background system, this gives [compare
Eqs. (2.50) to (2.52) for the near-field case] [45]

𝑆MN (𝜔) = 𝑆
𝑝

MN (𝜔) − 𝑐
∑︁
𝑛

𝛼
(𝑛)
M (𝜔𝑛)𝛽 (𝑛)

N (𝜔𝑛)
𝜔 −𝜔𝑛

, (2.81)
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where 𝑆0MN = 0, while 𝑆𝑝MN is a polynomial of order 𝑝 − 1:

𝑆
𝑝

MN (𝜔) =
𝑝−1∑︁
𝑚=0

𝐴
(𝑚)
MN𝜔

𝑚 , (2.82)

with matrix coefficients

𝐴
(𝑚)
MN =

𝑆
(𝑚)
MN (0)
𝑚!

− 𝑐
∑︁
𝑛

𝛼
(𝑛)
M (𝜔𝑛)𝛽 (𝑛)

N (𝜔𝑛)
𝜔𝑚+1
𝑛

. (2.83)

Here, 𝑆 (𝑚)
MN denotes the𝑚th derivative of 𝑆MN with respect to 𝜔 . The advan-

tage of Eq. (2.81) compared to Eqs. (2.71) and (2.76) is a highly simplified 𝜔
dependence, where the excitation and emission coefficients have to be eval-
uated only once at the complex frequencies 𝜔𝑛 . The price to pay is, however,
that one needs to deal with a more sophisticated background term 𝑆

𝑝

MN.

Let us briefly discuss how to deal with such a background term. There are
several possibilities: In analytically solvable systems (e.g., a dielectric slab
resonator [45, 125]), the background term can be determined via its defining
equation. However, in numerical calculations, this can be difficult, especially
due to the occurrence of the 𝜔 derivatives. Here, a highly practical approach
consists in including only a small number of poles in the scattering matrix
expansion (enough to accurately resolve all relevant features within the
spectral region of interest) and accounting for the background term 𝑆

𝑝

MN as
well as for the influence of all other poles by an additional polynomial, which
can be fitted, e.g., from numerically exact calculations [45]. As an alternative
to the fit, one can also establish symmetry constraints for the scattering
matrix, and introduce a weighting of the coefficients that minimizes the error
in the expansion [43]. This latter approach was recently refined by explicitely
taking energy conservation into account [160]. For single resonant states,
this regularization can be achieved even analytically, as shown already
in 2005 by Gippius et al. [163]. Another alternative way to account for
the influence of such a background as well as for that of remaining poles
consists in the use of a Riesz-projection method [42, 161]. An important
benefit of all of the above-mentioned approaches is that they allow one
to accurately resolve resonant spectral features, while at the same time
keeping the computational efforts very low compared to, e.g., full numerical
calculations. An interesting open question to be answered is which method
provides the best convergence performance for which kind of application.
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An example calculation for the scattering-matrix expansion is shown in
Fig. 2.7. The example is taken from Ref. [45]. Displayed are the transmittance,
reflectance, and absorbance of a one-dimensional photonic crystal slab as
a function of photon energy. The dots represent exact full-wave calcula-
tions (performed with the Fourier-modal method [164, 165]), while the lines
denote the result of the pole expansion from Eq. (2.81). In the pole expan-
sion, four resonant states, located at 2676.2 − 0.2𝑖 meV, 3180.0 − 92.7𝑖 meV,
3719.3 − 9.7𝑖 meV, and 3854.7 − 0.7𝑖 meV, have been considered together
with a cubic fit for the background. It is evident that there is an excellent
agreement between both calculation approaches. Note, however, that the
predictions of the pole-expansion have been obtained with much less com-
putational efforts than the results of the full-wave calculations, since the
latter ones require one separate computation for each step on the energy
axis.
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Figure 2.7. Pole expansion of the transmittance (orange), reflectance (blue),
and absorbance (black) for p-polarized incidence at fixed in-plane wavevectors
𝑘𝑥 = 𝑘𝑦 = 0.2 µm−1 in the case of a one-dimensional photonic crystal slab. Numeri-
cally exact results are shown by dots, while the pole expansion with four resonant
states and a cubic background fit is given by solid lines. The real part of the com-
plex eigenfrequencies is indicated by the gray triangles at the top. Reprinted with
permission from Ref. [45], copyright 2018, American Physical Society.
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At the end of this subsection, let us use the insight of the pole expansion,
to discuss some general deductions about the interplay between different
resonances: When looking at the spectral lineshapes in Fig. 2.7, we can see
that the resonant features not only differ in the resonant linewidths, but
also in their shapes. Taking only a single pole contribution from Eq. (2.81),
one would expect that each resonant state is manifested as a Lorentzian in
the spectrum. However, the interplay between the various resonant states
and the background results in the rich diversity of spectral lineshapes. A
good overview of the classification of resonant lineshapes and their physical
origin can be found in Ref. [166]. One prominent example is that of a Fano
resonance [25, 167–170], which can be also observed in Fig. 2.7 with the
typical asymmetry due to the interplay between the background and the
resonant contribution. Fano lineshapes arise due to the coupling of a contin-
uum with a single resonant state or the coupling of a broad optically active
resonant state and a resonant state that is optically inactive [166]. A special
case for Fano resonances is that of electromagnetically induced transparency,
which occurs in the weak coupling regime between two resonant states with
identical real parts of the eigenfrequencies [9, 166, 171, 172].

2.3 applications

Let us now discuss some applications of the theory of resonant states.

2.3.1 Resonant-state expansion

One of the first applications of the analytic mode normalization of resonant
states was the resonant-state expansion as a perturbative method up to any
orders of perturbation [35]. The starting point is a system with material
distribution P̂ that exhibits a known set of resonant states with eigenfre-
quencies 𝜔𝑛 and field distributions F𝑛 , which will be used as basis functions.
Then, we consider a perturbed system with material distribution P̂ + 𝛿P̂,
where 𝛿P̂ denotes the perturbation. In the most general case, 𝛿P̂ reads as

𝛿P̂(r;𝜔) =
(
𝛿𝜀 (r;𝜔) −𝑖𝛿𝜉 (r;𝜔)
𝑖𝛿𝜁 (r;𝜔) 𝛿𝜇 (r;𝜔)

)
, (2.84)
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where 𝛿𝜀, 𝛿𝜇, 𝛿𝜉 , and 𝛿𝜁 denote the perturbations in the permittivity, per-
meability and bi-anisotropic parameters, respectively. Substituting the per-
turbed material distribution P̂ + 𝛿P̂ into Eq. (2.8), we obtain for the new
resonant states F𝜈 of the perturbed system with eigenfrequencies 𝜔𝜈 :

M̂(r;𝜔𝜈 )F𝜈 (r) = −𝜔𝜈

𝑐
𝛿P̂(r;𝜔𝜈 )F𝜈 (r). (2.85)

Here, M̂ = 𝜔/𝑐P̂ − D̂ is the Maxwell operator of the unperturbed system.
Knowing the pole expansion of its Green’s dyadic according to Eq. (2.26)
and assuming that 𝛿P̂ is sufficiently localized to warrant the validity of this
pole expansion, we can thus formally invert Eq. (2.85) and write [35, 37]:

F𝜈 (r)=
∑︁
𝑛

−𝜔𝜈F𝑛 (r)
𝜔𝜈 −𝜔𝑛

∫
𝑉

𝑑𝑉 ′F‡
𝑛 (r′) · 𝛿P̂(r′;𝜔𝜈 )F𝜈 (r′). (2.86)

Finally, we express F𝜈 as F𝜈 =
∑

𝑛 𝑏𝑛F𝑛 , where 𝑏𝑛 are some expansion
coefficients, and insert this on both sides of Eq. (2.86). Since the result must
be valid at any position r and independently of 𝛿P̂, this yields

(𝜔𝜈 −𝜔𝑛)𝑏𝑛 = −𝜔𝜈

∑︁
𝑚

𝑉𝑛𝑚 (𝜔𝜈 )𝑏𝑚 , (2.87)

where
𝑉𝑛𝑚 (𝜔𝜈 ) =

∫
𝑉

𝑑𝑉 ′F‡
𝑛 (r′) · 𝛿P̂(r′;𝜔𝜈 )F𝑚 (r′). (2.88)

If 𝛿P̂ is non-dispersive, i.e., it does not depend on 𝜔 , we thus obtain a
general linear eigenvalue problem in the form of Eq. (2.87), which is the
resonant-state expansion in its simplest form.

Assuming instead a perturbation of a general Drude-Lorentz from as in
Eq. (2.28), with

𝛿P̂(r;𝜔) = 𝛿P̂∞ (r) +
∑︁
𝑗

𝛿Q̂𝑗 (r)
𝜔 −𝛺 𝑗

, (2.89)

we can obtain after some algebra the dispersive formulation of the resonant-
state expansion [37]:

(𝜔𝜈 −𝜔𝑛)𝑏𝑛 = −𝜔𝜈

∑︁
𝑚

𝑉𝑛𝑚 (∞)𝑏𝑚 +𝜔𝑛

∑︁
𝑚

[𝑉𝑛𝑚 (∞) −𝑉𝑛𝑚 (𝜔𝑛)]𝑏𝑚 .

(2.90)
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It should be noted that both the dispersive and the non-dispersive resonant-
state expansion have been initially derived for non-magnetic systems [35,
110]. In that case, the perturbation is solely given by a change 𝛿𝜀 in the
permittivity. It has been first demonstrated for perturbations of a dielectric
slab and a microsphere [35, 48, 50]. Later, it has been extended to dielectric
cylinders [49] and microcavities [173] as well as one- and two-dimensional
periodic arrays [111]. The first dispersive formulation is given in Ref. [110],
where the resonant states of a dielectric sphere have been used to calculate
the resonant states of a gold sphere. This is highly beneficial, because calcu-
lating the resonant states of a dielectric sphere turns out to be much simpler
than finding all relevant resonant states of a metallic sphere.

As discussed above in section 2.2.6, there is another possible contribution
to the Green’s dyadic, which are cuts in the complex frequency plane. In
Ref. [109], these cut contributions are circumvented in a dielectric slab by
considering the wavevector component 𝑘𝑧 perpendicular to the slab as new
variable for an analytic continuation to the complex plane instead of the
frequency. In that case, the exact coefficients of transmission and reflection
contain the frequency under a square root, see Eq. (2.12), which leads to the
cut contributions, while the dependence on 𝑘𝑧 is unambiguous and free of
cuts. In other publications, the continuous frequency dependence of the cuts
given in Eq. (2.57) is discretized in the form of a finite set of equivalent cut
poles [49, 88, 89, 106]. For instance, the Muljarov group has shown recently
that it is even possible to construct the resonant states of one-dimensional
periodic arrays from the resonant states of a dielectric slab [88, 89], see
Fig. 2.8. The discretized cuts are denoted by small dots. In the case that
the cuts are far enough away from the spectral region of interest, they
can be often ignored completely. Using this formalism, Neale and Muljarov
investigated the occurrence of symmetry-protected and accidental bound
states in the continuum and developed a criterion for distinguishing them:
Symmetry-protected bound states in the continuum can be understood as
a superposition of slab modes that do not radiate to the far field, while
accidental bound states in the continuum arise as a superposition of several
radiative slab modes such that the radiation to the far field is canceled out.

Another issue that has been mentioned in section 2.2.6 is that there exists a
set of solutions of Eq. (2.8) at 𝜔𝑛 = 0, which are not physical solutions of
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Figure 2.8. Resonant-state expansion for constructing the resonant states of a one-
dimensional periodic modulated slab of thickness 2𝑏 = 𝑎 and period 𝑑 = 2𝜋𝑎/5 from
those of a homogeneous and isotropic slab of thickness 2𝑎 in air. The permittivity
modulation of the periodic system is sinusoidal with an amplitude of ±1; the
background permittivity is 𝜀 = 6. The top panel depicts a schematic of the system,
while the bottom panel displays the complex eigenfrequencies of the perturbed and
unperturbed system. Large and small black dots are the basis resonant states (RSs)
and cut poles, respectively, while the blue squares denote the resonant states of
the perturbed system. The results of resonant-state expansion with basis cut poles
(red pluses) agrees better with the exact results of the perturbed system than those
without cuts (green crosses) for the same number of Bragg harmonics (𝑀 = 5) and
yields perturbed cut poles (red dots). Reprinted with permission from Ref. [89],
copyright 2020, American Physical Society.

Maxwell’s equations. These solutions are referred to as static modes and
they obey [120, 174]:

∇ × E𝜆 = 0, (2.91)
∇ ×H𝜆 = 0. (2.92)
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The above equations are completely independent, so that we can derive two
subclasses of static modes [174]:

ELE
𝜆

= −∇𝜓LE
𝜆
, HLE

𝜆
= 0, (2.93)

HLM
𝜆

= −∇𝜓LM
𝜆

, ELM
𝜆

= 0. (2.94)

Here,𝜓LE
𝜆

and𝜓LM
𝜆

are the potentials of longitudinal electric (LE) and longi-
tudinal magnetic (LM) static modes. Since these modes are no solutions of
the divergence equations

∇ · (𝜀E + 𝜉H) = 0, (2.95)
∇ · (𝜁E + 𝜇H) = 0, (2.96)

they do not necessarily obey Maxwell’s boundary conditions for fields at
interfaces between twomaterials. Therefore, adding the static modes as poles
at 𝜔 = 0 to the expansion of the Green’s dyadic in Eq. (2.26) or Eq. (2.56)
can result in a much better convergence of the resonant-state expansion
in the case that the boundary conditions change between the initial and
the perturbed system [120, 174]. For instance, it is shown in Ref. [120] how
to derive the resonant states of a cylindrical disk from those of a spherical
resonator. The static modes are normalized by the condition 𝑉𝑛 = 1, where
𝑉𝑛 is defined in Eq. (2.34) and the integration is taken over the entire space.
Furthermore, it is shown in Ref. [174] how to eliminate static modes in
the expansion of the Green’s dyadic at the cost of an additional 𝛿 function.
However, it should be noted that static modes have been considered so far
only for dielectric systems.

2.3.2 First-order perturbation theory and sensing

Let us now discuss how the theory of resonant states is used in literature to
describe the light-matter interaction in nanophotonic sensors. As explained
in chapter 1, in many sensing applications, one is interested in detecting
changes in a nanophotonic resonator that are associated with the presence
of some analyte substance. Very often, the main effect of the analyte sub-
stance is to induce shifts of the resonator’s resonance frequencies. In most
scenarios, the presence of the analyte denotes only a weak perturbation
to the resonators original material composition. In this case, as shown in
Refs. [25, 50–52, 111, 173], the resulting shifts can be efficiently described via
a simple first-order perturbation theory.
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The corresponding equation can be deduced straightforwardly from the
resonant state expansion: We start with Eqs. (2.87) and (2.88) and suppose
that the perturbation 𝛿𝑃 denotes only a small change compared to the
original material parameters. In this case, the perturbed eigenfrequencies
can be written as 𝜔𝜈 = 𝜔𝑛 + 𝛿𝜔𝑛 , where 𝛿𝜔𝑛 with |𝛿𝜔𝑛 | ≪ |𝜔𝑛 | denotes the
perturbation-induced change. Inserting this result into the above equations
and assuming that the matrix𝑉𝑛𝑚 is approximately diagonal (this is the case
for weak perturbations), we end up with a simple-closed form expression:

𝛿𝜔𝑛 = −𝜔𝑛

∫
𝑉

𝑑𝑉F‡
𝑛 (r) · 𝛿P̂(r;𝜔𝑛)F𝑛 (r). (2.97)

This equation allows us to predict the change of the eigenfrequencies under
perturbations of the resonators material composition via a simple overlap
integral over the resonant state’s unperturbed electromagnetic fields. Note
that in general, the change 𝛿𝜔𝑛 is complex valued and contains two kinds of
information: Its real part describes the shift of the resonance frequency, while
its imaginary part is associated with a change in the resonance linewidth.
It should be mentioned that Eq. (2.97) has the same prerequisites as the
resonant state expansion: Strictly speaking, it is only applicable for pertur-
bations 𝛿P̂(r;𝜔) that are localized inside the resonator. Nevertheless, it has
been demonstrated that in practice, reasonably accurate predictions can also
be obtained for perturbations that are localized in the close vicinity of the
resonator [25, 51, 52, 111]. For perturbations of the surrounding medium, as
they also often occur in sensing, the equation is, however, condemned to
fail. We will later (in chapter 3) develop a generalized version of the theory
that allows us to correctly account for this kind of perturbations.

Figure 2.9 displays an example, where the above perturbation theory is
applied to a plasmonic refractive-index sensor [52]. The system consists
of a periodic array of gold nanoantennas that sit on top of an infinitely
thick glass substrate. The antennas are covered by a 650 nm thick layer of
some analyte solution. Above the analyte, there is an infinitely extended
layer of air. As a perturbation, the refractive index of the analyte is changed
from its original value 𝑛 = 1.31 (resembling pure water) to higher ones
(corresponding to water with an added solute; for example glucose).

The plot depicts the resonance frequency (black) and resonance linewidth
(blue) of the fundamental plasmonic mode as a function of the analyte refrac-
tive index. The lines denote the result of the first-order perturbation theory,
while the dots and squares correspond to numerically exact calculations. It
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is evident that there is an excellent agreement. Only for very high values of
𝑛, one can observe some deviations.
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Figure 2.9. Perturbation theory applied to an array of plasmonic nanoantennas.
The system consists of a glass substrate with the antennas on top. The antennas are
covered by a layer of an analyte solution. As a perturbation, the refractive index 𝑛
of the analyte is changed from its original value of 1.31 (resembling pure water) to
higher ones (corresponding to water with an added solute). The plot displays the
resonance frequency (black) and resonance linewidth (blue) as a function of the
analyte refractive index. Lines denote the prediction of the first-order perturbation
theory, while dots and squares represent numerically exact results. For not too
large values of 𝑛, there is an excellent agreement. Adapted with permission from
Ref. [52], copyright 2016, American Physical Society.

In sensor designs, it is often useful to quantify the sensing capability of an
individual resonant state with respect to frequency shifts. For this purpose,
it is very convenient to introduce the following figure of merit (FOM) [25]:

FOM =
[sensitivity] × [excitation strength]

[resonance linewidth] . (2.98)

The quantities in this equation can be derived from the resonant state: The
sensitivity is usually defined around the eigenfrequency 𝜔𝑛 = 𝛺𝑛 − 𝑖𝛤𝑛 as
|Re(𝜕𝜔𝑛/𝜕X) |, where X represents the material parameter that is varied in
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the sensor. This expression can directly be calculated from Eq (2.97). The
linewidth is known as −2𝛤𝑛 , and the excitation strength can be estimated as
|𝑏 (𝑛)
N (𝛺𝑛) | from Eq. (2.73). In Ref. [25] it is demonstrated and experimentally

verified how this FOM can be used to optimize the geometry of a complex
sensor.

2.3.3 Purcell enhancement

Countless applications in micro- and nanophotonics [144, 175–182] (cf. also
publication [P10]) exploit the interaction of dipole emitters with resonators.
The heart of this interaction is the so-called Purcell effect, which describes
the enhancement of the spontaneous emission rate that an emitter experi-
ences when being coupled to a resonator. In his famous 1946 communica-
tion [183], Purcell stated that this enhancement is given as

𝐹 =
6𝜋𝑐3𝑄𝑛

𝜔3𝑉𝑛
, (2.99)

which is nowadays known as the Purcell factor. Here, 𝜔 denotes the dipole’s
oscillation frequency, 𝑄𝑛 = 𝛺𝑛/2𝛤𝑛 is the quality factor of the optical mode,
and 𝑉𝑛 represents the mode volume. Initially, 𝑉𝑛 was estimated as the effec-
tive volume of the resonator. Later, this definition was refined to (see for
instance Refs. [41, 184, 185])

𝑉𝑛 =

∫
𝑑𝑉𝜀 (r) |E𝑛 (r) |2

|ed · E𝑛 (rd) |2
, (2.100)

where E𝑛 represents the modal field, ed describes the unit vector along the
dipole orientation, rd represents the dipole position, and the integration is
carried out over the volume occupied by the mode. Note that in consistency
with Ref. [41], we reference the Purcell factor to the spontaneous emission
rate in vacuum instead of a bulk medium, as it is also common in literature.
The equations for a bulk medium can be obtained by simply including
factors of 1/𝑛3 and 1/𝑛2 in the definition of 𝐹 and 𝑉𝑛 , respectively, where 𝑛
represents the bulk’s refractive index.

Although Eqs. (2.99) and (2.100) have been used for decades to describe
light-matter interactions, it turns out that they are correct only in the limit
of high quality factors and negligible energy leakage to the environment.
The main reason is that – as discussed in subsection 2.2.3 – in the case of
energy leakage, the modal field distributions become exponentially growing
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with distance to the resonator and the integral in Eq. (2.100) is not applicable
anymore. A first solution was suggested by Kristensen et al. in 2012 [113],
where they introduced a generalized mode volume, based on an extension
of a normalization scheme for open resonators that had been developed
in the 1990s by Leung et al. [186–188]. However, while this approach was
aiming in the right direction, it was later shown that the normalization used
in Ref. [113] has a mathematical flaw (for details, see literature debate in
Refs. [40, 41, 114–117]). Furthermore, this initial work focused on the case
of an emitter interacting with only one single mode and being spectrally
matched with this one. The first correct and rigorous theory was presented
by Sauvan et al. in 2013 [36], based on the normalization via Eq. (2.32)
using perfectly-matched layers and an orthogonality decomposition of the
fields inside the resonator in terms of resonant states (for an explanation,
see subsections 2.2.4). Shortly after, the first fully analytical treatment –
similar to Sauvan’s approach, but based on the analytic mode normalization
and the analytic pole expansion of the Green’s dyadic – was developed by
Muljarov and Langbein [41]. In the following, we present the generalization
of Purcell’s theory to open systems, following mostly the derivation from
this latter work. Note that we remain here in the weak-coupling regime
between emitter and resonator, where the resonant states are still classical
quantities. However, it has been shown by Franke et al. that it is possible to
quantize the resonant states for describing the interaction of resonator and
emitter on the few-photon level in a quantum-mechanical framework [189].

As shown in Refs. [36, 38, 40, 41, 113, 153, 190, 191], the correct Purcell factor
for open electromagnetic resonators becomes

𝐹 (𝜔) = 3𝜋𝑐3
𝜔

∑︁
𝑛

Im 1
𝑉𝑛𝜔𝑛 (𝜔𝑛 −𝜔) , (2.101)

with the generalized mode volume 𝑉𝑛 defined as

𝑉𝑛 =
1

2[ed · E‡𝑛 (rd)] [ed · E𝑛 (rd)]
, (2.102)

where E𝑛 and E‡𝑛 are normalized according to Eqs. (2.34-2.34) or an equiv-
alently applicable method [35, 36, 50, 112, 117]. Note that in comparison to
Ref. [41], we have included a factor of 2 in order to be consistent with the
normalization used in this thesis (which is defined via electric and magnetic
fields instead of electric fields only), and furthermore generalized to the case
where E‡𝑛 ≠ E𝑛 .
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It can be shown that the original Purcell factor of Eq. (2.99) is contained in
Eq. (2.101) in the limit of high quality factors and negligible energy leakage.
An important aspect of the generalizedmode volume is that it can be complex
[36, 38, 110, 113, 191], in contrast to its original definition, in which it is a
real-valued positive number. This has two remarkable consequences (for
a detailed discussion, see Refs. [36, 38]): First, modes with Im(𝑉𝑛) ≠ 0
contribute with non-Lorentzian features to the spectral dependence of 𝐹 (𝜔).
Second, modes with Re(𝑉𝑛) < 0 provide a negative contribution to the
overall enhancement.

Let us have a short excursion about the physical meaning of the Purcell
factor. There are three different viewpoints [192], which can be summarized
as:

𝐹
(i)
=

𝛾

𝛾0

(ii)
=

𝜌

𝜌0

(iii)
=

𝑃

𝑃0
. (2.103)

Viewpoint (i) resembles the definition mentioned at the beginning of this
section, according to which 𝐹 expresses the enhancement of the sponta-
neous emission rate 𝛾 of a dipole interacting with the resonator compared
to its spontaneous emission rate 𝛾0 in vacuum. As stated by Fermi’s golden
rule [192], the spontaneous emission rate is proportional to the partial local
density of states. Consequently, viewpoint (ii) denotes 𝐹 as the increase of
this density, where 𝜌 represents the value in the presence of the resonator,
and 𝜌0 is the vacuum value. This concept is especially useful when deal-
ing with systems that contain a multitude of emitters, as it is for example
the case in Refs. [179, 180]. Concerning the physical interpretation of 𝜌 in
open resonators, one needs to be careful: In closed cavities, the density of
states can be understood as the number of available electromagnetic modes
per frequency interval 𝑑𝜔 , in analogy to the electronic density of states in
solid-state physics. (The distinction between the density of states and the
partial local density of states simply stems from the fact that the latter one
contains an additional weighting factor that accounts for the coupling to
the emitter [38].) In open resonators, the above interpretation breaks down.
Intuitively, we can understand this from the fact that the modes of open res-
onators (i.e., the resonant states) have in general non-negligible linewidths
and can spectrally interfere with each other. A detailed explanation of this
matter is found in Ref. [38]. In this general case, the appropriate interpre-
tation of 𝜌/𝜌0 is to associate it with the resonator-induced change of the
local electric field generated by the emitter. Closely related is viewpoint (iii),
which describes 𝐹 as the enhancement of the power 𝑃 that is radiated by a
classical dipole in the presence of the resonator compared to the power 𝑃0
that the same dipole would radiate in vacuum.
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An example for the Purcell factor calculation in an open resonator is shown
in Fig. 2.10, which is taken from Ref. [41]. Plotted is 𝐹 (𝜔) for a dielectric
sphere with radius 𝑎 and the permittivity 𝜀 = 4, which is surrounded by air.
The emitter is assumed to be located at a distance of 0.9𝑎 from the center. The
Purcell factor is calculated via Eq. (2.101), taking into account modes with an
angular quantum number of 𝑙 < 38 and eigenfrequencies |𝜔𝑛 | < 40𝑐/𝑎, and
is averaged over the polarization directions. The black line represents the
full Purcell factor, while the blue line corresponds the partial Purcell factor,
considering only transverse-electric (TE) modes.

Figure 2.10. Purcell factor inside a dielectric sphere. The sphere has a radius of
𝑎 and a permittivity of 𝜀 = 4. The emitter is placed at a distance of 0.9𝑎 from the
center and the Purcell factor is averaged over the polarization directions. The black
line displays the full Purcell factor, while the blue line denotes the partial Purcell
factor, considering only transverse-electric (TE) modes. Reprinted with permission
from Ref. [41], copyright 2016, American Physical Society.

It should be mentioned, that – due to the completeness issue discussed
in subsection 2.2.6 – the decomposition of the Purcell factor in terms of
the resonant state is strictly speaking only valid inside the resonator. Yet,
in practise, reasonably accurate predictions are also obtained for dipoles
placed outside in the vicinity of the resonator [36, 39, 40, 149]. Even at
intermediate distances, the above decomposition might still deliver correct
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results when the coupling to the free-space continuum is accounted for
by adding an additional factor [36, 40, 149] (in the case of air this factor
is 1). However, at long distances, namely when the exponential growth
of the resonant states starts to dominate, even this extended approach is
condemned to fail and will predict unphysically high-values of 𝐹 (𝜔). The
problem can be circumvented using one of the following two methods: The
first option consists in calculating a mapped system, where the resonator
and its surrounding are enclosed by perfectly-matched layers, and include
the non-physical perfectly-matched-layer modes in the expansion [153]. This
ensures completeness in the whole calculation domain. The second option is
to use a regularization of the modal fields in the exterior of the resonator to
remove the exponential growth [149, 193] (note, however, that Ref. [149] uses
the same problematic normalization as Ref. [113], but can easily be extended
to other normalization methods).
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Figure 2.11. Complex mode volume in a photonic crystal cavity. Shown are the
real (left) and the imaginary (right) parts of the inverse complex mode volume. The
top plots contain experimental data, while the bottom plots correspond to numerical
predictions. Evidently, there is a good agreement. Reprinted with permission from
Ref. [194], copyright 2019, Optica.

At the end, let us have a closer look at the complex mode volume. One might
think that this is purely an abstract mathematical definition, only meaningful
because it appears in the Purcell factor calculation. However, it turns out
that 𝑉𝑛 itself is an observable quantity. It was predicted by Yang et al. [51]
that when a tiny electrically polarizable object is placed inside (or nearby) an
optical resonator, the complex eigenfrequency 𝜔𝑛 of the resonator’s mode
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experiences a change that is approximately proportional to the value of 1/𝑉𝑛
at the object’s position. Hence, by probing the real and imaginary part of
this eigenfrequency change (recall that they are measurable via the shift
in the resonance frequency and the change in linewidth, respectively), one
can experimentally access the complex nature of 𝑉𝑛 . Such an experiment
was completed by Cognée et al. [194] in 2019. By moving the electrically
polarizable tip of a scanning near-field optical microscope over a photonic
crystal cavity and simultaneously recording the peak frequency and the
linewidth of the cavity’s fluorescence spectrum, they were able to construct
a spatially resolved map of the cavity’s inverse complex mode volume. The
results are displayed in Fig. 2.11. The left and right plots correspond to the
real and imaginary part, respectively. It is evident that the experimental data
(top) coincides very well with their numerical predictions (bottom). Recently,
this approach was extended to magnetic mode volumes, i.e., the magnetic
analog of Eq. (2.102) [195]. The experimental observation of complex mode
volumes constitutes an important example where the theory of resonant
states has led to the prediction and discovery of a new phenomenon. This
clearly demonstrates that the theory is muchmore than only a computational
tool.

2.4 related topics

At the end of the chapter, let us have a brief excursion about some related
topics. The following subsections are not directly relevant for the rest of this
thesis, however, they are included to give the reader some further impres-
sions about what else the theory of resonant states and related approaches
are useful for.

2.4.1 Permittivity eigenmodes

While the expansion of optical properties in terms of resonant states is based
on an analytic continuation of this response to the complex frequency plane,
other forms of analytic continuation are possible, too. One highly relevant
case is that of an analytic continuation to a complex permittivity plane for a
fixed real-valued frequency. The basic idea originates in electrostatics [196,
197] and has been later extended to electrodynamics [198, 199].
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The starting point is the wave equation for non-magnetic materials (𝜇 = 1),
which is

∇ × ∇ × E − 𝜔2

𝑐2
𝜀 (r;𝜔)E = 𝑖

4𝜋𝜔
𝑐2

j. (2.104)

As in section 2.2.5, we separate the permittivity into a background part 𝜀BG,
which is now assumed to be homogeneous and isotropic, and the scattering
geometry, which is given by 𝛥𝜀 = (𝜀 − 𝜀BG)𝛩 (r), where 𝛩 is a Heaviside
function that is one inside and zero outside the scattering geometry. Using
the well-known analytic form for the Green’s dyadic 𝐺̂0 of the background
material [200], which satisfies(

∇ × ∇ × −𝜔
2

𝑐2
𝜀BG

)
𝐺̂0 (r, r′;𝜔) = 𝐼𝛿 (r − r′), (2.105)

where 𝐼 is a 3× 3 unit matrix, it is possible to set up the following eigenvalue
equation for j = 0 [201]:

𝑠𝑚E𝑚 (r)=−𝜀BG
𝜔2

𝑐2

∫
𝑑𝑉 ′𝐺̂0 (r, r′;𝜔)𝛩 (r′)E𝑚 (r). (2.106)

Here, 𝑠𝑚 is the Bergman spectral parameter

𝑠𝑚 =
𝜀BG

𝜀BG − 𝜀𝑚
, (2.107)

with 𝜀𝑚 as the eigenpermittivity and E𝑚 as the corresponding eigenfield.
Then, all relevant quantities can be expanded in terms of these permittivity
eigenmodes. A general description of such expansions can be found in
Refs. [201–203].

