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Abstract: This paper concerns the study of coupled effects of electrohydrodynamic (EHD) and
thermocapillary (TC) on the dynamic behaviour of a single liquid droplet. An incompressible
Smoothed Particle Hydrodynamic (ISPH) multiphase model is used to simulate EHD-TC driven
flows. The complex hydrodynamic interactions are modeled using the continuum surface force (CSF)
method, in which the gradient of the interfacial tension and the Marangoni forces are calculated with
an approximated error or 0.014% in the calculation of Marangoni force compared to the analytical
solutions which is a significant improvement in comparison with previous SPH simulation studies,
under the assumption that the thermocapillarity generates sufficiently large stress to allow droplet
migration, while the electrohydrodynamic phenomena influences the droplet morphology depending
on the electrical and thermal ratios of the droplet and the ambient fluid. This study shows that,
when applying a vertical electric field and thermal gradient, the droplet starts to stretch horizontally
towards a break-up condition at a high rate of electrical permitivity. The combined effect of thermal
gradient and electric field tends to push further the droplet towards the break-up regime. When the
thermal gradient and the electric field vector are orthogonal, results show that the droplet deformation
would take place more slowly and the Marangoni forces cause the droplet to migrate, while the
stretching in the direction of the electric field is not seen to be as strong as in the first case.

Keywords: electrohydrodynamics; thermocapillary; multiphase fluid flows

1. Introduction

Suspended bubbles or liquid droplets deform in fluid flows and in doing so demon-
strate a host of phenomena with high industrial importance. For instance, in petroleum
industry, there is a major need to accurately drive and control the demulsification process of
crude oil [1,2]. In doing so, conventional experimental techniques, such as heat treatment,
electrical field, and membrane separation, require complex and expensive setups to enable
significant insight into these complex multi-physics problems [3]. In terms of physical mod-
elling, the simulations of the dynamics of bubble rising including deformation and possible
merging or break-down, require a correct treatment of the sharp liquid-gas interfaces with a
fine modeling of the surface tension that can lead to large deformations of the interfaces. In
this article, we focus on the numerical study of a single bubble deformation under different
flow conditions. Since the numerical simulation of two-phase flows is inherently a multi-
scale problem that needs sophisticated strategies for time and space integration schemes,
both small and large scale deformations should be treated simultaneously. Moreover, in a
two phase system of leaky dielectric fluids inclusion of the temperature response to electric
and hydrodynamic response of the system requires special treatment. The application
of an external electric field to a droplet can result in large topology and velocity changes
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with possible break-down and coalescence. Understanding of the underlying principles
of Electrodynamics (EHD) can be applied to better control and predict the motion and
deformation of droplets.

From a fundamental point of view, most of the simplest multi-physics models can-
not be theoretically solved in their closed form, hence the interest in numerical solution
arises [4,5]. The classical methods such as Finite Difference [6], Finite Element [7], Finite
Volume [8], Level Set Method [9], and combined methods [10] cover the majority of the
mesh-based numerical strategies in which the accuracy of the results is highly dependent
on the numerical aspects (i.e., numerical methods, time step size and mesh refinement) [11].
Numerical methods can be classified with regards to their modeling approach. In the Eule-
rian multi-fluid approach, each phase is considered as an interpenetrating continua from
which an ensemble averaging of the multi-phase Navier–Stokes equations is calculated [12].
On the other hand, the Lagrangian mesh-free methods notably Smoothed Particle Hy-
drodynamics (SPH) [13] offers a promising and flexible framework in modeling complex
coupled multi-phase fluid problems. As listed in reference [14], among several mesh-free
methods, SPH inherently provide notable efficiency in calculating partial derivatives [15]
by considering particles which remove the necessity for mesh generation and refinement.

From physical point of view, thermocapillary instability (TC) is caused by inhomogen-
ities in interfacial tension in multi-phase systems. This in-homogeneity is a result of a
thermal gradient at the interface introduced by surfactants or temperature variations. Here,
we consider the variation of temperature on the surface of the micro-droplet. Temperature
variation creates a non-uniform surface tension, which results in interruption in the balance
of forces and the introduction of a new shear stress on the surface of the droplet. The
imposed strains by the continuous phase alter the structure of the particles of the disperse
phase. In particular, coupling the temperature gradient with an electric field leads to a
bubble destabilization and deformation. The electrostatic pressure enhances the instability
since the electrostatic force on the droplet surface is higher than the capillary pressure. On
the other hand, the capillary pressure affects the fluctuations of the free surface, which lead
to diminishing instabilities. The instability grows when the electrostatic pressure is larger
than the capillary pressure. As a result, the bubble starts to deform or migrate.

There are few experimental and theoretical studies available in the literature of EHD-
TC coupled problem. In principle, a droplet in such system evolves in order to reduce
the total free energy of the system. The total energy is defined as the sum of internal
and the kinetic energies. At steady state, the final shape of the droplet is reached at the
lowest interfacial energy level. The linear stability analysis shows a negative correlation
between the temperature and the interfacial tension. Regarding the one-dimension thin
liquid films, the EHD-TC forces lead to the creation of smaller structures (eddies) [16,17].
Nevertheless, some inconsistencies between the experimental and theoritical approaches
are reported because of the electric breakdown effects, when a sufficiently high voltage
is applied [18]. Therefore, the current paper concerns the study of complex flow physics
including thermocapillary phenomena (Marangoni forces) and electrohydrodynamics by
means of SPH simulation. The current work is an extension of our previous numerical
study in which an electric field is coupled [19].

