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Abstract
Coupled free-flow and porous-medium flow systems occur in nature
as well as in a wide range of technical applications, for example,
groundwater filtration or water management in fuel cells. The free
flow is typically described by the Stokes equations and the flow
through the porous medium by Darcy’s law. One of the major chal-
lenges in modeling such flow systems is the accurate coupling of both
mathematical models across the fluid–porous interface. Traditional
coupling concepts are developed for unidirectional flows, parallel or
perpendicular to the porous layer, however, they are not applicable if
arbitrary flow directions occur, such as in industrial filtration. This
fact significantly restricts the amount of applications that can be
accurately modeled. Therefore, new interface conditions accounting
for arbitrary flows in Stokes–Darcy systems are needed.
In this dissertation, we develop generalized coupling conditions that
are valid for arbitrary flow directions to the fluid–porous interface.
These conditions are rigorously derived using homogenization with
two-scale asymptotic expansions and boundary layer theory. All
coefficients appearing in the generalized interface conditions are
computed based on the pore geometry in the vicinity of the interface.
This is a great advantage over the traditionally applied coupling
conditions, which are limited to unidirectional flows and contain
unknown model parameters that must be fitted before the conditions
can be used in numerical simulations. We derive the variational
formulation of the Stokes–Darcy problem with the newly derived
coupling conditions and prove existence and uniqueness of a weak
solution. We develop a finite volume discretization scheme to solve
the coupled problem numerically and employ finite element methods
to compute all effective model parameters and to solve the pore-
scale problem. To validate the generalized coupling conditions we
compare microscale and macroscale numerical simulation results. We
demonstrate that the derived interface conditions are more accurate
than the classical conditions in case of unidirectional flows, and that
they are valid in case of arbitrary flow directions to the interface,
whereas the classical conditions fail.
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Abstract

Coupled free-flow and porous-medium flow systems occur in nature as
well as in a wide range of technical applications, for example, groundwater
filtration or water management in fuel cells. The free flow is typically de-
scribed by the Stokes equations and the flow through the porous medium
by Darcy’s law. One of the major challenges in modeling such flow sys-
tems is the accurate coupling of both mathematical models across the
fluid–porous interface. Traditional coupling concepts are developed for
unidirectional flows, parallel or perpendicular to the porous layer, how-
ever, they are not applicable if arbitrary flow directions occur, such as in
industrial filtration. This fact significantly restricts the amount of applica-
tions that can be accurately modeled. Therefore, new interface conditions
accounting for arbitrary flows in Stokes–Darcy systems are needed.

In this dissertation, we develop generalized coupling conditions that are
valid for arbitrary flow directions to the fluid–porous interface. These
conditions are rigorously derived using homogenization with two-scale
asymptotic expansions and boundary layer theory. All coefficients ap-
pearing in the generalized interface conditions are computed based on the
pore geometry in the vicinity of the interface. This is a great advantage
over the traditionally applied coupling conditions, which are limited to
unidirectional flows and contain unknown model parameters that must
be fitted before the conditions can be used in numerical simulations. We
derive the variational formulation of the Stokes–Darcy problem with the
newly derived coupling conditions and prove existence and uniqueness
of a weak solution. We develop a finite volume discretization scheme to
solve the coupled problem numerically and employ finite element meth-
ods to compute all effective model parameters and to solve the pore-scale
problem. To validate the generalized coupling conditions we compare
microscale and macroscale numerical simulation results. We demonstrate
that the derived interface conditions are more accurate than the classi-
cal conditions in case of unidirectional flows, and that they are valid in
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case of arbitrary flow directions to the interface, whereas the classical
conditions fail.

Zusammenfassung

Gekoppelte Systeme von freier Strömung und Strömung durch poröses
Medium kommen sowohl in der Natur als auch in einer Vielzahl von tech-
nischen Anwendungen vor, beispielsweise bei der Grundwasserfiltration
oder der Wasserfiltration in Brennstoffzellen. Die freie Strömung wird üb-
licherweise durch die Stokes-Gleichungen beschrieben und die Strömung
durch das poröses Medium mithilfe des Darcy-Gesetzes. Eine der größten
Herausforderungen bei der Modellierung solcher Strömungssysteme ist
die physikalisch korrekte Kopplung der beiden mathematischen Modelle
an der Grenzfläche zwischen freier Strömung und poröser Schicht. Tradi-
tionelle Kopplungskonzepte wurden für unidirektionale Strömungen ent-
wickelt, die parallel oder senkrecht zur Grenzfläche verlaufen. Allerdings
sind diese Konzepte nicht für beliebige Strömungsrichtungen, welche
zum Beispiel bei industriellen Filtrationsprozessen auftreten, anwend-
bar. Diese Tatsache beschränkt die Anwendungsmöglichkeiten erheblich.
Daher werden neue Kopplungsbedingungen für Stokes–Darcy-Probleme
benötigt, die für beliebige Strömungsrichtungen gültig sind.

In dieser Dissertation entwickeln wir verallgemeinerte Kopplungsbedin-
gungen, die für Strömungen mit beliebiger Richtung zur Grenzfläche
zwischen freier Strömung und porösem Medium gelten. Diese Bedingun-
gen werden mithilfe von Homogenisierung und der Grenzschichttheorie
rigoros hergeleitet. Die Koeffizienten, die in den verallgemeinerten Kopp-
lungsbedingungen erscheinen, werden anhand der Porengeometrie in der
Nähe der Grenzfläche berechnet. Dies ist ein enormer Vorteil gegenüber
den traditionell verwendeten Kopplungsbedingungen, die auf unidirek-
tionale Strömungen beschränkt sind und unbekannte Modellparameter
enthalten, welche bestimmt werden müssen bevor die Bedingungen in
numerischen Simulationen verwendet werden können. Wir leiten die
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schwache Formulierung des Stokes–Darcy-Problems mit den neu entwi-
ckelten Kopplungsbedingungen her und beweisen Existenz und Eindeutig-
keit einer schwachen Lösung. Zur numerischen Lösung des gekoppelten
Problems entwickeln wir eine Finite-Volumen-Diskretisierung und zur
Berechnung der effektiven Modellparameter sowie zur Lösung des Po-
renskalenproblems verwenden wir die Finite-Elemente-Methode. Um die
verallgemeinerten Kopplungsbedingungen zu validieren, vergleichen wir
numerische Simulationsergebnisse auf der Poren- und Makroskala. Wir
zeigen, dass die hergeleiteten Kopplungsbedingungen präziser sind als
die klassischen Bedingungen im Falle unidirektionaler Strömungen und,
dass sie für beliebige Strömungsrichtungen zur Grenzfläche geeignet sind,
im Gegensatz zu den klassischen Kopplungsbedingungen.
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Abbreviations
𝐹 𝑟 Froude number
𝑅𝑒 Reynolds number
DD domain decomposition
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FEM finite element method
FVM finite volume method
LBM lattice Boltzmann method
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PDE partial differential equation
REV representative elementary volume

Greek letters
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𝜇 dynamic viscosity
𝜌 mass density
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Σbot interface between transition zone and porous medium
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ℎ height of the free-flow region Ωff
𝒉 prescribed stress on Γff,𝑁
𝐻tot total dimensional height of the coupled domain Ωff ∪ Ωpm
𝗜 identity tensor
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by (2.79)
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𝑴 𝑗,bl boundary layer constant, defined in (3.45)
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𝜔 boundary layer constant, defined in (3.47)
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𝑝 prescribed pressure on Γpm,𝐷
𝑃 𝜀 pressure error function
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𝑟 𝜀 radius of solid inclusion within computational domain Ω,

𝑟 𝜀 = 𝜀𝑟
𝑆 interface within the boundary layer stripe 𝑍bl

𝑆𝜀 amount of solid obstacles in the nondimensional setting
𝑆𝑎 interface 𝑆 positioned at distance 𝑎 above the solid inclusions
𝗧 general notation for the stress tensor (symmetric/nonsym-

metric)
𝑼 𝜀 velocity error function
V characteristic velocity
𝑣 prescribed velocity on Γpm,𝑁
𝒗 prescribed velocity on Γff,𝐷
𝒗 fluid velocity
𝑊 dimensional length of coupled domain Ωff ∪ Ωpm
𝒙 (slow) spatial variable
𝒚 (fast) spatial variable, 𝒚 = 𝒙/𝜀
𝑌 unit cell, 𝑌 = (0, 1)2
𝑌f fluid part of unit cell 𝑌
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𝑍bl boundary layer stripe, 𝑍bl = 𝑍+ ∪ 𝑍−
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Introduction 1
Coupled free-flow and porous-medium systems appear in many technical
applications, biological and environmental settings. Examples in the con-
text of technical applications include water/gas management in fuel cells,
industrial filtration, drying of food, wood or other wet porous materi-
als [18, 46, 77, 79, 116, 158]. Exchange processes between body tissues and
blood vessels such as nutrient transport or drug delivery are determined
by coupled fluid flows within the human body [37, 57, 131, 148, 166]. Evap-
oration from soil, surface water influenced by wind or precipitation of salt
in drying porous materials are examples for soil-atmospheric processes
arising from the environmental interaction of free fluid flows with porous
media [14, 58, 83, 85, 129]. Due to their importance for industry, biology
and environment, coupled free-flow and porous-medium systems have
become a topic of high research activity. Especially in the last two decades
many theoretical, experimental and numerical investigations have been
made to better understand the complex flow and transport phenomena in
coupled systems.

Physical processes in the free-flow region and the porous medium evolve
on different spatial scales (microscale, macroscale). Due to this multiscale
nature, development of mathematical and numerical models for coupled
flow systems is challenging. At the microscale (pore scale), the pore
geometry of the porous medium is resolved, and the entire flow region
consists of the free-flow region and the pore space of the porous medium
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.

free flow

pore
space

free flow

porous medium

interface

Figure 1.1: Coupled flow system at the pore scale (left) and the
macroscale (right).

(Figure 1.1, left). Experimental works are based on the pore scale, e.g.,
measurement techniques such as (fluorescent) particle image velocimetry
are used to obtain pore-scale velocity and pressure fields [11, 12]. From the
modeling and numerical side, one system of equations is solved in the fully
resolved flow domain. In the most general case the Navier–Stokes equa-
tions with the no-slip condition on the boundaries of the solid obstacles
are used to model the fluid flow at the pore scale. For steady-state creep-
ing flows (low Reynolds number) the Navier–Stokes equations reduce
to the Stokes equations. However, pore-scale resolved simulations are
often infeasible for practical applications due to two main reasons. First,
the exact pore geometry is usually unknown, except if it is reconstructed
by means of imaging techniques [19, 20, 121, 150, 164], or if the porous
medium is artificially produced [76, 151] using, e.g., the software GeoDict
(www.geodict.com). Second, even if the microscale structure of the flow
domain is available, resolving the detailed pore geometry and performing
pore-scale simulations is computationally very expensive. Hence, such
simulations are feasible for rather small computational domains only, if at
all. Therefore, in order to overcome the enormous computational demand
when solving the problems at the pore scale, an average representation
(macroscale model) of the flow and transport phenomena in coupled sys-
tems based on the concept of a representative elementary volume (REV)
is required.

At the macroscale (REV scale) the free-flow region and the porous medium
are treated as two continuum flow domains separated by an interface

www.geodict.com
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(Figure 1.1, right), which can be a sharp interface or a transition zone.
Macroscale flow models are obtained by upscaling the microscale equa-
tions, thus, they include the pore-scale information and account for mi-
croscale quantities and processes in an averaged sense [2, 56, 74, 95,
163]. There exist two different approaches to handle the coupling of
free-flow and porous-medium flow from a macroscale perspective: the
single-domain and the two-domain approach.

In the single-domain approach, first introduced in [26, 125], the free-flow
region and the porous medium are considered as a continuum flow domain
where one set of equations is supposed to be valid. The momentum
transport is usually governed by the Brinkman equation [26], which
requires the determination of effective properties such as permeability,
porosity and effective viscosity both inside the free-flow region and in the
porous medium. The transition between the two flow domains is either
realized via a sharp lower-dimensional interface or an equi-dimensional
transition zone presented in Figure 1.2, where the models F, P and T are
based on the same flow equations with different coefficients. In the first
case, effective coefficients are discontinuous across the sharp fluid–porous
interface, and in the second case, the coefficients vary continuously within
the transition zone between the free-flow domain and the porous medium.
The single-domain approach has been widely used in numerical studies
for practical aspects due to its advantage that continuity of velocity and
stress are automatically satisfied. Thus, no explicit coupling conditions
are needed. However, the determination of the effective parameters, that
highly affects the overall behavior of the coupled flow system, is very
challenging [73]. A further difficulty is the determination of the transition
zone thickness. For simplicity, this unknown model parameter is typically
assumed to be of the same order as the solid obstacles [10, 36, 72, 133].

Considering the two-domain approach, the free-flow region and the
porous-medium domain are treated as two different continua and in each
flow domain a different model is used to describe the fluid flow (models
F and P in Figure 1.2). The two flow models are typically coupled via
appropriate boundary conditions at a sharp fluid–porous interface (Fig-
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free flow

porous medium

sharp interface

model F

model P

free flow

porous medium

model F

model P

transition zone model T

Figure 1.2: Schematic representation of the macroscopic two-domain
approach with a sharp interface (left) and with a transition re-
gion (right).

ure 1.2, left). Alternatively, as for the single-domain approach, a transition
zone between the free-flow region and the porous medium is considered
(Figure 1.2, right). In this case, a third flow model T in form of transition
region equations is needed [73, 84, 94, 126]. The two-domain approach has
the advantage that no spatial variation of any physical parameters needs
to be described. However, the challenging task is to find effective bound-
ary conditions to couple the different flow models such that the complex
transfer processes at the interface are represented appropriately.

In the literature, there exist several mathematical models to describe fluid
flows in the two flow domains depending on the application of interest.
In the most general case, the Navier–Stokes equations are used in the
free-flow domain, while the fluid flow in the porous medium is described
by multiphase Darcy’s law [87, 130]. For low Reynolds numbers when the
fluid flow is dominated by viscous forces, the Navier–Stokes equations can
be simplified to the Stokes equations. For coupled flow problems, where
the vertical length scale is much smaller than the horizontal one, e.g., when
simulating ocean flows in coastal regions, the shallow water equations can
be used to model the free flow [159]. These equations are obtained from
averaging the Navier–Stokes equations over the depth of the free-flow
domain. There exist several modifications of the shallow water equations
which can be used to model surface flows, for example, the dynamic wave
equation or the kinematic wave equation [41, 103, 113, 149, 159]. The
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latter is used to model one-dimensional water flows where inertial and
pressure forces are negligible, e.g., in case of overland flows on plane
surfaces [113]. The porous medium is often assumed to be fully saturated
and the single-phase Darcy law [43] instead of its multiphase version is
applied to describe the subsurface flow. Other alternative porous-medium
flow models are the Forchheimer law [61] in case of high velocities, the
Brinkman equation [26, 54] for porous media with high porosity 𝜙 > 0.95
or the Richards equation [128, 130, 134] in case of unsaturated porous
media.

In this dissertation, we consider laminar, steady-state flows of a single
viscous fluid phase in coupled free-flow and porous-medium systems.
We use the two-domain approach with a sharp interface (Figure 1.2, left),
where the free flow is described by the Stokes equations and in the porous
medium by the single-phase Darcy law. This combination of flowmodels is
the most widely used one in the literature both for mathematical modeling,
analysis and numerical simulations of realistic applications, e.g., [15, 30, 50,
EE4, 71, 95, 106, 107, 127]. Since the two mathematical models are systems
of partial differential equations (PDE) of different orders, the formulation
of appropriate coupling conditions at the fluid–porous interface is very
challenging. Already in the 1960s, Beavers and Joseph [15] postulated
a coupling condition for the tangential velocity component based on
experimental observations of a Poiseuille flow over a porous bed. The
classical set of interface conditions consisting of the conservation of
mass across the interface, the balance of normal forces and the Beavers–
Joseph coupling condition [15] or one of its modifications is typically
used for analysis of the Stokes–Darcy problem as well as in numerical
simulations of coupled flow systems. However, the classical conditions
are restricted to flows parallel to the fluid–porous interface [10, EE3, EE4,
152, 165]. Alternative coupling concepts available in the literature, that
are supposed to account for arbitrary (multidimensional) flows in Stokes–
Darcy systems, i.e., for fluid flows neither parallel nor perpendicular to the
interface, are either only theoretically derived and contain undetermined
parameters [10] or are not validated for arbitrary flow directions [105, 123,
152]. An exception is the coupling concept recently developed in [EE4]
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that is also one of the key results of this dissertation.

The main objectives of this thesis are the i) rigorous derivation of gener-
alized interface conditions, that are free of undetermined parameters and
applicable for multidimensional flows in Stokes–Darcy systems; ii) analy-
sis of the resulting coupled macroscale problem; and iii) validation of the
derived conditions using pore-scale resolved simulations.

Outline of the thesis

In the first chapter, we highlighted the relevance of coupled free-flow and
porous-medium systems for industry, biology and environment, provided
an overview of different modeling approaches for such coupled systems
and motivated the research topic of the thesis.

In Chapter 2, we present the state of the art related to coupled Stokes–
Darcy problems. In Section 2.1, we specify the assumptions on the flow,
the fluid and the porous medium and provide the underlying flow system
description at the pore scale. The Stokes and Darcy subdomain models
for the macroscale problem formulation are presented and existing cou-
pling concepts are evaluated concerning their advantages and drawbacks.
In Section 2.2, we give an overview of existing numerical methods, an-
alytical results and model validation with respect to the Stokes–Darcy
problem. An introduction to the theory of periodic homogenization and
boundary layers is provided in Section 2.3, where examples from the
literature are used in order to explain the main ideas of this averaging
strategy for upscaling pore-scale equations.

Generalized coupling conditions valid for arbitrary flows in Stokes–Darcy
systems are rigorously derived via periodic homogenization with bound-
ary layer theory in Chapter 3. The derivation procedure is divided in
several steps presented in Section 3.1. In Section 3.2, the dimensional form
of the derived interface condition is given, the freedom in positioning the
sharp interface is discussed and a comparison to the classical coupling
conditions is provided.
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Chapter 4 focuses on numerical methods for coupled flow problems. In
Section 4.1, we present the numerical solution of the pore-scale resolved
model and in Section 4.2, we provide the implementation of the coupled
Stokes–Darcy problem. The computation of effective properties for the
macroscale model is discussed in Section 4.3.

In Chapter 5, the Stokes–Darcy problem with the newly derived inter-
face conditions from Chapter 3 is analyzed with respect to existence
and uniqueness of its solution. In Section 5.1, we provide the problem
setting including geometrical assumptions and boundary conditions for
the coupled Stokes–Darcy problem, and we derive the corresponding
weak formulation. In Section 5.2, we prove the well-posedness of the
Stokes–Darcy problem with the generalized interface conditions under
a suitable relationship between the permeability and two effective con-
stants appearing in the coupling conditions. The obtained result is then
numerically analyzed with respect to its applicability for realistic problems
in Section 5.3.

Chapter 6 is devoted to model validation and calibration using pore-scale
resolved simulations. In Section 6.1, we validate the Stokes–Darcy model
with the classical coupling conditions for unidirectional flows, i.e., parallel
or perpendicular to the porous layer. The unsuitability of the classical
interface conditions for arbitrary flow directions to the porous medium is
demonstrated in Section 6.2. The generalized coupling conditions derived
in Chapter 3 are validated in Section 6.3 for various flow problems with
different flow directions to the interface.

We close the thesis with the conclusions, where we summarize the re-
sults of the thesis and discuss the perspectives for further development
and improvement of the mathematical models, numerical schemes and
analytical results.
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In this chapter, we first provide the mathematical models to describe
the fluid flow in coupled systems at the micro- and macroscale. For the
macroscopic flow description, we use the two-domain modeling approach
with a sharp fluid–porous interface and consider the Stokes equations
in the free-flow region and Darcy’s law in the porous medium. The
underlying pore-scale model is needed for the derivation of effective
coupling conditions and the numerical validation of macroscale models.
Second, a review on analytical results, numerical methods and model
validation is presented for the coupled Stokes–Darcy problem. In the
third part of this chapter, the main ideas of periodic homogenization
and boundary layer theory are presented based on examples from the
literature since these averaging techniques are later used in Chapter 3 for
the derivation of generalized interface conditions.

2.1 Mathematical modeling of coupled problems

In this thesis, we consider single-phase fluid flows in coupled free-flow
and porous-medium systems. We assume the fluid to be incompressible,
to have constant viscosity and to fully saturate the porous medium. The
temperature is supposed to be constant, and the fluid phase is considered to
be composed of a single chemical species (component) such that no energy
balance and no compositional effects need to be modeled. Moreover, we
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−𝜇Δ𝒗 + ∇𝑝 = 𝜌𝒈
∇⋅𝒗 = 0

Ωps Ωff

Ωpm

Σ

−𝜇Δ𝒗ff + ∇𝑝ff = 𝜌𝒈
∇⋅𝒗ff = 0

−∇⋅ (𝗞𝜇 ∇𝑝
pm − 𝜌𝒈) = 0

interface conditions

𝒏

𝝉

Figure 2.1: Pore-scale model (left) and macroscale coupled Stokes–
Darcy model (right).

consider the porous medium to be rigid and nondeformable leading to
a constant porosity. The fluid flow is supposed to be slow and laminar
characterized by a low Reynolds number 𝑅𝑒 ≪ 1, i.e., the viscous forces
dominate the advective inertial forces. The Reynolds number is given by
the following formula

𝑅𝑒 =
𝜌VL
𝜇

, (2.1)

where 𝜌 is the fluid density, 𝜇 is the dynamic viscosity, V and L are
characteristic velocity and length, respectively.

From the pore-scale perspective (Figure 2.1, left), the entire flow domain
Ωps = Ωff ∪ Ωps

pm ⊂ R𝑑 consists of the free-flow region Ωff ⊂ R𝑑 and the
pore space Ωps

pm ⊂ R𝑑 of the porous medium, where 𝑑 = 2, 3 denotes the
number of space dimensions. In this case, the fluid flow in the perforated
domainΩps is described by one set of partial differential equations, namely
the Stokes equations. At the macroscale, we consider the free-flow region
Ωff ⊂ R𝑑 and the porous medium Ωpm ⊂ R𝑑 as two different continuum
flow domains which are separated by a sharp fluid–porous interface
Σ = Ωff ∩ Ωpm (Figure 2.1, right). The latter is void of thermodynamic
properties, i.e., it cannot store or transport any mass and momentum. In
this case, the flow in the two subdomains is described by two different
sets of equations (Stokes and Darcy equations), which need to be coupled
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at the fluid–porous interface.

In Section 2.1.1, based on the given assumptions above, we present the
pore-scale model describing the fluid flow in the microscopic domain Ωps.
It consists of the Stokes equations with the no-slip condition on the bound-
aries of the solid obstacles. In Section 2.1.2, we provide the macroscale
Stokes and Darcy flow equations in the two subdomains Ωff and Ωpm and,
in Section 2.1.3, we present different sets of interface conditions that are
available in the literature.

2.1.1 Pore-scale model

Under the assumptions on the fluid, the porous medium and the flow,
prescribed in the beginning of this section, the stationary Stokes equations
are used to model the fluid motion in the perforated domain Ωps:

−∇⋅𝗧(𝒗, 𝑝) = 𝜌𝒈 in Ωps , (2.2)

∇⋅𝒗 = 0 in Ωps . (2.3)

Here, 𝗧 (𝒗, 𝑝) denotes the stress tensor, 𝒗 and 𝑝 are the fluid velocity and
pressure and 𝒈 is the gravitational acceleration. The stress tensor can be
either considered in its nonsymmetric form 𝗧 (𝒗, 𝑝) = 𝜇∇𝒗 − 𝑝𝗜, or in its
symmetrized version𝗧 (𝒗, 𝑝) = 2𝜇𝗗(𝒗)−𝑝𝗜, where𝗗(𝒗) = 1

2 (∇𝒗 + (∇𝒗)⊤)
is the rate of strain tensor and 𝗜 is the identity tensor. In addition to
the mass and momentum balance equations (2.3) and (2.2), the no-slip
condition is applied on the boundary of the solid inclusions

𝒗 = 𝟎 on 𝜕Ωps ⧵ 𝜕Ω , (2.4)

where Ω = Ωff ∪ Ωpm. Making use of the incompressibility condition (2.3)
and the fact that 𝜇 is constant, the momentum conservation equation (2.2)
can be reformulated as follows

−𝜇Δ𝒗 + ∇𝑝 = 𝜌𝒈 in Ωps . (2.5)
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In order to obtain a closed problem formulation conditions on the external
boundary need to be set. We impose the following boundary conditions
on 𝜕Ω:

𝒗 = 𝒗 on Γ𝐷 , 𝗧(𝒗, 𝑝)𝒏 = 𝒉 on Γ𝑁 , (2.6)

where 𝒗 and 𝒉 are given functions and 𝒏 is the unit normal vector on
𝜕Ω = Γ𝐷 ∪ Γ𝑁 pointing outward the domain Ω.

As already mentioned, the microscale model is used for the derivation
of effective interface conditions and for model validation, however, for
practical applications it is often infeasible or rather impossible to solve the
pore-scale problem (2.2)–(2.4). Therefore, macroscale models presented
in Sections 2.1.2 and 2.1.3 are needed.

2.1.2 Subdomain models

In this section, we present the two subdomain models, which are used
within this thesis to describe the fluid flow in the free-flow region and in
the porous–medium domain, respectively. Effective coupling conditions
at the fluid porous–interface are provided in Section 2.1.3.

Free-flow model

To model the fluid flow in the free-flow region Ωff we use the stationary
Stokes equations

−∇⋅𝗧 (𝒗ff, 𝑝ff) = 𝜌𝒈 in Ωff , (2.7)

∇⋅𝒗ff = 0 in Ωff , (2.8)

where 𝒗ff and 𝑝ff denote the fluid velocity and pressure.



2.1 Mathematical modeling of coupled problems 17

On the external boundary 𝜕Ωff ⧵ Σ of the free-flow region the following
conditions are applied

𝒗ff = 𝒗 on Γff,𝐷 , 𝗧(𝒗ff, 𝑝ff)𝒏 = 𝒉 on Γff,𝑁 . (2.9)

Here, 𝒏 is the unit normal vector from the free-flow domain Ωff on its
outer boundary 𝜕Ωff ⧵ Σ = Γff,𝐷 ∪ Γff,𝑁.

Porous-medium model

The motion of an incompressible fluid through the porous medium Ωpm
is described by the Darcy flow equations

𝒗pm = −𝗞
𝜇
(∇𝑝pm − 𝜌𝒈) in Ωpm , (2.10)

∇⋅𝒗pm = 0 in Ωpm , (2.11)

with the following conditions on the external boundary 𝜕Ωpm ⧵ Σ =
Γpm,𝐷 ∪ Γpm,𝑁 of the porous-medium domain

𝑝pm = 𝑝 on Γpm,𝐷 , 𝒗pm⋅𝒏 = 𝑣 on Γpm,𝑁 . (2.12)

Here, 𝗞 is the dimensional permeability tensor, 𝒗pm and 𝑝pm are the
velocity and pressure in the porous medium, 𝑝 and 𝑣 are given functions
and 𝒏 is the outward unit normal vector on 𝜕Ωpm. The tensor 𝗞 =
(𝑘𝑖𝑗)𝑖,𝑗=1,…,𝑑 ⊂ R𝑑×𝑑 is symmetric and positive definite, thus, for all 𝒙 ∈
R𝑑 ⧵ {𝟎} it holds

𝗞 = 𝗞⊤ , 𝒙⊤𝗞𝒙 > 0 . (2.13)

In case of isotropic porous media the permeability tensor reads

𝗞 = 𝑘𝗜 , 𝑘 > 0 , (2.14)
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and for orthotropic porous media we have

𝗞 = diag(𝑘1, … , 𝑘𝑑) . (2.15)

If the permeability tensor𝗞 has nonzero entries 𝑘𝑖𝑗 ≠ 0 for 𝑖 ≠ 𝑗 the porous
material is called anisotropic.

System (2.10)–(2.11) is called the mixed form of the Darcy problem. Com-
bination of equations (2.10) and (2.11) yields the elliptic formulation of
the Darcy equations, also called primal form, often used for analysis
purposes

−∇⋅ (𝗞
𝜇
(∇𝑝pm − 𝜌𝒈)) = 0 in Ωpm . (2.16)

In order to obtain a complete macroscale formulation of the Stokes–
Darcy problem appropriate conditions on the fluid–porous interface are
required.

2.1.3 Coupling concepts

The correct specification of coupling conditions for the Stokes–Darcy
problem is essential for a complete and precise mathematical descrip-
tion of fluid flows in coupled systems as well as for accurate numerical
simulations of applications [50, 52, 80, 96, 107]. In the last decades in-
vestigations to find appropriate coupling conditions for Stokes–Darcy
problems that represent the physical processes at the contact surface
have been made both from the experimental, numerical and rigorous
mathematical side, e.g., [10, 15, 95, 127, 142, 152]. Most of the studies
deal with one-dimensional flows, either parallel or perpendicular to the
interface. In contrast, modeling the interactions between the free flow
and the porous medium in case of arbitrary flow direction to the porous
bed, where both normal and tangential velocity components are nonzero
on the fluid–porous interface, is not well established yet.
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Below, we present the following coupling concepts for the Stokes–Darcy
problem: classical coupling conditions, which are most often used in
the literature and are based on the Beavers–Joseph condition; interface
conditions derived via homogenization theory for one-dimensional flows
to the interface; and two alternative coupling concepts, which have been
recently developed for arbitrary flow directions to the porous medium.
For clarity and consistency we consider a two-dimensional geometrical
setting with a horizontal fluid–porous interface. We denote by 𝒏 the unit
normal vector on Σ pointing outward the porous medium and by 𝝉 the
unit tangential vector on Σ (Figure 2.1, right), if not stated otherwise.

Classical coupling conditions

Interface conditions for the Stokes–Darcy coupling, that are most com-
monly applied in the literature, are the conservation of mass across the
fluid–porous interface (2.17), the balance of normal forces (2.18) and the
Beavers–Joseph condition (2.19) on the tangential component of veloc-
ity

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (2.17)

𝑝pm = −𝒏⋅𝗧 (𝒗ff, 𝑝ff) 𝒏 on Σ , (2.18)

(𝒗ff − 𝒗pm)⋅𝝉 = √𝐾
𝛼BJ

𝝉⋅∇𝒗ff𝒏 on Σ . (2.19)

The slip boundary condition (2.19) was proposed by Beavers and Joseph
in [15] based on experiments where a Poiseuille flow over a naturally
permeable mediumwas studied. It includes the Beavers–Joseph parameter
𝛼BJ > 0, a dimensionless and a priori unknown constant that needs to be
determined before condition (2.19) can be used for numerical simulations
of realistic flow scenarios. In the literature, the parameter is typically
chosen 𝛼BJ = 1 even if this is not the correct choice [EE3, EE4, EE6].
Different approaches to compute √𝐾 exist, namely, √𝐾 = √𝑘 for 𝗞 =
𝑘𝗜, 𝑘 > 0 [10, 15, 52], √𝐾 = √tr(𝗞)/𝑑 [30, 50, 91] or √𝐾 = √𝝉⋅𝗞𝝉 [44,
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porous medium
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Figure 2.2: Position of the nominal interface based on the pore-scale
perspective (left) and position of Σtop and Σbot (right).

107, 141]. In this thesis, we use the latter interpretation, if not stated
otherwise.

Beavers and Joseph already noted that there is an ambiguity of the correct
interface position within the near interfacial region and that the model
parameter 𝛼BJ is affected by a change of the interface location. This ob-
servation was also confirmed later in, e.g., [EE4, 96, EE6, 142, EE7], and
makes a specification of the exact interface location when applying con-
dition (2.19) necessary. In the pioneering work [15] the nominal interface,
which is positioned directly at the outermost row of solid obstacles as
shown in Figure 2.2 (left), was defined and considered in order to deter-
mine 𝛼BJ. Besides the dependence on the interface position the parameter
𝛼BJ also contains information about the permeability of the near interfacial
region and the pore-scale surface roughness [EE3, 105, 117, EE6, 165].

In [15] the Beavers–Joseph slip coefficient was found to be in the range
𝛼BJ ∈ [0.1, 4.0]. Further investigations on the correct value of 𝛼BJ in
case of flows parallel to the porous bed were made in [117] for circular
solid grains and in [EE7] for several more porous-medium geometrical
configurations (see Section 6.1.1). However, in case of porous materials
different from the ones discussed in [15, 117, EE7] the correct value of the
effective coefficient 𝛼BJ is uncertain. For further details on how to find the
optimal Beavers–Joseph parameter we refer the reader to Section 6.1.1.
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Since the experimental investigations by Beavers and Joseph many cou-
pling concepts have been developed, most of them based on their work.
The first modification of the Beavers–Joseph coupling condition (2.19) was
proposed by Saffman [142] who neglected the porous-medium velocity.
The Beavers–Joseph–Saffman condition reads

𝒗ff⋅𝝉 = √𝐾
𝛼BJ

𝝉⋅∇𝒗ff𝒏 on Σ . (2.20)

Condition (2.20) is no more a coupling condition between the free flow
and the porous-medium flow, but a boundary condition for the Stokes
problem. The Saffman simplification of the Beavers–Joseph condition is
only reasonable if the porous-medium velocity at the interface is much
smaller than the free-flow velocity.

Jones [100] further modified Saffman’s interface condition considering the
rate of strain tensor in (2.20) yielding the Beavers–Joseph–Saffman–Jones
condition

𝒗ff⋅𝝉 = 2√𝐾
𝛼BJ

𝝉⋅𝗗 (𝒗ff) 𝒏 on Σ . (2.21)

As a further variant of the Beavers–Joseph interface condition (2.19) the
following symmetrized form can be considered to couple the Stokes and
Darcy problems

(𝒗ff − 𝒗pm)⋅𝝉 = 2√𝐾
𝛼BJ

𝝉⋅𝗗(𝒗ff)𝒏 on Σ . (2.22)

Although the original Beavers–Joseph condition was proposed for flows
parallel to the porous layer, all its versions (2.19)–(2.22) are nevertheless
routinely applied for flows nonparallel to the interface [22, 42, 49, 82,
101]. However, in [EE3] it is demonstrated that these interface conditions
are unsuitable for filtration problems with multidimensional flows to the
porous layer. This finding was confirmed in [EE4] and for higher Reynolds
number flows in [165].
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Conditions (2.19)–(2.22) for the tangential velocity on the fluid–porous
interface were postulated based on experimental observations and ad hoc
assumptions, e.g., filtration velocity is negligible small. Some decades
later the first mathematical justification of the Beavers–Joseph–Saffman
condition was obtained by Jäger and Mikelić [95] by means of periodic
homogenization and boundary layer theory (see below and Section 2.3).
Starting from this work a lot of effort was put into the development
of interface concepts via averaging techniques, and the most important
results are presented in the next paragraphs.

Coupling conditions derived via homogenization

Jäger andMikelić [95] rigorously derived coupling concepts for the Stokes–
Darcy problem bymeans of homogenization theory with two-scale asymp-
totic expansions and boundary layers. In the last two decades, the pro-
posed interface conditions were analyzed, further developed and vali-
dated [33, 34, 96–98, 120]. Since all these works are based on homogeniza-
tion theory the porous medium is assumed to be periodic. More details on
this averaging technique and on the derivation of coupling concepts are
provided in Section 2.3.3. The main advantage of the interface conditions
derived via homogenization is that all effective coefficients are computed
based on the pore geometry and are independent of the macroscopic flow
behavior. Thus, no uncertain parameters are present in the model. How-
ever, the proposed coupling concepts are valid for one-dimensional flows,
parallel or perpendicular to the porous medium, only. In the following,
we present the two sets of coupling conditions proposed in, e.g., [34, 95,
98] considering 𝝉 = 𝒆1.

Effective coupling conditions on the fluid–porous interface for flows
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parallel to the porous medium, derived and analyzed in [33, 96, 98], read

𝒗ff⋅𝒏 = 0 on Σ , (2.23)

𝑝pm = 𝑝ff + 𝜇𝐶bl𝜔 𝝉⋅∇𝒗ff𝒏 on Σ , (2.24)

𝒗ff⋅𝝉 = −ℓ𝐶bl1 𝝉⋅∇𝒗ff𝒏 on Σ . (2.25)

Here, ℓ is the characteristic pore size, 𝐶bl𝜔 and 𝐶bl1 are effective coefficients
depending on the pore geometry. The latter are obtained by solving
additional Stokes problems on a vertical cut-off stripe of the domain
and integrating their solutions (for details, see Section 2.3.3). Since the
authors assume parallel flow to the interface [96, 98] the normal velocity
component is zero both in the free-flow region and in the porous-medium
domain and, therefore, condition (2.23) is reasonable. Equation (2.24)
is a coupling condition for the pressure which reduces to the pressure
continuity across the interface for isotropic porous media due to the
boundary layer constant 𝐶bl𝜔 = 0 in this case. Interface condition (2.25)
is a confirmation of the Beavers–Joseph–Saffman condition (2.20) taking
𝛼BJ = −(ℓ𝐶bl1 )−1√𝐾.

Coupling conditions for Stokes–Darcy problems in case of perpendicular
flow to the porous medium are developed in [34]:

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (2.26)

𝑝pm = 0 on Σ , (2.27)

𝒗ff⋅𝝉 = 𝜇−1𝐶2,bl1 ∇𝑝pm⋅𝒏 on Σ . (2.28)

The parameter 𝐶2,bl1 is obtained by solving an additional cell problem
and integrating its solution afterwards. Equation (2.26) states the mass
balance across the interface. In addition, the authors [34] derived the zero
Darcy pressure on the interface (2.27) and the slip condition (2.28) for the
tangential velocity, which simplifies to the no-slip condition in case of
isotropic porous media since it is 𝐶2,bl1 = 0 in this case.

For further details on the sets (2.23)–(2.25) and (2.26)–(2.28) of coupling
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conditions and the computation of the effective coefficients we refer the
reader to Section 2.3.3.

Jump embedded boundary conditions

In [10] two sets of generalized interface conditions supposed to be valid
for multidimensional flows are theoretically derived using the method
of volume averaging in the interfacial transition zone similar to [127]
and asymptotic modeling for thin layers as in [9]. The proposed sets of
coupling conditions are formulated based on the position of the fluid–
porous interface Σ within the transition zone.

When the interface Σ = Σtop is chosen at the top of the transition zone
(Figure 2.2, right) the interface conditions for the Stokes–Darcy system
read

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ = Σtop , (2.29)

𝑝pm𝒏 = −𝗧(𝒗ff, 𝑝ff)𝒏 +
𝜇

√𝐾
𝜷Σ 𝒗ff on Σ = Σtop , (2.30)

(𝒗ff − 𝒗pm)⋅𝝉 = 2√𝐾
𝛼Σ

𝝉⋅∇𝒗ff𝒏 on Σ = Σtop . (2.31)

Here, 𝛼Σ > 0 is a dimensionless constant and 𝜷Σ is the dimensionless
friction tensor, which is symmetric, uniformly bounded and positive
semi-definite. In the two-dimensional framework, the developed cou-
pling concept (2.29)–(2.31) consists of four conditions, but only three are
needed for the Stokes–Darcy coupling. The authors [10] claim that the
conservation of mass across the interface (2.29) and the normal compo-
nent of equation (2.30) need to be set on the fluid–porous interface and
for the third coupling condition one can choose between the two remain-
ing ones. The tangential component of equation (2.30) relates tangential
free-flow velocity and shear stress whereas its second component is an
extension of the classical momentum balance (2.18) with an additional
term on the right hand side accounting for arbitrary flow directions to
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the interface [10]. Coupling condition (2.31) for the tangential component
of velocity corresponds to the Beavers–Joseph–Jones condition (2.22)
considering 𝛼BJ = 𝛼Σ.

When we consider the interface Σ = Σbot located at the bottom of the
transition region (Figure 2.2, right), the following interface conditions are
proposed in [10]:

𝒗ff = 𝒗pm on Σ = Σbot , (2.32)

𝑝pm𝒏 = 𝗧(𝒗ff, 𝑝ff)𝒏 −
𝜇

√𝐾
𝜷Σ 𝒗ff on Σ = Σbot . (2.33)

Here, the symmetric, uniformly bounded, semi-definite friction tensor 𝜷Σ
might be different from the one in (2.30). In case of a two-dimensional
flow problem, we have again four coupling conditions, where the first
component of condition (2.32) is needed to find the position of Σbot and
the three remaining conditions are used to couple the Stokes and Darcy
equations. In case of Σ = Σbot the authors [10] state that both velocity
components are continuous across the interface (2.32) and that the free-
flow stress satisfies condition (2.33) similar to the case when Σ = Σtop.

For both coupling concepts (2.29)–(2.31) and (2.32)–(2.33) the effective
model parameters 𝛼Σ and 𝜷Σ need to be determined before the interface
conditions can be used in numerical simulations. In [5] the proposed
conditions are calibrated for a few benchmarks dealing with flows parallel
to the porous layer. However, it is still an open question how to deter-
mine 𝛼Σ and 𝜷Σ in general and whether these conditions are suitable for
multidimensional flows to the fluid–porous interface.

Higher‐order homogenized coupling conditions

Recently, coupling conditions for the Stokes–Darcy problem in case of
multidimensional flows over periodic porous structures are derived in [105,
152] using a multiscale homogenization method. This homogenization ap-
proach is different from the one applied by Jäger andMikelić [95, 96] in the
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sense that the asymptotic expansions are formulated only on perturbation
quantities and not on the whole flow field, which is modeled as the sum
of the perturbations due to porous structure and the flow field without
the presence of the porous medium. For the sake of clarity, we present
the interface conditions developed in [152] for the two-dimensional case
with 𝝉 = 𝒆1:

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 + ℓ2 (𝑀211 + 𝐾 int
21 ⟨𝐵−1 ⟩) [∇ (2𝝉⋅𝗗(𝒗ff)𝒏) ⋅𝝉] on Σ , (2.34)

𝑝pm = −𝒏⋅𝗧 (𝒗ff, 𝑝ff) 𝒏 − 2𝜇𝐵1 𝝉⋅𝗗(𝒗ff)𝒏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇1

+ ℓ𝑨⋅∇𝑝pm⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇2

− 𝜇ℓ (𝐶11+2𝐿11+𝐴1 ⟨𝐵−1 ⟩) [∇ (2𝝉⋅𝗗(𝒗ff)𝒏) ⋅𝝉]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇3

on Σ , (2.35)

𝒗ff⋅𝝉 = 𝒗pmint ⋅𝝉 + 2ℓ𝐿11 𝝉⋅𝗗(𝒗ff)𝒏

+ ℓ2 (𝑀111+𝐾 int
11 ⟨𝐵−1 ⟩) [∇ (2𝝉⋅𝗗(𝒗ff)𝒏) ⋅𝝉] on Σ . (2.36)

Here, 𝒗pmint is understood as an interfacial porous-medium velocity, where
the permeability tensor𝗞 is replaced by the interfacial permeability tensor
𝗞int = ℓ2(𝐾 int

𝑖𝑗 )𝑖,𝑗=1,2, which can be computed based on the pore geometry.
Further, ℓ denotes themicroscopic pore size and the coefficients𝑀111,𝑀211,
𝐿11, 𝐵1,𝑨 = (𝐴1, 𝐴2), 𝐶11 and ⟨𝐵−1 ⟩ are nondimensional model parameters,
which are dependent on the microscale structure of the interfacial zone
including the information about the exact interface position.

Coupling condition (2.34) is similar to themass conservation equation (2.17)
but includes an extra term accounting for the variation in shear along the
fluid–porous interface. Condition (2.35) is the momentum conservation
equation (2.18) with three additional contributions corresponding to the
interface normal forces due to the slip velocity (term 𝑇1), the wall normal
velocity (term 𝑇2) and the shear stress variation (term 𝑇3). Interface condi-
tion (2.36) is a variant of the Beavers–Joseph condition where 𝒗pm in (2.19)
is substituted by 𝒗pmint and an additional term that accounts for shear stress
variation is appearing on the right hand side of (2.36). Slightly modified
coupling conditions in comparison to (2.34)–(2.36) are proposed in [106]
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based on more restrictive assumptions on the fluid flow.

The advantage of conditions (2.34)–(2.36) is that all the effective coeffi-
cients depend only on the microscale geometry and the location of the
sharp fluid–porous interface. They can be computed numerically by solv-
ing several Stokes problems in a periodicity stripe, which is only a small
part of the computational domain. For more details on the computation
of effective coefficients and the derivation of conditions (2.34)–(2.36), we
refer the reader to [105, 106, 152]. The conditions have been validated only
for the lid driven cavity over the porous bed, where the flow is almost
parallel to the interface. In this case, the difference between the classical
coupling conditions (2.17)–(2.19) and the conditions (2.34)–(2.36) is small
(e.g., see Figure 11 in [152]). Up to now, it is not investigated whether these
conditions are also valid for arbitrary flows to the fluid–porous interface.
Moreover, in [152, Appendix] the authors noted that condition (2.35) is
not optimal yet and needs to be improved.

In [123] similar techniques as in [152] have been used to develop effective
interface conditions for the Stokes and Darcy flow equations in case
of isotropic porous media. The authors recovered the conservation of
mass (2.17) and momentum (2.18) across the fluid–porous interface and
developed a modification of the Beavers–Joseph condition, where an
interfacial porous-medium velocity instead of theDarcy velocity is present,
similar to equation (2.36).

To summarize, classical coupling conditions for the Stokes–Darcy prob-
lem, i.e., equations (2.17) and (2.18) together with one of the conditions
(2.19)–(2.22), are limited to flows parallel to the fluid–porous interface. Al-
ternative coupling concepts supposed to account also formultidimensional
flows to the porous bed are either only theoretically derived and need to be
calibrated before they can be used in numerical simulations [5, 10] or are
not validated for arbitrary flow directions to the porous medium [105, 106,
152]. Therefore, generalized interface conditions are needed, which are
valid for multidimensional fluid flows and do not contain undetermined
model parameters. In this thesis, we derive such coupling conditions
in Chapter 3, analyze the resulting coupled problem in Chapter 5 and
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conduct numerical simulations to validate the derived conditions in Chap-
ter 6.

2.2 Analysis, numerical methods and validation
of Stokes–Darcy problems

This section is devoted to well-posedness, numerical solution and model
validation of the macroscale Stokes–Darcy problem with different sets of
coupling conditions.

2.2.1 Well-posedness

During the last two decades the coupled Stokes–Darcy problem has re-
ceived enormous attention both from the modeling side and the numerical
point of view. Different interface conditions depending on the flow regime
and flow direction were proposed (see Section 2.1.3) and various numerical
methods to solve the coupled problem were developed (see Section 2.2.2).
However, from the mathematical analysis side in terms of well-posedness,
the macroscale model is still not completely understood. For many choices
of interface conditions the existence of a unique solution to the corre-
sponding coupled Stokes–Darcy problem is still an open question. In
the following, we present results from the literature regarding the well-
posedness of the Stokes–Darcy problem with different sets of coupling
conditions.

First analytical studies were made in [47, 50], where the authors showed
that the Stokes–Darcy problem completed with the continuity of normal
velocity (2.17), the momentum balance equation (2.18) and the condition
of zero tangential free-flow stress 𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 = 0 on the fluid–porous
interface is well-posed. This set of interface conditions, however, leads
to a poor representation of the transfer processes between the two flow
domains. Based on these first analytical results, further investigations
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were made [31, 52, 107] to prove the well-posedness of the Stokes–Darcy
problem also for the classical coupling conditions given by (2.17), (2.18)
and one of the formulas (2.19)–(2.22).

Most of the works that made contribution to the well-posedness of the
coupled problem deal with the classical coupling concept including the
Saffman simplification (2.21) of the Beavers–Joseph condition [52, 63,
67, 107]. For this simplified coupled Stokes–Darcy problem Layton et
al. [107] have proven existence of a weak solution for the first time. They
considered the mixed formulation of the Darcy equations and realized the
coupling using Lagrange multipliers. The mixed form of the Stokes–Darcy
problem is also analyzed in [63, 67]. Unlike that, in [52] the authors used
the primal form of Darcy’s law in order to prove that the coupled problem
with Saffman’s boundary condition (2.21) is well-posed.

Dealingwith the original Beavers–Joseph coupling condition (2.19) instead
of Saffman’s version (2.21) results in a much more complicated problem
and proving the well-posedness becomes challenging [10, 30, 31]. There
are two main mathematical difficulties arising in this case. First, with-
out any additional assumptions, the Darcy velocity has no well-defined
trace on the porous-medium boundary including the fluid–porous inter-
face [10, 30]. Second, the integral term over the interface, in which the
tangential porous-medium velocity appears, cannot be absorbed in other
terms appearing in the weak formulation of the coupled Stokes–Darcy
problem [30, 31, 91]. This makes proving the coercivity of the bilinear
form denoted by A (see, e.g., equation (5.12) in Section 5.1) that includes
the above-mentioned integral term extremely difficult.

Cao et al. [30] proved the well-posedness for the Stokes–Darcy problem
with the Beavers–Joseph condition (2.19) under the assumption

𝛼BJ2𝜆max(𝗞)2 ≤ 𝐶1𝐶2𝜆min(𝗞)2 .

Here, 𝜆min(𝗞) and 𝜆max(𝗞) denote the smallest respectively the largest
eigenvalue of the permeability tensor 𝗞, 𝐶1 and 𝐶2 are positive constants
coming from trace inequalities [30]. Thus, well-posedness of the coupled
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problem is only guaranteed for very small values of the Beavers–Joseph
slip coefficient 𝛼BJ.

Angot [7] considered the classical coupling concept (2.17)–(2.19) with
the original condition proposed by Beavers and Joseph on an immersed,
Lipschitz continuous fluid–porous interface, where the porous-medium
domain is surrounded by the free-flow region. Using the general frame-
work for proving global solvability developed in [6] the well-posedness
of the Stokes–Darcy problem for any 𝛼BJ > 0 was obtained [7]. The
assumption on the geometry that the porous medium is totally bordered
by the sharp interface is not realistic for many applications, however, with
this assumption the well-posedness of the Stokes–Darcy problem with
the Beavers–Joseph coupling condition without restriction on 𝛼BJ was
proven for the first time. Using the same technique, Angot has proven [8]
that the Stokes and Darcy equations coupled with the jump embedded
interface conditions (2.29)–(2.31) or (2.32)–(2.33) proposed in [10] yield a
well-posed problem.

Recently, existence and uniqueness of the Stokes–Darcy problem with
the Beavers–Joseph condition (2.19) was proven in [91] for any choice
of the parameter 𝛼BJ > 0 and without geometrical restrictions on the
interface. The authors expand the coupled system to a larger flow system
yielding additional bilinear terms appearing in the weak formulation of
the macroscale problem. These supplementary terms absorb the integral
term including the tangential Darcy velocity on the interface and enable
to prove the coercivity of the bilinear form A.

The well-posedness of the coupled problem with the higher-order homog-
enized interface conditions (2.34)–(2.36) is not proven yet and is still an
open question. Due to many additional terms appearing in these coupling
conditions compared to the classical ones, proving the well-posedness of
the resulting Stokes–Darcy problem is a challenging task.
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2.2.2 Numerical methods

Fluid flow in the free-flow region and the porous-medium domain is de-
scribed using two distinct models, the Stokes and Darcy equations. From
the numerical point of view, different space discretization schemes, that
suit better for the individual subdomain models, can be considered and
a variety of numerical algorithms to solve the coupled problem were
developed. In this section, we discuss the most widely used space dis-
cretization techniques for the Stokes–Darcy system and give an overview
of numerical algorithms for the efficient and robust solution of the coupled
problem.

Discretization techniques

In each flow domain, the most appropriate discretization approach can
be applied, and different meshes can be used that do not need to be con-
forming at the interface [17, 63, 64, 136, 137, 157]. Various discretization
schemes for the coupled Stokes–Darcy problem have been developed and
analyzed during the last decades and several sets of interface conditions
have been considered. Each coupling condition serves as a boundary con-
dition on the fluid–porous interface in the numerical model, either for the
Stokes system (2.7)–(2.9) or the Darcy problem (2.10)–(2.12). Most often,
the classical coupling concept with the Beavers–Joseph–Saffman condi-
tion (2.20) is applied, e.g., [52, 71, 107, 111, 160]. Discretization methods
concerning the Beavers–Joseph condition (2.19) are proposed in, e.g., [8,
30, 31, 91]. In the following, we give an overview of discretization schemes
for the coupled Stokes–Darcy problem including continuous or mixed
finite element methods [50, 51, 65, 66, 107], finite volume schemes [44,
144, 145] and discontinuous Galerkin methods [62, 71, 101, 111, 136, 137].
If not stated otherwise, the classical set of coupling conditions with the
Saffman simplification (2.17), (2.18) and (2.20) is considered.

Most of the existing space discretization schemes for the Stokes–Darcy
problem are based on the finite element method (FEM) with an appro-
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priate combination of stable elements. For both, the Stokes equations
and the Darcy equations a variety of finite element schemes exist and
the main challenge is to incorporate the interface conditions. First finite
element schemes for the Stokes–Darcy problem are proposed in [50, 107].
Layton et al. [107] apply a continuous finite element formulation in the
free-flow region and discretize the Darcy problem via mixed finite ele-
ments. They use Lagrange multipliers to impose the coupling conditions
on the interface leading to a nonconforming FEM. In [50] the Stokes equa-
tions in the free-flow region and the second order elliptic Darcy problem
in the porous medium are discretized using continuous finite elements.
The coupled problem is then solved using a subdomain iterative domain
decomposition scheme. Gatica et al. [65, 67] consider the Stokes equations
coupled to the mixed form of the Darcy problem and introduce a new
fully-mixed, conforming finite element discretization for the primal/dual-
mixed formulation from [107]. Karper et al. [102] discretize the entire flow
domain using standard Stokes elements such as the MINI element or the
Taylor–Hood finite element. In [157], standard Stokes finite elements are
applied in the free-flow region only, while standard continuous piecewise
polynomials (P1 or P2) are used for velocity and pressure in the Darcy
region. Burman and Hansbo [27, 28] employ a mixed stabilized FEM
for both flow models in form of a standard Galerkin formulation with
an additional penalization term. Recently, a new FEM for the coupled
Stokes–Darcy problem on quadrilateral meshes is developed in [82]. They
use piecewise constant approximants for the Darcy pressure, the lowest
order Arbogast–Correa element for the Darcy velocity (mixed FEM) and
classical Bernardi–Raugel elements for the Stokes equations. Compared
to triangular or tetrahedral meshes, quadrilateral meshes are equally flex-
ible for partitioning domains with complicated geometries, but usually
involve fewer degrees of freedom.

A finite element discretization scheme for the coupled Stokes–Darcy
problem with the original Beavers–Joseph interface condition (2.19) is
employed in [30, 31]. Here, quadratic elements (P2) are used for the
discretization of the Darcy problem and Taylor–Hood finite elements for
the Stokes part.
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Another discretization technique is the finite volume method (FVM). It is
very attractive for coupled free-flow and porous-medium flow problems
due its property of being locally conservative in both flow domains and
across interface that is highly valued by the computational fluid dynamics
community. Moreover, finite volume discretization schemes are stable, i.e.,
oscillation-free solutions are guaranteed without any stabilization, and
the coupling conditions can be implemented naturally without the need of
interpolation. In [44] a FVM on staggered grids, also known as the marker
and cell (MAC) method [81], is applied to solve the flow problem in the
coupled domain using a Cartesian mesh. Similar schemes for the Stokes–
Darcy problem based on the MAC method are developed in [139, 147]
for nonuniform grids. Schneider et al. [145] apply a staggered-grid finite
volume discretization for the Stokes equations in the free-flow region and
a multipoint flux approximation (MPFA) finite volume scheme for the
Darcy problem. The latter is needed in case of anisotropic porous media.
In [144], the finite volume method is applied for the Stokes equations and
the porous-medium model is discretized using the Box method, which
was proposed in [93].

Other approaches are based on Discontinuous Galerkin (DG) methods.
These are robust finite element methods which allow the construction of
discontinuous numerical solutions. The use of DG methods received more
attention in the last two decades since these methods are locally mass
conservative, stable, higher-order accurate and are easy to implement
on unstructured grids. However, due to its higher-order accuracy DG
methods are computationally very expensive. Rivière and Yotov [137]
formulate a locally conservative numerical scheme employing the DG
method in the free-flow region and mixed finite elements to discretize the
Darcy problem, whereas in [71, 136] the DGmethod is used to approximate
both the Stokes and Darcy flow equations. The proposed schemes are
locally (cellwise) conservative, however, not strongly (pointwise) con-
servative. In order to avoid the mass loss, Kanschat and Rivière [101]
propose a new, strongly conservative scheme based on DG using a glob-
ally divergence-conforming velocity space. In this way, mass conservation
is achieved in the sense of 𝐻(div). Gatica and Sequeira [68] introduce and
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analyze a hybridizable DG method for the coupled Stokes–Darcy problem.
In [62] a strongly conservative discretization scheme is developed, us-
ing a divergence-conforming finite element for the velocity in both flow
domains. For the discretization of the Stokes problem hybridizable DG
techniques are used and mixed finite elements for the Darcy problem.

Numerical algorithms

After the Stokes–Darcy problem has been discretized, the resulting system
of linear equations is solved numerically. There are two different ways to
compute the approximate solution of the macroscale problem, either using
coupled monolithic (all-at-once) methods or via decoupled (partitioning)
methods [138, Chapter 4]. Both solution approaches are discussed in the
following.

Using the monolithic approach, the discrete systems of linear equations
corresponding to the Stokes and Darcy problems are assembled together
with a set of coupling conditions into one large linear system 𝗔ℎ𝒙ℎ = 𝒃ℎ,
which is schematically presented in Figure 2.3. Here, matrix 𝗔ℎ is ob-
tained after space discretization, matrix blocks 𝗔ff and 𝗔pm correspond
to the problems in the free-flow domain and porous medium, respec-
tively, and blocks 𝗕 and 𝗖 contain the coupling conditions. Further,
𝒙ℎ = (𝒗ff, 𝒑ff, 𝒗ffΣ , 𝒑

pm, 𝒑pm
Σ )⊤ is the solution vector, including the velocity

𝒗ff

𝒑ff

𝒗ffΣ
𝒑pm

𝒑pm
Σ

=

𝒃𝒗
𝟎
𝟎
𝒃𝒑
𝟎

𝗔ff 𝗕

𝗖 𝗔pm

Figure 2.3: System of linear equations resulting from the discretization
of the coupled Stokes–Darcy problem.
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and pressure solution in the Stokes region, the velocity on the interface as
well as the Darcy pressure solution in the porous medium and on the in-
terface, e.g., [28, 29, 157]. The right hand side vector 𝒃ℎ = (𝒃𝒗, 𝟎, 𝟎, 𝒃𝒑, 𝟎)⊤
is composed of the right hand sides 𝒃𝒗 and 𝒃𝒑 from the discrete free-flow
and porous-medium problem, respectively. For further details on the
monolithic solution strategy we refer to Section 4.

In case the Stokes–Darcy problem is solved monolithically all components
of the discrete solution 𝒙ℎ are obtained at once. However, the matrix 𝗔ℎ
is large, sparse and ill-conditioned that leads to a computationally costly
solution of the flow problem, especially in case of large-scale coupled
problems. Due to this reason and the naturally decoupled structure of
the flow system it is often convenient to solve the Stokes–Darcy problem
using partitioning schemes, for example, based on two-grid methods [40,
122] or domain decomposition methods [21, 38, 49, 50, 52]. Decoupled
methods reduce the size of the coupled problem by dividing it into two
(or more) subproblems that are smaller than the system of equations in
the fully coupled approach. This allows the use of already developed
optimized solvers for the individual problems, and it makes solving the
global system computationally less expensive than using the monolithic
solution strategy. Below, we present the main ideas of domain decom-
position methods since they are most often used in the literature for the
decoupled solution of the Stokes–Darcy problem, e.g., [21, 38, 48–50, 52,
53].

Domain decomposition (DD) schemes are based on the partition of the
computational domain Ω into 𝑁 ≥ 2 subdomains Ω𝑖, 𝑖 = 1, … , 𝑁, such
that Ω = ⋃𝑁

𝑖=1 Ω𝑖. Depending on the type of the subdomain intersections
Ω𝑖 ∩ Ω𝑗 one differentiates between two types of methods. In case the
subdomains intersect only on the interfaces, i.e., Ω𝑖 ∩ Ω𝑗 = ∅ for all 𝑖 ≠ 𝑗
and 𝑖, 𝑗 ∈ {1, … , 𝑁 }, we obtain a nonoverlapping strategy, otherwise we
have an overlapping DD method. In context with coupled flow problems,
nonoverlapping DD methods are typically used [21, 49, 50, 52]. For both
approaches the original problem is reformulated in the way that for each
subdomain a subproblem is defined, which is coupled to the other sub-
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Figure 2.4: Schematic of partitioning methods based on domain decom-
position.

problems through boundary conditions at the subdomain interfaces. In
our case, we naturally have 𝑁 = 2 with the Stokes equations in the free-
flow region, Darcy’s law in the porous medium and, in case of two space
dimensions, three coupling conditions at the fluid–porous interface.

The solution of the original coupled problem is then obtained by intro-
ducing an iterative scheme, where the flow problems in the subdomains
are solved separately and information is exchanged only through bound-
ary conditions on the fluid–porous interface. The main challenge of DD
methods is to guarantee convergence and robustness of the iterations [48,
50, 52]. A schematic representation of the nonoverlapping approach for
the Stokes–Darcy solution having 𝑁 = 2 subproblems is presented in Fig-
ure 2.4. Here, the coupling is realized via the terms 𝒃𝗕 and 𝒃𝗖 on the right
hand side of the two systems of equations and all other notations are the
same as in case of the monolithic solution strategy.

There exist also preconditioning techniques for the efficient solution of
the Stokes–Darcy problem, both for the monolithic approach and for
decoupled numerical algorithms, e.g., [29, 39, 89]. However, the aspect of
preconditioning is beyond the scope of this thesis and, therefore, it is not
addressed here.
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2.2.3 Model validation

Although several sets of interface conditions for the Stokes–Darcy cou-
pling were proposed and a variety of numerical methods to solve the
coupled problem were developed, only a few investigations were made
with respect to model validation. Most of the existing validation stud-
ies [33, 34, EE3, EE4, EE6, 152] are based on the comparison of macroscale
numerical simulation results to pore-scale resolved models. Alternative
ways to validate the Stokes–Darcy model are either based on experimental
data [92] or the single-domain approach as a reference solution [108].

