
Vorgelegt an der Universität Stuttgart
Institut für Modellierung und Simulation Biomechanischer Systeme

Computational Biophysics and Biorobotics

Über die Regelung muskelgetriebener Systeme: ein
hierarchischer und geometriebasierter Ansatz

−
On the control of muscle-actuated systems: a hierarchical and

geometry-based approach

Vorgelegt von
Johannes Raphael Walter
aus Korb

Hauptberichter:
Prof. Dr. rer. nat. Syn Schmitt, Universität Stuttgart

Mitberichter:
Prof. Thor Besier, PhD, Universität Auckland

Tag der mündlichen Prüfung: 15. Dezember 2021

Von der Fakultät 2: Bau- und Umweltingenieurswissenschaften und dem
Stuttgarter Zentrum für Simulationswissenschaften der Universität Stuttgart zur
Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

September 2022
⋇

CBB-001-2021





i

Selbständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst habe, dass ich
keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus
anderen Werken übernommenen Aussagen als solche gekennzeichnet habe, dass die ein-
gereichte Arbeit weder vollständig noch in wesentlichen Teilen Gegenstand eines anderen
Prüfungsverfahrens gewesen ist und dass das elektronische Exemplar mit den anderen Ex-
emplaren übereinstimmt. Teile der Arbeit wurden bereits vorab publiziert. Es handelt sich
dabei um den hierarchischen Regelungsansatz, der bereits im Rahmen der Internationalen
Graduiertenkollegs in der Öffentlichkeit diskutiert wurde und deshalb eine zeitnahe Pub-
likation in einem Fachjournal notwendig war (Walter et al., 2021a,b).

Johannes Raphael Walter
Stuttgart

September 2022





iii

Preface

I am thankful for all that brought me here, first and foremost for my family and friends
who offer me the best in life.

Apart from that, I guess I can only bow humbly before the benevolent waves of fate;
meeting the right people at the right time; mindlessly making right decisions; living in a
world that has more wonders than explanations.

When enrolling at the University of Stuttgart I could have never imagined to leave it as
a doctor. But soon my interest in mathematical models and the fascination of dynamical
systems sparked. I have to thank the University of Stuttgart and all professors involved
for providing the teaching of cybernetics and all my fellow students for making this a great
time.

With rising expertise in the field of control—and a rising need to plug the whole in a
student’s wallet—I started a research assistant job in the wonderful world of biomechanics
under the guidance of Prof. Dr. rer. nat. Syn Schmitt and Dipl.-Ing. Tille Karoline Rupp.
The idea to apply my theoretical mathematical knowledge to such a most fascinating natural
system felt like the right way—and it seems it was. Thanks to the ambition of Prof. Dr.
rer. nat. Syn Schmitt I could continue my work in biomechanics to eventually start my
PhD project under his guidance.

This PhD project was funded by the DFG as part of the International Research and
Training Group ‘Soft Tissue Robotics’ (GRK 2198/1), which would not have been possible
without the hard work of Prof. Oliver Röhrle. I therefore thank him and the DFG as an
institution for the generous funding, but also the other professors, postdocs and students
in Germany and New Zealand. Especially the Summer Schools that alternated between
Stuttgart and Auckland allowed us students to fruitfully work together and to widen our
own horizons in academia and across the globe.

As my work continued and the design of the hierarchical control architecture sprouted,
the discussions with my professor Prof. Dr. rer. nat Syn Schmitt and with my colleagues
Dr. rer. nat. Michael Günther, Dipl.-Gwl Simon Wolfen, Dipl.-Phys. Maria Hammer,
M.Sc. Patrick Lerge and Dr. Daniel F. B. Häufle where of invaluable help for shaping the
architectures current form. I appreciate Prof. Dr. rer. nat. Syn Schmitt for providing
such a great working atmosphere in his research group for Computational Biophysics and
Biorobotics—with such a great coffee.

Johannes Raphael Walter
Stuttgart

September 2022





v

Kurzfassung

Computersimulationen sind heutzutage eine leistungsfähige wissenschaftliche Methode
um Hypothesen unter simulierten Bedingungen zu überprüfen. Dennoch scheinen biol-
ogische Bewegungen von mehrgelenkigen Systemen mit einer Vielzahl von Muskeln das
Ergebnis von neuronalen Kommandos zu sein, die zu komplex sind um algorithmisch
implementiert zu werden. Daher ist die Vielfalt, sowie die Komplexität von in-silico
synthetisierten, muskelgetriebenen Bewegungen noch immer gering. Ein Schlüssel-
problem zur Regelung biologischer Bewegung ist es eine Verbindung zwischen einer
konzeptionellen Idee der Bewegung und der Bereitstellung von Muskelstimulationen
herzustellen. Dies kann sich als schwierig erweisen, da in biologischen Bewegungen
die Anzahl der Muskeln größer ist als die Dimension des konzeptionellen Raums der
Bewegungsidee, bspw. der mechanischen Freiheitsgraden (FHG) des Skelettsystems.

In dieser Dissertation wird eine mathematische Formulierung einer hierarchischen
Regelungsarchitektur vorgestellt, die eine solche Verbindung herstellt und die dazu
ausgelegt ist eine Vielzahl von dreidimensionalen, muskelgetriebenen Bewegungen zu
synthetisieren. Die Funktionsfähigkeit der Regelungsarchitektur ist anhand von ver-
schiedenen menschlichen Bewegungsaufgaben demonstriert. Dies beinhaltet Simula-
tionen von einem aufrechtem Stand, von einer Einstiegsbewegung in ein Fahrzeug,
um ergonomische Rückschlüsse von einer virtuellen Designänderung zu ziehen, und
von einem Sturz in eine Badewanne, um die Aufklärung eines Kriminalfalles zu un-
terstützen. Das zur Bewegungssynthese verwendete dreidimensionale digitale Men-
schmodell (DMM) besteht aus 20 Gelenk FHG und 36 Hill-Typ Muskel-Sehnen Ein-
heiten (MSE). Das DMM ist erdähnlicher Gravitation ausgesetzt und die Füße in-
teragieren mit dem Boden durch reversible Haft- und Gleitreibungskontakte. Die
Regelungsarchitektur liefert kontinuierliche Stimulationen für alle MSE, basierend auf
einer konzeptionellen Formulierung der Bewegungsaufgabe in den Koordinaten der
Gelenkwinkel, der Gelenkmomente, der Positionen der Gliedmaßen oder in anderen
konzeptionellen Koordinaten. Die Hierarchie der Regelungsarchitektur besteht aus drei
Ebenen, der ‘Konzeptionsebene’, der ‘Transformationsebene’ und der ‘Strukturebene’.
In der ‘Konzeptionsebene’ wird die Bewegungsaufgabe in den konzeptionellen Koor-
dinaten der Winkel, der Momente oder der Positionen formuliert und geregelt. Die
Ausgangsgröße des konzeptionellen Reglers wird in einen Bewegungsplan für die Ge-
lenkwinkel transformiert und bildet die Eingangsgröße für zwei Gelenkwinkelregler in
der ‘Transformationsebene’. Die ‘Transformationsebene’ kommuniziert mit den biolo-
gischen Strukturen in der ‘Strukturebene’, indem sie zum einen direkte Stimulationen
für die MSE bereitstellt und zum anderen weitere Eingangssignale für strukturelle
MSE Regler liefert. Dabei wird die Redundanz zwischen den MSE Stimulationen und
den Gelenkwinkeln aufgelöst. Hierzu werden die Charakteristiken der modellierten bio-
physikalischen Strukturen, die Hebelarme der Muskeln, die Steifigkeitsverhältnisse in-
nerhalb des Muskelmodells und die Längen-Stimulationsabhängigkeit der Aktivierungs-
dynamik, zu Nutze gemacht. Die von den MSE über ihre Hebelarme generierten
Gelenkmomente beschleunigen die Körpersegmente und, indem die konzeptionellen
Koordinaten an die Regler in der ‘Konzeptionsebene’ zurückgeführt werden, wird der
hierarchische Regelkreis geschlossen. Die präsentierte Regelungsarchitektur erlaubt es
damit eine konzeptionelle Bewegungsaufgabe direkt in Stimulationssignale der MSE zu
übersetzen. Mit diesem Ansatz wird das Problem der Bewegungsplanung erleichtert,
da bspw. nur das mechanische System in der konzeptionellen Planung betrachtet wer-
den muss. Da zudem die Auflösung der Muskel-Gelenk-Redundanz nicht eindeutig ist,
verbleibt zur Regelung eine ‘ungeregelte Mannigfaltigkeit’, mit der die Kokontraktion
aller Muskeln an dem selben Gelenk genau so angepasst werden kann, dass sie nicht
mit der Erfüllung der Bewegungsaufgabe in Konflikt steht.

Die Ergebnisse dieser Dissertation sind vielversprechend bezüglich der Anwendung
der Regelungsarchitektur für die Synthese von dynamischen und komplexen muskel-
getriebenen Bewegungen, auch für robotische Systeme die mit künstlichen Muskeln
ausgestattet sind. Die internen Zustände des muskuloskelettalen Models sind zu weit-
erführenden Analysen geeignet, wie z.B. zur Evaluation der Ergonomie oder zur Ab-
schätzung gesundheitlicher Auswirkungen der Bewegung.





vii

Abstract

Simulation technologies have become a powerful tool in science for hypothesis testing,
as more and more complex systems can be translated in a mathematical formulation
that can be implemented in a simulation environment. Still, biological multi-joint,
multi-muscle movements seem to be the outcome of neural commands too complex
to be algorithmically represented. Therefore, the variety of muscle-driven movement
tasks synthesised in-silico is still narrow, and so is their complexity. A key problem for
biological motor control is to establish a link between a conceptional idea of a movement
and the generation of a set of muscle-stimulating signals. This is particularly difficult
as in biological motion the number of muscles is typically larger than the dimension of
the conceptional space, e.g. of the body’s mechanical degrees of freedom (DoFs).

A mathematical formulation that provides this link is presented in this dissertation
in the form of a layered, hierarchical control architecture, which is meant to synthesise
a wide range of complex 3-dimensional muscle-driven movements. The operativeness
of the architecture is demonstrated by applying it to human movement tasks of dif-
ferent type, including human-like upright stance, the synthetisation of a car ingress
motion to enable pre-production ergonomics evaluations and of a falling movement to
assist in solving a criminal case. The 3-dimensional digital human model (DHM) de-
ployed consists of 20 angular DoFs and 36 Hill-type muscle-tendon units (MTUs). The
DHM is exposed to gravity while its feet contact the ground via reversible stick-slip
interactions. The architecture continuously stimulates all MTUs based on a concep-
tional task formulation in terms of joint angles, joint torques, limb positions, or of
other higher-level coordinates. It consists of the three layers, the ‘conceptional layer’,
the ‘transformational layer’ and the ‘structural layer’. In the ‘conceptional layer’, the
movement task is formulated and controlled in the high-level coordinate spaces of an-
gles, torques, or positions. The output of the high-level controller is transformed to
provide a ‘postural plan’ that is fed to two mid-level joint controllers in the ‘trans-
formational layer’. The ‘transformational layer’ communicates with the biophysical
structures in the ‘structural layer’ by providing, firstly, direct MTU stimulation con-
tributions and, secondly, input signals for low-level MTU controllers. Thereby, the
redundancy of the MTU stimulations with respect to the joint angles is resolved, a
link is established, by exploiting some properties of the biophysical structures modelled,
namely, the muscle moment arms, the stiffness relations within the muscle model, and
the length-stimulation relation of the muscle activation dynamics. In the ‘structural
layer’, each MTU is stimulated individually by a low-level length controller that mod-
els the mono-synaptic reflex, where the muscle-spindles’ efferent outputs are fed back
via α-neurons to innervate the whole muscle. The resulting joint torques that are
generated by the MTUs via their moment arms accelerate the segments of the DHM
and by feeding back the conceptional coordinates to the high-level controllers in the
‘conceptional layer’ the hierarchical feedback loop is closed.

The present control architecture, thus, allows the straightforward feeding of con-
ceptional movement task formulations to MTUs. With this approach, the problem of
movement planning is eased, as e.g. solely the mechanical system has to be considered
in the conceptional plan. Additionally, as resolving the muscle-joint redundancy is not
unique, additional DoFs on an ‘uncontrolled manifold’ can be exploited for control to
synergistically adjust the co-contraction of all MTUs that act on the same joint while
not interfering with the movement task. The results are promising regarding the ap-
plication of the architecture to more dynamic and complex movements, with also the
mechanical and muscular dimensionality enhanced to, e.g., implementing bi-articular
muscles or examining diverse body plans (animal morphologies). It seems conceivable
to deploy the architecture as part of a movement system that also incorporates non-
linear dynamics of biological sensors, or let it be part of learning processes and other
sophisticated hypotheses on biological motor control.



Contents

List of Figures xii

List of Tables xiii

List of Symbols xiii

List of Acronyms xvi

I Introduction and Preliminaries 1

1 Introduction 3
1.1 Structure of this doctoral dissertation . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminary mathematical model descriptions 7
2.1 Rigid body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Rigid bodies, frames and points . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 3D rotations, exponential coordinates and helical angles . . . . . . . 9
2.1.3 Homogeneous representation of rigid body transformations . . . . . 12
2.1.4 Rigid body twists, exponential coordinates and screw motions . . . 13
2.1.5 Rigid body velocities and velocity transformations . . . . . . . . . . 15
2.1.6 Rigid body acceleration and other dynamics variables . . . . . . . . 17
2.1.7 Lagrange equations of motion . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Muscle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Activation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Hill-type muscle-tendon-units . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Low-level control of muscle length . . . . . . . . . . . . . . . . . . . 23
2.2.4 Moment arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Joint-limitations and visco-elastic forces . . . . . . . . . . . . . . . . . . . . 26
2.4 Contact forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II The Hierarchical Control Architecture 29

3 Design of the hierarchical control architecture 31
3.1 The Structural Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 The transformational Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 The hierarchical θλ-controller . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 The direct θ-controller with co-contraction . . . . . . . . . . . . . . . 41
3.2.3 Choosing the base reference stimulation level Stimcocref . . . . . . . 43
3.2.4 A co-contraction on joint layer . . . . . . . . . . . . . . . . . . . . . 43

3.3 The conceptional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii



CONTENTS ix

3.3.1 Control of joint angles . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Control of joint torques . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Control of limb positions . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.4 Control of forces and of other coordinates . . . . . . . . . . . . . . . 50

III In-silico Applications 51

4 The digital human body model allmin 53
4.1 Graph-based model description . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Joint control: basic examples 57
5.1 Control of the lower limb joint angles . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Control of the upper limb joint angles . . . . . . . . . . . . . . . . . . . . . 58
5.3 Control of the trunk joint angles . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Torque control: upright stance and squat movement 63
6.1 Conceptional task formulation in terms of joint torques . . . . . . . . . . . 63

6.1.1 Simulation task: quiet upright stance . . . . . . . . . . . . . . . . . 64
6.1.2 Simulation task: joint-based co-contraction . . . . . . . . . . . . . . 66
6.1.3 Simulation task: squat movement . . . . . . . . . . . . . . . . . . . . 67

7 Position Control: basic example 69
7.1 Controlling the positions of lower and upper extremities . . . . . . . . . . . 69

7.1.1 Static-case position control . . . . . . . . . . . . . . . . . . . . . . . 70
7.1.2 Moving-case position control . . . . . . . . . . . . . . . . . . . . . . 70

8 Generalisation towards complex combined movements 77
8.1 Application example digital engineering: Car ingress ergonomics . . . . . . 78

8.1.1 Controller configurations for synthesising a car-ingress motion . . . . 78
8.1.2 Simulation results of the car ingress . . . . . . . . . . . . . . . . . . 79

8.2 Application example forensics: Mean crime or tragic fall . . . . . . . . . . . 82
8.2.1 Movement plan and TIA model . . . . . . . . . . . . . . . . . . . . . 83
8.2.2 Bathtub model and contacts . . . . . . . . . . . . . . . . . . . . . . 84
8.2.3 Simulation results of the fall . . . . . . . . . . . . . . . . . . . . . . . 84
8.2.4 Model limitations and outlook . . . . . . . . . . . . . . . . . . . . . 85

IVDiscussion 87

9 Discussion and outlook 89
9.1 Steps towards a validation and biological identification of the hierarchical

control architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.2 Model limitations of the DHM . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.3 Control limitations with potential modular improvements to the architec-

ture’s design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.4 Current state and future applications of the hierarchical control architecture 93

V Appendix 95

A Notes on rigid body dynamics 97
A.1 Notes on rotations in 3D-space and other representations . . . . . . . . . . 97
A.2 Body velocities and the adjoint transformation matrix . . . . . . . . . . . . 99



x CONTENTS

A.3 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B The contact model 103

C The digital human body model ‘allmin’ 109
C.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D The simulation software demoa 115
D.1 Simulation software and solver . . . . . . . . . . . . . . . . . . . . . . . . . 115
D.2 demoa variables of the homogeneous rigid body matrices . . . . . . . . . . 115

E Implementation of the hierarchical control architecture 117
E.1 Object-oriented design and controller parametrisation . . . . . . . . . . . . 117

E.1.1 The conceptional layer parameters: / ConceptionalLayer . . . . . . . 118
E.1.2 The transformational layer parameters: / TransformationalLayer . . 120
E.1.3 The structural layer parameters: / StructuralLayer . . . . . . . . . . 121

E.2 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
E.3 Runtime routines of the control algorithms . . . . . . . . . . . . . . . . . . . 122
E.4 Different ways to set desired control states . . . . . . . . . . . . . . . . . . . 123
E.5 Source code of the control module functions . . . . . . . . . . . . . . . . . . 125

E.5.1 Functions in usrsetmks.cpp . . . . . . . . . . . . . . . . . . . . . 125
E.5.2 Functions in ucontrol.cpp . . . . . . . . . . . . . . . . . . . . . . 128
E.5.3 Functions in uconclayer.cpp . . . . . . . . . . . . . . . . . . . . 138
E.5.4 Functions in utrafolayer .cpp . . . . . . . . . . . . . . . . . . . . 145
E.5.5 Functions in ustructlayer .cpp . . . . . . . . . . . . . . . . . . . 149

Bibliography 151





List of Figures

2.1 Subsystems of the muscle-actuated system . . . . . . . . . . . . . . . . . . . . . 8
2.2 Diagram of a MTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Force-length and Force-velocity relations of a CE . . . . . . . . . . . . . . . . . . 21
2.4 Monosynaptic reflex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Layers of control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Hierarchical cascade of the transformational and the structural layer . . . . . . 36
3.3 Taylor estimation of desired CE-lengths . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Block diagram of the complete hierarchical control architecture . . . . . . . . . 46

4.1 The DHM ‘allmin’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Simulation results of lower limb joint angle control . . . . . . . . . . . . . . . . 59
5.2 Simulation results of joint angle control of an upper extremity . . . . . . . . . . 60
5.3 Simulation results of trunk joint angle control . . . . . . . . . . . . . . . . . . . 62

6.1 Simulation results of quiet upright stance . . . . . . . . . . . . . . . . . . . . . 65
6.2 Simulation results of quiet upright stance with joint-based co-contraction variations 66
6.3 Simulation results of the squat movement. . . . . . . . . . . . . . . . . . . . . . 68

7.1 Simulation results of static control of the hand . . . . . . . . . . . . . . . . . . . 71
7.2 Simulation results of static control of the foot . . . . . . . . . . . . . . . . . . . 72
7.3 Simulation results of moving control of the hand . . . . . . . . . . . . . . . . . 74
7.4 Simulation results of moving control of the foot . . . . . . . . . . . . . . . . . . 75

8.1 Overview of the validation process for the car ingress motion . . . . . . . . . . 78
8.2 Validation of the ingress motion . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3 Car ingress simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.4 Gantt-chart of the movement plan for the ingress motion . . . . . . . . . . . . . 81
8.5 Application example forensic case analysis . . . . . . . . . . . . . . . . . . . . . 82
8.6 Movement plan of the synthesised fall motion . . . . . . . . . . . . . . . . . . . 83
8.7 Time series of the fall motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.8 Contact interaction during the fall motion . . . . . . . . . . . . . . . . . . . . . 85

B.1 Contact model symbol definition and state diagram . . . . . . . . . . . . . . . 106
B.2 Contact model torsion angle and ‘stick’ coordinate system . . . . . . . . . . . . 107

C.1 The DHM ‘allmin’ and its structure . . . . . . . . . . . . . . . . . . . . . . . . 109

D.1 Coordinate frame transformations at a joint in demoa . . . . . . . . . . . . . . . 116

xii



E.1 Folder structure of the /datacontrol -folder . . . . . . . . . . . . . . . . . . . . 118

List of Tables

4.1 Bodies, joints and muscles of the DHM . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Control parameters of the angle controller of the lower limb. . . . . . . . . . . . 58
5.2 Control parameters of the angle controller of the right upper limb. . . . . . . . . 61
5.3 Control parameters of the angle controller of the trunk. . . . . . . . . . . . . . . 61

6.1 Initial conditions and control parameters of the torque controller . . . . . . . . 64

7.1 Control parameters of the position controllers of the left hand and the right foot. 73

B.1 Foot-ground contact parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.1 Model parameters of the rigid body segments . . . . . . . . . . . . . . . . . . . 110
C.2 Model parameters of the joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.3 Model parameters of muscle routing . . . . . . . . . . . . . . . . . . . . . . . . 112
C.4 Muscle-specific model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.5 Muscle non-specific model parameters . . . . . . . . . . . . . . . . . . . . . . . 114

xiii



List of Symbols

Sets and groups

R Set of real numbers.

R1 Set of real numbers, bounded by the intervall [umin, 1],
see (2.37).

SO(3) Group of special orthogonal matrices, see (2.2).

so(3) Vector space of all skew-symmetric matrices, see (2.5).

SE(3) Group of special Euclidean matrices, see (2.12).

se(3) Generalisation of so(3), see (2.18).

Rigid body mechanics

A,B,C, ... Rigid body labels are written in capital letters.

A,B, C, ... Coordinate frame labels are written in capital calligraphic
letters.

GAB ∈ SE(3) Homogeneous representation of the rigid body transfor-
mation from B to A, see (2.11).

RAB ∈ SO(3) Rotation matrix between the two frames A and B.

ωAB ∈ R3, Ω̂AB
∈ so(3) Rotation axis or angular velocity component, see (2.5),

(2.8) and (2.17).

ψAB,ϕAB Rotational coordinates, see (2.9).

χAB Coordinate representation of G, see (2.16).

V̂ A
AB ∈ se(3) Spatial velocity of frame B, relative to frame A (sub-

scripts), viewed from frame A (superscript) see (2.23).

ξAB ∈ R6, Ξ̂AB
∈ SE(3) Coordinate representation and homogeneous representa-

tion of a twist, see (2.17).

ÂAB ∈ R3×3 Homogeneous representation of rigid body acceleration,
see (2.29).

Ĵ
AB, P̂AB, Φ̂AB

∈ R3×3 Inertia, momentum and force matrices, see (2.32).

q ∈ RnDoF Vector of generalised DoFs, see (2.33).

T ∈ RnDoF Vector of generalised forces, see (2.33).

xiv



τMTU, τ lmt and τ bsh ∈ RnDoF Vectors MTU, limitation and visco-elastic (bushing) joint
torques, see (2.56), (2.57) and (2.58).

Muscle tendon units

γ ∈ R1 Concentration of Ca2+ ions in the sarcoplasma of a mus-
cle, see (2.38).

a ∈ R1 Current activity of a MTU, see (2.39).

u ∈ R1 Current stimulation of a MTU, see (2.38).

lMTU, lCE and lSEE ∈ R Length of a MTU, CE and SEE, see (2.40).

fMTU, fCE, ... and fSDE ∈ R Forces of a MTU, CE, PEE, SEE and SDE, see (2.41).

R Moment arm matrix, see (2.55).

Hierarchical control architecture

δ
a/e
SL , δa/e

TL and δ
a/e
CL Vectors of afferent and efferent neural sensor delays of

the structural, transforlational and coneptional layer, see
(3.2).

λ ∈ RnMTU Vector of desired CE lengths, see (2.51) and (3.3).

θ ∈ Rnθ and θdes ∈ Rnθ Vectors of the ‘MTU-actuated’ joint angles and the ‘pos-
tural plan’ as a vector of desired joint angles, see (3.7).

Jλθ ∈ RnMTU×nθ Angle-length Jacobian matrix, see (3.9).

Juλ ∈ RnMTU×nMTU Length-stimulation, see (3.26).

Juθ ∈ RnMTU×nθ Angle-stimulation Jacobian matrices, see (3.25).

Jθτ ∈ Rnθ×nθ Torque-angle Jacobian matrix, see (3.36).

Jθχ ∈ RnMTU×nθ Position-angle Jacobian matrix, see (3.42).

xv



List of Acronyms

CNS central nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

DoF degree of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DHM digital human model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

MTU muscle-tendon unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PD proportional-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

COM center of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ISB International Society of Biomechanics . . . . . . . . . . . . . . . . . . . . . . . 12

CE contractile element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

PEE parallel elastic element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

SEE serial elastic element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

SDE serial damping element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

AAS agonistic-antagonistic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

PID proportional-integral-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FE flexion-extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

lFE lateral flexion-extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vFE ventral flexion-extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

AA abduction-adduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Hp hip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Kn knee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

An ankle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Lu lumbar joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Ce cervical joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Sh shoulder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Eb elbow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Wr wrist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xvi



xvii

Fx flexor, flexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Ex extensor, extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Ab abductor, abduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Ad adductor, adduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

lFx lateral flexor, flexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

lEx lateral extensor, extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vFx ventral flexor, flexion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vEx ventral extensor, extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

TIA transient ischemic attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

RoM range of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

EMG electromyography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

MPC model predictive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92





Part I

Introduction and Preliminaries

1





Introduction 1

Animate nature is rife with intelligent design. This stretches from the growth of plants over
locomotion of animals towards an individual human writing a doctoral dissertation about a
concept that potentially describes some aspects of how his body is moving. A key feature
of such animate systems is that they seem to violate the physics of an equivalent inanimate
system, e.g. by growing roots or by jumping in the air. Of course, physical laws are pristine,
as these animate systems are capable of exchanging energy with their environment, e.g. by
absorbing matter or by the exertion forces. When control structures are present that regu-
late the type and amount of energy exchanged, an animate system is able to manipulate its
dynamics to follow a desired plan. The control structures in nature emerged from evolution
and thereby, the physical structure of an individual system is closely interweaved with the
controlling functions of the organism. Terrestrial locomotion of animals, for example, is
the outcome of the synergistic activation of a multitude of muscles, which themselves make
up a big part of the animal’s body. By this design, there exists no simple blueprint to
study. Deciphering a natural system’s function by its structure can be considered a big
challenge for science, if not one of the biggest, when talking about the human brain. Differ-
ent sub-genres of science have therefore emerged to face this challenge, each from their own
perspective and with certain questions in mind. The desire to understand the principles
of biological motion, in particular, has a long history that spreads across many fields of re-
search in science and robotics (Wiener, 1948; Full and Koditschek, 1999; Holmes et al., 2006;
Pratt and Pratt, 1998; Park, 2001), to aid improved medical care, to construct improved
robotic systems, or for the sake of scientific curiosity. One of the most challenging tasks
hereby is to decipher the organisation of control within the nervous system, as among others
approached by Kiehn (2016), Tresch et al. (1999), and Herzfeld and Shadmehr (2014). For
low-level structures in the spinal cord, including α- and γ-motor neurons, as well as for the
muscles themselves, there is already strong biological evidence to have significant impact
on movement control (Bizzi et al., 1992; van Soest and Bobbert, 1993; Hulliger et al., 1989;
Brändle et al., 2020). Neglecting those structures in computational modelling studies can
even more lead to misleading conclusions (Pinter et al., 2012). In the scenario of complex
movements, higher centres of the central nervous system (CNS) take an important role in
planning and execution of a movement task (Martin, 2005; Doya, 2000; Gao et al., 1996).
For successful execution, internal models of the body’s biophysical properties, including its
neural wiring, and the external world, as needed, are present in any stable feedback control
mechanism, be them explicitly learned or implicitly encoded in the structural embodiment
(Wolpert and Kawato, 1998). A basic characteristic of muscle-driven, biological structures
is the redundancy of neural commands to realise the kinematics of one specific movement

3



1. Introduction

task in a space of fewer degrees of freedom (DoFs) (Wolpert, 1997; Bernstein, 1967). For
this, selecting an appropriate combination of neural signals is traditionally perceived to be
a tricky thing (Latash et al., 2002).

In this doctoral dissertation, an attempt is made to understand some principles of bio-
logical motor control. This is done by an abstract system description in terms of dynamical
mathematical models and by the construction of a hierarchical control architecture that
manipulates the system’s mechanical DoFs, i.e. it controls the system’s posture. Based on
a conceptional plan, the control architecture eventually produces robust and stable muscle
actuating signals, such that the muscle exerted forces accelerate the body segments to follow
the conceptional plan. The biological feature of redundancy is thereby exploited for trans-
forming the conceptional plan from the low-dimensional task space into the high-dimensional
space of muscle stimulations. The muscle-joint redundancy even opens a manifold of control
signals to fulfil several criteria at once, like maintaining a posture with different levels of
co-contraction. The conceptional planning in the task space has the advantage of a reduced
processing effort due to a lower number of controlled state variables to consider and con-
trol parameters to deal with. The subsequent transformation of the task-fulfilling signals
into the high-dimensional space of muscle stimulations is, in the here presented control ar-
chitecture of biological movement, achieved by geometric, Jacobian-based transformations
between task space coordinates, e.g. joint angles or limb positions, and actuator variables,
e.g. muscle lengths or stimulations (Pellionisz and Llinás, 1985)1. In the architecture pre-
sented, these transformations resolve the redundancy by knowledge about the structural
characteristics, i.e. the body’s morphology.

Using this principle, the hierarchical control architecture is designed with three layers
of control: the conceptional layer, the transformational layer and the structural layer. In
the structural layer, the relevant biophysical structures are modelled. This includes the
bones, the muscles and a simple low-level spinal cord feedback mechanism that is known as
the mono-synaptic reflex (Kistemaker et al. (2006); Bayer et al. (2017); Stollenmaier et al.
(2020); Stollenmaier (2021)). Most of the dynamics from within the structural layer form
the basis of the remaining control architecture. The transformational layer provides the
input to the structural layer by means of muscle actuating signals and other inputs for the
mono-synaptic reflex model. This input is based on a postural plan in terms of joint angles
that is locally (mid-level) controlled and transformed into the high dimensional space of
muscle stimulations. The conceptional layer produces such a postural plan as the result of
yet another (high-level) control concept and a subsequent coordinate transformation. All
geometric transformations are expressed as Jacobian matrices in closed-form and with this it
becomes clear exactly which of the body’s properties are exploited for control. The required
information depends on the conceptional layer’s coordinate space but always includes the
muscle’s moment arms and muscle-tendon stiffness relations in the transformational layer.
By re-implementing this body knowledge in the control architecture, the morphological
intelligence (Ghazi-Zahedi, 2019) of the closed loop system is increased.

The control architecture is used to synthesise various movement examples of a surrogate
digital human model (DHM). Even though the DHM only has two muscles modelled for
each of its angular DoFs, according to Schmitt et al. (2019), it is equipped with the most
fundamental structures that are present in any biological, muscle-driven movement system.
Beside demonstrating the isolated control of joint angles and limb positions, a torque con-
troller synthesises upright standing of the DHM and the complex movements of a car-ingress
and a fall into a bathtub are performed. The control architecture presented here, does not
explain the complexity of its real biological pendant by far. However, some of the findings
presented in this thesis may still serve as a starting point for further investigations. Even if

1Despite some critique on the mathematical denotations (Arbib and Amari, 1985) in the work of Pel-
lionisz and Llinás (1985), their work is still a suitable tool in the computational analysis of movement
organisation (Habas et al., 2020).

4



1.1. Structure of this doctoral dissertation

the biological validity of the method presented here is not given, it can already be used for
the synthesis of various in-Silico, muscle-driven motions as a solution of forward dynamics
simulations.

1.1 Structure of this doctoral dissertation

In Pt. I, this introduction is given and all preliminary model descriptions are presented.
This includes an introduction to the theory of rigid body dynamics and a presentation of
the used muscle model, its activation dynamics and a model of the mono-synaptic reflex.

In Pt. II, the hierarchical control architecture is introduced and mathematically designed.
The three layers, the structural layer, the transformational layer and the conceptional layer
are all derived in their mathematical formulations. It is explained how desired states of i)
joint angles, ii) joint torques, iii) limb positions or iv) limb forces are transformed into a
synergistic set of muscle actuating signals that lead to the body’s movements towards the
desired states.

In Pt. III, the DHM is presented and various simulations are performed to demonstrate
the functionality of the control architecture. This includes simulations for desired joint
angles of an arm, a leg and the trunk. Also of the position controlled movements of the
foot and the hand and of an autonomous, torque-controlled upright standing of the DHM.
Subsequently the two more complex and combined movements of a car-ingress and a falling
motion are presented to give an impression of the versatility of the architecture.

In Pt. IV, the work of this dissertation is critically discussed and an optimistic outlook
for the architecture’s future steps is given.

5





Preliminary mathematical model descriptions 2

To perform forward dynamics simulations of biophysical systems, mathematical models are
required as a basis for algorithmic implementations. For this, it is not only the mathematical
models of certain subsystems that are of interest but also the exchange of information
between those subsystems. In computational modelling, exchange of information thereby
describes the communication of the subsystems and represents biophysical processes, such as
neural transmission of electrical signals along axons and transaction of muscle forces along
tendons to bones. The control structure, in particular, forms a closed loop feedback unit,
which interacts with the biomechanical structures of the body through sensor signals and
muscle stimulations. Therefore, it is conceivable that, to produce coordinated movements,
the controller benefits of having embedded some information about the body’s peripheral
structures and the properties of the muscles.

In this chapter, basic mathematical descriptions of the subsystems are given that are used
later in the design of the control architecture in Pt. II. Therefore in Sec. 2.1 the dynamics
of rigid body systems are investigated in a mostly general way. Rigid body dynamics are
used mainly for the control of positions in Sec. 3.3.3 and additionally provides the reader
with knowledge of the general description of the skeletal system. In Sec. 2.2 the muscle
model that is used for the actuation of the skeletal system is introduced. Secs. 2.3 and 2.4
introduce the force laws of joint limitations, of other tissue forces and of contacts with the
environment. An overview of the subsystems and their interconnections is displayed in Fig.
2.1.

2.1 Rigid body dynamics

In this section, the mathematical notation of rigid body dynamics is introduced. Rigid
bodies, linked to each other, form the skeletal structure of the biomechanical models that
are used later. By forces that are applied to the bones, the rigid bodies exchange energy
with their surroundings and are accelerated. The forces, e.g. provided by muscles or by
contacts with the environment, form the input to the rigid body system. The movement of
the bones can then be described by differential equations that capture the development of
the internal system states by enforcing the laws of physics (inertia, gravitation, Coriolis,...).
For this, a Lagrangian formulation of the equations of motion is used that has the relative
DoFs (joint angles) as system states. The forces of, e.g. the muscles, are therefore calculated
to be equivalent and generalized forces (joint torques) of the DoFs. As these equations of
motions can become tremendously complex for systems of higher orders, an algorithmic
implementation that automatically generates the equations of motion can be deployed as,

7



2. Preliminary mathematical model descriptions

Low-Level
Control

Musculo-Skeletal
System

lerr
j = lCE

j − λj

uλ
j=pλ,j · lerr

j + dλ,j · l̇CE
j

λ - Controller

uj = uλ
j + uopn

j

Mq̈ + c(q, q̇) = T

Rigid Body Dynamics

τ lmt/bshi =
kl/u,i(θi − θl/u,i)

+dl/u,iθ̇i

Visco-Elastic
Forces

τMTU
ji = rMTU

ji · fMTU
j

Moment Arms

SDECE
CE

lMTU

PEE

l

SEE

Muscle Model

γ̇ = mH(γ − u)
a(t) = a0+ϖ

1+ϖ

Activation Dynamicss

uλ
j

uj

uopn
j

λj

lCE
j l̇CE

j

aj

fMTU
j

τMTU
jiτ lmt

iτbsh
i

δa
λ

δe
λ

Figure 2.1: Left: An elementary biological drive includes the minimum structural elements
required to study biological movement from a systems biophysics perspective (Schmitt et al.,
2019). The body segments are connected by a joint and the muscles exert forces that move
the joint’s DoF. The muscles are commanded by synergistic control signals uj that orig-
inate from the spinal cord and from higher centres of the CNS. Proprioceptive sensory
organs from within the muscles feed back signals to the spinal cord, where low-level, neural
connections, i.e. the monosynaptic-reflex, closes the reflex loop by contributing to uj .
Right: Schematic block diagram that models the biophysical process of movement gener-
ation. The muscles are modelled as muscle-tendon units (MTUs) (Haeufle et al., 2014b;
Günther et al., 2018; Hammer et al., 2019) and their resulting joint torques feed the equa-
tions of motion of the mechanical skeletal system. The monosynaptic-reflex is modelled
by means of a proportional-derivative (PD) controller of the muscle fibre length of a MTU
(Bayer et al., 2017; Kistemaker et al., 2006; Günther and Ruder, 2003). The inputs that
control the movement of the musculo-skeletal system are values of MTU stimulations uopn

j

and of desired fibre lengths λj for j = 1...nMTU.

8



2.1. Rigid body dynamics

e.g. described by Legnani et al. (1996b,a). This method utilizes the sophisticated notion
of screw motions as a basis, which consists of a rotational motion around an axis plus a
translational motion parallel to that axis.

The goal of this section is to have a closed formulation of the Lagrangian equations of
motion that describes the mechanical movement of an open-chain, ramified skeletal system.
Such an open-chain, ramified system consists of a base body, i.e. the pelvis body, to which
other bodies are linked via joints in a ramified way without containing closed kinematic
chains. In Sec. 2.1.1 some of the basic notations of rigid bodies and coordinate frames are
given. In Sec. 2.1.3, coordinate transformations in between these frames are introduced in a
homogeneous representation that makes use of 4× 4 matrices (Murray et al., 1994; Legnani
et al., 1996b,b; Hartenberg and Denavit, 1955). The use of 4 × 4 matrices simultaneously
takes account of translations and rotations in between different coordinate frames. In
Sec. 2.1.2 a representation of rotations that uses exponential coordinates is introduced that
describes each arbitrary rotation in 3D space by a rotation around a single rotation axis
plus an angle. In Appendix A.1 further approaches for describing rotations by quaternions
or Euler/Cardan conventions are introduced (Sarabandi and Thomas, 2019; Wu et al., 2002,
2005; Sinclair et al., 2012). With the use of rigid body transformations in their homogeneous
representation, a screw motion is described in Sec. 2.1.4 and it’s velocity is derived in
Sec. 2.1.5. By additionally providing transformations and compositions of rigid body
acceleration and of other dynamical features (in Sec. 2.1.6), the equations of motion for the
full skeletal system are derived in Sec. 2.1.7.

2.1.1 Rigid bodies, frames and points
A rigid body is defined by the property that it cannot be deformed. As a consequence,
the distances between all points on the body remain constant during all movements and
for all forces that are applied to the body. Each point in space (attached to a rigid body)
and thereby the whole movement of the body must be described from a specific frame that
is either attached to a moving body or to an inertial world frame. The movement of the
whole body can thereby be described by an equivalent movement of the body’s center of
mass (COM), when considering the body’s mass and inertia properties.

To clarify the notation, rigid bodies are written by capital letters, i.e. by A, B, or
C. The inertial ‘world’ body is called W . On each rigid body, multiple frames may be
defined, which are written by capital calligraphic letters, i.e. Ai is the i-th frame fixed to
the rigid body A; if no index i is given, the frame is located at the body’s COM. The
inertial ‘world’ frame is called W The position of a point p ∈ R3 that is fixed to a rigid
body can only be described from a respective frame. For example, the symbol pAA describes
the 3D coordinates pAA =

[
xApA

yApA
zApA

]T ∈ R3 of a point that is fixed to the body
A (subscript), as viewed from the frame A (superscript). The symbol pBA describes the
position of the same point, viewed from the frame B. In 3D-space, different frames may
have a translational offset and a different orientation. The translation of B in A is described
by the point tAB ∈ R3 of the origin of B viewed from A. The rotation is described by a
rotation matrix RAB ∈ SO(3) ⊂ R3×3.

2.1.2 3D rotations, exponential coordinates and helical angles
There are several ways of representing the rotation in 3D-space of a frame relative to another.
Following the Euler/Cardan convention (Henze, 2002; Murray et al., 1994), a rotation in
3D space can be described by three individual rotations around the Cartesian coordinate
axes. Hereby three parameters are used for the parametrisation of the rotation, namely
the rotation angles around the chosen axes. Using only three parameters for rotations
is prone to so-called Gimbal-locks, i.e. mathematical singularities at which the rotation
cannot be well-described. Even if such singularities can never be eliminated with only

9



2. Preliminary mathematical model descriptions

three parameters (Murray et al. (1994)), they may be detected and avoided (Henze (2002)).
Other representations of rotations use four parameters, for example quaternions (Sarabandi
and Thomas, 2019), or the representation by exponential coordinates (Murray et al., 1994).
While more details on the Euler/Cardan convention and quaternions are given in Appendix
A.1, the representation by exponential coordinates is introduced in the following.

Mathematically, a rotation that transforms the coordinates of a point pBB to the coordi-
nates of the frame A can be described by a rotation matrix

RAB ∈ SO(3) ⊂ R3×3. (2.1)

The coordinates of pAB are simply given by the matrix-vector product

pAB = RAB · pBB .

The set SO(3) is a subset of R3×3 and forms the multiplicative group of special orthogonal
matrices. It contains all orthogonal matrices RT = R−1 with det(R) = +1:

SO(3) :=
{
R ∈ R3×3 : RRT = I3, detR = +1

}
⊂ R3×3 (2.2)

All valid rotation matrices R belong to this group (Murray et al., 1994). The inverse
rotation is applied by a transposed rotation matrix, and additionally, the composition rule
applies (Murray et al., 1994), i.e.

RBA = RABT
RAC = RAB ·RBC .

The representation of exponential coordinates describes each rotation around exactly one
axis ω ∈ R3 along the scalar angle θ ∈ R. Although mathematically complex at first glance,
this representation is closely connected to the notion of screw motions, which is given later.
The basic idea that lies behind the representation of a single axis and angle is formulated
in Euler’s theorem, which is stated here. Its proof can be found in Murray et al. (1994).

Theorem 2.1.1 (Euler) Any rotation R ∈ SO(3) is equivalent to a rotation about a fixed
axis ω ∈ R3 through an angle θ ∈ [0, 2π).

This means, that for each rotation in 3D-space a single axis ω ∈ R3 can be found together
with a scalar rotation angle θ ∈ [0, 2π) that executes the rotation. This is a first step towards
describing any rigid body motion by a screw motion, which consists of a rotational motion
around an axis plus a translational motion parallel to that axis. Therefore in this section,
the notation for ’screw-like’ rotations are laid out and introduced. This includes the notion
of exponential coordinates for rotations and the corresponding representation of a rotation
matrix R ∈ SO(3) using a matrix exponential. Later, in Sec. 2.1.4, these findings will be
generalised to also include the translational part of a rigid body transformation G ∈ SE(3)
for a complete screw motion.

For deriving a rotation matrix R ∈ SO(3) based on a single axis ω ∈ R3 and angle θ ∈ R
a thought experiment of a dynamic rotational movement is performed. Therefore, assume
p to be a point on a body that rotates about the (fixed) axis ω with constant unit velocity.
The velocity νp=ṗ ∈ R3 of the point p then is

ṗ(t) = ω × p(t)
= Ω̂p(t), (2.3)

where Ω̂ ∈ R3×3 is a matrix that corresponds to the axis ω ∈ R3, which will be clarified
shortly below in (2.5). The general solution of the differential equation (2.3) is obtained by
the initial condition p(t = 0) and the matrix exponential of the angular velocity matrix

p(t) = eΩ̂tp(0).

10



2.1. Rigid body dynamics

The matrix exponential eΩ̂t thus acts as a rotation matrix from p(0) to p(t). When rotating
with unit velocity, i.e. |ω| = 1, for an amount of t = θ units of time, the respective rotation
matrix is

R(ω, θ) = eΩ̂θ. (2.4)

The matrix Ω̂ is thereby the skew-symmetric matrix of the axis vector ω that is obtained by
the the ∧-operator (wedge). The ∧-operator transforms a vector ω =

[
ω1 ω2 ω3

]
∈ R3

into a skew symmetric matrix (ω)∧ = Ω̂ ∈ so(3) ⊂ R3×3 by

(ω)∧ = Ω̂ :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3).

The vector space so(3) contains all 3× 3 skew-symmetric matrices:

so(3) = {A ∈ R3×3 : AT = −A}. (2.5)

The inverse of this operator is called the ∨-operator (vee) and it transforms a skew-symmetric
matrix from so(3) into a vector in R3:

(Ω̂)∨ = ω ∈ R3.

A skew symmetric matrix is closely related to the cross product, as already foretold in (2.3).
This can be easily seen by calculating

a× b = (a)∧ · b, for a, b ∈ R3.

The somewhat unintuitive notion of a matrix exponential as a rotation matrix in (2.4)
is bolstered with a straightforward and feasible way of calculation. While details on the
derivation are omitted here (see Murray et al. (1994) Chpt. 2.2 for details), the resulting
equation, which is also known as Rodrigues’ formula, is directly given:

R = eΩ̂θ = I3 + Ω̂ sin(θ) + Ω̂
2
(1− cos(θ)), (2.6)

with Ω̂
2
= ωωT − ∥ω∥2I3.

To obtain the axis ω ∈ R3 and the rotation angle θ ∈ R from a rotation matrix R ∈
SO(3), on the other hand, the rotation matrix R is calculated according to (2.6) and further
analysed by investigating its trace and the off-diagonal elements ri,j (Murray et al., 1994).
The rotation angle θ ∈ R is then given by

θ = cos−1

(
trace(R)− 1

2

)
(2.7)

and the axis ω ∈ R3 for θ ̸= 0 is

ω =
1

2 · sin(θ)

r32 − r23
r13 − r31
r21 − r12

 . (2.8)

The components of the vector ψ := θω ∈ R3 given by equations (2.8) and (2.7) are called
the exponential coordinates, also known as helical-angles. In the later chapters of this thesis,
namely for the position control of a limb, the angular coordinates given by

ϕ :=
1

2

r32 − r23
r13 − r31
r21 − r12

 (2.9)

11



2. Preliminary mathematical model descriptions

are used (Ibuki et al., 2014). Note, that the rotation angle θ is ambiguous for θ ± 2πn and
the axis ω is not well defined for θ = 0, i.e. there is a singularity for R = I3. Using the
vector θϕ avoids this singularity at the cost of losing mathematical accuracy.

Using exponential coordinates for rotation parametrisation angles in biomechanical stud-
ies has the advantages of stable mathematics that avoid a Gimbal-lock, which is known from
other representations. On the other hand, the representation of rotations using an Euler/-
Cardan convention may be the most straightforward to understand and are considered to
have the most intuitive relation to physiological angles in biomechanical studies. This may
also be why the International Society of Biomechanics (ISB) recommends the usage of Euler
or Cardan angles, although in 3D not even the clinical definitions are consistent (Sarabandi
and Thomas, 2019; Wu et al., 2002, 2005; Sinclair et al., 2012). Quaternions are closely
connected to the exponential coordinates, as both can be converted into the other. There
are different ways to define the quaternions, though, of which two are given in Appendix
A.1 (Sarabandi and Thomas, 2019; Sinclair et al., 2012).

2.1.3 Homogeneous representation of rigid body transformations
A rigid body transformation is used to change the reference frame in which points are
described. Given the point pBB on body B in the frame B, it is described in the frame A by

pAB = RAB · pBB + tAB.

The original point is rotated into the coordinates of A by the rotation matrix RAB ∈ SO(3)
(see (2.1)) and the translational offset tAB ∈ R3 is added. The same result is obtained from
the matrix equation 

1

pAB

 =


0 0 0 1

RAB tAB


︸ ︷︷ ︸

:=GAB

·


1

pBB

. (2.10)

Exactly this 4 × 4 matrix GAB is called the homogeneous representation of the rigid body
transformation that relates the frames A and B (Murray et al., 1994; Legnani et al., 1996b,b;
Hartenberg and Denavit, 1955):

GAB :=


0 0 0 1

RAB tAB

 ∈ SE(3) ⊂ R4×4. (2.11)

It belongs to the special Euclidean group, defined by

SE(3) := R3 × SO(3), (2.12)

with SO(3) defined in (2.2). All valid homogeneous representations G of rigid body trans-
formations belong to this group. The use of such a homogeneous representation requires
to redefine the notion of a point by appending a 1 in the fourth dimension. Throughout
this thesis, for such an appended number no special symbol is introduced, as it should be
apparent from the context, whether the calculation requires 3 or 4 dimension. The trans-
formation of the reference frame of a point pb according to (2.10) is thereby written in the
simple form of

pAB = GABpBB . (2.13)
A vector in 3D space is the result of subtracting the coordinates of two points. Within the
appended dimension, the 1s cancel each other out. That is, a vector v is appended by 0 in

12



2.1. Rigid body dynamics

the fourth dimension and a transformation according to (2.10) yields a transformation by
pure rotation

vA = RAB · vB. (2.14)

The two most important properties for such homogeneous representations G ∈ SE(3)
are its inversion and composition rule:

GAB−1 = GBA. GAC = GAB ·GBC . (2.15)

In most cases, the homogeneous transformation matrices are easy to obtain with respect to
the world frame W, like GWA. A point, however, is mostly given relative to the origin of
the rigid body frame to which it is fixed. To change the reference of a point pBB to A on
body A the following calculation, which combines (2.15), is really useful in practice:

pAB = GWA−1 ·GWB · pBB
= GAW ·GWB · pBB
= GAB · pBB .

When the point pB is placed at the origin of B, i.e. pBB =
[
0 0 0 1

]T , with (2.13) the
point in A represents exactly the translational offset between both frames

pAB = tAB, for pBB =
[
0 0 0 1

]T
.

The information that is stored in a 4× 4 homogeneous transformation GAB consists of
a rotation matrix RAB and a translational offset tAB. This can be written in vector form
by stacking the translational and rotational coordinates

χAB :=

 tAB

ϕAB

 ∈ R6, (2.16)

with ϕ ∈ R3 known from (2.9). Such a vector will form the control error of a limb’s position
later in Sec. 3.3.3 (see also Ibuki et al. (2014)). In the following section an alternative
parametrisation of a transformation using exponential coordinates is presented.

The homogeneous representation of transformations allows a convenient handling of
relative rigid body mechanics and its usage is of big importance throughout this thesis as
it forms the basis of the mechanical system’s description.

2.1.4 Rigid body twists, exponential coordinates and screw motions
In this section it is derived that any rigid body motion, from its initial to its final position,
can be described by a screw motion. That is, the final configuration of a body in space
corresponds to a mapping of the body’s initial configuration by a rotation about an axis
combined with a translation parallel to that axis. To comprehend the notion of such a
screw motion, rigid body twists are introduced. A twist represents the combined angular
and linear velocities ω ∈ R3 and ν ∈ R3 of a rigid body. The velocity of a rigid body is
covered in Sec. 2.1.5 in more detail and for now the decomposition in ω and ν is sufficient.
It is later seen that twists correspond to spatial velocities of rigid bodies and that any screw
motion can be associated with a twist.

Twists can be used to describe the relative motion of a rigid body in a parametrisation
that already fits to the idea of a screw motion. A twist can either be written in homogeneous
representation in a 4×4 matrix from the set se(3) ⊂ R4×4 or as vector in R6. The ∧-operator
(wedge), generalized for R6, transforms a twist from it’s coordinate representation to it’s

13



2. Preliminary mathematical model descriptions

homogeneous representation. Given a twist ξ ∈ R6 with the angular velocity component
ω ∈ R3 and the linear velocity component ν ∈ R3, it’s coordinate representation in R6 and
it’s homogeneous representation in se(3) ⊂ R4×4 are

ξ =

 ν

ω

 ∈ R6 (ξ)∧ = Ξ̂ :=


0 0 0 0

Ω̂ ν

 ∈ se(3). (2.17)

The set se(3) is the generalization of so(3) from (2.5) to also incorporate the linear velocity
component ν:

se(3) := {(ν, Ω̂) : ν ∈ R3, Ω̂ ∈ so(3)}. (2.18)
As a comprehensive introduction, an analogous thought experiment as in Section 2.1.2 is
performed. Consider the movement of a point p that is fixed to a rigid body that undergoes
a pure rotation with unit velocity around the axis ω ∈ R3, with |ω| = 1. With a given point
q on the axis, the velocity of the point p(t) is then

ṗ(t) = ω × (p(t)− q). (2.19)

This can be expressed in a homogeneous twist representation by the 4× 4 matrix

Ξ̂ =


0 0 0 0

Ω̂ ν

. (2.20)

With v = −ω × q ∈ R3, equation (2.19) can be rewritten to
0

ṗ

 =


0 0 0 0

Ω̂ −ω × q

 ·


0

p

 = Ξ̂ ·


0

p


⇒ ṗ = Ξ̂p.

This is a differential equation and its general solution is obtained by the matrix exponential
of Ξ̂:

p(t) = eΞ̂tp(0).

The parameter t can be exchanged for θ if the rotation occurs about the angle θ instead of
unit velocity as in the example from above. Still, this example shows that the exponential
of a twist can be used to transform the initial point to its final position. In a similar way,
the final configuration in terms of a rigid body transformation GAB can be expressed using
an exponential of a twist and the initial configuration:

G(θ) = eΞ̂θG(0). (2.21)

From this follows that in fact every rigid body transformation G can be expressed as the
exponential of some twist Ξ̂θ,

G = eΞ̂θ.

The rigid body movement, at any time t, is therefore said to be generated by the instan-
taneous twist Ξ̂(t)θ(t) ∈ se(3). The vector ξθ ∈ R6 is referred to as the exponential
coordinates for the rigid body transformation G (Murray et al., 1994).

The exponential of a twist Ξ̂θ ∈ se(3), to obtain G ∈ SE(3), is in fact the generalization
of the matrix exponential of the axis ω ∈ so(3) to obtain a rotation matrix R = eΩ̂θ ∈ SO(3)

14



2.1. Rigid body dynamics

(compare to Section 2.1.2). The calculation of G as a matrix exponential of a twist ξ is
presented in Murray et al. (1994) and includes the use of Rodrigues‘ formula (2.6).

In practice, often the twist coordinates ν and ω are known a-priori from the anatomy
of the system. For the movement of a 1D, rotational revolute joint, for example, the axis
ω is exactly the rotation axis of the joint. The corresponding calculation of the matrix
exponential of the twist that generates this motion takes a simple form. Refer to Murray
et al. (1994) or Legnani et al. (1996b,a) for the closed-form representation of a free motion
and of the simplifications for special joints.

Having the notion of twists introduced, they are now related to a screw motion. The
twist with coordinates ω and ν generates a movement by rotation around ω and translation
along ν. The motion of a screw, i.e. rotation and parallel translation, seems to be a special
case for arbitrary rigid body motions, but in fact it is not. According to Kumar (2014),
this is one of the most fundamental results in spatial kinematics. It is stated in a theorem
that is usually attributed to Chasles (1830), although Mozzi and Cauchy are credited with
earlier results that are similar, e.g. (Mozzi, 1763).

Theorem 2.1.2 (Chasles) Every rigid body motion can be realized by a rotation about an
axis combined with a translation parallel to that axis (Murray et al., 1994).

That is, for every rigid body motion, a generating twist in the form of (2.20) can be found,
where ω describes the rotation axis and ν the translation parallel to that axis. A proof of
Theorem 2.1.4 and a relation of the exponential twist coordinates to the parameters of a
screw is given in Murray et al. (1994). The consequence of this theorem is that the used
notation of homogeneous representations is eligible for describing arbitrary relative rigid
body motions.

2.1.5 Rigid body velocities and velocity transformations
The notion of twists from Sec. 2.1.4 is strongly connected to the velocity of a rigid body.
As a twist describes an instantaneous screw motion, a twist is in fact a representation of
a body’s velocity. In this section some more details on the velocity of rigid bodies are
introduced. This includes laws for the transformation of velocities between different frames
using rigid body transformations G from (2.11).

Assume pBB to be a point attached to the rigid body B, viewed from the body frame
B. With the rigid body transformation GAB the reference can be changed to the frame A
on body A, as already known from (2.13). A representation of the velocity of this point
relative to the frame A, and viewed from frame A, can be constructed by differentiation

νA
ApB

:= ṗAB = ĠAB · pBB = ĠAB ·GAB−1︸ ︷︷ ︸
:=V̂ A

AB

·pAB (2.22)

νA
ApB

= V̂ A
AB · pAB

It is hereby seen that the relative velocity of a point can be expressed in the homogeneous
representation

V̂ A
AB = ĠABGAB−1

=


0 0 0 0

ṘABRABT −ṘABRABT
tAB + ṫAB



:=


0 0 0 0

Ω̂
A
AB νA

AB

 ∈ se(3) ⊂ R4×4 (2.23)

15



2. Preliminary mathematical model descriptions

that has the form of a twist (2.20). The coordinate representation is

vAAB =

 −ṘABRABT
tAB + ṫAB(

ṘABRABT
)∨

 =

 νA
AB

ωA
AB

 ∈ R6. (2.24)

To clarify the notation and meaning of this definition: νA
ApB

in (2.24) is the velocity of
the point pB relative to the frame A (subscript) as viewed from the frame A (superscript).
This is the spatial velocity of a point on a body B, as viewed from the spatial frame A. The
velocity V̂ A

AB is therefore also known as the spatial velocity of B in A. Another representation,
the body velocity, is presented in Appendix A.2.

Often the velocities of rigid bodies are expressed relative to the inertial world frame, i.e.
A=̂W in the formulations above. In this case, the relative velocity of the three rigid bodies
A, B and C, with their respective frames A, B and C, can be easily calculated (Legnani
et al., 1996b):

V̂ A
AC = V̂ A

AB + V̂ A
BC . (2.25)

In some special cases, the relative velocities of B and C are not known with respect to the
frame A, i.e. vABC is unknown, but with respect to the frame B. By changing the reference
frame

V̂ A
AB = GABV̂ B

ABG
AB−1 and V̂ B

AB = GAB−1
V̂ A
ABG

AB. (2.26)

, the expression of the velocity in A is obtained by (see also Appendix A.2 or Murray et al.
(1994); Legnani et al. (1996b,a)):

V̂ A
AC = V̂ A

AB +GAB · V̂ B
BC ·GAB−1 (2.27)

As a final remark for this section, the notation of relative rigid body velocities are related
to a screw motion (see also Murray et al. (1994) for details). Therefore reconsider, that any
movement can be represented by a screw motion that relates the initial relative configuration
GAB(0) of the frames A and B to its final configuration GAB(θ) by the exponential of the
constant twist Ξ̂θ as stated in (2.21). Plugging (2.21) into the velocity definition (2.23)
yields

V̂ A
AB = ĠABGAB−1

=
d
dt

(
eΞ̂

AB
θGAB(0)

)(
eΞ̂

AB
θGAB(0)

)−1

=
(
Ξ̂θ̇eΞ̂

AB
θGAB(0)

)(
GAB−1

(0)e−Ξ̂
AB

θ
)

= Ξ̂
AB
θ̇. (2.28)

Note, that here the identity d
dt (e

Ξ̂
AB

θ) = Ξ̂θ̇eΞ̂
AB

θ is used (Murray et al., 1994). In (2.28)
it is clearly seen that the spatial velocity V̂ A

AB of a body in fact is generated by the twist
Ξ̂

AB.
V̂ A
AB = Ξ̂

AB
θ̇.