This article is organised as follows; the governing equations of a multi-phase sys-
tem with thermal gradient and electric field are first presented, before introducing the
SPH method and the associated space and time discretization schemes. Afterwards, nu-
merical convergence studies are presented. Then we discuss the surface tension, the
electrohydrodynamics and the thermo-capillary effects, separately. Finally, the results for
electrohydrodynamics-thermo-capillary bubble deformations are presented.

2. Governing Equations

Mathematical formulations of governing equations of the coupled EHD-TC problem
consist of a set of continuity, momentum and energy balance equations.
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2.1. Continuity Equation

The continuity equation can be derived based on volume flux conservation laws as

Dρ

Dt
+ ρ∇ · v = 0 (1)

where ρ, v and Dρ/Dt represent the density, the averaged fluid velocity and the material
derivative operator, respectively.

For incompressible flows, the continuity equation reduces to ∇ · v = 0.

2.2. Momentum Equation

Assuming that the total stress tensor is symmetric, the momentum equation for a
two-phase Newtonian, immiscible, and non-reactive, fluid flow with constant electrical
permitivity and electrical conductivity can be written as

ρ
Dv
Dt

= −∇p +∇ ·Πv +∇ ·Πc + Fg + Fe (2)

where p is the pressure, Πv = µ[∇v + (∇v)T ] is the viscous stress tensor with the dynamic
viscosity µ and transpose operator T, Πc is the capillary stress tensor, Fg is the body force
due to gravity, and Fe is the electric force. Note that the sharp interface limit of the capillary
stress tensor is defined as ∇ ·Πc = (σχn +∇Sσ)δ where σ is the surface tension, χ is the
curvature, ∇S is the gradient of the surface tension in tangential direction with respect
to the surface, and n is the unit normal vector of the interface. The Dirac-delta function
δ is defined to be unity at the interface and zero elsewhere. As a result, the capillary
stress tensor is constant inside the bulk. The surface tension force is calculated using the
continuum surface force (CSF) model [19,20]. Thus, Equation (2) can be rewritten as

ρ
Dv
Dt

= −∇p + µ∇2v + (σχn +∇Sσ)δ + ρg + Fe (3)

To calculate the electric force Fe, we apply the electrohydrodynamics theory for leaky
dielectric fluids [21,22]. The electric force is obtained from

Fe = ∇ · T (4)

where T is the Maxwell stress tensor. For weak electric currents, the magnetic field is
negligible because the electric field is assumed to be irrotational (∇× E = 0). The Maxwell
stress tensor T reads

T = DE− 1
2
(D · E) Ī (5)

where E is an external electric field, D = εE is the dielectric displacement vector, and ε is
the electrical permittivity. Ī denotes the identity tensor. Using Gauss’s law,

∇ ·D = qv (6)

where qv is the free electric charge density. Knowing that the gradient of the electric field
vector is symmetric and by application of the product rule in differentiation, by taking the
divergence of the Maxwell stress tensor and combined use of Equations (4)–(6), the electric
field force per unit volume Fe can be obtained as [23]

Fe = qvE− 1
2

E · E∇ε (7)

2.3. Conservation of Energy

In the energy balance equation, we only include the heat transfer induced by the
temperature gradient (∇T) and we neglect the effect of viscous heating and other source
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terms. However, the heat transfer from one phase to the other is accounted for. The
resulting energy equation can be written as :

DT
Dt

= κ∇2T (8)

where κ is the thermal diffusivity.

2.4. Boundary Conditions

This study is based on impermeable boundary conditions. For temperature and
pressure, Dirichlet or Neumann boundary conditions are used. For the gradient of the
color only Neumann boundary conditions are applied to avoid influence of the fictitious
boundary conditions. The velocity boundary conditions are set to either slip or no-slip
conditions. Based on the features of our proposed SPH model (see Section 3), there is no
need to consider normal and surface tension boundary conditions. Boundary treatment is
done using the implementation of Cummins and Rudman [24] approach at straight walls,
also known as mirror particles. According to this approach, the fluid particles are mirrored
in every time step across the wall. The image of the particles, distanced to a certain value
from the fluid domain, represent the discretized wall particles. Thereafter, the properties
of the wall particles are chosen to apply Dirichlet and Neumann boundary conditions.
More specifically, any property of an image particle Ψ′i and a particle Ψi (such as velocity,
pressure, temperature, color) can be defied such that

Ψ′i = 2Ψwall − δwallΨi (9)

where the Ψwall is the value of the wall and the sign function is defined as

δwall =

{
+1 for Dirichlet boundary conditions.
−1 for Neumann boundary conditions with~Ψwall = 0

(10)

More details can be found in [25,26]. It is more suitable for straight wall conditions
(i.e., our currant work) compared to curved walls.

3. Smoothed Particle Hydrodynamics (SPH) Method
3.1. Mathematical Formulation of SPH

Smoothed Particle Hydrodynamics (SPH) method was developed independently by
Gingold and Monaghan [27], and Lucy [28] as a truly Lagrangian particle-based method
with a superior ability in modeling complex geometries and large fluid flow deformations.
Several studies show the wide range of applications of SPH method as presented for exam-
ple in [15,29]. In SPH, the continuum system is discretized into interpolation points, called
particles, that can move freely and carry physical properties such as mass, momentum and
temperature. An arbitrary function f (x) can be exactly reformulated as

f (x) =
∫

f (x′)W(x− x′, h)dx′ (11)

Here, the smoothing (kernel) function W is introduced. The smoothing length h
measures the radius of the kernel, while x and x′ are the position vectors of two different
particles. According to Monaghan [30], the kernel function must satisfy certain conditions.
It has to be normalized over the whole domain Ω, such as

∫
Ω W(x − x′, h)dx = 1 and

contracts to Dirac-delta function δ, so that limh→0 W(x− x′, h) = δ(x′).
Moreover, a suitable kernel function should have a compact support; i.e., for every

k ∈ IR+ if |x− x′| > kh then W(x− x′, h) = 0.
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This last condition ensures the numerical efficiency in approximating physical vari-
ables such as velocity, density or temperature. The discrete form of Equation (11) reads

f (xi) = ∑
j

f (xj)W(xi − xj, h)Vj (12)

Here, we use the 4-th order Wendland C2 kernel function [31] given by

W(x− x′, h) =
Cw

hd

{
(1− q

2
)4(1 + 2q) q ∈ [0, 2].

