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Abstract: Agriculture is the backbone and the main sector of the industry for many countries in
the world. Assessing crop yields is key to optimising on-field decisions and defining sustainable
agricultural strategies. Remote sensing applications have greatly enhanced our ability to monitor
and manage farming operation. The main objective of this research was to evaluate machine learning
system for within-field soya yield prediction trained on Sentinel-2 multispectral images and soil
parameters. Multispectral images used in the study came from ESA’s Sentinel-2 satellites. A total of
3 cloud-free Sentinel-2 multispectral images per year from specific periods of vegetation were used to
obtain the time-series necessary for crop yield prediction. Yield monitor data were collected in three
crop seasons (2018, 2019 and 2020) from a number of farms located in Upper Austria. The ground-
truth database consisted of information about the location of the fields and crop yield monitor data
on 411 ha of farmland. A novel method, namely the Polygon-Pixel Interpolation, for optimal fitting
yield monitor data with satellite images is introduced. Several machine learning algorithms, such as
Multiple Linear Regression, Support Vector Machine, eXtreme Gradient Boosting, Stochastic Gradient
Descent and Random Forest, were compared for their performance in soya yield prediction. Among
the tested machine learning algorithms, Stochastic Gradient Descent regression model performed
better than the others, with a mean absolute error of 4.36 kg/pixel (0.436 t/ha) and a correlation
coefficient of 0.83%.

Keywords: precision agriculture; remote sensing; polygon-pixel intersection (PPI); stochastic gradient
descent (SGD); high performance computing (HPC)

1. Introduction

With total farmland stretching over 124 Mha, soya (lat. Glycine max) is the fourth
largest crop in the world and one of the most important sources of oil and protein for
animal feed, human consumption and bio-fuel [1]. Due to the plant’s rich nutritional
content, soya production has increased more than 13 times since the 1960s, with the
average yield in 2016 spanning between 1.22 t/ha in India and 3.51 t/ha in the USA [2].
It is estimated that 78–80% of soya produced globally is based on Genetically Modified
Organism (GMO) technology [3,4] for improving the plant’s yield, nutritional components
and pesticide resistance [5]. However, there is a concern of a part of the public and scientific
community over GMO food and accompanying pesticides and their influence on humans
and the environment [6–8]. For this reason, non-GMO production has also witnessed the
increase in popularity. Non-GMO production of soya is especially present in Europe, where
stakeholders from the entire value chain and civil society are gathered under the umbrella
of Donau Soja [9]. Donau Soya is a non-profit organisation organised as an association and
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is based in Vienna, with three local offices in Serbia, Ukraine and Moldova as well as a
representative in Romania. The organisation’s network of farmers was the one to acquire
the data for this study, while their motivation behind sharing the data was the development
of a Machine Learning System (MLS) that they could use in their daily operations.

Modern technologies have made it possible to install different types of devices on the
combine harvester, such as a yield monitor that uses the responses of different sensors to
map the crop on the parcel [10]. In the domain of precision agriculture, yield monitor de-
vices provide a new and powerful tool for zone management and in-field comparisons [11].
This means that by analysing data for a specific field, farmers gain new knowledge that
allows them to better prepare the plan of agricultural operations for the next growing
season. Yield monitor data are sent directly from the server via the Internet of Things (IoT)
communications protocol [12]. In this way, they are obtaining insights into the status of
their crops at the time of harvest, sometimes even in real-time. On the other hand, these
data are stored in the internal memory, which provides the possibility of further processing
or analysis.

Recently, satellite platforms have become increasingly available for widespread use,
both for research and commercial purposes. Remote sensing applications, which include
satellite images, have greatly enhanced our ability to monitor and manage our natural
resources, especially in the area of agriculture [13]. Satellite-based monitoring enabled
large-scale observation with a revisit period of 5–10 days for open access data and a daily
resolution for the paid satellites. Due to their wide swath, satellite imagery has found its
practical application in the field of crop condition monitoring on a global level [14]. The
crop response in satellite images depends on soil properties in the areas with homogeneous
treatments [15]. The usage of satellite images and vegetation indices allow the farmers to
identify different management zones on a commercial farm [16]. One approach is to map
the crop yield, as one of the most important layers of information in agriculture production,
using Scalable, a satellite-based Crop Yield Mapper (SCYM) [17]. This method uses crop
model simulations to train statistical models for different combinations of possible image
acquisition dates within the Google Earth Engine platform.

On the large scale of crop yield prediction a non-linear quasi-Newton multi-variate
optimization method has been tested in the Iowa state. This model takes into account re-
mote sensing and surface parameters for estimating the annual average yield and achieved
promising results for soya (R2 = 0.86) and corn [18]. Farmers traditionally estimate yield
based on their previous experience and present weather, but there are other more advanced
approaches based on simulation models (e.g., APSIM [19], DSSAT [20], WOFOST [21] and
AquaCrop [22]) or data-driven models, which rely on crop reflectance in remote sensing
and the current wealth of agro-environmental data offers a great opportunity to improve
yield forecasts [23]. Soya yield prediction based on satellite images and weather data at
municipality-level achieved a mean absolute error (MAE) of 0.24 Mg/ha [24]. Terrain topog-
raphy can significantly affect crop yields. The effectiveness of each topographic derivative
can be estimated using LiDAR (Light Detection and Ranging) data and geographically
weighted regression (GWR) models. These models using topographic variables derived
from LiDAR can effectively explain yield on an entire-field scale (R2 = 0.71 for soya yield
prediction) [25]. Prediction within-field yield is quite a difficult challenge because of the
high resolution of produced resulting maps. Crop-growth model based on meteo, soil
and LAI (Leaf Area Index) retrieval from Sentinel-2 achieved promising results. The mean
error ranging from negative to positive values was −365 to 411 kg/ha across the study
fields [26]. The results of the research clearly indicate that each additional source of error
should be included in the simulations when using the crop model for yield prediction. The
assimilation of crop model data with the Ensemble Kalman filter for correcting errors in the
water balance of the world food studies (WOFOST) led to improved results in predicting
wheat yields for the majority of regions (66%) [27]. Additional assimilations of Sentinel-1
and Sentinel-2 data and incorporation into the WOFOST model achieved correlations of
R2 = 0.35 of observed and simulated yields and RMSE = 934 kg/ha [28].
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In order to feed the world’s growing population, food production and yields must
increase significantly [29]. For that reason, yield prediction is one of the most important
tasks in machine learning (ML) applied in agriculture. Agricultural production is very
sensitive to a wide range of factors such as the weather, soil, seed selection, fertilisation,
homogeneous zone management and their complex interactions.