As every twist can be described by a screw motion, this velocity corresponds to a screw
motion. The notion of relative rigid body motion is used later in the design of a position
controller. In order to evaluate the control performance, the positional error χ ∈ R6 (2.16)
and the spatial velocity coordinates v (2.24) are used.

16



2.1. Rigid body dynamics

2.1.6 Rigid body acceleration and other dynamics variables
To derive the equations of motion, the homogeneous representations in 4 × 4-matrices of
the acceleration, the inertia and the momentum of a rigid body are needed. Most of the
mathematical derivations are omitted here and it is referred to Legnani et al. (1996b,a) and
Murray et al. (1994).

The acceleration of a rigid body can be written in a homogeneous representation in
the form of a 4 × 4 matrix, similar to the homogeneous representations of positions and
velocities (twists) from above. For a point pAB , attached to the the body B and viewed from
the (inertial) frame A, the relative rigid body accelerations p̈B fulfils

p̈AB = ÂA
ABp

A
B ,

where
ÂA

AB :=
˙̂
V A
AB + V̂ A2

AB .

The homogeneous representation of a body’s acceleration Â ∈ R4×4 writes

Â =


0 0 0 0

˙̂
Ω+ Ω̂

2
α

 ∈ R4×4. (2.29)

The change of the reference frame for rigid body accelerations follows

ÂA = GABÂBGAB−1
. (2.30)

The relative motion of the three frames B, C and D, viewed from A can be written by

ÂA
BD = ÂA

BC + ÂA
CD + 2V̂ A

BCV̂
A
CD. (2.31)

Similar transformation laws as (2.26) and (2.30) hold for the homogeneous representations
of the inertia matrix J ∈ R4×4, momentum matrix P and the force matrix Φ:

Ĵ
A
B = GABĴ

B
BG

AB−1 P̂
A
B = GABP̂

B
BG

AB−1

Φ̂
A
B = GABΦ̂

B
BG

AB−1
. (2.32)

As already mentioned above, the derivation and further details on these dynamical variables
are mostly omitted here. A full comprehensive theory is given by Legnani et al. (1996b,a);
Murray et al. (1994); Lynch and Park (2017). It is important to note that the reference of
all these dynamical system matrices can be changed by a rigid body transformation G. The
rigid body transformation G itself is calculated based on the system’s state and includes
knowledge on the ‘anatomy’ of the system. This means, the joint types of the model restrict
the movement and simplifies the calculation of G of two adjacent bodies.

2.1.7 Lagrange equations of motion
Using the findings from above, the equations of motion for a whole open-chain system can
be obtained. This is even possible in an algorithmic implementation as described by Legnani
et al. (1996b,a) that follows a Lagrangian formalism for deriving the equations of motion.
This formalism is based on the well-known formula

d
dt
∂L
∂q̇i

+
∂L
∂qi

= ti,

where L := T − V is the Lagrangian function of kinetic and potential energy, qi is a
generalised degree of freedom and ti is a generalised force or torque directly acting on qi.

17



2. Preliminary mathematical model descriptions

The energy terms of this equation can be expressed for an open chain of rigid bodies by the
homogeneous representation matrices that where introduced in the previous sections

Ti =
1

2
trace(V̂ W

WIJ
W
I V̂

W
WI) Vi = trace(−HW

g JW
I ).

With further calculations (see Legnani et al. (1996a) and Henze (2002) for details), it is
possible to express the dynamics of the whole open chain system by the matrix equation

Mq̈ + c(q, q̇) = T ∈ RnDoF , (2.33)

where T ∈ RnDoF is a vector of generalized forces that act directly on the DoFs q ∈ RnDoF .
This equation (2.33) is the equation of motion of the whole rigid body system. The matrix
equation for deriving M and c are given in Appendix A.3 (A.29)-(A.31). The whole system
(2.33) has the dimension nDoF and the respective matrix entries are summed up by the
individuals of the homogeneous representations for the single bodies. These matrices are
obtained by the motion composition rules

GWN = GWMGMN (2.34)
V̂ W
WN = V̂ W

WM + V̂ W
MN (2.35)

HW
WN = HW

WM +HW
MN + 2HW

WMH
W
MN , (2.36)

which are based on equations (2.15), (2.25) and (2.31) (Legnani et al., 1996b,a; Murray
et al., 1994). Starting at a body M with given GWM, and knowing the transformation to
the following body GMN , the frame N can be described in the frame W. In practice, this
information is usually present, as the relative transformation GMN is based on the type of
the connecting joint between the bodies M and N . Using successive calculations, the whole
structure of an open-chain system of rigid bodies can be reached by calculation. With the
equations for deriving the system matrices, given in Appendix A.3, the matrix M and the
vector c on the left side of equation (2.33) can be calculated based on the current state q(t)
and q̇(t).

The right side of (2.33) is formed by the vector of generalised forces T. These are external
forces that act on the DoFs of the system and include forces from the modelled muscles
τmtu (see Sec. 2.2), of joint limitations and of visco-elastic elements τ lmt, τ bsh (see Sec
2.3) and of contacts with the environment τ cnt (see Sec 2.4). In the Appendix Chpt. D.2
the homogeneous representations of rigid body transformations G, twists Ξ̂ and velocities
V̂ are correlated to the notation used in the simulation software demoa.

2.2 Muscle Model

Muscles are biological actuators and responsible for the movement of animals. While there
are different types of muscles in a biological individual, the only focus in this work lies on
skeletal muscles. Those muscles are attached to the bones by tendons and generate the
movement of the whole body in the present mathematical system and in real life. Skele-
tal muscles consist of fascicles, which themselves consist of muscle fibres. The fibres are
specialized cells with the cytoplasmic proteins myosin and actin forming the consecutively
arranged sarcomeres. These sarcomeres are excitable by pools of motor neurons from within
the spinal cord. The neural excitation that arrives at a neuromuscular junction of a muscle
releases a specific neurotransmitter, which subsequently leads to a release of Ca2+ ions in
the sarcoplasm. With a rising Ca2+ ion concentration more myosin-binding sites are ex-
posed to actin, which allows actin and myosin to engage in binding and contracting the
muscle. The result is a contracting force of the muscle belly, which is transduced to the
bones via the passive elastic properties of the tendons (Hill, 1949; Huxley, 1969; Martonosi,
2000; Mörl et al., 2012). The effect of this force on an embraced joint can be determined by

18



2.2. Muscle Model

the geometric implementation of the muscle, i.e. by calculating the joint torque with the
muscle’s moment arm.

Within this section, mathematical model descriptions of different parts of the muscu-
lar system are presented. In this formulation each muscle is modelled from a macroscopic
viewpoint. This means that all muscle fibres and sarcomeres are combined to a single
contracting unit, i.e. the multiple stimulations of individual neuromuscular junctions are
combined into one scalar stimulation signal. By this, each muscle can be modelled individ-
ually as a one dimensional, scalar, dynamical system of second order. The dynamic relation
of tension between active muscle fibres and passive tendons of a muscle is modelled by
means of a macroscopic muscle-tendon unit (MTU). These active and passive, mechanical
tissue-properties of a MTU are modelled in a non-linear differential equation of first order,
the contraction dynamics. As a result the total force of a MTU is obtained that depends on
its length and biochemical activity (see Sec.2.2.2 and Haeufle et al. (2014a)). The state of
activity of a MTU depends on the concentration of free Ca2+ ions in the sarcoplasm. The
activation-dynamics, i.e. the response of free CA2+ ions to neural stimulation, are modelled
by another differential equation (see Sec.2.2.1 and Rockenfeller and Günther (2018)). The
stimulation signals by which the MTUs are commanded originate from the spinal cord and
higher centres of the CNS. Within the spinal cord, proprioceptive feedback circuits trans-
mit afferent sensor signals back to stimulate the MTU, e.g. the mono-synaptic reflex. This
feedback loop of the mono-synaptic reflex with afferent feedback from the muscle spindle
is modelled as a low-level PD-controller (see Sec. 2.2.3 and Bayer et al. (2017)). In Sec.
2.2.4 the matrix of moment arms is presented that converts MTU forces into joint torques
(Hammer et al., 2019). In Sec. 2.3 and 2.4 further modelled torque contributions of passive,
visco-elastic tissue and of contacts with the environment are presented.

2.2.1 Activation dynamics
The model of activation dynamics from Rockenfeller and Günther (2018) describes the
electrochemical process of transforming the electrical neural signal into the chemical Ca2+
ion concentration in the sarcoplasm of the muscle. This model is an enhanced version
of what had originally been developed by Hatze (1977). Therefore, the normalised signal
variable u(t) ∈ R1 is introduced as a value of total neural excitation of all neuromuscular
junctions of a muscle. The state variable γ(t) ∈ R1 is the Ca2+ ion concentration in the
sarcoplasm and a(t) ∈ R1 is the activity of a MTU. The set R1 is defined as a normalisation
of R to

R1 := {u ∈ R : u0 ≤ u < 1}, (2.37)

where u0 > 0 is a minimal base stimulation level of the muscles. To model the activation
dynamics, firstly the total neural stimulation signal u(t) that arrives at the neuromuscular
junctions serves as input for a first order differential equation with the state variable of the
normalised Ca2+ ion concentration γ(t):

γ̇ =MH(u− γ). (2.38)

In a second step, the activity a(t) of the MTU is obtained by the non-linear relationship

a(γ, lCE) =
a0 + ϑ(γ, lCE)

1 + ϑ(γ, lCE)
, (2.39)

with ϑ = (γ ·ϖ(lCE))ν , where ϖ(lCE) = ϖopt · lCE

lCE
opt

= γmax · ρ0 · lCE

lCE
opt

.
The activation dynamics in (2.38) are a first-order differential equation which is further

non-linearly scaled to the activity state of the muscle (2.39). The dynamical behaviour of
how a(t) follows u(t) is comprehensively displayed by Bayer et al. (2017).

19



2. Preliminary mathematical model descriptions

SDECE
CE

lMTU

PEE

l lSEE

SEE

Figure 2.2: Diagram of a muscle-tendon unit (MTU) with contractile element (CE),
parallel elastic element (PEE), serial elastic element (SEE) and serial damping element
(SDE) (Haeufle et al., 2014a). The CE and PEE together form a model of the muscle belly
and the SEE and SDE of the tendons that connect the muscle to the bones.

2.2.2 Hill-type muscle-tendon-units
Hill-type muscle models are macroscopic muscle models that aim to have an equivalent
mechanical effect on the skeletal system compared to a biological muscle. This idea is orig-
inally based on Hill (1938). Hill-type muscle models typically consist of several functional
elements that correspond to the biophysical structures of a muscle (see Fig 2.2 for the used
version (Haeufle et al., 2014a; Mörl et al., 2012; Günther et al., 2007)). Most prominently,
the contractile element (CE) models the active properties of the muscle belly and includes
length and velocity dependencies of actin and myosin bindings within a sarcomere. The par-
allel elastic element (PEE) and serial elastic element (SEE) represent the passive properties
of the muscle-belly tissue and the tendon, when externally stretched. The serial damping
element (SDE) introduces dynamical properties of the strain of a tendon. Commonly, the
tendons at both sides of a muscle are folded to one side for an equivalent representation in
the MTU. With this, the total length lMTU of a MTU is the sum of the lengths of the CE
(muscle belly, lCE) and of the SEE (tendons, lSEE):

lMTU = lCE + lSEE. (2.40)

Given the current lengths lCE(t) and lSEE(t), and thereby lMTU(t), as well as the velocities
l̇CE, l̇SEE and l̇MTU of the single elements and of the whole MTU, respectively, each element,
and thereby the whole MTU, exerts a force. These individual forces are linked by the force
equilibrium

fMTU = fCE + fPEE = fSEE + fSDE, (2.41)
The individual parameter dependencies are

fCE = fCE(lCE, l̇CE, a), (2.42)
fPEE = fPEE(lCE), (2.43)
fSEE = fSEE(lSEE), (2.44)
fSDE = fSDE(lCE, l̇CE, l̇MTU, a) (2.45)

and thereby fMTU = fMTU(lCE, l̇CE, l̇MTU, a).
All of the force laws (2.42)-(2.45) are algebraic functions of the muscle’s state. They

are parametrised by specific properties that are connected to the biophysical behaviour of
the modelled muscle (Haeufle et al., 2014a). The length of a muscle lCE(t) additionally
follows a non-linear, first-order differential equation, the so-called contraction dynamics
l̇CE = f(lCE, ...).

20



2.2. Muscle Model

1

1

f isom

fPEE

CE length lCE
lopt

Is
om

et
ri

c
fo

rc
e

f
is

om
f

m
ax

−1 −0.5 0 0.5 1

−Aecc

concentric

eccentric
−Acon

CE velocity l̇CE [ms ]

M
us

cl
e

fo
rc

e
f

C
E

[N
]

Figure 2.3: Left: Force-length relation of a CE (red) and a PEE (blue, dashed). At
its optimal length lCE = lopt, a CE can exert its maximum isometric force. When the
MTU is stretched beyond its optimal length, the non-linear, passive elastic force of the
PEE rises and the combined force increases. Right: Force-velocity relation of a CE for the
concentric and eccentric branch according to (2.47). The hyperbolas’ asymptotes are given
by Adir = Arel,dir · fCE

max (dashed lines).

The following subsections give a short summary of the force laws (2.42)-(2.45) of the
MTU’s elements. For more details on the MTU model and an in-depth explanation of the
contraction dynamics please refer to Haeufle et al. (2014a). For a list of MTU parameters
that are used in the model later refer to Appendix C.

2.2.2.1 The contractile element (CE)

The CE models the active fibres of a muscle, where motor proteins are responsible for actin
and myosin bindings that develop the binding force fCE(lCE, l̇CE, a). This force is dependent
on the current length of the muscle fibres, fCE(lCE, ...), their concentric or eccentric velocity,
fCE(l̇CE, ...) and of the current state of activity, fCE(a, ...). Therefore, the force-length and
the force-velocity relation form a important correlations for the CE.

The force-length relation can easily be motivated by picturing consecutively arranged
actin and myosin proteins that have a larger overlap at a certain configuration of the fibre’s
lengths and thereby the whole muscle belly exerts a force dependent on the fibre length.

Experimental measurements have shown that the isometric force1 f isom of a muscle belly
shows a bell-shaped length dependency that is modelled according to Haeufle et al. (2014a)
by two exponential functions of the form

f isom(lCE) = e

−

∣∣∣∣∣∣∣∣∣
lCE

lCE
opt

−1

∆Wlimb

∣∣∣∣∣∣∣∣∣
νCE

limb

. (2.46)

The parameter lopt hereby describes the optimal length of the CE, where the maximal
isometric force can occur. The parameters ∆Wlimb and νCE

limb describe the shape of the
ascending (subscript limb = asc) and of the descending (subscript limb = des) branches
of the bell-shaped exponential function (2.46). This length dependency is displayed in Fig.
2.3 (left) in the normalized coordinates of f isom/fmax(lCE/lopt).

1An isometric force is a force exerted by the muscle fibres at a constant length.

21



2. Preliminary mathematical model descriptions

The force-velocity relation describes experimentally observed phenomena of a velocity
dependence of the force of a muscle. The force of a muscle can thereby increase with an
increasing eccentric (stretching) velocity of the muscle’s fibres. For increasing concentric
(shortening) velocities, the muscle force typically decreases compared to isometric conditions
(Katz, 1939; Joyce et al., 1969; Till et al., 2008). Both cases (subscripts dir = ecc for l̇CE > 0
and dir = con for l̇CE ≤ 0 ) can be modelled by hyperbolic functions with a different set
of parameters. The force velocity is comprehensively outlined by Haeufle et al. (2014a).
Taking account of the velocity dependency and the length dependency (2.46), the force of
the CE follows

fCE
dir (l

CE, l̇CE, a) = fCE
max ·

a · f isom(lCE) +Arel,dir(l
CE, a)

1− l̇CE

Brel,dir(lCE,a)·lCE
opt

−Arel,dir(l
CE, a)

 , (2.47)

where a is the current activation of the CE according to (2.39), and Arel,dir and Brel,dir are
the Hill-parameters that define the shape of the force-velocity relation for concentric and
eccentric length changes, respectively. To have a continuity at l̇CE = 0 the velocity constrain
∂fCE

ecc
∂l̇CE = Se · ∂fCE

con
∂l̇CE , parametrized by Se and the force constrain fCE → Feaf

isomfCE
max for

l̇CE → +∞ are used and the concentric Hill-parameters are defined as

Arel,con(l
CE, a) = Arel,0 · LArel(l

CE) ·QArel(a)

with LArel(l
CE) =

{
1, lCE < lopt

f isom(lCE) lCE ≥ lopt

and QArel(a) =
1

4
· (3 + 4 · a),

Brel,con(l
CE, a) = Brel,0 · LBrel(l

CE) ·QBrel(a)

with LBrel(l
CE) = 1

and QBrel =
1

7
· (3 + 4 · a)

and the eccentric Hill-parameters as

Arel,ecc = −Feaf
isom and

Brel,ecc =
Brel,con(1− Fe)

Se

(
1 +

Arel,c
af isom

) .
With (2.47), for given length lCE, velocity l̇CE and activation a of a CE, its force fCE

is determined. In Fig. 2.3 (right), the velocity dependent CE force (2.47) is exemplarily
displayed.

2.2.2.2 The parallel elastic element (PEE)

The PEE describes the passive tissue properties of the muscle belly when externally stretched.
The PEE force is modelled by the non-linear spring-like law

fPEE(lCE) =

{
0 , lCE < lPEE

0

kPEE(lCE − lPEE
0 )ν

PEE
, lCE ≥ lPEE

0

, (2.48)

with kPEE = fPEE fCE
max

(lCE
opt(∆Wdes+1−lPEE

0 ))νPEE .
In Fig. 2.3 (left), the length dependent PEE force is displayed alongside with the

isometric CE force (2.46).

22



2.2. Muscle Model

2.2.2.3 The serial elastic element (SEE)

The SEE of a MTU describes the force of the aponeuroses and the tendons that connect
the muscle belly (CE) to the bones. Below its tendon slack length lSEE

0 , the SEE force is
zero (fSEE = 0). Shortly after the transition (lSEE

0 < lSEE < lSEE
nll ), the tendon force rises

non-linearly until the tendon length reaches lSEE
nll . After that the force of the SEE is linearly

dependent on its length lSEE:

fSEE(lSEE) =


0 , lSEE ≤ lSEE

0

kSEE
nl (lSEE − lSEE

0 )ν
SEE

, lSEE < lSEE
nll

∆fSEE
0 + kSEE

l (lSEE − lSEE
nll ) , lSEE ≥ lSEE

nll

. (2.49)

2.2.2.4 The serial damping element (SDE)

The SDE is a non-linear, viscous damping element of the MTU model, dependent on the
current force fMTU of the whole muscle and on the contraction velocities l̇CE and l̇MTU.
The force of the SDE is modelled by

fSDE(lCE, l̇CE, l̇MTU) =

DSDE
max ·

(
(1−RSDE) f

CE(lCE,l̇CE,ak)+fPEE(lCE)
fCE

max
+RSDE

)
·
(
l̇MTU − l̇CE

)
, (2.50)

with DSDE
max = DSDE · fCE

max·Arel
lCE
opt·Brel

.

2.2.3 Low-level control of muscle length
For approaching possibilities to control a muscle, a deeper look in the physiology of a muscle,
the affected proprioceptive sensor organs and the neural circuitry in the spinal cord is needed.
In this section, a principle of controlling the length of a muscle is investigated that is based
on the mono-synaptic reflex, in which sensor signals of the muscle spindle are fed back to
the pool of α-motoneurons that activate the whole muscle. This most basic principle also
forms the basis of the control architecture that is designed later, as the architecture will
provide the required input signals for this low-level length controller.

A muscle consists of different types of muscle fibres, where in this work the distinction
between extra-fusal and intra-fusal fibres will suffice. Extra-fusal fibres are the ‘main’ muscle
fibres that, when activated by the pool of α-motoneurons, contract the whole muscle belly
(CE). Intra-fusal muscle fibres are connected in parallel to the extra-fusal fibres but are
activated by the pool of γ-motoneurons and additionally contain the muscle-spindle sensor
organs (Mileusnic et al., 2006). Muscle-spindles are stretch sensitive sensor organs that,
when stretched by a contraction of the intra-fusal fibres, transmit a neural excitation to
the pool of α-motoneurons. This eventually leads to a contraction of the extra-fusal fibres,
which reduces the strain of the intra-fusal fibres and thereby lowers the afferent firing of the
muscle-spindles. Thus, the length of the whole muscle can be adjusted by an activation of
the intra-fusal fibres by the γ-motoneurons. This is the most simple neural connection of
afferent sensor signals to the excitation of muscle fibres, also known as the mono-synaptic
reflex (Haus, 2014; Feldman, 1974; Matthews, 1959). A simplified neural circuitry of this
mono-synaptic reflex is illustrated in Fig. 2.4. In a real biological body, additional neurons,
such as inhibitory interneurons or Renshaw cells are connected to the mono-synaptic reflex
in the spinal cord. In this thesis, those neurons and cells are not explicitly considered.

Based on the physiology of the neural feedback loop described above, mathematical
formulations have emerged with the goal of synthesizing muscle-driven motions. A most
simple implementation of this feedback control mechanism is known in the literature as λ-
controller, which has proven to be a practicable approach for the forward-dynamics synthesis
of biological movements (Kistemaker et al., 2006; Bayer et al., 2017; Günther and Ruder,

23



2. Preliminary mathematical model descriptions

Muscle-
spindle

Ia Spindle Fibres

α-Motoneuron

γ-Motoneuron

Spinal Cord

From higher CNS centres

II Spindle Fibres

Figure 2.4: Schematic illustration of the mono-synaptic reflex arc (Haus, 2014). Embedded
within the intra-fusal muscle fibres are the proprioceptive, stretch-sensitive, muscle spindle
sensor organs. When the intra-fusal fibres are activated via a pool of γ-motoneurons, the
strain on the spindles increases. The afferent respond signals from the spindle are fed back
via Ia- and II-fibres to the pool of α-motoneurons. As a consequent the extra-fusal fibres
are activated and the whole muscle contracts. This length-threshold feedback mechanism
can be formulated in a control law of CE length of an MTU Matthews (1959); Feldman
(1974); Kistemaker et al. (2006); McIntyre and Bizzi (1993).

2003). The symbol λ represents the length threshold of a muscle’s stretch reflex (Feldman,
1974), which can be adjusted by the excitation (and inhibition) of the intra-fusal fibres via
the γ-motoneurons (Matthews, 1959). This is reflected in Fig. 2.1 by the arrow labelled λ
pointing towards the ‘λ-Controller’ block.

From a system-theoretical point of view, the λ-control law has the form of a PD controller
on the CE length of a single MTU. (Kistemaker et al., 2006; McIntyre and Bizzi, 1993). The
input of this controller is the desired CE length λ ∈ R, which is compared to the actual CE
length lCE from (2.40) to form the control error lerr(t) = lCE(t)− λ(t). When the afferent,
neural delay δa

λ is considered, the control error is defined as

lerr
δa
λ
(t) := lCE(t− δa

λ)− λ(t). (2.51)

The neural delay δa
λ describes the time it takes for the sensor system to capture and transmit

the signal. With this control error, the λ-controller feeds back the closed-loop controlled

24



2.2. Muscle Model

stimulation signal
uλ(t) = pλ · lerr

δa
λ
(t) + dλ · l̇err

δa
λ
(t), (2.52)

with uλ ∈ R that aims to activate the CE towards the desired length λ. This closed-loop
feedback controller can be sufficient for the generation of asymptotically stable postures even
in the presence of an external force (e.g. gravity) to which a remaining constant control
deviation corresponds. This can be clearly seen, as uλ → 0 for lCE → λ, which yields fCE →
0. For still reaching a desired posture, i.e. compensating the control deviation, an additional
‘open-loop’ stimulation signal uopn(t) ∈ R can be deployed. Such compensating signals may
be provided in a biological system via the pool of α-motoneurons adding contributions to
the MTU stimulations that are based on memory or state knowledge in higher centres of
the biological motor control system.

The combination of closed-loop λ-control stimulation uλ according to (2.52) and open-
loop stimulation uopn has been shown to be capable of generating simple coordinated move-
ments and is also termed ‘hybrid controller’ of muscle-based systems (Bayer et al., 2017;
Kistemaker et al., 2006):

u(t) = uλ(t) + uopn(t). (2.53)

Note, that in (2.53) only the total resulting stimulation u(t) is restricted to R1 (see (2.37)).
The stimulation contributions uλ(t) and uopn(t) can potentially be negative, for example
to capture an inhibitory effect in an agonistic-antagonistic setup (AAS). When considering
the efferent neural delay δe

λ, which describes the time it takes to transmit the stimulation
signal to the MTU, this stimulation writes

uδe
λ
(t) = u(t− δe

λ) (2.54)

when ‘arriving’ at the motor units within the modelled muscle. This signal describes the
input to the activation dynamics model from Sec. 2.2.1. The notation of afferent or efferent
latencies by the subscript δa/e

λ is w.l.o.g. mostly omitted throughout this thesis for the sake
of readability. In Fig. 2.1, a signals attribute (afferent/efferent) and the respective latency
within the ‘hybrid controller’ is displayed in the grey boxes. According to this, each signal
can be considered delayed when attributed with the subscript δa

λ or δe
λ.

The ‘hybrid controller’, as it is described above, forms a basis of the hierarchical control
architecture that is designed later in Pt. II. There it is implemented in the lowest layer in
the cascaded hierarchy as a ‘low-level’ controller.

2.2.4 Moment arms
The forces of a muscle are transduced to the skeletal system by its attachments via tendons
to the bones and by the deflection surfaces that wrap the muscle tissue around the joints.
This corresponds to transforming the force of a muscle at a respective point to a torque at
the joint in the direction of its DoF as described in Fig. 2.1 by the block ‘Moment Arms’.

In the used simulation framework demoa the MTU routing is achieved ’via-ellipses’ ac-
cording to Hammer et al. (2019). With this method, the 1D, string like MTU is attached
to the skeletal system by an ’origin’ and an ’insertion’ attachment point and the MTU
force is applied to the respective bodies at those points. The general routing of the MTU
is achieved by the definition of deflection ellipses. When inside an ellipse, the MTU is not
affected by the deflection at all. When the MTU string is spanned to touch an edge of an
ellipse, it is deflected at the point of contact and transduces a deflecting force to the body of
the ellipse. This deflection method models the 3-dimensional circumference of a muscle and
allows a realistic representation of the non-linear, joint angle dependent moment arms of a
muscle. For details on the mathematical description of this deflection method it is referred
to Hammer et al. (2019).

25



2. Preliminary mathematical model descriptions

The resulting torque on a DoF (subscript i) that is generated by a MTU (subscript j)
can be calculated by the sum of all forces of the MTU fMTU

jp ∈ R3 at the attachment or
deflection points (subscript p) with the respective projected perpendicular distance to the
DoF rpi ∈ R3 by

τMTU
ji =

∑
p

fMTU
jp × rpi.

Alternatively, the total, scalar (in MTU string direction) MTU force fMTU
j is transformed

to a joint torque τMTU
i directly by an equivalent scalar moment arm rMTU

ji ∈ R:

τMTU
ji = fMTU

j · rMTU
ji .

This equivalent moment arm rMTU
ji is the perpendicular distance of the joint point to the

MTU string, projected onto the plane that is perpendicular to the DoF axis ω from (2.20).
It is defined by

rMTU
ji :=

∂θi

∂lMTU
j

,

where θi is the joint angle of the DoF that is embraced by the muscle with total length
lMTU
j . It is important to note, that a MTU can be spanned over multiple DoFs and that

each DoF may be actuated by multiple MTUs. The definition of the MTUs’ moment arms
can therefore easily be generalized into a matrix equation. For this, consider the set of joint
angles θ ⊆ q as a subset θ ∈ Rn̄DoF of the n̄DoF DoFs of the mechanical system (2.33) that
are actuated by MTUs. The vector fMTU ∈ RnMTU of all nMTU MTU forces generates the
torques τMTU ∈ Rn̄DoF that act on the n̄DoF DoFs by the matrix of moment arms

R := ∂θ
lMTU ∈ Rn̄DoF×nMTU . (2.55)

The generalized forces τMTU that act on the DoFs can then be calculated by (Walter et al.,
2021a; Stanev and Moustakas, 2019):

τMTU = −RT (θ)fMTU. (2.56)

Here, the negative sign is chosen in accordance to Stanev and Moustakas (2019). However, it
must be emphasised that a set of conventions for the physical variables (lMTU, θ, fMTU and
τMTU) determine what sign each component of the matrix of moment arms R(θ) eventually
carries.

For the simulation studies in Pt. III of this thesis a novel approach for calculating the
moment arms is used that makes use of a graph-theory based description of the muscu-
loskeletal system. The graph based system description is introduced in Sec. 4.1 and the
most relevant source-code for the moment arms calculation is given in the Lsts. E.1 and
E.2 in Appendix E.5.

2.3 Joint-limitations and visco-elastic forces

The (generalized) joint-limitation forces (torques) τ lmt
j of the j-th rotational DoF qj are

modelled as linear, one-sided, spring-damper elements that act directly on the respective
DoF:

τ lmt
j =


klmt

l,j · (qj − ql,j) + dlmt
l,j · q̇j , qj < ql,j

0 , ql,j ≤ qj ≤ qu,j
klmt

u,j · (qj − qu,j) + dlmt
u,j · q̇j , qj > qu,j

(2.57)

with the lower and upper (index l/u) threshold angles ql/u,j and the respective linear spring
and damping parameters klmt

l/u,j and dlmt
l/u,j .

26



2.4. Contact forces

The visco-elastic (bushing) forces τbsh
j , which are used as a description for passive visco-

elastic tissue around the joint (e.g. ligaments), are modelled with the same force law in the
special case of ql,j = qu,j = 0, kbsh

l,j = kbsh
u,j = kbsh

j , and dbsh
l,j = dbsh

u,j = dbsh
j . With this, the

visco-elastic force model for the j-th DoF contracts to

τbsh
j = kbsh

j · qj + dbsh
j · q̇j . (2.58)

The parameter values for the joint limitations and the visco-elastic force elements are given
in Appendix C.

2.4 Contact forces

Contacts of mechanically driven rigid bodies occur when their spatial dimensions overlap.
Forces develop at the point of interaction, which are dependent on the bodies’ mechani-
cal states and their material properties. When contacting rigid bodies move relative to
each other, their contact can be in the state of slipping or sticking. This state is thereby
dependent on the magnitude of the force that is transduced at the contact point and of
its direction. Altogether, to realistically model a contact of two rigid bodies in a forward
dynamics simulation, complex contact models are required, especially when considering ar-
bitrary surface geometries of the bodies involved. For this, physics-based laws for contacts
are used as a basis for an algorithmic implementation. Although the definition of rigid bod-
ies (section 2.1) demands rigid bodies not to be deformable, a ’soft-parametrised’ contact
definition can be used to mimic this effect.

In the used simulation environment demoa, a contact model that captures state-dependent
stick/slip transitions, as well as parameters for the material properties is implemented
(Henze, 2002; Walter et al., 2021a). Refer to Appendix B for a description of the con-
tact algorithm. In this contact model, a point on a rigid body can engage to contact a
spatially restricted plane on another body. By modelling multiple contact points and re-
spective planes, for simple geometries a realistic interaction with the environment can be
simulated. The contact forces are subsequently transformed to their equivalent generalised
forces, i.e. joint torques. As an external force they are an input to the mechanical equations
of motion (2.33) as described in Sec. 2.1.

27





Part II

The Hierarchical Control Architecture

29





Design of the hierarchical control architecture 3

As biological movement is driven by stimulated muscles, both the movement and the goal
of the task are implicitly present in the coordinate space of muscle stimulations. This does
not imply that the whole movement is planned in terms of muscle stimulation coordinates,
and it is worth considering that planning may be done significantly easier in terms of a more
suitable coordinate space. Even more, for different movements, different control spaces may
be better suited. For example, a pointing or grasping task may be best described in the
3D, spatial coordinates of the hand and maintaining balance in upright standing is feasible
in the coordinates of joint torques (Walter et al., 2021a). For complex and/or combined
movements, multiple of such control tasks can be active in parallel, where each has it’s
individual conceptional planning space (Walter et al., 2021b). The number of stimulation
signals generated is typically larger than the size of the planning space. This requires a
transformation of the movement plan into muscle stimulations. In such a transformation the
redundancy of many muscles acting on a smaller set of joints is resolved (Walter et al., 2021a).
The control architecture that is designed in the following therefore assumes biological motor
control as a layered, hierarchically-structured system. This was also already proposed by
Wolpert (1997); Prescott et al. (1999); Todorov et al. (2005); DeWolf and Eliasmith (2011);
Sober and Sabes (2005) and Merel et al. (2019). In the present work, three hierarchical
layers of control are identified, namely, the ‘structural layer’, the ‘transformational layer’
and the ‘conceptional layer’ (Fig. 3.1).

The structural layer represents the direct wiring of both the efferent motor neurons from
the spinal cord to the neuronal endplate and the afferent sensory neurons from the muscle
receptor organs to the spinal cord, as well as the interconnections of these using one or very
few synaptic connections, i. e. the mono-synaptic reflex loop.

The conceptional layer is an assumed, lumped layer representing the whole brain and
complex spinal cord functions, including the crucial building blocks of motion planning.
Among them are motor prediction (Wolpert and Flanagan, 2001), haptic perceptions (Blake-
more et al., 1999), motor learning (Tseng et al., 2007), movement intention (Ganesh et al.,
2018), task and environment context (Wolpert et al., 2003), body representation (Naito
et al., 2016), and sensory predictions (Gentili et al., 2010). In the design of the control
architecture presented here, the output of this layer is a postural plan in the form of a
desired angle for each body joint. This is symbolised by the arrow labelled ‘postural plan’
in Fig. 3.1. Additionally, co-contractions for the muscles and the joints are provided by this
layer. In this work, the conceptional layer is implemented in a most simple representation of
proportional-integral-derivative (PID) feedback controllers and subsequent transformations
from the conceptional coordinate spaces of joint torques and of limb positions to form the

31



3. Design of the hierarchical control architecture

Planning
Joint

Controller
Layer

Transformation
Muscle

Controller

High-Level Control
Conceptional Layer

Mid-Level Control
Transformational Layer

Low-Level Control
Structural Layer

Musculo
Skeletal
System

Afferent Feedback Efferent Signals

Postural Plan

Figure 3.1: Overview of the hierarchical structure of the presented control architecture.
The result of a conceptional planning process is transformed to the transformational layer
in the form of a postural plan and of muscle and joint co-contraction. The transformational
layer translates the postural plan to eventually produce muscle stimulations and other
control related signals that are passed on to the structural layer. Thereby the muscle-joint
redundancy is resolved. The signal dimensionality is displayed by single (low dimensional)
and multiple (high dimensional) lines.

postural plan.
In between the conceptional and the structural layer, the transformational layer is de-

fined. It serves the main function of reducing the cognitive load on higher CNS centres,
such as the brain and the higher spinal cord. Cognitive load in this sense is, e.g. total
neuronal information communicated between the periphery and the brain, control effort
(Haeufle et al., 2014b) and storage of knowledge about local material characteristics and ge-
ometry, e.g. muscle moment arms and limb dimensions. The transformation, as presented
here, is done purely by exploiting the geometry and actuator characteristics, namely, the
morphology. That is, adding this layer reduces computational costs of higher CNS parts
by increasing the morphological intelligence (Ghazi-Zahedi, 2019) on lower to mid levels
of the control structure. The transformational layer synergises several distributed local
control parts of the structural layer by using a more centralised knowledge about these
parts. In turn, this centralisation enables time- and signal-efficient processing of sensory
information of the structural layer. Due to the standardised input of a ‘postural plan’ and
the communication with the structural layer, the transformational layer is the key part of
the presented hierarchical control architecture. It enables a modular design that allows
to synthesise complex movements with multiple combined movement tasks, each with an
individual conceptional planning space.

To obtain a mathematical formulation of the hierarchical control architecture that en-
ables an algorithmic implementation, in the following sections its design process is elabo-
rated from the lowest to the highest layer. Following this bottom-up approach, the struc-
tural, transformational and conceptional layers are presented in such a way that closes each
control loop in a hierarchical order. This also includes the formulation of the respective
Jacobian based layer transformations to resolve the redundancy. The design of each layer
identifies standardised inputs and outputs, leading to a modular design that is flexible
in terms of conceptional control inputs and guarantees the generation of appropriate MTU
stimulations. Furthermore, in this hierarchical setup, the motion planning occurs in the con-
ceptional layer only, meaning that only the conceptional coordinates have to be considered

32



3.1. The Structural Layer

in the planning process and nothing has to be known about the biological structures. The
incorporation of those is achieved subsequently in the autonomous transformation process
of the architecture that generates MTU stimulations based on the conceptional plan. More
precisely, the Jacobian matrices are calculated based on biophysical features of the mus-
culoskeletal model, most prominently the geometric implementations and internal stiffness
relations of the MTUs. The Jacobian matrices are moreover derived in closed-form, making
the required biophysical information apparent that is needed for resolving the redundancy.

In very short words, the control architecture performs as follows: The structural layer
produces MTU stimulations based on the low-level CE-length controller (hybrid controller,
see Sec. 2.2.3) with the respective inputs of desired CE-length λ and task-fulfilling, ’open-
loop’ stimulations uopn

task. Exactly those inputs are provided by the transformational layer as
a reinterpretation of it’s own input, the postural plan θdes, which itself is provided by the
conceptional layer as a result of the planning process. On each layer, PID-controllers are
implemented to ensure a stable and robust task fulfilment and Jacobian matrices are used
for the transformation of the controller’s outputs to the respective lower layer. Picking up
this consideration and applying it in a straightforward way, in the following sections each
layer is described in detail and an essentially plain concept of planning and then generating
coordinated movements is laid out. That is, in Sec. 3.1, the structural layer and in the
Secs. 3.2 and 3.3 the transformational and the conceptional layers are introduced. Beyond
the generation of coordinated movement, the biological feature of redundancy opens up a
’uncontrolled manifold’ to fulfil additional criteria, such as a joint wide co-contraction. This
concept of joint wide co-contraction is part of the transformational layer and is described
in Sec. 3.2.4. A synopsis of the algorithmic implementation of the hierarchical control
architecture in the forward dynamics simulation software (C/C++) is given in Appendix E.

3.1 The Structural Layer

The structural layer is perceived here as the space that contains the representations of the
muscles, associated biological structures (e.g., muscle spindles) and their mono-synaptic
neural connection within the spinal cord. The mathematical models that constitute this
layer are those of the MTU model from section 2.2, including it’s activation dynamics from
Section 2.2.1 and the low-level hybrid controller from Section 2.2.3. Within the control
framework, these models are written in a generalised vector/matrix notation that allows
a comprehensive formulation of the control system. The space of the structural layer in
general covers the whole set of MTUs and has a dimensionality of nMTU. This space can
be reduced to a subset of only a part of the whole model with dimension ñMTU ≤ nMTU
to, e.g. only consider the control of a single limb. Throughout the design of the control
architecture in this chapter and w.l.o.g. the whole space of MTUs is used.

In vector notation, the total neural input u = [u1, ..., unMTU ]
T ∈ RnMTU

1 of the MTUs is
defined analogously to (2.53) and in accordance with Kistemaker et al. (2006); Bayer et al.
(2017) as the sum of a ‘closed-loop’ stimulation contribution uλ ∈ RnMTU and an ‘open-loop’
contribution uopn ∈ RnMTU :

u(t) = uλ(t) + uopn(t). (3.1)

By defining a vector of efferent neural latency times δeSL :=
[
δeSL,1, ..., δ

e
SL,nMTU

]T
∈ RnMTU

(see also (2.54) for the scalar case), the delayed vector of MTU stimulations is given by

uδeSL
(t) =

 u1(t− δeSL,1)

. . .
unMTU(t− δeSL,nMTU

)

 ∈ RnMTU
1 . (3.2)

That is, each stimulation is delayed by it’s respective efferent, neural latency time δe
SL,i For

the sake of notation and w.l.o.g. the subscript of δeSL is mostly omitted in the following.

33



3. Design of the hierarchical control architecture

Simply by adding this subscript, an efferent signal from the structural layer can be consid-
ered to be delayed by δeSL. The same holds for afferent sensor signals with the respective
latency time (and subscript) δaSL that it takes to transmit the signal to the structural layer.
The attribute of a signal to be an afferent or an efferent signal is displayed in the Figs. 2.1,
3.2 and 3.4 by an arrow crossing the border to the right of the structural layer.

In this structural layer, for each MTU, a mathematical representation of a low-level
feedback control mechanism (2.52) on the spinal level is implemented. The structural
embodiment of this feedback control mechanism is the mono-synaptic spinal cord reflex
arc that transmits muscle spindle signals from the intrafusal muscle fibres via a pool of
α-motoneurons to the extrafusal fibres, as described in Sec. 2.2.3. The biophysical control-
related signals within this layer are completely in accordance with Section 2.2.3 and include
the vector of muscle stimulation signals u ∈ RnMTU

1 from (3.1), which is the layer’s output
that serves as neural input to the muscles’ activation dynamics (2.38), and the vector of
CE lengths lCE =

[
lCE
1 , ..., lCE

nMTU

]T ∈ RnMTU being the state variables of the muscles’ con-
traction dynamics. Together with the vector of desired CE lengths λ ∈ RnMTU , the control
error

lerr(t) := lCE(t)− λ(t) ∈ RnMTU (3.3)

is defined in accordance to (2.51). The closed loop stimulation contribution in it’s vector
form then follows from (2.52):

uλ(t) = Pλ · lerr
δλ

(t) +Dλ · l̇err
δλ

(t), (3.4)

where the diagonal control matrices Pλ = diag(pλ,1, ... pλ,nMTU) ∈ RnMTU×nMTU and Dλ =
diag(dλ,1, ... dλ,nMTU) ∈ RnMTU×nMTU contain the control parameters pλ,i > 0 and dλ,i > 0,
respectively. The vector of desired CE lengths λ is hereby an input of the structural layer
of dimension nMTU.

The additional ‘open-loop’ stimulation signal uopn(t) =
[
uopn
1 , ..., uopn

nMTU

]T ∈ RnMTU

from (3.1) is the second input to the structural layer. Both inputs, λ ∈ RnMTU and uopn ∈
RnMTU must be chosen in accordance to each other to fulfil a movement task. That is, a
total bandwidth of 2 · nMTU signals need to be provided. To reduce this signal bandwidth
and thereby the cognitive load on higher CNS centres that is required for planning, the
inputs of the structural layer are provided by the lower-dimensional transformational layer
that is constructed in the following.

3.2 The transformational Layer

The transformational layer is implemented one stage higher in the control hierarchy than the
structural layer from the previous section. It shifts the control space to the coordinates of
joint angles of the model and produces synergistic input for all muscles that act on the same
joint. In the transformation from the transformational to the structural layer, the muscle-
joint redundancy is resolved. This is achieved by exploiting characteristic knowledge about
the morphology of the musculo-skeletal system, namely, moment arms and tissue stiffness.
Once these characteristics are implemented, a movement plan can be formulated in the
control space of joint angles and subsequently transformed to actuate the system. This
reduces the total cognitive load of the planning process, simply as the space of joint angles
is of lower dimension than the space of the MTUs. Additionally, the same characteristics can
be further exploited to fulfil the same movement task under different levels of a joint-wide
co-contraction (Sec 3.2.4).

Throughout this section, the transformational layer is assumed to act on the whole set
of MTU-actuated joints θ ⊆ q with θ ∈ Rnθ (compare to (2.33)). Similar as outlined in
Section 3.1, also only a subset θ̃ ⊂ θ with θ̃ ∈ Rñθ can be considered for control. The
transformation of a subset of the joint angles to the structural layer projects exactly in the

34



3.2. The transformational Layer

space of those muscles that actuate the respective joint, i.e., a well defined structural layer
emerges naturally. For the sake of notation and w.l.o.g., the whole set of MTU-actuated
joints θ ∈ Rnθ is considered for control in the following. The neural latencies of afferent
and efferent communication with the structural layer follow the same notation as for the
structural layer from Sec 3.1 by defining the delay vectors δa/e

TL and introducing the respective
subscripts exactly as described in (3.2). A signal’s property of being affected by an afferent
or an efferent neural delay is displayed in Fig 3.2 by an arrow that crosses the border to
the right of the transformational layer.

The mathematical formulation of the transformational layer that is presented in this
section is designed such that it exactly provides the inputs of desired CE lengths λ ∈ RnMTU

and ‘open-loop’ stimulation uopn ∈ RnMTU that are required by the structural layer. Each
of these signals is generated in the transformational layer separately by a ‘mid-level’ PID-
controller on joint angles θ ∈ Rnθ and a subsequent transformation that is based on a
Jacobian-matrix. Both PID controllers thereby obtain the same input of a postural plan
θdes ∈ Rnθ , which also forms the main input to the transformational layer itself. In Fig.
3.2 both mid-level controllers and the hierarchical cascade of the transformational and the
structural layer is displayed.

The first of the two mid-level controllers is termed θλ-controller (for details, see Sec.
3.2.1). It takes the desired state in terms of the postural plan θdes ∈ Rnθ and uses the
angle-length Jacobian Jλθ ∈ RnMTU×nθ , which contains structural knowledge about muscle
moment arms and MTU-internal stiffness ratios, to transmit values of desired muscle lengths
λθ(t) =

[
λθ1, ..., λ

θ
nMTU

]T ∈ RnMTU to the associated low-level λ-controller in the structural
layer. This can be seen as a re-interpretation of the movement plan in terms of nominal
muscle lengths. The nominal lengths λθ are prepared to feed the model representation
of the mono-synaptic spinal cord reflex arc (λ-controller (3.3,3.4)). The output of the
cascaded θλ- and λ-controllers, which form a hierarchical control sub-structure of the overall
architecture, is the stimulation signal uθλ(t) =

[
uθλ1 , ..., uθλnMTU

]T ∈ RnMTU , which is defined
in accordance to (3.3) and (3.4) as uθλ(t) := uλ(t,λ(t) = λθ(t)).

The second controller is termed the θ-controller (for details, see Sec. 3.2.2). It likewise
takes the desired state θdes ∈ Rnθ and uses the angle-stimulation Jacobian Juθ = Juλ ·Jλθ ∈
RnMTU×nθ , which additionally contains steady-state knowledge in Juλ ∈ RnMTU×nMTU about
the stimulation-length relation of the MTU’s activation dynamics, to transmit a second task-
fulfilling contribution to the MTU stimulations. This contribution is ‘open-loop’ from the
perspective of the structural layer, as bypassing the muscle spindle reflex path, even though
’closed-loop’ from the perspective of the transformational layer. It consist of the two stim-
ulation vectors uθ(t) =

[
uθ1, ..., u

θ
nMTU

]T ∈ RnMTU and ucoc
ref (t) =

[
ucoc

ref,1, ..., u
coc
ref,nMTU

]T
∈

RnMTU
1 , of which the sum is termed

uopn
task = uθ + ucoc

ref (3.5)

to be still in accordance with (3.1). The two addends to uopn
task play complementary roles in

the task fulfillery: ucoc
ref are arbitrary reference stimulation signals (base contraction levels,

for details see Sec. 3.2.1), and uθ is set up to minimise the error between ucoc
ref and the

desired stimulation values that corresponds to θdes, namely, uopn
task itself.

To allow the system to satisfy additional criteria or side conditions along with the
movement task, a second co-contraction contribution ucoc

θ = [ucoc
θ,1 , . . . , u

coc
θ,nMTU

]T ∈ RnMTU

to ‘open-loop’ MTU stimulation can be provided by the transformational layer within the
control architecture. This adjusts the stimulations of all MTUs that act on the same joint
exactly without interfering with the fulfilment of the movement task (for details see Section
3.2.4).

Taken together, four contributions of MTU stimulations have been distinguished that
feed the two addends in (3.1). The addend uλ identifies with uθλ, and uopn with uθ+ucoc

ref +

35



3. Design of the hierarchical control architecture

Mid-Level
Control

Layer
Transformations

Low-Level
Control

Musculo-Skeletal
System

θerr
conc = θ − θdes

conc

θpid
θ =Pθ · θerr

+Dθ · θ̇err

+ Iθ ·
∫
θerrdt

θ - Controller

θpid
θλ=Pθλ · θerr

+Dθλ · θ̇err

+ Iθλ ·
∫
θerrdt

θλ - Controller

λθ = lCE − Jλθθpid
θλ

Angle-Length Jacobian

ucoc
θ =

nθ∑
j=1

ζθj · eθj

Joint Co-contraction

ucoc =
∑nMTU

k=1 ζuk · euk
uopn

task = ucoc − Juθθpid
θ

Angle-Stimulation
Jacobian

lerr= lCE − λθ

uλ=Pλ · lerr + Dλ · l̇CE

λ - Controller

u = uθλ + uopn
task + ucoc

θ

Mq̈ + c(q, q̇) = T

Rigid Body Dynamics

τ lmt/bshi =
kl/u,i(θi − θl/u,i)

+dl/u,iθ̇i

Visco-Elastic
Forces

τMTU =−RT ·fMTU

Moment Arms

SDECE
CE

lMTU

PEE

l

SEE

Muscle Model

γ̇ = mH(γ − u)
a(t) = a0+ϖ

1+ϖ

Activation Dynamicss

Transformational
Layer

Structural
Layer

l̇CEl̇CE

lCE

lCE lCE

lSEE

lSEE

a

a

R

R

θ̇

θ̇

θ

θ

uθλ

u

uopn
task

ucoc
θ

ζu

ζθ

θdes

θerr
τ

θerr
τ

θpid
θλ

θpid
θ

λθ

a

fMTU

τMTUτ lmtτ bsh

δa
SL

δe
SL

δa
TL

δe
TL

Figure 3.2: Block diagram of the hierarchical cascaded transformational and structural
layers. The postural plan θdes is the input of the transformational layer and it is processed
to form the inputs λθ and uopn

task of the structural layer.

ucoc
θ :

u(t) = uθλ(t)︸ ︷︷ ︸
=̂uλ(t)

+uθ(t) + ucoc
ref (t) + u

coc
θ︸ ︷︷ ︸

=̂uopn(t)

. (3.6)

The summed stimulation signal in (3.6) constitutes the total output of the proposed hierar-
chical control architecture, which drives the actuators of the musculo-skeletal system. The
details on the calculations of these stimulation signals and their underlying control concepts
are given in the following, starting with the hierarchical θλ-controller in Sec. 3.2.1, followed
by the direct θ-controller including co-contraction in Sec. 3.2.2. The joint co-contraction
ucoc
θ and its basis for construction is outlined in Section 3.2.4.

3.2.1 The hierarchical θλ-controller
In this section, the mathematical particulars of the θλ-controller are outlined. It is described
here, how the postural plan θdes is interpreted in the transformational layer, and how it is
transformed to the structural layer to provide the corresponding desired MTU lengths λθ

that lead to the hierarchically controlled stimulation signal uθλ in (3.6) (see also Fig. 3.2).
Based on the set of controlled joint angles θ(t) and the vector of desired joint angles

θdes(t), firstly, the control error is defined as

θerr(t) := θ(t)− θdes(t) ∈ Rnθ . (3.7)

36



3.2. The transformational Layer

This error signal describes the deviation of the actual body posture θ from the desired state
θdes. Subsequently, the PID control law

θPID
θλ

:= Pθλ · θerr +Dθλ · θ̇err + Iθλ ·
∫
θerrdt ∈ Rnθ (3.8)

is used to create a robust and stabilising output of controlled joint angles, where the matrices
Pθλ = diag(pθλ,1, . . . , pθλ,nθ

) ∈ Rnθ×nθ , Dθλ = diag(dθλ,1, . . . , dθλ,nθ
) ∈ Rnθ×nθ , and Iθλ =

diag(iθλ,1, . . . , iθλ,nθ
) ∈ Rnθ×nθ are diagonal control matrices, with parameters pθλ,i > 0,

dθλ,i > 0, and iθλ,i > 0. The output θPID
θλ

(t) allows to fix the values of desired CE lengths
λθ(t) (see (3.13) below). It mainly scales by Pθλ with the control error signal θerr(t), while
a modifying angular-rate-dependent by Dθλ contribution and some memory by Iθλ ·

∫
θerrdt

of the angle error are added, with the latter eliminating any residual control deviations.
To eventually fix the desired CE lengths λθ(t) (3.13), the output of the θλ-PID control

law (3.8) from the transformational layer must be transformed to the structural layer. In-
stead of transforming the joint angles directly to CE lengths, changes of the joint angles
∂θ are transformed to changes of muscle lengths ∂lCE, which corresponds to answering the
question how much the contractile parts of the muscles need to contract (or relax) to reach
θdes. Such a transformation has already been discussed in literature (Pellionisz and Llinás,
1985) and can be achieved by a Jacobian matrix of the form

Jλθ :=
∂lCE

∂θ
∈ RnMTU×nθ ⇔ ∂lCE = Jλθ · ∂θ. (3.9)

Note, that this angle-length Jacobian has a similar definition as the matrix of MTU moment
arms (2.55). In fact, Jλθ can approximately be derived from the matrix of moment arms
R(θ) from (2.55). The detailed calculations of Jλθ is given at the end of this section in Sec.
3.2.1.1 and for now it is assumed that Jλθ is available as defined in (3.9).

The transformation of the discrete error signal θerr in (3.7) with the Jacobian Jλθ from
(3.9), which relates infinitesimal changes, is achieved by integrating ∂lCE = Jλθ(θ) ·∂θ with
the limits of the respective error signals (i.e. lCE(t) and λθ(t), and θ(t) and θdes(t)):∫ λθ

lCE
dlCE =

∫ θdes

θ

Jλθ(θ) · dθ, with λθ := lCE∣∣
θdes

lCE − λθ = J̄λθ(θ)− J̄λθ(θdes). (3.10)

Here the antiderivate J̄λθ is an unknown, joint-angle dependent function J̄λθ(θ) that can be
approximated by a first-order Taylor approximation at the set-point of the actual measured
joint angle configuration θ∗ = θ(t):

J̄λθ(θ)
∣∣
θ∗ = J̄λθ(θ∗) + Jλθ

∣∣
θ∗ · (θ − θ∗) +O(θ2), i.e.

J̄λθ(θdes)
∣∣
θ∗=θδθ

≈ J̄λθ(θ) + Jλθ · (θdes − θ). (3.11)

The use of (3.11) in (3.10) cancels out all occurrences of the unknown antiderivative J̄λθ

and the following remains:

lerr(t) = Jλθ · θerr(t) +O(θerr2), (3.12)

with the respective control errors (3.3) and (3.7). The Jacobian matrix Jλθ can thus be used
to approximately transform the discrete control error θerr from the transformational layer
to a control error of CE lengths lerr in the structural layer. Due to the linear approximation
(3.11), the transformation is less accurate for large control errors. During a successful
movement execution (θ → θdes), this approximation becomes more accurate and, thus, the

37



3. Design of the hierarchical control architecture

θ(t1) θ(t2) θ∗(t∗)

λ∗

λ(t1)

λ(t2)

λ(t∗)

Joint Angle

D
es

ire
d

C
E

Le
ng

th

Figure 3.3: Simplified visualisation of the Taylor approximation of desired CE-lengths
based on the current system state, e.g. θ. At time t1, when still far away from the desired
state θ∗, the linear approximation of the desired CE-lengths λ∗ that correspond to θ∗ is
potentially inaccurate. When approaching the desired state θast the Taylor estimation of λ
becomes more precise, as displayed by the arrows consecutively pointing from λ(t1) towards
λ∗(t∗).

controller performances is more precise the closer the system approaches the desired state,
as displayed in Fig. 3.3.

Finally, to complete the hierarchical θλ-controller, the vector of desired CE lengths λθ(t)
and their time rates λ̇θ must be provided as input to the λ-controller (3.4). The vector λθ(t)
is obtained by equating lerr(t) in (3.12) with (3.3) and solve the remaining equation for λ(t).
As these desired CE lengths are assigned within the transformational layer, and based on
angle information, they are written as λθ(t). Additionally, to compensate approximation
errors, and to ensure that θerr(t) approaches zero along with λθ(t) → lCE(t), the output
θPID
θλ

(t) of the θλ-PID-controller (3.8), rather than θerr(t), is used as input for the Jacobian
transformation (3.12). With this, and by neglecting the higher order terms O(θerr2), lerr(t)
in (3.12) now writes

lerr = lCE(t)− λθ(t) ≈ Jλθ · θPID
θλ

(t),

which eventually yields (compare to 3.3)

λθ(t) := lCE(t)− Jλθ · θPID
θλ

(t), (3.13)

that is, a reliable estimate of how the respective CE lengths have to be adapted to fulfil the
task, i.e. reach θdes. In this, an estimation of the desired contraction velocity λ̇θ is already
included, since the definition of the angle-length Jacobian matrix (3.9) can also be read as
(Sherman et al., 2013)

Jλθ =
∂lCE

∂θ
=

dlCE

dt

/
dθ
dt =

l̇CE

θ̇
, (3.14)

which can be used for transforming desired joint angle velocities θ̇des.
The (linear summation inherent to the) θλ-PID-controller (3.8) delivers an input for the

layer transformation (3.13), that includes a velocity component to be transformed along in
a natural way. Therefore, the transformational layer is not required to generate a separate
signal λ̇θ (i.e. λ̇θ = 0) for feeding the structural layer.

By making use of the λ-control law (3.4) with the hierarchical input signal λθ according
to (3.13), the stimulation signal contribution by the θλ-controller to (3.6) is

uθλ(t) := Pλ ·
(
lCE(t)− λθ(t)

)
+Dλl̇

CE(t),

38



3.2. The transformational Layer

that is, the closed-loop, low-level feedback control law in the structural layer, to which
the input signals λθ(t) originate from the mid-level control in the transformational layer.
Due to the hierarchical cascade uθλ(λθ(θdes)), with distributed PID- and PD-controllers,
this stimulation contribution is task-fulfilling, even under gravity, notably because of the
integrative part1 of the θλ-controller (3.8).

3.2.1.1 Details on the calculations of the angle-length Jacobian Jλθ

The angle-length Jacobian matrix Jλθ = ∂lCE

∂θ ∈ RnMTU×nθ relates the change of the MTU’s
CE length lCE ∈ RnMTU to a change of the joint angles θ ∈ Rnθ . It is used to transform a
control signal from the transformational layer to the structural layer. The definition of Jλθ

in (3.9) is similar to the definition of the matrix of moment arms (2.55), which is also the
basis of the calculation of Jλθ when combined with the MTU length equation (2.40):

R(θ) =
∂lMTU

∂θ
=
∂
(
lCE + lSEE)

∂θ
=
∂lCE

∂θ
+
∂lSEE

∂θ

=
∂lCE

∂θ
+
∂lSEE

∂lCE · ∂l
CE

∂θ

=

(
InMTU +

∂lSEE

∂lCE

)
· ∂l

CE

∂θ
, (3.15)

with InMTU being the identity matrix of dimension nMTU. By substituting Jλθ := ∂lCE

∂θ and
solving (3.15) for Jλθ, the angle-length Jacobian matrix is expressed as

Jλθ =
(
InMTU + ∂lSEE

∂lCE

)−1

·R(θ). (3.16)

The partial derivative ∂lSEE

∂lCE = diag
(
∂lSEE

i /∂lCE
i
)

with i = 1 ..., nMTU, describes the change
of the length of the SEE w.r.t. the change of the length of the CE. To calculate this term,
the partial derivative of the MTU forces fMTU w.r.t. the CE lengths lCE is evaluated in a
matrix equation, while considering the force equilibrium (2.41):

∂fMTU

∂lCE =
∂fCE

∂lCE +
∂fPEE

∂lCE =
∂fSDE

∂lCE +
∂fSEE

∂lCE (3.17)

Here, the partial derivative of the SEE force vector fSEE w.r.t. the CE length vector lCE

can be expressed as ∂fSEE

∂lCE = ∂fSEE

∂lSEE · ∂lSEE

∂lCE and is assumed to be non-zero, i.e. the tendon
is not slack. With this, equation (3.17) is rearranged to:

∂lSEE

∂lCE =

(
∂fCE

∂lCE +
∂fPEE

∂lCE − ∂fSDE

∂lCE

)
·
(
∂fSEE

∂lSEE

)−1

. (3.18)

According to the force law equations of the MTU (2.47, 2.48, 2.49) from Sec. 2.2, the
functions fCE and fPEE depend on lCE, while fSEE depends on lSEE. By assuming quasi-
static conditions (l̇MTU ≊ l̇CE ≊ 0), the SDE force vanishes (fSDE ≈ 0) and the CE force
(2.47) of each individual MTU simplifies to fCE(lCE) = fCE

max · a(lCE) · fisom(lCE).
Subsequently, equation (3.18) can be written to the matrix equation

∂lSEE

∂lCE =

(
∂fCE

∂lCE +
∂fPEE

∂lCE

)
·
(
∂fSEE

∂lSEE

)−1

(3.19)

=

(
Fmax ·

(
∂a

∂lCE · fCE
isom + a · ∂f

CE
isom

∂lCE

)
+
∂fPEE

∂lCE

)
·
(
∂fSEE

∂lSEE

)−1

.