0 otherwise.
(13)

W ′(x− x′, h) =
Cw

hd

{
(1− q

2
)3(−5q) q ∈ [0, 2].

0 otherwise.
(14)

where q is the dimensionless smoothing length, q =
x− x′

h
. The normalization constant Cw

at each dimension d is

Cw =



3
4

d = 1

7
4π

d = 2

21
16π

d = 3

(15)

Figure 1 illustrates the kernel function W and its derivative with smoothing radius
h = 0.75.

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Figure 1. Kernel function W(x, h) and its first derivative ∂
∂x (W(x− x′, h)) according to Equations (13)

and (14).

One of the main advantages of SPH over other mesh-less methods is that by starting
from Equation (11), one can calculate the derivatives of the function f by means of the
gradient of the kernel function. Here, we use two formulations for the first derivative for
different conditions. More details on the derivatives in SPH can be found in the following
References [32,33].
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The first formulation, called the negative formulation, Monaghan [34], is often used
for the divergence free velocity since it guaranties that the gradient of a constant field
( fi = f j) is exactly zero.

∇ f (x)i = ∑
j

mj

ρj

(
f j − fi

)
∇Wij (16)

where Wij is an abbreviated notation for W(xi− xj, h) and i is the particle of interest, among

j neighboring particles. The gradient of the kernel function ∇Wij =
xi − xj

|xi − xj|
∂W
∂x

is hence

calculated using the analytical expression of W shown in Equation (13).
The second formulation of the first derivative, known as positive formulation, pro-

posed by Monaghan [30], is often used to calculate the pressure gradient. As mentioned
in [30] the advantage of this formulation over Equation (16) is that due to the symmetric
term fi + f j, the conservation of both linear momentum and angular momentum hold when
calculating the pressure forces.(

1
ρ
∇ f (x)

)
i
= ∑

j
mj

(
f j + fi

ρi · ρj

)
∇Wij (17)

3.2. Application of the SPH to the Governing Equations

Present section concerns the discretized formulation of the set of governing equations
in the context of SPH method.

As for the continuity equation Hu and Adams [35] proposed a conservative formula-
tion of the discrete mass conservation as following

ρi = mi ∑
j

Wij (18)

In this formulation, ρi is calculated directly from
mi
Vi

with Vi being the volume of

particle i. The error of the total volume of a wall-bounded system of particles is therefore
bounded, since the neighboring particles contribute to the particle density only by affecting
the specific volume of particle i [35].

Using the presented first and second derivatives of SPH, the discrete momentum
balance can be written as

Dv
Dt

= −∑
j

mj

ρi · ρj
(pi + pj)∇Wij

+ ∑
j

mj

ρi · ρj

(
µi + µj

) xi − xj

|xi − xj|2
∇ f (x)i · (vi − vj)

+ Fg,i + δ[σiχini + (∇Sσ)i] + Fe,i

(19)

where Fe,i corresponds to the electric field force and is the source term in the momentum
equation calculated from Equation (7) that is obtained from the discrete form of the electric
field density

E = − ρi
mi

∑
j

[(
mi
ρi

)2

+

(mj

ρj

)2
]

φij∇Wij (20)

with φij being the inter-particle average of the electric potential. The electric body force
links the electric field equations to the momentum balance.
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To close the system, the energy equation is discretized as(
DT
Dt

)
i
= ∑

j

mj

ρj

(
λi + λj

) xij

x2
ij
∇iWij ·

(
Ti − Tj

)
(21)

where Ti is the ith particle temperature and λi is the ith particle thermal conductivity. It
must be noted that any type of phase change in the system is neglected here due to the low
temperature gradient compared to the fluid properties. If not negligible, the effect of phase
change on the energy equation can be represented in the form of additional terms.

3.3. Pressure Calculation and Temporal Discretization

One way to calculate the pressure term in the momentum balance is by enforcing
the incompressiblity condition. It is therefore called the Incompressible SPH (ISPH) [24]
method, which consists of the following steps. First, the Helmholtz-Hodge decomposition
of the momentum balance is obtained. This decomposition divides the momentum balance
into a part including pressure (divergence-free) and a pressure-free part (curl-free) shown
in Equation (19). From the curl-free contribution, one can estimate an intermediate velocity
and density, which represents a predictor step. From a Pressure-Poisson Equation (PPE),
one can compute the pressure term. Pressure is applied to correct the estimated velocity
(corrector step). This implies that in this method an estimation of velocity is projected on a
divergence-free space.In SPH, this projection method was introduced by Cummins and
Rudman [24]. The discrete equations used in the current study are reviewed in the following.
Having that the curl-fee part of the acceleration in the intermediate step (indicated with
asterisk ∗),~aa,∗ in the momentum balance can be defined as

ai,∗ =∑
j

mj

ρiρj

(
µi + µj

) rij

r2
ij
∇iWij ·

(
vi − vj

)
+ Fe,i + Fg,i

+
ni
ρi
(σiχini + (∇Sσ)i)

(22)

Next, we obtain the intermediate velocity using an explicit Euler scheme

vi,∗ = vt
i + ai,∗∆t (23)

where ∆t is the time step. Again, sing the intermediate velocity and an explicit Euler
scheme, we obtain the new particle position

xi,∗ = xt
i + vi,∗∆t (24)