First attempts to validate the coupled Stokes–Darcy model are made
in [108], where two analytically tractable flows are studied: a Poiseuille
flow in the free-flow region over a porous layer with a constant porosity
according to the Beavers and Joseph case [15] and a corner flow in a fluid
overlying a porous bed, where also a normal flux through the interface
takes place. Numerical simulation results for the macroscale model with
the classical coupling conditions (2.17)–(2.19) taking 𝛼BJ = 1 and with the
coupling approach developed in [108] are compared to the single-domain
Darcy–Brinkman model. The coupling concept for the Stokes and Darcy
equations proposed by the authors [108], i.e., the continuity of velocity
and pressure, is derived using the volume averaging method and assumes
a transition zone, below the nominal interface inside the porous medium,
where the Stokes equations are still valid. The coupling to Darcy’s law
then takes place at the lower boundary of the transition region. In case
of the Poiseuille flow validation case both coupled Stokes–Darcy models
provide a good agreement with the Darcy–Brinkman simulation results,
as expected. For the corner flow test case, the simulations results for
the Stokes–Darcy problem with the classical coupling conditions taking
𝛼BJ = 1 do not agree with the single-domain simulation results, whereas
the coupled model postulated in [108] provide a good agreement. This
finding is a first hint that the classical coupling concept including the
Beavers–Joseph condition (2.19) is not suitable to represent arbitrary flows
in coupled systems.
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An experimental validation of the classical Stokes–Darcy model given
by (2.7)–(2.11), (2.17)–(2.19) for matrix–conduit flows such as groundwater
flows in karst aquifers is provided in [92] using experimental results
from [60]. In the experiments made by Faulkner et al. [60] the fluid flows
parallel to the interface between the rectangular free-flow region and
the overlying porous-medium domain. The comparison of numerical
simulation results for the coupled Stokes–Darcy model to experimental
data yield a very good agreement [92]. Thus, the classical interface
conditions are experimentally proven to be suitable for the coupling of
Stokes and Darcy flow equations in case of flows parallel to the interface.

In [33] the authors validate the Stokes–Darcy problem completed with
the interface conditions (2.106)–(2.108) derived using homogenization and
boundary layer theory for flows parallel to the porous layer. Two vali-
dation cases are studied, namely pressure driven flow corresponding to
the experiments by Beavers and Joseph and flow in a periodic setting,
where the boundary conditions and microstructure of the porous domain
are periodic. In both cases the flow is parallel to the fluid–porous in-
terface. Carraro et al. [33] perform pore-scale resolved and macroscale
simulations, and compute the errors between the pore-scale solutions
and the solutions to the effective problem. The authors show that the
errors increase appropriately with respect to increasing dimensionless
pore size 𝜀 = ℓ/L, where L denotes a charcteristic length scale (for details,
see Section 2.3). In this way, the Stokes–Darcy problem with coupling
conditions (2.106)–(2.108) is validated for the considered flow problems.

Conditions (2.117)–(2.119) postulated for flows perpendicular to the in-
terface are analyzed with respect to their validity in [34]. The authors
consider the forced infiltration into the porous structure on a small free-
flow and porous-medium stripe containing one column of identical solid
inclusions. By comparison of pore-scale and macroscale numerical simu-
lations and computation of the errors between the two solutions similar
as in [33] the proposed coupling conditions are shown to be valid for this
simple validation case.
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Interface conditions (2.34)–(2.36) for the Stokes–Darcy problem devel-
oped in [106, 152] are validated and compared to the classical coupling
approach in [152]. The authors study the lid driven cavity over a porous
bed considering different types of porous materials. Pore-scale resolved
models are compared to macroscale numerical simulation results to con-
firm the proposed conditions (2.34)–(2.36), which are supposed to account
for multidimensional flows in Stokes–Darcy systems. For the lid driven
cavity test cases, where the flow is almost parallel to the porous layer,
the macroscale simulation results agree well with the microscale results.
However, a more interesting validation case, where the flow is strongly
nonparallel to the fluid–porous interface, is not investigated yet.

Coupling conditions for the Stokes–Darcy problem derived in [123] for
isotropic porous media are validated by comparison of macroscale numeri-
cal simulation results to pore-scale resolved models. The authors consider
two validation scenarios, stagnation point flow (Hiemenz boundary layer
flow) overlying a porous bed and flow past a backward-facing step, where
the step region is a porous medium. In the first test case, the porosity is
assumed to be very large (𝜙 = 0.9999) resulting in flow around particles
rather than flow through a porous medium. For this considered problem,
the Stokes–Darcy model with the conditions derived in [123] is shown to
be a good approximation of the pore-scale model. Also, for the second
validation scenario, where the porosity is taken more realistic, compari-
son of numerical simulation results confirms the validity of the proposed
conditions. However, the authors [123] do not compare their developed
interface conditions to the classical conditions, although, this would be
interesting to see if their conditions are preferable over the classical ones
in order to model coupled flow systems accurately.

Our contribution with respect to validation and calibration of the coupled
Stokes–Darcymodel with different sets of interface conditions is presented
in Chapter 6 of this thesis based on the articles [EE3, EE4, EE6, EE7],
where we compare pore-scale resolved models to macroscale numerical
simulation results.
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2.3 Homogenization and boundary layer theory

Homogenization theory with multiscale expansions was first developed
for periodic porous media [1, 2, 99, 109, 118, 143, 153] for which it is also
most often applied, e.g., [34, 88, 95, 96, 114, 146]. Later on, this theory was
modified such that one could also upscale pore-scale equations in ran-
dom porous materials [16]. Considering the Stokes equations describing
the flow in a perforated domain at the pore scale both homogenization
approaches yield the same type of filtration law, the Darcy law. In this
thesis, we deal with periodic homogenization, where the porous medium
is assumed to be constructed by a periodic arrangement of solid obstacles.
In such periodic structures, there are naturally two length scales present:
the sample size of the porous domain𝑊 (macroscopic length scale) and the
characteristic dimensional pore size ℓ (microscopic length scale), which
is most often very small compared to the macroscopic length (Figure 2.5,
left). In order to quantify the differences in the two length scales we make
use of the scale separation parameter 𝜀 = ℓ/L, where L is a characteristic
length scale, e.g., often L = 𝑊. The first step is then, to make the pore-
scale equations dimensionless. Then, starting from the nondimensional
pore-scale problem formulation involving the dimensionless quantity 𝜀,
we make an asymptotic analysis in order to find macroscale (effective)
models.

The assumption on periodicity, which is necessary to apply homogeniza-
tion, breaks down close to the boundaries of the porous structure. Here,
so-called boundary layers appear and deviations from the effective model
obtained inside the porous medium are expected. Indeed, for several flow
problems it was shown [33, 95, 97] that these boundary layers significantly
influence the boundary conditions, which are applied for the macroscale
problem. To take into account the porous-medium boundary effects into
the effective model, boundary layer theory is needed.

In this section, we introduce the theory of periodic homogenization and
boundary layers using as an example the Stokes equations describing the
flow at the pore scale through periodic porous media. In Section 2.3.1,
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Figure 2.5: Pore-scale flow domain Ωps (left) and dimensionless flow
domain Ω𝜀 (right).

we present the nondimensionalization of the Stokes equations which is
the starting point for the homogenization procedure thereafter. In Sec-
tion 2.3.2 we provide an introduction to periodic homogenization by the
derivation of Darcy’s law. The main ideas of boundary layer theory are
explained by demonstrating how effective coupling conditions for unidi-
rectional flows in Stokes–Darcy systems are derived, based on examples
from the literature, e.g., [33, 34, 95, 98].

2.3.1 Nondimensionalization

Equations (2.3)–(2.5) are presented in the dimensional form, i.e., each vari-
able and property is given in physical dimensions (Figure 2.5, left). How-
ever, we are interested in working with the dimensionless formulation of
a mathematical problem because it is often necessary to bring large-scale
flow problems in a numerically feasible setting, and it is the more general
formulation. For example, the solution of a problem in dimensional form
is the solution to one specific problem, whereas a nondimensional solu-
tion depends on a set of dimensionless parameters, e.g., the Reynolds or
Prandtl number, and describes different dimensional solutions. Moreover,
the nondimensionalization of mathematical problems allows the identi-
fication of significant and insignificant terms. Therefore, we transform
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Quantity Scaling parameter Primary dimensions
Characteristic length L [L]
Characteristic velocity V [LT−1]
Gravitational acceleration G [LT−2]

Table 2.1: Scaling parameters and their primary dimensions for nondi-
mensionalization of the Stokes equations.

the stationary Stokes equations (2.3)–(2.5) into their dimensionless form.
Within this thesis, the words ’dimensionless’ and ’nondimensional’ are
interchangeable and indicate that no physical dimensions are involved.

In order to nondimensionalize the momentum equation (2.5) we choose
the scaling parameters presented in Table 2.1. For scaling the pressure, we
choose the parameter 𝜇V/L since we consider viscous fluid flows. Then,
the nondimensional variables denoted by the superscript ∗ read

𝒙∗ = 𝒙
L
, 𝒗∗ = 𝒗

V
, 𝑝∗ =

𝑝L
𝜇V

, 𝒈∗ =
𝒈
G
, ∇∗ = L∇ . (2.37)

We define the nondimensional length and height of the coupled domain
as 𝑊 ∗ = 𝑊/L and 𝐻 ∗

tot = 𝐻tot/L, respectively. If the porous structure is
periodic the nondimensional characteristic pore size is denoted by 𝜀 = ℓ/L
(Figure 2.5, right) which is also referred as the scale separation parameter.
In the nondimensional setting, we use the notations Ω = Ωff ∪ Ωpm and
Ω𝜀 to relate to the macroscale and pore-scale domain, respectively, to be
consistent with the notations typically used in homogenization theory.

We rearrange equations (2.37) in terms of the dimensional variables, sub-
stitute them into the momentum equation (2.5) and obtain

−𝜇Δ
∗

L2 (𝒗
∗V) + ∇∗

L
(
𝑝∗𝜇V
L

) = 𝜌𝒈∗G in Ω𝜀 . (2.38)

All terms in equation (2.38) are of primary dimension [ML−2T−2]. Next,
we multiply (2.38) byL/(𝜌V2) such that the dimensions cancel. This leads
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to

−
𝜇

𝜌LV
Δ∗𝒗∗ +

𝜇
𝜌VL

∇∗𝑝∗ = GL
V2 𝒈

∗ in Ω𝜀 . (2.39)

Multiplication of equation (2.39) with the Reynolds number 𝑅𝑒 given
by (2.1) yields the following nondimensional momentum equation

−Δ∗𝒗∗ + ∇∗𝑝∗ = [ 𝑅𝑒
𝐹 𝑟2

] 𝒈∗ in Ω𝜀 . (2.40)

Here, 𝐹 𝑟 = V/√GL denotes the Froude number being the ratio of the flow
inertia to the gravitational acceleration.

For nondimensionalization of the mass conservation equation (2.3) and
the no-slip condition (2.4) we use the scaling parameter V and obtain

∇∗⋅𝒗∗ = 0 in Ω𝜀 , 𝒗∗ = 𝟎 on 𝜕𝑆𝜀 ,

where 𝑆𝜀 = Ω ⧵ Ω𝜀 denotes the solid part of the porous medium in the
dimensionless setting.

In the rest of the thesis, we usually work with the dimensionless flow
equations, if not stated otherwise. For clarity, we drop the superscript ∗
and the nondimensional form of equations (2.3)–(2.5) reads

−Δ𝒗 + ∇𝑝 = 𝒇 in Ω𝜀 , (2.41)

∇⋅𝒗 = 0 in Ω𝜀 , (2.42)

𝒗 = 𝟎 on 𝜕𝑆𝜀 , (2.43)

where the nondimensional quantity 𝒇 represents the effects of external
forces and corresponds to the physical force term multiplied by the ratio
of Reynolds’ number to Froude’s number squared, i.e., 𝒇 = 𝑅𝑒𝐹 𝑟−2𝒈∗.

For slow, viscous flows when the advective inertial forces compared to the
viscous forces are very small (𝑅𝑒 → 0), the force term 𝒇 in equation (2.41)
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is neglected leading to

−Δ𝒗 + ∇𝑝 = 𝟎 in Ω𝜀 . (2.44)

In the context of homogenization theory the pore-scale velocity and
pressure in (2.41)–(2.44) are typically marked with the superscript 𝜀 since
they depend on the dimensionless pore size. This notation is adopted in
the following sections.

2.3.2 Periodic homogenization: Darcy’s law

This section is devoted to an introduction to periodic homogenization with
two-scale asymptotic expansions. We explain the main features of this
averaging technique by means of upscaling the Stokes equations which
govern fluid flow in a porous material from the pore-scale perspective.
For a more general presentation of homogenization theory we refer the
reader to [1, 90, 109, 118, 143, 153].

The two basic assumptions needed to apply periodic homogenization
in context with porous media are i) the porous material is periodic and
ii) the length scales are separated, i.e., the characteristic pore size is much
smaller than the characteristic size of the macroscopic domain, yielding
𝜀 ≪ 1. In general, scale separation holds and homogenization is applicable
for 𝜀 < 0.1. The main idea of homogenization is to consider a family of
functions 𝑓 𝜀 with respect to the scale separation parameter 𝜀 > 0 and
then, passing to the limit

𝑓 = lim
𝜀→0

𝑓 𝜀 (2.45)

as the final step of the upscaling procedure. In the limit (2.45) the mi-
croscale structure will be ’averaged out’ (Figure 2.6) and we obtain a
homogenized model that describes the considered process. As we will see
in Section 2.3.2 the homogenized model can significantly differ from the
original partial differential equation.
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Figure 2.6: Schematic idea of homogenization.

The classical homogenization procedure presented in [2, 90, 120] com-
prises the following steps.

Step 1: Give a precise description of the porous-medium geometry.

Step 2: Specify the mathematical model valid at the pore scale and obtain
a priori estimates for the solutions of the pore-scale problem with respect
to the dimensionless parameter 𝜀.
Step 3: Formulate the two-scale asymptotic expansion for all pore-scale
functions, e.g., assume that 𝑓 𝜀 can be written as follows

𝑓 𝜀(𝒙) =
∞
∑
𝑗=𝑎

𝜀𝑗𝑓𝑗(𝒙, 𝒚) , 𝒚 = 𝒙
𝜀
,

where 𝑎 ∈ N0 depends on the problem of interest and 𝑓𝑗 are 𝒚-periodic
functions.

Step 4: Formulate macroscale model containing effective coefficients.

Step 5: Study the homogenized problem (prove uniqueness and regular-
ity).

Step 6: Prove convergence of the homogenization procedure, if possible
(e.g. prove two-scale convergence, obtain rigorous error estimates).

In the next section, we apply Step 1–Step 6 to the Stokes equations de-
scribing the flow in the pore space of a porous medium in order to obtain
the corresponding effective flow model.
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Derivation of Darcy’s law

In this section, we present the rigorous derivation of by means of periodic
homogenization following Step 1–Step 6. Darcy’s law was derived for the
first time by Ene and Sanchez-Palencia [143, Chapters 5] via homogeniza-
tion, Tartar [153] then obtained error estimates for the two-dimensional
case and Allaire [2] extended Tartar’s work to the three-dimensional
case.

Step 1: Description of porous-medium geometry

We consider a smooth, bounded and connected domainΩpm ⊂ R𝑑, 𝑑 = 2, 3,
representing a regular porous medium, which is constructed by a periodic
arrangement of solid obstacles as described hereinafter. The domain Ωpm
is covered by a Cartesian mesh of size 𝜀 and the grid cells are denoted by
𝑌 𝜀𝑘 , where 1 ≤ 𝑘 ≤ 𝑁(𝜀) and 𝑁(𝜀) = 𝜀−𝑑|Ωpm| (1 + 𝑜(1)) is the number of
cells. Each grid cell 𝑌 𝜀𝑘 is constructed from a translation of the unit cell
𝑌 = (0, 1)𝑑 and a rescaling with 𝜀. In the two-dimensional case we have

𝑌 𝜀𝑘 = 𝜀 (𝑌 + {𝑦1,𝑘, 𝑦2,𝑘}) , 1 ≤ 𝑘 ≤ 𝑁(𝜀) , (2.46)

where the translation of the unit cell 𝑌 = (0, 1)2 by 𝑦1,𝑘 ∈ Z in horizontal
and 𝑦2,𝑘 ∈ Z in vertical direction corresponding to the cell number 𝑘 is
defined as

𝑌 + {𝑦1,𝑘, 𝑦2,𝑘} = (𝑦1,𝑘, 1 + 𝑦1,𝑘) × (𝑦2,𝑘, 1 + 𝑦2,𝑘) . (2.47)

The unit cell 𝑌 contains a solid part 𝑌s, representing one or more solid
obstacles, and a complementary fluid part 𝑌f = 𝑌 ⧵ 𝑌s. We assume that
𝑌s is a closed subset of 𝑌 with a piecewise smooth boundary and 𝑌f is
open and connected. The fluid part Ω𝜀

pm of the porous medium Ωpm is the
union of all pores, i.e., Ω𝜀

pm = ⋃1≤𝑘≤𝑁(𝜀) 𝜀(𝑌f + {𝑦1,𝑘, 𝑦2,𝑘}). The domain
𝑆𝜀 = Ωpm ⧵ Ω𝜀

pm represents the solid part of the porous structure.
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Figure 2.7: Example of an idealized, periodic porous medium (left) and
the corresponding unit cell 𝑌 = (0, 1)2 (right).

An example of an idealized, periodic porous medium constructed as de-
scribed above and the corresponding unit cell 𝑌 are presented in Figure 2.7
for the two-dimensional case. In this thesis, we consider rectangular
porous-medium domains Ωpm = (0, 𝐿𝑗)𝑑 with 𝐿𝑗 ∈ R+ for 𝑗 = 1, … , 𝑑 and,
for simplicity, we assume 𝐿𝑗 /𝜀 ∈ N for all 𝑗.

Step 2: Pore-scale model and a priori estimates

After we have given a precise description of the porous domain we now
specify the flow problem we are interested in. We consider slow, viscous
flow at low Reynolds numbers through a rigid porous medium Ωpm =
(0, 𝐿)𝑑, where 𝐿 > 0 is a dimensionless length scale with 𝐿/𝜀 ∈ N, such that
the flow at the pore scale is described by the nondimensional stationary
Stokes equations

−Δ𝒗𝜀 + ∇𝑝𝜀 = 𝒇 , ∇⋅𝒗𝜀 = 0 in Ω𝜀
pm (2.48)

with the no-slip condition on the boundaries of the solid obstacles and
periodic boundary conditions on the external boundary of the porous
domain

𝒗𝜀 = 𝟎 on 𝜕𝑆𝜀 , {𝒗𝜀, 𝑝𝜀} is 𝐿-periodic . (2.49)
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We define the test function space for the velocity

𝑊per(Ω𝜀
pm)𝑑 = {𝝋 ∈ 𝐻 1(Ω𝜀

pm)𝑑 ∶ 𝝋 = 𝟎 on 𝜕𝑆𝜀, 𝝋 is 𝐿-periodic} , (2.50)

and the one for the pressure

𝐿2per(Ω𝜀
pm) = {𝜑 ∈ 𝐿2(Ω𝜀

pm) ∶ 𝜑 is 𝐿-periodic} . (2.51)

Then, the variational formulation of the Stokes problem (2.48)–(2.49) is:
Find 𝒗𝜀 ∈ 𝑊per(Ω𝜀

pm)𝑑 with ∇⋅ 𝒗𝜀 = 0 in Ω𝜀
pm and 𝑝𝜀 ∈ 𝐿2per(Ω𝜀

pm) such
that

∫
Ω𝜀
pm

∇𝒗𝜀∶∇𝝋 d𝒙 − ∫
Ω𝜀
pm

𝑝𝜀 (∇⋅𝝋) d𝒙 = ∫
Ω𝜀
pm

𝒇⋅𝝋 d𝒙 (2.52)

for all 𝝋 ∈ 𝑊per(Ω𝜀
pm)𝑑. For 𝒇 ∈ 𝐿2(Ω𝜀

pm)𝑑 the existence of a velocity
field 𝒗𝜀 ∈ 𝑊per(Ω𝜀

pm)𝑑 with ∇⋅ 𝒗𝜀 = 0 and a pressure field 𝑝𝜀 ∈ 𝐿2per(Ω𝜀
pm),

and the uniqueness of the velocity is guaranteed [155]. To make the
pressure field unique, we set ∫Ω𝜀

pm
𝑝𝜀 d𝒙 = 0. This is equivalent to proving

uniqueness in

𝐿2per(Ω𝜀
pm)/R = { 𝑝𝜀 ∈ 𝐿2per(Ω𝜀

pm) ∶ ∫
Ω𝜀
pm

𝑝𝜀 d𝒙 = 0 } . (2.53)

Since we consider 𝜀 → 0 the pore-scale functions 𝒗𝜀, 𝑝𝜀 are not defined
in a fixed domain but in varying sets Ω𝜀

pm. However, we want to obtain
error estimates for 𝒗𝜀, 𝑝𝜀 that are independent of 𝜀 and, in order to prove
convergence of the homogenization procedure, we have to extract weakly
convergent subsequences of the sequence of solutions (𝒗𝜀, 𝑝𝜀). The latter
is only possible in fixed Sobolev spaces (independent of 𝜀), thus, we need to
have 𝒗𝜀 and 𝑝𝜀 defined in themacroscopic flow domainΩpm. Therefore, we
make an extension { ̃𝒗𝜀, ̃𝑝𝜀} ∈ 𝐻 1(Ω𝜀

pm)𝑑 × 𝐿2(Ω𝜀
pm) to the porous-medium

domain Ωpm as described below.

We extend the pore-scale velocity 𝒗𝜀 by zero in Ωpm ⧵ Ω𝜀
pm and define the
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velocity extension

̃𝒗𝜀 = {
𝒗𝜀 in Ω𝜀

pm ,
𝟎 in Ωpm ⧵ Ω𝜀

pm .
(2.54)

This extension is in agreement with the no-slip condition on the solid
boundaries and preserves the 𝐿2- and 𝐻 1-norms. The extension of the
pressure, which has been proven successful for obtaining an a priori
pressure estimate, is more complicated and reads [112]:

̃𝑝𝜀 = {
𝑝𝜀 in Ω𝜀

pm ,
1

|𝑌f𝜀𝑘|
∫𝑌f𝜀𝑘 𝑝

𝜀 d𝒚 in 𝑌s𝜀𝑘 , 1 ≤ 𝑘 ≤ 𝑁(𝜀) ,
(2.55)

where 𝑌f𝜀𝑘 is the fluid part and 𝑌s𝜀𝑘 the solid part of the periodicity cell
𝑌 𝜀𝑘 . In the following, if not stated otherwise, we always deal with the
extensions, but we omit the tilde symbol for the sake of clarity.

To obtain a priori estimates for the velocity, we take 𝝋 = 𝒗𝜀 in (2.52) and
use the mass conservation equation in (2.48) and get

∫
Ω𝜀
pm

|∇𝒗𝜀|2 d𝒙 = ∫
Ω𝜀
pm

𝒇⋅𝒗𝜀 d𝒙 ≤ ‖𝒇 ‖𝐿2(Ω𝜀
pm)𝑑‖𝒗

𝜀‖𝐿2(Ω𝜀
pm)𝑑 . (2.56)

Applying the Poincare inequality (A2.1) and inequality (A2.2), using esti-
mate ‖𝒇 ‖𝐿2(Ω𝜀

pm)𝑑 ≤ 𝐶, and replacing Ω𝜀
pm by Ωpm leads to the following a

priori estimates for the pore-scale velocity

‖𝒗𝜀‖𝐿2(Ωpm)𝑑 ≤ 𝐶𝜀2 , ‖∇𝒗𝜀‖𝐿2(Ωpm)𝑑×𝑑 ≤ 𝐶𝜀 , (2.57)

where 𝐶 > 0. Obtaining an a priori error estimate for the pressure is more
challenging. From the momentum conservation equation in (2.48) and
inequalities (2.57) we get that ∇𝑝𝜀 is uniformly bounded in 𝐻−1(Ω𝜀

pm)𝑑 as
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follows

‖∇𝑝𝜀‖𝐻−1(Ω𝜀
pm)𝑑 = sup

𝝋∈𝑊per(Ω𝜀
pm)𝑑

⟨∇𝑝𝜀, 𝝋⟩𝐻−1(Ω𝜀
pm)𝑑,𝐻 1(Ω𝜀

pm)𝑑

‖𝝋‖𝐻 1(Ω𝜀
pm)𝑑

≤ 𝐶𝜀 .

Here, we denote the dual space of 𝐻 1(Ω𝜀
pm)𝑑 by 𝐻−1(Ω𝜀

pm)𝑑 and define

⟨∇𝑝𝜀, 𝝋⟩𝐻−1(Ω𝜀
pm)𝑑,𝐻 1(Ω𝜀

pm)𝑑 ≔ ∫
Ω𝜀
pm

𝒇⋅𝝋 d𝒙 − ∫
Ω𝜀
pm

∇𝒗𝜀∶∇𝝋 d𝒙 .

Then, from [155, Chapter 1, Proposition 1.2] we know that the following
estimate holds true

‖𝑝𝜀‖𝐿2(Ω𝜀
pm)/R ≤ 𝐶(Ω𝜀

pm) ‖∇𝑝𝜀‖𝐻−1(Ω𝜀
pm)𝑑 . (2.58)

However, estimate (2.58) is not useful because the constant 𝐶(Ω𝜀
pm) de-

pends on 𝜀, hence, it may not be uniformly bounded for 𝜀 → 0. There are
two possibilities to overcome this problem: i) use a restriction operator
and a duality argument following Tartar [153], or ii) construct a direct
extension of the pressure as in [120]. We do not present the derivation of
the a priori estimate for the pressure here, but present the main result in
Lemma 2.1.

Lemma 2.1: The extensions 𝒗𝜀 and 𝑝𝜀 given by (2.54) and (2.55) of the
pore-scale solutions satisfy the following a priori estimates

‖𝒗𝜀‖𝐿2(Ωpm)2 + 𝜀‖∇𝒗𝜀‖𝐿2(Ωpm)2×2 ≤ 𝐶𝜀2 , (2.59)

‖𝑝𝜀‖𝐿2(Ωpm)/R ≤ 𝐶 , (2.60)

where the constant 𝐶 > 0 is independent of 𝜀.

Proof. The proof can be found in [90, Chapter 3, Lemma 1.3] via the use
of Tartar’s restriction operator and in [120, Chapter 1, Theorem 1.5] via
the direct pressure extension.
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The next step is to establish asymptotic expansions of the pore-scale
functions.

Step 3: Asymptotic expansions

In this section, we consider 𝒇 = 𝟎 in (2.48). For the derivation of Darcy’s
law in the more general case, where 𝒇 is not necessarily zero, we refer
to [90, Section 3.1] or [2, 120]. In order to derive the limit problem, we
start from the ansatz that there exist asymptotic expansions of the pore-
scale velocity 𝒗𝜀 and pressure 𝑝𝜀. Corresponding to the obtained a priori
error estimates (2.59) and (2.60) we assume the following asymptotic
expansions

𝒗𝜀(𝒙) ≈ 𝜀2𝒗0(𝒙, 𝒚) + 𝜀3𝒗1(𝒙, 𝒚) + 𝜀4𝒗2(𝒙, 𝒚) + … , (2.61)

𝑝𝜀(𝒙) ≈ 𝑝0(𝒙, 𝒚) + 𝜀𝑝1(𝒙, 𝒚) + 𝜀2𝑝2(𝒙, 𝒚) + … , (2.62)

where 𝒙 is the macroscopic (slow) spatial variable, 𝒚 = 𝒙/𝜀 is the mi-
croscopic (fast) spatial variable, 𝒗𝑖 and 𝑝𝑖 are 𝒚-periodic functions for
𝑖 = 0, 1, 2, ….

Before we substitute expansions (2.61)–(2.62) into the Stokes problem
(2.48)–(2.49) we transform the derivatives

∇ = ∇𝒙 +
1
𝜀
∇𝒚 , Δ = Δ𝒙 +

2
𝜀
∇𝒙⋅∇𝒚 +

1
𝜀2
∇𝒚 . (2.63)

Here, the subscript indicates which variable is involved in the differ-
entiation. Inserting equations (2.61)–(2.63) into the pore-scale problem
(2.48)–(2.49), combining terms with the same degree of 𝜀 and neglecting
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O(𝜀 𝑖) for 𝑖 ∈ N, 𝑖 > 2, yields the following system of equations

O(𝜀−1)∶ ∇𝒚𝑝0(𝒙, 𝒚)= 0 in Ωpm×𝑌f , (2.64)

O(1)∶ − Δ𝒚𝒗0(𝒙, 𝒚) + ∇𝒚𝑝1(𝒙, 𝒚) + ∇𝒙𝑝0(𝒙, 𝒚)= 𝟎 in Ωpm×𝑌f , (2.65)

O(𝜀)∶ ∇𝒚⋅𝒗0(𝒙, 𝒚)= 0 in Ωpm×𝑌f , (2.66)

− Δ𝒚𝒗1(𝒙, 𝒚) + ∇𝒚𝑝2(𝒙, 𝒚) + ∇𝒙𝑝1(𝒙, 𝒚)= 𝟎 in Ωpm×𝑌f , (2.67)

O(𝜀2)∶ ∇𝒙⋅𝒗0(𝒙, 𝒚) + ∇𝒚⋅𝒗1(𝒙, 𝒚)= 0 in Ωpm×𝑌f , (2.68)

− Δ𝒚𝒗2(𝒙, 𝒚) + ∇𝒚𝑝3(𝒙, 𝒚) + ∇𝒙𝑝2(𝒙, 𝒚)= 𝟎 in Ωpm×𝑌f , (2.69)

𝒗0(𝒙, 𝒚)= 𝟎 on Ωpm×𝜕𝑌f . (2.70)

From equation (2.64) we obtain that 𝑝0 is independent of 𝒚, i.e., 𝑝0(𝒙, 𝒚) =
𝑝0(𝒙). Considering (2.65), (2.66) and (2.70), we have a Stokes problem for
{𝒗0, 𝑝1} with the source term ∇𝒙𝑝0(𝒙, 𝒚).

In the usual way, we write

∇𝒙𝑝0(𝒙) =
𝑑
∑
𝑗=1

𝜕𝑝0(𝒙)
𝜕𝑥𝑗

𝒆𝑗 , (2.71)

and equation (2.65) becomes

−Δ𝒚𝒗0(𝒙, 𝒚) + ∇𝒚𝑝1(𝒙, 𝒚) = −
𝑑
∑
𝑗=1

𝜕𝑝0(𝒙)
𝜕𝑥𝑗

𝒆𝑗 . (2.72)

Next, we decompose 𝒗0(𝒙, 𝒚) and 𝑝1(𝒙, 𝒚) in products of 𝜕𝑝0/𝜕𝑥𝑗(𝒙) and
terms 𝒘𝑗(𝒚) and 𝜋 𝑗(𝒚). Such a decomposition has the advantage that if
the pressure 𝑝0 is known, we only have to solve cell problems dependent
on 𝒚 to find functions 𝒗0 and 𝑝1. Hence, we write

𝒗0(𝒙, 𝒚) = −
𝑑
∑
𝑗=1

𝒘𝑗(𝒚)
𝜕𝑝0(𝒙)
𝜕𝑥𝑗

, 𝑝1(𝒙, 𝒚) = −
𝑑
∑
𝑗=1

𝜋 𝑗(𝒚)
𝜕𝑝0(𝒙)
𝜕𝑥𝑗

, (2.73)

where the functions 𝒘𝑗 and 𝜋 𝑗 for 𝑗 = 1, … , 𝑑 are the solutions to the
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following cell problem

−Δ𝒚𝒘𝑗(𝒚) + ∇𝒚𝜋 𝑗(𝒚) = 𝒆𝑗 , ∇𝒚⋅𝒘𝑗(𝒚) = 0 in 𝑌f , (2.74)

𝒘𝑗(𝒚) = 𝟎 on 𝜕𝑌s, {𝒘𝑗, 𝜋 𝑗} is 𝒚-periodic . (2.75)

Existence and uniqueness of a solution to problem (2.74)–(2.75) is proven
for 𝑗 = 1, … , 𝑑 in, e.g., [143]. System (2.74)–(2.75) is obtained by inserting
formulas (2.71) and (2.73) in equations (2.65), (2.66) and (2.70). To define
the pressure 𝜋 𝑗 uniquely, we set additionally

∫
𝑌f
𝜋 𝑗(𝒚) d𝒚 = 0 . (2.76)

We have seen that decomposition (2.73) allows one to compute 𝒗0 and 𝑝1
in terms of ∇𝑝0 that is independent of 𝒚. The next step is to formulate the
homogenized model.

Step 4: Formulation of macroscale model

We solve the cell problem (2.74)–(2.76) for 𝑗 = 1, … , 𝑑 and use solution
{𝒘𝑗, 𝜋 𝑗} to define the averaged velocity field

𝒗(𝒙) = ∫
𝑌f
𝒗0(𝒙, 𝒚) d𝒚 = −

𝑑
∑
𝑗=1

∫
𝑌f
𝒘𝑗(𝒚) d𝒚

𝜕𝑝0(𝒙)
𝜕𝑥𝑗

in Ωpm . (2.77)

We write the 𝑖-th component of the averaged velocity 𝒗 as

𝑣𝑖(𝒙) = −�̃�𝑖𝑗
𝜕𝑝0(𝒙)
𝜕𝑥𝑗

, (2.78)

where the coefficients �̃�𝑖𝑗 are given by

�̃�𝑖𝑗 = ∫
𝑌f
𝑤 𝑗
𝑖 (𝒚) d𝒚 . (2.79)
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Here, 𝑤 𝑗
𝑖 denotes the 𝑖-th component of the cell problem solution 𝒘𝑗 =

(𝑤 𝑗
1, … , 𝑤 𝑗

𝑑) for 𝑖, 𝑗 = 1, … , 𝑑. We define the tensor �̃� = (�̃�𝑖𝑗)1≤𝑖,𝑗≤𝑑 and
rewrite the averaged velocity defined in (2.77) in the following way

𝒗(𝒙) = −�̃�∇𝑝0(𝒙) in Ωpm . (2.80)

Equation (2.80) is the well-known Darcy’s law in its nondimensional form
with the permeability tensor �̃� with entries �̃�𝑖𝑗 defined in (2.79).

Now, it remains to show that the averaged velocity 𝒗 is divergence-free,
i.e., ∇⋅𝒗(𝒙) = 0 for 𝒙 ∈ Ωpm. Considering equations (2.66), (2.68) and (2.77)
we obtain

∇⋅𝒗(𝒙)
(2.77)
= ∇⋅ ∫

𝑌f
𝒗0(𝒙, 𝒚) d𝒚 = ∫

𝑌f
∇⋅𝒗0(𝒙, 𝒚) d𝒚

(2.66), (2.68)
= −∫

𝑌f
∇𝒚⋅𝒗1(𝒙, 𝒚) d𝒚 . (2.81)

We apply Gauss’s theorem to the term on the right hand side of equa-
tion (2.81) and get

∫
𝑌f
∇𝒚⋅𝒗1(𝒙, 𝒚) d𝒚 = ∫

𝜕𝑌f
𝒏⋅𝒗1(𝒙, 𝒚) d𝑆

= ∫
𝜕𝑌s

𝒏⋅𝒗1(𝒙, 𝒚) d𝑆 + ∫
𝜕𝑌
𝒏⋅𝒗1(𝒙, 𝒚) d𝑆 . (2.82)

The first integral on the right hand side of equation (2.82) is zero due to
the no-slip condition given in (2.49). Due to the 𝒚-periodicity of function
𝒗1, the last term in (2.82) is zero. Therefore, it holds

∇⋅𝒗(𝒙) = 0 for all 𝒙 ∈ Ωpm .

We summarize the obtained results in the following proposition:

Proposition 2.2 (Darcy’s law): Homogenization of the pore-scale prob-
lem (2.48)– (2.49) yields the nondimensional Darcy law with the conserva-
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tion of mass equation given by

𝒗(𝒙) = −�̃�∇𝑝(𝒙) , ∇⋅𝒗(𝒙) = 0 in Ωpm , (2.83)

where 𝒗 and 𝑝 are 𝐿-periodic functions.

Proof. This is a result of Step 1–Step 4 and the proof can be also found
in [90, Chapter 3, Theorem 1.1].

Step 5: Study of the homogenized problem

In this section, we study the homogenized problem (2.83) concerning
existence and uniqueness of a solution.

Proposition 2.3 (Properties of the permeability tensor): The permeability
tensor �̃� given by formula (2.79) is symmetric and positive definite.

Proof. We integrate the momentum equation in (2.74) for 𝑗 = 1, … , 𝑑 over
the fluid part 𝑌f of the unit cell, multiply with 𝒘𝑖(𝒚) for 𝑖 = 1, … , 𝑑, use
formula (2.79) and obtain

∫
𝑌f
Δ𝒚𝒘𝑗(𝒚)⋅𝒘𝑖(𝒚) d𝒚 − ∫

𝑌f
∇𝒚𝑝𝑗(𝒚)⋅𝒘𝑖(𝒚) d𝒚

(2.74)
= −∫

𝑌f
𝒆𝑗⋅𝒘𝑖(𝒚) d𝒚 = −∫

𝑌f
𝑤 𝑖
𝑗 (𝒚) d𝒚

(2.79)
= −�̃�𝑗𝑖 . (2.84)

We apply integration by parts to the first term on the left hand side
of equation (2.84), make use the 𝒚-periodicity of function 𝒘𝑗 for 𝑗 = 1, … , 𝑑
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and the no-slip condition in (2.75), and get

∫
𝑌f
Δ𝒚𝒘𝑗(𝒚)⋅𝒘𝑖(𝒚) d𝒚

= ∫
𝜕𝑌f

(∇𝒚𝒘𝑗(𝒚)𝒘𝑖(𝒚)) ⋅𝒏 d𝑆 − ∫
𝑌f
∇𝒚𝒘𝑗(𝒚)∶∇𝒚𝒘𝑖(𝒚) d𝒚

(2.75)
= −∫

𝑌f
∇𝒚𝒘𝑗(𝒚)∶∇𝒚𝒘𝑖(𝒚) d𝒚 . (2.85)

Integrating the second term on the left hand side of equation (2.84) by
parts, using the mass conservation equation in (2.74) and boundary con-
ditions (2.75) yields

−∫
𝑌f
∇𝒚𝑝𝑗(𝒚)⋅𝒘𝑖(𝒚) d𝒚 = −∫

𝜕𝑌f
𝑝𝑗(𝒚)𝒘𝑖(𝒚)⋅𝒏 d𝑆 + ∫

𝑌f
𝑝𝑗(𝒚)∇𝒚⋅𝒘𝑖(𝒚) d𝒚

(2.74)
= −∫

𝜕𝑌f
𝑝𝑗(𝒚)𝒘𝑖(𝒚)⋅𝒏 d𝑆

(2.75)
= 0 . (2.86)

We combine equations (2.84), (2.85) and (2.86) that leads to

∫
𝑌f
∇𝒚𝒘𝑗(𝒚)∶∇𝒚𝒘𝑖(𝒚) d𝒚 = �̃�𝑗𝑖 . (2.87)

Interchanging the indices 𝑖 and 𝑗 on the left hand side of equation (2.87)
results in the same integral term, and using equality (2.87), we get for all
𝑖, 𝑗 = 1, … , 𝑑 :

�̃�𝑖𝑗
(2.87)
= ∫

𝑌f
∇𝒚𝒘𝑖(𝒚)∶∇𝒚𝒘𝑗(𝒚) d𝒚 = ∫

𝑌f
∇𝒚𝒘𝑗(𝒚)∶∇𝒚𝒘𝑖(𝒚) d𝒚

(2.87)
= �̃�𝑗𝑖 .

This implies that the permeability tensor �̃� given by (2.79) is symmetric.

It remains to prove that �̃� ∈ R𝑑×𝑑 is positive definite, i.e., 𝒙⋅�̃�𝒙 > 0 for all
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𝒙 ∈ R𝑑 ⧵ {𝟎}. We use (2.79), (2.84) and (2.85), and obtain

𝒙⋅�̃�𝒙 =
𝑑
∑
𝑖,𝑗=1

�̃�𝑖𝑗𝑥𝑖𝑥𝑗
(2.79)
=

𝑑
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗 ∫
𝑌f
𝑤 𝑗
𝑖 (𝒚) d𝒚

(2.85), (2.84)
=

𝑑
∑
𝑖,𝑗=1

𝑥𝑖𝑥𝑗 ∫
𝑌f
∇𝒚𝒘𝑖(𝒚)∶∇𝒚𝒘𝑗(𝒚) d𝒚 . (2.88)

Rewriting the right hand side of (2.88) using the definition of the inner
product yields

𝑑
∑
𝑖,𝑗=1

𝑑
∑
𝑘=1

𝑥𝑖𝑥𝑗 ∫
𝑌f
∇𝒚𝑤 𝑖

𝑘(𝒚)⋅∇𝒚𝑤
𝑗
𝑘(𝒚) d𝒚

=
𝑑
∑
𝑖,𝑗=1

𝑑
∑
𝑘,𝑙=1

∫
𝑌f
𝑥𝑖
𝜕𝑤 𝑖

𝑘
𝜕𝑦𝑙

(𝒚)𝑥𝑗
𝜕𝑤 𝑗

𝑘
𝜕𝑦𝑙

(𝒚) d𝒚

=
𝑑
∑
𝑘,𝑙=1

∫
𝑌f
(

𝑑
∑
𝑖=1

𝑥𝑖
𝜕𝑤 𝑖

𝑘
𝜕𝑦𝑙

(𝒚)) (
𝑑
∑
𝑗=1

𝑥𝑗
𝜕𝑤 𝑗

𝑘
𝜕𝑦𝑙

(𝒚)) d𝒚

=
𝑑
∑
𝑘,𝑙=1

∫
𝑌f
(

𝑑
∑
𝑖=1

𝑥𝑖
𝜕𝑤 𝑖

𝑘
𝜕𝑦𝑙

(𝒚))
2

d𝒚 ≥ 0 . (2.89)

The right hand side of equation (2.89) is only zero if all components
𝑥𝑖 = 0 for 𝑖 = 1, … , 𝑑, since the partial derivatives (𝜕𝑤 𝑖

𝑘)/(𝜕𝑦𝑙) ≠ 0 for
𝑖, 𝑘, 𝑙 = 1, … , 𝑑 by definition of problem (2.75)–(2.76). Hence, considering
equations (2.88) and (2.89), we get

𝒙⋅�̃�𝒙 =
𝑑
∑
𝑘,𝑙=1

∫
𝑌f
(

𝑑
∑
𝑖=1

𝑥𝑖
𝜕𝑤 𝑖

𝑘
𝜕𝑦𝑙

(𝒚))
2

d𝒚 > 0 ,

if at least one component 𝑥𝑖 ≠ 0 for 𝑖 = 1, … , 𝑑, and we have proven that
the permeability tensor �̃� is positive definite.

In order to prove existence and uniqueness of a solution to the homoge-
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nized problem (2.83), we transform the dimensionless equations in their
following mixed form, which is a second order elliptic equation for the
pressure

−∇⋅ (�̃�∇𝑝(𝒙)) = 0 in Ωpm . (2.90)

Then, from the Lax–Milgram theorem (Appendix A.3, Theorem A.7),
we get existence and uniqueness of a solution 𝑝 ∈ 𝐻 1

per(Ωpm)/R =
{𝜑 ∈ 𝐻 1(Ωpm) ∶ ∫Ωpm

𝜑 d𝒙 = 0, 𝜑 is 𝐿-periodic} of the macroscale prob-
lem (2.83).

Step 6: Proof of two-scale convergence

From the mathematical point of view, the method of two-scale asymptotic
expansions is a formal one because, a priori, there is no reason for the
ansatz (2.61) and (2.62) to hold true. Thus, in order to justify the homoge-
nization result (2.83), which has been derived based on the assumption
that there exist asymptotic expansions, a further step is required. In the
following, we present results on the convergence of the pore-scale solu-
tion {𝒗𝜀, 𝑝𝜀} to the homogenized one {𝒗, 𝑝} obtained by Allaire [2, 3] and
Mikelić [120] using the two-scale convergence method. Here, the strategy
is to test the weak formulation of the pore-scale problem (2.48)–(2.49)
with an oscillating function 𝜑(𝒙, 𝒙/𝜀), which admits passing to the limit
𝜀 → 0 that directly yields the homogenized result. Before we provide the
convergence results, we recall the definition of the two-scale convergence
in the function space 𝐿2 following [3].

Definition 2.4 (Two-scale convergence): The sequence {𝑤 𝜀} ⊂ 𝐿2(Ωpm)
converges in the two-scale sense in 𝐿2 to a limit 𝑤(𝒙, 𝒚) ∈ 𝐿2(Ωpm × 𝑌 ) if
for any 𝜑(𝒙, 𝒚) ∈ 𝐶∞0 (Ωpm; 𝐶∞per(𝑌 )) we have

lim
𝜀→0∫Ωpm

𝑤 𝜀(𝒙)𝜑 (𝒙, 𝒙
𝜀
) d𝒙 = ∫

Ωpm
∫
𝑌
𝑤(𝒙, 𝒚)𝜑 (𝒙, 𝒚) d𝒚 d𝒙 , (2.91)
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where 𝐶∞per(𝑌 ) = {𝜑 ∈ 𝐶∞per(𝑌 ) ∶ 𝜑 is 𝒚-periodic } and 𝒚 = 𝒙/𝜀.

In the two-scale limit 𝑤(𝒙, 𝒚) some oscillations of the sequence {𝑤 𝜀} are
incorporated and, in case all of them are captured, we obtain strong conver-
gence. Hence, two-scale convergence is stronger than weak convergence
in 𝐿2, but it is weaker than strong convergence in 𝐿2.

In Theorem 2.5, we summarize the convergence results rigorously derived
in [2, 120] that justify the first terms in the expansions (2.61) and (2.62)
for any bounded sequences 𝒗𝜀 and 𝑝𝜀, respectively.

Theorem 2.5 (Convergence theorem): Let {𝒗𝜀, 𝑝𝜀} be the extension given
by (2.54) and (2.55) of the solution to problem (2.48)–(2.49)with ∫Ω𝜀

pm
𝑝𝜀 d𝒙 =

0. Let 𝑝 = 𝑝0 be the solution to problem (2.83) and 𝒗0 given in (2.73). Then,
it holds

𝒗𝜀(𝒙)
𝜀2

→ 𝒗0(𝒙, 𝒚) in the two-scale sense in 𝐿2 , (2.92)

∇𝒗𝜀(𝒙)
𝜀2

→ ∇𝒚𝒗0(𝒙, 𝒚) in the two-scale sense in 𝐿2 , (2.93)

𝑝𝜀(𝒙) → 𝑝(𝒙, 𝒚) in 𝐿2 . (2.94)

Proof. See [120, proof of Theorem 1.15].

Theorem 2.5 states that the sequence {𝒗𝜀} converges towards 𝒗0 in the
two-scale sense and that {𝑝𝜀} strongly converges in 𝐿2 towards 𝑝. More
details on the two-scale convergence method can be found in [1–3, 90,
120].

In the literature there exist also stronger convergence results for the
pore-scale velocity. For example, Allaire [1] proves the strong conver-
gence 𝑼 𝜀 → 𝟎 in 𝐿2, where 𝑼 𝜀 = 𝜀−2𝒗𝜀 − 𝒗0(𝒙, 𝒚). Further, in [120] the
authors show that the 𝐿2-norm of 𝑼 𝜀 is bounded by 𝐶𝜀 when adding a
divergence corrector 𝑄𝜀 to the approximation 𝒗0. Unfortunately, the new
approximation 𝒗0 + 𝑄𝜀 of the pore-scale velocity has nonzero trace on the
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boundary 𝜕Ωpm. As long as we consider periodic boundary conditions
on 𝜕Ωpm for the pore-scale problem (2.48)–(2.49), we do not have to ad-
just the boundary conditions on the external boundary for the upscaled
problem (2.83). However, if nonperiodic boundary conditions are applied,
it becomes more difficult in comparison to the periodic case to formulate
the corresponding macroscale model, and also to prove convergence and
to obtain rigorous error estimates [90, 95, 120]. In this case, additional
corrections in form of boundary layers and auxiliary functions are needed
that is discussed in the next section.

2.3.3 Boundary layer theory: Interface conditions for
unidirectional flows

The assumption on the periodicity of a porous medium, which is needed
to apply periodic homogenization, is not valid close to the boundaries
of the domain. Therefore, the approximation, obtained using homog-
enization of the pore-scale equations, performs well inside the porous
medium, however, this is not the case near the domain boundaries. Here,
the behavior of the pore-scale functions may greatly differ from their
behavior inside the porous material. However, this is not reflected in the
Darcy law, which was derived in the previous section. There, we avoided
addressing this issue by applying periodic boundary conditions on the
external boundary.

In order to incorporate boundary layer effects into the macroscale model,
corrector functions need to be added to the approximation of the pore-
scale solution. In the previous section, for example, the pore-scale approx-
imation that needs to be improved is 𝒗0 given by (2.73). For the purpose
of improvement, boundary layer correctors are used, which are scaled
solutions to boundary layer problems. The latter are Stokes problems de-
fined in a small vertical stripe of the domain, the so-called boundary layer
stripe (Figure 2.8, right). One big advantage of boundary layer correctors
is that they stabilize exponentially fast to some constants away from the
boundary, i.e., their energies concentrate only near the boundary of the
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porous domain. Further, in terms of computational complexity, boundary
layer correctors are cheap compared to correctors defined in the entire
flow domain.

Fixing the boundary conditions on the external boundary of a porous
medium for a macroscopic model is a challenging problem. First attempts
were made in [109] for the Laplace operator. In case of the Navier–Stokes
equations, boundary layer correctors for the no-slip condition on the
porous-medium boundary have been constructed in [115].

Besides problems involving porous-medium domains only, boundary layer
correctors play a very important role in context with contact surfaces. In
coupled Stokes–Darcy systems the sharp fluid–porous interface is such a
contact surface and Darcy’s law is no longer valid there. Thus, in order to
account for interfacial effects, the macroscale model needs to be improved
using boundary layer correctors. Efforts to derive interface conditions
for Stokes–Darcy problems by means of homogenization and boundary
layer theory were first made by Jäger and Mikelić [95]. Based on their
studies coupling conditions for one-dimensional flows, i.e., parallel or
perpendicular to the porous layer, were rigorously derived using the same
averaging strategy and analyzed in, e.g., [33, 34, 96, 98]. The main findings
of these works are presented below. Generalized coupling conditions that
account for multidimensional flows to the interface were derived via
homogenization theory with boundary layers in [EE4] for the first time.
These conditions are presented in Chapter 3 as one of the key results of
this thesis.

Interface conditions for unidirectional flows in Stokes–Darcy systems

In the following, we present two sets of interface conditions for the
Stokes–Darcy problem derived via boundary layer theory and periodic
homogenization [34, 95–98]. Based on the choice of external boundary
condition for the pore-scale problem (2.48), one set of coupling conditions
is derived for flows parallel to the fluid–porous interface, the other one
for flows perpendicular to the porous layer. For both coupling concepts,
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Figure 2.8: Geometrical setting of the dimensionless pore-scale domain
(left) and the boundary layer stripe (right).

we present the main results obtained by the authors including the approx-
imation of the pore-scale solution via asymptotic expansions, the most
important boundary layer problems and rigorous error estimates. For
further details, the interested reader is referred to [33, 34, 95–98, 114].

Before we present the aforementioned interface conditions, we provide
the geometrical setting of the coupled domain and the flow models in
the nondimensional framework. We consider the free-flow region Ωff =
(0, 𝐿) × (0, ℎ) and the porous medium Ωpm = (0, 𝐿) × (−𝐻 , 0), separated
by the sharp interface Σ = (0, 𝐿) × {0}, which is void of thermodynamic
properties, i.e., it cannot store and transport any mass or momentum. The
porous medium is constructed in the same way as described in Step 1 in
Section 2.3.2, where 𝜀 is the nondimensional characteristic pore size. We
chose the unit tangential vector 𝝉 = 𝒆1 and the unit normal vector 𝒏 = 𝒆2
on the interface Σ. The pore-scale flow domain is denoted byΩ𝜀 consisting
of the free-flow region Ωff and the pore space Ω𝜀

pm of the porous-medium
domainΩpm (Figure 2.8, left). For simplicity, we assume 𝐿/𝜀, ℎ/𝜀, 𝐻/𝜀 ∈ N.
Further, we introduce the boundary layer stripe 𝑍bl = 𝑍+ ∪ 𝑆 ∪ 𝑍− with

its fluid part 𝑍+ = (0, 1) × (0, ∞) and solid part 𝑍− =
∞
⋃
𝑘=1

(𝑌f − {0, 𝑘}).
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The flow at the pore scale is described by the stationary dimensionless
Stokes equations with the no-slip conditions on the solid boundaries

−Δ𝒗𝜀 + ∇𝑝𝜀 = 𝟎 , ∇⋅ 𝒗𝜀 = 0 in Ω𝜀 , 𝒗𝜀 = 𝟎 on 𝜕Ω𝜀 ⧵ 𝜕Ω . (2.95)

From the macroscale perspective, the nondimensional Stokes equations
are used to model the free flow

−Δ⋅𝒗ff + ∇𝑝ff = 𝟎 , ∇⋅𝒗ff = 0 in Ωff , (2.96)

and the dimensionless Darcy equations are applied in the porousmedium

−∇⋅ (�̃�∇𝑝pm) = 0 in Ωpm . (2.97)

Conditions on the external boundary both for the pore-scale problem (2.95)
and the Stokes–Darcy problem (2.96)–(2.97) are specified in the subse-
quent paragraphs. In addition, effective coupling conditions on the fluid–
porous interface are required to close the macroscopic problem formu-
lation. Below, the derivation of such conditions for the Stokes–Darcy
coupling based on [34, 95, 96, 98] is presented for two scenarios: i) parallel
flow to the interface and ii) perpendicular flow to the interface.

For the sake of clarity, we write 𝜑 for 𝜑(𝒙), 𝒙 ∈ Ω = Ωff ∪ Ωpm, and
𝜑(𝒚) = 𝜑(𝒙/𝜀) if the function 𝜑 is evaluated at 𝒚 = 𝒙/𝜀. Further, the
Heaviside step function is given by

H(𝑥) = {
1 if 𝑥 ≥ 0 ,
0 else .

(2.98)

i) Parallel flow to the interface

The authors from [96, 98] study the laminar, viscous flow over a periodic
porous medium, similar to the experiments of Beavers and Joseph [15]. In
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this work, the pore-scale system (2.95) is completed with the following
boundary conditions

𝒗𝜀=𝟎 on (0, 𝐿)×({−𝐻}∪{ℎ}) , 𝑣 𝜀2=0 on ({0}∪{𝐿})×(−𝐻 , ℎ) , (2.99)

𝑝𝜀=𝑝in on {0}×(−𝐻 , ℎ) , 𝑝𝜀=𝑝out on {𝐿}×(−𝐻 , ℎ) . (2.100)

Here, 𝑝in is the prescribed pressure on the left boundary and 𝑝out the one
on the right boundary of the domain Ω𝜀, where 𝑝in > 𝑝out. Considering
conditions (2.99) and (2.100) the flow is driven by a pressure gradient
from the left side of the entire domain to the right side, resulting in a flow
parallel to the porous layer.

From the macroscale perspective, the Poiseuille flow with {𝒗Pois, 𝑝Pois} is
used to describe the fluid motion in the free-flow region. In the porous-
medium domain the velocity is set to zero and the pressure is assumed to
have the same form as in the free-flow region. Thus, after [96, 98] the first
approximation {𝒗0,𝜀approx, 𝑝0,𝜀approx} of the pore-scale velocity and pressure
reads

𝒗0,𝜀approx = H(𝑥2) (
𝑝out − 𝑝in

2𝐿
𝑥2(𝑥2 − ℎ)) 𝒆1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝒗Pois

,

𝑝0,𝜀approx =
𝑝out − 𝑝in

𝐿
𝑥1 + 𝑝in⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑝Pois

.
(2.101)

However, this first approximation is not sufficient for the flow description
in the free-flow region near the interface, due to the presence of an
oscillatory boundary layer. The authors in [96, 98] consider the weak
formulation of the pore-scale problem (2.95), (2.99)–(2.100) using the first
approximation (2.101) and identify the terms corresponding to the physical
boundary layer. Based on this investigation, the following boundary layer
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problem is introduced

−Δ𝒚𝜷bl(𝒚) + ∇𝒚𝜔bl(𝒚) = 𝟎 , ∇𝒚⋅ 𝜷bl(𝒚) = 0 in 𝑍+ ∪ 𝑍− ,

J𝜷bl(𝒚)K𝑆 = 𝟎 , J(∇𝒚𝜷bl(𝒚) − 𝜔bl(𝒚)𝗜)𝒆2K𝑆 = 𝒆1 on 𝑆 ,

𝜷bl(𝒚) = 𝟎 on
∞
⋃
𝑘=1

(𝜕𝑌s − {0, 𝑘}) , {𝜷bl, 𝜔bl} is 𝒚-periodic .

(2.102)

For existence and uniqueness of the solution to problem (2.102), we refer
to [95, 96, 98].

Now, the first approximation {𝒗0,𝜀approx, 𝑝0,𝜀approx} is improved by adding
appropriate correctors resulting from the boundary layer solution {𝜷bl, 𝜔bl}
as follows

𝒗1,𝜀approx = 𝒗0,𝜀approx − 𝜀𝜷bl(𝒚)
𝜕𝑣Pois1
𝜕𝑥2

|
Σ

= H(𝑥2)𝒗Pois − 𝜀𝜷bl(𝒚)
𝜕𝑣Pois1
𝜕𝑥2

|
Σ
,

𝑝1,𝜀approx = 𝑝0,𝜀approx − 𝜔bl(𝒚)
𝜕𝑣Pois1
𝜕𝑥2

|
Σ

= 𝑝Pois − 𝜔bl(𝒚)
𝜕𝑣Pois1
𝜕𝑥2

|
Σ
,

(2.103)

where (𝜕𝑣Pois1 /𝜕𝑥2)|Σ ≔ (𝜕𝑣Pois1 /𝜕𝑥2)(𝑥1, 0). In [95] it is shown that the
boundary layer velocity 𝜷bl(𝒚) and pressure 𝜔bl(𝒚) stabilize exponentially
fast to some constants for 𝑦2 → ∞ and to zero for 𝑦2 → −∞. The stabiliz-
ing boundary layer constants 𝑪bl and 𝐶bl𝜔 for the velocity and pressure,
respectively, are given by

𝑪bl = (𝐶bl1 , 0)
⊤
= (∫

1

0
𝛽bl1 (𝑦1, 0) d𝑦1, 0)

⊤

,

𝐶bl𝜔 = ∫
1

0
𝜔bl (𝑦1, 0) d𝑦1 .

(2.104)
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Due to the exponentially fast stabilization of the boundary layer solution
{𝜷bl, 𝜔bl}, a counter flow in form of an Oseen–Couette system in the free-
flow region is created [98, equations (7.1)–(7.4)]. In order to improve the
effective approximations (2.103), the solution to the counter flow problem
and the stabilizing constants are added to 𝒗1,𝜀approx and 𝑝1,𝜀approx. We do not
go into further details here and refer to [98].

The authors [98] propose the following final approximation of the pore-
scale velocity and pressure in case of flows parallel to the porous bed

𝒗final,𝜀approx = H(𝑥2)𝒗Pois − 𝜀𝜷bl(𝒚)
𝜕𝑣Pois1
𝜕𝑥2

|
Σ

+H(𝑥2)𝜀𝐶bl1 (
𝜕𝑣Pois1
𝜕𝑥2

|
Σ
𝒆1 + 𝒅) ,

𝑝final,𝜀approx = H(𝑥2)𝑝Pois +H(−𝑥2)𝑝reg,𝜀

− (𝜔bl(𝒚) −H(𝑥2)𝐶bl𝜔 )
𝜕𝑣Pois1
𝜕𝑥2

|
Σ
.

(2.105)

Here, 𝒅 = (1 − 𝑥2/ℎ)𝒆1 is the solution of the Couette flow and 𝑝reg,𝜀
is an appropriate regularization of the pressure in the porous medium.
Based on the pore-scale problem (2.95), (2.99)–(2.100) and the approxi-
mation (2.105), the following coupling conditions for the Stokes–Darcy
problem (2.96)–(2.97) are derived in [95, 96, 98]:

𝒗ff⋅𝒏 = 0 on Σ , (2.106)

𝑝pm = 𝑝ff + 𝐶bl𝜔 𝝉⋅∇𝒗ff𝒏 on Σ , (2.107)

𝒗ff⋅𝝉 = −𝜀𝐶bl1 𝝉⋅∇𝒗ff𝒏 on Σ , (2.108)

where 𝒗ff = 𝒗Pois and 𝑝ff = 𝑝Pois. Condition (2.106) differs from the
conservation of mass equation (2.17), however, it is reasonable for flows
parallel to the porous layer for which conditions (2.106)–(2.108) are devel-
oped. In this case, the normal component of the Darcy velocity is almost
zero, thus, can be neglected. Interface condition (2.107) links the pressure
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fields in the porous medium and in the free-flow domain. For isotropic
porous media, 𝐶bl𝜔 = 0 and we obtain continuity of pressure across the
interface. Condition (2.108) is a variant of the Beavers–Joseph–Saffman

law (2.20) taking 𝛼BJ = √𝐾/𝐶bl1 , where √𝐾 = √𝝉⋅�̃�𝝉.

In order to provide error estimates to justify the obtained interface condi-
tions (2.106)–(2.108), the velocity and pressure error functions are used

𝑼 𝜀 = 𝒗𝜀 − 𝒗final,𝜀approx , 𝑃 𝜀 = 𝑝𝜀 − 𝑝final,𝜀approx . (2.109)

Then, the following theorem was proven in [96]:

Theorem 2.6: For the considered pore-scale problem (2.95), (2.99)–(2.100)
the following error estimates hold for 𝑼 𝜀 and 𝑃 𝜀 defined by (2.109):

‖𝑼 𝜀‖𝐿2(Ω𝜀
pm)2 ≤ 𝐶𝜀2| log 𝜀| , ‖𝑼 𝜀‖𝐿2(Σ)2 ≤ 𝐶𝜀3/2| log 𝜀| ,

‖𝑼 𝜀‖𝐿2(Ωff)2 ≤ 𝐶𝜀3/2| log 𝜀| , ‖𝑃 𝜀‖𝐿2(Ωff) ≤ 𝐶𝜀| log 𝜀| .