1The integrative part, on the other hand, may show so called ’wind-up’ behavior, wherefore a simple
anti wind-up technique may be included if required, e.g. see (Tarbouriech and Turner, 2009)

39



3. Design of the hierarchical control architecture

and thus, the partial derivatives of a(lCE), f isom(lCE), fPEE(lCE) and fSEE(lSEE) remain
to be calculated.

Given the PEE force equation (2.48) for a single MTU with, its derivative w.r.t lCE is
given by

∂fPEE

∂lCE =

{
0 , lCE < lPEE

0

kPEE · νPEE · (lCE − lPEE
0 )(ν

PEE−1) , lCE ≥ lPEE
0

.

With the serial elastic force (2.49) for a single MTU, its derivative w.r.t. to lSEE can be
calculated and the result is

∂fSEE

∂lSEE =


0 , lSEE < lSEE

0

kSEE
nl · νSEE · (lSEE − lSEE

0 )ν
SEE−1 , lSEE < lSEE

nll
kSEE

l , lSEE ≥ lSEE
nll

,

The derivative of the isometric force (2.46) for a single MTU is given by

∂f isom

∂lCE =

νCE
limb · f isom · (lCE

opt − lCE)

∣∣∣∣ (lCE/lCE
opt)−1

∆WCE
limb

∣∣∣∣νCE
limb−2

lCE2 ·∆WCE
limb

2 .

The derivative of the non-linear activation a(lCE, γ) w.r.t lCE is

∂a

∂lCE =
(1− a0) ·

∂ϑ

∂lCE

(1 + ϑ)2
, with (3.20)

∂ϑ

∂lCE = ν ·

(
γ(t) ·ϖopt

lCE
opt

)ν

· lCE (ν−1) =
ν · ϑ
lCE .

For the derivative of a w.r.t γ the same steps are taken, leading to2

∂a

∂γ
=

(1− a0) ·
∂ϑ

∂γ

(1 + ϑ)2
, with ∂ϑ

∂γ
=
ν · ϑ
γ

. (3.21)

With those equations all terms of equation (3.19) are sufficiently resolved and ∂lSEE

∂lCE can be
calculated during runtime at each time-step of the simulation, using the respective param-
eters.

The above calculation (3.19) that assumes quasi-static conditions (i.e. l̇MTU ≊ l̇CE ≊ 0),
is used in this dissertation for the calculation of the angle-length Jacobian (3.16). To
evaluate the impact of this quasi-static assumption, a brief estimation without it follows:
Calculating the partial derivative ∂fSDE

∂lCE in (3.18) from (2.50) with RSDE ≈ 0 (Bayer et al.,
2017), (3.18) can be rewritten in the scalar case for the k-th MTU as

∂lSEE

∂lCE =

(
1−

(
DSDE

max · (l̇MTU − l̇CE)

fCE
max

))
·
(
∂fCE

∂lCE +
∂fPEE

∂lCE

)
·
(
∂fSEE

∂lSEE

)−1

. (3.22)

Additionally estimating the SEE contraction velocity to be as high as the maximum concen-
tric contraction velocity of the CE for the MTU, i.e. l̇SEE = (l̇MTU− l̇CE) = vmax = Brel

Arel
·lCE

opt,
(3.22) contracts to (for substituting DSDE

max , see Section 2.2.2.4)

∂lSEE

∂lCE = (1−DSDE) ·
(
∂fCE

∂lCE +
∂fPEE

∂lCE

)
·
(
∂fSEE

∂lSEE

)−1

. (3.23)

2Note, that the derivative of a w.r.t. γ is not used for the calculation of the Jacobian Jλθ, but later for
Juλ in Section 3.2.2.

40



3.2. The transformational Layer

As the relative damping coefficient is about DSDE = 0.3 for each MTU (Bayer et al., 2017),
it is seen that (3.19) is a reasonable approximation, at least in all non-explosive movements,
where the contraction velocity is below vmax. Such movements, for example, include most
everyday tasks, such as pointing and grasping, as well as standing and walking.

3.2.2 The direct θ-controller with co-contraction
By following the hybrid control approach (3.1, 3.6) (Bayer et al., 2017; Kistemaker et al.,
2006), an ‘open-loop’ stimulation contribution, which is, in addition, physiological meaning-
ful, can improve the control performance (Kistemaker et al., 2006). The ‘open-loop’ part
of the present control architecture is presented in the following: it produces a stimulation
signal that is based on the set of desired joint angles θdes (postural plan), without making
draft on the low-level control mechanisms in the structural layer.

The approach to the direct θ-controller with co-contraction is analogous to the hierar-
chical θλ controller from above. The desired joint angles θdes(t) are compared to the actual
joint angles θ(t), and the resulting control errors θerr

δθ
, with latencies δθ according to (3.7),

serves as input to a PID control law in the transformational layer

θPID
θ := Pθ · θerr

δθ
+Dθ · θ̇err

δθ
+ Iθ ·

∫
θerr
δθ

dt, (3.24)

with the diagonal control matrices Pθ = diag(pθ,1, . . . , pθ,nθ
), Dθ = diag(dθ,1, . . . , dθ,nθ

),
Iθ = diag(iθ,1, . . . , iθ,nθ

), containing the components pθ,i > 0, dθ,i > 0 and iθ,i > 0.
As an intermediate but only half-way step, the output of this θ-controller can be trans-

formed through the angle-length Jacobian Jλθ (3.9, 3.16), in a first instance, to the trans-
formational layer. However, and in contrast to the θλ-controller, the low-level λ control
law in the structural layer is eventually in fact bypassed by an additional Jacobian trans-
formation Juλ, obtaining the stimulation contribution uθ directly. By constructing this
(length-stimulation) Jacobian Juλ (3.26), an angle-stimulation Jacobian Juθ can be com-
posed that contains Jλθ and immediately transforms the changes of joint angles ∂θ in the
transformational layer to changes of MTU stimulations ∂u in the structural layer:

Juθ = Juλ · Jλθ =
∂u

∂lCE · ∂l
CE

∂θ
=
∂u

∂θ
∈ RnMTU×nθ (3.25)

∂u = Juθ · ∂θ,

with Jλθ known from (3.16) and

Juλ :=
∂u

∂lCE ∈ RnMTU×nMTU . (3.26)

For calculating this length-stimulation Jacobian Juλ, structural knowledge of the muscle
activation dynamics (2.38) and their individual (scalar) steady state (γ̇ = 0, γ = u), sym-
bolised by ass, is utilised. This yields a steady-state activation ass(u(t), lCE(t)), dependent
of the current stimulation u(t) and CE length lCE(t) of the MTU. In steady-state, the
activation ass does not change and its total differential vanishes.

0 = dass =
∂ass

∂u
du+

∂ass

∂lCE dlCE,

Using the partial derivatives (3.20-3.21) of ass, known from Section 3.2.1.1, leads to

0 =
dass

dlCE =
∂ass

∂u
· du

dlCE +
∂ass

∂lCE

⇒ du
dlCE = − ∂ass

∂lCE

/
∂ass

∂u
= − u

lCE
(
= juλ

)
. (3.27)

41



3. Design of the hierarchical control architecture

The length-stimulation Jacobian matrix Juλ is finally obtained as a diagonal matrix Juλ =
diag(juλi ) for i = 1 ... nMTU.

For using the length-stimulation Jacobian (3.27) in the θ-controller, a first-order Taylor
approximation is applied at the set-point of the current CE lengths lCE and reference
stimulation levels ucoc

ref (see Section 3.2.3) with the integration limits of λθ = lCE|θdes and
uopn

task. This Taylor approximation is carried out with the same reasoning as before in the
transformational layer in Section 3.2.1. It implies the definition of the stimulation error

uerr(t) := ucoc
ref (t)− u

opn
task(t) ∈ RnMTU , (3.28)

where ucoc
ref is an arbitrary but non-zero reference stimulation and uopn

task is a task-fulfilling
stimulation contribution that eventually corresponds to the postural plan θdes. To obtain
an estimate of this stimulation error, firstly the discrete integration with the limits of ucoc

ref
and uopn

task on the left hand side, and lCE
δθ

and λθ on the right hand side is performed on the
definition of the length-stimulation Jacobian (3.26):

∂u = Juλ · ∂lCE ⇔
∫ uopn

task

ucoc
ref

du =

∫ λθ

lCE
δθ

Juλ(lCE)dlCE

ucoc
ref − uopn

task = J̄uλ(lCE
δθ

)− J̄uλ(λθ). (3.29)

With an analogue first-order Taylor approximation as in (3.11), the unknown antiderivatives
J̄uλ(lCE

δθ
) and J̄uλ(λθ) in (3.29) can be linearly estimated to obtain:

uerr = Juλ · lerr +O(lCE2
) (3.30)

With this, an error of CE lengths can be transformed to an error of the reference co-
contraction (base stimulation level) ucoc

ref and the desired task fulfilling stimulation uopn
task. By

rearranging, the task fulfilling stimulation uopn
task can be obtained, based on the transformed

CE length error lerr and the chosen reference stimulation level ucoc
ref . With this, and by

neglecting all higher-order terms O(lerr2), (3.28, 3.30) can be solved for the stimulation
contribution uopn

task(t) (3.5) sought after.
To complete the construction of the θ-controller, similar as for the θλ-controller (see

(3.13)), lerr(t) is now replaced in (3.30) by making use of (3.12) and the angle-length Jaco-
bian Jλθ (3.9) as well as the θ-PID controller output θPID(t) (3.24) as an estimate of θerr(t).
This gives a robust, stabilising estimate

uθ(t) := − Juλ
∣∣
u=ucoc

ref
· Jλθ · θPID

θ (t)

of uerr(t) (3.28, 3.30) , which substantiates the proposed ansatz for the θ-controller by
approximating uopn

task according to (3.5) by

uopn
task(t) :≈ ucoc

ref (t)− Juλ
∣∣
u=ucoc

ref
· Jλθ · θPID

θ (t)

(3.31)
= ucoc

ref (t)− Juθ
∣∣
u=ucoc

ref
· θPID

θ (t)︸ ︷︷ ︸
:=−uθ(t)

.

Here, uθ is the output of the θ-PID-controller that is designed to adapt the reference
stimulation ucoc

ref to the task-fulfilling ‘open-loop’ (from the perspective of the structural
layer) stimulation contribution uopn

task. Thus, the base contraction level ucoc
ref is not required

to yield the desired equilibrium and can be chosen more freely.

42



3.2. The transformational Layer

3.2.3 Choosing the base reference stimulation level Stimcocref
The assignment of the base reference stimulations ucoc

ref is technically simple. Firstly, a
basis for the k = 1 ... nMTU MTU stimulations is constructed by the linear independent
vectors euk = [ek,1, . . . , ek,nMTU ] ∈ RnMTU

1 , with euk,i = 0 for i ̸= k and euk,i = 1 for i = k.
The reference stimulation ucoc

ref is then obtained by choosing a base contraction parameter
ζuk ∈ R01 for each MTU to scale the basis of the stimulation vectors:

ucoc
ref =

nMTU∑
k=1

ζuk · euk ∈ RnMTU
1 .

With this, an arbitrary reference stimulation level can be assigned to each MTU individually.
As already outlined in the previous section, the presented control architecture does not
require ucoc

ref to be in accordance with the specific movement task that is specified by θdes.
Moreover, in most of the simulation tasks examined in Pt. III of this thesis, assigning one
and the same co-contraction parameter value ζuk = ζu∗ to all MTUs was sufficient.

3.2.4 A co-contraction on joint layer
Above, the two Jacobian matrices Jλθ (see (3.9, 3.16)) and Juλ (see (3.26, 3.27)) that resolve
the muscle redundancy have been presented. In composition Juθ = JuλJλθ (see (3.25)), they
even allow to transform joint angle changes ∂θ immediately to MTU stimulation changes
∂u. This finding can be further exploited for allowing the system to satisfy criteria beyond
fulfilling the primary task. A criterion added to fulfilling a specific movement task may
be the level of joint stiffness or speed of execution, while co-contraction has a significant
impact on both joint stiffness (Bayer et al., 2017; De Serres and Milner, 1991; Gribble et al.,
2003; Kistemaker et al., 2007; Milner, 2002; Milner et al., 1995) and movement speed (Bayer
et al., 2017; Gribble et al., 1998; Kistemaker et al., 2006; McIntyre and Bizzi, 1993). It is
derived in the following how this architectural integration potential, which is implicit to
the muscle redundancy imprinted in Jλθ (and thus Juθ), can be used to set a functionally
desired joint-related co-contracting contribution to any of MTU stimulations.

In addition to setting, as described in Sec. 3.2.3 (c), a base contraction level ζuk ∈ RnMTU

for each MTU individually, a second co-contraction parameter ζθj ∈ R for each of the
j = 1 ... nθ muscle-actuated joint DoFs θ of the skeletal system can be deployed. The
redundant nature of the embodiment of the nMTU muscles opens a manifold of dimension
(nMTU−nθ) to assign MTU stimulation contributions ucoc

θ derived from these co-contraction
parameters ζθj . To exactly not interfere with the movement task specified by θdes, the joint
co-contraction ucoc

θ is chosen based on the null-space of the (Moore-Penrose pseudo) inverse
Juθ† of Juθ. The null-space—or kernel, respectively—of Juθ† is the set of infinitesimal MTU
stimulation changes ∂u that are mapped via Juθ† to the null vector of angular changes, i.e.
∂θ = 0. This means that the discrete addition of any sufficiently small vector ucoc

θ from the
null space of Juθ† to the MTU stimulation u (i.e. (3.6)) results in the joint angles θ(t) not
significantly changing; therefore, adding ucoc

θ does not interfere with the movement task
θdes.

Mathematically the null-space is obtained by solving

0
!
= ∂θ = Juθ†∂u, (3.32)

e.g. via Gaussian elimination, where Juθ† is the Moore-Penrose pseudo inverse of Juθ

defined by
Juθ† := (JuθT · Juθ)−1 · JuθT ∈ Rnθ×nMTU . (3.33)

Note here, that the pseudo inverse (3.33) can only be calculated for Juθ having full column
rank (rk(Juθ) = nθ), which is not the case, e.g. if the joint DoFs θ̃ that are not actuated by

43



3. Design of the hierarchical control architecture

muscles are considered in the control architecture. In all feasible cases, the solution of (3.32)
yields a basis of the null-space (kernel) of dimension dim(ker(Juθ†)) = (nMTU − nθ), which
equals to dim(ker(Juθ†)) = nθ in the model that is used in this study. Thus, the basis of
the null-space has exactly the same size as the set of MTU actuated joint angles θ, allowing
nθ additional DoFs to satisfy further movement criteria along with fulfilling the primary
movement task. By this, the transformational layer of the control architecture proposed
here facilitates to apply joint-based co-contraction: The linearly independent basis vectors
eθj (∥eθj∥ = 1, j = 1 ... nθ) that build the basis of the null-space obtained from (3.32) are
simply scaled (similar to the base reference stimulation from Sec. 3.2.3 (c)) by the arbitrary
co-contraction parameters ζθj ∈ R to obtain a joint co-contraction contribution

ucoc
θ =

nθ∑
j=1

ζθj · eθj ∈ RnMTU
01

that fulfils (3.32). In this stimulation contribution, the implicit resolution of the muscle
redundancy in Juθ by anatomical knowledge (moment arms, contraction and activation
dynamics) is exploited to generate synergistic MTU stimulations that do not interfere with
fulfilling the movement task θdes, while yet allowing to vary simultaneously, but in a coor-
dinated way, the activity level of all muscles that act on the same joint.

3.3 The conceptional layer

With the conceptional layer, the control space is shifted further above in the hierarchy. In
this abstract space, the movement task can be efficiently formulated and cognitive load
and planning resources of higher CNS parts are reduced. This reduction is primarily based
on the potential to neglect morphological properties of the body in the planning process,
such as muscle dynamics and parts of the body’s geometry. Sufficient knowledge of the
morphology that is required for control is already implemented in the lower and mid levels
of the control hierarchy, namely in the structural and transformational layer. Exactly this
representation of morphological intelligence can now be exploited in the planning process
by the conceptional layer. That is, a desired movement can be described in a coordinate
space in which it can be easily formulated and a plan exactly in these coordinates can be
drafted without having to consider, e.g. the muscles. This concept of a decoupled planning
and actuation space is also hypothesised by Wolpert (1997) and implicitly assumed for
studies on joint-torque-based planning of human upright standing by, e.g. Rozendaal and
van Soest (2005); Alexandrov et al. (2001); Edwards (2007): Solving the mechanical system
by calculating torques that are required to maintain upright standing must be followed in
the biological system by muscle stimulations that eventually lead to said torques. For other
movements a different choice of the conceptional planning space may be better suited. A
grasping movement, for example, may be described the most intuitive in the coordinate
space of the position of the hand in 3D space.

To have a broad coverage of different planning spaces, in this section, the conceptional
layer is mathematically designed in terms of joint angles θ, of joint torques τMTU and of
limb positions χ. For each, a high-level PID feedback controller is implemented, to ensure
that the movement is executed under desired conditions, and a Jacobian-based layer trans-
formation is used, to provide the transformational layer’s standardised input of a postural
plan θdes. For this transformation further information of the morphology is exploited, e.g.
geometry of the skeletal system for position control and muscle stiffness for joint control.
The generation of the respective MTU stimulations then straightforwardly follows from the
remainder of the hierarchically cascaded control architecture as described in the previous
sections. That is, the postural plan is controlled in the transformational layer and the inputs
for the structural layer of desired CE lengths λθ and direct stimulations uopn

task are generated

44



3.3. The conceptional layer

with the help of Jacobian matrices. In the structural layer, low level CE length controllers
(hybrid controller) provide the MTU stimulations uλ (3.1) that drive the skeletal system
to follow the postural plan. In Fig. 3.4 the complete cascaded hierarchy of the control
architecture is displayed. The mathematical design of a conceptional layer is technically
equivalent to the θλ controller (Sec. 3.2.1) in the transformational layer. The introduction
of the conceptional layers with the control space of joint angles in Sec. 3.3.1, of joint torques
in Sec. 3.3.2 and of limb positions in Sec. 3.3.3 forms a first step towards a generalisation
of arbitrary conceptional control spaces. This is shortly discussed in Sec. 3.3.4, where also
an approach to the control of forces is presented.

3.3.1 Control of joint angles
For the control of joint angles, the conceptional layer takes the trivial form of simply pro-
viding the postural plan θdes

θ (t) directly to the PID controllers (3.8) and (3.24) in the
transformational layer. Examples that include a conceptional movement planning in the
space of joint angles are contained in most application examples presented in Pt. III.

3.3.2 Control of joint torques
Movement planning in terms of joint torques has the advantage of providing a way to
manipulate the driving inputs to the body’s mechanical dynamics (2.33). That is, the
torques that are generated by the MTUs τMTU have a direct impact on the temporal
development of the mechanical degrees of freedom q ∈ RnDoF . By implementing a high-
level planning process of the torques τMTU, the dynamics of the mechanical equations of
motion (2.33) can be manipulated. Thereby, the whole movement of the body can be
controlled in the states of its mechanical dynamics.

The input to the torque controller in the conceptional layer is the vector of desired
joint torques τ des ∈ Rnθ . These desired torques are compared to the current torques of
the MTUs τMTU ∈ Rnθ and a PID-controller creates a stabilising and robust output. The
output is transformed by the torque-angle Jacobian Jθτ ∈ Rnθ×nθ to form a postural plan
θdes
τ and thereby to provide the input that is demanded by the transformational layer. The

remainder of the control architecture eventually generates MTU stimulations u(t, τ des(t)) ∈
RnMTU that lead to the MTU force production fMTU(t, τ des(t)). The joint torques that are
generated by the MTUs are fed back to the conceptional layer and the high-level feedback
loop is closed. Due to the cascaded control architecture, the generated MTU torques are
set up to match the desired torques, concisely symbolised by τMTU → τ des.

Throughout this section and w.l.o.g. the control of the whole set of MTU torques
τMTU ∈ Rnθ is assumed. In the same way as described in Sec. 3.2, only a part of the
body, i.e. a subset τ̃MTU ∈ Rñθ can be considered here. The afferent and efferent neural
latencies δa/e

CL of signals that communicate with the conceptional layer are taken care of in
the same way as described in Sec. 3.1 and Sec. 3.2. A signals property of being affected by
an afferent or efferent delay is illustrated in Fig 3.4 by an arrow that crosses the border to
the right of the conceptional layer.

To deploy such a torque-based concept in the conceptional layer of the control architec-
ture, at first the error signal of joint torques is defined:

τ err(t) = τMTU(t)− τ des(t), (3.34)

where τ des = [τdes
1 , ... τdes

nθ
] ∈ Rnθ is an input to the system. This error is controlled via the

following PID control law on joint torques:

τPID := Pτ · τ err
δτ

(t) +Dτ · τ̇ err
δτ

(t) + Iτ ·
∫
τ err
δτ

(t)dt, (3.35)

45



3. Design of the hierarchical control architecture

H
igh-Level

C
ontrol

M
id-Level

C
ontrol

Layer
T

ransform
ations

Low
-Level

C
ontrol

M
usculo-Skeletal

System

τ
pid=

P
τ
·τ

err

+
D

τ
·τ̇

err

+
I
τ
· ∫

τ
errd

t

Torque
C

ontrol

θ
des
τ

=
−
J
θ
τ
·
τ

pid

Torque-A
ngle

Jacobian

θ
des
χ

=
−
J
θ
χ
·
χ

pid

Position-A
ngle

Jacobian

χ
pid=

P
χ
·χ

err

+
D

χ
·χ̇

err

+
I
χ
· ∫

χ
errd

t

Position
C

ontrol

τ
des

θ
des
τ

θ
des
χ

χ
d
e
s

θ
err
conc

=
θ
−

θ
des
c
o
n
c

θ
p

id
θ

=
P
θ ·

θ
err

+
D

θ ·
θ̇

err

+
I
θ · ∫

θ
errd

t

θ
-C

ontroller

θ
p

id
θ
λ
=
P
θ
λ
·θ

err

+
D

θ
λ
·θ̇

err

+
I
θ
λ
· ∫

θ
errd

t

θ
λ

-C
ontroller

λ
θ
=

l C
E
−

J
λ
θ
θ

pid
θ
λ

A
ngle-Length

Jacobian

u
coc
θ

=
n
θ

∑j
=
1

ζ
θj
·
e
θj

Joint
C

o-contraction

u
coc

= ∑
n

M
T

U
k
=
1

ζ
uk
·
e
uk

u
opn
task

=
u

coc−
J
u
θ
θ

pid
θ

A
ngle-Stim

ulation
Jacobian

l err=
l C

E
−

λ
θ

u
λ=

P
λ
·
l err

+
D

λ
·
l̇ C

E

λ
-C

ontroller

u
=

u
θ
λ
+

u
opn
task

+
u

coc
θ

M̃
¨̃q
+
C̃
˙̃q

=
τ̃

R
igid

Body
D

ynam
ics

τ
lm

t/
b
sh

i
=

k
l/
u
,i (θ

i −
θ
l/
u
,i )

+
d
l/
u
,i θ̇

i

V
isco-Elastic

Forces

τ
M

T
U
=
−
R

T·f
M

T
U

M
om

ent
A

rm
s

S
D
E

C
E

C
E

l M
T
U

P
E
E

l

S
E
E

M
uscle

M
odel

γ̇
=

m
H
(γ

−
u
)

a
(t)

=
a
0
+
ϖ

1
+
ϖ

A
ctivation

D
ynam

icss

C
onceptional

Layer
Transform

ational
Layer

Structural
Layer

l̇ C
E

l̇ C
E

l C
E

l C
E

l C
E

l SE
E

l SE
E

a

a

R

R

θ̇

θ̇

θ

θ

τ
M

T
U

τ
M

T
U

τ̇
M

T
U

τ̇
M

T
U

χ
,
χ̇

χ
,
χ̇

u
θ
λ

u

u
opn
task

u
coc
θ

ζ
u

ζ
θ

R
∂
f

M
T

U

∂
l C

E

τ
des

χ
des

ζ
u

ζ
θ

θ
des
θ

θ
des
c
o
n
c

θ
err
τ

θ
err
τ

θ
pid
θ
λ

θ
pid
θ

λ
θ

a f
M

T
U

τ
M

T
U

τ
lm

t
τ

bsh

δ
aSL

δ
eSL

δ
aT

L

δ
eT

L

δ
aC

L

δ
eC

L

F
igure

3.4:
Block

diagram
of

the
com

plete
hierarchical

controlarchitecture.
D

esired
values

for
joint

angles
θ

des,
joint

torques
τ

des
and/or

lim
b

positions
χ

des,together
w

ith
the

param
eters

ofm
uscle

and
joint

co-contractions
ζ
u

and
ζ
θ

are
the

totalinput
ofthe

hierarchicalcontrol
architecture.

Follow
ing

the
cascaded

hierarchy
of

control,
in

each
layer,

PID
controllers

and
Jacobian-based

layer
transform

ations
eventually

generate
M

T
U

stim
ulations

u.
T

he
resulting

M
T

U
forces/torques

are
therew

ith
set-up

to
m

inim
ise

the
respective

controlerrors,i.e.
to

fulfilthe
m

ovem
ent

task.

46



3.3. The conceptional layer

where the control matrices Pτ = diag(pτ,1, . . . , pτ,nθ
), Dτ = diag(dτ,1, . . . , dτ,nθ

), and
Iτ = diag(iτ,1, . . . , iτ,nθ

) are diagonal, with pτ,i > 0, dτ,i > 0 and iτ,i > 0. The controlled
signal τPID in the conceptional layer is subsequently transformed to the (transformational)
layer of joint angles via the torque-angle Jacobian matrix

Jθτ :=
∂θ

∂τ
∈ Rnθ×nθ , (3.36)

which is the inverse of the joint stiffness matrix Kθ = ∂τ/∂θ (Stanev and Moustakas, 2019).
It can be calculated by inserting the moment arm equation of the joint torques (2.55) from
Sec. 2.2.4:

Kθ =
∂(−RT · fMTU)

∂θ
.

Applying the product rule and inserting the definition (3.9) of the angle-length Jacobian
yields

Kθ = −∂R
T

∂θ
•2 fMTU −RT ∂f

MTU

∂lCE Jλθ. (3.37)

where ∂RT

∂θ ∈ Rnθ×nθ×nMTU is a third-order tensor and •2 denotes a tensor product, leading
to (∂R

T

∂θ •2 fMTU) ∈ Rnθ×nθ being a second-order tensor (Kolda and Bader, 2009; Stanev
and Moustakas, 2019).
The calculation of ∂fMTU/∂lCE in (3.37) follows similar calculations as already given in Sec.
3.2.1.1. For the simulation study of this paper the first part of the joint stiffness matrix Kθ

is neglected and the torque-angle Jacobian is used as

Jθτ =

(
−RT ∂f

MTU

∂lCE Jλθ

)−1

. (3.38)

In the closed form (3.38) of this Jacobian, the required anatomical knowledge is again ap-
parent and consists of moment arms, MTU stiffnesses, and MTU-internal stiffness relations
(see also (3.16)).

Similar as in (3.12) and (3.29), the torque error can be transformed to an error in joint
angles using a first-order Taylor approximation, leading to the definition of a signal of
desired joint angles, based on the controller output of joint torques:

θdes
τ (t) := θ (t, δτ )− Jθτ · τPID(t). (3.39)

Here, with the same reasoning as in (3.14), the use of the PID-controller output—i.e. its
D-part—in the transformation, brings along a transformation of the desired torque rate
τ̇ des to θ̇des. Hence, it is not needed for the conceptional layer to feed a separate signal
θ̇des into the PID-controllers (3.8) and (3.24) in the transformational layer (θ̇err = θ̇ is
used). The postural plan (3.39) that results from the conceptional torque controller can
be straightforwardly used to feed the joint-angle PID controllers (3.8) and (3.24) in the
transformational layer. This closes the control loop of the three cascaded layers of high-
level torque control, mid-level angle control and low level length control. See also Fig. 3.4
for a block diagram of the complete hierarchical control architecture.

3.3.3 Control of limb positions
Movements that involve the control of the position of a limb are everyday tasks such as
reaching, pointing or grasping. During such a movement, the current position of the hand
is estimated, via visual and proprioceptive sensory signals (Sober and Sabes, 2005), and
muscle stimulations are synergised for its execution.

In this section, this general thought is mathematically integrated in the conceptional
layer of the control architecture. The design process of this position controller follows the

47



3. Design of the hierarchical control architecture

same steps as for the θλ-controller (Sec. 3.2.1), the θ-controller (Sec. 3.2.2) and the τ -
controller (Sec. 3.3.2). That is, a high-level, PID-controller of the position of a limb χlimb

is implemented and its output is transformed by a Jacobian Jθχ to provide the postural
plan θdes

χ to the transformational layer. Following the remaining cascaded hierarchy, MTU
stimulations u are eventually generated that are set up to drive the limb to the desired
position χlimb → χdes.

For the mathematical description of the limb position χlimb and of other position control
related variables, many of the preliminaries of the mathematical system description of rigid
body movements from Sec. 2.1 are used. The basic idea is to use the notion of 4 × 4
homogeneous rigid body transformations (2.11) to describe the current and desired positions
in 3D space of a point at the end of a limb. As a reference coordinate system, the ‘base-joint’
of the limb is used, e.g. the shoulder of the respective hand. To control the movement of
the limb, all joints are actuated accordingly that connect the endpoint of the limb to its
base-joint. This can then be easily translated into the postural plan θdes

χ . For the notation
on the afferent and efferent neural sensory latencies δa/e

CL please refer to (3.2) in Sec. 3.1.
The property of a signal to be affected by an afferent or efferent neural latency δa/e

CL is
illustrated in Fig. 3.4 and in the following the subscript is omitted.

By attaching a coordinate frame L at the end-point of a limb and a frame D at the
desired place, their position and rotation in 3D space can be described in the inertial world
frame W by the rigid body transformations

GWL =


0 0 0 0

RWL tWL

 ∈ SE(3),

which is already known from (2.11) in Sec. 2.1.3. According to (2.16), the respective
coordinate vector is given by

χWL =

 tWL

ϕWL

 ∈ R6, with ϕ :=
1

2

 r32 − r23
r13 − r31
r21 − r12

.
Likewise a frame D is attached at the position that is desired to be reached by the limb.
The relative configuration of the desired position with respect to the world is given by
GWD ∈ SE(3) or χWD ∈ R6. By recapitulating the rules for G in (2.15), the relative
configuration of L in D is

GDL = GDWGWL = GWD−1

GWL.

When the limb moves towards its desired position, the frame L of the limb approaches the
frame D, i.e. GWL → GWD and their relative distance decreases, i.e GDL → I4. Thus, the
homogeneous representation GDL is a valid choice for the control error of the limbs position.
The coordinate representation of this control error is given by the vector in R6 by (Ibuki
et al., 2014)

χDL =

 tDL

ϕDL

 ∈ R6, with tDL =

 xDL

yDL

zDL

 ∈ R3 and ϕDL =

 ϕDL
x

ϕDL
y

ϕDL
z

 ∈ R3.

Before this signal is used for control, a more precise look into the system is taken: The
mechanical description of the body (skeletal system) is usually a ramified kinematic chain,

48



3.3. The conceptional layer

i.e. it has a central part (e.g. the trunk) where the limbs are attached to. The limb itself
is thereby the most important for manipulating its end point. To control the position of
the hand, for example, it is the movement of the arm, and for the foot it is the leg. The
joint that connects the respective limb to the central part of the ramified skeletal structure
therefore can serve as a reference coordinate system for the control of the limb. Using this
approach, the control error is transformed into the reference coordinate system (frame R) of
the joint that connects the limb to the central part. For this transformation it is sufficient
to rotate the constituents tDL and ϕDL of χDL by RRD = RRW · RWD. Exactly this
defines the positional control error χerr that is used in the following for the control of limb
positions:

χerr :=

 terr

ϕerr

 ∈ R6 with terr := RRDtDL ∈ R3 and ϕerr := RRDϕDL ∈ R3. (3.40)

Only a rotation into the reference coordinate frame R is used here, as, e.g. the control
error terr describes the connecting vector of the points at the origin of the frames D and L.
Such a connecting vector can also be derived by subtracting the respective points and the
appended (1) in the fourth dimension cancels out to a (0). A subsequent transformation,
e.g. by GRD, corresponds to a pure rotation by RRD (see also (2.14) in Sec. 2.1.3).

Following the general approach of having a high-level PID feed-back controller in the
conceptional layer, the control error (3.40) is the proportional (P) part that is used in
combination with an integral (I) part and a derivative (D) part. The I part is simply
obtained by integrating χerr over time:

χint :=

∫
χerrdt.

The D part is obtained by recapitulating the preliminaries of rigid body velocities from
section 2.1.5, i.e. (2.25) and (2.27). Given the homogeneous representations of the spatial
velocities V̂ W

WL and V̂ W
WD of the limb and of the desired position with respect to the inertial

world frame W, their representation with respect to the frame R is given by

χ̇err = GWR−1

(V̂ W
WL − V̂ W

WD)G
WR. (3.41)

With the application of a general PID-control law, the high-level control signal is given by

χpid := Pχ · χerr + Iχ · χint +Dχ · χ̇err,

where Pχ = diag(pχ,1, . . . , pχ,6), Dχ = diag(dχ,1, . . . , dχ,6), and Iχ = diag(iχ,1, . . . , iχ,6)
are diagonal control matrices. To feed this positional control signal to the transformational
layer, a postural plan θdes must be derived. This is achieved by following the general
approach of the control architecture with the help of a Jacobian matrix. The position-joint
Jacobian Jθχ relates the change of a limbs position to a change of the limbs joint angles. It
is defined by

Jθχ :=
∂θlmb

∂χ
∈ Rnlmb

θ ×6, (3.42)

where θlmb is the set of DoFs that lie in between the the kinematic chain from the frame
R to L. The inverse of this Jacobian, i.e. Jχθ, can be simply calculated by geometrical
analysis. Each entry jχθi,j of Jχθ describes the momentary change of a DoF θi with respect
to a change of a positional (or rotational) direction (index j). That is, the columns jχθi

that correlate to the i-th DoF are given by

jχθi =

[
rθiL × ωi

ωi

]
,

49



3. Design of the hierarchical control architecture

where ωi is the momentary screw axis of the i-th DoF according to (2.20) and rθiL denotes
the distance of the joint to the frame L. To transform the positional error (3.41) to the
transformational layer, a matrix inverse of Jχθ is required. As Jχθ is typically non-square,
the following pseudo-inverse is used:

Jθχ = Jχθ† := (JχθT · Jχθ)−1 · JχθT ∈ Rnθ×6. (3.43)

The postural plan θdes is then obtained by a first-order Taylor approximation, exactly as
already described in (3.12) and (3.29), by

θdes(t) := θ(t)− Jθχ · χpid(t).

When this signal is fed to the transformational layer, eventually MTU stimulations ulmb(t)
are generated that actuate the system, such that the DoFs are driven to let χlm reach χdes.

This method of control can potentially also be applied to manipulate the position of
objects externally of the musculo-skeletal body, such as a stick in the hand, when the
estimation of the Jacobian is sufficiently correct.

3.3.4 Control of forces and of other coordinates
In a similar manner as above, various different coordinate spaces can be thought of to be
controlled. The only requirements are some measure of the coordinates to be controlled and
a Jacobian matrix that eventually maps a PID-controlled variant of the coordinate space
onto a postural plan θdes. The latter can be a challenging task as a Jacobian may not
be easy to find or can even turn out to be unfeasible. In some cases it may be sufficient,
though, to map a coordinate space directly onto another conceptional layer.

The control of forces is such a case. By mapping a desired force of the end point
of a limb onto equivalent joint angles, a vector of desired joint torques is obtained, that
can be used as input for a conceptional torque controller as described in Sec. 3.3.2. Such
a transformation can be achieved by the transpose of the angle-position Jacobian matrix
Jχθ = ∂χ

∂θ (see also (3.42) and (3.43)). This becomes clear when considering the work done
by the force f and by the torques τ , respectively, that can be rewritten as follows

τT∂θ = fT∂χ

= fTJθχ∂θ

= (JθχT

f)T∂θ

⇒ τ = JθχT

f

With this, a desired force fdes can directly be transformed into a vector of desired torques
τ des that can be fed into the conceptional torque controller as described in Sec. 3.3.2.

50



Part III

In-silico Applications

51





The digital human body model allmin 4

The digital human model (DHM) ‘allmin’ that is used for the application examples is based
on anthropometric data from NASA (1978) and represents a 50 percentile human male
with a mass of 81 kg and a total height of 1.78m. Its muscular actuation is implemented
on the principle of elementary biological drives (see Fig. 2.1 and (Schmitt et al., 2019))
using the MTUs from Sec. 2.2 (see also (Haeufle et al., 2014a)). For each muscle-actuated
DoFs, there is exactly one agonistic and one antagonistic MTU modelled. The Body of
the DHM consists of segments, which are modelled by means of rigid bodies, as described
in Sec. 2.1. The body segments are connected by rotational joints with either one DoF
(hinge-joint), or two DoFs (universal-joint). The pelvis body is the centre of the ramified
rigid-body chain of a trunk with two legs, two arms and a head. The legs each consist
of a thigh body, a shank and a foot. The hip (Hp) joint is allowed to rotate around the
two DoFs of flexion-extension (FE) and abduction-adduction (AA) and the knee (Kn) and
ankle (An) joints each around FE. The arms similarly consist each of an uparm body
with the shoulder (Sh) movements of FE and AA, a forearm body with FE allowed in the
elbow (Eb) joint and a hand with FE in the wrist (Wr). The trunk is allowed to rotate in
lateral flexion-extension (lFE) and ventral flexion-extension (vFE)) in the lumbar joint (Lu)
and in the cervical joint (Ce). The DHM is shown in Fig. 4.1 and its model parameters are
given in Appendix C.

Taken together, the musculoskeletal model allmin consists of nRGB = 15 rigid bodies
that are connected via 14 joints resulting in a total of nDoF = 20 DoFs. Each DoF, except
for those of the Wrs, is controlled by two MTUs in an agonistic-antagonistic setup (AAS),
to act as an elementary biological drive on the model (Haeufle et al., 2014a; Schmitt et al.,
2019). Therewith, the musculoskeletal model is actuated by a total of nMTU = 36 MTUs
and has nθ = 18 MTU-actuated DoFs. The complete joint angle vector θ(t) ∈ Rnθ consists
of the elements θj(t) ∈ R with the index j being one of the following joints:

j ∈ { ⌈Lu, lFE⌋, ⌈Lu, vFE⌋, ⌈Ce, lFE⌋, ⌈Ce, vFE⌋,
⌈Sh,r, FE⌋, ⌈Sh,r, AA⌋, ⌈Eb,r, FE⌋,
⌈Sh,l, FE⌋, ⌈Sh,l, AA⌋, ⌈Eb,l, FE⌋,
⌈Hp,r, FE⌋, ⌈Hp,r, AA⌋, ⌈Kn,r, FE⌋, ⌈An,r, FE⌋,
⌈Hp,l, FE⌋, ⌈Hp,l, AA⌋, ⌈Kn,l, FE⌋, ⌈An,l, FE⌋, }T

A list of all bodies, their joints and actuating MTUs can be found in Tab. 4.1.

53



4. The digital human body model allmin

Pelvis
1

Spine
2

Uparm R
3

Forearm R
4

Hand R
5

Uparm L
6

Forearm L
7

Hand L
8

Thigh R
9

Shank R
10

Foot R
11

Thigh L
12

Shank L
13

Foot L
14

Head
15

Lu (1
)

Sh R
(2)

Eb
R

(3
)

Wr R
(4)

Sh L
(5)

Eb
L

(6)

Wr L(7)

Hp
R

(8
)

Kn R
(9)

An
R

(1
0)

Hp
L(11)

Kn L
(12)

An
L

(13)

C
v

(1
4)

Hp
FxHp

Ab

Hp
Ex

Hp
Ad

Kn Ex

Kn Fx

An
Ex

An
Fx

Sh Fx
Sh Ab

Sh Ex

Sh Ad

Eb
Ex

Eb
Fx

Sh L
(5)

E
b

L
(6

)

Wr L(7)

Figure 4.1: Left: The digital human model (DHM) used in this study is a simplified repre-
sentation of the human body. The DHM consists of a chain of 15 rigid bodies (segments),
which are connected by joints that allow movements in nDoF = 20 angular DoFs. The joints
are actuated by nMTU = 36 string-like, massless Hill-type MTUs Right: Graph representa-
tion of the DHM with the vertexes being the bodies and the edges being the joints of the
model. For the right leg and arm, additionally the muscles are displayed.

4.1 Graph-based model description

In this section the kinematic chain of the DHM, i.e. its base anthropometry, is represented
in the form of a graph. In this graph, each rigid body of the model is related with each
other body by the joint they are connected with. This can simply be written in the form
of a matrix A, in which each column and each row represents a rigid body of the model:

A =



0 1 0 0 0 0 0 0 8 0 0 11 0 0 0
1 0 2 0 0 5 0 0 0 0 0 0 0 0 14
0 2 0 3 0 0 0 0 0 0 0 0 0 0 0
0 0 3 0 4 0 0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 6 0 0 0 0 0 0 0 0
0 0 0 0 0 6 0 7 0 0 0 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 9 0 0 0 0 0
0 0 0 0 0 0 0 0 9 0 10 0 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 12 0 0
0 0 0 0 0 0 0 0 0 0 0 12 0 13 0
0 0 0 0 0 0 0 0 0 0 0 0 13 0 0
0 14 0 0 0 0 0 0 0 0 0 0 0 0 0



∈ RnRGB×nRGB

(4.1)
The respective matrix entry aij for the i-th and j-th bodies exactly represents the k-th
joint that connects i and j. This matrix is a slight modification of the so called adjacency
matrix, which is well-known in the mathematical field of graph-theory, e.g. see Mesbahi

54



4.1. Graph-based model description

and Egerstedt (2010). The respective graph of the adjacency matrix (4.1) for the DHM
allmin is displayed in Fig. 4.1 (right). Even though the adjacency matrix (4.1) seems to be
very sparse and to have redundant information, a substantial amount of conclusions can be
extracted from its structure.

Graph-searching, for example, can be efficiently executed on such a matrix to detect all
joints that are crossed within a kinematic sub-chain from one body to another. To make
this more comprehensive, imagine the kinematic sub-chain from the spine (ID = 2) to the
hand (ID = 8). Starting at the shoulder body and following the row to the right, the joint
with ID = 5 is found, that connects the spine to the body with column ID. The ID = 6
of the left uparm body is found when travelling the column upwards. Doing the same for
the matrix row with the just obtained uparm ID, as a next body the forearm is found.
Eventually the hand wit body ID = 8 is reached. In the following equation (4.2) and in Fig.
4.1 this is displayed by the arrows in the adjacency matrix and in the graph of the model.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pelvis: 1 0 1 0 0 0 0 0 0 8 0 0 11 0 0 0
Spine: 2 1 0 2 0 0 5 0 0 0 0 0 0 0 0 14

Uparm R: 3 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0
Forearm R: 4 0 0 3 0 4 0 0 0 0 0 0 0 0 0 0

Hand R: 5 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
Uparm L: 6 0 5 0 0 0 0 6 0 0 0 0 0 0 0 0

Forearm L: 7 0 0 0 0 0 6 0 7 0 0 0 0 0 0 0
Hand L: 8 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0

Thigh R: 9 8 0 0 0 0 0 0 0 0 9 0 0 0 0 0
Shank R: 10 0 0 0 0 0 0 0 0 9 0 10 0 0 0 0

Foot R: 11 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
Thigh L: 12 11 0 0 0 0 0 0 0 0 0 0 0 12 0 0
Shank L: 13 0 0 0 0 0 0 0 0 0 0 0 12 0 13 0

Foot L: 14 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0
Head: 15 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0


.

(4.2)
Within the algorithmic implementation of the hierarchical control architecture such a graph-
based model description and tree-searching has mainly two uses. Regarding the first, it
forms the basis of the calculation of the muscles’ moment arms (see Lsts. E.1 and E.2 in Ap-
pendix E.5). By knowing the ID’s of the bodies at which the MTUs attach, graph-searching
can be used for obtaining the joints that connect the bodies. Thereby the topological rout-
ing of the MTUs is available and the moment arms of the MTUs can be efficiently derived.
Regarding the second use of graph-searching, it provides a general method for identifying
a kinematic sub-chain of a limb in the regard of position control (see Sec. 3.3.3). By spec-
ifying the controlled body and its reference body, e.g. the control of the hand relative to
the shoulder, graph searching identifies all joints that are responsible for control. For an
algorithmic implementation for the identification of kinematic sub-chains, or to search a
graph in general, efficient algorithms have been developed in the field of graph theory, such
as presented by Dijkstra et al. (1959).

55



4. The digital human body model allmin

Table 4.1: List of bodies, joints and MTUs of the DHM. Each joint has either one or two
DoFs and each DoF, except for the Wrs, is actuated by two MTUs. The ID numbers refer
to the internal numbering that is used by the simulation software demoa.

Joint Body Muscle
ID Name ID Name ID Name
(DoF ID) ▼ RoM

9 Lu lateral flexor, flexion
1 Lumbar joint (Lu) 10 Lu lateral extensor, extension
(1) [−20 20] 1 Pelvis 11 Lu ventral flexor, flexion
(2) [−20 20] 2 Spine 12 Lu ventral extensor, extension

21 Sh extensor, extension
2 Shoulder (Sh) R 22 Sh flexor, flexion
(3) [−20 20] 2 Spine 23 Sh abductor, abduction
(4) [−20 20] 3 Uparm R 24 Sh adductor, adduction
3 Elbow (Eb) R 3 Uparm R 27 Eb flexor, flexion
(5) [−20 20] 4 Forearm R 28 Eb extensor, extension
4 Wrist (Wr) R 4 Forearm R
(6) [−20 20] 5 Hand R

17 Sh extensor, extension
5 Shoulder (Sh) L 18 Sh flexor, flexion
(7) [−20 20] 2 Spine 19 Sh abductor, abduction
(8) [−20 20] 6 Uparm L 20 Sh adductor, adduction
6 Elbow (Eb) L 6 Uparm L 25 Eb flexor, flexion
(9) [−20 20] 7 Forearm L 26 Eb extensor, extension
7 Wrist (Wr) L 7 Forearm L
(10) [−20 20] 8 Hand L

1 Hp extensor, extension
8 Hip (Hp) R 2 Hp flexor, flexion
(11) [−20 20] 1 Pelvis 3 Hp abductor, abduction
(12) [−20 20] 9 Thigh R 4 Hp adductor, adduction
9 Knee (Kn) R 9 Thigh R 31 Kn flexor, flexion
(13) [−20 20] 10 Shank R 32 Kn extensor, extension
10 Ankle (An) R 10 Shank R 35 An extensor, extension
(14) [−20 20] 11 Foot R 36 An flexor, flexion

5 Hp extensor, extension
11 Hip (Hp) L 6 Hp flexor, flexion
(15) [−20 20] 1 Pelvis 7 Hp abductor, abduction
(16) [−20 20] 12 Thigh R 8 Hp adductor, adduction
12 Knee (Kn) R 12 Thigh R 29 Kn flexor, flexion
(17) [−20 20] 13 Shank R 30 Kn extensor, extension
13 Ankle (An) R 13 Shank R 33 An extensor, extension
(18) [−20 20] 14 Foot R 34 An flexor, flexion

13 Ce lateral flexor, flexion
14 Cervical joint (Ce) 14 Ce lateral extensor, extension
(19) [−20 20] 2 Spine 15 Ce ventral flexor, flexion
(20) [−20 20] 15 Head 16 Ce ventral extensor, extension

56



Joint control: basic examples 5

In this chapter it is demonstrated how the control architecture can be used to perform
coordinated movements in the control space of joint angles. The DHM from Ch. 4 is used
as simulation subject. In the three subsequent Secs. 5.1, 5.2 and 5.3, the joint angles of an
arm, a leg and of the trunk of the DHM are controlled. For performing the control task
in isolated conditions, the DHM is fixed to the world at its pelvis joint. This means that
even in the presence of gravity (g = −9.8065m

s2 ) the position of the pelvis stays the same.
Attached to the pelvis, each leg is able to freely swing with the two DoFs in the Hp and the
trunk balances in upright position at the Lu. Details on the simulation software and the
used solver are presented in Appendix D.1.

The model is actuated in the control space of joint angles by providing a postural plan
θdes(t) (see Sec. 3.3.1)1. By following the structured hierarchy of the control architecture
(Fig. 3.4), MTU stimulations (3.6) are eventually generated. These stimulation signals
actuate the DHM in order to achieve the postural plan, i.e. θ(t) → θdes(t). In the here pre-
sented examples of joint angle control, the postural plan is provided by discrete equilibrium
poses. That is, for each joint angle a discrete desired value is assigned for a specific time
interval. This allows to investigate the transient and asymptotic dynamics of the closed
loop control system.

5.1 Control of the lower limb joint angles

For the control of the lower limb joint angles, in this section, an angle controller for the
right Hp FE, Hp AA, Eb FE and An FE is defined. The desired movement is specified in
terms of discrete set-points of desired joint angles as follows:

θdes
Upex(t) =


[ θHpR,FE θHpR,AA θKnR θAnR ]T

[ 0.0 0.0 0.0 0.0 ]T , t ∈ ( 0.0s . . . 1.5s ]
[ −40.0 30.0 110.0 −20 ]T , t ∈ ( 1.5s . . . 3.0s ]
[ −110.0 10.0 30.0 30.0 ]T , t ∈ ( 3.0s . . . 4.5s ]
[ −10.0 40.0 70.0 0.0 ]T , t ∈ ( 4.5s . . . 6.0s ]

.

In the first time interval t ∈
[
0.0s 1.5s

]
, the model is set to stay at the initial, neutral

position. In the second time interval, the Hp is slightly flexed and abducted, the Kn is
flexed and the An is flexed. In the third time interval, the Hp is fully flexed, Hp AA and
Kn FE are reduced and the An is extended. The pose defined for the fourth time interval

1For methods of setting desired joint angles in the simulation framework demoa refer to Appendix E.4

57



5. Joint control: basic examples

corresponds to an abducted Hp and a flexed Kn. The control parameters are chosen to be
the same for all poses and are listed in Tab. 5.1. All neural latency delay times δ are set
to zero.

The different body postures in the achieved steady-states are shown in the upper row
in Fig. 5.1. In the second row, the right-leg angle-stimulation Jacobian Jλθ from (3.9)
is shown as heat-map matrix. This state-dependent matrix maps joint angle changes to
CE length changes and thereby resolves the redundancy of the musculo-skeletal system.
Based on the sign of the respective matrix entry, the kinesiologic effect of a certain muscle
on a specific joint (flexor/extensor) can be identified (see colour coding on the right and
joint angle notation in Fig. 4.1). In the line plots below, trajectories of joint angles, knee-
MTU CE-lengths and stimulations are shown. It is clearly seen that the system is stable
and approaches the desired values of joint angles, i.e. θ(t) → θdes(t). In its transient
dynamic, the system is accelerated and smoothly approaches the desired states. Some
overshooting and oscillations are visible for the Hp joints, which can mainly be traced back
to inertia effects of the ‘heavy’ leg. In the desired MTU lengths λθ that are demanded by
the transformational layer, oscillations occur. These oscillations are passed through to the
MTU stimulations and are eventually damped out by the intrinsic velocity characteristics
of the MTUs, as well as by inertia of the rigid bodies.

5.2 Control of the upper limb joint angles

For the control of the upper limb joint angles, in this section, an angle controller for the
left Sh FE, Sh AA and Eb FE is defined. The desired movement is specified in terms of
discrete set-points of desired joint angles as follows:

θdes
Upex =


[ θShL,FE θShL,AA θEbL,FE ]T

[ 0.0 0.0 0.0 ]T , t ∈ ( 0.0s . . . 1.5s ]
[ −10.0 40.0 −70.0 ]T , t ∈ ( 1.5s . . . 3.0s ]
[ −90.0 10.0 −30.0 ]T , t ∈ ( 3.0s . . . 4.5s ]
[ −40.0 60.0 −110.0 ]T , t ∈ ( 4.5s . . . 6.0s ]

.

In the first time interval, the arm is held in neutral position. In the second time interval the
arm is abducted to 40◦ and the elbow is flexed to −70◦. After that, the arm is adducted
back close to the body and flexed to 90◦ and the elbow flexion is released to 30◦. In the
final time interval the arm is flexed (90◦) and abducted (60◦) and the elbow is flexed (110◦).
The control parameters are given in Tab. 5.2.

In the upper row in Fig. 5.2, the body postures are shown after they have confidently
reached equilibrium. Also in Fig. 5.2, excerpts of the angle-length Jacobian Jλθ are shown,
as well as plots of joint angles θUpex and CE-lengths lCE

Upex together with their desired values
θdes

Upex, λUpex and the stimulations u(t) that are produced by the control architecture.

Table 5.1: Control parameters of the angle controller of the lower limb.

Joint angle MTU
Name Pθλ Iθλ Dθλ Pθ Iθ Dθ Name κ ucoc

ref

hip FE 0.01 0.01 0.001 0.1 0.1 0.01 Hp flexor, flexion (Fx) 2.25 0.1
0.01 0.01 0.001 0.1 0.1 0.01 Hp extensor, extension (Ex) 2.25 0.1

hip AA 0.01 0.01 0.001 0.1 0.1 0.01 Hp abductor, abduction (Ab) 2.25 0.1
0.01 0.01 0.001 0.1 0.1 0.01 Hp adductor, adduction (Ad) 2.25 0.1

knee FE 0.01 0.01 0.001 0.1 0.1 0.01 Kn Fx 2.25 0.1
0.01 0.01 0.001 0.1 0.1 0.01 Kn Ex 2.25 0.1

ankle FE 0.01 0.01 0.001 0.1 0.1 0.01 An Fx 2.25 0.1
0.01 0.01 0.001 0.1 0.1 0.01 An Ex 2.25 0.1

58



5.2. Control of the upper limb joint angles

H
p F

E
H

p A
A K
n

A
n

Hp Ex
Hp Fx
Hp Ab
Hp Ad
Kn Fx
Kn Ex
An Ex
An Fx

Joints:

Muscles: Time = 1.5s

H
p F

E
H

p A
A K
n

A
n

Time = 3.0s

H
p F

E
H

p A
A K
n

A
n

Time = 4.5s

H
p F

E
H

p A
A K
n

A
n

Time = 6.0s

∂ lCE
∂θ

< 0

∂ lCE
∂θ

> 0

−120
−80
−40

0
40
80

120

Jo
in

t
A

ng
le

(◦
)

θHp,FE θHp,AA θKn,FE θAn,FE

θdes
Hp,FE θdes

Hp,AA θdes
Kn,FE θdes

An,FE

0.1

0.2

0.3

C
E

le
ng

th
(m

) lCE
Kn,Fx λKn,Fx

lCE
Kn, Ex λKn, Ex

0 1 2 3 4 5 6

−0.2

0

0.2

Time (s)

M
T

U
St

im
ul

at
io

n

uθλKn,Fx uθKn,Fx
ucoc

Kn,Fx utotal
Kn,Fx

uθλKn,Ex uθKn,Ex
ucoc

Kn,Ex utotal
Kn,Ex

Figure 5.1: Simulation results of lower limb joint angle control. In the first row, the body
postures after reaching the desired joint angles are shown. In the second row, the Jacobian
entries of Jλθ are displayed that are used by the control architecture for layer transformation
and to resolve the muscle-joint redundancy. In the bottom three line-plots, the current and
desired joint angles of the lower limb joints, the current and desired CE-lengths and the
MTU stimulations of the Kn MTUs are shown. All desired values are reached confidently
and the MTU stimulations are adjusted around their reference co-contraction of 0.1. Even
though some oscillations in the MTU stimulations are present after a new pose is set, they
are quickly damped out.

59



5. Joint control: basic examples

Sh
F

E

Sh
A

A E
b

Sh Ex

Sh Fx

Sh Ab

Sh Ad

Eb Fx

Eb Ex

Joints:

Muscles: Time = 1.5s

Sh
F

E

Sh
A

A E
b

Time = 3.0s

Sh
F

E

Sh
A

A E
b

Time = 4.5s

Sh
F

E

Sh
A

A E
b

Time = 6.0s

∂ lCE
∂θ

< 0

∂ lCE
∂θ

> 0

−120

−80

−40

0

40

Jo
in

t
A

ng
le

(◦
)

θSh,FE θSh,AA θEb,FE

θdes
Sh,FE θdes

Sh,AA θdes
Eb,FE

0.05

0.1

0.15

0.2

C
E

le
ng

th
(m

)

lCE
Eb,Fx λEb,Fx

lCE
Eb, Ex λEb, Ex

0 1 2 3 4 5 6

−0.2

0

0.2

Time (s)

M
T

U
St

im
ul

at
io

n

uθλEb,Fx uθEb,Fx
ucoc

Eb,Fx utotal
Eb,Fx

uθλEb,Ex uθEb,Ex
ucoc

Eb,Ex utotal
Eb,Ex

Figure 5.2: Simulation results of joint angle control of an upper extremity. In the upper
row the body posture is shown after reaching the equilibrium of the desired pose. In the
second row, the Jacobian entries of Jλθ are displayed to visualize how the postural plan
is translated into desired CE-lengths. The state dependency of the Jacobian matrix can
be identified by different colour shadings for different body postures. The Sh FE MTUs,
for example, have an increased effect in AA direction when the Hp joint deviates from the
neutral position. In the line-plots in the bottom three rows, trajectories of joint angles,
CE lengths and MTU stimulations are shown together with the desired values and the
reference co-contraction stimulation. It is seen that the desired joint angles are reached
quickly and confident for the used controller parametrisation. The desired CE-lengths that
are generated by the transformational layer are mostly reached except for some spikes that
are damped out by the intrinsic properties of the MTU dynamics.60



5.3. Control of the trunk joint angles

5.3 Control of the trunk joint angles

The control of the trunk angles is completely analogue to the control of the upper and lower
limb joint angles as described in the previous Secs. 5.1 and 5.2. The desired values for the
angle controller of the trunk are chosen to follow the discrete trajectories of

θdes
Trunk =


[ θLu,lFE θLu,vFE θCe,lFE θCe,vFE ]T

[ 0.0 0.0 0.0 0.0 ]T , t ∈ ( 0.0s . . . 1.5s ]
[ −30.0 30.0 0.0 0 ]T , t ∈ ( 1.5s . . . 3.0s ]
[ 0.0 0.0 −30.0 30.0 ]T , t ∈ ( 3.0s . . . 4.5s ]
[ 0.0 0.0 0.0 0.0 ]T , t ∈ ( 4.5s . . . 6.0s ]

.

The final pose corresponds to the first pose and in-between, isolated front-left bendings
of the Lu and Ce are demanded. This is also shown in Fig. 5.3 by screenshots of the
desired equilibrium poses and by time-plots of the trunk joint angles, CE-lengths and MTU-
stimulations of the ventral flexion of the Ce.