This position is then used to calculate the intermediate density according to Equation (18).
Given the calculated intermediate density, the particles can be put back to their prior
position xt

i . The pressure can therefore be calculated according to the PPE

∇ ·
(
∇p
ρ∗

)
=
∇ · v∗

∆t
(25)

More details about projection procedure can be found in reference [19] .
In the present model, the temporal discretization is obtained by the fractional step

method [36]. The details of the application of this method for velocity and position ad-
vancement using the so-called intermediate velocity calculation is elaborated at refer-
ences [19,26]. In the current study, two time-step integration schemes are used, namely a
predictor-corrector scheme to solve the momentum equation and an explicit Euler scheme
to sequentially couple the mass fraction to the velocity in the predictor step. A stability
criterion, based on the CFL condition is needed following the minimum time scales be-
tween convection and diffusion schemes. In the present study, we consider fixed boundary
conditions for all conducted cases. For each test mentioned further we adopt the method of
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Morris et al. [37], where the boundary conditions are projected to fixed boundary particles
to fulfill either Neumann or Dirichlet boundary conditions [25,38,39].

4. Results and Discussion

This section presents the results of the SPH model implemented in the 2D studies.
First, in order to verify the SPH model in the pressure prediction, a Young-Laplace problem
is solved with SPH model in a 2D simulation domain. Second, a linear thermal profile is
imposed on a 2D simulation domain to verify the SPH model against analytical solution
of the Marangoni force in the static case followed by a dynamic case to validate the 2D
thermoacapillary bubble rising and comparison of the SPH results with direct numerical
simulation results. Third, the effects of EHD on a single droplet immersed in continues
phase are calculated with SPH model and compared with analytical results. This includes
the flow orientation inside and outside of the droplet, the bubble deformation and the
velocity compared with analytical results. In the last section, the SPH model for two-phase
flow subject to coupled EHD and thermocapillary forces is presented and the evolution of
a 2D droplet is predicted for multiple fluid properties.

Validation of the interfacial forces begins with the investigation of a static pressure
jump. Initially, a quiescent system with a velocity field equal to zero is assumed. Since all
time derivatives are zero, the mass is conserved. Young-Laplace law relates the droplet
curvature and the pressure gradient at the interface. Based on this law, the pressure gradient
at the interface of two phases would be equal to the product of the mean curvature of the
interface and the surface tension such as

pd − pb = σ

(
1

R1
+

1
R2

)
(26)

where R1 and R2 are the radii of the curvature of a curved surface. Note that in case of
a circle R1 = R2 = R resulting in pd − pb = σ

R . The pressure jump at phase boundary
follows the Young-Laplace equation, which describes the relationship between the pressure,
the surface tension and the radius of the droplet. The schematic of the pressure inside
and outside of the bubble are shown in Figure 2-left. To investigate the accuracy of the
numerical results compared to analytical results when droplet radius R are taken 0.25 [m],
0.3125 [m], 0.375 [m] and 0.625 [m]. The L/R ratio is set to 8 in these simulations so that
the same confinement effect will be applied for all. It is shown in Figure 2-right that as
expected, a linear relationship between ∆p and 1

R is observed. The slope of each straight
ling indicates the surface tension and are equal to σ = 0.1 and σ = 0.2. This indicates
that the simulation results obtained from SPH multiphase model confirm well with Young-
Laplace law. According to Equation (26), surface tension tends to minimize the surface,
whereas the pressure difference tends to increase the surface curvature. When considering
free-surface flows and based on the geometry, the fluid-fluid interface is flat while in the
problems stated here, one phase is fully surrounded by the other and is under full tension
from all directions, leading to droplet circular shape (when no external forces are applied).

To study the effect of particle resolution, the simulation setup is designed with the
domain size of 4 [cm], sufficiently low confinement effects with L/R = 4 and a surface
tension of σ = 0.00837 [N/m]. The following relative error norms are defined.

L2(pExact ) ≡
1

pExact

√
∑i(pSPH,i − pExact )

2

∑i

L∞(pExact) ≡
1

pExact
max

i
(|pSPH,i − pExact |)

(27)

Table 1 shows that when the particle resolutions increase, both L2 and L∞ norms
decrease. We can conclude that the pressure gradient inside the bubble converges to the
analytical solution ∆p = 0.837 [Pa].
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Figure 2. (left) Schematic of the pressure inside (pd) and pressure outside (pb) the bubble used
to calculate theoretical pressure according to Young-Laplace law, (right) The validation of Young-
Laplace law. Straight lines indicate analytical results and scattered points indicate numerical results
from SPH method.

Table 1. Compariosn between the exact analytical results and SPH results in the pressure computation
in the case of 2D droplet simulation with 60, 100, and 140 particles per direction.

Mesh Resolution Absolute Value of L2 Norm Maximum L∞ Norm

60 0.049 0.937
100 0.044 0.854
140 0.025 0.821

Next, we validate the Marangoni force separately and investigate convergence of the
numerical method. First, the static capillary stress tangential to the interface under ther-
mocapillary effect at three grid resolutions is studied. A linear thermal profile is imposed
on a two-layer square (5.76 [mm] × 5.76 [mm]) domain where droplet is characterised by
ρd = 250 [kg/m3], λd = 96× 10−6 [m2/s] and the background fluid by ρb = 500 [kg/m3],
λb = 48× 10−6 [m2/s] for density and thermal conductivity, respectively. The surface
tension evolves based on the Equation (28) showing a linear relationship between the
surface tension and the temperature,