Global research suggests that climate variation explains about one-third of global
yield variability [30]. Weather effects, together with evapotranspiration of plants, were
used to create a ML regression model for yield prediction [31]. There are several ML
techniques that have been applied for crop yield prediction approaches found in the
literature. Deep Neural Networks (DNN) utilize the high processing power of modern
servers and computers and offers a state-of-the-art modeling approach yield prediction.
DNN structures for crop yield prediction are usually based on soil and weather input data
for the purpose of model training. Yield prediction has been performed using DNN and the
model performance achieved the correlation coefficient of 81.91% [32]. Another approach is
to use Convolutional Neural Networks (CNN) [33] in combination with publicly available
remote sensing data such as MODIS Surface Reflectance to estimate yield on the country
level [34,35]. Artificial Neural Networks (ANN) proved to be a very effective model for
predicting the maize and soya yield, achieving a coefficient of determination of 0.77 and
0.81, respectively [36].

Based on the pre-season yield prediction, soya varieties are chosen [37,38], while
based on in-season yield prediction, farmers used that prediction to optimise the storage,
logistics, agricultural operations and forward sales. In this manner, they are lowering the
post-harvest losses, signing more favourable and less risky contracts and increasing profits.

The results are promising and can provide yield estimates at the farm level, which
could be useful in refining broader scale (e.g., county, region) yield projections, but on
within-field levels, the prediction errors were above 20% in the best case [39]. For most of
the field, the prediction accuracy of ANN models was low, with errors above 40%.

The main aim of this research was to evaluate MLS for soya yield prediction using
Sentinel-2 multispectral images and soil parameters together as training data. In parallel,
the problem of fitting data from different sources (such as satellite images, yield monitors,
and field surveys) was considered and elaborated. Finally, the computing requirements for
large scale applications of the different machine learning algorithms used in this attempt
were tested.

2. Materials and Methods
2.1. Method Overview

The methodology followed in this research employs MLS to predict soya yield from
a series of multi-source input parameters, such as yield monitor data, raw pixel values
from Sentinel-2 multispectral images, vegetation indices derived from the same imagery
and soil features recorded in pre-existing databases. The flow chart of the processing
pipeline is shown in Figure 1. MLS consists of two parts. The first part, i.e., preprocessing,
was employed to deal with the irregularities within the data, and the second one was
used for modelling the yield using a ML approach. Each segment of preprocessing was
performed successively for all three years, and the final database for training ML models
was created (furthermore, the complete dataset). Codes for both parts of MLS are given in
Supplementary Materials.
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Figure 1. A flowchart overview and example walk-through of the methods presented in this paper.
Datasets are shown in yellow, purple denotes the preprocessing operations, and modules for ML are
shown in blue, while the resulting model and outputs (prediction maps and model performance) are
shown in green and red, respectively. Black arrows indicate the flow of data. The segments belonging
to the preprocessing part are framed by a red dashed line, while the ML components are bordered by
blue dashed lines.

2.2. Data

The dataset used in this research comprises a set of field data derived from yield
monitor device, imaging data observed from Sentinel-2 satellites and soil data obtained
from SoilGrids system.

Field data used in this study were provided by Donau Soja [9], which acquired it
through the organisation’s network of farmers in Austria. The yield measurements were
taken by combine harvesters during the 2018, 2019 and 2020 growing seasons in Upper
Austria (Figure 2). There were 142 fields in total: 72 in the first, 53 in the second and 17 in
the third year. Their total area was 411 ha for all three years with an average parcel size of
2.9 ha. Each of field is denoted with a unique identification number (Parcel ID).
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Figure 2. Location of the fields from the dataset. (A) The selected study region in the Upper Austria
denoted by the black box. (B) Spatial distribution of fields within the study region.

Sentinel-2 is a modern satellite mission for Earth observation. It is a constellation of
two identical satellites (Sentinel-2A and Sentinel-2B) placed in the same sun-synchronous
orbit, phased at 180° from each other. Spectral bands for the Sentinel-2 images are shown
in Table 1. This study relied on Level-2A product of Sentinel-2 satellite imagery that comes
in 12 spectral bands from visible, infrared and short-wave infrared part of the spectrum at
the highest spatial resolution of 10 m [40–42]. Band 10 was discarded from this product,
so the remaining 12 bands were used in this study. To deal with the problem of different
resolutions, the bands with resolutions of 20 m and 60 m were upsampled to the resolution
of 10 m so that all channels could be concatenated with aligned pixels. New images are
generated every 5 days, but the majority were discarded in this study due to high cloud
coverage. For every year, we chose 3 cloud-free images: one for each month from June to
August. The dates are specified in Table 2, along with the relevant soya growth stage. The
dates are not identical in the same day for each season due to the appearance of the cloud
coverage, but it was considered to take the approximate date of image acquisition in the
required period. In Table 2, mark V denotes the vegetation stages with the number of nodes
(5) on the main stem with fully developed leaves, while mark M implies reproductive
stages. During the R2 stage, soya opened its flower at one of the two uppermost nodes on
the main stem with a fully developed leaf. In stage R2, a soya flower formed. R3 and R4
stages include pod formation, while R5 and R6 involved cover seed formation [43].
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Table 1. Spectral bands for the Sentinel-2.

Sentinel-2 Bands Abbreviation
Sentinel-2A

Central
Wavelength (nm)

Sentinel-2B
Central

Wavelength (nm)

Spatial
Resolution (m)

Band 1 CoastalAerosol 442.7 442.2 60
Band 2 BLUE 492.4 492.1 10
Band 3 GREEN 559.8 559.0 10
Band 4 RED 664.6 664.9 10
Band 5 RedEdge 704.1 703.8 20
Band 6 RedEdge2 740.5 739.1 20
Band 7 RedEdge3 782.8 779.7 20
Band 8 NIR 832.8 832.9 10

Band 8A NIR2 864.7 864.0 20
Band 9 WaterVapour 945.1 943.2 60

Band 10 SWIR 1373.5 1376.9 60
Band 11 SWIR2 1613.7 1610.4 20
Band 12 SWIR3 2202.4 2185.7 20

Table 2. Dates of Sentinel-2 image acquisition with the corresponding soya growth stage.