The huge advantage of the permittivity eigenmodes is that they constitute
a complete basis set, which holds not only inside the scattering geometry,
but over the entire space, and the related eigenfields do not diverge in
the exterior. Hence, there are no problems in field expansions outside the
scattering geometry, e.g., in the case of an emitter in the exterior. There is
also no need to find an analytic continuation of the material parameters
to the complex frequency plane, because the method considers only real
frequencies, where experimental data is available for material parameters
such as the permittivity. Furthermore, it is possible to describe the coupling
of two or more scattering geometries in a mode-hybridization theory [204],
which yields a simple linear eigenvalue problem for the coupling of the
individual resonators. Attempts of setting up a coupled-mode theory via
resonant states either suffer from inaccuracies in the far-field coupling [205–
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209] or involve a nonlinear eigenvalue problem [39, 210]. For the simple
case of stacked gratings, however, an extended linear eigenvalue problem
for the resonant states is developed in Ref. [211].

The downside of the permittivity eigenmodes is that an expansion of any
optical properties in terms of these modes has to be repeated for each
frequency of interest. Also, it is more difficult to grasp the physical meaning
of the complex eigenpermittivity and the related eigenfields. Finally, the
question arises about how to deal with several different materials, because
the classical formulation only includes a background permittivity and the
permittivity of the scattering geometry.

2.4.2 Propagating modes

In the case that the system of interest exhibits a certain translational sym-
metry, the complexity of that system can be mathematically reduced from
a three-dimensional problem to a two-dimensional problem, see Ref. [212]
and references therein. This can be achieved formally by carrying out a
Fourier transform in the direction of translational symmetry. For instance,
an ideal fiber or waveguide may be invariant under translations along the 𝑧
direction. Then, we can apply the Fourier transform

𝑓 (𝑥 , 𝑦 ; 𝛽) = 1
2𝜋

∫
𝑑𝑧 e−𝑖𝛽𝑧 𝑓 (𝑥 , 𝑦 , 𝑧), (2.108)

which transforms Maxwell’s equations from Eq. (2.3) to

M̃(𝑥 , 𝑦 ; 𝛽 ;𝜔)F̃(𝑥 , 𝑦 ; 𝛽 ;𝜔) = J̃(𝑥 , 𝑦 ; 𝛽 ;𝜔), (2.109)

where M̃ originates from the Maxwell operator M̂ in Eq. (2.3) by the sub-
stitution 𝜕𝑧 → 𝑖𝛽 [46]. Historically, this Fourier transformation is mostly
applied to the wave equation [213].

Fixing the frequency to a real value, we can then make an analytic continu-
ation of Eq. (2.109) to the complex 𝛽 plane. The related Green’s dyadic G̃

exhibits poles at complex 𝛽 values, which we can relate to so-called propa-
gating modes that obey the following constitutive equation with outgoing
boundary conditions:

M̃(𝑥 , 𝑦 ; 𝛽𝑛 ;𝜔)F̃𝑛 (𝑥 , 𝑦 ;𝜔) = 0. (2.110)
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As in the case of resonant states, it is then possible to expand the optical
response in the basis of these propagating modes. From a physical perspec-
tive, propagating modes constitute solutions of Maxwell’s equations in real
space with a field distribution

F𝑛 (𝑥 , 𝑦 , 𝑧;𝜔) = F̃𝑛 (𝑥 , 𝑦 ;𝜔)e𝑖𝛽𝑛𝑧 , (2.111)

which propagates along the 𝑧 direction with only a change in phase that is
governed by the real part of 𝛽𝑛 and an exponential decay that stems from
the imaginary part of 𝛽𝑛 . In many cases, such as conventional step-index
fibers [213], the dominant propagating modes exhibit a real-valued eigen-
value 𝛽𝑛 , so that their fields are bound to a localized high-index region and
decay perpendicular to the 𝑧 axis with distance to this central region. These
propagating modes are called “bound modes,” with a normalization similar
to Eq. (2.31). However, there are also solutions with a nonzero imaginary part
of 𝛽𝑛 that are called “leaky modes,” because their fields grow perpendicular
to the 𝑧 axis with distance to the central region [104, 105, 213]. As discussed
in section 2.2.3, similar normalization approaches as in Eq. (2.32) have been
developed in the past [104, 105]. Only recently, the analytic normalization
for resonant states from Ref. [37] has been adapted to these leaky modes
and combined with the resonant-state expansion [46, 106].

2.4.3 Application in nonlinear optics

In most derivations, the theory of resonant states relies on the use of recip-
rocal materials, see Refs. [37, 38, 46] and references therein. Reciprocity is
a very fundamental principle that can be broken only by a few possibili-
ties [124]. One of them is based on nonlinearities. While we have shown here
that the theory of resonant states can be extended to nonreciprocal materials,
it still relies on the assumption of a linear material response. Hence, it might
seem counterintuitive that it is possible to apply the theory of resonant
states in nonlinear optics.

However, in the case of propagating modes, the description of nonlinear
pulse propagation in optical fibers is mostly based on using a single or few
bound modes as basis [214], resulting for a single mode with index𝑚 in the
nonlinear Schödinger equation

𝜕𝑧𝐴𝑚 ≈ 𝑖𝛾 |𝐴𝑚 |2𝐴𝑚 − 𝑖
𝛽
(2)
𝑚

2 𝜕2𝜏𝐴𝑚 − 𝛼
(0)
𝑚 𝐴𝑚 . (2.112)

61



resonant states

Here,𝐴𝑚 is the frequency-dependent amplitude of that modes, 𝜏 = 𝑡 − 𝛽
(1)
𝑚 𝑧,

while 𝛽
(𝑛)
𝑚 and 𝛼 (𝑛)

𝑚 are the 𝑛th order frequency derivatives of the real and
imaginary parts of the propagation constant 𝛽𝑚 (see previous section) at
a central frequency 𝜔0. Furthermore, 𝛾 is the Kerr nonlinearity parameter
related to a third-order nonlinearity, which is typically calculated via an
integral over expressions containing the correctly normalized modes [214].

The nonlinear Schrödinger equation is applicable, because the third-order
nonlinearity is usually rather small, so that it is possible to treat it in a
perturbative manner. In the case that we consider the propagation of leaky
modes, it turns out that Eq. (2.112) remains valid, but the calculation of the
Kerr nonlinearity parameter becomes more complicated due to the leakiness
of the modes [132, 215–217]. Interestingly, 𝛾 is no longer real, but in general
a complex number with the imaginary part resulting either in nonlinear
loss or even nonlinear gain for the overall attenuating pulses [132]. The
nonlinear gain results in optical pulses that are spectrally broader and more
compressed temporally than expected from the simpler theory of bound
modes. In addition to the Kerr nonlinearity, it is also possible to describe
four-wave mixing of bound and leaky modes [133, 214].

While the nonlinear Schrödinger equation is a theoretical description of
Kerr nonlinearities based on propagating modes, resonant states associated
to poles of the Green’s dyadic on the complex frequency plane have been
used for approximating nonlinear responses, too. In the case of harmonic
generation [218], the nonlinear susceptibility of order 𝑛 generates fields at
frequency 𝑛𝜔 . In the so-called undepleted-pump approximation [219–221],
the energy transfer from the pump frequency to the harmonic is neglected,
which allows one to first solve Maxwell’s equations at the pump frequency
and then to calculate the field emitted at the 𝑛th harmonic by considering
the nonlinear polarization as an equivalent source current. The fields at the
fundamental harmonic can be expanded in terms of the resonant states as
described in section 2.2.5. Using the pole expansion of the Green’s dyadic in
Eq. (2.26) at the harmonic frequency, it is then possible to derive also the
emitted field in the basis of resonant states [222].

In the case of the Kerr nonlinearity, it is not possible to neglect the interplay
of the linear fields and the contributions due to the nonlinear susceptibility.
Still, it has been shown that one can use a modal description in terms of
resonant states to approximate the Kerr nonlinearity in a ring resonator by
appropriately accounting for the stored energy density [223].
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2.5 conclusion

In this chapter, we have given a thorough introduction into the theory
of resonant states. We have explained that in optics, resonant states are
defined as eigensolutions of Maxwell’s equations that simultaneously satisfy
outgoing boundary conditions. Apart from a few exceptions, this definition
results in a discrete set of states at complex eigenfrequencies. These states
can be interpreted as the rigorous mathematical definition of what is often
intuitively understood as a mode or a resonance.

It was briefly summarized how resonant states can be calculated and it was
discussed how they can be normalized. Subsequently, we have explained
how the normalized resonant states can be used as a physically meaningful
basis to expand the near and far fields of nanophotonic resonators. It was
shown that in many cases, a small subset of relevant resonant states is
sufficient to obtain reasonably accurate descriptions of these quantities with
very low computational cost. However, it was also clarified that care has
to be taken in some situations, because the expansion in terms of resonant
states is not always complete. This is for example the case in the exterior of
the resonator, as well as, in general, in systems that exhibit so-called branch
cuts. Possible workarounds for this problem have been presented as well.

Based on the theoretical framework, several applications were discussed:
First, it was demonstrated how the knowledge of a large set of resonant
states of a reference system can be used to deduce the resonant states of a
perturbed system via a simple eigenvalue equation. This method is known
as the resonant-state expansion. Second, it was revealed how the first-order
approximation of the above eigenvalue equation leads to a simple closed-
form expression for resonance shifts and linewidth changes, which can
be highly useful for describing nanophotonic substance sensors. Third, we
included an overview of how to describe the Purcell effect in open resonators
based on the theory of resonant states.

Finally, we have briefly discussed some related topics in order to give the
reader some further impressions about the usefulness of the presented
mathematical concepts. In particular, we have given a short introduction
into permittivity eigenmodes and furthermore, we have revealed how the
theory of resonant states can be applied to describe light propagation in
fibers as well as nonlinear phenomena.
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3
PERT URBAT ION THEORY FOR EXTER IOR MATER IAL
CHANGES

In subsection 2.3.2, a simple expression from literature was presented that
can describe resonance frequency shifts and linewidth changes in open res-
onators induced by small localized material changes in the resonator. It was
briefly indicated how this expression is useful for modeling and designing
nanophotonic sensors. It was, however, also emphasized that the expression
is only valid for changes inside or in the close vicinity of the resonator, but
in general fails for changes of the resonator’s surrounding medium, as they
are quite often relevant in sensing. Here, we solve this issue and derive a
generalized version of the theory that is capable of including these kinds of
exterior changes. Furthermore, we demonstrate its applicability on several
example systems.

Most of this chapter is based on publication [P5]:

S. Both and T. Weiss: First-order perturbation theory for changes in the sur-
rounding of open optical resonators. Optics Letters 44, 5917–5920 (2019).
DOI 10.1364/OL.44.005917. Reprinted/adapted with permission. Copyright,
2019, Optica Publishing Group.

There are, however, two exceptions:

Section 3.2 contains a generalization of the derivation to nonreciprocal
systems that is based on publication [P7]:

S. Both and T. Weiss: Resonant states and their role in nanophotonics. Semi-
conductor Science and Technology 1, 013002 (2022).
DOI 10.1088/1361-6641/ac3290.
Reprinted/adapted with permission. Copyright 2021, The Authors.
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Subsection 3.3.3 contains an example that is not included in the original
publication [P5], but has been published beforehand in its preprint version,
which is available under:

S. Both and T. Weiss: First-order perturbation theory for material changes in
the surrounding of open optical resonators. arXiv:1902.08120 (2019).
Link https://arxiv.org/abs/1902.08120.
Reprinted/adapted with permission. Copyright 2019, The Authors.

3.1 introduction

Nanophotonic structures such as photonic crystals or plasmonic nanopar-
ticles comprise optical resonances with strong electromagnetic near fields.
Consequently, even tiny changes in the surrounding medium can have sig-
nificant influence on their resonance frequencies. This is the key to various
kinds of optical sensing applications [7, 11, 13, 25, 122, 123]. Figure 3.1 displays
exemplarily a metallic sphere, around which the surrounding permittivity
is changed from 𝜀 to 𝜀 + 𝛿𝜀, thus shifting the complex eigenfrequency of the
fundamental plasmonic mode from 𝜔𝑛 to 𝜔𝜈 .

The modeling of such interactions often relies on extensive numerical simu-
lations, which can be rather inefficient, since in many practical cases, the
variations in the material properties are extremely small. In contrast, per-
turbative theories are particularly suited for such cases. Besides providing
intuitive insights into the underlying physics [11, 224], giving explicit ex-
pression for the sensitivities [11, 52, 122], and resulting in simple design
rules [52, 122, 224], their most important benefit is drastically reduced calcu-
lation times [50–52, 111]. As shown in Ref. [25] and verified experimentally,
by using the simple figure of merit from Eq. (2.98), it is possible to opti-
mize a complex sensor design much faster than by conventional full-wave
simulations.

The crucial part of almost any perturbation theory is an appropriate nor-
malization of the eigenmodes. As explained in chapter 2, in nanophotonics,
a difficulty arises from the fact that most systems are open resonators due
to the presence of radiative losses. Consequently, their eigenmodes (i.e., the
resonant states) correspond to field distributions that grow with distance to
the resonator. Hence, conventional normalization schemes based on energy
considerations fail and have to be replaced by one of the approaches from
subsection 2.2.3.
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Figure 3.1. Influence of the surrounding medium on the resonant states of an open
optical system. Depicted is a metallic nanosphere, which also serves as our test sys-
tem (i). (a) In the unperturbed case, the sphere is surrounded by a medium with per-
mittivity 𝜀. (b) Exemplary resonant state of the unperturbed system, characterized
by its electric field distribution E𝑛 and its eigenfrequency 𝜔𝑛 . (c) Perturbed system
with permittivity 𝜀 + 𝛿𝜀. (d) Resonant state of the perturbed system, characterized
by a modified field distribution E𝜈 and a modified eigenfrequency 𝜔𝜈 ≈ 𝜔𝑛 +𝜔 (1)

𝑛 .

As we have seen in subsection 2.3.2, equipped with the correct normaliza-
tion, it is possible to deduce a simple closed-form expression for predicting
frequency shifts and linewidth changes in such open optical resonators [cf.
Eq (2.97)]. This expression has proven to be highly efficient for describing
all kinds of perturbations inside or in close proximity to the resonator [25,
50–52, 111, 173]; however, as we have already emphasized, it fails for per-
turbations of the surrounding medium. The reason is very simple: In order
to account for changes in the surrounding via Eq (2.97), one would need
to carry out the corresponding integration over the whole space. Due to
the growing fields of the resonant states in the exterior, this integral will,
however, diverge (similar to conventional normalization integrals that also
diverge, see subsection 2.2.3). In the following, we close the existing gap and
derive a generalized theory that is capable of circumventing the problem
and can correctly account for perturbations in the surrounding medium.
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3.2 theory

We start with the resonant states of the unperturbed resonator, which are
defined via Eq. (2.8) (repeated here for convenience):

M̂(r;𝜔𝑛)F𝑛 = 0, (3.1)

where F𝑛 denotes the resonant field distributions and 𝜔𝑛 is the complex
eigenfrequency. As a side note it should be mentioned that we do not require
here that the field distributions are normalized. Instead, the analytical nor-
malization condition of Eq. (2.34) will automatically come out as a byproduct
of our derivations.

Now, similar to the resonant-state expansion (subsections 2.3.1) and the
derivation of the first-order perturbation theory for interior changes (sub-
section 2.3.2), we introduce a perturbation 𝛿P̂ that alters the material distri-
bution of the system from P̂ to P̂ + 𝛿P̂. As in subsection 2.3.2, we assume
that the perturbation is small, such that we can later use a first-order approx-
imation. In contrast to the previous derivation, we do not require 𝛿P̂ to be
localized inside the resonator. Instead, it can be nonzero in the surrounding.
In order for being able to systematically deduce a first-order approximation
later, we furthermore introduce a dimensionless parameter 𝛬 that allows
us to turn the perturbation on (𝛬 = 1) and off (𝛬 = 0). Consequently, the
material distribution becomes P̂ + 𝛬𝛿P̂. Note that 𝛬 is typically referred to
as the perturbation parameter, and its usage is motivated by conventional
perturbation theories (known from quantummechanics [225]). The resonant
states of the perturbed system obey[

M̂(r;𝜔𝜈 ) + 𝛬
𝜔𝜈

𝑐
𝛿P̂(r;𝜔𝜈 )

]
F𝜈 = 0, (3.2)

where 𝜔𝜈 is the perturbed eigenfrequency and F𝜈 are the corresponding
field distributions.

Let us now derive an expression that connects the resonant states of the
perturbed system with the ones of the unperturbed system. To obtain it,
we multiply Eq. (3.2) with F

‡
𝑛 , subtract F𝜈 times the transposed version

of Eq. (3.2), integrate the result over a finite volume 𝑉 that encloses all
inhomogeneities, use M̂ = 𝜔/𝑐 P̂ − D̂, and apply Eq. (2.20) to convert the
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two volume integrals that include the operator D̂ into a single surface
integral. Consequently, we end up with:∫

𝑉

𝑑𝑉F‡
𝑛 ·

[
𝜔𝜈P̂(𝜔𝜈 ) −𝜔𝑛P̂(𝜔𝑛)

]
F𝜈 + 𝛬𝜔𝜈

∫
𝑉

𝑑𝑉F‡
𝑛 · 𝛿P̂(𝜔𝜈 )F𝜈

−𝑖𝑐
∮
𝜕𝑉

𝑑S · (E‡𝑛×H𝜈−E𝜈×H‡
𝑛) = 0. (3.3)

In analogy to conventional perturbation theories, we expand the perturbed
quantities F𝜈 and 𝜔𝜈 as perturbation series in powers of 𝛬:

F𝜈 = F𝑛 + 𝛬F
(1)
𝑛 + 𝛬2F(2)

𝑛 + . . . , (3.4)

𝜔𝜈 = 𝜔𝑛 + 𝛬𝜔
(1)
𝑛 + 𝛬2𝜔 (2)

𝑛 + . . . . (3.5)

Here, F(1)
𝑛 ,F(2)

𝑛 , . . . and𝜔 (1)
𝑛 ,𝜔 (2)

𝑛 , . . . are correction terms for the perturbed
fields and the perturbed eigenfrequencies, respectively. Since our perturba-
tion 𝛬𝛿P̂ has been assumed as small, we can safely neglect all higher-order
correction terms and only consider the first-order result. Furthermore, we are
only interested in the shifts of the eigenfrequencies and not in the changes
in the fields (since the former denote the relevant quantities in the kinds of
sensing applications that are considered in this chapter). Consequently, our
goal will be to determine 𝜔 (1)

𝑛 .

We insert the above relations into Eq. (3.3) and sort by powers of 𝛬. It turns
out that the zeroth order is trivially fulfilled and hence does not contain any
information. The first order, however, yields:

𝜔
(1)
𝑛 𝑉𝑛 +𝜔𝑛

∫
𝑉

𝑑𝑉F‡
𝑛 · 𝛿P̂(𝜔𝑛)F𝑛 = 𝑆

(1)
𝑛 . (3.6)

Here, 𝑉𝑛 is the volume term of the normalization defined in Eq. (2.34). For
the sake of brevity of notations, we have furthermore introduced the abbre-
viation

𝑆
(1)
𝑛 = 𝑖𝑐

∮
𝜕𝑉

𝑑S · (E‡𝑛×H
(1)
𝑛 −E(1)

𝑛 ×H‡
𝑛). (3.7)

Equation (3.6) implicitly describes the first-order correction term of the
eigenfrequency𝜔 (1)

𝑛 . However, the problem is that the equation also contains
the unknown first-order field correction terms E(1)

𝑛 and H(1)
𝑛 . In the next
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steps, we will show how to deal with these field-correction terms, in order
to obtain an explicit expressions for 𝜔 (1)

𝑛 .

As it has been done in subsection 2.2.3, we define an analytic continuation
F𝑛 (𝜔) of the unperturbed resonant state F𝑛 in the complex 𝜔 plane around
the point 𝜔 = 𝜔𝑛 . Additionally, we define an analytic continuation F𝜈 (𝜔 ; 𝛬)
of the perturbed resonant state F𝜈 (𝛬) around the point 𝜔 = 𝜔𝜈 . The ar-
gument 𝛬 is included, to emphasize that the perturbed resonant state also
exhibits a 𝛬 dependence. With the help of these analytic continuations, we
can formally express the first-order field correction term F

(1)
𝑛 as

F
(1)
𝑛 =

dF𝜈

d𝛬

����
𝛬=0

=

{
𝜕F𝜈

𝜕𝛬
+ 𝜕F𝜈

𝜕𝜔

𝜕𝜔

𝜕𝛬

}
𝛬=0

= 𝛿F𝑛 + F′
𝑛𝜔

(1)
𝑛 , (3.8)

where the first equal sign follows by definition from Eq. (3.4) and the second
one from applying the chain rule. Note that furthermore, we have identified
𝜕𝜔𝜈/𝜕𝛬|𝛬=0 as 𝜔 (1)

𝑛 , used the abbreviation F′
𝑛 = 𝜕F𝑛 (𝜔)/𝜕𝜔 |𝜔=𝜔𝑛

from
subsection 2.2.3, and, for later convenience, introduced the definition

𝛿F𝑛 =
𝜕F𝜈

𝜕𝛬

����
𝛬=0

. (3.9)

Plugging Eq. (3.8) into Eq. (3.7), we obtain

𝑆
(1)
𝑛 = 𝛿𝑆𝑛 + 𝑆𝑛𝜔 (1)

𝑛 , (3.10)

where 𝑆𝑛 denotes the surface term of the normalization from Eq. (2.34) and
where we have introduced the abbreviation

𝛿𝑆𝑛 = 𝑖𝑐

∮
𝜕𝑉

𝑑S · (E‡𝑛×𝛿H𝑛−𝛿E𝑛×H‡
𝑛). (3.11)

Inserting the above 𝑆 (1)
𝑛 into Eq. (3.6), we obtain the first-order correction

of the eigenfrequency:

𝜔
(1)
𝑛 = −

𝜔𝑛

∫
𝑉

𝑑𝑉F
‡
𝑛 · 𝛿P̂(𝜔𝑛)F𝑛 + 𝛿𝑆𝑛

𝑉𝑛 + 𝑆𝑛
. (3.12)

This is the same result as in Eq. (2.97), apart from two differences: First
and most importantly, there is an additional surface term 𝛿𝑆𝑛 , which allows
us to account for perturbations in the surrounding of the resonator. We
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will later show that if the perturbation is completely localized inside the
resonator, this surface term will vanish. Thus, one will recover the old
formula for interior perturbations. Second, there is a denominator 𝑉𝑛 + 𝑆𝑛 ,
which resembles the analytic normalization condition from Eq. (2.34). It
arises from the fact that we have not required (for our derivations) that
the resonant field distributions F𝑛 are normalized. For normalized field
distributions, the denominator will simply become one. It is worth pointing
out that this denominator automatically came out of the derivations, which
means that the perturbation theory provides an alternative path for deriving
the analytic normalization condition.

So far, Eq. (3.12) resembles only a formal solution to the problem of exterior
perturbations, since the term 𝛿𝑆𝑛 is still not known explicitly. Therefore, let
us now evaluate it. In order to do this, we will restrict our considerations
to the special but highly important scenario, where the resonator’s sur-
rounding consists of a homogeneous and isotropic medium, characterized
by spatially constant and scalar permittivity 𝜀 and permeability 𝜇 values,
and the perturbation is associated with spatially constant and scalar changes
𝛿𝜀 and 𝛿𝜇 of these quantities.

For the sake of generality, we allow 𝜀, 𝜇, 𝛿𝜀 and 𝛿𝜇 to be dispersive. We
want to emphasize that the restriction to homogeneous surroundings does
not rule out the practically highly important case of periodic resonators
that have different substrate and superstrate materials. The reason is that
the substrate and superstrate can be considered as two separate exterior
domains and can be treated independently.

Let us now come back to the evaluation of 𝛿𝑆𝑛 . Since this evaluation corre-
sponds to a lengthy mathematical derivation, which does not provide too
much relevant insight, we will here only briefly sketch the main idea, while
the detailed steps are provided in Appendix A: The key is to notice that
for a homogeneous surrounding, the fields in the exterior of the resonator
can be written as a superposition of outgoing basis functions ON (for an
explanation, see subsection 2.2.3 or Ref. [45]) and to explicitly make use of
the properties of these basis functions. Consequently, one obtains:

𝛿𝑆𝑛 =
𝜂𝜔𝑛

2

(
𝛿𝜀

𝜀
+𝛿𝜇
𝜇

)
𝑆𝑛 +

𝑖𝜂𝛽𝑐

2

∮
𝜕𝑉

𝑑S · (E‡𝑛 ×H𝑛), (3.13)

where 𝑆𝑛 is the surface term of the normalization and where we have intro-
duced the abbreviations 𝜂 =

√
𝜀𝜇/(𝜔√𝜀𝜇) ′ and 𝛽 = [(𝜔𝜇) ′𝛿𝜀 − (𝜔𝜀) ′𝛿𝜇] /𝜀𝜇.

The prime denotes again the derivative with respect to𝜔 at𝜔𝑛 , as introduced
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in subsection 2.2.3. For non-dispersive 𝜀 and 𝜇, the above abbreviations sim-
plify to 𝜂 = 1 and 𝛽 = 𝛿𝜀/𝜀 − 𝛿𝜇/𝜇. Equations (3.12) and (3.13) constitute
the main result of this chapter and allow us to predict the change of the
eigenfrequencies 𝜔 (1)

𝑛 under interior and exterior perturbations via a simple
closed-form expression from the unperturbed resonant states.

3.3 examples

In the following, we will investigate the applicability of the above equations
on several example systems.

3.3.1 Plasmonic nanosphere

Let us start with a particularly simple geometry: As depicted in Fig. 3.1, we
consider a metallic nanosphere and vary the permittivity of its surrounding
medium. We deliberately chose this system, since its resonant states can be
calculated analytically [50, 110], which allows a precise and easy to follow
verification of our theory. For our example calculation, we take a gold sphere
with a diameter of 400 nm, described by a Drude model (𝜔p = 13.8× 1015 s−1
and 𝛾 = 1.075 × 1014 s−1). The unperturbed permittivity of the surrounding
medium is chosen as 𝜀 = 2.

In Fig. 3.2(a-c), we display the normalized electric field distribution of ex-
emplary resonant states of the unperturbed system. Panels (a) and (b) show
the fundamental plasmonic dipole and quadrupole mode, which correspond
to poles of the transverse-magnetic (TM) Mie coefficients for an angular
momentum quantum number of 𝑙 = 1 and 𝑙 = 2, respectively, and occur
at frequencies below the plasma frequency 𝜔p, where the gold is metal-
lic. For frequencies larger than 𝜔p, the gold behaves as a dielectric, and
whispering gallery modes inside the sphere are possible. Panel (c) shows
a transverse-electric (TE) higher-order whispering gallery mode with an
angular momentum quantum number of 𝑙 = 3 and three radial antinodes
inside the sphere. Fig. 3.2(d-f) depict the resonance energies and linewidths
of the three modes as a function of the permittivity 𝜀 of the surrounding
medium. The solid lines indicate the results of the perturbation theory, while
the squares have been derived from exact analytical calculations [50]. For
not too big variations in 𝜀, we find a good agreement between the pertur-
bation theory and the exact calculations. Only at the edge of the plotted 𝜀
range, some deviations become visible.
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Figure 3.2. Results for test system (i). As illustrated in Fig. 3.1, we consider a
gold nanosphere (diameter 400 nm) and vary the permittivity 𝜀 of its surrounding.
(a-c) Normalized electric field distribution of exemplary resonant states of the
unperturbed system (𝜀 = 2). Panels (a) and (b) depict the fundamental plasmonic
dipole and quadrupole mode, while (c) displays a transverse-electric Mie resonance.
(d-f) Resonance energy and linewidth as a function of 𝜀, with solid lines as the results
of the perturbation theory and squares derived by exact analytical calculations.

3.3.2 Plasmonic nanoslits

While test system (i) has been particularly chosen to demonstrate the validity
of our theory, its full power becomes obvious when changing to a system
without any known analytical solution. For this reason, we now switch to
a second, more practically relevant example: We consider a periodic array
of plasmonic nanoslits as depicted in Fig. 3.3(a). The structure consists of
a gold layer (yellow) with the slits etched into it. The gold sits on top of a
glass substrate (dark gray) with refractive index 1.5 and is covered by an
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Figure 3.3. Schematic of test system (ii). We consider a two-dimensional periodic
array of plasmonic nanoslits. (a) Geometry: The structure consists of a gold layer
with the nanoslits etched into it. The gold sits on top of a glass substrate (dark gray)
with refractive index 1.5 and is covered by an analyte solution (light blue) with
permittivity 𝜀 (unperturbed case: 𝜀 = 1.71, which is the value of water). (b,c) We
introduce a perturbation by changing 𝜀 to 𝜀 + 𝛿𝜀.

analyte solution (light blue) with permittivity 𝜀 (unperturbed case: 𝜀 = 1.71,
which is the value of water). As indicated in Fig. 3.3(b,c), we change the
permittivity of the analyte solution from 𝜀 to 𝜀 +𝛿𝜀. This is a typical example
of a plasmonic refractive index sensor. The slits have a width of 60 nm (𝑥
direction) and a length of 400 nm (𝑦 direction). The system is periodic in
both 𝑥 and 𝑦 directions with periods of 300 nm and 700 nm, respectively.
The height of the gold layer is 40 nm, while the heights of the substrate
and the analyte solution are taken as infinite. Of course, infinite heights
are not possible in reality, but since the substrate and analyte are typically
orders of magnitude thicker than the gold, this is a justified approximation.
Furthermore, large finite heights with perfectly flat interfaces would result
in fast oscillations due to spectrally dense Fabry-Perot resonances [52]. In
order to keep the calculations as realistic as possible, the gold is modeled
according to Ref. [226].

The field distribution of the resonant state in the unperturbed system, as well
as the exact eigenfrequencies in the perturbed case, have been calculated
using the Fourier modal method [52, 164, 165, 227]. Exploiting the periodicity,
the calculation domain and the integration volume𝑉 in Eqs. (3.12) and (3.13)
can be reduced to a volume that spans over one unit cell within the 𝑥𝑦 plane
and covers the inhomogeneity in the 𝑧 direction.

Fig. 3.4(a) shows the normalized electric field distribution of the fundamen-
tal plasmonic resonance, plotted within the 𝑥𝑧 plane at a 𝑦 position that
corresponds to half the slit length. Panel (b) depicts the resonance energy
and linewidth as a function of 𝜀. Solid lines represent the result of the first-
order perturbation theory, while the squares have been derived from exact
numerical calculations. As in the other example, there is a good agreement
between perturbation theory and exact results, as long as the change in 𝜀 is
not too big.
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Figure 3.4. Results for test system (ii). (a) Normalized electric field distribution of
the fundamental plasmonic resonance within the unperturbed system (𝜀 = 1.71),
plotted in the 𝑥𝑧 plane at half the slit length in the 𝑦 direction. (b) Corresponding
resonance energy and linewidth as a function of the permittivity 𝜀 of the analyte
solution. Solid lines represent the first-order perturbation theory, while the squares
have been derived by numerically exact calculations.