σ = σre f + σT(T − Tre f ) (28)

where σre f and Tre f are the reference values of the surface tension and the temperature,
respectively. The negative surface tension coefficient σT = −0.002 [N/mK] implies the
decrease of the surface tension σ with respect to the temperature. The linear thermal
gradient 200 [K/m] is imposed from bottom wall TC towards the upper wall TH . According
to the dependence of the surface tension to the temperature with σT = −0.002 [N/mK], the
Marangoni force acts vertically on the interface. Note that the lateral walls are adiabatic
while the top and the bottom walls are subject to TH = [291.15] K and TC = 290 [K].
Figure 3 shows the profile of interfacial Marangoni force along a horizontal line at the
center of the simulation domain, at three different particle spacing. The values form SPH
model are the normal component of the Marangoni force perpendicular to the fluid-fluid
interface which are calculated based on the Continuum Surface Force (CSF) method and as
a consequence are volumetric force calculated per particle volume. Lower particle spacing
correspond to sharper interface. If an infinite resolution was possible numerically, the
Marangoni force profile would tend to Dirac function where its magnitude is equal to
Marangoni force. From Figure 3 one can also observe that the magnitude of the Marangoni
force increases with particle resolution augmentation. Since the σT = −0.002 [N/mK], the
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interfacial Marangoni force direction is downwards. To compare the magnitude numerical
results with exact solution (σT ×∇T = 0.4 [N/m2] ). For the numerical case, magnitude of
the Marangoni force predicted by SPH method is computed by integrating the Marangoni
force part of the surface tension (not the CSF part). The comparative table of the results in
shown in Table 2. The gravity and the heat dissipation are neglected, therefore the only
acting force is the Marangoni force for which the sampled profile along the horizontal line
is depicted and one can observe that the higher the particle spacing, the wider the range of
volumetric Marangoni force at the interface. These results are in agreement with results
reported in [19,40].

Figure 3. Profile of the volumentric Marangoni force along the normal direction to the interface using
a resolution of Lo = 180 [µm], Lo = 90 [µm] and Lo = 45 [µm].

Table 2. Comparison between SPH results of the integrated Marangoni force and analytical solution.

Particle Spacing
[µm]

Numerical Result
[N]

Analytical Solution
[N]

Relative Error
Percentage

45 0.394421 0.4 0.013947
90 0.394411 0.4 0.013971

180 0.394425 0.4 0.013975

In thermocapillary droplet motion, having that surface tension depends on temperature,
assuming hot wall temperature TH and cold wall temperature TC on parallel boundaries
(TH > TC) leads to the introduction of a surface tension gradient along the interface.
Thermocapillarity consists of applying a temperature gradient along an interface to induce
a surface tension gradient. If ∇T and ∂σ denote the temperature and the surface gradient
operator, respectively, the thermocapillary tangential stress writes as

∇sσ =
∂σ

∂T
∇sT (29)

The surface tension gradients (i.e., Marangoni effect) can be used to control the dynamics
of the bubble. To this end, a square box (5.76 [mm] × 5.76 [mm]) is discretized using
32 particles in each direction. The droplet is initially placed at the center of the domain
and has a radius R = 1.4 [mm]. The velocity boundary conditions are set to be free
slip at the lateral walls, and no-slip at the top and bottom walls. Neumann Pressure
boundary conditions are used on all walls except for the left wall, where a Dirichlet
Pressure boundary condition is used due to bootstrap condition of the Pressure Poisson
Equation. The temperature is fixed at 290 [K] at the bottom wall and linearly increases to
291.15 [K] at the top wall. Assuming that both droplet and the ambient fluid are initially
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at the stationary state with ρd = 250 [kg/m3] and µd = 0.012 [Pa·s] for the droplet and
ρb = 500 [kg/m3] and µb = 0.024 [Pa·s]) for the background fluid, we consider that the
heat conductivity of the droplet (1.2 × 10−6 [W/mK]) is half of the background fluid. With
constant surface tension σre f = 0.01 [N/m] and the rate of the change of the surface tension
with temperature σT = 0.002 [N/mK] in Equation (28), Figure 4 shows the time evolution of
the droplet migration velocity subject to Marangoni force compared to results obtained by

Ma and Bothe [41]. The dimensionless velocity U∗ =
U
Uc

where the characteristic velocity

Uc =
σT |∇T|R

µb
and the dimensionless time t∗ =

t ·Uc

R
.

0 0.5 1 1.5 2

0

0.025

0.05

0.075

0.1

0.125

0.15

Ma et al.

This work

Figure 4. Comparison between droplet migration velocity in this work and Ma and Bothe [41].

Marangoni stress that is the tangential component of the surface tension gradient acts
in opposition of the surface motion and hence results in less flexibility of the interface
and droplet mobility restriction if no additional force is applied. As time passes, the time-
evolution of the non-dimensional droplet velocity which, and after some oscillations, meets
the velocity associated direct numerical simulation Ma and Bothe [41], hence the initial
unsteady leading to a steady droplet motion.

Hereafter, the EHD solver is validated by setting up a similar test to first part of the
Section 4. The direction of these streamlines is determined as the mutual relationship
between the electrical conductivity and electrical permitivity ratios of the phases. They
are defined as S = εd/εb and R = ςd/ςb for the electrical permitivity and electrical
conductivity ratios, respectively. Note that the subscript d and b refer to the droplet and
bulk fluid properties.

The recirculation zones of the fluid inside and outside of the droplet are theoretically
predicted by Taylor et al. [42] as depicted in Figure 5 with Pole-to-Equator and Equator-to-
Pole flow directions. A specific numerical simulation for the case SD4 withR < S and SD3
forR > S from Table 3 are compared with Taylor’s results in Figure 6.