It can be observed that the Ce vFE does not reach its desired angle and also that
the respective muscles do not reach their desired lengths. This can be traced back to a
miss-parametrised MTU; either the agonistic MTU cannot be further contracted or the
antagonist cannot be further stretched. After the pose that was not reached, the Ce vFE
angle only slowly reacts to the desired set-point, due to an over-saturation from the previous
pose. The control parameters for the trunk joint angle controller are listed in Tab. 5.3.

Table 5.2: Control parameters of the angle controller of the right upper limb.

Joint angle MTU
Name Pθλ Iθλ Dθλ Pθ Iθ Dθ Name κ ucoc

ref

shoulder FE 0.01 0.01 0.001 0.1 0.1 0.01 Sh Fx 2.25 0.1
Sh Ex 2.25 0.1

shoulder AA 0.01 0.01 0.001 0.1 0.1 0.01 Sh Ab 2.25 0.1
Sh Ad 2.25 0.1

elbow FE 0.01 0.01 0.001 0.1 0.1 0.01 Eb Fx 2.25 0.1
Eb Ex 2.25 0.1

Table 5.3: Control parameters of the angle controller of the trunk.

Joint angle MTU
Name Pθλ Iθλ Dθλ Pθ Iθ Dθ Name κ ucoc

ref

Lu lFE 0.01 0.01 0.001 0.1 0.1 0.01 Lu lateral flexor, flexion (lFx) 2.25 0.1
Lu lateral extensor, extension (lEx) 2.25 0.1

Lu vFE 0.01 0.01 0.001 0.1 0.1 0.01 Lu ventral flexor, flexion (vFx) 2.25 0.1
Lu ventral extensor, extension (vEx) 2.25 0.1

Ce lFE 0.01 0.01 0.001 0.1 0.1 0.01 Ce lFx 2.25 0.1
Ce lEx 2.25 0.1

Ce vFE 0.01 0.01 0.001 0.1 0.1 0.01 Ce vFx 2.25 0.1
Ce vEx 2.25 0.1

61



5. Joint control: basic examples

L
s L

F
L

s V
F

C
s L

F
C

s V
F

Ls LE
Ls LF
Ls VL
Ls VR
Cs LE
Cs LF
Cs VL
Cs VR

Joints:

Muscles: Time = 1.5s

L
s L

F
L

s V
F

C
s L

F
C

s V
F

Time = 3.0s

L
s L

F
L

s V
F

C
s L

F
C

s V
F

Time = 4.5s

L
s L

F
L

s V
F

C
s L

F
C

s V
F

Time = 6.0s

∂ lCE
∂θ

< 0

∂ lCE
∂θ

> 0

−30

−20

−10
0

10

20

30

Jo
in

t
A

ng
le

(◦
)

θLs,LF θLs,VF θCs,LF θLs,VF

θdes
Ls,LF θdes

Ls,VF θdes
Ls,LS θdes

Ls,VF

0.02

0.04

0.06

C
E

le
ng

th
(m

)

lCE
Kn,Fx λCs,l

lCE
Kn, Ex λCs,r

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

Time (s)

M
T

U
St

im
ul

at
io

n

uθλCs,l uθCs,l
ucoc

Cs,l utotal
Cs,l

uθλCs,r uθCs,r
ucoc

Cs,r utotal
Cs,r

Figure 5.3: Simulation results of trunk joint angle control. In the first row the body
postures of the desired movement are displayed as screenshots of the simulation’s animation.
In the second row the Jacobian entries of Jλθ of the trunk angles are illustrated as they
are used by the control architecture for transforming joint angle changes to CE length
changes. The three bottom line-plots show the overall control behaviour in terms of joint
angle trajectories and a detailed view for the Ce vFE MTUs. In the third time-interval, the
Ce vFE joint does not reach its desired value. The respective agonistic MTU is unable to
reach the desired length λθCe,vFx

62



Torque control: upright stance and squat movement 6

To demonstrate the function of the conceptional torque controller (Sec. 3.3.2), it is here
used to perform human-like upright stance by implementing an external joint-torque-based
control concept on the musculo-skeletal model. This simulation study is also part of the
publication by Walter et al. (2021a). There, the desired torques that are needed as input
for the conceptional torque controller are obtained from the model of joint angle-torque
characteristics from Günther and Wagner (2016). This concept determines joint torques
that stabilise the mechanical system (2.33) around an upright position. By using such a
torque concept in the conceptional layer and feeding its output to the hierarchical control
architecture, MTU stimulations are generated that eventually lead to the desired joint
torques demanded by the stabilising torque-based control concept.

This approach is used in a total of four simulations to demonstrate the control behaviour
for the task of upright stance; of an unperturbed system (Sec. 6.1.1); with the additional
criteria of joint-based co-contraction (Sec. 6.1.2); and with the synthetisation of a squat
movement (Sec. 6.1.3), which is basically an additional control objective added to the
balancing task. Details on the simulation software and the used solver are presented in
Appendix D.1.

6.1 Conceptional task formulation in terms of joint torques

In a nutshell, Günther and Wagner (2016) proposed to approximate human upright stance
as a three-segment inverted pendulum model. With this assumption they were able to
predict that upright stance could be stabilised by combining joint-level stiffnesses in the An,
Kn, and Hp joint with an active positional contribution based on the weighted deviation of
the body’s center of mass (COM) in the sagittal plane. This leads to the following equations
for the desired joint torques to be implemented in (3.34):

τ des
L/R(t) =

kHp,FE,L/R 0 0
0 kKn,L/R 0
0 0 kAn,L/R

 ·

(θHp,FE,L/R(t)− θHp,FE,L/R,0)
(θKn,L/R(t)− θKn,L/R,0)
(θAn,L/R(t)− θAn,L/R,0)


+

gHp,L/R · (xCOM(t)− xdes
COM(t))

0
0

 ,
(6.1)

with xCOM and xdes
COM :=

xAn,l(t)+xAn,r(t)
2 +xCOM,0 being the actual and desired positions of

the body’s COM in the direction of the x-axis, respectively, θi,0 being the nominal angles for

63



6. Torque control: upright stance and squat movement

the left and right (index L/R) Hp, Kn and An FE joints and ki being the respective single-
joint stiffness gains. These desired torques τ des (6.1) are the input to the hierarchical control
architecture: τ des is compared to the actual joint torques τMTU generated by the muscles
to calculate the torque error τ err (3.34), which is the input to the torque control law (3.35).
The resulting controller output is then transformed via the torque-angle Jacobian matrix
Jθτ (3.36, 3.38) to obtain a vector of desired of joint angles θdes

τ (postural plan) with (3.39).
As this conceptional controller is only used to actuate the lower limb flexion-extension (FE)
DoFs, the remaining DoFs of the full-body model—left and right (L/R) Ces, Shs, Ebs,
Lus and Hp AA DoFs—are controlled by setting the postural plan directly to θdes

j = 0
(j ∈ {⌈HpL/R, FE⌋, ⌈HpL/R, AA⌋, ⌈HpL/R, FE⌋, ⌈AnL/R, FE⌋}). The completely filled
vector of desired joint angles is then fed into the hierarchical θλ-controller (3.8) and the
direct θ-controller (3.24), respectively, to generate the stimulation signal (3.6).

6.1.1 Simulation task: quiet upright stance
In the first simulation study, the task of upright stance is performed by conceptional plan-
ning and structural execution using the presented hierarchical control architecture to drive
the DHM by means of MTU stimulations. The torque-angle characteristic (6.1) is straight-
forwardly used in the conceptional layer (3.34). The parameter values are chosen such that
the control concept (6.1) is symmetric on the left (index L) and the right (index R) body
side. The joint-stiffness gains ki for the lower-limb FE DoFs in (6.1) are chosen in accor-
dance to Günther and Wagner (2016) to be the critical single-joint stiffnesses, calculated
by ki = mi · g · hi, where mi is the total mass above the respective joint, g is the gravita-
tional acceleration and hi is the distance of the system’s COM above the respective joint.
The numerical values of these stiffness gains ki for the model used in this study, as well
as the chosen value for the positional weight gHp,L/R, are listed in Tab. 6.1. The resulting
joint torques are calculated w.r.t. the nominal joint-angle configuration of θHp,L/R,0 = 0◦,
θKn,L/R,0 = 5◦ and θAn,L/R,0 = −5◦. In accordance to this nominal joint-angle configura-
tion, the offset of the desired COM position is set to xCOM,0 = 2.86cm. The co-contraction
parameters and the PID-control parameters for the conceptional τ -controller, θλ-controller

Table 6.1: Initial conditions and control parameters used for the computational synthetisa-
tion of quiet upright stance with the hierarchical distributed PID-control laws. The concep-
tional joint-torque controllers are only active for the lower limb DoFs. For the conceptional
plan of desired joint torques the additional position based parameter gHp,L/R = −400 N is
used (see (6.1)) with the set-point for the COM of xCOM,0 = 2.86 cm anterior to the mean
ankle joint position. For the structural control law, for each of the k MTUs, the control
parameters pλ,k = 1.0/lCE

opt,k and dλ,k = 0 are chosen. As an additional initial condition,
the pelvis body is positioned at XP (t = 0) = [0 0 0.9954]T , such that the feet are placed at
the ground contacts. The initial activations of the MTUs are in steady-state with ak = 0.1
for each of the k = 1...36 MTUs, corresponding to the co-contraction that is parametrised
by ζuk = ζu = 0.1 and ζθj = ζθ = 0.0.

Conceptional Control τ -Controller θλ-Controller θ-Controller Initial Conditions
Joint k

[Nm
rad
]

pτ [ ] iτ
[
1
s
]

dτ [s] pθλ [ ] iθλ
[
1
s
]

dθλ [s] pθ [ ] iθ
[
1
s
]

dθ [s] θ(t = 0) [◦]

Lu AA − − − − 0.01 0.01 0.001 0.1 0.1 0.01 0
Lu FE − − − − 0.01 0.01 0.001 0.1 0.1 0.01 0
Ce AA − − − − 0.01 0.01 0.001 0.1 0.1 0.01 0
Ce FE − − − − 0.01 0.01 0.001 0.1 0.1 0.01 0
Sh AA (L/R) − − − − 0.01 0.01 0.001 0.1 0.1 0.01 0
Sh FE (L/R) − − − − 0.01 0.01 0.001 0.1 0.1 0.01 0
Eb FE (L/R) − − − − 0.01 0.01 0.001 0.1 0.1 0.01 0
Hp AA (L/R) − − − − 0.01 0.0 0.002 0.05 0.0 0.01 0
Hp FE (L/R) 172 2.0 30 0.0 1.5 1.0 0.1 1.5 1.0 0.1 0
Kn FE (L/R) 467 0.75 15 0.0 0.25 1.0 0.0035 0.25 1.0 0.0035 5
An FE (L/R) 784 3.0 50 0.0 0.5 1.0 0.0035 0.5 1.0 0.0035 −5

64



6.1. Conceptional task formulation in terms of joint torques

-3
-2
-1
0
1
2

C
O

M
Po

sit
io

n
(c

m
)

xmean
AnxCOM

Xdes
COM

8.9

9

9.1

9.2

C
E

Le
ng

th
(c

m
) lCE

An,Ex,l
λ θλ

An,Ex,l

-0.16

0.0

0.16

To
rq

ue
Er

ro
r

(N
m

)

τerr
Hp,FE τerr

Kn τerr
An

(l) (l) (l)
(r) (r) (r)

0.08

0.1

0.12

M
T

U
St

im
ul

at
io

n uAn,Ex,l
uAn,Fx,l

10 15 20 25 30

−6

−3
0

3

6

Time (s)

Jo
in

t
A

ng
le

(◦
) θHp,FE θKn θAn

(l) (l) (l)
(r) (r) (r)

10 15 20 25 30

200

400

Time (s)

M
T

U
Fo

rc
e

(N
) f MTU

An,Ex,l
f MTU
An,Fx,l

Figure 6.1: Simulation results of quiet upright stance. From top to bottom the trajectories
of the body’s COM, the joint angle sway of left and right (l/r) Hp, Kn and An FE joints,
the respective control errors on joint torques, the control error of CE lengths for the An
Ex, the resulting MTU stimulations and forces for the An Ex and Fx MTUs are displayed.
The body’s COM position is anterior to the ankle joints at all times (Smith, 1957).

and θ-controller are listed in Tab. 6.1. The control parameters for the low-level λ-controller
are chosen to pλ,k = 1.0/lCE

opt,k and dλ,k = 0 for all k MTUs. The sensor delays δλ, δθ and δτ
are all set to 0 to be in accordance with the original concept paper (Günther and Wagner,
2016).

With these parameters a stable attractor was found that allowed the model to fulfil the
requested task of upright stance. For the time from 10 s to 30 s, the COMs positional
error, the lower-limb joint angles, the (high-level) control error of joint torques, the actual
and desired (as demanded by the transformational layer) CE lengths of the An Ex, as well
as signals of the generated MTU stimulations and MTU forces of the An Fx and Ex, are
shown in Fig. 6.1. During this initial time-interval, the maximum positional error in the
sagittal plane of the body’s COM w.r.t. its desired set-point xdes

COM(t) is about 2.5 cm.
The maximum joint angle sway is about 5◦ in Hp FE and 1.9◦ in An and Kn FE. Based
on the used convention of joint rotations (see Fig. 4.1), the Kn and the An joints show
in-phase behaviour, where the Hp FE joint angle is in anti-phase with the other joints, with
a main oscillation frequency of 0.38 Hz. The MTU stimulations vary around the reference
co-contraction value of ucoc

ref = 0.1. Compared to this constant co-contraction value, the An
Ex stimulation is inhibited with a maximum reduction of about 0.13% and the An Ex is
stimulated up to an additional 22.5%. These stimulation signals stabilise the mechanical
system of the triple inverted pendulum. The absolute control error on joint torques has a
maximal value of ±0.17 Nm in the Hp joint, and ±0.017 Nm, and ±0.027 Nm in the Kn
and An joints, respectively. Compared to the maximal absolute values of MTU generated
torques of |τMTU

max, Hp| = 5.84 Nm, |τMTU
max, Kn| = 13.9 Nm and |τMTU

max, An| = 22.3 Nm, the
relative control errors correspond to an estimated maximal deviation of about 2.9% for the
Hp, 0.2% for the Kn and < 0.1% for the An joint. The hierarchical control architecture
transforms this error signal firstly to the transformational layer and subsequently to the
structural layer and, thus, produces desired muscle lengths λθ. The maximal error of the
actual CE length lCE

Hp,Fx of the Hp Fx muscle and the desired value λθHp,Fx occurs shortly
before the maximal positive body sway is reached. Further details are presented in Walter
et al. (2021a).

65



6. Torque control: upright stance and squat movement

−7

−6

−5

−4
Jo

in
t

A
ng

le
(◦

)
ζθ = −0.05 ζθ = 0.0

θAn,Fx (l)

ζθ = 0.2

0

0.1

0.2

0.3

0.4

M
T

U
St

im
ul

at
io

n

uAn,Ex
uAn,Fx

24 27 30
0.0
0.5
1.0
1.5
2.0

M
T

U
Fo

rc
e

(k
N

)

24 27 30
Time (s)

fMTU
An,Ex
fMTU

An,Fx

24 27 30

Figure 6.2: Simulation results of quiet upright stance with joint-based co-contraction
variations. The middle graphs show the default (ζθj = ζθ = 0.0), where in the
left column a joint-based co-contraction of ζθj = ζθ = −0.05 in all leg joints (j ∈
[HpFE,L/R, HpAA,L/R, KnL/R, AnL/R]) is used, and ζθj = ζθ = 0.2 in the right column. In
both variations, the MTU stimulations are adjusted according to ζθ and so are the respec-
tive MTU forces. The joint-based co-contraction is hereby based on the null-space of the
Jacobian transformations. Due to the approximations of the associated angle-stimulation
Jacobian Juθ (3.25), the resulting joint trajectories are slightly different.

6.1.2 Simulation task: joint-based co-contraction

Due to the redundant nature of the many MTUs acting on the fewer joints, an uncontrolled
manifold arises that can be used to fulfil joint-based co-contraction constraints as described
in Sec. 3.2.4. The simulations of upright stance with joint-based co-contraction is achieved
by adding contributions ucoc

θ to the MTUs’ stimulation signals, of all MTUs acting on
the same joint, exactly without interfering with the movement task of upright stance. As
outlined in Sec. 3.2.4, such a stimulation contribution is obtained from the null-space of
the pseudo inverse of the angle-stimulation Jacobian Juθ.

Two simulations are performed to examine the effects of setting the joint co-contraction
parameters ζθj for the left and right (index L/R) Hp FE, Hp AA, Kn and An joints (j ∈
[HpFEL/R, HpAAL/R, KnL/R, AnL/R]). One simulation with an increased joint-based co-
contraction value of ζθj = ζθ = 0.2 and one with a reduced value of ζθj = ζθ = −0.05, for all
of the j lower limb joints, respectively. All other model and controller parameters remain
the same as for the first simulation study from Sec. 6.1.1 and are listed in Tab. 6.1.

The results of variations in leg-joint co-contraction are shown in Fig. 6.2 for the time
interval from 10 s to 30 s. In the left picture a simulation using the parameter ζθj = −0.05

is shown and ζθj = 0.2 on the right. These are compared to a simulation without joint-
based co-contraction (ζθj = 0) in the middle. It can be seen, that the MTUs’ stimulations
of the Hp Fx and Ex are adapted accordingly by the joint co-contraction parameter, while
upright stance is maintained. The An FE joint angle trajectories are similar for the different
simulations, but slightly vary in amplitude and phase. This suggests, that the null-space
projection 0

!
= ∂θ = Juθ†∂u (3.32) behaves as intended within the presented hierarchical

control architecture.

66



6.1. Conceptional task formulation in terms of joint torques

6.1.3 Simulation task: squat movement
To demonstrate the flexibility of the presented hierarchical control architecture a third and
final simulation study was performed, which adds a squat movement on top of the free-
balance controller. To achieve this squat movement, only changes in the conceptional layer
are needed. More precisely, instead of having constant values of θHp,L/R,0, θKn,L/R,0 and
θAn,R/R,0 for the nominal Hp, Kn and An FE angles (6.1), a linear change over time of
these nominal angles is employed. To keep the position of the pelvis body in x-direction
approximately constant during the squat movement, the nominal Kn and Hp FE angles
were chosen (trigonometrically) dependent on the nominal An angle:

θAn,L/R,0(t) =



−5◦ t ≤ t∗

−5◦ − θ∗
An
∆t · (t− t∗) t > t∗

−5◦ − θ∗An for t > t∗ +∆t

−5◦ − θ∗An ·
(
1 + t−(t∗+2∆t)

∆t

)
t > t∗ + 2∆t

−5◦ t > t∗ + 3∆t,

(6.2)

θKn,L/R,0(t) = sin−1
(
− LS

LT
· sin(θAn,L/R,0(t))

)
−θAn,L/R,0(t)− θAn,L/R,0

∣∣
t=0

(6.3)
θHp,L/R,0(t) = −θKn,L/R,0(t)− θAn,L/R,0(t), (6.4)

where LT and LS are the segment lengths of the thigh (T) and shank (S) bodies, respectively
(see Appendix C), θ∗An is the final An angle offset of the squat, t∗ is the time instance
initiating the squat and ∆t is the interval for each of the three squat phases, i.e. the
downwards movement, the squat stance and the upwards movement. With this simple
linear approach two squat movements have been synthesised in-silico; a slow squat (t∗ = 10 s,
∆t = 5 s, θ∗An = −15◦) and a fast squat (t∗ = 16.75 s, ∆t = 0.5 s, θ∗An = −10◦). Beside
these changes to the nominal angles, the single joint stiffnesses ki had to be doubled, i.e.,
ksqt
i = 2 · ki, for the left and right Hp, Kn and An FE joints. The remaining parameters

are exactly the same as for the first simulation study from Sec. 6.1.1 and are listed in Tab.
6.1. The results for these parameter manipulations, including joint-angle trajectories and
an impression on the state-dependent redundancy solution by the angle-length Jacobian
Jλθ is given in Fig. 6.3. The joint angle trajectories mostly follow their linear set values
from (6.4, 6.3, 6.2) and stable stance is maintained throughout the downwards movement,
the squat stand and the stand-up phase for both, the slow and the fast squat. Additionally,
in Fig. 6.3, excerpts of the angle-length Jacobian Jλθ (3.9,3.16) are shown. As expected,
the angle-length Jacobian is similar in all three states as it captures the kinesiological effect
of the MTUs, which is a morphological feature and does not change. However, in the squat-
position (t = 17.5 s), Kn Ex and Fx entries for the Kn joint have higher magnitudes, which
indicates a higher sensitivity of changes in the Kn MTUs’ CE lengths w.r.t. Kn joint angle
changes.

67



6. Torque control: upright stance and squat movement

F
igure

6.3:Sim
ulation

resultsofthe
fast(∆

t
=

0
.5

s,solid
lines)and

slow
(∆
t
=

5
s,dashed

lines)squatm
ovem

entsaccording
to

the
sim

ulation
task

form
ulated

in
(6.2-6.4).

T
he

joint
angles

(upper
line-plot)

m
ostly

follow
their

nom
inaltrajectories

(6.2-6.4)
to

execute
the

squat.
T

he
M

T
U

forces
ofthe

H
p

Fx
and

K
n

Fx
M

T
U

s
increase

during
the

squat
w

hile
the

A
n

Fx
M

T
U

force
slightly

decreases.
T

his
m

ay
be

explained
by

the
facts

that
the

H
p

and
K

n
joints

sw
ing

further
away

from
their

unstable
upright

equilibria
and

the
overalldistance

in
z-direction

ofthe
body’s

C
O

M
to

the
A

n
jointdecreases.

In
the

box-plots,excerptsofthe
angle-length

Jacobian
m

atrix
(3.16)forthe

leftleg
forthe

tim
e

instances
t
=

5
s,

t
=

1
7
.5

s
and

t
=

25
s

are
displayed

as
heat-m

aps
ofM

T
U

contribution
to

Fx
and

Ex
m

ovem
ents.

68



Position Control: basic example 7

7.1 Controlling the positions of lower and upper extremities

In this section, the capability of the control architecture to control the position in 3D
space of a limb of the model is demonstrated. Therefore two scenarios are prepared in the
simulation framework demoa. In the first scenario of static position control, the limbs of the
right hand and the left foot are controlled to match a fixed position in space. The second
scenario considers the moving-case to demonstrate the control behaviour for following a
trajectory in space. The pelvis body of the DHM is fixed to the world at a height of 1m
and will not drop down due to the gravitational acceleration of g = −9.8065m

s2 . The control
behaviours for the right hand and the left foot of the static-case are presented in Sec. 7.1.1
and of the moving-case in Sec. 7.1.2. Details on the simulation software and the used solver
are presented in Appendix D.1.

For position control, as described in Sec. 3.3.3, the frame that is controlled and a
reference frame must be specified on the model. These two frames specify a kinematic sub-
chain that is responsible for the movement. The frames are described by homogeneous 4×4
matrices, as known from (2.15). For controlling the hand, the frame HC that is controlled is
specified approximately at the palmar interphalangeal fold of the index finger. It is specified
in (7.1) relative to the COM frame H of the hand. The reference frame HR is attached to
the Sh joint HR = JSh,Spine. The position controller of the hand includes movements of
Sh FE, Sh AA and Eb FE. For controlling the foot, the control frame Fc is approximately
placed at the proximal interphalangeal joint of the second toe:

GHHc =


1 0 0 0m
0 1 0 0m
0 0 1 −0.075m
0 0 0 1

 GFFc =


1 0 0 0.1m
0 1 0 0m
0 0 1 0m
0 0 0 1

. (7.1)

The reference frame of the foot FR is attached to the Hp, Fc = JHp,Pelvis. The control of the
foot involves Hp FE, Hp AA, Kn FE and An FE. For each controller a desired position is set
in the form of another frame in the world or attached to a body. Based on the error (3.40)
between the current and desired frames in the conceptional layer a postural plan θdes

χ (t) is
derived by the position-joint Jacobian matrix (3.43), as described is Sec. 3.3.3. Following
the transformational layer (Sec. 3.2) and the structural layer (Sec. 3.1), MTU stimulations
(3.6) are eventually generated that strive to minimise the control error χlimb → χdes. The
additional inputs of co-contraction ζu and ζθ, and the control parameters are chosen to be
the same for the static and the moving case scenarios and are listed in Tab. 7.1.

69



7. Position Control: basic example

7.1.1 Static-case position control
For the simulation scenario of static-case position control of the hand and the foot, desired
positions in the form of coordinate frames must be provided to the conceptional layer. The
position of a frame relative to the inertial world frame W is described by homogeneous
4 × 4 matrices, as known from (2.13). During the first 0.1 s of the simulation, the desired
positions GWHd and GWFd are set exactly to the controller frames coordinates (7.1), i.e.
GWHd = GWHGHHc and GWFd = GWFGFFc . By this, the control architecture does
not produce any task fulfilling stimulation contributions (3.6), as GDL = I4 and thereby
χerr = 06. Additionally, during this time interval, the reference co-contraction for all
muscles involved are set to ζu = 0 and the joint co-contraction as well ζθ = 0. This
effectively disables any control. After t = 0.1 s, the desired frames are set to

GWHd =


1 0 0 0.4m
0 1 0 0.3m
0 0 1 1.2m
0 0 0 1

 GWFd =


1 0 0 0.4m
0 1 0 −0.2m
0 0 1 0.25m
0 0 0 1

. (7.2)

The simulation for the position controllers of the hand and of the foot are performed in
separate simulations. By only setting the desired position (7.2) at the time t = 0.1s for one
of both, the control architecture is sufficiently set up. The generation of MTU stimulations
exactly follows the description in Part II of this dissertation.

The simulation results for the hand controller are shown in Fig. 7.1 and those of the
foot controller in Fig. 7.2. For each controller, a plot of the trajectory in 3D space is shown
(Figs. 7.1, 7.2 a)), together with plots of the position control error in the conceptional
layer, joint angle control error in the transformational layer, as well as plots of the current
and desired CE lengths and MTU stimulations from the structural layer (Figs. 7.1, 7.2 d)).
In the upper box plots (Figs. 7.1, 7.2 b)), snapshots of the position-joint Jacobian Jθχ

are shown as heat-maps. This Jacobian (3.42) relates required changes in the positional
space to changes in the joint space. In the lower box plots (Figs. 7.1, 7.2 c)), snapshots
of the angle-length Jacobian Jλθ are shown. The angle-length Jacobian (3.9) resolves the
muscle-joint redundancy and translates an error in joint angles to an error in CE lengths.

After some acceptable overshooting transition, both, the hand and the foot, asymptoti-
cally approach their desired set points as seen in Figs. 7.1 and 7.2 a) and d). The rotational
degrees of freedom in 3D space are hereby not controlled, as the PID matrix entries for these
DoFs are set to zero (see also Tab. 7.1). Due to the different morphology, e.g. muscle pa-
rameters, segment lengths and weights, and the different controller parametrisation (see
Tab. 7.1) the control behaviours for the hand and the foot are different. While the foot
shows a more smooth movement that takes longer to reach the asymptotic state, the hand
approaches its goal faster. This is also reflected in the respective control signals in the Figs.
7.1 d) and 7.2 d).

The size of the stable positional region of attraction is restricted due to the limited
DoFs of the DHM. Most prominently by the missing capability of circumduction in the Hp
and Sh joints. To analyse the control performance within its stable range, in the following
section a movement of the desired frames is included.

7.1.2 Moving-case position control
For the moving-case scenario of the positional control of the hand and the foot, the desired
triads are smoothly moved in a circular shape. This is achieved, by firstly defining an
auxiliary body with the three open transversal DoFs of the Cartesian coordinate axes of the
inertial world frame. After the time t0 = 0.1s the velocity of these DoFs are then directly
manipulated to follow a circular shape. By defining the desired frames to be attached to the
auxiliary body, the respective position of the hand or the foot is asked to follow the circular

70



7.1. Controlling the positions of lower and upper extremities

Figure 7.1: Simulation results of static control of the hand. In a) the 3D trajectory of the
hand over the whole movement is shown. In b) and c) box-plots of the Jacobian matrices
Jθχ and Jλθ are shown. In the line-plots in d), the time trajectories of the hand’s position,
its joint angles and Kn MTUs CE-lengths are shown together with their desired values. In
the line plot at the bottom, additionally the stimulations of the Kn MTUs are displayed.
It is clearly visible that the control errors are very quickly reduced and then slowly but
asymptotically approach the desired position. The deviation in y-direction thereby takes
the longest to reach.

71



7. Position Control: basic example

Figure 7.2: Simulation results of static control of the foot. After some acceptable over-
shooting, the desired positions and joint angles are already closely reached and further
asymptotically approached. Even though this strongly hints towards asymptotic stability
of the conceptional and transformational controllers, some control deviation in the struc-
tural layer remains. From this remaining control deviation of the Kn Ex MTU a stimulation
contribution uλ corresponds that acts against gravity.

72



7.1. Controlling the positions of lower and upper extremities

shape. For the auxiliary bodies BH and BF that define the desired positions Hd and Fd

of the left hand and of the right foot, respectively, the following translational velocities
according to (2.23) are set with respect to the world frame W:

νW
WBH

(t) =

a · sin(f · (t− t0))
0

a · cos(f · (t− t0))

 νW
WBF

(t) =

a · sin(f · (t− t0))
a · cos(f · (t− t0))

0

 , (7.3)

with the parameters of an amplitude of a = 0.03m and a frequency of f = 1
3

rad
s .1 The

control parameters are set exactly the same as for the static-case scenario and are listed in
the Tab. 7.1.

The simulation results of the moving-case scenario are shown in Fig. 7.3 for the hand
controller and those of the foot controller in Fig. 7.4: For each controller, in a), a plot of
the trajectory in 3D space is shown together with the moving desired position (red dashed
line in a)). In the upper box plots in b), snapshots of the position-joint Jacobian Jθχ are
shown as heat-maps. This Jacobian (3.42) relates required changes in the positional space
to changes in the joint space. In the box plots in c), snapshots of the angle-length Jacobian
Jλθ are shown. The angle-length Jacobian (3.9) resolves the muscle-joint redundancy and
translates an error in joint angles to an error in CE lengths. In the line plots in d), the
positions relative to the inertial world frame are shown together with plots of the joint
angles, current and desired CE lengths and MTU stimulations. The overall superhuman
behaviour of static-case and moving-case position control hints towards a model description
that lacks some important biophysical properties, e.g. neural latency times or signal noise.

1Directly setting the velocity of a body violates the laws of physics and can be considered as a minor
hack in the simulation environment demoa. As a consequence, in the velocity component in z-direction
remains some acceleration due to gravity and the auxiliary body slowly falls down creating, e.g the spiral
shaped movement in Fig. 7.4.

Table 7.1: Control parameters of the position controller of the left hand and the right foot.
The PID parameters of the rotational DoFs are set to zero. This disables the respective
stimulation contributions from the controller for the rotational DoFs. Both position con-
trollers are acting as PI-controllers as their D parameters are set to zero. For the hand
controller, the θλ and the θ controllers are parametrised as PD-controllers. For the foot
controller only the θλ controller is used in the transformational layer. All delays δ are set
to zero.

Conceptional Layer Transformational Layer Structural Layer
Position Controller Hand_l

Position Joint angle MTU
Pχ Iχ Dχ Name Pθλ Iθλ Dθλ Pθ Iθ Dθ Name κ ucoc

ref
x 0.2 0.2 0 shoulder flexion-extension 1.0 0 0.001 1.0 0 0.001 Sh Fx 1.0 0.1
y −0.2 −0.2 0 Sh Ex 1.0 0.1
z 0.2 0.2 0 shoulder abduction-adduction 1.0 0 0.001 1.0 0 0.001 Sh Ab 1.0 0.1
rx 0 0 0 Sh Ad 1.0 0.1
ry 0 0 0 elbow flexion-extension 1.0 0 0.001 1.0 0 0.001 Eb Fx 1.0 0.1
rz 0 0 0 Eb Ex 1.0 0.1

Position Controller Foot_r
Position Joint angle MTU

Pχ Iχ Dχ Name Pθλ Iθλ Dθλ Pθ Iθ Dθ Name κ ucoc
ref

x 0.015 0.01 0 hip flexion-extension 1.5 1 0.0035 0 0 0 Hp Fx 1.0 0.1
y 0.015 0.01 0 Hp Ex 1.0 0.1
z 0.015 0.01 0 hip abduction-adduction 1.5 1 0.0035 0 0 0 Hp Ab 1.0 0.1
rx 0 0 0 Hp Ad 1.0 0.1
ry 0 0 0 knee flexion-extension 1.5 1 0.0035 0 0 0 Kn Fx 1.0 0.1
rz 0 0 0 Kn Ex 1.0 0.1

ankle flexion-extension 1.5 1 0.0035 0 0 0 An Fx 1.0 0.1
An Ex 1.0 0.1

73



7. Position Control: basic example

Figure 7.3: Simulation results of moving control of the hand: a) 3D trajectories of the
hand (blue→green for t ↑) and the desired position (red dashed) in the x-z plane. In b)
and c) snapshots of the Jacobian matrices Jθχ (b) and Jλθ (c) are shown. The colour
coding in c) represents how a joint angle influences the position of the hand. Note, that the
Jacobian entry for the Sh FE joint and z-direction changes its sign dependent on the state.
In d) the absolute position of the hand, the joint angles of the arm and CE-lengths and
MTU stimulations for the Eb MTUs are shown. After some short overshooting, the hand
approaches the desired position and stays close to it throughout the simulation.

74



7.1. Controlling the positions of lower and upper extremities

Figure 7.4: Simulation results of moving control of the foot: a) 3D trajectories of the
foot (blue→green for t ↑) and the desired position (red dashed) in an isometric projection.
In b) and c) snapshots of the Jacobian matrices Jθχ (b) and Jλθ (c) are shown. The
colour coding in c) represents how a joint angle influences the position of the hand. In d)
the absolute position of the hand, the joint angles of the arm and CE-lengths and MTU
stimulations for the Eb MTUs are shown. After some acceptable overshooting, the foot
approaches the desired position and stays close to it throughout the simulation. Note that
the desired z-position is not constant as demanded in 7.3. This is due to an unintended use
of the simulation software that technically violates the laws of physics. Still, the motion
generated by the control architecture shows an asymptotic stable behaviour that spirals
downwards to follow χdes(t).

75





Generalisation towards complex combined movements 8

In the previous chapters of this part, it was demonstrated that the control architecture
is capable of generating coordinated movements in an isolated setup and for elementary
controls of joint angles and positions. In this chapter, these findings are used for the
simulation of more complex and combined movements towards a generalisation to arbitrary
movements. This is demonstrated for the two application cases of a human car ingress
motion in Sec. 8.1 and of a forensic case analysis in Sec. 8.2. For both application cases a
combination of angle, torque and position control is used.

In the first application example of a synthesised human car ingress motion, the control
architecture is configured in such a way that the model’s kinematics perform an ingress
motion into a car without the violation of boundary restrictions, such as collision avoidance
with the head and the door frame. The initial position of the model is a free stable stance and
the subsequent movement is divided into the movement primitives of grabbing sectionthe
steering wheel, lifting the leg above the sill and placing it into the footwell, diving the head
below the door frame and a placement of the buttock on the seat in the car. The initial free
standing beneath the car is realised exactly as described in Sec. 6.1.1 and the execution
of the movement primitives by a combination of position and angle control of the limbs as
described in the Secs. 5 7 . The simulations are validated with the kinematic results of
an experimental study. This makes the method viable to predict changes in the DHM’s
kinematics due to a virtual change of the car’s design, i.e. the door frame height. Some
of the content of this application example have already been accepted for publication by
Walter et al. (2021b).

In the second application example of a forensic case analysis, it is investigated whether
it is possible that the found body pose of a corpse in a bathtub is the outcome of a slip
and fall into the tub or if another person must have been involved as a culprit. It is, of
course, not possible to fully unveil the truth of the past, but at least this approach forms
a novel method to investigate the range of possibilities of human kinematics in an only
partly known environment. To realise the movement, initially a free standing (according to
Sec. 6.1.1) is performed, followed by an angle controlled forward bending and a position
controlled grasping movement towards the tap. Additionally, to model a transient ischemic
attack (TIA), at a certain time instance, all controllers are switched off and therefore the
MTU stimulations are set to zero. By variations of the initial conditions, i.e. the standing
position relative to the bath tub, a probability can be estimated, whether the final position
of the corpse can be met by accident. The outcomes of this application example are in
preparation for a manuscript. Here, only the method for the controller setups are presented
that lead to the movement of a fall.

77



8. Generalisation towards complex combined movements

Figure 8.1: Overview of the validation process for the car ingress motion. Separated from
each other simulations and experiments are performed to obtain kinematic data of an car
ingress motion. The movement plan that is used in the conceptional layer of the control
architecture is heuristically learned such that the model does not violate any boundary
restrictions and that the synthesised kinematic data has a plausible agreement to the ex-
perimental data.

8.1 Application example digital engineering: Car ingress
ergonomics

In this application example a human car ingress motion is synthesised. The DHM that
is used in this example is exactly the same as described in Sec. 4 and in Appendix C.
The simulation model of the car is based on the geometry of a real existing car model of
an ’SUV’ type (see Fig. 8.1). The ingress motion is achieved by dividing the movement
task into single movement primitives in different conceptional spaces and configuring the
control architecture to execute those. The movement task is then heuristically learned to
not violate any of the boundary restrictions of: i) collision avoidance (right foot and sill),
ii) grabbing position of the hand at the steering wheel, iii) compliance with a minimum of
head clearance (head and door frame), iv) placement of the right foot on the footwell in the
car, v) placement of the buttock on the seat in the car and vi) keeping a stable position.
Additionally the simulation results are validated on experimental data from a separated
parameter study of real humans getting into the car Walter et al. (2021b). An overview of
the validation process is displayed in Fig. 8.1.

In a next step, the simulation model of the car was changed to mimic a pre-production
design change of a higher door frame. This changes the definition of the boundary restric-
tions and by re-learning the movement in terms of adjustments of the movement task, valid
ingress motions can be found for the new design.

8.1.1 Controller configurations for synthesising a car-ingress motion
To synthesise the car-ingress motion, a combination of angle, position and torque control is
used. Initially the model freely stands besides the car, exactly as described in Sec. 6. The
actual ingress motion is divided into movement primitives, which are separately controlled
either by angle or position control of the limbs. The single movement primitives closely
correspond to the boundary restrictions from above and are: i) grabbing the steering wheel
with the right hand, ii) lifting the right foot above the sill, iii) placing the foot on the

78



8.1. Application example digital engineering: Car ingress ergonomics

Figure 8.2: Validation of the ingress motion: The kinematic trajectories of the Ce, Lu and
Hp joint angles of the synthesised movement (solid blue lines) are compared to experimental
data (thin coloured lines) (Walter et al., 2021b). Even though the simulated motion does
not always stay within the corridor that is spanned by the motion data obtained from the
experimental measurements, it is considered valid here. Leaving the corridor is tolerable,
as the synthetic motion is a successful individual motion by its own, i.e. the boundary
restrictions were not violated.

footwell in the car, vi) pulling the body inside the car, v) diving the head below the door
frame, v) placement of the buttock on the seat in the car and vi) keeping a stable position.
To execute these movement primitives a total of four angle controllers, each for the left
and right upper and lower extremities, one position controller for the head and one torque
controller for upright standing are implemented. The control parameters for the joint and
torque controllers are exactly the same as those in the Chpts. 5 and 6. The head position
controller’s transformational and structural layer parameter are the same as those in Sec.
7 for the foot controller and its conceptional parameters are Pχ = diag(2.0) ∈ R4×4, Iχ =
diag(0.0) ∈ R4×4 and Dχ = diag(0.1) ∈ R4×4. A complete overview of the desired values
that are set to the respective conceptional layers of the controllers is displayed in the Gantt-
chart in Fig. 8.4 at the end of this section.

8.1.2 Simulation results of the car ingress
With the controllers set-up as described above, the simulations are ready to be performed.
As a simulation result, the kinematic data in the form of joint angle trajectories of a
valid ingress motion are displayed in Fig. 8.2 together with a corridor that is spanned
by the kinematics data from the experimental measurements from Walter et al. (2021b).
The whole motion was thereby normalised over time and scaled to a progress parameter
P ∈ [0% ..., 100%]. For details on the experimental setup and the recordings, please refer to
Walter et al. (2021b). The simulation results have an overall agreement in shape and am-
plitudes and, even though they do not always stay within the experimental data’s corridor,
show the outcome of a valid ingress motion. This is an impressing result, especially when
it is kept in mind that the Hp joint is missing its physiological capability of rotation. To
further improve the validity of a simulation of this kind, the biofidelity of the model itself
must be considered to be increased.

After some small modifications to the movement plan (see Fig. 8.4), i.e. a small time
shift of 0.1s and a 5cm higher placement of the desired position of the head position con-
troller, a second simulation was performed for the car model with the higher door frame.
This is a very small change within the movement plan and showcases not only the sensibility
of such an asynchronous and complex movement but also makes one humble on the sophis-

79



8. Generalisation towards complex combined movements

Figure 8.3: Phases and movement primitives of the simulated car ingress motions. First,
the right leg is lifted above the sill and the right arm grabs the steering wheel (left picture
P = 34%). In the middle picture ( P = 65%) the transition of the head through the door is
shown as a comparison of the two door frame heights. The movement plan was adapted in
the control architecture according to available headspace. In the right picture (P = 100%)
the final position in the car is shown.

ticated solution nature found that lets a real human effortlessly slip in. The differences of
both simulations are displayed in Fig. 8.3.

The simulation results of the second simulation can now serve some interesting purposes.
As they are of purely synthetic nature, i.e. there are no experimental data that drove
the simulation in any kind, the internal states of the model reveal a potential change of
biophysical or ergonomic properties due to the virtual design change. This can help, e.g. in
the early development process of a car, where no physical mock-up yet exists. For the here
presented example of a higher door frame, the simulation results showed that significantly
less work has to be done, especially in lateral and ventral flexion of the lumbar spine. For
a detailed analysis of the results, please refer to Walter et al. (2021b).

80



8.1. Application example digital engineering: Car ingress ergonomics

Time [s] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Angle Controller Lx R

Hp FE −90◦

Hp AA 10◦ 10◦

Kn FE 140◦ 0◦

An FE 0◦

Angle Controller Lx L

Hp FE 50◦

Hp AA 0◦ 15◦

Kn FE 15◦

An FE −20◦

Torque Controller Upright Standing

both legs left leg

Angle Controller Ux R

Sh FE −70◦ −70◦ −70◦ −70◦

Sh AA 60◦ 40◦ 20◦ 20◦

Eb FE 10◦ −50◦ −80◦ 20◦ 20◦

Angle Controller Ux L

Sh FE −40◦

Sh AA −10◦

Eb FE −60◦

Position Controller Head Low

x [m] 1.3

y [m] −1.0 −0.5

z [m] 1.6

Position Controller Head High

x [m] 1.3

y [m] −1.0 −0.5

z [m] 1.65

Figure 8.4: Gantt-chart of the movement plan for the ingress motion. For the displayed
times, the desired values for the conceptional controllers are set. The opaque blue areas
correspond to a disabling of the respective controller during these times. The reference co-
contraction stimulation contribution is not shown and is either set to ucoc

ref = 0.0, ucoc
ref = 0.1

or ucoc
ref = 0.3. The only change in the movement plan to realise the ‘higher’ simulation is in

the timing and desired position of the position controller of the head. This is highlighted
in the red blocks in the respective position controller movement plans.

81



8. Generalisation towards complex combined movements

Figure 8.5: Application example forensic case analysis: The control architecture is used
to synthesize the movement of a fall into a bathtub. By variations on the movement plan
and the initial conditions a probability can potentially derived whether an unusual body
pose (left picture) can be the outcome of a tragic fall. The simulation screenshot sown on
the right does not exactly match the body posture on the left. It is imaginable thou that
the right leg might slip into the tub when the trunk rotates, e.g. due to water in the tub.

8.2 Application example forensics: Mean crime or tragic fall

The control architecture presented in this thesis provides a powerful tool to the field of
biomechanics as it allows to intuitively synthesize a very wide range of movements. One
key factor here is that the architecture is self-driven, i.e. it does not rely on any kind of
experimental data that drives the movement. This is due to the possibility it provides
to formulate the movement task in different conceptional spaces heuristically. The MTU
stimulation generation, which requires a solution to the model’s redundancy, autonomously
follows from the architecture’s design, as described in Part II. This all now allows to syn-
thesise a wide range of human movements, including those of uncertain circumstances, and
to investigate the model’s internal dynamics.

As a further application example, in this section, the architecture is used to synthesise
the movement of an old woman’s fall into a bathtub. This is an attempt towards helping
to answer the question whether a specific body pose of a corpse is possibly the outcome of
a tragic fall or it is more likely that another person as a culprit was involved1. In Fig. 8.5
the body pose that was found at the scene is shown together with the converged pose of a
simulation. Among other things, the unusual body pose of the women raised suspiciousness
towards a crime. The court was in doubt that the found body pose and the injuries at the
head occurred by chance, although it was known that the old woman could have suffered
a TIA and was prone to falling. A TIA can be associated with brain dysfunction in a
circumscribed area caused by a regional reduction in blood flow, i.e. by ischemia (Coutts,
2017). Symptoms can include gait and balance dysfunction despite having no obvious
physiological impairments (Batchelor et al., 2015).

To perform the movement of a fall into a bathtub, the control architecture was configured
with four different controllers and a model of a TIA was included. The controllers are a
torque controller for the legs that performs a stable standing and a squat motion, an angle
controller that controls the pose of the trunk and the head and two position controllers, each
for the movement of a hand. In the Sec. 8.2.1 the movement plan and the TIA model are
presented and in Sec. 8.2.2 the simulation results are compared to some forensic findings.

1It is emphasised at this point that the here presented study is not meant to be used for drawing
conclusions for any criminal case, but solely to demonstrate the general methods approach using the pre-
sented control architecture. Some aspects of the used model are not formulated sharp enough to allow
straightforwardly drawing conclusions from the simulations results (see Sec. 8.2.4).

82



8.2. Application example forensics: Mean crime or tragic fall

Figure 8.6: The Movement plan of the synthesised fall motion reflects the everyday task
of preparing to soak laundry in the bathtub. Initially a stable standing is performed by
torque control of the legs, the trunk is bend forwards and the hands are lifted. Then a
squat is initiated and the hands are brought front for grasping the handles. At the time
tTIA = 1 s a TIA disturbs the movement plan with the consequence of a fall into the bathtub.
The position control is hereby generated only relative to the model itself and does not use
information from the environment. This makes the movement plan a good candidate for
variations in the initial condition of the simulation, as the movement will always be executed
the same until a contact occurs.

8.2.1 Movement plan and TIA model
The movement plan for the fall movement is based on a normal all-day task that the old
woman may have undertaken: She was known to soak her laundry in the bathtub before
putting it into the washing machine. The simulation model’s movement thus is aimed to
mimic the movement of squatting and bending over the tub and reaching for the tap handles.
This is achieved by the use of four controllers in parallel: i) a torque controller that acts on
the legs to perform stable standing and squatting (see Chpt. 6), ii) an angle controller to
control the forward bending of the trunk (see Chpt. 5) and iii) two position controllers for
the hands to grab the tap (see Chpt. 7).

The grasping movement is implemented as a ’model-internal’ movement, i.e. it does not
rely on any information of the model’s extra-personal space. This is done by a special way
in defining the postural plan. At a certain time tPos

0 = 0.1 s, the desired positions in x and y
directions of the hand are stored and set as desired positions. With this, the controller asks
to hold the hands at the same x− y coordinates. At the same time the desired z direction
is set to the current z position of the hand plus a very small offset of ∆z = 10−3. This has
the effect that the hand and is always driven upwards in z direction:

χdes
L/R =


xdes

L/R
ydes
L/R
zdes
L/R

 =

xL/R(t = t0)

yL/R(t = t0)

zL/R(t) + ∆z

 for t ≥ tPos
0 .

At a second time of tPos
2 = 0.5 s, a forward movement of the hand is engaged. For the left

hand the desired x position is set to xdes
r = xr(t) + ∆x with ∆x = 10−3, the y direction is

released from control and the height is held constant zdes
r = zr(t = tPos

2 ). The left hands
desired xdes

r and zdes
r position are set to the respective current positions of the right hand,

while the height is kept constant. This aims to bring the left hand to the right hands
position.

To model the TIA, it is simply assumed that a sudden loss of balance control occurred
with the consequence of an uncontrolled fall into the tub. For simplicity, at certain time
tTIA = 1.0 s all stimulation contributions of the controllers are switched off. The complete
movement plan and the occurrence of the TIA are displayed in Fig. 8.6.

83



8. Generalisation towards complex combined movements

Time = 0.00 s Time = 0.75 s Time = 1.00 s Time = 1.25 s

Time = 1.50 s Time = 1.75 s Time = 2.00 s Time = 5.00 s

Figure 8.7: Time series of the fall motion. During the grasping, squatting and forward
bending movement a modelled TIA strikes and causes the model to fall into the bathtub.
The dynamics of the fall lead to an upward swing of the left leg at t ≈ 2 s that converges to
the shown end position at time t = 5 s.

8.2.2 Bathtub model and contacts
The bathtub was modelled in accordance to the footage that was available from the scene
(Fig. 8.5) and corresponds to a generic tub. The walls of the bathtub are defined as
contacting surfaces that interact with a discrete set of specified contact points on the model
(see yellow balls in Fig. 8.5 and Fig. 8.7). These contact points are implemented in arrays at
the pelvis, thigh and thorax bodies, as well as specific points at the left and right arms and
the head. These specific points correspond to areas where the forensics analysis identified
injuries of the tissue. The contact forces follow the description from Sec. 2.4 and Appendix
B. The contact parameters correspond to a hard and slippery surface.

8.2.3 Simulation results of the fall
The movement plan from the last section (Fig. 8.6) successfully synthesised a fall motion
into the bathtub model. The movement mostly occurs as planned, as initially a stable stand
is performed, then the hands are raised, the body is bend forward and a squat is initiated.
After the hands grasp forward, the TIA strikes and the MTU stimulations are switched off.
As a consequence, the model collapses into the tub. With the defined contact points the
women’s model interacts with the bathtub, first at the left forearm then with the head. The
right leg surprisingly swings upwards after landing on the side of the tub, while the left leg
remains closer to the ground. It is imaginable that a bit of rotation in the trunk can yield
the unusual pose of the corpse from Fig. 8.5. A time series of the animation is displayed in
Fig. 8.7.

As the kinematic validation, based on the overall visual impression of the fall movement,
passed its first test, the simulation model’s internal dynamics are worth being investigated.
Therefore the forces of impact as well as their timing that occurred during the fall are
analysed. Together with the end position of the body it is of great interest, whether the
contacts with the bathtub can be the reason for injuries that where found at the autopsy.
The forward dynamics approach that is presented here allows to measure the forces of the
discrete specified contact points on the model. These forces correspond to the impact of
the accelerated body parts with their respective masses. Relating these force with clinical

84



8.2. Application example forensics: Mean crime or tragic fall

Forearm left

Forearm right

Uparm left

Head 2

Time (s)

Contact interaction

1 2 3 4

Head
?

Figure 8.8: Contact interactions during the fall motion. At first the right forearm contacts
the inner wall and slips down so that the up arm contacts the tub. As the head dives deeper
into the tub the right forearm touches the side and the ground and the head hits the bath
tub wall. The model then comes to a rest with residual force acting on the forearms.

injuries brings its own challenge along but is potentially very rewarding when undertaking
studies like this. In Fig. 8.8 the contact interactions of the model’s head (back and side),
its left forearm and up arm and the right up arm are displayed. The force amplitudes are
hereby normalised.

8.2.4 Model limitations and outlook
Especially in legal problems that impact a humans fate, a keen eye must be kept on the
significance of results. Biomechanics analysis in the form of forward dynamics simulations
are still rarely seen in legal questions and one reason is the complexity not only of human
behaviour but also of its ‘model’. As it is not possible to model a real human, always some
kind of surrogate model must be used in such a simulation study. The used model itself
influences the conclusions that can be drawn from the simulation’s results (Pinter et al.,
2012). The DHM that is used in this application case is a simplified model as well, e.g.,
only 2 MTUs are modelled for each DoF and the Hp and Sh joint cannot perform their
internal or external rotations. This missing Hp movement capability, for example, has an
impact on the possible end positions that can be achieved in the here shown simulations.
A DHM with increased biofidelity, e.g. Hp rotation, or a real human, has a bigger range of
motion (RoM) and a wider range of possible end positions after a fall.

Also the used implementation of discrete contact interactions with the environment has
its limitations. With such an approach of a limited number of contact points, the question of:
“where exactly did the head hit the wall?” can never be predictively answered. Additionally,
each contact interaction involves an acceleration of the model and has an influence on the
movement to come. With a discrete and finite set of contact points it is hard to obtain
simulation results that reflect the exact physics of the visual impression that the animation
suggests. A fine array of discrete contact points or a continuous surface-surface contact
algorithm can sufficiently resolve this issue in future studies.

85





Part IV

Discussion

87





Discussion and outlook 9

The presented hierarchical control architecture showed to be a practical approach to actuate
the used DHM in the examples of joint angle, joint torque and position control. Due to
the hierarchical architecture, only a few intuitive changes in the conceptional layer led to
the synthetisation of different muscle-actuated movements, including the complex combined
movements of a car-ingress motion and a falling motion into a bathtub. These examples
hint in favour of the architecture to be capable of synthesising a wide range of arbitrary
movements. The internal biophysical data of the DHM, which is generated along with the
simulation of the movement, is meant to predict the consequences for a real human moving.

With the separation of the control system into a low-dimensional planning space (‘con-
ceptional layer’) and a high-dimensional actuation space (‘structural layer’) (see Fig. 3.1),
the problem of movement planning was eased. With the presented hierarchical control ar-
chitecture, movement planning can occur in a conceptional context only, without having to
consider the properties of the biological actuators. i.e. muscles and tendons. The muscle
actuation is achieved by Jacobian-based layer transformations that translate the concep-
tionally obtained movement plan to muscle stimulations. These transformations resolve
the redundancies of the different layer’s coordinate spaces, by using anatomical and tissue
knowledge. The ‘transformational layer’ hereby serves as a standardised pathway that re-
ceives a ‘postural plan’ from the ‘conceptional layer’ and provides inputs for the ‘structural
layer’.

The Jacobian matrices, which are used for the transformations, are always presented
in closed-form. This gives structural insights into the required calculations and reveals
exactly which sensor signals and body properties are needed for resolving the redundancy.
Precisely since resolving the muscle-joint redundancy is not unique, additional DoFs on
an uncontrolled manifold remain. In control, this uncontrolled manifold allows to fulfil
additional criteria, such as joint-wide co-contraction, along—and not interfering—with the
execution of the planned movement (see Fig. 6.2).

Additionally, on each layer, PID-controllers are implemented to ensure a robust and sta-
ble task fulfilment. While the overall modular design of the hierarchical control architecture
allows to use other control ideas instead, the choice to use PID-controllers in this work has
several reasons: i), the low-level λ-controller that forms the basis of the hierarchical control
architecture in the structural layer has the form of a P(D)-controller (3.4). By generalisa-
tion of this principle, PID-controllers are used in the remaining layers. ii), a PID-controller
is a very simple and generic linear system that is easy to comprehend (Wescott, 2000). For
all simulations performed in this thesis, a heuristic tuning of the control parameters was suf-
ficient. A system-theoretical stability analysis or automated optimisation wasn’t necessary.

89



9. Discussion and outlook

iii), the PID-controlled closed-loop system has a satisfactory performance, while still being
structurally resolved. Even in their cascaded, hierarchical implementation, the modular use
of the PID-controllers does not overcomplicate the architecture’s design. Also, all calcula-
tions are expressed in closed-forms and all signal pathways can be retraced (see Fig. 3.4).
This is an important feature of the hierarchical control architecture that allows to engage
validation experiments in future studies. In its current state, the hierarchical control can
already be used for the synthesis of various complex movements of muscle-actuated systems.

9.1 Steps towards a validation and biological identification of the
hierarchical control architecture

Approaching a validation of the hierarchical control architecture as a model of biological
motor control must be considered in a twofold way, at least. First, how, and in which detail,
does the model’s behaviour compare to its real world, biological pendant? And second, how
is the model, or its parts, represented by biological structures?

Regarding the first consideration, it must be kept in mind that the presented hierarchi-
cal control architecture is a feedback system that relies on a mathematical model of the
biological system, e.g. the DHM from Sec. 4. In computational studies, the validity of the
control architecture can only be observed when embedded in the whole closed-loop system
that incorporates both, the dynamics of the control system and of the DHM. Any model
limitation of the DHM (see Sec. 9.2) strongly impacts the behaviour of the closed-loop sys-
tem and thereby influences the outcome of a check of validity. By increasing the biofidelity
and validity of the used DHM in an isolated validation check, the focus of the closed-loop
validation moves closer towards the control structure. For validation, real world experi-
ments must be conducted in parallel to a computational movement synthesis, both with
the same task formulation and boundary restriction. By comparing the model’s output tra-
jectories to the phenomenological experimental measurements, a quality estimation of the
model can be made. In an iterative process, the model’s quality can potentially be increased
by adapting its parameters. If a model still cannot explain some of the phenomenological
observations, its structure must be questioned, altered, augmented or eventually discarded.
Investigating internal states in addition to the system’s output can help in refining this
process. However, this is only possible, when the model’s structure is closely related to the
biological system and only for signals that can be experimentally measured. It is a funda-
mental problem of biological motor control that, due to the sheer amount and complexity
of neural connections, higher-level control signals cannot easily be extracted or deciphered
from the biological system. Although the intention of a movement, for example, can be cor-
related with an increased activity in certain brain regions (Desmurget et al., 2009), finding
its origin is a chase of the philosophical question of what consciousness is (Crick and Koch,
1990; Chalmers, 2000). The simple mathematical notion of a postural plan θdes(t) that
is introduced in the hierarchical control architecture (see Figs. 3.1 and 3.4), for example,
may be impossible to find in the same form in biological measurements. This is, because
the presented hierarchical control architecture is a simplified model approach that is struc-
turally more resolved than the grey matter that represents the control structures in the
biological system. For a validation of the general principles used by the hierarchical control
architecture, at first, electromyography (EMG) measurements of the muscular activity of all
muscles in an AAS should be performed. The synergistic activations in this AAS can then
be compared to the synthesized prediction of the hierarchical control architecture, which is
the outcome of a Jacobian-based layer transformation. A high correlation in the synergised
stimulation patterns could hint towards similar underlying calculations in the biological
system.

Regarding the second consideration for validation, even if the phenomenological ob-
servations of the biological system are sufficiently reflected by the computational model,

90



9.2. Model limitations of the DHM

biological structures must be identified that are capable of performing the required ‘calcula-
tions’. For the presented hierarchical control architecture, this means that neural circuities
must be identified that are capable of performing the required calculations, e.g. of the
Jacobian transformation (3.16). While such calculations have been proposed by Pellionisz
and Llinás (1985) to be potentially contributed to the cerebellum, a more decentralised
implementation in the form of weighted neuronal connections within the spinal cord may
also be plausible (compare to Windhorst (2007); Eccles (1967); Gao et al. (1996); Doya
(2000)). A hint towards such a decentralisation lies in the modular nature of the Jacobian-
based transformations. An angle-length Jacobian matrix, for example, naturally consists of
blocks for the single limbs and, in each of these block, a single matrix column corresponds
to the movement of a single joint with all relevant muscles arranged in the non-zero matrix
rows (compare, e.g. Fig. 7.3 c) and Fig. 7.4 c)). The respective matrix entries of multiple
muscles in an AAS have different signs, depending on the muscle’s function on the joint.
When contributed to the spinal cord, the different signs may implicitly correspond to the
local implementation of inhibitory interneurons. In more complex movements that partly
rely on visual feedback, e.g. position control, a more centralised biological ‘implementation’
in higher centres of the CNS is plausible. Although, general open question remain, e.g. see
Karniel (2011); Kawai et al. (2015); Gao et al. (1996).