3.3.3 Photonic crystal
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Figure 3.5. Schematic of test system (iii). We consider a one-dimensional photonic
crystal slab that is known from Ref. [111, 128], where it is investigated in different
contexts. (a) Structure geometrywith parameters as specified in the above references.
The structure consists of a periodic grating (dark gray) of a material with refractive
index 2.5, embedded into a substrate with permittivity 𝜀 (unperturbed case: 𝜀 = 2.25),
and air on top. Reprinted with permission from Ref. [111], copyright 2017, American
Physical Society. (b,c) We introduce a perturbation by changing 𝜀 to 𝜀 + 𝛿𝜀.
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As a third example, we consider a one-dimensional photonic crystal slab.
The system is known from Refs. [111, 128], where it has been used to validate
the perturbation theory from Eq. (2.97) for interior material changes and to
investigate the description of optical Fano resonances in periodic structures
near Rayleigh anomalies [99], respectively. The geometry is depicted in
Fig. 3.5(a). The system is periodic in the𝑥 direction, translationally symmetric
in the 𝑦 direction, and remains finite within the 𝑧 direction. It consists of a
80 nm thick periodically modulated layer (period 𝑃 = 300 nm) with a 200 nm
wide region of ZnO (dark gray, 𝑛 = 2.5) per unit cell, embedded into a quartz
substrate (light gray) with a permittivity value 𝜀, where 𝜀 = 2.25 in the
unperturbed case, and an air cover layer. As indicated in Fig. 3.5(b,c), we
change the permittivity of the quartz from 𝜀 to 𝜀 + 𝛿𝜀.

The resonant states of the system correspond to quasiguided TE and TM
waveguide modes [111, 228]. Due to the periodicity, the resonant states
can be written as Bloch waves, which are characterized by their in-plane
momentum 𝑘𝑥 . As for test system (ii), the field distribution of the resonant
states in the unperturbed system, as well as the exact eigenfrequencies in the
perturbed case, have been calculated using the Fourier modal method [52,
164, 165, 227]. Exploiting the periodicity and the translational symmetry [111],
the calculation domain and the integration volume 𝑉 appearing in Eq. (3.12)
can be reduced to a two-dimensional rectangle within the 𝑥𝑧 plane that
spans over one unit cell in the 𝑥 direction and covers the inhomogeneity in
the 𝑧 direction.

Figure 3.6(a,b) show the normalized electric field distribution of exem-
plary resonant states in the unperturbed system. The example uses exactly
the same modes as discussed in Ref. [111], which are a TE resonance at
𝑘𝑥 = 𝜋/(2𝑃) = 5.236 µm−1 (a), and a TM resonance at 𝑘𝑥 = 0.2 µm−1 (b).
Panels (c) and (d) depict the corresponding resonance energy and linewidth
as a function of 𝜀. The solid lines represent the result of the first-order per-
turbation theory, while the squares have been derived from exact numerical
calculations. For both modes, perturbation theory and exact results exhibit a
good agreement over the depicted 𝜀 range. For the TE mode, the first-order
perturbation theory works over a much larger range of 𝜀 than for the TM
mode (note that the 𝜀 ranges are different in both plots). The reason is that
the TM resonance depicted here is coincidentally very close to a Rayleigh
anomaly [99, 111] that strongly effects the far field coupling, which in turn
significantly depends on the substrate index that is changed here as the
perturbation parameter.
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Figure 3.6. Results for test system (iii). (a,b) Normalized electric field distribu-
tions of exemplary resonant states within the unperturbed system (𝜀 = 2.25).
Reprinted with permission from Ref. [111], copyright 2017, American Physical Soci-
ety. (a) Transverse-electric (TE) mode at 𝑘𝑥 = 𝜋/(2𝑃) = 5.236 µm−1, (b) Transverse-
magnetic (TM) mode at 𝑘𝑥 = 0.2 µm−1. (c,d) Corresponding resonance energy and
linewidth as a function of the permittivity 𝜀 of the substrate. Solid lines represent the
results of the first-order perturbation theory, while the squares have been derived
by numerically exact calculations. Note that (c) and (d) are plotted for different
ranges of 𝜀.

3.4 limitations

Let us have a short discussion about the limitations of our first-order pertur-
bation theory. It should be noted that we have applied it to several other test
systems, including slits and spheres (metallic and nonmetallic) of different
sizes, as well as to a plasmonic rod antenna array. In general, we found
that the theory typically works over quite large ranges of 𝜀 values, as long
as there is only one single resonant state around the frequency of interest.
However, as soon as there are two or more resonant states in close spec-
tral proximity, the first-order approximation starts to deviate relatively fast
from the exact results with increasing 𝛿𝜀. This finding completely coincides
with what one would expect from conventional perturbation theories as
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well as with the observations from Ref. [111] for interior perturbations. The
narrow applicability range that was observed for test system (iii) around the
Rayleigh anomaly can also be explained in this context, since the Rayleigh
anomaly effectively acts as a large ensemble of modes [89, 229]. In the end,
we want to emphasize that even if, in a particular system, the first-order
approximation has a limited applicability range, this is often not a problem,
since in the majority of sensing applications, the material changes of interest
are extremely small anyway.

3.5 conclusion and outlook

In conclusion, we have presented a first-order perturbation theory that can
predict frequency shifts and linewidth variations under material changes in
the exterior of open optical resonators. Our theory denotes a generalization
of a well-known literature expression for interior material changes. The key
for the generalization is to include an additional surface term that accounts
for the exterior changes. We have demonstrated the applicability of the
theory on several example systems.

At the end, it should be mentioned that our approach was recently extended
by Upendar et al. to propagating modes in leaky optical fibers [47]. In this
context, the exterior perturbation theory is not only useful for describing
the influence of exterior material changes, but additionally, it also allows
for predicting the group velocity of a mode from the pure knowledge of its
resonant field distribution. A further recent follow-upworkwas presented by
Almousa and Muljarov [230]. Therein, it is shown how one can go beyond
the first-order approximation and treat exterior changes up to arbitrary
orders of perturbation, as long as they are homogeneous and isotropic.
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4
PERT URBAT ION THEORY FOR FAR - F I E LD QUAN T I T I E S

So far, only the impact of material variations on the eigenfrequencies of
resonators was considered. In this chapter, we go one step further and
present a more general perturbation theory that allows us to describe the
effect of material variations on the resonators’ far-field properties, such as
their transmission and reflection spectra. We will see that besides resonance
frequency shifts and linewidth changes, there exist further perturbation-
induced effects that can lead to observable signals. The main goal of this
chapter is to present the derivation of the theory. Additionally, we will
investigate a simple exemplary system from the field of dielectric sensing.
Later, in chapter 5, the theory will then extensively be used to describe
and understand the mechanisms that occur in a very specific application:
nanophotonic chiral sensing.

The chapter is based on publications [P6] (where the initial theory is derived)
and [P7] (where a generalization to nonreciprocal systems is presented):

S. Both, M. Schäferling, F. Sterl, E. A. Muljarov, H. Giessen, and T. Weiss:
Nanophotonic chiral sensing: How does it actually work? ACS Nano 16,
2822–2832 (2022).
DOI 10.1021/acsnano.1c09796.
Reprinted/adapted with permission. Copyright 2022, American Chemical
Society.

S. Both and T. Weiss: Resonant states and their role in nanophotonics. Semi-
conductor Science and Technology 1, 013002 (2022).
DOI 10.1088/1361-6641/ac3290.
Reprinted/adapted with permission. Copyright 2021, The Authors.
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perturbation theory for far-field qantities

4.1 introduction

As it was already explained, a huge number of nanophotonic sensing schemes
are based around the idea of detecting the presence of an analyte medium
via the changes that it can induce in the eigenfrequencies of a nanophotonic
system. Consequently, in subsection 2.3.2 and chapter 3 a thorough theo-
retical description of the underlying interaction was provided. However, it
turns out that such eigenfrequency shifts are not the only effect that can be
relevant in nanophotonic sensing.

The reason is that typical experimental sensing approaches rely on probing
the resonator’s far-field response [cf. Fig. 1.1]. Let us have a look at a simple
example, which is shown in Fig. 4.1. As indicated in panel (a), the starting
point is a nanophotonic resonator, to which the analyte medium is added.
In the depicted example, the resonator consists of an array of plasmonic rod
antennas, and the analyte medium is added via cubic patches at the end of
the antennas. Panel (b) displays the resulting far-field response. Depicted is
the transmittance (T) of the array, without (gray) and with (red) the analyte
medium, as a function of energy. To highlight the change, we also plot the
difference (𝛥T) of the two curves. Comparing the two transmittance curves,
one finds that in the above example, the most obvious change is a shift of the
transmittance dip to higher photon energies. This effect can bewell described
with the eigenfrequency-perturbation theories from subsection 2.3.2 and
chapter 3. However, a closer look reveals that there is an additional difference:
The depth of the dip changes. This change cannot be described within
the above-mentioned eigenfrequency-perturbation theory. Moreover, the
eigenfrequency-perturbation theory cannot predict the lineshape of the
curves and the absolute transmittance values. There exist, however, many
sensing schemes where this information becomes relevant: For example,
instead of recording a spectrum, in some applications it is enough to take a
light source with a fixed photon energy and track the absolute transmittance
change at this energy.

The above considerations clearly show that in addition to the eigenfrequency-
perturbation theory, it is highly useful to have a more general theory that
allows one to describe the impact of material changes on the resonator’s far-
field response. In the following, we will derive such a theory. The derivation
is closely related to the derivation of the symmetric representation for
the resonant-state expansion of the optical scattering matrix that we have
provided in subsection 2.2.7.
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(a)

(b)

analyte mediumnanoresonator

∆
T

T

Energy

Figure 4.1. Typical principle of nanophotonic substance sensing via probing a
resonator’s far-field response. (a) The starting point is a nanophotonic resonator,
which is brought in contact with the analyte medium. In this example, the resonator
consists of an array of plasmonic rod antennas, and the analyte medium is added
in cubic patches at the ends of the antennas. (b) The optical far-field response of
the resonator (as an example, we take the transmittance T) is measured without
(gray) and with the analyte medium (red). The change in the response (in our case,
the transmittance change 𝛥T) contains information about the analyte medium.

4.2 theory

To start our derivation, we recall from subsection 2.2.5 that the total field Ftot
in the unperturbed resonator satisfies the relation

M̂(r;𝜔)Ftot (𝜔) = 0. (4.1)

Here, M̂(r;𝜔) = 𝜔/𝑐P̂(r;𝜔) − D̂ is theMaxwell operator of the unperturbed
resonator, which contains the unperturbed material distribution P̂(r;𝜔).
Furthermore, we recall that the total field can be split into a background
field and a scattered field: Ftot = FBG + Fscat.

As before in several other parts of this thesis, we introduce a perturbation 𝛿P̂

that alters the material distribution from P̂ to P̂ + 𝛿P̂. A visualization is
provided in Fig. 4.2.Wemake the same assumptions as in subsection 2.3.2 and
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Perturbed

�δ
^

Unperturbed

Figure 4.2. Visualization of the perturbation. The left-hand side denotes the
unperturbed system, associated with a material distribution P̂, while the right-hand
side denotes the perturbed system, associated with a material disribution P̂ + 𝛿P̂.

in chapter 3: The perturbation is small, such that one can later apply a first-
order approximation. In contrast to chapter 3, we restrict our considerations,
however, again to a perturbation that is localized inside or in the vicinity
of the resonator. As in chapter 3, we furthermore introduce a perturbation
parameter 𝛬 that allows us to switch the perturbation on (𝛬 = 1) and off
(𝛬 = 0). Consequently, the material distribution becomes P̂ + 𝛬𝛿P̂.

Let F
pert
tot now denote the total field in the perturbed resonator. It obeys[

M̂(r;𝜔) + 𝛬
𝜔

𝑐
𝛿P̂(r;𝜔)

]
F
pert
tot (𝜔) = 0. (4.2)

We write F
pert
tot as a perturbation series in 𝛬 and note that only the scattered

field is affected by the perturbation, while the background field remains
unaffected since the background material distribution P̂BG does not change.
This yields:

F
pert
tot = FBG + Fscat + 𝛬F

(1)
scat + 𝛬2F(2)

scat + . . . , (4.3)

where FBG and Fscat denote the unperturbed background and scattered field,
respectively, and F

(1)
scat, F

(2)
scat, . . . are correction terms. Inserting Eq. (4.3) into

Eq. (4.2) and comparing the coefficients for every power of 𝛬 provides:

M̂Fscat = −M̂FBG (4.4)

M̂F
(1)
scat = −𝜔

𝑐
𝛿P̂FBG − 𝜔

𝑐
𝛿P̂Fscat (4.5)

. . .

This set of equations implicitly describes the scattered field and all its cor-
rection terms. The first equation defines the unperturbed scattered field
Fscat and translates into the already known Eq. (2.47). The second equation
defines the first-order correction term F

(1)
scat. We can solve it with the help of
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the Green’s dyadic of the unperturbed system, which is given in Eq. (2.26).
This yields:

F
(1)
scat (𝜔) = −

∑︁
𝑛

F𝑛

𝜔
∫
𝑑𝑉F

‡
𝑛 · 𝛿P̂(𝜔)FBG (𝜔)
𝜔 −𝜔𝑛

−
∑︁
𝑛

F𝑛

𝜔
∫
𝑑𝑉F

‡
𝑛 · 𝛿P̂(𝜔)Fscat (𝜔)
𝜔 −𝜔𝑛

. (4.6)

Note that for the brevity of notations, the argument r in the fields and in
the perturbation operator was suppressed. Successively applying the above
method would allow for deriving expressions for all higher-order correction
terms F

(2)
scat, . . . ; however, since the perturbation is assumed to be small, we

only need to consider the first correction order. Consequently, we can write
F
pert
tot ≈FBG+Fscat+F

(1)
scat.

Let us now evaluate the scattering matrix of the perturbed system. Simi-
lar as it was done for the evaluation of the unperturbed scattering matrix
[cf. Eqs.(2.67) and (2.68)], we suppose that the system gets excited via the ba-
sis function IN (𝜔). This results in the total field F

pert
tot,N≈FBG,N+Fscat+F

(1)
scat,N.

Here, the subscriptN is used to indicate where the excitation is coming from.
The scattering matrix of the perturbed system is then obtained by projecting
this total field F

pert
tot,N onto the probe function I

‡
M (𝜔) via Eq. (2.65). This gives

𝑆
pert
MN (𝜔) = 𝑆MN (𝜔) + 𝛿𝑆MN (𝜔), (4.7)

where 𝑆MN denotes the scattering matrix of the unperturbed system, and
𝛿𝑆MN describes the perturbation-induced change, which reads as

𝛿𝑆MN (𝜔) = 𝑖

∮
𝜕𝑉

𝑑S·
[
E‡

I,M (𝜔)×H(1)
scat,N (𝜔) −E

(1)
scat,N (𝜔)×H

‡
I,M (𝜔)

]
. (4.8)

To evaluate 𝛿𝑆MN, we apply a similar procedure as we have applied to 𝑆scatMN
from Eq. (2.70) to derive the symmetric representation of the unperturbed
scattering matrix in Eq. (2.76). There are three steps: The first one consists
in replacing the probe function I

‡
M by the background field F

‡
BG,M that it

would create when being launched into the resonator. This step is analogous
to the conversion from Eq. (2.70) to Eq. (2.74). One can easily verify that the
replacement is possible by noting that on the integration surface 𝜕𝑉 , the field
F

(1)
scat,N must be some superposition of outgoing basis function and by using

83



perturbation theory for far-field qantities

the same arguments that where used to obtain Eq. (2.74). The replacement
gives

𝛿𝑆MN (𝜔) = 𝑖

∮
𝜕𝑉

𝑑S·
[
E‡BG,M (𝜔)×H(1)

scat,N (𝜔) −E
(1)
scat,N (𝜔)×H

‡
BG,M (𝜔)

]
. (4.9)

The second step is similar to the conversion from Eq.(2.74) to Eq. (2.75).
We use Eq. (2.20) to convert the surface integral into two volume integrals
containing the operator D̂. Then, we insert D̂ = 𝜔/𝑐 P̂‡ − M̂‡ into the
first volume integral and D̂ = 𝜔/𝑐 P̂ − M̂ into the second one, replace
M̂‡ = M̂

‡
BG +𝜔/𝑐𝛥P̂‡, use Eqs. (2.46) and (4.5) (the former in its transposed

version) as well as the identities P̂‡ = P̂T, 𝛥P̂‡ = 𝛥P̂T, and 𝛿P̂‡ = 𝛿P̂T to
switch the order of the quantities under the integrals. Consequently, we get

𝛿𝑆MN (𝜔) = −𝜔
𝑐

∫
𝑑𝑉F

‡
BG,M (𝜔) · 𝛿P̂(𝜔)FBG,N (𝜔)

−𝜔
𝑐

∫
𝑑𝑉F

‡
BG,M (𝜔) · 𝛿P̂(𝜔)Fscat,N (𝜔)

−𝜔
𝑐

∫
𝑑𝑉F

‡
BG,M (𝜔) · 𝛥P̂(𝜔)F(1)

scat,N (𝜔). (4.10)

As the third step, we insert the expansions of Fscat and F
(1)
scat from Eqs. (2.54)

and (4.6), respectively, and utilize the definitions of 𝑎 (𝑛)M and 𝑏
(𝑛)
N from

Eqs. (2.78) and (2.73), respectively. Consequently, we obtain the change
of the scattering matrix as

𝛿𝑆MN = 𝛿𝑆nrMN + 𝛿𝑆exMN + 𝛿𝑆emMN + 𝛿𝑆shiftMN + 𝛿𝑆crossMN , (4.11)

which contains the following five contributions:

𝛿𝑆nrMN (𝜔) = −𝜔
𝑐

∫
𝑑𝑉F

‡
BG,M (𝜔) · 𝛿P̂(𝜔)FBG,N (𝜔) (4.12)

𝛿𝑆exMN (𝜔) = 𝜔
∑︁
𝑛

𝑎
(𝑛)
M (𝜔)

∫
𝑑𝑉F

‡
𝑛 · 𝛿P̂(𝜔)FBG,N (𝜔)
𝜔 −𝜔𝑛

(4.13)

𝛿𝑆emMN (𝜔) = 𝜔
∑︁
𝑛

𝑏
(𝑛)
N (𝜔)

∫
𝑑𝑉F

‡
BG,M (𝜔) · 𝛿P̂(𝜔)F𝑛

𝜔 −𝜔𝑛

(4.14)

𝛿𝑆shiftMN (𝜔) = −𝜔𝑐
∑︁
𝑛

𝑎
(𝑛)
M (𝜔)𝑏 (𝑛)

N (𝜔)
∫
𝑑𝑉F

‡
𝑛 · 𝛿P̂(𝜔)F𝑛

(𝜔 −𝜔𝑛)2
(4.15)
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𝛿𝑆crossMN (𝜔) = −𝜔𝑐
∑︁
𝑛≠𝑚

𝑎
(𝑛)
M (𝜔)𝑏 (𝑚)

N (𝜔)
∫
𝑑𝑉F

‡
𝑛 · 𝛿P̂(𝜔)F𝑚

(𝜔 −𝜔𝑛) (𝜔 −𝜔𝑚)
. (4.16)

Equations (4.11) to (4.16) are the main result of this chapter. They allow us to
predict the change of the scattering matrix via simple overlap integrals over
the unperturbed fields. Each of the five contributions describes the effect of a
different perturbation-induced process onto the scattering matrix. The first
one, 𝛿𝑆nrMN, contains an overlap integral between the incoming and outgoing
background fields and can be interpreted as a nonresonant interaction. The
second and third one, 𝛿𝑆exMN and 𝛿𝑆emMN, respectively, encompass overlap
integrals between the background fields and the resonant states and denote
changes in the excitation and emission efficiencies, respectively. The fourth
one, 𝛿𝑆shiftMN , contains overlap integrals of the resonant states with themselves,
which can be associated with the eigenfrequency shift given by Eq. (2.97).
The fifth one, 𝛿𝑆crossMN , involves overlap integrals between different resonant
states and can be interpreted as perturbation-induced crosstalk.

resonant
state n

resonant
state m

Nonresonant
interaction

Change in
excitation + emission Shift Crosstalk

+ +++

Total

Figure 4.3. Visualization of the five contributions that constitute the perturbation-
induced change of the scattering matrix: Nonresonant interaction, changes in
excitation and emission efficiencies of the resonant states, shifts of the resonant
states’ eigenfrequencies, and crosstalk between different resonant states. The gray
structures indicate the perturbation 𝛿P̂, as introduced in Fig. 4.2. Note that the
changes in the excitation and emission efficiencies are mathematically very similar
and are hence categorized into a common group. The same applies to the shift and
the crosstalk contribution.

A visualization of the five contributions is displayed in Fig. 4.3. The gray
structures indicate the perturbation 𝛿P̂, as introduced in Fig. 4.2. Note that
the change in the excitation and emission are mathematically very similar.
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This is why both are categorized into a common group of effects. The same
applies to the shift and the crosstalk contribution.

We will later, in subsection 4.3 as well as in chapter 5, investigate the signifi-
cance of these contributions in different sensing applications. However, from
the above equations, one can already make some general deductions: The
nonresonant interaction is independent of the resonant states and thereby
independent of any resonant near-field enhancement. Therefore, it can
be expected to be weak, as long as the volume of the perturbation is not
significantly large. Furthermore, in many resonators, the resonant states
are spectrally well separated [mathematically speaking, the difference be-
tween Re(𝜔𝑛) and Re(𝜔𝑚) of neighboring resonant states is larger than their
linewidths]. In this case, the crosstalk will be weak as well [cf. denominator
of Eq. (4.16)].

4.3 example: dielectric perturbation

Let us now apply our theory to a simple example. We choose the scenario
that is depicted in Fig. 4.1: An array of rod antennas gets perturbed by placing
patches of an analyte medium at their ends. We consider that the effect of the
analyte medium is to induce a local change of the permittivity by a value of
𝛿𝜀 = 1× 10−4. We consider gold antennas that are surrounded by water. The
geometry parameters are selected such that the system exhibits a resonance
in the near-infrared spectral range. The length of the antennas is 200 nm
and their width and height are 40 nm. They are periodically arranged in
a square lattice with a period of 600 nm. The analyte medium is placed in
cubic patches 40 × 40 × 40 nm3 at both antenna ends.

For the calculations, we use the commercially available finite-element solver
COMSOL Multiphysics.1 The calculation domain consists of a single unit
cell of the antenna array. The periodicity is accounted for by applying pe-
riodic boundary conditions in lateral directions. At the top and bottom,
the calculation domain is terminated with perfectly-matched layers. The
gold dielectric function is described by a Drude model with plasma fre-
quency 𝜔p = 1.37× 1016 rad/s and a damping constant 𝛾 = 1.22 × 1014 rad/s
(adopted from Ref. [231]), while the water is accounted for with a constant
refractive index of 1.33. To calculate the resonant state of the system, we
apply the method from Ref. [153]. For the normalization, we use the perfectly-
matched layer approach from Eq. (2.32).

1 See https://www.comsol.com.
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Figure 4.4. Fundamental resonant state of the unperturbed rod antennas. Details
on how this three-dimensional plot was created can be found in Appendix B.

Before we calculate the impact of the perturbation, let us first have a look
at the optical properties of the unperturbed system. Figure 4.4 displays
its fundamental resonant state, which is found at an energy eigenvalue of
1146.1 − 51.3 meV. Details on how this three-dimensional plot was created
can be found in Appendix B. By applying the far-field expansion approach
from subsection 2.2.7, we can predict the transmittance of the system in the
energy range around this resonant state. The result is compared with full-
wave calculations in Fig. 4.5. We define the transmittance as 𝑇 = |𝑆MbNt |2,
where the channels Nt andMb correspond to plane waves that are propagat-
ing towards the antenna array from the top and away from it to the bottom,
respectively. The waves are linearly polarized along the long antenna axes.
Note that there is no polarization conversion and diffraction, which is why
the expression for the transmittance is so simple. For the calculation of
𝑆MbNt , we have used the symmetric scattering-matrix representations from
Eq. (2.76) and included the fundamental resonant state. The influence of
higher-order resonant states was accounted for by adding a cubic fit as
background, which had been obtained from exact full-wave calculations
that were evaluated at four energy points, equidistantly distributed over the
considered spectral range. The line denotes the result of the above approxi-
mation, while the dots correspond to the full-wave calculations. Evidently,
there is an excellent agreement. Note that the transmittance curve exhibits
a Lorentzian lineshape with its minimum value located at the resonance
energy of the resonant state, which is indicated by a vertical dashed line.

Let us now investigate the impact of the perturbation. As already mentioned,
we consider an analyte medium that changes the local permittivity by a
value of 𝛿𝜀 = 1 × 10−4 [cf. illustration in Fig. 4.6(a)]. Using Eq. (4.11), we
can predict the resulting change 𝛿𝑆MN of the scattering matrix and, conse-
quently, the resulting transmittance change. Note that we define the change
in the transmittance as 𝛥𝑇 = 𝑇pert −𝑇 , where𝑇pert = |𝑆MbNt + 𝛿𝑆MbNt |2 is the
transmittance of the perturbed system and𝑇 = |𝑆MbNt |2 is the transmittance
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Figure 4.5. Optical response of the unperturbed rod antennas. Depicted is the
transmittance 𝑇 as a function of energy. The line represents the prediction of the
resonant-state theory, which was obtained by using the scattering-matrix expansion
from Eq. (2.76) for the fundamental resonant state together with a cubic background
fit, while the dots correspond to exact full-wave calculations and are plotted for
comparison. It can be seen that there is an excellent agreement.

of the unperturbed system. The total transmittance change is depicted by
the top plot in Fig. 4.6(b). The line denotes the prediction of the perturba-
tion theory [i.e., Eq. (4.11)], while the dots correspond to exact full-wave
calculations and are shown for comparison. Clearly, both agree very well.
Note that in contrast to the unperturbed scattering matrix 𝑆MN, the change
𝛿𝑆MN has been calculated by only considering the fundamental resonant
state, without relying any additional fitted background term.

The lower plots in panel (b) depict the individual contributions to the total
transmittance change. Note that we have defined the contributions 𝛥𝑇x
of the transmittance change as 𝛥𝑇x = 𝛥𝑇

��
𝛿𝑆MbNt=𝛿𝑆

x
MbNt

, where 𝛿𝑆xMbNt
with

x = {nr, ex, em, shift, cross} denotes the contributions of the scattering
matrix change. For compactness, we have summed up the change in the
excitation and emission efficiency contributions to one curve. Furthermore,
there is no crosstalk curve, since only one resonant state is considered. The
results are very clear: The contribution of the nonresonant interaction is
extremely close to zero and appears to be completely negligible. The changes
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Figure 4.6.Optical response of the rod antenna array to the perturbation. (a) As per-
turbation, we consider a permittivity change by the value 𝛿𝜀 = 1× 10−4. (b) Resulting
transmittance change 𝛥𝑇 . The top plot denotes the total signal (line: calculated
with the perturbation theory; dots: exact full-wave calculations). The individual
contributions are depicted in the plots below. It can be seen that in the above
scenario, the transmittance change is dominated by the shift contribution, while all
other contributions are virtually negligible.

in the excitation and emission efficiencies are very weak and practically
negligible as well. Basically, the whole transmittance change is associated
with the perturbation-induced eigenfrequency shift of the resonant state.
This finding fully agrees with the expectation from literature [7, 11, 13, 25, 51,
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52, 122, 123, 224] that resonance shifts are the dominating effect in resonant
nanophotonic sensing of dielectric material properties. We will later, in
chapter 5, see that for the sensing of chiral material properties, the situation
is vastly different.

4.4 conclusion

In this chapter, we have presented a first-order perturbation theory that
allows for predicting the impact of local material variations inside a resonator
onto any of its far-field quantities via evaluating simple overlap integrals
over the unperturbed electromagnetic fields. The far-field quantities were
represented via the optical scattering matrix. We have shown that the change
in this matrix is originating from exactly five different contributions: a
nonresonant interaction, changes in the excitation and emission efficiencies
of the resonant states, resonance shifts, and crosstalk between different
resonant states. To verify the applicability of the theory, we have investigated
a simple example from the field of dielectric sensing. We have found that
here – in full accordance with the literature expectation – resonance shifts
are the dominating effect that basically makes up all of the observable sensor
signal.
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5
CH IRAL SENS ING

In chapter 4, we have provided a first-order perturbation theory for the
changes of optical far-field quantities under local material variations in
open optical resonators. Here, we will apply this theory to understand the
mechanisms that occur in a very specific application: nanophotonic chiral
sensing.

This chapter is based on publication [P6]:

S. Both, M. Schäferling, F. Sterl, E. A. Muljarov, H. Giessen, and T. Weiss:
Nanophotonic chiral sensing: How does it actually work? ACS Nano 16,
2822–2832 (2022).
DOI 10.1021/acsnano.1c09796.
Reprinted/adapted with permission. Copyright 2022, American Chemical
Society.

5.1 introduction

The term “chirality” refers to objects that cannot be superimposed with
their mirror image [232]. These two so-called enantiomorphs (or, in case of
molecules, enantiomers) differ only in their handedness, which can be left
or right. What sounds like a purely mathematical concept has in fact a huge
impact, as life itself is chiral [233, 234]. The outcome of most biochemical
interactions, where chiral biomolecules shake hands, strongly depends on
the mutual handedness of the reactants. In extreme examples, the handed-
ness of a molecule makes the difference between a drug and a toxin [235,
236]. Therefore, detecting the handedness of molecules is of crucial interest
for countless applications in life science and chemistry, as well as for the
pharmaceutical industry [237].
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Conventional detection schemes rely on the fact that the interaction of
chiral media with light can differ among the two circular polarizations and
depends on the handedness of the enantiomers. Assuming a homogeneous
and isotropic medium, this interaction is governed by the chiral constitutive
equations (provided in Gaussian units, in accordance with the rest of this
thesis) [238, 239]:

D = 𝜀E − 𝑖𝜅H,
B = 𝜇H + 𝑖𝜅E.