A qualitative agreement of the flow orientation inside and outside of the droplet is
found between the theoretical prediction and the SPH capability in correctly capturing
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the direction of the recirculation zones. ForR > S , the streamlines start from the equator
towards the pole, while R > S situation, the opposite direction is observed. Figure 7
depicts the velocity profile on the right-half and the pressure distribution on the left-half.
Note that the recirculation zones of velocity streamlines inside (in blue) and outside (in red)
of the droplet are clearly visible.

(a) (b)

Figure 5. Schematics representation of two types of induced flows based on the Taylor’s theory: (a)
R < S and (b)R > S . Reproduced from Shadloo et al. [43].

(a) (b)

Figure 6. Comparison between the orientation of induced flows inside and outside of the droplet
with S > R: (a) Numerical results (b) Taylor’s theory [42].
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Figure 7. Pressure distribution across the left side of the droplet and the vector velocity contours
inside and outside of the droplet on the right side. The red to blue colors indicate high to low
pressure region.

Table 3. Simulation parameters for EHD cases using small deformation theory.

Case εd [F/m] ςd [S/m] S R σ [N/m]

SD1 0.3 40 0.5 2 0.01
SD2 00.5 40 0.5 2 0.01
SD3 0.5 150 0.5 3 0.01
SD4 0.5 1 0.5 0.05 0.01
SD5 3 10 5 0.5 0.03

Investigation of circular droplet deformation given small deformations subject to electric
field is presented here using two theories from literature. Taylor [42] estimates the droplet
deformation DT as

DT =
9 fdTE2

o εdR
8(2 +R)2σ

(30)

where fdT is the discriminating function evaluated as

fdT = R2 + 1− 3.5S + 1.5R (31)

For the same problem, Feng [44] suggests the following relation

DF =
fdFE2

o εbR
3(1 +R)2Sσ

(32)

where fdF is estimated from
fdF = R2 + 1− 3S +R (33)

In Equations (30) and (32), R is the initial droplet radius before its deformation and Eo
is the electric field magnitude in the vertical direction deduced from the electric potential
difference Eo = (ϕ+ − ϕ−)/h, with h being the height of the domain. Numerically, the
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droplet deformation parameter D can be defined based on the droplet’s deviation from the
circular shape,

DN =
A− B
A + B

(34)

where A and B are the elliptic droplet diameters at the steady-state condition, parallel and
perpendicular to the direction of the external electric field, respectively. When DN = 0,
the droplet is at its initial circular shape. On the other hand, more deviation from zero
indicates more deformation from its initial shape. Positive and negative values of DN refer
to deformation in the direction and perpendicular to the electric field direction, respectively.
For our study, we consider a circular droplet with R = 0.5 [m] placed at the center of a
squared domain of L = 4 [m]. The domain contains 240 particles per direction. The droplet
properties are ρd = 1000 [kg/m3] and µd = 1 [Pa·s] while the bulk fluid has identical
density and viscosity. All four boundaries are set to no-slip velocity and Neumann pressure
boundary conditions except for the top wall where a Dirichlet pressure boundary condition
is used. An electrical field is imposed on the system by E = 1 [V/m] resulting in unique
electric force value directed towards the bottom wall. Table 3 summarizes different EHD
test cases and Table 4 represents the obtained along with the theoretical values of Feng and
Taylor, and the droplet deformed shape at the steady-state. These setups are selected from
the simulations proposed by Shadloo et al. [43] and show good agreement with this study.

Table 4. Comparison of numerical (N) and theoretical results (Taylor et al. [42]: Equation (30) and
Feng [44]: Equation (32) of the droplet deformation (D) for different combinations of conductivity
and permittivities.

Case DN DT DF Bubble Shape

SD1 0.077 0.065 0.061
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SD2 0.121 0.109 0.101
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SD3 0.157 0.143 0.119
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SD4 −0.040 −0.045 −0.063
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SD5 −0.097 −0.139 −0.196
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Feng [44] has also proposed an analytical solution for the droplet velocity subject to
DC electric field, assuming that the droplet deformation is negligible, i.e., the final shape
of the droplet is assumed circular. The velocities inside and outside the droplet can be
theoretically calculated as

vr,in = U
[( r

R

)3
−
( r

R

)]
cos 2θ (35)

vθ,in = U
[( r

R

)
− 2
( r

R

)3
]

sin 2θ (36)
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vr,out = U

[(
R
r

)
−
(

R
r

)3
]

cos 2θ (37)

vθ,out = −U

[(
R
r

)3
]

sin 2θ (38)

where r is the radial position, vθ and vr are the tangential velocity and the radial velocity,
respectively. The characteristic velocity U can be evaluated as

U =
R−S

2S(1 +R)2
εdE2

o R
µd + µb

(39)

Our numerical results are in agreement with the analytical solutions for both the velocity
θ = 0◦ and θ = 45◦ at which one of the velocity components is maximized as shown in
Figure 8. As can be observed in this figure, theoretical velocity profile for tangential and
radial components are shown with dashed-lines and solid lines in the given order. The
simulation data for tangential and radial velocity components are respectively depicted
with filled circles and unfilled circles. The simulation input parameters correspond to SD4
as shown in Table 3 with (R = 0.5 [m], Eo = 1 [V/m]). When the droplet deformation is
sufficiently large such that the terminal shape can no longer be assumed as circular in two
dimension, the conformity of the numerical and analytical results tends to reduce. Based
on the Equations (35) and (37) the radial velocity needs to be zero at the droplet interface
(r = R). However, because of the small deformation of the droplet (r 6= R) and causes
small deviation between the numerical and analytical results. Based on the equations of
tangential components (36) and (38), having (sin 2θ = 0) leading to vθ = 0 [m/s] and
maximum values of vr that is in agreement with the observations in Figure 8.