Proof. See proof in [96, Theorem 6].

An error estimate for the pressure approximation in the porous medium
is not obtained in [96] and the authors note that this remains an open
problem which is still not solved for the considered flow problem (2.95),
(2.99)–(2.100).

ii) Perpendicular flow to the interface

In [34] a flow problem is studied where the fluid flow is perpendicular to
the porous layer. The authors consider forced infiltration of a fluid into
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a porous medium based on the Stokes system (2.95) with the following
boundary conditions

𝒗𝜀 = 𝒗 in on (0, 𝐿)×{ℎ} , 𝑣 𝜀2 = 𝑣out,
𝜕𝑣 𝜀1
𝜕𝑥2

= 0 on (0, 𝐿)×{−𝐻} , (2.110)

{𝒗𝜀, 𝑝𝜀} is 𝐿-periodic in 𝑥1 . (2.111)

Here, 𝒗 in = (𝑣 in1 , 𝑣 in2 )⊤ is a given inflow velocity and 𝑣out is an outflow
velocity such that

∫
𝐿

0
𝑣 in2 (𝑥1) d𝒙1 = ∫

𝐿

0
𝑣out(𝑥1) d𝒙1 . (2.112)

As before, the Stokes–Darcy model (2.96)–(2.97) is used to describe the
flow at the macroscale. However, in this case the free-flow velocity and
the filtration velocity in the porous medium are of the same order of
magnitude, i.e., of order O(1). Taking into account the homogenization
ansatz (2.61)–(2.62) and the formulas given in (2.73), the following first
approximation of the pore-scale solution is proposed in [34]:

𝒗0,𝜀approx =H(𝑥2)𝒗ff −H(−𝑥2)
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
𝒘𝑗(𝒚) ,

𝑝0,𝜀approx =H(𝑥2)𝑝ff +H(−𝑥2) [𝜀−2𝑝pm − 𝜀−1
2
∑
𝑗=1

(
𝜕𝑝pm

𝜕𝑥𝑗
𝜋 𝑗(𝒚))] ,

(2.113)

where {𝒘𝑗, 𝜋 𝑗} is the solution to the cell problem (2.74)–(2.76) for 𝑗 = 1, 2.
With the first approximation 𝒗0,𝜀approx given in (2.113), the velocity inside
the two flow domains far away from the interface is approximated suf-
ficiently well, however, this is not the case in the near interface region.
Furthermore, function 𝒗0,𝜀approx is not divergence free yet and the boundary
conditions (2.110) on the external boundary are not fulfilled. Thus, cor-
rections in form of boundary layer correctors are needed to resolve these
problems.
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In order to approximate the velocity in the near interface region, the
following boundary layer problem is defined [34]:

−Δ𝒚𝜷2,bl(𝒚) + ∇𝒚𝜔2,bl(𝒚) = 𝟎 , ∇𝒚⋅ 𝜷2,bl(𝒚) = 0 in 𝑍+ ∪ 𝑍− ,

J𝜷2,bl(𝒚)K𝑆 = 𝑘22𝒆2 − 𝒘𝑗(𝒚) on 𝑆 ,

J(∇𝒚𝜷2,bl(𝒚) − 𝜔2,bl(𝒚)𝗜)𝒆2K𝑆 = (∇𝒚𝒘𝑗(𝒚) − 𝜋 𝑗(𝒚)𝗜) 𝒆2 on 𝑆 ,

𝜷2,bl(𝒚) = 𝟎 on
∞
⋃
𝑘=1

(𝜕𝑌s − {0, 𝑘}) , {𝜷2,bl, 𝜔2,bl} is 𝒚-periodic .

It is shown [95] that 𝜷2,bl and 𝜔2,bl stabilize exponentially to the boundary
layer constants 𝑪2,bl and 𝐶2𝜋 for 𝑦2 → ∞ and to zero for 𝑦2 → −∞. These
constants are given by

𝑪2,bl = (𝐶2,bl1 , 0)
⊤
= (∫

1

0
𝛽2,bl1 (𝑦1, 0) d𝑦1, 0)

⊤

,

𝐶2𝜋 = ∫
1

0
𝜔2,bl (𝑦1, 0) d𝑦1 .

(2.114)

For further properties of the boundary layer solution {𝜷2,bl, 𝜔2,bl}, exis-
tence and uniqueness results we refer to [34, 95].

An improved approximation of the pore-scale solution to problem (2.95),
(2.110) and (2.111) is obtained by adding boundary layer correctors and
appropriately scaled boundary layer constants in the following way

𝒗1,𝜀approx =𝒗0,𝜀approx + 𝜷2,bl(𝒚)
𝜕𝑝pm

𝜕𝑥2
|
Σ
−H(𝑥2)𝑪2,bl 𝜕𝑝

pm

𝜕𝑥2
|
Σ
,

𝑝1,𝜀approx =𝑝0,𝜀approx + 𝜔2,bl(𝒚)
𝜕𝑝pm

𝜕𝑥2
|
Σ
− 𝑪2

𝜋
𝜕𝑝pm

𝜕𝑥2
|
Σ
,

where (𝜕𝑝pm/𝜕𝑥2)|Σ ≔ 𝜕𝑝pm/𝜕𝑥2(𝑥1, 0). Further boundary layer prob-
lems and auxiliary functions are constructed in [34], however, we do not
discuss them in this thesis since they do not contribute to the derived
interface conditions. The interested reader is referred to [34].
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After all corrections are done the asymptotic behavior of the pore-scale
velocity and pressure is given by [34]:

𝒗𝜀 = 𝒗final,𝜀approx +O(𝜀) + outer boundary layers ,

𝑝𝜀 = 𝑝final,𝜀approx + 𝑜(𝜀−1) + outer boundary layers .

Hereby, the final approximation of the pore-scale velocity and pressure
is

𝒗final,𝜀approx =H(𝑥2) (𝒗ff − 𝐶2,bl1
𝜕𝑝pm

𝜕𝑥2
|
Σ
𝒆1)

−H(−𝑥2)
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
𝒘𝑗 (𝒚) +

𝜕𝑝pm

𝜕𝑥2
|
Σ
𝜷2,bl (𝒚) , (2.115)

𝑝final,𝜀approx =H(𝑥2)𝑝ff

+H(−𝑥2) [𝜀−2𝑝pm − 𝜀−1
2
∑
𝑗=1

(
𝜕𝑝pm

𝜕𝑥𝑗
𝜋 𝑗 (𝒚) + 𝛿2𝑗𝐶2𝜋

𝜕𝑝pm

𝜕𝑥2
|
Σ
)]

+ 𝜀−1 (𝜔2,bl (𝒙
𝜀
) −H(𝑥2)𝐶2𝜋)

𝜕𝑝pm

𝜕𝑥2
|
Σ
, (2.116)

where 𝛿𝑖𝑗 denotes the Kronecker delta for 𝑖, 𝑗 = 1, 2. Making use of the ap-
proximations (2.115) and (2.116), Carraro et al. [34] derived the subsequent
coupling conditions for Stokes–Darcy systems with flows perpendicular
to the porous layer

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (2.117)

𝑝pm = 0 on Σ , (2.118)

𝒗ff⋅𝝉 = 𝐶2,bl1 ∇𝑝pm⋅𝒏 on Σ . (2.119)

Condition (2.117) is the conservation of mass across the interface and
equation (2.118) states zero Darcy pressure on Σ. For anisotropic porous
media a jump in tangential velocities (2.119) is proposed, which reduces
to 𝒗ff⋅𝝉 = 0 for isotropic media since 𝐶2,bl1 = 0 in this case. The derived
interface conditions (2.117)–(2.119) are valid only for the specific set of
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boundary conditions (2.110)–(2.111) considered in [34] and are not appli-
cable for general flow problems where the flow is perpendicular to the
porous medium. An example of forced infiltration of a fluid into a porous
medium where 𝑝pm ≠ 0 on Σ and thus, interface condition (2.118) is not
fulfilled, is given in [EE6, Section 6.2].

In Theorem 2.7 below, error estimates obtained in [34] are provided to
justify the interface conditions (2.117)–(2.119) derived via homogenization
and boundary layer theory.

Theorem 2.7: Let M be a neighborhood of the lower boundary {𝑥2 = −𝐻}
and 𝑝𝜀 extended by (2.55). Then, considering the pore-scale problem given
by (2.95), (2.110) and (2.111) it holds

‖𝒗𝜀 − 𝒗ff + 𝑪2,bl 𝜕𝑝
pm

𝜕𝑥2
|
Σ
− 𝜷2,bl(𝒚)

𝜕𝑝pm

𝜕𝑥2
|
Σ
‖
𝐿2(Ωff)2

≤ 𝐶𝜀 ,

‖𝒗𝜀 + (𝑘22𝒆2 − 𝜷2,bl(𝑦1, +0))
𝜕𝑝pm

𝜕𝑥2
|
Σ
‖
𝐿2(Σ)2

≤ 𝐶𝜀 ,

‖𝒗𝜀 +
2
∑
𝑘=1

𝒘𝑘(𝒚) − 𝜷2,bl(𝒚)
𝜕𝑝pm

𝜕𝑥2
|
Σ
‖
𝐿2(Ωpm⧵M)

≤ 𝐶𝜀 ,

‖𝑝𝜀−H(−𝑥2) [𝜀−2𝑝pm − 𝜀−1(𝐶2𝜋
𝜕𝑝pm

𝜕𝑥2
|
Σ
+

2
∑
𝑘=1

𝜋 𝑗(𝒚)
𝜕𝑝pm

𝜕𝑥𝑗
)]‖

𝐿2(Ω)
≤ 𝐶𝜀−1/2.

Proof. See proof of [34, Theorem 2].

To summarize, we presented two sets of interface conditions (2.106)–(2.108)
and (2.117)–(2.119) for the Stokes–Darcy problem that have been rigorously
derived via periodic homogenization and boundary layer theory, e.g., [34,
95, 98]. Both coupling concepts are restricted to unidirectional flows,
either parallel or perpendicular to the fluid–porous interface, and are
not applicable for arbitrary flows in Stokes–Darcy systems. We showed
that the use of homogenization and boundary layers for the derivation of
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effective coupling conditions brings two benefits with it. First, all effective
model parameters appearing in the resulting coupled Stokes–Darcy model
can be computed based on the pore geometry. Second, rigorous error
estimates between the pore-scale solution and the homogenized one are
obtained. Using the presented averaging techniques, generalized coupling
conditions accounting for arbitrary flow directions to the porous layer
are derived in Chapter 3.
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In this chapter, we derive generalized coupling conditions valid for arbi-
trary flows in Stokes–Darcy systems via homogenization and boundary
layer theory (Section 3.1) and discuss practical aspects of the newly de-
veloped conditions (Section 3.2). For this purpose we start from the
pore-scale description of the coupled flow system in form of the dimen-
sionless Stokes equations. At the macroscale, the Stokes equations remain
valid in the free-flow domain and in the porous medium Darcy’s law is
obtained using averaging techniques such as homogenization, volume
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averaging or numerical upscaling. However, significant deviations from
the macroscale models are expected close to the fluid–porous interface.
In order to describe the effective flow behavior in the neighborhood of
the interface in case of arbitrary flow direction to the porous layer, we
rigorously derive a set of generalized coupling conditions by means of
homogenization and boundary layer theory in Section 3.1. In Section 3.2,
we provide the dimensional form of the derived coupling conditions and
demonstrate how the exact interface location is incorporated in the ef-
fective coefficients appearing in the conditions. Finally, we compare the
generalized interface conditions to the classical ones for the Stokes–Darcy
problem in order to highlight similarities and differences.

3.1 Derivation of interface conditions via
homogenization and boundary layers

In this section, we derive generalized coupling conditions for the two-
dimensional Stokes–Darcy problem with a horizontal fluid–porous inter-
face following the strategy described in the steps below.

Step 1: Give a precise description of the pore-scale geometry, define the
pore-scale problem (Stokes problem) and the corresponding test function
space 𝑉per(Ω𝜀)2 (see equation (3.5)).

Step 2: Formulate two-scale asymptotic expansions of the pore-scale
velocity 𝒗𝜀 and pressure 𝑝𝜀 using auxiliary functions 𝒗𝑗 and 𝑝𝑗 for 𝑗 ∈ N0:

𝒗𝜀(𝒙) = 𝒗0(𝒙, 𝒚) + 𝜀𝒗1(𝒙, 𝒚) + 𝜀2𝒗2(𝒙, 𝒚) +O(𝜀3) ,
𝑝𝜀(𝒙) = 𝑝0(𝒙, 𝒚) + 𝜀𝑝1(𝒙, 𝒚) + 𝜀2𝑝2(𝒙, 𝒚) +O(𝜀3) ,

where 𝒚 = 𝒙/𝜀. Based on this ansatz, construct the first approximations
𝒗0,𝜀approx and 𝑝0,𝜀approx of the pore-scale velocity and pressure and define the
corresponding error functions 𝑼 0,𝜀 = 𝒗𝜀 − 𝒗0,𝜀approx and 𝑃0,𝜀 = 𝑝𝜀 −𝑝0,𝜀approx.
Then, write the weak form of the momentum equation for the errors in
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velocity and pressure

∫
Ω𝜀
∇𝑼 0,𝜀∶∇𝝋 d𝒙 − ∫

Ω𝜀
𝑃0,𝜀 ∇⋅ 𝝋 d𝒙 = 𝑟.ℎ.𝑠. for all 𝝋 ∈ 𝑉per(Ω𝜀)2 , (3.1)

in order to detect terms of low orderwith respect to 𝜀 appearing in integrals
on the right hand side (r.h.s.) of equation (3.1).

Goal: Obtain accurate approximations 𝒗𝑁 ,𝜀
approx and 𝑝𝑁 ,𝜀

approx of the pore-
scale solution such that we have 𝑼𝑁 ,𝜀 ∈ 𝑉per(Ω𝜀)2 for one 𝑁 ∈ N. Then,
{𝑼 0,𝜀, 𝑃0,𝜀} appearing in the weak form (3.1) is replaced by {𝑼𝑁 ,𝜀, 𝑃𝑁 ,𝜀} and
the velocity error 𝑼𝑁 ,𝜀 is inserted as a test function that is necessary
to formulate effective interface conditions and to obtain rigorous error
estimates for the error functions 𝑼𝑁 ,𝜀 and 𝑃𝑁 ,𝜀.

For the errors {𝑼 0,𝜀, 𝑃0,𝜀} the above stated goal is not achieved, and thus,
the first approximations 𝒗0,𝜀approx and 𝑝0,𝜀approx need to be improved in the
next step.

Step 3: Improve the first approximations 𝒗0,𝜀approx and 𝑝0,𝜀approx by reducing
the terms that are either reasons for 𝑼 0,𝜀 ∉ 𝑉per(Ω𝜀)2 or sources for a low
estimation order with respect to the scale separation parameter 𝜀. To
reduce these terms appropriate boundary layer correctors and auxiliary
functions are added to the first approximations of the pore-scale solution.
This leads to updated velocity and pressure error functions. The new
approximations and errors are defined by a rising index 𝑛 ∈ N as follows
𝒗𝑛,𝜀approx, 𝑝𝑛,𝜀approx, 𝑼 𝑛,𝜀, 𝑃𝑛,𝜀.
Step 4: For some index 𝑁 ∈ N our goal is achieved, i.e., we have 𝑼𝑁 ,𝜀 ∈
𝑉per(Ω𝜀)2, andwe estimated ∇⋅ 𝑼𝑁 ,𝜀 as well as the integral terms appearing
on the right hand side of the resulting weak formulation of the momentum
equation sufficiently well with respect to 𝜀. Then, we formulate effective
interface conditions.

In Sections 3.1.1–3.1.4, we derive generalized coupling conditions for the
Stokes–Darcy problem following Step 1–Step 4 for the two-dimensional
case considering a flat interface. The extension of the derived conditions
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to the three-dimensional space is possible by appropriate definition of the
boundary layer problems and auxiliary functions.

3.1.1 Step 1: Geometrical setting and pore-scale model

We consider the same assumptions on the flow, the fluid and the porous
medium as described in Section 2.3.2: steady-state single-phase flow at
low Reynolds numbers 𝑅𝑒 ≪ 1; an incompressible fluid that contains
a single chemical species and has constant temperature and constant
viscosity; a nondeformable and fully saturated porous medium having
the same temperature as the fluid. Since the temperature of the fluid
and solid phase is assumed to be equal and constant no energy balance
equation is needed. In this chapter, we use the theory of homogenization
and boundary layers presented in Section 2.3 for the derivation of new
coupling conditions. Thus, we work with the nondimensional formula-
tion of the underlying flow problem (see Section 2.3.1 for details on the
nondimensionalization).

At the pore scale, we consider the flow region Ω𝜀 = ((0, 𝐿) × (−𝐻 , ℎ)) ⧵ 𝑆𝜀,
consisting of the free-flow domain Ωff = (0, 𝐿) × (0, ℎ) and the pore space
Ω𝜀
pm of the porous medium Ωpm = (0, 𝐿) × (−𝐻 , 0), where 𝑆𝜀 denotes

the solid part of the porous structure and ℎ, 𝐻 , 𝐿 > 0. A schematic
representation of the coupled flow domain from themicroscale perspective
is provided in Figure 2.8 (left). The porous-medium domain is assumed
to be constructed by the periodic repetition of the scaled unit cell 𝜀𝑌
as described in Section 2.3.2, where 𝜀 is the scale separation parameter,
and we have 𝑆𝜀 = ⋃

𝑘
𝜀(𝑌s + {𝑦1,𝑘, 𝑦2,𝑘}). For simplicity, we assume that

𝐿/𝜀, ℎ/𝜀, 𝐻/𝜀 ∈ N. From the macroscopic point of view, the coupled
flow domain Ω = (0, 𝐿) × (−𝐻 , ℎ) comprises the free-flow region Ωff and
the adjacent porous-medium region Ωpm that are separated by the sharp
interface Σ = (0, 𝐿) × {0}. We assume the fluid–porous interface to be
flat and simple, meaning that it cannot store or transport any mass and
momentum. We consider a horizontal interface and the unit normal vector
on Σ pointing outward the porous-medium domain is 𝒏 = 𝒆2.



3.1 Derivation of interface conditions 79

Under the prescribed assumptions the flow at the pore scale is described
by the Stokes equations completed with the no-slip condition on the
solid boundary 𝜕Ω𝜀 ⧵ 𝜕Ω. In addition, we apply appropriate conditions
on the external boundary of the flow domain and obtain the following
nondimensional pore-scale problem

−Δ𝒗𝜀 + ∇𝑝𝜀 = 𝟎 , ∇⋅ 𝒗𝜀 = 0 in Ω𝜀 , ∫
Ωff

𝑝𝜀 d𝒙 = 0 , (3.2)

𝒗𝜀 = 𝟎 on 𝜕Ω𝜀 ⧵ 𝜕Ω , 𝒗𝜀 = (𝑣 in(𝑥1), 0)⊤ on {𝑥2 = ℎ} , (3.3)

𝑣 𝜀2 =
𝜕𝑣 𝜀1
𝜕𝑥2

= 0 on {𝑥2 = −𝐻} , {𝒗𝜀, 𝑝𝜀} is 𝐿-periodic in 𝑥1 . (3.4)

Here, 𝒗𝜀 = (𝑣 𝜀1, 𝑣 𝜀2)⊤ and 𝑝𝜀 are the fluid velocity and pressure. The last
condition in (3.2) is applied to define the pressure 𝑝𝜀 uniquely. On the
lateral boundaries we set periodic boundary conditions (3.4) as usual
when applying homogenization theory. This avoids further complications
regarding the ’correct’ specification of outer boundary conditions and
makes the derivation of effective coupling conditions more convenient.
For numerical simulations, however, the requirement for periodicity of
the pore-scale solution can be relaxed (see Section 6.3.3). The condition
on the upper free-flow boundary {𝑥2 = ℎ} in (3.3) has to be chosen in
such a way that 𝐿-periodicity of the pore-scale solution is fulfilled. On
the lower boundary {𝑥2 = −𝐻} we choose the boundary conditions (3.4)
such that the law of conservation of mass is fulfilled and the stress in
tangential direction is zero.

Corresponding to the pore-scale problem (3.2)–(3.4) we define the test
function space

𝑉per(Ω𝜀)2={𝝋 ∈ 𝐻 1(Ω𝜀)2∶𝝋 = 𝟎 on 𝜕Ω𝜀 ⧵ 𝜕Ω , 𝝋 = 𝟎 on {𝑥2 = ℎ} ,

𝜑2 = 0 on {𝑥2 = −𝐻} , 𝝋 is 𝐿-periodic in 𝑥1} , (3.5)

where 𝝋 = (𝜑1, 𝜑2)⊤. We use the notation 𝐻 1(Ω𝜀)2 for vector-valued func-
tions, where each component is an element of 𝐻 1(Ω𝜀) and 𝐻 1(Ω𝜀)2×2 for
the gradients of vector-valued functions. Details regarding the notation
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for functional spaces and norms are provided in Appendix A.1. In the fol-
lowing, we denote by 𝐶 > 0 a positive constant and by 𝑪 = (𝐶1, 𝐶2)⊤ ∈ R2

a constant vector with positive entries 𝐶1, 𝐶2 > 0, where 𝐶, 𝐶1 and 𝐶2 are
all independent of 𝜀 and can have different values at different places. For
simplicity, we waive writing d𝒙 and d𝑆 at the end of volume and boundary
integrals, we assume 𝝋 ∈ 𝑉per(Ω𝜀)2 and we write 𝑞 = 𝑞(𝒙) for 𝒙 ∈ Ω.

3.1.2 Step 2: First approximations of pore-scale velocity and
pressure

In this section, we construct the first approximations 𝒗0,𝜀approx and 𝑝0,𝜀approx of
the pore-scale velocity and pressure corresponding to problem (3.2)–(3.4).
In the interior of the free-flow region Ωff, sufficient far from the interface,
fluid flow is described by the dimensionless Stokes equations with the
following boundary conditions on the external boundary 𝜕Ωff ⧵ Σ:

− Δ𝒗ff + ∇𝑝ff = 𝟎 , ∇⋅ 𝒗ff = 0 in Ωff , ∫
Ωff

𝑝ff d𝒙 = 0 , (3.6)

𝒗ff = (𝑣 in(𝑥1), 0)⊤ on {𝑥2 = ℎ} , {𝒗ff, 𝑝ff} is 𝐿-periodic in 𝑥1 . (3.7)

Here, 𝒗ff = (𝑣ff1 , 𝑣ff2 )⊤ and 𝑝ff are the free-flow velocity and pressure.

We have seen in Section 2.3 that upscaling the pore-scale equations (3.2)
in the perforated domain yields the Darcy flow equations if periodic
boundary conditions are applied. The authors in [119] also obtain Darcy’s
law as the homogenized model corresponding to the Stokes system with
Dirichlet conditions on the external boundary. In our case, besides the
periodic and the Dirichlet boundary conditions, we also apply the Neu-
mann boundary condition given in (3.4) on the lower porous-medium
boundary. For this specific set of boundary conditions (3.3)–(3.4) there is
no corresponding macroscale model available. Nevertheless, we approxi-
mate problem (3.2)–(3.4) in the porous-medium domain away from the
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interface by the following nondimensional Darcy system

−∇⋅ (�̃�∇𝑝pm) = 0 in Ωpm ,

(�̃�∇𝑝pm) ⋅𝒏 = 0 on {𝑥2 = −𝐻} , 𝑝pm is 𝐿-periodic is 𝑥1 ,

where 𝑝pm is the porous-medium pressure, 𝒏 is the outward unit normal
vector on 𝜕Ωpm and �̃� is the dimensionless permeability tensor given
by (2.79).

Since we know the macroscale models that describe the fluid flow inside
the two subdomains (sufficiently far from the dividing fluid–porous in-
terface) we need to find approximations of the pore-scale velocity and
pressure that are in accordance with these models. We start with the
construction of a first approximation {𝒗0,𝜀approx, 𝑝0,𝜀approx} of the pore-scale
solution {𝒗𝜀, 𝑝𝜀} which fulfills the following properties: i) it describes
the flow in the interior of the free-flow region Ωff, ii) it agrees with the
boundary conditions at the upper boundary {𝑥2 = ℎ}, and iii) it approx-
imates the flow inside the porous medium according to the asymptotic
expansions (2.61), (2.62) with (2.73) obtained via homogenization theory.
Concerning the first two properties, it is obvious to use the Stokes velocity
𝒗ff and pressure 𝑝ff for the approximation of the pore-scale quantities in
the free-flow region. Based on the results of the homogenization proce-
dure presented in Section 2.3.2 we approximate the pore-scale velocity
and pressure in the porous domain according to (2.73) by

𝒗𝜀|Ω𝜀
pm

≈ −𝜀2
2
∑
𝑗=1

𝒘𝑗,𝜀 𝜕𝑝
pm

𝜕𝑥𝑗
, 𝑝𝜀|Ω𝜀

pm
≈ 𝑝pm − 𝜀

2
∑
𝑗=1

𝜋 𝑗,𝜀
𝜕𝑝pm

𝜕𝑥𝑗
. (3.8)

Here, we set 𝒘𝑗,𝜀(𝒙) = 𝒘𝑗(𝒚), 𝒚 = 𝒙/𝜀 and 𝜋 𝑗,𝜀(𝒙) = 𝜋 𝑗(𝒚)where {𝒘𝑗, 𝜋 𝑗} ∈
𝐻 1
per(𝑌f)2 × 𝐿2(𝑌f) is the solution to the cell problems (2.74)–(2.76) for

𝑗 = 1, 2 and the velocity 𝒘𝑗,𝜀 is extended by zero in Ωpm ⧵Ω𝜀
pm. Analogous

notations are used for the boundary layer correctors later.

We combine the Stokes solution {𝒗ff, 𝑝ff} in the free-flow region and ap-
proximation (3.8) in the porous medium to obtain the following first
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approximations of the pore-scale velocity and pressure

𝒗0,𝜀approx = H(𝑥2)𝒗ff +H(−𝑥2) ( − 𝜀2
2
∑
𝑗=1

𝒘𝑗,𝜀 𝜕𝑝
pm

𝜕𝑥𝑗
) , (3.9)

𝑝0,𝜀approx = H(𝑥2)𝑝ff +H(−𝑥2)(𝑝pm − 𝜀
2
∑
𝑗=1

𝜋 𝑗,𝜀
𝜕𝑝pm

𝜕𝑥𝑗
) . (3.10)

Here, H is the Heaviside function given by (2.98). Corresponding to (3.9)
and (3.10) we define the velocity and pressure errors

𝑼 0,𝜀 = 𝒗𝜀 − 𝒗0,𝜀approx , 𝑃0,𝜀 = 𝑝𝜀 − 𝑝0,𝜀approx .

In order to obtain the variational form of the momentum equation in (3.2)
for the error functions 𝑼 0,𝜀, 𝑃0,𝜀 instead of 𝒗𝜀, 𝑝𝜀, we consider the weak
formulation for the pore-scale functions 𝒗𝜀, 𝑝𝜀 and the weak formulation
for the first approximations 𝒗0,𝜀approx, 𝑝0,𝜀approx separately. The weak form
corresponding to 𝒗𝜀, 𝑝𝜀 is given by

∫
Ω𝜀
∇𝒗𝜀∶∇𝝋 − ∫

Ω𝜀
𝑝𝜀 ∇⋅ 𝝋 = 0 for all 𝝋 ∈ 𝑉per(Ω𝜀)2 . (3.11)

The Stokes velocity 𝒗ff and pressure 𝑝ff are used for the approximation of
the pore-scale solution in Ωff and the corresponding variational formula-
tion of the momentum conservation equation in (3.6) reads

∫
Ωff

∇𝒗ff∶∇𝝋 − ∫
Ωff

𝑝ff ∇⋅ 𝝋 = −∫
Σ
( 𝜕
𝜕𝑥2

𝒗ff − [
0
𝑝ff])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑭

⋅𝝋 . (3.12)

The weak form of the pore-scale problem corresponding to the approxi-
mation in the porous-medium domain Ωpm is given by

∫
Ω𝜀
pm

∇(−𝜀2
2
∑
𝑗=1

𝒘𝑗,𝜀 𝜕𝑝
pm

𝜕𝑥𝑗
) ∶∇𝝋 − ∫

Ω𝜀
pm

(𝑝pm − 𝜀
2
∑
𝑗=1

𝜋 𝑗,𝜀
𝜕𝑝pm

𝜕𝑥𝑗
) ∇⋅ 𝝋
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= − ∫
Σ
𝜀

2
∑
𝑗=1

((𝜀∇𝒘𝑗,𝜀− 𝜋 𝑗,𝜀𝗜)
𝜕𝑝pm

𝜕𝑥𝑗
𝒆2)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝑩𝑗

𝜀

⋅𝝋

− ∫
Σ
𝜀2

2
∑
𝑗=1

((𝒘𝑗,𝜀⊗ ∇
𝜕𝑝pm

𝜕𝑥𝑗
)𝒆2) ⋅𝝋 − ∫

Σ
𝑝pm𝒆2⋅𝝋

+ ∫
{𝑥2=−𝐻}

𝜀2
2
∑
𝑗=1

(∇𝒘𝑗,𝜀 𝜕𝑝
pm

𝜕𝑥𝑗
𝒆2 + (𝒘𝑗,𝜀 ⊗ ∇

𝜕𝑝pm

𝜕𝑥𝑗
) 𝒆2) ⋅𝝋

+ ∫
Ω𝜀
pm

2
∑
𝑗=1

( 𝜀2𝒘𝑗,𝜀Δ
𝜕𝑝pm

𝜕𝑥𝑗
+ 2𝜀2∇𝒘𝑗,𝜀∇

𝜕𝑝pm

𝜕𝑥𝑗
− 𝜀𝜋 𝑗,𝜀∇

𝜕𝑝pm

𝜕𝑥𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕−𝑨𝑗

𝜀

)⋅𝝋 .

(3.13)

The weak formulation for the error functions results from subtraction
of (3.12) and (3.13) from (3.11). In order to obtain estimates for the velocity
and pressure errors later, e.g., in Corollary 3.1, we use the Poincaré-type
inequalities (A2.2) provided in the Appendix A.2 to estimate the second
term, the fourth term partially and the last term on the right hand side
of (3.13) as follows

| ∫
Σ
𝜀2

2
∑
𝑗=1

((𝒘𝑗,𝜀 ⊗ ∇
𝜕𝑝pm

𝜕𝑥𝑗
) 𝒆2) ⋅𝝋 | ≤𝐶𝜀5/2‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 , (3.14)

| ∫
{𝑥2=−𝐻}

𝜀2
2
∑
𝑗=1

((𝒘𝑗,𝜀 ⊗ ∇
𝜕𝑝pm

𝜕𝑥𝑗
) 𝒆2) ⋅𝝋 | ≤𝐶𝜀2‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 , (3.15)

| ∫
Ω𝜀
pm

2
∑
𝑗=1

𝑨𝑗
𝜀⋅𝝋 | ≤𝐶𝜀2‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 . (3.16)

The integrals which are not estimated yet, vanish later either due to
the newly derived coupling conditions or are absorbed by the boundary
layer correctors which are added to the approximations of the pore-scale
solutions.
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3.1.3 Step 3: Improvement of first approximations

Approximations (3.9) and (3.10) of the pore-scale velocity and pressure
have several issues that need to be addressed. First, the velocity approxi-
mation 𝒗0,𝜀approx of order O(1) in the free-flow region is not sufficient for
the flow problems we consider, and we need to improve it by adding
higher-order (with respect to 𝜀) boundary layer correctors (Section 3.1.3.1).
Second, with the definition of {𝒗0,𝜀approx, 𝑝0,𝜀approx} we created a boundary
layer in the neighborhood of the fluid–porous interface that needs to be
reflected in the improved pore-scale approximations. This includes fixing
the traces of the velocity approximation on the fluid–porous interface
(Section 3.1.3.2). Third, the function 𝒗0,𝜀approx does not fulfill the boundary
conditions on the lower boundary (Section 3.1.3.3). Fourth, nonphysical
compressibility effects coming from the pore-scale velocity approximation
𝒗0,𝜀approx need to be corrected (Section 3.1.3.4). In the following, these issues
will be addressed by adding boundary layer correctors and auxiliary func-
tions to the first approximations (3.9) and (3.10) of the pore-scale velocity
and pressure.

3.1.3.1 Next order velocity approximation in the free-flow region

The first approximation (3.9) leads to 𝒗0,𝜀approx = 𝒗ff in Ωff and a shear stress
jump across the interface which is given by 𝑭⋅𝝉 = 𝜕𝑣ff1 /𝜕𝑥2, where 𝑭 is
defined in (3.12). For many coupled flow problems this approximation of
the pore-scale velocity in the free-flow region is not accurate enough and
construction of the appropriate boundary layer corrector is required [15,
95, 98, 142]. Even in case of parallel flows to the interface, the velocity
approximation for the free flow needs to be at least O(𝜀) as it is the
case in, e.g., the Beavers–Joseph interface condition (2.19). Therefore,
we continue the asymptotic expansions and incorporate terms of order
𝜀 for the velocity and of order 1 for the pressure in form of boundary
layer correctors corresponding to problem (3.17)–(3.21) introduced below.
The boundary layer problem (3.17)–(3.21) is defined on an infinite stripe
𝑍bl = 𝑍+ ∪ 𝑆 ∪ 𝑍−, consisting of the free-flow part 𝑍+ = (0, 1) × (0, ∞),
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the porous-medium part 𝑍− = ⋃∞
𝑘=1(𝑌f − {0, 𝑘}) and the sharp interface

𝑆 = (0, 1) × {0} (Figure 2.8, right). We denote the jump of function 𝑢
across the fluid–porous interface 𝑆 within the boundary layer stripe 𝑍bl

by J𝑢K𝑆 ≔ 𝑢(⋅, +0) − 𝑢(⋅, −0), where 𝑢(⋅, +0) = lim𝒚∈𝑍+, 𝑦2→0 𝑢(⋅, 𝑦2) and
𝑢(⋅, −0) = lim𝒚∈𝑍−, 𝑦2→0 𝑢(⋅, 𝑦2).

The boundary layer problem corresponding to the next order velocity
approximation in the free-flow region and the correction of the shear
stress is given by

−Δ𝒚𝒕bl + ∇𝒚𝑠bl = 𝟎 in 𝑍+ ∪ 𝑍− , (3.17)

∇𝒚⋅ 𝒕bl = 0 in 𝑍+ ∪ 𝑍− , (3.18)

J𝒕blK𝑆 = 𝟎 on 𝑆 , (3.19)

J(∇𝒚𝒕bl − 𝑠bl𝗜)𝒆2K𝑆 = 𝒆1 on 𝑆 , (3.20)

𝒕bl = 𝟎 on
∞
⋃
𝑘=1

(𝜕𝑌s − {0, 𝑘}), {𝒕bl, 𝑠bl} is 𝑦1-periodic . (3.21)

Problem (3.17)–(3.21) was first constructed and analyzed by Jäger and
Mikelić [95, Proposition 3.22]. The authors used the Lax–Milgram the-
orem (Appendix, Theorem A.7) to prove existence and uniqueness of
𝒕bl ∈ 𝐿2loc(𝑍

bl)2 ∩ 𝐶∞loc(𝑍
+ ∪ 𝑍−)2, ∇𝒚𝒕bl ∈ 𝐿2(𝑍+ ∪ 𝑍−)2×2 and uniqueness

up to a constant of 𝑠bl ∈ 𝐿2loc(𝑍
bl) ∩ 𝐶∞loc(𝑍

+ ∪ 𝑍−) that satisfy (3.17)–(3.21).
We set lim

𝒚→−∞
𝑠bl(𝒚) = 0 to make the boundary layer pressure 𝑠bl uniquely

defined. Moreover, in the vicinity of the interface 𝑆we have 𝒕bl−(0.5(𝑦2−
𝑦22 )𝑒−𝑦2H(𝑦2), 0) ∈ 𝑊 2,𝑞(𝑌 ∪𝑆∪(𝑌 −{0, 1}))2 and 𝑠bl ∈ 𝑊 1,𝑞(𝑌 ∪𝑆∪(𝑌 −{0, 1}))
for all 𝑞 ∈ [1, ∞), as shown in [95].

Setting the jump condition (3.20) enables the correction of the shear stress
at the fluid–porous interface coming from the free-flow region. Condi-
tion (3.19) guarantees that no additional contribution at the interface is
added to the velocity approximation yet. As shown in [95, 98] the bound-
ary layer velocity 𝒕bl = (𝑡bl1 , 𝑡bl2 ) and pressure 𝑠bl stabilize exponentially
towards some boundary layer constants for |𝑦2| → ∞. The stabilizing
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constant for the velocity 𝒕bl was proven to be zero for 𝑦2 → −∞ and to
have a zero second component for 𝑦2 → ∞. Concerning the boundary
layer pressure 𝑠bl, it was shown in [95] that a nonzero boundary layer
constant is present in the free-flow region.

Following [95], there exist a constant 𝛾 ∈ (0, 1) and the boundary layer
constants 𝑵 bl and 𝑁 bl

𝑠 for the velocity and pressure such that

𝑒𝛾 |𝑦2|∇𝒚𝒕bl ∈ 𝐿2(𝑍+ ∪ 𝑍−)2×2 , 𝑒𝛾 |𝑦2|𝒕bl ∈ 𝐿2(𝑍−)2 ,

𝑒𝛾 |𝑦2|𝑠bl ∈ 𝐿2(𝑍−) ,
(3.22)

and

𝑵 bl = (𝑁 bl
1 , 0)⊤ = (∫

𝑆
𝑡bl1 (𝑦1, +0) d𝑦1, 0)

⊤
, (3.23)

𝑁 bl
𝑠 = ∫

𝑆
𝑠bl(𝑦1, +0) d𝑦1 , (3.24)

|𝒕bl − 𝑵 bl| ≤ 𝐶𝑒−𝛾𝑦2 , |𝑠bl − 𝑁 bl
𝑠 | ≤ 𝐶𝑒−𝛾𝑦2 , 𝑦2 > 0 . (3.25)

Here, in case of a vector-valued function 𝝋 = (𝜑1, 𝜑2)⊤, | ⋅ | is meant to
be the Euclidian norm, i.e., |𝝋| ≔ ‖𝝋‖2 = (𝜑21 + 𝜑22)1/2. From (3.22) we
get that ∇𝒚𝒕bl → 𝟬 exponentially fast for |𝑦2| → ∞ and {𝒕bl, 𝑠bl} → {𝟎, 0}
exponentially fast for 𝑦2 → −∞. As before for the cell problem solution
{𝒘𝑗, 𝜋 𝑗} we introduce 𝒕bl,𝜀(𝒙) = 𝒕bl(𝒚) and 𝑠bl,𝜀(𝒙) = 𝑠bl(𝒚) for 𝒙 ∈ Ω𝜀 and
extend the velocity 𝒕bl,𝜀 by zero in Ω ⧵ Ω𝜀. In [95] it is proven that the
following inequalities hold

‖𝒕bl,𝜀−H(𝑥2)𝑵 bl‖𝐿2(Ω)2 ≤ 𝐶𝜀1/2, ‖∇𝒕bl,𝜀‖𝐿2(Ωff∪Ωpm)2×2 ≤ 𝐶𝜀−1/2 , (3.26)

‖𝑠bl,𝜀 −H(𝑥2)𝑁 bl
𝑠 ‖𝐿2(Ω𝜀) ≤ 𝐶𝜀1/2. (3.27)

Using the boundary layer correctors 𝒕bl,𝜀, 𝑠bl,𝜀 and their corresponding
boundary layer constants we obtain improved approximations of the
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pore-scale velocity and pressure

𝒗1,𝜀approx = 𝒗0,𝜀approx − 𝜀 (𝒕bl,𝜀 −H(𝑥2)𝑵 bl)
𝜕𝑣ff1
𝜕𝑥2

|
Σ
, (3.28)

𝑝1,𝜀approx = 𝑝0,𝜀approx − (𝑠bl,𝜀 −H(𝑥2)𝑁 bl
𝑠 )

𝜕𝑣ff1
𝜕𝑥2

|
Σ
, (3.29)

leading to the following new error functions

𝑼 1,𝜀 = 𝑼 0,𝜀 + 𝜀 (𝒕bl,𝜀 −H(𝑥2)𝑵 bl)
𝜕𝑣ff1
𝜕𝑥2

|
Σ
,

𝑃1,𝜀 = 𝑃0,𝜀 + (𝑠bl,𝜀 −H(𝑥2)𝑁 bl
𝑠 )

𝜕𝑣ff1
𝜕𝑥2

|
Σ
.

(3.30)

Here, (𝜕𝑣ff1 /𝜕𝑥2)|Σ ≔ (𝜕𝑣ff1 /𝜕𝑥2)(𝑥1, +0) is constant with respect to 𝑥2 and
the boundary layer constants 𝑵 bl and 𝑁 bl

𝑠 are given by (3.23) and (3.25).
In order to obtain error estimates in Corollary 3.1 we write the weak
formulation for the errors in velocity 𝑼 1,𝜀 and pressure 𝑃1,𝜀. This yields

∫
Ω𝜀
∇𝑼 1,𝜀∶∇𝝋 + ∫

Σ
𝑃1,𝜀 ∇⋅ 𝝋 = ∫

Ω𝜀
∇𝑼 0,𝜀∶∇𝝋 + ∫

Σ
𝑃0,𝜀 ∇⋅ 𝝋

+ ∫
Ω𝜀
∇(𝜀 (𝒕bl,𝜀 −H(𝑥2)𝑵 bl)

𝜕𝑣ff1
𝜕𝑥2

|
Σ
) ∶∇𝝋

− ∫
Ω𝜀
(𝑠bl,𝜀 −H(𝑥2)𝑁 bl

𝑠 )
𝜕𝑣ff1
𝜕𝑥2

|
Σ
∇⋅ 𝝋 . (3.31)

Since we already obtained (3.11), (3.12) and (3.13) directly giving us the
weak formulation for the first errors 𝑼 0,𝜀 and 𝑃0,𝜀, we now focus on
the weak form corresponding to the newly added terms including the
boundary layer correctors. Thus, we write

∫
Ω𝜀
∇(𝜀 (𝒕bl,𝜀 −H(𝑥2)𝑵 bl)

𝜕𝑣ff1
𝜕𝑥2

|
Σ
) ∶∇𝝋
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− ∫
Ω𝜀
(𝑠bl,𝜀 −H(𝑥2)𝑁 bl

𝑠 )
𝜕𝑣ff1
𝜕𝑥2

|
Σ
∇⋅ 𝝋

=∫
Ω𝜀
( 𝜀 (𝒕bl,𝜀 −H(𝑥2)𝑵 bl) 𝜕2

𝜕𝑥21

𝜕𝑣ff1
𝜕𝑥2

|
Σ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑨11
𝜀

+ (𝑠bl,𝜀 −H(𝑥2)𝑁 bl
𝑠 ) ∇

𝜕𝑣ff1
𝜕𝑥2

|
Σ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑨31
𝜀

)⋅𝝋

+ 2∫
Ω𝜀
𝜀 ((𝒕bl,𝜀 −H(𝑥2)𝑵 bl) ⊗ 𝜕

𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
𝒆1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝗔21

𝜀

∶∇𝝋

− ∫
Σ
𝑁 bl
𝑠
𝜕𝑣ff1
𝜕𝑥2

|
Σ
𝒆2⋅𝝋 − ∫

Σ

𝜕𝑣ff1
𝜕𝑥2

|
Σ
𝒆1⋅𝝋 + e.s.t. (3.32)

Exponentially small terms are denoted by ’e.s.t.’ throughout this chapter.
These terms in (3.32) include the boundary layer corrector 𝒕bl,𝜀 and its gra-
dient ∇𝒕bl,𝜀 appearing in the integral over the lower boundary {𝑥2 = −𝐻}
since 𝒕bl,𝜀 → 𝟎 and ∇𝒕bl,𝜀 → 𝟬 for 𝑥2 → −∞ what follows from (3.22)
and (3.25). The first integral term over the interface Σ on the right hand
side of equation (3.32) will later vanish due to the newly derived gener-
alized coupling conditions. The second integral term over Σ appearing
in (3.32) cancels out with the corresponding parts of ∫Σ 𝑭⋅𝝋 from (3.12)
when we consider the weak form (3.31) for {𝑼 1,𝜀, 𝑃1,𝜀}.

To obtain higher-order estimates with respect to 𝜀 for the integrals over
Ω𝜀 on the right hand side of (3.32) we use the following identity

∇𝑞 ⊗ 𝒖 = ∇ (𝒖𝑞) − 𝑞∇𝒖 , (3.33)

where 𝑞 denotes a scalar-valued function and 𝒖 a vector-valued function.
Taking into account (3.33), the Poincaré inequality (A2.1), the inequali-
ties (A2.2) and the previously obtained results (3.26), (3.27), we obtain the
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following estimates

| ∫
Ωff

𝑨11
𝜀 ⋅𝝋 | ≤ 𝐶𝜀3/2‖𝝋‖𝐿2(Ωff)2 ,

| ∫
Ω𝜀
pm

𝑨11
𝜀 ⋅𝝋 | ≤ 𝐶𝜀5/2‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 ,
(3.34)

| ∫
Ω𝜀
𝗔21
𝜀 ∶∇𝝋 | ≤ 𝐶𝜀3/2‖∇𝝋‖𝐿2(Ω𝜀)2×2 ,

| ∫
Ω𝜀
pm

𝑨31
𝜀 ⋅𝝋 | ≤ 𝐶𝜀3/2‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 .
(3.35)

It remains to estimate the integral ∫Ωff
𝑨31
𝜀 ⋅𝝋 in (3.32). For this purpose,

we follow the ideas from [95] and construct the auxiliary problem

𝜕𝑉
𝜕𝑦1

(𝒚) = 𝑠bl(𝒚) − 𝑁 bl
𝑠 , 𝒚 ∈ (0, 1) × (0,∞) , 𝑉 is 𝑦1-periodic . (3.36)

From the definition (3.24) of the boundary layer constant 𝑁 bl
𝑠 it follows

directly that

𝑉 (𝑦1, 𝑦2) = ∫
𝑦1

0
𝑠bl(𝑡, 𝑦2) d𝑡 − 𝑁 bl

𝑠 𝑦1 , 𝒚 ∈ (0, 1) × (0,∞) ,

is a solution to problem (3.36). Further, from [95] we know that there
exists a constant 𝛾 > 0 such that 𝑒𝛾𝑦2𝑉 ∈ 𝐿2(𝑍+). Defining 𝑉 𝜀(𝒙) = 𝜀𝑉 (𝒚)
for 𝒙 ∈ Ωff and using estimate (3.27) directly yields

𝜕𝑉 𝜀

𝜕𝑥1
= 𝑠bl,𝜀 − 𝑁 bl

𝑠 in Ωff , ‖𝑉 𝜀‖𝐿2(Ωff) ≤ 𝐶𝜀3/2 . (3.37)

Next, we use the first formula in (3.37) to rewrite the integral term
∫Ωff

𝑨31
𝜀 ⋅𝝋 from (3.32) and apply integration by parts. We take into account

the periodicity of functions 𝑉 𝜀, 𝑣ff1 and 𝜑1, use the estimate for 𝑉 𝜀 given
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in (3.37) and obtain

| ∫
Ωff

𝑨31
𝜀 ⋅𝝋 | = | ∫

Ωff

(𝑠bl,𝜀 − 𝑁 bl
𝑠 ) ( 𝜕

𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
) 𝜑1 |

= | ∫
Ωff

𝜕𝑉 𝜀

𝜕𝑥1
( 𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
) 𝜑1 |

= | ∫
𝜕Ωff

𝑉 𝜀 ( 𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
) 𝜑1𝒆1⋅𝒏

− ∫
Ωff

𝑉 𝜀 𝜕
𝜕𝑥1

(( 𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
) 𝜑1) |

= | ∫
Ωff

𝑉 𝜀 (𝜑1 (
𝜕2

𝜕𝑥21

𝜕𝑣ff1
𝜕𝑥2

|
Σ
) +

𝜕𝜑1
𝜕𝑥1

( 𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
)) |

≤ 𝐶𝜀3/2‖𝝋‖𝐻 1(Ωff)2 ≤ 𝐶𝜀3/2‖∇𝝋‖𝐻 1(Ωff)2×2 . (3.38)

With the constructed functions 𝒗1,𝜀approx and 𝑝1,𝜀approx in (3.28) and (3.29) the
approximation order of the velocity in the free-flow region is improved to
O(𝜀) and the values of the stress in normal direction to the fluid–porous
Σ are corrected. However, we do not have continuity of the velocity trace
across the interface, although the principle of mass conservation should
be fulfilled. Hence, in the following section we eliminate the trace jump on
Σ to obtain a physically consistent pore-scale velocity approximation.

3.1.3.2 Continuity of velocity trace

With the approximations given in (3.28) and (3.29), mass conservation
across the interface Σ is not satisfied, and we created a boundary layer that
needs to be corrected. In order to do so and establish the continuity of the
velocity trace across the fluid–porous interface, we add boundary layer
correctors to the approximations 𝒗1,𝜀approx and 𝑝1,𝜀approx. These correctors
are thus also added to errors 𝑼 1,𝜀 and 𝑃1,𝜀 given in (3.30) by taking the
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opposite sign. The required boundary layer correctors are solutions to
the following boundary layer problem for 𝑗 = 1, 2 constructed in [95]:

−Δ𝒚𝜷 𝑗,bl + ∇𝒚𝜔𝑗,bl = 𝟎 in 𝑍+ ∪ 𝑍−, (3.39)

∇𝒚⋅ 𝜷 𝑗,bl = 0 in 𝑍+ ∪ 𝑍− , (3.40)

J𝜷 𝑗,blK𝑆 = �̃�2𝑗𝒆2 − 𝒘𝑗 on 𝑆 , (3.41)

J(∇𝒚𝜷 𝑗,bl − 𝜔𝑗,bl𝗜)𝒆2K𝑆 = − (∇𝒚𝒘𝑗 − 𝜋 𝑗𝗜) 𝒆2 on 𝑆 , (3.42)

𝜷 𝑗,bl = 𝟎 on
∞
⋃
𝑘=1

(𝜕𝑌s − {0, 𝑘}), {𝜷 𝑗,bl, 𝜔𝑗,bl} is 𝑦1-periodic . (3.43)

Equation (3.41) establishes the continuity of normal velocity across the
interface and condition (3.42) eliminates the lower-order integral term
∫Σ 𝜀 ∑

2
𝑗=1 𝑩

𝑗
𝜀⋅𝝋 appearing in the variational formulation (3.13).

Uniqueness of 𝜷 𝑗,bl ∈ 𝐿2loc(𝑍
bl)2 and ∇𝒚𝜷 𝑗,bl ∈ 𝐿2(𝑍+ ∪ 𝑍−)2×2 satisfying

equations (3.39)–(3.43) and uniqueness of 𝜔𝑗,bl ∈ 𝐿2loc(𝑍
bl) up to a constant

follow from the Lax–Milgram theorem. Moreover, from Proposition 3.22
in [95] we obtain {𝜷 𝑗,bl, 𝜔𝑗,bl} ∈ 𝐶∞loc(𝑍

+∪𝑍−)2×𝐶∞loc(𝑍
+∪𝑍−). In [95], also

the behavior of the boundary layer solution in the near of the interface 𝑆
is specified as 𝜷 𝑗,bl(⋅, ±0) ∈ 𝑊 2−1/𝑞,𝑞(𝑆)2 and (∇𝒚𝜷 𝑗,bl − 𝜔𝑗,bl𝗜)(⋅, ±0)𝒆2 ∈
𝑊 1−1/𝑞,𝑞(𝑆)2 for all 𝑞 ∈ (1,∞]. Since (3.39)–(3.43) describe a boundary
layer problem, its solutions 𝜷 𝑗,bl and 𝜔𝑗,bl stabilize exponentially towards
some boundary layer constants for |𝑦2| → ∞. To obtain a uniquely defined
pressure in the same way as in Section 3.1.3.1, we set lim

𝒚→−∞
𝜔𝑗,bl(𝒚) = 0.

After [34, 95] there exist 𝛾 ∈ (0, 1) such that

𝑒𝛾 |𝑦2|∇𝒚𝜷 𝑗,bl ∈ 𝐿2(𝑍+∪ 𝑍−)2×2, 𝑒𝛾 |𝑦2|𝜷 𝑗,bl ∈ 𝐿2(𝑍−)2,

𝑒𝛾 |𝑦2|𝜔𝑗,bl ∈ 𝐿2(𝑍−) ,
(3.44)

and

𝑴 𝑗,bl = (𝑀 𝑗,bl
1 , 0)⊤ = (∫

𝑆
𝛽 𝑗,bl1 (𝑦1, +0) d𝑦1, 0)

⊤
, (3.45)
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𝑀 𝑗,bl
𝜔 = ∫

𝑆
𝜔𝑗,bl(𝑦1, +0) d𝑦1 , (3.46)

|𝜷 𝑗,bl −𝑴 𝑗,bl| ≤ 𝐶𝑒−𝛾𝑦2 , |𝜔𝑗,bl − 𝑀 𝑗,bl
𝜔 | ≤ 𝐶𝑒−𝛾𝑦2 , 𝑦2 > 0 . (3.47)

Similar as in the sections before, we define 𝜷 𝑗,bl,𝜀(𝒙) = 𝜷 𝑗,bl(𝒚) and
𝜔𝑗,bl,𝜀(𝒙) = 𝜔𝑗,bl(𝒚), and extend the boundary layer velocity by setting
𝜷 𝑗,bl,𝜀 = 𝟎 in Ω ⧵ Ω𝜀. Following [95], it holds

‖𝜷 𝑗,bl,𝜀−H(𝑥2)𝑴 𝑗,bl‖𝐿2(Ω)2≤𝐶𝜀1/2, ‖∇𝜷 𝑗,bl,𝜀‖𝐿2(Ωff∪Ωpm)2×2≤𝐶𝜀−1/2, (3.48)

‖𝜔𝑗,bl,𝜀−H(𝑥2)𝑀
𝑗,bl
𝜔 ‖𝐿2(Ω𝜀)≤𝐶𝜀1/2. (3.49)

We improve the pore-scale velocity and pressure approximations 𝒗1,𝜀approx

and 𝑝1,𝜀approx by adding the boundary layer correctors 𝜷 𝑗,bl,𝜀 and 𝜔𝑗,bl,𝜀

and their stabilizing constants 𝑴 𝑗,bl and 𝑀 𝑗,bl
𝜔 . This yields new error

functions

𝑼 2,𝜀 =𝑼 1,𝜀 − 𝜀2
2
∑
𝑗=1

(𝜷 𝑗,bl,𝜀 −H(𝑥2)𝑴 𝑗,bl)
𝜕𝑝pm

𝜕𝑥𝑗
|
Σ
, (3.50)

𝑃2,𝜀 =𝑃1,𝜀 − 𝜀
2
∑
𝑗=1

(𝜔𝑗,bl,𝜀 −H(𝑥2)𝑀
𝑗,bl
𝜔 )

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ
. (3.51)

Here, (𝜕𝑝pm/𝜕𝑥𝑗)|Σ ≔ (𝜕𝑝pm/𝜕𝑥𝑗)(𝑥1, −0) is constant with respect to 𝑥2.
At this stage, we have approximated the pore-scale velocity 𝒗𝜀 such that
the approximation is continuous across the fluid–porous interface, and
we obtain the following result.

Corollary 3.1: We have 𝑼 2,𝜀 ∈ 𝐻 1(Ω𝜀)2 and the following estimate holds

| ∫
Ω𝜀
∇𝑼 2,𝜀∶∇𝝋 − ∫

Ω𝜀
𝑃2,𝜀 ∇⋅ 𝝋 + ∫

{𝑥2=−𝐻}
𝜀2

2
∑
𝑗=1

𝜕
𝜕𝑥2

𝑤 𝑗,𝜀
1
𝜕𝑝pm

𝜕𝑥𝑗
𝜑1

− ∫
Σ
𝑝pm𝜑2 − ∫

Σ
( 𝜕
𝜕𝑥2

𝒗ff − [
0
𝑝ff]) ⋅𝝋
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+ ∫
Σ

𝜕𝑣ff1
𝜕𝑥2

|
Σ
𝒆1⋅𝝋 + ∫

Σ
𝑁 bl
𝑠
𝜕𝑣ff1
𝜕𝑥2

|
Σ
𝒆2⋅𝝋 |

≤ 𝐶𝜀3/2 (‖∇𝝋‖𝐿2(Ω𝜀)2×2 + ‖𝝋‖𝐻 1(Ωff)2) , for all 𝝋 ∈ 𝑉per(Ω𝜀)2 . (3.52)

Proof. By construction of 𝑼 2,𝜀 as a sum of 𝐻 1- functions we have 𝑼 2,𝜀 ∈
𝐻 1(Ω𝜀)2. Using the fact that the boundary layer velocities 𝒕bl,𝜀, 𝜷 𝑗,bl,𝜀, their
gradients and the pressures 𝑠bl,𝜀, 𝜔𝑗,bl,𝜀 stabilize exponentially to zero for
𝑥2 → −∞, we get

∫
Ω𝜀
∇𝑼 2,𝜀∶∇𝝋 − ∫

Ω𝜀
𝑃2,𝜀 ∇⋅ 𝝋 + ∫

{𝑥2=−𝐻}
𝜀2

2
∑
𝑗=1

𝜕
𝜕𝑥2

𝑤 𝑗,𝜀
1
𝜕𝑝pm

𝜕𝑥𝑗
𝜑1

− ∫
Σ
𝑝pm𝜑2 − ∫

Σ
𝑭⋅𝝋 +∫

Σ

𝜕𝑣ff1
𝜕𝑥2

|
Σ
𝒆1⋅𝝋 + ∫

Σ
𝑁 bl
𝑠
𝜕𝑣ff1
𝜕𝑥2

|
Σ
𝒆2⋅𝝋

=∫
Σ
𝜀2

2
∑
𝑗=1

((𝒘𝑗,𝜀 ⊗ ∇
𝜕𝑝pm

𝜕𝑥𝑗
) 𝒆2) ⋅𝝋

− ∫
{𝑥2=−𝐻}

𝜀2
2
∑
𝑗=1

((𝒘𝑗,𝜀 ⊗ ∇
𝜕𝑝pm

𝜕𝑥𝑗
) 𝒆2) ⋅𝝋

+ ∫
Ω𝜀
pm

2
∑
𝑗=1

𝑨𝑗
𝜀⋅𝝋 + ∫

Ω𝜀
pm

𝑨11
𝜀 ⋅𝝋 + ∫

Ωff

𝑨11
𝜀 ⋅𝝋 + 2∫

Ω𝜀
𝗔21
𝜀 ∶∇𝝋

+ ∫
Ω𝜀
pm

𝑨31
𝜀 ⋅𝝋 + ∫

Ωff

𝑨31
𝜀 ⋅𝝋 + ∫

Σ
𝜀

2
∑
𝑗=1

𝑀 𝑗,bl
𝜔

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ
𝜑2

− 2∫
Ω𝜀

2
∑
𝑗=1

𝜀2 ((𝜷 𝑗,bl,𝜀 −H(𝑥2)𝑴 𝑗,bl) ⊗ 𝜕
𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ
𝒆1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝗔𝑗,12

𝜀

∶∇𝝋

− ∫
Ω𝜀

2
∑
𝑗=1

𝜀2 (𝜷 𝑗,bl,𝜀 −H(𝑥2)𝑴 𝑗,bl) 𝜕2

𝜕𝑥21

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑨𝑗,22
𝜀

⋅𝝋
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− ∫
Ω𝜀

2
∑
𝑗=1

𝜀 (𝜔𝑗,bl,𝜀 −H(𝑥2)𝑀
𝑗,bl
𝜔 ) 𝜕

𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ
𝒆1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝑨𝑗,32

𝜀

⋅𝝋 + e.s.t.

(3.53)

The exponentially small terms in (3.53) include the boundary layer veloc-
ities 𝒕bl,𝜀, 𝜷 𝑗,bl,𝜀 and their gradients ∇𝒕bl,𝜀, ∇𝜷 𝑗,bl,𝜀 appearing in integrals
over the lower boundary {𝑥2 = −𝐻}. Using the Poincaré inequality (A2.1),
inequalities (A2.2), (3.48) and (3.49), we estimate the integral terms on the
right hand side of (3.53), which have been not estimated yet, as follows

| ∫
Σ

2
∑
𝑗=1

𝑀 𝑗,bl
𝜔

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ
𝜑2 | ≤ 𝐶𝜀1/2‖∇𝝋‖𝐿2(Ω𝜀)2×2 ,

| ∫
Ω𝜀

2
∑
𝑗=1

𝗔𝑗,12
𝜀 ∶∇𝝋 | ≤ 𝐶𝜀5/2‖∇𝝋‖𝐿2(Ω𝜀)2×2 ,

(3.54)

| ∫
Ω𝜀
pm

2
∑
𝑗=1

𝑨𝑗,22
𝜀 ⋅𝝋 | ≤ 𝐶𝜀3‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 ,

| ∫
Ω𝜀
pm

2
∑
𝑗=1

𝑨𝑗,32
𝜀 ⋅𝝋 | ≤ 𝐶𝜀2‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 ,
(3.55)

| ∫
Ωff

2
∑
𝑗=1

𝑨𝑗,22
𝜀 ⋅𝝋 | ≤ 𝐶𝜀5/2‖∇𝝋‖𝐿2(Ωff)2×2 ,

| ∫
Ωff

2
∑
𝑗=1

𝑨𝑗,32
𝜀 ⋅𝝋 | ≤ 𝐶𝜀5/2‖𝝋‖𝐻 1(Ωff)2 .

(3.56)

The last estimate in (3.56) is obtained using the auxiliary function 𝑉 𝑗 for
𝑗 = 1, 2 given by

𝜕𝑉 𝑗

𝜕𝑦1
(𝒚) = 𝜔𝑗,bl(𝒚) − 𝑀 𝑗,bl

𝜔 , 𝒚 ∈ (0, 1) × (0,∞) , 𝑉 𝑗 is 𝑦1-periodic ,

and proceeding in the same way as for the derivation of estimate (3.38),
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where we used the auxiliary function 𝑉. Taking into account estimates
(3.14)–(3.16), (3.34), (3.35), (3.38), (3.48), (3.49) and (3.54)–(3.56) we com-
plete the proof.