(5.1)

Here, the permittivity 𝜀 and the permeability 𝜇 represent the “nonchiral”
properties of the medium, and the Pasteur parameter𝜅 quantifies its chirality.
Opposite handedness of the medium results in an opposite sign of 𝜅. A
nonzero real part of 𝜅 induces a difference in the phase velocities of left- and
right-handed circularly polarized light, i.e., circular birefringence, while a
nonzero imaginary part induces a difference in their absorption. Measuring
this absorption difference – denoted as the circular-dichroism (CD) signal –
is the standard method for optically characterizing the chirality of a medium.
Since chiral light-matter interactions are typically extremely weak (at opti-
cal frequencies, natural materials have 𝜅 ≪ 1), this detection can be very
challenging, especially when only tiny amounts of substances are involved.
Overcoming this limitation would be highly attractive for numerous ap-
plications. A promising approach consists in the use of nanophotonic res-
onators to boost the chiral light-matter interactions. For the sensing of
“nonchiral” material properties, this is already a well-established technique.
Applications include the ultra-sensitive detection of biomolecules [7, 9–13,
17], gases [P9],[21], and much more [23–25]. In the past decade, a lot of
work, both experimental [26–29, 240–248] and theoretical [245, 249–273],
has been carried out to utilize the benefits of this technique for the detection
of chiral substances. Different resonator designs have been investigated,
ranging from plasmonic antennas [26–28, 240–244, 253, 257] to dielectric
nanostructures [29, 264, 267, 269, 270] or combinations [265] to so-called
“helicity-preserving” cavities [268, 271–273]. Another promising route is
using structures that exhibit resonances in the ultraviolet region [246–248],
where natural molecules have particularly large 𝜅 values. Comprehensive
overviews can be found in corresponding review articles [30, 274–280].
The basic principle of nanophotonic chiral sensing is illustrated in Fig. 5.1:
The starting point is a nanophotonic resonator that can be brought into
contact with the chiral medium. The resonator itself may also be chiral (e.g.,
due to its shape), but does not have to be. As an example, we depict an
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chiral medium

(a)

(b)
∆
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D
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nanoresonator

Figure 5.1. Principle of nanophotonic chiral sensing. (a) The starting point is a
nanophotonic resonator that can be brought in contact with the chiral medium.
The example depicts an array of 𝛺-shaped plasmonic antennas, where the chiral
medium is added to their centers. (b) The circular-dichroism (CD) spectrum is
measured without (gray) and with (light blue) chiral medium. The change in the
spectrum (𝛥CD) contains information about the chirality of the medium. Due to
the enhanced light-matter interaction taking place in the resonator, the 𝛥CD signal
is typically orders of magnitude larger than the signal that would be obtained from
the chiral medium alone.

array of𝛺-shaped plasmonic nanoantennas [281–284]. The chiral medium is
assumed to be added in their centers. First, the CD spectrum of the resonator
without the chiral medium is measured (gray), to serve as a reference. Then,
the resonator is brought into contact with the chiral medium and the CD
spectrum is measured again (light blue). Note that for visualization, the
spectral changes in the plot are dramatically exaggerated. The difference
between both spectra (we denote it as 𝛥CD) contains information about the
handedness of the medium. Due to the enhanced light-matter interaction
taking place in nanophotonic resonators, the 𝛥CD signal is typically orders
of magnitude larger than the signal that would be obtained from the chiral
medium alone.

An important experimental detail in the above procedure is not to use
the plain resonator as reference, but rather the resonator covered with a
so-called racemic mixture [28, 29] (1:1 mixture of left-handed and right-
handed enantiomers, which is optically achiral) at the positions where the
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chiral medium is supposed to be placed later. This ensures that only 𝜅

varies between both measurements, while the other material parameters are
constant. Note that there also exist variations of the procedure that work
without the need to use a racemic mixture [26, 261]; however, also in these
cases, the key lies in tracing the change of an optical signal induced by the
interaction of the resonator with the chiral medium.

For the case of a single chiral molecules, the above interaction is well un-
derstood [251, 252]; however, in practice, one typically does not deal with
single chiral molecules, but with chiral media (i.e., a solution or a layer of
many molecules). In this case, describing the interaction with a resonator is
more sophisticated. The description relies on either simple approximations
or on purely numerical approaches: The intuitive method [26, 245, 254, 256,
259, 262, 263] consists in evaluating the optical chirality [250]

𝐶 = − 𝜔

8𝜋𝑐 Im (E∗ · B) , (5.2)

of the resonator’s near field (the superscript ∗ indicates the complex con-
jugate). The optical chirality allows for predicting the power 𝑃abs that is
absorbed in the chiral medium via1 𝑃abs ∝

∫
𝑉c
𝑑𝑉 Im(𝜅)𝐶 [238], where 𝑉c

represents the volume that is occupied by the medium. However, while being
very illustrative, this approach has severe limitations [29, 30, 285]: First, it
neglects any influence of the real part of 𝜅, which – although it would not
contribute to the CD of the chiral medium located outside a resonator – is
known to strongly contribute to the CD of the combined system [29, 285].
Second, it neglects the back action from the chiral medium onto the fields
of the resonator, known as induced CD [252, 279, 285, 286]. The rigorous
method [29, 244, 261, 266, 272, 285–289] consists in directly including the
chiral medium into numerical calculations via Eq. (5.1). However, while this
approach accounts for all electromagnetic effects, it provides rather limited
insights into the interaction. As an alternative to numerical calculations,
in some cases, the interaction can be described analytically via Mie the-
ory [290], or semianalytically via a simple closed-form expression [264].
The former is, however, only applicable for systems with spherical or el-
lipsoidal symmetry, while the latter only works for resonators that can be
treated as an effective medium.

Based on the theoretical framework from chapter 4, we close the existing
gap and present a theory of chiral light-matter interactions in arbitrary

1 For simplicity, we have assumed here that the chiral medium exhibits Im(𝜀) = Im(𝜇) = 0.
The expression for the absorbed power in the general case can be found in Ref. [238]
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resonators. This approach retains the rigorousness of the numerical cal-
culations, while at the same time providing a deep intuitive insight. We
show that the entire chiral light-matter interaction can be explained as a
combination of the five different contributions that have been defined in
chapter 4. We quantify the impact of these contributions in different sensor
geometries. Furthermore, we show that – contrary to common expectation
– resonance shifts are often not the dominating sources of signal changes.

5.2 theory

In chapter 4, we have presented a first-order perturbation theory that allows
us to predict changes in the far-field quantities of an optical resonator under
local material variations inside the resonator. The resonator was described
with a material operator P̂ and the material variations were incorporated
via a perturbation operator 𝛿P̂. Let us now apply this approach for the
special case of chiral sensing. We assume that we start with an unperturbed
resonator with 𝜅 = 0 and as a perturbation, a chiral medium is locally
inserted. Consequently, the perturbation operator reads as

𝛿P̂ =


−𝜅

(
0 𝐼

𝐼 0

)
inside volume 𝑉c,

0 outside.

(5.3)

Here, 𝐼 denotes 3 × 3 unit matrix, 𝑉c represents the volume in which the
chiral medium is inserted, and 𝜅 is the Pasteur parameter of the chiral
medium. The above 𝛿P̂ corresponds to the most relevant scenario, where
one transitions from a racemic mixture to a chiral medium, such that only
𝜅 varies and the “nonchiral” material parameters 𝜀 and 𝜇 stay constant. In
the following, we will focus on this scenario. Note, however, that, as shown
in chapter 4, it is straightforward to account for changes in 𝜀 and 𝜇 as well.
Furthermore, instead of considering a scalar 𝜅, it is also possible to include
bi-anisotropic contributions, originating, e.g., from molecular alignment
effects [244, 289].

As a consequence of the perturbation, the scattering matrix changes from
𝑆MN to 𝑆MN + 𝛿𝑆MN. As we have seen in chapter 4, the resulting scattering-
matrix change 𝛿𝑆MN (in first-order perturbation theory) is given by

𝛿𝑆MN = 𝛿𝑆nrMN + 𝛿𝑆exMN + 𝛿𝑆emMN + 𝛿𝑆shiftMN + 𝛿𝑆crossMN , (5.4)
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where the five contributions on the right-hand side are defined by Eqs. (4.12)
to (4.16). For convenience, let us write out the equations for the special case
of the above 𝛿P̂ in Eq. (5.3):

𝛿𝑆nrMN (𝜔) =
𝜔

𝑐

∫
𝑉c

𝑑𝑉𝑖𝜅

[
E‡BG,M (𝜔) ·HBG,N (𝜔) +H‡

BG,M (𝜔) ·EBG,N (𝜔)
]
, (5.5)

𝛿𝑆exMN (𝜔) = −𝜔
∑︁
𝑛

𝑎
(𝑛)
M (𝜔)
𝜔 −𝜔𝑛

∫
𝑉c

𝑑𝑉𝑖𝜅
[
E‡𝑛 ·HBG,N (𝜔) +H‡

𝑛 ·EBG,N (𝜔)
]
, (5.6)

𝛿𝑆emMN (𝜔) = −𝜔
∑︁
𝑛

𝑏
(𝑛)
N (𝜔)
𝜔 −𝜔𝑛

∫
𝑉c

𝑑𝑉𝑖𝜅

[
E‡BG,M (𝜔) ·H𝑛 +H‡

BG,M (𝜔) ·E𝑛
]
, (5.7)

𝛿𝑆shiftMN (𝜔) = 𝜔𝑐
∑︁
𝑛

𝑎
(𝑛)
M (𝜔)𝑏 (𝑛)

N (𝜔)
(𝜔 −𝜔𝑛)2

∫
𝑉c

𝑑𝑉𝑖𝜅

(
E‡𝑛 ·H𝑛 +H‡

𝑛 · E𝑛
)
, (5.8)

𝛿𝑆crossMN (𝜔) = 𝜔𝑐
∑︁
𝑛≠𝑚

𝑎
(𝑛)
M (𝜔)𝑏 (𝑛)

N (𝜔)
(𝜔 −𝜔𝑛) (𝜔 −𝜔𝑚)

∫
𝑉c

𝑑𝑉𝑖𝜅

(
E‡𝑛 ·H𝑚 +H‡

𝑛 · E𝑚
)
. (5.9)

This set of equations allows us to predict the response of a resonator to chiral
perturbations via simple overlap integrals of the unperturbed fields over the
region of the perturbation. As a reminder, we recall that the five contributions
𝛿𝑆nrMN, 𝛿𝑆

ex
MN, 𝛿𝑆

em
MN, 𝛿𝑆

shift
MN , 𝛿𝑆crossMN have clear physical interpretations: They

are associated with a nonresonant interaction, changes in the excitation
efficiencies of the resonant states, changes in the emission efficiencies, shifts
in the resonant states’ eigenfrequencies, and crosstalk between different
resonant states, respectively.

In the following, we will investigate the significance of these contributions
in different chiral-sensing examples. However, before we continue, let us
now have a closer look at the shift contribution. As already indicated, 𝛿𝑆shift
denotes the response of the scattering matrix to resonance shifts. As we
have seen in subsection 2.3.2, the shift of the eigenfrequency of an individual
resonant state under any kind of local material perturbations 𝛿P̂ is given
by Eq. (2.97). Plugging in the special 𝛿P̂ from above, we obtain an explicit
expression for the eigenfrequency shift under chiral perturbations:

𝛿𝜔𝑛 = 𝜔𝑛

∫
𝑉c

𝑑𝑉 𝑖𝜅

(
E‡𝑛 ·H𝑛 +H‡

𝑛 · E𝑛
)

︸                      ︷︷                      ︸
“𝛿𝜔𝑛 per volume”

. (5.10)
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For later convenience, we will refer to the term under the integral as the
“shift per volume” density. Note that as explained in subsection 2.3.2, in
general, 𝛿𝜔𝑛 is complex, with Re(𝛿𝜔𝑛) corresponding to a change in the
resonance frequency and Im(𝛿𝜔𝑛) to a change in the linewidth, respectively.

The above equation reveals an interesting connection to the optical chirality
from Eq. (5.2): Let us assume a typical chiral medium with | Re(𝜅) |≫| Im(𝜅) |,
a resonator with low losses, i.e., | Re(𝜔𝑛) |≫| Im(𝜔𝑛) |, and furthermore re-
strict the considerations to a scenario where E‡𝑛=E𝑛 and H‡

𝑛=H𝑛 . In this case,
one finds that the change of the resonance frequency Re(𝛿𝜔𝑛) is propor-
tional to the integral over Im(E𝑛 ·H𝑛). This quantity is closely related to the
optical chirality. Therefore, as a rule of thumb, one can deduce that systems
optimized for strong chiral resonant states are also sensitive for resonance
frequency changes.

5.3 results

Let us now investigate some example systems.

5.3.1 Example 1: Rod antennas.

For the first example, we again consider the rod antenna array that has been
discussed in section 4.3 in the context of dielectric sensing. This example is
selected, since it represents one of themost frequently used kind of structures
in nanophotonic sensing. The dimensions aswell as the unperturbedmaterial
parameters are the same as in section 4.3. The only difference is that instead
of a perturbation by a dielectricmedium,we now consider a perturbation by a
chiral medium, represented by a Pasteur parameter of 𝜅 = (1 + 0.01𝑖) × 10−4.
As in the dielectric example, the medium is placed in cubic patches of size
40 × 40 × 40 nm3 at the ends of the antennas, i.e., in the regions where the
strongest near fields are known to occur. A visualization is provided in
Fig. 5.2(a). The value of 𝜅 is deliberately chosen such that it exhibits a large
but still realistic magnitude [29, 291] and contains a typical ratio between
real and imaginary part [29, 286].

Figure 5.2(b) shows the spectral response of the antennas around the funda-
mental plasmonic resonant state (cf. Fig. 4.4). As a representative quantity,
we plot the 𝛥CD signal. The corresponding matrices 𝑆MN and 𝛿𝑆MN with
all their components can be found in Figs. C.1 and C.2 of Appendix C.1.
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Figure 5.2. Optical response of the plasmonic rod antennas. (a) We consider an
array of rod antennas with chiral media placed at each end as a perturbation. The
antenna dimensions as well as the unperturbed materials are the same as in the
dielectric-sensing example from section 4.3. (b) Resulting 𝛥CD spectrum. The top
plot denotes the total signal (line: approximated with our perturbation theory; dots:
exact full-wave calculations). The individual contributions are depicted below. The
system is dominated by the changes in the excitation and emission efficiencies,
while the shift contribution is exactly zero.

Details on how the 𝛥CD signal is obtained from 𝑆MN and 𝛿𝑆MN are provided
in Appendix C.2. In analogy to section 4.3, the matrices were calculated
from inserting the fundamental resonant state into Eqs. (2.76) and (5.4). To

98



5.3 results

improve the accuracy of 𝑆MN, the same cubic background fit as before was
used, to account for the influence of higher-order resonant states. The cal-
culations were again performed with COMSOL Multiphysics2 by using the
same approaches as before.

The top panel in Fig. 5.2(b) depicts the total 𝛥CD signal. The line denotes
the result of the perturbation theory, while the dots have been obtained by
exact full-wave calculations and are plotted for comparison. It should be
mentioned that the rod antennas are geometrically achiral and hence do not
produce any CD signal in the absence of the chiral medium [249]. Therefore,
the 𝛥CD signal is identical to the CD signal of the perturbed system.

Note that for the full-wave calculations, it was necessary to implement the
chiral constitutive relations in COMSOL. This has been done by following
the method described in Ref. [286].

It can be seen that there is an excellent agreement. The total 𝛥CD signal
exhibits a Lorentzian lineshape, with its highest absolute value being lo-
cated at the resonance energy of the resonant state (indicated by a vertical
dashed line). The lower panels display the different contributions. For com-
pactness, we have summed up the change in the excitation and emission
efficiency contributions to one curve. Furthermore, there is no crosstalk
curve, since only one resonant state is considered. Note that the curve for
the nonresonant interaction shows a zero crossing at exactly the resonance
energy of the resonant state. This might strike as a mistake, since 𝛿𝑆nrMN does
not contain any dependence on the resonant states [cf. Eq.(5.5)]. There is,
however, a trivial explanation: As already mentioned, we do not look at
the contributions of 𝛿𝑆MN, but at their impacts on the 𝛥CD signal. These
impacts contain an additional modulation by the unperturbed scattering
matrix 𝑆MN (for details, see derivation of 𝛥CD in Appendix C.2), and this
matrix depends on the resonant states.

The results in Fig. 5.2(b) paint a very clear picture: The system is dominated
by the change in the excitation and emission efficiencies of the resonant
state. The nonresonant interaction contribution is very small and practically
irrelevant. The shift contribution is not only small but turns out to be strictly
zero. This result is quite surprising, since resonance shifts are widely believed
to be the driving mechanism behind nanophotonic chiral sensing [26, 242,
244, 253].

In order to understand why the shift contribution is zero, it is instructive
to have a closer look at the resonant state. Its electric field can be found in

2 See https://www.comsol.com.
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Figure 5.3.Details on the resonance shift in the rod antennas. Depicted is the “shift
per volume” density of the fundamental plasmonic resonant state (cf. Fig. 4.4). From
the plot, it is obvious that inside the volume of the chiral media patches (displayed
as bluish cubes), the “shift per volume” is very weak, and furthermore, positive and
negative contributions cancel out each other. Details on how this three-dimensional
plot was created can be found in Appendix B.

Fig. 4.4 from the previous chapter. By applying Eq. (5.10), one can derive the
corresponding “shift per volume” density. The result is plotted in Fig. 5.3.
Note that for consistency with the spectra, we use units of energy (“𝛿𝐸𝑛
per volume”) instead units of frequency (“𝛿𝜔𝑛 per volume”). The shift of
the energy eigenvalue 𝛿𝐸𝑛 (=ℏ𝛿𝜔𝑛) is obtained by integrating the “shift
per volume” density over the volume of the perturbation (the chiral media
patches are displayed in Fig. 5.3 as bluish cubes). From the plot, it is obvious
that the integral vanishes: First of all, the “shift per volume” is very weak
inside the region of the patches. Second, and more importantly, positive
(red) and negative (blue) contributions are occurring symmetrically such
that they cancel out each other. It can be easily deduced from the plot that
this symmetry argument does not only apply when the chiral medium is
positioned at the ends of the antenna, but also holds for other distributions,
e.g., when the medium would completely surround the antenna.

In fact, it is straightforward to prove that any geometrically achiral sensor
will experience zero resonance shift in first-order perturbation theory. The
argument is as follows: The electric field classifies as a vector (it flips its
direction under parity inversion), while the magnetic field classifies as a
pseudovector (it does not flip its direction under parity inversion) [200].
This makes the shift 𝛿𝐸𝑛 defined by Eq. (5.10) a pseudoscalar (it does change
its sign under parity inversion). Now let us suppose that the considered
sensor is geometrically achiral. Since geometrically achiral sensors are by
definition invariant under parity inversion, one will obtain 𝛿𝐸𝑛 = −𝛿𝐸𝑛 . The
only solution is that 𝛿𝐸𝑛 = 0. Hence, geometrically achiral sensors cannot
exhibit a resonance shift within the limits of first-order perturbation theory.
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Figure 5.4. Resonance shift in the rod antenna for extremely large |𝜅 | values. We
plot the change in the energy eigenvalue of the fundamental resonant state as a
function of 𝜅 . On the x axis, 𝜅 is varied as a multiple of 𝜅0 = (1 + 0.01𝑖) × 10−4. The
lines denote the prediction of the theory [i.e, the first-order approximation from
Eq. (5.10)], while the dots represent exact full-wave calculations. We see that for
large |𝜅 | values, the first-order approximation (which predicts that the eigenvalue is
constant) breaks down and a shift appears. Note, however, that the corresponding
|𝜅 | values are extremely large (the edge of the x axis corresponds to |𝜅 | values
in the order of one) and are far beyond what is known for any natural material.
Furthermore, the shift is symmetric with respect to +𝜅 and −𝜅.

Since this statement only concerns the first perturbation order, one may
wonder if there can appear a shift in higher orders of perturbation. To
investigate this, we have calculated the eigenvalues of the rod antenna
system as a function of 𝜅 , for the case that |𝜅 | becomes extremely large. The
results are displayed in Fig. 5.4. We find that, indeed, for very large |𝜅 |, the
eigenvalues start to noticeably change, even in this achiral sensor. Thus,
there does exist a higher-order shift. However, it turns out that this higher-
order shift is useless for sensing: First, it only occurs at extremely large |𝜅 |
values, which are far beyond what is known for any natural material. Second,
and more importantly, for achiral sensors, it is always symmetric with
respect to +𝜅 and −𝜅 . To prove this, one simply needs to consider two facts:
1) Replacing +𝜅 by −𝜅 in an achiral sensor is equivalent to a parity inversion
of the perturbed Maxwell operator. 2) Energy eigenvalues must be invariant
under parity inversion. In other words: Only even orders of perturbation in 𝜅
can yield nonzero resonance shifts, but these are insensitive with respect to
the sign of 𝜅. Therefore, the higher-order shift cannot distinguish between
the two enantiomers of a chiral molecule.
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However, the above considerations suggest that it can be possible to enforce
a first-order resonance shift in the rod antennas by breaking the achiral
symmetry of the patch arrangement. An obvious choice consists in placing
the chiral medium only in regions with a uniform sign of the “shift per
volume” density [255]. To verify this, we have considered the rod antenna
with the chiral medium distributed over the positive regions (red spots in
Fig. 5.3). The results (see Figs. C.3 and C.4 of the Appendix) confirm that
this arrangement indeed provides a nonzero shift contribution. However,
interestingly, it can only be observed in the channels of 𝛿𝑆MN, but not in the
𝛥CD spectrum, since the signals from different channels cancel out each
other. Furthermore, it is quite obvious that such a three-dimensional patch
arrangement would be rather difficult to realize in practice.

5.3.2 Example 2: 𝛺 antennas

E

H E
H

+ =

Figure 5.5. Example for a geometry that promises a large resonant shift: The
textbook example for a nanostructure that supports strong resonant electric fields
is the plasmonic gap antenna (left). The textbook example for a nanostructure that
supports strong resonant magnetic fields is the split ring resonator (middle). An
easy way to combine both, is to take an upright standing split-ring resonator and
attach two rod antennas to its feet. The result (right) is a structure that looks like
the Greek letter 𝛺 . The particular arrangement of the building blocks promises
collinearity of the electric and magnetic fields within the center of the 𝛺 .

Let us now use the insights of our theory to find a system that is particularly
designed to feature a strong resonance shift. According to Eq. (5.10), there are
two requirements: On the one hand, the system needs to support a resonant
state with strong collinear electric and magnetic fields in some region of
space. On the other hand, the product between both fields should exhibit
one predominant sign. Nanophotonics provides a rich pallet of building
blocks that can be used to achieve this. In fact, many systems discussed
in the literature on chiral sensing [26, 253, 254, 257, 259, 261] are already
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optimized for strong optical chirality and – due to the connection discussed
under Eq. (5.10) – should intrinsically meet these requirements. However,
as a very intuitive example, let us consider the following: The textbook
example for a nanostructure that supports strong resonant electric fields is
the plasmonic gap antenna. The textbook example for a nanostructure that
supports strong resonant magnetic fields is the split ring resonator. An easy
way to combine both, is to take an upright standing split-ring resonator and
attach two rod antennas to its feet. A visualization is provided in Fig. 5.5.
As it can be seen, the result is a structure that looks like the Greek letter 𝛺 .
The particular arrangement of the building blocks promises collinearity of
the electric and magnetic fields within the center of the 𝛺 . Although they
have never been utilized in the context of sensing so far, such 𝛺 antennas
are known to exhibit a strong chiroptical far-field response [281–284].

We consider again a periodic array of antennas, as depicted in Fig. 5.1(a). The
materials are the same as in the rod antenna example, and the dimensions
are chosen comparably: The 𝛺s have a total length of 240 nm, a total width
of 140 nm, and a total height of 140 nm. They are wound of a quadratic
wire with a lateral extension of 40 nm. The chiral medium is assumed to be
inserted into their centers, within patches that are 40 nm in length, 60 nm
in width, and 60 nm in height. The period is 500 nm. It should, however, be
mentioned that the fabrication of such three-dimensional structures is in
general not an easy challenge (although there are approaches [283, 284, 292,
293]).

Figure 5.6(a) displays the “shift per volume” density of the energetically
lowest two excitable plasmonic resonant states. The results confirm what
was intuitively expected: There is a hotspot with high uniform values in the
center of the antenna. Note that for the given configuration, resonant state 1
exhibits a negative sign, while resonant state 2 exhibits a positive one. Let
us now assume that a patch of chiral medium is inserted into the hotspot
[for visualization, see Fig. 5.1(a)]. Figure 5.6(b) displays the resulting energy
eigenvalue shifts 𝛿𝐸𝑛 (both the real and imaginary parts) as a function of 𝜅 .
On the x axis, 𝜅 is varied as a multiple of 𝜅0 = (1 + 0.01𝑖) × 10−4. The lines
show the prediction of the perturbation theory, while the dots have been
derived from exact full-wave calculations and are depicted for comparison.
It is evident that there is an excellent agreement. As expected from the “shift
per volume” plots, the energy eigenvalues are very sensitive to 𝜅 changes.
In agreement with the sign of the “shift per volume” density in the hotspot,
resonant state 1 shows a negative slope in the Re(𝛿𝐸𝑛) plot, while resonant
state 2 exhibits a positive one.
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Figure 5.6. Resonance shift in the 𝛺 antennas. The 𝛺 antennas are expected
to have a collinear electric and magnetic field at their centers, which results in a
nonzero resonance shift. (a) “Shift per volume” of two plasmonic resonant states.
Both resonant states exhibit hotspots with high values and a uniform sign in the
center of the antenna. Details on how this three-dimensional plot was created can be
found in Appendix B. (b) Changes in the energy eigenvalues (lines: approximation
via the perturbation theory; dots: exact full-wave calculations) of the resonant
states as a function of 𝜅 for a chiral medium inserted into the center of the antenna
as shown in Fig. 5.1. The top and bottom plots of each subpanel correspond to the
change in the real and imaginary part, respectively. Note that at the edges of the
depicted |𝜅 | range, one can observe small deviations between the results predicted
by the perturbation theory and the exact calculations, resembling the slow onset of
the breakdown of the validity range of the first-order approximation.

To investigate the impact of the 𝛿𝐸𝑛 shifts, we evaluate again the spectral
response of the system. In order to improve the accuracy, we include one
further resonant state in the calculation. This resonant state is found at an
energy eigenvalue of 1750.1 − 25.4𝑖 meV and (as we will see further below)
contributes to the 𝛥CD signal via crosstalk.

As in the rod antenna example, we depict only the chiral response, while
the matrices 𝑆MN and 𝛿𝑆MN are provided in Figs. C.5 and C.6, respectively,
of the Appendix. The calculations of the matrices are analogous to the case
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Figure 5.7. CD spectrum of the unperturbed 𝛺 antennas. There are two features:
a positive positive peak at resonant state 1 and a negative one at resonant state 2.

of the rod antennas, with the only difference that three resonant states
are considered instead of one. As in the rod antenna case, the influence of
higher-order resonant state in 𝑆MN is accounted for with a cubic fit. The fit is
evaluated at four energy points, equidistantly distributed over the calculated
spectral range.

Figure 5.7 shows the CD spectrum of the unperturbed resonator. The line de-
notes the prediction of the resonant-state theory, while the dots correspond
to full-wave calculations and are shown for comparison. The spectrum con-
tains two pronounced features: a positive peak at resonant state 1 and a
negative one at resonant state 2. Note that resonant state 3 lies outside the
depicted spectral range.

Let us now investigate the response to a chiral medium. As for the rod
antennas, we take a fixed value of 𝜅 = (1 + 0.01𝑖) × 10−4 [cf. Fig. 5.8(a)] and
calculate the 𝛥CD signal. The total 𝛥CD signal is displayed in Fig. 5.8(b)
(top panel). One can again observe an excellent agreement between the
prediction of the perturbation theory (line) and exact full-wave calculations
(dots). Two distinct features can be identified: A peak at the resonance
energy of resonant state 1, and a zero crossing surrounded by large absolute
values at the resonance energy of resonant state 2. (Note that for a deeper
analysis of resonant state 3, the interested reader may find the calculation
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Figure 5.8. Optical response of the 𝛺 antennas. (a) An array of antennas with
chiral media patches in their center. (b) Resulting 𝛥CD spectrum. The top plot
denotes the total signal (line: calculated with our perturbation theory; dots: exact
full-wave calculations). The individual contributions are depicted below. As it can
be seen, in this system, the change in the excitation and emission efficiencies as
well as the shift are all relevant. Around resonant state 2, the shift is dominant.

results with the energy range extended to this resonant state in Fig. C.7 of
the Appendix.)

The lower panels depict the individual contributions, subdivided into their
modal origin. As it can be seen, in this system, the shift contribution plays an

106



5.3 results

important role for the total signal. However, in addition, also the changes in
the excitation and emission efficiencies are quite strong. One can quantify the
importance of the individual contributions for each resonant state separately:
For resonant state 1, the change in the emission efficiencies is dominating
over the shift. This combination leads to the peak shape in the𝛥CD spectrum.
For resonant state 2, the shift is dominating over the efficiency changes,
leading to the zero-crossing behavior. The contributions associated with
resonant state 3 only play a minor role. The nonresonant interaction is weak
as well.
A careful reader may have noticed that resonant states 1 and 2 show opposite
signs of the “shift per volume” density and their resonance energies are
shifted in opposite directions by the perturbation (cf. Fig. 5.6), but neverthe-
less, both provide shift contributions of the same sign to the 𝛥CD signal.
This seems to be a paradox. However, there is a simple explanation: We look
at the 𝛥CD signal, i.e., the change of the CD signal. As it is shown in Fig. 5.7,
the CD signal of the unperturbed 𝛺 has a positive peak at resonant state 1,
but a negative peak at resonant state 2 (cf. Fig. 5.7). Shifting a positive CD
peak along one specific direction on the energy axis provides a contribution
to 𝛥CD that has the opposite sign compared to shifting a negative peak
along the same direction. Since both peaks are shifted in different directions,
the sign of their contribution to 𝛥CD is the same.
To summarize the findings of the 𝛺 example: This example demonstrates
that it is indeed possible to design a sensor with large resonance shifts.
However, interestingly, even in this sensor, the relevance of the changes
in the excitation and emission efficiencies should not be underestimated.
We do not see any reason that this should be different for other structures
optimized for strong chiral near fields. Thus, while an analysis of optical
chirality can yield promising nanostructure designs for sensing applications,
all contributions must be taken into account for sensor optimization.

5.3.3 Discussions

After considering these two example systems, one might wonder which
one has the better overall performance. Therefore, we evaluated their CD
enhancement factors [286] (defined as |𝛥CD| of the system normalized to
the |CD| of the chiral patches without the antennas). The results are depicted
in Fig. 5.9. The answer might appear rather surprising: The rod antennas
exhibit a maximum value of 325 and thereby outperform the 𝛺 antennas,
which only provide a maximum value of 250. Another advantage of the rod
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antennas is that, since they are geometrically achiral, they do not provide
any CD signal in the absence of the chiral medium [249].
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Figure 5.9. Calculated CD enhancement factors. (a) Rod antennas. (b) 𝛺 antennas.
The CD enhancement factor was calculated following Ref. [286] as the ratio between
the |𝛥CD| spectrum of the chiral patches with antennas and the |CD| spectrum of
the chiral patches alone.

In accordance with a previous numerical study [286], our results suggest that
changes in the excitation and emission efficiencies (related to strong overlap
of the incident fields with the resonant states) have to be considered as a
relevant mechanism for nanophotonic chiral sensing rather than resonance
shifts (related to strong overlap between the resonant states’ electric and
magnetic fields). Furthermore, our derivations reveal that in general, stronger
near fields – regardless of with or without high optical chirality – lead to
larger signals. There is no need for designing systems such that they exhibit a
strong optical chirality with simultaneously weak electric fields, as suggested
in early works [250, 294]. The difference is that these early works focused
on optimizing a quantity known as “enantioselectivity”, which is defined
as the chiral asymmetry in the rate of excitation of two enantiomers of a
chiral molecule. However, in the majority of optical sensors, the relevant
factor that defines the signal-to-noise ratio and consequently the detection
thresholds is the absolute signal strength [P9] and not the enantioselectivity.