With the in-silico applications in Pt. III of this dissertation, the presented hierarchical
control architecture accomplished its first rudimentary test towards validation. It showed
to provide appropriate MTU stimulation signals to actuate the used DHM, simply as the
resulting MTU forces and joint torques, respectively, successfully executed the desired move-
ments. A set of inappropriate MTU stimulations, on the other hand, could not have led to
a successful synthetisation of human upright stance as presented in Sec. 6.1.1. This hints
towards a plausibility of the general hierarchical approach using cascaded control laws and
Jacobian-based transformations. Still, as the achieved performance of upright stance does
not fully reflect the behaviour of a real human (Günther et al., 2011, 2012), further valida-
tion measures are necessary to improve the architecture’s parametrisation and to refine its
design.

9.2 Model limitations of the DHM

The control architecture was tested for a full-body—but simplified—musculo-skeletal model.
Regarding the DHM, there are at least three important simplifications in the context of this
dissertation.

The first simplification of the DHM is the reduced number of muscles with only one
antagonistic pair per mechanical DoF and no bi-articular muscles1. Additionally, each
muscle is represented by only one motor unit (Haeufle et al., 2014a). Both reduces the
redundancy in the model, i.e. only thirty-six muscle stimulation signals are required to
control the full-body model instead of several thousands of α-motoneuron signals in the
real human body (de Luca and Contessa, 2012). While the control architecture would
allow to include more redundant and also bi-articular muscles, the possible benefit, e.g. for
decoupling of parallel tasks (Latash, 2012; Hsu and Scholz, 2012) cannot be evaluated with
the current DHM.

The second simplification addresses the mechanical DoFs of the DHM. Especially the
Hp joints, the Sh joints and the spine are drastically simplified. The Hp and Sh joints are
modelled with only having two DoFs each and the spine is a rigid structure with the only
DoFs in the cervical and lumbar region. Advancing the model to have three DoFs in the
Hp and the Sh is still very simplistic, but leads to a much wider range of motion of the
DHM. Breaking up the stiff connections of the single vertebrae of the spine requires to

1Technically, the Hp joint functions as a bi-articular joint, as a single Hp MTU spans over the two DoFs
of Hp FE and AA.

91



9. Discussion and outlook

introduce additional muscles and models of related biological tissue, such as ligaments and
intervertebral discs, e.g. according to Mörl et al. (2020); Rupp et al. (2015); Karajan et al.
(2013).

The third simplification of the DHM considers biological sensors. In the biological system
all sensor information is provided by a multitude of sensor organs, e.g. see Windhorst (2007);
Mileusnic et al. (2006); Blecher et al. (2018). These organs are formed by specialised cells
and their efferent output inherits the non-linear dynamics that are intrinsic to biology. To
have a more detailed model of the reality, dynamical models of the proprioceptive biological
sensor organs should be integrated in the DHM, e.g. a model of the muscle spindle based
on Mileusnic et al. (2006). As the muscle spindle’s efferent neural connections forms a basis
of biological motor control by the mono-synaptic reflex, a refined sensor model may lead
towards a refined model of the ‘λ-controller’.

9.3 Control limitations with potential modular improvements to
the architecture’s design

There are several aspects of biological motor control that are not captured by the hierar-
chical control architecture in the form in which it is introduced in this dissertation. This
includes questions on intermittent control (Gawthrop et al., 2011; Loram et al., 2011), state
estimation and motor prediction (Wolpert and Ghahramani, 2000; Wolpert and Flanagan,
2001), decision making (Wolpert and Landy, 2012), learning, adaptation and optimisation
(Shadmehr and Mussa-Ivaldi, 1994; Shadmehr et al., 2010; Mussa-Ivaldi, 1999; Wochner
et al., 2020)

Even if these aspects are not considered in this work, the hierarchical control architecture
is structurally prepared to do so. Its modular design (see Fig. 3.4) in general allows to
implement technical solutions of neurological hypotheses and to analyse their applicability
for complex movements in forward dynamics simulations.

Intermittent control, for example, can be engaged by introducing signal processing
blocks, similar to the delay blocks in the Figs. 2.1, 3.2 and 3.4, which hold a sampled
signal’s value constant, until a new sample is taken that updates the signal. Critical pa-
rameters for stability hereby include the sample-time duration in which the signal is held
constant until it is newly updated. An event-driven approach for updating the signal may
help in maintaining stability, when the sample-time is considered in the stability analysis,
as e.g. achieved by Ibuki et al. (2014) for a technical camera-based system.

State estimation and prediction is a broad field that can be approached from different
starting points. By motor prediction, for example, the control performance can be increased
and voluntary and external body movements can be distinguished, see also Wolpert and
Flanagan (2001). From a system-theoretic point of view, a Luenberger-type observer system
may be the most simple and straightforward implementation (Luenberger, 1971). The gen-
eral idea is to implement a copy of the controlled musculo-skeletal system (i.e. the observer)
within the feedback controller and to feed the same stimulation input to this observer. The
model in the observer then generates an estimation or prediction of the resulting movement,
which is compared to the actual generated movement of the musculo-skeletal system. This
closes the observer feedback loop and, by a stabilising parametrisation, the estimation of
the observer system approaches the exact behaviour of the real model. A big advantage
of having such an observer system implemented is that otherwise unmeasurable signals are
available within the control system. For complex non-linear dynamics that are intrinsic to
biological motion, non-linear approaches seem appropriate, e.g. see Zeitz (1987); Reif and
Unbehauen (1999). Another promising approach to engage predictive control of biologi-
cal motion is the use of model predictive control (MPC), e.g. see Morari and Lee (1999);
Allgöwer and Zheng (2012); Berberich et al. (2020). The presented hierarchical control
architecture hereby introduces the advantage that a MPC approach can be implemented

92



9.4. Current state and future applications of the hierarchical control architecture

on the highest, conceptional layer, while still considering low-level, structural constraints
(Koehler et al., 2021), such as minimal MTU stimulations.

In the presented control approach it is mostly assumed that the required sensor infor-
mation are directly available. Moreover, some state information of the system may not be
directly available from a ‘biological sensor’ and is moreover the outcome of sensor fusion
or multisensory integration (Elmenreich, 2002). Also the Jacobian-based transformations
that are used in the hierarchical control architecture can be used in a reversed direction
to obtain estimations of higher-level system information from lower-level sensor signals. In
combination with an observer system as discussed above, a sophisticated control structure
can be constructed that is capable of judging the quality of single contributing sources of
a sensory signal and thereby to compensate misleading information. By enabling further
sensor signals for the conceptional planning, or in structural reflex models, the versatility
and performance of the control architecture may be increased.

Biological motion is driven by feedforward and feedback mechanisms. Several studies
suggest that the contribution of feedforward signals increase during learning, as e.g. out-
lined by Seidler et al. (2004) and tested by Haeufle et al. (2012); Müller et al. (2015). The
presented hierarchical control architecture, as a feedback controller system, lacks most feed-
forward mechanisms and moreover remodelled the ‘open-loop’ stimulation contribution of
the hybrid λ-controller (Kistemaker et al., 2007; Bayer et al., 2017; Günther and Ruder,
2003) to be a higher-level, closed-loop stimulation contribution. In this implementation
and according to Seidler et al. (2004); Adams (1971); Pratt et al. (1994), the hierarchical
control architecture must be considered to resemble an unskilled child. It is an exciting chal-
lenge to include adaptive learning methods in the architecture. This can start with simple
self-tuning techniques, e.g. see Gawthrop (1986) and lead towards more complex methods
of learning of action through an adaptive combination of motor primitives (Thoroughman
and Shadmehr, 2000).

For the simulation tasks investigated here, also a heuristic tuning of the PID parameters
was possible and successful. The heuristic parameter tuning, on the other hand, may not
be ideal, as there are ambiguities of the parameters in the cascaded controller setup. This
problem may become difficult to infeasible for models with more DoFs or for more complex
or dynamic movements. A systematic optimisation of the control parameters is worth being
investigated in future. However, the use of optimisation techniques introduces the question
of what an optimal behaviour is (compare to Wochner et al. (2020)).

Furthermore, the stabilising effect of the control architecture on such a non-linear system,
e.g. the DHM, cannot be guaranteed yet and therefore still relies on tests via simulations.
However, stability has been mathematically proven in a simplified model (Brändle et al.,
2020) for the structural layer and—from all simulations investigated here—seems practically
achievable even in the hierarchical architecture.

The DHM considers critical muscular non-linearities and elasticities, which are expected
to be difficult properties in the sense of control (Brändle et al., 2020) but central for un-
derstanding human movement control (van Soest and Bobbert, 1993; Pinter et al., 2012;
Stollenmaier et al., 2020). It is remarkable that, despite all the linear (Taylor) approxima-
tions in the Jacobians (3.9,3.26, 3.36) and the the quasi-static assumptions for the relation
between muscle-internal stiffnesses (3.23), the control architecture is able to handle these
non-linear elastic characteristics of the DHM.

9.4 Current state and future applications of the hierarchical
control architecture

In its current state, the hierarchical control architecture forms a powerful technical tool
for synthesising biological movements. The provided examples of upright standing, joint
and position control can be used to create a pool of movement primitives. When some of

93



9. Discussion and outlook

these movement primitives are successively combined, complex movements can be generated.
Two examples thereof have already been presented in Sec. 8.1 by the synthetisation of a
car ingress motion and in Sec. 8.2 by a forensic case analysis. By further utilising the
architecture for this purpose, more movements of various kind can be synthesized and
the internal states of the DHM can be subsequently evaluated to extract ergonomics or
medical measures. Following the example of Schmitt (2003), with the hierarchical control
architecture a broad range of complex movement sequences may be investigated, e.g. from
athletic disciplines like running or cycling. Applying optimisation techniques may lead
to a refinement of an athlete’s technique to increase performance or to lower the risk of
injuries. The same approach may be applicable for investigating diverse body plans (animal
morphologies), for evaluating processes of manual labour and for analysing the effects of
prosthetic devices on the human body.

Putting this to the next step, a prosthetic device may not only be evaluated as afore-
mentioned but also be driven by the hierarchical control architecture, when the device itself
is actuated by artificial muscles, e.g. Wolfen et al. (2018); Acome et al. (2018). That is,
in the same way as the architecture is used in this dissertation to actuate a DHM, it can
be used to actuate a real-life artificial-muscle-actuated robotic system. A robotic system
that is driven by artificial muscles has the potential to perform more human-like motions
and thereby to improve human-robotic interactions. As a required step, Jacobian matrices
similar to (3.16), (3.27) and (3.36) are required, which are dependent on the characteristics
of the artificial muscle-type. It would be most interesting to implement learning based
approaches for obtaining these Jacobians for a robotic system. Especially, as the required
morphological information that is needed for its calculation was revealed in this dissertation.

A third field of application for the hierarchical control architecture arises from its mod-
ular design. When implementing one or another of the ideas mentioned in Sec. 9.3, the
presented hierarchical control architecture may serve as a tool to investigate the general
organisation of biological motor control. Especially when validated on experimental data,
the architecture’s capability of movement synthetisation allows to test neurological hypoth-
esis on a muscle-actuated system and therefore to deduce the biological design. A first
example thereof are the results presented in Sec. 6 and in Walter et al. (2021a). There, the
general hypothesis of a torque-based planning process, which is also assumed by Günther
and Wagner (2016); Rozendaal and van Soest (2005); Alexandrov et al. (2001); Edwards
(2007), was bolstered by applying it to a muscle-actuated system. While this does not yet
represent a proof for the biological system’s organisation, it showcases by success that the
general principle is indeed viable.

In addition to all this, by the use of the presented hierarchical control architecture, new
questions on the organisation of biological motor control arise. The choice of PID control
parameters, as a simple example, has a significant impact on the dynamics of the executed
movement. That is, higher feedback gains can lead to a faster execution of the movement
and a more reserved set of (PID) parameters to a slower and smoother behaviour (Wescott,
2000). It is thereby imaginable that, to execute a desired movement, not only the movement
plan as an input to the controller is adapted, but also the controllers’ parameters. On the
other hand, these control parameters strongly influence the stability of the closed loop
movement system. Interestingly, even a parametrisation close to destabilisation can lead
to plausible movements: While holding the hand in the air, a destabilisation, e.g. by the
D-part, evokes an oscillation. By ‘controlled destabilisation’ a waving movements is realised.
This is remarkable, as the movement is then initiated by changing a single parameter.

94



Part V

Appendix

95





Notes on rigid body dynamics A

A.1 Notes on rotations in 3D-space and other representations

In this section, different approaches to obtain such a rotation matrix - and to extract the 3
individual angles from a given rotation matrix, are presented. The different representations
each have advantages and drawbacks. The Euler and Cardan representations, which are
also implemented in some parts of demoa, e.g., have singularities at certain angle config-
urations. Using exponential coordinates or quaternions is mathematically more stable in
this regard, but they may not be as intuitive to be mapped on anatomical angles. The im-
proved mathematical stability can be traced back to the fact that exponential coordinates
or quaternions use four parameters to describe the rotation, while the Euler and Cardan
representations only use three. It is a fundamental topological fact that singularities can
never be eliminated in 3D rotations when using only 3 parameters for parametrization Mur-
ray et al. (1994), it is yet possible to avoid them, e.g., by early detection and switching to
another convention where the singularities are located differently (Henze, 2002).

Quaternions Quaternions are a representation closely related to the exponential coordi-
nates, which are based on Euler’s theorem 2.1.1 (see Sec. 2.1.2). As such, the four elements
of a quaternion are also commonly known as Euler parameters (Sarabandi and Thomas,
2019). A quaternion can be written as

Q = q0 + q1i+ q2j + q3k, (A.1)

where qi ∈ R are the Euler parameters and i, j and k are generalized imaginary numbers.
Following Rodrigues’ formula (2.6) the rotation matrix R, for a given angle θ and axis
ω =

[
ω1 ω2 ω3

]T , takes the form

R =

 c+ ω2
1(1− c) ω1ω2(1− c)− ω3s ω1ω3(1− c) + ω2s

ω2ω1(1− c) + ω3s c+ ω2
2(1− c) ω2ω3(1− c)− ω1s

ω3ω1(1− c)− ω2s ω3ω2(1− c) + ω1s c+ ω2
3(1− c)

 , (A.2)

97



A. Notes on rigid body dynamics

where c = cos(θ) and s = sin(θ). By defining the Euler parameters, or the elements of a
quaternion as

q0 := cos( θ2 ) (A.3)
q1 := ω1 sin( θ2 ) (A.4)
q2 := ω2 sin( θ2 ) (A.5)
q3 := ω3 sin( θ2 ), (A.6)

the rotation matrix R can then be written as

R =

2(q20 + q21)− 1 2(q1q2 − q0q3) 2(11q3 + q0q2)
2(q1q2 + q0q3) 2(q20 + q22)− 1 2(q1q3 − q0q1)
2(11q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1

 . (A.7)

This equation gives a way to calculate a rotation matrix from quaternions.
For calculating a quaternion from a rotation matrix, several approaches exist. The most

straightforward way is to firstly calculate the Euler axis ω and the rotation angle θ according
to (2.7) and (2.8) and then the quaternion elements according to (A.3)-(A.6). This is not
the only way to calculate quaternions from a rotation matrix, though. Especially when
numerical aspects are considered, multiple variations for obtaining robust representations
of quaternions have been proposed. Instead of listing those different representations here,
it is referred here to a survey on quaternion computation Sarabandi and Thomas (2019).
As their conclusion, the algebraic method of Cayley is among the simplest and yet the
best in terms of time and error performance. It is designed to obtain double-quaternion
representations for 4D rotations, but can be simplified to the 3D-case. For rij ∈ R being
the elements of a rotation matrix R ∈ SO(3), the quaternions by Cayley’s method are given
by

q0 = 1
4

√
(r11 + r22 + r33 + 1)2 + (r32 − r23)2 + (r13 − r31)2 + (r21 − r12)2 (A.8)

q1 = 1
4

√
(r32 − r23)2 + (r11 − r22 − r33 + 1)2 + (r13 + r31)2 + (r21 + r12)2 (A.9)

q2 = 1
4

√
(r13 − r31)2 + (r21 + r12)2 + (r11 − r22 − r33 + 1)2 + (r32 + r23)2 (A.10)

q3 = 1
4

√
(r21 − r12)2 + (r13 + r31)2 + (r32 − r23)2 + (r11 − r22 − r33 + 1)2. (A.11)

This representation has the advantage that it contains information from all entries of the
rotation matrix R and does not contain any divisions. It is also well-defined in terms of
obtaining partial derivatives of the quaternion elements with respect to the rotation matrix
entries (Sarabandi and Thomas, 2019).

Euler/Cardan The representations of rotations using Euler or Cardan angles may be the
most straightforward to understand and are considered to have the most intuitive relation
to physiological angles in biomechanical studies. This may also be why the ISB recommends
the usage of Euler or Cardan angles, although in 3D not even the clinical definitions are
consistent (Sarabandi and Thomas, 2019; Wu et al., 2002, 2005; Sinclair et al., 2012). In
contrast to the exponential coordinates and quaternions from above that use 4 parameters,
Euler and Cardan only use 3 parameters for the parametrization of the rotation. This makes
them prone to singularities at certain angle configurations.

Euler and Cardan angles have in common, that they use three individual elementary
rotations around the three Cartesian coordinate axes by the three angles α, β and γ. For
a coordinate system with the basis e =

[
ex ey ez

]T , the three elementary rotations are

98



A.2. Body velocities and the adjoint transformation matrix

given by

Rx(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 , Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (A.12)

and Rz(γ) =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 . (A.13)

With these elementary rotations, there exist multiple conventions on the axes and the order
of rotation. An elementary rotation can thereby be performed around a original axis or
around an already rotated axis. In the Cardan convention, all individual rotations are
performed on different axes, e.g, X − Y − Z or Y − X − Z1, while in Euler convention
the first and the last rotation are performed around the same axis, e.g. Z −X − Z1. The
rotation matrix of the final 3D rotation is then obtained by multiplying the three elementary
rotations. As an example the Rotation matrix Ryxz for the Y −X − Z Cardan convention
for given angles α, β and γ is obtained by

Ryxz(α, β, γ) = Ry ·Rx ·Rz (A.14)

=

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 ·

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 ·

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

(A.15)

=

cα · cγ + sα · sβ · sγ sα · sβ · cγ − cαsγ sα · cβ
cβ · sγ cβ · cγ −sβ

cα · sβ · sγ − sα · cγ sα · sγ + cα · sβ · cγ cα · cβ

 , (A.16)

with sϕ = sin(ϕ) and cϕ = cos(ϕ). With equations of the kind of (A.16) it is also possible
to retrieve the rotation angles α, β and γ from a rotation matrix R. The inverse rotation
of, e.g, Ryxz(α, β, γ) is given by R−1

yxz(α, β, γ) = Rzxy(−α,−β,−γ), which can simply be
verified by inverting (transposing) (A.14).

It is important to note that, regardless of which Cardan or Euler convention is used,
these representations of rotations are prone to encounter singularities at certain angle con-
figurations. This is a fundamental topological fact for all representation of 3D-rotation that
uses only three parameters Murray et al. (1994). In demoa the problem is handled by an
early detection of being close to such a singularity and then switching from the Cardan
Y −X − Z to the Euler Z −X − Z convention, which have their singularities at different
spots (Henze, 2002).

A.2 Body velocities and the adjoint transformation matrix

In Sec. 2.1.5 the notion of spatial velocities νA
ApB

was presented as the velocity of the point
pB relative to the frame A (subscript) as viewed from the frame A (superscript). Another
representation of rigid body velocity is the body velocity νBApB

, namely, the relative velocity
of the point pB and the frame A as viewed from the body frame B. It can be constructed
by simple calculation by inverting the following identity (Murray et al., 1994)

νAApB
= GAB · νBApB

, (A.17)
1The Y −X − Z Cardan and the Z −X − Z Euler conventions are used in demoa (Henze, 2002)

99



A. Notes on rigid body dynamics

which, by utilising (2.22)-(2.23), further yields

νBApB
= GBA · νAApB

(A.18)

= GAB−1 · ĠAB︸ ︷︷ ︸
:=V̂ B

AB

·GAB−1 · pAB︸ ︷︷ ︸
=pB

B

(A.19)

= V̂ B
AB · pBB . (A.20)

And thus, the homogeneous representation of the body velocity is

V̂ B
AB = GAB−1 · ĠAB =

[
RABT

ṘAB RABT
ṫAB

0 0

]
:=

[
Ω̂

B
AB vBAB
0 0

]
∈ se(3) ⊂ R4×4

(A.21)
and the corresponding body velocity coordinates are

vBAB =

 RABT · ṫAB(
RABT · ṘAB

)∨
 =

[
νB
AB
ωAB

B

]
. (A.22)

Again by using the respective definitions the body velocity and the spatial velocity can
be transformed into each other. This can also be interpreted as a change of the reference
coordinate frame:

V̂ A
AB = GABV̂ B

ABG
AB−1 and V̂ B

AB = GAB−1
V̂ A
ABG

AB. (A.23)

For transforming the coordinate representations vAAB ∈ R6 and vBAB ∈ R6 a convenient
matrix operation is introduced that is an equivalent operation to (A.23) for vectors in R6:

[
νA
AB
ωA

AB

]
=

(=̂(tAB)∧)[
RAB T̂AB ·RAB

0 RAB

]
︸ ︷︷ ︸

:=AdAB
G

·
[
νB
AB
ωB

AB

]
⇔ vAAB = AdAB

G · vBAB. (A.24)

The matrix

AdAB
G :=

[
RAB T̂AB ·RAB

0 RAB

]
∈ R6×6, with AdAB

G

−1
=

[
RABT −RABT

T̂AB

0 RABT

]
= AdAB

G−1

(A.25)
is called the adjoint transformation matrix and it can be used to change the velocity co-
ordinates from the body frame B to the inertial (spatial) frame A. This exactly corre-
sponds to, first, transforming the homogeneous representation V̂ B

AB to the frame A by
V̂ A
AB = GABV̂ B

ABG
AB−1 (see (A.23)) and then extracting the velocity coordinates vAAB with

the ∨-operator:
V̂ A
AC = V̂ A

AB + V̂ A
BC or vAAC = vAAB + vABC . (A.26)

V̂ A
AC = V̂ A

AB +GAB · V̂ B
BC ·GAB−1 or vAAC = vAAB + AdAB

G · vBBC . (A.27)

A.3 Equations of motion

In this section, the calculations of the system matrices of the equations of motion () from
Sec. 2.1.7 are presented. Further details on the algorithms for obtaining the equations of
motion can be found in Legnani et al. (1996b,a) and Henze (2002).

100



A.3. Equations of motion

The system’s equations of motion are

Mq̈ + c(q, q̇) = T ∈ RnDoF . (A.28)

The mass matrix M ∈ RnDoF×nDoF can be obtained by following

Mi,m = trace

 N∑
h=max(i,m)

LW
i JW

h LW T
m

 (A.29)

and the vector c ∈ RnDoF by

cm = trace
(

N∑
h=m

(H̃0,h −HW
g )JW

h LW T
m

)
− LW

m ⊗
N∑

h=m

ΦW
m , (A.30)

with

H̃0,h =

h∑
i=1

(
VW
0,i−1V

W
i − VW

i VW
0,i−1

)
+ VW 2

0,h

= H̃0,h−1 +
(
VW
0,h−1V

W
h − VW

h VW
0,h−1

)
+ VW 2

0,h . (A.31)

The operator ⊙ hereby denotes the pseudo scalar product between 4× 4 matrices (Legnani
et al., 1996a), which is defined as

A⊗B := a3,2b3,2 + a1,3b1,3 + a2,1b2,1 + a1,4b1,4 + a2,4b2,4 + a3,4b3,4. (A.32)

Note, that the matrix equations (A.29)-(A.31) have the dimension nq = ndof and that the
respective matrix entries are summed up by the individuals of the homogeneous represen-
tations for the single bodies. These matrices are obtained by the motion composition rules
(2.34-2.36), which are based on equations (2.15), (2.25) and (2.31) and are easily generalised
and formulated in an algorithm (Legnani et al., 1996b,a).

101





The contact model B

1 In three-dimensional computer simulations, a common and most simple mathematical
description of a contact between a body and a surface is to define a point fixed on the
body, and approximate the surface by a plane. By then calculating, at any mechanical
state of the body, the instantaneous distance between the point and the plane, a contact
event between the point and the plane can be detected. In case of such an event, and with
likewise knowing the movement relative to each other from the mechanical state, the force
f and torque \τ acting on the body (here indicated as the ‘from’-body) can be modelled
and calculated in terms of the body’s and the plane’s coordinates and velocities, as well as
parameters describing the mechanical properties of the contacting and deforming materials.
If the plane is fixed to another body (the ‘to’-body) , the parameters of point-to-plane
contacts reflect lumped properties of both bodies, and the contact force and torque on the
‘from’-body simply act with inverted signs (−f and −\τ) on the ‘to’-body, according to
the principle of actio = reactio. Fig. B.1a illustrates such a contact situation: The contact
plane is in the demoa implementation the x-y-plane at z = 0 of the coordinate system K0

(on the ‘from’-body), and the origin of the coordinate system K1 (on the ‘to’-body) is the
point continuously checked for contact with K0’s x-y-plane. The vectors r⃗ and v⃗ of relative
displacement and velocity, respectively, are depicted along with their respective projections
onto K0’s x-y-plane (indicated by ‘∥’) and z-axis (indicated by ‘⊥’).

A two-dimensional (point-to-line) contact model approach formulated earlier (Günther,
1997; Günther and Ruder, 2003) has been used as a starting point for the three-dimensional
contact model implementation in demoa. As body-body contacts in the real world always
occur at finite surfaces, the three-dimensional demoa implementation gained a new part
that takes, beyond the relative linear movement of the origins of K1 and K0, the angular
movement of both contacting systems relative to each other into account. Accordingly, a
contact torque \τ is modelled in addition to the contact force f . The contact model in
demoa discriminates, firstly, the conjugate contact model states ‘contact’ from ‘no contact’
by continuously identifying the position of K1’s origin along K0’s z-axis (normal to the
contact plane). Fig. B.1b gives a survey of the decision scheme to determine the overall
state of a contact interaction. Secondly, it discriminates the conjugate states ’stick’ from
’slip’, for linear and angular movements separately, based on the tangential (linear) velocity
of K1’s origin relative to K0’s origin and the torsional (angular) velocity of K1 relative to
K0’s x-y-plane (see Fig.B.2), respectively, as well as the modelled force acting tangentially to

1The description of the contact model, which is presented here was initially written by Henze (2002) in
German and was then translated to English by M. Günther for the manuscript by Walter et al. (2021a).

103



B. The contact model

K0’s x-y-plane and the torsional torque in this plane, respectively, with all state transitions
being reversible.

To maximise the physical and mathematical consistency of detecting and handling both
contact and stick-slip events while modelling multiple contact interactions, demoa offers
deploying the well-tried Shampine-Gordon predictor-corrector algorithm ‘de’ (Shampine
and Gordon, 1975) for integrating a system of ordinary differential equations in a modified
(Henze, 2002) version. The modified ‘de’ algorithm identifies, by quadratic polynomial
interpolation backwards in time for each event detected, the time order of such (contact
and stick-slip) events that occur between the instant tin when ‘de’ is called with an initial
state vector of the neuro-musculo-mechanical system, including all discrete contact and
stick-slip states, and a user-fixed instant tout when ‘de’ is required to return an updated
state vector that fulfils the likewise user-fixed absolute and relative accuracies. Events of
reversible transitions between ‘contact’ and ‘no contact’ as well as between ‘stick’ and ‘slip’
are detected, and the discrete state values accordingly and properly switched, as illustrated
in Fig. B.1b, by a root-finding function that is called by the modified version of ‘de’ before
any ‘de’-internal (predictor or corrector) step. Additionally, the origin of a stick coordinate
system K1 (Fig. B.2) is fixed in K0’s x-y-plane at the position where contact of the origin
of K1 has been detected by interpolation. The event detection, ordering, and handling part
of the modified ‘de’ algorithm guarantees that, if an event earlier than those already found
is newly detected, the integration is always restarted at the instant of the earliest event
found so far. Elastic stick forces and torques are then calculated depending on the linear
and angular displacements of K1 relative to K1, and friction contributions depending on
their relative linear and angular velocities. The ‘slip’ and ‘stick’ force laws for modelling
the contact interaction force f⃗ and torque \τ as acting on the ‘from’-body are explained in
the following. The (tangential force and torsional torque) limit values of maximum static
friction, which determine the stick-slip transition, are parametrised by the coefficients of
static friction, µc and µcϕ:

fc = µc · |f⊥|
τc = µcϕ · |f⊥| . (B.1)

In case of contact, the normal (to K0’s x-y-plane) component f⊥ (i.e., the projection onto
K0’s z-axis) of the contact force f⃗ is always calculated from the normal component r⊥ of
the distance vector of the origins of the contact coordinate systems K0 and K1, and the
time derivative v⊥ of r⊥, that is, the projection of the relative velocity onto K0’s z-axis:

f⊥ = κ⊥ · r⊥ + ρ01⊥ · v⊥ − ρ11⊥ · r⊥ · v⊥ . (B.2)
Here, κ⊥ is the normal stiffness of the contact interaction, and ρ01⊥ and ρ11⊥ are the damping
coefficient and the non-linear damping strength, respectively, of normal deformation rates.
If, according to the decision scheme based on Eq. (B.1) as shown in Fig. B.1b, the contact
has switched to the ‘slip’ state, the corresponding tangential (projection onto K0’s x-y-
plane of contact) force vector f∥ of dynamic friction and the normal torque component
τ⊥ modelling torsional friction are determined by (i) the normal force component f⊥, (ii)
the projection vector v⃗∥ onto the contact plane (i.e., components tangential to it) of the
difference v⃗ = v⃗K1

− v⃗K0
between the linear velocity vectors of the origins of K1 (v⃗K1

= ˙⃗rK1
)

and K0 (v⃗K0 = ˙⃗rK0), and (iii) the projection ξ⊥ onto K0’s z-axis of the angular velocity
\ξ of K1 relative to K0, respectively. In that, the (tangential) dynamic friction force can
be modelled as consisting of both a contribution linearly proportional to velocity and a
Coulomb component, whereas the torsional torque is solely made of a Coulomb component:

f∥ = σ · v⃗∥ + µ · |f⊥| ·
v⃗∥

|v⃗∥|

τ⊥ = µϕ · |f⊥| ·
ξ⊥
|ξ⊥|

. (B.3)

104



Table B.1: The model used here has in total eight foot-ground contact points defined (four
on each foot), with the positions of the origins of the reference coordinate systems Ka-d,l/r

0

given below. All contacts use the same set of parameters (listed below) and produce forces
w.r.t the ‘from’ body’s coordinate frame Kw

1 that is fixed to the origin of the world.

κ⊥
[N

m
]

ρ01⊥ [ ] ρ11⊥
[N·s

m2

]
σ[ ] µ [ ] vc

[m
s
]

µϕ[ ]

100000.0 100.0 100000.0 0.0 0.7 0.001 0.0

ξc
[ rad

s
]

κ∥
[N

m
]

ρ∥
[N·s

m
]

µc[ ] κϕ
[N·m

rad
]

ρϕ
[N·m

rad
]

µcϕ [m]

99.0 50000.0 50.0 0.8 200.0 20.0 99.0

K0 x [m] y [m] z [m]

Ka,l/r
0 −0.1085 −0.0391 −0.0361

Kb,l/r
0 −0.1085 0.0391 −0.0361

Kc,l/r
0 0.0678 −0.0391 −0.0361

Kd,l/r
0 0.0678 0.0391 −0.0361

Here, µ and µϕ are the coefficients of dynamic friction, and σ is the frictional damping
coefficient. If, in contrast, the contact has switched to the ‘stick’ state, the tangential force
f∥ always acts to drive K1—with the ‘to’-body attached—back to the stick contact point
(origin of K1)—with the ‘from’-body attached—, which is fixed to K0’s x-y-plane of contact
in the ’stick’ state, at the position where K1’s origin projected onto the contact plane at the
instant when the ‘stick’ event occurred. Then, f∥ is determined by the displacement r⃗∥− r⃗∥
of the projection vector r⃗∥ of the contact point (K1’s origin) onto the contact plane from the
respective projection vector r⃗∥ of the stick coordinate system K1 (Fig. B.2), which is fixed
in the contact plane, and the vector of the tangential linear velocity vector v⃗∥ = ˙⃗r∥ − ˙⃗r∥
(note: different from v⃗∥ in (ii) above) of the contact point within the contact plane:

f∥ = κ∥ · (r⃗∥ − r⃗∥) + ρ∥ · v⃗∥ . (B.4)

Here, κ∥ is the tangential stiffness of the contact interaction, and ρ∥ is the damping coeffi-
cient of the tangential deformation rate. Moreover, if K1 rotates in the ‘stick’ state relative
to K1, a restoring torsional torque around the axis normal to the contact plane (K1’s z-axis
and K0’s z-axis aligning) acts between K1 and K0:

τ⊥ = κϕ ·∆ξ + ρϕ · ξ⊥ . (B.5)

Here, ξ⊥ is the component perpendicular to the contact plane of the angular velocity \ξ of
K1 relative to K0, ρϕ the corresponding angular damping coefficient, and κϕ the angular
stiffness of torsion. The symbol ∆ξ = ξ−ξ is the torsional angular excursion of K1 (relative
to K0) from its (torsion) angle ξ = ϕ + ψ determined at the instant of the ‘stick’ event,
that is, K1’s instantaneous torsional excursion relative to K1’s orientation K1 as fixed at
the ‘stick’ event. The calculation of the instantaneous torsion angle ξ = ϕ+ψ is illustrated
in Fig. B.2. The used parameters for this contact model and the position of the contact
points on the model’s foot bodies are listed in Table B.1.

105



B. The contact model

0

v⊥
v

r

x
y

z

1 r||

r⊥

v
||

(a)
T

he
sym

bol
definitions

for
the

contact
situation.

T
he

coordinate
system

K
0

(fixed
to

the
‘from

’-body)
represents

the
contact

plane,and
the

origin
ofK

1
(fixed

to
the

‘to’-body)the
potentially

contacting
point.

r⃗
and

v⃗
sym

bolise
position

and
velocity

vectors,
respectively.

Indices
‘∥’and

‘⊥
’sym

bolise
a

vector
projection

onto
K

0 ’s
x-y-plane

and
per-

pendicular
to

it
(onto

its
z-axis),

respectively.
H

ere,
the

‘from
’-

and
the

‘to’-body
are

indeed
in

contact
w

ith
each

other,as
the

position
of

the
K

1
origin

is
at

z
<

0
m

easured
in

the
K

0
system

,i.e.,below
K

0 ’s
x-y-plane

intersecting
at

z=
0

(the
contact

plane).
A

ccording
to

the
principle

ofactio=
reactio,the

contact
force

vector
f

(not
show

n
here)

is
calculated

as
acting

on
the

‘from
’-body

(w
ith

K
0 )

at
the

position
of

the
point—

the
origin

ofK
1 —

that
contacts

the
plane,and

the
inverted

force
vector

(−
f)

is
set

to
act

on
the

‘to’-body
(w

ith
K

1 )
at

the
exact

sam
e

position.

⊥ f
re

p
u
ls

iv
ey
e
s

n
o

?

n
o
rm

a
l fo

rc
e

n
o

c
o

n
ta

c
t

c
o

n
ta

c
t

r⊥
<

0
?

y
e
s

n
o

n
o

y
e
s

c
o
n
ta

c
t

?

ω
c

ω
⊥ <

c
v

||
v|   | <

?
y
e
s

n
o

⊥
τ

<
τ
c

f|  |||
c f

<

?
y
e
s

n
o

a
d

h
e

s
io

n
s
tic

k
:

s
lip

:
s
lid

in
g

n
o

y
e
s

s
lip

?

n
o
rm

a
l fo

rc
e

ta
n
g
e
n
tia

l fo
rc

e

(b)
T

he
states

of
a

m
odelled

point-to-plane
(K

1 –K
0 )

contact
force

in-
teraction

according
to

Fig.B
.1a,

and
the

transition
criteria

(decision
schem

e)
for

calculating
the

contact
force

vector
f

(i.e.,
norm

al
com

-
ponent

f
⊥
>

0
and

tangentialcom
ponents

f
∥ )

in
this

‘to’-body–‘from
’-

body
interaction.

T
he

critical
values

of
tangential

(linear)
and

tor-
sional

(angular)
velocities

for
slip-to-stick

transitions,
v
c =

0.01m
s −

1

and
ξ
c =

∞
(w

ith
this,stick-to-slip

disabled
here),respectively,as

w
ell

as,forstick-to-slip
transitions,tangentialforce

and
torsional(indicated

by
‘⊥

’)
torque

m
agnitudes,

f
c =

µ
c ·f

⊥
and

τ
c =

µ
c
ϕ
·f

⊥ ,
respectively,

w
ith

thecoeffi
cientofstaticfriction

µ
c =

0.8
(stick-to-slip

disabled,thus,
µ
c
ϕ
>

0
arbitrary),are

param
eters

for
m

odelling
reversible

transitions.
T

he
state

ofa
contact

interaction
changes

from
‘stick’to

‘slip’(based
on

f
c

and
τ
c ),the

‘slip’event,ifeither
ofthe

depicted
criteria

isbroken,
i.e.,the

transition
to

‘slip’occursthrough
a

logicalor
connective

ofthe
‘stick’

requirem
ent.

In
contrast,

the
slip-to-stick

transition
(based

on
v
c

and
ξ
c ),the

‘stick’event,occurs
through

a
logicaland

connective
of

‘back
to

stick’
requirem

ent,
i.e.,

both
depicted

criteria
of

approaching
low

velocities
m

ust
be

fulfilled.
If

there
is

no
contact

(anym
ore),

the
stick-slip

state
ofa

contact
interaction

is
initialised

to
‘slip’.

F
igure

B
.1:

C
ontact

m
odelsym

boldefinition
and

state
diagram

106



zz

y

x

θ

φ+ψ
y

x

z’
ψ

θ

φ+ψ

y’
θ

ψx’θ

−ψ

n−ψ

φ

Figure B.2: The calculation of the torsion angle ξ = ϕ+ψ and the stick coordinate system
K1 (x-y-z) at the instant of a ‘stick’ event: separating the tilt from the torsion contribution
to an overall rotation of the primed coordinate system K1 (dashed axes) relative to the
unprimed system K0 (solid axes). The rotations are expressed in terms of Euler angles
executed in the order ϕ, θ, ψ. The tilt is the (second) angular rotation by θ around the
n-axis, the latter being the intermediate x-axis after the first rotation around the initial
(unprimed) z-axis by ϕ. The last (third) rotation by ψ is then executed around the already
finally fixed (primed) z′-axis. The x-y-plane of the (solid, unprimed) K0 system is the contact
plane, in which to lie the n-axis of tilting can be assumed and used for parametrising stick-
slip interaction when applying the Euler angle description of three-dimensional rotations.
Regardless of the angular orientation of K1 relative to K0, the position of the origin of K1

in relation to the contact plane determines (a) whether both coordinate systems (bodies)
are in contact at all and, therefore, mechanically interact by a force f⃗ and a torque τ , as
well as (b) where in the contact plane a unique stick coordinate system K1 is located for
modelling a restoring visco-elastic tangential force and torsional torque in the ‘stick’ state.
In fact, K1 is fixed at the instant when the ‘stick’ event occurs: its origin is chosen to be
located in the contact plane at the vector r⃗∥ of the projection of K1’s origin onto the contact
plane—here, for simplicity of the illustration at K0’s origin—, the orientation of K1’s z-axis
is chosen to always align with the normal vector of the contact plane (K0’s z-axis), and the
Euler angle sum ξ = ϕ+ ψ is calculated for determining later torsional angular excursions
∆ξ = ξ − ξ relative to the ‘stick’ condition.

107





The digital human body model ‘allmin’ C

(a)

Activation dynamic
a(t) = a(γ(t), lCE(t))
γ̇ = fγ(γ(t), u(t))

Muscle model

SDECE
CE

lMTU

PEE

l lSEE

SEE

Skeletal system

FMTU = ∂lMTU

∂Q · fMTU

M(Q)Q̈+ C(Q, Q̇) = Fext + FMTU

Body

Q(t)

U(t)

A(t)

FMTU(t)

(b)

Figure C.1: (a) Frontal and side view of the visualization of the DHM. The green lines
show the muscle geometry. (b) Structure of the model: the motor command u(t) ∈ RnMTU

is fed into the model of activation dynamics (Hatze, 1977; Rockenfeller and Günther, 2018),
which relates the neuronal stimulation to muscular activity a(t) ∈ RnMTU that drives the
MTUs (Haeufle et al., 2014a). The MTUs produce forces fMTU(t) ∈ RnMTU that act as
joint torques by their respective moment arms ∂lMTU

∂Q . In combination with external forces,
this results in a movement of the DoFs Q(t) ∈ RnDoF of the body.

The musculoskeletal model allmin consists of nRGB = 15 rigid bodies (see Table C.1). The
rigid bodies are connected via 14 joints (see Table C.2) including nDoF = 20 degrees of
freedom. Each degree of freedom (DoF) (except for the Wrs) is controlled by an AAS being
congruent with the concept of elementary biological drives, as described by Schmitt et al.
(2019). The musculoskeletal model is actuated by nMTU = 36 MTUs (see Table C.3-C.5
and Figure C.1a). The model is implemented in the simulation software demoa (C/C++).

109



C
.

T
he

digital
hum

an
body

m
odel

‘allm
in’

C.1 Model parameters

Table C.1: List of all bodies included in the model with their mechanical properties with m: mass, rx,ry: radius in x and y direction, hz: height
in z direction, d1: distance proximal joint to the body’s centre of mass and d2: distance centre of mass to distal joint. The spine body has an
underlying curvature based on Kitazaki and Griffin (1997). The allover body dimensions are based on data describing a 50th percentile male from
NASA (1978).

Body Name m [kg] rx [m] ry [m] hz [m] d1 [m] Child d2 [m]
Pelvis (world) 10.2516 0.1224 0.1643 0.18783 [0,0,0] Spine [0.000557293, 0.0000, 0.12213]

Thigh (l/r) [0.0147,±0.0796,−0.0657]
Spine 33.2397 0.1224 0.1643 0.4166 [-0.00055, 0.0000, -0.2083] Head [0.00055, 0.0000, 0.2083]

Uparm (l/r) [0.00677703,±0.1816, 0.10507988]
Head 4.8869 0.0993 0.0778 0.278194 [-0.0092, 0.0000, -0.11] - -
Uparm (l/r) 2.1631 0.0495 − 0.3065 [0.0000, 0.0000, 0.1456] Forearm (l/r) [0.0000, 0.0000, -0.1609]
Forearm (l/r) 1.3389 0.0477 − 0.2725 [0.0000, 0.0000, 0.1117] Hand (l/r) [0.0000, 0.0000, -0.1608]
Hand (l/r) 0.5252 0.028 0.089 0.192 [0.0000, 0.0000, 0.0574] - -
Thigh (l/r) 8.1719 0.0947 − 0.4347 [0.0000,∓0.0188, 0.1782] Shank (l/r) [0.0000, 0.0000, -0.2565]
Shank (l/r) 3.3541 0.0597 − 0.4239 [0.0000,∓0.0059, 0.1865] Foot (l/r) [0.0000, 0.0000, -0.2374]
Foot (l/r) ∗ 1.0172 0.0398 − 0.272 [-0.0656, 0.0000, 0.0402] - -

110



C.1. Model parameters

Table C.2: List of all joints included in the model.

Name Type Movement RoM [◦]
Lumbar spine Universal left/right [−30 . . . 30]
Lumbar spine Universal flexion/extension [0 . . . 30]
Cervival spine Universal left/right [−30 . . . 30]
Cervival spine Universal flexion/extension [−30 . . . 30]
Shoulder (Right) Universal abduction/adduction [−10 . . . 60]
Shoulder (Right) Universal flexion/extension [−100 . . . 10]
Ellbow (Right) Revolute flexion/extension [−120 . . . 10]
Wrist (Right) Revolute flexion/extension [0 . . . 0]
Shoulder (Left) Universal abduction/adduction [−10 . . . 60]
Shoulder (Left) Universal flexion/extension [−100 . . . 10]
Ellbow (Left) Revolute flexion/extension [−120 . . . 10]
Wrist (Left) Revolute flexion/extension [0 . . . 0]
Hip (Right) Universal flexion/extension [−120 · · · − 10]
Hip (Right) Universal abduction/adduction [−10 . . . 70]
Knee (Right) Revolute flexion/extension [−1 . . . 120]
Ankle (Right) Revolute flexion/extension [−20 . . . 40]
Hip (Left) Universal flexion/extension [−120 . . . 10]
Hip (Left) Universal abduction/adduction [−10 . . . 70]
Knee (Left) Revolute flexion/extension [−1 . . . 120]
Ankle (Left) Revolute flexion/extension [−20 . . . 40]

111



C
.

T
he

digital
hum

an
body

m
odel

‘allm
in’

Table C.3: Muscle routing parameters: Origin RO, Deflection Point 1 RDF1 and 2 RDF2 and Insertion RI relative to their parent body. All
numbers in this table are rounded to three decimal digits. Muscle names: Eb Fx, Eb Ex, An Ex, An Fx, Hp Ab, Hp Ad, Hp Fx, Hp Ex, Ce lEx,
Ce vEx, Ce vEx, Ce vFx, Kn Ex, Kn Ex, Lu lEx, Lu vEx, Lu vEx, Lu vFx, Sh Ex, Sh Fx, Sh Ab, Sh Ad. The muscle routing parameters have
been optimised to allow a reasonable RoM of the respective joints.

Name RO [m] Parent RDF1 [m] Parent RDF2 [m] Parent RI [m] Parent
Lu lEx −0.028 0.000 0.108 Pelvis −0.040 0.000 0.110 Pelvis −0.042 0.000−0.131 Spine −0.032 0.000−0.129 Spine
Lu lFx 0.018 0.000 0.101 Pelvis 0.088 0.000 0.089 Pelvis 0.069 0.000−0.106 Spine 0.009 0.000−0.120 Spine
Lu vEx −0.005 0.050 0.104 Pelvis −0.005 0.050 0.104 Pelvis −0.011 0.050−0.124 Spine −0.011 0.050−0.124 Spine
Lu vFx −0.005−0.050 0.104 Pelvis −0.005−0.050 0.104 Pelvis −0.011−0.050−0.124 Spine −0.011−0.050−0.124 Spine
Ce lEx −0.054 0.000 0.199 Spine −0.054 0.000 0.199 Spine −0.056 0.000−0.070 Head −0.056 0.000−0.070 Head
Ce lFx 0.043 0.000 0.175 Spine 0.043 0.000 0.175 Spine 0.044 0.000−0.080 Head 0.044 0.000−0.080 Head
Ce vEx −0.006 0.050 0.187 Spine −0.006 0.050 0.187 Spine −0.006 0.050−0.075 Head −0.006 0.050−0.075 Head
Ce vFx −0.006−0.050 0.187 Spine −0.006−0.050 0.187 Spine −0.006−0.050−0.075 Head −0.006−0.050−0.075 Head
Hp Ex (l/r) −0.075±0.080 0.025 Pelvis −0.075±0.090−0.095 Pelvis −0.075∓0.019 0.121 Thigh −0.020∓0.009 0.031 Thigh
Hp Fx (l/r) 0.065±0.040 0.101 Pelvis 0.075±0.040 0.021 Pelvis 0.015∓0.019 0.101 Thigh 0.015∓0.019 0.020 Thigh
Hp Ab (l/r) −0.025±0.120 0.050 Pelvis 0.000±0.152−0.030 Pelvis −0.030±0.040 0.035 Thigh −0.020±0.030 0.005 Thigh
Hp Ad (l/r) 0.000 0.000 0.000 Pelvis −0.010±0.010−0.100 Pelvis −0.005∓0.035 0.090 Thigh 0.000∓0.020 0.010 Thigh
Kn Fx (l/r) −0.050 0.000 0.000 Thigh −0.050 0.000−0.108 Thigh −0.059 0.000 0.106 Shank −0.030 0.000 0.100 Shank
Kn Ex (l/r) 0.040 0.000 0.000 Thigh 0.030 0.000 0.253 Thigh 0.030 0.000 0.050 Shank 0.030 0.000 0.050 Shank
An Ex (l/r) −0.050 0.000−0.025 Shank −0.050 0.000−0.175 Shank −0.125 0.000 0.050 Foot −0.125 0.000 0.050 Foot
An Fx (l/r) 0.030 0.000−0.025 Shank 0.030 0.000−0.175 Shank 0.030 0.000 0.050 Foot 0.030 0.000 0.050 Foot
Sh Ex (l/r) −0.069±0.182 0.113 Spine −0.050 0.000 0.125 Uparm −0.017 0.000 0.000 Uparm −0.017 0.000 0.000 Uparm
Sh Fx (l/r) 0.022±0.182 0.139 Spine 0.022±0.182 0.139 Spine 0.017 0.000 0.000 Uparm 0.017 0.000 0.000 Uparm
Sh Ab (l/r) −0.026±0.242 0.135 Spine −0.026±0.242 0.135 Spine 0.000±0.017 0.000 Uparm 0.000±0.017 0.000 Uparm
Sh Ad (l/r) −0.024 0.000 0.126 Spine 0.007±0.125 0.103 Spine 0.000∓0.040 0.125 Uparm 0.000∓0.017 0.000 Uparm
Eb Fx (l/r) 0.025 0.000 0.000 Uparm 0.030 0.000−0.050 Uparm 0.030 0.000 0.014 Forearm 0.024 0.000−0.100 Forearm
Eb Ex (l/r) −0.025 0.000 0.000 Uparm −0.049 0.000−0.160 Uparm −0.048 0.000 0.100 Forearm −0.024 0.000 0.000 Forearm

112



C.1. Model parameters

Table C.4: Muscle-specific actuation parameters, with Fmax: maximum isometric force,
lCE,opt: optimal length of the CE, ∆W asc: width of normalized bell curve in ascending
branch of the force-length relationship, lSEE,0 rest length of the SEE, lCE,init: initial length
of the CE. Muscle names: elbow (Eb) Fx, elbow (Eb) Ex, ankle (An) Fx, ankle (An) Fx,
hip (Hp) Ab, hip (Hp) Ad, hip (Hp) Fx, hip (Hp) Ex, cervical joint (Ce) lFx, cervical
joint (Ce) lEx, cervical joint (Ce) vFx, cervical joint (Ce) vEx, knee (Kn) Fx, knee (Kn)
Ex, lumbar joint (Lu) lFx, lumbar joint (Lu) lEx, lumbar joint (Lu) vFx, lumbar joint (Lu)
vEx, shoulder (Sh) Ab, shoulder (Sh) Ad, shoulder (Sh) Fx, shoulder (Sh) Ex. The muscle-
specific parameters are based on literature values of single muscles and have been further
tuned for a functionality of the overall model, accounting for the consolidation of multiple
muscles into single MTUs (Bayer et al., 2017; Kistemaker et al., 2006; Günther, 1997).

Fmax [N] lCE,opt [m] ∆W asc lSEE,0 [m]
Eb Fx 1420.0 0.1885 1.0 0.1845
Eb Ex 1550.0 0.171 0.525 0.18
An Fx 3000.0 0.15 1.0 0.133
An Ex 3000.0 0.13 1.0 0.115
Hp Ab 2000.0 0.18 1.0 0.121
Hp Ad 2000.0 0.204 0.75 0.136
Hp Fx 5000.0 0.195 1.0 0.135
Hp Ex 5000.0 0.192 1.0 0.191
Ce lFx 5000.0 0.07 1.5 0.01
Ce vEx 5000.0 0.05 1.5 0.01
Ce vFx 5000.0 0.046 1.5 0.01
Ce lFx 5000.0 0.062 1.5 0.01
Kn Fx 6000.0 0.258 0.525 0.112
Kn Ex 6000.0 0.264 1.0 0.28
Lu lFx 15000.0 0.2 1.5 0.11
Lu vEx 15000.0 0.09 1.5 0.02
Lu vFx 15000.0 0.09 1.5 0.02
Lu lFx 15000.0 0.075 1.5 0.04
Sh Ab 6000.0 0.12 1.0 0.08
Sh Ad 6000.0 0.225 1.0 0.12
Sh Fx 10000.0 0.1 1.0 0.073
Sh Ex 6000.0 0.165 1.0 0.105

113



C. The digital human body model ‘allmin’

Table C.5: Muscle non-specific actuation parameters for the muscles and the activation
dynamics.

Parameter Unit Value Source Description
CE ∆W des [ ] 0.45 similar to Bayer et al.

(2017); Kistemaker et al.
(2006)

width of normalized bell curve in de-
scending branch, adapted to match
observed force-length curves

νCE,des [ ] 1.5 Mörl et al. (2012) exponent for descending branch
νCE,asc [ ] 3.0 Mörl et al. (2012) exponent for ascending branch
Arel,0 [ ] 0.2 Günther (1997) parameter for contraction dynamics:

maximum value of Arel

Brel,0 [1/s] 2.0 Günther (1997) parameter for contraction dynamics:
maximum value of Brel

Secc [ ] 2.0 van Soest and Bobbert
(1993)

relation between F (v) slopes at
vCE = 0

Fecc [ ] 1.5 van Soest and Bobbert
(1993)

factor by which the force can exceed
F isom for large eccentric velocities

PEE LPEE,0 [ ] 0.95 Günther (1997) rest length of PEE normalized to op-
timal length of CE

νPEE [ ] 2.5 Mörl et al. (2012) exponent of FPEE

FPEE [ ] 2.0 Mörl et al. (2012) force of PEE if lCE is stretched to
∆W des

SDE DSDE [ ] 0.3 Mörl et al. (2012) dimensionless factor to scale
dSDE,max

RSDE [ ] 0.01 Mörl et al. (2012) minimum value of dSDE (at
FMTU = 0), normalized to dSDE,max

SEE ∆USEE,nll [ ] 0.0425 Mörl et al. (2012) relative stretch at non-linear linear
transition

∆USEE,l [ ] 0.017 Mörl et al. (2012) relative additional stretch in the lin-
ear part providing a force increase
of ∆F SEE,0

∆F SEE,0 [N] 0.4Fmax both force at the transition and
force increase in the linear part

activation
dynamics

MH [1/s] 11.3 Kistemaker et al. (2006) time constant for the activation dy-
namics

γc [mol/l] 1.37e-4 Kistemaker et al. (2006) constant for the activation dynamics
ρ0 [l/mol] 5.27e4 Kistemaker et al. (2006) constant for the activation dynamics
a0 [ ] 0.005 Günther (1997) resting active state for all activated

muscle fibers
ν [ ] 3 Kistemaker et al. (2006) constant for the activation dynamics

114



The simulation software demoa D

D.1 Simulation software and solver

To perform the here presented simulations, the C/C++ simulation environment demoa is
used (Henze, 2002; Mörl et al., 2012; Rupp et al., 2015). The simulation software demoa
uses homogeneous matrix representations (Hartenberg and Denavit, 1955) to algorithmi-
cally set-up the mechanical equations of motion (2.33), as described by (Legnani et al.,
1996b,a), using the C/C++ library eigen (Guennebaud et al., 2010). The integration
method used within demoa for the mechanical equations of motion (2.33), the activation
dynamics (2.38), and the MTU contraction dynamics is based on the Shampine-Gordon al-
gorithm ‘de’ (Shampine and Gordon, 1975), which has been slightly modified (Henze, 2002)
to allow event handling (root finding), ‘derf ’. The integration parameters are the same for
all simulation studies from Pt. III. The maximum simulation step size is set to 0.001 s with
relative and absolute error boundaries of 10−6.

The integration in the I part of the PID-controllers is performed using Euler’s method
(first order Runge-Kutta) and the differentiation in the τ -PID-controller in Sec. 6 is per-
formed by discrete differentiation based on the integration step time.

D.2 demoa variables of the homogeneous rigid body matrices

In this section the homogeneous representation matricesG, Ξ̂ and V̂ of the positions, twists
and velocities of rigid bodies, as described in Sec. 2.1, are related to the notation of the
respective variable names in demoa. Additionally it is sketched how the input parameters of
demoa are used for the calculation of these matrices. The syntax for each specific block is well
described in the documentation of demoa. The input parameters of demoa that defines the
anatomy of the musculo-skeletal system are provided by the user in the form of a structured
list of parametrised text-blocks in a .dsim-file of the single model-elements.

The model-elements of interest for this section are those of the bodies and those of the
joints. A body is parametrised by its inertia properties and its geometry. The geometry
is specified by defining coordinate frames that are located at the joints that connect the
body to its environment. Other coordinate frames are attached to the rigid body’s COM.
As described in Sec. 2.1.3, the relative configuration, i.e. rotation and translation, of two
frames can be described by the homogeneous representation G ∈ SE(3) ⊂ R4×4 of rigid
body transformations (2.11).

• Rigid body transformation matrices G as in (2.15) correspond to M-matrices in demoa.

115



D. The simulation software demoa

world
W

A: uparm body ID

AO

AJTo
1

AJFr
2

M0[J1]

M0o[A] Mjo[J2]

Mo[A] Mj[J2]

B: forearm body ID

BO

BJTo
2

BJFr
3

M0[J2]

Mo[B]

Mj[J3]

J2: elbow DoF ID

Mi[J2]

Figure D.1: Coordinate frame transformations at a joint in demoa. Each joint has a
‘To’-body and a ‘From’-body at which the joint coordinate frames are attached, e.g. AJFr

and BJTo . The rigid body transformation GAJFrBJTo describes the joint DoFs and is stored
in the Mi[J]-matrix. The matrix Mj[J] describes the distance from the previous joint to
the current joint, the matrix Mo[A] the distance to the body’s COM. The matrices M0[J],
M0o[J] and Mj0[J] are Mi[J], Mo[J] and Mj[J] transformed to the inertial frame W. By
following the composition rule (2.15) and starting at the first body, the kinematic chain can
be successively build up.

There are various useful M-matrices predefined in demoa. In Fig. D.1 an exemplary elbow
joint is shown with arrows displaying the transformations of each those M-matrices.

The matrices Mo and Mj are directly obtained from the body model-block parameters in
the provided .dsim-file.

The Mi matrices are obtained as follows: The input parameters of a joint define the
movement of the respective joint DoFs. This information is stored in the Li-matrix. This
matrix thereby fixes and defines the screw axis of a joint and thereby restricts its DoFs. As
such Li is referred to as a restriction matrix in demoa.

• Rigid body twists Ξ̂ as in (2.20) correspond to L-matrices in demoa.

According to (2.21), a rigid body twist can be used for the calculation of G by a matrix
exponential utilising Rodrigues’ formula (2.6) (Legnani et al., 1996b,a; Murray et al., 1994;
Lynch and Park, 2017). In exactly this way the demoa-matrix Mi is obtained.

From Sec. 2.1.5 it is known that the spatial velocity V̂ of a rigid body corresponds to
a twist.

• Rigid body spatial velocities V̂ as in (2.22) correspond to W-matrices in demoa.

According to (2.28), in demoa the velocity is directly obtained by multiplying Li by the
velocity qd of the DoF.

116



Implementation of the hierarchical control architecture E

To execute a simulation with the here presented hierarchical control architecture, it is im-
plemented in the simulation framework demoa (CBB in-house code). The biophysical sensor
information and other system knowledge that is needed within the control architecture,
such as the actual joint angles or the moment arms of the MTUs are therefore obtained, or
calculated during run-time, from the system’s state that is integrated over time in demoa.

The object-oriented implementation allows to execute different controllers in the different
control spaces of joint angles, joint torques and limb positions in parallel. With this it is
possible, for example, to simultaneously control the movement of the joint angles of a leg
and the position of a hand of a model.