The goal of the homogenization procedure is to derive a velocity approx-
imation 𝒗𝑛,𝜀approx such that for some 𝑛 ∈ N the corresponding velocity
error 𝑼 𝑛,𝜀 ∈ 𝑉per(Ω𝜀)2 can be used as a test function in (3.53). So far, the
obtained approximation 𝒗2,𝜀approx does not fulfill the boundary conditions
given in (3.4) on the lower porous-medium boundary. Hence, the next
task is to construct an improved approximation 𝒗3,𝜀approx of the pore-scale
velocity based on 𝒗2,𝜀approx such that the corresponding velocity error 𝑼 3,𝜀

satisfies at least

𝑈 3,𝜀
2 = O(𝜀3) ,

𝜕𝑈 3,𝜀
1

𝜕𝑥2
= O(𝜀2) on {𝑥2 = −𝐻} . (3.57)

The orders on the right hand sides in (3.57) result from the fact that we
approximated the pore-scale velocity 𝒗𝜀 up to order 𝜀2.

3.1.3.3 Velocity correction on the lower boundary

In this section, we construct an approximation of the pore-scale velocity
such that it satisfies conditions (3.3)–(3.4) up to higher-order terms with
respect to 𝜀. Then, for the resulting velocity error, conditions (3.57) on
the lower boundary {𝑥2 = −𝐻} hold true. However, up to now, this is not
the case for the error function 𝑼 2,𝜀 defined in (3.50) since we have

𝑈 2,𝜀
2 (𝑥1, −𝐻) = 𝜀2

2
∑
𝑗=1

(𝑤 𝑗
2(𝑦1, 0) − �̃�2𝑗)

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻) + e.s.t. , (3.58)
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𝜕𝑈 2,𝜀
1

𝜕𝑥2
(𝑥1, −𝐻) = 𝜀

2
∑
𝑗=1

𝜕
𝜕𝑦2

𝑤 𝑗
1(𝑦1, 0)

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)

+ 𝜀2
2
∑
𝑗=1

𝑤 𝑗
1(𝑦1, 0)

𝜕
𝜕𝑥2

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻) + e.s.t. (3.59)

In order to obtain (3.58) we added −𝜀2∑2
𝑗=1 �̃�2𝑗 𝜕𝑝pm/𝜕𝑥𝑗(𝑥1, −𝐻) = 0

to 𝑈 2,𝜀
2 (𝑥1, −𝐻) and used the 𝒚-periodicity of 𝒘𝑗, i.e., 𝒘𝑗(𝑦1, −𝐻𝜀−1) =

𝒘𝑗(𝑦1, 0). The values of the error 𝑼 2,𝜀 on the lower boundary given on
the right hand side of (3.58) and (3.59) are up to the factor 𝜀2 the same as
those in [34, Section 4.3]. Hence, to correct the outer boundary effects,
we consider the same problem as in [34] but a different scaling for the
boundary layer correctors. The boundary layer problem reads

−Δ𝒚𝒒𝑗,bl + ∇𝒚𝑧𝑗,bl = 𝟎 in 𝑍− , (3.60)

∇𝒚⋅ 𝒒𝑗,bl = 0 in 𝑍− , (3.61)

𝑞𝑗,bl2 = �̃�2𝑗 − 𝑤 𝑗
2 on 𝑆 , (3.62)

𝜕𝑞𝑗,bl1
𝜕𝑦2

= −
𝜕𝑤 𝑗

1
𝜕𝑦2

on 𝑆 , (3.63)

𝒒𝑗,bl = 𝟎 on
∞
⋃
𝑘=1

(𝜕𝑌s − {0, 𝑘}), {𝒒𝑗,bl, 𝑧𝑗,bl} is 𝑦1-periodic . (3.64)

In [34, 95] it is shown that there exists a unique solution 𝒒𝑗,bl ∈ 𝐻 1(𝑍−)2,
smooth in 𝑍− and a constant 𝛾 ∈ (0, 1) such that 𝑒𝛾 |𝑦2|𝒒𝑗,bl ∈ 𝐿2(𝑍−)2. The
pressure 𝑧𝑗,bl is unique up to an additive constant and having determined
this constant it holds 𝑒𝛾 |𝑦2|𝑧𝑗,bl ∈ 𝐿2(𝑍−).

Making use of the boundary layer correctors 𝒒𝑗,bl and 𝑧𝑗,bl we construct
new error functions

𝑼 3,𝜀 = 𝑼 2,𝜀 + 𝜀2
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝒒𝑗,bl (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

) ,
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𝑃3,𝜀 = 𝑃2,𝜀 + 𝜀
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝑧𝑗,bl (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

) .

Considering conditions (3.62) and (3.63), and taking into account (3.58)
and (3.59) we have

𝑈 3,𝜀
2 (𝑥1, −𝐻) = 𝑈 2,𝜀

2 + 𝜀2
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻) 𝑞𝑗,bl2 (

𝑥1
𝜀
, 0)

= 𝑈 2,𝜀
2 + 𝜀2

2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)(�̃�2𝑗 − 𝑤 𝑗

2) (
𝑥1
𝜀
, 0) = 0 ,

(3.65)

𝜕𝑈 3,𝜀
1

𝜕𝑥2
(𝑥1, −𝐻) =

𝜕𝑈 2,𝜀
1

𝜕𝑥2
(𝑥1, −𝐻)

+ 𝜕
𝜕𝑥2

(𝜀2
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻) 𝑞𝑗,bl1 (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

)) (𝑥1, −𝐻)

=
𝜕𝑈 2,𝜀

1
𝜕𝑥2

(𝑥1, −𝐻)

+ 𝜀2
2
∑
𝑗=1

⎛
⎜
⎜
⎝

𝜕
𝜕𝑥2

(
𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

𝑞𝑗,bl1 (
𝑥1
𝜀
, −

𝑥2+𝐻
𝜀

)
⎞
⎟
⎟
⎠

(𝑥1, −𝐻)

+ 𝜀2
2
∑
𝑗=1

(
𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻) 𝜕

𝜕𝑥2
𝑞𝑗,bl1 (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

)) (𝑥1, −𝐻)

=
𝜕𝑈 2,𝜀

1
𝜕𝑥2

(𝑥1, −𝐻) − 𝜀
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻) 𝜕

𝜕𝑦2
𝑤 𝑗
1 (

𝑥1
𝜀
, 0)

= O(𝜀2) . (3.66)

Thus, the goal 𝑼 3,𝜀 ∈ 𝑉per(Ω𝜀)2 is achieved, and we obtain the following
result:
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Corollary 3.2: We have 𝑼 3,𝜀 ∈ 𝑉per(Ω𝜀)2, and it holds

| ∫
Ω𝜀
∇𝑼 3,𝜀∶∇𝝋 − ∫

Ω𝜀
𝑃3,𝜀 ∇⋅ 𝝋 − ∫

Σ
𝑝pm𝜑2

− ∫
Σ
(
𝜕𝑣ff2
𝜕𝑥2

− 𝑝ff) 𝜑2 + ∫
Σ
𝑁 bl
𝑠
𝜕𝑣ff1
𝜕𝑥2

|
Σ
𝜑2 |

≤ 𝐶𝜀3/2 (‖∇𝝋‖𝐿2(Ω𝜀)2×2 + ‖𝝋‖𝐻 1(Ωff)2) , for all 𝝋 ∈ 𝑉per(Ω𝜀)2 .
(3.67)

Proof. From Corollary 3.1 we know that 𝑼 2,𝜀 ∈ 𝐻 1(Ω𝜀)2 and due to 𝒒𝑗,bl ∈
𝐻 1(𝑍−)2 we obtain directly 𝑼 3,𝜀 ∈ 𝐻 1(Ω𝜀)2. The velocity error 𝑼 3,𝜀 is a
sum of functions, that are 𝐿-periodic and fulfill the no-slip condition (3.3)
on the boundary of the solid grains 𝜕Ω𝜀 ⧵ 𝜕Ω, and further, we have

𝑼 3,𝜀(𝑥1, ℎ) = 𝟎 . (3.68)

The correction of the velocity error 𝑼 2,𝜀 on the lower boundary using
problem (3.60)–(3.64) yields 𝑼 3,𝜀 ∈ 𝑉per(Ω𝜀)2 since (3.65) and (3.66) hold.
We have proven (3.52) in Corollary 3.1 for {𝑼 2,𝜀, 𝑃2,𝜀} and therefore, we
consider only the variational form for the boundary layer correctors added
to the error functions 𝑼 2,𝜀 and 𝑃2,𝜀. This yields

∫
Ω𝜀
∇(𝜀2

2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝒒𝑗,bl (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

)) ∶∇𝝋

− ∫
Ω𝜀
𝜀

2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝑧𝑗,bl (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

) ∇⋅ 𝝋

− ∫
{𝑥2=−𝐻}

𝜀2
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)

𝜕𝑤 𝑗,𝜀
1

𝜕𝑥2
(𝑥1, 0)𝜑1

= − ∫
Ω𝜀
pm

𝜀2
2
∑
𝑗=1

𝜕2

𝜕𝑥21

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝒒𝑗,bl (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑨𝑗,13
𝜀

⋅𝝋
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− 2∫
Ω𝜀
pm

𝜀2
2
∑
𝑗=1

∇
𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)∇𝒒𝑗,bl (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑨𝑗,23
𝜀

⋅𝝋

+ ∫
Ω𝜀
pm

𝜀
2
∑
𝑗=1

∇
𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝑧𝑗,bl (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝑨𝑗,33
𝜀

⋅𝝋 + e.s.t. (3.69)

Taking into account the periodicity of the cell problem solutions 𝒘𝑗,𝜀,
𝑗 = 1, 2, we have 𝒘𝑗,𝜀(𝑥1, 0) = 𝒘𝑗,𝜀(𝑥1, −𝐻) for all 𝑥1 ∈ (0, 𝐿). Therefore,
the integral over the lower boundary {𝑥2 = −𝐻} on the left hand side
of equation (3.69) cancels with the corresponding integral on the left
hand side of equation (3.52). Furthermore, the boundary layer functions
𝒒𝑗,bl and 𝑧𝑗,bl are continuous across {𝑥2 = −𝐻}, i.e., there is no jump in
velocity or pressure. The volume integrals over the free-flow region Ωff
are incorporated in the exponentially small terms in (3.69) since 𝒒𝑗,bl → 𝟎
and 𝑧𝑗,bl → 0 exponentially fast for 𝑥2 → −∞.

We estimate the integrals on the right hand side of (3.69) using inequali-
ties (A2.2) and identity (3.38) as follows

| ∫
Ω𝜀
pm

2
∑
𝑗=1

𝑨𝑗,13
𝜀 ⋅𝝋 | , 𝜀 | ∫

Ω𝜀
pm

2
∑
𝑗=1

𝑨𝑗,23
𝜀 ⋅𝝋 | ≤ 𝐶𝜀3‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 , (3.70)

| ∫
Ω𝜀
pm

2
∑
𝑗=1

𝑨𝑗,33
𝜀 ⋅𝝋 | ≤ 𝐶𝜀2‖∇𝝋‖𝐿2(Ω𝜀

pm)2×2 . (3.71)

Using estimates (3.70)–(3.71) and the results from Corollary 3.1 we ob-
tain (3.67) and Corollary 3.2 is proven.

On the left hand side of equation (3.67) there are integrals over Σ that
need to be eliminated and the most natural way to do this is to set

𝑝pm = 𝑝ff −
𝜕𝑣ff2
𝜕𝑥2

+ 𝑁 bl
𝑠
𝜕𝑣ff1
𝜕𝑥2

on Σ . (3.72)
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Then, the use of (3.72) in inequality (3.67) leads to

| ∫
Ω𝜀
∇𝑼 3,𝜀∶∇𝝋 − ∫

Ω𝜀
𝑃3,𝜀 ∇⋅ 𝝋 | ≤ 𝐶𝜀3/2 (‖∇𝝋‖𝐿2(Ω𝜀)2×2 + ‖𝝋‖𝐻 1(Ωff)2) .

(3.73)

Let us shortly summarize what we achieved up to now. We constructed
approximations of the pore-scale functions such that the corresponding
velocity error is an element of our test function space, i.e., 𝑼 3,𝜀 ∈ 𝑉per(Ω𝜀)2,
we formulated interface condition (3.72) for the pressure and obtained
estimate (3.73). The problem at this stage are nonphysical compressibility
effects of 𝑼 3,𝜀, i.e., ∇⋅ 𝑼 3,𝜀 is of low order with respect to 𝜀. Thus, the
next task is to obtain a higher-order estimate with respect to 𝜀 for the
divergence of the velocity error 𝑼 3,𝜀.

3.1.3.4 Correction of compressibility effects

The divergence of the velocity error function 𝑼 3,𝜀 reads

∇⋅ 𝑼 3,𝜀 = H(−𝑥2) 𝜀2
2
∑
𝑗=1

𝒘𝑗,𝜀⋅∇
𝜕𝑝pm

𝜕𝑥𝑗
+ 𝜀 (𝑡bl,𝜀1 −H(𝑥2)𝑁 bl

1 ) 𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ

− 𝜀2
2
∑
𝑗=1

(𝛽1
𝑗,bl,𝜀 −H(𝑥2)𝑀

𝑗,bl
1 ) 𝜕

𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ

+ 𝜀2
2
∑
𝑗=1

𝜕
𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝑞𝑗,bl1 (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

) . (3.74)

We use the Minkowski inequality (A2.4) to estimate ∇⋅ 𝑼 3,𝜀 as follows

‖ ∇⋅ 𝑼 3,𝜀‖𝐿2(Ω𝜀) ≤ ‖ 𝜀2
2
∑
𝑗=1

𝒘𝑗,𝜀⋅∇
𝜕𝑝pm

𝜕𝑥𝑗
‖
𝐿2(Ω𝜀

pm)

+ ‖ 𝜀 (𝑡bl,𝜀1 −H(𝑥2)𝑁 bl
1 ) 𝜕

𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
‖
𝐿2(Ω𝜀)
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+ ‖ 𝜀2
2
∑
𝑗=1

(𝛽1
𝑗,bl,𝜀 −H(𝑥2)𝑀

𝑗,bl
1 ) 𝜕

𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ
‖
𝐿2(Ω𝜀)

+ ‖ 𝜀2
2
∑
𝑗=1

𝜕
𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝑞𝑗,bl1 (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

) ‖
𝐿2(Ω𝜀)

. (3.75)

Then, making use of (3.26) and (3.48) we obtain the following estimates
for the right hand side terms in equation (3.75):

‖ 𝜀2
2
∑
𝑗=1

𝒘𝑗,𝜀⋅∇
𝜕𝑝pm

𝜕𝑥𝑗
‖
𝐿2(Ω𝜀

pm)
≤𝐶𝜀2 , (3.76)

‖ 𝜀 (𝑡bl,𝜀1 −H(𝑥2)𝑁 bl
1 ) 𝜕

𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
‖
𝐿2(Ω𝜀)

≤𝐶𝜀3/2 , (3.77)

‖ 𝜀2
2
∑
𝑗=1

(𝛽1
𝑗,bl,𝜀 −H(𝑥2)𝑀

𝑗,bl
1 ) 𝜕

𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ
‖
𝐿2(Ω𝜀)

≤𝐶𝜀5/2 , (3.78)

‖ 𝜀2
2
∑
𝑗=1

𝜕
𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝑞𝑗,bl1 (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

) ‖
𝐿2(Ω𝜀)

≤𝐶𝜀2 . (3.79)

Consequently, we have ‖ ∇⋅ 𝑼 3,𝜀‖𝐿2(Ω𝜀) ≤ 𝐶𝜀3/2. However, due to the
fact that the velocity approximation is of order 𝜀2, we need to have
‖ ∇⋅ 𝑼 3,𝜀‖𝐿2(Ω𝜀) ≤ 𝐶𝜀 𝑖 for some 𝑖 > 2. In this section, we correct the
compressibility effects of 𝑼 3,𝜀 coming from the different contributions
in (3.76), (3.77) and (3.79). Estimate (3.78) is already sufficient, so we do
not need any correction for the corresponding term appearing in (3.74).
In the following, we consider each of the three remaining terms on the
right hand side of (3.74) in a separate step a) – c) and correct it using
boundary layers and auxiliary functions.
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a) Compressibility effects coming from 𝒘𝑗,𝜀

We correct the compressibility effects coming from the term including
the cell problem velocity 𝒘𝑗,𝜀 using the auxiliary function 𝜸 𝑗,𝑖 for 𝑖, 𝑗 = 1, 2
from [34, Section 4.4]. The function 𝜸 𝑗,𝑖 is the solution to the following
problem defined only in the porous part of the coupled domain

∇𝒚⋅ 𝜸 𝑗,𝑖 = 𝑤 𝑗
𝑖 −

�̃�𝑖𝑗
|𝑌f|

in 𝑌f , 𝜸 𝑗,𝑖 = 𝟎 on 𝜕𝑌f ⧵ 𝜕𝑌 ,

𝜸 𝑗,𝑖 is 𝒚-periodic .
(3.80)

Following [34, 95], there exists at least one solution 𝜸 𝑗,𝑖 ∈ 𝐻 1(𝑌f)2 ∩
𝐶∞loc(∪

∞
𝑘=1(𝑌f − {0, 𝑘}))2 to problem (3.80). We define 𝜸 𝑗,𝑖,𝜀(𝒙) = 𝜀𝜸 𝑗,𝑖(𝒚) for

𝒙 ∈ Ω𝜀
pm and set 𝜸 𝑗,𝑖,𝜀(𝒙) = 𝟎 for 𝒙 ∈ Ωpm ⧵ Ω𝜀

pm. Due to the reason
that 𝜸 𝑗,𝑖,𝜀 is defined in the porous-medium domain, it has a value on the
fluid–porous interface Σ which needs to be corrected. In order to do this,
we use the following boundary layer problem [34, 95] constructed on the
whole stripe 𝑍bl:

−Δ𝒚𝜸 𝑗,𝑖,bl + ∇𝒚𝜋 𝑗,𝑖,bl = 𝟎 in 𝑍+ ∪ 𝑍− , (3.81)

∇𝒚⋅ 𝜸 𝑗,𝑖,bl = 0 in 𝑍+ ∪ 𝑍− , (3.82)

J𝜸 𝑗,𝑖,blK𝑆 = 𝜸 𝑗,𝑖 on 𝑆 , (3.83)

J(∇𝒚𝜸 𝑗,𝑖,bl − 𝜋 𝑗,𝑖,bl𝗜)𝒆2K𝑆 = −∇𝒚𝜸 𝑗,𝑖𝒆2 on 𝑆 , (3.84)

𝜸 𝑗,𝑖,bl = 𝟎 on
∞
⋃
𝑘=1

(𝜕𝑌s − {0, 𝑘}), {𝜸 𝑗,𝑖,bl, 𝜋 𝑗,𝑖,bl} is 𝑦1-periodic . (3.85)

From [95] we know that a solution {𝜸 𝑗,𝑖,bl, 𝜋 𝑗,𝑖,bl} ∈ 𝐿2loc(𝑍
bl)2 ∩ 𝐶∞loc(𝑍

+ ∪
𝑍−)2 ×𝐶∞loc(𝑍

+ ∪𝑍−) to problem (3.81)–(3.85) exists, where 𝜸 𝑗,𝑖,bl is unique
and 𝜋 𝑗,𝑖,bl is unique up to a constant. Furthermore, the authors [95]
show that 𝜸 𝑗,𝑖,bl(⋅, ±0) ∈ 𝑊 2−1/𝑞,𝑞(𝑆)2 and (∇𝒚𝜸 𝑗,𝑖,bl − 𝜋 𝑗,𝑖,bl𝗜)(⋅, ±0)𝒆2 ∈
𝑊 1−1/𝑞,𝑞(𝑆)2 for all 𝑞 ∈ [1, ∞), and that there exist a constant 𝛾 ∈ (0, 1)
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such that

𝑒𝛾 |𝑦2|∇𝒚𝜸 𝑗,𝑖,bl ∈ 𝐿2(𝑍+ ∪ 𝑍−)2×2 , 𝑒𝛾 |𝑦2|𝜸 𝑗,𝑖,bl ∈ 𝐿2(𝑍−)2 ,

𝑒𝛾 |𝑦2|𝜋 𝑗,𝑖,bl ∈ 𝐿2(𝑍−) .

We introduce 𝜸 𝑗,𝑖,bl,𝜀(𝒙) = 𝜀𝜸 𝑗,𝑖,bl(𝒚) and 𝜋 𝑗,𝑖,bl,𝜀(𝒙) = 𝜋 𝑗,𝑖,bl(𝒚) for 𝒙 ∈ Ω𝜀

and extend the boundary layer velocity 𝜸 𝑗,𝑖,bl,𝜀 by zero inΩ⧵Ω𝜀. After [95],
there exist boundary layer constants 𝐶 𝑗,𝑖,bl𝜋 and 𝑪𝑗,𝑖,bl such that

|𝜸 𝑗,𝑖,bl − 𝑪𝑗,𝑖,bl| ≤ 𝐶𝑒−𝛾𝑦2 , |𝜋 𝑗,𝑖,bl − 𝐶 𝑗,𝑖,bl𝜋 | ≤ 𝐶𝑒−𝛾𝑦2 for 𝑦2 > 0 .

For details on the existence and uniqueness of a solution to problem
(3.81)–(3.85) and for further properties of the boundary layer solution
{𝜸 𝑗,𝑖,bl, 𝜋 𝑗,𝑖,bl}, we refer to [34, 95].

We use problems (3.80) and (3.81)–(3.85) to define boundary layer cor-
rectors for the compressibility effects coming from the cell problems.
These correctors are added to the error functions 𝑼 3,𝜀 and 𝑃3,𝜀 yielding
the following new errors

𝑼 4,𝜀 = 𝑼 3,𝜀 −H(−𝑥2)𝜀2
2
∑
𝑖,𝑗=1

𝜸 𝑗,𝑖,𝜀
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗

− 𝜀2
2
∑
𝑖,𝑗=1

(𝜸 𝑗,𝑖,bl,𝜀 −H(𝑥2)𝜀𝑪𝑗,𝑖,bl)
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
,

𝑃4,𝜀 = 𝑃3,𝜀 − 𝜀2
2
∑
𝑖,𝑗=1

(𝜋 𝑗,𝑖,bl,𝜀 − 𝐶 𝑗,𝑖,bl𝜋 )
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
.

b) Compressibility effects coming from 𝑡bl,𝜀1

Next, we correct the compressibility effects resulting from the second term
on the right hand side of (3.74) which is only bounded by 𝜀3/2 in (3.77).
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We consider the following boundary layer problem from [95, Section 1.2.8]
to eliminate this problematic term

∇𝒚⋅ 𝜻bl = 𝑡bl1 (𝒚) −H(𝑦2)𝑁 bl
1 in 𝑍+ ∪ 𝑍− , (3.86)

J𝜻blK𝑆 = −(∫
𝑍 bl

(𝑡bl1 (𝒚) −H(𝑦2)𝑁 bl
1 ) d𝒚) 𝒆2 on 𝑆 , (3.87)

𝜻bl = 𝟎 on
∞
⋃
𝑘=1

(𝜕𝑌s − {0, 𝑘}), 𝜻bl is 𝑦1-periodic . (3.88)

After [95, Section 1.2.8], there exists at least one solution 𝜻bl ∈ 𝐻 1(𝑍+ ∪
𝑍−)2 ∩ 𝐶∞loc(𝑍

+ ∪ 𝑍−)2 to problem (3.86)–(3.88) such that 𝜻bl(⋅, ±0) ∈
𝑊 1−1/𝑞,𝑞(𝑆)2 for all 𝑞 ∈ [1, ∞) and for 𝛾 > 0 we have 𝑒𝛾 |𝑦2|𝜻bl ∈ 𝐻 1(𝑍+ ∪
𝑍−)2. For the definition on the macroscopic domain, we set 𝜻bl,𝜀(𝒙) =
𝜀𝜻bl(𝒚) for 𝒙 ∈ Ω𝜀 and 𝜻bl,𝜀(𝒙) = 𝟎 for 𝒙 ∈ Ω ⧵ Ω𝜀, and following [95], it
holds

‖𝜻bl,𝜀‖𝐿2(Ω)2 ≤ 𝜀3/2 , ‖∇𝜻bl,𝜀‖𝐿2(Ω)2×2 ≤ 𝜀1/2 . (3.89)

Before we add the boundary layer corrector 𝜻bl,𝜀 with an appropriate scal-
ing to the velocity error function 𝑼 4,𝜀 in order to correct compressibility
effects, we need to eliminate the additional contribution to the velocity
on the interface appearing on the right hand side of equation (3.87). For
the correction of this arising term, we construct the following counter
flow problem

Δ𝒗cf − ∇𝑝cf = 𝟎 , ∇⋅ 𝒗cf = 0 in Ωff , ∫
Ωff

𝑝cf d𝒙 = 0 , (3.90)

𝑣cf1 = J𝜁 bl1 K𝑆
𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
, 𝑣cf2 = J𝜁 bl2 K𝑆

𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ

on Σ , (3.91)

𝑣cf1 = 0 , 𝑣cf2 = 𝑣cf,in2 on {𝑥2 = ℎ} , {𝒗cf, 𝑝cf} is 𝐿-periodic in 𝑥1 , (3.92)
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where the velocity 𝒗cf should satisfy the compatibility condition

∫
𝐿

0
𝑣cf,in2 d𝑥1 = ∫

𝐿

0
J𝜁 bl2 K𝑆

𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
d𝑥1 .

We correct the compressibility effects coming from the function 𝑡bl,𝜀1 using
the boundary layer corrector 𝜻bl,𝜀 and the solution {𝒗cf, 𝑝cf} to the counter
flow problem (3.90)–(3.92). This leads to following velocity and pressure
error functions

𝑼 5,𝜀 = 𝑼 4,𝜀 − 𝜀𝜻bl,𝜀 𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
+ 𝜀2H(𝑥2)𝒗cf , 𝑃5,𝜀 = 𝑃4,𝜀 + 𝜀2H(𝑥2)𝑝cf .

c) Compressibility effects coming from 𝑞𝑗,bl1

Finally, we address the last term on the right hand side of equation (3.74)
involving the boundary layer corrector 𝑞𝑗,bl1 . For the correction of this
term, we need an auxiliary problemwhich is defined in the porousmedium
only, similar to (3.60)–(3.64). We consider the following boundary layer
problem defined in [95] for our purpose

∇𝒚⋅ 𝒁 𝑗,bl = 𝑞𝑗,bl1 in 𝑍− ,

𝒁 𝑗,bl(⋅, −0) = − (∫
𝑍−

𝑞𝑗,bl1 d𝒚) 𝒆2 on 𝑆 ,

𝒁 𝑗,bl = 𝟎 on
∞
⋃
𝑘=1

(𝜕𝑌s − {0, 𝑘}), 𝒁 𝑗,bl is 𝑦1-periodic .

We obtain existence of a solution 𝒁 𝑗,bl ∈ 𝐻 1(𝑍+ ∪𝑍−)2 ∩𝐶∞loc(𝑍
+ ∪𝑍−)2 by

applying Proposition 3.20 from [95]. Moreover, we have 𝒁 𝑗,bl ∈ 𝑊 1,𝑞(𝑌 )2
and 𝒁 𝑗,bl ∈ 𝑊 1,𝑞(𝑌 − {0, 1})2 for all 𝑞 ∈ [1, ∞), and there exists a constant
𝛾 ∈ (0, 1) such that 𝑒𝛾 |𝑦2|𝒁 𝑗,bl ∈ 𝐻 1(𝑍+ ∪𝑍−)2. We introduce the boundary
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layer corrector

𝒁 𝑗,bl,𝜀(𝒙) = 𝜀𝒁 𝑗,bl (
𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

) for 𝒙 ∈ Ω𝜀 ,

and extend it by zero in Ω⧵Ω𝜀. Using corrector 𝒁 𝑗,bl,𝜀 for the compressibil-
ity effects coming from 𝑞𝑗,bl1 we obtain the following velocity and pressure
errors

𝑼 6,𝜀 = 𝑼 5,𝜀 − 𝜀2
2
∑
𝑗=1

𝜕
𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻) (𝒁 𝑗,bl,𝜀 + 𝜀𝑅𝜀𝒆2 ∫

𝑍−
𝑞𝑗,bl1 d𝒚) ,

𝑃6,𝜀 = 𝑃5,𝜀 .

Here, 𝑅𝜀 is the restriction operator first introduced by Tartar in [153,
Lemma 4]. In this work, we consider 𝑅𝜀 ∶ 𝐻 1(Ω)2 → 𝐻 1(Ω𝜀)2 for 𝒗 ∈
𝐻 1(Ω)2 by 𝑅𝜀𝒗 = 𝒗|Ω𝜀 , hence, we have

𝒗 ∈ 𝐻 1(Ω𝜀)2 ⇒ 𝑅𝜀𝒗 = 𝒗 , ∇⋅ 𝒗 = 0 ⇒ ∇⋅ (𝑅𝜀𝒗) = 0 .

The integral term 𝜀𝑅𝜀𝒆2 ∫𝑍− 𝑞𝑗,bl1 d𝒚, included in the velocity error function
𝑼 6,𝜀, corrects the value of 𝒁 𝑗,bl,𝜀 on the lower boundary {𝑥2 = −𝐻}.

By construction of 𝑼 6,𝜀 we reduce nonphysical compressibility effects of
the velocity error 𝑼 3,𝜀 that appeared due to the corrections made in Sec-
tions 3.1.2 and 3.1.3.1–3.1.3.3. Moreover, 𝑼 6,𝜀 is derived in such a way that it
fulfills boundary conditions (3.57) and (3.68), the no-slip condition 𝑼 6,𝜀 = 𝟎
on 𝜕Ω𝜀 ⧵ 𝜕Ω and that it is 𝐿-periodic in 𝑥1, leading to 𝑼 6,𝜀 ∈ 𝑉per(Ω𝜀)2. We
summarize the obtained results in the following corollaries.

Corollary 3.3: It is 𝑼 6,𝜀 ∈ 𝑉per(Ω𝜀)2 and it holds ‖ ∇⋅ 𝑼 6,𝜀‖𝐿2(Ω𝜀) ≤ 𝐶𝜀5/2.

Proof. From Corollary 3.2 we know that 𝑼 3,𝜀 ∈ 𝑉per(Ω𝜀)2. Moreover, all
correctors added to the velocity error 𝑼 3,𝜀 are elements of 𝑉per(Ω𝜀)2, thus,
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by construction 𝑼 6,𝜀 ∈ 𝑉per(Ω𝜀)2. Furthermore, we have

∇⋅ 𝑼 6,𝜀 = − 𝜀2
2
∑
𝑗=1

(𝛽1
𝑗,bl,𝜀 −H(𝑥2)𝑀

𝑗,bl
1 ) 𝜕

𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
|
Σ

+
H(−𝑥2)
|𝑌f|

𝜀2
2
∑
𝑗=1

�̃�𝑖𝑗
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∇⋅ (�̃�∇𝑝pm)=0

−H(−𝑥2)𝜀3
2
∑
𝑗=1

𝜸 𝑗,𝑖(𝒚)⋅∇
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗

− 𝜀3
2
∑
𝑗=1

(𝜸 𝑗,𝑖,bl(𝒚) −H(𝑥2)𝑪𝑗,𝑖,bl) ⋅∇
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
− 𝜀𝜁 bl,𝜀1

𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ

− 𝜀3
2
∑
𝑗=1

∇ 𝜕
𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)⋅ (𝒁 𝑗,bl (

𝑥1
𝜀
, −

𝑥2 + 𝐻
𝜀

)

+𝑅𝜀𝒆2 ∫
𝑍−

𝑞𝑗,bl1 d𝒚) .

Considering estimates (3.48) and (3.89) we obtain ‖ ∇⋅ 𝑼 6,𝜀‖𝐿2(Ω𝜀) ≤ 𝐶𝜀5/2.

Corollary 3.4: For all 𝝋 ∈ 𝑉per(Ω𝜀)2 it holds that

| ∫
Ω𝜀
∇𝑼 6,𝜀∶∇𝝋 − ∫

Ω𝜀
𝑃6,𝜀 ∇⋅ 𝝋 | ≤ 𝐶𝜀3/2 (‖∇𝝋‖𝐿2(Ω𝜀)2×2 + ‖𝝋‖𝐻 1(Ωff)2) .

(3.93)

Proof. For the error functions 𝑼 6,𝜀 and 𝑃6,𝜀 we write the weak formulation

∫
Ω𝜀
∇𝑼 6,𝜀∶∇𝝋 − ∫

Ω𝜀
𝑃6,𝜀 ∇⋅ 𝝋 = ∫

Ω𝜀
∇𝑼 3,𝜀∶∇𝝋 − ∫

Ω𝜀
𝑃3,𝜀 ∇⋅ 𝝋

− ∫
Ω𝜀
pm

𝜀2
2
∑
𝑖,𝑗=1

(∇𝒚𝜸 𝑗,𝑖(𝒚)
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
+ 𝜸 𝑗,𝑖,𝜀∇

𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
) ∶∇𝝋

+ ∫
Σ
𝜀2

2
∑
𝑖,𝑗=1

(∇𝒚𝜸 𝑗,𝑖(𝑦1, −0)
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
𝒆2 − (𝜸 𝑗,𝑖,𝜀 ⊗ ∇

𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
) 𝒆2) ⋅𝝋



108 3 Generalized interface conditions

+ ∫
Σ
𝜀3

2
∑
𝑖,𝑗=1

((𝑪𝑗,𝑖,bl ⊗ ∇
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
) 𝒆2) ⋅𝝋

− ∫
Ω𝜀
2𝜀2

2
∑
𝑖,𝑗=1

((𝜸 𝑗,𝑖,bl,𝜀 −H(𝑥2)𝜀𝑪𝑗,𝑖,bl) ⊗ ∇
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
) ∶∇𝝋

− ∫
Ω𝜀
𝜀2

2
∑
𝑖,𝑗=1

(𝜸 𝑗,𝑖,bl,𝜀 −H(𝑥2)𝜀𝑪𝑗,𝑖,bl) 𝜕2

𝜕𝑥21

𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
⋅𝝋

− ∫
Ω𝜀
𝜀2 (∇𝜻bl(𝒚) 𝜕

𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
+ 𝜻bl(𝒚) ⊗ ∇ 𝜕

𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
) ∶∇𝝋

− ∫
Ω𝜀
𝜀2

2
∑
𝑖,𝑗=1

(𝜋 𝑗,𝑖,bl,𝜀 − 𝐶 𝑗,𝑖,bl𝜋 ) ∇
𝜕2𝑝pm

𝜕𝑥𝑖𝑥𝑗
|
Σ
⋅𝝋

− ∫
Σ
𝜀2 ((∇𝒗cf − 𝑝cf𝗜) 𝒆2) ⋅𝝋

− ∫
Ω𝜀
𝜀2

2
∑
𝑗=1

∇( 𝜕
𝜕𝑥1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻) (𝒁 𝑗,bl,𝜀 + 𝜀𝑅𝜀𝒆2 ∫

𝑍−
𝑞𝑗,bl1 d𝒚)) ∶∇𝝋

+ e.s.t. (3.94)

Taking into account estimate (3.73) for the first two terms on the right
hand side of (3.94) and noting that all the other integrals are at least of
order 𝜀2, we prove inequality (3.93).

Now, the approximations of the pore-scale velocity and pressure given
by 𝒗6,𝜀approx = 𝑼 6,𝜀 − 𝒗𝜀 and 𝑝6,𝜀approx = 𝑃6,𝜀 − 𝑝𝜀 is accurate enough such
that the goal of the homogenization procedure is achieved and the diver-
gence of the velocity error 𝑼 6,𝜀 ∈ 𝑉per(Ω𝜀)2 is estimated sufficiently well,
‖ ∇⋅ 𝑼 6,𝜀‖𝐿2(Ω𝜀) ≤ 𝐶𝜀5/2. Hence, we can formulate effective conditions on
the fluid–porous interface.
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3.1.4 Step 4: Leading order approximations and interface
conditions

We constructed a higher-order approximation of the pore-scale solution
corresponding to problem (3.2)–(3.4) yielding the error functions 𝑼 6,𝜀

and 𝑃6,𝜀. The leading order approximation of the pore-scale velocity and
pressure is used for the formulation of effective interface conditions and
reads

𝒗6,𝜀approx= H(𝑥2)𝒗ff −H(−𝑥2)𝜀2
2
∑
𝑗=1

𝒘𝑗,𝜀 𝜕𝑝
pm

𝜕𝑥𝑗
− 𝜀 (𝒕bl,𝜀 −H(𝑥2)𝑵 bl)

𝜕𝑣ff1
𝜕𝑥2

|
Σ

+ 𝜀2𝜻bl(𝒚) 𝜕
𝜕𝑥1

𝜕𝑣ff1
𝜕𝑥2

|
Σ
+ 𝜀2

2
∑
𝑗=1

(𝜷 𝑗,bl,𝜀 −H(𝑥2)𝑴 𝑗,bl)
𝜕𝑝pm

𝜕𝑥𝑗
|
Σ

− 𝜀2
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
(𝑥1, −𝐻)𝒒𝑗,bl (

𝑥1
𝜀
, −

𝑥2+𝐻
𝜀

) − 𝜀2H(𝑥2)𝒗cf+O(𝜀3) ,

𝑝6,𝜀approx= H(𝑥2)𝑝ff +H(−𝑥2)𝑝pm − (𝑠bl,𝜀 −H(𝑥2)𝑁 bl
𝑠 )

𝜕𝑣ff1
𝜕𝑥2

|
Σ
+O(𝜀) .

The coupling conditions for the velocity components are obtained by
taking into account the definition of 𝒗6,𝜀approx and the fact that the pore-
scale velocity 𝒗𝜀 is continuous across the interface, thus, the same should
also be true for its approximation, i.e., J𝒗6,𝜀approxKΣ = 𝟎. The coupling
condition for the pressure is given by equation (3.72) and was already
derived in Section 3.1.3.3.

Below, we present the generalized coupling conditions derived via ho-
mogenization and boundary layer theory in this chapter

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (3.95)

𝑝pm = 𝑝ff −
𝜕𝑣ff2
𝜕𝑥2

+ 𝑁 bl
𝑠
𝜕𝑣ff1
𝜕𝑥2

on Σ , (3.96)

𝒗ff⋅𝝉 = −𝜀𝑵 bl⋅𝝉
𝜕𝑣ff1
𝜕𝑥2

+ 𝜀2
2
∑
𝑗=1

𝑴 𝑗,bl⋅𝝉
𝜕𝑝pm

𝜕𝑥𝑗
on Σ . (3.97)
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The physical interpretation and dimensional formulation of coupling
conditions (3.95)–(3.97) is given in Section 3.2, where we also explain how
the exact position of the fluid–porous interface Σ is incorporated in the
derived conditions (3.95)–(3.97) and provide a comparison to the classical
interface conditions for the Stokes–Darcy problem.

Taking into account the derived interface conditions (3.95)–(3.97) and
inserting the velocity error 𝑼 6,𝜀 as a test function in (3.93) yields the
following corollary.

Corollary 3.5: For 𝑼 6,𝜀 ∈ 𝑉per(Ω𝜀)2 we have

‖∇𝑼 6,𝜀‖2𝐿2(Ω𝜀)2×2 ≤𝐶𝜀
5/2‖𝑃6,𝜀‖𝐿2(Ω𝜀)

+ 𝐶𝜀3/2 (‖∇𝑼 6,𝜀‖𝐿2(Ω𝜀
pm)2×2 + ‖𝑼 6,𝜀‖𝐻 1(Ωff)2) .

Proof. We use the estimates proven in Corollaries 3.3 and 3.4, and sub-
stitute 𝑼 6,𝜀 as a test function in the weak form (3.93) to complete the
proof.

Remark 3.6: The next step towards rigorous error estimates for the error
functions 𝑼 6,𝜀, 𝑃6,𝜀 is to estimate the pressure error 𝑃6,𝜀 using the velocity
error 𝑼 6,𝜀 similar to, e.g., [34, 95]. However, such error estimates are beyond
the scope of this work. In this thesis, we focus on the derivation of the
generalized coupling conditions (3.95)–(3.97), the numerical validation and
the well-posedness of the resulting coupled Stokes–Darcy problem.

3.2 Practical aspects

This section is dedicated to aspects that are useful for applying the newly
derived conditions in numerical simulations of free-flow and porous-
medium flow systems. In Section 3.2.1, we write the generalized interface
conditions (3.95)–(3.97) in terms of SI units to account for the physical
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dimensions of all quantities. In Section 3.2.2, we explain how the informa-
tion about the exact interface position is included in the boundary layer
constants. We show that the interface location is not uncertain in this
case, contrary to the classical conditions (2.17)–(2.19). In Section 3.2.3,
we compare the generalized interface conditions to the classical ones,
highlight their differences and similarities to make it easier to adopt the
new coupling conditions in already existing frameworks.

3.2.1 Dimensional formulation

The generalized interface conditions (3.95)–(3.97) are derived from the
dimensionless pore-scale problem (3.2)–(3.4). However, for numerical
simulations of applications involving physical quantities, the dimensional
form of the derived coupling conditions is needed. In order to formulate
the conditions for the dimensional setting we use the scale separation
parameter 𝜀 = ℓ/L, and the same quantities and scaling parameters as
in Section 2.3.1. Moreover, we write the generalized coupling conditions
in terms of the stress tensor 𝗧(𝒗ff, 𝑝ff) = ∇𝒗ff − 𝑝ff𝗜 and the tangential
respective normal vector 𝝉 and 𝒏 on the horizontal fluid–porous inter-
face Σ which is considered to be flat. The generalized interface condi-
tions (3.95)–(3.97) in their dimensional form read

𝒗ff⋅𝒏 =𝒗pm⋅𝒏 on Σ , (3.98)

𝑝pm =−𝒏⋅𝗧(𝒗ff, 𝑝ff)𝒏 + 𝑁 bl
𝑠 𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 on Σ , (3.99)

𝒗ff⋅𝝉 =−ℓ𝜇−1(𝑵 bl⋅𝝉)𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 + ℓ2𝜇−1
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
𝑴 𝑗,bl⋅𝝉 on Σ . (3.100)

Here, the unit normal vector 𝒏 points outward the porous medium and
the unit tangential vector 𝝉 is oriented in the positive 𝑥1-direction, i.e.,
𝝉 = 𝒆1. All quantities appearing in the coupling conditions (3.98)–(3.100)
are dimensional, except for the boundary layer constants 𝑁 bl

𝑠 , 𝑵 bl, 𝑴 𝑗,bl.
We provide the corresponding primary dimensions and SI units in Table 3.1.
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Quantity Primary dimensions SI units
Velocity 𝒗ff, 𝒗pm [LT−1] m ⋅ s−1

Pressure 𝑝ff, 𝑝pm [MLT−2] Pa = kg ⋅m−1 ⋅ s−2

Stress tensor 𝗧(𝒗ff, 𝑝ff) [ML−1T−2] Pa
Viscosity 𝜇 [ML−1T−1] Pa ⋅ s
Permeability 𝗞 [L2] m2

Pore size ℓ [L] m
Boundary layer
constants 𝑁 bl

𝑠 , 𝑵 bl, 𝑴 𝑗,bl [−] −

Table 3.1: Quantities appearing in the generalized coupling conditions
(3.98)–(3.100) with their corresponding primary dimensions and SI
units.

The dimensional Darcy velocity in condition (3.98) has the following
form

𝒗pm = −𝜀2L2�̃�
𝜇

∇𝑝pm = −ℓ2�̃�
𝜇

∇𝑝pm = −𝗞
𝜇
∇𝑝pm , (3.101)

where 𝗞 = ℓ2�̃� is the physical permeability tensor that was already
introduced in equation (2.13). Note that 𝗞 has primary dimension [L2]
(Table 3.1) and �̃� is a dimensionless quantity.

Before comparing the generalized interface conditions (3.98)–(3.100) to
the classical conditions (2.17)–(2.19) in Section 3.2.3, we take a closer look
at the effective coefficients (permeability and boundary layer constants)
appearing in the generalized conditions in Section 3.2.2.

3.2.2 Effective coefficients and interface location

Effective coefficients appearing both in the dimensionless and dimensional
form of the generalized interface conditions are the permeability tensor
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�̃� in the Darcy velocity 𝒗pm appearing in (3.95) and (3.98), and the bound-
ary layer constants 𝑵 bl, 𝑁 bl

𝑠 and𝑴 𝑗,bl in (3.96)–(3.97) and (3.99)–(3.100),
respectively. The nondimensional permeability �̃� depends only on the
porous-medium geometry within the unit cell 𝑌 = (0, 1)2 and is given
by (2.79). The physical permeability 𝗞 = ℓ2�̃� depends additionally on
the number of solid obstacles and the size of the coupled flow domain.
Note that both coefficients �̃� and 𝗞 are not affected by a change of the
fluid–porous interface location.

From Section 3.1 we know that the boundary layer constants 𝑵 bl, 𝑁 bl
𝑠

and 𝑴 𝑗,bl are obtained by solving problems (3.17)–(3.21) and (3.39)–(3.43)
defined on the boundary layer stripe 𝑍bl (Figure 2.8, right) and inte-
grating the solutions over the interface 𝑆 as described in (3.23)–(3.24)
and (3.45)–(3.46). Hence, these effective coefficients depend both on the
pore geometry within the boundary layer stripe 𝑍bl and the exact lo-
cation of the fluid–porous interface 𝑆. For the derivation of coupling
conditions (3.95)–(3.97) we considered a horizontal interface 𝑆 positioned
at 𝑦2 = 0 within the stripe 𝑍bl according to the geometry of the coupled
flow system (Figure 2.8). Indeed, this can be made more general. The
sharp interface 𝑆 within the stripe 𝑍bl can be located at any distance
𝑎 ∈ (0, 1 − 𝑑∗) from the top of the first row of solid inclusions, where 𝑑∗
denotes the height of solid inclusions. In case of circular or quadratic
inclusions, for example, 𝑑∗ is the diameter or side length of the solid grains.
A schematic representation of two possible locations for the interface 𝑆
within the vertical boundary layer stripe 𝑍bl is provided in Figure 3.1.

In order to show that the generalized interface conditions derived in Sec-
tion 3.1 include the information about the chosen interface position, we
introduce the following notations. We denote the sharp interface that is
located at distance 𝑎 ∈ (0, 1 − 𝑑∗) above the top of the first row of solid
inclusions within the infinite boundary layer stripe 𝑍bl by

𝑆𝑎 = (0, 1) × { 𝑑
∗ − 1
2

+ 𝑎 } .

Then, the free-flow part of the boundary layer stripe 𝑍bl is given by



114 3 Generalized interface conditions

𝑦2

0 𝑦11
𝑆(1−𝑑∗)/2

𝑆0.01

𝑑∗

.

Figure 3.1: Two possible locations of the fluid–porous interface within
the boundary layer stripe 𝑍bl.

𝑍 𝑎,+ = (0, 1)×({ 𝑑
∗−1
2 + 𝑎} ,∞) and the solid part by 𝑍 𝑎,− = 𝑍bl⧵(𝑍 𝑎,+∪𝑆𝑎).

In view of these notations, the boundary layer problems (3.17)–(3.21)
and (3.39)–(3.43) and the constants (3.23)–(3.24) and (3.45)–(3.46) are de-
fined based on the interface 𝑆 = 𝑆(𝑑∗−1)/2 located at 𝑦2 = 0. Since we
are not restricted to this choice of interface location, we reformulate the
boundary layer problems and the corresponding constants such that any
interface 𝑆𝑎 for 𝑎 ∈ (0, 1 − 𝑑∗) can be considered. For this purpose, we
replace 𝑆, 𝑍+ and 𝑍− in problems (3.17)–(3.21) and (3.39)–(3.43) by 𝑆𝑎,
𝑍 𝑎,+ and 𝑍 𝑎,−, respectively, and denote the solutions by {𝒕bl,𝑎, 𝑠bl,𝑎} and
{𝜷 𝑗,bl,𝑎, 𝜔𝑗,bl,𝑎} for 𝑗 = 1, 2. Then, the boundary layer constants are given
by

𝑵 bl,𝑎 = (∫
1

0
𝑡bl,𝑎1 (𝑦1,

𝑑∗−1
2 + 𝑎) d𝑦1, 0)

⊤

, (3.102a)

𝑁 bl,𝑎
𝑠 = ∫

1

0
𝑠bl,𝑎 (𝑦1,

𝑑∗−1
2 + 𝑎) d𝑦1 , (3.102b)

𝑴 𝑗,bl,𝑎 = (∫
1

0
𝛽 𝑗,bl,𝑎1 (𝑦1,

𝑑∗−1
2 + 𝑎) d𝑦1, 0)

⊤

. (3.103)
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According to the chosen 𝑎 that determines the vertical position of the
interface 𝑆𝑎 within the boundary layer stripe 𝑍bl for the computation of
the boundary layer constants, we locate the sharp interface Σ within the
coupled flow domain Ω = Ωff ∪ Ωpm at 𝑥2 = ℓ ( 𝑑

∗−1
2 + 𝑎). The boundary

layer constants 𝑵 bl, 𝑁 bl
𝑠 and 𝑴 𝑗,bl in the generalized conditions given

by (3.95)–(3.97) or (3.98)–(3.100) are then replaced by 𝑵 bl,𝑎, 𝑁 bl,𝑎
𝑠 and

𝑴 𝑗,bl,𝑎 defined in (3.102a)–(3.103). In this way, the exact location of the
fluid–porous interface Σ is incorporated in the Stokes–Darcy model with
the generalized coupling conditions.

Next, we investigate how the values of 𝑁 bl,𝑎
𝑠 , 𝑵 bl,𝑎 and 𝑴 𝑗,bl,𝑎, 𝑗 = 1, 2,

change with respect to the variation of the interface location. Note that
we consider the unit normal and tangential vectors 𝒏 = 𝒆2 and 𝝉 = 𝒆1
on the horizontal interface. Independent of the pore geometry and the
chosen interface 𝑆𝑎, we have 𝑵 bl,𝑎⋅𝒏 = 0 and 𝑴 𝑗,bl,𝑎⋅𝒏 = 0 as is proven
in [95, Section 3] and for isotropic and orthotropic porous media, i.e.,
𝗞 = diag(𝑘11, 𝑘22), we obtain 𝑁 bl,𝑎

𝑠 = 0 and 𝑀2,bl,𝑎
1 = 𝑴2,bl,𝑎⋅𝝉 = 0. The

two latter equations follow from the axisymmetry of the solid part within
the stripe 𝑍bl to 𝑦1 = 0.5 and the definition of the boundary layer prob-
lems (3.17)–(3.21) and (3.39)–(3.43). For further details, we refer to [34,
98]. In Section 5.3, we numerically study the behavior of 𝑁 bl,𝑎

1 = 𝑵 bl,𝑎⋅𝝉
and 𝑀1,bl,𝑎

1 = 𝑴1,bl,𝑎⋅𝝉 for various isotropic porous media and different
interface locations. There, we observe that these two constants, regarded
as functions of the interface position 𝑆𝑎, are monotonic functions that
both become larger for decreasing 𝑎, i.e., 𝑎 → 0 (see Figure 5.3). Simi-
larly, we performed numerical experiments for anisotropic porous media,
where all the boundary layer constants 𝑁 bl,𝑎

𝑠 , 𝑁 bl,𝑎
1 , 𝑀1,bl,𝑎

1 and 𝑀2,bl,𝑎
1

appear as nonzero coefficients in the generalized coupling conditions.
In Figure 3.2 (top) we provide the values of these constants with respect to
different interface locations 𝑆𝑎 in case of an elliptical solid inclusion within
the unit cell 𝑌 (Figure 3.2, bottom). The border of the elliptical solid grain
is given by the ellipse with center at (0.5, 0.5) and semi-axes 𝑟𝑏 = 0.4 and
𝑟𝑐 = 0.2, rotated clockwise by 45∘. We observe from Figure 3.2 (top) that
the constants 𝑁 bl,𝑎

1 < 0 and 𝑀1,bl,𝑎
1 < 0 behave similarly to the isotropic
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�̃� = (1.22787e−2 2.68921e−3
2.68921e−3 1.22787e−2)

𝑆0.34 −8.06716e−2 −3.33709e−3 −3.95818e−1 −2.71778e−1
𝑆0.26 −5.22061e−2 −3.33709e−3 −3.15818e−1 −2.71778e−1
𝑆0.18 −3.01407e−2 −3.33709e−3 −2.35818e−1 −2.71778e−1
𝑆0.1 −1.44752e−2 −3.33709e−3 −1.55818e−1 −2.71778e−1
𝑆0.02 −5.20972e−3 −3.33709e−3 −7.58185e−2 −2.71778e−1

𝑀1,bl,𝑎
1 𝑀2,bl,𝑎

1 𝑁 bl,𝑎
1 𝑁 bl,𝑎

s

𝑦2 = 0

𝑦2 = −1

𝑆0.34
𝑆0.26
𝑆0.18
𝑆0.1
𝑆0.02

𝑟𝑐

𝑟𝑏

Figure 3.2: Boundary layer constants 𝑀1,bl,𝑎
1 , 𝑀2,bl,𝑎

1 , 𝑁 bl,𝑎
1 and 𝑁 bl,𝑎

𝑠
for five interface locations (top) and illustration of these interface
locations (bottom) for elliptical solid grains.

case, i.e., they increase monotonically for 𝑎 → 0. The constants 𝑁 bl,𝑎
𝑠

and 𝑀2,bl,𝑎
1 , which are nonzero only for anisotropic porous media, are not

affected by a change of the interface location within the boundary layer
stripe. We observed the same behavior of the boundary layer constants
also for other anisotropic porous-medium geometries.

Apart from the observations we made above, we prove Lemma 3.7 that
explicitly describes the behavior of 𝑁 bl,𝑎

1 with respect to a changing inter-
face position. We show that the coefficient 𝑁 bl,𝑎

1 for some 𝑎 ∈ (0, 1 − 𝑑∗)
is obtained from the boundary layer constant 𝑁 bl,(1−𝑑∗)/2

1 corresponding
to the interface 𝑆(1−𝑑∗)/2 by adding a constant.
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Lemma 3.7: Consider the interface 𝑆(1−𝑑∗)/2 located directly on top of unit
cell at 𝑦2 = 0 (Figure 3.1, red line) and any second interface location 𝑆𝑎 for
𝑎 ∈ (0, 1 − 𝑑∗). Then it holds

𝑁 bl,𝑎
1 = 𝑁 bl,(1−𝑑∗)/2

1 − 𝑎 + 1 − 𝑑∗

2
.

Proof. We follow the ideas in [120, Lemma 4.20] where a similar result
is proven. We consider the vertical boundary layer stripe 𝑍bl where the
solid part is given by 𝑍bl

s = ⋃∞
𝑘=1(𝑌s − {0, 𝑘}), and a fixed, but arbitrary

chosen 𝑎 ∈ (0, 1 − 𝑑∗). Then, the solution to problem (3.17)–(3.21) with
interface 𝑆𝑎 is denoted by 𝒕bl,𝑎. For clarity, we define 𝜃 = (1−𝑑∗)/2, where
𝑑∗ is the size of the solid part 𝑌s in 𝑦2-direction corresponding to the unit
cell 𝑌. From [98, Lemma 3.2] we deduce directly that for all 𝑏 > 𝑐 ≥ 𝑎 − 𝜃
it holds

∫
1

0
𝑡bl,𝑎1 (𝑦1, 𝑏) d𝑦1 = ∫

1

0
𝑡bl,𝑎1 (𝑦1, 𝑐) d𝑦1 ,

and thus, for all 𝑑 ≥ 𝑎 − 𝜃 we have

𝑁 bl,𝑎
1 = ∫

1

0
𝑡bl,𝑎1 (𝑦1, 𝑑) d𝑦1 . (3.104)

Let −𝜃 ≤ 𝑐1 ≤ 𝑎 − 𝜃 ≤ 𝑐2. We integrate the first component of equa-
tion (3.17) over the domain (0, 1) × (𝑐1, 𝑐2), use the 𝑦1-periodicity of the
boundary layer solution 𝒕bl,𝑎 and get

∫
1

0
(
𝜕𝑡bl,𝑎1
𝜕𝑦2

(𝑦1, 𝑐2) −
𝜕𝑡bl,𝑎1
𝜕𝑦2

(𝑦1, (𝑎 − 𝜃) + 0)

+
𝜕𝑡bl,𝑎1
𝜕𝑦2

(𝑦1, (𝑎 − 𝜃) − 0) −
𝜕𝑡bl,𝑎1
𝜕𝑦2

(𝑦1, 𝑐1)) d𝑦1 = 0 .
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Considering jump condition (3.20) across 𝑆𝑎, this reduces to

∫
1

0
(
𝜕𝑡bl,𝑎1
𝜕𝑦2

(𝑦1, 𝑐2) −
𝜕𝑡bl,𝑎1
𝜕𝑦2

(𝑦1, 𝑐1)) d𝑦1 = 1 .

Making use of the Leibniz integral rule for differentiation and using (3.104)
since 𝑐2 ≥ 𝑎 − 𝜃, we get for 𝑐1 < 𝑦2 < 𝑎 − 𝜃 :

𝜕
𝜕𝑦2 ∫

1

0
𝑡bl,𝑎1 (𝑦1, 𝑦2) d𝑦1 = −1 .

We apply the fundamental theorem of calculus and obtain for 0 ≤ 𝑦2 ≤
𝑎 − 𝜃 :

∫
1

0
𝑡bl,𝑎1 (𝑦1, 𝑦2) d𝑦1 = 𝑁 bl,𝑎

1 − 𝑦2 . (3.105)

We consider the interface 𝑆𝑎 for the boundary layer problem (3.17)–(3.21)
and substitute velocity 𝒕bl,𝑎 and pressure 𝑠bl,𝑎 by (−𝒕bl,𝑎+𝒕bl,𝜃) and (−𝑠bl,𝑎+
𝑠bl,𝜃), respectively. Then, we multiply the resulting equation (3.17) by a
test function 𝝋 ∈ 𝑉 (𝑍bl)2, where 𝑉 (𝑍bl)2 is defined in the Appendix A.1,
integrate over 𝑍bl and obtain

∫
𝑍 bl

∇𝒚(−𝒕bl,𝑎 + 𝒕bl,𝜃)∶∇𝒚𝝋 d𝒚 − ∫
𝑍 bl

(−𝑠bl,𝑎 + 𝑠bl,𝜃)∇𝒚⋅ 𝝋 d𝒚

= − ∫
𝑍 bl

∇𝒚⋅ (∇𝒚(−𝒕bl,𝑎 + 𝒕bl,𝜃)) ⋅𝝋 d𝒚 + ∫
𝜕𝑍 bl

∇𝒚(−𝒕bl,𝑎 + 𝒕bl,𝜃)𝒏⋅𝝋 d𝑆

− ∫
𝜕𝑍 bl

(−𝑠bl,𝑎 + 𝑠bl,𝜃)𝒏⋅𝝋 d𝑆 + ∫
𝑍 bl

∇𝒚(−𝑠bl,𝑎 + 𝑠bl,𝜃)⋅𝝋 d𝒚

=∫
1

0
(−𝜑1(𝑦1, 0) + 𝜑1(𝑦1, 𝑎 − 𝜃)) d𝑦1 . (3.106)

Without the loss of generality we assume that 𝑎 < 𝜃. The case of 𝑎 > 𝜃 can
be treated analogously. Then, testing equation (3.106) with𝝋 = −𝒕bl,𝑎+𝒕bl,𝜃
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and using the result in (3.105) yields

∫
𝑍 bl

(∇𝒚(−𝒕bl,𝑎 + 𝒕bl,𝜃))
2
d𝒚

=∫
1

0
(𝑡bl,𝑎1 − 𝑡bl,𝜃1 )(𝑦1, 0) + (−𝑡bl,𝑎1 + 𝑡bl,𝜃1 )(𝑦1, 𝑎 − 𝜃) d𝑦1

=∫
1

0
𝑡bl,𝑎1 (𝑦1, 0) d𝑦1 − 𝑁 bl,𝜃

1 − 𝑁 bl,𝑎
1 + ∫

1

0
𝑡bl,𝜃1 (𝑦1, 𝑎 − 𝜃) d𝑦1

=𝑁 bl,𝑎
1 − 𝑁 bl,𝜃

1 − 𝑁 bl,𝑎
1 + 𝑁 bl,𝜃

1 − (𝑎 − 𝜃) = −𝑎 + 𝜃 . (3.107)

Next, we integrate (3.17) over 𝑍bl considering 𝒕bl,𝑎, test the resulting equa-
tion with 𝝋 = 𝒕bl,𝑎 and obtain

∫
1

0
𝑡bl,𝑎1 (𝑦1, 𝑎 − 𝜃) d𝑦1 = −∫

𝑍 bl
|∇𝒚𝒕bl,𝑎|2 d𝒚 .

Using this result in (3.107) we get

−𝑎 + 𝜃 =∫
𝑍 bl

|∇𝒚(−𝒕bl,𝑎 + 𝒕bl,𝜃)|2 d𝒚

= − 𝑁 bl,𝑎
1 − 𝑁 bl,𝜃

1 − 2∫
𝑍 bl

∇𝒚𝒕bl,𝑎∇𝒚𝒕bl,𝜃 d𝒚 . (3.108)

The last term in (3.108) is reformulated using (3.17), (3.18) and (3.20) as
follows

∫
𝑍 bl

∇𝒚𝒕bl,𝑎∇𝒚𝒕bl,𝜃 d𝒚 = ∫
𝑍 bl

∇𝒚⋅ (𝒕bl,𝑎∇𝒚𝒕bl,𝜃) d𝒚 − ∫
𝑍 bl

𝑡bl,𝑎Δ𝒚𝒕bl,𝜃 d𝒚

= ∫
𝑍 bl

∇𝒚⋅ (𝒕bl,𝑎∇𝒚𝒕bl,𝜃) d𝒚 − ∫
𝑍 bl

𝒕bl,𝑎∇𝒚𝑠bl,𝜃 d𝒚

= −∫
1

0
𝑡bl,𝑎1 (𝑦1, 0) d𝒚

= −𝑁 bl,𝑎
1 .
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We substitute this reformulation in (3.108) and obtain

−𝑎 + 𝜃 = −𝑁 bl,𝑎
1 − 𝑁 bl,𝜃

1 + 2𝑁 bl,𝑎
1 ,

which completes the proof.

Throughout this thesis, we usually omit the super- and subscript 𝑎 for
the interface within the boundary layer stripe and for the boundary layer
constants due to clarity. If not stated otherwise, the interface 𝑆 at distance
𝑎 = (1 − 𝑑∗)/2 above the solid inclusions is considered in the boundary
layer problems (3.17)–(3.21) and (3.39)–(3.43) and in the definitions of the
boundary layer constants (3.23)–(3.24) and (3.45)–(3.46).