2018 2019 2020 Soya Growth Stage

8 June 5 June 12 June V5-R2, growing vegetation, bloom
20 July 20 July 27 July R3-R4, pod formation

9 August 9 August 8 August R5-R6, seed formation

Vegetation indices are widely used in the domain of agriculture. Some of those are
used to continuously monitor the condition of crops. Vegetation indices are mathematical
combinations of two or more spectral bands designed to highlight a particular property of
vegetation. Here, several vegetation indices [44] were calculated to facilitate tracing crop
variance within the tested fields:

• Normalized Difference Vegetation Index (NDVI) is one of the most commonly used
vegetation indices, which combines two spectral bands to estimate the density of green
vegetation and health of the plant [45,46].

NDVI =
NIR − RED
NIR + RED

(1)

• Enhanced Vegetation Index (EVI) was developed to quantify the vegetation signal with
improved sensitivity in areas with dense vegetation and improved vegetation moni-
toring by de-coupling the canopy background signal and a reduction in atmosphere
influences [47,48].

EVI = 2.5 · NIR − RED
NIR + 6 · RED − 7.5 · BLUE + 1

(2)

• Atmospherically Resistant Vegetation Index (ARVI) provides a self-correction process
to correct radiance for the atmospheric effect on the RED band [49].

ARVI =
NIR − (RED − 1.7 · (BLUE − RED))

NIR + (RED − 1.7 · (BLUE − RED))
(3)

• Soil-Adjusted Vegetation Index (SAVI) is presented to minimize soil brightness influ-
ences from spectral vegetation indices [50].

SAVI =
NIR − RED

NIR + RED + 0.5
· (1 + 0.5) (4)
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• Normalized Difference Vegetation Index Red-edge (NDVIRE) is the modification of
NDVI where the RED band was replaced with RedEdge [51,52].

NDVIRE =
NIR − RedEdge
NIR + RedEdge

(5)

• Visible Atmospherically Resistant Index (VARI) is used to estimate the share of vegeta-
tion with low sensitivity to atmospheric effects [53].

VARI =
GREEN − RED

GREEN + RED − BLUE
(6)

• Normalized Difference Water Index (NDWI) is used to determine the water content in
vegetation [54].

NDWI =
NIR − SWIR2
NIR + SWIR2

(7)

• Modified Normalized Difference Water Index (MNDWI) is a modified version of the
NDWI index and it is also used to detect water content [55].

MNDWI =
GREEN − SWIR2
GREEN + SWIR2

(8)

• Visible-Band Difference Vegetation Index (VDVI) plays a role in the extraction of
vegetation information in visible bands only and it is used to estimate vegetation
coverage rate [56].

VDVI =
2 · GREEN − RED − BLUE
2 · GREEN + RED + BLUE

(9)

• Non-linear Index (NLI) is developed using intuition in the physics of interaction
between optical radiation and vegetation canopy and using some results of analytical
models. This index can minimize the effects of “disturbing” factors and view azimuth
as well as soil brightness [57].

NLI =
NIR2 − RED
NIR2 + RED

(10)

• Modified Non-linear Index (MNLI) is modification of NLI, which has an added a soil
factor reduction [58].

MNLI =
(NIR2 − RED) · (1 + 0.5)

NIR2 + RED + 0.5
(11)

• Normalised Multi-Band Drought Index (NMDI) is proposed for monitoring soil and veg-
etation moisture with satellite remote sensing data [59]. It is used for drought detection.

NMDI =
NIR2 − (SWIR2 − SWIR3)
NIR2 + (SWIR2 − SWIR3)

(12)

• Green Leaf Index (GLI) is an important determinant of canopy photosynthesis, evapo-
transpiration and competition among crop plants and weeds [60].

GLI =
(GREEN − RED)(GREEN − BLUE)

(2 · GREEN) + RED + BLUE
(13)

• Excess Green (ExG) vegetation index is provided to determine a near-binary intensity
image, which outlines a plant region of interest [61].

ExG = 2 · GREEN − RED − BLUE (14)
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• Color Index of Vegetation Extraction (CIVE) is created to separate and emphasize the
green plant portion from the background [62].

CIVE = 0.441 · RED − 0.811 · GREEN + 0.385 · BLUE + 18.78745 (15)

• Automated Water Extraction Index (AWEI) has a role to increase the contrast between
water and other dark surfaces. Moreover, the aim of AWEI is to maximize the separa-
bility of water and nonwater pixels through band differencing, addition and applying
different coefficients [63].

AWEI = 4 · (GREEN − SWIR2)− (0.25 · NIR + 2.75 · SWIR3) (16)

• Green-Red Vegetation Index (GRVI) is evaluated as phenological indicator based on
multiyear stand-level observations of spectral reflectance and phenology [64].

GRVI =
GREEN − RED
GREEN + RED

(17)

• Green Atmospherically Resistant Index (GARI) is developed and expected to be
as resistant to atmospheric effects as ARVI but more sensitive to a wide range of
Chlorophyll concentrations [65].

GARI =
NIR − (GREEN − 1.7 · (BLUE − RED))

NIR + (GREEN − 1.7 · (BLUE − RED))
(18)

• Difference Vegetation Index (DVI) is used to evaluate and quantify the difference
between NIR and RED bands [66].

DVI = NIR − RED (19)

• Leaf Area Index (LAI) is related to canopy light absorption. It is used to characterise
plant canopies [26].

LAI =
( NIR−2

RedEdge−2 − 1)0.89

0.90
(20)

For ML regression model training, 20 vegetation indices were used as additional
features, which are derived from 12 bands of Sentinel-2 multispectral images for each of
the three dates. These indices were used to estimate vegetation characteristics as they
mostly serve as indicators for crop dynamics and overall changes in biomass quantity and
properties. Moreover, some indices are used to monitor changes in the water content of
leaves, while others are able to suppress the influence of the soil or eliminate the influence
of the atmosphere.