Concerning the detection thresholds, one should be aware that the abso-
lute values of the 𝛥CD signal reported here are quite low and roughly one
order of magnitude below the detection limit of most commercial CD spec-
trometers [249, 286]. The low 𝛥CD values stem from the small amount of
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chiral medium per unit volume of the periodic system that was used in our
examples, in order to keep them simple. Comparable systems, but with a
larger amount of chiral medium inserted, have shown to provide absolute
signal strengths well above the detection limit [28, 29]. In our case, a larger
amount of chiral medium per unit volume can be achieved by using either a
higher density of antennas or by covering the antennas completely with the
chiral medium instead of only their ends or centers, respectively.

5.4 limitations of the approach

All considerations made in this chapter are based on a first-order approx-
imation in 𝜅. Therefore, it is quite natural to ask what the limitations of
this approach are. To systematically investigate the validity range of the
theory, we have varied 𝜅 over many orders of magnitude and compared the
predicted 𝛥CD spectra to exact full-wave calculations. Negative signs were
considered as well. The results are depicted in Fig. 5.10. They reveal that
the first-order approximation is accurate over a surprisingly huge range of
values. Only when the order of |𝜅 | approaches unity, the deviations become
relevant. Such values would, however, be far beyond what is known for any
natural material.

Additionally, let us add some further remarks on the overall applicability of
our method: In systems that have a lot of resonant states within (or around)
the energy range of interest, the approach may become impractical. The
reason is that in general, all those resonant states have to be considered in
the calculation, in order to obtain accurate results. Furthermore, in periodic
systems, energies around the Rayleigh anomalies [99] are problematic, since
these anomalies also effectively act as an ensemble of resonant states [89,
229].
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Figure 5.10. Validity range of the first-order approximation. (a) Rod antennas.
(b)𝛺 antennas. The Pasteur parameter 𝜅 was varied over many orders of magnitude.
Negative signs were considered as well. As it can be seen, our approach works well
over a huge range of values. Only when the order of |𝜅 | starts to approach unity,
the deviations become clearly visible. However, such values would be far beyond
what is known for any natural material.

5.5 additional advantages

In the end, we want to point out a benefit of the perturbative approach that
was not mentioned so far and becomes relevant when calculating spectra
for different 𝜅 values: While conventional full-wave simulations have to be
repeated multiple times, the perturbative approach allows one to predict
the output over the whole range of 𝜅 values with one single calculation.
This is possible, because 𝜅 appears as a linear factor in the integrals of 𝛿𝑆MN
[see Eqs. (5.4) to (5.9)]. Therefore, one only has to evaluate the integrals
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with 𝜅 factored out and can multiply the result with any complex value
of interest, to directly obtain the desired spectra. This even works when
𝜅 is not constant, but dispersive. There are at least two applications in
sensor modeling: First, one is often interested in the sensor response to
different analyte media. Second, even for one particular chiral analyte, one
is typically interested in the response to both of its enantiomers (i.e., to
both values ±𝜅). Related to sensor modeling, there is a further benefit of the
perturbative approach: It should not be forgotten that realistic 𝜅 values are
typically extremely small. In full-wave calculations, this sets high standards
for the accuracy of the simulations, so that the relevant signals do not vanish
within numerical noise [266, 286]. The smaller the value of 𝜅 gets, the more
computationally expensive the numerical simulation becomes. In sharp
contrast, the perturbative approach can effortlessly predict spectral changes
for arbitrarily small values of 𝜅.

5.6 conclusion and outlook

In this chapter, we have presented a detailed theory of chiral light-matter
interactions in nanophotonic resonators. Our theory reveals the mechanisms
behind nanophotonic chiral sensing. There are exactly five contributions: a
nonresonant interaction, changes in the excitation and emission efficiencies
of the resonant states, resonance shifts, and crosstalk between resonant
states. We have investigated the impact of these contributions in different
sensor geometries. We have demonstrated that – contrary to common ex-
pectations – resonance shifts are often not the dominating source of the
signal. In the case of achiral sensors, they are even strictly zero. Instead, it
turns out that the changes in the excitation and emission efficiencies can be
the driving mechanism for enhancing circular dichroism spectroscopy. Be-
sides enabling deep intuitive insights for the understanding and tailoring of
nanophotonic chiral light-matter interactions, our theory also constitutes a
highly efficient computational tool, with clear advantages over conventional
approaches in terms of calculation time and efforts.

A highly appealing future application of the theory would be to employ
it for analyzing the chiral light-matter interactions in more sophisticated
resonator geometries, such as achiral dual systems [256] as well as the
“helicity-preserving” cavities from Refs. [268, 271–273].
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6
EM I T TER -NANOPART ICLE IN TERACT ION

So far in this thesis, we have focused on passive light-mater interactions in
the context of sensing. In this chapter, we will now switch to active interac-
tions, namely the interplay between light emitters and nanostructures. We
will present a detailed theoretical model of the underlying interactions and
show that they – if well understood – can be utilized as a tool to track move-
ments on the nanoscale. In particular, our model will be applied to describe
observations from experiments on DNA-based molecular nanodevices that
were carried out in a theory-experiment collaboration.

This chapter is based on publications [P1], [P2], and [P3]:

M. J. Urban, S. Both, C. Zhou, A. Kuzyk, K. Lindfors, T. Weiss, and N. Liu:
Gold nanocrystal-mediated sliding of doublet DNA origami filaments. Nature
Communications 9, 1454 (2018).
DOI 10.1038/s41467-018-03882-w.
Reprinted/adapted with permission. Copyright 2018, The Authors.

L. Xin, M. Lu, S. Both, M. Pfeiffer, M. J. Urban, C. Zhou, H. Yan, T. Weiss,
N. Liu, and K. Lindfors:Watching a single fluorophore molecule walk into a
plasmonic hotspot. ACS Photonics 6, 985-993 (2019).
DOI 10.1021/acsphotonics.8b01737.
Reprinted/adapted with permission. Copyright 2019, American Chemical
Society.

P. Zhan, M. J. Urban, S. Both, X. Duan, A. Kuzyk, T. Weiss, and N. Liu:
DNA-assembled nanoarchitectures with multiple components in regulated and
coordinated motion. Science Advances 5, eaax6023 (2019).
DOI 10.1126/sciadv.aax6023.
Reprinted/adapted with permission. Copyright 2019, The Authors.
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Note that there are further example systems from the field of DNA nanote-
choonology that were investigated in the context of this thesis, but are not
discussed in detail. They can be found in publications [P4] and [P8].

6.1 introduction

6.1.1 Emitter-nanostructure interaction

Shortly after the rise in popularity of modern nano-optics in the first decade
of the 2000s, a great interest of the scientific community started to emerge,
concerning the exploration of the interaction between quantum emitters and
optically resonant nanostructures. Successively, it has been demonstrated
that this kind of interaction can be utilized for enhancing the emission
strength of emitters [295–297], shaping their emission spectra [298], tailoring
their directionality [177], or even for experimentally realizing quantum
phenomena at room temperature [299].

While the above applications are very well-known, there exists another
application that is less popular: the utilization of the interaction between
emitter and nanostructure as a physical probe for trackingmovements on the
nanoscale. The basic principle is illustrated in Fig. 6.1. (a) A quantum emitter
is placed in the vicinity of an optically resonant nanostructure (the example
depicts a metallic nanoparticle). (b) Due to the Purcell effect (cf. 2.3.3), the
fluorescence intensity may change depending on the distance between the
emitter and the particle. Thus, by experimentally tracking the intensity,
one can obtain information about a possible movement of the emitter with
respect to the nanoparticle (as well as about the movement of the structures
to which they may be attached).

In order to exploit the above approach in practice, it is of crucial relevance
to have a thorough theoretical description of the underlying light-matter in-
teractions. This is the goal of this chapter. We will first recap from literature
the basic theory of how quantum emitters interact with resonant nanopho-
tonic structures. Then, we will discuss several refinements that allow for
accounting for specific experimental complications. The extended theory
will be applied to describe and elucidate observations from experiments on
DNA-based molecular nanodevices. We will also discuss how the theoretical
approach outlined above can be combined with a kinetic model of chemical
reaction dynamics in order to obtain insights into the dynamics of such
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nanosystems. Furthermore, we will show how one can include another effect
into the equations, known as Förster resonance energy transfer.
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Figure 6.1. Principle of nanoscale movement sensing based on emitter-
nanostructure interactions. (a) Depicted is a quantum emitter that is placed in
the vicinity of an optically resonant nanoparticle. (b) The fluorescence intensity
may change depending on the distance between the emitter and the nanoparticle.
Thus, by experimentally tracking the intensity, one can obtain information about a
possible movement of the emitter with respect to the nanoparticle (as well as about
the movement of the structures to which they may be attached).

6.1.2 DNA nanotechnology

As already mentioned, the theory that we present in the following will be
used to describe and elucidate observations in DNA-based nanomachines
and nanodevices. Therefore, before we start discussing the light-matter
interaction modeling, let us briefly introduce the concept of DNA nanotech-
nology: In a groundbreaking work from 2006, Paul Rothemund demon-
strated that DNA can be programmed such that it folds itself into arbitrary
two-dimensional nanoscale patterns via a self-assembly process [300] and
termed this technique DNA origami. In 2009, shortly after Rothemund’s
initial work, it was shown that the approach can be extended to create
structures in three dimensions [301]. Since DNA constitutes a very stable
and easy-to-handle molecule, the possibility of using it as a building block
for creating arbitrary three-dimensional nanostructures immediately started
to attract a lot of attention [302]. Particularly interesting is the possibility
of attaching other nanoobjects, such as metallic nanoparticles or quantum
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emitters, to the DNA structures. This, e.g., allows for the realization of com-
plex nanophotonic systems via this bottom-up fabrication technique [303].
Over the years, the DNA nanotechnology became more and more advanced.
Nowadays, it is possible to realize molecular machines that can perform
controllable motions and exercise specific tasks, with steadily increasing
complexity [304, 305]. Later in this chapter, we will explore the light-matter
interaction to study movements in such nanodevices.

6.2 basic theory

In the following, we will recap from literature [306] the basic theory of
how a quantum emitter interacts with a resonant nanostructure. Note that
instead of quantum emitter, we will use the term dye, since in this chapter,
we are interested in describing fluorescent dye molecules. However, it is
worth to emphasize that the presented approach is also valid for other kinds
of emitters, such as quantum dots or defect centers, as long as they can be
associated with an oscillating electric dipole moment.
First of all, a free dye is considered (i.e., a dye in the absence of any resonant
nanostructure). Its fluorescence rate 𝛾fl,0 (i.e., the number of emitted photons
per second, which is proportional to the fluorescence intensity) can be
written as

𝛾fl,0 = 𝑞0𝛾exc,0, (6.1)

where 𝑞0 denotes the so-called quantum yield and 𝛾exc,0 is the excitation rate
(i.e., the number of absorbed photons per second). Note that the subscript 0
indicates quantities that belong to the free dye.
The quantum yield of a free dye is defined as the ratio of its radiative decay
rate 𝛾r.0 and its total decay rate 𝛾tot,0. The total decay rate 𝛾tot,0 summarizes
all decay channels of the dye and can be written as 𝛾tot,0 = 𝛾r,0 +𝛾nr,0, where
𝛾nr,0 is the internal nonradiative decay rate, which accounts for nonradiative
processes inside the dyemolecule. Consequently, the quantum yield becomes

𝑞0 =
𝛾r,0

𝛾r,0 +𝛾nr,0
. (6.2)

We now assume that the dye is placed in the vicinity of some resonant nano-
structure. The interaction with the nanostructure gives rise to a modified
fluorescence rate 𝛾fl, which, in analogy to Eq. (6.1), can be expressed as

𝛾fl = 𝑞𝛾exc, (6.3)
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where 𝑞 and 𝛾exc are the modified quantum yield and modified excitation
rate, respectively.

The modified quantum yield is defined as the ratio of the radiative decay
rate 𝛾r in the presence of the nanostructure and the total decay rate 𝛾tot
in the presence of the nanostructure. Here, 𝛾tot = 𝛾r +𝛾abs +𝛾nr, where 𝛾nr
again accounts for nonradiative processes inside the dye and𝛾abs denotes the
rate of photon absorption in the nanostructure. Consequently, the modified
quantum yield reads as

𝑞 =
𝛾r

𝛾r +𝛾abs +𝛾nr
. (6.4)

Multiplying the right side with 𝛾r,0/𝛾r,0, assuming that the presence of
the nanostructure does not influence the internal decay processes (i.e.,
𝛾nr = 𝛾nr,0), and using 𝛾nr,0/𝛾r,0 = (1 − 𝑞0)/𝑞0 [this follows from Eq. (6.2)]
allows us to rewrite the quantum yield as

𝑞 =

𝛾r
𝛾r,0

𝛾r
𝛾r,0

+ 𝛾abs
𝛾r,0

+ 1−𝑞0
𝑞0

. (6.5)

Dividing Eq. (6.3) by (6.1), we can express themodification of the fluorescence
rate as

𝛾fl
𝛾fl,0

=
𝑞

𝑞0

𝛾exc
𝛾exc,0

, (6.6)

where the factor 𝛾exc/𝛾exc,0 represents the modification of the excitation rate.

Equations (6.5) and (6.6) allow for formally describing how the presence of
a nanostructure modifies the fluorescence rate of a dye. Note that we can
interpret the modification of the fluorescence rate as a combination of three
different effects, which are visualized in Fig. 6.2: First, the nanostructure may
act as an antenna and influence the efficiency with which the dye is excited
by incident light. This effect is contained in the factor 𝛾exc/𝛾exc,0. Second, in
a similar way, the nanostructure may influence the efficiency with which the
dye can radiate photons to the far field. This effect is described by the factor
𝛾r/𝛾r,0. Third, the nanostructure can absorb photons, which is accounted for
via the term 𝛾abs/𝛾r,0.

Let us now have a look at the corresponding modification of the fluorescence
lifetime. In general, the fluorescence lifetime 𝜏 of a dye is given as the inverse
of its total decay rate 𝛾tot [307]. Since the total decay rate and the radiative
decay rate are connected via 𝛾r = 𝑞𝛾tot [cf. Eq. (6.4)], we can write 𝜏 = 𝑞/𝛾r
for the lifetime in the presence of the nanostructure and 𝜏0 = 𝑞0/𝛾r,0 for the
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Dye Dye Dye

Change in excitation Change in radiation Absorption

Figure 6.2. Illustration of the dye-nanostructure interaction. There are three
effects: First, the presence of the nanostructure can change the excitation rate of
the dye. Second, it can alter the efficiency with which the dye radiates photons to
the far field. Third, if the nanostructure is lossy, it can absorb photons.

intrinsic lifetime of the free dye. Using this result together with Eq. (6.5)
allows for expressing the lifetime as

𝜏 =

𝜏0
𝑞0

𝛾r
𝛾r,0

+ 𝛾abs
𝛾r,0

+ 1−𝑞0
𝑞0

. (6.7)

In summary, Eqs. (6.5), (6.6), and (6.7) allow for predicting the modification
of the fluorescence rate (which is equal to the modification of the fluores-
cence intensity) and the modification of the lifetime in the presence of a
nanostructure. The intrinsic quantum yield 𝑞0 and the intrinsic lifetime 𝜏0
that are appearing in these equations denote properties of the dye molecule,
while the factors 𝛾exc/𝛾exc,0, 𝛾r/𝛾r,0, and 𝛾abs/𝛾r,0 can be obtained from elec-
tromagnetic field calculations.

6.2.1 How to calculate the rate modifications

In the following, we will briefly discuss how the factors 𝛾exc/𝛾exc,0, 𝛾r/𝛾r,0,
and 𝛾abs/𝛾r,0 can be calculated. We will follow the basic idea from Ref. [306].
The key assumption is to associate the dye with a classical point dipole that
can be excited at a frequency 𝜔exc (determined by the experiment) and can
emit light at a frequency 𝜔em (determined by the dye). In accordance with
Ref. [306], we will assume that we remain in the so-called weak-excitation
regime (i.e., that the intensity of the excitation wave remains low enough to
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not saturate the dye molecule) and furthermore that there is no coherence
between the excitation and the emission process.

Let us start with the excitation process. One finds 𝛾exc ∝ |ed · Eexc |2 and
𝛾exc,0 ∝ |ed · Eexc,0 |2, where Eexc and Eexc,0 are the electric fields of the excita-
tion wave at frequency 𝜔exct, evaluated at the position of the dye with and
without the presence of the nanostructure, respectively, while ed represents
a unit vector in the direction of the dye’s dipole moment. Consequently, the
modification of the excitation rate becomes

𝛾exc
𝛾exc,0

=
|ed · Eexc |2
|ed · Eexc,0 |2

, (6.8)

which can be easily deduced from numerical calculations. Note that the
exact shape of the excitation wave depends on the experiment, but typically
(as it will be the case in all examples discussed in this chapter), one can
assume a simple plane wave.

Let us now have a look at the quantities 𝛾r/𝛾r,0, and 𝛾abs/𝛾r,0. They can be
obtained by considering an oscillating dipole at frequency 𝜔em and using
𝛾r/𝛾r,0 = 𝑃r/𝑃r,0 and 𝛾abs/𝛾r,0 = 𝑃abs/𝑃r,0, where 𝑃r is the power that is
radiated to the far field when the nanostructure is present, 𝑃abs is the power
that is absorbed in the nanostructure, and 𝑃r,0 is the power that the same
dipole would radiate in the absence of the nanostructure. Following the
approach in Ref. [308], the above powers can be deduced straightforwardly
from full numerical calculations.

As an alternative to full numerical calculations, the quantities 𝛾r/𝛾r,0, and
𝛾abs/𝛾r,0 can also be calculated via the resonant-state approach. The key is
to realize that the quantities 𝛾r/𝛾r,0, and 𝛾abs/𝛾r,0 are closely related to the
Purcell factor form subsection 2.3.3: The terms 𝛾r +𝛾abs and 𝛾r,0 represent the
spontaneous emission rates of the dipole with andwithout the nanostructure,
respectively. Therefore, one can associate themwith𝛾 and𝛾0 from Eq. (2.103)
via 𝛾r +𝛾abs = 𝛾 and 𝛾r,0 = 𝑛𝛾0, where 𝑛 is the refractive index in which the
dipole is embedded.1 This allows for relating 𝛾r/𝛾r,0 +𝛾abs/𝛾r,0 = 𝐹/𝑛, where
𝐹 is the Purcell factor, which can be directly calculated from the resonant
states via Eq. (2.101). Note, however, that for modeling the emission process
according to Eqs. (6.5) and (6.7), it is not only important to know the sum

1 One might wonder why the refractive index 𝑛 is needed here. This simply comes form
the fact that 𝛾0 represents the spontaneous emission rate in free-space vacuum, while for
convenience with the definitions that are typically used in experiments, 𝛾r,0 is taken as the
spontaneous emission rate in free space that is filled with the same medium in which the
emitter-nanostructure combination is embedded when deducing 𝛾r +𝛾abs.

119



emitter-nanoparticle interaction

𝛾r/𝛾r,0 +𝛾abs/𝛾r,0, but also, to split this sum into its two contributions 𝛾r/𝛾r,0
and 𝛾abs/𝛾r,0. This can be achieved by separately calculating 𝛾abs/𝛾r,0 via an
overlap integral over the resonant states, as shown in Ref. [36].

For the calculations that will be discussed in this chapter, we consistently use
the full-wave approach instead of the resonant-state approach. There are two
reasons: 1) The examples that we are investigating in the following include
situations where the emitters are quite far away from the nanostructure, at
distances where the resonant-states may not form a complete basis anymore.
To properly account for this (cf. subsection 2.3.3), one would either need to
include perfectly-matched-layer modes in the expansion or have to exploit a
regularization of the resonant fields, which both reduces the computational
efficiency of the resonant-state approach. 2) The examples also include
the opposite case that the emitters are extremely close to the surface of
metallic nanoparticles. In this case, there is no completeness issue; however,
in order to obtain accurate predictions, it is often necessary to consider a
large number of resonant states due to the involvement of high-𝑘 surface
plasmon polaritons [153].

6.3 refinements

In the following, we will discuss several refinements of the theory that are
relevant in order to account for experimental complications.

6.3.1 Accounting for emission spectra

So far, it was assumed that the emission process happens at a single fixed
frequency 𝜔em. However, in reality, dye molecules very often have a broad
spectrum of frequencies over which they emit. To account for this, we adopt
a method that was proposed in Ref. [298]. The idea is to evaluate the factors
𝛾abs/𝛾r,0 and 𝛾abs/𝛾r,0 that are appearing in Eqs. (6.5) and (6.7) not at a single
fixed frequency, but instead, to replace them by their spectral average:

𝛾r
𝛾r,0

=

∫
𝑑𝜔

[
𝛾r
𝛾r,0

]
(𝜔) 𝑓0 (𝜔) (6.9)

𝛾abs
𝛾r,0

=

∫
𝑑𝜔

[
𝛾abs
𝛾r,0

]
(𝜔) 𝑓0 (𝜔) (6.10)
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where 𝑓0 (𝜔) is the intrinsic emission spectrum of the free dye molecule
(which is typically determined experimentally), normalized such that∫
𝑑𝜔𝑓0 (𝜔) = 1, and [𝛾r/𝛾r,0] (𝜔) as well as [𝛾abs/𝛾r,0] (𝜔) represent the

frequency-dependent versions of the above factors. In the following, when
𝛾r/𝛾r,0 and 𝛾abs/𝛾r,0 (without frequency argument) appear, we will always
imply that their spectral average is meant, as defined above.

6.3.2 Accounting for dye rotation

In general, the rates 𝛾r, 𝛾abs, 𝛾exc, 𝛾exc,0 appearing in the above equations
depend on the orientation ed of the dye’s dipole moment. So far, it was
assumed that this orientation is fixed. However, in reality, this is often not
the case. Especially dye molecules that are attached to DNA linkers, as
they appear in the systems that will be presented later in this chapter, have
been demonstrated to exhibit the ability to freely rotate at their attachment
position [309, 310]. Therefore, we will now show how to account for dye
rotation in the equations.

To start, let us consider an arbitrary quantity 𝛤 that depends on the orien-
tation of the dye’s dipole moment, i.e, 𝛤 = 𝛤 (ed). Writing ed in spherical
coordinates, i.e., ed (𝜃 ,𝜑) = [cos(𝜑) sin(𝜃 ), sin(𝜑) sin(𝜃 ), cos(𝜑)]T, and as-
suming a uniform probability distribution in all spatial directions, we can
calculate an orientation average ⟨𝛤 (ed)⟩ of 𝛤 (ed) as

⟨𝛤 (ed)⟩ =
1
4𝜋

2𝜋∫
0

𝑑𝜑

𝜋∫
0

𝛤 (ed) sin𝜃𝑑𝜃 . (6.11)

This equation will be used as the starting point to incorporate dye rotation
in the model. We will distinguish two cases: fast rotation and slow rotation.

6.3.2.1 Fast rotation

By fast rotation, we mean that the rotation takes place on a timescale that
is much faster than the excited state lifetime of the dye. In this case, the
emission dipole moment samples all possible spatial orientations during
the emission process and the dye can hence be considered as an effectively
isotropic emitter [311, 312]. Consequently, the quantum yield 𝑞fast and the
lifetime 𝜏fast of the fast-rotating dye are obtained by replacing 𝛾r and 𝛾abs in
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Eqs. (6.5) and (6.7) by their orientation-averaged values ⟨𝛾r⟩ and ⟨𝛾abs⟩. This
results in:

𝑞fast =

⟨𝛾r ⟩
𝛾r,0

⟨𝛾r ⟩
𝛾r,0

+ ⟨𝛾abs ⟩
𝛾r,0

+ 1−𝑞0
𝑞0

(6.12)

and

𝜏fast =

𝜏0
𝑞0

⟨𝛾r ⟩
𝛾r,0

+ ⟨𝛾abs ⟩
𝛾r,0

+ 1−𝑞0
𝑞0

. (6.13)

Note that the radiative decay rate 𝛾r,0 of the dye in the absence of the
nanostructure (and consequently, also its intrinsic quantum yield 𝑞0 and its
intrinsic lifetime 𝜏0) are independent of the dye’s orientation and therefore
independent of the rotation.

Let us now tackle the excitation process. In a similar spirit as for the emission
process, we assume that the dipole moment of the dye is able to scramble
all spatial directions during the time it takes to absorb a photon. Therefore,
the excitation rates 𝛾exc and 𝛾exc,0 have to be replaced by their orientation-
averaged values ⟨𝛾exc⟩ and ⟨𝛾exc,0⟩, respectively. Note that in contrast to the
radiative decay rate 𝛾r,0 of the dye without nanostructure, the excitation
rate 𝛾exc,0 without nanostructure is not independent of the dye orientation.

Altogether, the fluorescence rates of the fast-rotating dye with and without
the nanostructure are given as 𝛾fl,fast = 𝑞fast⟨𝛾exc⟩ and 𝛾fl,fast,0 = 𝑞0⟨𝛾exc,0⟩,
respectively. Dividing these equations by each other provides the corre-
sponding fluorescence rate modification:

𝛾fl,fast
𝛾fl,fast,0

=
𝑞fast
𝑞0

⟨𝛾exc⟩
⟨𝛾exc,0⟩

. (6.14)

The factor ⟨𝛾exc⟩/⟨𝛾exc,0⟩ can be deduced by using ⟨𝛾exc⟩ ∝ ⟨|ed · Eexc |2⟩ and
⟨𝛾exc,0⟩ ∝ ⟨|ed · Eexc,0 |2⟩ and applying Eq. (6.11). This gives

⟨𝛾exc⟩
⟨𝛾exc,0⟩

=
|Eexc |2
|Eexc,0 |2

. (6.15)

As already emphasized, the above equations have been derived for the
case that the dye is rotating on a timescale that is larger than its excited
state lifetime. It should already be mentioned here that this case resembles
the situation that – at least approximately – applies in the systems that
will be investigated in this chapter (cf. experimentally observed rotational
correlation times of dyes that are attached to DNA linkers in Ref. [309]).

122



6.3 refinements

Nevertheless, for reasons of completeness, we will also discuss the opposite
case.

6.3.2.2 Slow rotation

Let us now discuss the case of slow rotation. In particular, we assume that
the dye is rotating on a timescale that is much smaller than its excited state
lifetime, but still faster than the integration time of the detector. Then, the
(time-averaged) fluorescence rates can then be calculated by averaging over
an ensemble of fixed dipoles that are equally distributed over all orientations.
Consequently, the (time-averaged) fluorescence rates with and without
nanostructure read as ⟨𝛾fl⟩ = ⟨𝑞(ed)𝛾exc (ed)⟩ and ⟨𝛾fl,0⟩ = ⟨𝑞0𝛾exc,0 (ed)⟩,
respectively, where ⟨. . . ⟩ denotes the orientation average as defined in
Eq. (6.11) and 𝑞(ed) is the orientation-dependent quantum yield:

𝑞(ed) =
𝛾r (ed)
𝛾r,0

𝛾r (ed)
𝛾r,0

+ 𝛾abs (ed)
𝛾r,0

+ 1−𝑞0
𝑞0

. (6.16)

Dividing ⟨𝛾fl⟩ by ⟨𝛾fl,0⟩, using 𝛾exc (ed) ∝ |ed · Eexc |2 as well as
𝛾exc,0 (ed) ∝ |ed · Eexc,0 |2, and applying Eq. (6.11), we can express the
modification of the fluorescence rate for the slowly-rotating dye as

⟨𝛾fl⟩
⟨𝛾fl,0⟩

=
3⟨𝑞(ed) |ed · Eexc |2⟩

𝑞0 |Eexc,0 |2
. (6.17)

It should, however, be mentioned that a similar approach for defining the
lifetime of the slowly-rotating dye is not possible, due to the simple fact that
in the ensemble case, every dipole orientation has its own lifetime and there
is no unambiguously defined and physically meaningful average lifetime.

6.3.3 Speeding up calculations of orientation dependence

In section 6.3, we have revealed how the rotation of the dye molecules can
be accounted for in the theoretical description. It was explained that in order
to model the emission process of a fast-rotating dye, it is necessary to know
the orientation-averaged rates ⟨𝛾r⟩ and ⟨𝛾abs⟩. Furthermore, it was revealed
that for modeling the emission process of a slowly-rotating dye, it is crucial
to know the full orientation dependence of 𝛾r (ed) and 𝛾abs (ed).
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In general, both the orientation dependence as well as the orientation av-
erage can be deduced from simply numerically calculating the above rates
for a number of different dipole orientations. However, this brute-force
ansatz can become quite inefficient from a computational point of view,
since without further insight, one has to perform the calculation for a large
number of different dipole orientations. Therefore, in the following, we
will discuss how some additional analytical insight can be used to keep the
number of computations to a minimum. The approach is based on Ref. [313].
In this work, it is shown that the knowledge of 𝛾r and 𝛾abs for three orthog-
onal dipole orientations is sufficient to semi-analytically express their full
orientation dependence. This orientation dependence reads as2

𝛾r (ed) = 𝛾xr 𝑐x (ed) +𝛾
y
r 𝑐y (ed) +𝛾 zr𝑐z (ed), (6.18)

𝛾abs (ed) = 𝛾xabs𝑐x (ed) +𝛾
y
abs𝑐y (ed) +𝛾

z
abs𝑐z (ed), (6.19)

where 𝛾xr , 𝛾
y
r ,𝛾 zr , 𝛾xabs, 𝛾

y
abs, and 𝛾 zr are the respective rates for the dipole

moment pointing along the three orthogonal axes 𝑥 , 𝑦 , and 𝑧. Note that the
choice of the axes is not arbitrary, but they have to be aligned along with
the principal axes of the system (i.e, one of the three axes has to coincide
with the emitter orientation under which the rates exhibit a maximum, and
another one has to coincide with the direction under which the rates exhibit
a minimum). In simple geometries, one can deduce the principal axes from
the symmetry of the system. A recipe for the general case is provided in
Ref. [313]. The coefficients 𝑐x, 𝑐y, and 𝑐z in the above equations are given as:

𝑐x (ed) = |ex · ed |2 = cos2 (𝜑) sin2 (𝜃 ), (6.20)
𝑐y (ed) = |ey · ed |2 = sin2 (𝜑) sin2 (𝜃 ), (6.21)
𝑐z (ed) = |ez · ed |2 = cos2 (𝜃 ), (6.22)

where ex, ey, and ez represent unit vectors along the 𝑥 , 𝑦 , and 𝑧 axis, respec-
tively, and ed is again assumed to be provided in spherical coordinates, i.e.,
ed (𝜃 ,𝜑) = [cos(𝜑) sin(𝜃 ), sin(𝜑) sin(𝜃 ), cos(𝜑)]T.

2 Strictly speaking, the relation is only proven for the total spontaneous decay rate, i.e, for
the sum 𝛾r +𝛾abs, and not for the two terms separately. However, the authors of Ref. [313]
state that there is no reason to expect that the relation should not hold for both rates 𝛾r and
𝛾abs individually, and furthermore, they have numerically verified this in all their example
systems. In all example systems where we have used the above relations, we have confirmed
this as well.
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For the slowly-rotating dye, one can plug Eqs. (6.18) and (6.19) into Eqs. (6.16)
and (6.17), and evaluate the remaining integral numerically. For the fast-
rotating dye, one needs the orientation-averaged values ⟨𝛾r⟩ and ⟨𝛾abs⟩.
Exploiting the above orientation dependence, they become [313]

⟨𝛾r⟩ =
1
3
(
𝛾xr +𝛾

y
r +𝛾 zr

)
, (6.23)

⟨𝛾abs⟩ =
1
3
(
𝛾xabs +𝛾

y
abs +𝛾

z
abs

)
. (6.24)

As a side note, it should be mentioned that, if one is only interested in the
average values and not in the full orientation dependence, it is actually not
necessary to choose 𝑥 , 𝑦 , and 𝑧 as the principal axes of the system. In this
particular case, any set of three orthogonal axes can be selected.