Remark 3.8: Before the generalized coupling conditions (3.98)–(3.100) are
used for numerical simulations of applications, the exact location of the
fluid–porous interface has to be chosen. We remark that this choice fully
determines the position of the interface Σ within the computational domain
Ω = Ωff ∪ Ωpm as well as the position of 𝑆𝑎 within the boundary layer
stripe 𝑍bl. Dependent on the chosen 𝑆𝑎 the boundary layer constants𝑵 bl,𝑁 bl

𝑠
and𝑴 𝑗,bl for 𝑗 = 1, 2 appearing in conditions (3.98)–(3.100) are computed.
In this way the information about the exact interface position within the
coupled flow domainΩ or, equivalently, within the stripe 𝑍bl, is incorporated
in these effective coefficients. Thus, if the generalized coupling conditions are
applied, the sharp interface location is not an unknown model parameter for
the Stokes–Darcy problem as it is the case for the classical coupling approach.

3.2.3 Comparison of generalized coupling conditions to classical
ones

In this section, we compare the generalized interface conditions to the
classical coupling conditions for the Stokes–Darcy problem. For ease of
comparison, we provide both coupling concepts in their dimensional form
below. As before, the unit normal vector 𝒏 on the fluid–porous interface Σ
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is pointing outward the porous medium and the unit tangential vector
is 𝝉 = 𝒆1. The classical conditions (2.17)–(2.19) read

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (3.109)

𝑝pm = −𝒏⋅𝗧 (𝒗ff, 𝑝ff) 𝒏 on Σ , (3.110)

(𝒗ff − 𝒗pm)⋅𝝉 = √𝐾
𝛼BJ 𝜇

𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 on Σ . (3.111)

The generalized interface conditions (3.98)–(3.100) are given by

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (3.112)

𝑝pm = −𝒏⋅𝗧(𝒗ff, 𝑝ff)𝒏 + 𝑁 bl
𝑠 𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 on Σ , (3.113)

𝒗ff⋅𝝉 = − ℓ
𝜇
(𝑵 bl⋅𝝉) 𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 + ℓ2

𝜇

2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
𝑴 𝑗,bl⋅𝝉 on Σ . (3.114)

Equation (3.109) is identical with (3.112) and both equations describe the
conservation of mass across the fluid–porous interface. Coupling con-
dition (3.113) is an extension of the classical momentum balance equa-
tion (3.110). In case of a diagonal permeability tensor 𝗞, i.e., when the
porous medium is isotropic or orthotropic, we have 𝑁 bl

𝑠 = 0 and condi-
tion (3.113) reduces to the classical balance of normal forces (3.110) across
the interface. Interface condition (3.114) is a generalization of the original
Beavers–Joseph coupling condition (3.111). This becomes apparent if we
consider −ℓ𝑵 bl⋅𝝉 = √𝐾𝛼−1BJ and notice that the tangential Darcy velocity
𝒗pm⋅𝝉 in (3.111) is replaced by the tangential component of the interfacial
porous-medium velocity which is given by

𝒗pmint = −ℓ2�̃�int

𝜇
∇𝑝pm , �̃�int= (�̃�int𝑖𝑗 )𝑖,𝑗=1,2 = (−𝑀

1,bl
1 −𝑀2,bl

1
−𝑀1,bl

2 −𝑀2,bl
2

) . (3.115)

The tensor �̃�int can be understood as an interfacial permeability ten-
sor. We note that we always have 𝑵 bl⋅𝝉 < 0 and (𝝉⋅�̃�int𝝉) > 0 for the
coefficients appearing in the generalized interface condition (3.114). Fur-
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thermore, in case of a horizontal interface Σ we have𝑀 𝑗,bl
2 = 0 for 𝑗 = 1, 2

(see Section 3.2.2).

For orthotropic porous structures, which are characterized by permeability
tensors of the form 𝗞 = diag(𝑘11, 𝑘22), the interfacial permeability tensor
reads �̃�int = diag(−𝑀1,bl

1 , −𝑀2,bl
2 ) since we have 𝑀2,bl

1 = 𝑀1,bl
2 = 0.

Then, if the fluid–porous interface Σ is positioned horizontally we obtain
�̃�int = diag(−𝑀1,bl

1 , 0) due to 𝑀2,bl
2 = 0. Consequently, in this case the

tangential component of the Darcy velocity respective interfacial porous-
medium velocity reads

𝒗pm⋅𝝉 = −
𝑘11
𝜇

𝜕𝑝pm

𝜕𝑥1
, 𝒗pmint ⋅𝝉 =

ℓ2𝑀1,bl
1
𝜇

𝜕𝑝pm

𝜕𝑥1
.

We show in Section 6.3.1.2 that for orthotropic porous media with porosity
𝜙 > 𝜙shape, arrangement

0 it is possible to find a position of the horizontal
interface Σ such that

−ℓ2𝑀1,bl
1 = 𝑘11 (= ℓ2�̃�11) , (3.116)

where 𝜙shape, arrangement
0 is a critical porosity value dependent on the

shape and arrangement of solid obstacles. The interface determined in
this way is located at a certain distance 𝑎 above the first row of solid
inclusions dependent on the permeability �̃�, the porosity 𝜙 and the shape
of the solid grains of the considered porous-medium domain. Thus, in
case of porous materials having a diagonal permeability tensor 𝗞 and
porosity 𝜙 > 𝜙shape, arrangement

0 , condition (3.100) can recover the original
Beavers–Joseph coupling condition (2.19) by taking 𝛼BJ = √𝐾/(−𝑁 bl

1 ℓ).
Furthermore, we demonstrate in Section 6.3.1.2 that in case of porous
media with 𝜙 < 𝜙shape, arrangement

0 it is not possible to find an interface
position such that (3.116) is fulfilled. In this case, condition (3.100) cannot
be rewritten in form of the Beavers–Joseph condition (2.19). The same
holds true for anisotropic porous structures since in this case the interfacial
permeability �̃�int is always different from the dimensionless permeability
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�̃� inside the porous medium.

Summary

In this chapter, we rigorously derived a set of generalized coupling condi-
tions (3.95)–(3.97) for the Stokes–Darcy problem using homogenization
theory and boundary layer correctors. These conditions are suitable for
arbitrary flow directions to the fluid–porous interface. All effective co-
efficients appearing in the conditions are computed based on the sharp
interface location and the porous-medium geometry in the vicinity of the
fluid–porous interface. Besides the nondimensional formulation of the
generalized interface conditions, which is obtained from the theoretical
derivation, we also provided the dimensional form, needed for numerical
simulations of realistic flow scenarios. We explained how the information
about the exact location of the sharp interface is incorporated into the
resulting coupled Stokes–Darcy model. Finally, we compared the gen-
eralized interface conditions to the classical ones and highlighted their
differences.
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This chapter is devoted to the numerical treatment of the coupled flow
system both from the microscale and macroscale perspective, whereby the
latter requires computation of effective model parameters. In Section 4.1,
we present the numerical method for solving the pore-scale problem and
introduce two different averaging approaches to reduce oscillations in
the microscale solution. These oscillations appear due to the presence of
solid inclusions in the porous domain and averaging microscale quantities
becomes necessary to compare pore-scale and macroscale numerical simu-
lation results in a fair and reasonable way. In Section 4.2, the discretization
scheme and solution strategy for the macroscale coupled Stokes–Darcy
problem are presented. The numerical algorithm for the computation of
effective coefficients appearing in the macroscale model dependent on
the set of coupling conditions is introduced in Section 4.3.

4.1 Pore-scale model

In the following, we present the numerical method for solving the Stokes
system (2.2)–(2.4) with (2.6) in the perforated domain and introduce two
averaging strategies to reduce physical oscillations in the pore-scale ve-
locity and pressure due to solid obstacles present in the porous region.
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4.1.1 Discretization scheme and solution strategy

To solve the pore-scale problem (2.2)–(2.4), (2.6) we perform numerical
simulations using FreeFEM++ [86], which is a high level multiphysics
finite element software. Therefore, the variational formulation of the
problem is needed. We define the following test function spaces for the
velocity and pressure

𝑉 = {𝝋 ∈ 𝐻 1(Ωps)2 ∶ 𝝋 = 𝟎 on Γ𝐷 ∪ (𝜕Ωps ⧵ 𝜕Ω)} , 𝑄 = 𝐿2(Ωps) .

We recall that Γ𝐷 and Γ𝑁 denote the external boundaries of the partially
perforated domain Ωps where Dirichlet respective Neumann boundary
conditions are set. Note that we assume Γ𝑁 ≠ ∅, otherwise, in case
Γ𝑁 = ∅, one would need to consider the pressure test function space
{𝜓 ∈ 𝐿2(Ωps) ∶ ∫Ωps 𝜓 d𝒙 = 0} instead of space 𝑄. Furthermore, as in the
rest of this thesis, we set 𝒈 = 𝟎 in (2.2).

We multiply the momentum conservation equation (2.2) by a test function
𝝋 ∈ 𝑉, integrate the resulting equation by parts over domain Ωps and
apply the Gauss’s theorem. This yields

0 = −∫
Ωps

( ∇⋅ 𝗧 (𝒗, 𝑝)) ⋅𝝋 d𝒙

= −∫
𝜕Ωps

𝗧 (𝒗, 𝑝) 𝒏⋅𝝋 dS + ∫
Ωps

𝜇∇𝒗∶∇𝝋 d𝒙 − ∫
Ωps

( ∇⋅ 𝝋) 𝑝 d𝒙 .

By taking into account the Neumann boundary condition (2.6) and the
fact that 𝝋 = 𝟎 on Γ𝐷 ∪ (𝜕Ωps ⧵ 𝜕Ω), we obtain

∫
Ωps

𝜇∇𝒗∶∇𝝋 d𝒙 − ∫
Ωps

( ∇⋅ 𝝋) 𝑝 d𝒙 = ∫
Γ𝑁

𝗧 (𝒗, 𝑝) 𝒏⋅𝝋 dS = ∫
Γ𝑁

𝒉⋅𝝋 dS .

This yields the following weak formulation of the pore-scale problem
(2.2)–(2.4) and (2.6):
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Find {𝒗, 𝑝} ∈ 𝑉 × 𝑄 such that

A(𝒗, 𝝋) + B(𝝋, 𝑝) = ⟨𝒉, 𝝋⟩Γ𝑁 for all 𝝋 ∈ 𝑉 , (4.1)

B(𝒗, 𝑞) = 0 for all 𝑞 ∈ 𝑄 , (4.2)

where we define the duality pairing ⟨⋅, ⋅⟩Γ𝑁 ∶𝐻
−1/2(Γ𝑁) × 𝐻 1/2(Γ𝑁) → R

and the bilinear forms

A(𝒗, 𝝋) = ∫
Ωps

𝜇∇𝒗∶∇𝝋 d𝒙 , B(𝝋, 𝑝) = −∫
Ωps

( ∇⋅ 𝝋) 𝑝 d𝒙 .

The next step towards the numerical solution of the pore-scale problem is
to partition the flow domain Ωps into triangles. We make use of the adap-
tive mesh refinement method available in FreeFEM++ that is based on the
Delaunay–Voronoi algorithm [69, 70]. We generate a mesh such that for
each porous-medium geometrical configuration considered in this thesis
we have at least three triangles between two solid inclusions. The exact
number of triangular elements, which is used for the numerical examples
in Chapter 6, is provided in the corresponding sections. We denote the
triangulation of the domain Ωps by Tℎ with ℎ being the maximum edge
size of triangular grid cells.

Now, we introduce the discrete finite element spaces 𝑉ℎ ⊂ 𝑉 and 𝑄ℎ ⊂ 𝑄.
Since these are subspaces of the solution spaces 𝑉 and 𝑄 we obtain a
conforming finite element method. The discrete spaces contain functions
of the following form

𝑉ℎ ∋ 𝒗ℎ =
𝑁𝑣 ,1+𝑁𝑣 ,2

∑
𝑗=1

𝑣ℎ𝑗 𝝓𝑗 , 𝑄ℎ ∋ 𝑝ℎ =
𝑁𝑝

∑
𝑗=1

𝑝ℎ𝑗 𝜁𝑗 ,

where {𝝓𝑗}𝑗=1,…,𝑁𝑣 ,1+𝑁𝑣 ,2 and {𝜁𝑗}𝑗=1,…,𝑁𝑝 are the respective bases for the

spaces 𝑉ℎ and 𝑄ℎ, and {𝑣ℎ𝑗 }𝑗=1,…,𝑁𝑣 ,1+𝑁𝑣 ,2 and {𝑝
ℎ
𝑗 }𝑗=1,…,𝑁𝑝 are the respective

real-valued coefficients. The degrees of freedom for 𝒗ℎ and 𝑝ℎ, which
are equal to the number of basis functions of the corresponding discrete
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finite element space, are given by 𝑁𝑣 ,1 + 𝑁𝑣 ,2, where 𝑁𝑣 ,1, 𝑁𝑣 ,2 ∈ N, and
𝑁𝑝 ∈ N, respectively.

We denote by Bℎ ∶ 𝑉ℎ × 𝑄ℎ → R the discrete form of B and by Aℎ ∶
𝑉ℎ × 𝑉ℎ → R the discrete variant of A. Since we consider conforming
finite elements we have

Aℎ(𝒗ℎ, 𝝋ℎ) = A(𝒗ℎ, 𝝋ℎ) , Bℎ(𝒗ℎ, 𝑞ℎ) = B(𝒗ℎ, 𝑞ℎ) ,

for all 𝒗ℎ, 𝝋ℎ ∈ 𝑉ℎ , 𝑞ℎ ∈ 𝑄ℎ. Then, the discrete weak form corresponding
to problem (2.2)–(2.4) and (2.6) reads:
Find {𝒗ℎ, 𝑝ℎ} ∈ 𝑉ℎ × 𝑄ℎ such that

A(𝒗ℎ, 𝝋ℎ) + B(𝝋ℎ, 𝑝ℎ) = ⟨𝒉, 𝝋ℎ⟩Γ𝑁 for all 𝝋ℎ ∈ 𝑉ℎ , (4.3)

B(𝒗ℎ, 𝑞ℎ) = 0 for all 𝑞ℎ ∈ 𝑄ℎ . (4.4)

Rewriting problem (4.3)–(4.4) using the basis functions 𝝓𝑗 ∈ 𝑉ℎ for 𝑗 =
1, … , 𝑁𝑣 ,1 + 𝑁𝑣 ,2 and 𝜁𝑗 ∈ 𝑄ℎ for 𝑗 = 1, … , 𝑁𝑝 yields the following ma-
trix formulation of the Stokes equations (2.2)–(2.4) with the boundary
conditions (2.6):

(𝗔 𝗕⊤

𝗕 𝟬 ) (
̃𝒗
̃𝒑) = (

̃𝒇
𝟎) . (4.5)

Here, we define the matrix blocks 𝗔 = (𝐴𝑖𝑗)𝑖,𝑗=1,…,𝑁𝑣 ,1+𝑁𝑣 ,2 with 𝐴𝑖𝑗 =
A(𝝓𝑗, 𝝓𝑖) and 𝗕 = (𝐵𝑘𝑙)𝑘=1,…,𝑁𝑝; 𝑙=1,…,𝑁𝑣 ,1+𝑁𝑣 ,2 with 𝐵𝑘𝑙 = B(𝝓𝑙, 𝜁𝑘). Fur-

thermore, we set ̃𝒗 = (𝑣ℎ1 , … , 𝑣ℎ𝑁𝑣 ,1+𝑁𝑣 ,2
)⊤, ̃𝒑 = (𝑝ℎ1 , … , 𝑝ℎ𝑁𝑝

)⊤ and ̃𝒇 =
(𝑓1, … , 𝑓𝑁𝑣 ,1+𝑁𝑣 ,2)

⊤ with 𝑓𝑖 = ⟨𝒉, 𝝓𝑖⟩Γ𝑁 for 𝑖 = 1, … , 𝑁𝑣 ,1 +𝑁𝑣 ,2. The system
of linear equations (4.5) is then solved numerically.

Within this thesis, we use the Taylor–Hood (𝑃1, 𝑃2) finite elements to
solve the pore-scale problem (2.2)–(2.4), (2.6), i.e., we have continuous
bi-quadratic interpolation functions for the velocity (𝑃2) and continuous
bi-linear functions for the pressure (𝑃1). Thus, the finite element function



4.1 Pore-scale model 131

spaces read

𝑉ℎ = {𝒗ℎ ∈ 𝐻 1(Ωps)2 ∶ 𝒗ℎ|𝑇 ∈ 𝑃2 for all 𝑇 ∈ Tℎ} ,
𝑄ℎ = {𝑝ℎ ∈ 𝐿2(Ωps) ∶ 𝑝ℎ|𝑇 ∈ 𝑃1 for all 𝑇 ∈ Tℎ} ,

where 𝑇 denotes a triangular element. The Taylor–Hood finite element
pair is stable for the Stokes equations [25], thus, no additional stabilization
for the pressure is needed. We implement the weak formulation (4.3)–(4.4)
in the FreeFEM++ software, which internally solves the linear system (4.5)
using the direct sparse solver MUMPS (multifrontal massively parallel
solver) [4].

4.1.2 Averaging of pore-scale solutions

Due to the presence of solid obstacles in the porous part of the coupled
domain, the results obtained from microscale simulations contain both
microscopic and macroscopic details of the flow field. For a fair and
reasonable comparison of pore-scale resolved models and macroscale nu-
merical simulation results, averaging of pore-scale solutions needs to be
performed to eliminate the microscopic oscillations. Different averaging
approaches exist in the literature, e.g., volume averaging [133, 163], line
averaging [135] (also called plane or horizontal averaging) or ensemble av-
eraging [106, 152]. However, it is still an open question which technique
is the most appropriate one to obtain accurate, physically reasonable
averaged microscale simulation results. We investigate two different av-
eraging approaches, adaptive volume averaging and ensemble averaging,
which we introduce in the following.

Adaptive volume averaging

When we apply adaptive volume averaging, the local pore-scale veloc-
ity and pressure fields are averaged over representative volumes 𝑉 avg of
varying sizes dependent on their location within the coupled domain. In
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𝒙1 𝑉 avg(𝒙1)

𝒙0 𝑉 avg(𝒙0)

ℓ

ℓ ̃𝑓 1(𝒙2)

𝒙2

̃𝑓 2(𝒙2)

𝒙2

̃𝑓 3(𝒙2)

𝒙2

̃𝑓 4(𝒙2)

𝒙2

̃𝑓 5(𝒙2)

𝒙2

Figure 4.1: Schematic of adaptive volume averaging (left) and ensem-
ble averaging with 𝑁avg = 5 (right) presented on a vertical stripe
of the domain only.

the porous medium away from the fluid–porous interface, the representa-
tive volume 𝑉 avg is identical with the scaled unit cell ℓ𝑌 (Figure 4.1, left)
as in the case of classical volume averaging [163]. When approaching
the interfacial region especially the pore-scale velocity undergoes rapid
changes. In this case, the volume ℓ𝑌 is too large such that it cannot cap-
ture the velocity’s behavior and its size needs to be adjusted. Therefore,
we consider smaller averaging volumes 𝑉 avg near the interface, i.e., we
multiply the height of the scaled cell ℓ𝑌 by factor 0.5 and 0.25, accordingly
(Figure 4.1, left). The averaged function 𝑓 avg of the pore-scale quantity 𝑓
at point 𝒙0 ∈ Ω𝜀 is then given by

𝑓 avg(𝒙0) =
1

|𝑉 avg(𝒙0)| ∫𝑉 avg
f (𝒙0)

𝑓 (𝒙) d𝒙 ,

where 𝑉 avg(𝒙0) is the averaging volume corresponding to 𝒙0 and 𝑉
avg
f (𝒙0)

is its fluid part. Using the presented adaptive volume averaging method,
all the microscopic oscillations of the pore-scale solution are averaged
out, and the resulting functions can be compared to macroscale numerical
simulation results.
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Ensemble averaging

The idea of ensemble averaging is to gradually move the solid inclusions
in horizontal direction, solve the pore-scale problem after each step of
movement, and obtain the averaged pore-scale quantities as the arithmetic
mean of all computed solutions. We denote by 𝑁avg ∈ N the number of
samples used for the averaging process. Samples are generated by moving
the solid obstacles horizontally by distance ℓ/𝑁avg. Thus, after 𝑁avg steps
of movement the solid inclusions are shifted by the microscopic length
scale ℓ. For each sample, we compute the Stokes problem (2.2)–(2.4), (2.6)
based on the underlying pore geometry. The averaged function 𝑓 avg of
any pore-scale quantity 𝑓 at 𝒙0 ∈ Ω𝜀 is obtained by

𝑓 avg(𝒙0) =
1

𝑁avg

𝑁avg

∑
𝑗=1

̃𝑓 𝑗(𝒙0) ,

where ̃𝑓 𝑗 represents the pore-scale result corresponding to sample 𝑗. Fig-
ure 4.1 (right) provides a schematic of ensemble averaging with 𝑁avg = 5
samples. For the numerical simulation results presented in Chapter 6 we
have chosen 𝑁avg = 50 sufficiently large such that details of the flow field
at the microscopic scale in horizontal direction are completely neglected.
Note that microscopic variations in vertical direction still remain in the
averaged results.

4.2 Macroscale model

We solve the Stokes–Darcy problem monolithically using our in-house
C++ code based on the finite volume method (FVM). Below, we present
the corresponding discretization scheme and the monolithic solution
strategy.
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4.2.1 Discretization scheme

We discretize the Stokes and Darcy problems (2.7)–(2.9), (2.12) and (2.16)
using the second order finite volume method on staggered grids [78,
Chapter 6.2, 6.3]. This discretization scheme is stable, i.e., we do not
need additional stabilization terms to avoid numerical oscillations [44].
Concerning the free-flow model we have the velocity and pressure as
primary variables and applying staggered grids leads to separate control
volumes for each of those variables. Since we consider the primal form
of the Darcy problem (2.16), the pressure is the only primary variable
in the porous-medium domain and the velocity is computed in a post-
processing step. Finite volume discretization is conducted over individual
control volumes for each variable, and therefore, it is guaranteed that the
flux which enters a volume is equal to the one which leaves the volume.
Hence, the scheme is locally mass conservative in the two flow domains
and across the fluid–porous interface.

In the following, we explain how the staggered grid is constructed, present
the discretized form of the conservation equations describing the free
flow and the porous-medium flow, and provide the approximation of
coupling conditions. Parts of this section are based on [140]. For clarity,
we write 𝑢, 𝑣 and 𝑝 for the free-flow primary variables and 𝜓 for the
porous-medium pressure. Further, we indicate the horizontal direction by
𝑥 and the vertical direction by 𝑦. Moreover, for the discretization of the
coupled Stokes–Darcy system, we consider both the dynamic viscosity 𝜇
and the entries 𝑘𝑖𝑗, 𝑖, 𝑗 = 1, 2 of the permeability tensor 𝗞 to be constant.

Grid generation

We divide the free-flow region Ωff and the porous-medium domain Ωpm
into rectangular blocks of size ℎ𝑥 × ℎ𝑦 leading uniform Cartesian grids
conforming on the fluid–porous interface (dashed lines in Figure 4.2). We
use staggered grids in the free-flow region, i.e., the velocities are computed
at the centers of grid cell edges and the pressures, both in the Stokes and
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interface

free flow

porous
medium

velocity 𝑢𝑖,𝑗
boundary velocity 𝑢a𝑖,𝑗
velocity 𝑣𝑖,𝑗
boundary velocity 𝑣a𝑖,𝑗
pressure 𝑝𝑖,𝑗
pressure 𝜓𝑖,𝑗
boundary pressure 𝜓 vb𝑖,𝑗 , 𝜓

hb
𝑖,𝑗 , 𝜓

c
𝑖,𝑗

𝑉𝑢

𝑉𝑝

𝑉𝑣

𝑉𝜓

Figure 4.2: Schematic depiction of the staggered grid for the coupled
flow domain, position of primary variables and corresponding
control volumes 𝑉𝑢, 𝑉𝑣, 𝑉𝑝, 𝑉𝜓, based on [140, Figure 2.5].

Darcy region, are computed in the cell centers [78, Chapter 6.2, 6.3]. In
addition to these ’natural’ nodes, we compute the free-flow velocities 𝑢, 𝑣
and the Darcy pressure 𝜓 on the fluid–porous interface and on the external
boundaries of the free-flow domain and the porous medium, respectively.
For the ’natural’ nodes we introduce the following notation

𝑢𝑖,𝑗 = 𝑢 (𝑖ℎ𝑥, (𝑗 − 0.5)ℎ𝑦) , 𝑖 = 0, … , 𝑁 ff
𝑥 , 𝑗 = 1, … , 𝑁 ff

𝑦 ,

𝑣𝑖,𝑗 = 𝑣 ((𝑖 − 0.5)ℎ𝑥, 𝑗ℎ𝑦) , 𝑖 = 1, … , 𝑁 ff
𝑥 , 𝑗 = 0, … , 𝑁 ff

𝑦 ,

𝑝𝑖,𝑗 = 𝑝 ((𝑖 − 0.5)ℎ𝑥, (𝑗 − 0.5)ℎ𝑦) , 𝑖 = 1, … , 𝑁 ff
𝑥 , 𝑗 = 1, … , 𝑁 ff

𝑦 ,

𝜓𝑖,𝑗 = 𝜓 ((𝑖 − 0.5)ℎ𝑥, (𝑗 − 0.5)ℎ𝑦) , 𝑖 = 1, … , 𝑁 pm
𝑥 , 𝑗 = 1, … , 𝑁 pm

𝑦 ,

where 𝑁 ff
𝑥 , 𝑁

pm
𝑥 , 𝑁 ff

𝑦 and 𝑁 pm
𝑦 denote the number of grid cells in 𝑥- and

𝑦-direction in the free-flow region and in the porous-medium domain,
respectively. ’Natural’ nodes emerge directly from the staggered grid
approach. They are called inner nodes if they do not lie on the boundary of
the computational domain. All inner nodes corresponding to the primary
variables 𝑢, 𝑣 , 𝑝, 𝜓 are surrounded by their corresponding control volumes
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𝑉𝑢, 𝑉𝑣, 𝑉𝑃, 𝑉𝜓, schematically presented in Figures 4.2, 4.3 and 4.5. The
control volumes for 𝑢 and 𝑣 corresponding to ’natural nodes’ that lie on
the external boundary of the domain, e.g. 𝑢0,𝑗 for 𝑗 = 1, … , 𝑁 ff

𝑦 , are half
of the size compared to control volumes for inner nodes (Figure 4.4). For
the pressures 𝑝 and 𝜓 all ’natural’ nodes are also inner nodes.

For the remaining nodes on the external boundary that do not appear
naturally due to staggered grid and thus, do not correspond to any control
volume, we write

𝑢a𝑖,𝑗 = 𝑢 (𝑖ℎ𝑥, 𝑗ℎ𝑦) , 𝑖 = 0, … , 𝑁 ff
𝑥 , 𝑗 = 0, 𝑁 ff

𝑦 ,

𝑣a𝑖,𝑗 = 𝑣 (𝑖ℎ𝑥, 𝑗ℎ𝑦) , 𝑖 = 0, 𝑁 ff
𝑥 , 𝑗 = 0, … , 𝑁 ff

𝑦 ,

𝜓 vb𝑖,𝑗 = 𝜓 (𝑖ℎ𝑥, (𝑗 − 0.5)ℎ𝑦) , 𝑖 = 0, 𝑁 pm
𝑥 , 𝑗 = 1, … , 𝑁 pm

𝑦 ,

𝜓hb𝑖,𝑗 = 𝜓 ((𝑖 − 0.5)ℎ𝑥, 𝑗ℎ𝑦) , 𝑖 = 1, … , 𝑁 pm
𝑥 , 𝑗 = 0, 𝑁 pm

𝑦 ,

𝜓 c𝑖,𝑗 = 𝜓 (𝑖ℎ𝑥, 𝑗ℎ𝑦) , 𝑖 = 0, 𝑁 pm
𝑥 , 𝑗 = 0, 𝑁 pm

𝑦 .

Here, the superscript ’a’ indicates the additional boundary nodes for 𝑢
and 𝑣, the superscripts ’vb’ respective ’hb’ stand for the vertical respective
horizontal boundaries of the porous medium (without the corner points)
and the superscript ’c’ reveals that the pressure nodes 𝜓 c𝑖,𝑗 are located at
the corners of the porous-medium domain.

In the following, we usually omit the sub- and superscript corresponding
to nodes for the primary variables due to clarity. We denote a nodal
point in the center of a control volume by 𝑃 and the centering nodes
in the neighboring volumes are denoted by 𝑁 , 𝐸, 𝑆, 𝑊 , 𝑁𝐸, 𝑁𝑊 , 𝑆𝐸 and
𝑆𝑊 corresponding to the compass directions, the center of edges and the
corners of the control volume are denoted by 𝑛, 𝑒, 𝑠, 𝑤 and 𝑛𝑒, 𝑛𝑤, 𝑠𝑒, 𝑠𝑤,
accordingly (e.g., Figures 4.3 and 4.5).
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Figure 4.3: Inner control volumes 𝑉𝑢 (left), 𝑉𝑣 (middle), 𝑉𝑝 (right) for
the respective primary variables 𝑢, 𝑣, 𝑝 including the nodes for the
corresponding discretization procedure.

Free-flow discretization

The first step using the FVM is to write the conservation equations in
integral form over the corresponding control volumes. Next, we transform
the obtained volume integrals including a divergence term into surface
integrals over the control volume boundary making use of the divergence
theorem. Then, the resulting surface integrals are approximated via the
midpoint rule which is second order accurate.

The mass balance equation (2.8) integrated over a control volume 𝑉𝑝
(Figure 4.3, right) corresponding to the free-flow pressure node 𝑝𝑖,𝑗 reads

∫
𝑉𝑝

∇⋅ 𝒗 d𝑉 = ∫
𝜕𝑉𝑝

𝒏⋅𝒗 d𝑆 = ∑
𝑘=N ,E ,S ,W

∫
𝑘
𝒏𝑘⋅𝒗 d𝑆 = 0 .

Here, 𝒏 is the unit normal vector on 𝜕𝑉𝑝 pointing outward the control
volume, N , E ,S and W denote the control volume edges and 𝒏𝑘 is the
specific unit normal vector on edge 𝑘 ⊂ 𝜕𝑉𝑝. The discretized form of (2.8)
is then obtained using the midpoint rule to approximate the integrals over
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the control volume edges

(𝑢𝑒 − 𝑢𝑤)ℎ𝑦 + (𝑣𝑛 − 𝑣𝑠)ℎ𝑥 = 0 . (4.6)

For the discretization of the momentum conservation equation (2.7) we
integrate its tangential component over the control volumes for 𝑢𝑖,𝑗, the
normal component over the volumes for 𝑣𝑖,𝑗, respectively, and approximate
the resulting integrals. For both components, we need to distinguish
between inner control volumes and control volumes which lie on the
external boundary or on the interface.

The discrete form of the tangential component of the momentum balance
equation (2.7) in case of an inner control volume (Figure 4.3, left) reads

(𝐹 𝑢𝑥,𝑒 − 𝐹 𝑢𝑥,𝑤) ℎ𝑦 + (𝐹 𝑢𝑦,𝑛 − 𝐹 𝑢𝑦,𝑠) ℎ𝑥 = 𝑓 𝑢𝑃 ℎ𝑥ℎ𝑦 . (4.7)

Here, 𝑓 𝑢𝑃 denotes the tangential component of the external force 𝒇 =
𝜌𝒈 at center 𝑃 of the control volume 𝑉𝑢 and the momentum fluxes are
approximated at the centers 𝑛, 𝑒, 𝑠, 𝑤 of the control volume edges and are
given by

𝐹 𝑢𝑥,𝑒 = 𝑝𝑒 − 2𝜇
𝑢𝐸 − 𝑢𝑃

ℎ𝑥
, 𝐹 𝑢𝑦,𝑛 = −𝜇 (

𝑢𝑁 − 𝑢𝑃
ℎ𝑦

+
𝑣𝑛𝑒 − 𝑣𝑛𝑤

ℎ𝑥
) ,

𝐹 𝑢𝑥,𝑤 = 𝑝𝑤 − 2𝜇
𝑢𝑃 − 𝑢𝑊

ℎ𝑥
, 𝐹 𝑢𝑦,𝑠 = −𝜇 (

𝑢𝑃 − 𝑢𝑆
ℎ𝑦

+
𝑣𝑠𝑒 − 𝑣𝑠𝑤

ℎ𝑥
) .

(4.8)

For the momentum fluxes in (4.8) we consider the symmetric stress tensor
and use central differences to approximate the derivatives, e.g.

𝜕𝑢
𝜕𝑥

|
𝑒
≈

𝑢𝐸 − 𝑢𝑃
ℎ𝑥

, 𝜕𝑢
𝜕𝑦

|
𝑛
≈

𝑢𝑁 − 𝑢𝑃
ℎ𝑦

, 𝜕𝑣
𝜕𝑥

|
𝑠
≈

𝑣𝑠𝑒 − 𝑣𝑠𝑤
ℎ𝑥

.

In case the nonsymmetric stress tensor is applied in (2.7) the fluxes given
in (4.8) reduce to, e.g., 𝐹 𝑢𝑥,𝑒 = 𝑝𝑒 − 𝜇(𝑢𝐸 − 𝑢𝑃)/ℎ𝑥 and 𝐹 𝑢𝑦,𝑛 = −𝜇(𝑢𝑁 −
𝑢𝑃)/ℎ𝑦.
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𝑃 𝐸

𝑁

𝑆

𝑛𝑒𝑛

𝑠𝑒𝑠

𝑒
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𝑆

𝑛𝑒𝑛𝑤

𝑠𝑒𝑠𝑤

𝑤 𝑒

𝑠

.

Figure 4.4: Control volumes 𝑉𝑢 located on the left boundary (left) and
on the upper boundary (right) of the free-flow domain.

For control volumes 𝑉𝑢 of size ℎ𝑥 × ℎ𝑦 lying on the top boundary of the
free-flow domain or on the interface, the approximation of the fluxes 𝐹 𝑢𝑦,𝑛
respective 𝐹 𝑢𝑦,𝑠 appearing in (4.8), where the symmetric stress tensor is
considered, has to be adjusted. For example, in case of a control volume
on the upper boundary (Figure 4.4, right), we get

𝐹 𝑢𝑦,𝑛 = −𝜇 (
𝑢𝑛 − 𝑢𝑃
0.5ℎ𝑦

+
𝑣𝑛𝑒 − 𝑣𝑛𝑤

ℎ𝑥
) , where 𝜕𝑢

𝜕𝑦
|
𝑛
≈

𝑢𝑛 − 𝑢𝑃
0.5ℎ𝑦

. (4.9)

In case of the nonsymmetric stress tensor approximation of the momen-
tum fluxes in case of control volumes lying on the top or bottom boundary
is the same as for inner control volumes.

For natural nodes 𝑢0,𝑗 or 𝑢𝑁 ff
𝑥 ,𝑗, 𝑗 = 1, … , 𝑁 ff

𝑦 lying on the left or right
boundary of the free-flow domain, the corresponding control volumes
are of size 0.5ℎ𝑥 × ℎ𝑦 as schematically presented in Figure 4.4 (left). For
these nodes one can either consider the Neumann or Dirichlet boundary
conditions presented in (2.9). In case we apply the Neumann boundary
condition on the left boundary of the domain, for example, integration of
the momentum equation (2.7) over the control volume 𝑉𝑢 of reduced size
0.5ℎ𝑥 × ℎ𝑦 and approximating the surface integrals via the midpoint rule
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as usual yields

𝐹 𝑢𝑥,𝑒ℎ𝑦 + 0.5 (𝐹 𝑢𝑦,𝑛 − 𝐹 𝑢𝑦,𝑠) ℎ𝑥 = 0.5𝑓 𝑢𝑃 ℎ𝑥ℎ𝑦 + ℎ
𝑢
𝑃 ℎ𝑦 .

Here, ℎ
𝑢
𝑃 denotes the prescribed flux 𝒉 = (ℎ

𝑢
, ℎ

𝑣
) given in (2.9) at node 𝑃,

and we have

𝐹 𝑢𝑥,𝑒 = 𝑝𝑒 − 2𝜇
𝑢𝐸 − 𝑢𝑃

ℎ𝑥
, 𝐹 𝑢𝑦,𝑛 = −𝜇 (

𝑢𝑁 − 𝑢𝑃
ℎ𝑦

+
𝑣𝑛𝑒 − 𝑣𝑛
0.5ℎ𝑥

) ,

𝐹 𝑢𝑦,𝑠 = −𝜇 (
𝑢𝑃 − 𝑢𝑆
ℎ𝑦

+
𝑣𝑠𝑒 − 𝑣𝑠
0.5ℎ𝑥

) .
(4.10)

In case the Dirichlet boundary condition in (2.9) is set on the external
boundary the corresponding values for the velocity 𝑢 enter the right hand
side of the resulting linear system given in (4.20).

The approximation of the normal component of the momentum equa-
tion (2.7) is obtained analogously to tangential case. For an inner control
volume 𝑉𝑣 (Figure 4.3, middle) the discrete equation considering the sym-
metric stress tensor reads

(𝐹 𝑣𝑥,𝑒 − 𝐹 𝑣𝑥,𝑤)ℎ𝑦 + (𝐹 𝑣𝑦 ,𝑛 − 𝐹 𝑣𝑦 ,𝑠)ℎ𝑥 = 𝑓 𝑣𝑃ℎ𝑥ℎ𝑦 , (4.11)

where the external forces in the center of 𝑉𝑣 are denoted by 𝑓 𝑣𝑃 and the
fluxes at the centers of the control volume edges are given by

𝐹 𝑣𝑥,𝑒 = −𝜇 (
𝑢𝑛𝑒 − 𝑢𝑠𝑒

ℎ𝑦
+
𝑣𝐸 − 𝑣𝑃
ℎ𝑥

) , 𝐹 𝑣𝑦 ,𝑛 = 𝑝𝑛 − 2𝜇
𝑣𝑁 − 𝑣𝑃
ℎ𝑦

,

𝐹 𝑣𝑥,𝑤 = −𝜇 (
𝑢𝑛𝑤 − 𝑢𝑠𝑤

ℎ𝑦
+
𝑣𝑃 − 𝑣𝑊

ℎ𝑥
) , 𝐹 𝑣𝑦 ,𝑠 = 𝑝𝑠 − 2𝜇

𝑣𝑃 − 𝑣𝑆
ℎ𝑦

.
(4.12)

In case the nonsymmetric stress tensor is considered in (2.7) the fluxes
in (4.12) reduce to, e.g., 𝐹 𝑣𝑥,𝑒 = −𝜇(𝑣𝐸−𝑣𝑃)/ℎ𝑥 and 𝐹 𝑣𝑦 ,𝑛 = 𝑝𝑛−𝜇(𝑣𝑁−𝑣𝑃)/ℎ𝑦.
For control volumes lying on the left and right boundary, we need to
adjust the momentum fluxes 𝐹 𝑣𝑥,𝑤 and 𝐹 𝑣𝑥,𝑒, respectively, in an analogous
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manner to (4.9). Control volumes 𝑉𝑣 lying on the top boundary and on the
interface are of size ℎ𝑥 × 0.5ℎ𝑦 and the fluxes are computed similar as we
did it in (4.10), where the fluxes across the edges of the control volumes 𝑉𝑢
corresponding to the tangential component of the momentum equation
are provided.

Boundary conditions on the lateral external boundaries either enter the
right hand side of the linear system directly (Dirichlet boundary condi-
tion) or are implemented using finite differences (Neumann boundary
condition). Dirichlet boundary conditions for the natural nodes 𝑣𝑖,𝑁 ff

𝑦

with 𝑖 = 1, … , 𝑁 ff
𝑥 that are located on the upper free-flow boundary are

incorporated into the right hand side.

Porous-medium flow discretization

We follow the same steps as for the discretization in the free-flow do-
main: we integrate the Darcy flow equation (2.16) over control volumes
𝑉𝜓 (Figure 4.5) corresponding to the Darcy pressure nodes 𝜓𝑖,𝑗, apply the
divergence theorem and approximate the surface integrals. To allow for
anisotropic permeability tensors 𝗞, we develop a numerical scheme based
on multipoint flux approximation (MPFA) which has been proposed in,
e.g., [55] for second order elliptic equations. The flux stencil using MPFA
is increased to the 9-point stencil compared to the standard two-point
flux approximation with the 5-point stencil (Figure 4.5, left).

We obtain the following discrete form of the Darcy flow equation (2.16):

(𝑎𝑒 − 𝑎𝑤)ℎ𝑦 + (𝑏𝑛 − 𝑏𝑠)ℎ𝑥 = 0 . (4.13)

Here, 𝑎𝑒, 𝑎𝑤, 𝑏𝑛 and 𝑏𝑠 denote the approximated Darcy velocities at the
control volume edges by means of central differences. For an inner control
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Figure 4.5: Inner control volume and nine-point stencil (left) and
control volume on the right boundary (right) for the porous-
medium pressure 𝜓.

volume 𝑉𝜓, we have

𝑎𝑒 = −
𝑘11
𝜇

𝜓𝐸 − 𝜓𝑃
ℎ𝑥

−
𝑘12
𝜇

1
4
(
𝜓𝑁𝐸 − 𝜓𝑆𝐸 + 𝜓𝑁 − 𝜓𝑆

ℎ𝑦
) ,

𝑎𝑤 = −
𝑘11
𝜇

𝜓𝑃 − 𝜓𝑊
ℎ𝑥

−
𝑘12
𝜇

1
4
(
𝜓𝑁𝑊 − 𝜓𝑆𝑊 + 𝜓𝑁 − 𝜓𝑆

ℎ𝑦
) ,

𝑏𝑛 = −
𝑘21
𝜇

1
4
(
𝜓𝑁𝐸 − 𝜓𝑁𝑊 + 𝜓𝐸 − 𝜓𝑊

ℎ𝑥
) −

𝑘22
𝜇

𝜓𝑁 − 𝜓𝑃
ℎ𝑦

,

𝑏𝑠 = −
𝑘21
𝜇

1
4
(
𝜓𝑆𝐸 − 𝜓𝑆𝑊 + 𝜓𝐸 − 𝜓𝑊

ℎ𝑥
) −

𝑘22
𝜇

𝜓𝑃 − 𝜓𝑆
ℎ𝑦

.

For control volumes located on the external boundary of the porous
domain or on the interface, the corresponding fluxes need to be adjusted.
We consider the case of a volume 𝑉𝜓 located on the right external boundary
as depicted in Figure 4.5 (right). In this case 𝑎𝑤 is the same as above and
the remaining approximations of the Darcy velocities are

𝑎𝑒 = −
𝑘11
𝜇

𝜓𝑒 − 𝜓𝑃
0.5ℎ𝑥

−
𝑘12
𝜇

1
2
(
𝜓𝑁𝑒 − 𝜓𝑆𝑒

ℎ𝑦
) ,
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𝑏𝑛 = −
𝑘21
𝜇

1
3
(
𝜓𝑁𝑒 − 𝜓𝑁𝑊 + 𝜓𝑒 − 𝜓𝑊

ℎ𝑥
) −

𝑘22
𝜇

𝜓𝑁 − 𝜓𝑃
ℎ𝑦

,

𝑏𝑠 = −
𝑘21
𝜇

1
3
(
𝜓𝑆𝑒 − 𝜓𝑆𝑊 + 𝜓𝑒 − 𝜓𝑊

ℎ𝑥
) −

𝑘22
𝜇

𝜓𝑃 − 𝜓𝑆
ℎ𝑦

.

For control volumes lying on other boundaries of the porous-medium
domain the fluxes are adapted analogously. The Dirichlet boundary con-
ditions in (2.12) are directly incorporated into the right hand side of the
resulting linear system of equations (4.20). Since there exist no control
volumes for the pressure nodes 𝜓 vb𝑖,𝑗 , 𝜓

hb
𝑖,𝑗 , 𝜓

c
𝑖,𝑗 on the external boundary,

the Neumann boundary condition in (2.12) is approximated using finite
differences.

Discretization of coupling conditions

For the numerical simulations presented in Chapter 6 we consider two
different sets of interface conditions, the classical conditions (2.17)–(2.19)
and the generalized conditions (3.98)–(3.100). The corresponding nodes
used for the implementation of the two coupling concepts are presented
in Figure 4.6.

Both sets of coupling conditions contain the conservation of mass across
the fluid–porous interface, which is given by (2.17) and (3.98). This condi-
tion is approximated using the stencil presented in Figure 4.6 (right) for
nodes 𝜓hb𝑖,𝑁 pm

𝑦
with 1 < 𝑖 < 𝑁 pm

𝑥 as follows

𝑣𝑃 = −
𝑘21
𝜇

𝜓𝐸 − 𝜓𝑊
2ℎ𝑥

−
𝑘22
𝜇

𝜓𝑃 − 𝜓𝑠
0.5ℎ𝑦

. (4.14)

For the pressure nodes at (0.5ℎ𝑥, 𝑁
pm
𝑦 ℎ𝑦) and ((𝑁

pm
𝑥 − 0.5)ℎ𝑥, 𝑁

pm
𝑦 ℎ𝑦) we

use one-sided finite differences instead of the central one. For example,
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Figure 4.6: Stencil for the coupling condition for the tangential veloc-
ity (left), the normal velocity (middle) and the pressure (right).

for node 𝜓1,𝑁 pm
𝑦

the conservation of mass across the interface reads

𝑣𝑃 = −
𝑘21
𝜇

𝜓𝐸 − 𝜓𝑃
ℎ𝑥

−
𝑘22
𝜇

𝜓𝑃 − 𝜓𝑠
0.5ℎ𝑦

.

The discrete form of the balance of normal forces (2.18) in case of the sym-
metric stress tensor 𝗧(𝒗, 𝑝) = 𝜇 ( ∇𝒗 + (∇𝒗)⊤)−𝑝𝗜 is obtained considering
a control volume of size ℎ𝑥 × 0.5ℎ𝑦 for the velocity 𝑣𝑃 on the interface
(Figure 4.6, middle), and it reads

(𝐹 𝑣𝑥,𝑒 − 𝐹 𝑣𝑥,𝑤)0.5ℎ𝑦 + (𝐹 𝑣𝑦 ,𝑛 − 𝐹 𝑣𝑦 ,𝑃)ℎ𝑥 = 0.5𝑓 𝑣𝑃ℎ𝑥ℎ𝑦 . (4.15)

Here, the fluxes across the control volume edges corresponding to nodes
𝑣𝑖,0 for 1 < 𝑖 < 𝑁 ff

𝑥 have the following form

𝐹 𝑣𝑥,𝑒 = −𝜇 (
𝑢𝑛𝑒 − 𝑢𝑒
0.5ℎ𝑦

+
𝑣𝐸 − 𝑣𝑃
ℎ𝑥

) , 𝐹 𝑣𝑦 ,𝑛 = 𝑝𝑛 − 2𝜇
𝑣𝑁 − 𝑣𝑃
ℎ𝑦

,

𝐹 𝑣𝑥,𝑤 = −𝜇 (
𝑢𝑛𝑤 − 𝑢𝑤
0.5ℎ𝑦

+
𝑣𝑃 − 𝑣𝑊

ℎ𝑥
) , 𝐹 𝑣𝑦 ,𝑃 = 𝜓𝑃 .

At nodes 𝑣1,0 and 𝑣𝑁 ff
𝑥 ,0 the fluxes 𝐹

𝑣
𝑥,𝑤 and 𝐹 𝑣𝑥,𝑒 need to be adjusted, re-

spectively. Considering 𝑣1,0 located at (0.5ℎ𝑥, 0), for example, we obtain a
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modified flux

𝐹 𝑣𝑥,𝑤 = −𝜇 (
𝑢𝑛𝑤 − 𝑢𝑤
0.5ℎ𝑦

+
𝑣𝑃 − 𝑣𝑤
0.5ℎ𝑥

) .

In case the nonsymmetric tensor 𝗧(𝒗, 𝑝) = 𝜇∇𝒗 −𝑝𝗜 is considered in (2.18),
we discretize the balance of normal forces using finite differences. This
leads to

𝑝𝑛 − 𝜇
𝑣𝑁 − 𝑣𝑃
ℎ𝑦

= 𝜓𝑃 .

Discretization of the generalized balance of normal forces (3.99), that in-
cludes the nonsymmetric stress tensor, using the stencil presented in Fig-
ure 4.6 (middle) yields

𝑝𝑛 − 𝜇
𝑣𝑁 − 𝑣𝑃
ℎ𝑦

+ 𝜇𝑁 bl
𝑠 (

𝑢𝑛𝑤 − 𝑢𝑤
ℎ𝑦

+
𝑢𝑛𝑒 − 𝑢𝑒

ℎ𝑦
) = 𝜓𝑃 . (4.16)

We approximate the Beavers–Joseph coupling condition (2.19) by

𝑢𝑃 +
𝑘11
𝜇

𝜓𝑤 − 𝜓𝑒
ℎ𝑥

+
𝑘12
𝜇

(
𝜓𝑤 − 𝜓𝑠𝑤

ℎ𝑦
+
𝜓𝑒 − 𝜓𝑠𝑒

ℎ𝑦
) = √𝑘11

𝛼BJ

𝑢𝑛 − 𝑢𝑃
0.5ℎ𝑦

, (4.17)

the Beavers–Joseph–Jones condition (2.22) by

𝑢𝑃 +
𝑘11
𝜇

𝜓𝑤 − 𝜓𝑒
ℎ𝑥

+
𝑘12
𝜇

(
𝜓𝑤 − 𝜓𝑠𝑤

ℎ𝑦
+
𝜓𝑒 − 𝜓𝑠𝑒

ℎ𝑦
)

= √𝑘11
𝛼BJ

(
𝑢𝑛 − 𝑢𝑃
0.5ℎ𝑦

+
𝑣𝑒 − 𝑣𝑤
ℎ𝑥

) , (4.18)

and the Saffman simplifications (2.20) and (2.21) are obtained by neglecting
the terms on the left hand side in (4.17) and (4.18) except for 𝑢𝑃. The
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discrete form of the generalized condition (3.100) reads

𝑢𝑃 −
ℓ2𝑀1,bl

1
𝜇

𝜓𝑤 − 𝜓𝑒
ℎ𝑥

−
ℓ2𝑀2,bl

1
𝜇

(
𝜓𝑤 − 𝜓𝑠𝑤

ℎ𝑦
+
𝜓𝑒 − 𝜓𝑠𝑒

ℎ𝑦
)

= −ℓ𝑁 bl
1
𝑢𝑛 − 𝑢𝑃
0.5ℎ𝑦

. (4.19)

For the implementation of coupling conditions (2.19)–(2.22) and (3.100)
we used the stencil presented in Figure 4.6 (left).

4.2.2 Monolithic approach

We solve the coupled Stokes–Darcy problem monotonically, i.e., all equa-
tions including a set of interface conditions are assembled together into
the global matrix 𝗔ℎ. The monolithic approach allows us to solve the
strongly coupled problem without developing any subdomain iteration
scheme for which we would need to prove convergence and robustness
before the scheme could be used for numerical solution. Partitioning
schemes become necessary and beneficial in case of large-scale applica-
tions or nonstationary problems to handle different scales in time in the
free-flow region and the porous-medium domain. However, in this work
we deal with stationary flows in coupled systems which can be solved
in a monolithic way. After having discretized problem (2.7)–(2.9), (2.12)
and (2.16) with an appropriate set of interface conditions (2.17)–(2.19)
or (3.98)–(3.100) as described in Section 4.2.1, the resulting equations are
put together into one sparse matrix 𝗔ℎ. The latter is composed of four
submatrices that are schematically separated by the dashed lines in (4.20).
Two of these submatrices correspond to the Stokes and Darcy equations
in the subdomains and the two remaining ones enable the coupling of the
two flow models. The discrete coupled system has the following form

𝗔ℎ𝒙ℎ = 𝒃ℎ ⇔ (
𝗔 𝗕1 𝗖1
𝗕2 𝟬 𝟬
𝗖2 𝟬 𝗗

)(
𝒘
𝒑
𝝍

) = (
𝒃𝒘
𝟎
𝒃𝝍

) . (4.20)
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Here, 𝒘 = (𝒖, 𝒗), 𝒑, 𝝍 are the solution vectors for the primary variables in
the two flow domains that are put together into vector 𝒙ℎ. The upper left
2 × 2 block in matrix 𝗔ℎ corresponds to the Stokes problem, where 𝗔 and
𝗕1 incorporate the discrete form of the momentum conservation equation
given by (4.7) and (4.11), and 𝗕2 includes the discrete mass conservation
equation (4.6). The Darcy flow problem (4.13) is represented by matrix 𝗗.
Coupling condition (4.17) respective (4.19) for the tangential velocity com-
ponent, and condition (4.15) respective (4.16) for the momentum coupling
are incorporated in 𝗖1. The conservation of mass across the fluid–porous
interface (4.14) is given by 𝗖2. Vector 𝒃ℎ denotes the right hand side of
the system of linear equations and contains vectors 𝒃𝒘 and 𝒃𝝍 that include
values corresponding to the applied conditions on the external boundary
of the coupled domain (see Section 4.2.1). The discrete Stokes–Darcy
problem (4.20) is then solved monolithically using the sparse supernodal
LU factorization for general matrices available in Eigen [75].

4.3 Computation of effective properties

Before the coupled Stokes–Darcy problem is solved we need to determine
effective coefficients (permeability, Beavers–Joseph parameter, bound-
ary layer constants) that appear in the macroscale model depending on
the set of interface conditions. For the classical set of coupling condi-
tions (2.17)–(2.19) the permeability tensor 𝗞 and the Beavers–Joseph slip
coefficient 𝛼BJ are required, whereas the generalized interface conditions
(3.98)–(3.100) contain the permeability 𝗞 and the boundary layer con-
stants 𝑁 bl

1 , 𝑁 bl
𝑠 and 𝑀 𝑗,bl

1 . The Beavers–Joseph slip coefficient 𝛼BJ cannot
be computed in general but needs to be fitted experimentally dependent
on the pore geometry, the exact interface location and the flow regime.
However, since it is not well studied how to find the optimal Beavers–
Joseph parameter and available methods to determine this coefficient are
often computationally expensive [117], it is typically taken 𝛼BJ = 1 in the
literature. Within this thesis we also use this value, if not stated otherwise.
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Regarding permeability and boundary layer constants we obtained formu-
las in Sections 2.3.2 and 3.1.3 that enable us to compute these coefficients
based on the pore geometry and the sharp interface location as described
below.

Independent of the set of coupling conditions the permeability of the
porous medium appearing in the Darcy flow equation (2.16) needs to be
determined. This can be done in various ways, e.g., using the Kozeny–
Carman equation [32, 104] which provides a semi-analytical porosity-
permeability relation, via upscaling of the pore-scale simulations (FEM,
Lattice Boltzman method or smoothed-particle hydrodynamics) or us-
ing homogenization. For a thorough study on different methods to ob-
tain the permeability of an isotropic porous medium with a periodic
microstructure, we refer the reader to [EE8]. In this work, we compute
the dimensionless permeability tensor �̃� of a periodic porous medium
numerically by means of homogenization theory [90, 95]. We solve the
cell problems (2.74)–(2.76) in the unit cell 𝑌 (Figure 4.7, left) using the PDE
solver FreeFEM++ with Taylor–Hood finite elements (see Section 4.1.1).
Hereby, the fluid part 𝑌f of the unit cell 𝑌 is partitioned into triangular
elements and the exact number of elements depends on the shape of solid
obstacles and is given in Chapter 6 for the considered geometries. The
entries of the permeability tensor are then obtained by integrating the
cell problem solutions as described by (2.79).

When the generalized interface conditions (3.98)–(3.100) are applied, in ad-
dition to the permeability tensor �̃�, the boundary layer constants 𝑁 bl

1 , 𝑁 bl
𝑠

and𝑀 𝑗,bl
1 need to be computed. We obtain these dimensionless effective co-

efficients from the boundary layer problems (3.17)–(3.21) and (3.39)–(3.43)
defined in the infinite stripe 𝑍bl. As explained in Section 3.2, we have
freedom to choose the exact position of the sharp fluid–porous interface
within the boundary layer stripe. Based on the chosen interface location
at distance 𝑎 (Figure 4.7, right) above the top row of solid inclusions, the
boundary layer problems need to be solved in 𝑍bl = 𝑍 𝑎,+ ∪ 𝑍 𝑎,−. The
corresponding boundary layer constants are then defined as integrals of
the solutions over the interface 𝑆𝑎 as given by (3.102a)–(3.103).
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𝑦2
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𝑌f
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𝑆0.5(1−𝑑∗)
𝑆0.01

𝑑∗

Figure 4.7: Unit cell 𝑌 (left) and cut-off stripe 𝑍4,4 with two possible
interface locations 𝑆𝑎 (right) where 𝑎 = 0.01 (blue line) and
𝑎 = 0.5(1 − 𝑑∗) (red line), respectively, and 𝑑∗ denotes the size of
solid obstacles within the unit cell 𝑌.

Since we cannot handle infinitely large domains for the numerical solution
of boundary layer problems (3.17)–(3.21) and (3.39)–(3.43) we define a
vertical cut-off stripe

𝑍𝑘,𝑚 = 𝑍 𝑎,+
𝑚 ∪ 𝑍 𝑎,−

𝑘 = 𝑍bl ∩ ((0, 1) × (−𝑘, 𝑚)) , 𝑘, 𝑚 ∈ N ,

where 𝑍 𝑎,+
𝑚 = (0, 1) × ( 𝑑

∗−1
2 + 𝑎, 𝑚) and 𝑍 𝑎,−

𝑘 = 𝑍𝑘,𝑚 ⧵ 𝑍 𝑎,+
𝑚 . By cutting

the infinite boundary layer stripe 𝑍bl such that the cut-off domain 𝑍𝑘,𝑚
is obtained, two additional boundaries are created where appropriate
boundary conditions need to be applied: the upper boundary Γ𝑚 = (0, 1)×
{𝑚} and the lower boundary Γ𝑘 = (0, 1) × {−𝑘}. We follow [33, 34, 98] to
define the cut-off boundary layer problems (4.21)–(4.23) and (4.24)–(4.26),
that are used for the computation of 𝑁 bl

1 , 𝑁 bl
𝑠 and 𝑀 𝑗,bl

1 , according to
problems (3.17)–(3.21) and (3.39)–(3.43).

The following system of equations corresponds to boundary layer problem
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(3.17)–(3.21) defined on the cut-off stripe 𝑍𝑘,𝑚:

−Δ𝒚𝒕bl,𝑘,𝑚,𝑎 + ∇𝒚𝑠bl,𝑘,𝑚,𝑎 = 𝟎 in 𝑍 𝑎,+
𝑚 ∪ 𝑍 𝑎,−

𝑘 ,

∇𝒚⋅ 𝒕bl,𝑘,𝑚,𝑎 = 0 in 𝑍 𝑎,+
𝑚 ∪ 𝑍 𝑎,−

𝑘 ,

J𝒕bl,𝑘,𝑚,𝑎K𝑆𝑎 = 𝟎 on 𝑆𝑎 , (4.21)

J(∇𝒚𝒕bl,𝑘,𝑚,𝑎 − 𝑠bl,𝑘,𝑚,𝑎𝗜)𝒆2K𝑆𝑎 = 𝒆1 on 𝑆𝑎 ,

𝒕bl,𝑘,𝑚,𝑎 = 𝟎 on
𝑘
⋃
𝑖=1

(𝜕𝑌s − {0, 𝑖}) , {𝒕bl,𝑘,𝑚,𝑎, 𝑠bl,𝑘,𝑚,𝑎} is 𝑦1-periodic ,

with the following additional boundary conditions on the upper respective
lower boundary of the cut-off stripe 𝑍𝑘,𝑚 proposed in [98]:

𝜕𝑡bl,𝑘,𝑚,𝑎1
𝜕𝑦2

= 𝑡bl,𝑘,𝑚,𝑎2 = 0 on Γ𝑚 , 𝒕bl,𝑘,𝑚,𝑎 = 𝟎 on Γ𝑘 . (4.22)

In addition, to obtain a uniquely defined pressure, we set

∫
Γ𝑘
𝑠bl,𝑘,𝑚,𝑎(𝑦1, −𝑘) d𝑦1 = 0 . (4.23)

The cut-off boundary layer problem corresponding to (3.39)–(3.43) for
𝑗 = 1, 2 reads

−Δ𝒚𝜷 𝑗,bl,𝑘,𝑚,𝑎 + ∇𝒚𝜔𝑗,bl,𝑘,𝑚,𝑎 = 𝟎 in 𝑍 𝑎,+
𝑚 ∪ 𝑍 𝑎,−

𝑘 ,

∇𝒚⋅ 𝜷 𝑗,bl,𝑘,𝑚,𝑎 = 0 in 𝑍 𝑎,+
𝑚 ∪ 𝑍 𝑎,−

𝑘 ,

J𝜷 𝑗,bl,𝑘,𝑚,𝑎K𝑆𝑎 = 𝑘2𝑗𝒆2 − 𝒘𝑗 on 𝑆𝑎 , (4.24)

J(∇𝒚𝜷 𝑗,bl,𝑘,𝑚,𝑎 − 𝜔𝑗,bl,𝑘,𝑚,𝑎𝗜)𝒆2K𝑆𝑎 = − (∇𝒚𝒘𝑗 − 𝜋 𝑗𝗜) 𝒆2 on 𝑆𝑎 ,

𝜷 𝑗,bl,𝑘,𝑚,𝑎 = 𝟎 on
𝑘
⋃
𝑖=1

(𝜕𝑌s − {0, 𝑖}), {𝜷 𝑗,bl,𝑘,𝑚,𝑎, 𝜔𝑗,bl,𝑘,𝑚,𝑎} is 𝑦1-periodic ,
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with the additional conditions on the cut-off boundaries Γ𝑚 and Γ𝑘 and
the condition to obtain a uniquely defined pressure

𝜕𝛽 𝑗,bl,𝑘,𝑚,𝑎1
𝜕𝑦2

= 𝛽 𝑗,bl,𝑘,𝑚,𝑎2 = 0 on Γ𝑚 , 𝜷 𝑗,bl,𝑘,𝑚,𝑎 = 𝟎 on Γ𝑘 , (4.25)

∫
Γ𝑘
𝜔𝑗,bl,𝑘,𝑚,𝑎(𝑦1, −𝑘) d𝑦1 = 0 . (4.26)

Then, we define the following cut-off boundary layer constants

𝑁 bl,𝑘,𝑚,𝑎
1 = ∫

1

0
𝑡bl,𝑘,𝑚,𝑎1 (𝑦1,

𝑑∗−1
2 + 𝑎) d𝑦1 , (4.27)

𝑁 bl,𝑘,𝑚,𝑎
𝑠 = ∫

1

0
𝑠bl,𝑘,𝑚,𝑎 (𝑦1,

𝑑∗−1
2 + 𝑎) d𝑦1 , (4.28)

𝑀 𝑗,bl,𝑘,𝑚,𝑎
1 = ∫

1

0
𝛽 𝑗,bl,𝑘,𝑚,𝑎1 (𝑦1,

𝑑∗−1
2 + 𝑎) d𝑦1 . (4.29)

The use of cut-off solutions 𝒕bl,𝑘,𝑚,𝑎, 𝑠bl,𝑘,𝑚,𝑎 and 𝜷 𝑗,bl,𝑘,𝑚,𝑎 for the com-
putation of the boundary layer constants (4.28) and (4.29) leads to two
different sources of error, i.e., the discretization error and the cut-off error
(approximation error introduced by cutting the infinite stripe). In order
to reduce the latter one, we need to set 𝑘, 𝑚 ∈ N large enough such that
exponential decay of the solutions to the cut-off boundary layer problems
is guaranteed. As proposed in [34], we use 𝑘 = 4 solid inclusions in
the porous part and 𝑚 = 4 cells in the free-flow part resulting in the
cut-off stripe 𝑍4,4 (Figure 4.7, right) for the computation of boundary layer
constants in Chapter 6. With this choice for 𝑘 and 𝑚, the two different
errors are balanced in an optimal way such that the computational costs
are minimal and the cut-off error in the computed constants 𝑁 bl,𝑘,𝑚,𝑎

1 ,
𝑁 bl,𝑘,𝑚,𝑎
𝑠 and 𝑀 𝑗,bl,𝑘,𝑚,𝑎

1 can be neglected. We solve problems (4.21)–(4.23)
and (4.24)–(4.26) via FreeFEM++ using Taylor–Hood finite elements and
an adaptive mesh. In Tables 4.1 and 4.2 we provide the boundary layer
constants computed on cut-off domains 𝑍𝑘,𝑘 of different sizes for circular
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𝑌s

𝑌f

1
𝑑∗

𝑘 𝑁 bl,𝑘,𝑚,𝑎
1 𝑁 bl,𝑘,𝑚,𝑎

𝑠 𝑀1,bl,𝑘,𝑚,𝑎
1 𝑀2,bl,𝑘,𝑚,𝑎

1

1 −0.303821777 – −0.045066533 –
2 −0.303825416 – −0.047673166 –
3 −0.303825412 – −0.047673168 –
4 −0.303825307 – −0.047673169 –
5 −0.303825364 – −0.047673165 –
6 −0.303825360 – −0.047673165 –

Table 4.1: Boundary layer constants for the presented circular solid
inclusion (𝑑∗ = 0.5) depending on the size of the cut-off stripe 𝑍𝑘,𝑘
for the interface 𝑆0.5(1−𝑑∗).

and elliptical solid inclusions, respectively. The radius of the circular
inclusion within the unit cell 𝑌 = (0, 1)2 is 𝑟 = 0.25, and the inclusion is
centered at (0.5, 0.5). The geometry of the elliptical solid grain is the same
as in [33, 98], i.e., the semi-axes of the ellipse are 𝑟𝑏 = 0.4 and 𝑟𝑐 = 0.2,
it is rotated clockwise by 45∘ and the center is at (0.5, 0.5). We observe
that for 𝑘 ≥ 4 at least the 7 digits after decimal point are the same for all
boundary layer constants in case of circular solid obstacles (Table 4.1),
and in case of elliptical inclusions, at least the 4 digits after decimal point
are equal (Table 4.2).