Another set of inputs was the soil features retrieved via ISRIC’s (International Soil
Reference and Information Centre) SoilGrids platform [67]. Out of a large number of soil
chemical and physical features, the eleven most quantifiable ones at a 15–30 cm soil depth
(where soy’s root system expands) were selected for the analysis. The features are listed in
Table 3.

All parcels are located within a radius of 15 km. Due to the proximity of fields,
which were all located in the Upper Austria region, we considered the fields to have been
influenced by similar weather conditions. Therefore, weather variables were not considered.
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Table 3. Parameters extracted from SoilGrids at 15–30 cm depth.

Parameter Description Units

bdod Bulk density of fine earth fraction cg/cm3

cec Cation exchange capacity of soil mmol(c)/kg
cfvo Volumetric fraction of coarse fragments cm3/dm3

clay Proportion of clay particles in fine earth fraction g/kg
nitrogen Total nitrogen (N) cg/kg

ocd Organic carbon density hg/dm3

ocs Organic carbon stocks t/ha
phh2o Soil pH pH ×10
sand Proportion of sand particles in fine earth fraction g/kg
silt Proportion of silt particles in fine earth fraction g/kg
soc Soil organic carbon content in fine earth fraction dg/kg

2.3. Preprocessing

The most straightforward approach for producing a map from a point-vector geospa-
tial layer (e.g., a shapefile) is interpolation. However, it poses several problems. The first
is that in the regions of slower combine movement, yield measurements are denser and
hence lower. For example, let us assume that, for one strip of the field, a combine took
20 yield measurements, each showing 2 t/ha. Had it driven twice as fast, it would have
made 10 yield measurements, but now with 4 t/ha each. Because of this difference in the
measurements, the standard interpolation method (Simple Moving Average—SMA) [68]
provides a higher yield value than the measurement in reality. Therefore, a novel method-
ology, namely the Polygon-Pixel Intersection (PPI), for fitting yield monitor and satellite
data are proposed in this research. The new method is compared with SMA interpolation,
and the findings are presented in the Results section.

The proposed PPI method is based on the interconnection of yield monitor and
satellite data. Yield data from combine harvesters came in the form of georeferenced
point measurements (Figure 3). The measurements were taken at regular time intervals
but at a variable combine speed, resulting in irregularly spaced points within the rows.
Furthermore, due to the irregular shape of the fields, the combine passes stand out from a
straight line.

The original data from the yield monitor device contain information about the lon-
gitude (x), latitude (y), swath width (sw) (m), angle (a) (rad), distance (d) (m) and yield
(y) (kg). All the data used for further analysis are shown in Figure 4. The green square
signifies the Sentinel-2 pixel, while the purple rectangle signifies the area harvested by
the combine in one interval, i.e., the area, which corresponds to one yield measurement.
The point Pc represents the location of combine at the end of the scanning interval. The
combine is moving in the direction of the yellow arrow, and it passed distance d. Points P1
to P4 that represent the corners of the polygon are expressed in the following form.

Pi = [xi, yi] (21)

Their coordinates are calculated using the aforementioned parameters as follows.

P1 = [x − sw/2 · cos(a), y + sw/2 · sin(a)] (22)

P2 = [x + sw/2 · cos(a), y − sw/2 · sin(a)] (23)

P3 = [x + sw/2 · cos(a)− d · sin(pi − a), y − sw/2 · sin(a) + d · cos(pi − a)] (24)

P4 = [x − sw/2 · cos(a)− d · sin(pi − a), y + sw/2 · sin(a) + d · cos(pi − a)] (25)
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Figure 3. Original data from the yield monitor device in the points form.

Figure 4. Graphic representation of polygon and pixel overlap for PPI method.

In order to obtain the total amount of yield for a particular Sentinel-2 pixel, it was
needed to sum up the contribution of each sensory reading to that pixel. The procedure
includes several steps. First, a rectangle is drawn for each yield measurement using the
four corners. It corresponds to the area from which soya was harvested (Figure 5). The
width of the rectangle is recorded by combine’s sensors and extracted from the shapefile,
along with the orientation of the movement.
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Figure 5. A polygons correspond to the area from which soya was harvested for each single
yield measurement.

Next, the Sentinel-2 pixel grid is drawn on top, as in Figure 6. The satellite image was
clipped to the parcel size using the shapefile with the boundaries of the parcel. For each
Sentinel-2 pixel, yield was calculated as the overlap between the pixel and all overlapping
yield polygons. In this way, a yield map was derived for the Sentinel-2 pixel grid, allowing
for seamless data fusion. The percentage of overlap (Op) between a yield monitor polygon
(Aymp) and the Sentinel-2 pixel’s polygon (App) is expressed as follows.

Op =
Aymp

App
(26)

The final output of the model is in the amount of yield in kg per pixel (Ypp).

Ypp =
n

∑
j=1

Yymp(n) · Op(n) (27)

where n is the number of polygons that overlap with the pixel, and Yymp is the contribution
of a yield monitor polygon to the satellite pixel.

The only issues were observed in border pixels, which, in addition to soya plants, also
contain roads, dirt, forests and other pieces of land not belonging to the field (Figure 7).
Therefore, border pixels were left out of further analysis. This procedure reduced the
dataset by removing contaminated and irregular data.

In order to create a complete dataset from different sources, the data must be aligned
to the same grid. Satellite image grid was chosen as the reference, as it has the highest
spatial resolution of 10 m, compared to the 250 m wide SoilGrids pixels. In this manner,
each pixel is associated with the appropriate values of the soil parameters.
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Figure 6. Sentinel-2 pixel grid (transparent) placed over yield polygons (magenta).

Figure 7. Graphic representation of Sentinel-2 pixel grid. Border pixels excluded from the analysis
are noted in red while the pixels for further processing are marked in gray.

2.4. Machine Learning

Predicted yield amount served as the output of the MLS regression model, while
yield monitor data, raw Sentinel-2 pixel values, vegetation indices and soil parameters
represented the input.