6.3.4 Accounting for random structure orientation

So far, it has been assumed that the dye-nanoparticle complex exhibits a
fixed orientation with respect to the excitation wave. However, in many
experimental situations, this is not the case. Very often, one is dealing with
an ensemble of randomly oriented dye-nanoparticle complexes (this scenario
occurs, for instance, when the DNA structures are dissolved in a solution).

The random orientation can be accounted for in the following way: Let
𝝆inc = {𝜃 inc,𝜑inc,𝛼inc} denote a set of angles that characterize the orientation
of the dye-nanoparticle complex with respect to the incident excitation
wave (𝜃 inc: elevation, 𝜑inc: azimuth, 𝛼inc: tilt). Then, assuming a uniform
distribution, we can define an ensemble average over any 𝝆-dependent
quantity 𝛤 (𝝆inc) as

〈
𝛤 (𝝆inc)

〉
inc =

1
8𝜋2

2𝜋∫
0

𝑑𝛼inc

2𝜋∫
0

𝑑𝜑inc

𝜋∫
0

𝛤 (𝝆inc) sin𝜃 inc𝑑𝜃 inc. (6.25)

With this definition, we can formally write the fluorescence rate of an ensem-
ble of randomly oriented dye-nanoparticle complexes under the fast-rotating
dye assumption as

〈
𝛾fl,fast (𝝆inc)

〉
inc = 𝑞fast

〈
⟨𝛾exc (𝝆inc)⟩

〉
inc (note that 𝑞fast is

independent of 𝝆inc), with
〈
⟨𝛾exc (𝝆inc)⟩

〉
inc ∝

〈
⟨|ed · Eexc (𝝆inc) |2⟩

〉
inc. Here,

Eexc (𝝆inc) denotes the electric field of the excitation wave at the position of
the dye as a function of the orientation 𝝆inc of the dye-nanoparticle com-
plex. Dividing the above fluorescence rate by the fluorescence rate of the
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fast-rotating dye without nanoparticle (which is independent of 𝝆inc), allow
us to express the modification of the fluorescence rate as〈

𝛾fl,fast
〉
inc

𝛾fl,fast,0
=
𝑞fast
𝑞0

〈
⟨𝛾exc⟩

〉
inc

⟨𝛾exc,0⟩
, (6.26)

with
〈
⟨𝛾exc⟩

〉
inc/⟨𝛾exc,0⟩ =

〈
|Eexc (𝝆inc) |2

〉
inc/|Eexc,0 |

2.

Similar considerations for the slow-rotating dye provide the corresponding
fluorescence modification as〈

⟨𝛾fl⟩
〉
inc

⟨𝛾fl,0⟩
=

〈
3⟨𝑞(ed) |ed (ed) · Eexc (𝝆inc) |2⟩

〉
inc

𝑞0 |Eexc,0 |2
. (6.27)

Note, however, that this equation is not used anywhere within this thesis,
and only provided for the sake of completeness.

In order to calculate the modification of the fluorescence rate according to
Eq. (6.26), it is necessary to evaluate the ensemble average

〈
|Eexc (𝝆inc) |2

〉
inc.

One might expect that this evaluation needs many computations steps due
to the three degrees of freedom that are contained within 𝝆inc. However, it
turns out that the evaluation is actually extremely simple in most practical
cases. The reason is that in most cases, the involved nanoparticles are highly
symmetric. In particular, all nanoparticles that will be discussed in this
chapter exhibit either spherically or cylindrical symmetry. The symmetry
can be used to drastically reduce the degrees of freedom that need to be
considered when calculating the above ensemble average. For instance, in
the case of a spherical particle, one can deduce the value of

〈
|Eexc (𝝆inc) |2

〉
inc

by performing one single numerical simulation to obtain the electric near
field that the excitation wave generates around the nanoparticle and then
spatially averaging the magnitude of the near field over a spherical surface
with a fixed radius around the particle.

6.4 examples

In the context of this thesis, the theory from the previous section was applied
to describe and understand the light-matter interaction in a large number of
different experimentally-realized DNA nanosystems (cf. publications [P2],
[P3], [P4], and [P8]). In the following, we will present two selected examples.
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6.4.1 Watching a dye molecule walk into a plasmonic hotspot

As the first example, we investigate the situation that a dye molecule dy-
namically moves into a plasmonic hotspot. The example is based on publi-
cation [P2].

The system that will be discussed is depicted in Fig. 6.3(a). It contains two
spherical gold nanoparticles (diameter: 60 nm) that are attached to a template
of DNA bundles (gray). It is known for such kinds of nanoparticle-dimer
configurations that in the gap between the two nanoparticles, there exists
a hotspot, in which strong light-matter interactions can occur. On top of
the DNA template is a track made out of DNA strands, along which a dye
molecule (red sphere) can autonomously walk from outside the gap to the
hotspot in the center. This walking process can be initiated by a chemical
trigger. Panel (b) shows a transmission-electron microscopy image of fab-
ricated structures. The inset contains the enlarged view of one exemplary
structure (scale bar: 50 nm).

(a)(a) (b)

Figure 6.3.Dynamic DNAnanodevice. (a) Sketch of the system. The device consists
of two gold nanoparticles (diameter: 60 nm) that are connected by a platform made
out of DNA bundles (gray). On top of this platform is a track along which a single
dye molecule (red sphere) can autonomously walk from the outside to the center
of the gap between the two nanoparticles. The walking process can be initiated
by a chemical trigger. (b) Transmission-electron microscopy image of assembled
structures. The inset shows the enlarged view of one exemplary structure (scale
bar: 50 nm).

Figure 6.4(a) depicts the top view of the structure, with a schematic illustra-
tion of the track (black line). Let us now use the theory from the previous
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section to investigate what happens when the dye molecule walks along
this track.

The calculations in the following are based on finite-element simulations,
performed with COMSOL Multiphysics.3 The gold nanoparticles were mod-
eled as spheres of diameter 60 nm with a gap of 21 nm. Note that, although
the fabricated target gap size of the device is 15 nm, it can be estimated from
the DNA design, considering the softness of the structure, that the actual
gap lies between 15 nm and 21 nm. It was found that the simulation results
for 21 nm better explain the experimental observations, so this value was
chosen. One should be aware that, in the transmission-electron microscopy
images from Fig 6.3, the gap is distorted due to drying of the structure,
which makes it impossible to determine the exact value. In the calculations,
the gold dielectric function was described according to Ref. [314]. As in the
experiment, the surrounding mediumwas considered to be water (accounted
for via its refractive index of 1.332).

Figure 6.4(b) displays the calculated field distribution of the excitation wave
at a wavelength of 635 nm in the vicinity of the structure. In accordance with
the experimental situation, it was assumed that the system is illuminated
with a plane wave that is circularly polarized within the depicted plane and
propagating along the out-of-plane direction. The simulations confirm that
there is a hotspot with a strong field enhancement inside the gap.

In the experiment, the dye Atto 647N was used. To account for this dye in
the calculations, its intrinsic quantum yield, intrinsic lifetime and intrinsic
emission spectrum were needed. The intrinsic quantum yield 𝑞0 = 0.65 was
taken from the specifications provided by the supplier4, while the intrinsic
lifetime 𝜏0 = 4.09 ns and the intrinsic emission spectrum were determined
from reference measurements. It is known from literature that Atto 647N
attached to similar DNA linkers as the ones that are used in our system
exhibits a rotational correlation time of 0.8 ns [309]. Therefore, the situation
can – at least approximately – described via the fast-rotating dye approach
that was presented in the previous section (a more detailed discussion will
be provided at the end of the section).

The top plot in panel (c) depicts the calculated fluorescence lifetimes at
different positions along the track. The blue curves denote the results for
fixed dipole orientations [the orientations with respect to the nanoparticle
dimer from panel (a) are indicated next to the curves], which were obtained

3 See https://www.comsol.com.
4 Available under http://www.atto-tec.com.
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Figure 6.4. Light-matter interaction in the nanodevice. (a) Top view of the struc-
ture, with the walking track indicated by a black line. (b) Calculated near-field
enhancement of the excitation wave at 635 nm. The wave is propagating in the out-
of-plane direction and circularly polarized within the depicted plane. (c) Calculated
lifetime and relative intensity as a function of the dye position. The blue curves
denote the result for fixed dipole orientations, while the black curve represents the
orientation average, calculated under the assumption of a fast rotating dye. The
arrows and the dots specify the orientation of the dipole moment with respect to
the structure in panel (a) (arrows: in-plane directions, dots: out-of-plane direction).
In the top plot, the lifetime of the free dye without nanoparticles is indicated by a
gray dashed line. (d) Experimentally tracked lifetimes and intensities as a function
of the walking time. Each curve represents one single device. The squares denote
actual measurement values, while the connectors in between have been inserted to
serve as a guide for the eye.

via Eq. (6.7). The black curve represents the orientation average, calculated
via Eq. (6.13). For reference, the intrinsic lifetime of the free dye is indicated
by a gray dashed line. According to the calculations, the lifetime drastically

129



emitter-nanoparticle interaction

decreases when the dye approaches the hotspot. This can be explained by
an increase of the spontaneous decay rate 𝛾r +𝛾abs, attributed to the strong
light-matter interaction between the dye and the nanoparticles taking place
within the gap.

The bottom plot shows the calculation results for fluorescence intensity of
the dye, normalized to the value at the start of the track (which is located
35 nm away from the hotspot). The blue curves denote the result for fixed
dipole orientations, calculated via Eq. (6.6). Note that the curve for the out-
of-plane orientation is set to zero, since this orientation cannot be excited
by the incident wave. The black curve represents the orientation average,
calculated from Eq. (6.6). It can be seen that the calculations predict an
increase of the fluorescence intensity when the dye approaches the hotspot.
This increase can be mostly attributed to the increase of the excitation rate
𝛾exc, which is caused by the strong near-field enhancement of the excitation
wave [cf. panel (b)]. Note that the maximum intensity enhancement is about
a factor of nine.

Let us now compare our theoretical predictions to experimental results,
which are provided in panel (d). Depicted are the experimentally observed
lifetimes and fluorescence intensities for 24 individual dye-nanoparticle as-
semblies. Every curve represents one single device. The squares correspond
to actual measurement points, while the connector lines in between are
inserted as a guide for the eye. Note that the x axis, in contrast to the theory
plots from panel (c), represents the walking time (i.e., the time that passed
by since the walking process was initiated). At time zero, the dye is located
at the start of the track, while at the end of the timescale, it is expected that
the dye has reached the hotspot.

The lifetime measurements reveal that for most of the dyes, the fluorescence
lifetime monotonously decreases with the walking time. The average reduc-
tion in lifetime is approximately a factor of three. These findings clearly
confirm the trend that was predicted by the simulations. It is, however,
noteworthy, that the experimentally observed lifetimes are scattered over a
quite large range of values. The intensity measurements reveal a maximum
enhancement of four. It is worth to point out, however, that many devices
only show a very weak enhancement and in some cases, there is even a
decrease in intensity. We speculate that the large spread in the observed
values is due to sample imperfections resulting from missing particles, in-
homogeneous and nonspherical shapes, and defective assemblies. In these
cases, the presence of the nanoparticles might result in partial quenching of
the emission. We note that the observed changes in the fluorescence lifetime
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and intensity are very similar to what has been previously reported in static
plasmonic DNA nanodevices [315–317].
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Figure 6.5. Comparison of the calculated intensities under the fast-rotating and
the slowly-rotating dye assumption. The results for fast rotation are indicated by
the black solid line, while the results for slow rotation are represented by the red
dashed line. Remarkably, they are almost identical.

One of the core assumptions of our theoretical considerations was that the
dye can be considered as fast-rotating. This assumption is appropriate when
the rotational correlation time is much shorter than the fluorescence lifetime
of the dye. As we have already mentioned, the rotational correlation time
of Atto 647N attached to a DNA has been reported to be in the order of
0.8 ns. While this time is indeed more than a factor of five smaller than the
dye’s intrinsic lifetime 𝜏0 = 4.1 ns, the situation drastically changes when
the dye approaches the hotspot. In this case, our theoretically predicted
average lifetime is even slightly smaller than the 0.8 ns [cf. Fig. 6.4(a)].
Hence, in this case, the prerequisites of the fast-rotating dye assumption are
– at best – only fulfilled approximately. Consequently, one might wonder
if the possible error that might follow from the above assumption could
explain the relatively large discrepancy between the theoretically predicted
and the experimentally observed intensity enhancements. To investigate
this, we have performed the same calculations under the assumption of a
slowly-rotating dye [cf. Eq. (6.17)]. The comparison of both calculations is
depicted in Fig. 6.5. Remarkably, it turns out that the results for both cases
are almost identical. Therefore, we deduce that, as long as the Atto647N
molecule is able to freely rotate, our approach of assuming fast rotation is a
suitable approximation.
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6.4.2 Tracking movements in DNA nanogears

Let us now discuss an example where dye-nanoparticle interactions are
exploited to track movements in a DNA-based gear system. The example is
taken from publication [P3].

(a)

(b)

Figure 6.6. Functional DNA nanodevices. (a) In our macroscopic world, we can
combine building blocks, such as gears, shafts and racks, to construct devices with
complex mechanical functionalities, such as gear trains. (b) By assembling together
nanoscopic elements, such as DNA origami filaments and metallic nanoparticles, it
is possible to realize analog apparatuses in the nanoworld.

In our macroscopic world, we can combine building blocks, such as gears,
shafts and racks, to construct devices with complex mechanical function-
alities, such as gear trains [cf. Fig. 6.6(a)]. These devices are then used as
components in order to build machines that can be programmed to perform
all sorts of specific tasks and facilitate our everyday live. Ever since the rise
of nanotechnology, people have started wondering if it is possible to realize
similar apparatuses in the nanoworld. One can fantasize about all sorts
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of applications, including advanced medical diagnostic systems, special-
ized therapies, targeted drug delivery, as well as a large number of sensing
schemes, to only name a few [304]. In analogy to macroscopic machines,
the basic step for the realization of nanomachines is to construct individual
components that can perform specific mechanical movements. Figure 6.6(b)
shows how such components can be built using the DNA nanotechnology.
The starting point are different nanoscopic elements, such as DNA origami
filaments and metallic nanoparticles. These elements are then assembled to
form functional components.

ATTO 550

ATTO 647N

A

B

(a) (b) (c)

Figure 6.7. DNA nanogear device. (a) Sketch of the concept: Depicted is a mechan-
ical gearset that consists of two so-called planet gears (gray) that can independently
revolve around a so-called sun gear (brown). (b) Corresponding DNA design. The
two planet gears are realized as differently-sized DNA origami filaments (labeled
as A and B), while the sun gear consists of a gold nanorod. Note that the system is
equipped with two dye molecules (ATTO 550 and ATTO 647N), which will later
be used to track the movements. (c) Transmission-electron microscopy image of
actual structures (scale bar: 50 nm). The inset depicts an averaged image of several
devices (scale bar: 20 nm).

In the following, wewill discuss one specific gear device. The idea is sketched
in Fig. 6.7(a). The system consists two so-called planet gears (gray) that can
independently revolve around a so-called sun gear (brown). Note that the
two planet gears have different sizes. Panel (b) shows the corresponding
DNA design. The two planet gears are realized as differently-sized DNA
origami filaments (labeled as A and B), while the sun gear consists of a
gold nanorod. The origami filaments and the gold nanorod are connected
at predefined docking sites via DNA strands. Using chemically triggered
DNA reactions, one can open and close specific docking sites and thereby
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induce controlled revolutions of the origami filaments. Panel (c) shows a
transmission-electron microscopy image of fabricated structures (scale bar:
50 nm). The inset depicts an averaged image of several devices (scale bar:
20 nm).

As shown in panel (b), the two outer gears are equipped with dye molecules
(ATTO 550 and ATTO 647N), which allow for in-situ optical monitoring
of the movements. If one of the two gears revolves, the corresponding dye
changes its distance to the nanorod. Consequently, its fluorescence intensity
will be altered, thus, providing optical feedback about the movement. Both
dyes emit light at different wavelengths, which allows for an independent
monitoring of the two outer gears.

In order to utilize the above effect for movement tracking, it is crucial to
have a good understanding of the underlying light-matter interaction. So,
we now apply our theory to calculate the impact of the distance change on
the fluorescence intensities. As in the example from subsection 6.4.1, we rely
on finite-element simulations, performed with COMSOL Multiphysics.5 The
gold nanorod is modeled as a cylinder with a diameter of 10 nm and a length
of 35 nm. To approximate the shapes that are visible in the transmission-
electron microscopy images, the ends of the cylinder were not taken as
flat surfaces, but instead constructed as half spheres with a radius of 5 nm.
The surrounding medium is water. The permittivity of the gold and the
refractive index of the water are described the same way as in the previous
example. The intrinsic quantum yield of the two dyes (ATTO 550, 𝑞0 = 0.8;
ATTO 647N, 𝑞0 = 0.65) and their intrinsic emission spectra are taken from
the specifications of the supplier, which is the same as in the other example.
As in the previous case, the dyes are assumed to be fast-rotating. In accor-
dance with the experimental setup, the excitation wavelengths are taken as
ATTO 550 nm and 647 nm for ATTO 550 and ATTO 647N, respectively. In
contrast to the previous example, the experiments are, however, not carried
out on single devices with a fixed orientation towards the incident wave; in-
stead, they are performed on an ensemble of structures that are dissolved in
solution and hence exhibit random orientations towards the incident wave.
To account for this, we apply the ensemble average from subsection 6.3.4.

Figure 6.8(a) depicts the configuration that was simulated. Due to the rota-
tional symmetry of the nanorod, it is sufficient to consider the movement of
the dyes on a radial axis perpendicular to the nanorod. Note that due to the
way the DNA structure is designed, this axis is not located at exactly half of

5 See https://www.comsol.com.

134

https://www.comsol.com


6.4 examples

distance

Distance (nm)

In
te

n
s
it
y
 (

a
.u

.)

dye

(a) (b)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

ATTO 550

ATTO 647N

16 nm

19 nm

Figure 6.8. Interaction between the dyes and the nanorod. (a) Due to the rotational
symmetry of the nanorod, it is sufficient to consider the movement of the dyes
on a radial axis perpendicular to the nanorod. Note that due to the way the DNA
structure is built, this axis is not located at exactly half of the nanorods length,
but instead, 16 nm away from the top end and 19 nm away from the bottom end.
(b) Calculated fluorescence intensities as a function of distance between the dyes
and the nanorod. The squares denote the calculated values, while the connectors in
between have been added as a guide for the eye. For short distances, the intensities
drastically decrease, due to an increase of the strong absorption that is taking place
in the rod.

the nanorods length, but instead, 16 nm away from the top end and 19 nm
away from the bottom end. Panel (b) shows the calculation results. Plotted
are the fluorescence intensities of the two dyes as a function of the distance
between the dyes and the surface of the nanorod. The intensities have been
calculated via Eq. (6.26). The squares denote the calculated values, while
the connectors in between have been added as a guide for the eye. It can
be seen that the fluorescence intensities drastically decrease when the dyes
approach the nanorod. This can be attributed to fluorescence quenching that
occurs due to a high increase of the absorption rate𝛾abs. Intuitively, the effect
can be understood from the fact that compared to the nanoparticle-dimer
from subsection 6.4.1, the rod has much smaller dimensions and therefore, it
acts as a very inefficient antenna, which mostly absorbs the light instead
of radiating it to the far field. The closer the dyes get to the surface, the
stronger becomes the interaction and hence the absorption.

Next, let us compare the prediction of our calculations to an actual exper-
iment. Figure 6.9(a) shows a series of consecutive revolution states (I to
IX) that can be induced in the gearset. The origami filaments A and B are
represented by a triangle and a hexagon, respectively. These shapes are
chosen since they resemble the corresponding distributions of the DNA
docking site arrangements. The gold nanorod is indicated by a gray disk. For
each revolution state, the corresponding distances between the dyes and the
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Figure 6.9. Revolution experiment. (a) Series of consecutive revolution states (I to
IX). The origami filaments A and B are represented by a triangle and a hexagon,
respectively, while the gold nanorod is symbolized via the gray disk. For each
revolution state, the corresponding distances between the dyes and the nanorod’s
surface are written next to the illustration. (b) Calculated fluorescence intensities.
(c) Experimental results. It can be seen that there is a good qualitative agreement.
Note that there are some kinks appearing in both the calculated and in the experi-
mental curves (see black dashed frames), which will be explained later in section 6.5.

nanorod’s surface are given. The series contains the following movements:
From state I to III, filament A is kept at a fixed position and only filament B is
revolving. From state III to VII, both filaments are revolving. From state VII
to IX, filament A is revolving, while filament B remains stationary.
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Panel (b) shows the results of our calculations. Plotted are the intensities of
the two dyes as a function of time, assuming that the system successively
goes through the above revolution states. The times at which the state transi-
tions are assumed to occur are taken as the times at which the corresponding
chemical triggers for each step are added during the experiment. Note that
the fluorescence-intensity curve of ATTO 550 contains two kinks (see the
black dashed frames). Those will be explained later.

The experimental results are displayed in panel (c). It can be seen that there
is a good qualitative agreement with the simulations. It is, however, worth to
point out that there are some quantitative differences: For instance, during
states in which a dye is very close to the nanorod’s surface (as it is, e.g.,
the case for ATTO 550 during states I to III), the theoretically predicted
intensity is almost identical to zero, while the experimentally obtained
values are clearly not. This can be explained by the fact that not all gear
devices from the solution are properly functioning; instead, a fraction of the
devices may be stuck in some random state and thereby induce a background
signal. Additionally, the experimental intensities exhibit a slow drift, which
is also not covered by the simulations. Possible reasons for the drift could
be mechanical instabilities of the DNA structures as well as photobleaching
of the dyes.

Note that the experimental signal of ATTO 550 exhibits the same kind of
kinks (see black dashed frames) that already had been mentioned above.
These kinks occur when filament A transits from state IV to V and from
state VII to VIII. They arise due to the fact that during these particular
transitions, there exists a moment in time when the dye is farther away
from the nanorod than at the beginning and at the end of the transition. A
deeper discussion of this effect (as well as how it can be modeled) will be
provided in section 6.5.

It should be mentioned that the same theoretical approach that was used
in this section was applied to describe the dye-nanoparticle interactions
in several other functional DNA nanodevices. In particular, the examples
include other kinds of nanogears [P3], two multilayer sliding systems [P4],
as well as several arrangements of rotating DNA rings [P8].

6.5 reaction dynamics

In the following, we provide a detailed discussion of the kinks that had been
observed in the nanogear experiment [cf. Fig. 6.9(c)] and present a kinetic
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model for their description. We discuss this effect on purpose in a detailed
manner, since it allows us to gain interesting insights into the dynamics of
such DNA nanosystems. Note that this section is based on publication [P3].

6.5.1 Origin of the kinks

12 nm

IV Intermediate state i

11 nm 1.5 nm

V

12 nm 22 nm 17 nm

A

B

Figure 6.10. Transition from state IV to state V. In state IV, the two DNA origami
filaments are each attached via two DNA docking sites to the gold nanorod. The
transition to state V is induced the followingway: Four kinds of DNA compounds are
added to the solution: Two sorts of so-called blocking strands (symbolized via the red
and blueish scissors), which open specific docking sites, and two sorts of so-called
removal strands (symbolized via the red and blueish glue tubes), which activate a
new docking site for each filament. Consequently, the filaments can bond via these
new docking sites to the nanorod and thereby finish the revolution movement. In
between IV and V, there exists an intermediate state i, where the filaments are only
attached to the nanorod via one docking site each. For filament A, the distance
between the dye and the nanorod is drastically enlarged during this intermediate
state (cf. distance values given in the figure). Consequently, the corresponding dye
experiences an increase in its fluorescence intensity.

To understand the origin of the kinks, it is necessary to have a closer look at
the underlying DNA reactions that allow the gearset to transit from one state
to another. Note that in the following, we try to keep the explanations as
simply as possible, such that a readerwithout a chemistry related background
is able to follow them. A more detailed description of the chemical processes
may be found in the original publication [P3].

Figure 6.10 depicts exemplarily the transition from state IV to V. In state IV,
the two DNA origami filaments are each attached via two DNA docking sites
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to the gold nanorod. In order to induce the transition to state V, four kinds
of DNA compounds have to be added to the solution: Two sorts of so-called
blocking strands (symbolized via the red and blueish scissors), which open
specific docking sites, and two sorts of so-called removal strands (symbolized
via the red and blueish glue tubes), which activate a new docking site for
each filament.6 Consequently, the filaments can bond via these new docking
sites to the nanorod and thereby finish the revolution movement.

In the experiment, all of the four components are added nearly simultane-
ously to the solution. However, during the course of the chemical reactions,
there has to be a moment in time, when the filaments are only attached
via one docking site to the nanorod. This can be associated with an in-
termediate state i. For filament A, the distance between the dye and the
nanorod is increased during this intermediate state, while for filament B, it
does not change much (cf. distance values provided in the figure). Therefore
the dye that is attached to filament A (ATTO 550) exhibits an increased
intensity in this intermediate state. Inserting the estimated distances for
ATTO 550 into our numerical simulations predicts the following intensities
(normalized on the free dye molecule): 𝐼IV,simulated = 0.10, 𝐼i,simulated = 0.44,
and 𝐼V,simulated = 0.24.

All transitions that occur during the experiment from Fig. 6.9 do exhibit such
an intermediate state; however, due to the geometry of the DNA design, only
for the transitions IV to V and VII to VIII, and only for filament A, there is
an increased distance between dye and nanoparticle during the intermediate
state. This explains why only in these cases, kinks can be observed in the
fluorescence intensities.

Figure 6.11 contains a control experiment that was carried out to directly
probe the intermediate states. Panel (a) depicts the underlying series of
revolution states, labeled as I to IV [note that two steps are skipped, compared
to the sequence in Fig. 6.9(a), and thus, the labeling here is different]. The
special point about this experiment is that for the transition from state II

6 One might wonder about the fact that the strands that open connections are called blocking
strands and the strands that close connections are referred to as removal strands. Intuitively,
one would probably expect the opposite naming convention. The names of the strands are
derived from the chemical task that they perform: The blocking strands bind to docking sites
and block them such that the sites are deactivated and cannot bind to the nanorod anymore
(since the binding between the blocking strands and the docking sites is energetically
preferred to the binding between the nanorod and the docking sites, the above reaction
also allows for opening existing nanorod-docking-site bindings). The removal strands get
their name from the fact that they can remove blocking strands from blocked docking sites
and thereby activate the sites again.
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Figure 6.11. Control experiment to directly probe the intermediate states. Instead
of adding both blocking and removal strands for the transition II to III in a single step,
first, only the blocking strands were added, to drive the filaments from state II to
state i, and after waiting for approximately on hour, the removal strands were added,
to complete the transition to state III. (a) Sequence of states and corresponding
distances [note that two states are skipped, compared to the sequence in Fig. 6.9(a),
and thus, the labeling here is different]. (b) Measured fluorescence signal, which
proves the existence of the intermediate state.

to III, the triggering DNA compounds are not simultaneously added to the
solution; instead, they are added in two steps: First, at time 𝑡 ≈ 100 min, only
the blocking strands are added to induce a transition to the intermediate
state. Then, approximately one hour later, the removal strands are added
to complete the transition to state III. It can be seen that the intensity
that corresponds to filament A is increased during the time interval of
the intermediate state, while the intensity that corresponds to filament B
remains constant, as expected.

6.5.2 Kinetic model

While the above considerations can explain why the kinks are occurring
in the experiment from Fig. 6.9, they do not explain the shape of the kinks.
So let us now have a closer look at the dynamics of the system, in order to
understand the observed shape. The dynamics can be described by employ-
ing a simple kinetic model. The transition from one state (for reasons of
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generality denoted as X) to another state (for reasons of generality denoted
as Y) via the intermediate state i can be divided into two processes:

X → i, (6.28)
i → Y, (6.29)

where the first process [Eq. (6.28)] summarizes the reaction of the nanogear
devices with the blocking strands and an orientation change of the fila-
ments, while the second process [Eq. (6.29)] summarizes the reaction of the
nanogear devices with the removal strands, another conformation change,
and the bonding reaction between the activated docking sites and the nano-
rod. In the simplest approximation, X → i and i → Y can be modeled as
first-order chemical processes, which translates into the following differen-
tial equations:

𝑑 [X]
𝑑𝑡

= −𝛼 [X], (6.30)

𝑑 [i]
𝑑𝑡

= 𝛼 [X] − 𝛽 [i], (6.31)

𝑑 [Y]
𝑑𝑡

= 𝛽 [i], (6.32)

where the square brackets denote the concentration of the respective state,
and 𝛼 as well as 𝛽 are two unknown rate constants. For the sake of complete-
ness, it should be mentioned, that in general, the reactions of the nanogear
devices with the blocking and the removal strands are actually second-order
chemical reactions [318], since in each case, two reactants are involved
(namely the nanogear devices and the blocking strands, and the nanogear
devices and the removal strands, respectively). However, in the experiments,
the concentrations of blocking and removal strands are three orders of mag-
nitude higher than the concentrations of the nanogear devices, and in this
limit, the concentrations of the exceeding species can be assumed as con-
stant, which gives rise to an effective dynamic represented by a first-order
process [319].

6.5.2.1 Fit of the rate constants

The rate constants 𝛼 and 𝛽 were fitted from the control experiment (Fig. 6.11).
The fact that in this experiment the two processes X → i and i → Y are
well separated in time allows one to independently extract the values for
𝛼 and 𝛽 . The corresponding model functions were obtained by solving the
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differential equations Eqs. (6.30), (6.31), and (6.32) with the respective initial
conditions that will be described in the following.