In this thesis, for the computation of boundary layer constants we consider
the cut-off boundary layer stripe 𝑍4,4 and the interface 𝑆0.5(1−𝑑∗) (Figure 4.7,
right), if not stated otherwise. For clarity, we usually waive writing the
superscripts 𝑘, 𝑚, 𝑎 and denote the effective coefficients computed using
cut-off problems (4.21)–(4.23) and (4.24)–(4.26) by 𝑵 bl, 𝑁 bl

𝑠 and𝑴 𝑗,bl.
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𝑌s 𝑌f

1𝑟𝑐

𝑟𝑏

𝑘 𝑁 bl,𝑘,𝑚,𝑎
1 𝑁 bl,𝑘,𝑚,𝑎

𝑠 𝑀1,bl,𝑘,𝑚,𝑎
1 𝑀2,bl,𝑘,𝑚,𝑎

1

1 −0.239631077 −0.271181957 −0.029993521 −0.003336630
2 −0.239630149 −0.271327915 −0.031028758 −0.003337094
3 −0.239630412 −0.271327977 −0.031028758 −0.003337094
4 −0.239629929 −0.271327434 −0.031028758 −0.003337094
5 −0.239630267 −0.271329321 −0.031028758 −0.003337094
6 −0.239629975 −0.271329853 −0.031028758 −0.003337094

Table 4.2: Boundary layer constants for the presented elliptical solid
inclusion (𝑟𝑏 = 0.4, 𝑟𝑐 = 0.2) depending on the size of the cut-off
stripe 𝑍𝑘,𝑘 for the interface 𝑆0.5(1−𝑑∗).

Summary

In this chapter, we presented the numerical method for solving the pore-
scale problem based on a finite element discretization. We introduced
two averaging techniques to reduce oscillations in the pore-scale solution
that appear naturally due to the presence of solid obstacles in the porous
medium. Averaging of pore-scale quantities is useful for a better com-
parison of microscale and macroscale simulation results as we will see
in Chapter 6. We discretized the coupled Stokes–Darcy model with differ-
ent sets of interface conditions based on the finite volumemethod. Hereby,
we used staggered grids in the free-flow region to prevent pressure os-
cillations, and multipoint flux approximation in the porous medium to
account for anisotropic permeability. The resulting discrete Stokes–Darcy
problem is then solved monolithically. Further, we provided information
on the computation of effective coefficients (permeability, boundary layer
constants) in the macroscale model.
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interface conditions 5
The content of this chapter is based on the following original article:

[EE1] E. Eggenweiler, M. Discacciati, and I. Rybak. Analysis of the
Stokes–Darcy problem with generalised interface conditions.
ESAIM Math. Model. Numer. Anal. 56 (2022), pp. 727–742.

doi: 10.1051/m2an/2022025

In this chapter, we analyze the Stokes–Darcy problem with the general-
ized interface conditions developed in Chapter 3 with respect to existence
and uniqueness of a weak solution. In Section 5.1, we introduce the
problem setting and derive the corresponding weak formulation. In Sec-
tion 5.2, we prove that the Stokes–Darcy problem with the generalized
coupling conditions is well-posed for orthotropic porous media, where the
well-posedness is guaranteed under a suitable relationship between the
permeability and the boundary layer constants. In Section 5.3, we analyze
the validity of the obtained relationship, i.e., we compute the effective
coefficients for various porous-medium geometrical configurations and
show that the resulting assumption is not restrictive.

https://doi.org/10.1051/m2an/2022025
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5.1 Problem setting and weak formulation

In this section, we introduce the problem setting (geometry, assumptions,
flow models, boundary conditions) and derive the weak formulation of
the corresponding Stokes–Darcy problem with the generalized interface
conditions developed in Chapter 3.

5.1.1 Problem setting

We consider the coupled domain Ω ⊂ R2 consisting of the free-flow
region Ωff and the porous-medium domain Ωpm separated by a sharp
fluid–porous interface Σ. The interface is assumed to be straight such
that the tangential and normal vectors on the interface denoted by 𝝉 and
𝒏 are constant (Figure 5.1). Therefore, taking the tangential and normal
components 𝒗⋅𝝉 respective 𝒗⋅𝒏 of a suitable vector function 𝒗 on the inter-
face Σ does not reduce the regularity of the trace 𝒗|Σ. The porous medium
is constructed by a periodic repetition of solid obstacles as described
in Section 2.3.2.

As in the rest of this thesis, we consider slow, viscous fluid flow at low
Reynolds numbers (𝑅𝑒 ≪ 1) through a nondeformable porous medium.

Γinff,𝐷

Γw
al
l

ff,
𝐷

Γ
w
all

ff,𝐷

Γpm,𝐷

Γ p
m
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porous mediumΩpm

Σ
𝒏

𝝉

.

.

Figure 5.1: Schematic representation of the computational domain.
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Thus, fluid motion in the free-flow region is described by the Stokes
equations

−∇⋅𝗧 (𝒗ff, 𝑝ff) = 𝟎 , ∇⋅𝒗ff = 0 in Ωff , (5.1)

where 𝗧 (𝒗ff, 𝑝ff) = 𝜇∇𝒗ff − 𝑝ff𝗜 denotes the nonsymmetric stress tensor.
To describe the flow in the porous-medium domain we use the Darcy flow
model

−∇⋅ (𝗞
𝜇
∇𝑝pm) = 0 in Ωpm . (5.2)

On the fluid–porous interface Σ, we apply the generalized coupling con-
ditions developed in Chapter 3 (see equations (3.98)–(3.100)) for arbitrary
flows to the porous bed, which read

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (5.3)

𝑝pm = −𝒏⋅𝗧(𝒗ff, 𝑝ff)𝒏 + 𝑁 bl
𝑠 𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 on Σ , (5.4)

𝒗ff⋅𝝉 = −ℓ𝜇−1 (𝑵 bl⋅𝝉) 𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 + ℓ2𝜇−1
2
∑
𝑗=1

𝜕𝑝pm

𝜕𝑥𝑗
𝑴 𝑗,bl⋅𝝉 on Σ . (5.5)

The Stokes–Darcy problem (5.1)–(5.5) is completed with the following
boundary conditions on the external boundary 𝜕Ω of the coupled do-
main

𝒗ff = 𝒗in on Γinff,𝐷 , 𝒗ff = 𝟎 on Γwallff,𝐷 , (5.6)

𝑝pm = 0 on Γpm,𝐷 , 𝒗pm⋅𝒏pm = 0 on Γpm,𝑁 . (5.7)

Here, 𝒗in is the prescribed velocity on Γinff,𝐷, 𝒏
pm denotes the unit vector on

Γpm,𝑁 pointing outward the porous-medium domain, 𝜕Ωff⧵Σ = Γinff,𝐷∪Γ
wall
ff,𝐷

and 𝜕Ωpm ⧵ Σ = Γpm,𝐷 ∪ Γpm,𝑁, Γpm,𝐷 ∩ Γpm,𝑁 = ∅, and Γpm,𝐷 ≠ ∅
(Figure 5.1).
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5.1.2 Weak formulation of the coupled problem

In order to obtain the weak formulation of the coupled Stokes–Darcy
problem (5.1)–(5.7) we introduce the following functional spaces

Hff ≔ {𝒖 ∈ 𝐻 1(Ωff)2 ∶ 𝒖 = 𝟎 on 𝜕Ωff ⧵ Σ} ,

Hff,Σ ≔ {𝒖 ∈ 𝐻 1(Ωff)2 ∶ 𝒖 = 𝟎 on Γwallff,𝐷 ∪ Σ} ,

Hpm ≔ {𝜓 ∈ 𝐻 1(Ωpm) ∶ 𝜓 = 0 on Γpm,𝐷} ,

Qff ≔ 𝐿2(Ωff) , W ≔ Hff × Hpm ,

and define the norm of the Hilbert spaceW as

‖𝑤‖W ≔ (‖𝒘‖2𝐻 1(Ωff)2
+ ‖𝜓 ‖2𝐻 1(Ωpm)

)
1/2

for all 𝑤 = (𝒘, 𝜓 ) ∈ W .

Further, we consider the trace spaces [110, Chapters 8, 11, 12]:

𝐻 1/2(𝜕Ωpm) = {𝑣 ∈ 𝐿2(𝜕Ωpm)∶ there exists 𝑢 ∈ 𝐻 1(Ωpm)

such that tr(𝑢) = 𝑣} ,

𝐻 1/2
00 (Σ) = {𝑢 ∈ 𝐻 1/2(𝜕Ωpm)∶supp 𝑢 ⊂ Σ} ,

and denote their dual spaces by 𝐻−1/2(𝜕Ωpm) and (𝐻 1/2
00 (Σ))

′
, respec-

tively. Below, for the sake of simplicity, we waive the symbols d𝒙 and d𝑆
in volume and boundary integrals, and we write 𝑞 = 𝑞(𝒙) for 𝒙 ∈ Ω.

As a first step towards the weak formulation of problem (5.1)–(5.7), we
multiply the momentum conservation equation given in (5.1) by a test
function 𝒖 ∈ Hff and apply integration by parts over Ωff. This yields

0 = −∫
Ωff

( ∇⋅ 𝗧 (𝒗ff, 𝑝ff)) ⋅𝒖

= −∫
𝜕Ωff

𝗧 (𝒗ff, 𝑝ff) 𝒏ff⋅𝒖 + ∫
Ωff

𝜇∇𝒗ff∶∇𝒖 − ∫
Ωff

𝑝ff ∇⋅ 𝒖
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= ∫
Σ
𝗧 (𝒗ff, 𝑝ff) 𝒏⋅𝒖 + ∫

Ωff

𝜇∇𝒗ff∶∇𝒖 − ∫
Ωff

𝑝ff ∇⋅ 𝒖 , (5.8)

where 𝒏ff denotes the unit normal vector on 𝜕Ωff pointing outward the
free-flow region, thus, 𝒏ff = −𝒏 on Σ. Next, we rewrite condition (5.5) as
follows

𝝉⋅𝗧 (𝒗ff, 𝑝ff) 𝒏 = −𝜇ℓ−1(𝑁 bl
1 )

−1
𝒗ff⋅𝝉 + ℓ(𝑁 bl

1 )
−1 2

∑
𝑗=1

𝑀 𝑗,bl
1

𝜕𝑝pm

𝜕𝑥𝑗
, (5.9)

where we set 𝑁 bl
1 = 𝑵 bl⋅𝝉 and 𝑀 𝑗,bl

1 = 𝑴 𝑗,bl⋅𝝉 as in Section 3.2.2. Splitting
the stress tensor 𝗧(𝒗ff, 𝑝ff) in its normal and tangential component and
substituting conditions (5.4) and (5.9) in the integral term over Σ in the
weak form (5.8), we obtain

∫
Σ
𝗧 (𝒗ff, 𝑝ff) 𝒏⋅𝒖 = ∫

Σ
(𝒏⋅𝗧 (𝒗ff, 𝑝ff) 𝒏) (𝒖⋅𝒏) + ∫

Σ
(𝝉⋅𝗧 (𝒗ff, 𝑝ff) 𝒏) (𝒖⋅𝝉)

= ∫
Σ
(−𝑝pm + 𝑁 bl

𝑠 𝝉⋅𝗧 (𝒗ff, 𝑝ff) 𝒏) (𝒖⋅𝒏)

+ ∫
Σ
(𝝉⋅𝗧 (𝒗ff, 𝑝ff) 𝒏) (𝒖⋅𝝉)

= −∫
Σ
𝑝pm(𝒖⋅𝒏) + ∫

Σ
(𝝉⋅𝗧 (𝒗ff, 𝑝ff) 𝒏) ((𝒖⋅𝝉) + 𝑁 bl

𝑠 (𝒖⋅𝒏))

= −∫
Σ
𝑝pm(𝒖⋅𝒏)

+ ∫
Σ
(−𝜇ℓ−1(𝑁 bl

1 )
−1
(𝒗ff⋅𝝉)

+ℓ(𝑁 bl
1 )

−1 2
∑
𝑗=1

𝑀 𝑗,bl
1

𝜕𝑝pm

𝜕𝑥𝑗
) ((𝒖⋅𝝉) + 𝑁 bl

𝑠 (𝒖⋅𝒏))

= −∫
Σ
𝑝pm(𝒖⋅𝒏) − ∫

Σ
𝜇ℓ−1(𝑁 bl

1 )
−1
𝑁 bl
𝑠 (𝒗ff⋅𝝉) (𝒖⋅𝒏)

− ∫
Σ
𝜇ℓ−1(𝑁 bl

1 )
−1
(𝒗ff⋅𝝉) (𝒖⋅𝝉)
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+ ∫
Σ
(ℓ(𝑁 bl

1 )
−1
𝑁 bl
𝑠

2
∑
𝑗=1

𝑀 𝑗,bl
1

𝜕𝑝pm

𝜕𝑥𝑗
) (𝒖⋅𝒏)

+ ∫
Σ
(ℓ(𝑁 bl

1 )
−1 2
∑
𝑗=1

𝑀 𝑗,bl
1

𝜕𝑝pm

𝜕𝑥𝑗
) (𝒖⋅𝝉) (5.10)

for all 𝒖 ∈ Hff. We introduce the continuous lifting operator 𝐸ff ∶
𝐻 1/2(Γinff,𝐷)

2 → Hff,Σ and split the free-flow velocity 𝒗ff = 𝒗ff0 + 𝐸ff𝒗in,
where 𝒗ff0 ∈ Hff. We make use of this lifting, substitute (5.10) in the weak
formulation (5.8) and get

−∫
Ωff

𝜇∇ (𝐸ff𝒗in) ∶∇𝒖 = ∫
Ωff

𝜇∇𝒗ff0 ∶∇𝒖 − ∫
Ωff

𝑝ff( ∇⋅ 𝒖) − ∫
Σ
𝑝pm(𝒖⋅𝒏)

− ∫
Σ
𝜇ℓ−1(𝑁 bl

1 )
−1
𝑁 bl
𝑠 (𝒗ff0 ⋅𝝉) (𝒖⋅𝒏)

− ∫
Σ
𝜇ℓ−1(𝑁 bl

1 )
−1
(𝒗ff0 ⋅𝝉) (𝒖⋅𝝉)

+ ∫
Σ
(ℓ(𝑁 bl

1 )
−1
𝑁 bl
𝑠

2
∑
𝑗=1

𝑀 𝑗,bl
1

𝜕𝑝pm

𝜕𝑥𝑗
) (𝒖⋅𝒏)

+ ∫
Σ
(ℓ(𝑁 bl

1 )
−1 2
∑
𝑗=1

𝑀 𝑗,bl
1

𝜕𝑝pm

𝜕𝑥𝑗
) (𝒖⋅𝝉) (5.11)

for all 𝒖 ∈ Hff. The weak form of the mass conservation equation given
in (5.1) reads

−∫
Ωff

(∇⋅𝒗ff0 ) 𝑞 = ∫
Ωff

(∇⋅(𝐸ff𝒗in)) 𝑞

for all 𝑞 ∈ Qff.

In order to derive the variational formulation in the porous-medium
domain Ωpm, we multiply (5.2) by a test function 𝜓 ∈ Hpm, integrate over
Ωpm and incorporate the coupling condition (5.3) in the integral over Σ.
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This yields

∫
Ωpm

(𝜇−1𝗞∇𝑝pm) ⋅∇𝜓 + ∫
Σ
(𝒗ff⋅𝒏) 𝜓 = 0

for all 𝜓 ∈ Hpm.

For all 𝑣 = (𝒗, 𝜑), 𝑤 = (𝒘, 𝜓 ) ∈ W and 𝑞 ∈ Qff, we define the following
bilinear forms

A(𝑣, 𝑤) =∫
Ωff

𝜇∇𝒗∶∇𝒘 + ∫
Ωpm

(𝜇−1𝗞∇𝜑) ⋅∇𝜓 − ∫
Σ
𝜑(𝒘⋅𝒏) + ∫

Σ
(𝒗⋅𝒏)𝜓

− ∫
Σ
𝜇ℓ−1(𝑁 bl

1 )
−1
𝑁 bl
𝑠 (𝒗⋅𝝉) (𝒘⋅𝒏) − ∫

Σ
𝜇ℓ−1(𝑁 bl

1 )
−1
(𝒗⋅𝝉) (𝒘⋅𝝉)

+ ∫
Σ
(ℓ(𝑁 bl

1 )
−1
𝑁 bl
𝑠

2
∑
𝑗=1

𝑀 𝑗,bl
1

𝜕𝜑
𝜕𝑥𝑗

) (𝒘⋅𝒏)

+ ∫
Σ
(ℓ(𝑁 bl

1 )
−1 2

∑
𝑗=1

𝑀 𝑗,bl
1

𝜕𝜑
𝜕𝑥𝑗

) (𝒘⋅𝝉) , (5.12)

B(𝑤, 𝑞) = − ∫
Ωff

(∇⋅𝒘)𝑞 , (5.13)

and the linear functionals

F(𝑤) = − ∫
Ωff

𝜇∇ (𝐸ff𝒗in) ∶∇𝒘 , G(𝑞) = ∫
Ωff

(∇⋅ (𝐸ff𝒗in)) 𝑞 . (5.14)

Making use of these notations, the weak formulation of the coupled
Stokes–Darcy problem (5.1)–(5.7) reads:
Find 𝑢 = (𝒗ff0 , 𝑝pm) ∈ W and 𝑝ff ∈ Qff such that

A(𝑢, 𝑤) + B(𝑤, 𝑝ff) = F(𝑤) for all 𝑤 = (𝒘, 𝜓 ) ∈ W , (5.15)

B(𝑢, 𝑞) = G(𝑞) for all 𝑞 ∈ Qff . (5.16)
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5.2 Well-posedness

In this section, we prove the well-posedness of the coupled Stokes–
Darcy problem (5.15)–(5.16) with the generalized interface conditions for
isotropic porous media having permeability 𝗞 = 𝑘𝗜 with 𝑘 > 0 constant.
This leads to the boundary layer constants 𝑁 bl

𝑠 = 0 and𝑀2,bl
1 = 0 (see Sec-

tion 3.2.3). Since the porous-medium domain is periodic the dimensional
permeability has the form 𝑘 = ℓ2�̃� as in (3.101) where the dimensionless
quantity �̃� is given by (2.79). We consider the straight interface Σ to be
horizontal resulting in 𝝉 = 𝒆1 and 𝒏 = 𝒆2 as schematically presented
in Figure 5.1. The case of a vertical fluid–porous interface can be treated
in an analogous way. Under these geometrical assumptions, the bilinear
form A(𝑢, 𝑤) in (5.15) given by (5.12) reduces to

A(𝑢, 𝑤) =∫
Ωff

𝜇∇𝒗ff0 ∶∇𝒘 + ∫
Ωpm

(𝜇−1𝑘∇𝑝pm)⋅∇𝜓

− ∫
Σ
𝑝pm(𝒘⋅𝒏) + ∫

Σ
(𝒗ff0 ⋅𝒏)𝜓

− ∫
Σ
𝜇ℓ−1(𝑁 bl

1 )
−1
(𝒗ff0 ⋅𝝉) (𝒘⋅𝝉)

+ ∫
Σ
ℓ(𝑁 bl

1 )
−1

(𝑀1,bl
1

𝜕𝑝pm

𝜕𝑥1
) (𝒘⋅𝝉) . (5.17)

The first three integrals over Σ in the bilinear form A in (5.17) are under-
stood as scalar products in 𝐻 1/2

00 (Σ) since 𝒗ff0 , 𝒘 ∈ Hff and 𝑝pm, 𝜓 ∈ Hpm
have well-defined traces on Σ. However, this is a priori not the case for
the gradient of the porous-medium pressure ∇𝑝pm ∈ 𝐿2(Ωpm)2 whose
tangential component 𝜕𝑝pm/𝜕𝑥1 appears in the last term in formula (5.17).
Before proving the well-posedness of the coupled Stokes–Darcy problem
with the generalized interface conditions (5.3)–(5.5) in Theorem 5.1, we
provide auxiliary results that are required for the definition of the integral
over Σ involving the term 𝜕𝑝pm/𝜕𝑥1.
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5.2.1 Auxiliary results

Without further argumentation or additional regularity of the porous-
medium pressure 𝑝pm, we have ∇𝑝pm ∈ 𝐿2(Ωpm)2, thus, ∇𝑝pm has no
well-defined trace on the fluid–porous interface Σ. Therefore, the defini-
tion of the last term in (5.17) including the gradient of the porous-medium
pressure (∇𝑝pm⋅𝝉)|Σ = (𝜕𝑝pm/𝜕𝑥1)|Σ needs to be discussed. In the fol-
lowing, we investigate this integral term and show that it should be
understood as a duality pairing between the trace space 𝐻 1/2

00 (Σ) and its

dual space (𝐻 1/2
00 (Σ))

′
.

Since we consider two space dimensions the curl of a scalar function
𝜑 ∈ 𝐻 1(Ωpm) is obtained by rotating its gradient and changing the sign
as follows

curl 𝜑 = (
𝜕𝜑
𝜕𝑥2

, −
𝜕𝜑
𝜕𝑥1

)
⊤
.

For any 𝜑 ∈ 𝐻 1(Ωpm) it is ∇𝜑 ∈ 𝐿2(Ωpm)2 and, thus, we get curl 𝜑 ∈
𝐿2(Ωpm)2. Further, we have ∇⋅ (curl 𝜑) = 0 that yields

curl 𝜑 ∈ 𝐻(div; Ωpm)2 ≔ {𝒖 ∈ 𝐿2(Ωpm)2∶∇⋅𝒖 ∈ 𝐿2(Ωpm)} .

From classical trace results in 𝐻(div; Ωpm)2, see e.g., [154, Lemma 20.2]
and [45, Chapter IX, Theorem 1], we know that there exists a positive
constant 𝐶 > 0 such that

‖curl 𝜑 ⋅𝒏pm‖H−1/2(𝜕Ωpm) ≤ 𝐶‖curl 𝜑‖𝐻(div;Ωpm)2

= 𝐶‖curl 𝜑‖𝐿2(Ωpm)2

= 𝐶‖∇𝜑‖𝐿2(Ωpm)2 ≤ 𝐶‖𝜑‖𝐻 1(Ωpm) . (5.18)

Due to the fact thatΣ ⊊ 𝜕Ωpm, by definition it isH−1/2(𝜕Ωpm) ⊂ (𝐻 1/2
00 (Σ))

′
.
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Therefore, we have (curl 𝜑 ⋅𝒏)|Σ ∈ (𝐻 1/2
00 (Σ))

′
and it holds

‖(curl 𝜑 ⋅𝒏)|Σ‖(𝐻 1/2
00 (Σ))

′ ≤ ‖curl 𝜑 ⋅𝒏pm‖H−1/2(𝜕Ωpm) . (5.19)

Furthermore, we obviously have ∇𝜑 ⋅𝝉 = −curl 𝜑 ⋅𝒏 on Σ, and considering
inequalities (5.18) and (5.19) we conclude that there exists a constant
𝐶tr,𝝉 > 0 such that

‖(∇𝜑 ⋅𝝉)|Σ‖(𝐻 1/2
00 (Σ))

′ ≤ 𝐶tr,𝝉‖𝜑‖𝐻 1(Ωpm) for all 𝜑 ∈ 𝐻 1(Ωpm) . (5.20)

Since we have

∇𝑝pm⋅𝝉 =
𝜕𝑝pm

𝜕𝑥1
on Σ ,

for the considered geometrical setting (Figure 5.1) the last integral in (5.17)
should be interpreted as the duality pairing

∫
Σ
ℓ(𝑁 bl

1 )−1 (𝑀1,bl
1

𝜕𝑝pm

𝜕𝑥1
) (𝒘⋅𝝉)

= ∫
Σ
ℓ
𝑀1,bl

1

𝑁 bl
1

(∇𝑝pm⋅𝝉)(𝒘⋅𝝉)

≔ ℓ
𝑀1,bl

1

𝑁 bl
1

⟨∇𝑝pm⋅𝝉 , 𝒘⋅𝝉⟩
(𝐻 1/2

00 (Σ))
′
, 𝐻 1/2

00 (Σ)
. (5.21)

5.2.2 Well-posedness of the coupled problem

After having defined the integral over Σ involving 𝜕𝑝pm/𝜕𝑥1 in (5.17)
by (5.21), we prove thewell-posedness of theweak formulation (5.15)–(5.16)
corresponding to the Stokes–Darcy problemwith the generalized coupling
conditions.
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Theorem 5.1 (Well-posedness): For homogeneous isotropic porous media
with dimensionless permeability �̃� > 0, the Stokes–Darcy problem given by
(5.15)–(5.16) is well-posed under the following assumption

�̃� > 𝜅pm𝜅ff(𝐶tr,𝝉𝐶tr,ff)2 (
𝑀1,bl

1

2𝑁 bl
1
)
2

. (5.22)

Here, 𝜅𝑖 = 1 + 𝐶𝑖2, where 𝐶𝑖 denotes the constant appearing in the Poincaré
inequality (A2.1) for 𝑖 ∈ {ff, pm}, and 𝐶tr,𝝉, 𝐶tr,ff > 0 are positive constants
coming from the trace inequalities (5.20) and (A2.6) in the Appendix A.2.

Proof. For the proof we use the classical Babuška–Brezzi theory for the
well-posedness of saddle-point problems [24]. The continuity of the linear
functionals F and G in (5.14) is straightforward as well as the continuity
and coercivity of the bilinear form B presented in (5.13). Thus, it remains
to prove the continuity and coercivity of the bilinear formA given by (5.17).
In the following, we first address the continuity of A and show that there
exists a constant 𝐶 > 0 such that

|A(𝑢, 𝑤)| ≤ 𝐶‖𝑢‖W‖𝑤‖W for all 𝑢, 𝑤 ∈ W .

Second, we prove the coercivity of A, i.e., we show that there exists a
constant 𝑐 > 0 such that

A(𝑢, 𝑢) ≥ 𝑐‖𝑢‖2W for all 𝑢 ∈ W .

For proving continuity of the bilinear formAwe use the Cauchy–Schwarz
inequality (A2.5), the Poincaré inequality (A2.1), trace inequalities (A2.6),
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(A2.7), (5.20), and definition (5.21). Hence, we get

|A(𝑢, 𝑤)| = | ∫
Ωff

𝜇∇𝒗ff0 ∶∇𝒘 + ∫
Ωpm

(𝜇−1𝑘∇𝑝pm)⋅∇𝜓

− ∫
Σ
𝑝pm(𝒘⋅𝒏) + ∫

Σ
(𝒗ff0 ⋅𝒏)𝜓

− ∫
Σ
𝜇ℓ−1(𝑁 bl

1 )
−1
(𝒗ff0 ⋅𝝉) (𝒘⋅𝝉)

+ ∫
Σ
ℓ(𝑁 bl

1 )
−1

(𝑀1,bl
1

𝜕𝑝pm

𝜕𝑥1
) (𝒘⋅𝝉) |

≤ 𝜇‖𝒗ff0 ‖𝐻 1(Ωff)2‖𝒘‖𝐻 1(Ωff)2 + 𝜇−1𝑘‖𝑝pm‖𝐻 1(Ωpm)‖𝜓 ‖𝐻 1(Ωpm)

+ 𝐶tr,ff𝐶tr,pm‖𝑝pm‖𝐻 1(Ωpm)‖𝒘‖𝐻 1(Ωff)2

+ 𝐶tr,ff𝐶tr,pm‖𝒗ff0 ‖𝐻 1(Ωff)2‖𝜓 ‖𝐻 1(Ωpm)

+ ℓ𝐶tr,𝝉𝐶tr,ff |
𝑀1,bl

1

𝑁 bl
1

| ‖𝑝pm‖𝐻 1(Ωpm)‖𝒘‖𝐻 1(Ωff)2

+ 𝜇ℓ−1(𝐶tr,ff)2
1

|𝑁 bl
1 |

‖𝒗ff0 ‖𝐻 1(Ωff)2‖𝒘‖𝐻 1(Ωff)2 , (5.23)

where 𝐶tr,ff, 𝐶tr,pm > 0 are coming from the trace inequalities (A2.6)
and (A2.7) provided in the Appendix A.2.

We define

�̃� ≔ max {𝜇−1𝑘, 𝜇+𝜇ℓ−1(𝐶tr,ff)2
1

|𝑁 bl
1 |

, 𝐶tr,ff𝐶tr,pm+ℓ𝐶tr,𝝉𝐶tr,ff |
𝑀1,bl

1

𝑁 bl
1

|} > 0 ,

(5.24)

and using this definition in equation (5.23) yields

|A(𝑢, 𝑤)| ≤ �̃� (‖𝒗ff0 ‖𝐻 1(Ωff)2 + ‖𝑝pm‖𝐻 1(Ωpm)) (‖𝒘‖𝐻 1(Ωff)2 + ‖𝜓 ‖𝐻 1(Ωpm))

≤ 2�̃�‖𝑢‖W‖𝑤‖W . (5.25)
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The second inequality in (5.25) follows from (𝑎 + 𝑏) ≤ √2(𝑎2 + 𝑏2)1/2
for all 𝑎, 𝑏 > 0. We have proven estimate (5.25), thus, bilinear form A is
continuous.

Now, we prove that A is coercive. Taking into account the Poincaré
inequality (A2.1) and the definition of the 𝐻 1-norm

‖𝑢‖𝐻 1(Ω𝑖) = (‖𝑢‖2𝐿2(Ω𝑖)
+ ‖∇𝑢‖2𝐿2(Ω𝑖)2

𝑠)1/2

for 𝑢 ∈ 𝐻 1(Ω𝑖) and 𝑖 ∈ {ff, pm}, we get

‖𝒇 ‖2𝐻 1(Ωff)2
≤ 𝜅ff‖∇𝒇 ‖2𝐿2(Ωff)4

, ‖𝑔‖2𝐻 1(Ωpm)
≤ 𝜅pm‖∇𝑔‖2𝐿2(Ωpm)2

(5.26)

for all 𝒇 ∈ Hff , 𝑔 ∈ Hpm. Making use of inequalities (5.21), (5.26) and (A2.6),

and recalling that 𝑁 bl
1 < 0 and 𝑀1,bl

1 < 0 (see Sections 3.2.2 and 3.2.3), we
obtain

A(𝑢, 𝑢) =∫
Ωff

𝜇∇𝒗ff0 ∶∇𝒗ff0 + ∫
Ωpm

(𝜇−1𝑘∇𝑝pm)⋅∇𝑝pm

− ∫
Σ
𝑝pm(𝒗ff0 ⋅𝒏) + ∫

Σ
(𝒗ff0 ⋅𝒏)𝑝pm⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

− ∫
Σ
𝜇ℓ−1(𝑁 bl

1 )
−1

(𝒗ff0 ⋅𝝉)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

+∫
Σ
ℓ(𝑁 bl

1 )
−1

(𝑀1,bl
1

𝜕𝑝pm

𝜕𝑥1
) (𝒗ff0 ⋅𝝉)

≥ 𝜇‖∇𝒗ff0 ‖2𝐻 1(Ωff)2
+ 𝜇−1𝑘‖∇𝑝pm‖2𝐻 1(Ωpm)

− ℓ
𝑀1,bl

1

𝑁 bl
1

‖(∇𝑝pm⋅𝝉)|Σ‖(𝐻 1/2
00 (Σ))

′ ‖(𝒗ff0 ⋅𝝉)|Σ‖𝐻 1/2
00 (Σ)

≥ 𝜅ff−1𝜇‖𝒗ff0 ‖2𝐻 1(Ωff)2
+ 𝜅−1pm𝜇−1𝑘‖𝑝pm‖2𝐻 1(Ωpm)

− ℓ𝐶tr,𝝉𝐶tr,ff
𝑀1,bl

1

𝑁 bl
1

‖𝑝pm‖𝐻 1(Ωpm) ‖𝒗
ff
0 ‖𝐻 1(Ωff)2 . (5.27)
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We apply the generalized Young’s inequality (A2.3) with 𝑏 = ‖𝒗ff0 ‖2𝐻 1(Ωff)2

and 𝑎 = ℓ𝐶tr,𝝉𝐶tr,ff𝑀
1,bl
1 (𝑁 bl

1 )−1‖𝑝pm‖𝐻 1(Ωpm) to the last term in (5.27). This
yields

A(𝑢, 𝑢) ≥ 𝜅ff−1𝜇‖𝒗ff0 ‖2𝐻 1(Ωff)2
+ 𝜅−1pm𝜇−1𝑘‖𝑝pm‖2𝐻 1(Ωpm)

−
(ℓ𝐶tr,𝝉𝐶tr,ff𝑀

1,bl
1 (𝑁 bl

1 )−1)
2

2𝛿
‖𝑝pm‖2𝐻 1(Ωpm)

− 𝛿
2
‖𝒗ff0 ‖2𝐻 1(Ωff)2

= (𝜅ff−1𝜇 − 𝛿
2
) ‖𝒗ff0 ‖2𝐻 1(Ωff)2

+ (𝜅−1pm𝜇−1𝑘 −
(ℓ𝐶tr,𝝉𝐶tr,ff𝑀

1,bl
1 (𝑁 bl

1 )−1)2

2𝛿
) ‖𝑝pm‖2𝐻 1(Ωpm)

.

Rewriting the dimensional permeability 𝑘 in terms of the nondimensional
quantity �̃�, namely 𝑘 = ℓ2�̃�, we conclude that coercivity of the bilinear
form A is guaranteed when the following conditions hold true

𝛿 < 2𝜅ff−1𝜇 , 𝜅−1pm 𝜇−1�̃� −
(𝐶tr,𝝉𝐶tr,ff𝑀

1,bl
1 (𝑁 bl

1 )−1)2

2𝛿
> 0 . (5.28)

Combining both inequalities in (5.28) we obtain condition (5.22). Thus,
we have proven that A is coercive under the assumption (5.22) on the
dimensionless permeability �̃�.

Theorem 5.1 states that in case of isotropic porous media the Stokes–
Darcy problem with the generalized interface conditions is well-posed
if condition (5.22) is fulfilled. This assumption poses a constraint on the
nondimensional permeability �̃� being greater than the ratio of bound-
ary layer constants (𝑀1,bl

1 /𝑁 bl
1 )2 multiplied by the constants 𝜅ff, 𝜅pm, 𝐶tr,𝝉

and 𝐶tr,ff coming from the inequalities (5.26), (A2.6) and (5.20), respec-
tively. The permeability �̃� as well as the boundary layer constants 𝑁 bl

1
and 𝑀1,bl

1 are computed numerically based on the geometrical configura-
tion of the coupled free-flow and porous-medium system. The constants
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𝜅pm > 1 and 𝜅ff > 1 appearing in condition (5.22) depend on the size
and geometry of the coupled flow domain [23, 124]. However, to the
best of our knowledge, for the constants 𝐶tr,𝝉, 𝐶tr,ff > 0 coming from the
trace inequalities (A2.6) and (5.20), respectively, there exist no estimates.
However, in the following section, we demonstrate that the theoretically
obtained assumption (5.22) is reasonable and not restrictive for many
applications.

Remark 5.2: Note that the permeability �̃� appearing in (5.22) is dimen-
sionless and depends on the pore geometry within the unit cell 𝑌 only. In
particular, assumption (5.22) does not imply that the dimensional perme-
ability 𝑘 = ℓ2�̃� cannot become small.

5.3 Numerical study of theoretical result

In this section, we analyze the validity of condition (5.22) that guarantees
well-posedness of the coupled Stokes–Darcy problemwith the generalized
interface conditions. For the sake of clarity, we reformulate (5.22) as
follows

�̃� > 𝐶𝜅,tr𝑅2, (5.29)

where 𝐶𝜅,tr ≔ 𝜅pm𝜅ff(𝐶tr,𝝉𝐶tr,ff)2 and 𝑅 ≔ 𝑀1,bl
1 /(2𝑁 bl

1 ). We consider five
different geometrical configurations of the coupled flow system, compute
�̃� and 𝑅, and evaluate the resulting restriction on constant 𝐶𝜅,tr. The com-
putations of all effective coefficients are performed using FreeFEM++ [86]
as described in Section 4.3.

Let us first present the geometrical settings to be studied within this
section that only differ in the shape and size of solid obstacles inside the
porous domain. We consider homogeneous isotropic porous media, which
are constructed by the periodic repetition of the scaled unit cell 𝑌 ℓ = (0, ℓ)2.
Such porous structures are fully determined by the characteristic pore
size ℓ and the geometry of the solid part 𝑌s within the unit cell 𝑌. Since
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0.5
1.99e−2
8.25e−4

1

1

𝑌f
𝑌s

𝑌 𝑑∗

0.95
5.59e−5
5.68e−4
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0.4308
1.99e−2
1.66e−4

𝑑∗

0.5
2.66e−2
1.55e−3

𝑑∗
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8.64e−3
1.47e−3

𝑑∗

𝑑∗
�̃�
𝑅2

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5

Table 5.1: Size 𝑑∗ of the solid grains, permeability �̃� and squared ratio
𝑅2 for different porous-medium configurations.

the computable parameters �̃� and 𝑅 appearing in (5.29) are independent
of the pore size ℓ, it is sufficient to provide the geometrical information
for the five considered porous-medium geometries according to the unit
cell 𝑌 (Table 5.1).

Now, we focus on the three constants �̃�, 𝑅 and 𝐶𝜅,tr appearing in condi-
tion (5.29). The nondimensional permeability �̃� is computed based on the
pore geometry within the unit cell 𝑌 by means of homogenization using
formula (2.79). We emphasize here that �̃� is independent of the sharp
interface position. The obtained permeability values �̃� for the considered
geometries are presented in Table 5.1. The ratio 𝑅 includes the boundary
layer constants 𝑁 bl

1 and 𝑀1,bl
1 that are computed by solving the cut-off

boundary layer problems (4.21)–(4.23) and (4.24)–(4.26) and integrating
their solutions afterwards using formulas (4.28) and (4.29), as explained
in Section 4.3. Note that we waive the superscripts 𝑘, 𝑚 and 𝑎 for the
boundary layer constants here, due to clarity, and we give the information
concerning the computational boundary layer stripe in the next paragraph.
In Section 4.3, we also showed that constants 𝑁 bl

1 and 𝑀1,bl
1 include in-

formation about the exact location of the fluid–porous interface. Thus,
a change of the interface position leads to the corresponding change of
the boundary layer constants and, consequently, also to a change of 𝑅.
As mentioned above, constant 𝐶𝜅,tr in condition (5.29), which contains



5.3 Numerical study of theoretical result 173

𝐺1 (�̃� = 1.99e−2)

𝑆0.34 1.00e−1−7.91e−2 −3.94e−1
𝑆0.26 8.01e−2−5.08e−2 −3.14e−1
𝑆0.18 6.15e−2−2.88e−2 −2.34e−1
𝑆0.1 4.32e−2−1.33e−2 −1.54e−1
𝑆0.02 2.87e−2−4.24e−3 −7.38e−2

𝑁 bl
1𝑀1,bl

1 𝑅
𝑦2 = 0

𝑦2 = −1

𝑆0.34
𝑆0.26
𝑆0.18
𝑆0.1
𝑆0.02

Figure 5.2: Boundary layer constants 𝑀bl
1 , 𝑁 bl

1 and ratio 𝑅 for five in-
terface locations (left) and illustration of these interface locations
(right) for geometry 𝐺1.

𝐶tr,𝝉 and 𝐶tr,ff coming from the trace inequalities (A2.6) and (5.20), cannot
be estimated to the best of the authors’ knowledge. Nevertheless, in the
following, we show that there is a nontrivial validity range for constant
𝐶𝜅,tr such that condition (5.29) or, equivalently, (5.22) is fulfilled. For this
purpose, we minimize the ratio 𝑅 of boundary layer constants in (5.29) by
an appropriate choice of the fluid–porous interface location.

For the computation of boundary layer constants we use the cut-off bound-
ary layer stripe 𝑍4,4 comprising 4 solid inclusions in the porous part
(see Section 4.3). We consider different vertical positions of the interface
𝑆𝑎 = (0, 1) × { 𝑑

∗−1
2 + 𝑎} defined in Section 3.2.2, where 𝑎 ≥ 0 denotes the

distance between 𝑆𝑎 and the top of the first row of solid inclusions. For
geometry 𝐺1, five different sharp interface locations are schematically
presented in Figure 5.2 (right). The corresponding values of the boundary
layer constants 𝑁 bl

1 and 𝑀1,bl
1 as well as the ratio 𝑅 are provided in Fig-

ure 5.2 (left). We observe that 𝑅 monotonically decreases as the interface
approaches the top of the solid inclusions, i.e., 𝑅 becomes smaller for
𝑎 → 0 (see also Figure 5.3, left). This correlation between the ratio 𝑅 and
the interface position 𝑆𝑎 does also hold for other geometrical configura-
tions. For the porous-medium geometries presented in Table 5.1 except for
𝐺2 we consider 30 equidistantly distributed interface locations 𝑆𝑎. Based
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5 ⋅ 10−2 0.1 0.15 0.2
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4
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8
⋅10−2

distance, 𝑎

ra
tio

,𝑅

𝐺1
𝐺2
𝐺3
𝐺4
𝐺5

Interface location 𝑆0.02

𝐺1 2.87e−2−4.24e−3 −7.38e−2
𝐺2 2.38e−2−2.95e−3 −6.19e−2
𝐺3 1.29e−2−1.12e−3 −4.35e−2
𝐺4 3.93e−2−7.74e−3 −9.84e−2
𝐺5 3.84e−2−7.56e−3 −9.85e−2

𝑁 bl
1𝑀1,bl

1 𝑅

Figure 5.3: Ratio 𝑅 for geometries 𝐺1 to 𝐺5 computed for different
interface locations at distance 𝑎 from the top of solid obstacles
(left). Boundary layer constants 𝑁 bl

1 , 𝑀1,bl
1 and ratio 𝑅 computed

for interface 𝑆0.02 (right).

on each location we compute the boundary layer constants and obtain
the ratio 𝑅. For geometry 𝐺2 a smaller range for 𝑎 has been used due to
the bigger size of the solid grain. In Figure 5.3 (left), we plot the ratio 𝑅
for the porous-medium geometries 𝐺1 to 𝐺5 shown in Table 5.1 versus the
distance 𝑎. Based on these results, we position the interface as close as
possible to the top of solid inclusions in order to make condition (5.29)
or (5.22), respectively, least restrictive. Since restrictions on the meshing
in FreeFEM++ do not allow us to locate the interface directly on the top
of the first row of solid inclusions, we consider the fluid–porous interface
slightly above the solid obstacles taking 𝑎 = 0.02 for the computation of
the boundary layer constants. We provide the computed values 𝑁 bl

1 and
𝑀1,bl

1 as well as the ratio 𝑅 in Figure 5.3 (right).

For the ease of analysis of condition (5.29), we present the squared ratio
𝑅2 for the interface location 𝑆0.02 next to the nondimensional permeability
�̃� in Table 5.1. For the porous-medium geometries 𝐺1 and 𝐺3, we have
�̃� ≫ 𝑅2. In this case, the constant 𝐶𝜅,tr appearing in condition (5.29) can
be of order 102, that is not restrictive. For the geometrical configurations
𝐺4 and 𝐺5 we get �̃� > 𝑅2 and the constant 𝐶𝜅,tr can be at most of the
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order 10. This is a very mild restriction. However, for geometry 𝐺2 we
obtain �̃� < 𝑅2, that requires 𝐶𝜅,tr < 1 making condition (5.22) a stronger
constraint.

Remark 5.3: For orthotropic porous media, i.e., 𝗞 = diag(𝑘11, 𝑘22) and
𝑁 bl
𝑠 = 𝑀2,bl

1 = 0, the well-posedness of the Stokes–Darcy problem with the
generalized interface conditions can be proven in an analogous way to Theo-
rem 5.1. In this case, we obtain a unique solution to problem (5.15)–(5.16) if
the following assumption is fulfilled

�̃�min > 𝐶𝑅2 , �̃�min = min{ �̃�11, �̃�22 } > 0 .

Remark 5.4: For anisotropic porous media, all boundary layer constants
appearing in the generalized interface conditions (5.3)–(5.5) are nonzero.
Therefore, all integral terms in the general expression (5.12) of the bilinear
form A are present. The additional integral terms in (5.12) in comparison
to (5.17), that are nonzero only for anisotropic media, make proving the
coercivity of A even more challenging than in the isotropic case, where A
is given by (5.17). The proof of well-posedness of the Stokes–Darcy prob-
lem (5.15)–(5.16) for anisotropic porous media is beyond the scope of this
thesis and will be addressed in the future.

Summary

In this chapter, we derived the weak formulation of the Stokes–Darcy
problem with the generalized coupling conditions. We proved the well-
posedness of the coupled problem for isotropic porous media under a
relationship between the nondimensional permeability and the boundary
layer constants appearing in the interface conditions. The theoretically
obtained assumption, which guarantees the existence and uniqueness of
a weak solution to the Stokes–Darcy problem, is analyzed numerically
for several geometrical configurations of the porous domain. We showed
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that the assumption is reasonable and not too restrictive for a wide range
of porous-medium geometries.



6 Model validation





Model validation 6
The content of this chapter is based on the following original articles and
preprints:

[EE3] E. Eggenweiler and I. Rybak. Unsuitability of the Beavers–
Joseph interface condition for filtration problems. J. Fluid Mech.

892 (2020), A10, 19. doi: 10.1017/jfm.2020.194

[EE4] E. Eggenweiler and I. Rybak. Effective coupling conditions for
arbitrary flows in Stokes–Darcy systems. Multiscale Model.

Simul. 19.2 (2021), pp. 731–757. doi: 10.1137/20M1346638

[EE5] F. Mohammadi, E. Eggenweiler, B. Flemisch, S. Oladyshkin, I.

Rybak, M. Schneider, and K. Weishaupt. A surrogate-assisted
uncertainty-aware Bayesian validation framework and its
application to coupling free flow and porous-medium flow.
Comput. Geosci. (in review). 2022. https://arxiv.org/

abs/2106.13639

https://doi.org/10.1017/jfm.2020.194
https://doi.org/10.1137/20M1346638
https://arxiv.org/abs/2106.13639
https://arxiv.org/abs/2106.13639
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[EE6] I. Rybak, C. Schwarzmeier, E. Eggenweiler, and R. Rüde.

Validation and calibration of coupled porous-medium and
free-flow problems using pore-scale resolved models. Com-

put. Geosci. 25.2 (2021), pp. 621–635. doi: 10.1007/

s10596-020-09994-x

[EE7] P. Strohbeck, E. Eggenweiler, and I. Rybak. A modification of
the Beavers–Joseph condition for arbitrary flows to the fluid–
porous interface. Transp. Porous Media (in review). 2022.

https://arxiv.org/abs/2106.15556

As already stated in Chapter 1, the appropriate choice of interface condi-
tions and the correct determination of effective model parameters for the
Stokes–Darcy problem is crucial for accurate numerical simulations of ap-
plications. In this chapter, we validate and calibrate the coupled problem
with different sets of coupling conditions and analyze the applicability of
the considered coupling concepts to various flow directions to the porous
bed. For this purpose we compare the solutions of pore-scale resolved
models, which serve as reference solutions, to macroscale numerical simu-
lation results. First, we study the Stokes–Darcy problem with the classical
interface conditions for unidirectional flows to the porous layer and show
its validity in this case (Section 6.1). Second, we demonstrate that the
Beavers–Joseph coupling condition and also its simplification by Saffman
are unsuitable for general filtration problems with arbitrary flow direc-
tion to the interface (Section 6.2). Third, we validate the Stokes–Darcy
problem with the generalized interface conditions derived in Chapter 3
and highlight the advantages of the new coupling conditions over the
classical ones (Section 6.3).

Below, we summarize the flow models with that we are dealing in this
chapter. For all numerical validation cases we work with the dimen-
sionless form of the flow equations. This is reasonable since we study
coupled flow problems for the validation of mathematical models, and we

10.1007/s10596-020-09994-x
10.1007/s10596-020-09994-x
https://arxiv.org/abs/2106.15556
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do not simulate real world applications, where the dimensions of physical
quantities play a crucial role. Furthermore, we consider porous media
constructed by the periodic repetition of the scaled unit cell 𝜀𝑌 = (0, 𝜀)2
as explained in Section 2.3.2 such that permeability and boundary layer
constants can be computed via homogenization as described in Section 4.3.
The flow region at the pore scale is indicated by Ω𝜀 = Ωff ∪ Ω𝜀

pm and the
macroscopic flow domain is denoted by Ω = Ωff ∪ Ωpm as in Sections 2.3
and 3.1.

Pore-scale model

The flow at the pore scale is described by the Stokes system (2.42)–(2.44)
which reads

− Δ𝒗𝜀 + ∇𝑝𝜀 = 𝟎 , ∇⋅𝒗𝜀 = 0 in Ω𝜀 , (6.1)

𝒗𝜀 = 𝟎 on 𝜕Ω𝜀 ⧵ 𝜕Ω , 𝒗𝜀 = 𝒗 on Γ𝐷 , 𝗧(𝒗𝜀, 𝑝𝜀)𝒏 = 𝒉 on Γ𝑁 . (6.2)

Here, 𝒗 and 𝒉 are prescribed velocity and normal stress on 𝜕Ω = Γ𝐷 ∪ Γ𝑁,
where the subscripts 𝐷 and 𝑁 denote the parts of the boundary where
Dirichlet respective Neumann boundary conditions are applied. Addi-
tionally, if different Dirichlet or Neumann boundary values are specified
on different parts of Γ𝐷 and Γ𝑁, respectively, we label the corresponding
parts of the boundary using superscripts. For example, we define Γwall𝐷
as the external boundary where the Dirichlet condition 𝒗 = 𝟎 is set. The
solution to the pore-scale problem (6.1)–(6.2) serves as a reference solution
in order to validate the corresponding coupled Stokes–Darcy model.

Macroscale Stokes–Darcy models

The flow behavior at the macroscale is modeled by the Stokes–Darcy
problem (2.96)–(2.97):

−Δ𝒗ff + ∇𝑝ff = 𝟎 , ∇⋅𝒗ff = 0 in Ωff , (6.3)
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−∇⋅ (�̃�∇𝑝pm) = 0 in Ωpm , (6.4)

where the dimensionless permeability tensor �̃� is computed using for-
mula (2.79). On the external boundary of the coupled flow domain 𝜕Ω =
Γff,𝐷 ∪ Γff,𝑁 ∪ Γpm,𝐷 ∪ Γpm,𝑁 the following conditions are set

𝒗ff = 𝒗 on Γff,𝐷 , 𝗧(𝒗ff, 𝑝ff)𝒏 = 𝒉 on Γff,𝑁 , (6.5)

𝒑pm = 𝑝 on Γpm,𝐷 , 𝒗pm⋅𝒏 = 𝑣 on Γpm,𝑁 . (6.6)

Additionally, a set of coupling conditions on the fluid–porous interface
Σ has to be applied. In this chapter, we consider two different coupling
concepts for the Stokes–Darcy problem, namely the classical interface
conditions and the generalized coupling conditions. For all validation
cases, the fluid–porous interface Σ is assumed to be horizontal and the
unit tangential respective unit normal vector is taken 𝒏 = 𝒆2 respective
𝝉 = 𝒆1.

The classical set of coupling conditions (2.17)–(2.19) in dimensionless form
is given by

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (6.7)

𝑝pm = −𝒏⋅𝗧(𝒗ff, 𝑝ff)𝒏 on Σ , (6.8)

(𝒗ff − 𝒗pm)⋅𝝉 = 𝜀 √𝐾
𝛼BJ

𝝉⋅∇𝒗ff𝒏 on Σ , (6.9)

where 𝛼BJ > 0 is the dimensionless Beavers–Joseph slip coefficient. In-
stead of condition (6.9) originally proposed by Beavers and Joseph [15]
we also consider the following variations of it: the symmetrized ver-
sion (2.22) of the Beavers–Joseph condition with the rate of strain ten-
sor 𝗗(𝒗ff) = 1

2 (∇𝒗
ff + (∇𝒗ff)⊤) instead of the velocity gradient ∇𝒗ff read-

ing

(𝒗ff − 𝒗pm)⋅𝝉 = 2𝜀 √𝐾
𝛼BJ

𝝉⋅𝗗(𝒗ff)𝒏 on Σ , (6.10)
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and the Beavers–Joseph–Saffman–Jones condition (2.21), where the porous-
medium velocity on the interface is neglected, given by the following
formula

𝒗ff⋅𝝉 = 2𝜀 √𝐾
𝛼BJ

𝝉⋅𝗗(𝒗ff)𝒏 on Σ . (6.11)

We remind that we take √𝐾 = √𝝉⋅�̃�𝝉 appearing in conditions (6.9)–(6.11)
as it is done in, e.g., [EE4, 107, 141, 165]. Choosing another interpreta-

tion of √𝐾 results in an appropriate adjustment of the Beavers–Joseph
parameter 𝛼BJ (see Section 6.1.1, geometry 𝐺4).

In addition to the classical coupling concept comprising (6.7), (6.8) and
one of the conditions (6.9)–(6.11), we study the validity of the generalized
interface conditions (3.95)–(3.97) derived in Chapter 3 for the Stokes–
Darcy coupling. These conditions read

𝒗ff⋅𝒏 = 𝒗pm⋅𝒏 on Σ , (6.12)

𝑝pm = −𝒏⋅𝗧(𝒗ff, 𝑝ff)𝒏 + 𝑁 bl
𝑠 𝝉⋅𝗧(𝒗ff, 𝑝ff)𝒏 on Σ , (6.13)

(𝒗ff + 𝜀2�̃�int∇𝑝pm)⋅𝝉 = −(𝜀𝑵 bl⋅𝝉)(𝝉⋅∇𝒗ff𝒏) on Σ , (6.14)

where𝑁 bl
𝑠 is a dimensionless constant,𝑵 bl is a dimensionless constant vec-

tor and �̃�int denotes the interfacial permeability tensor defined in (3.115).
All effective coefficients 𝑁 bl

𝑠 , 𝑵 bl and �̃�int are obtained from the solutions
of boundary layer problems as explained in Section 4.3. Furthermore, we
introduce the interfacial porous-medium velocity 𝒗pmint = −𝜀2�̃�int∇𝑝pm.

In the following sections, we validate the macroscale Stokes–Darcy model
(6.3)–(6.6), either completed with the classical coupling conditions (6.7),
(6.8) and one of (6.9)–(6.11) or the generalized conditions (6.12)–(6.14),
by comparing the corresponding macroscale simulation results to the
ones for the pore-scale resolved model (6.1)–(6.2). For the purpose of
comparison, we evaluate macroscale velocity and pressure profiles along
different vertical and horizontal cross sections within the coupled domain
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according to their agreement with the pore-scale profiles. Additionally,
for some validation cases, we compute the relative errors 𝜖𝑓 , 𝑐 between the
pore-scale and macroscale solutions that enables quantitative comparison
of competing Stokes–Darcy models. The relative error along the fixed
cross section 𝑥1 = 𝑐 is defined as follows

𝜖𝑓 , 𝑐 =
‖𝑓 (𝑐, ⋅) − 𝑓 𝜀(𝑐, ⋅)‖

‖𝑓 𝜀(𝑐, ⋅)‖
, ‖𝑓 (𝑐, ⋅)‖2 = ∫

ℎ

−𝐻
𝑓 (𝑐, 𝑥2)2 d𝑥2 , (6.15)

where 𝑓 𝜀 denotes the numerical solution to the pore-scale resolved prob-
lem, 𝑓 is the solution to the macroscale problem, ℎ is the height of the
free-flow region and 𝐻 the height of the porous-medium domain with
respect to the 𝑥2-axis.

Numerical methods used for solving the pore-scale and macroscale prob-
lems, respectively, and for computing the effective model parameters are
described in Section 4. If not stated otherwise, the pore-scale resolved
simulations are performed by the use of FreeFEM++ [86] with Taylor–
Hood finite elements and an adaptive mesh (see Section 4.1). The effective
properties (permeability and boundary layer constants) are also computed
using the software FreeFEM++ (see Section 4.3). The macroscale prob-
lem is discretized using the finite volume method on staggered grids and
solved using our in-house C++ code in a monolithic way (see Section 4.2).
Details on the mesh size are given in the corresponding sections for each
flow problem.

6.1 Classical coupling conditions for
unidirectional flows to the interface

In this section, we consider the Stokes–Darcy problem (6.3)–(6.6) with
the classical coupling conditions including the conservation of mass
across the interface (6.7), the balance of normal forces (6.8) and one of
the equations (6.10)–(6.11). We validate and calibrate the macroscale cou-
pled problems for unidirectional flows, i.e., parallel or perpendicular to
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the fluid–porous interface, and demonstrate the sensitivity of the cou-
pled Stokes–Darcy model to the choice of effective model parameters
(Beavers–Joseph slip coefficient 𝛼BJ, exact interface position). For flows
parallel to the porous medium, we show that the optimal value of the
Beavers–Joseph slip coefficient can be determined, and that the typically
taken value 𝛼BJ = 1 is not appropriate for many flow problems. For per-
pendicular flows to the porous layer we demonstrate that the value of
the parameter 𝛼BJ is not important, however, the sharp interface location
influences the macroscopic flow behavior severely.

In Section 6.1.1, we study pressure driven fluid flow parallel to the in-
terface and show the validity of the original Beavers–Joseph coupling
condition (6.10) for the Stokes–Darcy model, however, only if the correct
value of the slip coefficient 𝛼BJ is applied. In Section 6.1.2, we investigate
lid driven cavity over a porous bed, where the fluid flows almost parallel
to the interface, and demonstrate the sensitivity of the coupled macroscale
model to the effective coefficient 𝛼BJ and the exact location of the sharp
fluid–porous interface. In Section 6.1.3, we study forced infiltration of a
fluid into a porous medium, where the flow direction is perpendicular to
the porous layer and the tangential component of velocity is almost zero.
We show that in this case the exact position of the fluid–porous interface
is important, but the coupling condition for the tangential velocity com-
ponent has negligible influence on the performance of the Stokes–Darcy
model.

6.1.1 Pressure driven flow

In this section, we study the fluid flow parallel to the porous layer that is
driven by a pressure gradient. We show that the Beavers–Joseph coupling
condition (6.10) is suitable in this case, i.e., it is possible to determine
𝛼BJ > 0 such that microscale and macroscale simulation results are in
good agreement. Furthermore, we consider different pore geometries
to analyze the dependency of the Beavers–Joseph parameter 𝛼BJ on the
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Σ

microscale
interface
roughness

Figure 6.1: Schematic depiction of microscale interface roughness in
case of geometry 𝐺1.

microscale geometrical information (porosity, permeability, arrangement
of solid grains and microscale interface roughness).