The input dataset to the MLS consisted of 107 features in total—three 12-band satellite
images from three different dates, additional twenty vegetation indices for the relevant
dates and eleven soil parameters. Soil parameters are considered immutable during the
observed period.
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Outliers were removed from the dataset where the lower limit was 1 kg/pixel while
the limit upper was 70 kg/pixel. The entire dataset contained 28,111 samples, which in this
case, after resampling and data preprocessing, represented the total number of pixels. Each
pixel was denoted with unique identification number (Pixel ID).

For the purpose of model testing 10% of parcels were randomly selected for the dataset
to achieve similar probability density function on the training and testing set. The rest
of the parcels were included in the training set. The separation into training and test set
was performed on the parcel and not on a pixel level to avoid the problem of data leakage.
Namely, pixel values from the same parcel are very similar and highly correlated to one
another. Therefore, the random separation on the parcel level was performed to create
subsets. Performance metrics, however, were evaluated at the pixel level.

Different ML algorithms were tested on these fields and their performance was eval-
uated and compared. The following ML algorithms were used to model the relationship
between the input features and the yield:

1. Multiple Linear Regression (MLR);
2. Support Vector Machine (SVM);
3. eXtreme Gradient Boosting (XGB);
4. Stochastic Gradient Descent (SGD);
5. Random Forest (RF).

All algorithms were implemented using the Scikit Learn Python library [69]. This
library is free and widely used in everyday challenges for the implementation of artificial
intelligence in various decision-support systems.

The MLR is a technique with general purpose to seek for the linear relationship
between a dependent variable and several independent variables. Multiple linear regres-
sion is a generalization of simple linear regression to the case of multiple independent
variables [70].

The SVM is a supervised ML algorithm used for binary classification or regression.
The goal is to find a hyperplane that separates data into predefined number of classes. For
that purpose, SVM uses kernel function to separate feature space [71].

The XGB is one of the algorithms of gradient boosting machines with the ability to be
utilized for supervised learning. It is an ensemble ML algorithm constructed from decision
tree models. Each tree is used once to fit prediction errors made by prior models. This
technique uses a gradient descent optimisation algorithm to fit a model with the goal to
minimise the loss gradient [72].

The SGD algorithm is an iterative method for optimising objective functions. After
each iteration, the gradient is updated using the stochastic approximation of gradient
descent. The SGD implements a plain stochastic gradient descent learning algorithm that
supports different loss functions and penalties to fit linear regression models [73].

The RF is a method of ensemble learning, where the basic unit in the ensemble is the
decision tree. It is based on the idea that several “weak regressors” can be combined to
form a “strong regressors”. Each decision tree within the ensemble is trained on a bootstrap
set of samples and has its own prediction. This system of creating an ensemble and the
final decision made by a majority vote is called bagging (bootstrap aggregation) [74].

Root-Mean-Squared Error (RMSE), Mean Absolute Error (MAE), Coefficient of determi-
nation (R2), Pearson Correlation Coefficient (PCC) and Spearman’s Correlation Coefficient
(SCC) were used to evaluate and rank different models. Sensitivity analysis was performed
using an open-source Python package SALib [75].

2.5. Processing Speed-Up Using High Performance Computing

For a small number of fields, the execution of the system presented herein on a
regular computer (PC) with Intel(R) Core(TM) i7-7800X CPU with six cores (3.5 GHz)
and 32 GB of RAM was sufficient to produce results in a matter of hours. However, the
system was envisaged to work either within a large farm management information system
with thousands or tens of thousands of users, or as a tool for regional yield prediction,
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both of which are highly computationally demanding tasks. Soya is grown on 5.65 Mha in
Europe [1] and due to the intensive digital transformation of agriculture, there is potentially
a huge demand for the service. As most soya plants are grown in the same period of the year
throughout Europe, with some deviations due to climate and the relative maturity group
of the varieties, producing the results could be time-critical. For this reason, a system was
implemented on the High Performance Computing Cluster (HPC), which provided more
powerful hardware infrastructure [76]. The algorithms were adapted using the Message
Passing Interface (MPI) model [77] in order to scale on an HPC infrastructure, where the
program execution time was significantly reduced. More specifically, the application was
encapsulated in a Singularity container [78] together with all its Python libraries, such as the
mpi4py library that enables implementation of MPI in Python. Cluster system configuration
had 2 x Intel(R) Xeon(R) Gold 6226 CPU with 48 cores (2.7 GHz) and 512 GB of RAM.

3. Results and Discussion

The results of all regression models with optimised parameters related to the given
models are presented in Table 4. The result with the smallest MAE (4.36 kg/pixel) and
RMSE (5.53 kg/pixel) error was achieved by SGD regression model. In terms of easier
comparison with the prediction on the parcel-level, this error was 0.436 t/ha. The coefficient
of discrimination R2 was 0.68, which is compared to some relevant scientific papers [18]
(R2 = 0.82) much smaller. The reason lies in the fact that we had included much greater
spatial variability, thus the yield prediction error increases cumulatively. Compared to
regional-level soya yield prediction, we also achieved a weaker result. Method based on
satellite images soya yield prediction at the municipal (regional) level achieved an MAE of
0.24 t/ha [24]. It should be taken that at a higher spatial level, the error is hidden behind
the yield approximation over that large area and a high possibility of discrimination and
precision is lost.

Table 4. Performance of ML models with the new PPI methodology for preprocesing.

Algorithm RMSE (kg/pixel) MAE (kg/pixel) R2 PCC SCC

MLR 6.91 5.48 0.5 0.74 0.55
SVM 5.83 4.68 0.64 0.81 0.69
RF 6.52 5.17 0.55 0.77 0.6

XGB 6.99 5.63 0.48 0.75 0.6
SGD 5.53 4.36 0.68 0.83 0.73

The SGD model presents a very efficient approach to dealing with nonlinearity in
the yield monitor data. The SVM model achieved similar results as the SGD, which
confirms the similarity of these two algorithms. Ensemble learning models (RF and XGB)
achieved slightly lower performance for yield prediction where MAE was greater than
5 kg/pixel. If we take into account the average yield of 4 t/ha, the prediction error of our
model was 10.9%, which is two-times lower than the result achieved in the other relevant
study (yield prediction error > 20%) [39]. The linear regression method (MLR) did not
provide satisfactory results (MAE = 5.48 kg/pixel); therefore, this regression problem can
be considered very difficult to solve using linear determination.