In this chapter, the implementation strategy of the control architecture is described by
listing the respective control parameters and quickly outlining the initialization routine and
the functions that are called during simulation runtime in demoa.

E.1 Object-oriented design and controller parametrisation

To enable a wide range of freedom for control in terms of control spaces, an object-oriented
implementation design is used, where multiple controllers can be generated to fulfil individ-
ual control goals in parallel. Each controller thereby consists of the full hierarchy, i.e. it has
it’s own conceptional, transformational and structural layer. The layers are implemented
to be individual objects of the respective Layer-class. Therefore the three classes, the
ConceptionalLayer , the the TransformationalLayer and the the StructuralLayer are im-
plemented. The control space of the conceptional layer has to be one that is specified by a
control_architecture -byte:

int control_architecture = 0bbfbχbτ bθbλ, (E.1)

This control_architecture -byte is defined in usrinclude.h and specifies which different
control spaces are activated in the model. It’s binary form (E.1), with bi ∈ {0, 1}, i.e. the
i-th bit enables the i-th controller; of CE-lengths (λ), joint angles (θ), joint torques (τ),
limb positions (χ) or forces (f)1, for example,

int control_architecture = 0b01110, (E.2)

enables the θ-, τ - and χ-controllers in parallel. Any other combination is of course possible.
1Note, that the force controller as described in section 3.3.4 and specified by bf is not fully integrated

in the control architecture’s implementation

117



E. Implementation of the hierarchical control architecture

datacontrol
Layers

Angle_Control

A1

ConceptionalLayer

TransformationalLayer

StructuralLayer

A2

Angle_Controller.dat

Force_Control

Lambda_Control

Position_Control

P1

P2

Position_Controller.dat

Torque_Control

TPose.dat

EPose.dat

u_init.dat

Position_Control

P1

ConceptionalLayer

Position_Jacobian_JQX

Position_PID

Posei.px

Posei.ix

Posei.dx

Posei.xdes

PositionTriads.dat

TransformationalLayer

StructuralLayer

P2

PositionController.dat

Position_Control

P1

ConceptionalLayer

TransformationalLayer

Jacobians

PID

Theta_Lambda_PID

Posei.pql

Posei.iql

Posei.dql

Theta_PID

Posei.pq

Posei.iq

Posei.dq

JointVector.dat

Posei.uns

StructuralLayer

P2

PositionController.dat

Position_Control

P1

ConceptionalLayer

TransformationalLayer

StructuralLayer

Alpha_Controller

Posei.ucoc

Lambda_Controller

Kappa

Posei.ukap

Lambda

MuscleVector.dat

P2

PositionController.dat

Figure E.1: Folder structure of the /datacontrol -folder (left). In the three folder struc-
tures on the right an exemplary folder structure for a position controller with the name P1
is shown.

In the control parameter folder /datacontrol within the model folder the specified con-
trollers are parametrized (see figure E.1 for folder structure). The general controller param-
eters of initial stimulation is specified in the file u_init.dat and the different control states
in TPose.dat or EPose.dat, depending on the variable EventFlag variable in usrinclude.
h. When EventFlag=0 a time-based control is used that switches the poses automatically
according to the times and poses defined in TPose.dat. When EventFlag=0 an event-based
control is used and to switch the poses defined in EPose.dat a custom code in uEventControl
.cpp is expected.

In the subfolders in /datacontrol/Layers, the different control spaces are configured.
Each control space has its own folder, e.g. /datacontrol/Layers/ Angle_Control and in
each of those folders a .dat-file that specifies the names and thereby the total number of
controllers that are defined. For example, a AngleController .dat-file in /datacontrol/
Layers/ Angle_Control / like

1 //Specify Angle Controller Names Here, This comment Line is mandatory
2 A1
3 A2

specifies the two angle controllers with the names A1 and A2, respectively. For each of
such specified controllers, a subfolder with the same name must be present that contains
the parameters of the individual layers of the specified controllers. The layer parame-
ters have to be inside another set of subfolders with the names / ConceptionalLayer , /
TransformationalLayer and / StructuralLayer . In figure E.1 the folder structure is dis-
played and in the follwing subsections the parameters for the individual layers are described.

E.1.1 The conceptional layer parameters: / ConceptionalLayer

Each conceptional layer has by choice one of the control spaces of: i) a set joint angles, ii)
a set of joint torques or iii) the configuration in 3D-space of a specified coordinate space.

118



E.1. Object-oriented design and controller parametrisation

In general a PID-controller is implemented for this control space and a Jacobian matrix is
used for the transformation to the transformational layer, as described in theory in Sec. 3.2.
For its parametrisation, therefore three information must be provided by the user: i) the
control space must be specified, e.g. which joints are to be controlled, ii) the desired states
for this control space and iii) the PID parameters for the controller. The Jacobian matrices
for transformations are usually calculated automatically during runtime, optionally they
can be read in for each pose, though. The respective flag has to be set in usrinclude.h.

E.1.1.1 Angle controller parameters

A conceptional angle controller, as described in theory in section 3.3.1 takes the trivial form
of providing the postural plan θdes(t) directly. It therefore has in fact no PID-controller
and no Jacobian transformation implemented. Still, the control space has to be defined in
the file JointVector.dat in the exemplary form:

1 // Comment Line
2 Joint_Shoulder->Uparm, 0,
3 Joint_Shoulder->Uparm, 1,
4 Joint_Uparm->Forearm, 0,

In this example the 2 DoF shoulder joint of type Universal is called Joint_Shoulder ->
Uparm in the .dsim-file of the model and the first and second lines specify the first and second
joint DoFs by the 0 and 1, respectively. Additionally the desired values for the such defined
control space must be provided for each pose, e.g. by Pose1.qdes:

1 // Comment Line
2 0.0,
3 777,
4 90.0,

This sets the desired values for the shoulder abduction-adduction (AA) and elbow flexion-
extension (FE) to 0.0 and to 777 for shoulder FE. The 777 hereby sets the desired value
exactly the to the current value and effectively disables the control of this control space
variable. In the example here, this means that no MTU stimulations are generated to
actively manipulate the shoulder FE movement. The demanded movement thus is, to bring
the elbow to 90◦ while holding the arm proximal to the trunk. The arm is allowed to freely
swing within the sagittal plane.

E.1.1.2 Torque controller parameters

The conceptional torque controller parameters, specified within it’s sub-folder, for example
/ TorqueController /T1/ ConceptionalLayer for a torque controller named T1, are the vector
of controlled joint DoFs in TorqueJointVector .dat, the vectors of desired torques in the
pose-files with the suffix .tdes and the PID-parameters in the subfolder /Torque_PID . The
vectors of controlled and desired DoFs are set in an exactly same manner as for the angle
controller above. The PID-subfolder contains for each pose a .pt, a .it and a .dt file,
containing the P, I and D control parameter matrices. These control matrices are usually
chosen as diagonal matrices and have a form similar to the following example of a .pt-file
for a similar joint vector as given in the angle controller parameter section above:

1 // Comment Line,
2 2.000000, 0.000000, 0.000000,
3 0.000000, 0.000000, 0.000000,
4 0.000000, 0.000000, 0.750000,

The Jacobian matrices for transformations are usually calculated automatically during run-
time, optionally they can be specified to be read in for each pose from the sub-folder
/ Position_Jacobian_JQX . The respective flag has to be set in usrinclude.h.

119



E. Implementation of the hierarchical control architecture

E.1.1.3 Position controller parameters

The specification of the position controller parameters follows the same approach, by setting
the control space and desired values, as well as PID-parameters for the controller. The PID-
matrices are all 6×6 as the positional space has three translational DoFs and three rotational.
By setting a specific diagonal matrix entry to zero, the control of this coordinate direction
(or rotation) can be switched off. The control space definition in the PositionTriads .dat-
file occurs slightly different compared to the angle or torque controllers, as for the position
controller a Triad-name must be specified together with a ‘relative’ Triad-name. These two
triads should specify the start and the end of a kinematic sub-chain of the model, e.g. from
the shoulder to the hand as in this example of a PositionTriads .dat-file:

1 Shoulder_Joint_Uparm
2 Ctrl_Trd_Hand_l

The first entry describes the name of the ‘relative’-Triad (the start of the kinematic sub-
chain) and the second of the ‘control’-Triad (attached to the end Body of the kinematic
sub-chain). The desired configuration of the ‘control’-Triad is specified, for each pose, in a
.xdes file. The only content in such a file is a Triad-name that exists in the model and of
which the position is desired to be achieved.

The Jacobian matrices for transformations are usually calculated automatically during
runtime, optionally they can be specified to be read in for each pose from the sub-folder
Torque_Jacobian_JQT . The respective flag has to be set in usrinclude.h.

E.1.2 The transformational layer parameters: / TransformationalLayer

No matter which conceptional control space is chosen, the transformational layer has always
the same form and must thus be specified in the same way for each controller. The transfor-
mational layer’s control parameters are specified in the subfolder / TransformationalLayer
within the controller’s folder. As in this layer two PID-controllers on the control space
of joint angles are active, the joint angle DoFs have to be provided as a vector in the
JointVector.dat-file. In this file a list of joint-names with a DoF number must be given,
exactly as described in Sec E.1.1.1 for the conceptional angle control parameters. Note, that
the transformational layer’s joint vector must be chosen in accordance with the conceptional
layer’s output joint vector. That is, for angle and torque controllers, the joint-vectors of
the conceptional and the transformational layers must contain the same DoFs (although
the order does not matter). A transformational layer’s joint vector of a position controller
must contain all those joints that connect the ’relative’ Triad’s body to the ’control’ Triad
’s body. To control a hand relative to it’s shoulder, for example, the shoulder, elbow and
wrist joints are involved and must be specified in the respective JointVector.dat-file of the
transformational layer. The PID-parameters for the hierarchical θ−λ controller and for the
direct θ-controller are chosen exactly as described above, e.g. for the torque PID controller
in Sec. E.1.1.2. The same holds for the Jacobian matrices, when they are specified to be
read in (usrinclude.h).

Additionally in this layer the joint-wide co-contraction parameters ζθ can be set (refer to
Sec. 3.2.4 for the theory of joint-wide co-contraction). For each pose and for each specified
joint, a co-contraction parameter can be specified in the respective .uns-file of the pose, e.g.
the file contents

1 // Comment Line,
2 0.0,
3 0.0,
4 0.0,

disables the joint wide co-contraction for a controller, similar to the example from section
E.1.1.1.

120



E.2. Initialisation

E.1.3 The structural layer parameters: / StructuralLayer

Within the structural layer that is parametrised in the / StructuralLayer subfolder, the low-
level CE-length (λ-) controller and the reference co-contraction ζu are parametrised. For
this it is mandatory to specify a vector of MTUs that are involved in the current controller.
The file MuscleVector .dat therefore must contain a list of those MTU-names that are
spanned around the joints that are specified in the transformational layer’s paremtrisation.
Sticking to the same example with the joint vector from section E.1.1.1, a corresponding
MTU-vector may look like:

1 // Comment Line,
2 M_schulterstrecker
3 M_schulterbeuger
4 M_schulterabduktion
5 M_schulteraduktion
6 M_ellbogenbeuger
7 M_ellbogenstrecker

In the subfolder Alpha_Controller , for each specified MTU a co-contraction parameter
ζu ∈ (0 1] must be set. In the subfolder / Lambda_Controller /Kappa, the P-parameter matrix
of the λ-controller is specified as a list that forms the diagonal entries of Pλ. And in the
subfolder / Lambda_Controller /Lambda, desired CE-lengths, i.e. λ, are set for each pose in
the respective .ulam-files. Note, that λ only needs to be set if for the control space λ is
chosen, i.e. the bit bλ is set in the control_architecture variable in usrinclude.h.

E.2 Initialisation

In the function UserSetMKSInit () in usrsetmks.cpp, the main controller object (that is
usually accessed by myMotControl ) is initialised. This instance manages all individual con-
trollers and can be used for communication with the controller’s layer-objects. In it’s
initialisation (see Lst. E.3), the basic controller configurations of the control_architecture
-byte from usrinclude.h and the Tpose.dat or the Epose.dat file in /datacontrol -folder
are interpreted. Also, some of the biophysical sensor signals and system features, such as
the matrix of moment arms are calculated here, globally (see Lsts. E.1, E.6 and E.2). This
means that the moment arm matrix, for example, is calculated for every DoF and for every
MTU that are defined in the model and the respective order of demoa is used.

With the control_architecture interpreted, the controller configurations in /datacontrol
/Layers can be efficiently interpreted. Therefore the names of the controllers and their total
numbers in their respective control spaces are read in and, for each control space and each
controller, the respective Layer-objects are created. The controllers are hereby designed,
such that they act on a subset of the DoFs of the model. This means, that they require only
a part of the information, e.g., moment arms, that was calculated globally before. To obtain
this information a kind of cookie-cutter-technique is used, using masking-permutation matri-
ces. These masking-permutation matrices combine the two functions of a permutation and
a masking (cookie-cutting). With such a matrix, the local DoFs of the Layer-object can be
mapped and ordered onto the DoFs of the whole model. As such, the (transposed) matrix
can be used to map a vector in ’global’ DoF-coordinates to the ’local’, Layer-space, for
example to extract and to reorder a sub-matrix of moment arms used in a transformational
layer from the globally known moment arm matrix calculated by the main controller-object
(myMotControl ).

Conceptional layer In the initialisation of an ConceptionalLayer -object (see Lst. ??),
at first the control-space file is read, JointVector.dat for angle controllers, JointTorqueVector
.dat for torque controllers and PositionTriads .dat for position controllers. In a next step,

121



E. Implementation of the hierarchical control architecture

the output space is calculated, which is trivial for angle and torque controllers, as the DoFs
that are manipulated are the same. For the output-space of a conceptional position con-
troller, the kinematic sub-chain from the ‘relative’-Triad to the ’control’-Triad is analysed
and all DoFs within this sub-chain build the output-space of the layer.

By knowing the output-space of the conceptional layer, the masking-permutation matrix
can be calculated that can be used for the mapping of ‘global’-model variables to ‘local’-
layer variables (see paragraph above). Then, all the PID-matrices for all poses are read in
and the Jacobian matrices are calculated. Additionally, all other control variables that are
used in the ConceptionalLayer implementation are initialised and allocated.

Transformational layer In the initialisation of an object of the TransformationalLayer
-class (see Lst. E.22), similar as for the conceptional layer, the control-space file is read
in that has always the form of a joint-DoF vector defined in JointVector.dat. Again,
the permutation to the ‘global’-model DoF-space is calculated to obtain a ‘local’-Layer
DoF-space. This ‘local’-space of a TransformationalLayer object is the compared to the
‘local’-output-space of the respective ConceptionalLayer . These two spaces must contain
the same DoFs, if not, an error appears and the initialisation is aborted.

Similarly, the MTUs that are involved in manipulating the specified joints can be iden-
tified from the ‘local’ DoF-space, by analysing the anthropometry of the musculoskeletal
model. With this, a ‘local’ MTU-space is obtained and a respective masking-permutation
matrix can be calculated to project into the ‘global’ model MTU-space.

Finally, the PID-parameter matrices are read for all poses and the Jacobian matri-
ces are calculated initially. Additionally, all other control variables that are used in the
TransformationallLayer implementation are initialised and allocated.

Structural layer In the StructuralLayer initialisation (see Lst. E.36), the MTU-vector
is read in from the MuscleVector .dat-file and compared to the ‘local’ MTU-vector predicted
by the respective TransformationalLayer . These two MTU-vectors must contain exactly
the same MTUs in order to ensure a proper communication between the transformational
and the structural layer. When a mismatch is detected, an error message appears and the
initialisation is aborted. For a well-defined MTU-vector, a masking-permutation matrix is
calculated for a mapping between the ‘global’ model MTU-space and the ‘local’ Layer MTU-
space. Then, the low-level λ-control parameters are read in, namely the κ-parameters and
the reference co-contractions ucoc

ref . The desired CE-lengths λ are only read for a controller
with the control space of CE-lengths, specified by the control_architecture byte with
the λ-bit bλ = 1 in (E.1). All other control variables that are needed are allocated and
initialised (see Lst. E.36).

E.3 Runtime routines of the control algorithms

During simulation runtime, in each simulation step, the biophysical sensor data must be up-
dated and provided to the control architecture, the PID-control laws must be executed and
the Jacobian matrices must be calculated based on the actual system state. Which control
relevant state data of the system must be provided to the control architecture hereby de-
pends on the types of controllers that are active, as specified with the control_architecture
byte (E.1). For any higher-level control that requires the full hierarchy, each a conceptional,
a transformational and a structural layer are needed. In addition, in each simulation step,
the actual control_state is checked and when a new state is detected (either by time or by
an event), the specified PID parameters for all layers and desired values for the conceptional
control are updated.

1 #i fde f CONTROL
2 if (dbg_uode) cout << ”Info () : UserODE: CONTROL” << endl ;
3 if( calcJacs & 0b0011 ) {//Angle and Torque Jacobians

122



E.4. Different ways to set desired control states

4 Eigen : : VectorXd Lce_vec = Eigen : : VectorXd : : Zero(nMUSC) ;
5 Eigen : : VectorXd Fmtu_vec = Eigen : : VectorXd : : Zero(nMUSC) ;
6 Eigen : : MatrixXd dLseedLce_mat = Eigen : : MatrixXd : : Zero(nMUSC,nMUSC) ;
7 Eigen : : MatrixXd dFcedLce_mat = Eigen : : MatrixXd : : Zero(nMUSC,nMUSC) ;
8 Eigen : : MatrixXd MA_dof = Eigen : : MatrixXd : : Zero(nMUSC, n_dof) ;
9 Eigen : : VectorXd Tht_is_glb = Eigen : : VectorXd : : Zero(n_dof) ;

10 Eigen : : VectorXd Tht_d_glb = Eigen : : VectorXd : : Zero(n_dof) ;
11
12 UpdateMomentArms(MA_dof) ;
13 for (int i = 0; i < nMUSC; ++i ){
14 dLseedLce_mat( i , i )=myMuscles [ i ] . dLseedLce() ;
15 Lce_vec( i )=myMuscles [ i ] . get_lCE() ; // //Lce_vec=myMuscles [ i ] . get_lCE() ;
16 if( calcJacs & 0b0010){
17 dFcedLce_mat( i , i )=myMuscles [ i ] . dFcedLce() ; // i f TORQUE CRL
18 Fmtu_vec( i )=myMuscles [ i ] .get_fMTU() ;
19 }
20 }
21 for (int i = 0; i < n_dof ; ++i ){
22 Tht_is_glb( i )=q[ i ] ;
23 Tht_d_glb( i )=qd[ i ] ;
24 }
25 myMotControl .set_Mamat(MA_dof) ;
26 myMotControl . set_DlseeDlce(dLseedLce_mat) ;
27 myMotControl . set_Lcevec(Lce_vec) ;
28 myMotControl . set_Tht_is_glb(Tht_is_glb) ;
29 myMotControl . set_Tht_d_glb(Tht_d_glb) ;
30 if( calcJacs & 0b0010){
31 myMotControl . set_dFcedLce(dFcedLce_mat) ; // i f TORQUE CTRL
32 myMotControl . set_Fmtuvec(Fmtu_vec) ; // i f TORQUE CTRL
33 }
34 }
35 if (dbg_uode) cout << ”Info () : UserODE: CONTROL2” << endl ;
36 myMotControl . UpdateLayers( t , z , zd) ;
37 Eigen : : VectorXd mystim = Eigen : : VectorXd : : Zero(nMUSC) ;
38 mystim = myMotControl . UpdateStim(t , ndof , nMUSC, z , zd) ;
39 #endif

Here the moment arms calculation is executed for the global system, as well as other con-
troller relevant information, such as the matrices ∂lCE

∂lSEE (used for the Jacobian Jλθ (3.9)),
∂fCE

∂lCE (used for the Jacobian Jθτ (3.36)). The two main functions to update the controller
variables in this this code-block are UpdateLayers () and UpdateStim() in lines 39 and 41
(both defined in ucontrol.cpp in the module u_control and listed in Lst. E.4 and Lst.
E.5), where the first updates the layer’s variables to the current system’s state and the
latter executes the PID-controllers and the Jacobian-based transformations to eventually
generate the stimulation signal for the MTUs (3.6). Both functions, UpdateLayers () and
UpdateStim() further call individual layer functions that straightforwardly follow the math-
ematical design of the control architecture from Pt. II. The most important conceptional
layer functions are given in Sec. E.5.3, those of the transformational layer in E.5.4 and
those of the structural layer in E.5.5.

E.4 Different ways to set desired control states

In this section different ways to parametrise the input of desired values to the controlarchi-
tecture are presented. As an example, the joint angle controlled movements of the lower
limbs from Sec. 5.1 are used. For the remaining control spaces an analoug approach can
be used and, of course, a user is not limited to the shown examples but encouraged to find
own solutions.

The desired movement in Sec. 5.1 is specified in terms of discrete set-points of desired
joint angles as follows:

θdes
Upex =


[ 0.0 0.0 0.0 0.0 ]T , t ∈ ( 0.0s . . . 1.5s ]
[ −40.0 30.0 110.0 −20 ]T , t ∈ ( 1.5s . . . 3.0s ]
[ −110.0 10.0 30.0 30.0 ]T , t ∈ ( 3.0s . . . 4.5s ]
[ −10.0 40.0 70.0 0.0 ]T , t ∈ ( 4.5s . . . 6.0s ]

. (E.3)

There are several ways to set these desired values in the simulation framework demoa. The
most simple approach is to configure a time-based controller and to define the poses in
the respective files, as outlined in section E.1. An event-based approach gives a more

123



E. Implementation of the hierarchical control architecture

detailed way in operating the controllers, for example, a new pose can be set in the file
usrEventcontrol .cpp by

1 {static bool once=true; //Initially swiched off
2 if (t>1.5 && once){
3 once=false;
4 ctrlstate=1;
5 cout << "Info(): Time=" << t << " Setting Controlstate to: " << ctrlstate <<

endl;
6 myMotControl.set_ControlState(ctrlstate);
7 }}

This sets the new control state ctrlstate=1 to all controllers that are defined sets the
respective parameters that are defined in datacontrol .

To only set a new control state for a single controller, for example the following code
snippet can be used:

1 {static bool once=true; //Initially swiched off
2 if (t>3.0 && once){
3 once=false;
4 ctrlstate=2;
5 cout << "Info(): Time=" << t << " Setting Controlstate to: " << ctrlstate <<

endl;
6 //myMotControl.set_ControlState(ctrlstate);
7 myMotControl.set_ControlState_Ang(ID_Ang_LowEx_R,ctrlstate);
8 }}

This sets the new control state ctrlstate=2 for the angle controller with the unique ID
ID_Ang_LowEx_R . The ID of a controller corresponds to it’s occurence in the list of defined
controllers, e.g. in AngleController .dat.

As a third alternative, the desired joint angles of a controller can be set directly without
changing the control state:

1 {static bool once=true;
2 if (t>4.5 && once){
3 once=false;
4 DES_Ang_LowEx_R(0)=-10.0;
5 DES_Ang_LowEx_R(1)=40.0;
6 DES_Ang_LowEx_R(2)=70.0;
7 DES_Ang_LowEx_R(3)=0.0;
8 UC_Ang_LowEx_R=Eigen::VectorXd::Ones(n_Ang_LowEx_R_Ucoc)*0.1;
9

10 myMotControl.set_Ang_des(ID_Ang_LowEx_R, DES_Ang_LowEx_R);
11 myMotControl.set_Ang_U_coc_lcl(ID_Ang_LowEx_R, UC_Ang_LowEx_R);
12 }}

This directly sets the desired angles and the reference co-contraction for the MTUs while
keeping all PID parameters. This has the advantage that no further poses have to be defined
in datacontrol .

124



E.5. Source code of the control module functions

E.5 Source code of the control module functions

E.5.1 Functions in usrsetmks.cpp

Listing E.1: Algorithm for calculating the adjacency matrix
1 void calc_BodyJointAdjacency_mat(Eigen : : MatrixXd& adjbjmat){
2
3 bool dbg_adj=fa l s e ;
4 Eigen : : MatrixXd Adj_BJ_mat=Eigen : : MatrixXd : : Zero(nrgb , nrgb) ;
5 const Body ∗ BodyCount ;
6 const Body ∗ BodySearch ;
7 const Body ∗ BodyTo;
8 const Body ∗ BodyFrom;
9 const Joint ∗ JointCount ;

10 const Joint ∗ JointSearch ;
11 const Triad ∗ TriadTo ;
12 const Triad ∗ TriadFrom ;
13 int BodyID_Count=0;
14 BodyCount=model . body(BodyID_Count) ;
15 while(BodyID_Count<nrgb){
16 static int TriadID_to=0;
17 static int TriadID_from=0;
18 JointCount=model . body(BodyID_Count)−>jo int () ;
19 static int JointID_search=0;
20 static int JointID_count=0;
21 JointSearch = model . jo in t (JointID_search) ;
22 while(JointCount−>name() != JointSearch−>name() ){
23 JointID_search++;
24 JointSearch = model . jo in t (JointID_search) ;
25 }
26 JointID_count=JointID_search ;
27 TriadFrom=JointCount−>from() ;
28 TriadTo=JointCount−>to () ;
29 if( TriadFrom−>parentname()==”world” | | TriadTo−>parentname()==”world”) {
30 BodyID_Count++;
31 continue ;
32 }
33 BodyTo=TriadTo−>parent () ;
34 BodyFrom=TriadFrom−>parent () ; // one of these i s BodyCunt?
35 static int BodyID_Search=0;
36 static int BodyID_To=0;
37 BodySearch=model . body(BodyID_Search) ;
38 while(BodySearch−>name()!=BodyTo−>name() ){
39 BodyID_Search++;
40 BodySearch=model . body(BodyID_Search) ;
41 }
42 BodyID_To=BodyID_Search ;
43 BodyID_Search=0;
44 static int BodyID_From=0;
45 BodySearch=model . body(BodyID_Search) ;
46 while(BodySearch−>name()!=BodyFrom−>name() ){
47 BodyID_Search++;
48 BodySearch=model . body(BodyID_Search) ;
49 }
50 BodyID_From=BodyID_Search ;
51 Adj_BJ_mat(BodyID_From, BodyID_To)=JointID_count ;
52 Adj_BJ_mat(BodyID_To, BodyID_From)=JointID_count ;
53 BodyID_Count++;
54 }
55 adjbjmat=Adj_BJ_mat;
56 return ;
57 }

125



E. Implementation of the hierarchical control architecture

Listing E.2: Algorithm for calculating the moment arms
1 void UpdateMomentArms(Eigen : : MatrixXd & madof){
2 madof=Eigen : : MatrixXd : : Zero(nMUSC, n_dof) ;
3 for (int muscID = 0; muscID < nMUSC; ++muscID){
4 static Eigen : : MatrixXd Path_OI= Eigen : : MatrixXd : : Zero(4 , n_joints ) ;
5 static Eigen : : Vector4i mbvec;
6 mrvec = new Eigen : : Vector4d [ 4 ] ;
7 mbvec(0)=user fo rcect r l [muscID ] . idx0 ;
8 mbvec(1)=user fo rcect r l [muscID ] . idxEl l1 ;
9 mbvec(2)=user fo rcect r l [muscID ] . idxEl l2 ;

10 mbvec(3)=user fo rcect r l [muscID ] . idx1 ;
11 mrvec [0](0)=user fo rcect r l [muscID ] . r0 [ 0 ] ;
12 mrvec [0](1)=user fo rcect r l [muscID ] . r0 [ 1 ] ;
13 mrvec [0](2)=user fo rcect r l [muscID ] . r0 [ 2 ] ;
14 mrvec [0](3)=1;
15 mrvec [1](0)=user fo rcect r l [muscID ] . rDF1 [ 0 ] ;
16 mrvec [1](1)=user fo rcect r l [muscID ] . rDF1 [ 1 ] ;
17 mrvec [1](2)=user fo rcect r l [muscID ] . rDF1 [ 2 ] ;
18 mrvec [1](3)=1;
19 mrvec [2](0)=user fo rcect r l [muscID ] . rDF2 [ 0 ] ;
20 mrvec [2](1)=user fo rcect r l [muscID ] . rDF2 [ 1 ] ;
21 mrvec [2](2)=user fo rcect r l [muscID ] . rDF2 [ 2 ] ;
22 mrvec [2](3)=1;
23 mrvec [3](0)=user fo rcect r l [muscID ] . r1 [ 0 ] ;
24 mrvec [3](1)=user fo rcect r l [muscID ] . r1 [ 1 ] ;
25 mrvec [3](2)=user fo rcect r l [muscID ] . r1 [ 2 ] ;
26 mrvec [3](3)=1;
27 Path_OI= Eigen : : MatrixXd : : Zero(4 , n_joints ) ;
28 for (int j = 0; j < 3; ++j ){
29 Path_OI . row( j )+=myMotControl . Dijkstra (Adj_BJ, mbvec( j )−1, mbvec(3)−1);
30 }
31 for (int j = 3; j > 0; −−j ){
32 Path_OI . row( j )+=myMotControl . Dijkstra (Adj_BJ, mbvec( j )−1, mbvec(0)−1);
33 }
34 int n_jcrs=0;
35 int n_dcrs=0;
36 Eigen : : VectorXd Joints_Crossed ;
37 Eigen : : VectorXd Dofs_Crossed ;
38 Joints_Crossed=Eigen : : VectorXd : : Zero(0) ;
39 Dofs_Crossed =Eigen : : VectorXd : : Zero(0) ;
40 for (int i = 0; i < n_joints ; ++i ){
41 if ((Path_OI . col ( i ) ) .norm() != 0 ){
42 Joints_Crossed . conservativeResize (Joints_Crossed . s i ze ()+1);
43 Joints_Crossed(Joints_Crossed . s i ze ()−1) = i ;
44 for (int i i = 0; i i < n_dof ; ++i i ){
45 if (DofToJoint( i i )==i ){
46 Dofs_Crossed . conservativeResize (Dofs_Crossed . s i ze ()+1);
47 Dofs_Crossed(Dofs_Crossed . s i ze ()−1) = i i ;
48 }
49 }
50 }
51 }
52 n_jcrs=Joints_Crossed . s i ze () ;
53 n_dcrs=Dofs_Crossed . s i ze () ;
54 for (int i_dof = 0; i_dof < n_dcrs ; ++i_dof ){
55 int j=DofToJoint(Dofs_Crossed( i_dof ) ) ;
56 int dofID=Dofs_Crossed( i_dof ) ;
57 int l a s t s ign=0;
58 int breakingpoint=−1;
59 for (int i = 0; i < 4; ++i ){
60 if( las t s ign!=Path_OI( i , j ) && lasts ign !=0){
61 breakingpoint=i ;
62 break ;
63 }
64 else l a s t s ign=Path_OI( i , j ) ;
65 }
66 double momentarm_m_dof;
67 momentarm_m_dof= MomentArm_geo(dofID , j , breakingpoint , mrvec ) ;
68 madof(muscID, dofID)=momentarm_m_dof;
69 }
70 }
71 return ;
72 }
73
74 double MomentArm_geo(int jdof id , int JointID , int BrPnt , Eigen : : Vector4d ∗ MR_vec){
75 int ToID=model . getbodyidx(model . jo in t ( JointID)−>to ()−>parent () ) ;
76 Eigen : : Vector4d Li_vec_to ;
77 Li_vec_to(0)=Li [ jdof id +1](2,1) ;
78 Li_vec_to(1)=Li [ jdof id +1](0,2) ;
79 Li_vec_to(2)=Li [ jdof id +1](1,0) ;
80 Li_vec_to(3)=0;
81 Eigen : : Matrix4d M_to_jnt ;
82 model . jo in t ( JointID)−>to ()−>Mmatrix(M_to_jnt) ;
83 Eigen : : Vector4d PJnt_wd;
84 PJnt_wd=M0o[ToID]∗M_to_jnt . block (0 ,3 ,4 ,1) ;
85 Eigen : : Vector4d PJnt_to ;
86 PJnt_to=M_to_jnt . block (0 ,3 ,4 ,1) ;
87 Eigen : : Vector4d PMto_wd;
88 Eigen : : Vector4d PMto_to;

126



E.5. Source code of the control module functions

89 Eigen : : Vector4d PMfr_wd;
90 Eigen : : Vector4d PMfr_to;
91 Eigen : : Vector4d V_Mto_Mfr_to;
92 Eigen : : Vector4d V_unt_to;
93 Eigen : : Vector4d V_PA_to;
94 Eigen : : Vector4d V_AX_to;
95 Eigen : : Vector4d V_MA_to;
96 Eigen : : Vector4d V_MA_prl_to;
97 PMto_wd(0)=MR_vec[BrPnt ](0) ;
98 PMto_wd(1)=MR_vec[BrPnt ](1) ;
99 PMto_wd(2)=MR_vec[BrPnt ](2) ;

100 PMto_wd(3)=1;
101 PMto_to=M0o[ToID ] . inverse ()∗PMto_wd;
102 PMfr_wd(0)=MR_vec[BrPnt−1](0) ;
103 PMfr_wd(1)=MR_vec[BrPnt−1](1) ;
104 PMfr_wd(2)=MR_vec[BrPnt−1](2) ;
105 PMfr_wd(3)=1;
106 PMfr_to=M0o[ToID ] . inverse ()∗PMfr_wd;
107 // P − point ! !P=Jnt
108 // D − direct ion of l i ne ( unit length ) ! ! V2_unit
109 // A − point in l i ne ! !A=Mto/Mfr −>P−A = −V_Jnt_Mto ! !
110
111 // X − base of the perpendicular l i n e
112
113 // P
114 // /|
115 // / |
116 // / v
117 // A−−−X−−−−−>D
118
119 // (P−A) .D == |X−A|
120
121 // X == A + ((P−A) .D)D
122 // Desired perpendicular : X−P ! !V3
123 //source : https :// stackoverflow .com/questions/5227373/minimal−perpendicular−vector−between−a−point−and−a−l ine
124 V_Mto_Mfr_to=PMfr_to−PMto_to; //Muscle String Vector FROM−TO wrt TO | | A−−>D
125 V_unt_to=V_Mto_Mfr_to/V_Mto_Mfr_to.norm() ;
126 V_PA_to= PJnt_to−PMto_to; //P−−−A
127 V_AX_to=(V_PA_to. dot(V_Mto_Mfr_to) )∗V_unt_to; //Vector A−−X wrt TO
128 V_MA_to = (PMto_to+V_AX_to)−PJnt_to ; //Moment Arm Vector wrt TO
129 Eigen : : Vector3d Va;
130 Eigen : : Vector3d Vb;
131 Vb=V_unt_to. head(3) ;
132 Va=V_MA_to. head(3) ;
133 V_MA_prl_to. head(3)= Va. cross (Vb) ;
134 double vmaprl_to ;
135 vmaprl_to=−V_MA_prl_to. dot(Li_vec_to) ;
136 return vmaprl_to ;
137 }

127



E. Implementation of the hierarchical control architecture

E.5.2 Functions in ucontrol.cpp

This is a test that is displayed in E.3.

Listing E.3: General control initialisation function
1
2 void MotorControl : : I n i t (int ndof , int nmusc, Eigen : : VectorXd& lCEopt , std : : vector<std : : str ing>& mnames, int contarch ,

int eventflag , Eigen : : MatrixXd& Mamat, int ca lc jacs ){ //#TODO redef nput vars !
3 n_dof=model . dof () ;
4 int n_tv=0;
5 n_musc=nmusc;
6 ctrl_arch=contarch ;
7 SolverCtr l sc ;
8 model . solver_controls(&sc ) ;
9 dtstep=sc . dt ;

10 event_flag=eventflag ;
11 cout << ”Info () : EventFlag= ” << event_flag << ” . Default Control State=0.” << endl ;
12 ControlState=0;
13 if ( event_flag==0) cout << ”Info () : Time−based control . Use TPose. dat to define Poses and Times!” << endl ;
14 else cout << ”Info () : Event−based control . Use EPose . dat to define Poses and Event−Numbers! Use uEventControl .

cpp to define Sensors and Events !” << endl ;
15
16 current_kappa . res i ze (n_musc,1) ;
17 current_kappa = kappa∗Eigen : : VectorXd : : Ones(n_musc) ;
18 current_lce . res i ze (n_musc,1) ;
19 current_lce = Eigen : : VectorXd : : Zero(n_musc) ;
20 current_vce . re s i ze (n_musc,1) ;
21 current_vce = Eigen : : VectorXd : : Zero(n_musc) ;
22 current_sigma . res i ze (n_musc,1) ;
23 current_sigma = sigma∗Eigen : : VectorXd : : Ones(n_musc) ;
24
25 std : : s t r ing uinitname ;
26 uiv=new double [n_musc ] ;
27 uivname = ”datacontrol/u_init . dat” ;
28 cout << ”Info () : Read Uinit−Filename : ”<< uivname << endl ; //better output
29 readVectorFromFile (n_musc, uivname , uiv , u__init ) ;
30 u in i t . r e s i ze (n_musc,1) ;
31 for(int j=0; j<n_musc; j++){
32 u in i t ( j )=uiv [ j ] ;
33 }
34 cout << ”Info () : u_init read f in i shed” << endl ;
35
36 n_tv=read_TEpose() ; // inc l parameter?
37 read_ControlWeights () ; //Probably Rewrite // #TODO
38
39 int calcJacs=calc jacs ;
40 bool CALC_JAC_F=(calcJacs & 0b1000) ;
41 bool CALC_JAC_X=(calcJacs & 0b0100) ;
42 bool CALC_JAC_T=(calcJacs & 0b0010) ;
43 bool CALC_JAC_Q=(calcJacs & 0b0001) ;
44
45 OPEN_LOOP = ( ctrl_arch & 0b00001) ;
46 ALPHA_CONTROL = ( ctrl_arch & 0b11111) ; //Always?
47 STRUCTURAL_LAYER = ( ctrl_arch & 0b11111) ;
48 TRANSFORMATIONAL_LAYER = ( ctrl_arch & 0b11110) ;
49 CONCEPTOINAL_LAYER = ( ctrl_arch & 0b11110) ;
50 LAMBDA_CONTROL = ( ctrl_arch & 0b00001) ;
51 ANGLE_CONTROL = ( ctrl_arch & 0b00010) ;
52 TORQUE_CONTROL = ( ctrl_arch & 0b00100) ;
53 POSITION_CONTROL = ( ctrl_arch & 0b01000) ;
54 FORCE_CONTROL = ( ctrl_arch & 0b10000) ;
55 std : : cout << ”Info () : ctrl_arch=|” << FORCE_CONTROL << ” | ”<< POSITION_CONTROL << ” | ”<< TORQUE_CONTROL << ” | ” <<

ANGLE_CONTROL << ” | ”<< LAMBDA_CONTROL << ” | ”<< endl ;
56 std : : cout << ”Info () : ctrl_arch=|F|P|T|Q|L| ” << endl ;
57
58 Eigen : : VectorXd common_cDoF_vec=Eigen : : VectorXd : : Zero(n_dof) ;
59 n_lbd=0;
60 n_ang=0;
61 n_trq=0;
62 n_pos=0;
63 n_frc=0;
64 n_ctr=0;
65
66 if (TRANSFORMATIONAL_LAYER) Tht_vec=Eigen : : VectorXd : : Zero(n_dof) ;
67
68 if (LAMBDA_CONTROL){ // i n i t Lambda Control ler
69 std : : s t r ing LbdCtrlFile ;
70 LbdCtrlFile=”datacontrol/Layers/Lambda_Control/LambdaController . dat” ;
71 n_lbd=read_LbdCtrlFile ( LbdCtrlFile ) ;
72 for (int i = 0; i < n_lbd ; ++i ) cout << ” info () : lbdnames [ i ]= ” << lbdnames [ i ] << endl ;
73 LbdCtrl_SL = new StructuralLayer [ n_lbd ] ;
74 for (int i = 0; i < n_lbd ; ++i ){
75 LbdCtrl_SL [ i ]=StructuralLayer (1 , n_tv) ;
76 cout << ”//////////////////////////////////////////////////////” << endl ;
77 cout << ”////////INIT LAMBDA CONTROLLER: ”<< lbdnames [ i ] << endl ;
78 cout << ”//////////////////////////////////////////////////////”<< endl ;
79 LbdCtrl_SL [ i ] . set_PoseNames(∗tpname) ;
80 LbdCtrl_SL [ i ] . set_nmtu(nmusc) ;

128



E.5. Source code of the control module functions

81 LbdCtrl_SL [ i ] . set_MtuNames(mnames) ;
82 LbdCtrl_SL [ i ] . set_lCEopt( lCEopt) ;
83 LbdCtrl_SL [ i ] . set_IDc(” l ”) ;
84 LbdCtrl_SL [ i ] . set_SL_Folder(”datacontrol/Layers/Lambda_Control/”+lbdnames [ i ]+”/StructuralLayer/

”) ;
85 LbdCtrl_SL [ i ] . set_mVec_file( ”MuscleVector . dat”) ;
86 LbdCtrl_SL [ i ] . set_UcocRef_Folder(”Alpha_Controller/”) ;
87 LbdCtrl_SL [ i ] . set_UcocRef0(u__open) ;
88 LbdCtrl_SL [ i ] . set_Sigma0(sigma) ;
89 LbdCtrl_SL [ i ] . set_Lambda_Folder(”Lambda_Controller/Lambda/”) ;
90 LbdCtrl_SL [ i ] . set_Lambda0(lambda0) ;
91 LbdCtrl_SL [ i ] . set_Kappa_Folder(”Lambda_Controller/Kappa/”) ;
92 LbdCtrl_SL [ i ] . set_Kappa0(kappa) ;
93 LbdCtrl_SL [ i ] . Init_SL () ;
94 }
95 }
96
97 if (ANGLE_CONTROL) //init_AngleControl
98 {
99 cout << ”//////////////////////////////////////////////////////” << endl ;

100 cout << ”////////INIT ANGLE CONTROLLER”<< endl ;
101 cout << ”//////////////////////////////////////////////////////”<< endl ;
102 std : : s t r ing AngCtrlFile ;
103 AngCtrlFile=”datacontrol/Layers/Angle_Control/AngleController . dat” ;
104 n_ang=read_AngCtrlFile ( AngCtrlFile ) ;
105 for (int i = 0; i < n_ang; ++i ) cout << ” info () : angnames [ i ]= ” << angnames [ i ] << endl ;
106 AngCtrl_CL=new ConceptionalLayer [n_ang ] ;
107 AngCtrl_TL = new TransformationalLayer [n_ang ] ;
108 AngCtrl_SL = new StructuralLayer [n_ang ] ;
109 for (int i = 0; i < n_ang; ++i ){
110 AngCtrl_CL[ i ]=ConceptionalLayer (2 , n_tv) ;
111 AngCtrl_CL[ i ] . set_PoseNames(∗tpname) ;
112 AngCtrl_CL[ i ] . set_CL_Folder(”datacontrol/Layers/Angle_Control/”+angnames [ i ]+”/ConceptionalLayer

/”) ;
113 AngCtrl_CL[ i ] . set_cs_fi le (”JointVector . dat”) ;
114 AngCtrl_CL[ i ] . set_IDc(”q”) ;
115 AngCtrl_CL[ i ] . Init_CL_QT() ;
116 Eigen : : VectorXd Ang_cVar_vec=AngCtrl_CL[ i ] . get_cVar_vec() ;
117 Eigen : : VectorXd Ang_oVar_vec=AngCtrl_CL[ i ] . get_oVar_vec() ;
118 Eigen : : VectorXd Ang_oVar_global=AngCtrl_CL[ i ] . get_global_oVars () ;
119 for (int i = 0; i < n_dof ; ++i )if (Ang_oVar_global( i )>=common_cDoF_vec( i ) ) common_cDoF_vec( i )=

Ang_oVar_global( i ) ;
120 AngCtrl_TL[ i ]=TransformationalLayer (AngCtrl_CL[ i ] . get_ControlSpace () , n_tv) ;
121 AngCtrl_TL[ i ] . set_dtstep ( dtstep ) ;
122 AngCtrl_TL[ i ] . set_PoseNames(∗tpname) ;
123 AngCtrl_TL[ i ] . set_cDoFvec_CL(Ang_cVar_vec) ;
124 AngCtrl_TL[ i ] . set_nmtu(nmusc) ;
125 AngCtrl_TL[ i ] . set_MtuNames(mnames) ;
126 AngCtrl_TL[ i ] . set_TL_Folder(”datacontrol/Layers/Angle_Control/”+angnames [ i ]+”/

TransformationalLayer/”) ;
127 AngCtrl_TL[ i ] . set_cDoF_file ( ”JointVector . dat”) ;
128 AngCtrl_TL[ i ] . set_mVec_file(”Jacobians/MuscleVector . dat”) ;
129 AngCtrl_TL[ i ] . set_IDc(”q”) ;
130 AngCtrl_TL[ i ] . set_PID_Tht_Folder(”PID/Theta_PID/”) ;
131 AngCtrl_TL[ i ] . set_PID_Tht_Lbd_Folder(”PID/Theta_Lambda_PID/”) ;
132 AngCtrl_TL[ i ] . set_CALC_JACS(CALC_JAC_Q) ;
133 if(CALC_JAC_Q){
134 AngCtrl_TL[ i ] . set_Mamat_glb(Ma_mat) ;
135 AngCtrl_TL[ i ] . set_dLseedLce_glb(dLseedLce_mat) ;
136 AngCtrl_TL[ i ] . set_Lcevec_glb(Lce_vec) ;
137 AngCtrl_TL[ i ] . set_Uvec_glb( u in i t ) ;
138 }else{
139 AngCtrl_TL[ i ] . set_Jac_U_Tht_Folder(”Jacobians/Joint_Stimulation_Jacobian_JUQ/”) ;
140 AngCtrl_TL[ i ] . set_Jac_Lbd_Tht_Folder(”Jacobians/Joint_Length_Jacobian_JLQ/”) ;
141 }
142 AngCtrl_TL[ i ] . Init_TL() ;
143 Eigen : : VectorXd Ang_mVec_TL=AngCtrl_TL[ i ] .get_mVec_TL() ;
144 AngCtrl_SL [ i ]=StructuralLayer (AngCtrl_CL[ i ] . get_ControlSpace () , n_tv) ;
145 AngCtrl_SL [ i ] . set_PoseNames(∗tpname) ;
146 AngCtrl_SL [ i ] . set_mVec_TL(Ang_mVec_TL) ;
147 AngCtrl_SL [ i ] . set_nmtu(nmusc) ;
148 AngCtrl_SL [ i ] . set_MtuNames(mnames) ;
149 AngCtrl_SL [ i ] . set_lCEopt( lCEopt) ;
150 AngCtrl_SL [ i ] . set_IDc(”q”) ;
151 AngCtrl_SL [ i ] . set_SL_Folder(”datacontrol/Layers/Angle_Control/”+angnames [ i ]+”/StructuralLayer/”

) ;
152 AngCtrl_SL [ i ] . set_mVec_file( ”MuscleVector . dat”) ;
153 AngCtrl_SL [ i ] . set_Kappa_Folder(”Lambda_Controller/Kappa/”) ;
154 AngCtrl_SL [ i ] . set_Kappa0(kappa) ;
155 AngCtrl_SL [ i ] . set_UcocRef_Folder(”Alpha_Controller/”) ;
156 AngCtrl_SL [ i ] . set_UcocRef0(u__open) ;
157 AngCtrl_SL [ i ] . set_Sigma0(sigma) ;
158 AngCtrl_SL [ i ] . Init_SL () ;
159 }
160 }
161
162 if (TORQUE_CONTROL) {
163 cout << ”//////////////////////////////////////////////////////” << endl ;
164 cout << ”////////INIT TORQUE CONTROLLER ”<< endl ;
165 cout << ”//////////////////////////////////////////////////////”<< endl ;

129



E. Implementation of the hierarchical control architecture

166 std : : s t r ing TrqCtrlFi le ;
167 TrqCtrlFi le=”datacontrol/Layers/Torque_Control/TorqueController . dat” ;
168 n_trq=read_TrqCtrlFile ( TrqCtrlFi le ) ;
169 for (int i = 0; i < n_trq ; ++i ) cout << ” info () : trqnames [ i ]= ” << trqnames [ i ] << endl ;
170 TrqCtrl_CL=new ConceptionalLayer [ n_trq ] ;
171 TrqCtrl_TL = new TransformationalLayer [ n_trq ] ;
172 TrqCtrl_SL = new StructuralLayer [ n_trq ] ;
173 for (int i = 0; i < n_trq ; ++i ){
174 TrqCtrl_CL [ i ]=ConceptionalLayer (3 ,n_tv) ;
175 TrqCtrl_CL [ i ] . set_dtstep ( dtstep ) ;
176 TrqCtrl_CL [ i ] . set_PoseNames(∗tpname) ;
177 TrqCtrl_CL [ i ] . set_CL_Folder(”datacontrol/Layers/Torque_Control/”+trqnames [ i ]+”/

ConceptionalLayer/”) ;
178 TrqCtrl_CL [ i ] . set_cs_fi le (”TorqueJointVector . dat”) ;
179 TrqCtrl_CL [ i ] . set_IDc(”t”) ;
180 TrqCtrl_CL [ i ] . set_CALC_JACS(CALC_JAC_T) ;
181 TrqCtrl_CL [ i ] . set_PID_Folder(”Torque_PID/”) ;
182 TrqCtrl_CL [ i ] . set_nmtu(nmusc) ;
183 if(CALC_JAC_T){
184 TrqCtrl_CL [ i ] . set_Mamat_glb(Ma_mat) ;
185 TrqCtrl_CL [ i ] . set_dLseedLce_glb(dLseedLce_mat) ;
186 TrqCtrl_CL [ i ] . set_dFcedLce_glb(dFcedLce_mat) ;
187 }else{
188 TrqCtrl_CL [ i ] . set_Jac_Folder(”Torque_Jacobian_JQT/”) ;
189 TrqCtrl_CL [ i ] . set_Jac_sfx(” jqt”) ;
190 }
191 TrqCtrl_CL [ i ] . Init_CL_QT() ;
192 Eigen : : VectorXd Trq_cVar_vec=TrqCtrl_CL [ i ] . get_cVar_vec() ;
193 Eigen : : VectorXd Trq_oVar_vec=TrqCtrl_CL [ i ] . get_oVar_vec() ;
194 Eigen : : VectorXd Trq_oVar_global=TrqCtrl_CL [ i ] . get_global_oVars () ;
195 for (int i = 0; i < n_dof ; ++i )if (Trq_oVar_global( i )>=common_cDoF_vec( i ) ) common_cDoF_vec( i )=

Trq_oVar_global( i ) ;
196 TrqCtrl_TL[ i ]=TransformationalLayer (TrqCtrl_CL [ i ] . get_ControlSpace () , n_tv) ;
197 TrqCtrl_TL[ i ] . set_dtstep ( dtstep ) ;
198 TrqCtrl_TL[ i ] . set_PoseNames(∗tpname) ;
199 TrqCtrl_TL[ i ] . set_cDoFvec_CL(Trq_cVar_vec) ;
200 TrqCtrl_TL[ i ] . set_nmtu(nmusc) ;
201 TrqCtrl_TL[ i ] . set_MtuNames(mnames) ;
202 TrqCtrl_TL[ i ] . set_TL_Folder(”datacontrol/Layers/Torque_Control/”+trqnames [ i ]+”/

TransformationalLayer/”) ;
203 TrqCtrl_TL[ i ] . set_cDoF_file ( ”JointVector . dat”) ;
204 TrqCtrl_TL[ i ] . set_mVec_file(”Jacobians/MuscleVector . dat”) ;
205 TrqCtrl_TL[ i ] . set_IDc(”t”) ;
206 TrqCtrl_TL[ i ] . set_PID_Tht_Folder(”PID/Theta_PID/”) ;
207 TrqCtrl_TL[ i ] . set_PID_Tht_Lbd_Folder(”PID/Theta_Lambda_PID/”) ;
208 TrqCtrl_TL[ i ] . set_CALC_JACS(CALC_JAC_Q) ;
209 if(CALC_JAC_Q){
210 TrqCtrl_TL[ i ] . set_Mamat_glb(Ma_mat) ;
211 TrqCtrl_TL[ i ] . set_dLseedLce_glb(dLseedLce_mat) ;
212 TrqCtrl_TL[ i ] . set_Lcevec_glb(Lce_vec) ;
213 TrqCtrl_TL[ i ] . set_Uvec_glb( u in i t ) ;
214 }else{
215 TrqCtrl_TL[ i ] . set_Jac_U_Tht_Folder(”Jacobians/Joint_Stimulation_Jacobian_JUQ/”) ;
216 TrqCtrl_TL[ i ] . set_Jac_Lbd_Tht_Folder(”Jacobians/Joint_Length_Jacobian_JLQ/”) ;
217 }
218 TrqCtrl_TL[ i ] . Init_TL() ;
219 Eigen : : VectorXd Trq_mVec_TL=TrqCtrl_TL[ i ] .get_mVec_TL() ;
220 TrqCtrl_SL [ i ]=StructuralLayer (TrqCtrl_CL [ i ] . get_ControlSpace () , n_tv) ;
221 TrqCtrl_SL [ i ] . set_PoseNames(∗tpname) ;
222 TrqCtrl_SL [ i ] . set_mVec_TL(Trq_mVec_TL) ;
223 TrqCtrl_SL [ i ] . set_nmtu(nmusc) ;
224 TrqCtrl_SL [ i ] . set_MtuNames(mnames) ;
225 TrqCtrl_SL [ i ] . set_lCEopt( lCEopt) ;
226 TrqCtrl_SL [ i ] . set_IDc(”t”) ;
227 TrqCtrl_SL [ i ] . set_SL_Folder(”datacontrol/Layers/Torque_Control/”+trqnames [ i ]+”/StructuralLayer/

”) ;
228 TrqCtrl_SL [ i ] . set_mVec_file( ”MuscleVector . dat”) ;
229 TrqCtrl_SL [ i ] . set_UcocRef_Folder(”Alpha_Controller/”) ;
230 TrqCtrl_SL [ i ] . set_UcocRef0(u__open) ;
231 TrqCtrl_SL [ i ] . set_Sigma0(sigma) ;
232 TrqCtrl_SL [ i ] . set_Kappa_Folder(”Lambda_Controller/Kappa/”) ;
233 TrqCtrl_SL [ i ] . set_Kappa0(kappa) ;
234 TrqCtrl_SL [ i ] . Init_SL () ;
235 }
236 }
237
238 if (POSITION_CONTROL) {
239 cout << ”//////////////////////////////////////////////////////” << endl ;
240 cout << ”////////INIT POSITION CONTROLLER TODO: INCLUDE JACOBIAN”<< endl ;
241 cout << ”//////////////////////////////////////////////////////”<< endl ;
242 std : : s t r ing PosCtrlFi le ;
243 PosCtrlFi le=”datacontrol/Layers/Position_Control/Posit ionControl ler . dat” ;
244 n_pos=read_PosCtrlFile ( PosCtrlFi le ) ;
245 PosCtrl_CL=new ConceptionalLayer [n_pos ] ;
246 PosCtrl_TL = new TransformationalLayer [n_pos ] ;
247 PosCtrl_SL = new StructuralLayer [n_pos ] ;
248 for (int i = 0; i < n_pos ; ++i ){
249 PosCtrl_CL [ i ]=ConceptionalLayer (4 , n_tv) ;
250 PosCtrl_CL [ i ] . set_dtstep ( dtstep ) ;
251 PosCtrl_CL [ i ] . set_PoseNames(∗tpname) ;

130



E.5. Source code of the control module functions

252 PosCtrl_CL [ i ] . set_CLIndex( i ) ;
253 PosCtrl_CL [ i ] . set_CL_Folder(”datacontrol/Layers/Position_Control/”+ posnames [ i ] +”/

ConceptionalLayer/”) ;
254 PosCtrl_CL [ i ] . set_cs_fi le (”PositionTriads . dat”) ;
255 PosCtrl_CL [ i ] . set_PID_Folder(”Position_PID/”) ;
256 PosCtrl_CL [ i ] . set_IDc(”x”) ;
257 PosCtrl_CL [ i ] . set_CALC_JACS(CALC_JAC_X) ;
258 if(CALC_JAC_X){ //
259 }else{
260 PosCtrl_CL [ i ] . set_Jac_Folder(”Position_Jacobian_JQX/”) ;
261 PosCtrl_CL [ i ] . set_Jac_sfx(”jqx”) ;
262 PosCtrl_CL [ i ] . set_os_fi le (”Position_Jacobian_JQX/JointVector . dat”) ;
263 }
264 PosCtrl_CL [ i ] . Init_CL_XF() ;
265 Eigen : : VectorXd Pos_oVar_vec=PosCtrl_CL [ i ] . get_oVar_vec() ;
266 Eigen : : VectorXd Pos_oVar_global=PosCtrl_CL [ i ] . get_global_oVars () ;
267 for (int i = 0; i < n_dof ; ++i )if (Pos_oVar_global( i )>=common_cDoF_vec( i ) ) common_cDoF_vec( i )=

Pos_oVar_global( i ) ;
268 PosCtrl_TL [ i ]= TransformationalLayer (PosCtrl_CL [ i ] . get_ControlSpace () , n_tv) ;
269 PosCtrl_TL [ i ] . set_dtstep ( dtstep ) ;
270 PosCtrl_TL [ i ] . set_PoseNames(∗tpname) ;
271 Eigen : : VectorXd oVarVecCL=PosCtrl_CL [ i ] . get_oVar_vec() ;
272 PosCtrl_TL [ i ] . set_cDoFvec_CL(oVarVecCL) ;
273 PosCtrl_TL [ i ] . set_nmtu(nmusc) ;
274 PosCtrl_TL [ i ] . set_MtuNames(mnames) ;
275 PosCtrl_TL [ i ] . set_TLIndex( i ) ;
276 PosCtrl_TL [ i ] . set_TL_Folder(”datacontrol/Layers/Position_Control/”+ posnames [ i ] +”/

TransformationalLayer/”) ; //
277 PosCtrl_TL [ i ] . set_cDoF_file ( ”JointVector . dat”) ;
278 PosCtrl_TL [ i ] . set_mVec_file(”Jacobians/MuscleVector . dat”) ;
279 PosCtrl_TL [ i ] . set_IDc(”x”) ;
280 PosCtrl_TL [ i ] . set_PID_Tht_Folder(”PID/Theta_PID/”) ;
281 PosCtrl_TL [ i ] . set_PID_Tht_Lbd_Folder(”PID/Theta_Lambda_PID/”) ;
282 PosCtrl_TL [ i ] . set_CALC_JACS(CALC_JAC_Q) ;
283 if(CALC_JAC_Q){
284 PosCtrl_TL [ i ] . set_Mamat_glb(Ma_mat) ;
285 PosCtrl_TL [ i ] . set_dLseedLce_glb(dLseedLce_mat) ;
286 PosCtrl_TL [ i ] . set_Lcevec_glb(Lce_vec) ;
287 PosCtrl_TL [ i ] . set_Uvec_glb( u in i t ) ;
288 }else{
289 PosCtrl_TL [ i ] . set_Jac_U_Tht_Folder(”Jacobians/Joint_Stimulation_Jacobian_JUQ/”) ;
290 PosCtrl_TL [ i ] . set_Jac_Lbd_Tht_Folder(”Jacobians/Joint_Length_Jacobian_JLQ/”) ;
291 }
292 PosCtrl_TL [ i ] . Init_TL() ;
293 Eigen : : VectorXd Pos_mVec_TL=PosCtrl_TL [ i ] .get_mVec_TL() ;
294 PosCtrl_SL [ i ]=StructuralLayer (PosCtrl_CL [ i ] . get_ControlSpace () , n_tv) ;
295 PosCtrl_SL [ i ] . set_PoseNames(∗tpname) ;
296 PosCtrl_SL [ i ] . set_mVec_TL(Pos_mVec_TL) ;
297 PosCtrl_SL [ i ] . set_nmtu(nmusc) ;
298 PosCtrl_SL [ i ] . set_MtuNames(mnames) ;
299 PosCtrl_SL [ i ] . set_lCEopt( lCEopt) ;
300 PosCtrl_SL [ i ] . set_IDc(”p”) ;
301 PosCtrl_SL [ i ] . set_SL_Folder(”datacontrol/Layers/Position_Control/”+posnames [ i ]+”/