(a)

(b)

Figure 8. Components of the velocity profile at (a) θ = 0◦ and (b) θ = 45◦ compared to the formulae
given by Feng [44].

In this section the simultaneous effects of thermocapillarity and electrohydrodynamics
on a single suspended droplet are studied. When a multiphase system is solely subject to
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electric field, the motion of the dispersed phase is forced by the electric field and damped
by the viscous forces. The instabilities caused by EHD-driven flows will occur when the
viscous drag force is much smaller than the electric force. Hence, the droplet losses its
balance and starts to migrate and/or deform. The electric force is more sensitive to the

droplet size than the viscous counterpart, augmenting more instability for larger
L
R

ratios,
where R is the initial droplet radius and L is the size of the domain.

As mentioned before, the Marangoni effect roots into the tangential component of the
surface tension gradient which if aligned with the tangential component of the electric
force, drives the flow to a more unstable configuration. Subsequently, in the next section we
will discuss the scaling parameters that lead to observation of both convective Marangoni
effects and electrohydrodynamic effects. To capture electrohydrodynamics driven droplet
deformations at the equilibrium state, the electric and the hydrodynamic time scales should
match properly based on the geometry of the system namely the droplet radius and the
channel width. The EHD time scale can be characterised by Maxwell-Wagner polarization

time t =
εd + 2εb
ςd + 2ςb

. It is worth reminding that electric charge accumulation at the fluid-fluid

interface happens when each phase has a different charge relaxation time τ =
ε

ς
where ε

and ς are electric permittivity and electric conductivity. This accumulation of the bulk free
charges at the phase boundaries will further result in creation of dipoles on the droplet.
The electric field acting on these induced free charges, will generate shear stress at the
fluid-fluid interface that can be balanced by shear viscous stress and, if thermal gradient is
applied, the tangential component of the surface tension gradient. Another aspect to take
into account regarding the instability of an EHD-TC multiphase system, is the difference
between prolate and oblate droplet deformation. Assuming a vertical potential difference
across the domain, and given that weakly conductive droplets embedded in the weakly
conductive fluids tend to flip such that the dipole aligns with the direction of the electric
field, one can expect that the oblate deformations are more prone to potential instabilities
as their dipole is in the opposite direction of the electric field.

The coupled EHD-TC problem setup consists of a square domain of size L = 0.04

[m] with
L
R

= 8 where R is the radius of the centralised droplet at xo = 0.02 [m] and
yo = 0.02 [m] with 120× 120 particle resolution in x and y directions, respectively. An
electric potential of φ = 0.04 [V] is imposed on the top boundary while other boundaries
are set to φ = 0 [V]. A linear thermal profile is imposed on the top and bottom walls
with respective temperatures of Ttop = 300 [K] and Tbottom = 290 [K] while the reference
temperature and the initial temperature are also kept at 290 [K] throughout the simulation.
The velocity boundary conditions are set to be free slip at the lateral walls, and no slip at
the top and bottom walls. Also, pressure boundary conditions are set to be Dirichlet with
a constant value at top wall and Neumann for the other three boundaries (∇p · n = 0)
where n is the normal direction to the given boundary. The density and viscosity of are
chosen to be ρd = 250 [kg/m3], µd = 0.12 [Pa·s] for the bubble and ρb = 500 [kg/m3],
µb = 0.24 [Pa·s] for the bulk phase. Both phases are set to have stationary conditions at
initial time step. The fluid electrical properties of the three cases are given in Table 5. The
time evolution of the droplet subject to thermocapillary flow and EHD forces is illustrated
in Figure 9.

Table 5. Simulation parameters of the coupled EHD-TC cases where vertical (V) and horizontal (H)
electric fields are imposed.

Case Electric Field
Direction εb [F/m] ςb [S/m] εd [F/m] ςd [S/m]

1 V 1 50 0.5 150
2 H 1 50 0.5 150
3 V 0.5 150 1 50
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t = 0[s] t = 1 [s] t = 2 [s] t = 3 [s] t = 4 [s]

Figure 9. Time evolution of the droplet interface for EHD-TC coupled simulations; case 1 (top
row), case 2 (middle row), case 3 (bottom row) with vertical temperature gradient set to 10 [K]. The
physical simulation time t = 0 [s] at the very first frame on the left, up to t = 4 [s], with a time
increment of 1 per frame. For the simulation parameters see Table 5.