Sobol’ sensitivity indices represent the first-order indices that are used for estimating
the influence of individual factors and the second order indices, which correspond to
pairwise interaction between factors [79]. The visualisation of interactions is shown in
Figure 8. For the given fifteen most important parameters, the Sobol’ method determined
seven soil parameters (silt, cec, phh2o, cfvo, ocd, nitrogen and sand), four vegetation indices
(EVI.2, EVI.3, GRVI.2 and NDWI.3) and four raw bands of Sentinel-2 images (Band4.3,
Band9.1, Band8.2 and Band2.2). Results of Sobol’ method reveal that silt and EVI (for the
second date) were the most important individual factors for the model output. Silt content
proved to be the most indicative of yield variation [80]. High importance of EVI and GRVI
indices are justifying the usage of vegetation indices in this study. The EVI well reflects
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the state of vegetation, and it is also resistant to saturation for high dense biomass. The
NDWI is of great importance in determining the water content, which is a very important
factor for better yield. Selected blue, red and green channels are also highly correlated with
the chlorophyll content in the plant and, therefore, make them very important features for
yield prediction.

Figure 8. Sobol’ factors interaction. Red circles denote first order index, while blue lines represent
second order index. The larger diameter of the circles (first order index) corresponds to the greater
influence of the parameter on the model output. Second order index between two factors is propor-
tional to the width of the blue line that connects them. The first number in the band name denotes a
channel number, and the second number indicates one of the three selected dates in the Table 2.

The visualisation of model performance is shown in Figure 9 where SGD showed the
best ability to model the yield. Moreover, Figure 9 shows that the highest concentration of
samples was between 30 kg/pixel and 50 kg/pixel, which corresponds to a yield of 3 t/ha
to 5 t/ha. This range of yields corresponds to the average soya yield per hectare, which is
an indicator of the correctness of our predictions.

Advantages of our Polygon-Pixel Intersection (PPI) method over the classical interpo-
lation (Simple Moving Average—SMA) are presented by the metrics themselves in Table 5.
The SMA interpolation method provided a higher prediction error (MAE > 8 kg/pixel)
than the proposed PPI method. The advantage of the PPI method lies in the fact that the
harvester does not have to move in a straight line and in a normal orientation, which is
related to imaginary X and Y coordinates. In most cases, yield polygons are covered by
several Sentinel-2 pixels, which leads to the partial redistribution of yields.

Table 5. Performance of ML models with SMA interpolation method for preprocessing.

Algorithm RMSE (kg/pixel) MAE (kg/pixel) R2 PCC SCC

MLR 12.78 9.98 −0.1 0.34 0.32
SVM 11.31 8.41 0.14 0.46 0.43
RF 11.4 8.7 0.13 0.43 0.4

XGB 12.15 9.42 0.01 0.38 0.35
SGD 11.19 8.49 0.16 0.45 0.44
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Figure 9. Graph visualization of real and predicted yield on test set.

An additional experiment was conducted to determine dependence of the yield pre-
diction error and the size of the pixels-polygon overlap. The results are shown in Figure 10.
Yield error represents the difference between real and predicted values. The orange his-
togram shows that, in most cases, the estimation error was 0. Since the highest spatial
resolution for Sentinel-2 pixel is 10 m × 10 m, the area of 100 m2 is taken as the reference
value of the estimation per pixel. According to the green histogram in the top part of
Figure 10, it is clear that most pixels have an overlap of 100 m2. Moreover, the pixel cover-
age in some cases was larger than 100 m2 due to the overlap in the trajectory of the combine
harvester over the same area. Based on the analysis and presentation, the conclusion is that
the estimation does not depend on the total overlap of pixels with yield monitor polygons.
The synergy of the PPI and SGD regression model provides an opportunity to clearly
calculate the proportional part of the crop yield that belongs to a single Sentinel-2 pixel.
This ensures the robustness of the SDG regression model in the case when the movement
of the combine is not optimal (straight line) or when sample distance and swath width are
not uniform.

The runtimes on PC and HPC infrastructures are shown in Figure 11. The results show
that implementation of the code on the HPC cluster infrastructure significantly reduces
the execution time, especially with preprocessing, which is the most time-consuming and
complex operation in the pipeline. Compared to a single-core PC, the HPC cluster saved
75% of the time. Processing time was reduced by a factor of 2 using only 3 cores. With
each subsequent increase in the number of cores, negligible processing time savings were
achieved. Employing more than nine cores did not result in any improvement.

Due to its lower prediction error than other tested regressors, SGD was chosen as the
basis of the system for yield prediction. The final output of the model is a 10 m resolution
map as shown in Figure 12. This representation of results is possible to embed in a web
platform as a tool for yield prediction. Using these yield maps, variability within the parcel
is easily observed, and it gives us an opportunity to perform variable-rate application,
within the paradigm of precision agriculture.
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Figure 10. Graph visualization of dependence between yield prediction and overlap area per pixel.

Figure 11. Execution time on a PC (cyan) and HPC cluster (magenta) for a different number of cores.
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Figure 12. Yield map—the output of the pre-trained model in the form of a shapefile.

4. Conclusions

ML has a wide application in agriculture with a great research interest in this field as
there is a growing need for practical solutions for increasing the efficiency of agricultural
production. Crop yield is a very complex trait that is determined by several factors such as
the genotype, environment, management and their mutual interaction. This study presents
a method for developing a yield prediction tool, which has the potential to be widely
applied in locations where soya is grown. It uses global/open-source satellite and soil data
as inputs making it scalable across the globe. Accurate yield prediction requires a thorough
understanding of the problem, comprehensive datasets, and powerful algorithms. It is
a very demanding challenge to provide crucial information for optimising management
decisions concerning fertiliser application, harvest, silage, logistic and sales. This research
belongs to the field of data analytics that combines image processing and ML for yield
prediction. Although the research covers three full crop seasons, the database turned out
to be insufficiently large for more complex algorithms such as DNN or CNN that possess
many more parameters than conventional ML models and, thus, require more data for
training. We showed that our approach of data preprocessing provides the opportunity to
train an ML model (SGD) that makes decisions at the 10 m resolution with the prediction
error of 4.36 kg/pixel.