StructuralLayer/”) ;
302 PosCtrl_SL [ i ] . set_mVec_file( ”MuscleVector . dat”) ;
303 PosCtrl_SL [ i ] . set_UcocRef_Folder(”Alpha_Controller/”) ;
304 PosCtrl_SL [ i ] . set_UcocRef0(u__open) ;
305 PosCtrl_SL [ i ] . set_Sigma0(sigma) ;
306 PosCtrl_SL [ i ] . set_Kappa_Folder(”Lambda_Controller/Kappa/”) ;
307 PosCtrl_SL [ i ] . set_Kappa0(kappa) ;
308 PosCtrl_SL [ i ] . Init_SL () ;
309 }
310 }
311
312 if (FORCE_CONTROL)
313 {
314 cout << ”//////////////////////////////////////////////////////” << endl ;
315 cout << ”////////INIT FORCE CONTROLLER TODO: INCLUDE JACOBIAN” << endl ;
316 cout << ”//////////////////////////////////////////////////////”<< endl ;
317 std : : s t r ing FrcCtr lF i le ;
318 FrcCtr lF i le=”datacontrol/Layers/Force_Control/ForceController . dat” ;
319 n_frc=read_FrcCtrlFile ( FrcCtr lF i le ) ;
320 for (int i = 0; i < n_frc ; ++i ) cout << ” info () : xfnames [ i ]= ” << frcnames [ i ] << endl ;
321 FrcCtrl_CL=new ConceptionalLayer [ n_frc ] ;
322 FrcCtrl_TL = new TransformationalLayer [ n_frc ] ;
323 FrcCtrl_SL = new StructuralLayer [ n_frc ] ;
324 for (int i = 0; i < n_frc ; ++i ){
325 FrcCtrl_CL [ i ]=ConceptionalLayer (5 ,n_tv) ;
326 FrcCtrl_CL [ i ] . set_dtstep ( dtstep ) ;
327 FrcCtrl_CL [ i ] . set_PoseNames(∗tpname) ;
328 FrcCtrl_CL [ i ] . set_CLIndex( i ) ;
329 FrcCtrl_CL [ i ] . set_npos(n_frc) ;
330 FrcCtrl_CL [ i ] . set_CL_Folder(”datacontrol/Layers/Force_Control/”+ frcnames [ i ] +”/

ConceptionalLayer/”) ;
331 FrcCtrl_CL [ i ] . set_cs_fi le (”ForceTriads . dat”) ;
332 FrcCtrl_CL [ i ] . set_PID_Folder(”Force_PID/”) ;
333 FrcCtrl_CL [ i ] . set_IDc(” f”) ;
334 FrcCtrl_CL [ i ] . set_CALC_JACS(CALC_JAC_F) ;
335 if(CALC_JAC_F){ //
336 }else{

131



E. Implementation of the hierarchical control architecture

337 FrcCtrl_CL [ i ] . set_Jac_Folder(”Force_Jacobian_JQF/”) ;
338 FrcCtrl_CL [ i ] . set_Jac_sfx(” jq f ”) ;
339 FrcCtrl_CL [ i ] . set_os_fi le (”Force_Jacobian_JQF/JointVector . dat”) ;
340 }
341 FrcCtrl_CL [ i ] . Init_CL_XF() ;
342 Eigen : : VectorXd Frc_oVar_vec=FrcCtrl_CL [ i ] . get_oVar_vec() ;
343 Eigen : : VectorXd Frc_oVar_global=FrcCtrl_CL [ i ] . get_global_oVars () ;
344 for (int i = 0; i < n_dof ; ++i )if (Frc_oVar_global( i )>=common_cDoF_vec( i ) ) common_cDoF_vec( i )=

Frc_oVar_global( i ) ;
345 FrcCtrl_TL [ i ]= TransformationalLayer (FrcCtrl_CL [ i ] . get_ControlSpace () , n_tv) ;
346 FrcCtrl_TL [ i ] . set_dtstep ( dtstep ) ;
347 FrcCtrl_TL [ i ] . set_PoseNames(∗tpname) ;
348 Eigen : : VectorXd oVarVecCL=FrcCtrl_CL [ i ] . get_oVar_vec() ;
349 FrcCtrl_TL [ i ] . set_cDoFvec_CL(oVarVecCL) ;
350 FrcCtrl_TL [ i ] . set_npos(n_frc) ;
351 FrcCtrl_TL [ i ] . set_nmtu(nmusc) ;
352 FrcCtrl_TL [ i ] . set_MtuNames(mnames) ;
353 FrcCtrl_TL [ i ] . set_TLIndex( i ) ;
354 FrcCtrl_TL [ i ] . set_TL_Folder(”datacontrol/Layers/Force_Control/”+ frcnames [ i ] +”/

TransformationalLayer/”) ; //
355 FrcCtrl_TL [ i ] . set_cDoF_file ( ”JointVector . dat”) ;
356 FrcCtrl_TL [ i ] . set_mVec_file(”Jacobians/MuscleVector . dat”) ;
357 FrcCtrl_TL [ i ] . set_IDc(” f”) ;
358 FrcCtrl_TL [ i ] . set_PID_Tht_Folder(”PID/Theta_PID/”) ;
359 FrcCtrl_TL [ i ] . set_PID_Tht_Lbd_Folder(”PID/Theta_Lambda_PID/”) ;
360 FrcCtrl_TL [ i ] . set_CALC_JACS(CALC_JAC_Q) ;
361 if(CALC_JAC_Q){
362 FrcCtrl_TL [ i ] . set_Mamat_glb(Ma_mat) ;
363 FrcCtrl_TL [ i ] . set_dLseedLce_glb(dLseedLce_mat) ;
364 FrcCtrl_TL [ i ] . set_Lcevec_glb(Lce_vec) ;
365 FrcCtrl_TL [ i ] . set_Uvec_glb( u in i t ) ;
366 }else{
367 FrcCtrl_TL [ i ] . set_Jac_U_Tht_Folder(”Jacobians/Joint_Stimulation_Jacobian_JUQ/”) ;
368 FrcCtrl_TL [ i ] . set_Jac_Lbd_Tht_Folder(”Jacobians/Joint_Length_Jacobian_JLQ/”) ;
369 }
370 FrcCtrl_TL [ i ] . Init_TL() ;
371 Eigen : : VectorXd Frc_mVec_TL=FrcCtrl_TL [ i ] .get_mVec_TL() ;
372 FrcCtrl_SL [ i ]=StructuralLayer (FrcCtrl_CL [ i ] . get_ControlSpace () , n_tv) ;
373 FrcCtrl_SL [ i ] . set_PoseNames(∗tpname) ;
374 FrcCtrl_SL [ i ] . set_mVec_TL(Frc_mVec_TL) ;
375 FrcCtrl_SL [ i ] . set_nmtu(nmusc) ;
376 FrcCtrl_SL [ i ] . set_MtuNames(mnames) ;
377 FrcCtrl_SL [ i ] . set_lCEopt( lCEopt) ;
378 FrcCtrl_SL [ i ] . set_IDc(” f”) ;
379 FrcCtrl_SL [ i ] . set_SL_Folder(”datacontrol/Layers/Force_Control/”+frcnames [ i ]+”/StructuralLayer/”

) ;
380 FrcCtrl_SL [ i ] . set_mVec_file( ”MuscleVector . dat”) ;
381 FrcCtrl_SL [ i ] . set_UcocRef_Folder(”Alpha_Controller/”) ;
382 FrcCtrl_SL [ i ] . set_UcocRef0(u__open) ;
383 FrcCtrl_SL [ i ] . set_Sigma0(sigma) ;
384 FrcCtrl_SL [ i ] . set_Kappa_Folder(”Lambda_Controller/Kappa/”) ;
385 FrcCtrl_SL [ i ] . set_Kappa0(kappa) ;
386 FrcCtrl_SL [ i ] . Init_SL () ;
387 }
388 }
389 n_ctr=n_lbd+n_ang+n_trq+n_pos+n_frc ;
390 cout << ”Info () : Total number of contro l l e r s : ” << n_ctr << endl ;
391 cout << ” Lambda Control ler : ” << n_lbd << endl ;
392 cout << ” Angle Control ler : ” << n_ang << endl ;
393 cout << ” Torque Control ler : ” << n_trq << endl ;
394 cout << ” Position Control ler : ” << n_pos << endl ;
395 cout << ” Force Control ler : ” << n_frc << endl ;
396 };

132



E.5. Source code of the control module functions

Listing E.4: Function to update layer variables
1
2 void MotorControl : : UpdateLayers(double t , double∗ z , double∗ zd){
3 static bool new_cstate=true ;
4 static int old_ControlState=−1;
5
6 if( event_flag==0) ControlState=getTControlState ( t ) ;
7 if ( ControlState!=old_ControlState ){
8 new_cstate=true ;
9 }else new_cstate=fa l s e ;

10 old_ControlState=ControlState ;
11
12 if (STRUCTURAL_LAYER) getMuscleState(n_dof , n_musc, z , zd) ;
13
14 if(LAMBDA_CONTROL){
15 for (int i = 0; i < n_lbd ; ++i ){
16 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
17 if(dbg_updateLayers) cout << ”///////// Updating LAMBDA CONTROL” << endl ;
18 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
19 if(dbg_updateLayers) cout << ”///////// # ” << i << endl ;
20 if(new_cstate){
21 LbdCtrl_SL [ i ] . set_ControlState ( ControlState ) ;
22 LbdCtrl_SL [ i ] . Update_CtrlVars () ;
23 }
24 LbdCtrl_SL [ i ] . set_lCE( current_lce ) ;
25 LbdCtrl_SL [ i ] . set_vCE(current_vce) ;
26 }
27 }
28
29 if(ANGLE_CONTROL){
30 for (int i = 0; i < n_ang; ++i ){
31 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
32 if(dbg_updateLayers) cout << ”///////// Updating ANGLE CONTROL” << endl ;
33 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
34 if(dbg_updateLayers) cout << ”///////// # ” << i << endl ;
35 if(new_cstate){
36 AngCtrl_CL[ i ] . set_ControlState ( ControlState ) ;
37 AngCtrl_TL[ i ] . set_ControlState ( ControlState ) ;
38 AngCtrl_SL [ i ] . set_ControlState ( ControlState ) ;
39 }
40 AngCtrl_CL[ i ] . Update_CtrlVars () ;
41 AngCtrl_TL[ i ] . Update_CtrlVars () ;
42 AngCtrl_SL [ i ] . Update_CtrlVars () ;
43 AngCtrl_SL [ i ] . set_lCE( current_lce ) ;
44 AngCtrl_SL [ i ] . set_vCE(current_vce) ;
45 if(AngCtrl_TL[ i ] .get_CALC_JACS() ){
46 AngCtrl_TL[ i ] . set_Mamat_lcl(Ma_mat) ;
47 AngCtrl_TL[ i ] . set_dLseedLce_lcl (dLseedLce_mat) ;
48 AngCtrl_TL[ i ] . set_Lcevec_lcl ( current_lce ) ;
49 Eigen : : VectorXd Ucoc_tmp= AngCtrl_SL [ i ] . get_Ucoc() ;
50 AngCtrl_TL[ i ] . set_Uvec_lcl (Ucoc_tmp) ;
51 AngCtrl_TL[ i ] . calc_J_Lbd_Tht() ;
52 AngCtrl_TL[ i ] . calc_J_U_Tht() ;
53 }
54 }
55 }
56
57 if(TORQUE_CONTROL){
58 for (int i = 0; i < n_trq ; ++i ){
59 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
60 if(dbg_updateLayers) cout << ”///////// Updating TORQUE CONTROL” << endl ;
61 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
62 if(dbg_updateLayers) cout << ”///////// # ” << i << endl ;
63 if(new_cstate){
64 TrqCtrl_CL [ i ] . set_ControlState ( ControlState ) ;
65 TrqCtrl_TL[ i ] . set_ControlState ( ControlState ) ;
66 TrqCtrl_SL [ i ] . set_ControlState ( ControlState ) ;
67 }
68 TrqCtrl_CL [ i ] . Update_CtrlVars () ;
69 TrqCtrl_TL [ i ] . Update_CtrlVars () ;
70 TrqCtrl_SL [ i ] . Update_CtrlVars () ;
71 TrqCtrl_SL [ i ] . set_lCE( current_lce ) ;
72 TrqCtrl_SL [ i ] . set_vCE(current_vce) ;
73 if(TrqCtrl_CL [ i ] .get_CALC_JACS() ){
74 TrqCtrl_CL [ i ] . set_Mamat_lcl(Ma_mat) ;
75 TrqCtrl_CL [ i ] . set_dLseedLce_lcl (dLseedLce_mat) ;
76 TrqCtrl_CL [ i ] . set_dFcedLce_lcl (dFcedLce_mat) ;
77 TrqCtrl_CL [ i ] . calc_J_Tht_Trq() ;
78 TrqCtrl_TL[ i ] . Update_Tht_is() ;
79 Eigen : : VectorXd Thtis_tmp= TrqCtrl_TL[ i ] . get_Tht_is_glb() ;
80 TrqCtrl_CL [ i ] . set_oVar_is_lcl (Thtis_tmp) ;
81 }
82 if(TrqCtrl_TL[ i ] .get_CALC_JACS() ){
83 TrqCtrl_TL[ i ] . set_Mamat_lcl(Ma_mat) ;
84 TrqCtrl_TL[ i ] . set_dLseedLce_lcl (dLseedLce_mat) ;
85 TrqCtrl_TL[ i ] . set_Lcevec_lcl ( current_lce ) ;
86 Eigen : : VectorXd Ucoc_tmp= TrqCtrl_SL [ i ] . get_Ucoc() ;
87 TrqCtrl_TL[ i ] . set_Uvec_lcl (Ucoc_tmp) ;
88 TrqCtrl_TL[ i ] . calc_J_Lbd_Tht() ;

133



E. Implementation of the hierarchical control architecture

89 TrqCtrl_TL[ i ] . calc_J_U_Tht() ;
90 }
91 }
92 }
93
94 if(POSITION_CONTROL){
95 for (int i = 0; i < n_pos ; ++i ){
96 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
97 if(dbg_updateLayers) cout << ”///////// Updating POSITION CONTROL” << endl ;
98 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
99 if(dbg_updateLayers) cout << ”///////// # ” << i << endl ;

100 if(new_cstate){
101 PosCtrl_CL [ i ] . set_ControlState ( ControlState ) ;
102 PosCtrl_TL [ i ] . set_ControlState ( ControlState ) ;
103 PosCtrl_SL [ i ] . set_ControlState ( ControlState ) ;
104 }
105 PosCtrl_CL [ i ] . Update_CtrlVars () ;
106 PosCtrl_TL [ i ] . Update_CtrlVars () ;
107 PosCtrl_SL [ i ] . Update_CtrlVars () ;
108 PosCtrl_SL [ i ] . set_lCE( current_lce ) ;
109 PosCtrl_SL [ i ] . set_vCE(current_vce) ;
110 if(PosCtrl_CL [ i ] .get_CALC_JACS() ){
111 Eigen : : MatrixXd TESTJAC;
112 PosCtrl_CL [ i ] . calc_J_Pos_Ang_mat(TESTJAC) ;
113 PosCtrl_CL [ i ] . calc_J_Ang_Pos_mat(TESTJAC) ;
114 PosCtrl_TL [ i ] . Update_Tht_is() ;
115 Eigen : : VectorXd ThtPosis_tmp= PosCtrl_TL [ i ] . get_Tht_is_glb() ;
116 Eigen : : MatrixXd PermPosDof_tmp= PosCtrl_CL [ i ] . get_Perm_os_Mat_Mat() ;
117 PosCtrl_CL [ i ] . set_oVar_is_lcl (ThtPosis_tmp) ;
118 }
119 if(PosCtrl_TL [ i ] .get_CALC_JACS() ){
120 PosCtrl_TL [ i ] . set_Mamat_lcl(Ma_mat) ;
121 PosCtrl_TL [ i ] . set_dLseedLce_lcl (dLseedLce_mat) ;
122 PosCtrl_TL [ i ] . set_Lcevec_lcl ( current_lce ) ;
123 Eigen : : VectorXd Ucoc_tmp= PosCtrl_SL [ i ] . get_Ucoc() ;
124 PosCtrl_TL [ i ] . set_Uvec_lcl (Ucoc_tmp) ;
125 PosCtrl_TL [ i ] . calc_J_Lbd_Tht() ;
126 PosCtrl_TL [ i ] . calc_J_U_Tht() ;
127 }
128 }
129 }
130
131 if(FORCE_CONTROL){
132 for (int i = 0; i < n_frc ; ++i ){
133 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
134 if(dbg_updateLayers) cout << ”///////// Updating FORCE CONTROL” << endl ;
135 if(dbg_updateLayers) cout << ”////////////////////////////////////////////////////” << endl ;
136 if(dbg_updateLayers) cout << ”///////// # ” << i << endl ;
137 if(new_cstate){
138 FrcCtrl_CL [ i ] . set_ControlState ( ControlState ) ;
139 FrcCtrl_TL [ i ] . set_ControlState ( ControlState ) ;
140 FrcCtrl_SL [ i ] . set_ControlState ( ControlState ) ;
141 }
142 }
143 }
144 return ;
145 }

134



E.5. Source code of the control module functions

Listing E.5: Function to update total muscle stimulation
1 Eigen : : VectorXd MotorControl : : UpdateStim( double t , int ndof , int nmusc, double∗ z , double∗ zd){
2 Stim_Lbd_mat = Eigen : : MatrixXd : : Zero(nmusc, n_ctr) ;
3 Stim_Tht_mat = Eigen : : MatrixXd : : Zero(nmusc, n_ctr) ;
4 Stim_Coc_mat = Eigen : : MatrixXd : : Zero(nmusc, n_ctr) ;
5 Stim_Tht_Coc_mat = Eigen : : MatrixXd : : Zero(nmusc, n_ctr) ;
6
7 static double t_old=t ;
8 static double dt=0;
9 static int i n i t =0;

10
11 dt=t−t_old ;
12 if (dt>=dtstep ) t_old=t ;
13
14 if(LAMBDA_CONTROL){
15 for (int i = 0; i < n_lbd ; ++i ){
16 cout << ”////////////////////////////////////////////////////” << endl ;
17 cout << ”///////// LAMBDA CONTROL STIMULATION” << endl ;
18 cout << ”////////////////////////////////////////////////////” << endl ;
19 cout << ”///////// #” << i << endl ;
20 Stim_Lbd_mat. col ( i )=LbdCtrl_SL [ i ] .Update_U_Lbd() ;
21 Stim_Coc_mat. col ( i )=LbdCtrl_SL [ i ] . get_Ucoc() ;
22 }
23 }
24
25 if(ANGLE_CONTROL){
26 for (int i = 0; i < n_ang; ++i ){
27 cout << ”////////////////////////////////////////////////////” << endl ;
28 cout << ”///////// ANGLE CONTROL STIMULATION” << endl ;
29 cout << ”////////////////////////////////////////////////////” << endl ;
30 cout << ”///////// #” << i << endl ;
31 AngCtrl_CL[ i ] . Update_oVar() ;
32 Eigen : : VectorXd Tht_des_global=AngCtrl_CL[ i ] . get_global_oVar () ;
33 AngCtrl_TL[ i ] . set_Tht_des(Tht_des_global) ;
34 AngCtrl_TL[ i ] . Update_Tht_is() ;
35 AngCtrl_TL[ i ] . Update_Tht_d() ;
36 AngCtrl_TL[ i ] . Update_Tht_err() ;
37 AngCtrl_TL[ i ] . Update_Tht_i(dt) ;
38 AngCtrl_TL[ i ] . Update_Tht_pid() ;
39 AngCtrl_TL[ i ] . Update_Tht_Lbd_pid() ;
40 Eigen : : VectorXd Lbdtht_tmp= AngCtrl_TL[ i ] . Update_Lbd_Tht() ;
41 Eigen : : VectorXd Utht_tmp =AngCtrl_TL[ i ] .Update_U_Tht() ;
42 Eigen : : VectorXd Uthtcoc_tmp=AngCtrl_TL[ i ] .Update_U_Tht_Coc() ;
43 Stim_Tht_mat. col (n_lbd+i ) = Utht_tmp;
44 Stim_Tht_Coc_mat. col (n_lbd+i )=Uthtcoc_tmp;
45 AngCtrl_SL [ i ] . set_Utht(Utht_tmp) ;
46 AngCtrl_SL [ i ] . set_Uthtcoc(Uthtcoc_tmp) ;
47 AngCtrl_SL [ i ] . set_Lambda(Lbdtht_tmp) ;
48 Stim_Lbd_mat. col (n_lbd+i )=AngCtrl_SL [ i ] .Update_U_Lbd() ;
49 Stim_Coc_mat. col (n_lbd+i )=AngCtrl_SL [ i ] . get_Ucoc() ;
50 }
51 }
52
53 if(TORQUE_CONTROL){
54 for (int i = 0; i < n_trq ; ++i ){
55 cout << ”////////////////////////////////////////////////////” << endl ;
56 cout << ”///////// TORQUE CONTROL STIMULATION” << endl ;
57 cout << ”////////////////////////////////////////////////////” << endl ;
58 cout << ”///////// #” << i << endl ;
59 TrqCtrl_CL [ i ] . set_Fmtu_lcl(Fmtu_vec) ;
60 TrqCtrl_CL [ i ] . Update_Trq_is() ;
61 TrqCtrl_CL [ i ] . Update_cVar_err() ;
62 TrqCtrl_CL [ i ] . Update_cVar_d(dt) ;
63 TrqCtrl_CL [ i ] . Update_cVar_d_err() ;
64 TrqCtrl_CL [ i ] . Update_cVar_i(dt) ;
65 TrqCtrl_CL [ i ] . Update_cVar_pid() ;
66 TrqCtrl_CL [ i ] . Update_oVar() ;
67 Eigen : : VectorXd Tht_des_global=TrqCtrl_CL [ i ] . get_global_oVar () ;
68 TrqCtrl_TL [ i ] . set_Tht_des(Tht_des_global) ;
69 TrqCtrl_TL [ i ] . Update_Tht_d() ;
70 TrqCtrl_TL [ i ] . Update_Tht_err() ;
71 TrqCtrl_TL [ i ] . Update_Tht_i(dt) ;
72 TrqCtrl_TL [ i ] . Update_Tht_pid() ;
73 TrqCtrl_TL [ i ] . Update_Tht_Lbd_pid() ;
74 Eigen : : VectorXd Lbdthttrq_tmp= TrqCtrl_TL[ i ] . Update_Lbd_Tht() ;
75 Eigen : : VectorXd Utht_tmp = TrqCtrl_TL[ i ] .Update_U_Tht() ;
76 Eigen : : VectorXd Uthtcoc_tmp = TrqCtrl_TL[ i ] .Update_U_Tht_Coc() ;
77 Stim_Tht_mat. col (n_lbd+n_ang+i ) = Utht_tmp;
78 Stim_Tht_Coc_mat. col (n_lbd+n_ang+i )=Uthtcoc_tmp;
79 TrqCtrl_SL [ i ] . set_Utht(Utht_tmp) ;
80 TrqCtrl_SL [ i ] . set_Uthtcoc(Uthtcoc_tmp) ;
81 TrqCtrl_SL [ i ] . set_Lambda(Lbdthttrq_tmp) ;
82 Stim_Lbd_mat. col (n_lbd+n_ang+i )=TrqCtrl_SL [ i ] .Update_U_Lbd() ;
83 Stim_Coc_mat. col (n_lbd+n_ang+i )=TrqCtrl_SL [ i ] . get_Ucoc() ;
84 }
85 }
86
87 if(POSITION_CONTROL){
88 for (int i = 0; i < n_pos ; ++i ){

135



E. Implementation of the hierarchical control architecture

89 cout << ”////////////////////////////////////////////////////” << endl ;
90 cout << ”///////// POSITION CONTROL STIMULATION” << endl ;
91 cout << ”////////////////////////////////////////////////////” << endl ;
92 cout << ”///////// #” << i << endl ;
93 PosCtrl_CL [ i ] . Update_Pos_is() ;
94 PosCtrl_CL [ i ] . Update_Pos_des() ;
95 PosCtrl_CL [ i ] . Update_cVar_err() ;
96 PosCtrl_CL [ i ] . Update_cVar_d(dt) ;
97 PosCtrl_CL [ i ] . Update_cVar_d_err() ;
98 PosCtrl_CL [ i ] . Update_cVar_i(dt) ;
99 PosCtrl_CL [ i ] . Update_cVar_pid() ;

100 PosCtrl_CL [ i ] . Update_oVar() ;
101 Eigen : : MatrixXd Perm_tmp=PosCtrl_CL [ i ] . get_Perm_os_Mat_Mat() ;
102 Eigen : : VectorXd Tht_des_global=PosCtrl_CL [ i ] . get_global_oVar () ;
103 PosCtrl_TL [ i ] . set_Tht_des(Tht_des_global) ;
104 PosCtrl_TL [ i ] . Update_Tht_d() ;
105 PosCtrl_TL [ i ] . Update_Tht_err() ;
106 PosCtrl_TL [ i ] . Update_Tht_i(dt) ;
107 PosCtrl_TL [ i ] . Update_Tht_pid() ;
108 PosCtrl_TL [ i ] . Update_Tht_Lbd_pid() ;
109 Eigen : : VectorXd Lbdthtpos_tmp= PosCtrl_TL [ i ] . Update_Lbd_Tht() ;
110 Eigen : : VectorXd Utht_tmp = PosCtrl_TL [ i ] .Update_U_Tht() ;
111 Eigen : : VectorXd Uthtcoc_tmp=PosCtrl_TL [ i ] .Update_U_Tht_Coc() ;
112 Stim_Tht_mat. col (n_lbd+n_ang+n_trq+i ) = Utht_tmp;
113 Stim_Tht_Coc_mat. col (n_lbd+n_ang+n_trq+i )=Uthtcoc_tmp;
114 PosCtrl_SL [ i ] . set_Utht(Utht_tmp) ;
115 PosCtrl_SL [ i ] . set_Uthtcoc(Uthtcoc_tmp) ;
116 PosCtrl_SL [ i ] . set_Lambda(Lbdthtpos_tmp) ;
117 Stim_Lbd_mat. col (n_lbd+n_ang+n_trq+i )=PosCtrl_SL [ i ] .Update_U_Lbd() ;
118 Stim_Coc_mat. col (n_lbd+n_ang+n_trq+i )=PosCtrl_SL [ i ] . get_Ucoc() ;
119 }
120 }
121
122 if(FORCE_CONTROL){
123 for (int i = 0; i < n_frc ; ++i ){
124 cout << ”////////////////////////////////////////////////////” << endl ;
125 cout << ”///////// FORCE CONTROL STIMULATION” << endl ;
126 cout << ”////////////////////////////////////////////////////” << endl ;
127 cout << ”///////// #” << i << endl ;
128 }
129 }
130
131 Eigen : : VectorXd U_Lbd=Eigen : : VectorXd : : Zero(nmusc) ;
132 Eigen : : VectorXd U_Tht=Eigen : : VectorXd : : Zero(nmusc) ;
133 Eigen : : VectorXd U_coc=Eigen : : VectorXd : : Zero(nmusc) ;
134 Eigen : : VectorXd U_Tht_coc=Eigen : : VectorXd : : Zero(nmusc) ;
135
136 Eigen : : VectorXd U_total=Eigen : : VectorXd : : Zero(nmusc) ;
137
138 for (int i = 0; i < n_ctr ; ++i ){
139 U_Lbd += Stim_Lbd_mat. col ( i ) ; ///22.5;
140 U_Tht += Stim_Tht_mat. col ( i ) ;
141 U_coc += Stim_Coc_mat. col ( i ) ;
142 U_Tht_coc += Stim_Tht_Coc_mat. col ( i ) ;
143 }
144
145 U_total=U_Lbd+U_Tht+U_coc+U_Tht_coc;
146
147 if( noisef lag ){
148 Eigen : : VectorXd Onesnmusc= Eigen : : VectorXd : : Ones(nmusc) ;
149 U_total . array ()=U_total . array () ∗(Onesnmusc . array ()+U_noise . array () ) ;
150 }
151
152 for (int i = 0; i < nmusc; ++i ){
153 if(U_total( i ) <= 0.01) U_total( i ) = 0.01; //
154 else if(U_total( i ) >= 1.0) U_total( i ) = 1.0;
155 }
156
157 return U_total ;
158 }

136



E.5. Source code of the control module functions

Listing E.6: modified Dijkstra’s algorithm for the calculation of the adjacency matrix and
the moment arms

1
2 Eigen : : VectorXd MotorControl : : Di jkstra (Eigen : : MatrixXd A, int src , int dest ){
3 int V=A. rows() ;
4 Eigen : : VectorXd d is t ;
5 d is t=Eigen : : VectorXd : : Zero(V) ;
6 Eigen : : VectorXd sptSet ;
7 sptSet=Eigen : : VectorXd : : Zero(V) ;
8 Eigen : : VectorXd parent ;
9 parent=Eigen : : VectorXd : : Zero(V) ;

10 for (int i = 0; i < V; i++)
11 {
12 parent ( src ) = −1;
13 d is t ( i ) = INT_MAX;
14 sptSet ( i ) = 0;
15 }
16 d is t ( src ) = 0;
17 for (int count = 0; count < V − 1; count++)
18 {
19 int u = DijkstraMinDist ( dist , sptSet , V) ;
20 sptSet (u) = 1;
21 for (int v = 0; v < V; v++)
22 if ( sptSet (v)==0 && A(u , v) &&
23 d is t (u) + 1 < dis t (v) )
24 {
25 parent (v) = u;
26 d is t (v) = dis t (u) + 1;
27 }
28 }
29 int nJoints=A. maxCoeff()+1;
30 Eigen : : VectorXd corrvectest , corrtest ;
31 corrvectest=Eigen : : VectorXd : : Zero( nJoints ) ;
32 corrvectest=DijkstraSolution ( dist , V, parent , src , dest , corrvectest , A) ;
33 return corrvectest ;
34 }
35
36 Eigen : : VectorXd MotorControl : : DijkstraPath (Eigen : : VectorXd parent , int src , Eigen : : VectorXd corrvectest , Eigen : :

MatrixXd A){
37 if(parent ( src ) == − 1) return corrvectest ;
38 if(parent ( src ) <= src ) corrvectest (A(parent ( src ) , src ) )+=1;
39 if(parent ( src ) >= src ) corrvectest (A(parent ( src ) , src ) )−=1;
40 corrvectest=DijkstraPath (parent , parent ( src ) , corrvectest , A) ;
41 return corrvectest ;
42 }
43
44
45 Eigen : : VectorXd MotorControl : : DijkstraSolution (Eigen : : VectorXd dist , int n , Eigen : : VectorXd parent , int src , int dest ,

Eigen : : VectorXd corrvectest , Eigen : : MatrixXd A){
46 int i=dest ;
47 corrvectest=DijkstraPath (parent , i , corrvectest , A) ;
48 return corrvectest ;
49 }
50
51 int MotorControl : : DijkstraMinDist (Eigen : : VectorXd dist , Eigen : : VectorXd sptSet , int n) {
52 int min = INT_MAX;
53 int min_index=0;
54 for (int v = 0; v < n; v++)
55 if ( sptSet (v) == 0 && dist (v) <= min)
56 min = dis t (v) , min_index = v ;
57
58 return min_index ;
59 }

137



E. Implementation of the hierarchical control architecture

E.5.3 Functions in uconclayer.cpp

Listing E.7: Conceptional layer initialisation function for angle and torque control
1
2 void ConceptionalLayer : : Init_CL_QT(){
3 ControlState_old=−1;
4 ControlState=0;
5 cout << ”//////////////////////////////////////////////////////” << endl ;
6 cout << ”////////INIT CONCEPTIONAL LAYER ANG/TRQ”<< endl ;
7 cout << ”//////////////////////////////////////////////////////”<< endl ;
8
9 n_dof=model . dof () ;

10 n_cs= read_cs_file (cVar_vec , CL_Folder + cs_f i l e ) ;
11 n_os=n_cs ;
12 oVar_vec=cVar_vec ;
13 n_cdof=n_cs ;
14 Perm_cDoF_Mat=Eigen : : MatrixXd : : Zero(n_cs , n_dof) ;
15 Perm_cDoF_Mat = calc_cDoFPermutation(cVar_vec) ;
16 cVar_des_array=new double∗∗[n_tv ] ;
17 for (int i = 0; i < n_tv ; i++){
18 cVar_des_array [ i ]=new double∗[n_cs ] ;
19 for(int j=0; j<n_cs ; j++){
20 cVar_des_array [ i ] [ j ]=new double [ 1 ] ;
21 }
22 }
23 csdesname = new std : : s t r ing [n_tv ] ;
24 read_cs_des_file () ;
25 cVar_dess = new Eigen : : VectorXd [n_tv ] ;
26 for (int i = 0; i < n_tv ; ++i ){
27 cVar_dess [ i ]=Eigen : : VectorXd : : Zero(n_cs) ;
28 cVar_dess [ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,1 , cVar_des_array [ i ] ) ;
29 }
30 if (ControlSpace==3)
31 {
32 P_CLarrd=new double∗∗[n_tv ] ;
33 D_CLarrd=new double∗∗[n_tv ] ;
34 I_CLarrd=new double∗∗[n_tv ] ;
35 for (int i = 0; i < n_tv ; i++){
36 P_CLarrd[ i ]=new double∗[n_cs ] ;
37 D_CLarrd[ i ]=new double∗[n_cs ] ;
38 I_CLarrd [ i ]=new double∗[n_cs ] ;
39 for(int j=0; j<n_cs ; j++){
40 P_CLarrd[ i ] [ j ]=new double [ n_cs ] ;
41 D_CLarrd[ i ] [ j ]=new double [ n_cs ] ;
42 I_CLarrd [ i ] [ j ]=new double [ n_cs ] ;
43 }
44 }
45 read_PIDFiles () ;
46 P_CLs = new Eigen : : MatrixXd [n_tv ] ;
47 I_CLs = new Eigen : : MatrixXd [n_tv ] ;
48 D_CLs = new Eigen : : MatrixXd [n_tv ] ;
49 for (int i = 0; i < n_tv ; ++i ){
50 P_CLs[ i ]=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
51 I_CLs [ i ]=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
52 D_CLs[ i ]=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
53 P_CLs[ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,n_cs ,P_CLarrd[ i ] ) ;
54 I_CLs [ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,n_cs , I_CLarrd [ i ] ) ;
55 D_CLs[ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,n_cs ,D_CLarrd[ i ] ) ;
56 }
57 if(CALC_JACS){
58 Eigen : : MatrixXd Ma_mat_tmp;
59 Ma_mat_tmp=Ma_mat_glb ∗ Perm_cDoF_Mat. transpose () ;
60 mVec_CL_global = Eigen : : VectorXd : : Zero(n_mtu) ;
61 mVec_CL = Eigen : : VectorXd : : Zero(n_mtu) ;
62 n_cmtu = 0;
63 for (int i = 0; i < n_mtu; ++i ){
64 if((Ma_mat_tmp. row( i ) ) .norm()!=0){
65 mVec_CL_global( i )=i +1;
66 mVec_CL(n_cmtu)=i +1;
67 n_cmtu++;
68 }
69 }
70 mVec_CL. conservativeResize (n_cmtu) ;
71 Perm_cMtu_Mat_CL = Eigen : : MatrixXd : : Zero(n_cmtu,n_mtu) ;
72 Perm_cMtu_Mat_CL = calc_cMtuPermutation(mVec_CL) ;
73 Ma_mat_lcl=Perm_cMtu_Mat_CL∗Ma_mat_tmp;
74 dLseedLce_mat_lcl=Perm_cMtu_Mat_CL∗dLseedLce_mat_glb∗Perm_cMtu_Mat_CL. transpose () ;
75 dFcedLce_mat_lcl=Perm_cMtu_Mat_CL∗dFcedLce_mat_glb∗Perm_cMtu_Mat_CL. transpose () ;
76 J_os_cs=Eigen : : MatrixXd : : Zero(n_os ,n_cs) ;
77 calc_J_Tht_Trq() ;
78 }else{
79 J_os_csarrd=new double∗∗[n_tv ] ;
80 for (int i = 0; i < n_tv ; i++){
81 J_os_csarrd [ i ]=new double∗[n_os ] ;
82 for(int j=0; j<n_os ; j++) J_os_csarrd [ i ] [ j ]=new double [ n_cs ] ;
83 }
84 read_JacFiles () ;

138



E.5. Source code of the control module functions

85 J_os_cs=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
86 J_os_css = new Eigen : : MatrixXd [n_tv ] ;
87 for (int i = 0; i < n_tv ; ++i ){
88 J_os_css [ i ]=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
89 J_os_css [ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,n_cs , J_os_csarrd [ i ] ) ;
90 }
91 }
92 P_CL. res i ze (n_cs , n_cs) ;
93 D_CL. res i ze (n_cs , n_cs) ;
94 I_CL. res i ze (n_cs , n_cs) ;
95 P_CL =Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
96 D_CL =Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
97 I_CL =Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
98 }
99 sensInFlagJC . res i ze (n_cs ,1) ;

100 sensInFlagJC=Eigen : : VectorXd : : Zero(n_cs) ;
101 cVar_is . r e s i ze (n_cs ,1) ;
102 cVar_des . res i ze (n_cs ,1) ;
103 cVar_err . re s i ze (n_cs ,1) ;
104 cVar_d_err . r e s i ze (n_cs ,1) ;
105 cVar_d_des . re s i ze (n_cs ,1) ;
106 cVar_pid . re s i ze (n_cs ,1) ;
107 cVar_i . r e s i ze (n_cs ,1) ;
108 cVar_d. res i ze (n_cs ,1) ;
109 cVar_old . re s i ze (n_cs ,1) ;
110 oVar_is_lcl . r e s i ze (n_os,1) ;
111 cVar_is=Eigen : : VectorXd : : Zero(n_cs) ;
112 cVar_des=Eigen : : VectorXd : : Zero(n_cs) ;
113 cVar_err=Eigen : : VectorXd : : Zero(n_cs) ;
114 cVar_d_err=Eigen : : VectorXd : : Zero(n_cs) ; ;
115 cVar_d_des=Eigen : : VectorXd : : Zero(n_cs) ; ;
116 cVar_i=Eigen : : VectorXd : : Zero(n_cs) ;
117 cVar_d=Eigen : : VectorXd : : Zero(n_cs) ;
118 cVar_old = Eigen : : VectorXd : : Zero(n_cs) ;
119 oVar_cVar=Eigen : : VectorXd(n_os) ;
120 oVar_is_lcl=Eigen : : VectorXd(n_os) ;
121 Perm_os_Mat = Eigen : : MatrixXd : : Zero(n_os , n_dof) ;
122 Perm_os_Mat = calc_os_Permutation() ;
123
124 return ;
125 };

Listing E.8: Conceptional layer initialisation function for position and force control
1
2 void ConceptionalLayer : : Init_CL_XF(){
3 ControlState_old=−1;
4 cout << ”//////////////////////////////////////////////////////” << endl ;
5 cout << ”////////INIT CONCEPTIONAL LAYER”<< endl ;
6 cout << ”//////////////////////////////////////////////////////”<< endl ;
7 n_dof=model . dof () ;
8 n_cs = read_TrdFile (CL_Folder + cs_f i l e ) ; //n_cs=6
9 cVar_vec=Eigen : : VectorXd : : Zero(n_cs) ;

10 const Body ∗ cBdy = model . t r iad (cTrd_ID)−>parent () ;
11 const Body ∗ rBdy = model . t r iad (rTrd_ID)−>parent () ;
12 const Body ∗ tBdy ;
13 int cBdy_ID=0;
14 int rBdy_ID=0;
15 int ncountbodies=1;
16 for (int i = 0; i < ncountbodies ; ++i ){
17 tBdy=model . body( i ) ;
18 if(cBdy−>name()==tBdy−>name() ) cBdy_ID=i ;
19 else ncountbodies++;
20 }
21 ncountbodies=1;
22 for (int i = 0; i < ncountbodies ; ++i ){
23 tBdy=model . body( i ) ;
24 if(rBdy−>name()==tBdy−>name() ) rBdy_ID=i ;
25 else ncountbodies++;
26 }
27 rM_mat=Eigen : : Matrix4d : : Ident i ty () ;
28 rM_Bdy_mat=Eigen : : Matrix4d : : Ident i ty () ;
29 rM_Trd_mat=Eigen : : Matrix4d : : Ident i ty () ;
30 getTriadM(rTrd_ID , rM_Trd_mat) ;
31 getTriadParentBodyM(rTrd_ID , rM_Bdy_mat) ;
32 rM_mat=rM_Bdy_mat∗rM_Trd_mat;
33 cM_mat=Eigen : : Matrix4d : : Ident i ty () ;
34 cM_Bdy_mat=Eigen : : Matrix4d : : Ident i ty () ;
35 cM_Trd_mat=Eigen : : Matrix4d : : Ident i ty () ;
36 getTriadM(cTrd_ID, cM_Trd_mat) ;
37 getTriadParentBodyM(cTrd_ID, cM_Bdy_mat) ;
38 cM_mat=rM_mat∗(cM_Bdy_mat∗cM_Trd_mat) ;
39 cTrd_des_IDs=new int [ n_tv ] ;
40 csdesname = new std : : s t r ing [n_tv ] ;
41 read_Trd_des_file () ;
42 cTrd_des_ID=cTrd_des_IDs [ 0 ] ;
43 cTrd_des_ID_old=cTrd_des_ID;
44 cM_des_mat=Eigen : : Matrix4d : : Ident i ty () ;

139



E. Implementation of the hierarchical control architecture

45 cM_Bdy_des_mat=Eigen : : Matrix4d : : Ident i ty () ;
46 cM_Trd_des_mat=Eigen : : Matrix4d : : Ident i ty () ;
47 getTriadM(cTrd_des_ID, cM_Trd_des_mat) ;
48 getTriadParentBodyM(cTrd_des_ID, cM_Bdy_des_mat) ;
49 cM_des_mat=cM_Bdy_des_mat∗cM_Trd_des_mat;
50 P_CLarrd=new double∗∗[n_tv ] ;
51 D_CLarrd=new double∗∗[n_tv ] ;
52 I_CLarrd=new double∗∗[n_tv ] ;
53 for (int i = 0; i < n_tv ; i++){
54 P_CLarrd[ i ]=new double∗[n_cs ] ;
55 D_CLarrd[ i ]=new double∗[n_cs ] ;
56 I_CLarrd [ i ]=new double∗[n_cs ] ;
57 for(int j=0; j<n_cs ; j++){
58 P_CLarrd[ i ] [ j ]=new double [ n_cs ] ;
59 D_CLarrd[ i ] [ j ]=new double [ n_cs ] ;
60 I_CLarrd [ i ] [ j ]=new double [ n_cs ] ;
61 }
62 }
63 read_PIDFiles () ;
64 P_CLs = new Eigen : : MatrixXd [n_tv ] ;
65 I_CLs = new Eigen : : MatrixXd [n_tv ] ;
66 D_CLs = new Eigen : : MatrixXd [n_tv ] ;
67 for (int i = 0; i < n_tv ; ++i ){
68 P_CLs[ i ]=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
69 I_CLs [ i ]=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
70 D_CLs[ i ]=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
71 P_CLs[ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,n_cs ,P_CLarrd[ i ] ) ;
72 I_CLs [ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,n_cs , I_CLarrd [ i ] ) ;
73 D_CLs[ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,n_cs ,D_CLarrd[ i ] ) ;
74 }
75
76 if(CALC_JACS){
77 Eigen : : MatrixXd Adj_mat;
78 Adj_mat=myMotControl .get_Adj_mat() ;
79 int n_mdljnts= Adj_mat. maxCoeff()+1;
80 Eigen : : VectorXd Path_r_c = Eigen : : VectorXd : : Zero(n_mdljnts) ;
81 Path_r_c=myMotControl . Dijkstra (Adj_mat, rBdy_ID, cBdy_ID) ;
82 DofToJoint = Eigen : : VectorXd : : Zero(n_dof) ;
83 int count_jdof=0;
84 for (int i i = 0; i i < n_mdljnts ; ++i i ){
85 int n_jdof=model . jo in t ( i i )−>dof () ;
86 for (int i i i = 0; i i i < n_jdof ; ++i i i ){
87 DofToJoint(count_jdof )=i i ;
88 count_jdof+=1;
89 }
90 }
91 oVar_vec = Eigen : : VectorXd : : Zero(n_dof) ;
92 n_os=0;
93 n_jrc=0;
94 for (int i = 0; i < n_mdljnts ; ++i ){
95 if(Path_r_c( i ) ){
96 Path_r_c( i )=i ;
97 n_jrc++;
98 for (int i i = 0; i i < n_dof ; ++i i ){
99 if (DofToJoint( i i )==i ){

100 oVar_vec(n_os)=i i +1;
101 n_os++;
102 }
103 }
104 }
105 }
106 oVar_vec . conservativeResize (n_os) ;
107 J_Pos_Ang_mat=Eigen : : MatrixXd : : Zero(6 ,n_os) ;
108 J_Ang_Pos_mat=Eigen : : MatrixXd : : Zero(n_os,6) ;
109 calc_J_Pos_Ang_mat(J_Pos_Ang_mat) ;
110 calc_J_Ang_Pos_mat(J_Ang_Pos_mat) ;
111 J_os_cs=J_Ang_Pos_mat;
112 }else{
113 n_os= read_cs_file (oVar_vec , CL_Folder + os_f i le ) ;
114 J_os_csarrd=new double∗∗[n_tv ] ;
115 for (int i = 0; i < n_tv ; i++){
116 J_os_csarrd [ i ]=new double∗[n_os ] ;
117 for(int j=0; j<n_os ; j++) J_os_csarrd [ i ] [ j ]=new double [ n_cs ] ;
118 }
119 read_JacFiles () ;
120 J_os_css = new Eigen : : MatrixXd [n_tv ] ;
121 for (int i = 0; i < n_tv ; ++i ){
122 J_os_css [ i ]=Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
123 J_os_css [ i ]=myMotControl . ConvertToEigenMatrix(n_cs ,n_cs , J_os_csarrd [ i ] ) ;
124 }
125 }
126
127 J_os_cs . re s i ze (n_os ,n_cs) ;
128 J_os_cs =Eigen : : MatrixXd : : Zero(n_os ,n_cs) ;
129 P_CL. res i ze (n_cs , n_cs) ;
130 D_CL. res i ze (n_cs , n_cs) ;
131 I_CL. res i ze (n_cs , n_cs) ;
132 P_CL =Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
133 D_CL =Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;
134 I_CL =Eigen : : MatrixXd : : Zero(n_cs , n_cs) ;

140



E.5. Source code of the control module functions

135 sensInFlagJC . res i ze (n_cs ,1) ;
136 sensInFlagJC=Eigen : : VectorXd : : Zero(n_cs) ;
137 cVar_is . r e s i ze (n_cs ,1) ;
138 cVar_des . res i ze (n_cs ,1) ;
139 cVar_err . re s i ze (n_cs ,1) ;
140 cVar_d_err . r e s i ze (n_cs ,1) ;
141 cVar_d_des . re s i ze (n_cs ,1) ;
142 cVar_pid . re s i ze (n_cs ,1) ;
143 cVar_i . r e s i ze (n_cs ,1) ;
144 cVar_d. res i ze (n_cs ,1) ;
145 cVar_old . re s i ze (n_cs ,1) ;
146 oVar_is_lcl . r e s i ze (n_os,1) ;
147 cVar_is=Eigen : : VectorXd : : Zero(n_cs) ;
148 cVar_des=Eigen : : VectorXd : : Zero(n_cs) ; //readFromFile !
149 cVar_err=Eigen : : VectorXd : : Zero(n_cs) ;
150 cVar_d_err=Eigen : : VectorXd : : Zero(n_cs) ; ;
151 cVar_d_des=Eigen : : VectorXd : : Zero(n_cs) ; ;
152 cVar_i=Eigen : : VectorXd : : Zero(n_cs) ;
153 cVar_d=Eigen : : VectorXd : : Zero(n_cs) ;
154 cVar_old = Eigen : : VectorXd : : Zero(n_cs) ;
155 oVar_cVar=Eigen : : VectorXd(n_os) ;
156 oVar_is_lcl=Eigen : : VectorXd(n_os) ;
157 Perm_os_Mat = Eigen : : MatrixXd : : Zero(n_os , n_dof) ;
158 Perm_os_Mat = calc_os_Permutation() ;
159
160 return ;
161 };

Listing E.9: Function to update conceptional layer control variables
1 void ConceptionalLayer : : Update_CtrlVars (){
2 if ( ControlState!=ControlState_old ) {
3 ControlState_old=ControlState ;
4 dbg_CL_runtime=true ;
5 if(ControlSpace==2 | | ControlSpace==3){
6 cVar_des=cVar_dess [ ControlState ] ;
7 sensInFlagJC=Eigen : : VectorXd : : Zero(n_cs) ;
8 }
9 if(ControlSpace==3 | | ControlSpace==4 | | ControlSpace==5){

10 P_CL=P_CLs[ ControlState ] ;
11 I_CL=I_CLs [ ControlState ] ;
12 D_CL=D_CLs[ ControlState ] ;
13 if ( !CALC_JACS) J_os_cs=J_os_css [ ControlState ] ;
14 }
15 if(ControlSpace==2 | | ControlSpace==3){
16 if(ControlSpace==2){//SenseIn
17 for (int i = 0; i < n_cs ; ++i )
18 {
19 if(cVar_des( i )==888) sensInFlagJC( i )=1;
20 if( sensInFlagJC( i )==1) {
21 cout << ”Error () : SensIn detected , but not yet implemented ! ! sett ing desired

value of [cDoF_ID= ”<<i<<” ] to 777, i . e . er r=0” << endl ;
22 cVar_des( i )=777;
23 }
24 }
25 }
26 }
27 }
28 dbg_CL_runtime=fa l s e ;
29 return ;
30 }

Listing E.10: Function to update current torques
1 void ConceptionalLayer : : Update_Trq_is(){
2 cVar_is=−Ma_mat_lcl . transpose ()∗Fmtu_vec_lcl ;
3 return ;
4 };

Listing E.11: Function to update desired positions
1 void ConceptionalLayer : : Update_Pos_des(){
2 getTriadM(rTrd_ID , rM_Trd_mat) ;
3 getTriadParentBodyM(rTrd_ID , rM_Bdy_mat) ;
4 rM_mat=rM_Bdy_mat∗rM_Trd_mat;
5 getTriadM(cTrd_des_ID, cM_Trd_des_mat) ;
6 getTriadParentBodyM(cTrd_des_ID, cM_Bdy_des_mat) ;
7 cM_des_mat=(cM_Bdy_des_mat∗cM_Trd_des_mat) ;
8 cVar_des . head(3)=Eigen : : Vector3d(cM_des_mat(0 ,3) , cM_des_mat(1 ,3) ,cM_des_mat(2 ,3) ) ;
9 cVar_des . t a i l (3)=Eigen : : Vector3d(cM_des_mat(2 ,1) , cM_des_mat(0 ,2) ,cM_des_mat(1 ,0) ) ;

10 return ;
11 };

141



E. Implementation of the hierarchical control architecture

Listing E.12: Function to update current positions
1 void ConceptionalLayer : : Update_Pos_is(){
2 getTriadM(rTrd_ID , rM_Trd_mat) ;
3 getTriadParentBodyM(rTrd_ID , rM_Bdy_mat) ;
4 rM_mat=rM_Bdy_mat∗rM_Trd_mat;
5 getTriadM(cTrd_ID, cM_Trd_mat) ;
6 getTriadParentBodyM(cTrd_ID, cM_Bdy_mat) ;
7 cM_mat=(cM_Bdy_mat∗cM_Trd_mat) ;
8 cVar_is . head(3)=Eigen : : Vector3d(cM_mat(0 ,3) , cM_mat(1 ,3) ,cM_mat(2 ,3) ) ;
9 cVar_is . t a i l (3)=Eigen : : Vector3d(cM_mat(2 ,1) , cM_mat(0 ,2) ,cM_mat(1 ,0) ) ;

10 return ;
11 };

Listing E.13: Function to update velocity of controlled coordinate
1 void ConceptionalLayer : : Update_cVar_d(double dt){
2 if(ControlSpace==3){
3 bool calc_d =true ;
4 if (ControlSpace==4 && cTrd_des_ID!=cTrd_des_ID_old) calc_d =fa l s e ;
5 if(dt>=dtstep ){
6 if (calc_d)
7 cVar_d=(cVar_err−cVar_old)/dt ;
8 cVar_old=cVar_err ;
9 if(ControlSpace==4) cTrd_des_ID_old=cTrd_des_ID;

10 }
11 }
12 return ;
13 };

Listing E.14: Function to update control error
1 void ConceptionalLayer : : Update_cVar_err(){
2 if(ControlSpace==3){
3 cVar_err=cVar_is−cVar_des ;
4 for (int i = 0; i < n_cdof ; ++i ){
5 if (cVar_des( i )==777){
6 cVar_err( i )=0;
7 }
8 }
9 }

10 if(ControlSpace==4){
11 Eigen : : Matrix4d cM_err_mat;
12 cM_err_mat= cM_des_mat. inverse ()∗cM_mat;
13 cVar_err . head(3)=Eigen : : Vector3d(cM_err_mat(0 ,3) , cM_err_mat(1 ,3) , cM_err_mat(2 ,3) ) ;
14 cVar_err . t a i l (3)=Eigen : : Vector3d(0.5∗(cM_err_mat(2 , 1) − cM_err_mat(1 , 2)) ,
15 0.5∗(cM_err_mat(0 , 2) − cM_err_mat(2 ,

0)) ,
16 0.5∗(cM_err_mat(1 , 0) − cM_err_mat(0 ,

1)) ) ;
17 bool r e l r e l=true ;
18 if( r e l r e l ){
19 cVar_err . head(3)=rM_mat. block (0 ,0 ,3 ,3) . inverse ()∗cM_des_mat. block (0 ,0 ,3 ,3)∗cVar_err . head(3) ;
20 cVar_err . t a i l (3)=rM_mat. block (0 ,0 ,3 ,3) . inverse ()∗cM_des_mat. block (0 ,0 ,3 ,3)∗cVar_err . t a i l (3) ;
21 }
22 }
23 return ;
24 };

Listing E.15: Function to update velocity of control error
1 void ConceptionalLayer : : Update_cVar_d_err(){
2 if(ControlSpace==2 | | ControlSpace==3){
3 cVar_d_err=cVar_d;
4 if(ControlSpace==2) cVar_d_err−=cVar_d_des ;
5 for (int i = 0; i < n_cs ; ++i ){
6 if (cVar_des( i )==777){
7 cVar_d_err( i )=0;
8 }
9 }

10 }
11 if(ControlSpace==4){//Position Control
12 getTriadParentBodyW(cTrd_ID, cW_mat) ;
13 getTriadParentBodyW(cTrd_des_ID, cW_des_mat) ;
14 getTriadM(rTrd_ID , rM_Trd_mat) ;
15 getTriadParentBodyM(rTrd_ID , rM_Bdy_mat) ;
16 rM_mat=rM_Bdy_mat∗rM_Trd_mat;
17 cM_Trd_d_mat=rM_mat. inverse () ∗(cW_mat−cW_des_mat)∗rM_mat;
18 cVar_d_err . head(3)=Eigen : : Vector3d(cM_Trd_d_mat(0 ,3) , cM_Trd_d_mat(1 ,3) , cM_Trd_d_mat(2 ,3) ) ;
19 cVar_d_err . t a i l (3)=Eigen : : Vector3d( 0.5∗(cM_Trd_d_mat(2 , 1) − cM_Trd_d_mat(1 , 2)) ,
20 0.5∗(cM_Trd_d_mat(0 , 2) −

cM_Trd_d_mat(2 , 0)) ,
21 0.5∗(cM_Trd_d_mat(1 , 0) −

cM_Trd_d_mat(0 , 1)) ) ;

142



E.5. Source code of the control module functions

22 }
23 return ;
24 };

Listing E.16: Function to update inegration of control error
1 void ConceptionalLayer : : Update_cVar_i(double dt){
2 if(dt>=dtstep ) cVar_i+=cVar_err∗dt ;
3 if(ControlSpace==3) {
4 for (int i = 0; i < n_cs ; ++i )
5 if (cVar_des( i )==777)
6 cVar_i( i )=0.0;
7 }
8 if(ControlSpace==4) {
9 if (cTrd_des_ID==cTrd_ID)

10 cVar_i=Eigen : : VectorXd : : Zero(6) ;
11 }
12 return ;
13 };

Listing E.17: Function to update conceptional PID
1 void ConceptionalLayer : : Update_cVar_pid(){
2 cVar_pid=P_CL∗cVar_err+D_CL∗cVar_d_err+I_CL∗cVar_i ;
3 return ;
4 };

Listing E.18: Function to update conceptional layer output
1 void ConceptionalLayer : : Update_oVar_cVar(){
2 oVar_cVar=oVar_is_lcl−(J_os_cs∗cVar_pid)∗180/PI ;
3 oVar=oVar_cVar ;
4 if(ControlSpace==3){
5 for (int i = 0; i < n_cs ; ++i ){
6 if(cVar_des( i )==777)oVar( i )=777;
7 }
8 }
9 if(ControlSpace==4 | | ControlSpace==5){

10 if(cTrd_des_ID==cTrd_ID){
11 for (int i = 0; i < n_os ; ++i ){
12 oVar( i )=777;
13 }
14 }
15 }
16 return ;
17 };
18
19 void ConceptionalLayer : : Update_oVar(){
20 if(ControlSpace==2 )oVar=cVar_des ;
21 if(ControlSpace==3 | | ControlSpace==4 | | ControlSpace==5) Update_oVar_cVar() ;
22 return ;
23 }

Listing E.19: Function to update torque-angle Jacobian
1 void ConceptionalLayer : : calc_J_Tht_Trq(){
2 Eigen : : MatrixXd I_ncmtu_mat = Eigen : : MatrixXd : : Ident i ty (n_cmtu,n_cmtu) ;
3 Eigen : : MatrixXd J_Lbd_Tht=(I_ncmtu_mat+dLseedLce_mat_lcl) . inverse ()∗Ma_mat_lcl ;
4 J_os_cs=(Ma_mat_lcl . transpose ()∗dFcedLce_mat_lcl∗J_Lbd_Tht) . inverse () ;
5 return ;
6 }

Listing E.20: Functions to update position-angle Jacobian
1 void ConceptionalLayer : : calc_J_Pos_Ang_mat(Eigen : : MatrixXd& jxqmat){
2 int current_DoF_ID=0;
3 jxqmat = Eigen : : MatrixXd : : Zero(6 ,n_os) ;
4 for (int i = 0; i < n_os ; ++i ){
5 current_DoF_ID=oVar_vec( i )−1;
6 int ToID=model . getbodyidx(model . jo in t (DofToJoint(current_DoF_ID))−>to ()−>parent () ) ;
7 Eigen : : Matrix4d M_to_jnt , M_Jnt_rl , M_X_rl;
8 Eigen : : Vector3d Li_vec_to , Li_vec_wd, Li_vec_rl ;
9 Eigen : : Vector3d PJnt_wd, PJnt_rl ;

10 model . jo in t (DofToJoint(current_DoF_ID))−>to ()−>Mmatrix(M_to_jnt) ;
11 PJnt_wd=M0o[ToID ] . block (0 ,0 ,3 ,3)∗M_to_jnt . block (0 ,3 ,3 ,1) ;
12 M_Jnt_rl=rM_mat. inverse () ∗(M0o[ToID]∗M_to_jnt) ;
13 PJnt_rl=M_Jnt_rl . block (0 ,3 ,3 ,1) ;
14 Eigen : : Vector3d PX___wd=cM_mat. block (0 ,3 ,3 ,1) ;
15 Eigen : : Vector3d PX___rl=cM_mat. block (0 ,3 ,3 ,1) ;
16 Eigen : : Vector3d V_Jnt_X___wd, V_Jnt_X___rl;