We consider the sharp fluid–porous interface Σ = (0, 1) × {0} separat-
ing the free-flow region Ωff = (0, 1) × (0, 0.5) from the porous-medium
domain Ωpm = (0, 1) × (−0.5, 0). The latter is constructed by 20 × 10
periodically distributed solid inclusions, which are located in the way
that the fluid–porous interface is tangent to the top of the first row of
solid grains. This interface position is most often considered in case
of the classical interface conditions, e.g., [15, EE3, 106, 117]. In order
to analyze the influence of microscale interface roughness (Figure 6.1),
arrangement of solid grains, permeability �̃� and porosity 𝜙 on the Stokes–
Darcy model (6.3)–(6.8), (6.10), we study six porous-medium geometrical
configurations characterized by different shapes of solid grains (circular,
elliptical, rectangular) and different type of arrangements (in-line, stag-
gered). The unit cells 𝑌 = (0, 1)2 corresponding to the considered pore
geometries are presented in Table 6.1. Geometries 𝐺1 and 𝐺3 lead to the
same permeability �̃� = �̃�11𝗜, similar porosity 𝜙, but to different microscale
interface roughness. Geometries 𝐺1, 𝐺2 and 𝐺4 are constructed based on
the same type of solid inclusions (circular), however, the grains are either
arranged in a different manner or have different sizes that result in differ-
ent permeability and porosity values. Geometries 𝐺1 and 𝐺4 respective 𝐺5
and 𝐺6 yield the same porosity 𝜙 but different permeability tensors �̃�.

To describe pressure driven flow from the pore-scale perspective, we use
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𝑌s
𝑌f

1.99e−2
0

1.99e−2
0.804

5.67e−4
0

5.67e−4
0.400

1.99e−2
0

1.99e−2
0.814

5.63e−3
0

4.44e−3
0.804

1.23e−2
2.69e−3
1.23e−2

0.749

1.23e−2
−2.69e−3
1.23e−2

0.749

�̃�11
�̃�12
�̃�22
𝜙

𝑌

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6

Table 6.1: Unit cells 𝑌 = 𝑌f ∪ 𝑌s for the considered porous-medium
geometries 𝐺1 to 𝐺6 in case of pressure driven flow.

the Stokes equations (6.1)–(6.2) with the following boundary conditions

𝒗 = 𝟎 on Γ𝐷 , 𝒉 = (0, −𝑝in)⊤ on Γin𝑁 , 𝒉 = 𝟎 on Γout𝑁 , (6.16)

where Γin𝑁 = {0} × (−0.5, 0.5), Γout𝑁 = {1} × (−0.5, 0.5), Γ𝐷 = 𝜕Ω⧵ (Γin𝑁 ∪ Γout𝑁 )
and 𝑝in = 31.75 such that max𝒙∈Ωff

|𝑣 𝜀1(𝒙)| ≈ 1.0. At the macroscale, the
flow is described by the Stokes–Darcy problem (6.3)–(6.8), (6.10) where

𝒗 = 𝟎 on Γff,𝐷 , 𝑣 = 0 on Γpm,𝑁 , (6.17)

𝒉 = (0, −𝑝in)⊤ on Γinff,𝑁 , 𝑝 = 𝑝in on Γinpm,𝐷 , (6.18)

𝒉 = 𝟎 on Γoutff,𝑁 , 𝑝 = 0 on Γoutpm,𝐷 . (6.19)

We set Γff,𝐷 = Γ𝐷 ∩ 𝜕Ωff, Γpm,𝑁 = Γ𝐷 ∩ 𝜕Ωpm, Γ
in/out
𝑁 ,ff = Γin/out𝑁 ∩ 𝜕Ωff and

Γin/outpm,𝐷 = Γin/out𝑁 ∩ 𝜕Ωpm. Boundary conditions (6.16) and (6.17)–(6.19),
respectively, lead to a coupled flow system, where the pressure field is
linear and the normal velocity component is zero 𝒗ff⋅𝒆2 = 0 in Ωff. We
note that due to the latter fact the original Beavers–Joseph coupling
condition (6.9) is identical to its symmetrized version (6.10) proposed by
Jones. Since the macroscale pressure and the normal velocity component
do not dependent on the choice of the Beavers–Joseph parameter for this
flow problem, we only analyze the tangential velocity component for the
determination of the optimal slip coefficient 𝛼BJ.
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In order to find the optimal value of the Beavers–Joseph parameter 𝛼BJ
with respect to geometries 𝐺1 to 𝐺6 we identify the macroscale model
that agrees best with the pore-scale resolved model. For this purpose, we
minimize the relative error (6.15) between the microscale and macroscale
numerical simulation results using an efficient two-level numerical algo-
rithm developed in [EE7] by the coauthor Paula Strohbeck. The proposed
two-level algorithm involves Clough–Tocher interpolation and simulated
annealing. In Table 6.2 we provide the computed relative errors (6.15)
for the typically used value 𝛼BJ = 1 and the determined optimal pa-
rameter 𝛼optBJ for the six considered porous-medium geometries depicted
in Table 6.1.

For the solution of the microscale problem (6.1)–(6.2), (6.16) we use a
grid with approximately 300 000 triangular elements in case of geometry
𝐺1. To compute the corresponding permeability we solve the cell prob-
lems (2.74)–(2.76) using a mesh that consists of approximately 35 000
triangular elements. For solving the macroscale Stokes–Darcy prob-
lem (6.3)–(6.8), (6.10), (6.17)–(6.19) we take the grid size ℎ𝑥 = ℎ𝑦 = 1/800
to construct the Cartesian staggered grid.

Geometry 𝐺1

We consider an isotropic porous medium which is constructed by in-line
arranged circular solid inclusions as presented in Figure 6.2(a). This yields
the characteristic pore size 𝜀 = 1/20. The radius of the inclusions with
respect to the unit cell 𝑌 is taken 𝑟 = 0.25. The permeability and porosity
values corresponding to geometry 𝐺1 are presented in Table 6.1. We
provide the pore-scale velocity field according to problem (6.1)–(6.2), (6.16)
in Figure 6.2(a). Using the two-level numerical algorithm developed
in [EE7] we determine 𝛼optBJ = 2.8 as the optimal value of the Beavers–
Joseph parameter for geometry 𝐺1. The computed relative errors between
the pore-scale and macroscale simulation results for the optimal value
𝛼optBJ = 2.8 and the standard value 𝛼BJ = 1 are presented in Table 6.2.
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Figure 6.2: (a) Pore-scale velocity field and (b) velocity profiles of
the tangential component for pressure driven flow in case of
geometry 𝐺1.

We observe that taking the most accurate value 𝛼optBJ reduces the error
between the pore-scale and macroscale solution by factor 8 compared to
the typically used 𝛼BJ = 1. In order to visualize the difference between
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the macroscale models with the two different values of Beavers–Joseph
parameter, we provide macroscale velocity profiles for 𝛼BJ = 1 (profile:
SD (𝛼BJ = 1)) and 𝛼optBJ = 2.8 (profile: SD (𝛼optBJ = 2.8)) and compare them
to the pore-scale resolved velocity (profile: pore-scale) in Figure 6.2(b).
We observe that the macroscale profile for 𝛼BJ = 1 does not fit to the
microscale velocity profile, whereas the macroscale model with 𝛼optBJ = 2.8
provides excellent agreement with the pore-scale results.

Geometry 𝐺2

For geometry 𝐺2 we study the same shape of solid inclusions as for geom-
etry 𝐺1 and the same type of arrangement (in-line) leading to 𝜀 = 1/20,
however, we consider circular solid inclusions having a bigger radius,
i.e., 𝑟 = √(1 − 𝜙)/𝜋. Hence, we constructed a porous medium that has
lower porosity (𝜙 = 0.4) and lower permeability (�̃�11 = 5.67e−4) in com-
parison to 𝐺1 (see Table 6.1). We determine the optimal value 𝛼optBJ = 0.5
of the Beavers–Joseph parameter for the geometrical configuration 𝐺2
(Table 6.2). When comparing the optimal values of the Beavers–Joseph
slip coefficient for geometries 𝐺1 and 𝐺2 we conclude that this coefficient
highly depends on the porosity and permeability of the porous structure,
as expected and already noticed in [15]. From Table 6.2 we observe that
for geometry 𝐺2, where the porosity and permeability is low, the choice
𝛼BJ = 1 does also provide reasonable macroscale simulation results. Nev-
ertheless, the optimal value 𝛼optBJ = 0.5 yield a better performance of the

Stokes–Darcy model. We note that in [141] the value 𝛼optBJ = 0.5 is also
found to be more suitable than the standard value 𝛼BJ = 1 considering the
same pore geometry 𝐺2 for a different flow problem.

Geometry 𝐺3

We construct a porous medium that has the same permeability as ge-
ometry 𝐺1, but that is characterized by different interface roughness.
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Therefore, we consider the porous-medium domain Ωpm consisting of
in-line arranged squared solid inclusions (𝜀 = 1/20) having side length
𝑑 = 0.2154 with respect to 𝑌. This yields an isotropic porous medium for
which we present the permeability and porosity values in Table 6.1. Be-
sides identical permeability values we observe that geometries 𝐺1 and 𝐺3
have almost the same porosity. Thus, with geometry 𝐺3 we analyze the
dependency of the Beavers–Joseph parameter 𝛼BJ on the pore-scale in-
terface roughness. We determine the optimal value 𝛼optBJ = 7.1 for this
porous-medium geometrical configuration (Table 6.2) that is noticeably
bigger than the value 𝛼BJ = 2.8 which was found to be optimal for geom-
etry 𝐺1. The error (6.15) between the macroscale and pore-scale model
is reduced by factor 14 when applying 𝛼optBJ = 7.1 instead of 𝛼BJ = 1 in
coupling condition (6.10). Based on these results we conclude that the
Beavers–Joseph coefficient 𝛼BJ is highly affected by the microscale surface
roughness.

Geometry 𝐺4

Next, we study a porous medium having the same microscale interface
roughness and the same porosity as geometry 𝐺1 but a different arrange-
ment of solid grains leading to a different permeability tensor �̃�. We
consider the porous domain Ωpm made of circular solid inclusions with
radius 𝑟 = 0.125 in 𝑌 that are distributed in a staggered manner (Ta-
ble 6.1). This yields the characteristic pore size 𝜀 = 1/10, and thus, the
radius 𝑟 𝜀 = 𝜀 𝑟 of the solid grains within the flow domain Ω𝜀 is exactly
the same as in case of 𝐺1. For the geometrical configuration 𝐺4 we ob-
tain an orthotropic permeability tensor �̃� = diag(�̃�11, �̃�22), where the
permeability values �̃�11 ≠ �̃�22 are given in Table 6.1. Using the two-level
numerical algorithm from [EE7] we determine 𝛼optBJ = 3.0 as the optimal
Beavers–Joseph parameter for geometry 𝐺4. This optimal value provides
a relative error (6.15) that is 10 times smaller than in case of the typically
applied 𝛼BJ = 1. We observe that although the interface roughness and
the porosity of geometries 𝐺1 and 𝐺4 are identical we obtain optimal
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values of the Beavers–Joseph slip coefficient that are not exactly the same.
Noting that the value �̃�11 for geometry 𝐺4 is different from �̃�11 for geome-

try 𝐺1, we analyze the ratio 𝜀 √𝐾𝛼−1BJ appearing in condition (6.10), where

we used √𝐾 = √�̃�11. We observe that for both geometrical configura-

tions 𝐺1 and 𝐺4 we have 𝜀 √𝐾𝛼−1BJ ≈ 0.0025. Moreover, we also consider

√𝐾 = √(�̃�11 + �̃�22)/2 in the Beavers–Joseph interface condition (6.10) and

determine 𝛼optBJ = 2.8 to be the optimal model parameter in this case. Thus,

taking √𝐾 = √(�̃�11 + �̃�22)/2 in (6.10) we obtain the same optimal value of
the Beavers–Joseph parameter 𝛼BJ for geometry 𝐺4 as for geometry 𝐺1.
Based on these results we claim that the type of arrangement of the solid
grains within the porous medium (in-line or staggered) has negligible
influence on the optimal choice for the Beavers–Joseph parameter, if the
interface roughness is kept the same.

Geometries 𝐺5 and 𝐺6

We consider two anisotropic porous media with full permeability ten-
sors �̃�. The porousmedia are composed by 20×10 elliptical solid inclusions
arranged in-line (𝜀 = 1/20) tilted to the right (Table 6.1, geometry 𝐺5) and
tilted to the left (Table 6.1, geometry 𝐺6). The boundary of a solid grain
within the unit cell 𝑌 for the two pore geometries 𝐺5 and 𝐺6 is described by
the ellipse with semi-axes 𝑟𝑏 = 0.4 and 𝑟𝑐 = 0.2, with the center at (0.5, 0.5)
and which is rotated clockwise and counter-clockwise by 45∘, respectively.
Geometries 𝐺5 and 𝐺6 lead to different permeability values �̃�12 (Table 6.1),

however, the value of √𝐾 = √�̃�11 in the Beavers–Joseph condition (6.10)
is the same. Both geometries provide the same interface roughness, and
we obtain the same optimal value of the Beavers–Joseph slip coefficient
𝛼optBJ = 2.0 (Table 6.2).

In Table 6.2, we summarize the optimal Beavers–Joseph parameters 𝛼optBJ
for the considered geometries 𝐺1 to 𝐺6 determined via the two-level
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Geometry 𝛼optBJ Error 𝜖𝑣1,0.5 for 𝛼
opt
BJ Error 𝜖𝑣1,0.5 for 𝛼BJ = 1

𝐺1 2.8 3.401e−3 2.794e−2
𝐺2 0.5 2.838e−3 6.941e−3
𝐺3 7.1 2.632e−3 3.758e−2
𝐺4, √𝐾 = √�̃�11 3.0 4.092e−3 3.089e−2

𝐺4, √𝐾 = √
�̃�11+�̃�22

2
2.8 4.098e−3 2.844e−2

𝐺5 2.0 2.901e−3 1.738e−2
𝐺6 2.0 2.901e−3 1.738e−2

Table 6.2: Optimal Beavers–Joseph parameters 𝛼optBJ and relative
errors between the pore-scale and macroscale simulation results
𝜖𝑣1,0.5 given in (6.15) for pressure driven flow and different porous-
medium geometries.

numerical algorithm developed in [EE7] for pressure driven flow. In
addition, we provide the relative errors 𝜖𝑣1,0.5 for the tangential velocity
in case 𝛼optBJ respective 𝛼BJ = 1 was considered in equation (6.10) for
the macroscale model. We observe that taking the most optimal value
of the Beavers–Joseph slip coefficient in interface condition (6.10) or,
equivalently, in (6.9) results in relative errors between the microscale
and macroscale solution given by (6.15) being lower than 0.5% for all
considered geometries. However, when taking 𝛼BJ = 1 in condition (6.10)
we obtain relative errors up to 3.8%. For many applications it is important
to keep the error to a minimum in order to perform numerical simulations
as accurately as possible, e.g., in case the coupled model is used to optimize
microfluidic experiments [156]. Thus, in case that the classical interface
conditions are applied for coupling the Stokes and Darcy flow equations
the correct choice of 𝛼BJ is crucial.

The study of pressure driven flow for geometries 𝐺1 to 𝐺6 showed that
the classical coupling conditions are suitable and that the optimal value
of the Beavers–Joseph parameter 𝛼BJ can be determined. We observe
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that this parameter is dependent on the microscale interface roughness,
permeability and porosity. In contrast, the dependence of 𝛼BJ on the type
of arrangement of solid grains within the porous structure (staggered and
in-line) is minor. For this test case, we considered the interface position
suggested by Beavers and Joseph [15] and also considered in [106, 117], i.e.,
tangent to the top of solid grains, and did not investigate the dependence
of 𝛼BJ on the exact position of the sharp interface. This aspect is discussed
in Sections 6.1.2 and 6.1.3.

6.1.2 Lid driven cavity over porous bed

In this section, we study lid driven cavity over a porous bed and analyze
the validity of the Stokes–Darcy problem with the classical coupling
concept including the Beavers–Joseph–Saffman–Jones condition (6.11).
More precisely, we investigate the performance of the coupled macroscale
model (6.3)–(6.8), (6.11) with respect to different locations of the fluid–
porous interface Σ and different values of the Beavers–Joseph parameter
𝛼BJ considering the porous-medium geometries presented in Figure 6.3.

𝑌s
𝑌f

𝑌s
𝑌f

Σt

Σb

Σd

Σtt

Σbb

Figure 6.3: Schematic pore-scale setting, unit cell 𝑌 = (0, 1)2 and
different interface locations Σ𝑖, 𝑖 ∈ {b, bb, d, t, tt} for the isotropic
(left) and orthotropic (right) porous medium.
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We consider the macroscopic flow domain Ω = (0, 1) × (−0.5, 1) consist-
ing of the free-flow region Ωff and the porous part Ωpm. We study two
geometrical configurations of the porous structure: an isotropic porous
medium with in-line arranged solid inclusions (Figure 6.3, left) and an
orthotropic medium, where the obstacles are arranged in a staggered
manner (Figure 6.3, right). These porous media are constructed by 40 × 20
circular solid inclusions yielding the characteristic pore size 𝜀 = 1/40 in
the isotropic case and 𝜀 = 1/20 in the orthotropic case. For both porous
structures the porosity is 𝜙 = 0.4 and the radius of the circular solid
grains within the unit cell 𝑌 is 𝑟 = √(1 − 𝜙)/𝜋. The permeability tensor
�̃� is computed numerically by means of homogenization theory using
formula (2.79) and the entries �̃�11, �̃�12 and �̃�22 are presented in Table 6.3
for the two geometries.

The fluid–porous interface Σ is an idealized representation of the interfa-
cial region between the free-flow region and the porous medium where
the properties of the medium, as well as the fluid velocity and pressure,
encounter strong but nevertheless continuous variations. Beavers and
Joseph [15] already noted that the exact position of the sharp interface
is ambiguous. They defined the line tangent to the uppermost row of
solid obstacles as the ’nominal’ interface (blue line in Figure 6.3) and
considered this interface location in their studies. In the literature the
interface position is typically assumed to lie within the range of the order
of characteristic pore size 𝜀 from the nominal interface [10, 35, 36]. For the
Stokes–Darcy model (6.3)–(6.8), (6.11) we consider five different locations
of the fluid–porous interface (Figure 6.3) within the typical range: Σbb at
𝑥2 = −0.025, Σb at 𝑥2 = −0.01, Σt at 𝑥2 = 0.01, Σtt at 𝑥2 = 0.025 and Σd at
𝑥2 = 0, which is the line tangent to the first row of solid inclusions. In the
definition of interface and boundary conditions Σ stands for any choice
of Σ𝑖, 𝑖 ∈ {bb, b, d, t, tt}.

Fluid flow at the pore scale is described by the nondimensional Stokes
equations (6.1)–(6.2) completed with the following boundary conditions

𝒗 = (1, 0)⊤ on Γ𝐷 , 𝒗 = 𝟎 on 𝜕Ω ⧵ Γ𝐷 , (6.20)
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where Γ𝐷 = (0, 1) × {1}. Moreover, to define the pressure uniquely we
impose ∫Ωff

𝑝𝜀 d𝒙 = 0. The boundary conditions presented in (6.20) yield
lid driven cavity flow over a porous medium, where the fluid flows parallel
to the interface near the horizontal middle of the coupled domain. To
obtain the corresponding macroscale model, we use equations (6.3)–(6.6)
and set the following conditions on the external boundary 𝜕Ω:

𝒗 = (1, 0)⊤ on Γ𝐷,ff , 𝒗 = 𝟎 on 𝜕Ωff ⧵ (Γ𝐷,ff ∪ Σ) ,
𝑣 = 0 on 𝜕Ωpm ⧵ Σ ,

(6.21)

together with the constraint for the pressure ∫Ωff
𝑝ff d𝒙 = 0, and for

Γ𝐷,ff = Γ𝐷. In addition to the boundary conditions specified in (6.21)
coupling conditions (6.7), (6.8) and (6.11) are applied on the fluid–porous
interface.

This section is based on [EE6], where we use the trial and error method to
identify the parameter 𝛼BJ ∈ {0.1, 0.2, … , 4} and the interface location Σ𝑖,
𝑖 ∈ {b, bb, d, t, tt}, that yield the Stokes–Darcy model, which provides
numerical simulation results that are in the best agreement with the pore-
scale results. Some of our findings are later confirmed using the two-level
numerical algorithm developed in [EE7].

The pore-scale problem (6.1)–(6.2), (6.20) is solved using the lattice Boltz-
mann method (LBM). The LBM simulations have been performed by the
coauthors Christoph Schwarzmeier and Ulrich Rüde (Friedrich-Alexander-
Universität Erlangen-Nürnberg) using the open-source software frame-
workwaLBerla [13] (www.walberla.net). The cell problems (2.74)–(2.76)
are solved using FreeFEM++ with an adaptive mesh and approximately
40 000 elements. For the discretization of the macroscale problem we use
our in-house C++ code taking the grid size ℎ𝑥 = ℎ𝑦 = 1/800.

Isotropic porous medium

We study the sensitivity of the macroscale model (6.3)–(6.6), (6.21) with
coupling conditions (6.7), (6.8) and (6.11) to the location of the sharp fluid–

www.walberla.net
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𝑌s
𝑌f

�̃�11 5.67e−4
�̃�12 0
�̃�22 5.67e−4

𝑌f𝑌s

�̃�11 4.15e−4
�̃�12 0
�̃�22 1.33e−4

Table 6.3: Permeability for the isotropic (left) and orthotropic (right)
porous medium.

porous interface and to the Beavers–Joseph parameter 𝛼BJ considering
the isotropic porous medium (Figure 6.3, left). We make cross sections
in the horizontal middle of the coupled domain, at 𝑥1 = 0.5 (between
two columns of solid inclusions) and at 𝑥1 = 0.4875 (intersecting solid
inclusions), where the flow is almost parallel to the fluid–porous interface,
and in the interfacial zone at 𝑥2 = 0. Note that the velocity profiles corre-
sponding to the pore-scale resolved model (profile: pore-scale) fluctuate
in the porous medium and near the interface (Figure 6.4(b)) due to the
presence of solid inclusions. Since the Stokes–Darcy model is an upscaled
formulation of the pore-scale problem it does not see the microscopic de-
tails. Hence, to guarantee a fair and reasonable comparison of microscale
and macroscale numerical simulation results, we average the pore-scale
velocity whenever it is necessary.

In Figure 6.4(a) we provide profiles of the tangential velocity component
corresponding to the pore-scale problem (6.1)–(6.2), (6.20) and Stokes–
Darcy problem (6.3)–(6.8), (6.11), (6.21) for different values of the Beavers–
Joseph slip coefficient 𝛼BJ at 𝑥1 = 0.5. We consider the interface Σd
positioned tangent to the first row of solid obstacles as in [15]. The best
agreement between macroscale and pore-scale resolved simulation results
is obtained for 𝛼BJ = 0.5 (profile: SD, 𝛼BJ = 0.5). In [EE6], the same
observation is also made for other vertical cross sections.

To demonstrate the sensitivity of the coupled Stokes–Darcy model to the
choice of 𝛼BJ in the Beavers–Joseph–Saffman–Jones condition (6.11), we
evaluate cross sections for the tangential velocity component along the
fluid–porous interface at 𝑥2 = 0. In Figure 6.4(b) we present macroscale ve-
locity profiles for different values of the Beavers–Joseph slip coefficient 𝛼BJ
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and the pore-scale velocity profile resulting from the LBM simulations,
that fluctuates due to the presence of solid inclusions. In this case, averag-
ing of the pore-scale simulation results is needed. The averaging has been
performed by the coauthor Christoph Schwarzmeier who used a simple
unweighted moving average of 50 values, i.e., lattice cells, to filter the low
and high frequency components of the pore-scale velocity. For details on
the pore-scale averaging we refer to [EE6]. In addition to the macroscale
and LBM velocity profiles we also provide the profile for the tangential
component of the averaged pore-scale velocity (profile: pore-scale (avg.))
in Figure 6.4(b). Here, it is clearly visible that the macroscale velocity
profile with 𝛼BJ = 0.5 fits well to the averaged microscale result, whereas
the profile according to the standard value 𝛼BJ = 1 does not agree. This
finding confirms the results from Section 6.1.1 that the typically used
value for the Beavers–Joseph parameter 𝛼BJ = 1 is in general not the most
accurate choice.

We verify our findings later by applying the two-level numerical algorithm
that is developed in [EE7]. We determine 𝛼optBJ = 0.4 as the optimal
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Figure 6.4: Velocity profiles of the tangential component for the lid
driven cavity case (a) at 𝑥1 = 0.5 and (b) at 𝑥2 = 0 for different
values of the Beavers–Joseph slip coefficient 𝛼BJ in case of the
isotropic porous medium.

Beavers–Joseph parameter for lid driven cavity flow and the isotropic
porous medium (Figure 6.3, left). We note that the value 𝛼BJ = 0.5, which
we found to be the best choice using the trial and error method [EE6],
is very close to the optimal parameter 𝛼optBJ = 0.4. Furthermore, the
choice 𝛼BJ = 0.5 leads to a relative error between the pore-scale and
macroscale simulation results given by (6.15) that is similar to the one
for 𝛼optBJ = 0.4. The errors for the two different values of the Beavers–
Joseph parameter are provided in Table 6.4.

To evaluate the dependence of the coupled Stokes–Darcy model on the
exact position of the sharp fluid–porous interface, we study further inter-
face locations in addition to Σd, namely Σbb, Σb, Σt and Σtt. In Figure 6.5,
we present the tangential and normal velocity profiles considering the five
different positions of the fluid–porous interface and 𝛼BJ = 0.5, which we
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Value of the Beavers–Joseph parameter Error 𝜖𝑣1,0.5

𝛼BJ = 0.4 1.071e−3
𝛼BJ = 0.5 1.237e−3

Table 6.4: Relative errors between the pore-scale and macroscale
simulation results 𝜖𝑣1,0.5 given in (6.15) for lid driven cavity over
porous bed and the isotropic porous medium considering different
values of the Beavers–Joseph parameter.

previously found to be the best choice for the Beavers–Joseph parameter.
The velocity profiles related to the Stokes–Darcy models differ from one
another especially in the interfacial zone but also in the free-flow region.
From Figure 6.5(a) we observe that the best fit of the macroscale profile
to the pore-scale resolved simulation result for the tangential velocity
component is obtained for the interface Σd located directly on top of the
first row of solid inclusions. This is what we expected, since Σd was
considered earlier when we determined 𝛼BJ = 0.5 as the optimal value
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Figure 6.5: Velocity profiles of the (a) tangential and (b) normal
component for the lid driven cavity case for different locations of
the sharp interface in case of the isotropic porous medium.

for the slip coefficient. Therefore, if one considers an interface position
different from Σd, the model parameter 𝛼BJ needs be adjusted such that
pore-scale and macroscale simulation results fit best. This finding reveals
that the Beavers–Joseph parameter is dependent on the exact interface
location. In Figure 6.5(b) we provide profiles corresponding to the normal
velocity component. Again, we observe that the best agreement between
the macroscale and pore-scale profiles is obtained in case the interface
position Σd is considered for the Stokes–Darcy model.

Based on our studies, we recommend locating the fluid–porous interface
tangent to the uppermost row of solid obstacles if the classical inter-
face conditions (6.7), (6.8) and (6.11) are used for the coupling of Stokes
and Darcy flow equations. We recall that this interface position is also
considered in the work of Beavers and Joseph [15] and in [106, 152].



202 6 Model validation

Orthotropic porous medium

Since the Beavers–Joseph slip coefficient 𝛼BJ contains geometrical infor-
mation about the interfacial region, we consider an orthotropic porous
medium (Figure 6.3, right) for the lid driven cavity test case. The or-
thotropic medium is characterized by the same microscale interface rough-
ness as the isotropic one (Figure 6.3, left) but the permeability tensor �̃�
is different (Table 6.3). We test various values for the Beavers–Joseph
parameter 𝛼BJ and obtain the same optimal slip coefficient 𝛼BJ = 0.5 as in
the isotropic case (Figure 6.4). In Figure 6.6, we present tangential velocity
profiles in the middle of the domain at 𝑥1 = 0.5 for the typically used
value 𝛼BJ = 1 and the most accurate value 𝛼BJ = 0.5 of the Beavers–Joseph
parameter considering the interface location Σd.
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Figure 6.6: Velocity profiles of the tangential component for the lid
driven cavity case in case of the orthotropic porous medium.

By consideration of the orthotropic porousmedium presented in Figure 6.3
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(right), we showed that the microscale interface roughness is an important
aspect for the determination of the optimal Beavers–Joseph parameter,
but the arrangement type of solid grains plays a less significant role if
the porosity of different porous media is kept the same. This finding
is in agreement with the results from Section 6.1.1, where the influence
of different parameters (pore-scale interface roughness, permeability,
porosity, arrangement of inclusions) is intensively studied.

6.1.3 Forced infiltration

In this section, we study forced infiltration of a fluid into a porous medium,
where the flow is mainly perpendicular to the porous bed and the tangen-
tial velocity component in the free-flow region and in the porous-medium
domain is negligible small. We consider coupling conditions (6.7), (6.8)
and (6.11) for the macroscale problem (6.3)–(6.6), evaluate the importance
of the Beavers–Joseph parameter 𝛼BJ and study the sensitivity of the
coupled flow model to the fluid–porous interface.

We consider the same computational domain Ω = Ωff ∪ Ωpm = (0, 1) ×
(−0.5, 1) as for the lid driven cavity problem (Section 6.1.2) and apply equal
notations for the different interface locations, i.e., Σi and 𝑖 ∈ {b, bb, d, t, tt}.
The porous medium is constructed by staggered arranged solid obstacles
as schematically presented in Figure 6.3 (right) and the corresponding
permeability values are provided in Table 6.3 (right). Such a pore geometry
avoids channel flow in the vertical direction between the columns of solid
inclusions that would happen if the isotropic medium (Figure 6.3, left)
would be considered for the forced infiltration problem.

To describe infiltration of a fluid into a porous medium, we impose the
following boundary conditions for the pore-scale problem (6.1)–(6.2):

𝒗 = (0, −0.1 sin(𝜋𝑥1))⊤ on Γ𝐷 , 𝒉 = (0, −100)⊤ on Γ𝑁 ,
𝒗 = 𝟎 on 𝜕Ω ⧵ (Γ𝐷 ∪ Γ𝑁) ,

(6.22)
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where Γ𝐷 = (0, 1) × {1} and Γ𝑁 = (0, 1) × {−0.5}. For the corresponding
macroscale Stokes–Darcy problem (6.3)–(6.8), (6.11) we set

𝒗 = (0, −0.1 sin(𝜋𝑥1))⊤ on Γ𝐷,ff , 𝒗 = 𝟎 on 𝜕Ω𝐷,ff ⧵ (Γ𝐷 ∪ Σ) , (6.23)

𝑝 = 100 on Γ𝐷,pm , 𝑣 = 0 on Γ𝑁 ,pm , (6.24)

with Γ𝐷,ff = Γ𝐷, Γ𝐷,pm = Γ𝑁, Γ𝑁 ,pm = 𝜕Ωpm ⧵ (Γ𝐷,pm ∪ Σ) and Σ stands
for any choice of Σ𝑖 for 𝑖 ∈ {b, bb, d, t, tt}.

As in Section 6.1.2, the pore-scale problem (6.1)–(6.2), (6.22) is solved
using the lattice Boltzmann method. For the solution of the cell problems
(2.74)–(2.76) via FreeFEM++ approximately 40 000 elements are used. For
solving the macroscale Stokes–Darcy problem we take the grid size ℎ𝑥 =
ℎ𝑦 = 1/800.

Since the flow, specified by boundary conditions (6.22) and (6.23)–(6.24),
is almost perpendicular to the porous bed, we have (𝜕𝒗ff/𝜕𝑥2)⋅𝝉 ≈ 0 and
(𝜕𝒗ff/𝜕𝑥1)⋅𝒏 ≈ 0, where 𝝉 and 𝒏 denote the tangential respective normal
unit vector on the fluid–porous interface. Recalling that these partial
derivatives appear on the right hand side of the Beavers–Joseph–Saffman–
Jones condition (6.11) we find that for any choice of the Beavers–Joseph
parameter in its typical range [15] equation (6.11) reduces approximately to
the no-slip condition 𝒖ff⋅𝝉 = 0 on Σ. Consequently, the slip coefficient 𝛼BJ
has negligible impact on the performance of the coupled Stokes–Darcy
model. Therefore, we do not investigate different values of the Beavers–
Joseph parameter 𝛼BJ but simply take 𝛼BJ = 0.5 as in Section 6.1.2. Forced
infiltration of a fluid into a porous structure is also considered in [34],
where the no-slip condition 𝒖ff⋅𝝉 = 0 is proposed as the effective interface
condition for the tangential velocity on Σ.

In order to study the applicability of the Stokes–Darcy problem (6.3)–(6.6),
(6.23)–(6.24) with the classical interface conditions (6.7), (6.8) and (6.11)
and analyze the sensitivity of the coupled problem to the location of
the sharp fluid–porous interface, we evaluate cross sections at 𝑥1 = 0.5
considering the interface positions Σbb, Σb, Σd, Σt and Σtt (Figure 6.3). In
Figure 6.7(a), profiles of the normal velocity component for the macroscale
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model and the pore-scale resolved model are shown. We observe that all
the macroscale simulation results for the normal velocity are in accept-
able agreement with the microscale results. In Figure 6.7(b), we provide
pressure profiles at 𝑥1 = 0.5. We observe that the pressure field is very
sensitive to the exact location of the sharp fluid–porous interface, more
precisely, the interface position highly influences the pressure in the
free-flow region. As in Section 6.1.2, the best fit between macroscale
and pore-scale simulation results is obtained for the interface Σd located
tangent to the first row of solid inclusions (Figure 6.7(b)).

We find out that in case of forced infiltration of a fluid into a porous
material the classical coupling conditions (6.7), (6.8) and (6.11), where the
latter condition is originally developed for flows parallel to the interface,
can be applied and provide physically reasonable results. As already
mentioned earlier, the interface condition (6.11) has almost no effect on
the performance of the coupled Stokes–Darcy system due to the negligible
small tangential velocity component.
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Figure 6.7: (a) Velocity profiles of the normal component and (b) pres-
sure profiles for the infiltration problem at 𝑥1 = 0.5 zoomed near
the interface.

Summary of Section 6.1

We demonstrated that the Stokes–Darcy problem with the classical set of
coupling conditions is very sensitive to the choice of model parameter 𝛼BJ
and the exact location of the sharp fluid–porous interface. We showed
that the typically used value 𝛼BJ = 1 of the Beavers–Joseph slip coefficient
is often not the correct choice, and that this coefficient highly depends on
porosity, permeability and microscale interface roughness. To determine
the optimal value of the Beavers–Joseph parameter for flows parallel to the
porous layer we developed the two-level numerical algorithm [EE7]. This
algorithm computes the optimal value 𝛼optBJ via minimizing the relative
error between pore-scale and macroscale numerical simulation results.
In case of forced infiltration of a fluid into a porous structure, i.e., when
the fluid flow is perpendicular to the interface, the classical coupling
conditions, which are proposed for flows parallel to the porous medium,
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can be applied and provide a physically consistent representation of the
pore-scale processes. Furthermore, based on the flow problems studied in
this section, we recommend locating the sharp interface directly on top
of the first row of solid obstacles in case the classical interface conditions
are used.

6.2 Classical coupling conditions for arbitrary
flows to the interface

In this section, we demonstrate that the Beavers–Joseph interface condi-
tion (6.10) and its simplification by Saffman (6.11) are unsuitable for the
Stokes–Darcy coupling in case of arbitrary flow directions to the fluid–
porous interface. For this purpose, we compare macroscale numerical
simulation results for various choices of 𝛼BJ to pore-scale results at dif-
ferent cross sections. Dependent on the cross section we identify the
model parameter 𝛼BJ that leads to the best agreement of microscale and
macroscale solution. Since the porous media studied in this section are
homogeneous and the properties of the fluid–porous interface do not
change, the Beavers–Joseph parameter 𝛼BJ, which contains the geometri-
cal information about the interfacial region (see Section 6.1.1), is supposed
to be constant along the interface. However, we demonstrate that differ-
ent values of the Beavers–Joseph slip coefficient are optimal for different
cross sections. Thus, we conclude that it is not possible to find a global
constant 𝛼BJ such that microscale and macroscale simulation results fit
well.

We study two flow problems, where the fluid flow is arbitrary to the
porous medium, and consider several porous-medium configurations.
In Section 6.2.1, we analyze the coupled Stokes–Darcy model in case of
filtration of a fluid through a T-shaped domain inspired by [80], and
in Section 6.2.2, we study a general filtration problem similar to the one
in Section 6.3.3.
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Figure 6.8: Geometrical setting for filtration through T-shaped domain
in case of circular inclusions (left), corresponding unit cell and
permeability values (right).

6.2.1 Filtration through T-shaped domain

We investigate filtration of a fluid through a T-shaped coupled free-flow
and porous-medium domain Ω = Ωff ∪ Ωpm where the flow is arbitrary
to the fluid–porous interface. We consider the free-flow region Ωff =
(0, 3)×(0, 0.5) separated by the interface Σ = (0.5, 2.5)×{0} from the porous-
medium domain Ωpm = (0.5, 2.5) × (−0.5, 0). The latter is constructed by
80 solid inclusions in 𝑥1-direction and 20 inclusions in 𝑥2-direction that
are arranged in a staggered manner. Consequently, the unit cell 𝑌 contains
2 × 2 solid grains and the characteristic pore size is 𝜀 = 1/20. Different
shapes of solid grains (circular, elliptical tilted to the right, elliptical tilted
to the left) are studied, and the corresponding permeability values and
unit cells 𝑌 = 𝑌f ∪ 𝑌s are provided in Figure 6.8 (right) and Table 6.6. For
each geometrical configuration the sharp interface Σ is located directly
on top of the solid inclusions as proposed in [15, 106, EE6, 152]. The
geometrical setting of the coupled flow domain is schematically presented
in Figure 6.8 (left) for circular solid grains.

The flow at the pore scale is described by the nondimensional Stokes equa-
tions (6.1)–(6.2) completed with the following set of boundary conditions
on the external boundary

𝒗 = (0.1 sin(2𝜋𝑥2), 0)⊤ on Γin𝐷 , 𝒉 = (0, −10)⊤ on Γ𝑁 , (6.25)

𝒗 = 𝟎 on Γwall𝐷 , (6.26)
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Figure 6.9: Pore-scale velocity field for filtration through T-shaped
domain in case of circular solid inclusions.

where Γin𝐷 = {0} × (0, 0.5), Γ𝑁 = (0.5, 2.5) × {−0.5} and Γwall𝐷 = 𝜕Ω ⧵ (Γin𝐷 ∪
Γ𝑁). For the coupled Stokes–Darcy problem (6.3)–(6.8) with either (6.10)
or (6.11) we specify the corresponding boundary conditions

𝒗 = (0.1 sin(2𝜋𝑥2), 0)⊤ on Γin𝐷,ff , 𝒗 = 𝟎 on Γwall𝐷,ff , (6.27)

𝑣 = 0 on Γwall𝑁 ,pm , 𝑝 = 10 on Γ𝐷,pm . (6.28)

Here, we define Γin𝐷,ff = Γin𝐷 , Γ
wall
𝐷,ff = Γwall𝐷 ∩ 𝜕Ωff, Γwall𝑁 ,pm = Γwall𝐷 ∩ 𝜕Ωpm

and Γ𝐷,pm = Γ𝑁. The pore-scale problem (6.1)–(6.2), (6.25)–(6.26) and
the Stokes–Darcy problem (6.3)–(6.8), (6.27)–(6.28) with (6.10) or (6.11),
respectively, describe a flow system where the fluid flow is arbitrary to
the porous medium (Figure 6.9).

We solve themicroscale problem (6.1)–(6.2), (6.25)–(6.26) using FreeFEM++
where approximately 360 000 finite elements are used to partition the flow
domain Ω𝜀 such that at least three triangular elements are between two
solid obstacles. The permeability is computed according to equation (2.79)
using the solution of the cell problems (2.74)–(2.76), which are solved on
a mesh that consists of approximately 50 000 triangular elements. For the
solution of the Stokes–Darcy problem (6.3)–(6.8), (6.27)–(6.28) with (6.10)
or (6.11) the grid size ℎ𝑥 = ℎ𝑦 = 1/400 is taken.
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Staggered circular inclusions

In this section, we consider the porous medium consisting of circular solid
grains that are arranged in a staggered way (Figure 6.8). The boundaries of
the solid inclusions within the unit cell 𝑌 are described by circles with the
centers at (𝑚1, 𝑚2) ∈ {(0, 0.25), (0.5, 0.25), (1, 0.25), (0.25, 0.75), (0.75, 0.75)}
and radius 𝑟 = 0.2.

In order to analyze the applicability of the Beavers–Joseph condition (6.10)
for this test case we make vertical cross sections at 𝑥1 = 1.5 (center of
the flow domain) and at 𝑥1 = 2.2. We observe that the physically rea-
sonable fluctuations of the pore-scale velocity profiles near the interface
and in the porous layer are negligible small, and therefore, there is no
need to average the pore-scale results. In Figure 6.10 we present profiles
of the tangential velocity component 𝑣1 for the two considered cross sec-
tions. We test various values for the Beavers–Joseph parameter in the
range 𝛼BJ ∈ {0.1, 0.2, … , 4} and compare the corresponding macroscale
simulation result to the pore-scale result with respect to the cross section
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Figure 6.10: Velocity profiles of the tangential component (a) at 𝑥1 =
1.5 and (b) at 𝑥1 = 2.2 for filtration through T-shaped domain in
case of circular inclusions.

at 𝑥1 = 1.5. We find out that the pore-scale profile (profile: pore-scale) and
the velocity profile corresponding to the coupled Stokes–Darcy model fit
well for the typically chosen value 𝛼BJ = 1 (profile: SD (𝛼BJ = 1)) in the
middle of the domain (Figure 6.10(a)). For the cross section at 𝑥1 = 2.2,
where the flow is nonparallel to the porous layer, the macroscale profile
for the same choice of the Beavers–Joseph parameter differs from the pore-
scale velocity profile (Figure 6.10(b)). Also, for other cross sections we
observe that the pore-scale and macroscale simulation results for 𝛼BJ = 1
do not match as well as they do at 𝑥1 = 1.5.

In Table 6.5 we provide the relative errors (6.15) with respect to the tan-
gential velocity 𝑣1 and the value 𝛼BJ = 1 for the cross sections at 𝑥1 = 1.5
and 𝑥1 = 2.2. We observe that the error 𝜖𝑣1,2.2 is more than two times big-
ger compared to the error 𝜖𝑣1,1.5. This indicates that taking 𝛼BJ = 1, which
leads to the best agreement of microscale and macroscale velocity profiles
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Value of the Beavers–Joseph parameter Error 𝜖𝑣1,1.5 Error 𝜖𝑣1,2.2

𝛼BJ = 1 7.455e−3 1.778e−2

Table 6.5: Relative errors (6.15) with respect to 𝑣1 for filtration through
T-shaped domain in case of circular inclusions at two different
cross sections.

at 𝑥1 = 1.5, is not the optimal choice for the Beavers–Joseph parameter
considering the simulation results for the cross section at 𝑥1 = 2.2.

Additionally, we tested the Beavers–Joseph–Saffman–Jones condition (6.11)
instead of the more general Beavers–Joseph condition (6.10) and observed
that there is only a slight difference between the resulting macroscopic
profiles at all considered cross sections. This is physically consistent since
the tangential porous-medium velocity is negligible small compared to
the tangential free-flow velocity for this test case. Therefore, we do not
provide the results related to Saffman’s version of the Beavers–Joseph
condition given by (6.11).

To summarize, for the considered filtration problem and geometrical
setting we find out that for different cross sections different values for the
slip coefficient 𝛼BJ need to be applied such that pore-scale and macroscale
velocity profiles fit best. Thus, we conclude that the Beavers–Joseph type
conditions (6.10) and (6.11) are not the most accurate interface conditions
for the Stokes–Darcy coupling.

Remark 6.1: This flow problem was the first example [EE3], for which
we found out that the Beavers–Joseph interface condition (6.10) and the
condition proposed by Saffman (6.11) are not optimal for coupling the Stokes
and Darcy equations. Since the considered porous medium is isotropic and
densely packed with solid grains (see Figures 6.8 and 6.9) the differences
between the pore-scale velocity profile and the macroscale velocity profile
are relatively small, even for a value of the Beavers–Joseph parameter which
is not the optimal one. However, if we consider a porous medium with higher
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porosity (see Section 6.2.2) or with anisotropic permeability (e.g., staggered
elliptical inclusions) these differences become more significant.

Staggered elliptical inclusions tilted to the right

Pore-scale interface roughness, porosity and permeability highly influ-
ence the optimal choice of the model parameter 𝛼BJ (see Section 6.1.1).
Consequently, these properties of the porous medium also play a crucial
role for the performance of the coupled Stokes–Darcy model with the
classical set of interface conditions (6.7), (6.8) and (6.10) or (6.11). In order
to study the applicability of the Beavers–Joseph type conditions (6.10)
and (6.11) for anisotropic porous media in case of arbitrary flow directions
to the porous layer, we consider the porous-medium domain Ωpm con-
structed based on the unit cell 𝑌 presented in Table 6.6 (middle). The unit
cell contains 2 × 2 elliptical solid obstacles that are tilted to the right and
arranged in a staggered way. More precisely, the semi-major axis of a
single ellipse is positioned at 𝛾 = 𝜋/4 counterclockwise to the positive
part of the 𝑥1-axis as presented in Table 6.6 (left). The boundary curves
of the solid obstacles within the unit cell 𝑌 are given by

𝑒(𝑡) = (𝑚1, 𝑚2) + 0.092(cos(𝑡) + 2 sin(𝑡), − cos(𝑡) + 2 sin(𝑡)), (6.29)

with the center at (𝑚1, 𝑚2) ∈ {(0, 0.25), (0.5, 0.25), (1, 0.25), (0.25, 0.75),
(0.75, 0.75)}, and further we have 𝑡 ∈ [0, 2𝜋) for 𝑚1 ∈ {0.25, 0.5, 0.75}, 𝑡 ∈
[−0.463648, 𝜋 −0.463648) for 𝑚1 = 0 and 𝑡 ∈ [𝜋 −0.463648, 2𝜋 −0.463648)
for 𝑚1 = 1. For the prescribed anisotropic porous medium having a full
permeability tensor �̃� we provide the entries �̃�11, �̃�12 and �̃�22 in Table 6.6
(middle). As before, we have 80×20 solid grains within the porous domain
Ωpm = (0.5, 2.5) × (−0.5, 0).

We solve the pore-scale problem (6.1)–(6.2), (6.25)–(6.26) in the perfo-
rated domain Ω𝜀 and observe physically reasonable fluctuations of the
pore-scale velocity field in the interior of the porous bulk and near the
fluid–porous interface that is a consequence of the anisotropic porous-
medium geometrical configuration (Table 6.6, middle). In order to make
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𝛾 𝑌s
𝑌f

�̃�11 6.45e−4
�̃�12 5.10e−4
�̃�22 1.05e−3

𝑌s𝑌f
�̃�11 6.45e−4
�̃�12 −5.10e−4
�̃�22 1.05e−3

Table 6.6: Ellipse rotated by angle 𝛾 counterclockwise to the posi-
tive part of the 𝑥1-axis (left) and permeability values for two
anisotropic porous-medium geometries (middle and right).

the comparison of microscale to macroscale numerical simulation results
easier, we provide the averaged pore-scale velocity (profile: pore-scale
(avg.)) in addition to the velocity profile without averaging. We spatially
average the microscale velocity field using adaptive volume averaging
described in Section 4.1. The averaging volume 𝑉 avg within the porous
medium away from the interface is of size (0, 𝜀)2. For averaging the
velocity in the uppermost unit cell, close to the free-flow region, we con-
sider one averaging volume of size (0, 𝜀) × (0, 0.5𝜀) and two volumes of
size (0, 𝜀)× (0, 0.25𝜀). Additionally, we average the pore-scale velocity also
slightly above the fluid-porous interface using 𝑉 avg = (0, 𝜀) × (0, 0.25𝜀).
From Figure 6.11 we observe that the resulting averaged pore-scale velocity
profiles match well to all the macroscale velocity profiles in the interior of
the porous medium away from the interface. This is also what we expect
since we know from classical averaging theories (e.g., homogenization,
volume averaging) that Darcy’s law accurately describes the fluid flow in
the porous medium in an averaged sense.

We make vertical cross sections at 𝑥1 = 0.7, 𝑥1 = 1.5 and 𝑥1 = 2.2 in order
to analyze the agreement between the pore-scale and different macroscale
profiles of the tangential velocity component 𝑣1 (Figure 6.11). For the
Stokes–Darcy model we applied various values 𝛼BJ ∈ {0.1, 0.2, … , 4} and
identified the values which provided the best agreement of macroscale
and microscale simulation results for the cross sections at 𝑥1 = 0.7 and at
𝑥1 = 2.2. In Figure 6.11(a) we present the macroscale profile for 𝛼BJ = 0.5,
that we found to be the best candidate for the Beavers–Joseph parameter
at 𝑥1 = 0.7, and the profile for 𝛼BJ = 0.1 which is the most suitable value
for the Stokes–Darcy coupling considering the cross section at 𝑥1 = 2.2.
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Figure 6.11: Velocity profiles of the tangential component (a) at 𝑥1 =
0.7, (b) at 𝑥1 = 2.2 and (c), (d) at 𝑥1 = 1.5 for filtration through
T-shaped domain in case of elliptical inclusions tilted to the right.
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Although the choice 𝛼BJ = 0.1 provides a better fit of pore-scale and
macroscale results at 𝑥1 = 2.2 than for any other value 𝛼BJ > 0.1, none
of the considered values for the Beavers–Joseph parameter is optimal
for this cross section. Velocity profiles for the cross section at 𝑥1 = 1.5
are presented in Figures 6.11(c) and 6.11(d). Here, the macroscale velocity
profiles for the previously found optimal values 𝛼BJ = 0.1 and 𝛼BJ = 0.5
both do not agree well with the pore-scale resolved solution. Thus, the
most appropriate choice for the Beavers–Joseph slip coefficient at 𝑥1 = 1.5
is different from these two values. Due to the fact that we found different
parameters 𝛼BJ to be optimal at the three different locations, we conclude
that there exist no global constant 𝛼BJ along the whole interface that
should be used in the Beavers–Joseph interface condition (6.10).

Besides the Beavers–Joseph coupling condition (6.10) we apply Saffman’s
version (6.11) for the Stokes–Darcy coupling. We numerically solve the
macroscale problem (6.3)–(6.8), (6.11), (6.27)–(6.28) taking 𝛼BJ = 0.1 and
𝛼BJ = 0.5 and make cross sections at 𝑥1 = 1.5 (profiles: SD–BJS, see Fig-
ures 6.11(c) and 6.11(d)). We observe that the macroscale simulation results
obtained by using the Beavers–Joseph–Saffman—Jones condition (6.11) fit
even worse to the pore-scale simulation results than the results obtained
by using condition (6.10) for the macroscale model. The reason for this is
a relatively high tangential Darcy velocity inside the porous medium due
to the anisotropic structure. Thus, for such flow problems the filtration
velocity in the coupling condition for the tangential velocity cannot be
neglected as proposed by Saffman.

Summing up, considering the anisotropic geometrical configuration of the
porous medium (Table 6.6, middle) for the filtration through a T-shaped
domain, one cannot identify any constant value 𝛼BJ as the best choice for
the Beavers–Joseph parameter. Thus, the commonly used Beavers–Joseph
type interface conditions (6.10) and (6.11) are not suitable in this case to
couple the Stokes equations to the Darcy flow equations accurately.
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Staggered elliptical inclusions tilted to the left

We consider a second anisotropic porous medium composed of 80 × 20
elliptical solid inclusions distributed in a staggered manner, where the
semi-major axis of an ellipse within the unit cell 𝑌 is rotated by 𝛾 = 𝜋/4
clockwise to the negative part of the 𝑥1-axis as depicted in Table 6.6 (right).
In this case, the borders of the solid obstacles within the unit cell 𝑌 are
given by

𝑒(𝑡) = (𝑚1, 𝑚2) + 0.092(2 cos(𝑡) + sin(𝑡), −2 cos(𝑡) + sin(𝑡)), (6.30)

with the center at (𝑚1, 𝑚2) ∈ {(0, 0.25), (0.5, 0.25), (1, 0.25), (0.25, 0.75),
(0.75, 0.75)}, and it is 𝑡 ∈ [0, 2𝜋) for𝑚1 ∈ {0.25, 0.5, 0.75}, 𝑡 ∈ [−1.107149, 𝜋−
1.107149) for 𝑚1 = 0 and 𝑡 ∈ [𝜋 − 1.107149, 2𝜋 − 1.107149) for 𝑚1 = 1.
This pore geometry leads to a full permeability tensor �̃� which is given
in Figure 6.6 (right).

We consider cross sections at 𝑥1 = 0.7, 𝑥1 = 1.5 and 𝑥1 = 2.2 to evaluate
the microscale and macroscale numerical simulation results. As in the
case of elliptical solid inclusions tilted to the right, we observe fluctua-
tions in the pore-scale velocity profiles that appear naturally due to the
presence of solid obstacles. We therefore provide in Figure 6.12 the aver-
aged velocity profiles additionally to the nonaveraged ones. The averaged
velocity field is obtained by means of adaptive volume averaging (Sec-
tion 4.1). In Figure 6.12(a) velocity profiles in the left part of the coupled
domain at 𝑥1 = 0.7 are presented. We investigated different values of the
Beavers–Joseph parameter 𝛼BJ ∈ {0.1, 0.2, … , 4}, however, for all choices
the macroscale velocity profiles significantly differ from the pore-scale
solution. We provide profiles for the three representative values 𝛼BJ = 0.1
(smallest value), 𝛼BJ = 0.5 (optimal value at 𝑥1 = 0.7 in case of elliptical
solid inclusions tilted to the right) and 𝛼BJ = 4 (biggest value). Tangential
velocity profiles in the horizontal center are presented in Figure 6.12(c).
Here, we also cannot achieve a good match between the microscale and
macroscale simulation results no matter which value of 𝛼BJ is chosen.
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Figure 6.12: Velocity profiles of the tangential component (a) at 𝑥1 =
0.7, (b) at 𝑥1 = 2.2 and (c) at 𝑥1 = 1.5 for filtration through
T-shaped domain in case of elliptical inclusions tilted to the left.

Additionally, we provide velocity profiles at 𝑥1 = 2.2 (Figure 6.12(b)). In
this case, the profile obtained from the pore-scale resolved simulations
disagree completely with all profiles corresponding to the macroscale
model independent of the choice of parameter 𝛼BJ. We claim that the
main factor for these differences is the unsuitable coupling (6.10) at the
fluid–porous interface Σ. To summarize, for this pore geometry the slip
coefficient 𝛼BJ cannot be adjusted such that microscale and macroscale
velocity profiles agree.

Remark 6.2: Considering the profiles in Figure 6.12, one could speculate
that for the solid inclusions described by equation (6.30) the fluid–porous
interface Σ is located at the wrong vertical position. To the best of our
knowledge, there is no recommendation concerning the interface location for
noncircular solid inclusions. Therefore, we cannot claim that the location
on top of solid grains is valid for all porous structures and all flow regimes.
However, we justify our choice as follows: i) interface location should be
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the same over the whole length of the porous-medium domain since the
medium is periodic; ii) interface position should be chosen independently
on the explicit geometrical configuration of the porous medium while the
microscale interface roughness is the same. Since for oval inclusions tipped to
the right (6.29) and tipped to the left (6.30) the pore-scale interface roughness
is the same and for some cross sections the interface location seems to be
correct (Figure 6.11), we place the interface directly on the top of the first row
of solid inclusions.

6.2.2 General filtration problem

In this section, we study a general filtration problem, where the flow
direction is arbitrary to the porous medium, based on the problem ana-
lyzed in [EE7]. We consider the Stokes–Darcy model (6.3)–(6.6) with the
classical interface conditions (6.7), (6.8) and (6.10) and use the two-level
numerical algorithm from [EE7] to determine the optimal value 𝛼optBJ at
various vertical cross sections. For every cross section, we find a differ-
ent value for the Beavers–Joseph coefficient to be optimal, and thus, we
conclude that there exists no global optimal value 𝛼BJ.

We consider the free-flow region Ωff = (0, 1) × (0, 0.5), the fluid–porous
interface Σ = (0, 1) × {0} and the porous medium Ωpm = (0, 1) × (−0.5, 0).
The latter includes 20 × 10 circular solid inclusions (𝜀 = 1/20) with radius
𝑟 = 0.25 and the fluid–porous interface Σ is located directly on top of the
inclusions. The corresponding unit cell 𝑌 and the permeability values are
presented in Figure 6.7, where we also provide a depiction of the flow
domain.

We impose the following boundary conditions for the pore-scale prob-
lem (6.1)–(6.2):

𝒗 = (0, −0.7 sin(𝜋𝑥1))⊤ on Γin𝐷 , 𝒗 = 𝟎 on Γwall𝐷 , (6.31)

𝒗⋅𝒆2 = 0 , 𝒉⋅𝒆1 = 0 on Γout𝐷/𝑁 , (6.32)
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Ωff

Ωpm

Σ
𝑌s

𝑌f

�̃�11 1.99e−2
�̃�12 0
�̃�22 1.99e−2

Table 6.7: Schematic setting of the flow domain (left), unit cell 𝑌 and
permeability values (right) that are considered for the general
filtration problem.

where Γin𝐷 = (0, 1) × {0.5}, Γout𝐷/𝑁 = ({0} × (0, 0.5)) ∪ ({1} × (0, 0.225)), and
Γwall𝐷 = 𝜕Ω ⧵ (Γin𝐷 ∪ Γout). We provide the pore-scale velocity field in Fig-
ure 6.13(a) and observe that the flow is nonparallel to the porous bed
especially for 𝑥1 > 0.5. The macroscale Stokes–Darcy model (6.3)–(6.8)
and (6.10) is complemented with the following boundary conditions

𝒗 = (0, −0.7 sin(𝜋𝑥1))⊤ on Γin𝐷,ff , 𝒗 = 𝟎 on Γwall𝐷,ff , (6.33)

𝒗⋅𝒆2 = 0 , 𝒉⋅𝒆1 = 0 on Γout𝐷/𝑁 ,ff , 𝑣 = 0 on Γwall𝑁 ,pm , (6.34)

where Γin𝐷,ff = Γin𝐷 , Γ
out
𝐷/𝑁 ,ff = Γout𝐷/𝑁 Γwall𝐷,ff = Γwall𝐷 ∩ 𝜕Ωff and Γwall𝑁 ,pm =

Γwall𝐷 ∩ 𝜕Ωpm.

Themicroscale problem (6.1)–(6.2), (6.31)–(6.32) is solved using FreeFEM++
and we used approximately 330 000 finite elements to partition the com-
putational domain Ω𝜀. The permeability values are obtained from the
solutions to problems (2.74)–(2.76) that are solved on a mesh consisting of
approximately 50 000 triangular elements. For the solution of the Stokes–
Darcy problem (6.3)–(6.8), (6.33)–(6.34) with (6.10) we take the grid size
ℎ𝑥 = ℎ𝑦 = 1/800.

The pore-scale velocity field according to problem (6.1)–(6.2), (6.31)–(6.32)
is presented in Figure 6.13(a). Since the flow direction with respect to the
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Figure 6.13: (a) Pore-scale velocity field and (b) tangential velocity
profiles for the general filtration problem with geometry 𝐺1 and
𝜀 = 1/20.

porous layer is nonparallel and changes along the fluid–porous interface,
we consider different cross sections for the determination of the optimal
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value 𝛼optBJ of the Beavers–Joseph parameter in condition (2.19). Further-
more, we assume a broader range of the slip coefficient 𝛼BJ ∈ [0.01, 100] to
allow for more flexibility. For this flow problem, both velocity components
are nonzero on the fluid–porous interface, and thus, both are influenced
by the choice of the Beavers–Joseph parameter. Therefore, in addition to
the determination of 𝛼optBJ based on the minimal relative error (6.15) with

respect to the tangential velocity 𝑣1, we also determine 𝛼optBJ with respect
to the normal velocity 𝑣2.

Before, we present the optimal values 𝛼optBJ and the corresponding relative
errors (6.15) for different cross sections (Table 6.8) we provide velocity
profiles for the tangential component at 𝑥1 = 0.7 (Figure 6.13(b)). The
macroscale tangential velocity profile with the typically used value 𝛼BJ = 1
does not fit well to the pore-scale resolved model. Applying the two-level
numerical algorithm [EE7], we found that the difference between the
microscale and macroscale simulation results for the tangential velocity
given by (6.15) becomes smaller for bigger values of the Beavers–Joseph
slip coefficient 𝛼BJ. However, these improvements are minor for 𝛼BJ ∈
[20, 100]. Therefore, we take 𝛼optBJ = 20 at 𝑥1 = 0.7 for the tangential
velocity. As can be seen from Figure 6.13(b), the macroscale profile for
𝛼optBJ = 20 fits much better to the pore-scale resolved model than for the
traditionally used value 𝛼BJ = 1.

In total, we consider four different cross sections for the general filtration
problem. The optimal values 𝛼optBJ and the corresponding errors (6.15) for
both velocity components 𝑣1 and 𝑣2 and each cross section are provided
in Table 6.8. Additionally, we compute the relative errors according to
the value 𝛼BJ = 1 that is often one order of magnitude bigger than the
error for 𝛼BJ = 𝛼optBJ . We observe that the optimal value of Beavers–
Joseph parameter is different for every cross section and each velocity
component. Thus, for arbitrary flow directions to the porous bed the
Beavers–Joseph slip coefficient 𝛼BJ is not constant along the interface
and the optimal value cannot be found globally. This fact indicates that



6.2 Classical conditions for arbitrary flows to the interface 225

Cross Error 𝜖𝑣𝑖, 𝑥1 Error 𝜖𝑣𝑖, 𝑥1
section Velocity 𝛼optBJ for 𝛼BJ = 𝛼optBJ for 𝛼BJ = 1

𝑥1 = 0.5 𝑣1 5.0 6.620e−3 2.484e−2
𝑥1 = 0.5 𝑣2 3.9 1.283e−3 8.858e−3

𝑥1 = 0.7 𝑣1 20.0 3.468e−2 9.901e−2
𝑥1 = 0.7 𝑣2 3.3 1.638e−3 1.087e−2

𝑥1 = 0.8 𝑣1 3.7 1.510e−2 4.039e−2
𝑥1 = 0.8 𝑣2 4.1 1.691e−3 1.108e−2

𝑥1 = 0.9 𝑣1 3.2 1.215e−2 3.529e−2
𝑥1 = 0.9 𝑣2 3.6 4.638e−3 9.416e−3

Table 6.8: Optimal Beavers–Joseph parameters and relative errors for
the general filtration problem and geometry 𝐺1.

the Beavers–Joseph condition (6.10) is not suitable for arbitrary flows in
Stokes–Darcy systems.