The PPI method provides information about the spatial distribution of yield, which
is incorporated into the Sentinel-2 pixel grid. This information has the potential to help
farmers create appropriate decisions in terms of precision agriculture and field operations.
The biggest advantage of PPI method is the possibility to obtain high-resolution prediction
maps despite the large variability of data. The achieved results provide opportunities for
farmers regardless of whether or not they own yield monitor device to have an accurate
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insight into the condition of their parcels. These yield maps improve the quality of farmer’s
decision-making solutions on a very high resolution. A simple method such as classical
interpolation (SMA) provides worse results than the PPI method due to irregular spatial
overlap of the satellite image pixels and yield monitor polygons. Furthermore, the size of
overlap between satellite pixels and yield monitor polygons has no influence on the quality
of yield prediction.

Combining data from several sources takes time, as it involves executing queries, pre-
processing steps and stacking the data sets. Therefore, the HPC infrastructure is employed
as a method of reducing processing time. The HPC infrastructure is a method of processing
huge volumes of data at very high speeds for large numbers of customers simultaneously.
Code implementation on the HPC infrastructure significantly reduced data processing
times by more than 75%. This implementation would be necessary for an MLS that provides
a yield map with a resolution of 10 m processed in real time.

Future work will be centered around improving the regression algorithms by using
the additional information and data from other regions in order to establish a more robust
algorithm for soya yield prediction. These forms of data have the potential to provide
the appropriate setup for research in the field of in-season yield prediction, in which the
system performance would be analysed throughout the growing season—from sowing to
harvest. One of the important things is that HPC implementation enables the integration of
a practical system to install it on a web platform and run in real-time. Another challenge
would be to develop a multi-class regressor that could predict the yield not only for soya
but also for other similar arable crops from around the world. However, we believe that
this research provides a valuable contribution to the digital transformation of agriculture
in the humanity’s efforts to optimise farming and produce more with less.

Supplementary Materials: The python codes for preprocessing and machine learning are available
online at https://github.com/BPejak/Yield_prediction.git (accessed on 9 March 2022).
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5. Celec, P.; Kukučková, M.; Renczésová, V.; Natarajan, S.; Pálffy, R.; Gardlík, R.; Hodosy, J.; Behuliak, M.; Vlková, B.; Minárik,
G.; et al. Biological and biomedical aspects of genetically modified food. Biomed. Pharmacother. 2005, 59, 531–540. [CrossRef]
[PubMed]

6. Hilbeck, A.; Binimelis, R.; Defarge, N.; Steinbrecher, R.; Székács, A.; Wickson, F.; Antoniou, M.; Bereano, P.L.; Clark, E.A.; Hansen,
M.; et al. No scientific consensus on GMO safety. Environ. Sci. Eur. 2015, 27, 1–6. [CrossRef]

7. Casabé, N.; Piola, L.; Fuchs, J.; Oneto, M.L.; Pamparato, L.; Basack, S.; Giménez, R.; Massaro, R.; Papa, J.C.; Kesten, E.
Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. J. Soils Sediments 2007,
7, 232–239. [CrossRef]

8. Phelinas, P.; Choumert, J. Is GM Soybean cultivation in Argentina sustainable? World Dev. 2017, 99, 452–462. [CrossRef]
9. Krön, M.; Bittner, U. Danube Soya–Improving European GM-free soya supply for food and feed. OCL 2015, 22, D509. [CrossRef]
10. Arslan, S.; Colvin, T.S. Grain yield mapping: Yield sensing, yield reconstruction, and errors. Precis. Agric. 2002, 3, 135–154.

[CrossRef]
11. Pierce, F.; Anderson, N.; Colvin, T.; Schueller, J.; Humburg, D.; McLaughlin, N. Yield Mapping. In The State of Site Specific

Management for Agriculture; American Society of Agronomy: Madison, WI, USA, 1997; pp. 211–243.
12. Oksanen, T.; Linkolehto, R.; Seilonen, I. Adapting an industrial automation protocol to remote monitoring of mobile agricultural

machinery: A combine harvester with IoT. IFAC-PapersOnLine 2016, 49, 127–131. [CrossRef]
13. Navalgund, R.R.; Jayaraman, V.; Roy, P. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766.
14. Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote sensing-based global crop monitoring: Experiences with China’s

CropWatch system. Int. J. Digit. Earth 2014, 7, 113–137. [CrossRef]
15. Campos, I.; González-Gómez, L.; Villodre, J.; Calera, M.; Campoy, J.; Jiménez, N.; Plaza, C.; Sánchez-Prieto, S.; Calera, A. Mapping

within-field variability in wheat yield and biomass using remote sensing vegetation indices. Precis. Agric. 2019, 20, 214–236.
[CrossRef]

16. Campillo, C.; Carrasco, J.; Gordillo, J.; Cordoba, A.; Macua, J. Use of satellite images to differentiate productivity zones in
commercial processing tomato farms. In Proceedings of the XV International Symposium on Processing Tomato 1233, Athens,
Greece, 11–15 June 2018; pp. 97–104.

17. Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 2015,
164, 324–333. [CrossRef]

18. Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters.
Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [CrossRef]

19. McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M. APSIM: A novel software system for model
development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [CrossRef]

20. Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie,
J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [CrossRef]

21. Van Diepen, C.v.; Wolf, J.v.; Van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag.
1989, 5, 16–24. [CrossRef]

22. Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts
and underlying principles. Agron. J. 2009, 101, 426–437. [CrossRef]

23. Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.;
Bishop, T.F. An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precis.
Agric. 2019, 20, 1015–1029. [CrossRef]

24. Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.; Ciampitti, I.A. Satellite-based soybean yield forecast: Integrating
machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020, 284, 107886.
[CrossRef]

25. Eyre, R.; Lindsay, J.; Laamrani, A.; Berg, A. Within-Field Yield Prediction in Cereal Crops Using LiDAR-Derived Topographic
Attributes with Geographically Weighted Regression Models. Remote Sens. 2021, 13, 4152. [CrossRef]