143



E. Implementation of the hierarchical control architecture

17 V_Jnt_X___wd=PX___wd−PJnt_wd;
18 V_Jnt_X___rl=PX___rl−PJnt_rl ;
19 Li_vec_to(0)=Li [ current_DoF_ID+1](2,1) ;
20 Li_vec_to(1)=Li [ current_DoF_ID+1](0,2) ;
21 Li_vec_to(2)=Li [ current_DoF_ID+1](1,0) ;
22 Li_vec_wd=M0o[ToID ] . block (0 ,0 ,3 ,3) ∗ Li_vec_to ;
23 Li_vec_rl=rM_mat. block (0 ,0 ,3 ,3) . inverse ()∗Li_vec_wd;
24 jxqmat . col ( i ) . head(3)=Li_vec_wd. cross (V_Jnt_X___wd) ;
25 jxqmat . col ( i ) . t a i l (3)=Li_vec_wd. head(3) ;
26 bool r e l r e l=true ;
27 if( r e l r e l ){
28 jxqmat . col ( i ) . head(3)=Li_vec_rl . cross (V_Jnt_X___rl) ;
29 jxqmat . col ( i ) . t a i l (3)=Li_vec_rl . head(3) ;
30 }
31 }
32 J_Pos_Ang_mat=jxqmat ;
33 return ;
34 }
35
36 void ConceptionalLayer : : calc_J_Ang_Pos_mat(Eigen : : MatrixXd& jqxmat){
37 bool jqxpsinv=true ;
38 if ( jqxpsinv ){
39 jqxmat=(J_Pos_Ang_mat. transpose ()∗J_Pos_Ang_mat) . inverse ()∗J_Pos_Ang_mat. transpose () ;
40 }
41 bool jxqttrans=fa l s e ;
42 if ( jxqttrans ){
43 jqxmat=J_Pos_Ang_mat. transpose () ;
44 }
45 J_Ang_Pos_mat=jqxmat ;
46 J_os_cs=jqxmat ;
47 return ;
48 }

Listing E.21: Functions to calculate permutation matrices
1 Eigen : : MatrixXd ConceptionalLayer : : calc_cDoFPermutation(Eigen : : VectorXd &cdofvec ){
2 for (int i = 0; i < n_cdof ; ++i ){
3 for (int i i = 0; i i < n_dof ; ++i i ){
4 if( cdofvec ( i )==i i +1) Perm_cDoF_Mat( i , i i )=1;
5 }
6 }
7 return Perm_cDoF_Mat;
8 }
9

10 Eigen : : MatrixXd ConceptionalLayer : : calc_cMtuPermutation(Eigen : : VectorXd &cmtuvec){
11 Eigen : : MatrixXd PermMat = Eigen : : MatrixXd : : Zero(n_cmtu, n_mtu) ;
12 for (int i = 0; i < n_cmtu; ++i )
13 {
14 for (int i i = 0; i i < n_mtu; ++i i )
15 {
16 if(cmtuvec( i )==i i +1) PermMat( i , i i )=1;
17 }
18 }
19 return PermMat;
20 }
21
22 Eigen : : MatrixXd ConceptionalLayer : : calc_os_Permutation(){
23 for (int i = 0; i < n_os ; ++i ){
24 for (int i i = 0; i i < n_dof ; ++i i ){
25 if(oVar_vec( i )==i i +1) Perm_os_Mat( i , i i )=1;
26 }
27 }
28 return Perm_os_Mat;
29 }

144



E.5. Source code of the control module functions

E.5.4 Functions in utrafolayer .cpp

Listing E.22: Transformational layer initialisation function
1
2 void TransformationalLayer : : Init_TL(){
3 dbg_TL_init=true ;
4 dbg_TL_runtime=fa l s e ;
5 ControlState_old=−1;
6 ControlState=0;
7 cout << ”//////////////////////////////////////////////////////” << endl ;
8 cout << ”////////INIT TRANSFORMATIONAL LAYER”<< endl ;
9 cout << ”//////////////////////////////////////////////////////”<< endl ;

10 n_dof=model . dof () ;
11 n_cdof= read_DofFile (cDoF_vec_TL, TL_Folder + cDoF_file ) ;
12 ERR_CDOFVEC=fa l s e ;
13 if (cDoF_vec_TL. s i ze ()==cDoF_vec_CL. s i ze () ){
14 Perm_cDoF_Mat_TL = Eigen : : MatrixXd : : Zero(n_cdof , n_dof) ;
15 Perm_cDoF_Mat_TL = calc_cDoFPermutation(cDoF_vec_TL) ;
16 Perm_cDoF_Mat_CL = Eigen : : MatrixXd : : Zero(n_cdof , n_dof) ;
17 Perm_cDoF_Mat_CL = calc_cDoFPermutation(cDoF_vec_CL) ;
18 for (int i = 0; i < n_cdof ; ++i ) if (cDoF_vec_CL( i )!=cDoF_vec_TL( i ) ) ERR_CDOFVEC=true ;
19 }else ERR_CDOFVEC=true ;
20
21 if(ERR_CDOFVEC){
22 cout << ”ERROR() : MISMATCH IN CONCEPTIONAL AND TRANSFORMATIONAL JOINT VECTORS! ! ! ” << endl ;
23 cout << ” Perm_cDoF_Mat_TL. transpose ()∗cDoF_vec_TL=” << (Perm_cDoF_Mat_TL. transpose ()∗cDoF_vec_TL

) . transpose () << endl ;
24 cout << ” Perm_cDoF_Mat_CL. transpose ()∗cDoF_vec_CL=” << (Perm_cDoF_Mat_CL. transpose ()∗cDoF_vec_CL

) . transpose () << endl ;
25 }
26 else cout << ” Conceptional cDoFVecs are wel l defined !” << endl ;
27
28 Tht_Coc_array=new double∗∗[n_tv ] ;
29 for (int i = 0; i < n_tv ; i++){
30 Tht_Coc_array [ i ]=new double∗[n_cdof ] ;
31 for(int j=0; j<n_cdof ; j++){
32 Tht_Coc_array [ i ] [ j ]=new double [ 1 ] ;
33 }
34 }
35 thtcocname = new std : : s t r ing [n_tv ] ;
36 read_Tht_Coc_Files() ;
37 Tht_Cocs = new Eigen : : VectorXd [n_tv ] ;
38 for (int i = 0; i < n_tv ; ++i ){
39 Tht_Cocs[ i ]=Eigen : : VectorXd : : Zero(n_cdof) ;
40 Tht_Cocs[ i ]=myMotControl . ConvertToEigenMatrix(n_cdof ,1 ,Tht_Coc_array [ i ] ) ;
41 }
42
43 P_Tht_arrd=new double∗∗[n_tv ] ;
44 D_Tht_arrd=new double∗∗[n_tv ] ;
45 I_Tht_arrd=new double∗∗[n_tv ] ;
46 P_Tht_Lbd_arrd=new double∗∗[n_tv ] ;
47 D_Tht_Lbd_arrd=new double∗∗[n_tv ] ;
48 I_Tht_Lbd_arrd=new double∗∗[n_tv ] ;
49 for (int i = 0; i < n_tv ; i++){
50 P_Tht_arrd[ i ]=new double∗[n_cdof ] ;
51 D_Tht_arrd[ i ]=new double∗[n_cdof ] ;
52 I_Tht_arrd [ i ]=new double∗[n_cdof ] ;
53 P_Tht_Lbd_arrd[ i ]=new double∗[n_cdof ] ;
54 D_Tht_Lbd_arrd[ i ]=new double∗[n_cdof ] ;
55 I_Tht_Lbd_arrd [ i ]=new double∗[n_cdof ] ;
56 for(int j=0; j<n_cdof ; j++){
57 P_Tht_arrd[ i ] [ j ]=new double [ n_cdof ] ;
58 D_Tht_arrd[ i ] [ j ]=new double [ n_cdof ] ;
59 I_Tht_arrd [ i ] [ j ]=new double [ n_cdof ] ;
60 P_Tht_Lbd_arrd[ i ] [ j ]=new double [ n_cdof ] ;
61 D_Tht_Lbd_arrd[ i ] [ j ]=new double [ n_cdof ] ;
62 I_Tht_Lbd_arrd [ i ] [ j ]=new double [ n_cdof ] ;
63 }
64 }
65 read_PID_Tht_Files() ;
66 read_PID_Tht_Lbd_Files() ;
67 P_Thts = new Eigen : : MatrixXd [n_tv ] ;
68 I_Thts = new Eigen : : MatrixXd [n_tv ] ;
69 D_Thts = new Eigen : : MatrixXd [n_tv ] ;
70 P_Tht_Lbds = new Eigen : : MatrixXd [n_tv ] ;
71 I_Tht_Lbds = new Eigen : : MatrixXd [n_tv ] ;
72 D_Tht_Lbds = new Eigen : : MatrixXd [n_tv ] ;
73 for (int i = 0; i < n_tv ; ++i ){
74 P_Thts[ i ]=Eigen : : MatrixXd : : Zero(n_cdof , n_cdof) ;
75 I_Thts [ i ]=Eigen : : MatrixXd : : Zero(n_cdof , n_cdof) ;
76 D_Thts[ i ]=Eigen : : MatrixXd : : Zero(n_cdof , n_cdof) ;
77 P_Tht_Lbds[ i ]=Eigen : : MatrixXd : : Zero(n_cdof , n_cdof) ;
78 I_Tht_Lbds [ i ]=Eigen : : MatrixXd : : Zero(n_cdof , n_cdof) ;
79 D_Tht_Lbds[ i ]=Eigen : : MatrixXd : : Zero(n_cdof , n_cdof) ;
80 P_Thts[ i ]=myMotControl . ConvertToEigenMatrix(n_cdof , n_cdof ,P_Tht_arrd[ i ] ) ;
81 I_Thts [ i ]=myMotControl . ConvertToEigenMatrix(n_cdof , n_cdof , I_Tht_arrd [ i ] ) ;
82 D_Thts[ i ]=myMotControl . ConvertToEigenMatrix(n_cdof , n_cdof ,D_Tht_arrd[ i ] ) ;

145



E. Implementation of the hierarchical control architecture

83 P_Tht_Lbds[ i ]=myMotControl . ConvertToEigenMatrix(n_cdof , n_cdof ,P_Tht_Lbd_arrd[ i ] ) ;
84 I_Tht_Lbds [ i ]=myMotControl . ConvertToEigenMatrix(n_cdof , n_cdof , I_Tht_Lbd_arrd [ i ] ) ;
85 D_Tht_Lbds[ i ]=myMotControl . ConvertToEigenMatrix(n_cdof , n_cdof ,D_Tht_Lbd_arrd[ i ] ) ;
86 }
87 if(CALC_JACS){
88 Eigen : : MatrixXd Ma_mat_tmp;
89 Ma_mat_tmp=Ma_mat_glb ∗ Perm_cDoF_Mat_TL. transpose () ;
90 mVec_TL_global = Eigen : : VectorXd : : Zero(n_mtu) ;
91 mVec_TL = Eigen : : VectorXd : : Zero(n_mtu) ;
92 n_cmtu = 0;
93 for (int i = 0; i < n_mtu; ++i ){
94 if((Ma_mat_tmp. row( i ) ) .norm()!=0){
95 mVec_TL_global( i )=i +1;
96 mVec_TL(n_cmtu)=i +1;
97 n_cmtu++;
98 }
99 }

100 mVec_TL. conservativeResize (n_cmtu) ;
101 Perm_cMtu_Mat_TL = Eigen : : MatrixXd : : Zero(n_cmtu,n_mtu) ;
102 Perm_cMtu_Mat_TL = calc_cMtuPermutation(mVec_TL) ;
103 Ma_mat_lcl=Perm_cMtu_Mat_TL∗Ma_mat_tmp;
104 dLseedLce_mat_lcl=Perm_cMtu_Mat_TL∗dLseedLce_mat_glb∗Perm_cMtu_Mat_TL. transpose () ;
105 Lce_vec_lcl=Perm_cMtu_Mat_TL ∗ Lce_vec_glb ;
106 U_vec_lcl=Perm_cMtu_Mat_TL ∗ U_vec_glb ;
107 calc_J_Lbd_Tht() ;
108 J_U_Lbd = Eigen : : MatrixXd : : Zero(n_cmtu, n_cmtu) ;
109 calc_J_U_Tht() ;
110 }else{
111 n_cmtu = read_MuscleFile (mVec_TL, TL_Folder + mVec_file) ;
112 J_Lbd_Tht_arrd=new double∗∗[n_tv ] ;
113 J_U_Tht_arrd=new double∗∗[n_tv ] ;
114 for (int i = 0; i < n_tv ; i++){
115 J_Lbd_Tht_arrd[ i ]=new double∗[n_cmtu ] ;
116 J_U_Tht_arrd[ i ]=new double∗[n_cmtu ] ;
117 for(int j=0; j<n_cmtu; j++){
118 J_Lbd_Tht_arrd[ i ] [ j ]=new double [ n_cdof ] ;
119 J_U_Tht_arrd[ i ] [ j ]=new double [ n_cdof ] ;
120 }
121 }
122 read_JacFiles () ;
123 J_Lbd_Thts = new Eigen : : MatrixXd [n_tv ] ;
124 J_U_Thts = new Eigen : : MatrixXd [n_tv ] ;
125 for (int i = 0; i < n_tv ; ++i ){
126 J_Lbd_Thts[ i ]=Eigen : : MatrixXd : : Zero(n_cmtu, n_cdof) ;
127 J_U_Thts[ i ]=Eigen : : MatrixXd : : Zero(n_cmtu, n_cdof) ;
128 J_Lbd_Thts[ i ]=myMotControl . ConvertToEigenMatrix(n_cmtu, n_cdof ,J_Lbd_Tht_arrd[ i ] ) ;
129 J_U_Thts[ i ]=myMotControl . ConvertToEigenMatrix(n_cmtu, n_cdof ,J_U_Tht_arrd[ i ] ) ;
130 }
131 }
132 Perm_cMtu_Mat_TL = Eigen : : MatrixXd : : Zero(n_cmtu,n_mtu) ;
133 Perm_cMtu_Mat_TL = calc_cMtuPermutation(mVec_TL) ;
134 Tht_is = Eigen : : VectorXd : : Zero(n_cdof) ;
135 Tht_des = Eigen : : VectorXd : : Zero(n_cdof) ;
136 Tht_err = Eigen : : VectorXd : : Zero(n_cdof) ;
137 Tht_d = Eigen : : VectorXd : : Zero(n_cdof) ;
138 Tht_i = Eigen : : VectorXd : : Zero(n_cdof) ;
139 Tht_d_des = Eigen : : VectorXd : : Zero(n_cdof) ;
140 Tht_d_err = Eigen : : VectorXd : : Zero(n_cdof) ;
141 Tht_pid = Eigen : : VectorXd : : Zero(n_cdof) ;
142 Tht_Lbd_pid = Eigen : : VectorXd : : Zero(n_cdof) ;
143 Tht_Coc= Eigen : : VectorXd : : Zero(n_cdof) ;
144 Lbd_Tht = Eigen : : VectorXd : : Zero(n_cmtu) ;
145 U_Tht = Eigen : : VectorXd : : Zero(n_cmtu) ;
146 U_Tht_Coc = Eigen : : VectorXd : : Zero(n_cmtu) ;
147 return ;
148 };

Listing E.23: Function to update transformational layer control variables
1 void TransformationalLayer : : Update_CtrlVars (){
2 if ( ControlState!=ControlState_old ) {
3 ControlState_old=ControlState ;
4 P_Tht=P_Thts[ ControlState ] ;
5 I_Tht=I_Thts [ ControlState ] ;
6 D_Tht=D_Thts[ ControlState ] ;
7 P_Tht_Lbd=P_Tht_Lbds[ ControlState ] ;
8 I_Tht_Lbd=I_Tht_Lbds [ ControlState ] ;
9 D_Tht_Lbd=D_Tht_Lbds[ ControlState ] ;

10 if ( !CALC_JACS){//Read Jacs
11 J_Lbd_Tht=J_Lbd_Thts[ ControlState ] ;
12 J_U_Tht=J_U_Thts[ ControlState ] ;
13 }
14 Tht_Coc=Tht_Cocs[ ControlState ] ;
15 Tht_d_des = Eigen : : VectorXd : : Zero(n_cdof) ; //
16 }
17 return ;
18 }

146



E.5. Source code of the control module functions

Listing E.24: Function to update current angles
1 void TransformationalLayer : : Update_Tht_is(){
2 for (int i = 0; i < n_cdof ; ++i ){
3 int current_DoF_ID=cDoF_vec_TL( i )−1;
4 Tht_is( i )=q[current_DoF_ID]∗180/PI ;
5 }
6 return ;
7 }

Listing E.25: Function to update velocity of controlled angles
1 void TransformationalLayer : : Update_Tht_d(){
2 for (int i = 0; i < n_cdof ; ++i ){
3 int current_DoF_ID=cDoF_vec_TL( i )−1;
4 Tht_d( i )=qd[current_DoF_ID]∗180/PI ;
5 }
6 return ;
7 }

Listing E.26: Function to update angle control error
1 void TransformationalLayer : : Update_Tht_err(){
2 Tht_err=Tht_is−Tht_des ;
3 Tht_d_err=Tht_d−Tht_d_des ;
4 for (int i = 0; i < n_cdof ; ++i ){
5 if (Tht_des( i )==777 | | (Tht_des( i )==Tht_is( i ) ) ){
6 Tht_des( i )=Tht_is( i ) ;
7 Tht_err( i )=0;
8 Tht_d_err( i )=0;
9 }

10 }
11 return ;
12 }

Listing E.27: Function to update inegration of angle control error
1 void TransformationalLayer : : Update_Tht_i(double dt){
2 if(dt>=dtstep ) {
3 Tht_i+=Tht_err∗dt ;
4 for (int i = 0; i < n_cdof ; ++i )
5 if (Tht_des( i )==777 | | (Tht_des( i )==Tht_is( i ) ) )
6 Tht_i( i )=0.0;
7 }
8 return ;
9 }

Listing E.28: Function to update direct stimulation PID
1 void TransformationalLayer : : Update_Tht_pid(){
2 Tht_pid=P_Tht∗Tht_err+D_Tht∗Tht_d_err+I_Tht∗Tht_i ;
3 return ;
4 }

Listing E.29: Function to update hierarchical angle-length PID
1 void TransformationalLayer : : Update_Tht_Lbd_pid(){
2 Tht_Lbd_pid=P_Tht_Lbd∗Tht_err+D_Tht_Lbd∗Tht_d_err+I_Tht_Lbd∗Tht_i ;
3 return ;
4 }

Listing E.30: Function to update transformational layer output of desired MTU lengths
1 Eigen : : VectorXd TransformationalLayer : : Update_Lbd_Tht(){
2 Lbd_Tht=Lce_vec_lcl − J_Lbd_Tht∗Tht_Lbd_pid ;
3 return Perm_cMtu_Mat_TL. transpose ()∗Lbd_Tht;
4 }

Listing E.31: Function to update transformational layer output of direct stimulation
1 Eigen : : VectorXd TransformationalLayer : :Update_U_Tht(){
2 U_Tht=−J_U_Tht∗Tht_pid ;
3 Eigen : : VectorXd utht ;
4 utht =Perm_cMtu_Mat_TL. transpose ()∗U_Tht;
5 return utht ;
6 }

147



E. Implementation of the hierarchical control architecture

Listing E.32: Function to update joint co-contraction
1 Eigen : : VectorXd TransformationalLayer : :Update_U_Tht_Coc(){
2 bool THT_COC_ERR=fa l s e ;
3 THT_COC=fa l se ;
4 for (int i = 0; i < n_cdof ; ++i ) if(Tht_Coc( i ) !=0.0) THT_COC=true ;
5 if(THT_COC) {
6 J_Tht_U=(J_U_Tht. transpose ()∗J_U_Tht) . inverse ()∗J_U_Tht. transpose () ;
7 Eigen : : FullPivLU<Eigen : : MatrixXd> lu (J_Tht_U) ;
8 Eigen : : MatrixXd A_null_space = lu . kernel () ;
9 if(A_null_space . rows()!=n_cmtu | | A_null_space . cols ()!=n_cdof) THT_COC_ERR=true ;

10 if ( !THT_COC_ERR){
11 Eigen : : MatrixXd permNS =Eigen : : MatrixXd : : Zero(n_cdof , n_cdof) ;
12 static int ns_col=0;
13 static int ns_row=0;
14 static double rowval=0.0;
15 for (int i = 0; i < n_cdof ; ++i ){
16 ns_col=0;
17 ns_row=0;
18 for (int j = 0; j < n_cmtu; ++j ){
19 if (A_null_space( j , i )==1){
20 ns_row=j ;
21 break ;
22 }
23 }
24 rowval=0.0;
25 for (int k = 0; k < n_cdof ; ++k){
26 if (abs(J_U_Tht(ns_row, k) )>rowval ){
27 rowval=abs(J_U_Tht(ns_row, k) ) ;
28 ns_col=k ;
29 }
30 }
31 permNS( i , ns_col )=1;
32 }
33 U_Tht_Coc=A_null_space∗permNS∗Tht_Coc; // #TODO: set eq NRs from Paper !
34 }
35 }
36 if(THT_COC_ERR){
37 U_Tht_Coc=Eigen : : VectorXd : : Zero(n_cmtu) ;
38 }
39 Eigen : : VectorXd uthtcoc ;
40 uthtcoc =Perm_cMtu_Mat_TL. transpose ()∗U_Tht_Coc;
41 return uthtcoc ;
42 }

Listing E.33: Function to update angle-length Jacobian
1 void TransformationalLayer : : calc_J_Lbd_Tht(){
2 Eigen : : MatrixXd I_ncmtu_mat = Eigen : : MatrixXd : : Ident i ty (n_cmtu,n_cmtu) ;
3 J_Lbd_Tht=(I_ncmtu_mat+dLseedLce_mat_lcl) . inverse ()∗Ma_mat_lcl ;
4 return ;
5 }

Listing E.34: Functions to update angle-stimulation Jacobian
1 void TransformationalLayer : : calc_J_U_Tht(){
2 for (int i = 0; i < n_cmtu; ++i ) J_U_Lbd( i , i )=−U_vec_lcl( i )/Lce_vec_lcl ( i ) ;
3 J_U_Tht=J_U_Lbd∗J_Lbd_Tht;
4 J_Tht_U=(J_U_Tht. transpose ()∗J_U_Tht) . inverse ()∗J_U_Tht. transpose () ;
5 return ;
6 }

Listing E.35: Functions to calculate permutation matrices
1 Eigen : : MatrixXd TransformationalLayer : : calc_cDoFPermutation(Eigen : : VectorXd &cdofvec ){
2 int ncdof=cdofvec . s i ze () ;
3 Eigen : : MatrixXd PermMat = Eigen : : MatrixXd : : Zero(ncdof , n_dof) ;
4 for (int i = 0; i < ncdof ; ++i ){
5 for (int i i = 0; i i < n_dof ; ++i i ){
6 if( cdofvec ( i )==i i +1) PermMat( i , i i )=1;
7 }
8 }
9 return PermMat;

10 };
11
12 Eigen : : MatrixXd TransformationalLayer : : calc_cMtuPermutation(Eigen : : VectorXd &cmtuvec){
13 Eigen : : MatrixXd PermMat = Eigen : : MatrixXd : : Zero(n_cmtu, n_mtu) ;
14 for (int i = 0; i < n_cmtu; ++i ){
15 for (int i i = 0; i i < n_mtu; ++i i ){
16 if(cmtuvec( i )==i i +1) PermMat( i , i i )=1;
17 }
18 }
19 return PermMat;
20 };

148



E.5. Source code of the control module functions

E.5.5 Functions in ustructlayer .cpp

Listing E.36: Structural layer initialisation function
1 void StructuralLayer : : Init_SL (){
2 dbg_SL_init=true ;
3 dbg_SL_runtime=fa l s e ;
4 ControlState_old=−1;
5 ControlState=0;
6 cout << ”//////////////////////////////////////////////////////” << endl ;
7 cout << ”////////INIT STRUCTURAL LAYER”<< endl ;
8 cout << ”//////////////////////////////////////////////////////”<< endl ;
9

10 n_dof=model . dof () ;
11 n_cmtu = read_MuscleFile (mVec_SL, SL_Folder + mVec_file) ;
12
13 Perm_cMtu_Mat_SL=Eigen : : MatrixXd : : Zero(n_cmtu,n_mtu) ;
14 Perm_cMtu_Mat_SL=calc_cMtuPermutation(mVec_SL) ;
15 if (ControlSpace!=1){
16 if(dbg_SL_init) cout << ” mVec_TL=” << mVec_TL. transpose () << endl ;
17 ERR_MVEC=fa l se ;
18 if (mVec_SL. s i ze ()==mVec_TL. s i ze () ){
19 Perm_cMtu_Mat_TL=Eigen : : MatrixXd : : Zero(n_cmtu,n_mtu) ;
20 Perm_cMtu_Mat_TL=calc_cMtuPermutation(mVec_TL) ;
21 for (int i = 0; i < n_cmtu; ++i ) if (mVec_SL( i )!=mVec_TL( i ) ) ERR_MVEC=true ;
22 }else ERR_MVEC=true ;
23 if(ERR_MVEC){
24 cout << ”ERROR() : MISMATCH IN STRUCTURAL AND TRANSFORMATIONAL MUSCLE VECTORS! ! ! ” << endl ;
25 }
26 else if(dbg_SL_init) cout << ” structura l muscle Vector i s wel l defined !” << endl ;
27 }
28 if (ControlSpace==1){
29 lbdname = new std : : s t r ing [n_tv ] ;
30 lambda_arrd = new double∗[n_tv ] ;
31 for (int i = 0; i < n_tv ; ++i ) lambda_arrd [ i ] = new double [n_cmtu ] ;
32 read_Lambda() ;
33 Lambda=Eigen : : VectorXd : : Zero(n_cmtu) ;
34 Lambdas = new Eigen : : VectorXd [n_tv ] ;
35 for (int i = 0; i < n_tv ; ++i ){
36 Lambdas[ i ]=Eigen : : VectorXd : : Zero(n_cmtu) ;
37 Lambdas[ i ]=myMotControl . ConvertToEigenVector(n_cmtu, lambda_arrd [ i ] ) ;
38 }
39 }
40 ucocname = new std : : s t r ing [n_tv ] ;
41 kpaname = new std : : s t r ing [n_tv ] ;
42 ucoc_arrd = new double∗[n_tv ] ;
43 kappa_arrd = new double∗[n_tv ] ;
44 for (int i = 0; i < n_tv ; i++){
45 ucoc_arrd [ i ] = new double [n_cmtu ] ;
46 kappa_arrd [ i ] = new double [n_cmtu ] ;
47 }
48 read_UcocRef() ;
49 read_Kappa() ;
50 U_Coc=Eigen : : VectorXd : : Zero(n_cmtu) ;
51 Kappa=Eigen : : VectorXd : : Zero(n_cmtu) ;
52 U_Cocs = new Eigen : : VectorXd [n_tv ] ;
53 Kappas = new Eigen : : VectorXd [n_tv ] ;
54 for (int i = 0; i < n_tv ; ++i ){
55 U_Cocs[ i ]=Eigen : : VectorXd : : Zero(n_cmtu) ;
56 Kappas [ i ]=Eigen : : VectorXd : : Zero(n_cmtu) ;
57 U_Cocs[ i ]=myMotControl . ConvertToEigenVector(n_cmtu, ucoc_arrd [ i ] ) ;
58 Kappas [ i ]=myMotControl . ConvertToEigenVector(n_cmtu, kappa_arrd [ i ] ) ;
59 }
60 if(ControlSpace==1) Lambda=Lambdas [ 0 ] ;
61 U_Coc=U_Cocs [ 0 ] ;
62 Kappa=Kappas [ 0 ] ;
63 L_ce_opt=Eigen : : VectorXd : : Zero(n_cmtu) ;
64 L_ce_opt=Perm_cMtu_Mat_SL∗L_ce_opt_global ;
65 L_ce=Eigen : : VectorXd : : Zero(n_cmtu) ;
66 U_Lbd=Eigen : : VectorXd : : Zero(n_cmtu) ;
67 U_Tht=Eigen : : VectorXd : : Zero(n_cmtu) ;
68 U_Tht_Coc=Eigen : : VectorXd : : Zero(n_cmtu) ;
69 return ;
70 };

149



E. Implementation of the hierarchical control architecture

Listing E.37: Function to update structural layer layer control variables
1 void StructuralLayer : : Update_CtrlVars (){
2 if ( ControlState!=ControlState_old ) {
3 ControlState_old=ControlState ;
4 U_Coc=U_Cocs[ ControlState ] ;
5 Kappa=Kappas [ ControlState ] ;
6 Sigma=sigma0∗Eigen : : VectorXd : : Ones(n_mtu) ;
7 if(ControlSpace==1) Lambda=Lambdas[ ControlState ] ;
8 }
9 return ;

10 }

Listing E.38: Function to update structural layer output of closed-loop stimulation
1 Eigen : : VectorXd StructuralLayer : :Update_U_Lbd(){
2 U_Lbd=Kappa. array () ∗(L_ce−Lambda+sigma0∗V_ce) . array ()/L_ce_opt . array () ;
3 return Perm_cMtu_Mat_SL. transpose ()∗U_Lbd;
4 }

Listing E.39: Functions to calculate permutation matrices
1 Eigen : : MatrixXd StructuralLayer : : calc_cMtuPermutation(Eigen : : VectorXd &cmtuvec){
2 Eigen : : MatrixXd PermMat = Eigen : : MatrixXd : : Zero(n_cmtu, n_mtu) ;
3 for (int i = 0; i < n_cmtu; ++i ){
4 for (int i i = 0; i i < n_mtu; ++i i ){
5 if(cmtuvec( i )==i i +1) PermMat( i , i i )=1;
6 }
7 }
8 return PermMat;
9 };

150



Bibliography

E Acome, SK Mitchell, TG Morrissey, MB Emmett, C Benjamin, M King, M Radakovitz,
and C Keplinger. Hydraulically amplified self-healing electrostatic actuators with muscle-
like performance. Science, 359(6371):61–65, 2018.

Jack A Adams. A closed-loop theory of motor learning. Journal of motor behavior, 3(2):
111–150, 1971.

A. V. Alexandrov, A. A. Frolov, and J. Massion. Biomechanical analysis of movement
strategies in human forward trunk bending. I. Modeling. Biologcal Cybernetics, 84(6):
425–434, 2001.

Frank Allgöwer and Alex Zheng. Nonlinear model predictive control, volume 26. Birkhäuser,
2012.

Michael A. Arbib and Shun-Ichi Amari. Sensori-motor transformations in the brain (with
a critique of the tensor theory of cerebellum). Journal of Theoretical Biology, 112(1):
123–155, 1985.

Frances A Batchelor, Susan B Williams, Tissa Wijeratne, Catherine M Said, and Sandra
Petty. Balance and gait impairment in transient ischemic attack and minor stroke. Journal
of stroke and cerebrovascular diseases, 24(10):2291–2297, 2015.

A. Bayer, S. Schmitt, M. Günther, and D.F.B. F.B. Haeufle. The influence of biophysi-
cal muscle properties on simulating fast human arm movements. Computer Methods in
Biomechanics and Biomedical Engineering, 20(8):803–821, 2017.

Julian Berberich, Johannes Köhler, Matthias A Muller, and Frank Allgower. Data-driven
model predictive control with stability and robustness guarantees. IEEE Transactions on
Automatic Control, 2020.

Nikolai A. Bernstein. The co-ordination and regulation of movements. Pergamon Press,
1967.

E. Bizzi, N. Hogan, F.A. Mussa-Ivaldo, and S. Giszter. Does the nervous system use
equilibrium-point control to guide single and multiple joint movements? The Behavioral
and brain sciences, 15(4):603–613, 1992.

Sarah-J. Blakemore, Chris D. Frith, and Daniel M. Wolpert. Spatio-temporal prediction
modulates the perception of self-produced stimuli. Journal of Cognitive Neuroscience, 11
(5):551–559, 1999.

Ronen Blecher, Lia Heinemann-Yerushalmi, Eran Assaraf, Nitzan Konstantin, Jens R Chap-
man, Timothy C Cope, Guy S Bewick, Robert W Banks, and Elazar Zelzer. New functions
for the proprioceptive system in skeletal biology. Philosophical Transactions of the Royal
Society B: Biological Sciences, 373(1759):20170327, 2018.

151



Bibliography

Stefanie Brändle, Syn Schmitt, and Matthias A. Müller. A systems-theoretic analysis of
low-level human motor control: application to a single-joint arm model. Journal of
Mathematical Biology, 80(4):1139–1158, 2020.

David J Chalmers. What is a neural correlate of consciousness. Neural correlates of con-
sciousness: Empirical and conceptual questions, pages 17–39, 2000.

Michel Chasles. Note sur les propriétés générales du système de deux corps semblables
entr’eux et placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou
infiniment petit d’un corps solide libre. Bulletin des Sciences Mathématiques, Férussac,
14:321–26, 1830.

Shelagh B Coutts. Diagnosis and management of transient ischemic attack. CONTINUUM:
Lifelong Learning in Neurology, 23(1):82, 2017.

Francis Crick and Christof Koch. Towards a neurobiological theory of consciousness. In
Seminars in the Neurosciences, volume 2, page 203, 1990.

Carlo J. de Luca and Paola Contessa. Hierarchical control of motor units in voluntary
contractions. Journal of Neurophysiology, 107(1):178–195, 2012.

S.J. De Serres and T.E. Milner. Wrist muscle activation patterns and stiffness associated
with stable and unstable mechanical loads. Experimental Brain Research, 86(2):451–458,
1991.

Michel Desmurget, Karen T Reilly, Nathalie Richard, Alexandru Szathmari, Carmine Mot-
tolese, and Angela Sirigu. Movement intention after parietal cortex stimulation in humans.
science, 324(5928):811–813, 2009.

Travis DeWolf and Chris Eliasmith. The neural optimal control hierarchy for motor control.
Journal of Neural Engineering, 8(6):065009, 2011.

Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

Kenji Doya. Complementary roles of basal ganglia and cerebellum in learning and motor
control. Current Opinion in Neurobiology, 10(6):732–739, 2000.

John C Eccles. The cerebellum as a neuronal machine. Springer Science & Business Media,
1967.

W. T. Edwards. Effect of joint stiffness on standing stability. Gait & Posture, 25(3):432–439,
2007.

Wilfried Elmenreich. An introduction to sensor fusion. Vienna University of Technology,
Austria, 502:1–28, 2002.

AG Feldman. Control of the length of a muscle. Biophysics, 19(2):766–771, 1974.

R.J. Full and D.E. Koditschek. Templates and anchors: neuromechanical hypotheses of
legged locomotion on land. The Journal of Experimental Biology, 202(Pt 23):3325–3332,
1999.

Gowrishankar Ganesh, Keigo Nakamura, Supat Saetia, Alejandra Mejia Tobar, Eiichi
Yoshida, Hideyuki Ando, Natsue Yoshimura, and Yasuharu Koike. Utilizing sensory pre-
diction errors for movement intention decoding: A new methodology. Science Advances,
4(5):eaaq0183, 2018.

152



Bibliography

Jia-Hong Gao, Lawrence M. Parsons, James M. Bower, Jinhu Xiong, Jinqi Li, and Peter T.
Fox. Cerebellum implicated in sensory acquisition and discrimination rather than motor
control. Science, 272(5261):545–547, 1996.

Peter Gawthrop, Ian Loram, Martin Lakie, and Henrik Gollee. Intermittent control: a
computational theory of human control. Biological cybernetics, 104(1):31–51, 2011.

Pl Gawthrop. Self-tuning pid controllers: Algorithms and implementation. IEEE Transac-
tions on Automatic Control, 31(3):201–209, 1986.

Rodolphe Gentili, Cheol E. Han, Nicolas Schweighofer, and Charalambos Papaxanthis. Mo-
tor learning without doing: Trial-by-trial improvement in motor performance during
mental training. Journal of Neurophysiology, 104(2):774–783, 2010.

Keyan Ghazi-Zahedi. Morphological Intelligence. Springer International Publishing, 2019.
ISBN 978-3-030-20621-5.

P.L. Gribble, D.J. Ostry, V. Sanguineti, and R. Laboissière. Are complex control signals
required for human arm movement? Journal of Neurophysiology, 79(3):1409–1424, 1998.

P.L. Gribble, L.I. Mullin, N. Cothros, and A. Mattar. Role of cocontraction in arm move-
ment accuracy. Journal of Neurophysiology, 89(5):2396–2405, 2003.

Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

M Günther and H Ruder. Synthesis of two-dimensional human walking: a test of the
λ-model. Biological Cybernetics, 89(2):89–106, 2003.

M Günther, O Müller, and R Blickhan. Watching quiet human stance to shake off its
straitjacket. Archive of Applied Mechanics, 81(3):283–302, 2011.

M Günther, O Müller, and R Blickhan. What does head movement tell about the minimum
number of mechanical degrees of freedom in quiet human stance? Archive of Applied
Mechanics, 82(3):333–344, 2012.

M Günther, D F B Haeufle, and S Schmitt. The basic mechanical structure of the skeletal
muscle machinery: One model for linking microscopic and macroscopic scales. Journal
of Theoretical Biology, 456:137–167, 2018. [with Corrigendum].

Michael Günther. Computersimulationen zur Synthetisierung des muskulär erzeugten men-
schlichen Gehens unter Verwendung eines biomechanischen Mehrkörpermodells. PhD
thesis, Eberhard-Karls-Universität, Tübingen, Germany, 1997.

Michael Günther and Heiko Wagner. Dynamics of quiet human stance: computer simu-
lations of a triple inverted pendulum model. Computer Methods in Biomechanics and
Biomedical Engineering, 19(8):819–834, 2016.

Michael Günther, Syn Schmitt, and Veit Wank. High-frequency oscillations as a consequence
of neglected serial damping in hill-type muscle models. Biological cybernetics, 97(1):63–79,
2007.

Christophe Habas, Alain Bertholz, Tamar Flash, and Daniel Bennequin. Does the cere-
bellum implement or select geometries? A speculative note. The Cerebellum, 19(2):1–7,
2020.

D. F B Haeufle, M. Günther, A. Bayer, and S. Schmitt. Hill-type muscle model with serial
damping and eccentric force-velocity relation. Journal of Biomechanics, 47(6):1531–1536,
2014a.

153



Bibliography

D. F. B. Haeufle, M. Günther, G. Wunner, and S. Schmitt. Quantifying control effort of
biological and technical movements: An information-entropy-based approach. Physical
Review E, 89(1):012716, 2014b.

DFB Haeufle, S Grimmer, K-T Kalveram, and A Seyfarth. Integration of intrinsic mus-
cle properties, feed-forward and feedback signals for generating and stabilizing hopping.
Journal of The Royal Society Interface, 9(72):1458–1469, 2012.

Maria Hammer, Michael Günther, D.F.B. Haeufle, and Syn Schmitt. Tailoring anatomical
muscle paths: a sheath-like solution for muscle routing in musculo-skeletal computer
models. Mathematical Biosciences, 311:68–81, 2019.

Richard S Hartenberg and Jacques Denavit. A kinematic notation for lower pair mechanisms
based on matrices. Journal of Applied Mechanics, 77(2):215–221, 1955.

H Hatze. A myocybernetic control model of skeletal muscle. Biological Cybernetics, 25(2):
103–119, 1977.

Karl-Michael Haus. Sensomotorik, pages 87–119. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2014. ISBN 978-3-642-41929-4.

A. Henze. Dreidimensionale biomechanische Modellierung und die Entwicklung eines Reglers
zur Simulation zweibeinigen Gehens. PhD thesis, Eberhard-Karls-Universität, Tübingen,
Germany, 2002.

David J. Herzfeld and Reza Shadmehr. Cerebellum estimates the sensory state of the body.
Trends in Cognitive Sciences, 18(2):66–67, 2014.

Archibald Vivian Hill. The heat of shortening and the dynamic constants of muscle. Pro-
ceedings of the Royal Society of London. Series B-Biological Sciences, 126(843):136–195,
1938.

Archibald Vivian Hill. The abrupt transition from rest to activity in muscle. Proceedings
of the Royal Society of London. Series B-Biological Sciences, 136(884):399–420, 1949.

P.J. Holmes, R.J. Full, D. Koditschek, and J. Guckenheimer. The dynamics of legged
locomotion: models, analyses, and challenges. SIAM Review, 48(2):207–304, 2006.

Wei-Li Hsu and John P. Scholz. Motor abundance supports multitasking while standing.
Human Movement Science, 31(4):844–862, 2012.

M Hulliger, N Dürmüller, A Prochazka, and P Trend. Flexible fusimotor control of muscle
spindle feedback during a variety of natural movements. Progress in Brain Research, 80:
87–101, 1989.

Hugh Esmor Huxley. The mechanism of muscular contraction. Science, 164(3886):1356–
1366, 1969.

Tatsuay Ibuki, Johannes R Walter, Takeshi Hatanaka, and Masayuki Fujita. Frame rate-
based discrete visual feedback pose regulation: A passivity approach. IFAC Proceedings
Volumes, 47(3):11171–11176, 2014.

GC Joyce, PMH Rack, and DR Westbury. The mechanical properties of cat soleus muscle
during controlled lengthening and shortening movements. The Journal of physiology, 204
(2):461–474, 1969.

N Karajan, O Röhrle, W Ehlers, and S Schmitt. Linking continuous and discrete interverte-
bral disc models through homogenisation. Biomechanics and modeling in mechanobiology,
12(3):453–466, 2013.

154



Bibliography

Amir Karniel. Open questions in computational motor control. Journal of integrative
neuroscience, 10(03):385–411, 2011.

Bernhard Katz. The relation between force and speed in muscular contraction. The Journal
of Physiology, 96(1):45–64, 1939.

Risa Kawai, Timothy Markman, Rajesh Poddar, Raymond Ko, Antoniu L Fantana,
Ashesh K Dhawale, Adam R Kampff, and Bence P Ölveczky. Motor cortex is required
for learning but not for executing a motor skill. Neuron, 86(3):800–812, 2015.

Ole Kiehn. Decoding the organization of spinal circuits that control locomotion. Nature
Reviews Neuroscience, 17(4):224–238, 2016.

D. A. Kistemaker, Arthur J. van Soest, and Maarten F. Bobbert. Is equilibrium point control
feasible for fast goal-directed single-joint movements? Journal of Neurophysiology, 95(5):
2898–2912, 2006.

D. A. Kistemaker, Arthur J. van Soest, and Maarten F. Bobbert. A model of open-loop con-
trol of equilibrium position and stiffness of the human elbow joint. Biological Cybernetics,
96(3):341–350, 2007.

S. Kitazaki and M.J. Griffin. A modal analysis of whole-body vertical vibration, using a
finite element model of the human body. Journal of Sound and Vibration, 200(1):83 –
103, 1997.

Johannes Koehler, Matthias A Muller, and Frank Allgower. Constrained nonlinear output
regulation using model predictive control. IEEE Transactions on Automatic Control,
2021.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

V Kumar. Meam 520 notes: The theorems of euler and chasles. University of Pennsylvania,
2014.

Mark L. Latash. The bliss (not the problem) of motor abundance (not redundancy). Ex-
perimental Brain Research, 217(1):1–5, 2012.

Mark L Latash, John P Scholz, and Gregor Schöner. Motor control strategies revealed
in the structure of motor variability. Exercise and Sport Sciences Reviews, 30(1):26–31,
2002.

Giovanni Legnani, Federico Casalo, Paolo Righettini, and Bruno Zappa. A homogeneous
matrix approach to 3d kinematics and dynamics – II. Applications to chains of rigid
bodies and serial manipulators. Mechanism and Machine Theory, 31(5):589–605, 1996a.

Giovanni Legnani, Federico Casolo, Paolo Righettini, and Bruno Zappa. A homogeneous
matrix approach to 3d kinematics and dynamics – I. Theory. Mechanism and Machine
Theory, 31(5):573–587, 1996b.

Ian D Loram, Henrik Gollee, Martin Lakie, and Peter J Gawthrop. Human control of an
inverted pendulum: is continuous control necessary? is intermittent control effective? is
intermittent control physiological? The Journal of physiology, 589(2):307–324, 2011.

David Luenberger. An introduction to observers. IEEE Transactions on automatic control,
16(6):596–602, 1971.

Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University Press, 2017.

155



Bibliography

John H. Martin. The corticospinal system: From development to motor control. The
Neuroscientist, 11(2):161–173, 2005.

Anthony N Martonosi. Animal electricity, ca2+ and muscle contraction. a brief history of
muscle research. Acta Biochimica Polonica, 47(3):493–516, 2000.

PBC Matthews. A study of certain factors influencing the stretch reflex of the decerebrate
cat. The Journal of Physiology, 147(3):547, 1959.

Joseph McIntyre and Emilio Bizzi. Servo hypotheses for the biological control of movement.
Journal of Motor Behavior, 25(3):193–202, 1993.

Josh Merel, Matthew Botvinick, and Greg Wayne. Hierarchical motor control in mammals
and machines. Nature Communications, 10(1):5489, 2019.

Mehran Mesbahi and Magnus Egerstedt. Graph theoretic methods in multiagent networks,
volume 33. Princeton University Press, 2010.

Milana P Mileusnic, Ian E Brown, Ning Lan, and Gerald E Loeb. Mathematical models of
proprioceptors. i. control and transduction in the muscle spindle. Journal of neurophysi-
ology, 96(4):1772–1788, 2006.

T.E. Milner. Adaptation to destabilizing dynamics by means of muscle cocontraction. Ex-
perimental Brain Research, 143(4):406–416, 2002.

T.E. Milner, C. Cloutier, A.B. Leger, and D.W. Franklin. Inability to activate muscles
maximally during cocontraction and the effect on joint stiffness. Experimental Brain
Research, 107(2):293–305, 1995.

Manfred Morari and Jay H Lee. Model predictive control: past, present and future. Com-
puters & Chemical Engineering, 23(4-5):667–682, 1999.

F Mörl, M Günther, J M Riede, M Hammer, and S Schmitt. Loads distributed in vivo
among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed
lumbar spine. Biomechanics and Modeling in Mechanobiology, 19(6):2015–2045, 2020.

Falk Mörl, Tobias Siebert, Syn Schmitt, Reinhard Blickhan, and Michael Günther. Electro-
Mechanical Delay in Hill-Type Muscle Models. Journal of Mechanics in Medicine and
Biology, 12(5):85–102, 2012.

Giulio Mozzi. Discorso matematico sopra il rotamento momentaneo dei corpi. nella stam-
peria di Donato Campo, 1763.

Roy Müller, Daniel Florian Benedict Häufle, and Reinhard Blickhan. Preparing the leg for
ground contact in running: the contribution of feed-forward and visual feedback. Journal
of Experimental Biology, 218(3):451–457, 2015.

Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994.

Ferdinando A Mussa-Ivaldi. Modular features of motor control and learning. Current
opinion in neurobiology, 9(6):713–717, 1999.

Eiichi Naito, Tomoyo Morita, and Kaoru Amemiya. Body representations in the human
brain revealed by kinesthetic illusions and their essential contributions to motor control
and corporeal awareness. Neuroscience Research, 104:16–30, 2016.

NASA. Anthropometric Source Book, Volume I-III. NASA Anthropometry Project, 1978.

156



Bibliography

Jong Hyeon Park. Impedance control for biped robot locomotion. IEEE Transactions on
Robotics and Automation, 17(6):870–882, 2001.

A. Pellionisz and R. R. Llinás. Tensor network theory of the metaorganization of functional
geometries in the central nervous system. Neuroscience, 16(2):245–273, 1985.

Ilona J. Pinter, Arthur J. van Soest, Maarten F. Bobbert, and Jeroen B. J. Smeets. Con-
clusions on motor control depend on the type of model used to represent the periphery.
Biological Cybernetics, 106(8):441–451, 2012.

Jay Pratt, Alison L Chasteen, and Richard A Abrams. Rapid aimed limb movements: age
differences and practice effects in component submovements. Psychology and aging, 9(2):
325, 1994.

Jerry Pratt and Gill Pratt. Intuitive control of a planar bipedal walking robot. In Proceedings
of the International Conference on Robotics and Automation, volume 3, pages 2014–2021.
IEEE, 1998.

Tony J Prescott, Peter Redgrave, and Kevin Gurney. Layered control architectures in robots
and vertebrates. Adaptive Behavior, 7(1):99–127, 1999.

Konrad Reif and Rolf Unbehauen. The extended kalman filter as an exponential observer
for nonlinear systems. IEEE Transactions on Signal processing, 47(8):2324–2328, 1999.

Robert Rockenfeller and Michael Günther. Inter-filament spacing mediates calcium bind-
ing to troponin: a simple geometric-mechanistic model explains the shift of force-length
maxima with muscle activation. Journal of Theoretical Biology, 454:240–252, 2018.

L. A. Rozendaal and A. J. van Soest. Joint stiffness requirements in a multi-segment stance
model. In Proceedings of the XXth Congress of the ISB, page 622, Cleveland, Ohio, 2005.

TK Rupp, W Ehlers, N Karajan, M Günther, and S Schmitt. A forward dynamics simu-
lation of human lumbar spine flexion predicting the load sharing of intervertebral discs,
ligaments, and muscles. Biomechanics and Modeling in Mechanobiology, 14(5):1081–1105,
2015.

Soheil Sarabandi and Federico Thomas. A survey on the computation of quaternions from
rotation matrices. Journal of Mechanisms and Robotics, 11(2), 2019.

Syn Schmitt. Modellierung und simulation biomechanischer Vorgänge am Beispiel Skisprung.
PhD thesis, Diplomarbeit, Universität Stuttgart, 2003.

Syn Schmitt, Michael Günther, and Daniel F. B. Haeufle. The dynamics of the skeletal
muscle: a systems biophysics perspective on muscle modeling with the focus on Hill-type
muscle models. GAMM-Mitteilungen, 42(3):e201900013, 2019.

Rachael D Seidler, Douglas C Noll, and G Thiers. Feedforward and feedback processes in
motor control. Neuroimage, 22(4):1775–1783, 2004.

R Shadmehr and FA Mussa-Ivaldi. Adaptive representation of dynamics during learning of
a motor task. Journal of Neuroscience, 14(5):3208–3224, 1994.

Reza Shadmehr, Maurice A Smith, and John W Krakauer. Error correction, sensory predic-
tion, and adaptation in motor control. Annual review of neuroscience, 33:89–108, 2010.

L.F. Shampine and M.K. Gordon. Computer Solution of Ordinary Differential Equations:
The Initial Value Problem. W.H. Freeman & Co., San Francisco, 1975.

157



Bibliography

Michael A Sherman, Ajay Seth, and Scott L Delp. What is a moment arm? Calculating
muscle effectiveness in biomechanical models using generalized coordinates. In 9th Inter-
national Conference on Multibody Systems, Nonlinear Dynamics, and Control, volume 7B,
pages DETC2013–13633, 2013.

J Sinclair, Paul John Taylor, Christopher James Edmundson, Darrell Brooks, and
Sarah Jane Hobbs. Influence of the helical and six available cardan sequences on 3d
ankle joint kinematic parameters. Sports Biomechanics, 11(3):430–437, 2012.

J W Smith. The forces operating at the human ankle joint during standing. Journal of
anatomy, 91(4):545–64, 1957.

Samuel J Sober and Philip N Sabes. Flexible strategies for sensory integration during motor
planning. Nature neuroscience, 8(4):490–497, 2005.

Dimitar Stanev and Konstantinos Moustakas. Stiffness modulation of redundant muscu-
loskeletal systems. Journal of Biomechanics, 85:101–107, 2019.

Katrin Stollenmaier. Neuro-musculoskeletal Models: A Tool to Study the Contribution of
Muscle Dynamics to Biological Motor Control. PhD thesis, Universität Tübingen, 2021.

Katrin Stollenmaier, Winfried Ilg, and Daniel F. B. Haeufle. Predicting perturbed human
arm movements in a neuro-musculoskeletal model to investigate the muscular force re-
sponse. Frontiers in Bioengineering and Biotechnology, 8:308, 2020.

S. Tarbouriech and M. Turner. Anti-windup design: an overview of some recent advances
and open problems. IET Control Theory & Applications, 3(1):1–19, 2009.

Kurt A Thoroughman and Reza Shadmehr. Learning of action through adaptive combina-
tion of motor primitives. Nature, 407(6805):742–747, 2000.

Olaf Till, Tobias Siebert, Christian Rode, and Reinhard Blickhan. Characterization of
isovelocity extension of activated muscle: a hill-type model for eccentric contractions and
a method for parameter determination. Journal of theoretical biology, 255(2):176–187,
2008.

Emanuel Todorov, Weiwei Li, and Xiuchuan Pan. From task parameters to motor synergies:
A hierarchical framework for approximately optimal control of redundant manipulators.
Journal of Robotic Systems, 22(11):691–710, 2005.

M. C. Tresch, P. Saltiel, and E. Bizzi. The construction of movement by the spinal cord.
Nature Neuroscience, 2(2):162–167, 1999.

Ya-weng Tseng, Jörn Diedrichsen, John W. Krakauer, Reza Shadmehr, and Amy J. Bastian.
Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of
Neurophysiology, 98(1):54–62, 2007.

Arthur J. van Soest and Maarten F.. Bobbert. The contribution of muscle properties in the
control of explosive movements. Biological Cybernetics, 69(3):195–204, 1993.

Johannes R Walter, Michael Günther, Daniel FB Haeufle, and Syn Schmitt. A geometry-
and muscle-based control architecture for synthesising biological movement. Biological
cybernetics, 115:7–31, 2021a.

Johannes R Walter, Patrick Lerge, and Syn Schmitt. Human-centred design: a comparison
of ingress motion for two car concepts using a musculoskeletal, digital human body model.
In Stuttgarter Symposium für Produktentwicklung, page accepted, 2021b.

158



Bibliography

Tim Wescott. Pid without a phd. Embedded Systems Programming, 13(11):1–7, 2000.

Norbert Wiener. Cybernetics, or Control and Communication in the Animal and the Ma-
chine. Technology Press, 1948.

U Windhorst. Muscle proprioceptive feedback and spinal networks. Brain research bulletin,
73(4-6):155–202, 2007.

Isabell Wochner, Danny Driess, Heiko Zimmermann, Daniel FB Haeufle, Marc Toussaint,
and Syn Schmitt. Optimality principles in human point-to-manifold reaching accounting
for muscle dynamics. Frontiers in Computational Neuroscience, 14:38, 2020.

Simon Wolfen, Johannes Walter, Michael Günther, Daniel FB Haeufle, and Syn Schmitt.
Bioinspired pneumatic muscle spring units mimicking the human motion apparatus: ben-
efits for passive motion range and joint stiffness variation in antagonistic setups. In 2018
25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP),
pages 1–6, 2018.

Daniel M. Wolpert. Computational approaches to motor control. Trends in Cognitive
Sciences, 1(6):209–216, 1997.

Daniel M Wolpert and J Randall Flanagan. Motor prediction. Current Biology, 11(18):
R729–R732, 2001.

Daniel M Wolpert and Zoubin Ghahramani. Computational principles of movement neuro-
science. Nature neuroscience, 3(11):1212–1217, 2000.

Daniel M Wolpert and Michael S Landy. Motor control is decision-making. Current opinion
in neurobiology, 22(6):996–1003, 2012.

Daniel M Wolpert, Kenji Doya, and Mitsuo Kawato. A unifying computational framework
for motor control and social interaction. Philosophical Transactions of the Royal Society
of London. Series B: Biological Sciences, 358(1431):593–602, 2003.

D.M. Wolpert and M. Kawato. Multiple paired forward and inverse models for motor control.
Neural Networks, 11(7):1317–1329, 1998.

Ge Wu, Sorin Siegler, Paul Allard, Chris Kirtley, Alberto Leardini, Dieter Rosenbaum, Mike
Whittle, Darryl D D’Lima, Luca Cristofolini, Hartmut Witte, et al. Isb recommendation
on definitions of joint coordinate system of various joints for the reporting of human joint
motion—part i: ankle, hip, and spine. Journal of biomechanics, 35(4):543–548, 2002.

Ge Wu, Frans CT Van der Helm, HEJ DirkJan Veeger, Mohsen Makhsous, Peter Van Roy,
Carolyn Anglin, Jochem Nagels, Andrew R Karduna, Kevin McQuade, Xuguang Wang,
et al. Isb recommendation on definitions of joint coordinate systems of various joints for
the reporting of human joint motion—part ii: shoulder, elbow, wrist and hand. Journal
of biomechanics, 38(5):981–992, 2005.

Michael Zeitz. The extended luenberger observer for nonlinear systems. Systems & Control
Letters, 9(2):149–156, 1987.

159


	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction and Preliminaries
	Introduction
	Structure of this doctoral dissertation

	Preliminary mathematical model descriptions
	Rigid body dynamics
	Rigid bodies, frames and points
	3D rotations, exponential coordinates and helical angles
	Homogeneous representation of rigid body transformations
	Rigid body twists, exponential coordinates and screw motions 
	Rigid body velocities and velocity transformations
	Rigid body acceleration and other dynamics variables
	Lagrange equations of motion

	Muscle Model
	Activation dynamics
	Hill-type muscle-tendon-units
	Low-level control of muscle length
	Moment arms

	Joint-limitations and visco-elastic forces
	Contact forces


	The Hierarchical Control Architecture
	Design of the hierarchical control architecture
	The Structural Layer
	The transformational Layer
	The hierarchical -controller
	The direct -controller with co-contraction
	Choosing the base reference stimulation level Stimcocref
	A co-contraction on joint layer

	The conceptional layer
	Control of joint angles
	Control of joint torques
	Control of limb positions
	Control of forces and of other coordinates



	In-silico Applications
	The digital human body model allmin
	Graph-based model description

	Joint control: basic examples
	Control of the lower limb joint angles
	Control of the upper limb joint angles
	Control of the trunk joint angles

	Torque control: upright stance and squat movement
	Conceptional task formulation in terms of joint torques
	Simulation task: quiet upright stance
	Simulation task: joint-based co-contraction
	Simulation task: squat movement


	Position Control: basic example 
	Controlling the positions of lower and upper extremities
	Static-case position control
	Moving-case position control


	Generalisation towards complex combined movements
	Application example digital engineering: Car ingress ergonomics
	Controller configurations for synthesising a car-ingress motion
	Simulation results of the car ingress

	Application example forensics: Mean crime or tragic fall
	Movement plan and TIA model
	Bathtub model and contacts
	Simulation results of the fall
	Model limitations and outlook



	Discussion
	Discussion and outlook
	Steps towards a validation and biological identification of the hierarchical control architecture
	Model limitations of the DHM
	Control limitations with potential modular improvements to the architecture's design
	Current state and future applications of the hierarchical control architecture


	Appendix
	Notes on rigid body dynamics
	Notes on rotations in 3D-space and other representations
	Body velocities and the adjoint transformation matrix
	Equations of motion

	The contact model
	The digital human body model `allmin'
	Model parameters

	The simulation software [basicstyle=]demoa
	Simulation software and solver
	[basicstyle=]demoa variables of the homogeneous rigid body matrices

	Implementation of the hierarchical control architecture
	Object-oriented design and controller parametrisation
	The conceptional layer parameters: |/ConceptionalLayer|
	The transformational layer parameters: |/TransformationalLayer|
	The structural layer parameters: |/StructuralLayer|

	Initialisation
	Runtime routines of the control algorithms
	Different ways to set desired control states
	Source code of the control module functions
	Functions in [basicstyle=]usrsetmks.cpp
	Functions in [basicstyle=]ucontrol.cpp
	Functions in [basicstyle=]uconclayer.cpp
	Functions in [basicstyle=]utrafolayer.cpp
	Functions in [basicstyle=]ustructlayer.cpp


	Bibliography