Summary of Section 6.2

We studied two flow problems, where the flow is arbitrary, i.e., neither
parallel nor perpendicular to the porous layer, and analyzed the suitability
of the Beavers–Joseph condition. Hereby, we considered homogeneous
porousmedia and the interface positioned tangent to the top of solid grains.
We demonstrated that it is not possible to find a constant Beavers–Joseph
parameter 𝛼BJ along the fluid–porous interface such that pore-scale and
macroscale numerical simulation results are in good agreement. However,
this should be the case since the effective porous-medium properties such
as microscale surface roughness, permeability and porosity do not change
along the sharp interface. Thus, we showed that the Beavers–Joseph
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condition and its modification by Saffman are unsuitable for the accurate
coupling of the Stokes and Darcy flow equations.

6.3 Generalized coupling conditions

In this section, we validate the generalized coupling conditions (6.12)–(6.14)
derived in Chapter 3 both for unidirectional and arbitrary flows to the
fluid–porous interface, and compare them with the classical interface
conditions. We consider various configurations of the porous medium
and study three flow problems with different flow direction to the porous
bed (parallel, slightly nonparallel, arbitrary). For all considered validation
scenarios, we show that the Stokes–Darcy problem with the generalized
interface conditions describes the fluid flow accurately. We compare the
macroscale model with the generalized conditions (6.12)–(6.14) to the one
with the classical coupling conditions (6.7)–(6.9) or (6.7), (6.8), (6.10) in
order to highlight the advantages of the newly derived interface concept
in case of unidirectional flows to the interface. Moreover, comparing the
performance of both coupled Stokes–Darcy models confirms the findings
from Section 6.2, i.e., the unsuitability of the classical conditions in case
of arbitrary flow directions to the porous bed.

In Section 6.3.1, we consider pressure driven flow, where the flow is
parallel to the fluid–porous interface. We demonstrate that the generalized
interface conditions are valid and lead to a more accurate macroscale
model in comparison to the classical coupling concept even if the most
optimal Beavers–Joseph parameter 𝛼BJ is considered. In Section 6.3.2, we
study double lid driven cavity flow over a porous medium, where the flow
is nonparallel to the porous bed near the lateral boundaries and in the
middle of the domain. This flow problem corresponds to the theoretical
derivation of the generalized coupling conditions in Section 3.1. We
validate the proposed conditions and show that they yield a more reliable
macroscale model than the classical coupling conditions. In Section 6.3.3,
we consider a general filtration problem, where the fluid flow is arbitrary to
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the porous bed. We demonstrate that the generalized interface conditions
are valid and that the classical coupling concept cannot be used to obtain
a physically reasonable Stokes–Darcy model.

6.3.1 Pressure driven flow

We study the pore-scale flow problem (6.1)–(6.2), (6.16) describing pres-
sure driven flow as in Section 6.1.1, where the classical coupling concept
is validated. In this section, we apply the generalized interface condi-
tions (6.12)–(6.14) on the fluid–porous interface in order to couple the
Stokes and Darcy flow equations. In Section 6.3.1.1, we show that the
corresponding Stokes–Darcy model is in very good agreement with the
pore-scale model, and thus, the generalized interface conditions are valid
in this case. Further, using the results from Section 6.1.1, we demonstrate
that the classical coupling conditions yield a less accurate macroscale
model even if the optimal slip coefficient 𝛼optBJ is considered. We recall
that this value is determined by minimizing the error between the pore-
scale and macroscale simulation results before the classical conditions are
applied. Section 6.3.1.2 is dedicated to the question of when the general-
ized condition (6.14) reduces to the Beavers–Joseph condition (6.9). We
show that this can happen only in case of very specific porous-medium
geometrical configurations as already indicated in Section 3.2.3.

The pore-scale problem (6.1)–(6.2), (6.16) and the cell problems (2.74)–(2.76)
are solved using FreeFEM++. The number of grid cells are the same
as in Section 6.1.1. For the boundary layer problems (4.21)–(4.23) and
(4.24)–(4.26) we use approximately 280 000 elements to resolve the flow
domain 𝑍4. For the solution of the macroscale Stokes–Darcy problem
given by (6.3)–(6.6), (6.17)–(6.19) with the generalized interface conditions
(6.12)–(6.14) we take the grid size ℎ𝑥 = ℎ𝑦 = 1/800.
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6.3.1.1 Validity of generalized interface conditions

In this section, we first show that the generalized interface conditions
(6.12)–(6.14) are valid in case of pressure driven flow and that the exact in-
terface location, which can be chosen in a certain range (see Section 3.2.2),
influences the performance of the corresponding Stokes–Darcy model
negligibly. Second, we use the results obtained in Section 6.1.1 to highlight
the better suitability of the generalized conditions for the Stokes–Darcy
coupling than the classical coupling concept. In order to address both
aspects, we compare microscale and macroscale numerical simulation
results along a fixed cross section and compute the relative errors (6.15).

The microscopic flow region Ω𝜀 is constructed by 20 × 10 in-line arranged
solid obstacles based on one of the representative geometries 𝐺1 to 𝐺6
described in Section 6.1.1. The corresponding unit cells 𝑌 = (0, 1)2 are
presented in Table 6.1. The line tangent to the first row of solid grains
is given by {𝑥2 = 0}. We consider the macroscopic domain Ω consist-
ing of the free-flow region Ωff = (0, 1) × (𝛾 , 0.5) and the porous medium
Ωpm = (0, 1)×(−0.5, 𝛾 ) separated by the horizontal interface Σ = (0, 1)×{𝛾 }.
We investigate different vertical positions 𝛾 of the sharp interface within
the coupled domain to illustrate the fact that the effective coefficients in
the generalized conditions (6.12)–(6.14) include the information on the
exact interface position. Thus, we show that the validity of the gener-
alized coupling concept is independent of the choice of this position as
mentioned in Section 3.2.2.

First, we study pressure driven flow described at the macroscale by
(6.3)–(6.6), (6.17)–(6.17), (6.12)–(6.14) and consider the same fluid–porous
interface as in Section 6.1.1, which is located on top of the solid inclusions.
For the generalized interface conditions (6.12)–(6.14) effective coefficients
are computed from the solutions of boundary layer problems (4.21)–(4.23)
and (4.24)–(4.26), where the same interface location as for the macroscale
model needs to be applied (see Section 4.3). Due to limitations on the mesh
generation in FreeFEM++, which is used for the solution of boundary
layer problems, it is not possible to place the interface directly on top of
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𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺6

�̃�11 1.99e−2 5.67e−4 1.99e−2 5.63e−3 1.23e−2 1.23e−2
�̃�12 0 0 0 0 2.69e−3 −2.69e−3
�̃�22 1.99e−2 5.67e−4 1.99e−2 4.44e−3 1.23e−2 1.23e−2
𝑁 bl
1 −5.48e−2 −4.44e−2 −2.44e−2 −2.82e−2 −5.68e−2 −5.68e−2

𝑁 bl
𝑠 0 0 0 0 −2.72e−2 2.72e−2

𝑀1,bl
1 −3.02e−3 −2.10e−3 −4.52e−4 −7.82e−4 −3.95e−3 −3.95e−3

𝑀2,bl
1 0 0 0 0 −3.34e−3 3.34e−3

Table 6.9: Permeability values (see Table 6.1) and boundary layer
constants appearing in the generalized coupling conditions for
geometries 𝐺1 to 𝐺6 and interface Σd.

the solid grains. However, we position the interface as close as possible
at distance 𝛾 = 5e−5 above the solid obstacles and denote it by Σd. The
permeability values and the boundary layer constants appearing in con-
ditions (6.12)–(6.14) corresponding to the sharp location Σd are provided
in Table 6.9 for all considered geometries. The values �̃�11, �̃�12 and �̃�22
for geometries 𝐺1 to 𝐺6 are already given in Table 6.1, but we included
them also in Table 6.9 for the ease of comparison with the effective coeffi-
cients 𝑀 𝑗,bl

1 for 𝑗 = 1, 2 later. We recall that the permeability tensor �̃� is
not dependent on the exact interface position.

In Table 6.10 (last column), we present the errors between the pore-scale
and the macroscale simulation results introduced in (6.15) for the rep-
resentative pore geometries 𝐺1 to 𝐺6 in case the generalized interface
conditions (GIC) are applied. Additionally, we provide the errors obtained
in Section 6.1.1 (Table 6.2) for the classical interface conditions both with
the optimal value 𝛼optBJ of the Beavers–Joseph parameter, which needs to
be determined (e.g., using the two-scale numerical algorithm from [EE7]),
and the typically used value 𝛼BJ = 1. Note that 𝛼optBJ is different for the
geometries 𝐺1 to 𝐺6 and is provided in Table 6.2. From Table 6.9, we
observe that the errors in case of the generalized coupling conditions are
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Error 𝜖𝑣1,0.5 Error 𝜖𝑣1,0.5 Error 𝜖𝑣1,0.5
Geometry for 𝛼BJ = 𝛼opt

BJ for 𝛼BJ = 1 for GIC

𝐺1 3.401e−3 2.794e−2 1.205e−3
𝐺2 2.838e−3 6.941e−3 1.044e−3
𝐺3 2.632e−3 3.758e−2 1.176e−3
𝐺4, √𝐾 = √�̃�11 4.092e−3 3.089e−2 1.257e−3
𝐺5 2.901e−3 1.738e−2 7.779e−4
𝐺6 2.901e−3 1.738e−2 8.253e−4

Table 6.10: Relative errors (6.15) with respect to 𝑣1 in case of different
coupling conditions for the Stokes–Darcy problem describing
pressure driven flow: classical conditions with 𝛼BJ = 𝛼optBJ ; classical
conditions with 𝛼BJ = 1; and generalized interface conditions
(GIC).

significantly smaller than for the classical interface conditions if 𝛼BJ = 1
is taken. Moreover, even if the most optimal value 𝛼optBJ of the Beavers–
Joseph parameter is applied, the generalized interface conditions lead to a
more accurate Stokes–Darcy model than the classical coupling concept.

In Section 3.2.2, we explained how the exact location of the fluid–porous
interface is included in the boundary layer coefficients and that one has
freedom to choose this interface location within a certain range. In order
to demonstrate the validity of the generalized interface conditions inde-
pendent of the chosen interface position, we investigate a second interface
location Σ0 (in case of geometry 𝐺1) that is also considered in [34, 97].
The interface Σ0 is located on top of the uppermost unit cell within the
porous-medium domain at 𝛾 = 1/2(𝜀 − 𝑑 𝜀), where 𝑑𝜀 = 𝑑∗𝜀 is the diameter
of the solid inclusions within the flow domain Ω𝜀 (Figure 6.14). We recall
that in our case, for geometry 𝐺1, the diameter of the grains within unit
cell 𝑌 is 𝑑∗ = 0.5 and the characteristic pore size is 𝜀 = 1/20. For the
interface location Σ0 and geometry 𝐺1, we obtain the following boundary
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𝑑 𝜀 𝜀

Σ0
Σd

Figure 6.14: Interface locations Σd (blue) and Σ0 (red) in case of geome-
try 𝐺1.

layer constants

𝑁 bl
1 = −3.04e−1 , 𝑁 bl

𝑠 = 0 , 𝑀1,bl
1 = −4.77e−2 , 𝑀2,bl

1 = 0 . (6.35)

We observe that the values for 𝑁 bl
1 and 𝑀1,bl

1 in case of Σd (Table 6.9)
are bigger as the values provided in (6.35) according to Σ0. This is in
agreement with our findings in Section 3.2.2.

We compare tangential velocity profiles of the pore-scale and macroscale
solution in Figure 6.15. The profiles corresponding to the Stokes–Darcy
problem with the generalized interface conditions for the two interface
locations Σd (profile: SD–GIC (Σd)) and Σ0 (profile: SD–GIC (Σ0)) coincide
in the free-flow region and porous-medium domain. Minor differences
between these two profiles are observable very close to the interface
that is expected since the exact position of the fluid–porous interface is
different. Moreover, both macroscale velocity profiles corresponding to
the generalized interface conditions fit very well to the pore-scale results.
Hence, for different choices of the sharp interface position one obtains an
accurate Stokes–Darcy model. This finding confirms the theoretical argu-
ments from Section 3.2.2 that the boundary layer constants incorporate
the information of the exact interface location. In addition, Figure 6.15
shows velocity profiles in case the classical interface conditions are consid-
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ered for the Stokes–Darcy coupling. For the classical conditions we first
consider the recommended interface Σd (Figure 6.14, blue line) for two
values of the Beavers–Joseph parameter: 𝛼BJ = 𝛼optBJ = 2.8, the optimal
one for geometry 𝐺1, and the commonly applied one 𝛼BJ = 1. We observe
that the macroscale profile for 𝛼BJ = 2.8 (profile: SD (𝛼BJ = 2.8, Σd)) is
in good agreement with the pore-scale profile whereas this is not the
case for the profile that belongs to 𝛼BJ = 1 (profile: SD (𝛼BJ = 1, Σd)).
Second, for the sake of completeness, we apply the classical coupling
concept also on the interface Σ0. We observe from Figure 6.15 that the
typically used value 𝛼BJ = 1 (profile: SD (𝛼BJ = 1, Σ0)) is unsuitable for the
Stokes–Darcy coupling in this case since the corresponding macroscale
profile does not agree at all with the pore-scale result. However, due to
the fact that the flow is parallel to the porous bed, an optimal value 𝛼optBJ
can be determined (see Section 6.1.1). In this case, for geometry 𝐺1 and the
interface position Σ0, we find 𝛼optBJ = 0.4 (profile: SD (𝛼BJ = 0.4, Σ0)).

Thus, we found out that the Stokes–Darcy problem (6.3)–(6.6) with the
generalized interface conditions (6.12)–(6.14) represent the fluid flow
very accurately in case of pressure driven flow. The performance of
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Figure 6.15: Velocity profiles for the tangential component at 𝑥1 = 0.5
for pressure driven flow and geometry 𝐺1.
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the macroscale model with the classical interface conditions (6.7)–(6.9)
can be nearly as good as in case of the generalized conditions, however,
only if the optimal Beavers–Joseph parameter 𝛼BJ is used. The typical
choice 𝛼BJ = 1 is not suitable for many problems, and thus, the correct de-
termination of the Beavers–Joseph slip coefficient is crucial. To overcome
this task, we recommend using the generalized interface conditions, where
all parameters are computed, instead of applying the classical coupling
concept.

6.3.1.2 Recovery of original Beavers–Joseph condition

In Section 3.2.3, we have shown that the generalized condition for the
tangential velocity can be written in the same form (6.14) as the Beavers–
Joseph condition (6.9). Moreover, we mentioned that for some specific
porous-medium geometries it is possible to find a sharp interface location
such that 𝒗pm⋅𝝉 = 𝒗pmint ⋅𝝉, and thus, equations (6.9) and (6.14) are the same.
In the following, we focus on this aspect.

First, we define the nondimensional velocity 𝒗pmint in analogy to the inter-
facial porous-medium velocity that was introduced in Section 3.2.3 for
the dimensional setting. In case of a horizontal fluid–porous interface the
interfacial porous-medium velocity reads

𝒗pmint = −𝜀2 (−𝑀
1,bl
1 −𝑀2,bl

1
−𝑀1,bl

2 −𝑀2,bl
2

)∇𝑝pm .

Thus, in order to obtain 𝒗pm⋅𝝉 = 𝒗pmint ⋅𝝉 on Σ we need to have −𝑀1,bl
1 = �̃�11

and −𝑀2,bl
1 = �̃�12. Second, we recall from Section 3.2.2 that the boundary

layer constants 𝑁 bl
1 and 𝑀1,bl

1 increase monotonically for 𝑎 → 0, where 𝑎
denotes the distance of the interface 𝑆 within the boundary layer stripe
from the top of solid grains (Figure 4.7). Thus, for the interface tangent to
the solid inclusions we obtain the greatest values for the coefficients 𝑁 bl

1
and 𝑀1,bl

1 . Here, this interface is denoted by 𝑆0.001 and corresponds to
the interface Σd within the macroscopic domain Ω. The computed values
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for the boundary layer constants with respect to 𝑆0.001, or equivalently,
Σd are provided in Table 6.9. Furthermore, in Section 3.2.2 we found out
that the constants 𝑁 bl

𝑠 and𝑀2,bl
1 are not affected by a change of the sharp

interface location.

Analyzing the permeability values and boundary layer constants in Ta-
ble 6.9 for the geometries 𝐺1 to 𝐺6, we observe that: i) for geometries 𝐺1,
𝐺3 and 𝐺4 we have �̃�11 > −𝑀1,bl

1 , and thus, it is possible to find a sharp
interface location above the solid obstacles such that �̃�11 = −𝑀1,bl

1 that
leads to 𝒗pm⋅𝝉 = 𝒗pmint ⋅𝝉; ii) for geometry 𝐺2 it is �̃�11 < −𝑀1,bl

1 yielding
𝒗pm⋅𝝉 ≠ 𝒗pmint ⋅𝝉 for any interface location; and iii) for the anisotropic
porous-medium geometries 𝐺5 and 𝐺6 we have �̃�12 ≠ −𝑀2,bl

1 , hence, we
always have 𝒗pm⋅𝝉 ≠ 𝒗pmint ⋅𝝉.

Further numerical experiments revealed that for each shape and arrange-
ment of the solid inclusions, which lead to an orthotropic porous medium
(e.g., circular, square, rhombus), there exists a critical value of poros-
ity 𝜙shape, arrangement

0 such that 𝒗pm⋅𝝉 = 𝒗pmint ⋅𝝉 for the interface 𝑆0.001
tangent to the solid obstacles. Then, for all porous structures with
𝜙 < 𝜙shape, arrangement

0 , which are characterized by the same shape of
solid grains and same type of arrangement, it is not possible to obtain
𝒗pm⋅𝝉 = 𝒗pmint ⋅𝝉 for any interface location 𝑆𝑎, and thus, condition (6.14) does
not simplify to the Beavers–Joseph condition (6.9). For in-line arranged
circular solid grains we find 𝜙0 = 𝜙circular, in-line0 ≈ 0.5211.

We consider geometry 𝐺1 having 𝜙 ≈ 0.80365 > 𝜙circular, in-line0 exem-
plary to determine the interface location 𝑆𝑎 at distance 𝑎 above the solid
inclusions such that �̃�11 = −𝑀1,bl

1 . For this purpose, we start with the
interface 𝑆0.001, move it stepwise by distance 0.001 away from the solid
obstacles and for each location we compute the constant 𝑀1,bl

1 until we
have −�̃�11 = 𝑀1,bl

1 . This equality of effective coefficients for 𝐺1 is ob-
tained if 𝑆0.138 is considered. According to the determined interface loca-
tion 𝑆0.138, we compute the boundary layer constant 𝑁 bl

1 and obtain the
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slip coefficient 𝛼BJ appearing in (6.9) via 𝛼BJ = −√�̃�11/𝑁
bl
1 . For geometry

𝐺1, we get 𝑁 bl
1 = −1.92e−2 leading to 𝛼BJ = 7.3.

Based on the observations we made in this section, we conclude that
for some orthotropic porous-medium geometries it is possible to obtain
𝒗pm = 𝒗pmint by the appropriate choice of interface location. However, this
is in general not the case (see geometry 𝐺2). For anisotropic porous media
having a full tensor �̃� the Darcy velocity 𝒗pm appearing in the Beavers–
Joseph condition (6.9) is always different from 𝒗pmint in the generalized
condition (6.14).

6.3.2 Double lid driven cavity over porous bed

In this section, we consider a flow problem that corresponds to the prob-
lem considered for the theoretical derivation of the generalized conditions
(see Section 3.1.1). Here, the fluid flow is arbitrary to the fluid–porous
interface near the horizontal middle and lateral boundaries of the flow
domain, and in between it is almost parallel to the porous bed (Figure 6.16,
right). We validate the generalized interface conditions (6.12)–(6.14) and
show that they are more accurate than the classical set of coupling con-
ditions (6.7)–(6.9). The free-flow region Ωff = (0, 1) × (𝛾 , 0.5) and the
porous-medium domain Ωpm = (0, 1) × (−0.5, 𝛾 ) are divided by the sharp
interface Σ = (0, 1) × {𝛾 }, where 𝛾 determines the exact location of the in-
terface in vertical direction. The porous medium is isotropic, constructed
by 20 × 10 circular solid obstacles with radius 𝑟 𝜀 = 0.25𝜀, where 𝜀 = 1/20.
Permeability values and boundary layer constants appearing in the macro-
scopic flow models are provided in Figure 6.16 (left). We introduce two
different positions of the fluid–porous interface (Figure 6.14): Σ0 taking
𝛾 = 0 that is located at the top of the upper unit cell, at distance (1/2− 𝑟)𝜀
above the top of the solid grains, Σd taking 𝛾 = −𝜀/2 + 𝑟 that is located
directly on top of the solid inclusions.
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𝑌s
𝑌f

�̃�11 1.99e−2
�̃�12 0
𝑀1,bl

1 −4.77e−2
𝑀2,bl

1 0
𝑁 bl
1 −3.04e−1

𝑁 bl
𝑠 0

Figure 6.16: Effective coefficients appearing in the generalized condi-
tions (left) and pore-scale velocity field for double lid driven cavity
flow over porous bed (right).

The pore-scale problem (6.1)–(6.2) is completed with the following condi-
tions on the external boundary

𝒗 = (sin(2𝜋𝑥1), 0)⊤ on Γin𝐷 , 𝒗⋅𝒏 = 𝒉⋅𝝉 = 0 on Γout𝐷/𝑁 ,

{𝒗𝜀, 𝑝𝜀} is 1-periodic ,
(6.36)

where Γin𝐷 = (0, 1) × {0.5} and Γout𝐷/𝑁 = (0, 1) × {−0.5}. The pore-scale
velocity field is shown in Figure 6.16 (right). The boundary conditions for
the Stokes–Darcy model (6.3)–(6.6) corresponding to (6.36) read

𝒗 = (sin(2𝜋𝑥1), 0)⊤ on Γin𝐷,ff , 𝑣 = 0 on Γout𝑁 ,pm ,

{𝒗ff, 𝑝ff, 𝑝pm} is 1-periodic ,
(6.37)

where we set Γin𝐷,ff = Γin𝐷 and Γout𝑁 ,pm = Γout𝐷/𝑁. We apply both the gener-
alized coupling conditions (6.12)–(6.14) and the classical ones (6.7)–(6.9)
taking 𝛼BJ = 1 on the fluid–porous interface to obtain a closed macroscale
model formulation. Without the loss of generality, we consider the in-
terface location Σ0 for the generalized interface conditions, if not stated
otherwise. This position of the fluid–porous interface is also consid-
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ered in, e.g., [33, 34, 96, 97], where effective interface conditions for the
Stokes–Darcy problem are derived using the same averaging techniques
as in Chapter 3. For the classical set of coupling conditions, we apply
both interface locations Σ0 and Σd since Σd is recommended to use in [15,
106, EE6].

The Stokes system (6.1)–(6.2), (6.36) is solved using an adaptive mesh
with approximately 330 000 triangular elements. For the numerical solu-
tion of the cell problems (2.74)–(2.76) approximately 30 000 triangular ele-
ments are considered. The boundary layer problems given by (4.21)–(4.23)
and (4.24)–(4.26) are solved taking approximately 120 000 elements. For
solving the coupled Stokes–Darcy problems (6.3)–(6.6), (6.37) with inter-
face conditions (6.7)–(6.9) or (6.12)–(6.14) we apply a staggered grid with
mesh size ℎ𝑥 = ℎ𝑦 = 1/800.

Figure 6.17 provides velocity and pressure profiles for two vertical cross
sections, where the flow is nonparallel to the porous layer. We observe
that the velocity profiles corresponding to the pore-scale model and the
macroscale model with both, the classical and the generalized coupling
conditions, agree to a large extent (Figures 6.17(a), 6.17(b) and 6.17(c)). We
further analyze the different coupled Stokes–Darcy models by assessing
the conformance of corresponding macroscale simulation results and pore-
scale results above the fluid–porous interface as it is done in [EE4]. Taking
into account the zoomed regions in Figures 6.17(a) and 6.17(b), we find
out that the newly derived interface conditions lead to tangential velocity
profiles that fit almost perfectly to the pore-scale profiles. Such a good
match between pore-scale and macroscale velocity 𝑣1 above the interface
cannot be achieved with the classical coupling concept for the standard
choice 𝛼BJ = 1, no matter which interface location is considered.
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Figure 6.17: Velocity and pressure profiles for double lid driven cavity
over porous bed.
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Interface location Error 𝜖𝑣1,0.4 (𝛼BJ = 1) Error 𝜖𝑣1,0.4 for GIC

Σ0 2.003e−2 1.176e−2
Σd 9.567e−3 2.373e−3

Table 6.11: Relative errors (6.15) with respect to 𝑣1 and the cross section
at 𝑥1 = 0.4 in case of different coupling conditions and different
interface locations for the Stokes–Darcy problem describing double
lid driven cavity over a porous bed: classical conditions with 𝛼BJ =
1 and generalized conditions (GIC) on Σ0 and Σd, respectively.

In addition to these observations, we quantify the differences between the
microscale and macroscale simulation results by computing the relative
errors (6.15) with respect to 𝑣1 for the cross section at 𝑥1 = 0.4 (Table 6.11).
We observe that the error 𝜖𝑣1,0.4 for the generalized conditions on Σ0 is
smaller than the one for the classical conditions on Σ0, but a little larger
than the error for the classical conditions on Σd. The reason for that is
the better agreement of pore-scale and macroscale profiles for 𝑥2 < 0 in
case of Σd compared to Σ0 for this validation case. Therefore, to make
a fair comparison, we consider the interface Σd also for the generalized
conditions and compute the corresponding relative error 𝜖𝑣1,0.4 (Table 6.11).
The boundary layer constants according to Σd read

𝑁 bl
1 = −5.48e−2 , 𝑁 bl

𝑠 = 0 , 𝑀1,bl
1 = −3.02e−3 , 𝑀2,bl

1 = 0 .

From Table 6.11 we observe that the newly derived interface conditions
applied on Σd lead to the smallest relative error. The same observation
are made for the cross section at 𝑥1 = 0.2. We provide the corresponding
tangential velocity profile (profile: SD–GIC (Σd)) for the cross section at
𝑥1 = 0.4 in Figure 6.17(b). This profile already fits to the pore-scale profile
directly above Σd.

Differences between the pore-scale pressure and the macroscale pressure
corresponding to the classical interface conditions for both interface
locations are more evident than for the velocity (Figure 6.17(d)). We
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observe that the pressure profile corresponding to the Stokes–Darcymodel
with the generalized interface conditions is in very good agreement with
the pore-scale results and that the performance of the macroscale model
with the classical coupling conditions and the interface Σ0 is worst.

To summarize, for double lid driven cavity flow over a porous medium we
observed that the error (6.15) with respect to the tangential velocity and
the interface position Σ𝑖, 𝑖 ∈ {0, d} is smaller for the generalized conditions
than for the classical coupling conditions. Furthermore, we found out
that the macroscale simulation results applied on the interface Σd, which
is located tangent to the solid inclusions, agree better with the pore-scale
results than for the interface Σ0 for this validation case. We showed that
the Stokes–Darcy model with the new interface conditions (6.12)–(6.14)
applied on Σd is the most accurate coupled model.

6.3.3 General filtration problem

In this section, we demonstrate that the newly developed interface con-
ditions (6.12)–(6.14) are also valid for general coupled problems, where
the fluid flow is arbitrary to the porous medium, but which are not re-
stricted to periodic conditions on the lateral boundaries. Furthermore,
we show that the classical interface conditions (6.7)–(6.9) are not suitable
in this case that confirms our findings from Section 6.2. We consider
the free-flow region Ωff = (0, 1) × (𝛾 , 0.5) overlying the porous domain
Ωpm = (0, 1)×(−0.5, 𝛾 ) and the sharp interface Σ located at 𝑥2 = 𝛾. For the
porous domain we study two different geometries leading to an isotropic
or anisotropic porous medium, respectively. Both geometrical configura-
tions are constructed based on the periodic repetition of the scaled unit cell
𝜀𝑌 = (0, 𝜀)2 that includes one circular respective elliptical solid grain. The
corresponding unit cells 𝑌 and the nondimensional effective coefficients
for the two porous-medium geometries are presented in Figures 6.18 (left)
and 6.20 (left). In total, there are 20 × 10 solid obstacles present in the
porous region Ωpm leading to the nondimensional characteristic pore size
𝜀 = 1/20.
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𝑌s
𝑌f

�̃�11 1.99e−2
�̃�12 0
𝑀1,bl

1 −4.77e−2
𝑀2,bl

1 0
𝑁 bl
1 −3.04e−1

𝑁 bl
𝑠 0

Figure 6.18: Effective coefficients (left) and pore-scale velocity field for
the general filtration problem (right) in case of the isotropic porous
medium.

At the pore scale, the general filtration problem is described by the Stokes
equations (6.1)–(6.2) with the following boundary conditions

𝒗 = (0, −0.2 sin(𝜋𝑥1))⊤ on Γin𝐷 , 𝒗 = 𝟎 on Γwall𝐷 , (6.38)

𝒉 = 𝟎 on Γ𝑁 ,ff , 𝒉 = (0, −𝑝𝑏)⊤ on Γ𝑁 ,pm , (6.39)

where Γin𝐷 = (0, 1) × {0.5}, Γ𝑁 ,ff = ({0} × (0, 0.1)) ∪ ({1} × (0, 0.5)), Γ𝑁 ,pm =
(0, 1) × {−0.5} and Γwall𝐷 = 𝜕Ω ⧵ (Γin𝐷 ∪ Γ𝑁 ,ff ∪ Γ𝑁 ,pm).

The corresponding flow problem at the macroscale is given by the Stokes–
Darcy problem (6.3)–(6.5) either with conditions (6.7)–(6.9) or (6.12)–(6.14)
and completed with the following conditions on the external boundary

𝒗 = (0, −0.2 sin(𝜋𝑥1))⊤ on Γin𝐷 , 𝒗 = 𝟎 on Γwall𝐷,ff , (6.40)

𝒉 = 𝟎 on Γ𝑁 ,ff , 𝑣 = 0 on Γwall𝑁 ,pm , 𝑝 = 𝑝𝑏 on Γ𝐷,pm . (6.41)

Here, we set Γwall𝐷,ff = Γwall𝐷 ∪𝜕Ωff, Γwall𝐷,pm = Γwall𝐷 ∪𝜕Ωpm and Γ𝐷,pm = Γ𝑁 ,pm.
Boundary conditions (6.38)–(6.39) and (6.40)–(6.41) yield a flow system
where the flow direction is arbitrary to the porousmedium. We provide the
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pore-scale flow field in case of the isotropic porous medium in Figure 6.18
(right) and in case of the anisotropic medium in Figure 6.20 (right). We
observe that within the left part of the flow region (𝑥1 < 0.5) the flow is
highly nonparallel to the fluid–porous interface, whereas in the right part
(𝑥1 > 0.5) the flow becomes increasingly parallel to the porous medium.

For the classical set of coupling conditions (6.7)–(6.9) we consider two
different choices for the fluid–porous interface as in Section 6.3.2: Σ0
located at 𝑥2 = 0 and Σd located directly on top of the solid inclusions that
is recommended in case of circular solid grains [106, 117, EE6]. Note that
the vertical position Σd is different for the two porous-medium geometries
we study within this section since the size 𝑑∗ of the solid obstacles is
different. For the set of generalized interface conditions (6.12)–(6.14) we
chose the interface Σ0.

The pore-scale problem (6.1)–(6.2), (6.38)–(6.39) is solved using approxi-
mately 330 000 triangular elements in case of the isotropic geometry to
resolve the flow domain Ω𝜀. Due to the presence of solid obstacles in the
porous medium, the pore-scale solution fluctuates. To make the compari-
son of microscale and macroscale simulation results easier, the pore-scale
simulations are averaged using ensemble averaging as described in Sec-
tion 4.1.2. The cell problems (2.74)–(2.76) are solvedwith amesh consisting
of approximately 30 000 elements and for the boundary layer problems
(4.21)–(4.23) and (4.24)–(4.26) we use approximately 120 000 elements. For
solving the macroscale Stokes–Darcy problems (6.3)–(6.6), (6.40)–(6.41)
with (6.7)–(6.9) or (6.12)–(6.14) we take the grid size ℎ𝑥 = ℎ𝑦 = 1/800.

Isotropic porous medium

We consider the porous-medium constructed based on the unit cell 𝑌 =
(0, 1)2 that includes one circular solid grain with the center at (0.5, 0.5)
and radius 𝑟 = 0.25. This yields an isotropic porous medium and the
corresponding permeability and boundary layer constants are presented
in Figure 6.18 (left).
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Figure 6.19 shows velocity and pressure profiles corresponding to the pore-
scale and macroscale problems at different vertical cross sections. We
provide profiles for the tangential velocity component at 𝑥1 = 0.1 and 𝑥1 =
0.2 where the flow is nonparallel to the interface. The velocity profiles
corresponding to the generalized interface conditions provide a very good
agreement with the averaged pore-scale velocity profiles (profile: pore-
scale (avg.)) as can be observed from Figures 6.19(a) and 6.19(b). Numerical
simulation results for the Stokes–Darcy model with the classical coupling
conditions do notmatch to the pore-scale results nomatter which interface
location, Σ0 or Σd, is chosen (Figures 6.19(a) and 6.19(b)). We observe that
the results for the classical interface conditions and location Σ0 provide
a slightly better fitting than the results for the interface position Σd.
In Figure 6.19(c) we provide the profiles for the normal component of
velocity at 𝑥1 = 0.1. The macroscale simulation result corresponding to
the newly derived interface conditions is in very good agreement with
the averaged pore-scale velocity profile. The velocity computed using the
classical set of interface conditions, where the interface Σ0 is considered,
does not match as well to the pore-scale results as the profile for the
generalized conditions. However, when we apply the classical interface
conditions on the interface Σd, the normal velocity profile according
to the macroscale simulation results has a completely different shape
(Figure 6.19(c)). In Figure 6.19(d) we present the pressure profiles at 𝑥1 =
0.2. The pressure computed using the generalized conditions agrees very
well with the averaged pore-scale pressure that is not the case for the
classical conditions. We observe, that the choice of Σd provides a better
agreement of pore-scale and macroscale solution for the pressure, whereas
for the velocity the interface location Σ0 seems to be more suitable. Similar
observations are obtained for other cross sections.
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Figure 6.19: Velocity and pressure profiles for the general filtration
problem in case of the isotropic porous medium.
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Anisotropic porous medium

In order to validate the generalized interface conditions in case of the
general filtration problem for anisotropic porous media, we consider the
porous medium made up of 20 × 10 elliptical solid inclusions distributed
periodically (Figure 6.20). In this case, the boundary of the solid part 𝑌s
within the unit cell 𝑌 = (0, 1)2 is described by the ellipse

𝑒(𝑡)=(0.5, 0.5)+cos(0.25𝜋)(0.2 cos(𝑡)+0.4 sin(𝑡), −0.2 cos(𝑡)+0.4 sin(𝑡)) ,

for 𝑡 ∈ [0, 2𝜋). These inclusions are neither symmetric with respect to
the 𝑥1- nor 𝑥2-axis. Therefore, we obtain a full permeability tensor �̃�
and all boundary layer constants are nonzero as presented in Figure 6.20
(left). Such elliptical obstacles are also considered in [34], where equal
permeability values are obtained. We study the same flow problem as
in the isotropic case, i.e., we have the same flow domains and boundary
conditions (6.38)–(6.39) and (6.40)–(6.41) for the pore-scale respective
macroscale problem, only a different porous-medium morphology.

𝑌s
𝑌f

�̃�11 1.23e−2
�̃�12 2.68e−3
𝑀1,bl

1 −3.10e−2
𝑀2,bl

1 −3.34e−3
𝑁 bl

1 −2.40e−1
𝑁 bl

𝑠 −2.71e−1

Figure 6.20: Effective coefficients (left) and pore-scale velocity field
for the general filtration problem (right) in case of the anisotropic
porous medium.
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In Figure 6.21 we present profiles for the velocity and pressure at 𝑥1 = 0.1
and 𝑥1 = 0.2. We observe that the macroscale simulation results with
respect to the set of generalized interface conditions (6.12)–(6.14) agree
very well with the pore-scale results, whereas the results corresponding
to the classical interface conditions (6.7)–(6.9) do not fit. The profiles
are similar to those presented in Figure 6.19, the differences are due
to different porous-medium morphology. Again, in case the classical
interface concept is applied, we find out that different interface locations
are more suitable for the velocity components (Σ0) and the pressure (Σd),
respectively. However, for both interface positions the Stokes–Darcy
model with the classical set of coupling conditions cannot capture the
pore-scale effects. The macroscale model with the generalized interface
conditions yields velocity and pressure profiles that coincide very well
with the profiles according to the pore-scale model.

For the general filtration problem, where the flow is highly arbitrary
to the interface, the generalized interface conditions provide a coupled
Stokes–Darcy model that reflect the pore-scale flow processes accurately
for all considered geometries. In contrast to the generalized conditions,
the classical coupling conditions fail to represent fluid flow in the coupled
system. If the classical coupling concept is applied, different interface
locations seem to be optimal for the velocity and pressure, however, that
should not be the case.

Remark 6.3: In [EE5] we perform a benchmark study considering a coupled
problem, where the flow direction is arbitrary to the porous bed and the
porous medium is constructed of in-line arranged squared solid inclusions.
The corresponding pore-scale velocity field is presented in Figure 6.22. In
this benchmark study the performance of three different coupled models
(Stokes–Darcy model with classical respective generalized interface condi-
tions, Stokes equations coupled to pore network model from [161, 162]) is
compared quantitatively using the uncertainty-aware validation framework
developed by the coauthor Farid Mohammadi. Application of the valida-
tion framework to the considered benchmark problem reveals that the Stokes–
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Figure 6.21: Velocity and pressure profiles for the general filtration
problem in case of the anisotropic porous medium.
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Figure 6.22: Pore-scale velocity field according to the flow problem
studied in [EE5].

Darcy model with the generalized interface conditions represents the fluid
flow through the coupled system best compared to the two other coupled
models. The same observations are made if the squared solid obstacles are
replaced by circular solid inclusions [EE5].

Summary of Section 6.3

We studied three flow problems to validate the generalized coupling con-
ditions derived in Chapter 3, and to demonstrate their advantage over the
classical conditions. In case of pressure driven flow we observed that the
Stokes–Darcy model with the generalized interface conditions provides
simulation results that agree very well to the pore-scale model, and we
showed that it is more accurate compared to the macroscale model with
the classical interface conditions, even if the most optimal Beavers–Joseph
parameter is applied. Moreover, we demonstrated that for a few special or-
thotropic porous-medium configurations, the generalized condition (6.14)
for the tangential component reduces to the Beavers–Joseph interface
condition (6.9). In case of double lid driven cavity flow over a porous
medium we observed that the generalized interface conditions lead to
a Stokes–Darcy model that describes the fluid flow very precisely, and
that the macroscale model with the classical conditions do not agree so
well. For a general filtration problem with arbitrary flow direction to the
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interface, we demonstrated that the newly derived coupling conditions
are suitable, whereas the classical conditions cannot represent the coupled
system accurately.



7 Conclusions
and perspectives





Conclusions and
perspectives 7

This dissertation is devoted to the derivation, analysis and validation
of coupling conditions for the Stokes–Darcy problem that account for
arbitrary flow directions to the interface. In order to derive these condi-
tions we used homogenization and boundary layer theory allowing the
rigorous formulation of macroscale equations based on the underlying
pore-scale model. We applied the newly derived conditions to couple the
Stokes and Darcy flow equations, and proved existence and uniqueness
of a weak solution for the resulting macroscale problem. We developed
numerical methods to compute all effective model parameters and to solve
the coupled Stokes–Darcy problem. Finally, we validated the general-
ized coupling conditions by comparing pore-scale resolved to macroscale
numerical simulations.

Below, we summarize the conclusions for the individual chapters, put them
into the context of the dissertation, and discuss perspectives for future
work including potential extensions of the developed models, analytical
results and numerical schemes.

In Chapter 1, we highlighted the importance of free-flow and porous-
medium flow systems for industry, environment and biology, introduced
different approaches to model such coupled flow systems and motivated
the goal of the thesis.
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In Chapter 2, we provided the pore-scale flow model and the subdomain
flowmodels we are dealing with in this thesis. We introduced the classical
coupling conditions for themacroscale problem as well as some alternative
coupling concepts available in the literature and specified their limitations.
We presented the state of the art in terms of analysis, numerical methods
and model validation of coupled Stokes–Darcy problems. Additionally,
we introduced homogenization and boundary layer theory based on ex-
amples from the literature, where these averaging techniques have been
successfully applied to derive interface conditions for unidirectional flows
in coupled flow systems.

In Chapter 3, we rigorously derived generalized coupling conditions using
homogenization with two-scale asymptotic expansions and boundary
layer theory. These conditions are valid for arbitrary flows in coupled
systems and, unlike the classical interface conditions, do not contain any
unknown parameters. All coefficients can be computed based on the pore
geometry in the vicinity of the fluid–porous interface. We showed that
the information concerning the exact interface location is also included
in the coefficients and that this location can be chosen with some free-
dom. Moreover, we analyzed the effective coefficients for various porous-
medium geometries, and found out that some coefficients are zero in case
of isotropic porous media and others are always negative. These findings
made the physical interpretation of the generalized interface conditions,
as well as their comparison to the classical coupling approach, easier. For
the derivation of the generalized coupling conditions in Section 3.1, we
started from the pore-scale description of the coupled flow system in form
of the Stokes equations. Hereby, we considered a flat interface, the stress
tensor in its nonsymmetric form and assumed that no external forces
are present. Thus, the corresponding macroscale Stokes–Darcy model
with the derived coupling conditions is also based on these assumptions.
Currently, we are working on the extension of the generalized interface
conditions to the case of the symmetric stress tensor and a nonzero ex-
ternal force term. Future work could also extend the developed coupling
concept to inertial flows and arbitrary interface. Another task that could
be addressed in the future is the derivation of estimates for the velocity



257

and pressure error functions defined in Section 3.1. This could serve as a
further confirmation of the validity of the developed interface conditions
besides their numerical validation in Chapter 6. Further research is also
needed for the development of interface conditions for two-phase fluid
flows in coupled free-flow and porous-medium systems.

In Chapter 4, we developed numerical methods to solve the pore-scale and
macroscale problems as well as to compute effective parameters appearing
in the macroscale model. For the discretization and solution of the pore-
scale problemwe used the finite element software FreeFEM++ and applied
Taylor–Hood finite elements to partition the perforated domain. The cell
and boundary layer problems, whose solutions are needed to compute
the effective parameters, are also solved via FreeFEM++. The solution to
the macroscale Stokes–Darcy problem is computed monolithically using
our in-house C++ code, which is based on the finite volume method on
staggered grids and multipoint flux approximation in the porous medium.
The monolithic solution strategy is well suited for rapid validation of
new interface concepts as these conditions can be easily implemented.
To make the generalized interface conditions directly available to other
researchers we also implemented them into the open-source simulator
DuMux. Future work could include the development of more efficient
numerical methods such as domain decomposition schemes.

In Chapter 5, we analyzed the Stokes–Darcy problem with the generalized
interface conditions with respect to existence and uniqueness of a weak
solution. We derived the variational formulation of the coupled problem
and proved its well-posedness for isotropic porous media. Well-posedness
could be guaranteed under a suitable relationship between the perme-
ability and the boundary layer constants which contain the geometrical
information within the interfacial region. In order to examine the validity
of the obtained assumption we considered several representative porous-
medium configurations and analyzed the resulting relationship. We found
that for a wide range of pore geometries the assumption, needed to guar-
antee well-posedness, is not restrictive. For anisotropic porous media all
effective coefficients appearing in the generalized coupling conditions are
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nonzero. Therefore, further integral terms over the interface appear in
the bilinear form, for which coercivity and continuity need to be proven.
Proving the coercivity was already challenging in the isotropic case since
the term that includes the boundary layer constants is not necessarily
positive. Thus, further research is needed to prove coercivity for the
bilinear form in the more complex anisotropic case.

In Chapter 6, we validated the Stokes–Darcy problem with the classical
and the generalized coupling conditions by comparison of pore-scale to
macroscale numerical simulations. First, we showed that the classical
coupling conditions are suitable for flows parallel to the interface since
the optimal Beavers–Joseph parameter can be determined such that the
error between pore-scale and macroscale simulation results is minimal.
Moreover, we found that these conditions can also be applied for per-
pendicular flows to the interface. In this case, the value taken for the
Beavers–Joseph slip coefficient has almost no effect on the behavior of
the coupled system, since the tangential velocity is negligible. Second,
we demonstrated that the classical coupling concept is unsuitable for
arbitrary flow directions to the porous layer. We showed that it is not
possible to determine a constant Beavers–Joseph parameter along the
fluid–porous interface such that pore-scale and macroscale simulations
agree. Third, we validated the Stokes–Darcy model with the generalized
coupling conditions developed in Chapter 3. We showed that in case of
pure parallel fluid flow, the generalized conditions provide more accurate
results than the classical interface conditions even if the optimal Beavers–
Joseph slip coefficient is considered. For arbitrary flow directions to the
interface, where the classical conditions are not suitable, we demonstrated
the validity of the generalized coupling conditions for the Stokes–Darcy
problem. Further comparison of the developed conditions with other al-
ternative coupling conditions presented in Chapter 1, which are supposed
to account for arbitrary flows, remains open for future work. This will be
a major task since these conditions have not been validated for nonpar-
allel flows so far. Moreover, some alternative coupling concepts contain
unknown parameters that need to be determined before the conditions
can be used in numerical simulations. For the determination of these
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unknown model parameters the generalized coupling conditions might
be useful, i.e., parameters in the alternative conditions that correspond to
those in the generalized conditions can be computed based on the pore
geometry. The comparison of different alternative interface conditions
could bring meaningful insight into the physically important terms for the
accurate coupling of free-flow and porous-medium flow that might also
be interesting for the development of coupling concepts for the inertial
flow regime.





Appendix A
A.1 Functional spaces and norms

In the following, we introduce the functional spaces and norms that are
used within this thesis based on [109, Chapter 3] and [EE1, EE4].

For the definition of spaces and norms we consider an open subsetΩ ⊂ R𝑑,
where 𝑑 = 1, 2, 3 is the dimension of space, and a scalar function 𝜑 ∶ Ω →
R, if not stated otherwise. For vector-valued functions 𝝋 ∶ Ω → R𝑑 the
below defined spaces and norms are denoted by the superscript 𝑑, for
example, 𝝋 ∈ 𝐿2(Ω)𝑑 and ‖𝝋‖𝐿2(Ω)𝑑 , where 𝐿2(Ω)𝑑 denotes the space of
vector-valued functions that are componentwise in 𝐿2(Ω). Accordingly,
for a tensor 𝗧 ∶ Ω → R𝑑×𝑑 we use the superscript 𝑑 × 𝑑, e.g., 𝗧 ∈ 𝐻 1(Ω)𝑑×𝑑
and ‖𝗧‖𝐻 1(Ω)𝑑×𝑑 .

First, we introduce the following standard functional spaces and Lebesgue
spaces with their corresponding norms

• 𝐶∞(Ω): space of smooth functions ;

• 𝐶∞loc(Ω): space of smooth functions whose derivatives are allowed to
be unbounded ;

• 𝐶∞per(𝑌 ): function space defined in Definition 2.4 ;

• 𝐶∞0 (Ω): space of smooth functions with compact support ;
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• 𝐶∞0 (Ω; 𝐶∞per(𝑌 )): test function space with fast and slow variables,

𝐶∞0 (Ω; 𝐶∞per(𝑌 )) = {𝜑 ∶ Ω → 𝐶∞per(𝑌 ) ∶ 𝜑(𝒙, ⋅) ∈ 𝐶∞0 (Ω)} ;

• 𝐿2(Ω): space of square-integrable functions 𝜑,

𝐿2(Ω) = {𝜑 ∶ Ω → R measureable ∶ ∫
Ω
|𝜑|2 d𝑉 < ∞} ,

‖𝜑‖𝐿2(Ω) = (∫
Ω
𝜑2 d𝑉)

1/2
;

• 𝐿2per(Ω): space of 𝐿2-functions that are 𝐿-periodic in 𝑥1, defined
by equation (2.51) ;

• 𝐿2loc(Ω): space of locally square-integrable functions,

𝐿2loc(Ω) = {𝜑 ∶ Ω → R measureable ∶ 𝜑|𝐾 ∈ 𝐿2(𝐾) for all 𝐾 ⊂ Ω ,
𝐾 compact } ;

• 𝐿2(Ω𝜀
pm)/R: function space defined by equation (2.53) ;

• 𝐿2(Ω × 𝑌 ) = 𝐿2(Ω; 𝐿2(𝑌 )) = {𝜑 ∶ Ω → 𝐿2(𝑌 ) ∶ 𝜑(𝒙, ⋅) ∈ 𝐿2(Ω)} .

Further, we denote the Sobolev spaces and norms by

• 𝑊 𝑘,𝑝(Ω), 1 ≤ 𝑝 ≤ ∞: space of functions 𝜑 ∈ 𝐿𝑝(Ω) having weak
derivatives up to order 𝑘 ∈ N with finite 𝐿𝑝 norm ;

• 𝐻 1(Ω): space of functions 𝜑 ∈ 𝐿2(Ω) having distributional gradients
∇𝜑 in 𝐿2(Ω)2,

𝐻 1(Ω) = {𝜑 ∈ 𝐿2(Ω) ∶ ∇𝜑 ∈ 𝐿2(Ω)2} ,

‖𝜑‖𝐻 1(Ω) = (‖𝜑‖2𝐿2(Ω) + ‖∇𝜑‖2𝐿2(Ω)2)
1/2

;

• 𝐻 1
per(Ω)/R: function space defined in Section 2.3.2 (Step 5) ;
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• 𝐻 1
0 (Ω): space of functions 𝜑 ∈ 𝐻 1(Ω) that vanish on the boundary,

𝐻 1
0 (Ω) = {𝜑 ∈ 𝐻 1(Ω) ∶ 𝜑 = 0 on 𝜕Ω} ;

• 𝐻 1/2(𝜕Ω): trace space of functions 𝜑 ∈ 𝐿2(𝜕Ω),

𝐻 1/2(𝜕Ω) = {𝜑 ∈ 𝐿2(𝜕Ω) ∶ 𝜑 = 𝑢|𝜕Ω for some 𝑢 ∈ 𝐻 1(Ω)} ;

• 𝐻 1/2
00 (Σ): trace space of functions 𝜑 ∈ 𝐻 1/2(𝜕Ωpm) with supp 𝜑 ⊂ Σ,

𝐻 1/2
00 (Σ) = {𝜑 ∈ 𝐻 1/2(𝜕Ωpm) ∶ supp 𝜑 ⊂ Σ} ;

• 𝐻−1(Ω): dual space of 𝐻 1
0 (Ω) ;

• 𝐻−1/2(𝜕Ω): dual space of 𝐻 1/2(𝜕Ω),

‖𝜑‖𝐻−1/2(𝜕Ω) = sup𝑓 ∈𝐻 1/2(𝜕Ω)
⟨𝜑, 𝑓⟩𝜕Ω

‖𝑓 ‖𝐻 1/2(𝜕Ω)
;

• (𝐻 1/2
00 (Σ))

′
: dual space of 𝐻 1/2

00 (Σ) .

Specific test function spaces defined in context with homogenization
are

• 𝑉per(Ω𝜀)2: test function space defined by equation (3.5) ;

• 𝑊per(Ω𝜀
pm)𝑑: test function space defined by equation (2.50) ;

• 𝑉 (𝑍bl)2: test function space,

𝑉 (𝑍bl)2 = {𝒖 ∈ 𝐿2loc(𝑍
bl)2∶∇𝒚𝒖 ∈ 𝐿2(𝑍bl)2×2, 𝒖 ∈ 𝐿2(𝑍−)2, 𝒖 = 𝟎 on 𝜕𝑍bl

s ,

∇𝒚⋅ 𝝋 = 0 in 𝑍bl, 𝒖 is 𝑦1-periodic} .
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Finally, we summarize the functional spaces and norms defined in Chap-
ter 5 of this thesis

• Hff = {𝝋 ∈ 𝐻 1(Ωff)2 ∶ 𝝋 = 𝟎 on 𝜕Ωff ⧵ Σ} ;

• Hff,Σ = {𝝋 ∈ 𝐻 1(Ωff)2 ∶ 𝝋 = 𝟎 on Γwallff,𝐷 ∪ Σ} ;

• Qff = 𝐿2(Ωff) ;

• Hpm = {𝜓 ∈ 𝐻 1(Ωpm) ∶ 𝜓 = 0 on Γpm,𝐷} ;

• W=Hff×Hpm , ‖𝑤‖2𝑊 = ‖𝒘‖2𝐻 1(Ωff)
+‖𝜓 ‖2𝐻 1(Ωff)

for all 𝑤 = (𝒘, 𝜓 ) ∈ W ;

• 𝐻(div; Ω)2 = {𝝋 ∈ 𝐿2(Ω)2 ∶ ∇⋅𝝋 ∈ 𝐿2(Ω)} .

A.2 Inequalities

Below, we provide elementary inequalities which have been used through-
out this thesis. Let the domain Ω ⊂ R𝑑 denote a bounded, connected and
open subset of R𝑑.

Lemma A.1 (Poincaré inequality): Let 𝜑 ∈ 𝐻 1(Ω) with 𝜑 = 0 on Γ, Γ ⊂ 𝜕Ω
and Γ ≠ ∅. Then, the there exists a constant 𝐶 > 0 such

‖𝜑‖𝐿2(Ω) ≤ 𝐶‖∇𝜑‖𝐿2(Ω)2 . (A2.1)

Proof. See, e.g., [59, Chapters 5.6 and 5.8] or [132, Property 2.4].

Lemma A.2 (Poincaré-type inequalities): Let the scale separation param-
eter 𝜀 and the pore space Ω𝜀

pm w.r.t. the porous-medium domain Ωpm be
defined as in Section 2.3.2. For 𝜑 ∈ 𝐻 1(Ω𝜀

pm) and 𝜑 = 0 on 𝜕Ω𝜀
pm ⧵ 𝜕Ωpm.

Then, we have the following Poincaré-type inequalities

‖𝜑‖𝐿2(Σ) ≤ 𝐶𝜀1/2‖∇𝜑‖𝐿2(Ω𝜀
pm)2 , ‖𝜑‖𝐿2(Ω𝜀

pm) ≤ 𝐶𝜀‖∇𝜑‖𝐿2(Ω𝜀
pm)2 . (A2.2)
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Proof. These estimates are well-known consequences of the Poincaré in-
equality (A2.1) and the proofs can be found in, e.g., [120, Lemma 4.10], [153,
Lemma 1] or [120, Lemma 4.10].

Lemma A.3 (Generalized Young’s inequality): For 𝑎, 𝑏 > 0 and 𝛿 > 0 it
holds

𝑎𝑏 ≤ 𝑎2

2𝛿
+ 𝛿𝑏2

2
. (A2.3)

Proof. See, e.g., [59, Appendix B].

LemmaA.4 (Minkowski inequality): LetΩ be a measure space, 1 ≤ 𝑝 < ∞
and 𝜑, 𝜓 ∈ 𝐿𝑝(Ω). Then, the sum 𝜑 + 𝜓 is an element of 𝐿𝑝(Ω), and we have

‖𝜑 + 𝜓‖𝐿2(Ω) ≤ ‖𝜑‖𝐿2(Ω) + ‖𝜓 ‖𝐿2(Ω) . (A2.4)

Proof. See, e.g., [59, Appendix B].

LemmaA.5 (Cauchy–Schwarz inequality): For all vectors 𝒖 and 𝒗 elements
of a real linear space 𝐻 with inner product ⟨⋅, ⋅⟩ it holds

|⟨𝒖, 𝒗⟩|2 ≤ ⟨𝒖, 𝒖⟩ ⋅ ⟨𝒗, 𝒗⟩ . (A2.5)

Proof. See, e.g., [59, Appendix B, D].

Lemma A.6 (Trace inequalities): Let Ω𝑖 ⊂ R2 a bounded domain with
a smooth or locally Lipschitz boundary 𝜕Ω𝑖 for 𝑖 ∈ {ff, pm}, Hff and Hpm
defined as in Section 5.1.2. Then, for Σ ⊂ 𝜕Ω𝑖 there exist 𝐶tr,ff, 𝐶tr,pm > 0
such that

‖𝒗|Σ‖𝐻 1/2
00 (Σ) ≤ 𝐶tr,ff ‖𝒗‖𝐻 1(Ωff)2 ∀𝒗 ∈ Hff , (A2.6)

‖𝜓 |Σ‖𝐻 1/2
00 (Σ) ≤ 𝐶tr,pm ‖𝜓 ‖𝐻 1(Ωpm) ∀𝜓 ∈ Hpm . (A2.7)
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Proof. These are results of the trace theorem for Sobolev spaces proven
in [110, Chapter 3, 4, 12] and [59, Chapter 5].

A.3 Lax–Milgram theorem

Theorem A.7 (Lax–Milgram): Let 𝐻 be a real Hilbert space with norm ‖⋅‖
and inner product (⋅, ⋅). Further, ⟨⋅, ⋅⟩ denotes the pairing of 𝐻 with its dual
space. Assume that

B ∶ 𝐻 × 𝐻 → R

is a bilinear mapping, for which there exist constants 𝑐, 𝐶 > 0 such that

|B(𝑢, 𝑣)| ≤ 𝐶‖𝑢‖‖𝑣‖ , 𝑢, 𝑣 ∈ 𝐻 , (i)

and

B(𝑢, 𝑢) ≥ 𝑐‖𝑢‖2 , 𝑢 ∈ 𝐻 . (ii)

We say bilinear form B is bounded after (i) and coercive after (ii). Finally,
let 𝑓 ∶ 𝐻 → R be a bounded linear functional on 𝐻. Then, there exists a
unique element 𝑢 ∈ 𝐻 such that

B(𝑢, 𝑣) = ⟨𝑓 , 𝑣⟩

for all 𝑣 ∈ 𝐻.

Proof. See, e.g., [59, Chapter 6, Section 6.2.1, Theorem 1].
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Abstract
Coupled free-flow and porous-medium flow systems occur in nature
as well as in a wide range of technical applications, for example,
groundwater filtration or water management in fuel cells. The free
flow is typically described by the Stokes equations and the flow
through the porous medium by Darcy’s law. One of the major chal-
lenges in modeling such flow systems is the accurate coupling of both
mathematical models across the fluid–porous interface. Traditional
coupling concepts are developed for unidirectional flows, parallel or
perpendicular to the porous layer, however, they are not applicable if
arbitrary flow directions occur, such as in industrial filtration. This
fact significantly restricts the amount of applications that can be
accurately modeled. Therefore, new interface conditions accounting
for arbitrary flows in Stokes–Darcy systems are needed.
In this dissertation, we develop generalized coupling conditions that
are valid for arbitrary flow directions to the fluid–porous interface.
These conditions are rigorously derived using homogenization with
two-scale asymptotic expansions and boundary layer theory. All
coefficients appearing in the generalized interface conditions are
computed based on the pore geometry in the vicinity of the interface.
This is a great advantage over the traditionally applied coupling
conditions, which are limited to unidirectional flows and contain
unknown model parameters that must be fitted before the conditions
can be used in numerical simulations. We derive the variational
formulation of the Stokes–Darcy problem with the newly derived
coupling conditions and prove existence and uniqueness of a weak
solution. We develop a finite volume discretization scheme to solve
the coupled problem numerically and employ finite element methods
to compute all effective model parameters and to solve the pore-
scale problem. To validate the generalized coupling conditions we
compare microscale and macroscale numerical simulation results. We
demonstrate that the derived interface conditions are more accurate
than the classical conditions in case of unidirectional flows, and that
they are valid in case of arbitrary flow directions to the interface,
whereas the classical conditions fail.

Interface Conditions for
Arbitrary Flows in Stokes–Darcy Systems:

Derivation, Analysis and Validation

Elissa Eggenweiler


	Abstract
	Nomenclature
	Introduction
	State of the art
	Mathematical modeling of coupled problems
	Pore-scale model
	Subdomain models
	Coupling concepts

	Analysis, numerical methods and validation of Stokes–Darcy problems
	Well-posedness
	Numerical methods
	Model validation

	Homogenization and boundary layer theory
	Nondimensionalization
	Periodic homogenization: Darcy's law
	Boundary layer theory: Interface conditions for unidirectional flows


	Generalized interface conditions
	Derivation of interface conditions via homogenization and boundary layers
	Step 1: Geometrical setting and pore-scale model
	Step 2: First approximations of pore-scale velocity and pressure
	Step 3: Improvement of first approximations
	Step 4: Leading order approximations and interface conditions

	Practical aspects
	Dimensional formulation
	Effective coefficients and interface location
	Comparison of generalized coupling conditions to classical ones


	Numerical methods for coupled problems
	Pore-scale model
	Discretization scheme and solution strategy
	Averaging of pore-scale solutions

	Macroscale model
	Discretization scheme
	Monolithic approach

	Computation of effective properties

	Analysis of the Stokes–Darcy problem with generalized interface conditions
	Problem setting and weak formulation
	Problem setting
	Weak formulation of the coupled problem

	Well-posedness
	Auxiliary results
	Well-posedness of the coupled problem

	Numerical study of theoretical result

	Model validation
	Classical coupling conditions for unidirectional flows to the interface
	Pressure driven flow
	Lid driven cavity over porous bed
	Forced infiltration

	Classical coupling conditions for arbitrary flows to the interface
	Filtration through T-shaped domain
	General filtration problem

	Generalized coupling conditions
	Pressure driven flow
	Double lid driven cavity over porous bed
	General filtration problem


	Conclusions and perspectives
	Appendix
	Functional spaces and norms
	Inequalities
	Lax–Milgram theorem

	Publications by the author
	Bibliography