First, let us consider the process X → i. Initially, all nanogears are in state
X. At the time 𝑡0, the blocking strands are added to trigger the transition to
state i. From Eqs. (6.30), and (6.31), the time-dependent concentrations for
times 𝑡 ≥ 𝑡0 follow as

[X] (𝑡) = [N]𝑒−𝛼 (𝑡−𝑡0) , (6.33)

[i] (𝑡) = [N]
(
1 − 𝑒−𝛼 (𝑡−𝑡0)

)
, (6.34)

where [N] denotes the total concentration of the nanogear devices in the
system. Let 𝐼X and 𝐼i be the intensities for the case when all nanogears are
in state X and i, respectively. Then, the total intensity as a function of time
is given by

𝐼 (𝑡) = 𝐼X𝑒
−𝛼 (𝑡−𝑡0) + 𝐼i

(
1 − 𝑒−𝛼 (𝑡−𝑡0)

)
. (6.35)

Now, let us consider the process i → Y. The process starts at the time
𝑡1, when the removal strands are added. Since in the control experiment,
the times 𝑡0 and 𝑡1 are well separated [i.e. (𝑡1 − 𝑡0)𝛼 ≫ 1], we can assume
that at time 𝑡1, all nanogears are in state i. From Eqs. (6.31), and (6.32), the
time-dependent concentrations for times 𝑡 ≥ 𝑡1 follow as

[i] (𝑡) = [N]𝑒−𝛽 (𝑡−𝑡1) , (6.36)

[Y] (𝑡) = [N]
(
1 − 𝑒−𝛽 (𝑡−𝑡1)

)
. (6.37)

The corresponding time-dependent intensity is then given by

𝐼 (𝑡) = 𝐼i𝑒
−𝛽 (𝑡−𝑡1) + 𝐼Y

(
1 − 𝑒−𝛽 (𝑡−𝑡1)

)
, (6.38)

where 𝐼Y represents the intensity for the case when all nanogears are in
state Y. Fitting Eqs. (6.35) and (6.38) to the rising and the decaying slopes of
the control experiment (Fig. 6.11), respectively, yields 𝛼 ≈ 1.2 · 10−2 s−1 and
𝛽 ≈ 1.3 · 10−2 s−1 (Fig. 6.12). Note that the curves were only fitted to the first
300 s of the slopes, in order to reduce the influence of an additional slow
linear drift of the fluorescence signal that is occurring on a larger time scale.
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Figure 6.12. Fit of rate constants from the control experiment (Fig. 6.11). (a) Fit-
ting the rising slope yields 𝛼 ≈ 1.2 · 10−2 s−1. (b) Fitting the decaying slope yields
𝛽 ≈ 1.3 · 10−2 s−1.

6.5.2.2 Modeling of the kinks

As alreadymentioned, in the revolution experiment (cf. Fig. 6.9), the blocking
and the removal strands are added at once (only separated by the small time
delay it takes to mix the solution and prepare the pipettes). This means that
both processes X → i and i → Y are happening simultaneously. Assuming
that the blocking strands are again added at a time 𝑡0 and the removal
strands at a time 𝑡1, but that this time the condition (𝑡1 − 𝑡0)𝛼 ≫ 1 does
not apply, and solving Eqs. (6.30), (6.31), and (6.32), results in the following
time-dependent concentrations for 𝑡 ≥ 𝑡0:

[X] (𝑡) = [N]𝑒−𝛼 (𝑡−𝑡0) ; (6.39)

[i] (𝑡) =

[N]

(
1 − 𝑒−𝛼 (𝑡−𝑡0)

)
, 𝑡 < 𝑡1;

[X]1𝛼 𝑒−𝛽 (𝑡−𝑡1 )−𝑒−𝛼 (𝑡−𝑡1 )

𝛼−𝛽 + [i]1𝑒−𝛽 (𝑡−𝑡1) , 𝑡 ≥ 𝑡1;
(6.40)

[Y] (𝑡) =

0, 𝑡 < 𝑡1;

[X]1
(
1− 𝛼𝑒−𝛽 (𝑡−𝑡1 )−𝛽𝑒−𝛼 (𝑡−𝑡1 )

𝛼−𝛽

)
+[i]1

(
1−𝑒−𝛽 (𝑡−𝑡1)

)
, 𝑡 ≥ 𝑡1;

(6.41)

with [X]1 = [N]𝑒−𝛼 (𝑡1−𝑡0) and [i]1 = [N] (1 − 𝑒−𝛼 (𝑡1−𝑡0) ). Consequently, the
time-dependent intensity is given by

𝐼 (𝑡) = 𝐼X
[X] (𝑡)
[N] + 𝐼i

[i] (𝑡)
[N] + 𝐼Y

[Y] (𝑡)
[N] . (6.42)

143



emitter-nanoparticle interaction

In the revolution experiment, adding the blocking and removal strands had
been done by executing the following procedure: 1) Taking the sample out
of the measurement chamber, adding the blocking strands for filament A,
and mixing the solution. 2) Adding the blocking strands for filament B,
and mixing the solution. 3) Adding the removal strands for filament A,
and mixing the solution. 4) Adding the removal strands for filament B,
mixing the solution, and putting the sample back. Each of these steps takes
approximately 30 s, which gives a total time of approximately 2 min. During
this period, the intensity recording had to be paused, and afterwards the
experimental curves were stitched together at the pausing point.

In order to resemble the experimental conditions as accurately as possible,
the above procedure was considered in the modeling. It was estimated that,
when taking the sample out and starting the process at a time 𝑡 = 0 s,
the blocking strands and the removal strand for the triangular filament
(filament A) come in contact with the nanogears at a time 𝑡0 = 30 s and at a
time 𝑡1 = 90 s, respectively.
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Figure 6.13. Calculated time-dependent fluorescence intensity for the transition
from state IV to state V via the intermediate state i. The gray insert marks the
time interval that is not recorded in the experiments (dark time). This curve (dark
time removed, in order to be comparable with the experimental data) is depicted in
Fig. 6.9(b).

Inserting these values into our model, together with the fitted rate con-
stants 𝛼 and 𝛽 , and using the above given simulated values for 𝐼IV,simulated,
𝐼i,simulated, and 𝐼V,simulated, provides the time-dependent intensity that is plot-
ted in Fig. 6.13. The gray insert marks the period, during which the intensity
was not recorded in the experiment (denoted as dark time). This curve (dark
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time removed, in order to be comparable with the experimental data) is
depicted in Fig. 6.9(b). Note that due to the stitching, the rising slopes of the
kinks in Fig. 6.9(b) and Fig. 6.9(c) appear to be steeper than they actually
are. It can be seen that, apart from an additional slow linear drift in the
measured signals, our kinetic model allows us to qualitatively reproduce the
experimental observations.

6.5.2.3 Limitations of the model

For the sake of completeness, it should be mentioned that our kinetic model,
although being able of providing a qualitative insight into the dynamics of
the system, still has some clear limitations and should hence only be seen as
a rough approximation: First, the concentrations of blocking and removal
strands in the experiment are actually not truly constant throughout the
reactions, since in each step, a surplus of the new blocking and removal
strands has to be added, in order to deactivate unreacted blocking and
removing strands that remaining from the previous step (for more details,
cf. the explanation of the chemical procedures in publication [P3]). Second,
our model neglects the possibility that the removal strands can also react
with the respective docking sites of the nanogears while those are still in
state X. Third, as already mentioned earlier, it appears that there are some
additional slow linear drifts in the experimental fluorescence intensities,
which cannot be reproduced by our model.

6.6 inclusion of förster resonance energy transfer

So far, we have considered the electromagnetic interaction between dyes and
nanoparticles; however, there is another electromagnetic interaction that
can be used for optically tracking distance changes on the nanoscale: The
interaction of a dye with another dye, which is known as Förster resonance
energy transfer (FRET). In the following, we will show how FRET can be
included in the dye-nanoparticle interaction model and we will discuss an
example, where the combined interaction is utilized to monitor movements
in a DNA nanodevice. This section is based on publication [P1]. Note that
chronologically, this publication was actually the first of all DNA-related
works that had been published in the context of this thesis. However, for
didactic reasons, we have on purpose saved its discussion for last.

145



emitter-nanoparticle interaction

6.6.1 Theory

In the following, we will start with explaining the basic equations of FRET.
Then, we will show how FRET can be included in the dye-nanoparticle
interaction model.

6.6.1.1 Basics

In general, FRET describes the phenomenon that one dye (from now on
referred to as the donor) can transfer energy to another dye (from now on
referred to as the acceptor) via electromagnetic near-field interaction. The
prerequisites are that both dyes are physically close to each other (typical
distances are a few nm) and that there exists a spectral overlap between
the emission spectrum of the donor and the absorption spectrum of the
acceptor.

AcceptorDonor

FluorescenceFluorescence

Excitation

FRET

Figure 6.14. Illustration of the underlying mechanisms of Förster resonance
energy transfer (FRET). Two dyes are involved (denoted as donor and acceptor).
The prerequisites are that the donor’s emission frequency spectrum exhibits an
overlap with the acceptor’s absorption spectrum and that both dyes are spatially
close to each other (typical distances are in the order of a few nm). When the donor
is excited, it may transfer energy to the acceptor via near-field interaction. This
transfer is denoted as FRET. Consequently, the donor’s fluorescence intensity will
get weaker and furthermore, the acceptor will start to fluoresce as well. The rate of
the energy transfer and thus the fluorescence intensities of the two dyes strongly
depend on the relative distance.

The underlying mechanisms are illustrated in Fig, 6.14. The donor is excited
by light at its excitation frequency. As a result, it will fluoresce at its emission
frequencies. If now an acceptor comes close to the donor, it is possible that
energy may be transferred via FRET. This has two consequences: First, the
emission intensity of the donor will get weaker, since a part of the excitation
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energy is lost to the acceptor. Second, and more importantly, the acceptor
will start to fluoresce as well, at its own emission frequency. It is critical to
note that the rate of the energy transfer strongly depends on the distance
between the two dyes (the closer the dyes are, the higher is the energy
transfer rate). Thus, by monitoring the fluorescence intensity of one of the
two dyes (typically the intensity of the acceptor), one obtains feedback about
their relative distance.

Following Ref. [192], the rate of the energy transfer 𝛾FRET (from now on
referred to as the FRET rate) can be calculated via:7

𝛾FRET

𝛾Dr,0
= 18𝜋

∫
𝑑𝜔

���� 𝑐𝜔𝜇 ����2 𝑓 D0 (𝜔)𝜎A (𝜔)
��eA · ĜEE (rA, rD;𝜔) · eD

��2 . (6.43)

Here,𝛾Dr,0 denotes the intrinsic radiative decay rate of the donor, 𝑓 D0 (𝜔) repre-
sents the donor’s normalized intrinsic emission spectrum, and 𝜎A (𝜔) is the
frequency-dependent absorption cross section of the acceptor. Furthermore,
rD and rA represent the position of the donor and the acceptor, respectively,
and eD as well as eA are unit vectors that point in the directions of their dipole
moments. The quantity ĜEE denotes the 3 × 3 dimensional electric-electric
part of the 6× 6 dimensional Green’s dyadic Ĝ = [ĜEE, ĜEH; 𝑖ĜHE, 𝑖ĜHH] of
the Maxwell operator that is used throughout this thesis. One might wonder
why only the electric-electric part of the Green’s dyadic enters the equation.
This simply comes from the fact that FRET describes the interaction of one
electric dipole with another electric dipole.

Note that equation (6.43) is valid for any kind of electromagnetic environ-
ment. For the special case of a homogeneous and isotropic surrounding, the
Green’s dyadic can be expressed analytically. By inserting the corresponding
expression, the FRET-rate expression simplifies to [192]:

𝛾FRET

𝛾Dr,0
=

(
𝑅0
𝑅

)6
. (6.44)

Here, 𝑅 = |rA − rD | represents the distance between the two dyes and 𝑅0
denotes the so-called Förster radius, which will be provided in the following.
The above equation is very instructive since it reveals that in the above
scenario, the FRET rate is proportional to the sixth power of the inverse of

7 The factor |𝑐/(𝜔𝜇) |2 appears due to the fact that in consistency with the rest of this thesis,
we have written the equation in terms of the Green’s dyadic of the Maxwell operator instead
of the Green’s dyadic of the wave equation, which is used in Ref. [192]. Furthermore, note
that we are assuming Gaussian units here, as in the rest of the thesis.
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the distance between the two dyes, and therefore, that the effect is extremely
sensitive to distance changes. The Förster radius is defined via

𝑅6
0 =

9𝑐4𝜘2
8𝜋

∫
𝑓 D0 (𝜔)𝜎A (𝜔)

𝑛4𝜔4 𝑑𝜔 , (6.45)

where 𝑛 is the refractive index of the surrounding medium and the factor
𝜘2 = [eA · eD − 3(eR · eD) (eR · eA)]2, with eR being a unit vector in the
direction of rA − rD, accounts for the relative orientation of the two dipoles.
It should be mentioned that for random orientations of both dipoles, and
assuming fast rotation, one can replace 𝜘2 by its orientation-averaged value
⟨𝜘2⟩ = 2/3 [192].

6.6.1.2 How to combine FRET and dye-nanostructure interactions

Let us now consider a system where the donor and the acceptor are not
only interacting with each other via FRET, but simultaneously with a nano-
structure. Note that the considerations that we provide in the following can
be seen as a generalization of a model from literature [320] (which is valid
for emitters with high quantum yields) to emitters with arbitrary quantum
yields.

In general, the fluorescence rates of the donor and acceptor in the presence
of a nanostructure can be written as (cf. section 6.2)

𝛾Dfl = 𝑞D𝛾Dexc (6.46)

and
𝛾Afl = 𝑞A𝛾Aexc, (6.47)

respectively, where 𝑞D as well as 𝑞A denote the quantum yields of the two
dyes and 𝛾Dexc and 𝛾Dexc represent their excitation rates. Note that in the
following, we will consistently use the superscripts D and A in order to label
quantities that belong to the donor and acceptor, respectively.

We now show how FRET can be incorporated in these equations. The quan-
tum yield of the donor under the influence of FRET is obtained by taking the
quantum-yield expression from Eq. (6.5) and including the term 𝛾FRET/𝛾Dr,0
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in the denominator, in order to account for the energy loss to the acceptor.
This gives:

𝑞D =

𝛾D
r

𝛾D
r,0

𝛾D
r

𝛾D
r,0
+ 𝛾D

abs
𝛾D
r,0

+ 𝛾FRET
𝛾D
r,0

+ 1−𝑞D0
𝑞D0

. (6.48)

The quantum yield of the acceptor is not influenced by the FRET process
and directly follows from Eq. (6.5) as

𝑞A =

𝛾A
r

𝛾A
r,0

𝛾A
r

𝛾A
r,0
+ 𝛾A

abs
𝛾A
r,0

+ 1−𝑞A0
𝑞A0

. (6.49)

Since the acceptor obtains all its excitation photons from the donor, its
excitation rate reads as

𝛾Aexc = 𝑞FRET𝛾
D
exc, (6.50)

where 𝛾Dexc represents the excitation rate of the donor and 𝑞FRET denotes the
so-called FRET efficiency [192], which is, in our case, given by

𝑞FRET =

𝛾D
FRET
𝛾D
r,0

𝛾D
r

𝛾D
r,0
+ 𝛾D

abs
𝛾D
r,0

+ 𝛾FRET
𝛾D
r,0

+ 1−𝑞D0
𝑞D0

. (6.51)

Intuitively, the FRET efficiency can be understood as the ratio between the
number of photons that are transferred to the acceptor via FRET and the
number of photons that are absorbed by the donor.

As a side note, we want to mention that, in principle, our model also can
account for another effect between two dye molecules, which is known as
contact quenching [321]. This effect has been observed in cases when two dye
molecules are extremely close to each other. Its impact can be considered by
adding a term𝛾con/𝛾Dr,0 to the denominators of Eqs. (6.48) and (6.51) as well as
a term 𝛾con/𝛾Ar,0 to the denominator of Eq. (6.49), where 𝛾con denotes the rate
of photon loss due to the contact quenching. It should, however, be noted
that so far, there is no general ab-initio theory of the underlying mechanisms
and thus, the rate 𝛾con as well as its distance dependence typically have to
be estimated from experiments.
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Now, let us come back to our FRET model. It is practical, to normalize the
modified fluorescence rates of the donor and the acceptor to the donor’s
intrinsic fluorescence rate 𝛾Dfl,0 = 𝑞D0 𝛾

D
exc,0. This gives:

𝛾Dfl
𝛾Dfl,0

=
𝑞D

𝑞D0

𝛾Dexc
𝛾Dexc,0

, (6.52)

𝛾Afl
𝛾Dfl,0

=
𝑞A𝑞FRET

𝑞D0

𝛾Dexc
𝛾Dexc,0

. (6.53)

These two equations together with the above expressions for 𝑞D, 𝑞A and
𝑞FRET allow for describing a system where FRET and dye-nanostructure
interactions are occurring simultaneously. It should be noted that one can
now again account for all sorts of orientation averages (fast and slow dye
rotation according to subsection 6.3.2; random structure orientation accord-
ing to subsection 6.3.4) by simply applying the respective procedures to the
numerators and denominators of Eqs. (6.52) and (6.53).

6.6.2 Results

Let us now investigate the system that was mentioned at the beginning of the
section. The device is depicted in Fig. 6.15(a). It consists of two DNA origami
filaments (gray) that are attached to a pair of spherical gold nanoparticles
(yellow) with diameters of 10 nm. Two dyes (donor: ATTO 550, acceptor:
Atto 647N) are tethered to the ends of the DNA filaments, which will be
later used for optical monitoring. Note that these two dyes are well-known
to exhibit a strong FRET when they are close to each other. Each DNA
filament is equipped with ten rows of DNA binding sites (labeled 1 to 10).
By exploiting similar chemical mechanisms as explained in subsection 6.4.2,
it is possible to activate and deactivate specific binding sites and thereby, to
enforce a sliding movement of the filaments, as illustrated in panel (b).

During the sliding, the distance between the two dyes changes. The dis-
placement can be optically tracked via FRET. For this purpose, the donor is
excited at its excitation wavelength of 530 nm and the emission intensities
of the donor and the acceptor are recorded at their emission wavelengths of
578 nm and 663 nm, respectively. A difficulty arises from the presence of the
two gold nanoparticles. The reason is that simultaneously to interacting with
each other via FRET, the dyes can interact with the nanoparticles, which
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Figure 6.15. Sketch of the DNA slider. (a) The device consists of two DNA filaments
(gray) that are attached to a pair of gold nanoparticles (yellow; diameter: 10 nm).
Two dye molecules (donor and acceptor) are tethered to the ends of the filaments.
(b) By exploiting similar chemical mechanisms as in the nanogear system from
subsection 6.4.2, it is possible to activate and deactivate specific binding sites, and
thereby to enforce a sliding movement of the filaments. During the sliding, the
distance between the dyes changes. This distance change and thus the displacement
of the two filaments can be optically monitored via FRET.

complicates the optical signals. In the following, we will use our theory from
the previous subsection to understand this effect.

Before we continue, it should be noted that at first glance, the above ap-
proach for the optical tracking of the movements might appear very similar
to the one that was employed for the nanogear device from subsection 6.4.2
(especially, since the same dyes are used). However, there is a fundamental
difference: In the experiment for the gear system, both dyes were indepen-
dently excited at their own excitation wavelengths and both dyes were well
separated in space. Therefore, FRET did not play a role.8 Here, both dyes

8 The careful reader may have noticed that in the revolution sequence from Fig. 6.9(a), there
are a few rare situations where the two dyes accidentally come very close to each other.
Hence, one might speculate if FRET might be relevant there. However, it turns out that this
is not the case: First of all, it is actually not necessarily always provided that both DNA
filaments start in state I at exactly opposite sites of the nanorod (although, this might be
suggested by the illustration). The reason is that the exact positioning of the two DNA
filaments in the gear device is very hard to experimentally control during the assembly
process. Therefore, while the distances between the dyes and the nanorod can be assumed
to be fixed and are well-known with high accuracy, the relative distance between the two
dyes varies across different gear devices. Second, it had been experimentally confirmed
that there are no noticeable FRET contributions in the system.
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are quite close to each other and only the donor is excited. Therefore, the
acceptor obtains all its energy via FRET.

Let us now apply our theory from the previous subsection to understand
the light-matter interaction in the slider device.

First, let us discuss the modeling of the dye-nanoparticle interaction. As in
the other systems, we rely on finite-element simulations, performed with
COMSOL Multiphysics.9 The gold nanoparticles were described as spheres
of diameter 10 nm (permittivity taken from Ref. [322]), surrounded by water
(refractive index: 1.332). The actual slider contains two nanoparticles, which
are placed at a center-to-center distance of 28 nm. In the simulations, it was
found that the influence of the second nanoparticle on all rates of the dyes
is negligible and hence, only the nanoparticle close to the dye is relevant.
Therefore, in order to keep the final model simple, only this nanoparticle
was included. The intrinsic quantum yields 𝑞D0 = 0.8 and 𝑞A0 = 0.65 of the
two dyes were taken as in subsection 6.4.2, while the intrinsic emission
spectra 𝑓 D0 and 𝑓 A0 were determined from reference measurements.

The calculations reveal that the main effect of the nanoparticle is to act as a
quencher: The closer the dyes come to the nanoparticle’s surface, the weaker
are their fluorescence intensities. The reason is that – similar to the case
for the nanorod in subsection 6.4.2 – the nanoparticle is very small in size
and thus, it functions as a highly inefficient antenna that mostly absorbs the
light.

Now, let us discuss the modeling of the FRET process. For the calculations,
it is necessary to know the frequency-dependent absorption cross section
𝜎A (𝜔) of the acceptor. The cross section was obtained via the following
method: First, the excitation spectrum of the acceptor was measured, which
yielded the spectral shape of the absorption cross section, but not the ab-
solute values. Then, in order to get the absolute values, the spectrum was
scaled using the maximum molar attenuation coefficient that is given by the
supplier10 as 1.5× 105 M−1cm−1. Furthermore, for describing the FRET effect,
it is necessary, to calculate the quantity 𝛾FRET/𝛾Dr,0. To determine it, we have
compared two approaches: 1) calculating it via Eq. (6.43), which constitutes
the rigorous way and explicitly takes into account the presence of the nano-
particle, and 2) calculating it via Eq. (6.44), which is technically only valid
for a homogeneous surrounding and completely neglects the presence of
the nanoparticle. For Eq. (6.44), we have used the measured dye properties

9 See https://www.comsol.com.
10 Available under http://www.atto-tec.com.
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6.6 inclusion of förster resonance energy transfer

to calculate the Förster radius, which yields a value of 𝑅0 = 6.65 nm (for
𝜘2 = 2/3).11 For Eq. (6.43), we have used the measured dye properties as
well; however, instead of calculating the Förster radius, we used the local
electric field obtained from finite element calculations in order to construct
the Green’s dyadic. Interestingly, it was found that for all donor-acceptor
configurations that are relevant in the system, both equations provide ex-
tremely similar values for 𝛾FRET/𝛾Dr,0 (practically indistinguishable within
the range of the numerical precision of the finite-element calculations). At
first glance, this might appear as a surprise; however, it can be explained by
the fact that in the vicinity of the donor, the magnitude of the initial electric
field caused by the donor dipole is much stronger than the magnitude of
the scattered field generated by the nanoparticle, so that the scattered field
of the nanoparticle can be neglected. Only in cases where both donor and
acceptor are very close to the nanoparticle’s surface (in the order of 5 nm),
the scattered field becomes relevant and the results start to differ. This agrees
very well with results reported in Ref. [320]. In order to keep the final model
simple, we have decided to use Eq. (6.44) and thereby, neglected the direct
influence of the nanoparticle on the FRET rate.

Let us briefly comment on the orientation averaging. As in the nanogear
system from subsection 6.4.2, both dyes were assumed to be able to freely
rotate at their attachment position, and furthermore, the experiment had
been carried out in a solution, containing a large number of randomly ori-
ented DNA devices. The dye rotation was accounted for by averaging the
fluorescence rates in Eqs. (6.52) and (6.53) simultaneously over all donor and
all acceptor orientations. In contrast to the nanogear system, the averag-
ing was, however, performed under the assumption of slow rotation. The
reason is that – as already indicated – chronologically, the slider system
had been the first DNA nanosystem that was investigated in the context
of this thesis. At the time, it was not well-known that the actual rotation
speeds of dyes attached to DNA can be quite high and hence, slow rotation
had been considered more plausible. The random orientations of the devices
were accounted for via applying the ensemble average from Eq. (6.25) to
the donor’s excitation-rate modification 𝛾Dexc/𝛾Dexc,0. For more details on the
orientation-averaging in this system, the interested reader may refer to the
Supplementary Information of publication [P1].

11 To avoid confusion, it should be mentioned that in publication [P1], a different value for
the Förster radius is provided, namely 𝑅0 = 6.41 nm. This is not a mistake, but stems from
the fact that in the publication, an alternative definition had been used, where factors of
1/𝑞D

0 and 𝑞D
0 are included in Eq. (6.44) and Eq. (6.45), respectively. For consistency with

Ref. [192], we have changed the definition.
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Figure 6.16. Results of the optical distance tracking via FRET. (a) Set of sliding
states that can be induced in the system. Details on the dye positions are provided
in Appendix D. (b) Theoretically predicted time-dependent fluorescence intensities
of donor and acceptor. (c) Corresponding experimental results. One can observe
that there is an excellent qualitative agreement.

We now have a look at the calculation results. Figure 6.16(a) depicts a set
of sliding states (‘−2’ to ‘2’) that can be experimentally induced in the
device. The displacement between two consecutive states is 14 nm. During
the sliding, the distances between the two dyes as well as the distances
between the dyes and the nanoparticles change. The corresponding dye
positions can be found in Appendix D. Note that – as already indicated –
the DNA slider was chronologically the first of all DNA devices that were
realized in the works that are discussed in this chapter. Between the different
generations of DNA systems, the design of the linker structure that connects
the dyes with the DNA filaments had been optimized in order to minimize
the position uncertainty of the dyes. Compared to the nanogear system,
where the estimated position uncertainty is less than 2 nm, the dye positions
in the slider system exhibit a quite large uncertainty. To account for this,
some additional assumptions had to be made, in order to estimate the dye
positions in the most plausible way. The details are explained in Appendix D
as well.

Panel (b) provides the calculated intensities of donor and acceptor for the
case that the system is driven over time through a predefined sequence of
sliding states. The sequence starts with state ‘0’, where the distance between
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donor and acceptor is minimal. Consequently, the calculation predicts a high
intensity for the acceptor, due to the strong FRET. Next, the system transits
to state ‘−1’, followed by state ‘−2’. With each of the two steps, the predicted
acceptor intensity gets weaker. This can be explained by the distance increase
between the two dyes and the resulting reduced strengths of the FRET. The
donor intensity becomes weaker as well, since with each step the dye comes
closer to the nanoparticle. Afterwards, the sliding direction is reversed and
the system is first driven back to ‘0’ (where the initial intensities are restored)
and then to states ‘1’ and ‘2’. During the latter two steps, the acceptor
intensity decreases again, due to the increase of the distance between the
two dyes. The donor intensity, however, gets stronger, due to the increase
of its distance to the nanoparticle. Afterwards, the system is driven back to
state‘0’, where the initial intensities are restored again.

Panel (c) shows the corresponding experimental results. It turns out that
there is an excellent qualitative agreement. Each of the predicted intensity
steps is clearly visible in the experimental data. Nevertheless, it is worth
mentioning that – as in the case of the nanogear system from Fig. 6.9 –
there are a few quantitative differences: First, in contrast to the calculated
intensities, the experimental ones never truly reach a value of zero. This
can again be explained by the fact that there is a fraction of ill-functioning
devices present in the solution. Second, the absolute heights of the predicted
and the measured intensity steps are not identical. This can be explained
by the high uncertainty in the dye positions as well as by inhomogeneities
in the nanoparticles’ shapes and sizes. Third, the acceptor intensity curves
drift to lower values during the time the experiment is running. This is most
likely caused by the fact that the number of broken devices increases over
time.

6.7 conclusion and outlook

In this chapter, we have presented a detailed theoretical model of the light-
matter interaction between quantum emitters and optically resonant nano-
structures. We have applied the model to describe and elucidate experi-
mental observations in different example systems from the field of DNA
nanotechnology. Special care was devoted to accounting for experimental
complications, such as emitter rotation and random structure orientation.
We have demonstrated that when understanding the above light-matter
interaction very well, one can employ it as a highly useful tool to track all
sorts of movements on the nanoscale. Particularly interesting is also that,
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while applications that exploit the emitter-nanostructure interaction for
enhancing the fluorescence properties of emitters [295–297, 299] are often
hampered by the high intrinsic loss of plasmonic nanosystems, the sensing
application actually utilizes this loss as a benefit: The higher is the loss, the
stronger becomes the quenching, and the more sensitive is the fluorescence
intensity with respect to the emitter position.

We have also demonstrated that by combining the modeling of the light-
matter interactions with a kinetic model for the chemical reactions, one can
obtain interesting insights into the dynamics of such DNA nanosystems.
Furthermore, we have shown how to include Förster resonance energy trans-
fer in the emitter-nanostructure interaction equations and demonstrated
that also this effect can be used for movement sensing.

The models that were presented in this chapter can provide the basis for
many future works. Most likely, more complex functional nanosystems
will be designed and investigated in the near future. In this context, it also
appears quite intriguing to perform additional experiments on single devices
and – equipped with the above theoretical approaches – use the results to
gain a deeper understanding of the reaction dynamics. Finally, it is worth
emphasizing again that the presented models are quite universal in the sense
that they are not only applicable for dye molecules, but also virtually for
any kind of emitter that can be associated with an oscillating electric dipole,
which includes many kinds of quantum dots and defect centers.
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7
CONCLUS IONS AND OU TLOOK

In this thesis, we have presented a detailed theoretical description of reso-
nant light-matter interactions in nanophotonic sensing. We have started by
introducing the reader to the theory of resonant states, which are defined as
eigensolutions of Maxwell’s equations in open optical resonators at discrete
complex frequencies. We have explained that these states constitute a phys-
ically meaningful basis to describe resonant optical phenomena. We have
given a broad overview of the current state of the art from literature and
discussed how resonant states can be utilized to expand the near and far
field of optical resonators and how they are useful for modeling light-matter
interactions.

While the main purpose of that part of the thesis was to make the reader
familiar with the basics of the theory of resonant states, it is worth noting
that the part also contains some new results: First, the presented approaches
from literature are formulated in a consistent framework that allows for
incorporating nonreciprocal materials. Second, a new analytic normalization
scheme for resonant states is derived, which is based on the Green’s dyadic
of the background system and – in contrast to the state-of-the-art analytic
approach – is expected to hold for more complex geometrical surroundings
(cf. subsection 2.2.3.2). Third, a rigorous pole-expansion based derivation of
the so-called symmetric representation of the optical scattering matrix is
provided (cf. subsection 2.2.7.2).

Afterwards, we have in detail discussed the light-matter interactions that oc-
cur in nanophotonic substance sensing. Since this kind of sensing is typically
associated with small material changes, perturbation theory is a natural
approach for the theoretical description. We have first focused on eigen-
frequency changes, as they are relevant in many sensing schemes. Here,
literature provides a highly useful first-order perturbation theory that allows
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for predicting frequency shifts and linewidth changes under material per-
turbations in the resonator. We have explained that the literature expression
is, however, limited to localized perturbations inside or in the vicinity of a
given resonator geometry. Motivated by the fact that many applications in
sensing are associated with changes of the resonator’s surrounding medium,
we have developed a generalization that allows one to incorporate these
exterior material changes. We have demonstrated the applicability of the
theory at several example systems.

Furthermore, we also have explained that frequency shifts and linewidth
changes are not the only effects that can be relevant in substance sensing.
In order to have a more general description available, we have derived a
perturbation theory that allows for predicting the changes in optical far-field
quantities under local perturbations. In our approach, the changes can be
calculated via simple closed-form expressions from the unperturbed elec-
tromagnetic fields inside the resonator. We have shown that our theory
provides deep insights into the underlying physics. In particular, we were
able to demonstrate that all observable far-field changes originate from
exactly five contributions: a nonresonant interaction, changes in the excita-
tion and emission efficiencies of the resonant states, resonance shifts, and
crosstalk between different resonant states. We have employed the theory
to study a simple example from the field of dielectric sensing and found that
– in full accordance with the literature expectation – in this sensing scheme,
resonance shifts are the dominating effect.