Based on the results shown in Figure 9, a combination of R and S ratios and the
direction of thermal and electric potential gradients affect the deformation and migration
of the droplet.Thermocapillary induced motion due to surface tension gradient can be
decomposed into two components.The perpendicular temperature gradient component
to the fluid layer that generates Benard-Marangoni circulations inside the droplet. The
tangential temperature gradient component generate surface tension gradient along the
surface of the fluid and induce surface flow towards the regions with higher surface tension.
In our simulation, we combine these two components to obtain surface force. Furthermore,
when a droplet is suspended in an imposed flow field generated by the EHD forces, which
itself depends on theR and S relation as explained in the EHD section; both surface force
and the imposed EHD force are responsible for the deformation and migration of the
droplet. For the case 1 (top row) and case 2 (middle row), vertical and horizontal electric
field are applied, respectively, while the thermal gradient is kept vertical in both cases. All
the other parameters are kept the same. In case 1, where the electric field is oriented the
same as thermal gradient, in the vertical direction, it is observed that the droplet forms
a prolate shape. Because the viscosity of the droplet (µd = 0.12 [Pa·s]) is chosen close to
continues phase viscosity (µb = 0.24 [Pa·s]), similar to those in the thermocapillary induced
motion cases, the resistance due to the presence of the droplet is relatively low. However,
the non-uniform distribution of the electric charges on the surface of the droplet, generates
a shear force (from equator-to-pole since R > S) which, in addition to the Marangoni
stress caused by the variation of surface tension on the droplet surface, deforms the droplet.
This deformation modifies the effective viscosity of the droplet compared to its initial
state with respect to the continues field. Because the surface tension coefficient is negative
σT = −0.002 [N/m], the droplet tends to move in the opposite direction of the thermal
gradient, that is from top to bottom. But the effective viscosity modification, retards this
migration. The top side of the droplet, closer to hot wall, has lower surface tension, and
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it is as a result more prone to strong deformation caused by both internal EHD-induced
circulations and surface-force-induced circulations. In the case 2, where horizontal electric
field in applied with higher electric potential set to be at the right side of the setup, our
results show a symmetric elongation along the electric field direction while the droplet
is moving downwards. Finally, case 3 (bottom row) shows the evolution of the droplet
towards a break-up when a vertical electric field is applied taking R < S . As can be
observed, the droplet starts to deform from its center while keeping symmetrical oblate
structure thought the break-up process. Comparison between case 3 in coupled EHD-TC
cases and case 4 in Table 4 where both systems are characterised byR < S , we observe a
different orientation for the droplet due to the presence of Marangoni force. It is important
to take into account the difference between the scale of effectiveness in EHD phenomena
and Marangoni flows due to thermal gradient. The former has a really small time scale
and therefor affects the system much faster than the Marangoni flows. This highlights the
reason for-which numerical simulation of coupled physics require many trials as time-scale
and length scale are not in the same order for each physics involved.

5. Conclusions

• After independently validating the effect of thermocapillary (TC) and electrohydro-
dynamic (EHD) forces on two-phase flows, the coupled EHD-TC effects on a single
droplet migration is studied.

• The two-phase system is analysed first at each isolated condition through which
multiple field parameters such as system’s velocity and pressure are validated.

• The behaviour of the droplet subject to EHD forces and TC phenomena is characterized
using the deformation values for different material properties.

• By choosing the appropriate ratios of electrical permitivity, electrical conductivity,
thermal gradient and electric potential gradient, it is now possible to use simulations
to predict and control the migration and deformation of a droplet using SPH method.

• The results show strong agreement with previous literature. Simulation results for
a single droplet subject to direct current electric field and Marangoni flow induced
by thermal gradient in the absence of gravity reveal an insight to the evolution of the
droplet migration and deformation.

• Results show that the main parameters that influence the droplet topology include
the R and S corresponding to electrical permitivitty and electrical conductivity,
respectively as well as the orientation of the applied electric field with respect to
thermal gradient.

• ForR > S and thermal and electric gradient applied both in the vertical direction, a
prolate deformation of the droplet is observed.

• HavingR > S and an electric field perpendicular to the thermal gradient results in
symmetric and oblate deformation of the droplet while displacing the droplet in the
opposing direction of the thermal gradient.

• The investigation of the droplet break-up process under the coupled effect of the
thermal and electric field demonstrates that in the case of R < S with both electric
and thermal gradients applied vertically, the droplet’s topology evolves towards a
break-up state.

• Nevertheless, the different time-scales of each phenomenon motivates further re-
searches to provide better understanding of EHD-TC instabilities where gravity effects
are neglected.

• Regarding the limitations of this research work, it is worth mentioning that despite
having some similarities with topics such as EHD Heat transfer enhancement, it
is yet to be found sufficiently related numerical or experimental studies with the
close physics, dimensions and parameters to compare with. The approach that we
decided to choose is to validate our model extensively, using available related recent
studies, and propose our solution to a novel coupled multi-physics problem which we
believe is valid based on the validated components. We expect that new experimental
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and numerical studies emerge to discuss this configuration following to the pioneer
appearance of this work.

• For future works, we believe that uncertainty quantification and reliability analysis of
this model can be subject of future directions. In that scope, a meta-model is used to
couple the mechanical and probabilistic models.

• In this study, given that the foundations of the mathematical model, in its general
form, to explain the contribution of each force and the general mechanism affecting the
deformation of the droplet are established in this work, the parametric and sensitivity
analysis can be subject of further studies.
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Nomenclature

χ Curvature
κ Thermal diffusivity (m2/s)
µ Dynamic viscosity (Pa·s)
σ Surface tension (N/m)
R Initial droplet radius (m)
Fe Electric force (N)
g Gravity acceleration (m/s2)
cp Specific heat capacity at constant pressure (J/kg K)
ρ Density (kg/m3)
ε Electric permittivity (F/m)
ς Electric conductivity (S/m)
p Static pressure (kg/m s2)
T Temperature (K)
T Maxwell stress tensor
Ma Marangoni number
v Local average fluid velocity
Π Stress tensor
qv Free electric charge density (C/m3)
Ω Domain of integration of the kernel function
δ Dirac-delta function
Cw Normalisation constant of the kernel function
W(x, h) Kernel function
h Smoothing length of the kernel function
Vi Volume of the particle i
φ̄ij Inter-particle average of the electric potential
λi Thermal conductivity (W/m K)
Lo Characteristic length (m)
τ Bulk relaxation time (s)
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R Electrical conductivity of the droplet to bulk ratio
Eo Electric field vector magnitude (V/m) set to be Eo = 1 unless stated otherwise
S Electrical permittivity of the droplet to bulk ratio
φ Electric potential across the domain
U Characteristic velocity
+ High-electric potential
− Low-electric potential
b Bulk conditions
d Droplet conditions
v viscous stress
c capillary stress
re f Reference conditions
T Gradient with respect to temperature
∗ Dimensionless quantity
H Hot conditions
C Cold conditions
θ Tangential component
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