26. Gaso, D.V.; de Wit, A.; Berger, A.G.; Kooistra, L. Predicting within-field soybean yield variability by coupling Sentinel-2 leaf area
index with a crop growth model. Agric. For. Meteorol. 2021, 308, 108553. [CrossRef]

27. De Wit, A.d.; Van Diepen, C. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield
forecasts. Agric. For. Meteorol. 2007, 146, 38–56. [CrossRef]

28. Zhuo, W.; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating soil moisture retrieved from
Sentinel-1 and Sentinel-2 data into WOFOST model to improve winter wheat yield estimation. Remote Sens. 2019, 11, 1618.
[CrossRef]

29. Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin,
C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [CrossRef] [PubMed]

30. Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat.
Commun. 2015, 6, 1–9. [CrossRef] [PubMed]

31. Brdar, S.; Culibrk, D.; Marinkovic, B.; Crnobarac, J.; Crnojevic, V. Support vector machines with features contribution analysis
for agricultural yield prediction. In Proceedings of the Second International Workshop on Sensing Technologies in Agriculture,
Forestry and Environment (EcoSense 2011), Belgrade, Serbia, 30 April–7 May 2011; pp. 43–47.

32. Khaki, S.; Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci. 2019, 10, 621. [CrossRef]

http://doi.org/10.1016/j.biopha.2005.07.013
http://www.ncbi.nlm.nih.gov/pubmed/16298508
http://dx.doi.org/10.1186/s12302-014-0034-1
http://dx.doi.org/10.1065/jss2007.04.224
http://dx.doi.org/10.1016/j.worlddev.2017.05.033
http://dx.doi.org/10.1051/ocl/2015050
http://dx.doi.org/10.1023/A:1013819502827
http://dx.doi.org/10.1016/j.ifacol.2016.10.024
http://dx.doi.org/10.1080/17538947.2013.821185
http://dx.doi.org/10.1007/s11119-018-9596-z
http://dx.doi.org/10.1016/j.rse.2015.04.021
http://dx.doi.org/10.1016/j.jag.2005.06.002
http://dx.doi.org/10.1016/0308-521X(94)00055-V
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://dx.doi.org/10.1111/j.1475-2743.1989.tb00755.x
http://dx.doi.org/10.2134/agronj2008.0139s
http://dx.doi.org/10.1007/s11119-018-09628-4
http://dx.doi.org/10.1016/j.agrformet.2019.107886
http://dx.doi.org/10.3390/rs13204152
http://dx.doi.org/10.1016/j.agrformet.2021.108553
http://dx.doi.org/10.1016/j.agrformet.2007.05.004
http://dx.doi.org/10.3390/rs11131618
http://dx.doi.org/10.1126/science.1185383
http://www.ncbi.nlm.nih.gov/pubmed/20110467
http://dx.doi.org/10.1038/ncomms6989
http://www.ncbi.nlm.nih.gov/pubmed/25609225
http://dx.doi.org/10.3389/fpls.2019.00621


Remote Sens. 2022, 14, 2256 21 of 22

33. You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep gaussian process for crop yield prediction based on remote sensing data. In
Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

34. Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-level soybean yield prediction using deep CNN-LSTM model. Sensors 2019,
19, 4363. [CrossRef]

35. Khaki, S.; Wang, L.; Archontoulis, S.V. A cnn-rnn framework for crop yield prediction. Front. Plant Sci. 2020, 10, 1750. [CrossRef]
36. Kaul, M.; Hill, R.L.; Walthall, C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 2005, 85, 1–18.

[CrossRef]
37. Marko, O.; Brdar, S.; Panic, M.; Lugonja, P.; Crnojevic, V. Soybean varieties portfolio optimisation based on yield prediction.

Comput. Electron. Agric. 2016, 127, 467–474. [CrossRef]
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Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE
2017, 12, e0169748. [CrossRef]

68. Scott, D.F., Jr.; Martin, J.D. Industry influence on financial structure. Financ. Manag. 1975, 4, 67–73. [CrossRef]
69. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
70. Yan, X.; Su, X. Linear Regression Analysis: Theory and Computing; World Scientific: Singapore, 2009.
71. Boswell, D. Introduction to Support Vector Machines; Departement of Computer Science and Engineering University of California

San Diego: San Diego, CA, USA, 2002.
72. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme Gradient Boosting; R Package Version

0.4-2; The R Foundation: Indianapolis, IL, USA, 2015; Volume 1.
73. Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012,

pp. 421–436.
74. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
75. Herman, J.; Usher, W. SALib: An open-source Python library for sensitivity analysis. J. Open Source Softw. 2017, 2, 97. [CrossRef]
76. Zhou, N.; Georgiou, Y.; Pospieszny, M.; Zhong, L.; Zhou, H.; Niethammer, C.; Pejak, B.; Marko, O.; Hoppe, D. Container

orchestration on HPC systems through Kubernetes. J. Cloud Comput. 2021, 10, 1–14. [CrossRef]
77. Dalcin, L.D.; Paz, R.R.; Kler, P.A.; Cosimo, A. Parallel distributed computing using Python. Adv. Water Resour. 2011, 34, 1124–1139.

[CrossRef]
78. Kurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific containers for mobility of compute. PLoS ONE 2017, 12, e0177459.

[CrossRef] [PubMed]
79. Sobol’, I.Y.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414.
80. Papageorgiou, E.; Aggelopoulou, K.; Gemtos, T.; Nanos, G. Yield prediction in apples using Fuzzy Cognitive Map learning

approach. Comput. Electron. Agric. 2013, 91, 19–29. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2013.08.029
http://dx.doi.org/10.3390/rs2102369
http://dx.doi.org/10.1016/S0034-4257(96)00072-7
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1371/journal.pone.0169748
http://dx.doi.org/10.2307/3665473
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.21105/joss.00097
http://dx.doi.org/10.1186/s13677-021-00231-z
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pubmed/28494014
http://dx.doi.org/10.1016/j.compag.2012.11.008

	Introduction
	Materials and Methods
	Method Overview
	Data
	Preprocessing
	Machine Learning
	Processing Speed-Up Using High Performance Computing

	Results and Discussion
	Conclusions
	References