Afterwards, we have applied the theory to a highly special sensing scheme,
which is experiencing increasing interest in recent times: nanophotonic
chiral sensing. We have shown that also here, the whole light matter inter-
action is composed of exactly the above five contributions. We have studied
the influence of these contributions in different example systems and we
have demonstrated that – in contrast to common expectation – here, res-
onance shifts are often not the dominating effect. In geometrically achiral
sensors, they can even be strictly zero. Instead, changes in the excitation
and emission efficiencies were found to play a crucial role. Furthermore we
have explained that besides allowing for deep insights into the physics, the
perturbative approach exhibits many practical benefits for sensor modeling
in terms of computational efficiency.

In the end, we have switched from passive to active light-matter interactions.
We have provided a detailed theoretical model of the interaction between
quantum emitters and optically resonant nanostructures. The model was
applied to describe and elucidate experimental observations in different
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example systems from the field of DNA nanotechnology. Particular efforts
were devoted to correctly accounting for experimental complications, such
as emitter rotation and random structure orientations. It was also discussed
how one can reduce the computational efforts by relying on semi-analytical
expressions for the orientation dependence in the emission process as well
as by exploiting symmetries of the nanostructures. Furthermore, it was
demonstrated how one can incorporate other effects into the equations,
such as the Förster resonance energy transfer between two emitters. In
addition to the light-matter interaction model, a simple kinetic model was
provided for describing the time-dependence of DNA reactions. It was shown
that the combination of both models can provide interesting insights into
the dynamics of such DNA nanosystems.

The theoretical framework that was presented in this thesis can provide
the basis for many future studies related to sensor modeling and design
as well as for understanding resonant light-matter interactions on a more
fundamental level. Here, we want to take the opportunity to suggest some
concrete ideas:

First, as already indicated, one can employ the resonant-state framework
to understand the light-matter interactions in more sophisticated systems.
Examples that appear particularly interesting are advanced resonator designs
for chiral sensing [256, 268, 271–273] as well as nonreciprocal resonators
and reciprocal resonators with nonreciprocal perturbations.

Second, it would be highly intriguing to apply the far-field perturbation the-
ory to the case of dispersive analyte media where the dispersion is associated
with the occurrence of molecular resonances. This situation is relevant in
sensing schemes that rely on the nanophotonic enhancement of molecular
vibrations [5, 17, 18, 323]. Although this technique has started to attract a
lot of popularity due to its many benefits (it allows for the unambiguous
identification of target substances, it can detect multiple substances simul-
taneously, and it can, in some cases, even be used to monitor molecular
configuration changes), the involved mechanisms are still not fully under-
stood. In some case, elaborate post-processing of the optical signals is used
to extract relevant information from the measured data [324]. Clarifying the
signal contributions could reveal deep new insights.

Third, from our current far-field perturbation theory, one could extract
an alternative version that is based on full-wave calculations instead of
the resonant states. To derive it, one would just need to choose a different
separation of the unperturbed material distribution P̂ into a background
system P̂BG and a scattering part 𝛥P̂ than the one that was employed so far
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(cf. 2.2.5). In particular, one should choose 𝛥P̂ = 0 and P̂BG = P̂. This would
give Fscat = 0 and Ftot = FBG. One can then numerically solve Maxwell’s
equations for the total field Ftot in the unperturbed system and plug this one
– without applying any expansion in terms of the resonant states – as back-
ground field into the far-field perturbation equations [Eqs. (4.11) to (4.16)].
Due to the choice 𝛥P̂ = 0, the coefficients 𝑎 (𝑛)N and 𝑏

(𝑛)
N are zero. Conse-

quently, all contributions vanish except for the nonresonant interaction.
Thus, one ends up with a single equation that allows for predicting the
change in the resonator’s optical far-field quantities under arbitrary per-
turbations 𝛿P̂ from the (numerically calculated) unperturbed total electro-
magnetic near fields in the resonator. The disadvantage of this full-wave
based approach is that it does not provide as much insight into the physics
as the resonant-state based version; however, there are several interesting
benefits: (i) The approach should be very easy to implement in almost any
numerical solver since no eigenmode analysis is required. (ii) Similar as
the resonant-state based approach (cf. discussion in section 5.5), it should
be able to predict the sensor response to different 𝛿P̂ with a minimum of
computational efforts in one single evaluation step, and it should be capable
of dealing with arbitrarily small 𝛿P̂. (iii) This new approach could provide
interesting new quantitative insights, for instance, concerning the exact
relation between the local near fields and the strength of the sensor response.
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A
DER I VAT ION OF THE SURFACE TERM FOR EXTER IOR
PERT URBAT IONS

In the following, we provide the evaluation of the surface term 𝛿𝑆𝑛 from
Eq. (3.11) (repeated here for convenience):

𝛿𝑆𝑛 = 𝑖𝑐

∮
𝜕𝑉

𝑑S · (E‡𝑛×𝛿H𝑛−𝛿E𝑛×H‡
𝑛), (A.1)

with 𝛿F𝑛 = 𝜕F𝜈/𝜕𝛬|𝛬=0.
We note that in a homogeneous surrounding with permittivity 𝜀S and per-
meability 𝜇S, any outgoing field can be expanded in a set of outgoing basis
functions ON as defined in Ref. [45]. These basis functions can be factorized
as

ON (𝜀S, 𝜇S;𝜔) = 𝐴N (𝜀S, 𝜇S;𝜔)
(√

𝜇SEN (𝑛S𝜔 ; r)
𝑖
√
𝜀SHN (𝑛S𝜔 ; r)

)
, (A.2)

where 𝐴N (𝜀S, 𝜇S;𝜔) represents a scalar, 𝑛S =
√
𝜀S𝜇S denotes the refractive

index, and EN (𝑛S𝜔 ; r) as well asHN (𝑛S𝜔 ; r) are vectors. It is important to
notice that these vectors depend on the product of 𝑛S and 𝜔 , as this will be
relevant later.

Let 𝜀S and 𝜇S represent the permittivity and permeability, respectively, in
the perturbed surrounding. They read as:

𝜀S (𝜔 ; 𝛬) = 𝜀 (𝜔) + 𝛬𝛿𝜀 (𝜔) (A.3)
𝜇S (𝜔 ; 𝛬) = 𝜇 (𝜔) + 𝛬𝛿𝜇 (𝜔). (A.4)

Consequently, we identify the perturbed refractive index to be
𝑛S (𝜔 ; 𝛬) =

√︁
𝜀S (𝜔 ; 𝛬)𝜇S (𝜔 ; 𝛬). For 𝛬 = 0, the above quantities become

their unperturbed counterparts 𝜀 (𝜔), 𝜇 (𝜔), and 𝑛(𝜔) =
√︁
𝜀 (𝜔)𝜇 (𝜔).
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derivation of the surface term for exterior perturbations

With the help of Eqs. (A.2), (A.3), and (A.4), we can express the analytic con-
tinuations F𝜈 (𝜔 ; 𝛬) and F𝑛 (𝜔) [note that the latter is identical to F𝜈 (𝜔 ; 0)]
as

F𝜈 (𝜔 ; 𝛬) =
∑︁
N

𝛼
(𝑛)
N (𝜔 ; 𝛬)ON [𝜀S (𝜔 ; 𝛬), 𝜇S (𝜔 ; 𝛬);𝜔], (A.5)

F𝑛 (𝜔) =
∑︁
N

𝛼
(𝑛)
N (𝜔 ; 0)ON [𝜀 (𝜔), 𝜇 (𝜔);𝜔], (A.6)

where 𝛼 (𝑛)
𝑁

(𝜔 ; 𝛬) are perturbation-dependent expansion coefficients.

evaluation of 𝛿F𝑛

Let us now evaluate 𝛿F𝑛 . We recall that it is defined as 𝛿F𝑛 = 𝜕F𝜈/𝜕𝛬|𝛬=0
= 𝜕F𝜈 (𝜔𝑛 ; 𝛬)/𝜕𝛬|𝛬=0. Using Eq. (A.5) and applying the product rule gives

𝛿F𝑛 = 𝛿X𝑛 + 𝛿Y𝑛 + 𝛿Z𝑛 , (A.7)

with

𝛿X𝑛 =
∑︁
N

𝜕

𝜕𝛬

{
𝛼
(𝑛)
N (𝜔𝑛 ;𝛬)𝐴N [𝜀S (𝜔𝑛 ;𝛬),𝜇S (𝜔𝑛 ;𝛬);𝜔𝑛]

}
𝛬=0

( √
𝜇EN (𝑛𝜔𝑛 ;r)

𝑖
√
𝜀HN (𝑛𝜔𝑛 ;r)

)
,

(A.8)

𝛿Y𝑛 =
∑︁
N

𝛼
(𝑛)
N (𝜔𝑛 ; 0)𝐴N (𝜀, 𝜇;𝜔𝑛)

©­«
𝜕
𝜕𝛬

{√︁
𝜇S (𝜔𝑛 ; 𝛬)

}
𝛬=0

EN (𝑛𝜔𝑛 ; r)

𝑖 𝜕
𝜕𝛬

{√︁
𝜀S (𝜔𝑛 ; 𝛬)

}
𝛬=0

HN (𝑛𝜔𝑛 ; r)
ª®¬ ,

(A.9)

𝛿Z𝑛 =
∑︁
N

𝛼
(𝑛)
N (𝜔𝑛 ; 0)𝐴N (𝜀, 𝜇;𝜔𝑛)

( √
𝜇 𝜕
𝜕𝛬

{
EN [𝑛S (𝜔𝑛 ; 𝛬)𝜔𝑛 ; r]

}
𝛬=0

𝑖
√
𝜀 𝜕
𝜕𝛬

{
HN [𝑛S (𝜔𝑛 ; 𝛬)𝜔𝑛 ; r]

}
𝛬=0

)
,

(A.10)

where the material parameters 𝜀, 𝜇, and 𝑛 are meant to be evaluated at 𝜔𝑛

if no explicit frequency argument is given. To avoid confusion regarding
the double meaning of 𝑛: throughout this thesis, 𝑛 in the subscript or super-
script is consistently used for the mode index, while the refractive index is
represented in normal script.

We will now tackle each of the three terms 𝛿X𝑛 , 𝛿Y𝑛 , and 𝛿Z𝑛 individually
and bring them into particular shapes that shall be useful later. Let us start

162



derivation of the surface term for exterior perturbations

with 𝛿X𝑛 . By comparing Eqs. (A.8) and (A.2), one finds that this term can be
identified as a superposition of outgoing basis functions of the unperturbed
surrounding:

𝛿X𝑛 =
∑︁
N

𝛽
(𝑛)
N ON (𝜀, 𝜇,𝜔𝑛), (A.11)

with expansion coefficients 𝛽 (𝑛)
N . For later, it is actually not important how

these expansion coefficients look like; however, for the sake of completeness,
let us mention that they read as 𝛽 (𝑛)

N = 𝜕/𝜕𝛬{. . . }𝛬=0/𝐴N (𝜖 , 𝜇;𝜔𝑛), where
{. . . }𝛬=0 denotes the expression with the curly braces in Eq. (A.8), while 𝐴N
is the same as in Eq. (A.2).

Next, we examine 𝛿YN. By explicitly writing out the 𝛬 derivatives and
comparing the expression to Eq. (A.6), one can associate this term with the
unperturbed resonant state multiplied by a simple matrix:

𝛿Y𝑛 =
1
2

(
𝛿𝜇/𝜇 0
0 𝛿𝜀/𝜀

)
F𝑛 . (A.12)

As for the other material parameters, 𝛿𝜀 and 𝛿𝜇 without frequency argument
are meant to be evaluated at 𝜔𝑛 .

Now, let us deal with 𝛿ZN. By noting that EN andHN depend on the product
𝑛S𝜔𝑛 and by applying the chain rule 𝜕/𝜕𝛬 = 𝜕𝜌/𝜕𝛬 · 𝜕/𝜕𝜌 with 𝜌 = 𝑛S𝜔𝑛 ,
we get

𝛿Z𝑛 =
∑︁
N

𝛼
(𝑛)
N (𝜔𝑛 ; 0)𝐴N (𝜀, 𝜇;𝜔𝑛)

𝑛𝜔

2

(
𝛿𝜀

𝜀
+ 𝛿𝜇

𝜇

)©­«
√
𝜇 𝜕
𝜕𝑥

{
EN (𝜌 ; r)

}
𝜌=𝑛𝜔𝑛

𝑖
√
𝜀 𝜕
𝜕𝑥

{
HN (𝜌 ; r)

}
𝜌=𝑛𝜔𝑛

ª®¬ .
(A.13)

evaluation of F ′
𝑛

In a similar way as it was done for 𝛿F𝑛 , let us now evaluate F′
𝑛 . We recall

that F′
𝑛 = 𝜕F𝑛 (𝜔)/𝜕𝜔 |𝜔=𝜔𝑛

. Using Eq. (A.6) and applying the product rule
gives

F′
𝑛 = X𝑛 + Y𝑛 + Z𝑛 , (A.14)
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with

X𝑛 =
∑︁
N

𝜕

𝜕𝜔

{
𝛼
(𝑛)
N (𝜔 ; 0)𝐴N [𝜀 (𝜔), 𝜇 (𝜔);𝜔]

}
𝜔=𝜔𝑛

( √
𝜇EN (𝑛𝜔𝑛 ; r)

𝑖
√
𝜀HN (𝑛𝜔𝑛 ; r)

)
,

(A.15)

Y𝑛 =
∑︁
N

𝛼
(𝑛)
N (𝜔𝑛 ; 0)𝐴N (𝜀, 𝜇;𝜔𝑛)

©­­«
𝜕
𝜕𝜔

{√︁
𝜇 (𝜔)

}
𝜔=𝜔𝑛

EN (𝑛𝜔𝑛 ; r)

𝑖 𝜕
𝜕𝜔

{√︁
𝜀 (𝜔)

}
𝜔=𝜔𝑛

HN (𝑛𝜔𝑛 ; r)

ª®®¬ , (A.16)

Z𝑛 =
∑︁
N

𝛼
(𝑛)
N (𝜔𝑛 ; 0)𝐴N (𝜀, 𝜇;𝜔𝑛)

©­«
√
𝜇 𝜕
𝜕𝜔

{
EN [𝑛(𝜔)𝜔𝑛 ; r]

}
𝜔=𝜔𝑛

𝑖
√
𝜀 𝜕
𝜕𝜔

{
HN [𝑛(𝜔)𝜔𝑛 ; r]

}
𝜔=𝜔𝑛

ª®¬ . (A.17)

We again examine the three terms individually. In analogy to 𝛿X𝑛 from
Eq. (A.11), we find that X𝑛 can be identified as a superposition of outgoing
basis functions of the unperturbed surrounding:

X𝑛 =
∑︁
N

𝛾
(𝑛)
N ON (𝜀, 𝜇,𝜔𝑛), (A.18)

with 𝛾 (𝑛)
N = 𝜕/𝜕𝜔{. . . }𝜔=𝜔𝑛

/𝐴N (𝜖 , 𝜇;𝜔𝑛).

Similarly as for 𝛿Y𝑛 from Eq. (A.12), we can reformulate

Y𝑛 =
1
2

(
𝜇 ′/𝜇 0
0 𝜀 ′/𝜀

)
F𝑛 , (A.19)

where the prime in 𝛿𝜀 ′ and 𝛿𝜇 ′ denotes the derivative with respect to 𝜔

at 𝜔𝑛 .

Following an analogous procedure as the one that had been applied above
to 𝛿Z𝑛 when deducing Eq. (A.12), but now with the 𝜔 derivative instead of
the 𝛬 derivative, we get:

Z𝑛 =
∑︁
N

𝛼
(𝑛)
N (𝜔𝑛 ; 0)𝐴N (𝜀, 𝜇;𝜔𝑛) (𝑛𝜔) ′ ©­«

√
𝜇 𝜕
𝜕𝑥

{
EN (𝜌 ; r)

}
𝜌=𝑛𝜔𝑛

𝑖
√
𝜀 𝜕
𝜕𝑥

{
HN (𝜌 ; r)

}
𝜌=𝑛𝜔𝑛

ª®¬ , (A.20)

where the prime in (𝑛𝜔) ′ is again used to indicate the 𝜔 derivative at 𝜔𝑛 .
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combining the results

Let us now combine the above results. Comparing Eqs. (A.13) and (A.20)
gives

𝛿Z𝑛 =
𝜂𝜔𝑛

2

(
𝛿𝜀

𝜀
+ 𝛿𝜇

𝜇

)
Z𝑛 , (A.21)

where we have defined 𝜂 = 𝑛/(𝑛𝜔) ′ for reasons of compactness.

Plugging the above expression into Eq. (A.7) and replacing Z𝑛 via Eq. (A.14)
results in

𝛿F𝑛 = 𝛿X𝑛 + 𝛿Y𝑛 +
𝜂𝜔𝑛

2

(
𝛿𝜀

𝜀
+ 𝛿𝜇

𝜇

) (
F′
𝑛 − X𝑛 − Y𝑛

)
. (A.22)

Inserting this 𝛿F𝑛 into 𝛿𝑆𝑛 from Eq. (A.1) provides

𝛿𝑆𝑛 = 𝛿𝑆𝑛 |𝛿X𝑛
+ 𝛿𝑆𝑛 |𝛿Y𝑛

+ 𝜂𝜔𝑛

2

(
𝛿𝜀

𝜀
+ 𝛿𝜇

𝜇

) (
𝛿𝑆𝑛 |F′

𝑛
− 𝛿𝑆𝑛 |X𝑛

− 𝛿𝑆𝑛 |Y𝑛

)
,

(A.23)
where 𝛿𝑆𝑛 |F is used to symbolically represent the overlap integral on the
right side of Eq. (A.1), but with 𝛿F𝑛 replaced by the quantity F.

It turns out that 𝛿𝑆𝑛 |𝛿X𝑛
= 𝛿𝑆𝑛 |X𝑛

= 0. This becomes obvious when writing
𝛿X𝑛 and X𝑛 as a superposition of ON (𝜀, 𝜇,𝜔𝑛) via Eqs. (A.11) and (A.18),
respectively, expressing F

‡
𝑛 as a superposition of O

‡
N (𝜀, 𝜇,𝜔𝑛) via the trans-

posed version of Eq. (A.6), and applying the orthogonality condition from
Eq. (2.63). We also note that 𝛿𝑆𝑛 |F′

𝑛
= 𝑆𝑛 , where 𝑆𝑛 is the surface term of the

analytical normalization, defined in Eq. (2.34). Finally, we express 𝛿Y𝑛 and
Y𝑛 via Eqs. (A.12) and (A.19), respectively, explicitly write out the integrals
𝛿𝑆𝑛 |𝛿Y𝑛

and 𝛿𝑆𝑛 |Y𝑛
, and use

∮
𝜕𝑉

𝑑S · (E‡𝑛 ×H𝑛) =
∮
𝜕𝑉

𝑑S · (E𝑛 ×H‡
𝑛) [this

follows from Eq. (2.24)] to simplify the result. Altogether, we end up with:

𝛿𝑆𝑛 =
𝜂𝜔𝑛

2

(
𝛿𝜀

𝜀
+𝛿𝜇
𝜇

)
𝑆𝑛 +

𝑖𝜂𝛽𝑐

2

∮
𝜕𝑉

𝑑S · (E‡𝑛 ×H𝑛), (A.24)

where we have introduced the abbreviation 𝛽 = [(𝜔𝜇) ′𝛿𝜀 − (𝜔𝜀) ′𝛿𝜇] /𝜀𝜇.
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B
DETA I L S ABOU T THE V I SUAL I ZAT IONS

Here, we provide details on how the three-dimensional visualizations from
Figs. 4.4, 5.3 and 5.6 were created.

The fields and the “shift per volume” densities were displayed on selectively
chosen slices through the antennas. The slice plots were generated from
simulation data and then incorporated into a three-dimensional model of
the structure, which had been created with the open-source graphics suite
Blender1 . The transparency (i.e., the alpha channel of the RGBA color space
that is used here) of each slice plot is proportional to the magnitude of the
displayed value. The slice positions were selected such that all relevant
features are visible: For the field plot of the rod antenna, the slices are at half
of the antenna’s width and height; for the corresponding “shift per volume”
plot, they are at one quarter and three quarters of the antenna’s width and
height; for the plots of the 𝛺 antenna, they are at half the 𝛺 ’s width and
length.

1 See https://www.blender.org.
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C
DETA I L S ABOU T THE CH IRAL - S ENS ING EXAMPLE S

c.1 additional figures

This section contains additional figures, supporting the claims in Chapter 5.
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FigureC.1.Unperturbed elements of the scattering matrix 𝑆MN of the rod antennas.
Each element is represented by its absolute value and its phase. For comparison,
we plot both the approximation via the resonant state theory [i.e., Eq. 2.76] and
the results of exact full-wave calculations. We consider two input channels: A
left-handed circularly polarized (LCP) plane wave and a right-handed circularly
polarized (RCP) plane wave, which impinge from the top onto the periodic array of
antennas. The propagation angle is normal to the plane of periodicity. This scenario
reflects the typical experimental situation. As output channels, we consider left-
and right-handed circularly polarized plane waves that leave the system in top and
bottom direction, again with a normal propagation angle. One might wonder why
the periodic system has only four output channels to the far field. This comes from
the fact that the system is operated in an energy range below the opening of the
first diffraction orders. At higher energies, the opening of diffraction orders will
provide additional energy-carrying output channels, which correspond to plane
waves that leave the system under discrete oblique propagation angles [45].
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Figure C.2. Change of the scattering-matrix elements 𝛿𝑆MN of the rod antennas
with top incidence due to chiral media patches at each end. As in Fig. 5.2(b), the lines
depict the results of our perturbation theory (total signal, as well as the separation
into individual contributions), while the dots have been obtained from exact full-
wave calculations. Note that the (1,2) and the (2,1) matrix components have an
absolute value close to zero and hence their phase term is governed by numerical
noise. As it can be seen, the shift contribution is zero in all components.
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Figure C.3. Change of the scattering-matrix elements 𝛿𝑆MN of the rod antennas
with top incidence due to chiral media patches distributed over chiral hotspots. In
order to enforce a resonance shift in the rod antennas, we take the chiral medium
from the end of the antennas [cf. Fig 5.3(b) and Fig. C.2] and redistribute it over
the regions with positive “shift per volume” values [red spots in Fig. 5.3(b)]. As it
can be seen, this configuration results in a nonzero shift contribution in all matrix
elements.
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Figure C.4. Optical 𝛥CD response of the rod antennas with top incidence in
the case that the chiral medium is distributed over chiral hotspots. Remarkably,
although all matrix elements in Fig. C.3 exhibit a nonzero shift contribution, the
shift contribution in the𝛥CD spectrum remains zero. At first glance this might seem
surprising; however, it can be understood by noting that the shift contributions
in the matrix are symmetric such that they affect left-handed and right-handed
circularly polarized input the same way and hence cancel out each other in the
𝛥CD signal.
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Figure C.5. Unperturbed scattering-matrix elements 𝑆MN of the 𝛺 antennas with
top incidence.
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Figure C.6. Change of the scattering-matrix elements 𝛿𝑆MN of the 𝛺 antennas
with top incidence due to chiral media patches in their centers.
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Figure C.7. Results from Fig 5.8, but with the energy range on the x axis extended
such that resonant state 3 is visible. Note, however, that for high photon energies,
the prediction of the perturbation theory is not so accurate when considering only
these three resonant states, since the spectrum is influenced by the nearby Rayleigh
anomaly [99] at 1864.4 meV [given as ℎ𝑐/(𝑛water𝑃), where ℎ is the Planck constant,
𝑛water is the surrounding refractive index, and 𝑃 is the period of the antenna array],
which effectively acts as an ensemble of additional resonant states [89, 229].
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c.2 calculation of 𝛥CD from the scattering matrices

This section provides the details on how the𝛥CD signal and its contributions
were calculated from the scattering matrices 𝑆MN and 𝛿𝑆MN. The 𝛥CD signal
was defined as

𝛥CD = CD𝜅 − CD0, (C.1)

where CD𝜅 and CD0 represent the circular dichroism signals of the resonator
with and without𝜅 , respectively. The circular dichroism signals were defined
as the absorption difference between left-handed circularly polarized (LCP)
and right-handed circularly polarized (RCP) polarized light. The incidence
directionwas taken from the top. Under this definition, the circular dichroism
signals are related to the scattering matrices via

CD0 =

(
1 −

∑︁
M

��𝑆M,LCP top
��2)︸                     ︷︷                     ︸

Absorption for LCP top input

−
(
1 −

∑︁
M

��𝑆M,RCP top
��2)︸                     ︷︷                     ︸

Absorption for RCP top input

(C.2)

and

CD𝜅 =

(
1−

∑︁
M

��𝑆M,LCP top+𝛿𝑆M,LCP top
��2)︸                                   ︷︷                                   ︸

Absorption for LCP top input

−
(
1−

∑︁
M

��𝑆M,RCP top+𝛿𝑆M,RCP top
��2)︸                                   ︷︷                                   ︸

Absorption for RCP top input

,

(C.3)
where the sum goes over all energy-carrying output channelsM. The con-
tributions of the 𝛥CD signal were defined as

𝛥CDx = 𝛥CD
��
𝛿𝑆MN=𝛿𝑆

x
MN

, (C.4)

where x = {nr, ex, em, shift, cross}.

In the end, let us consider the case |𝛿𝑆MN | ≪ |𝑆MN |. With very few ex-
ceptions, this condition is automatically fulfilled in scenarios, where the
first-order perturbation theory is applicable. In particular, this condition
holds for all example systems discussed in this work. Under the above as-
sumption, Eqs. (C.1) to (C.4) simplify to more intuitive expressions:

𝛥CD≈
∑︁
M

2 Re
(
𝑆∗M,RCP top𝛿𝑆M,RCP top

)
−
∑︁
M

2 Re
(
𝑆∗M,LCP top𝛿𝑆M,LCP top

)
,

(C.5)
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𝛥CDx≈
∑︁
M

2 Re
(
𝑆∗M,RCP top𝛿𝑆

x
M,RCP top

)
−
∑︁
M

2 Re
(
𝑆∗M,LCP top𝛿𝑆

x
M,LCP top

)
.

(C.6)
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D
DYE POS I T IONS IN THE DNA SL IDER SY STEM

In the following, we provide details about the dye positions that were as-
sumed in the calculations for the DNA slider from Fig. 6.16.

As shown in Fig. 6.15, the DNA slider consists of two parallel DNA origami
filaments with a distance of 12 nm. Based on this value and the geometry
of the structure in state ‘0’, we assume that the dyes are bound to single
stranded DNA with a length of 6 nm. The location at which the single DNA
strands are attached to the DNA origami filaments is explained in Fig. 6.15.
Since those single DNA strands are highly flexible, there is an uncertainty of
the dye position. The single stranded DNA has a length of 26 nucleotides. In
order to keep the model simple, it is assumed that the strands are standing
perpendicular to the origami filaments. This configuration will be henceforth
referred to as unbound state.

When the two dyes come close to each other, the DNA strands can stick
together via a transient binding and form a bound state. In this transient
binding, the expected distance of the two strands is about 2 nm. However;
since the dyes do actually not sit directly at the end of the single DNA
strands, but are connected to them by linkers of estimated length 2 nm,
there is an additional source for position uncertainty. It was assumed that
the effective distance between the donor and the acceptor in the bound state
is about 5 nm.

As shown in Fig. 6.16(a), the DNA slider has five different sliding states.
Figure D.1 depicts the dye positions that were used in the simulation to
represent the individual sliding states. In order to quantitatively describe
the positions, a coordinate system is depicted, with the origin corresponding
to the center of the nanoparticle (diameter 10 nm). The coordinates can
be found in Table D.1, together with the corresponding distance between
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Figure D.1. Dye positions during the individual sliding states. There are two
parallel DNA origami filaments with a distance of 12 nm. The dyes are connected to
the filaments by single DNA strands of length 6 nm. The dye positions that are used
in the calculation are drawn into a coordinate system with the origin being chosen
as the center of the nanoparticle. The coordinates can be found in Table D.1. The ‘−2’
and ‘2’ sliding states were described with the DNA strands standing perpendicular
to the filaments. This configuration is referred to as unbound state. For the ‘0’
sliding states, it was assumed that the dyes form a bound state with a distance of
5 nm between the donor and the acceptor, due to a transient binding of the single
DNA strands. The ‘−1’ and ‘1’ sliding state were modeled as a 50%:50% distribution
of dye pairs in a bound state and dye pairs in an unbound state.

the dye and the nanoparticle (labeled as Dye-NP) and the corresponding
distance between the two dyes (labeled as D-A).

In the ‘−2’ and ‘2’ sliding states, the dyes are very far apart, so they cannot
form a bound state. Hence, those sliding states were modeled as an unbound
state with the dyes standing perpendicular to the origami filaments. In the
‘0’ sliding state, the dyes are very close to each other and a transient binding
is highly likely. Hence, this sliding state was modeled as a bound state with
a distance of 5 nm, as explained above. The ‘−1’ and ‘1’ sliding states are
slightly more complicated: Due to the intermediate distance, it is expected
to be possible that the dyes can be in a bound state as well as in an unbound
state. Note that in the ‘−1’ and ‘1’ state, the sliding displacement is 14 nm
and geometrical considerations would hence suggest that the single DNA
strands with expected length of 6 nm are not long enough to form a bound
state. However, it is known that the single DNA strands are stretchable and
can in fact be longer than 6 nm. In the simulation, we found, that neither
the assumption that all dyes are in an unbound state, nor the assumption
that all dyes are in a bound state can explain the experimental results. For
an unbound state, with the DNA strands standing perpendicular to the
filaments, the distance between the donor and the acceptor is 14 nm, which
is much larger than the Förster radius. In this case, the calculated acceptor
intensity is close to zero. For a bound state, the calculation yields an acceptor
intensity that is comparable to the one in the ‘0’ sliding state (only slightly

180



dye positions in the dna slider system

altered by the different quenching of donor and acceptor compared to the
‘0’ sliding state). In the experiment, the acceptor intensity in the ‘−1’ and
‘1’ sliding states is in between the one from the ‘0’ and the one from the
-2’ and ‘2’ sliding states. For this reason, it was concluded that there is a
combination of dye pairs in a bound state and dye pairs in an unbound state.
Since no exact ratio is known, it was assumed that both states are equally
likely (50%:50% distribution).

Table D.1. Dye positions as drawn in Fig. D.1. For each sliding state, the table lists
the sliding displacement (displ.), the coordinates of donor and acceptor, the distance
of the individual dye to the surface of the nanoparticle (labeled as Dye-NP) and the
distance between the donor and the acceptor (labeled as A-D). All distances are
given in nm. The ‘−1’ and ‘1’ sliding states are special in a sense that for them, it is
assumed that there is a 50%:50% distribution of two different dye configurations.
State Displ. Donor Acceptor D-A

x z Dye-NP x z Dye-NP
-2 -28 -2.0 0.0 8.0 26.0 0.0 36.0 28.0
-1 -14 50% 5.0 0.0 15.0 19.0 0.0 29.0 14.0

50% 10.1 1.6 20.2 13.9 -1.6 24.0 5.0
0 0 12.0 2.5 22.1 12.0 -2.5 22.1 5.0
1 14 50% 19.0 0.0 29.0 5.0 0.0 15.0 14.0

50% 13.9 1.6 24.0 10.1 -1.6 20.2 5.0
2 28 26.0 0.0 36.0 -2.0 0.0 8.0 28.0
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